BURRAQ — a Journey to NO Limits

(In collaboration with iPC, MCS)

By

Maj Shafgat Saeed
Capt Rai Sabir Hussain (Group Leader)
GC Umar Mahboob

Submitted to the Faculty of Computer Science Department
Military College of Signals, National University of Sciences and
Technology, Rawalpindi in partial fulfillment for the requirements of a B.E
Degree in Computer Software Engineering
JULY 2010

Abstract

Pakistan being a developing country does not possess the economy as well as
state of the art technologies to produce modern and expensive defense equipment
involving highly expensive research and development facilities. Therefore a large
percentage of defense products are procured from developed nations like USA, France,
Germany, UK etc and the procurement is subject to highly strict intellect and technical
rights. Unmanned aerial vehicles are amongst the latest gadgets developed based on
the modern technologies and hence are a trade mark only to the armies of developed
modern countries. Unmanned Ariel Vehicles are very expensive equipment and the

existing version of the BURRAQ (UAV) comes with inherent limitations.

The focus of the current research is to carry out study of the existing OEM
specific media player (installed at BURRAQ UAV system), remove interlacing of
cameras in the video caused due to proprietary implementation of the MPEG standard,
and generate flicker less video at display, save flicker less videos of all or any number
of cameras for later viewing and analysis, compress the generated video for further
distribution through existing Communication mediums and standards, extract GPS
data encrypted into the audio signal, and design as well as develop a customized

enhanced version of the system.

DECLARATION

No portion of the work presented in this dissertation has been submitted in support of
any other award or qualification either at National University of Sciences and

Technology or any other institution.

DEDICATION

We dedicate our work to Pakistan.

ACKNOWLEDGMENTS

We are very grateful to Allah Almighty for giving us the confidence and strength
for carrying out a research based project and for making us able to come up with an

application that will be highly useful to the Pakistan military.

We also thank our instructors and friends for their moral and technical
suggestions without which we might not have made it this far. We are thankful to Maj.
Dr Naveed Igbal Rao for guidance and help to complete this project successfully. Above
all, we are deeply thankful to our beloved parents for their serenity, support and prayers

that helped us gain our goal.

Contents

AADSTIACT ...ttt ettt h b et h et a bbbt e R bRt a e bt bt bt e n e n e e e e eneas ii
INEFOTUCTION.....ceeeee ettt b e sttt b e bt s b b e e e e e et e st e st e b e sb e e b et e e e e eneeneas 4
1.1 INEFOTUCTION. ...ttt bbbttt b et b et b et n e b 5
1.2 Scope and Objectives Of the ProjECL..........cccevieiecicieeseeee et 5
1.3 Potential Difficulties and ProbIEmMSccoviiiiiniiiece s 6
1.4 INtENAEA AUIENCE ..ottt sttt b e b a e e s 7
REIATEU WOTK ...ttt ettt eb e b bbbt e e st sb e b st e e e e e enea 8
2.1 EXISHNG SYSTEIM ...ttt s a e bttt et be bbb et e s ennennas 9
2.1 VIAEO DALA......cueiiiiieiiiciiiciesc ettt 9
2.1.2 AUGIO DALA......cueiiiiiiieieieee ettt 10

2.2 Problems in EXISTING SYSIEIMcc.oiiiiiieceeieceeeeteseete ettt et ss et a e besreerenre s 10
2.3 Analysis Of EXISTING SYSTEIM....cc.couiiiiiieiiririeerteeeee ettt s 11
2.3. 1 AUCIO ANAIYSIS ..ottt bbbttt 12
2.3.2 VIO ANAIYSIS ..ottt bbbttt bbb 13
2.3.3 Software Analysis tools being used in research..........ccoceeveiieveiecccceceeceeceeeee 14

2.4 Details of MPEG Standard USEA..........ccccoeirieiiniiinicinicinieinieesee et 18
241 MPEG-4 StANUAIeoiriiieieieieeeeseseeee ettt b e s ens 18

2.5 Techniques to hide data iNn QUAIO.........ccueiririririeeeeeeeee e 21
251 LOW-DIT COOING ...ttt sttt sb et ens 22
25.2 [E= TSI 0o T[] o TR 22
2.5.3 [T 1 Yoo o [T T TR 23
2.5.4 SPread SPECITUM......cci ettt sttt st s e et e ste et e besreentesreenneseas 24
2.5.5 ECNO HIAING ..ot 26
Requirement SPECIFICALIONS.c..cviiiirieret ettt 27
3.1 Functional Requirements Of the Project..........ccccociiriiininineeceeer e 28
3.2 Non Functional Requirements of the Projectcccevieieiiieeieseceeeseeeeeeeee e 29
YY1 (=10 (L= To | o TR 39
4.1 Design Of PropoSEd SYSIEMcccuiciiiieiiciieiesteetete sttt sttt sttt be st be e e tesreenseses 40
41.1 MAUN INTEITACE ...t 40
4.1.2 VidEO DISPIAYeveviririeieieieieee ettt 40

4.1.3 A ATo [STo =T a L=l = L (o] TR OPPRRRRRRR 40

o O SV o [=To I 0] 4]] {11) (S 41
4.1.5 AUdIO DAta REAUENc.oruiiiiiiiiiiieeeee ettt 41
4.1.6 [= [T = o o] RSP 41
4.2 Proposed SysStem ArChItECIUIE.........ceciiiieeeeceee sttt ees 42
4.3 Use Case Diagram for BURRAQcoiiiiiriiieee ettt 43
4.3.1 Use Case UCL: AV SIgNAL ..ottt 44
4.3.2 Use case UC2: MPEG Standard............ccoeverereeieininineresieeeeeeeeie e 44
4.3.3 Use case UC3: GUI for Geographical Taggingcccceeveeevienievenieeereseeeesie e 45
4.3.4 Use case UC4: Extended INtErfacecocceveireinicinicincincincceeseeseee e 45
4. ASEQUENCE DIBGIAMIS.....iitiiieiiitieie ettt sttt et et e st ete s te e e e s besreessesseessestesraesbesteessesbeessestesseensesses 47
4.4.1 Sequence Diagram of UCL: AV SigNalccccceoueiiiiinininieneeeeeeee e 47
4.4.2 Sequence Diagram of UC2: MPEG Standard...........c.ccocevevenerieinenineneneneeeene 47
4.4.3 Sequence Diagram of UC3: GUI for Geographical tagging.........cccceevveveveneeieneeeennene, 48
4.4.4 Sequence Diagram of UC4: Extended INterfaceccovevveeeveiecceveceee e, 49
IMPIEMENTALION ...ttt s te et et e s te et e s beesa e besbeesbesteeseenbesreessebeessensasseensenees 50
5.1 MAIN INTEITACE ...ttt sttt n et 51
5.1.1 CAPUIE VIAEO ..ottt sttt b e st 51
51.2 NOIMANIZE VIABO ..ottt sttt 57
5.2 ViIdEO DISPIAY ..c.vveuviieeeieiecteeeste ettt ettt sttt te sttt et ba e be s te e s e besre e st e beeas e tesraensesteenaentens 58
5.3 VIidEO GENEIALONeuiviiciiieiirteitetet sttt ettt b et nn bt nne 60
R Y To [=To J 0] g a1 o] £=TS1To] SRS 64
5.5 AUIO DAt REAUET.......cc.oriiieieieciee ettt 65
5.6 Frame TAOUET ..eeeiiieeiieieeieeteeie ettt sttt st et sr et esr e s b e e bt sae e s e e neenesreeneere s 68
RESUIES @GN ANBIYSIS ..ottt sttt b st be e b 69
(20 R \Y T o T=To T3 = g T = g RSSO 70
(ST T [=To J 0 1] o] = Y RSSO 70
6.3 AUAIO AALA FEAUETc..cuiiciiieiiitcttee ettt ettt 70
6.4 COMPIESSION .ttt ettt ettt b bbb s b s et et et e st e bt s bt be st e b et e s eneeneene 71
6.5 ViIBO GENEIALONc.eiuiitiriiteieieeet ettt ettt b et b e e sttt be bt beseesn et e e e ese e 71
6.6 Frame EXIFACIONc..eoiiieeieeieee ettt sttt e e st n e e re s 72
ConclusioNSs and FULUIE WOTK.........coiiiriirieiieirtcee sttt 73

Bibliography

Chapter 1

Introduction

1.1 Introduction

An unmanned aerial vehicle (UAV; also known as a remotely piloted vehicle or RPV, or
Unmanned Aircraft System (UAS)) is an aircraft that flies without a human crew on
board. Their largest uses are in operations involving reconnaissance and surveillance
missions, surgical strikes and covert destruction missions. To distinguish UAVs from
missiles, a UAV is defined as a reusable, uncrewed vehicle capable of controlled,
sustained and level flight, powered by a jet or reciprocating engine. Therefore, cruise
missiles are not considered UAVS, because, like many other guided missiles, the
vehicle itself is a weapon that is not reused, even though it is also unmanned and in
some cases remotely guided. The version of the BURRAQ UAV has some limitations.
Hence, in this project detailed research and study of this existing system is carried with
an aim to overcome the existing problems and provide a technically sound and up to

date software application.

1.2 Scope and Objectives of the Project

This project has following objectives

a) Study the design and architecture of existing system with a view to understand
the working and organization of different modules, using available software and
system analysis techniques like Disassemblers and Decompilers, and carry out
static and dynamic analysis of the program execution.

b) Design and develop an interface to extract the GPS data encoded in the audio

stream, for any further use with other mapping applications.

http://en.wikipedia.org/wiki/Unmanned_Aircraft_System
http://en.wikipedia.org/wiki/Unmanned_Aircraft_System
http://en.wikipedia.org/wiki/Jet_engine
http://en.wikipedia.org/wiki/Reciprocating_engine
http://en.wikipedia.org/wiki/Cruise_missile
http://en.wikipedia.org/wiki/Cruise_missile
http://en.wikipedia.org/wiki/Cruise_missile

c) Design and develop an interface to view the received video flicker less and
separately for all or any cameras as selected by the viewer.

d) Design and develop an algorithm as well as interface for generating flicker less
video of all or any cameras, as selected by the user. This involves modifying the
existing implementation of MPEG standard, as used by the on board video
processor for generating video signal.

e) Design and develop an interface to compress the generated video using existing
mpeg standards so that it can be viewed later using any free source Media player
without any flicker.

f) Design and develop an interface, to extract the Image/Images of any location in

video, as selected by the user, for further use in Image Based Maps.

1.3 Potential Difficulties and Problems

The system has some difficulties which are discussed as below

a) As the existing system is without the source codes for its software modules.
Hence studying and analyzing a source less application is quite difficult and
requires a large number of software fields to be studied and explored.

b) Analysis of such modules is only possible through generation of respective
assemblies which requires understanding structure, organization and architecture
of multiple programming languages including assembly, C, C# and many other

intermediate languages.

c) Proprietary encryption algorithms come with inherent security and secrecy
features thus making them almost unbreakable hence making the analysis and

study extremely difficult and technically demanding.

1.4 Intended Audience

This document is intended for
a) Developers: in order to be sure they are developing the right project that fulfills
requirements provided in this document.
b) Users: in order to get familiar with the idea of the project and suggest other

features that would make it even more functional.

c) Documentation writers: to know what features and in what way they have to
explain. What security technologies are required, how the system will response in

each user’s action etc.

d) Advanced end users, end users/desktop and system administrators: in

order to know exactly what they have to expect from the system, right inputs and

outputs and response in error situations.

Chapter 2
Related Work

2.1 Existing System

Pakistan is currently having BURRAQ UAV on its inventory which is a lightweight
medium range reconnaissance and surveillance UAV system. It is being used for
reconnaissance and surveillance operations. The UAV transmits its data to a ground
station where it is viewed using customized hardware and software applications
provided by the manufacturer. BURRAQ UAV system is utilizing a customized media
player, which decodes GPS data from audio stream using a proprietary format. If this
GPS data can be retrieved, it can be of great help and can be a foundation to many
other applications. Therefore this project involves detailed study and analysis of the
existing system being used to decode and display the audio and video information
transmitted by BURRAQ UAV. The UAV sends data to its ground station in the form of

AV signal containing video streams captured by the cameras and an audio signal.

2.1.1 Video Data

Video signal is generated by six cameras that are sending their video data
simultaneously on a wireless link at 30 frames per second. One camera is main
camera, and others are sub cameras. Out of 30 frames per second, 25 fps
belongs to main camera and one frame each for every auxiliary camera. During
video broadcast, smooth transmission is not possible due to inherent structure of
MPEG standard being used by the on board video processor and lot of flickering

as well as loss of data is experienced.

Main Main Main Main Main Sub Main Main Main Main
Camera Camera Camera Camera Camera Cam1 Camera Camera Camera Camera

Main Sub Main Main i i i Sub
Camera Cam 2 Camera Camera Cam 3
Main Main Main Sub Main Main Main Main Main Sub
Camera Camera Camera Cam 4 Camera Camera Camera Camera Camera Cam 5

Frame Details of the existing video format

Main Main

2.1.2 Audio Data

The audio signal is generated by encrypting the GPS data being calculated,
through an onboard microcomputer. This audio signal is only readable by the

BURRAQ MEDIA PLAYER.

2.2 Problems in Existing System

The existing system of BURRAQ has following limitations

a) Audio signal containing the Geographical data of underlying video is readable
only to the ‘UAV Media Player’ and remains hidden for any other module to work
with.

b) The GUI of the Ground Control System provides the geographical data only in
‘read only mode’ hence preventing any further automated use with other
applications like Digital Maps, Google Maps etc.

c) Existing GUI is virtually dumb providing no usable output for further use in area

mapping and marking.

10

Camera Camera

d) The MPEG standard and its implementation used by the existing system
provides a flickering video making it almost useless for any tactical analysis and
planning.

e) Existing system provides an interface only to work with videos of a specified
area. Therefore Aerial photographs, that can be used to generate Image Based
Maps, cannot be extracted from the video using available functionalities.

f) Existing system does not provide any means for generating separate
compressed videos for all cameras that can be further distributed to other HQs,

where they can be viewed flicker less using any free source media player.

2.3 Analysis of Existing System

To improve/modify the functionality of an existing executable application, a detailed
study of the design and architecture is required. In a normal scenario the source codes
as well as the supporting documentation will provide required information about the
system, but in international standard exchanges neither the source code nor the related
documentation is provided with the equipment hence making it very difficult to
understand the internal structures of a software system. For studying such systems
however various tools and techniques have been developed and evolved in the form of
applications that provide the machine code equivalent of any executable software. In

multimedia related such applications following two major areas are focused

a) Audio Analysis

b) Video Analysis

11

2.3.1 Audio Analysis

Audio analysis refers to the extraction of information and meaning from audio signals
for analysis, classification, storage, retrieval, synthesis, etc. Audio analysis is carried
out to find out bit contents of any wave sound. The wave sound is converted to
respective bits and then the pattern is observed and analyzed for any underlying
information about the contents. In case of this project the audio generated through
the UAV on board microcomputer consists of GPS data masked into audio through a
proprietary algorithm. So the audio is analyzed both in frequency as well as time
domain. Digital signal analysis was also carried out and bit packets were generated

to find any patterns of GPS data but no favorable results could be found.

dio alysis

12

http://en.wikipedia.org/wiki/Statistical_classification
http://en.wikipedia.org/wiki/Sound_synthesis

2.3.2 Video Analysis

Video Content Analysis - is the capability of analyzing video to detect and determine
temporal events not based on a single image. It is used in a wide range of domains
including entertainment, health care, retail, automotive, transport, safety and
security. The algorithms can be implemented as software on general purpose

machines, or as hardware in specialized video processing units.

Video analysis is carried out to understand the placement and resemblance of
frames in a particular video. The video is actually series of pictures bound together
and displayed in a pattern depending upon the frame rate etc. Hence in video
analysis, the video is broken up into individual frames to find the placement, pattern

and rate of frames in a particular video.

Step 1: Video capture and processing Step 2: Video
' codecs and video

Step 3: Data
reduction and
optimization

Step 4: Graphs, clustering, social
networks

Video Analysis

13

http://en.wikipedia.org/wiki/Video
http://en.wikipedia.org/wiki/Image
http://en.wikipedia.org/wiki/Entertainment
http://en.wikipedia.org/wiki/Health_care
http://en.wikipedia.org/wiki/Retail
http://en.wikipedia.org/wiki/Automotive
http://en.wikipedia.org/wiki/Transport
http://en.wikipedia.org/wiki/Safety
http://en.wikipedia.org/wiki/Security
http://en.wikipedia.org/wiki/Algorithm

2.3.3 Software Analysis tools being used in research

2.3.3.1 Disassembler

A disassembler is a computer program that translates machine language into
assembly language—the inverse operation to that of an assembler. A
disassembler differs from a decompiler, which targets a high-level language
rather than an assembly language. Disassembly, the output of a disassembler, is
often formatted for human-readability rather than suitability for input to an

assembler, making it principally a reverse-engineering tool.

Assembly language source code generally permits the use of constants and
programmer comments. These are usually removed from the assembled
machine code by the assembler. If so, a disassembler operating on the machine
code would produce disassembly lacking these constants and comments; the
disassembled output becomes more difficult for a human to interpret than the
original annotated source code. Some disassemblers make use of the symbolic
debugging information present in object files such as ELF. The Interactive
Disassemblers allow the human user to make up mnemonic symbols for values
or regions of code in an interactive session: human insight applied to the

disassembly process often parallels human creativity in the code writing process.

Disassembly is not an exact science: On CISC platforms with variable-width
instructions, or in the presence of self-modifying code, it is possible for a single

program to have two or more reasonable disassemblies. Determining which

14

http://en.wikipedia.org/wiki/Computer_program
http://en.wikipedia.org/wiki/Machine_language
http://en.wikipedia.org/wiki/Assembly_language
http://en.wikipedia.org/wiki/Assembly_language#Assembler
http://en.wikipedia.org/wiki/Decompiler
http://en.wikipedia.org/wiki/High-level_language
http://en.wikipedia.org/wiki/Reverse_engineering
http://en.wikipedia.org/wiki/Source_code
http://en.wikipedia.org/wiki/Constant_%28programming%29
http://en.wikipedia.org/wiki/Comment_%28computer_programming%29
http://en.wikipedia.org/wiki/Machine_code
http://en.wikipedia.org/wiki/Symbolic_debugging
http://en.wikipedia.org/wiki/Symbolic_debugging
http://en.wikipedia.org/wiki/Symbolic_debugging
http://en.wikipedia.org/wiki/Executable_and_Linking_Format
http://en.wikipedia.org/wiki/Interactive_Disassembler
http://en.wikipedia.org/wiki/Interactive_Disassembler
http://en.wikipedia.org/wiki/Interactive_Disassembler
http://en.wikipedia.org/wiki/Complex_instruction_set_computer
http://en.wikipedia.org/wiki/Self-modifying_code

instructions would actually be encountered during a run

to the proven-unsolvable halting problem.

of the program reduces

A IDA - C\IDA\REVERSING' putty.exe -0 x|
File Edit Jump Search Wiew Debugger Ophions Windows Help
[pnmBoDD G|l x| -<s=||BlEL S ST (o)X
1D View-ESP 1A Yiew-EIP |) Threadsl # Gereral registersl Edit Search
Thread
Oebugger: Library loaded: C:SWINNTSystem3z2WTOLL.OLL == I -
pDebugger: Library loaded: C:%WINN temszhaivarIzz. dll EEDDDDD35D
Oebugger: Li A /5 -
la; idie Down [Disk: 10366 00031219 [00431219; WinMain(x, =, x}-+35 Line 1 of 1 4
-Iolx] -l0lx]
-text: 00431267 call ds:InitConmonControls |« * BB12FF30 var_4 dd 65h 3
.text:0843120D0 call sub_4388A1 =l E" B012FF34 dd 12FFCBh ; Stack[@eaen
text:AB431212 call sub_4376087 B012FF38 retaddr dd 43CC53h ; sta
text:@e431217 test eax, eax 0812FF3C hInstance dd offset unk_4@@

* .text:@843121B push
* .text:88431221 push
* .text:@@431226 call
* _text:@8043122B pop
* .text:0843122C mov
* .text:8843122E pop
* .text:@843122F push
* _text:@80431231 push
* _text:00431232 push
* .text:88431237 push
° .text:@8431239 call
* _text:@043123F push
* .text: 00431240 call
* .text:@8431245 pop
* .text:@8431246 push
* _text:@80431248 pop
* _text:@0431249 jmp
text:AA43124E ;
.text:0843124E

+* _text:06431245E mov

|

ds:1pSteax=000000081
offset aSFatalError
sub_4B6B a6

ecx
esi,
ecx
38h
esi
offset Text

i}
ds:HessageBoxA
esi

sub_4B6E7E

ecx

1

eax

loc_43284E

edx

.text:0043124E loc_43124E:

eax, dword 4S5A1CY
|

B612FFu40
BO12FF 44
BO12FF48
A012FF48
* BB12FF4C
B012FF50
BO12FF54
|

hHenu dd @

uIDEvent dd offset unk_132D

nCmd5how dd BAh

; [END OF STACK FRAME _WinH

dd 12D9C4h ; Stack PAGE

dd 2868h

dd 7FFDF 886h ﬂ
3

3

.+ General registers

E4x|(00aa00a1| L,

EBX|7FFDF 888 L,

debugB13:7FFDFBBA

EC< | @0000065 L,

EDx(77FDB17 0| Ly

NTDLL.DLL:?7FDB178

ES| (@p@aeanas L,

EDI |@@12D9Cu|L,

Stack_PAGE_GUARD[68OBA35

EFL (8@0A02 B6

EEP|0812FF34 Ly|stack[080A6350] 1 0B12FF3L |IF
ESP|0812FF34 Ly [Stack| 00000350): 0012FFaL |DF|8)
EIP (08431219 L|winHain¢x, %, %,%)+35 0F 0|

IDA Pro Disassembler

15

http://en.wikipedia.org/wiki/Reduction_%28complexity%29
http://en.wikipedia.org/wiki/Halting_problem

2.3.3.2 Decompilers

A decompiler is the name given to a computer program that performs the reverse
operation to that of a compiler. That is, it translates a file containing information
at a relatively low level of abstraction (usually designed to be computer readable
rather than human readable) into a form having a higher level of abstraction

(usually designed to be human readable).

The term decompiler is most commonly applied to a program which translates
executable programs (the output from a compiler) into source code in a
(relatively) high level language which, when compiled, will produce an executable
whose behavior is the same as the original executable program. By comparison,
a disassembler translates an executable program into assembly language (and

an assembler could be used to assemble it back into an executable program).

Decompilation is the act of using a decompiler, although the term, when used as
a noun, can also refer to the output of a decompiler. It can be used for the
recovery of lost source code, and is also useful in some cases for computer
security, interoperability and error correction. The success of decompilation
depends on the amount of information present in the code being decompiled and
the sophistication of the analysis performed on it. The bytecode formats used by
many virtual machines (such as the Java Virtual Machine or the .NET Framework
Common Language Run time) often include extensive metadata and high-level
features that make decompilation quite feasible. The presence of debug data can

make it possible to reproduce the original variable and structure names and even

16

http://en.wikipedia.org/wiki/Computer_program
http://en.wikipedia.org/wiki/Compiler
http://en.wikipedia.org/wiki/Executable
http://en.wikipedia.org/wiki/Compiler
http://en.wikipedia.org/wiki/Source_code
http://en.wikipedia.org/wiki/High_level_language
http://en.wikipedia.org/wiki/Disassembler
http://en.wikipedia.org/wiki/Assembly_language
http://en.wikipedia.org/wiki/Computer_security
http://en.wikipedia.org/wiki/Computer_security
http://en.wikipedia.org/wiki/Computer_security
http://en.wikipedia.org/wiki/Interoperability
http://en.wikipedia.org/wiki/Error_correction
http://en.wikipedia.org/wiki/Java_Virtual_Machine
http://en.wikipedia.org/wiki/.NET_Framework
http://en.wikipedia.org/wiki/Common_Language_Runtime
http://en.wikipedia.org/wiki/Metadata
http://en.wikipedia.org/wiki/Debugger

the line numbers. Machine language without such metadata or debug data is

much harder to decompile.

Some compilers and post-compilation tools produce obfuscated code (that is,
they attempt to produce output that is very difficult to decompile). This is done to

make it more difficult to reverse engineer the executable.

E] VB Decompiler v5.0 - Registered to GPct

File Tools Plugins Help
Filehame: |Fictue|EWER exe | [..] [Decompie |
Objects Tree: P-Code Compile stack parameters Procedure analyzer and optimizer
9% Project - Private Sub Form Load() '411F6d T'
EHEI B 'Data Table: 402D6C
{ B M loc 411E17: Password.Show 1, var BO
ain loc_411E33: war_CO = CVar(Get3etting("PictureVIEWER", "Bath", "
03 Password 0 If CBool (var CO <> "") Then
..B3 Search loc _411E66: war B0 = CVar(CByte(Val(CStr(var_C0)))} 'Byte
- @) UserControls B For var 114 = 1 To var_BO: var E4 = var 114 'Var
B Code = loc 411ER4: var_124 = CVar (Get3etting ("PictureVIEWER", "Pat
EI Main loc 411EB3: var D0 = (var_l24 + "5HS.5hack3") =

loc 411EBF: Open C5tr(var_D0) For Binary A3 1 Len = &HEF

3 Form_Load_411F64 loc_411ED3: Get 1, 1, var 8E

- # Form_Activate 41155 loc 411ED7: Close 1
g Form_KeyPress_413E1 loc 411EFD: Me.Collection.Add var 124, Chr#(CLng(var 8E)),
g? PictureVieverl_Query Next var_114 '"Variant
. . _ loc 411F12: GoTo loc 411F2D
o f PictureVieverl _Activa - Fnd 1f -
#E] Alphablend loc_411F28: Search.Show 1, var BO m
-E] clsASMpic loc 411F2D: ' Referenced from: 411F12
HE] MouseScrollApi loc 411FS1: Filel.Path = CStr(Me.Collection.Item(l))
T Dietoreliesser o loc 411F63: Exit Sub T
LN P | b fed(#](=] « [b

Decompiled O

VB Decompiler

17

http://en.wikipedia.org/wiki/Machine_language
http://en.wikipedia.org/wiki/Obfuscated_code
http://en.wikipedia.org/wiki/Reverse_engineer

2.4 Details of MPEG Standard used

The Motion Picture Experts Group (MPEG) is a working group of experts that was
formed by the ISO to set standards for audio and video compression and transmission.
It is a group of standards for encoding and compressing audiovisual information such as
movies, video, and music. MPEG is asymmetric in nature, as the compression process
is time consuming and processor-intensive, whereas the decompression process is
rapid and involves relatively inexpensive equipment. MPEG compression is as high as
200:1 for low-motion video of VHS quality, and broadcast quality can be achieved at 6
Mbps. Audio is supported at rates from 32 kbps to 384 kbps for up to two stereo
channels. MPEG specifies lossy compression in the form of discrete cosine transform
(DCT). MPEG is a joint technical committee of the International Standards Organization

(ISO) and the International Electrotechnical Commission (IEC).

2.4.1 MPEG-4 Standard

MPEG-4 is a patented collection of methods defining compression of audio and
visual (AV) digital data. It was introduced in late 1998 and designated a standard
for a group of audio and video coding formats and related technology agreed
upon by the ISO/IEC Moving Picture Experts Group (MPEG) (ISO/IEC
JTC1/SC29/WG11) under the formal standard ISO/IEC 14496 - Coding of audio-
visual objects. Uses of MPEG-4 include compression of AV data for web
(streaming media) and CD distribution, voice (telephone, videophone) and

broadcast television applications.

18

http://en.wikipedia.org/wiki/Working_group
http://en.wikipedia.org/wiki/International_Organization_for_Standardization
http://en.wikipedia.org/wiki/Audio_compression
http://en.wikipedia.org/wiki/Video_compression
http://en.wikipedia.org/wiki/Video_compression
http://en.wikipedia.org/wiki/Standardization
http://en.wikipedia.org/wiki/Sound
http://en.wikipedia.org/wiki/Video
http://en.wikipedia.org/wiki/Coding
http://en.wikipedia.org/wiki/International_Organization_for_Standardization
http://en.wikipedia.org/wiki/International_Electrotechnical_Commission
http://en.wikipedia.org/wiki/Moving_Picture_Experts_Group
http://en.wikipedia.org/wiki/ISO/IEC_JTC1
http://en.wikipedia.org/wiki/ISO/IEC_JTC1
http://en.wikipedia.org/wiki/ISO/IEC_JTC1
http://en.wikipedia.org/wiki/Streaming_media
http://en.wikipedia.org/wiki/Compact_disc
http://en.wikipedia.org/wiki/Telephone
http://en.wikipedia.org/wiki/Videophone
http://en.wikipedia.org/wiki/Broadcasting
http://en.wikipedia.org/wiki/Television

MPEG-4 absorbs many of the features of MPEG-1 and MPEG-2 and other
related standards, adding new features such as (extended) VRML support for 3D
rendering, object-oriented composite files (including audio, video and VRML
objects), support for externally-specified Digital Rights Management and various
types of interactivity. AAC (Advanced Audio Coding) was standardized as an

adjunct to MPEG-2 (as Part 7) before MPEG-4 was issued.

Most of the features included in MPEG-4 are left to individual developers to
decide whether to implement them. This means that there are probably no
complete implementations of the entire MPEG-4 set of standards. To deal with
this, the standard includes the concept of "profiles" and "levels", allowing a
specific set of capabilities to be defined in a manner appropriate for a subset of

applications.

Initially, MPEG-4 was aimed primarily at low bit-rate video communications;
however, its scope as a multimedia coding standard was later expanded. MPEG-
4 is efficient across a variety of bit-rates ranging from a few kilobits per second to

tens of megabits per second. MPEG-4 provides the following functionalities:

a) Improved coding efficiency over MPEG-2.
b) Ability to encode mixed media data (video, audio, speech)
c) Error resilience to enable robust transmission

d) Ability to interact with the audio-visual scene generated at the receiver

19

http://en.wikipedia.org/wiki/MPEG-1
http://en.wikipedia.org/wiki/MPEG-2
http://en.wikipedia.org/wiki/VRML
http://en.wikipedia.org/wiki/Object_%28computer_science%29
http://en.wikipedia.org/wiki/Digital_Rights_Management
http://en.wikipedia.org/wiki/Advanced_Audio_Coding
http://en.wikipedia.org/wiki/Software_developer
http://en.wikipedia.org/wiki/Bit-rate
http://en.wikipedia.org/wiki/Video
http://en.wikipedia.org/wiki/Communications
http://en.wikipedia.org/wiki/Encode
http://en.wikipedia.org/wiki/Video
http://en.wikipedia.org/wiki/Audio_frequency
http://en.wikipedia.org/wiki/Speech
http://en.wikipedia.org/wiki/Transmission_%28telecommunications%29
http://en.wikipedia.org/wiki/Audio-visual

In the existing BURRAQ UAV system the implementation of this MPEG standard
is used as such that it generates video of frames from different cameras. The
placement of a different frame at every sixth index hence reduces the efficiency
of the MPEG standard as well as introduces a flicker in the video that makes it

jerky while viewing and analyzing.

MPEG-4 SYSTEM LAYER

Elementary Streams Elanentary Stream Interface
an| ... é Sync Layer
FY Y
SL-Packetized Strecms DMIF Application Inferface
| Flahiux | | Flelvhx | Flezhiuz DMIF Layer E
®
-
TrepsMice Channel | | 7 I FlecMur Streams LMIF Netwark Interface E,
=
| File | |Droad-i | Inter RTE) || CES) 1) ar2||m223 || DaB | TransMux Layer A

{4 active | | ULDP |MPEGZ g
cast Eactlveé ATM ||PATN || M (net spec1ﬁed1nMPEG4)'

: P TS
Trans Mo Streains

MPEG-4 System Layer

20

2.5 Techniques to hide data in audio

Data hiding in audio signals is especially challenging, because the human auditory
system (HAS) operates over a wide dynamic range. The HAS perceives over a range of
power greater than one billion to one and a range of frequencies greater than one
thousand to one. Sensitivity to additive random noise is also acute. The perturbations in

a sound file can be detected as low as one part in ten million (80 dB below ambient

level).
Stego Key Transmission Stego Key
or Recording ‘
Embedded

Cover_.h Embeddor|—» Sggo - S’Fego__ Extractor—»
Signal Signal Signal Data

Embedded

Data

Block diagram of data hiding and retrieval.
However, there are some “holes” available. While the HAS has a large dynamic range, it
has a fairly small differential range. As a result, loud sounds tend to mask out quiet
sounds. Additionally, the HAS is unable to perceive absolute phase, only relative phase.
Finally, there are some environmental distortions so common as to be ignored by the
listener in most cases. We exploit many of these traits in the methods we discuss next,
while being careful to bear in mind the extreme sensitivities of the HAS.A large number

of techniques are used to hide data in audio. Some of them are explained below

21

2.5.1 Low-bit coding

Low-bit coding is the simplest way to embed data into other data structures. By
replacing the least significant bit of each sampling point by a coded binary string,
we can encode a large amount of data in an audio signal.

Ideally, the channel capacity is 1 kb per second (kbps) per 1 kilohertz (kHz), e.g.,
in a noiseless channel, the bit rate will be 8 kbps in an 8 kHz sampled sequence
and 44 kbps in a 44 kHz sampled sequence. In return for this large channel
capacity, audible noise is introduced. The impact of this noise is a direct function
of the content of the host signal, e.g., crowd noise during a live sports event
would mask low-bit encoding noise that would be audible in a string quartet
performance. Adaptive data attenuation has been used to compensate this

variation.

2.5.2 Phase Coding

The phase coding method works by substituting the phase of an initial audio
segment with a reference phase that represents the data. The phase of
subsequent segments is adjusted in order to preserve the relative phase
between segments. Phase coding, when it can be used, is one of the most
effective coding methods in terms of the signal-to perceived noise ratio. When
the phase relation between each frequency component is dramatically changed,

noticeable phase dispersion will occur.

22

However, as long as the modification of the phase is sufficiently small (sufficiently
small depends on the observer; professionals in broadcast radio can detect
modifications that are unperceivable to an average observer), an inaudible
coding can be achieved. Phase coding relies on the fact that the phase
components of sound are not as perceptible to the human ear as noise is. Rather
than introducing perturbations, the technique encodes the message bits as
phase shifts in the phase spectrum of a digital signal, achieving an inaudible

encoding in terms of signal-to-perceived noise ratio.

— ﬁ
| |
t t

—

Original signal Encoded signal

The signals before and after Phase coding procedure

2.5.3 Parity coding

One of the audio data hiding technique is parity coding technique. Instead of
breaking a signal down into individual samples, the parity coding method breaks
a signal down into separate regions of samples and encodes each bit from the
secret message in a sample region's parity bit. If the parity bit of a selected

region does not match the secret bit to be encoded, the process flips the LSB of

23

one of the samples in the region. Thus, the sender has more of a choice in
encoding the secret bit, and the signal can be changed in a more unobtrusive

fashion.

Original Signal

10101010101010
001011011000001

101001000111010001
100011100011110011
1000100101100000
10001000000000
100000010

01111101
10101010101010
001011010000001
101001000111010001
100011100011110011
1000100101100000
10001000000000
100000010

Message bit m3: 0

Region’s parity
bit p2: 0

1. p3 = m3

01111101001
1010101010101 0
00101101006000001
101001000111010001
100011100011110011
1100100101100000
10001000000000
100000010

Sample
Region 1

Message bit mi1: 0O
Region’s parity bit p21: 1

1. Flip the LSB of
one of the samples
in the reglon.

2. p1 = m1

Sample

Region 2

Message bit m2: 1

Region'’s parity bit p2: 1
1. p2 = m2

Parity Coding Procedure

2.5.4 Spread Spectrum

In a normal communication channel, it is often desirable to concentrate the
information in as narrow a region of the frequency spectrum as possible in order
to conserve available bandwidth and to reduce power. The basic spread
spectrum technique, on the other hand, is designed to encode a stream of
information by spreading the encoded data across as much of the frequency
spectrum as possible. This allows the signal reception, even if there is

24

interference on some frequencies. While there are many variations on spread
spectrum communication, we concentrated on Direct Sequence Spread
Spectrum encoding (DSSS). The DSSS method spreads the signal by multiplying
it by a chip, a maximal length pseudorandom sequence modulated at a known
rate. Since the host signals are in discrete-time format, we can use the sampling
rate as the chip rate for coding. The result is that the most difficult problem in
DSSS receiving, that of establishing the correct start and end of the chip quanta
for phase locking purposes, is taken care of by the discrete nature of the signal.
Consequently, a much higher chip rate, and therefore a higher associated data
rate, is possible. Without this, a variety of signal locking algorithms may be used,

but these are computationally expensive.

CARRIER —pzf.—p?-—p oOuUTPUT
“CHIP® SIGMNAL DATA SIGMNAL

ENCODER

BAND-PASS PHASE
INFPUT 'C‘Tg » FILTER » peETECTOR ¥ DATA
“CHIP” SIGNAL

DECODER

Spread spectrum encoding

25

2.5.5 Echo Hiding

In echo hiding, information is embedded in a sound file by introducing an echo
into the discrete signal. Like the spread spectrum method, it too provides
advantages in that it allows for a high data transmission rate and provides
superior robustness when compared to the noise inducing methods. If only one
echo was produced from the original signal, only one bit of information could be
encoded. Therefore, the original signal is broken down into blocks before the
encoding process begins. Once the encoding process is completed, the blocks

are concatenated back together to create the final signal.

N
0

0 1

VWA 2NU2VYaYAV R N ANT A Ta'h p e
0 a o 0

EVIRY. Ll UL Read AL

“"zero” mixer signal

L\ R AL A Y

"one” mixer signal

Echo hiding

A message can also be encoded using musical tones with a substitution scheme.
For example, a Fist one will represent a 0 and a C tone represents a 1. A normal
musical piece can now be composed around the secret message or an existing
piece can be selected together with an encoding scheme that will represent a

message.

26

Chapter 3

Reguirement
specifications

3.1

b)

d)

f)

Functional Requirements of the Project

The system should implement MPEG standard such that the flickers are removed
and videos displayed separately for each camera selected.

The system should be able to read the geographical data of ground locations
(frames captured from onboard cameras) encoded in audio stream.

The system should be able to generate separate compressed videos for all
selected cameras using MPEG standard so that it can be viewed later without
flicker and using any open source media player.

The system should be able to tag the geographical info to its corresponding
locations (Frames)

The system should be able to retrieve locations (frames) based on geographical
coordinates.(optional)

The system should be able to provide compatible data for further use with

applications like Google Maps etc.

28

3.2

b)

d)

Non Functional Requirements of the Project

Security
The system should be secure in a sense that the information should be received

by the intended user only.

Reliability
The system should be reliable in a sense that the system should provide the

users with the required functionality round the clock.

Maintainability
The system will be made maintainable so that incase of error or the user

complaints the system might be changed to satisfy the new needs or to correct

the errors.

Reusability
The system will be made reusable by making the application open source.

29

Chapter 4

Reverse Engineering
Process

4.1 Reverse Engineering- definition

Reverse engineering means study and analyze an existing system in
order to modify or reproduce the system. Sodtware reverse engineering
involves study of internal design and architecture to understand the existing
software system and carry out required modifications.

Audio Analysis

o5 B

I
; -1
|

o3 3 il |
o 1 o3 W o PEC oo e

Video Analysis

New System
Software Reverse Engineering Phase

4.2 Reverse engineering of Burraq

As discussed earlier the project involves reverse engineering of existing Burraqg UAV

system for:-

o Extraction of GPS data from Audio

o De Multiplex video to provide separate display

So disassembly of Burraq is done to generate assembly code of the exe
application. This is done by using disassemblers that converts the machine code of an
exe to its equivalent assembly codes. Programmers comments and constant strings are
also generated back through some of the disassemblers. The complete process is

describes in the following sections of this chapter.

31

4.2.1 Disassembly

The process of generating assembly code from the machine instructions

generated by an exe or a

concerned application is loaded into disassembler along with its corresponding
DIlI's. a cold execution run is carried out and the machine calls traced. These

machine calls or windows calls being used by the application are translated back

to the assembly language.

ol o101
CO0 D&

T 0'&'

OFF -

% N X|| - #-w

Hesx View-f éﬁ Expurls % Imports | M Mames

ﬁEn

100 Wiy

File

Compiling file 'D: \IDA Free1\1dc\1da idc

Executing function 'main’
|Compiling file 'D: \IDA Freel\1dc\un'lua\:l
|Executing function "OnLoa

IDA 95 analysing the 1r’|put f 1

|¥ou may start to explore the 1nput Tile right now.

Using FLIRT signature: Microsoft wisuald z-&6/net runtime
Fropagating type information...

Function argument information is propagated

The initial autoanalysis has been finished.

Debugger: Process started:

Debugger: Library loaded: CiNWINDOWSSswstem3zhntdlT.d11
Debugger: Library loaded:

Debugger: Library loaded:

Debugger: Library loaded: WINDOWSS 5 s tem3 2hmswort. dll
Debugger: Library loaded:

Debugaer: Library 5

Debugger: Library

Debugger: Library

Debugger: Library

Debugger: Library

Debugger: Library

Debugger: Library

bebugger: Library

Debugger: Library

Debugger: Library

Debugger: Library i
Debugger: Library

Debugger: Library

Debugger: Library WINDOWSS 5ys tem3zhcomdig3z.dll
Debugger: Library

Debugger: Library WINDOWSS 5 s Tem3 2 L=<theme .
Debugger: Library WINDOWSS 5 ws tem3 25MSCTF 'I'I
Debugaer: Library WINDOWS S 5ys tem3zhclbocatg. dll
Debugger: Library WINDDWS 5ys tem3 zhcomres. dll
Debugger: Library WINDOWSS 5 ws Tem3 2hwversion. dll
Debugger: Library S WINDOWSY 5y tem32hd2dimzoo. d1]
Debugger: Thread started: id=000008&4, entry=7CSl0356.
Debugger: Library loaded: CoWWINDOWShSwstem3zhgedit.dll
Debugger: Library loaded: WINDOWSS 55 Tem3 2hmswfwaz . dll
Debugger: Library WINDOWSS 5 ys tem3zhshtolder.dl]
Debugger: Library

Debugger: Library WINDOWSS 5 ys tem3zhgast.d11
Debugger: Library WINDOWS®, 535 Temd 25 wimecore. d11
Debugger: Library WINDOWSS 5 'S Tem3 2 wnas T..d1
Debugger: Library WINDOWSS 5 ws tem32hmlang.dl11
Debugaer: Thread started: Entry=7CS1085 &,
Debugger: Thread started: Entry=7FCS1085&.
Debugger: Thread started: ENTFy=7C810856.
Debugger: Thread started: entry=7C310856.
Debugger: Library loaded: dll
Debugger: Library loaded:

Debugger: Library loaded:

bDebugger: Library Toaded:

Debugger: Library loaded:

Debugger: Thread started: ENtry=7FCS1085 6.
Debuadger: Thread started: 1d=000003AC. entrv=rCS10856.

S MK~~~ §f

'CinbDocuments and Sett1ngs\Bur‘aq\Desktop\MCS wvideo PlayersMuP.exe'

CihDocuments and settingshBuragiDesktopiMCs video PlayersMup.

program is called the disassembly process. The

Functions || "-* Stings ﬁ Structures | En. Enums |

is successftully Toaded into the database.

Documents and settingssbBuraqiDesktopiMCs wideo Playersmsworzl.dll
Documents and Sett1ngs\Buraq\DesktUp\MCS video PlayersmswcpZl.dl11

WINDOWS Wi nsxs\xaﬁ_l\vhcr'osoft Windows . Common-Controls_8535béedlddccfldt _&.0. 2600, 2180 x<—wm_asd4 F1FfeNcomotl13z2.d711

and settingshsBuraqiDesktophMCSs wideo PlayersaDecEMT_40.d11
and Settings“EBuragibesktophMcs Video Flayer\EMTFilter_d40.d1]
and settingshBuragiDesktop MCS wideo PlayersFssplitter_40.d11

Burraq's Disassembly Log

32

4.

2.2

Disassembly Info

the disassembly process generates a lot of information about the software application like

functions
structures
strings

imports
assembly codes
names

modules

Function name:
Fjsub_40E60
jsub_40F10
\@D\a\ogFunc
) sub_4M00
jsub_404180
jsub_404400
i sub_404450
) sub_445F0
Mjsub_404720
) sub_404700
7 sub_4045C0
<

Segment
et
et
et

test

est
et
et
et

text

et
et

Address ﬁ_ Address

OD4OEAE W v ydatzD..
(0403F40 datzl.
00405730 W . rdalal.
(1040E06C n data .
(040E080 w0 rdatal.
(040E050 ! rdatal.
(040E0AE ! rdatal.
(040E042 et
(1040E0BE ndata (.
(040E0CT 0 rdatal.

| b

DDACEQF3 ¥ I v 1 rdatec,
¢

Length

oo0ooa?
0000003
(oo00oac:
(0000003
oo0mz7
0000015
(00000aF
0000023
oo0oo1n
(0000014
ununmlus

String
Delete
NoRemove
FoiceRem:
DISPLAY
¢ FAILE
SéllocPre
Lucida Car
RGE32 she
CreateFont
DDARGB
Proram cz

R T T B B R B o B T o

Jine 67 of 234

B DA View-A

baue1pan
baue1pan
Bo4e1 000
Bo4e1000
bo4e1pan
Ba4e1pan
Bo4e1pan
Bo4e1 000
Bo4e1pae
bo4e1pan
Ba481 080
Ba481 080
Baue1pan
Baue1 pan
Baue1pan
Baue1pan
Baue1pan
Baue1pan

tgospi1000 ;
.text:
.text:
.text:
.text:
Jtext:
Jtext:
Jtext:
text:
Jtext:
Jtext:
Jtext:
Jtext:
Jtext:
text:
Jtext:
text:
Jtext:
Jtext:

Start ¥ | &k 1T
(D403ERD 00080068 ; Ins/Del : create/delete structure A F rulsub 1
00403710 00000068 ; D/A/* : create structure member M F DislogFunc
o0403Fs) — 80060066 ; N : renane structure or stru F Winklainfs .44
0404060 poaoeages ; U : delete structure menber F DiectDianCreatsEx
00404180 00000A60 ; [00808894 BYTES. COLLAPSED STRUCT F e
040400 0B000A00 ; [6ABRAA68 BYTES. COLLAPSED STRUCT Ll aocs ke

0BO0OAOD ; [BABAAA68 BYTES. COLLAPSED STRUCT ~ PepiE
00404480 Mopnanasn ; [0AAABABS BYTES. COLLAPSED STRUCT L probesclup
(0404570 0ooopaon ; [0AO0AB44 BYTES. COLLAPSED STRUCT . probepages
(0404720 0oo0paon ; [0AOOABARS BYTES. COLLAPSED STRUCT L lastpage
00404700 00B0BA0e ; [BAG0AB2C BYTES. COLLAPSED STRUCT L _onesit
4negcn v 109000000 5 [00A0BAAC BYTES. COLLAPSED STRUCT o, | stest

i |3 | £ U
Line 3 of 982

¥ A
; File Hame : C:\Documents and Settings\BuragiDesktop\MCS Uideo PlayeriHUP .exe =
; Format : Portable executable for 88386 (PE)
; Inagebase : 400866
; Section 1. (virtual address 00001000
; Virtual size : BOBBDCYA (56474.)
; Section size in file : DOBBEGAD (57344.)
; Offset to raw data for section: 0661088
; Flags 68000820: Text Ezecutable Readable
; Alignment : default
; 05 type 1S Windous
; Application type: Executable 32bit
unicode macro page,string,zero
irpe ¢, {string>
db ‘&c’, page
endn
ifnb <zero> 2
| &

Address Ordinal | Name Library
%DDWFDUD Reglreatekeyd ADVAPIZ2
%DMDFDM FegClosekey ADVARIZ2
%DMDFDUB FiegOueny alueE =, ADVAPI2
I% 0040F00C RegSetvaueb xt, ADVARIZ2
%DDMFDWD RegDeletealued, ADVARIZ2
%DDWFDM Reglpenkepd ADVARIZ2
%DMDFDWE b CreateStatuswindowd COMCTL32
Iﬁ (040F020 CreateT nolbarEx COMCTLI2
%DDJDFDZ& 17 IitCommonCantrals COMCTL32
% (040F02C DirectlrawCreateE s DDRAW
% (O40F034 CreateRectanindrect G012
%DMDFDBB DeleteDC GDI32
Ling 1 of 165

Disassembly Info

4.2.3 GPS Data Trace

The trace of the GPS data is made using the constants being used by the programmer like var

names Latitude, Longitude etc appearing on to the output. This trace involves physical

inspection of the code to find the instances of the variables in the assembly code. Various

features of the disassembler software helped in this analysis.

33

File Edit Jump Search Wiew Debugger ©Options Windows Help

@@ -~ [8] [___ Bl | =
BHe RN | SRR [ST| | F AA]| | INES
Boen|[2emog -« N x| 21 #-% S MK m—~ 7] o

| vc__ |I|Il|

- Srings | & Structures |

280 f =
| | i Tile winauws hUrizuntaIIy|
L & AT 5&

En Enums |

.rdata:ﬂﬂhBFB5ﬂ ; DATA XREF: sub_LBuB98+667To
* .rdata:8848FBS5A align 4
* .rdata:8B84BFBSC 3 char aType2DuvFilesHo[]

.rdata:eou0FBSC aType2DuFilesNo db 'Type2 DV files not supported.’,0Ah,0

-rdata:8840FBGC ; DATA XREF: sub_u4BuB98+649T0
* .rdata:0846FBS8B align 4
* .rdata:@8848FBSC ; char a2és[]

-rdata:98408FBEC az2@s db *%28s°,8 ; DATA XREF: sub 484B908+68CTo
* .rdata:0640FB91 align 4
* .rdata:8848FB94 ; char a3_1fX3_1f[]

-rdata:B8048FB94 a3_1FfR3_1f db *(%3.1Ff) x %3.1F})",.0Ah,.8 ; DATA XREF: sub_4B4B98+5F6To
* .rdata:8848FBRA7 align 4
* .rdata:@Be4BFBAE ; char acCameralis[]

-rdata:0040FBA8 aCameralis db ‘camera: %11s',08ah,8 ; DATA XREF: sub_404B96+5CDTo
* .rdata:0848FBB6 align 4
* .rdata:@8468FBES ; char afAltitudeAsl5_8[]

.rdata:00%6FBES afltitudefsl5_8 db ‘Altitude ASL:Z5.61F%m’ ,6Ah,8

-rdata:8840FBES ; DATA XREF: sub 484B98+5BCTo
* .rdata:8846FBCF align 18h
* .rdata:8846FBDA ; char anltitudeAgl_hg[]

.rdata:@804%68FB0 @ aAltitudeAgl_hg db 'Altitude AGL: -hgt missing' .0Ah,8

-+data:@846FEDB ;5 DATA XREF: sub_4B4B98+59FTo
* .rdata:8848FBEE align 18h
* .rdata:0040FBFE ; char aﬂltltudeﬂgl5 a[]

.rdata:00%68FBF A afAltitudefAqgl5_8 db 'Altitude AGL:%5.01Ff%m’ ,0Ah,8

-rdata:884%6FBF B H Dﬂ1ﬂ XREF: sub_484B98+58CTo
* .rdata:8848FCB7 align 4
* .rdata:@eheFCces ; char aHeading5 B1fC[]

.rdata:@@46FC 88 aHeading5_©1fC db "Heading: %5.01fF%c’ ,0Ah, 0

-rdata:8846FC B8 ; DATA XREF: sub_u484B98+562To
* .rdata:@848rc1F align 18h
* .rdata:@84B8FC28 ; char alLongitude?_41F[]

.rdata:ee40FCc20 aLongitude?_41f db ‘Longitude: %7.41F%c',BAh,B ; DATA XREF: sub 4084B98+5h0To
* .rdata:0848FC35 align 4
* .rdata:8846FC38 ; char alLatitude7_41fC[]

.rdata:0e40rCc38 alLatitude?_A41fC db 'Latitude: R%7.41f%c',8Ah,8 ; DATA XREF: sub_4@aB28+4F3To

.rdata:ﬂﬂhBFE38 5 sub_4B4B9B+517To

GPS data Trace
4.2.4 Variable Access flow charts

After tracing the instances of the variables,

operations being done using memory read write traces. Since the virtual addressing of the

application remains same hence the memory locations can

addresses. Using these read write traces a flow chart can be prepared depicting the program’s
complete working sequence till accessing our concerned variables. This flow chart gives us an
abstract pictures of the assembly subroutines accessing our variables. This can be used in turn

to trace the main functions dealing with read write operations. Example of one such flow chart is

given in fig showing access trace for Latitude.

34

they are tracked for any read write

be traced using the virtual

Sub_4052F0

Sub_404B90

Latitude

Access Flowchart for Variable
4.2.5 Function Traces

After the variable trace has been made for reading or writing functions, the
functions that actually carry out these operations are analysed. In case of Burraq the
function that accessed all the variables is Sprintf function that belongs to MSVCR71.DlI
found in a standard windows installation package. MSVCR71 is a Microsoft standard
visual ¢ runtime library that is used to carry out bsic c style input out put functions and
memory management functions.

B IDA View-A

_text:-7C38BODO
_text:7C38BODO public sprintf
-text:7C2IBBODO sprintf proc near
_text:7C38BODA
text:7C38BODO var 20
-text:7C3BBODA var_1C
-text:7C3E8BODO var_ 18
_text:-7C38BODO var_14
-text:7C38BODA arg_o
-text:7C38BODA arg_4
_text:7C38BODO arg 8
-text:7C38BODA

dword pty —2oh
dword ptr —1Ch
dword ptr —18h
dword pty —1&4h
dword ptr 8

dword ptr 6Ch
dword ptr 18h

* .text:7C3ISBODO push ebp

* _text:7C3BBOD1 mou ebp, esp

T _text:7C38BOD3 sub esp, 2oh

* .text:7C3BBODG push esi

* _text:7C38BOD7 mou esi, [ebprarg_8]

* _text:7C38BODA push edi

* .text:7C38BODE lea eax, [ebp+arg_g8]

* .text:7C3ESBODE push eax

* _text:7C38BODF push [ebprarg 4]

* .text:7C3IBBOEZ lea eax, [ebpsuar_28]
* .text:7C3ESBOES push eax

* _text:7C38BOEG mou [ebp+var_1C], 7FFFFFFFh
T _text:7C38BOED mou [ebp+uvar_14], 42n
* .text:7C3BBOFL mou [ebp+var_18], esi
* _text:7C38BOF7 mou [ebprvar_ 28], esi
* _text:7C38BOFA call _output

* .text:7C3BBOFF add esp, BCch

* _text:7C38B102 test esi, esi

* _text:7Cc3sB104 mou edi, eax

* .text:7C38B106 iz short loc_7C38B122
* .text:7C38B108 dec [ebp+var_C]

* _text:7C38B10B is short loc_7C38B11S
- .text:7C38B10D mou eax, [ebp+var_28]
* .text:7C38B110 mou byte ptr [eax], 8
* _text:7C38B113 jmp short loc_7C38B122

Rl S B s e e

Function Trace

35

4.2.6 Memory Trace

After havinf traced all the functions and their relative argumernts, using the
vitual addressing of the system, the key memory locations are traced both
statically as well as dynamically. This analysis will confirm our initial
findings about functions and their read write operations.

T AL 19FF G ; char dword BI19FF A

SHALIT9FF 8 dword_ B19FF A dd @ ; DATA HXREF: sub_42839430+-5CTo

AL 19FF A 5 sSub_a04B28+4D2To .. _
T B8L19FF L db a
T IOOL19FFS dbx a
T IOOL19FF & dbx a
* —OBL1PFF7 dbx a
* cOBaL19FF 8 db» a
* AR 19FF9 db a
* 8L 19FFA db a
T A8u419FFB db a
T IOOL19FFC dbx a
T IOOLA9FFD dbx a
* —OBL19FFE db» a
* 8L 19FFF db a
* —8an1ABaa db -
T zAaaun1nae1 db F
T 1004 1N 0082 dbx >
T 2004 1N 003 dbx >
* —eaL1A00L dbx >
* ceaL1ABaes db» T
* - 8aLn1ABaG db -
* —8an1ABarF db -
T IAau1n o688 db >
T 2004 1n 00 dbx >
T 0oL 1n 00N dbx >
* - ea4a1AooB db» ?
* z8an1ABac db -
* z8an1ABan db -
T z8A8au1n88E db F
T 200410 008F dbx >
T ey 1no10 dbx >
* -eaL1Ae11 dbx >
* caas1Ae1z2 db» T
* zeanR1AB13 db -
T zeaL1AG1TL db F
T AL 1ne1s db >
T 2oL 1noe16 dbx >
* —ean1A617 dbx >
T -eaa1Aes dbr ?

<

Static Memory Trace

Static memory trace provides us the information about a
memory location before the execution of the program. Hence we get
null values here at our concerned memory locations.

36

>l E DRk W N x| =@
13 waviewelr| E] IDAViewESP

Dowwn Disk: 8GB 00019FFO 0041 9FFD: . data:dword_419FF0

e :nos0n0B0 e ———— 0O419FF O . -
I{E:BBHBUBGB * UUNIYEFN dd 656075 70h ; tude
<e:0BL00000 3 [00001000 BYTES: COLLAPSED SCGHENT MUP_exe. PRESS MEYPAD "+ TO CXPAND] * PUNIVFFE dd ZU20208AKh ;
s0eNe1008 ; File Hame : CivPocuments and SettingsiBuragilesktopiHCS Uideo Flayer\HUF.exe = ARAL19FFE dd 313L2ER3N ; 3.41
FUBNBTODE Format : Portable executable for BU3IEG (FE) * ARLIABAR dd AA213132H ; P21
HBAETOnR [Imagehase = uonang " 8041A00% dd STSCEFACH [Luny
:AALATAAA ; Section 1. (virtual address AAOAB1A0A) * 0041R008 dd 647574690 : itud
AALATAAA ; Virtual =ize : AAAADCOA (SALTL.) * 0041ABOC dd J8200A65h ; e: 8
‘r-onumuae : Section size in file T OBBRCROD (STI4N.) * gUNTABTO dd S7ZESVESh ; SY.S
EOMG“GBG : OFfset to raw data for section: 00001000 * PUNIADIN dd 21363332h ; 2301
FO0401000 ; Flags 600000Z0: Text Executable Readable * ARLIANIR dd A1ASLEOAR [He
FUBNITODY Alignment = default S ARRIARIE dd ATAEFADALE [ding
ciauiann ; 0% tupe : ME windows * 00414020 dd 2020200A0h ;
SNALA1AAR ; Applicalion type: Execotable 32hit * gesin0zs dd 2020202 0h
LT L e e e o e e e T + QOu1RD28 dd 219204330 ; au2*
a4 000 * UUNTANZE dd FRGCNTDAR ; ALL
100401000 : Segment type: Pure code + QUNTADED dd GhFSTNGYR ; itud
I;OD'\IG‘IGI'IS ; Segment permissions: Read/Execute * ARLIANAL dd A7L120865h [¢ AL
UUNBTUOE _text segment para public "CUDE®' usedz * ARLIANAR dd ZAPA3ALCH ; | :
HBLITHAN assumRe C5: text T O841A0IC dd 6768B2E20n -hg
LATANAR * 0D41AB4D dd 696D2074h ; £ ml
ing. ws:nothing, de:_data, Fs:nnthing cznothi

* paniAgan dd G6E697373n ; ssin
* OURIAUNE dd GCYNTUAGYD ; g AL

SUDPROUTIMNE 1]} * DUNIADNE dd FSFNGYINh ; bitu
&

= AOLIANSH dd L12BASALNL de A
; - BOL1ANSL dd 203ALES3EN ; 51
l:III"‘I'HII!I“! Subh_ HPTHRN proc near 7 DODE XREF: sub BASAGE+IELPR T gBs1A0Se dd 302020200 [1]
Z0BLO1AAN i osub LOFAGO+2RLp * @B41ABSC dd 61430A6Dh : m Ca
FAOLO1OA0 mou Bax, rox * BR41AD6D dd 6172656Dh ; mera
foouo1002 fld ds:dbl_4or2ce + pUnTADGH dd ZUZOZOSAN ; -
;00401008 xor ecx, ecx * OUNTADGE dd 20202 02eh
FUBNETUDA MoV edx, eax = BOLIADAL dd 20202626
FUBNET0BC mov [edx], ecx - BOL1ADZA dd 202080A310 ; 1
FUBLITUBE mou [edx+i], eox T O041AD7S dd 342B2020Nn : (b
FABLATATT mou [rdx+8], rex * 0041R078 dd 21352E36h : 6.5¢
00L0101L mou [vdx+BCh], ecx * 0O41AO7C dd 33207820n ; = 3
08401017 mou [edx+i@h], ecx * OUNTADED dd Z13V2ESIN ; F.91
Eoouo1 01 mou [edx+18h], ecx * BUNIANRN da "AZYh [)

Dynamic Memory Trace

Unlike static memory trace, the dynamic trace yields the
desired results by displaying the required GPS info at the concerned
memory locations hence confirming our earlier findings of data.

4.2.7 Findings of Disassembly-Audio
The disassembly of Burraq yields following
e GPS data traced
¢ Virtual addresses known
e Uses windows API to Display decoded data
e Msvcr71.dll
e Data accessible by hooking DLL communication
e Possible through injecting a code snippet
4.2.8 Video Data Trace

The disassembly also yields important information about the
video data that was already acquired using the video analysis tech

37

~fext:00484F6Y

.text:00404F64 loc_ 4B4FG6h: ; DATA NREF: .text:off_485258l0
* _text:08484F6Y mnou ebx, offset alr ; "IR™
* .text:@O4BLFLTD jmp short loc_484FESQ

cEeRE T BBLBUF BB §
.text:00404F 6B

.text:00404F6E loc_ L4B4FG6B: ; CODE XREF: sub_ 404B96+3CDT
.text:00404F6B ; DATA XREF: .text:8048525CL0
* _text:08484F6B mnou ebx, offset aFront ; “Front™
* .text:@0404F7O jmp short loc_484FESQ

SEeRL T BBYBYF 72 § —
.text:00404F72

-text:00404F72 loc_LO4F72: CODE XREF: sub_4O4B98+3CDTj

_text:-80404F 72 DATA XREF: _text:00405268J0

* _text:08484F72 nou ebx, offset a1l = I

T .text:OO40O4FTT jmp short loc_484FESQ
textz@BNANFTY ;
-text:00404F7O
-text:004O4F7? loc_4O4F79: ; CODE XREF: sub_&484B98+3CDTj
.text:00484F79 ; DATA XREF: .text:080485264)0

* .text:0O4B4F79 mouv ebx, offset a2 : 2"

* _text:08404F7E jmp short loc_ 4B4FES
SEERETOAMORERD oo T T T T T T T T T T T T T T T T
-text:00404FE0

.text:00404F88 loc_LB4F8A:
-text:00404F80

* _text-08404F80 moy ebx, offset a3

* .text:08484F85 jmp short loc_X4B4FES
SRR BB B Y. b o e e e e e e e e e e e
text: Oo040OLFET
.text:00404F87 loc_LBA4FB7Y: ; CODE XREF: sub 484B98+3CDTj
-text:00404F87 ; DATA XREF: .text:8048526CL0

* _text-00404F87 moy ebx, offset a4 ; 4"

* .text:08484F8C jmp short loc_X4B4FES
LB BONBYFBE [e e e
.text:O00404FBE
.text:00404F8E loc_L4B4FBE: CODE XREF: sub_484B908+3CDTj
-text:00404F8E DATA XREF: .text:08485278l0

* .text:08484F8E nov ebx, offset awWing ; “"Wing”

* . text:08404F93 jmp short loc_X4B4FES

CODE XREF: sub_ 484B908+3CDTj
-z .text:884085268}0

FEET]

Video Data Trace
The disassembly confirms our initial findings about the video data as

= Multiplexed video from input of seven cameras

» Single streams contains frames from all cameras

» 30 fps format

» 25 main camera frames and 5 Aux cam frames in each
second

38

Chapter 5
System Design

5.1 Design of Proposed System

Keeping in view the requirement specifications of the system, following components are

considered necessary to be designed and integrated

5.1.1 Main Interface

Main Interface would be the basic component of the system that receives the AV
file containing audio and video data sent from the UAV. It would carry out the
necessary normalizations of the file if required, generates the normalized video

for further use by under lying components.

5.1.2 Video Display

This is the component that provides a smooth video at display by removing the
flicker and setting the frames at respective display areas for different cameras. It
would also provide the means of extracting any frame as required by the user

and save to a desired location for further use.

5.1.3 Video Generator

This component would generate separate videos for respective cameras,
overcoming the existing MPEG implementation weaknesses. The generated
videos of selected cameras and their respective frames from the incoming video

would be saved as separate video files at desired locations.

40

5.1.4 Video Compressor

This component would provide means to compress the generated videos using
existing Mpeg standards so that later the videos can be viewed using any free

source media players.

5.1.5 Audio Data Reader

It is a component that reads the data hidden in audio signal using existing media
player and stores it to a desired location for further use. It is required either to
decode the audio information using the encoding information or read the data

directly from the memory of the existing media player.

5.1.6 Frame Tagger

The component that, when required by the user, provides means to save any
particular image of a location along with its GPS coordinates tagged, to a

desired location.

41

5.2 Proposed System Architecture

Burrag Geound
System

Input Wideo

Audig Data

Audia Data
Reader

Video/Audio
Splitter

Wideo Data

Widaao Data
Reader

Video Stream

YWideo Stream

Textual Information

Video Save

T

Compressad Wideo

Wideo Compressor

Wideo Data

Frame Tagoer

Customized Video
Flayer

Wideo Siream

Frames Data

Wideo Generator

Detailed Design Diagram

42

Frame Data

Sawve Frame

5.3 Use Case Diagram for BURRAQ

O

BURRAQ System

-Sends

BURRAQ (UAV)

~through
I —

~through

Ground Stal
-throug

MPEG Player

Extended Interface

AV SIGNAL

GUI For
Geographical Tagging

-Stores Data

-Sen

43

s Data

f)

g)

5.3.1 Use case UC1: AV Signal

Primary Actor: UAV

Preconditions: Connection with the Ground Station

Success Guarantee (Post conditions): AV Signal is sent to the Ground Station

Main success scenario / Basic flow:

1. Ground Station gets the real time data in the form of AV Signal.
2. Ground Station store the data in its archives.

Extensions/ Alternative flow: N/A

Special requirements: Video should be noise free and Camera should be

calibrated.

Technology and Data Variations List: Read video from camera if required.

5.3.2 Use case UC2: MPEG Standard

Primary Actor: Ground Station

Preconditions: AV Signal is available. Video is displayed with an inherent flicker.

Success Guarantee (Post conditions): Outputs flicker less display of video

Main success scenario / Basic flow:

1. Ground Station uses the customized MPEG standard.

2. Input to the MPEG Standard is the AV Signal obtained from the UAV.

3. MPEG Standard removes the flickers from the video.

4. MPEG Standard smoothes the displayed video.

5. If required then the MPEG Standard stores the flicker less Video in the
database.

Extensions/ Alternative flow: N/A

44

f)

g)

d)

f)

9)

Special requirements: No special requirement

Technology and Data Variations List: No technology and data variations.

5.3.3 Use case UC3: GUI for Geographical Tagqging

Primary Actor: Ground Station

Preconditions: AV Signal is available.

Success Guarantee (Post conditions):Extracts the geographical data

(longitude and latitudes etc) from audio in the AV Signal of the path which has
been traversed by BURRAQ.

Main success scenario / Basic flow:

1. Input to the interface is the AV signals.

2. The interface extracts the geographical data from the audio.

3. The system returns the output in the form of geographical data and stores
the output to the database if needed.

Extensions/ Alternative flow: N/A

Special requirements: No special requirement

Technology and Data Variations List: No technology and data variations

5.3.5 Use case UC4: Extended Interface

Primary Actor: Ground Station

Preconditions: Smoothened video is available in the database. Geographical

coordinates are available in database. Frames are available.

Success _Guarantee (Post conditions): The interface tags the geographical

coordinates onto the corresponding frames.

45

d) Main success scenario / Basic flow:

1. The ground station uses the extended GUI module.

2. Inputs to this module are maps and geographical coordinates which are
obtained from the AV Signal by the Interface for geographical tagging.

3. Module then tags the map according to the coordinates.

4. Then it stores the output in the databases if needed.

e) Extensions/ Alternative flow: N/A

f) Special requirements: No special requirement

g) Technology and Data Variations List: No technology and data variations.

46

5.4Sequence Diagr

ams

5.4.1 Sequence Diagram of UC1: AV Signal

User System
! 1
| |
| |
i Send AV signal :
L
! |
! |
| |
! 1
| |
| |
: Signal is received :
S e i
! |
! 1
| |
| |
! |
| |
! 1
! |
i |
|
I

5.4.2 Sequence Diagram of UC2: MPEG Standard
User System
T T
I I
| |
: Uses the MPEG standerd :
i :
| |
| |
| |
| |
I I
| uses AV signal |
S et 4
| |
I I
i i
: extracts video frm AV signal :
e |
) |
| |
| |
| |
: removes flickering from video :
| |
I I
| |
| |
| |
| Stores output(if needed) |
—_ AN

47

5.4.3 Sequence Diagram of UC3: GUI for Geographical tagqging

Uses the Interface

| |
| |
| |
I I
I I
z N
| I
I I
| |
| |
| |
| |
! uses AV signal !
o o 1
| |
| |
| |
| extracts audio from AV signal |
e |
I I
I I
I I
| |
: extracts geographical data from audio :
KT Tooooooooooooooooooooo oo :
I I
I I
I I
I I
| |
: taggs the images with coordinates :
K m m i
|

I

I

i

! Stores output(if needed)

I

I

I

I

|

|

|

|

48

5.4.4 Sequence Diagram of UC4: Extended Interface

User System
I I
I I
I I
: Uses the Interface :
| 5
I I
I I
I I
I I
| |
| |
| uses the maps |
Ko |
I I
| |
| |
| |
i uses geographical data i
% __ I
| |
| |
| |
| |
| taggs geographical data on maps |
I I
:e —— |
|
|
:
| Stores output(if needed)

I
:
|
I
I
I
I
I
|
|
|

49

Chapter 6
Implementation

The designed system is implemented using the following methodologies discussed

separately for each component

6.1

Main Interface

As discussed in design, the main interface is required to receive the AV file being sent

down from UAV and normalize it if required. Hence the implementation of this

component is divided into two parts

6.1.1 Capture Video

The basic requirement of the main interface is to capture the video into our
system so that individual frames can be accessed later on when required. This
feature is implemented using Microsoft® DirectShow® Editing Services (DES). It
is an application programming interface (API) that greatly simplifies the tasks
involved in video editing. DES is built on top of the core DirectShow architecture.
It abstracts much of the complexity of DirectShow, and provides a set of
interfaces designed specifically for manipulating video editing projects. As an
application developer, you get the benefits of DirectShow inside a framework

much better suited for creating video editing applications.

Using Direct Show lib’s public interface IMediaDet we have created our own
class that uses the functions of this API to actually capture the incoming video for
further editing and use. Information from the incoming video file header is

extracted to calculate Frame rate and length of the media. This information is

51

further used to calculate total number of frames in the video file. Hence it makes

our input video file accessible at each frame separately.

Getimage (image number) is the implemented functions that provide us an
interface to access each frame separately in the video. Our implemented class is
compiled as a DLL file providing us all functionalities through an external

interface.

Hence after the implementation of this component any incoming video can
be captured and accessed at individual frame level. This implementation is

shown through following code

namespace Burraq
{
/// <summary>
/// Retrieves individual frames from a video file and returns them
as bitmaps.
/// </summary>
public class FrameGrabber : IEnumerable<FrameGrabber.Frame>
{
// underlying variables for properties
private string FfileName;
private int frameCount;
private double frameRate;
private int height;

// private variables

private IMediaDet mediaDet;
private double mediaLength;
private VideolnfoHeader videolnfo;
private int width;

/// <summary>

/// Creates a FrameGrabber based on the specified video file.
/// </summary>

public FrameGrabber(string fileName)

{
}

FileName = fileName;

52

/// <summary>
/// Creates a FrameGrabber with no video Tile set. Set
FileName before calling other methods.
/// </summary>
public FrameGrabber()

- this("™)
{

}

/// <summary>
/// Gets or sets the full path of the video file from which to
grab frames.
/// </summary>
public string FileName

// nothing to do here

{
get
{
return fileName;
3
set
{
mediaDet = null;
fileName = value;
if (File_.Exists(TfileName))
{
AMMediaType mediaType = null;
try
{

mediaDet = (IMediaDet)new MediaDet();
DsError.ThrowExceptionForHR(mediaDet.put_Filename(fileName));

// find the video stream in the file

int index = 0O;

Guid type = Guid.Empty;

while (type != MediaType.Video)

{
mediaDet.put_CurrentStream(index++);
mediaDet.get StreamType(out type);

}

// retrieve some measurements from the video
mediaDet.get FrameRate(out frameRate);

mediaType = new AMMediaType(Q);
mediaDet.get_StreamMediaType(mediaType);
videolnfo =
(VideolnfoHeader)Marshal .PtrToStructure(mediaType.formatPtr,
typeof(VideolnfoHeader));
DsUtiIs.FreeAMMediaType(mediaType);
mediaType = null;
width = videolnfo.BmiHeader _Width;
height = videolnfo.BmiHeader.Height;

53

catc

open the file \"{O}\", D
e.Message));

}

/// <summary>
/// Gets the tot
/// </summary>

mediaDet.get_StreamLength(out medialLength);
frameCount = (int)(frameRate * medialLength);

h (Exception e)
if (mediaType '= null)

DsUti Is.FreeAMMediaType(mediaType);
}

fileName = o

throw new ArgumentException(String.Format('unable to
irectShow reported the following error: {1}, value,

al number of frames in the video file.

Count

return frameCount;

public int Frame
{

get

{

}
}

/// <summary>

/// Gets the framerate of the video file. Some videos always report

"0" regardless of their
/// </summary>

actual value.

public double FrameRate

return frameRate;

{
get
{
}
3

/// <summary>
/// Gets the hor
/// </summary>
public int Width

izontal dimension of the video file in pixels.

{
get
{
return width;
s
b

/// <summary>

/// Gets the vertical dimension of the video file in pixels.

54

/// </summary>
public int Height

{
get
{
return height;
}
}

/// <summary>

/// Gets the duration of the video file In seconds.
/// </summary>

public double MedialLength

{
get
{
return medialLength;
}
}

/// <summary>

/// Gets the bit depth of the captured frame (always 24 bpp RGB).
/// </summary>

public PixelFormat PixelFormat

{
get
{
return PixelFormat.Format24bppRgb;
}
}

/// <summary>

/// Gets the image at the specified time. Equivalent to calling
"GetlmageAtTime()".

/// </summary>

public Bitmap this[double seconds]

{
get
{
return GetlmageAtTime(seconds);
}
}

/// <summary>

/// Gets the specified frame. Equivalent to calling "Getlmage()".
/// </summary>

public Bitmap this[int frame]

{
get
{
return Getlmage(frame);
}
}

/// <summary>
/// Converts the frame number to seconds.
/// </summary>

55

public double ConvertFrameNumberToSeconds(int frameNumber)

{
}

/// <summary>

/// Converts the seconds to frame number.

/// </summary>

public int ConvertSecondsToFrameNumber(double seconds)

{
}

/// <summary>

/// Gets the specified frame. Frames are indexed starting at 0 and
go through (FrameCount - 1).

/// </summary>

public Frame GetFrame(int frameNumber)

{
return new Frame(Getlmage(frameNumber), frameNumber,
ConvertFrameNumberToSeconds(frameNumber));

}

/// <summary>

/// Gets the image of the specified frame. Frames are indexed
starting at 0 and go through (FrameCount - 1).

/// </summary>

public Bitmap Getlmage(int frameNumber)

{

return (frameNumber / frameRate);

return (int)Math.Floor(seconds * frameRate);

it (frameNumber < frameCount)

{
return
GetlmageAtTime(ConvertFrameNumberToSeconds(frameNumber));

}

else

{
throw new ArgumentException(String.Format('frameNumber must
be between 0 and {0} inclusive, value was \"{1}\"", frameCount - 1,
frameNumber));

}
}

/// <summary>

/// Gets the frame at the specified time. Seconds must be less than
or equal to MedialLength.

/// </summary>

public Frame GetFrameAtTime(double seconds)

{
return new Frame(GetlmageAtTime(seconds),
ConvertSecondsToFrameNumber(seconds), seconds);

}

/// <summary>
/// Gets the image at the specified time. Seconds must be less than
or equal to MedialLength.
/// All other image and frame accessors call this method.

56

6.1.2 Normalize Video

As discussed earlier the video input received at our main interface
contains captured frames from a number of cameras binded together as a video
stream through an onboard video processor. Since we know the placement of
frames from different cameras in the video hence the video can be broken every
second to retrieve frames of each camera separately. But for this we need a start
point or the first frame to start counting from. For this purpose we have
implemented the function for normalization. It captures the first group of six
frames that would always contain frames from both main as well as auxiliary
camera as per the design of onboard MPEG standard being used. For each
image it calculates the RGB color values for each pixel and saves them in a
separate data structure. Then it calculates the difference in value for each pixel

for each pair of images captured.

This calculated difference of each pixel is then summed up and average value of
difference in complete image is calculated. Hence it provides us with the numeric
values of difference between each pair of images. This difference is then used to
find out whether or not the images belong to same camera. Basing on
experimental results we have introduced a threshold value of difference in frames
that decides the above. So amongst the subset of six frames we can exactly
select the starting image of sequence for our use by discarding anything less

than six images in the start.

57

6.2 Video Display

Video display is required to split the incoming video into respective camera
frames and display them separately. The number of cameras which are to be displayed
is selected by the viewer. So this requirement is implemented through the
PLAYFRAMES () function. This function uses the captured and normalized video and
accesses it frame by frame. Keeping in view the known organization of the frames in the
video a display algorithm is developed that displays the frames as per their respective
cameras at different display panels. Since we know that for every set of 30 frames per
second, main camera has 25 frames and aux cameras have one frame each so while
displaying these frames we display each aux frame 25 times to keep the frame rate of
the video constant. Implementation of this playframes function is given as code

underline

void playFrames(Q)

{
new FrameGrabber(inputPath);
"C:\\Documents and
Settings\\Burag\\Desktop\\demo frames";

FrameGrabber fg
string outpaths

int counter = O;
int pl = 4, p2 = pl+6, p3 = p2+6, p4 = p3+6, p5 =p4+ 6, p6 =p5+6;
int x = 36;

foreach (FrameGrabber.Frame ¥ in fg)

{

counter++;
if (f.Framelndex > 2)

if ((f.Framelndex-3) % 6 > 0)//to get video after
removing the aux frames
{

}

else

{

mainDisplay. Image = fg.Getlmage(f.Framelndex);

if (counter == pl && cstatus[1l])

58

}

}

pl += X;
for (int hh = 0; hh < 25; hh++)//output aux
frames(25 times each)
Auxl.Image = fg.Getlmage(f.Framelndex);

else if (counter == p2 && cstatus[2])
{
p2 += X;
for (int hh = 0; hh < 25; hh++)//output aux
frames(25 times each)
Aux2.Image = fg.Getlmage(f.Framelndex);

else if (counter == p3 && cstatus[3])
{
p3 += X;
for (int hh = 0; hh < 25; hh++)//output aux
frames(25 times each)
Aux3.Image = fg.Getlmage(f.Framelndex);

else if (counter == p4 && cstatus[4])
{
p4 += X;
for (int hh = 0; hh < 25; hh++)//output aux
frames(5 times each)
Aux4.Image = fg.Getlmage(f.Framelndex);

}
else if (counter == p5 && cstatus[5])
{
p5 += X;
for (int hh = 0; hh < 25; hh++)//output aux
frames(25 times each)
Aux5.Image = fg.Getlmage(f.Framelndex);

¥
else if (counter == p6 && cstatus[6])
{
p6 += X;
for (int hh = 0; hh < 25; hh++)//output aux
frames(25 times each)
Aux6.Image = fg.Getlmage(f.Framelndex);

Application.DoEvents();

59

CZ20 8

Main Camera

Multi Panel Display

6.3 Video Generator

This component is required to overcome the limitations of the existing MPEG
standard being used which generates the video sequence using frames captured by
different cameras. It creates instance of our video capture class and then accesses the
video at each frame level. Depending upon the user’s selection, frames from selected
cameras are added separately into video streams. These video streams are created
using Microsoft Audio Video Interleave File support library also known

asAvifil32.dIl.Avifil32.dll is a 32/64-bit Dynamic Linked Library of code components for a

60

graphics Ul style application. This library is used in our customized class Video Stream.
CreateStream () function of this class creates separate streams as required for each
camera video. Again depending upon the selection algorithm, frames from each camera
are separately added to their respective streams using Add Frame() function of our
video stream class, hence creating AVI files each containing frames from a single
camera. These created AVI files are a sequence of uncompressed images, each
comprising of frames captured by a single camera. Here again the mismatch of
numbers in frames is covered by adding each frame of aux cameras 25 times. Hence
this component generates multiple AVI streams of same length but from different
cameras with no inherent flicker due to onboard MPEG standard. The code to generate

these separate videos is given as under

FrameGrabber fgl = new FrameGrabber(inputPath);

//AviManager finalManager = new AviManager('C:\\finaltestl.avi",
false);

//VideoStream fTinalStream = finalManager.AddVideoStream(false,
30, fgl.Getlmage(0));

if (inputPath '= null && (maincb.Checked || auxlcb.Checked ||
aux2cb.Checked || aux3cb.Checked || aux4cb.Checked || aux5cb.Checked ||
aux6cb.Checked))

int pl, p2, p3, p4, p5, p6;

pl = 3;

p2 = pl + 6;
p3 = p2 + 6;
p4 = p3 + 6;
pS = p4 + 6;
p6 = pS5 + 6;

//FrameGrabber fgl = new FrameGrabber(inputPath);
Bitmap bmpl (Bitmap)fgl.Getlmage(4);
Bitmap bmp2 (Bitmap)fgl.Getlmage(pl);
Bitmap bmp3 (Bitmap)fgl.Getlmage(p2);
Bitmap bmp4 (Bitmap)fgl.Getlmage(p3);
Bitmap bmp5 (Bitmap)fgl.Getlmage(p4);
Bitmap bmp6 (Bitmap)fgl.Getlmage(p5);
Bitmap bmp7 (Bitmap)fgl.Getlmage(pb);
AviManager aviManagerl = null;
AviManager aviManager?2 null;
AviManager aviManager3 null;

61

AviManager aviManager4

null;

AviManager aviManager5 = null;
AviManager aviManager6 = null;
AviManager aviManager?7 = null;
VideoStream aviStreaml = null; ;
VideoStream aviStream2 = null;
VideoStream aviStream3 = null;
VideoStream aviStream4 = null;
VideoStream aviStream5 = null;
VideoStream aviStream6é = null;
VideoStream aviStream7 = null;
// it (maincb.Checked)

/7{

aviManagerl = new AviManager(*'C:\\Documents and

Settings\\Burag\\Desktop\\demo\\main.avi', false);
aviStreaml = aviManagerl.AddVideoStream(false, 25,
bmpl);
/7 }
//if (auxlcb.Checked)
/7/7{
aviManager2 = new AviManager(*'C:\\Documents and
Settings\\Burag\\Desktop\\demo\\Auxl.avi', false);
aviStream2 = aviManager2.AddVideoStream(false, 25,
bmp2) ;
// }
//if (aux2cb.Checked)
/7/7{
aviManager3 = new AviManager(*'C:\\Documents and
Settings\\Burag\\Desktop\\demo\\Aux2.avi', false);
aviStream3 = aviManager3.AddVideoStream(false, 25,
bmp3);
/7%
//i1t (aux3cb.Checked)
/7/7{
aviManager4 = new AviManager('C:\\Documents and
Settings\\Burag\\Desktop\\demo\\Aux3.avi', false);
aviStream4 = aviManager4_AddVideoStream(false, 25,
bmp4) ;
//%}
//if (aux4cb.Checked)
/7/7{
aviManager5 = new AviManager(*'C:\\Documents and
Settings\\Burag\\Desktop\\demo\\Aux4.avi', false);
aviStream5 = aviManager5.AddVideoStream(false, 25,
bmp5) ;
//%
//it (aux5cbh.Checked)
/7/7{
aviManager6 = new AviManager(*'C:\\Documents and
Settings\\Burag\\Desktop\\demo\\Aux5.avi'', false);
aviStream6 = aviManager6.AddVideoStream(false, 25,
bmp6) ;
//}
//if (aux6cb.Checked)
/7{
aviManager7 = new AviManager(*'C:\\Documents and
Settings\\Burag\\Desktop\\demo\\Aux6.avi'', false);

62

aviStream7 = aviManager7.AddVideoStream(false, 25,
bmp7); /3
Bitmap bl, b2, b3, b5, b6, b7;
int counter = 2;

for(int 1=3 ;i<fgl.FrameCount;i++)
{
counter++;
if (((i -3) %6 >0) & maincb.Checked)
{

//p2 += 36;
// for (int hh = 0; hh < 25; hh++)//output aux
frames(5 times each)

/7/7{
bl = (Bitmap)fgl.Getlmage(i);
aviStreaml._AddFrame(bl);
bl.Dispose();

/7%

else if (counter == pl && auxlcb.Checked)

{
pl += 36;
for (int hh = 0; hh < 25; hh++)//output aux frames(5

{

times each)

b2 = (Bitmap)fgl.Getlmage(i);
aviStream2.AddFrame(b2);
b2_.Dispose();

}

else if (counter == p2 && aux2cb.Checked)

{
p2 += 36;
for (int hh = 0; hh < 25; hh++)//output aux frames(b

{

times each)

b3 = (Bitmap)fgl.Getlmage(i);
aviStream3.AddFrame(b3);
b3.Dispose();

}

else if (counter == p3 && aux3cb.Checked)

{
p3 += 36;
for (int hh = 0; hh < 25; hh++)//output aux frames(5
times each)

//b4 = (Bitmap)fgl.Getlmage(i);
aviStream4 _AddFrame((Bitmap)fgl.Getlmage(i));

// b4 _Dispose();
}

else if (counter == p4 && aux4cb.Checked)

63

p4 += 36;

for (int hh = 0; hh < 25; hh++)//output aux frames(5
times each)

{

b5 = (Bitmap)fgl.Getimage(i);
aviStream5.AddFrame(b5);
b5_Dispose();

}
else if (counter == p5 && aux5cb.Checked)
{
p5 += 36;
for (int hh = 0; hh < 25; hh++)//output aux frames(5
times each)
{
b6 = (Bitmap)fgl.Getimage(i);
aviStream6.AddFrame(b6);
b6 .Dispose();
}
else if (counter == p6 && aux6cb.Checked)
{
p6 += 36;
for (int hh = 0; hh < 25; hh++)//output aux frames(5
times each)
{
b7 = (Bitmap)fgl.Getimage(i);
aviStream7.AddFrame(b7);
b7 _Dispose();
}
}

}

aviManagerl.Close();
aviManager2.Close();
aviManager3.Close();
aviManager4.Close();
aviManager5.Close();
aviManager6.Close();
aviManager7.Close();

6.4 Video Compressor

A component required to compress the created videos by video generator. It takes input
the generated AVI files and compresses them into compressed video streams. This

component is also implemented using windows API Avifil32.dll. This API is used to

64

create our new class of AVI file that implements functions to create compressed

streams.

Since the onboard MPEG standard generates the compressed stream of frames
captured by different onboard cameras hence it has an inherent over head of keeping
more key frames. For every 30 frames in a second, first five frames of main camera are
compressed and then a frame is received from one of the aux camera hence is saved
as key frame, next packet of five frames would again require an additional key frame to
be saved. Therefore the existing MPEG standard has an overhead of saving 11
additional key frames every second and also a disturbing flicker due to placement of
aux frames between packets of main frames. Our algorithm however over comes both
these problems, firstly by removing the overhead of 11 additional key frames, as all
frames are from same camera so every second requires only one key frame and
secondly by removing the flicker as each generated compressed video stream

comprises of frames form a single selected camera.

6.5 Audio Data Reader

This component is implemented using the second approach discussed above in design
where we are reading the data hidden in audio through the existing media player. The
memory distribution and location of data required is found through detailed analysis and
study of the existing system using disassemblers and Decompilers. This process
involved detailed study of around fifteen thousand lines of assembly code generated
through disassembling the source less existing media player. The study was carried out

65

using a number of tools available for memory tracing and tracking, generating
assemblies from machine code of an executing application. The distribution of memory
and virtual addressing of existing media player was studied, locations and addresses of
the desired data was found and traced, and using results of this study algorithm to

retrieve the data was formulated.

The existing player is embedded into our application and during its execution the
respective memory locations are accessed to get the desired data. This access of
memory is carried out using a dynamic code injection technique. In dynamic code
injection a predefined instruction set is injected into an ongoing process for execution.
Using a code snippet for reading process memory the existing media player is executed
and desired information is retrieved and written to a desired location. Implementation is

shown through the following code snippet

namespace Burraq

{

class ProcessMemoryReaderApi

{
public const uint PROCESS_VM_READ = (0x0010);

[DITImport(*'kernel32._dIl1')]
public static extern IntPtr OpenProcess(UInt32 dwDesiredAccess, Int32
bInheritHandle, UInt32 dwProcessid);

[DilImport('kernel32.dI11')]
public static extern Int32 CloseHandle(IntPtr hObject);

[DilImport('kernel32.d11™)]

public static extern Int32 ReadProcessMemory(IntPtr hProcess, IntPtr
IpBaseAddress, [In, Out] byte[] buffer, UInt32 size, out IntPtr
IpNumberOfBytesRead) ;

public class ProcessMemoryReader

{

public ProcessMemoryReader ()

{

66

}

public Process ReadProcess

{
get

{
}
set

{
}

return m_ReadProcess;

m_ReadProcess = value;
}
private Process m_ReadProcess = null;
private IntPtr m_hProcess = IntPtr.Zero;
public void OpenProcess()
{
m_hProcess =

ProcessMemoryReaderApi .OpenProcess(ProcesshMemoryReaderApi .PROCESS _VM_READ, 1,
(uint)m_ReadProcess.1d);

public void CloseHandle()

{
int iRetValue;
iRetValue = ProcessMemoryReaderApi.CloseHandle(m_hProcess);
it (iRetvalue == 0)
throw new Exception('CloseHandle failed™);
}

public byte[] ReadProcessMemory(IntPtr MemoryAddress, uint
bytesToRead, out int bytesReaded)

byte[] buffer = new byte[bytesToRead];

IntPtr ptrBytesReaded;

ProcessMemoryReaderApi .ReadProcessMemory(m_hProcess,
MemoryAddress, buffer, bytesToRead, out ptrBytesReaded);

bytesReaded = ptrBytesReaded.Tolnt32();

return buffer;

67

6.6 Frame Tagger

A component that is required to save a selected frame tagged with its geographical data
at a desired location. It is also implemented through our video capture functions. Image
of any location in video can be retrieved from display and written to a file through this

component.

68

Chapter 7
Results and Analysis

6.1 Mpeq standard

Existing Result

It provides a video with inherent flicker due to customized implementation of MPEG.

Achieved Result

The new implementation of video generating algorithm and MPEG standard removes

the flicker and generates smooth video.

7.2 Video display

Existing Result

It has a single display panel that shows the video from all cameras in the same stream.

Achieved Result

Now we have separate display of panel for each camera (MAIN AND AUXILLARIES)

showing a smooth and flicker less video.

7.3 Audio data reader

Existing Result

It provides geographical data in read only format preventing any further use of the data.

Achieved Result

It reads encrypted data in the form that can not only be saved but can be further used

for automated applications like goggle.

70

7.4 Compression

Existing Result

At present compression algorithm comes with an inherent overload of saving additional
key frames for every second of video.

Achieved Result

Now we have overcome this additional overhead by generating separate videos frames

captured by each camera.

7.5 Video Generator

Existing Result

It creates a single stream of video comprising of frame captured by different cameras

hence generating an interlaced video.

Achieved Result

Now it generates separate video streams comprising of frames from separate cameras

thus removing interlacing limitation.

71

7.6 Frame Extractor

Existing Result

It provides no means for extracting individual frames from the video thus making it a

virtually dumb module.

Achieved Result

Now it can retrieve and save any frame from the video at display.

72

Chapter 7

Conclusions and Future
Work

Conclusion and Future Work

In this chapter we compare the already existing system with the one we have made.
The existing system of BURRAQ has some constraints which limits the working of the
system and also its usage in other applications. We have tried to improve the existing
system so that it can work better to improve the efficiency of the system and also it can

be used in future applications as well.

As already discussed, the existing system has some limitations which hindered
its smooth and efficient working. Currently the deployed system has the following

limitations

a) The audio signal containing the Geographical data of the underlying video is
readable only to the ‘UAV Media Player’ and remains hidden for any other
module to work with.

b) The GUI of the Ground Control System provides the geographical data only in
‘read only mode’ preventing any further use of the data.

c) Existing GUI is virtually dumb providing no usable output for further use in area
mapping and marking.

d) The MPEG standard provides a flickering video making it almost useless for any

tactical analysis and planning.

We have made an endeavor to make the enhanced existing system which work
better and have tried to eradicate the beyond discussed limitations. We have also

integrated new functionalities in the system, which make our system superior with the

74

existing version in many aspects. Our improved system has the following new

functionalities as follow scan be used in other applications as well.

a) A GUI is provided to the existing module with an aim of providing the readable
data in usable form for further mapping applications.

b) A new MPEG standard is developed to reduce/remove the flickering effects in the
video stream hence providing a smooth video stream for tactical and planning
analysis.

c) The developed interface can be utilized to use the Geographical data to map the
video over digital mapping applications like Google Maps.

d) The extracted data can be used to create maps of specified areas for further

tactical/strategic use.

The above discussed implementations will improve the efficiency of the existing

system in future applications.

75

Chapter 8
Bibliography

1. http://www.sersc.org/journals/IJDTA/vol2 no2/1.pdf

2. http://www.mpeg.org

3. http://en.wikipedia.org/wiki/Disassembler

4. http://en.wikipedia.org/wiki/Static code analysis

5. http://www.coverity.com/products/dynamic-analysis.html

6. http://en.wikipedia.org/wiki/Decompiler

7. http://www.afterdawn.com/glossary/term.cfm/mpeqg-4

8. http://www.webopedia.com/TERM/M/MPEG.html

9. http://cs.utsa.edu/~jortiz/CS4953/Papers/Techniques%20for%20Data%20Hiding-

p.pdf

10.http://en.wikipedia.org/wiki/MPEG-4

11.http://en.wikipedia.org/wiki/Optical character recognition

12.https://buildsecurityin.us-cert.qgov/bsi/214-BSl.html

13.http://en.wikipedia.org/wiki/Dynamic program analysis

14 .http://lwww.videoanalysis.org/

15.http://lwww.springerlink.com/index/k6621007375m1823.pdf

16.http://mpegqg.chiariglione.org/standards/mpeg-4/mpeqg-4.htm

17.http://lwww.mpeg4.net/

18.http://images.apple.com/quicktime/pdf/MPEG4 v3.pdf

19.http://lwww.see.ed.ac.uk/~mjj/dspDemos/EE4/index.html

20. http://www.computerworld.com/s/article/73023/Optical Character Recognition

21.http://www.metacarta.com/Collateral/Documents/English-US/OCR-Kornai.pdf

77

http://www.sersc.org/journals/IJDTA/vol2_no2/1.pdf
http://www.mpeg.org/
http://en.wikipedia.org/wiki/Disassembler
http://en.wikipedia.org/wiki/Static_code_analysis
http://www.coverity.com/products/dynamic-analysis.html
http://en.wikipedia.org/wiki/Decompiler
http://www.afterdawn.com/glossary/term.cfm/mpeg-4
http://www.webopedia.com/TERM/M/MPEG.html
http://cs.utsa.edu/~jortiz/CS4953/Papers/Techniques%20for%20Data%20Hiding-p.pdf
http://cs.utsa.edu/~jortiz/CS4953/Papers/Techniques%20for%20Data%20Hiding-p.pdf
http://en.wikipedia.org/wiki/MPEG-4
http://en.wikipedia.org/wiki/Optical_character_recognition
https://buildsecurityin.us-cert.gov/bsi/214-BSI.html
http://en.wikipedia.org/wiki/Dynamic_program_analysis
http://www.videoanalysis.org/
http://www.springerlink.com/index/k662l007375m1823.pdf
http://mpeg.chiariglione.org/standards/mpeg-4/mpeg-4.htm
http://www.mpeg4.net/
http://images.apple.com/quicktime/pdf/MPEG4_v3.pdf
http://www.see.ed.ac.uk/~mjj/dspDemos/EE4/index.html
http://www.computerworld.com/s/article/73023/Optical_Character_Recognition
http://www.metacarta.com/Collateral/Documents/English-US/OCR-Kornai.pdf

22.http://www.scar.ac.cn/hhkxen/ch/reader/create pdf.aspx?file no=2010302&flag=1

&journal id=hhkxen

23.http://www.hydrogenaudio.org/forums/lofiversion/index.php/t4292.html

24 http://www.sersc.org/journals/IJDTA/vol2 no2/1.pdf

78

http://www.scar.ac.cn/hhkxen/ch/reader/create_pdf.aspx?file_no=2010302&flag=1&journal_id=hhkxen
http://www.scar.ac.cn/hhkxen/ch/reader/create_pdf.aspx?file_no=2010302&flag=1&journal_id=hhkxen
http://www.hydrogenaudio.org/forums/lofiversion/index.php/t4292.html
http://www.sersc.org/journals/IJDTA/vol2_no2/1.pdf

	Abstract
	Introduction
	Introduction
	Scope and Objectives of the Project
	1.3 Potential Difficulties and Problems
	Intended Audience

	Related Work
	2.1 Existing System
	2.1.1 Video Data
	2.1.2 Audio Data

	2.2 Problems in Existing System
	2.3 Analysis of Existing System
	2.3.1 Audio Analysis
	2.3.2 Video Analysis
	2.3.3 Software Analysis tools being used in research
	2.3.3.1 Disassembler
	2.3.3.2 Decompilers

	2.4 Details of MPEG Standard used
	2.4.1 MPEG-4 Standard

	2.5 Techniques to hide data in audio
	2.5.1 Low-bit coding
	2.5.2 Phase Coding
	2.5.3 Parity coding
	2.5.4 Spread Spectrum
	2.5.5 Echo Hiding

	Requirement specifications
	3.1 Functional Requirements of the Project
	3.2 Non Functional Requirements of the Project

	Reverse Engineering Process
	System Design
	5.1 Design of Proposed System
	5.1.1 Main Interface
	5.1.2 Video Display
	5.1.3 Video Generator
	5.1.4 Video Compressor
	5.1.5 Audio Data Reader
	5.1.6 Frame Tagger

	5.2 Proposed System Architecture
	5.3 Use Case Diagram for BURRAQ
	5.3.1 Use case UC1: AV Signal
	5.3.2 Use case UC2: MPEG Standard
	5.3.3 Use case UC3: GUI for Geographical Tagging
	5.3.5 Use case UC4: Extended Interface

	5.4Sequence Diagrams
	5.4.1 Sequence Diagram of UC1: AV Signal
	5.4.2 Sequence Diagram of UC2: MPEG Standard
	5.4.3 Sequence Diagram of UC3: GUI for Geographical tagging
	5.4.4 Sequence Diagram of UC4: Extended Interface

	Implementation
	6.1 Main Interface
	6.1.1 Capture Video
	6.1.2 Normalize Video

	6.2 Video Display
	/
	6.3 Video Generator
	6.4 Video Compressor
	6.5 Audio Data Reader
	6.6 Frame Tagger

	Results and Analysis
	Mpeg standard
	7.2 Video display
	7.3 Audio data reader
	7.4 Compression
	7.5 Video Generator
	7.6 Frame Extractor

	Conclusions and Future Work
	Bibliography

