
i

BURRAQ – a Journey to NO Limits

(In collaboration with iPC, MCS)

By

Maj Shafqat Saeed

Capt Rai Sabir Hussain (Group Leader)

GC Umar Mahboob

Submitted to the Faculty of Computer Science Department

Military College of Signals, National University of Sciences and

Technology, Rawalpindi in partial fulfillment for the requirements of a B.E

Degree in Computer Software Engineering

JULY 2010

ii

Abstract

Pakistan being a developing country does not possess the economy as well as

state of the art technologies to produce modern and expensive defense equipment

involving highly expensive research and development facilities. Therefore a large

percentage of defense products are procured from developed nations like USA, France,

Germany, UK etc and the procurement is subject to highly strict intellect and technical

rights. Unmanned aerial vehicles are amongst the latest gadgets developed based on

the modern technologies and hence are a trade mark only to the armies of developed

modern countries. Unmanned Ariel Vehicles are very expensive equipment and the

existing version of the BURRAQ (UAV) comes with inherent limitations.

The focus of the current research is to carry out study of the existing OEM

specific media player (installed at BURRAQ UAV system), remove interlacing of

cameras in the video caused due to proprietary implementation of the MPEG standard,

and generate flicker less video at display, save flicker less videos of all or any number

of cameras for later viewing and analysis, compress the generated video for further

distribution through existing Communication mediums and standards, extract GPS

data encrypted into the audio signal, and design as well as develop a customized

enhanced version of the system.

iii

DECLARATION

No portion of the work presented in this dissertation has been submitted in support of

any other award or qualification either at National University of Sciences and

Technology or any other institution.

iv

DEDICATION

We dedicate our work to Pakistan.

v

ACKNOWLEDGMENTS

We are very grateful to Allah Almighty for giving us the confidence and strength

for carrying out a research based project and for making us able to come up with an

application that will be highly useful to the Pakistan military.

We also thank our instructors and friends for their moral and technical

suggestions without which we might not have made it this far. We are thankful to Maj.

Dr Naveed Iqbal Rao for guidance and help to complete this project successfully. Above

all, we are deeply thankful to our beloved parents for their serenity, support and prayers

that helped us gain our goal.

1

Contents
Abstract .. ii

Introduction .. 4

1.1 Introduction .. 5

1.2 Scope and Objectives of the Project ... 5

1.3 Potential Difficulties and Problems .. 6

1.4 Intended Audience ... 7

Related Work .. 8

2.1 Existing System .. 9

2.1.1 Video Data ... 9

2.1.2 Audio Data ... 10

2.2 Problems in Existing System .. 10

2.3 Analysis of Existing System .. 11

2.3.1 Audio Analysis .. 12

2.3.2 Video Analysis .. 13

2.3.3 Software Analysis tools being used in research .. 14

2.4 Details of MPEG Standard used .. 18

2.4.1 MPEG-4 Standard .. 18

2.5 Techniques to hide data in audio ... 21

2.5.1 Low-bit coding ... 22

2.5.2 Phase Coding ... 22

2.5.3 Parity coding ... 23

2.5.4 Spread Spectrum.. 24

2.5.5 Echo Hiding ... 26

Requirement specifications ... 27

3.1 Functional Requirements of the Project .. 28

3.2 Non Functional Requirements of the Project ... 29

System Design .. 39

4.1 Design of Proposed System ... 40

4.1.1 Main Interface ... 40

4.1.2 Video Display .. 40

2

4.1.3 Video Generator ... 40

4.1.4 Video Compressor.. 41

4.1.5 Audio Data Reader ... 41

4.1.6 Frame Tagger ... 41

4.2 Proposed System Architecture ... 42

4.3 Use Case Diagram for BURRAQ ... 43

4.3.1 Use case UC1: AV Signal ... 44

4.3.2 Use case UC2: MPEG Standard .. 44

4.3.3 Use case UC3: GUI for Geographical Tagging ... 45

4.3.4 Use case UC4: Extended Interface ... 45

4.4Sequence Diagrams ... 47

4.4.1 Sequence Diagram of UC1: AV Signal ... 47

4.4.2 Sequence Diagram of UC2: MPEG Standard .. 47

4.4.3 Sequence Diagram of UC3: GUI for Geographical tagging ... 48

4.4.4 Sequence Diagram of UC4: Extended Interface ... 49

Implementation ... 50

5.1 Main Interface ... 51

5.1.1 Capture Video ... 51

5.1.2 Normalize Video ... 57

5.2 Video Display .. 58

5.3 Video Generator ... 60

5.4 Video Compressor ... 64

5.5 Audio Data Reader ... 65

5.6 Frame Tagger ... 68

Results and Analysis ... 69

6.1 Mpeg standard .. 70

6.2 Video display ... 70

6.3 Audio data reader ... 70

6.4 Compression ... 71

6.5 Video Generator ... 71

6.6 Frame Extractor .. 72

Conclusions and Future Work .. 73

3

Bibliography .. 76

4

Chapter 1

Introduction

5

1.1 Introduction

An unmanned aerial vehicle (UAV; also known as a remotely piloted vehicle or RPV, or

Unmanned Aircraft System (UAS)) is an aircraft that flies without a human crew on

board. Their largest uses are in operations involving reconnaissance and surveillance

missions, surgical strikes and covert destruction missions. To distinguish UAVs from

missiles, a UAV is defined as a reusable, uncrewed vehicle capable of controlled,

sustained and level flight, powered by a jet or reciprocating engine. Therefore, cruise

missiles are not considered UAVs, because, like many other guided missiles, the

vehicle itself is a weapon that is not reused, even though it is also unmanned and in

some cases remotely guided. The version of the BURRAQ UAV has some limitations.

Hence, in this project detailed research and study of this existing system is carried with

an aim to overcome the existing problems and provide a technically sound and up to

date software application.

1.2 Scope and Objectives of the Project

This project has following objectives

a) Study the design and architecture of existing system with a view to understand

the working and organization of different modules, using available software and

system analysis techniques like Disassemblers and Decompilers, and carry out

static and dynamic analysis of the program execution.

b) Design and develop an interface to extract the GPS data encoded in the audio

stream, for any further use with other mapping applications.

http://en.wikipedia.org/wiki/Unmanned_Aircraft_System
http://en.wikipedia.org/wiki/Unmanned_Aircraft_System
http://en.wikipedia.org/wiki/Jet_engine
http://en.wikipedia.org/wiki/Reciprocating_engine
http://en.wikipedia.org/wiki/Cruise_missile
http://en.wikipedia.org/wiki/Cruise_missile
http://en.wikipedia.org/wiki/Cruise_missile

6

c) Design and develop an interface to view the received video flicker less and

separately for all or any cameras as selected by the viewer.

d) Design and develop an algorithm as well as interface for generating flicker less

video of all or any cameras, as selected by the user. This involves modifying the

existing implementation of MPEG standard, as used by the on board video

processor for generating video signal.

e) Design and develop an interface to compress the generated video using existing

mpeg standards so that it can be viewed later using any free source Media player

without any flicker.

f) Design and develop an interface, to extract the Image/Images of any location in

video, as selected by the user, for further use in Image Based Maps.

1.3 Potential Difficulties and Problems

The system has some difficulties which are discussed as below

a) As the existing system is without the source codes for its software modules.

Hence studying and analyzing a source less application is quite difficult and

requires a large number of software fields to be studied and explored.

b) Analysis of such modules is only possible through generation of respective

assemblies which requires understanding structure, organization and architecture

of multiple programming languages including assembly, C, C# and many other

intermediate languages.

7

c) Proprietary encryption algorithms come with inherent security and secrecy

features thus making them almost unbreakable hence making the analysis and

study extremely difficult and technically demanding.

1.4 Intended Audience

This document is intended for

a) Developers: in order to be sure they are developing the right project that fulfills

requirements provided in this document.

b) Users: in order to get familiar with the idea of the project and suggest other

features that would make it even more functional.

c) Documentation writers: to know what features and in what way they have to

explain. What security technologies are required, how the system will response in

each user’s action etc.

d) Advanced end users, end users/desktop and system administrators: in

order to know exactly what they have to expect from the system, right inputs and

outputs and response in error situations.

8

Chapter 2

Related Work

9

2.1 Existing System

Pakistan is currently having BURRAQ UAV on its inventory which is a lightweight

medium range reconnaissance and surveillance UAV system. It is being used for

reconnaissance and surveillance operations. The UAV transmits its data to a ground

station where it is viewed using customized hardware and software applications

provided by the manufacturer. BURRAQ UAV system is utilizing a customized media

player, which decodes GPS data from audio stream using a proprietary format. If this

GPS data can be retrieved, it can be of great help and can be a foundation to many

other applications. Therefore this project involves detailed study and analysis of the

existing system being used to decode and display the audio and video information

transmitted by BURRAQ UAV. The UAV sends data to its ground station in the form of

AV signal containing video streams captured by the cameras and an audio signal.

2.1.1 Video Data

Video signal is generated by six cameras that are sending their video data

simultaneously on a wireless link at 30 frames per second. One camera is main

camera, and others are sub cameras. Out of 30 frames per second, 25 fps

belongs to main camera and one frame each for every auxiliary camera. During

video broadcast, smooth transmission is not possible due to inherent structure of

MPEG standard being used by the on board video processor and lot of flickering

as well as loss of data is experienced.

10

Frame Details of the existing video format

2.1.2 Audio Data

The audio signal is generated by encrypting the GPS data being calculated,

through an onboard microcomputer. This audio signal is only readable by the

BURRAQ MEDIA PLAYER.

2.2 Problems in Existing System

The existing system of BURRAQ has following limitations

a) Audio signal containing the Geographical data of underlying video is readable

only to the ‘UAV Media Player’ and remains hidden for any other module to work

with.

b) The GUI of the Ground Control System provides the geographical data only in

‘read only mode’ hence preventing any further automated use with other

applications like Digital Maps, Google Maps etc.

c) Existing GUI is virtually dumb providing no usable output for further use in area

mapping and marking.

Sub
Cam 4

Main
Camera

Main
Camera

Main
Camera

Main
Camera

Sub
Cam 1

Main
Camera

Main
Camera

Main
Camera

Main
Camera

Sub
Cam 2

Main
Camera

Main
Camera

Main
Camera

Main
Camera

Sub
Cam 3

Main
Camera

Main
Camera

Main
Camera

Main
Camera

Main
Camera

Main
Camera

Main
Camera

Main
Camera

Sub
Cam 5

Main
Camera

Main
Camera

Main
Camera

Main
Camera

Main
Camera

11

d) The MPEG standard and its implementation used by the existing system

provides a flickering video making it almost useless for any tactical analysis and

planning.

e) Existing system provides an interface only to work with videos of a specified

area. Therefore Aerial photographs, that can be used to generate Image Based

Maps, cannot be extracted from the video using available functionalities.

f) Existing system does not provide any means for generating separate

compressed videos for all cameras that can be further distributed to other HQs,

where they can be viewed flicker less using any free source media player.

2.3 Analysis of Existing System

To improve/modify the functionality of an existing executable application, a detailed

study of the design and architecture is required. In a normal scenario the source codes

as well as the supporting documentation will provide required information about the

system, but in international standard exchanges neither the source code nor the related

documentation is provided with the equipment hence making it very difficult to

understand the internal structures of a software system. For studying such systems

however various tools and techniques have been developed and evolved in the form of

applications that provide the machine code equivalent of any executable software. In

multimedia related such applications following two major areas are focused

a) Audio Analysis

b) Video Analysis

12

2.3.1 Audio Analysis

Audio analysis refers to the extraction of information and meaning from audio signals

for analysis, classification, storage, retrieval, synthesis, etc. Audio analysis is carried

out to find out bit contents of any wave sound. The wave sound is converted to

respective bits and then the pattern is observed and analyzed for any underlying

information about the contents. In case of this project the audio generated through

the UAV on board microcomputer consists of GPS data masked into audio through a

proprietary algorithm. So the audio is analyzed both in frequency as well as time

domain. Digital signal analysis was also carried out and bit packets were generated

to find any patterns of GPS data but no favorable results could be found.

Audio analysis

http://en.wikipedia.org/wiki/Statistical_classification
http://en.wikipedia.org/wiki/Sound_synthesis

13

2.3.2 Video Analysis

Video Content Analysis - is the capability of analyzing video to detect and determine

temporal events not based on a single image. It is used in a wide range of domains

including entertainment, health care, retail, automotive, transport, safety and

security. The algorithms can be implemented as software on general purpose

machines, or as hardware in specialized video processing units.

Video analysis is carried out to understand the placement and resemblance of

frames in a particular video. The video is actually series of pictures bound together

and displayed in a pattern depending upon the frame rate etc. Hence in video

analysis, the video is broken up into individual frames to find the placement, pattern

and rate of frames in a particular video.

Video Analysis

http://en.wikipedia.org/wiki/Video
http://en.wikipedia.org/wiki/Image
http://en.wikipedia.org/wiki/Entertainment
http://en.wikipedia.org/wiki/Health_care
http://en.wikipedia.org/wiki/Retail
http://en.wikipedia.org/wiki/Automotive
http://en.wikipedia.org/wiki/Transport
http://en.wikipedia.org/wiki/Safety
http://en.wikipedia.org/wiki/Security
http://en.wikipedia.org/wiki/Algorithm

14

2.3.3 Software Analysis tools being used in research

2.3.3.1 Disassembler

A disassembler is a computer program that translates machine language into

assembly language—the inverse operation to that of an assembler. A

disassembler differs from a decompiler, which targets a high-level language

rather than an assembly language. Disassembly, the output of a disassembler, is

often formatted for human-readability rather than suitability for input to an

assembler, making it principally a reverse-engineering tool.

Assembly language source code generally permits the use of constants and

programmer comments. These are usually removed from the assembled

machine code by the assembler. If so, a disassembler operating on the machine

code would produce disassembly lacking these constants and comments; the

disassembled output becomes more difficult for a human to interpret than the

original annotated source code. Some disassemblers make use of the symbolic

debugging information present in object files such as ELF. The Interactive

Disassemblers allow the human user to make up mnemonic symbols for values

or regions of code in an interactive session: human insight applied to the

disassembly process often parallels human creativity in the code writing process.

Disassembly is not an exact science: On CISC platforms with variable-width

instructions, or in the presence of self-modifying code, it is possible for a single

program to have two or more reasonable disassemblies. Determining which

http://en.wikipedia.org/wiki/Computer_program
http://en.wikipedia.org/wiki/Machine_language
http://en.wikipedia.org/wiki/Assembly_language
http://en.wikipedia.org/wiki/Assembly_language#Assembler
http://en.wikipedia.org/wiki/Decompiler
http://en.wikipedia.org/wiki/High-level_language
http://en.wikipedia.org/wiki/Reverse_engineering
http://en.wikipedia.org/wiki/Source_code
http://en.wikipedia.org/wiki/Constant_%28programming%29
http://en.wikipedia.org/wiki/Comment_%28computer_programming%29
http://en.wikipedia.org/wiki/Machine_code
http://en.wikipedia.org/wiki/Symbolic_debugging
http://en.wikipedia.org/wiki/Symbolic_debugging
http://en.wikipedia.org/wiki/Symbolic_debugging
http://en.wikipedia.org/wiki/Executable_and_Linking_Format
http://en.wikipedia.org/wiki/Interactive_Disassembler
http://en.wikipedia.org/wiki/Interactive_Disassembler
http://en.wikipedia.org/wiki/Interactive_Disassembler
http://en.wikipedia.org/wiki/Complex_instruction_set_computer
http://en.wikipedia.org/wiki/Self-modifying_code

15

instructions would actually be encountered during a run of the program reduces

to the proven-unsolvable halting problem.

IDA Pro Disassembler

http://en.wikipedia.org/wiki/Reduction_%28complexity%29
http://en.wikipedia.org/wiki/Halting_problem

16

2.3.3.2 Decompilers

A decompiler is the name given to a computer program that performs the reverse

operation to that of a compiler. That is, it translates a file containing information

at a relatively low level of abstraction (usually designed to be computer readable

rather than human readable) into a form having a higher level of abstraction

(usually designed to be human readable).

The term decompiler is most commonly applied to a program which translates

executable programs (the output from a compiler) into source code in a

(relatively) high level language which, when compiled, will produce an executable

whose behavior is the same as the original executable program. By comparison,

a disassembler translates an executable program into assembly language (and

an assembler could be used to assemble it back into an executable program).

Decompilation is the act of using a decompiler, although the term, when used as

a noun, can also refer to the output of a decompiler. It can be used for the

recovery of lost source code, and is also useful in some cases for computer

security, interoperability and error correction. The success of decompilation

depends on the amount of information present in the code being decompiled and

the sophistication of the analysis performed on it. The bytecode formats used by

many virtual machines (such as the Java Virtual Machine or the .NET Framework

Common Language Run time) often include extensive metadata and high-level

features that make decompilation quite feasible. The presence of debug data can

make it possible to reproduce the original variable and structure names and even

http://en.wikipedia.org/wiki/Computer_program
http://en.wikipedia.org/wiki/Compiler
http://en.wikipedia.org/wiki/Executable
http://en.wikipedia.org/wiki/Compiler
http://en.wikipedia.org/wiki/Source_code
http://en.wikipedia.org/wiki/High_level_language
http://en.wikipedia.org/wiki/Disassembler
http://en.wikipedia.org/wiki/Assembly_language
http://en.wikipedia.org/wiki/Computer_security
http://en.wikipedia.org/wiki/Computer_security
http://en.wikipedia.org/wiki/Computer_security
http://en.wikipedia.org/wiki/Interoperability
http://en.wikipedia.org/wiki/Error_correction
http://en.wikipedia.org/wiki/Java_Virtual_Machine
http://en.wikipedia.org/wiki/.NET_Framework
http://en.wikipedia.org/wiki/Common_Language_Runtime
http://en.wikipedia.org/wiki/Metadata
http://en.wikipedia.org/wiki/Debugger

17

the line numbers. Machine language without such metadata or debug data is

much harder to decompile.

Some compilers and post-compilation tools produce obfuscated code (that is,

they attempt to produce output that is very difficult to decompile). This is done to

make it more difficult to reverse engineer the executable.

VB Decompiler

http://en.wikipedia.org/wiki/Machine_language
http://en.wikipedia.org/wiki/Obfuscated_code
http://en.wikipedia.org/wiki/Reverse_engineer

18

2.4 Details of MPEG Standard used

The Motion Picture Experts Group (MPEG) is a working group of experts that was

formed by the ISO to set standards for audio and video compression and transmission.

It is a group of standards for encoding and compressing audiovisual information such as

movies, video, and music. MPEG is asymmetric in nature, as the compression process

is time consuming and processor-intensive, whereas the decompression process is

rapid and involves relatively inexpensive equipment. MPEG compression is as high as

200:1 for low-motion video of VHS quality, and broadcast quality can be achieved at 6

Mbps. Audio is supported at rates from 32 kbps to 384 kbps for up to two stereo

channels. MPEG specifies lossy compression in the form of discrete cosine transform

(DCT). MPEG is a joint technical committee of the International Standards Organization

(ISO) and the International Electrotechnical Commission (IEC).

2.4.1 MPEG-4 Standard

MPEG-4 is a patented collection of methods defining compression of audio and

visual (AV) digital data. It was introduced in late 1998 and designated a standard

for a group of audio and video coding formats and related technology agreed

upon by the ISO/IEC Moving Picture Experts Group (MPEG) (ISO/IEC

JTC1/SC29/WG11) under the formal standard ISO/IEC 14496 - Coding of audio-

visual objects. Uses of MPEG-4 include compression of AV data for web

(streaming media) and CD distribution, voice (telephone, videophone) and

broadcast television applications.

http://en.wikipedia.org/wiki/Working_group
http://en.wikipedia.org/wiki/International_Organization_for_Standardization
http://en.wikipedia.org/wiki/Audio_compression
http://en.wikipedia.org/wiki/Video_compression
http://en.wikipedia.org/wiki/Video_compression
http://en.wikipedia.org/wiki/Standardization
http://en.wikipedia.org/wiki/Sound
http://en.wikipedia.org/wiki/Video
http://en.wikipedia.org/wiki/Coding
http://en.wikipedia.org/wiki/International_Organization_for_Standardization
http://en.wikipedia.org/wiki/International_Electrotechnical_Commission
http://en.wikipedia.org/wiki/Moving_Picture_Experts_Group
http://en.wikipedia.org/wiki/ISO/IEC_JTC1
http://en.wikipedia.org/wiki/ISO/IEC_JTC1
http://en.wikipedia.org/wiki/ISO/IEC_JTC1
http://en.wikipedia.org/wiki/Streaming_media
http://en.wikipedia.org/wiki/Compact_disc
http://en.wikipedia.org/wiki/Telephone
http://en.wikipedia.org/wiki/Videophone
http://en.wikipedia.org/wiki/Broadcasting
http://en.wikipedia.org/wiki/Television

19

MPEG-4 absorbs many of the features of MPEG-1 and MPEG-2 and other

related standards, adding new features such as (extended) VRML support for 3D

rendering, object-oriented composite files (including audio, video and VRML

objects), support for externally-specified Digital Rights Management and various

types of interactivity. AAC (Advanced Audio Coding) was standardized as an

adjunct to MPEG-2 (as Part 7) before MPEG-4 was issued.

Most of the features included in MPEG-4 are left to individual developers to

decide whether to implement them. This means that there are probably no

complete implementations of the entire MPEG-4 set of standards. To deal with

this, the standard includes the concept of "profiles" and "levels", allowing a

specific set of capabilities to be defined in a manner appropriate for a subset of

applications.

Initially, MPEG-4 was aimed primarily at low bit-rate video communications;

however, its scope as a multimedia coding standard was later expanded. MPEG-

4 is efficient across a variety of bit-rates ranging from a few kilobits per second to

tens of megabits per second. MPEG-4 provides the following functionalities:

a) Improved coding efficiency over MPEG-2.

b) Ability to encode mixed media data (video, audio, speech)

c) Error resilience to enable robust transmission

d) Ability to interact with the audio-visual scene generated at the receiver

http://en.wikipedia.org/wiki/MPEG-1
http://en.wikipedia.org/wiki/MPEG-2
http://en.wikipedia.org/wiki/VRML
http://en.wikipedia.org/wiki/Object_%28computer_science%29
http://en.wikipedia.org/wiki/Digital_Rights_Management
http://en.wikipedia.org/wiki/Advanced_Audio_Coding
http://en.wikipedia.org/wiki/Software_developer
http://en.wikipedia.org/wiki/Bit-rate
http://en.wikipedia.org/wiki/Video
http://en.wikipedia.org/wiki/Communications
http://en.wikipedia.org/wiki/Encode
http://en.wikipedia.org/wiki/Video
http://en.wikipedia.org/wiki/Audio_frequency
http://en.wikipedia.org/wiki/Speech
http://en.wikipedia.org/wiki/Transmission_%28telecommunications%29
http://en.wikipedia.org/wiki/Audio-visual

20

In the existing BURRAQ UAV system the implementation of this MPEG standard

is used as such that it generates video of frames from different cameras. The

placement of a different frame at every sixth index hence reduces the efficiency

of the MPEG standard as well as introduces a flicker in the video that makes it

jerky while viewing and analyzing.

MPEG-4 System Layer

21

2.5 Techniques to hide data in audio

Data hiding in audio signals is especially challenging, because the human auditory

system (HAS) operates over a wide dynamic range. The HAS perceives over a range of

power greater than one billion to one and a range of frequencies greater than one

thousand to one. Sensitivity to additive random noise is also acute. The perturbations in

a sound file can be detected as low as one part in ten million (80 dB below ambient

level).

Block diagram of data hiding and retrieval.

However, there are some “holes” available. While the HAS has a large dynamic range, it

has a fairly small differential range. As a result, loud sounds tend to mask out quiet

sounds. Additionally, the HAS is unable to perceive absolute phase, only relative phase.

Finally, there are some environmental distortions so common as to be ignored by the

listener in most cases. We exploit many of these traits in the methods we discuss next,

while being careful to bear in mind the extreme sensitivities of the HAS.A large number

of techniques are used to hide data in audio. Some of them are explained below

22

2.5.1 Low-bit coding

Low-bit coding is the simplest way to embed data into other data structures. By

replacing the least significant bit of each sampling point by a coded binary string,

we can encode a large amount of data in an audio signal.

Ideally, the channel capacity is 1 kb per second (kbps) per 1 kilohertz (kHz), e.g.,

in a noiseless channel, the bit rate will be 8 kbps in an 8 kHz sampled sequence

and 44 kbps in a 44 kHz sampled sequence. In return for this large channel

capacity, audible noise is introduced. The impact of this noise is a direct function

of the content of the host signal, e.g., crowd noise during a live sports event

would mask low-bit encoding noise that would be audible in a string quartet

performance. Adaptive data attenuation has been used to compensate this

variation.

2.5.2 Phase Coding

The phase coding method works by substituting the phase of an initial audio

segment with a reference phase that represents the data. The phase of

subsequent segments is adjusted in order to preserve the relative phase

between segments. Phase coding, when it can be used, is one of the most

effective coding methods in terms of the signal-to perceived noise ratio. When

the phase relation between each frequency component is dramatically changed,

noticeable phase dispersion will occur.

23

However, as long as the modification of the phase is sufficiently small (sufficiently

small depends on the observer; professionals in broadcast radio can detect

modifications that are unperceivable to an average observer), an inaudible

coding can be achieved. Phase coding relies on the fact that the phase

components of sound are not as perceptible to the human ear as noise is. Rather

than introducing perturbations, the technique encodes the message bits as

phase shifts in the phase spectrum of a digital signal, achieving an inaudible

encoding in terms of signal-to-perceived noise ratio.

The signals before and after Phase coding procedure

2.5.3 Parity coding

One of the audio data hiding technique is parity coding technique. Instead of

breaking a signal down into individual samples, the parity coding method breaks

a signal down into separate regions of samples and encodes each bit from the

secret message in a sample region's parity bit. If the parity bit of a selected

region does not match the secret bit to be encoded, the process flips the LSB of

24

one of the samples in the region. Thus, the sender has more of a choice in

encoding the secret bit, and the signal can be changed in a more unobtrusive

fashion.

Parity Coding Procedure

2.5.4 Spread Spectrum

In a normal communication channel, it is often desirable to concentrate the

information in as narrow a region of the frequency spectrum as possible in order

to conserve available bandwidth and to reduce power. The basic spread

spectrum technique, on the other hand, is designed to encode a stream of

information by spreading the encoded data across as much of the frequency

spectrum as possible. This allows the signal reception, even if there is

25

interference on some frequencies. While there are many variations on spread

spectrum communication, we concentrated on Direct Sequence Spread

Spectrum encoding (DSSS). The DSSS method spreads the signal by multiplying

it by a chip, a maximal length pseudorandom sequence modulated at a known

rate. Since the host signals are in discrete-time format, we can use the sampling

rate as the chip rate for coding. The result is that the most difficult problem in

DSSS receiving, that of establishing the correct start and end of the chip quanta

for phase locking purposes, is taken care of by the discrete nature of the signal.

Consequently, a much higher chip rate, and therefore a higher associated data

rate, is possible. Without this, a variety of signal locking algorithms may be used,

but these are computationally expensive.

Spread spectrum encoding

26

2.5.5 Echo Hiding

In echo hiding, information is embedded in a sound file by introducing an echo

into the discrete signal. Like the spread spectrum method, it too provides

advantages in that it allows for a high data transmission rate and provides

superior robustness when compared to the noise inducing methods. If only one

echo was produced from the original signal, only one bit of information could be

encoded. Therefore, the original signal is broken down into blocks before the

encoding process begins. Once the encoding process is completed, the blocks

are concatenated back together to create the final signal.

Echo hiding

A message can also be encoded using musical tones with a substitution scheme.

For example, a Fist one will represent a 0 and a C tone represents a 1. A normal

musical piece can now be composed around the secret message or an existing

piece can be selected together with an encoding scheme that will represent a

message.

27

Chapter 3

Requirement
specifications

28

3.1 Functional Requirements of the Project

a) The system should implement MPEG standard such that the flickers are removed

and videos displayed separately for each camera selected.

b) The system should be able to read the geographical data of ground locations

(frames captured from onboard cameras) encoded in audio stream.

c) The system should be able to generate separate compressed videos for all

selected cameras using MPEG standard so that it can be viewed later without

flicker and using any open source media player.

d) The system should be able to tag the geographical info to its corresponding

locations (Frames)

e) The system should be able to retrieve locations (frames) based on geographical

coordinates.(optional)

f) The system should be able to provide compatible data for further use with

applications like Google Maps etc.

29

3.2 Non Functional Requirements of the Project

a) Security
The system should be secure in a sense that the information should be received

by the intended user only.

b) Reliability
The system should be reliable in a sense that the system should provide the

users with the required functionality round the clock.

c) Maintainability
The system will be made maintainable so that incase of error or the user

complaints the system might be changed to satisfy the new needs or to correct

the errors.

d) Reusability
The system will be made reusable by making the application open source.

30

Chapter 4

Reverse Engineering
Process

31

4.1 Reverse Engineering- definition

Reverse engineering means study and analyze an existing system in
order to modify or reproduce the system. Sodtware reverse engineering
involves study of internal design and architecture to understand the existing
software system and carry out required modifications.

4.2 Reverse engineering of Burraq

As discussed earlier the project involves reverse engineering of existing Burraq UAV

system for:-

o Extraction of GPS data from Audio

o De Multiplex video to provide separate display

So disassembly of Burraq is done to generate assembly code of the exe

application. This is done by using disassemblers that converts the machine code of an

exe to its equivalent assembly codes. Programmers comments and constant strings are

also generated back through some of the disassemblers. The complete process is

describes in the following sections of this chapter.

32

4.2.1 Disassembly

The process of generating assembly code from the machine instructions

generated by an exe or a program is called the disassembly process. The

concerned application is loaded into disassembler along with its corresponding

Dll’s. a cold execution run is carried out and the machine calls traced. These

machine calls or windows calls being used by the application are translated back

to the assembly language.

Burraq’s Disassembly Log

33

4.2.2 Disassembly Info

the disassembly process generates a lot of information about the software application like

 functions
 structures
 strings
 imports
 assembly codes
 names
 modules

Disassembly Info

4.2.3 GPS Data Trace

 The trace of the GPS data is made using the constants being used by the programmer like var

names Latitude, Longitude etc appearing on to the output. This trace involves physical

inspection of the code to find the instances of the variables in the assembly code. Various

features of the disassembler software helped in this analysis.

34

GPS data Trace

4.2.4 Variable Access flow charts

After tracing the instances of the variables, they are tracked for any read write

operations being done using memory read write traces. Since the virtual addressing of the

application remains same hence the memory locations can be traced using the virtual

addresses. Using these read write traces a flow chart can be prepared depicting the program’s

complete working sequence till accessing our concerned variables. This flow chart gives us an

abstract pictures of the assembly subroutines accessing our variables. This can be used in turn

to trace the main functions dealing with read write operations. Example of one such flow chart is

given in fig showing access trace for Latitude.

35

Access Flowchart for Variable

4.2.5 Function Traces

 After the variable trace has been made for reading or writing functions, the
functions that actually carry out these operations are analysed. In case of Burraq the
function that accessed all the variables is Sprintf function that belongs to MSVCR71.Dll
found in a standard windows installation package. MSVCR71 is a Microsoft standard
visual c runtime library that is used to carry out bsic c style input out put functions and
memory management functions.

Function Trace

36

4.2.6 Memory Trace

After havinf traced all the functions and their relative argumernts, using the
vitual addressing of the system, the key memory locations are traced both
statically as well as dynamically. This analysis will confirm our initial
findings about functions and their read write operations.

Static Memory Trace

Static memory trace provides us the information about a
memory location before the execution of the program. Hence we get
null values here at our concerned memory locations.

37

Dynamic Memory Trace

Unlike static memory trace, the dynamic trace yields the
desired results by displaying the required GPS info at the concerned
memory locations hence confirming our earlier findings of data.

4.2.7 Findings of Disassembly-Audio

 The disassembly of Burraq yields following

 GPS data traced

 Virtual addresses known

 Uses windows API to Display decoded data

 Msvcr71.dll

 Data accessible by hooking DLL communication

 Possible through injecting a code snippet

4.2.8 Video Data Trace

The disassembly also yields important information about the
video data that was already acquired using the video analysis tech

38

Video Data Trace

The disassembly confirms our initial findings about the video data as

 Multiplexed video from input of seven cameras
 Single streams contains frames from all cameras
 30 fps format
 25 main camera frames and 5 Aux cam frames in each

second

39

Chapter 5

System Design

40

5.1 Design of Proposed System

Keeping in view the requirement specifications of the system, following components are

considered necessary to be designed and integrated

5.1.1 Main Interface

Main Interface would be the basic component of the system that receives the AV

file containing audio and video data sent from the UAV. It would carry out the

necessary normalizations of the file if required, generates the normalized video

for further use by under lying components.

5.1.2 Video Display

This is the component that provides a smooth video at display by removing the

flicker and setting the frames at respective display areas for different cameras. It

would also provide the means of extracting any frame as required by the user

and save to a desired location for further use.

5.1.3 Video Generator

This component would generate separate videos for respective cameras,

overcoming the existing MPEG implementation weaknesses. The generated

videos of selected cameras and their respective frames from the incoming video

would be saved as separate video files at desired locations.

41

5.1.4 Video Compressor

This component would provide means to compress the generated videos using

existing Mpeg standards so that later the videos can be viewed using any free

source media players.

5.1.5 Audio Data Reader

It is a component that reads the data hidden in audio signal using existing media

player and stores it to a desired location for further use. It is required either to

decode the audio information using the encoding information or read the data

directly from the memory of the existing media player.

5.1.6 Frame Tagger

The component that, when required by the user, provides means to save any

particular image of a location along with its GPS coordinates tagged, to a

desired location.

42

5.2 Proposed System Architecture

43

5.3 Use Case Diagram for BURRAQ

44

5.3.1 Use case UC1: AV Signal

a) Primary Actor: UAV

b) Preconditions: Connection with the Ground Station

c) Success Guarantee (Post conditions): AV Signal is sent to the Ground Station

d) Main success scenario / Basic flow:

1. Ground Station gets the real time data in the form of AV Signal.

2. Ground Station store the data in its archives.

e) Extensions/ Alternative flow: N/A

f) Special requirements: Video should be noise free and Camera should be

calibrated.

g) Technology and Data Variations List: Read video from camera if required.

5.3.2 Use case UC2: MPEG Standard

a) Primary Actor: Ground Station

b) Preconditions: AV Signal is available. Video is displayed with an inherent flicker.

c) Success Guarantee (Post conditions): Outputs flicker less display of video

d) Main success scenario / Basic flow:

1. Ground Station uses the customized MPEG standard.

2. Input to the MPEG Standard is the AV Signal obtained from the UAV.

3. MPEG Standard removes the flickers from the video.

4. MPEG Standard smoothes the displayed video.

5. If required then the MPEG Standard stores the flicker less Video in the

database.

e) Extensions/ Alternative flow: N/A

45

f) Special requirements: No special requirement

g) Technology and Data Variations List: No technology and data variations.

5.3.3 Use case UC3: GUI for Geographical Tagging

a) Primary Actor: Ground Station

b) Preconditions: AV Signal is available.

c) Success Guarantee (Post conditions):Extracts the geographical data

(longitude and latitudes etc) from audio in the AV Signal of the path which has

been traversed by BURRAQ.

d) Main success scenario / Basic flow:

1. Input to the interface is the AV signals.

2. The interface extracts the geographical data from the audio.

3. The system returns the output in the form of geographical data and stores

the output to the database if needed.

e) Extensions/ Alternative flow: N/A

f) Special requirements: No special requirement

g) Technology and Data Variations List: No technology and data variations

5.3.5 Use case UC4: Extended Interface

a) Primary Actor: Ground Station

b) Preconditions: Smoothened video is available in the database. Geographical

coordinates are available in database. Frames are available.

c) Success Guarantee (Post conditions): The interface tags the geographical

coordinates onto the corresponding frames.

46

d) Main success scenario / Basic flow:

1. The ground station uses the extended GUI module.

2. Inputs to this module are maps and geographical coordinates which are

obtained from the AV Signal by the Interface for geographical tagging.

3. Module then tags the map according to the coordinates.

4. Then it stores the output in the databases if needed.

e) Extensions/ Alternative flow: N/A

f) Special requirements: No special requirement

g) Technology and Data Variations List: No technology and data variations.

47

5.4Sequence Diagrams

5.4.1 Sequence Diagram of UC1: AV Signal

User System

Send AV signal

Signal is received

5.4.2 Sequence Diagram of UC2: MPEG Standard

User System

Uses the MPEG standerd

uses AV signal

removes flickering from video

extracts video frm AV signal

Stores output(if needed)

48

5.4.3 Sequence Diagram of UC3: GUI for Geographical tagging

User System

Uses the Interface

uses AV signal

extracts geographical data from audio

extracts audio from AV signal

Stores output(if needed)

taggs the images with coordinates

49

5.4.4 Sequence Diagram of UC4: Extended Interface

User System

Uses the Interface

uses the maps

taggs geographical data on maps

uses geographical data

Stores output(if needed)

50

Chapter 6

Implementation

51

The designed system is implemented using the following methodologies discussed

separately for each component

6.1 Main Interface

As discussed in design, the main interface is required to receive the AV file being sent

down from UAV and normalize it if required. Hence the implementation of this

component is divided into two parts

6.1.1 Capture Video

The basic requirement of the main interface is to capture the video into our

system so that individual frames can be accessed later on when required. This

feature is implemented using Microsoft® DirectShow® Editing Services (DES). It

is an application programming interface (API) that greatly simplifies the tasks

involved in video editing. DES is built on top of the core DirectShow architecture.

It abstracts much of the complexity of DirectShow, and provides a set of

interfaces designed specifically for manipulating video editing projects. As an

application developer, you get the benefits of DirectShow inside a framework

much better suited for creating video editing applications.

Using Direct Show lib’s public interface IMediaDet we have created our own

class that uses the functions of this API to actually capture the incoming video for

further editing and use. Information from the incoming video file header is

extracted to calculate Frame rate and length of the media. This information is

52

further used to calculate total number of frames in the video file. Hence it makes

our input video file accessible at each frame separately.

GetImage (image number) is the implemented functions that provide us an

interface to access each frame separately in the video. Our implemented class is

compiled as a DLL file providing us all functionalities through an external

interface.

Hence after the implementation of this component any incoming video can

be captured and accessed at individual frame level. This implementation is

shown through following code

namespace Burraq
{

 /// <summary>
 /// Retrieves individual frames from a video file and returns them
as bitmaps.

 /// </summary>
 public class FrameGrabber : IEnumerable<FrameGrabber.Frame>
 {
 // underlying variables for properties
 private string fileName;
 private int frameCount;
 private double frameRate;
 private int height;

 // private variables
 private IMediaDet mediaDet;
 private double mediaLength;
 private VideoInfoHeader videoInfo;
 private int width;

 /// <summary>
 /// Creates a FrameGrabber based on the specified video file.
 /// </summary>
 public FrameGrabber(string fileName)
 {
 FileName = fileName;
 }

53

 /// <summary>
 /// Creates a FrameGrabber with no video file set. Set
 FileName before calling other methods.

 /// </summary>
 public FrameGrabber()
 : this("")
 {
 // nothing to do here
 }

 /// <summary>

 /// Gets or sets the full path of the video file from which to
 grab frames.

 /// </summary>
 public string FileName
 {
 get
 {
 return fileName;
 }

 set
 {
 mediaDet = null;
 fileName = value;

 if (File.Exists(fileName))
 {
 AMMediaType mediaType = null;

 try
 {
 mediaDet = (IMediaDet)new MediaDet();

 DsError.ThrowExceptionForHR(mediaDet.put_Filename(fileName));

 // find the video stream in the file
 int index = 0;
 Guid type = Guid.Empty;
 while (type != MediaType.Video)
 {
 mediaDet.put_CurrentStream(index++);
 mediaDet.get_StreamType(out type);
 }

 // retrieve some measurements from the video
 mediaDet.get_FrameRate(out frameRate);

 mediaType = new AMMediaType();
 mediaDet.get_StreamMediaType(mediaType);
 videoInfo =
(VideoInfoHeader)Marshal.PtrToStructure(mediaType.formatPtr,
typeof(VideoInfoHeader));
 DsUtils.FreeAMMediaType(mediaType);
 mediaType = null;
 width = videoInfo.BmiHeader.Width;
 height = videoInfo.BmiHeader.Height;

54

 mediaDet.get_StreamLength(out mediaLength);
 frameCount = (int)(frameRate * mediaLength);
 }
 catch (Exception e)
 {
 if (mediaType != null)
 {
 DsUtils.FreeAMMediaType(mediaType);
 }

 fileName = "";

 throw new ArgumentException(String.Format("unable to
open the file \"{0}\", DirectShow reported the following error: {1}", value,
e.Message));
 }
 }
 }
 }

 /// <summary>
 /// Gets the total number of frames in the video file.
 /// </summary>
 public int FrameCount
 {
 get
 {
 return frameCount;
 }
 }

 /// <summary>
 /// Gets the framerate of the video file. Some videos always report
"0" regardless of their actual value.
 /// </summary>
 public double FrameRate
 {
 get
 {
 return frameRate;
 }
 }

 /// <summary>
 /// Gets the horizontal dimension of the video file in pixels.
 /// </summary>
 public int Width
 {
 get
 {
 return width;
 }
 }

 /// <summary>
 /// Gets the vertical dimension of the video file in pixels.

55

 /// </summary>
 public int Height
 {
 get
 {
 return height;
 }
 }

 /// <summary>
 /// Gets the duration of the video file in seconds.
 /// </summary>
 public double MediaLength
 {
 get
 {
 return mediaLength;
 }
 }

 /// <summary>
 /// Gets the bit depth of the captured frame (always 24 bpp RGB).
 /// </summary>
 public PixelFormat PixelFormat
 {
 get
 {
 return PixelFormat.Format24bppRgb;
 }
 }

 /// <summary>
 /// Gets the image at the specified time. Equivalent to calling
"GetImageAtTime()".
 /// </summary>
 public Bitmap this[double seconds]
 {
 get
 {
 return GetImageAtTime(seconds);
 }
 }

 /// <summary>
 /// Gets the specified frame. Equivalent to calling "GetImage()".
 /// </summary>
 public Bitmap this[int frame]
 {
 get
 {
 return GetImage(frame);
 }
 }

 /// <summary>
 /// Converts the frame number to seconds.
 /// </summary>

56

 public double ConvertFrameNumberToSeconds(int frameNumber)
 {
 return (frameNumber / frameRate);
 }

 /// <summary>
 /// Converts the seconds to frame number.
 /// </summary>
 public int ConvertSecondsToFrameNumber(double seconds)
 {
 return (int)Math.Floor(seconds * frameRate);
 }

 /// <summary>
 /// Gets the specified frame. Frames are indexed starting at 0 and
go through (FrameCount - 1).
 /// </summary>
 public Frame GetFrame(int frameNumber)
 {
 return new Frame(GetImage(frameNumber), frameNumber,
ConvertFrameNumberToSeconds(frameNumber));
 }

 /// <summary>
 /// Gets the image of the specified frame. Frames are indexed
starting at 0 and go through (FrameCount - 1).
 /// </summary>
 public Bitmap GetImage(int frameNumber)
 {
 if (frameNumber < frameCount)
 {
 return
GetImageAtTime(ConvertFrameNumberToSeconds(frameNumber));
 }
 else
 {
 throw new ArgumentException(String.Format("frameNumber must
be between 0 and {0} inclusive, value was \"{1}\"", frameCount - 1,
frameNumber));
 }
 }

 /// <summary>
 /// Gets the frame at the specified time. Seconds must be less than
or equal to MediaLength.
 /// </summary>
 public Frame GetFrameAtTime(double seconds)
 {
 return new Frame(GetImageAtTime(seconds),
ConvertSecondsToFrameNumber(seconds), seconds);
 }

 /// <summary>
 /// Gets the image at the specified time. Seconds must be less than
or equal to MediaLength.

 /// All other image and frame accessors call this method.

57

6.1.2 Normalize Video

As discussed earlier the video input received at our main interface

contains captured frames from a number of cameras binded together as a video

stream through an onboard video processor. Since we know the placement of

frames from different cameras in the video hence the video can be broken every

second to retrieve frames of each camera separately. But for this we need a start

point or the first frame to start counting from. For this purpose we have

implemented the function for normalization. It captures the first group of six

frames that would always contain frames from both main as well as auxiliary

camera as per the design of onboard MPEG standard being used. For each

image it calculates the RGB color values for each pixel and saves them in a

separate data structure. Then it calculates the difference in value for each pixel

for each pair of images captured.

This calculated difference of each pixel is then summed up and average value of

difference in complete image is calculated. Hence it provides us with the numeric

values of difference between each pair of images. This difference is then used to

find out whether or not the images belong to same camera. Basing on

experimental results we have introduced a threshold value of difference in frames

that decides the above. So amongst the subset of six frames we can exactly

select the starting image of sequence for our use by discarding anything less

than six images in the start.

58

6.2 Video Display

Video display is required to split the incoming video into respective camera

frames and display them separately. The number of cameras which are to be displayed

is selected by the viewer. So this requirement is implemented through the

PLAYFRAMES () function. This function uses the captured and normalized video and

accesses it frame by frame. Keeping in view the known organization of the frames in the

video a display algorithm is developed that displays the frames as per their respective

cameras at different display panels. Since we know that for every set of 30 frames per

second, main camera has 25 frames and aux cameras have one frame each so while

displaying these frames we display each aux frame 25 times to keep the frame rate of

the video constant. Implementation of this playframes function is given as code

underline

void playFrames()
 {
 FrameGrabber fg = new FrameGrabber(inputPath);

 string outpaths = "C:\\Documents and
 Settings\\Buraq\\Desktop\\demo frames";

 int counter = 0;
 int p1 = 4, p2 = p1+6, p3 = p2+6, p4 = p3+6, p5 =p4+ 6, p6 =p5+6;
 int x = 36;

 foreach (FrameGrabber.Frame f in fg)
 {

 counter++;
 if (f.FrameIndex > 2)
 {
 if ((f.FrameIndex-3) % 6 > 0)//to get video after
 removing the aux frames
 {
 mainDisplay.Image = fg.GetImage(f.FrameIndex);
 }
 else
 {
 if (counter == p1 && cstatus[1])

59

 {
 p1 += x;
 for (int hh = 0; hh < 25; hh++)//output aux
 frames(25 times each)
 Aux1.Image = fg.GetImage(f.FrameIndex);

 }
 else if (counter == p2 && cstatus[2])
 {
 p2 += x;
 for (int hh = 0; hh < 25; hh++)//output aux
 frames(25 times each)
 Aux2.Image = fg.GetImage(f.FrameIndex);

 }
 else if (counter == p3 && cstatus[3])
 {
 p3 += x;
 for (int hh = 0; hh < 25; hh++)//output aux
 frames(25 times each)
 Aux3.Image = fg.GetImage(f.FrameIndex);

 }
 else if (counter == p4 && cstatus[4])
 {
 p4 += x;
 for (int hh = 0; hh < 25; hh++)//output aux
 frames(5 times each)
 Aux4.Image = fg.GetImage(f.FrameIndex);

 }
 else if (counter == p5 && cstatus[5])
 {
 p5 += x;
 for (int hh = 0; hh < 25; hh++)//output aux
 frames(25 times each)
 Aux5.Image = fg.GetImage(f.FrameIndex);

 }
 else if (counter == p6 && cstatus[6])
 {
 p6 += x;
 for (int hh = 0; hh < 25; hh++)//output aux
 frames(25 times each)
 Aux6.Image = fg.GetImage(f.FrameIndex);

 }
 }
 }
 Application.DoEvents();
 }

 }

60

6.3 Video Generator

This component is required to overcome the limitations of the existing MPEG

standard being used which generates the video sequence using frames captured by

different cameras. It creates instance of our video capture class and then accesses the

video at each frame level. Depending upon the user’s selection, frames from selected

cameras are added separately into video streams. These video streams are created

using Microsoft Audio Video Interleave File support library also known

asAvifil32.dll.Avifil32.dll is a 32/64-bit Dynamic Linked Library of code components for a

61

graphics UI style application. This library is used in our customized class Video Stream.

CreateStream () function of this class creates separate streams as required for each

camera video. Again depending upon the selection algorithm, frames from each camera

are separately added to their respective streams using Add Frame() function of our

video stream class, hence creating AVI files each containing frames from a single

camera. These created AVI files are a sequence of uncompressed images, each

comprising of frames captured by a single camera. Here again the mismatch of

numbers in frames is covered by adding each frame of aux cameras 25 times. Hence

this component generates multiple AVI streams of same length but from different

cameras with no inherent flicker due to onboard MPEG standard. The code to generate

these separate videos is given as under

FrameGrabber fg1 = new FrameGrabber(inputPath);
 //AviManager finalManager = new AviManager("C:\\finaltest1.avi",
false);
 //VideoStream finalStream = finalManager.AddVideoStream(false,
30, fg1.GetImage(0));

 if (inputPath != null && (maincb.Checked || aux1cb.Checked ||
aux2cb.Checked || aux3cb.Checked || aux4cb.Checked || aux5cb.Checked ||
aux6cb.Checked))
 {
 int p1, p2, p3, p4, p5, p6;
 p1 = 3;
 p2 = p1 + 6;
 p3 = p2 + 6;
 p4 = p3 + 6;
 p5 = p4 + 6;
 p6 = p5 + 6;
 //FrameGrabber fg1 = new FrameGrabber(inputPath);
 Bitmap bmp1 = (Bitmap)fg1.GetImage(4);
 Bitmap bmp2 = (Bitmap)fg1.GetImage(p1);
 Bitmap bmp3 = (Bitmap)fg1.GetImage(p2);
 Bitmap bmp4 = (Bitmap)fg1.GetImage(p3);
 Bitmap bmp5 = (Bitmap)fg1.GetImage(p4);
 Bitmap bmp6 = (Bitmap)fg1.GetImage(p5);
 Bitmap bmp7 = (Bitmap)fg1.GetImage(p6);
 AviManager aviManager1 = null;
 AviManager aviManager2 = null;
 AviManager aviManager3 = null;

62

 AviManager aviManager4 = null;
 AviManager aviManager5 = null;
 AviManager aviManager6 = null;
 AviManager aviManager7 = null;
 VideoStream aviStream1 = null; ;
 VideoStream aviStream2 = null;
 VideoStream aviStream3 = null;
 VideoStream aviStream4 = null;
 VideoStream aviStream5 = null;
 VideoStream aviStream6 = null;
 VideoStream aviStream7 = null;
 // if (maincb.Checked)
 //{
 aviManager1 = new AviManager("C:\\Documents and
Settings\\Buraq\\Desktop\\demo\\main.avi", false);
 aviStream1 = aviManager1.AddVideoStream(false, 25,
bmp1);
 // }
 //if (aux1cb.Checked)
 //{
 aviManager2 = new AviManager("C:\\Documents and
Settings\\Buraq\\Desktop\\demo\\Aux1.avi", false);
 aviStream2 = aviManager2.AddVideoStream(false, 25,
bmp2);
 // }
 //if (aux2cb.Checked)
 //{
 aviManager3 = new AviManager("C:\\Documents and
Settings\\Buraq\\Desktop\\demo\\Aux2.avi", false);
 aviStream3 = aviManager3.AddVideoStream(false, 25,
bmp3);
 //}
 //if (aux3cb.Checked)
 //{
 aviManager4 = new AviManager("C:\\Documents and
Settings\\Buraq\\Desktop\\demo\\Aux3.avi", false);
 aviStream4 = aviManager4.AddVideoStream(false, 25,
bmp4);
 //}
 //if (aux4cb.Checked)
 //{
 aviManager5 = new AviManager("C:\\Documents and
Settings\\Buraq\\Desktop\\demo\\Aux4.avi", false);
 aviStream5 = aviManager5.AddVideoStream(false, 25,
bmp5);
 //}
 //if (aux5cb.Checked)
 //{
 aviManager6 = new AviManager("C:\\Documents and
Settings\\Buraq\\Desktop\\demo\\Aux5.avi", false);
 aviStream6 = aviManager6.AddVideoStream(false, 25,
bmp6);
 //}
 //if (aux6cb.Checked)
 //{
 aviManager7 = new AviManager("C:\\Documents and
Settings\\Buraq\\Desktop\\demo\\Aux6.avi", false);

63

 aviStream7 = aviManager7.AddVideoStream(false, 25,
bmp7);
 // }
 Bitmap b1, b2, b3, b5, b6, b7; ;
 int counter = 2;

for(int i=3 ;i<fg1.FrameCount;i++)
 {
 counter++;
 if (((i - 3) % 6 > 0) && maincb.Checked)
 {
 //p2 += 36;
 // for (int hh = 0; hh < 25; hh++)//output aux
frames(5 times each)
 //{
 b1 = (Bitmap)fg1.GetImage(i);
 aviStream1.AddFrame(b1);
 b1.Dispose();
 //}
 }
 else if (counter == p1 && aux1cb.Checked)
 {
 p1 += 36;
 for (int hh = 0; hh < 25; hh++)//output aux frames(5
times each)
 {
 b2 = (Bitmap)fg1.GetImage(i);
 aviStream2.AddFrame(b2);
 b2.Dispose();
 }
 }
 else if (counter == p2 && aux2cb.Checked)
 {
 p2 += 36;
 for (int hh = 0; hh < 25; hh++)//output aux frames(5
times each)
 {
 b3 = (Bitmap)fg1.GetImage(i);
 aviStream3.AddFrame(b3);
 b3.Dispose();
 }
 }
 else if (counter == p3 && aux3cb.Checked)
 {
 p3 += 36;
 for (int hh = 0; hh < 25; hh++)//output aux frames(5
times each)
 {
 //b4 = (Bitmap)fg1.GetImage(i);
 aviStream4.AddFrame((Bitmap)fg1.GetImage(i));
 // b4.Dispose();
 }

 }
 else if (counter == p4 && aux4cb.Checked)

64

 {
 p4 += 36;
 for (int hh = 0; hh < 25; hh++)//output aux frames(5
times each)
 {
 b5 = (Bitmap)fg1.GetImage(i);
 aviStream5.AddFrame(b5);
 b5.Dispose();
 }
 }
 else if (counter == p5 && aux5cb.Checked)
 {
 p5 += 36;
 for (int hh = 0; hh < 25; hh++)//output aux frames(5
times each)
 {
 b6 = (Bitmap)fg1.GetImage(i);
 aviStream6.AddFrame(b6);
 b6.Dispose();
 }

 }
 else if (counter == p6 && aux6cb.Checked)
 {
 p6 += 36;
 for (int hh = 0; hh < 25; hh++)//output aux frames(5
times each)
 {
 b7 = (Bitmap)fg1.GetImage(i);
 aviStream7.AddFrame(b7);
 b7.Dispose();
 }

 }
 }
 aviManager1.Close();
 aviManager2.Close();
 aviManager3.Close();
 aviManager4.Close();
 aviManager5.Close();
 aviManager6.Close();
 aviManager7.Close();

6.4 Video Compressor

A component required to compress the created videos by video generator. It takes input

the generated AVI files and compresses them into compressed video streams. This

component is also implemented using windows API Avifil32.dll. This API is used to

65

create our new class of AVI file that implements functions to create compressed

streams.

Since the onboard MPEG standard generates the compressed stream of frames

captured by different onboard cameras hence it has an inherent over head of keeping

more key frames. For every 30 frames in a second, first five frames of main camera are

compressed and then a frame is received from one of the aux camera hence is saved

as key frame, next packet of five frames would again require an additional key frame to

be saved. Therefore the existing MPEG standard has an overhead of saving 11

additional key frames every second and also a disturbing flicker due to placement of

aux frames between packets of main frames. Our algorithm however over comes both

these problems, firstly by removing the overhead of 11 additional key frames, as all

frames are from same camera so every second requires only one key frame and

secondly by removing the flicker as each generated compressed video stream

comprises of frames form a single selected camera.

6.5 Audio Data Reader

This component is implemented using the second approach discussed above in design

where we are reading the data hidden in audio through the existing media player. The

memory distribution and location of data required is found through detailed analysis and

study of the existing system using disassemblers and Decompilers. This process

involved detailed study of around fifteen thousand lines of assembly code generated

through disassembling the source less existing media player. The study was carried out

66

using a number of tools available for memory tracing and tracking, generating

assemblies from machine code of an executing application. The distribution of memory

and virtual addressing of existing media player was studied, locations and addresses of

the desired data was found and traced, and using results of this study algorithm to

retrieve the data was formulated.

 The existing player is embedded into our application and during its execution the

respective memory locations are accessed to get the desired data. This access of

memory is carried out using a dynamic code injection technique. In dynamic code

injection a predefined instruction set is injected into an ongoing process for execution.

Using a code snippet for reading process memory the existing media player is executed

and desired information is retrieved and written to a desired location. Implementation is

shown through the following code snippet

namespace Burraq
{

 class ProcessMemoryReaderApi
 {
 public const uint PROCESS_VM_READ = (0x0010);

 [DllImport("kernel32.dll")]
 public static extern IntPtr OpenProcess(UInt32 dwDesiredAccess, Int32
bInheritHandle, UInt32 dwProcessId);

 [DllImport("kernel32.dll")]
 public static extern Int32 CloseHandle(IntPtr hObject);

 [DllImport("kernel32.dll")]
 public static extern Int32 ReadProcessMemory(IntPtr hProcess, IntPtr
lpBaseAddress, [In, Out] byte[] buffer, UInt32 size, out IntPtr
lpNumberOfBytesRead);
 }
//---

 public class ProcessMemoryReader
 {

 public ProcessMemoryReader()
 {

67

 }

 public Process ReadProcess
 {
 get
 {
 return m_ReadProcess;
 }
 set
 {
 m_ReadProcess = value;
 }
 }

 private Process m_ReadProcess = null;

 private IntPtr m_hProcess = IntPtr.Zero;

 public void OpenProcess()
 {
 m_hProcess =
ProcessMemoryReaderApi.OpenProcess(ProcessMemoryReaderApi.PROCESS_VM_READ, 1,
(uint)m_ReadProcess.Id);
 }

 public void CloseHandle()
 {
 int iRetValue;
 iRetValue = ProcessMemoryReaderApi.CloseHandle(m_hProcess);
 if (iRetValue == 0)
 throw new Exception("CloseHandle failed");
 }

 public byte[] ReadProcessMemory(IntPtr MemoryAddress, uint
bytesToRead, out int bytesReaded)
 {
 byte[] buffer = new byte[bytesToRead];

 IntPtr ptrBytesReaded;
 ProcessMemoryReaderApi.ReadProcessMemory(m_hProcess,
MemoryAddress, buffer, bytesToRead, out ptrBytesReaded);

 bytesReaded = ptrBytesReaded.ToInt32();

 return buffer;
 }
 }
}

68

6.6 Frame Tagger

A component that is required to save a selected frame tagged with its geographical data

at a desired location. It is also implemented through our video capture functions. Image

of any location in video can be retrieved from display and written to a file through this

component.

69

Chapter 7

Results and Analysis

70

6.1 Mpeg standard

Existing Result

It provides a video with inherent flicker due to customized implementation of MPEG.

Achieved Result

The new implementation of video generating algorithm and MPEG standard removes

the flicker and generates smooth video.

7.2 Video display

Existing Result

It has a single display panel that shows the video from all cameras in the same stream.

Achieved Result

Now we have separate display of panel for each camera (MAIN AND AUXILLARIES)

showing a smooth and flicker less video.

7.3 Audio data reader

Existing Result

It provides geographical data in read only format preventing any further use of the data.

Achieved Result

It reads encrypted data in the form that can not only be saved but can be further used

for automated applications like goggle.

71

7.4 Compression

Existing Result

At present compression algorithm comes with an inherent overload of saving additional

key frames for every second of video.

Achieved Result

Now we have overcome this additional overhead by generating separate videos frames

captured by each camera.

7.5 Video Generator

Existing Result

It creates a single stream of video comprising of frame captured by different cameras

hence generating an interlaced video.

Achieved Result

Now it generates separate video streams comprising of frames from separate cameras

thus removing interlacing limitation.

72

7.6 Frame Extractor

Existing Result

It provides no means for extracting individual frames from the video thus making it a

virtually dumb module.

Achieved Result

Now it can retrieve and save any frame from the video at display.

73

Chapter 7

Conclusions and Future
Work

74

Conclusion and Future Work

In this chapter we compare the already existing system with the one we have made.

The existing system of BURRAQ has some constraints which limits the working of the

system and also its usage in other applications. We have tried to improve the existing

system so that it can work better to improve the efficiency of the system and also it can

be used in future applications as well.

As already discussed, the existing system has some limitations which hindered

its smooth and efficient working. Currently the deployed system has the following

limitations

a) The audio signal containing the Geographical data of the underlying video is

readable only to the ‘UAV Media Player’ and remains hidden for any other

module to work with.

b) The GUI of the Ground Control System provides the geographical data only in

‘read only mode’ preventing any further use of the data.

c) Existing GUI is virtually dumb providing no usable output for further use in area

mapping and marking.

d) The MPEG standard provides a flickering video making it almost useless for any

tactical analysis and planning.

We have made an endeavor to make the enhanced existing system which work

better and have tried to eradicate the beyond discussed limitations. We have also

integrated new functionalities in the system, which make our system superior with the

75

existing version in many aspects. Our improved system has the following new

functionalities as follow scan be used in other applications as well.

a) A GUI is provided to the existing module with an aim of providing the readable

data in usable form for further mapping applications.

b) A new MPEG standard is developed to reduce/remove the flickering effects in the

video stream hence providing a smooth video stream for tactical and planning

analysis.

c) The developed interface can be utilized to use the Geographical data to map the

video over digital mapping applications like Google Maps.

d) The extracted data can be used to create maps of specified areas for further

tactical/strategic use.

The above discussed implementations will improve the efficiency of the existing

system in future applications.

76

Chapter 8

Bibliography

77

1. http://www.sersc.org/journals/IJDTA/vol2_no2/1.pdf

2. http://www.mpeg.org

3. http://en.wikipedia.org/wiki/Disassembler

4. http://en.wikipedia.org/wiki/Static_code_analysis

5. http://www.coverity.com/products/dynamic-analysis.html

6. http://en.wikipedia.org/wiki/Decompiler

7. http://www.afterdawn.com/glossary/term.cfm/mpeg-4

8. http://www.webopedia.com/TERM/M/MPEG.html

9. http://cs.utsa.edu/~jortiz/CS4953/Papers/Techniques%20for%20Data%20Hiding-

p.pdf

10. http://en.wikipedia.org/wiki/MPEG-4

11. http://en.wikipedia.org/wiki/Optical_character_recognition

12. https://buildsecurityin.us-cert.gov/bsi/214-BSI.html

13. http://en.wikipedia.org/wiki/Dynamic_program_analysis

14. http://www.videoanalysis.org/

15. http://www.springerlink.com/index/k662l007375m1823.pdf

16. http://mpeg.chiariglione.org/standards/mpeg-4/mpeg-4.htm

17. http://www.mpeg4.net/

18. http://images.apple.com/quicktime/pdf/MPEG4_v3.pdf

19. http://www.see.ed.ac.uk/~mjj/dspDemos/EE4/index.html

20. http://www.computerworld.com/s/article/73023/Optical_Character_Recognition

21. http://www.metacarta.com/Collateral/Documents/English-US/OCR-Kornai.pdf

http://www.sersc.org/journals/IJDTA/vol2_no2/1.pdf
http://www.mpeg.org/
http://en.wikipedia.org/wiki/Disassembler
http://en.wikipedia.org/wiki/Static_code_analysis
http://www.coverity.com/products/dynamic-analysis.html
http://en.wikipedia.org/wiki/Decompiler
http://www.afterdawn.com/glossary/term.cfm/mpeg-4
http://www.webopedia.com/TERM/M/MPEG.html
http://cs.utsa.edu/~jortiz/CS4953/Papers/Techniques%20for%20Data%20Hiding-p.pdf
http://cs.utsa.edu/~jortiz/CS4953/Papers/Techniques%20for%20Data%20Hiding-p.pdf
http://en.wikipedia.org/wiki/MPEG-4
http://en.wikipedia.org/wiki/Optical_character_recognition
https://buildsecurityin.us-cert.gov/bsi/214-BSI.html
http://en.wikipedia.org/wiki/Dynamic_program_analysis
http://www.videoanalysis.org/
http://www.springerlink.com/index/k662l007375m1823.pdf
http://mpeg.chiariglione.org/standards/mpeg-4/mpeg-4.htm
http://www.mpeg4.net/
http://images.apple.com/quicktime/pdf/MPEG4_v3.pdf
http://www.see.ed.ac.uk/~mjj/dspDemos/EE4/index.html
http://www.computerworld.com/s/article/73023/Optical_Character_Recognition
http://www.metacarta.com/Collateral/Documents/English-US/OCR-Kornai.pdf

78

22. http://www.scar.ac.cn/hhkxen/ch/reader/create_pdf.aspx?file_no=2010302&flag=1

&journal_id=hhkxen

23. http://www.hydrogenaudio.org/forums/lofiversion/index.php/t4292.html

24. http://www.sersc.org/journals/IJDTA/vol2_no2/1.pdf

http://www.scar.ac.cn/hhkxen/ch/reader/create_pdf.aspx?file_no=2010302&flag=1&journal_id=hhkxen
http://www.scar.ac.cn/hhkxen/ch/reader/create_pdf.aspx?file_no=2010302&flag=1&journal_id=hhkxen
http://www.hydrogenaudio.org/forums/lofiversion/index.php/t4292.html
http://www.sersc.org/journals/IJDTA/vol2_no2/1.pdf

	Abstract
	Introduction
	Introduction
	Scope and Objectives of the Project
	1.3 Potential Difficulties and Problems
	Intended Audience

	Related Work
	2.1 Existing System
	2.1.1 Video Data
	2.1.2 Audio Data

	2.2 Problems in Existing System
	2.3 Analysis of Existing System
	2.3.1 Audio Analysis
	2.3.2 Video Analysis
	2.3.3 Software Analysis tools being used in research
	2.3.3.1 Disassembler
	2.3.3.2 Decompilers

	2.4 Details of MPEG Standard used
	2.4.1 MPEG-4 Standard

	2.5 Techniques to hide data in audio
	2.5.1 Low-bit coding
	2.5.2 Phase Coding
	2.5.3 Parity coding
	2.5.4 Spread Spectrum
	2.5.5 Echo Hiding

	Requirement specifications
	3.1 Functional Requirements of the Project
	3.2 Non Functional Requirements of the Project

	Reverse Engineering Process
	System Design
	5.1 Design of Proposed System
	5.1.1 Main Interface
	5.1.2 Video Display
	5.1.3 Video Generator
	5.1.4 Video Compressor
	5.1.5 Audio Data Reader
	5.1.6 Frame Tagger

	5.2 Proposed System Architecture
	5.3 Use Case Diagram for BURRAQ
	5.3.1 Use case UC1: AV Signal
	5.3.2 Use case UC2: MPEG Standard
	5.3.3 Use case UC3: GUI for Geographical Tagging
	5.3.5 Use case UC4: Extended Interface

	5.4Sequence Diagrams
	5.4.1 Sequence Diagram of UC1: AV Signal
	5.4.2 Sequence Diagram of UC2: MPEG Standard
	5.4.3 Sequence Diagram of UC3: GUI for Geographical tagging
	5.4.4 Sequence Diagram of UC4: Extended Interface

	Implementation
	6.1 Main Interface
	6.1.1 Capture Video
	6.1.2 Normalize Video

	6.2 Video Display
	/
	6.3 Video Generator
	6.4 Video Compressor
	6.5 Audio Data Reader
	6.6 Frame Tagger

	Results and Analysis
	Mpeg standard
	7.2 Video display
	7.3 Audio data reader
	7.4 Compression
	7.5 Video Generator
	7.6 Frame Extractor

	Conclusions and Future Work
	Bibliography

