
1

INTELL

(INTEgrated code generation and paraLLelization)

By

Raja Hamza Iqbal

M. Umar Farooq

Muneeb Ullah Mashhood

Submitted to the Faculty of Computer Software Engineering

National University of Sciences and Technology, Islamabad in partial fulfillment

for the requirements of a B.E. Degree in Computer Software Engineering

JUNE 2014

i

CERTIFICATE

Certified that the contents and form of project report entitled “INTELL” submitted by

1) NC Hamza Iqbal, 2) NC Umar Farooq, and 3) NC Muneeb Ullah have been found

satisfactory for the requirement of the degree.

Supervisor: ____________________

Asst. Prof. Dr. Hammad Afzal

ii

ABSTRACT

The advancement in GPU technology can be attributed mostly due to heavy investment in

gaming industry. This has led to a need to use GPUs for high performance computing, for

example GPUs have become an irreplaceable component of the world’s most powerful

super computers. The use of NVIDIA’s GP-GPU by commercial products such as Adobe

Photoshop CS6 adds to the validity of this argument. One important issue using GPU

technology is that the advancement in architecture is progressing very rapidly which results

in a wide variety of different architectures. To utilize these GPUs to their optimal potential,

the software must be optimized according to these varying architectures. This can be a

tedious and time consuming process.

INTELL is a benchmarking tool that provides users with the ability to test and evaluate

new and expensive hardware without having to purchase it. With the rapid development in

GPU technology it has become increasingly difficult for people to evaluate the true

capabilities of the new systems based on specifications data alone because actual

performance depends on a number of different variables. INTELL allows developers and

researchers to utilize the capabilities of GPU’s through a web interface. It provides users

with the ability to test different kernels on different architectures by actually performing

the tests. These results are then provided to the user in the form of graphs for evaluation.

This allows researchers and developers to reduce the cost of their projects.

iii

DECLARATION

No portion of the work presented in this dissertation has been submitted in support of

Any other award or qualification either at this institution or elsewhere.

iv

DEDICATION

In the name of Allah, the Most Merciful, the Most Beneficent

To our parents, without whose unflinching support and cooperation,

a work of this magnitude would not have been possible.

v

ACKNOWLEDGEMENTS

There is no success without the will of ALLAH Almighty. We are grateful to ALLAH,

who has given us guidance, strength and enabled us to accomplish this task. Whatever

we have achieved, we owe it to Him, in totality. We are also grateful to our parents and

family and well-wishers for their admirable support and their critical reviews. We would

like to thank our supervisors Dr. Hammad Afzal & Dr. Zaki Murtaza, for their

continuous guidance and motivation throughout the course of our project. Without their

help we would have not been able to accomplish anything.

vi

Table of Contents

1 Introduction ... 4

1.1 Purpose .. 4

1.2 Problem domain... 4

1.2.1 State-of-the-art in GPU Programming Tools .. 4

1.2.2 Manually Tuned Libraries ... 5

1.3 Motivation.. 5

1.4 Goals and objectives .. 6

1.4.1 Goals .. 6

1.4.2 Objective .. 6

1.5 Deliverables.. 6

1.6 System overview .. 7

2 Introduction ... 9

2.1 Limitations ... 10

2.1.1 Limitations of Manually-Tuned Libraries ... 10

3 Purpose... 12

3.1 Project Scope ... 12

3.2 Overall Description .. 12

3.2.1 Product Perspective ... 12

3.2.2 Product Features .. 13

3.2.3 User Classes and Characteristics .. 13

3.2.4 Operating Environment ... 14

3.2.5 Design and Implementation Constraints ... 15

3.2.6 Assumption and Dependencies ... 15

3.3 System Features ... 15

3.3.1 Command Line Interface .. 15

3.3.2 Web Interface .. 16

3.3.3 CUDA Kernels ... 17

3.3.4 Graphs .. 18

3.3.5 Serial to Parallel Code .. 18

3.4 External Interface Requirements ... 19

vii

3.4.1 User Interfaces ... 19

3.4.2 Hardware Interfaces .. 20

3.4.3 Software Interfaces .. 21

3.4.4 Communications Interfaces ... 21

3.5 Nonfunctional Requirements ... 22

3.5.1 Performance Requirements ... 22

3.5.2 Safety Requirements .. 22

3.5.3 Security Requirements ... 22

3.5.4 Software Quality Attributes ... 23

4 Architectural Representation ... 26

4.1.1 Design Rationale .. 26

4.1.2 Basic Architecture .. 27

4.2 Architectural Goals and Constraints .. 28

4.2.1 Throughput .. 28

4.2.2 Hardware ... 28

4.3 Use Case View .. 29

4.4 Use Case Specification ... 29

4.4.1 Use Cases ... 29

4.5 Logical View ... 38

4.6 Responsibilities .. 38

4.6.1 PHP-Controller ... 38

4.6.2 PHP-Model ... 38

4.6.3 PHP-View .. 39

4.6.4 Java Communication module ... 39

4.6.5 JavaServer Module ... 39

4.6.6 JavaExecution Module ... 39

4.7 Data Flow ... 40

5 System Implementation .. 42

5.1.1 Programming Language: .. 42

5.1.2 Development Tools: ... 42

5.1.3 Database: ... 42

5.1.4 Operating System: .. 42

5.1.5 Complete System Implementation: ... 42

viii

6 System Testing .. 45

6.1 Test Case 1 ... 45

6.2 Test Case 2 ... 46

6.3 Test Case 3 ... 47

6.4 Test Case 4 ... 47

6.5 Test Case 5 ... 49

6.6 Test Case 6 ... 50

6.7 Test Case 7 ... 51

7 Future Work Conclusion .. 54

1

Table of Figures
Figure 1:Homepage .. 20

Figure 2: GTX-770 ... 21

Figure 3: System Use Case ... 29

Figure 4: Logical view ... 38

Figure 5: Data Flow .. 40

Figure 6: Register ... 57

Figure 7: Login .. 58

Figure 8:Submit Parameters .. 58

Figure 9: View Results .. 59

2

Table of Tables

Table 1: GPU Engine Specs ... 20

Table 2:GPU Memory Specs ... 21

Table 3: Login UseCase .. 31

Table 4: Sign Up Use Case .. 32

Table 5 : GetXML Use case ... 34

Table 6: Display Graph Use Case .. 34

Table 7: Submit Test Data Use Case... 35

Table 8: View Previous Results Use Case ... 36

Table 9:View Benchmark Info Use Case ... 37

Table 10: Edit Profile use Case ... 38

Table 11: Test Case 1 ... 45

Table 12:Test Case 2 .. 46

Table 13:Test Case 3 ... 47

Table 14:Test Case 4 .. 49

Table 15:Test Case 5 .. 49

Table 16:Test Case 6 .. 51

Table 17:Test Case 7 .. 52

3

CHAPTER 1

INTRODUCTION

4

1 Introduction

Peak performance of graphics processors (GPUs) is now in the Teraflop range for a single

device, and general purpose code on GPUs has demonstrated up to two orders of magnitude

performance gains as compared to conventional CPUs. In spite of this enormous potential,

it is very difficult to develop GPU applications that make efficient use of all the

architectural features and achieve high performance, particularly given the significant

architectural changes across GPU generations. For example, consider Nvidia GPUs.

1.1 Purpose

The purpose of this document is to present a detailed description of INTELL. It will explain

the purpose and features of the system, the interfaces of the system, what the system will

do, the constraints under which it must operate and how the system will react to external

input.

1.2 Problem domain

1.2.1 State-of-the-art in GPU Programming Tools

Nvidia has introduced their parallel programming extension called CUDA (Compute

United Device Architecture), which has demonstrated high performance for many

scientific applications. The CUDA parallel programming model tries to provide

programmers with a modest set of language extensions to exploit the parallelism and

effectively use the memory hierarchy of the Nvidia GPU devices. As previously stated,

multiple aspects of programming Nvidia GPUs must be explicitly managed to maximize

the performance gain. Researchers have reported days of effort to program high performing

5

solutions for well understood problems like matrix-matrix multiplication. In addition to

that, the portability of solutions on devices from different vendors or different generation

of devices from the same vendor is also a challenging issue.

1.2.2 Manually Tuned Libraries

One of the solutions to the above problem is that the vendors of the GPUs create their own

manually tuned libraries and provide access to them to the programmers. This would mean

that they have to update these libraries regularly and the developers would still be unable

to utilize the hardware until the vendors update these libraries. This particular approach is

being used by Nvidia in their CUBLAS library.

1.3 Motivation

Researchers need a lot of funds from their respective institutions in order to carry out the

much needed research work, whether it be medical field or simulations. We have already

discussed that it costs heavily on budget of organizations to have an instance of latest

hardware for each of the researchers. The HPC community came up with motivation for

acquiring a single instance of hardware such as GPU and then allowing shared use of it

over the web to interested researchers. There was no already existing solution to such a

problem so we wanted to contribute in HPC community by building a solution which

allows for use of GPU over internet for performing various research tests as well as

ensuring that GPU is used for one test at a time.

6

1.4 Goals and objectives

1.4.1 Goals

Provide a solution to use GPU over internet for benchmarking and research purposes by

executing tests and providing performance results.

1.4.2 Objective

Provide a web based interface through which users can register for GPU utilization.

Request for tests on GPU and acquire results after test being performed. The registered

users are expected to be authenticated with mobile phones to avoid misuse of GPU·

1.5 Deliverables

 Deliverable Name Deliverable Summary Description

Software Requirements

Specification(SRS) Document

Complete Description of WHAT system will do,

who will use it. Detailed description of functional

and non-functional requirements and system

features.

Analysis Document Detailed requirement analysis and analysis

models are included.

Design Document Complete description of How the system will do.

Design models are included.

Code Complete code with the API.

Testing Document Whole system is tested corresponding to the

specifications. System is tested at all levels of

Software Development Life Cycle (SDLC).

7

1.6 System overview

INTELL shall provide a web interface that would be used by researchers to optimize and

test different benchmarks for different GPU architectures. It shall provide the researchers

with test results of the optimization achieved under different configurations. This shall lead

to better optimizations for code recipes used in software development.

Complete System Complete working system.

8

Chapter 2

Literature Reviews

9

2 Introduction

Nvidia GPU chips are partitioned into multiple streaming multiprocessors (SMs), each of

which have multiple cores. Details of how a computation gets mapped to these SMs affects

the performance enormously.

 Explicit data movement from the CPU address space to the GPU memory hierarchy

is needed.

 The GPU memory hierarchy must be managed explicitly in software to hide

memory latency.

 Improving memory bandwidth must also be managed explicitly using memory

operations supported in software, and dedicated hardware mechanisms.

 Maximum performance on a GPU may depend on tuning multiple parameters in

the application.

Thus the programmer must explicitly manage available parallelism and the heterogeneous

memory hierarchy. Failing to address any of these aspects appropriately may change the

mapping of the computation onto the physical resources and thus may severely affect

performance. Tools to simplify the programming and performance tuning process have the

potential to increase the accessibility of this important technology and improve

performance of the resulting code.

10

2.1 Limitations

2.1.1 Limitations of Manually-Tuned Libraries

Manually tuned libraries provide high performance routines for a set of widely used

computations, which speed up parts of the application, improving the overall performance

of the applications. There are some limitations with such libraries.

 Many problems require dedicated and exclusive programming effort to devise

solutions for GPUs. This approach cannot be extended to cater to the needs of the scientific

community to generate general application code. Every different application needs the

same amount of time and effort on the part of developers to achieve a high performance

solution.

 There are only so many different solution strategies that can be explored if done

manually. There is a good chance that for a certain problem, the programmer may only

explore a few possible solutions in a potentially large search space of possibilities, as it is

too hard to evaluate all of them. Thus, developers tend to settle for local maxima, ignoring

the large picture due to inability to look through a large search space.

 Different versions of these libraries are needed for different platforms and may need

to be modified with every new generation of a specific architecture. Thus portability is a

major concern in developing GPU specific applications.

11

Chapter 3

Software Requirement Specification

Document

12

3 Purpose

Intell is a basically a benchmarking tool that allows its users to evaluate and benchmark

the performance of expensive GPUs without having to buy the actual hardware by

performing tests with user specified parameters.

3.1 Project Scope

The final product enables the users to utilize the GPU on the server for research purposes

by allowing them to test generated code of commonly used benchmarks on specified GPUs

without obtaining the expensive hardware. This will provide the users the ability to conduct

their research through a Web Interface thus providing portability.

The product will also provide a test bed to the users which will allow them to compare the

parallelization of code and give them a measure of optimization through parallelization.

3.2 Overall Description

3.2.1 Product Perspective

The advancement in GPU technology can be attributed mostly due to heavy investment in

gaming industry. This has led to a need to use GPUs for high performance computing, for

example GPUs have become an irreplaceable component of the world’s most powerful

super computers. The use of NVIDIA’s GP-GPU by commercial products such as Adobe

Photoshop CS6 adds to the validity of this argument. One important issue using GPU

technology is that the advancement in architecture is progressing very rapidly which results

in a wide variety of different architectures. To utilize these GPUs to their optimal potential,

the software must be optimized according to these varying architectures. This can be a

13

tedious and time consuming process. A solution to this problem is to use manually tuned

libraries provided by the GPU vendors.

INTELL shall provide a web interface that would be used by researchers to optimize and

test different benchmarks for different GPU architectures. It shall provide the researchers

with test results of the optimization achieved under different configurations. This shall lead

to better optimizations for code recipes used in software development.

3.2.2 Product Features

This product shall allow the users of this product to perform the following functions.

 The System should be accessible via web interface.

 The System shall calculate the results (running times of different benchmarks with

custom parameters provided by the user) and provide formatted results in the form

of graphs and charts.

 The system shall provide the user with downloadable results.

 The system shall allow the users to create user accounts and login with those

accounts.

 The system shall generate optimized parallel code recipes for each benchmark

custom generated to each GPU on the server.

 The system shall run the test calculations for a particular benchmark with user

provided parameters on a specified GPU on the server.

3.2.3 User Classes and Characteristics

Users shall include

 Students

 Evaluators

14

 Scientists and Researchers

3.2.3.1 Students

Students researching in GPU programming will be able to understand the architecture of

GPUs and GPU programming by understanding and working with INTELL. They will also

be able to understand the proper application of parallel and serial code.

3.2.3.2 Evaluators

Evaluators are intended to verify and validate the product and its functionalities with

respect to the required specifications. This product will initially be evaluated by the project

supervisor. Functionalities and required specifications shall be verified and validated by

the Panel of Evaluators.

3.2.3.3 Scientists and Researchers

This software is meant for the Scientists and Researches. They will be able to use this

product to convert their Serial C Code into an Optimized Parallel Code. The efficiency of

Optimized Parallel Code will then be compared with that of Serial C code to help the

scientists understand the difference.

3.2.4 Operating Environment

The server machine is expected to be Intel i5 or i7 processor working along with Nvidia

GPU. Apache server will offer the web environment for serving user requests.

The client machine however just requires a web browser and an internet connection. It

requires client to have a compatible browser preferably Mozilla Firefox 11.0 and any

operating system is supported.The project does not require client to have any advanced

computing machine.

15

3.2.5 Design and Implementation Constraints

The customer’s organization will be responsible for maintaining the delivered software.

Since INTELL is a web based system it shall require a client server based architecture

design.

Also due to limited number of GPUs on the server the number of concurrent users at any

given time shall be small.

This software demands a client server architecture due to the requirement of a web based

application.

3.2.6 Assumption and Dependencies

Our System shall be assuming and depending upon the following facts:

 CuBLAS is installed and working on Server.

 Windows 7 or above is installed and working on Server.

3.3 System Features

The major features of the software end product shall include following:

3.3.1 Command Line Interface

3.3.1.1 Description and Priority

A stand-alone command line interface shall allow access to a script which is able to

communicate with already existing CUBLAS scripts and as well as easily accessible

through a web programming language. This command line interface (CLI) utility is most

critical since it will not only allow web interfaces to interact with scripts on Server machine

but also an abstract layer which allows for adding more features or scripts in later years of

research.

Priority: High

16

3.3.1.2 Stimulus/Response Sequences

Whenever user initiates a process which involves interacting or sending commands to

CUDA-CHILL scripts, this CLI utility will be called via an “exec” function in PHP. This

utility will output the results in a specified directory and typically requires kernel

name/type, problem size and output directory which can be set to default.

3.3.1.3 Functional Requirements

REQ-1: The System should be accessible via web interface may it be a mobile phone or

desktop PC

REQ-2: The System must be able to adapt any future changes in kernels (which are nine at

present) if required

REQ-3: Output values for displaying graphs

REQ-4: Results available as download to user.

3.3.2 Web Interface

3.3.2.1 Description and Priority

A web interface which is served to each client requesting use of the services. The web

interface is expected to be responsive to accommodate the mobile browsers as well as

desktop browsers.

Priority: Medium

3.3.2.2 Stimulus/Response Sequences

User will request browser for web interface by entering the URL of website and Apache

server will reply back with web page which is then displayed by web browser.

3.3.2.3 Functional Requirements

REQ-5: They system should be accessible via mobile or desktop web browser

17

REQ-6: Displaying the graphs to user.

REQ-7: Displaying comparisons of graphs with benchmarks.

3.3.3 CUDA Kernels

3.3.3.1 Description and Priority

This category includes the currently present nine CUBLAS kernels which are available to

user for testing and comparing results based on different problem sizes. These kernels

range from mathematics to biological sciences. There are two kernels for the scope of this

project.

Priority: High

3.3.3.2 Stimulus/Response Sequences

Problem or sample size are given as input to these kernels via CLI utility and these kernels

after running and giving numerical values give control back to CLI. The numerical values

are then used to give graphical representations.

3.3.3.3 Functional Requirements

REQ-8: Serve for the Test Bed purposes.

REQ-9: Graphs based on actual data obtained from CUBLAS

The kernels that shall be available on INTELL are

REQ-12: Matrix Matrix Multiplication

REQ-13: Matrix Vector Multiplication

18

3.3.4 Graphs

3.3.4.1 Description and Priority

The system must be able to represent all data whether it be obtained from running a kernel

with CUDA-CHILL or benchmark data, in a graphical manner so the researcher is able to

make a decision based on it.

Priority: Medium

3.3.4.2 Stimulus/Response Sequences

The user requests for graphical output of problem with some sample size. These graphs are

then shown to user via web interface as well as available to be downloaded by user so he

is able to interpret results by other methods if required (which might involve custom

graphs).

3.3.4.3 Functional Requirements

REQ-16: Outputs are presented as graphs

REQ-17: Outputs are available as downloads

REQ-18: Benchmark comparisons and test bed outputs

3.3.5 Serial to Parallel Code

3.3.5.1 Description and Priority

This feature is involved with conversion of serial code into a parallel code. The user will

be provided with fix set of nine kernels and their codes but user can modify the sample

problem sizes. The parallelized c++ code for a kernel will be shown as output to user.

Priority: Medium

19

3.3.5.2 Stimulus/Response Sequences

User requests a specific kernel to be run along with problem size and its corresponding

parallel code will be generated. This parallel code is accessible via web interface.

3.3.5.3 Functional Requirements

REQ-19: Code Optimization through CUBLAS framework.

REQ-20: Support for heterogeneous platforms.

3.4 External Interface Requirements

3.4.1 User Interfaces

There shall be a tutorial available on the website as part of the web interface that shall guide

the user on basic interaction scenarios with the system.

The user interfaces shall be designed while keeping in mind the user goals and other Human

Computer Interaction guidelines as specified in ISO 9241-11. The user interfaces shall be

evaluated in context to user goals on the basis of effectiveness and efficiency in achieving

those goals.

The system shall prompt the user with error messages only on activities that might cause

the system to fail. In other situations the system shall only give warning messages because

the expected users of the system are researches and the need to be allowed to conduct their

research unhindered.

20

Figure 1:Homepage

3.4.2 Hardware Interfaces

3.4.2.1 Graphical Processing Unit

High-performance GeForce GTX 770 graphics card is designed from the ground up to

deliver high-speed, smooth gaming.

GTX 770 GPU ENGINE SPECS:

 CUDA Cores 1536

 Base Clock (MHz) 1046

 Boost Clock (MHz) 1085

 Texture Fill Rate (billion/sec) 134

Table 1: GPU Engine Specs

GTX 770 MEMORY SPECS:

Memory Speed 7.0 Gbps

Standard Memory Config 2048 MB

Memory Interface GDDR5

21

Memory Interface Width 256-bit

Memory Bandwidth (GB/sec) 224.3

Table 2:GPU Memory Specs

Figure 2: GTX-770

3.4.3 Software Interfaces

3.4.3.1 Client End minimum configuration

Scripting language: JavaScript, PHP

Browser: All browsers from IE 11 and onwards to Firefox and Google Chrome.

3.4.3.2 Server end minimum Configuration

Database: MySQL

Scripting Language: PHP

3.4.4 Communications Interfaces

The client shall access the web interface (website) through the HTTP protocol and interact

with this application only through the said web-interface.

22

3.5 Nonfunctional Requirements

3.5.1 Performance Requirements

The system should ensure that each GPU is tasked with one request at a time so that the

results are as reliable as possible.

The response time of the system without including the time for the actual test should be

under 1 minute with a 1mbps connection. Since the time for the actual test is highly co-

related to the given problem parameters so that time cannot be included in calculation of

the systems general response time.

3.5.2 Safety Requirements

Backup power for the hardware must be ensured because sudden power interrupts might

cause the costly hardware to malfunction as well as damage the results. The server must be

properly cooled because if the hardware gets overheated the results might be affected. The

hardware should be properly cooled at the server. The passwords must be kept safe and

secret. A user may submit one request at a time for processing since the wait queue is

limited to maximum 20 requests. Passwords of the users must be must be kept safe.

3.5.3 Security Requirements

The passwords will be stored in form of hashes using MD5 hashing, and will not be

transferred while communication with user. The http protocol will be used for

communication as the data transferred is not critical. Once user has given us his personal

info it will be protected using password salts. The database contains all of the user

logins/passwords and other information that must be protected from hackers who would

try to infiltrate the system and steal any personal or user information and try to login under

a stolen name. In addition, the modules that users load onto the site and the site’s codes

23

are all protected from outside hackers who may want to negatively alter the code that’s

present for current games on the site without logging in or registering. Moreover, the

modules that are loaded into the system are scanned for viruses, Trojans, or other

attachments that can weaken the security of the system.

As users can log onto our system with a password and login, it is important that we

guarantee their security. Hence, Secure Socket Layer (SSL) encryption is used as well as a

Digital Certificate, which would provide complete security for all parties involved in

transactions. Secure Socket Layer is a World Wide Web service that authenticates and

encrypts the communication between clients and servers. Thus, all user and platform

connections can be protected.

In addition, a firewall is used to enhance the security of the system by checking all request

message content and filtering all the information that is accepted from users. Thus, data

privacy is guaranteed for all parties.

The security requirements of the system will be implemented in the actual design stages of

the system during the integration of components and front end designing. This will

guarantee that the security components are integrated correctly into the system and that

there will be less vulnerability in the testing stages of the production process.

3.5.4 Software Quality Attributes

3.5.4.1 Reliability

 Each GPU must not process more than one test code recipe at a time in order to

ensure maximum reliability of the results.

 The results should be repeatable on different hardware with the same specifications.

24

3.5.4.2 Availability

 The system should be designed in multi-tier web architecture to increase

availability.

3.5.4.3 Maintainability

 The mean time to change should be less than 2 weeks.

3.5.4.4 Robustness

 The system should be able to detect and recover from errors like invalid parameters

for benchmarks within a 30 min time limit.

3.5.4.5 Usability

 A user with at least a bachelor’s degree in a computer related field should be able

to operate the system with less than 10 errors a day after a 2 hour training session.

25

Chapter 4

Architecture and Design

26

4 Architectural Representation

4.1.1 Design Rationale

The different design models that were considered are mentioned below.

The primary problem was the dual nature of the INTELL that is, it offers all the

functionality of a basic website plus it also needs to actually execute code on hardware. In

order to achieve this the problem was to bridge different technologies. The options

available for this were

4.1.1.1 Bridge php with C++

For this we had two options

 To call an ‘executable request sending module’, this approach was rejected because

allowing an executable to run on the server has too many security risks such as code

injection into a process.

 To write a COM enabled custom dll and use it for IPC between a c++ module and

php server. This approach had the factor of unnecessarily increasing the complexity

of the system, also it still wouldn't solve the scalability problem because the c++

module would need to manage the execution of job request as well as

communication with php server.

4.1.1.2 Bridge php with java

For this the first option was to use a php/java bridge but this meant that the core kernel

must be written in php but php is not meant for such complex tasks and the code becomes

complicated and hard to maintain. Secondly it would mean that the php controller would

be performing far too many tasks which means absolutely no scalability thus this approach

was also rejected.

27

So the best option was to use a multi-tier web application that is divided into 3 major

modules. Namely a web interface including a 3-tier web server, a java web service available

only to the web server, a java job execution module which provides service to the Java

Server.

4.1.2 Basic Architecture

4.1.2.1 Architectural Design

The basic requirement for INTELL is to provide a web interface that allows its users to

benchmark different GPUs easily. In order to achieve these goals the design depends upon

a multi-tier client server architecture pattern.

INTELL is a multi-tier web application that is divided into 3 major modules.

 A web interface including a 3-tier web server.

 A java web service available only to the web server.

 A java job execution module which provides service to the Java Server.

4.1.2.2 Description

4.1.2.2.1 A web interface including a 3-tier web server

This shall provide a website interface through which the users shall interact with the

system. It shall be a 3-tier web server in php utilizing the MVC(Model View Controller)

architectural pattern. Thus it shall comprise of 3 subsystems or layers i.e Model, view and

controller. Underneath the model shall be an SQL database for storing user information.

4.1.2.2.2 A java web service available only to the web server

This shall be a backend java server that shall be responsible for handling the workload

management for the GPUs available to the system. The web server would interact with this

server through invoking a small module that shall send a job request to this server. The

28

java server shall then designate a GPU to carry out the job and send a ‘job order’ to the

java job execution module.

This server allows the system to separate the web and application portion of INTELL and

thus allows the web server to operate independently.

4.1.2.2.3 Java job execution module

This shall be a small server module that shall provide the service of executing a job to the

java server. It shall be deployed on each machine that has a GPU available for INTELL .

Each of the instance of this module shall register itself with the java server on startup. This

module is responsible for executing a job using CUBLAS and generating results in xml

format.

4.2 Architectural Goals and Constraints

 a separate back end capable of executing code upon hardware

 a web interface as a front end that remains available to the users for access

 displaying results to the user in a meaningful format

 provide user management

 A reliable link between the backend while keeping the dependencies to a minimum.

4.2.1 Throughput

Throughput is to be limited by the number of available GPUs because a every job request

needs to executed exclusively in order to ensure the accuracy of the results.

4.2.2 Hardware

The hardware required is nvidia GPUs, we used the Nvidia GTX 770 and Nvidia GTX 660

for testing.

29

4.3 Use Case View

Figure 3: System Use Case

4.4 Use Case Specification

4.4.1 Use Cases

4.4.1.1 Login

Name LOGIN

Brief Description This Use Case describes the process by which users log into. It also

sets up access permissions for various categories of users.

Actors 1. System User

30

2. Administrator

Pre-conditions The user must not be already logged in.

Normal Flow 1. The user request website by typing in URL of webpage.

2. User clicks login button which redirects him to login page.

3. The user enters his username and password and clicks submit.

4. The system gets username and password combination from

database.

5. The system matches username and password combination

with that from database.

6. If match is positive

7. Allow user to use other page by storing a session variable

with his identity.

8. The system will set access permission.

9. The system will display main homepage to user.

Alternative flow 1. Redirect user to login page.

2. User will re-enter credentials for login scenario or leave web

page by closing window.

Post-condition 1. The user id session variable must not be destroyed before

logout.

2. The user must be able to use services accessible to him.

Including,

3. getXML()

4. DisplayGraph()

5. submitTestData()

31

6. getPreviousResults()

7. viewBenchamrksInfo()

8. editProfile()

Assumptions Internet is accessible.

Table 3: Login UseCase

4.4.1.2 Sign Up

Name Sign Up

Brief Description This Use Case describes the process by which users sign up with our

system. It also sets up access permissions for various categories of

users.

Actors 1. System User

2. Administrator

Pre-conditions The user must not be logged in already.

Normal Flow 1. The user request website by typing in URL of webpage.

2. User clicks on sign up link which redirects him to sing up

page.

3. Sign up page displays a message to user that it is 2 step

authentication and they will be required to verify email and

mobile number within same session.

4. The user enters his details including name, mobile, email,

password, institute and clicks submit button.

5. User is redirected to signup page with error message

displayed.

32

6. User is sent a verification email.

7. User clicks on link in email.

8. A code is sent to user mobile.

9. User is presented with a form to enter the code sent on

their mobile phone.

10. Their profile is activated and they are redirected to login

page

Alternative flow 1. The user is redirected to sign up page with message of email

already exists.

2. The user is asked to sign up again and not allowed to login.

3. The user is asked to sign up again and not allowed to login

Post-condition 1. The user is allowed to login using his username and

password.

2. The user must be able to use services. Including,

a. getXML()

b. DisplayGraph()

c. submitTestData()

d. getPreviousResults()

e. viewBenchamrksInfo()

f. editProfile()

Assumptions User is not already Logged in.

Table 4: Sign Up Use Case

33

4.4.1.3 GetXML

Name GetXML

Brief Description In this use case, user requests for an XML version of results. The

results are from tests performed on actual GPU based on inputs from

user.

Actors 1. User

Pre-conditions 2. The user is already logged in.

3. The user has submitted test data.

Normal Flow 1. The user submits request for performing tests on GPU with

benchmark and its required inputs to our system.

2. The user requests results of test by clicking on link in top

menu.

3. The user is returned with result data in XML format which can

be used for DisplayGraph()

Alternative flow 1. The user is displayed a message saying you must request a test

before requesting results.

2. The user is notified that test is in waiting queue and will be

notified of results by email when it’s completed.

Post-condition 1. The user is already logged in

2. The user request for results of tests he requested on a GPU.

3. The database is looked up if the results are available or not.

4. If results are available then they are returned to user in XML

structure.

34

5. Else the user is informed of the about their tests status that it is

currently in wait queue for jobs.

Table 5 : GetXML Use case

4.4.1.4 Display Graph

Name DisplayGraph

Brief Description This use case implies displaying the data from getXML in graphical

form.

Actors User

Pre-conditions 1. User is Logged in already.

2. The user has requested test and received the test results.

Normal Flow 1. The user requests to show graphs of data by clicking on link

which is along with test results received.

2. The user XML data is used to create graphs with JS.

3. The graphs are displayed to user.

Post-condition 1. User can view the graphs later

Table 6: Display Graph Use Case

4.4.1.5 Submit Test Data

Name Submit Test Data

Brief Description This use case implies the user request for executing test on GPU by

giving the benchmark requirements along with compulsory inputs for

that benchmark.

Actors User

Pre-conditions 2. User is already logged in.

3. User has knowledge of Benchamrks and range of test data.

35

Normal Flow 1. User is logged in to the system.

2. The user is presented with hyperlink on main menu to perform

a test on GPU.

3. The clicks on link and is presented with a web page.

4. User selects a benchmark from drop down.

5. User selects input range for selected benchmark.

6. The user request is submitted and they are notified with results

complete message as soon as these are completely executed

and ready in XML form.

Alternative flow 1. The user is requested to submit benchmark and input range

again for performing test.

Post-condition 1. The users are able to view results submitted later.

2. The users are able to check on status of tests submitted.

Table 7: Submit Test Data Use Case

4.4.1.6 View Previous Results

Name View Previous Results

Brief Description This use case is for viewing results of previously submitted tests.

Actors User

Pre-conditions 1. User has already logged in.

2. User has submitted test request with benchmark and respective

inputs.

3. The test results are available to user.

Normal Flow 1. The user is logged in.

36

2. The user request to view previous results by clcking on

hyperlink on main web page.

3. The users test results are returned from system in XML form.

4. The XML returned is used to display results in graphs.

Alternative flow 1. The user is asked to submit a test request using

SubmitTestData().

2. The user is notified of current state that results are pending

execution on actual hardware and they will be notified of

results by email as they are available.

Post-condition User is not allowed to delete any result

Table 8: View Previous Results Use Case

4.4.1.7 View Benchmark Info

Name View Benchmark Info

Brief Description This use case allows for viewing information about available

benchmarks.

Actors User

Pre-conditions User must be logged in.

Normal Flow 1. The user logs in to the website using their username and

password.

2. The user clicks on link to view benchmarks details from main

menu.

3. The user is presented with dropdown to seletec a specific

benchmark.

4. The user slected a benchmark.

37

5. The user is presented with details about the benchmark and

input requirements for it.

Alternative flow 1. The user is not allowed to view benchmarks and details. They

are redirected to login page.

Post-condition The user is allowed to SubmitTestData()

Table 9:View Benchmark Info Use Case

4.4.1.8 Edit Profile

Name Edit Profile

Brief Description This use case allows for user to update their profiles.

Actors 1. Users

2. Admin

3. Use Cases Used:

4. Login

Pre-conditions The user must be logged in already.

Normal Flow 1. The user selects to edit profile by clicking on link from main

menu.

2. The user is presented with similar input form as of signup to

edit their profile information.

3. The user can opt in to update email or not.

4. On update of email, user is required to re verify their email by

clicking on link in email and then entering the code send on

mobile via input form.

5. The user profile is updated as code is entered.

6. The user is notified of change via older email as well.

38

Alternative flow If admin wants to access the official list of doctors and staff then

it can change or add any doctors.

Post-condition 1. The user profile is not updated.

2. The user profile is not updated and notified of this particular

activity via older email.

Table 10: Edit Profile use Case

4.5 Logical View

Figure 4: Logical view

4.6 Responsibilities

4.6.1 PHP-Controller

This is the business logic component of the web server that utilizes the MVC architectural

pattern. It is responsible for managing the user management constraints as well as

forwarding the user’s job requests to the JavaServer Module.

4.6.2 PHP-Model

This is the data management component of the web server that utilizes the MVC

architectural pattern .It is responsible for providing an interface for the Database to the

controller and hiding the lower level detailed queries.

39

4.6.3 PHP-View

This is the view and display management component of the web server that utilizes the

MVC architectural pattern. It comprises of a set of views that the controller can demand as

required and then can be displayed to the user.

4.6.4 Java Communication module

This module is to allow the php-controller module to send a job request to the java server

module.

4.6.5 JavaServer Module

The java server module separates the request management details from the web server. It

allows multiple instances of javaExecution Module to register themselves. Then registered

servers are given requests to execute and return the results.

4.6.6 JavaExecution Module

It is responsible for executing the job requests via cuda-chill through invoking a python

script.Also it must acquire the details of the on board GPU upon start up and then send a

registration request to the java server module.

40

4.7 Data Flow

Figure 5: Data Flow

41

Chapter 5

Implementation

42

5 System Implementation

5.1.1 Programming Language:

Java is used as programming language to develop the application. Php ,html used for web

development and for maintaining the database SQL language is used.

Cuda c is used for utilizing the gpu functionality.

5.1.2 Development Tools:

Netbeans and visual studio with cuda toolkit 6 is used for the development of the

application and dreamweaver is used for website development.

5.1.3 Database:

Databases were developed and managed in MS Sql.

5.1.4 Operating System:

On server side, apache is used while the server backend has been tested with windows as

an operating environment, while website application is tested on all browsers of Microsoft

windows.

5.1.5 Complete System Implementation:

5.1.5.1 JavaServer Module

Acts as a bridge between the GPU client module and the webserver module and controls

which job is to be executed on which GPU. This is a critical module since it co-ordinates

all the backend functionality of the system. It also handles uploading the result file to the

webserver.

43

5.1.5.2 GPU Client Module

This module is responsible for registering itself with the Java Server. Each instance of this

module is responsible for one GPU device. It receives a Job Request from the Java Server

and is responsible for handling the execution of the kernel on the GPU and transferring the

result file back to the Java Server.

44

Chapter 6

TESTING AND EVALUATION

45

6 System Testing

6.1 Test Case 1

Test Case Name Start the communication of Java Server with Website

Test case no 1

Description This module will start communication channel with the website.

This communication channel is to accept job requests from the

website, sent to Java Server.

Testing Technique Used Black Box testing

Preconditions The Java Server Executable jar file is running.

Input Values -Button Click.

Valid Inputs -Button is Clicked.

Steps -Press the “Communicate with Website” button.

Expected Output Java Server will start listening from the Website.

Actual Output Java Server is waiting for requests from Website.

Status Pass.

Table 11: Test Case 1

46

6.2 Test Case 2

Test Case Name Start the communication of Java Server with GPU Client.

Test case no 2

Description This module will start a communication channel with the GPU

Client. A dedicated port is opened by the Java Server for this

channel.

Testing Technique Used Black Box testing

Preconditions The Java Server Executable jar file is running.

Input Values -Button Click.

Valid Inputs -Button is Clicked.

Steps -Press the “Communicate with GPU Client” button.

Expected Output Java Server will start communication channel with GPU Client.

Actual Output Java Server started communication channel with GPU Client.

Status Pass.

Table 12:Test Case 2

47

6.3 Test Case 3

Test Case Name Subscribe at Java Server.

Test case no 3

Description GPU Client will subscribe available GPU at Java Server to be

used for a job request.

Testing Technique Used Black Box testing

Preconditions The GPU Client Executable jar file is running.

Input Values -Button Click.

Valid Inputs -Button is Clicked.

Steps -Press the “Subscribe at Java Server” button.

Expected Output Java Server will subscribe GPU.

Actual Output GPU is subscribed.

Status Pass.

Table 13:Test Case 3

6.4 Test Case 4

Test Case Name Register on INTELL Website.

Test case no 4

48

Description This feature allows a user to register on ITNELL. To use INTELL

features a user must register himself on INTELL Website.

Testing Technique Used Black Box testing

Preconditions The INTELL Website is running.

Input Values -Username

-Email

-Password

-Contact Number

-Date of Birth

-Click Register Button

Valid Inputs - Alphabets only for Username

- Email format

- Alphanumeric Password

- Numerics for Contact Number

- Date format for Date of Birth

- Register Button is Clicked.

Steps - Fill all the fields

- Click “Register” button.

Expected Output User is registered on INTELL and receives a message.

Actual Output User is registered and message is received..

49

Status Pass.

Table 14:Test Case 4

6.5 Test Case 5

Test Case Name Login on INTELL Website.

Test case no 5

Description This feature allows a user to login to INTELL. A user can access

INTELL features only if he is registered and login.

Testing Technique Used Black Box testing

Preconditions The INTELL Website is running and user is registered.

Input Values -Username

-Password

Valid Inputs - Alphabets only for Username

- Alphanumeric Password

Steps - Fill all the fields

- Click “Login” button.

Expected Output User is Logged into INTELL.

Actual Output User is Logged into INTELL.

Status Pass.

Table 15:Test Case 5

50

6.6 Test Case 6

Test Case Name Request for a Job

Test case no 6

Description This feature allows a user to request for a job

Testing Technique Used Black Box testing

Preconditions The INTELL Website is running and user is Logged into

INTELL.

Input Values - Select Benchmark (Kernal Code)

- Select GPU.

- Give parameters for Benchmark.

- Press “Send Request” Button to send Request.

Valid Inputs - Benchmark is Selected.

- Gpu is Selected.

- Parameters must be filled.

- Button is Clicked.

Steps - Fill all the fields

- Click “Send Request” button.

Expected Output Request is sent to the Java Server and Request is accepted for

processing.

51

Actual Output Java Server is processing the request after receival.

Status Pass.

Table 16:Test Case 6

6.7 Test Case 7

Test Case Name Request for a Job

Test case no 7

Description This feature allows a user to request for a job

Testing Technique Used Black Box testing

Preconditions The INTELL Website is running and user is Logged into

INTELL.

Input Values - Select Benchmark (Kernal Code)

- Select GPU.

- Give parameters for Benchmark.

- Press “Send Request” Button to send Request.

Valid Inputs - Benchmark is Selected.

- Gpu is Selected.

- Parameters must be filled.

- Button is Clicked.

Steps - Fill all the fields

52

- Click “Send Request” button.

Expected Output Request is sent to the Java Server and Request is accepted for

processing.

Actual Output Java Server is processing the request after receival.

Status Pass.

Table 17:Test Case 7

53

Chapter 7

Conclusion and Future Work

54

7 Future Work Conclusion

Future work can include adding support for new kernels and making them available to the

users also support for different libraries can be added apart from CuBLAS with GPU’s of

other hardware vendors, Since INTELL has been designed as a module based distributed

application, all this can be achieved with relatively little overhead.

In short INTELL is based on concept of distributed processing i.e. cloud computing by

allowing the user to perform processing from the browser but it is also different from cloud

computing in that the users of INTELL are only providing test parameters instead of

providing data on which the processing is performed. This means that INTELL is to be

used as a Benchmarking and evaluation tool instead of a processing resource which is true

in case of a cloud.

55

APPENDIX A-1

USER MANUAL

56

1. Reading Instructions

This user manual will describe the way in which INTELL can be used.

It contains the instructions needed to utilize this software.

This system provides a user friendly interface which allows you to efficiently interact with the

system.

This Manual should be read in the order given.

2. Installation

The front end of this software is a website. Therefore, no particular Operating System is

required.

Internet Explorer 9 or above, Mozilla Firefox or Google Chrome are required for the Website

to work properly.

3. How to use the system

3.1 Hardware

Intell does not require its users to use specific hardware. System with an Internet connection is

enough to carry out the job.

3.2 Dashboard

Operation of Dashboard of INTELL comprises of following steps:

57

1. Register with INTELL

Figure 6: Register

58

2. Login to your Account

Figure 7: Login

3. Select Benchmark, Give proper Parameters and Submit it (i.e. starting matrix size, Ending matrix

size, Steps in matrix size for matrix matrix multiplication)

Figure 8:Submit Parameters

59

4. View Results

Figure 9: View Results

5. Logout.

These steps are in order and they encapsulate the application logic.

