
1

MOCAP
MOTION CAPTURE

By

AMAD JUNAID
MOHAMMAD ALI

AZKA AMIN
QASIM KHAN

Submitted to the Faculty of Computer Science, Military College of Signals,
 National University of Sciences and Technology, Rawalpindi,

in partial fulfillment for the requirement of a
 B.E. Degree in Software Engineering.

August 2010

 2

CERTIFICATE

Certified that the contents and form of project report entitled “MOCAP (Motion

Capture)” submitted by 1) NC Amad Junaid 2) NC Mohammad Ali 3) NC Azka

Amin, 4) NC Qasim Khan have been found satisfactory for the requirement of the

degree.

Supervisor: ____________________

Col Naveed Sarfaraz Khattak

 3

Abstract

The Human Motion Capture or MOCAP are terms used to describe the capturing of

actual human motion and then translating it on to CG models. In simple words, Human

Motion is captured through multiple cameras in a controlled environment and then this

very motion is transferred onto 3D models. The world of Human Motion Detection has

progressed and done wonders. The systems available in the market are complex and very

expensive as they are dependent on hardware requirement. Most of these systems range

into the tens of thousands of dollars. Our aim is not to reinvent the wheel, rather to create

a cheaper system, which laid emphasis on the systems software to compensate for the

hefty hardware requirements.

The Project is divided in to two parts, i) Motion Detection ii) 3d Scene Reconstruction.

For motion detection, we used two to three cameras, and tracked the motion of an actor,

in a controlled environment: The actor is to wear white markers on black apparel in front

of a black background. This was achieved using the techniques of neighborhood

matching and region growing. The reconstruction process is subdivided into two parts:

first, calibration of cameras being used; second, computing the points in space that

project to the tracked image points. Calibration is done by using a chessboard pattern,

corner identification, square count and then relating the real world units to the computer

system units. The tracked sequence of points is used to reconstruct corresponding set of

points in 3d space representing the object surfaces on the scene using method of

stereoscopic reconstruction and linear triangulation.

 4

Our system captures the motion and builds the 3d representation in real time. In addition

to being much less expensive our system is also very portable. We can setup our studio

anywhere we want which satisfies the goal of Nex Gen gaming console as well. In

comparison to other similar projects such as Microsoft Kinect and PS3 motion controller

which employ different kinds of special sensors and cameras, our system equals in

reconstructing the motion but in overall performance lags by a few milliseconds as video

capture rate by our simple webcams is only 15 fps.

 5

Table of Contents

1. Introduction… ……………………………………………….............................1

1.1. Introduction……………………………………………………………...……1

1.2. Scope and Objective…………………………………………………….........2

1.3. Conceptual Framework of MOCAP……………………………...….….…….2

2. Related Work……………………………...………………………………….......4

2.1. History of Motion Capture…………………………………………………....4

2.1.1. Early Attempts…………………………………………………………4

2.1.2. Advent of Digital Motion Capture……………………………..………6

2.2. Types of Motion Capture……………………………………………………...7

2.2.1. Mechanical……………………………………………………………..8

2.2.2. Optical……………………………………………………………….…8

2.2.3. Electromagnetic (magnetic)……………………………………………9

3. Requirement Analysis…………………………………………..……….………11

3.1. Introduction…………………………………………………….………….....11

3.2. System Overview……………………………………………….…………....11

3.3. Assumptions and Dependencies……………………………….………….....12

3.4. Operating Environment……………………………………….………………12

3.5. Product Features……………………………………………………………..13

3.6. User Problem Statement………………………………………….……….….13

 6

3.7. Specific Requirements………………………………………………………..14

3.7.1. Functional Requirements……………………………………………...14

3.7.2. Non-Functional Requirements………………………………………...15

3.8. Target Environment……………………………………………………….....16

3.9. System Requirements…………………………………………………...16

3.9.1. Hardware Requirements………………………………………....16

3.9.2. Software Requirements………………………………………….16

4. System Design and Architecture………………………………………..…17

4.1. Introduction…………………...………………………………………...17

4.2. System Overview………………………………………………………..17

4.3. System Architecture…………………………………………………….18

4.4. Decomposition Description……………………………………………..20

4.4.1. Motion Tracker…………………………………………………..20

4.4.2. Motion Analyzer………………………………………………...20

4.4.3. Motion Modeler…………………………………………………20

4.5. Data Design and Data Description……………………………………..20

4.6. External Interface Requirements…………………………………….…23

4.6.1. Hardware Interfaces………………………………………….…23

4.6.2. Software Interfaces………………………………………….….23

5. System Implementation…………………………………….......................24

5.1. Introduction…………………………………………………………...24

5.2. Calibration ToolBox…………………………………………………...25

5.2.1. Overview……………………………………………………… 25

 7

5.2.2. Detailed Explanation…………………………………………...25

5.3. Client………………………………………………………………….29

5.3.1. Overview………………………………………........................29

5.3.2. Detailed Explanation…………………………………………..30

5.4. Server……………………………………………………………......36

5.4.1. Overview……………………………………………………..37

5.4.2. Detailed Explanation…………………………………………37

6. Comparative Analysis……….………………………………………….42

6.1. Introduction…………………………………………………………42

6.2. Test Results…………………………………………………………42

6.2.1. Introduction…………………………………………………42

6.2.2. Unit Testing………………………………………….………43

6.2.2.1. Tracking……………………………………………...43

6.2.2.2. 3D Reconstruction and Rendering…………………..44

6.2.3. Integration and System Testing……………….......................45

6.2.3.1. Data Transfer…………………………………….…..45

6.2.3.2. Rendering………………………………………..…..46

6.3. Systems to be compared…………………………………………….48

6.3.1. Optical Motion Capture by Phase Space…………………….48

6.3.2. Optotrak Certus Motion Capture System………………...….48

6.3.3. Vicon – Motion Capture Services……………………………48

6.4. Comparison………………………………………………………….49

6.5. Conclusion……………………………………………………...…...50

7. Conclusion……………………………………………………………….51

 8

7.1. Introduction……………………………………………………...….51

7.2. Conclusion………………………………………………………..…51

7.3. Future Work……………………………………………………..…..52

8. Bibliography………………………………………………………….....54

List of Figures

2.1 Mahomet Running, Eadweard Muybridge, 1879………………………...5

2.2 Advent of Digital Motion Capture…………………………………….…6

4.1 The Architectural Framework of MOCAP……………………………...19

4.2 Data Flow Diagram at Client Side……………………………………....21

4.3 Data Flow Diagram at Server Side ……………………………………...22

5.1 Calibration ToolBox……………………………………………………..25

5.2 Images Read……………………………………………………………..26

5.3 Clicking on Corners………………………………………………….…..27

5.4 Corners Extracted(Red)…………………………………………….…...27

 5.5 Calibration Results……………………………………………………..27

 5.6 Extrinsic Parameter Image………………………………………….....28

 5.7 Extrinsic Parameters……………………………………………………29

5.8 Client Module…………………………………………………………..30

5.9 Reading Calibration Data………………………………………………31

 5.10 Projection Matrix……………………………………………………...31

5.11 Communications Between Client and Server………………………...32

5.12 Acquired Video on Right and Original on Left……………………….….34

 9

5.13 Feature Initialization……………………………………………….….35

 5.14 Searching……………………………………………………………...36

 5.15 Labeling……………………………………………………………….36

 5.16 Multi Threading Structure……………………………………………37

5.17 Skeletal Model Moving According to Tracked Data………………….….40

6.1 Testing Path………………………………………………………….….42

 6.3 Tracking Initialization………………………………………………..42

6.4 5 Seconds into the video………………………………………………42

6.5 Tracking Initialization………………………………………………...43

6.6 2 Seconds into the video………………………………………………4.3

6.7 Motion Representation is Accurate Enough………………………………44

6.8 Calibration Data in Client(up) and Server(Lower)……………………….45

6.9 Figure Shows Server Allowing Only One Client to Initialize……………..46

6.10 Environment Used While Testing………………………………………..47

6.11 Motion Being Generated in Real time………………………………...…47

 10

List of Tables

6.1 Comparative Analysis ………………………..49

 11

 CHAPTER 1

INTRODUCTION

1.1 Introduction

Motion Capture MOCAP is sampling and recording motion of humans, animals and

inanimate objects as 3D data. The data can be used to study motion or to give an illusion

of life to 3D computer models. Since most of applications today require special

equipment there are still a limited number of companies that are utilizing MOCAP

technology. Most people even the children have seen the films and games etc for which

MOCAP technology is used. In that sense, MOCAP is in everyday life.

Motion Capture MOCAP is in its first release by the students of NUST. The objective is

to capture human motion, understand it and translate it into 3D Graphical models using

Computer Vision and Computer Graphics. A lot of work has been done in the field of

capturing human motion with great dependence on hardware requirements and with less

emphasis on the software. The purpose of this project is not to reinvent the wheel but

rather to go about using well developed software to compensate for the systems

hardware requirements which are quiet expensive for the ordinary user and market. The

overall system is quite compact with three to four cameras which can be setup easily.

 12

1.2 Scope and Objective

MOCAP is a project on which considerable amount of work has been done. The

challenge taken up in this project by the team is to reduce the cost that comes with the

expensive hardware with the usual MOCAP technology. The MOCAP technology in

market uses expensive hardware e.g. the use of Hi-tech digital cameras, usually using 12

cameras at a time. This expenditure makes it hard for the normal market to work with

MOCAP technology. Emphasis is laid on the underlying software in this project, with

less dependence on the hardware.

The aim is to capture general human motion, simply capturing the basic joint

movements and working progressively from there on. The captured motion would then

be translated on graphical models.

1.3 Conceptual Framework of MOCAP

The basic concept of MOCAP was to build a system based on client-server architecture

where the cameras serve as clients and the image processing is done at the server side.

System will use 3 to 4 web cameras of resolution 320x240 to capture the motion of the

actor.

Camera calibration will be done by the user for each camera. User will calibrate the

cameras using a chessboard pattern for each client by taking snaps of the pattern (20

from each cam using own software) and give the system path of the pictures. System

will then calculate the intrinsic parameters. The user will then hold the pattern to take

 13

one photo from each cam so that pattern is visible in each cam for extrinsic parameter

calculation.

To start tracking user must initialize tracking on each camera by clicking on each track-

able point first and then tell the program to start tracking. Mathematical relationships

between motion of different human body parts like angles and translational values

should be calculated from tracked data so as to build a smooth system.

Calibration will be used to calculate camera projection matrices. Calibration will give 1

intrinsic matrix (K3x4) and 2 extrinsic matrices (rotation:R3x3, translation:T3x1). These

will be used to calculate camera projection matrices as P=K x [R|T] (‘x’ means matrix

multiplication).Use data from tracking and calibration to reconstruct points in 3D.

The points in 3d space will be computed as: Suppose two cameras that see a point has

projection matrices P and P’. In each image there is this measurement x = PX, x' = P'X,

where x and x’ are 2d coordinates found from tracking and X is the 3D coordinates.

These equations will be combined into a form AX = 0, which is a linear equation in X. It

will be solved by SVD. Thus the 3d point in space that project to these two image points

will be computed.

The scene will be updated as per the received track data from the tracking clients so as to

build smooth motion transition.

 14

Chapter 2

RELATED WORK

2.1 History of Motion Capture:

The development of modern day MOCAP technology has been led by the medical

science, army and computer generated imagery (CGI) field where it is used for a wide

variety of purposes. It seems that MOCAP technology could not exist without the

computer. However, there were early successful attempts to capture motion long before

the computer technology became available. [1]

2.1.1 Early Attempts

Eadweard Muybridge (1830 –1904) was born in England and became a popular

landscape photographer in San Francisco. It is said that in 1872 Leland Stanford

(California governor, president of the Central Pacific Railroad, and founder of Stanford

University) hired Muybridge to settle a $25,000 bet on whether all four feet of a horse

leave the ground simultaneously or not. Six years later Muybridge proved that in fact all

four feet of a trotting horse simultaneously get off the ground. He did so by capturing a

horse’s movement in a sequence of photographs taken with a set of one dozen cameras

triggered by the horse’s feet. Muybridge invented the zoopraxiscope, which projects

sequential images on disks in rapid succession, in 1879. The zoopraxiscope is

considered to be one of the earliest motion picture devices. Muybridge perfected his

technology for sequential photographs and published his photographs of athletes,

children, himself, and animals. His books, Animals in Motion (1899) and The Human

 15

Figures in Motion (1901), are still used by many artists, such as animators, cartoonists,

illustrators, and painters, as valuable references. Muybridge, who had a colorful career

and bitter personal life, is certainly a pioneer of MOCAP and motion pictures. Born in

France, in the same year as Muybridge, was Etienne-Jules Marey. Marey was a

physiologist and the inventor of a portable sphygmograph, an instrument that records the

pulse and blood pressure graphically. Modified versions of his instrument are still used

today.

Figure 2.1 Mahomet Running, Eadweard Muybridge, 1879

In 1882 Marey met Muybridge in Paris and in the following year, inspired by

Muybridge’s work, he invented the chronophotographic gun to record animal

locomotion but quickly abandoned it. In the same year he invented a

chronophotographic fixed-plate camera with a timed shutter that allowed him to expose

multiple images (sequential images of a movement) on a plate. A sample result is shown

 16

in figure 2.1. The camera initially captured images on glass plates but later he replaced

glass plates with paper film, introducing the use of film strips into motion picture.

2.1.2 Advent of Digital Motion Capture:

In Figure 2.2, an example of digital motion capture is shown.

Figure 2.2 Advent of Digital Motion Capture

In digital motion capture live motion is captured (upper left corner) as shown in the

diagram and the motion is translated on a graphical model as on the lower right side of

the figure 2.2.

Research and development of digital MOCAP technology started in pursuit of medical

and military applications in the 1970s. The CGI industry discovered the technology’s

 17

potentials in the 1980s. Since some of this book’s readers weren’t born in the 1980s,

let’s recall the 1980s. In the 1980s there were floppy disks that were actually floppy and

most computers were equipped with monochrome monitors; some with calligraphic

displays. To view color images, for example rendered animation frames, images had to

be sent to a “frame buffer,” which was often shared by multiple users due to its cost.

Large computers were housed in ice cold server rooms. The noise of dot matrix printers

filled offices. Ray-tracing and radiosity algorithms were published in the 1980s.

Renderers based on these algorithms required a supercomputer or workstations to render

animation frames in a reasonable amount of time. Personal computers weren’t powerful

enough. (Ray-tracing and radiosity didn’t become widely available until the computing

power improved.) CPUs, memories, storage devices, and applications were more

expensive than today. Wavefront Technologies developed and marketed the first

commercial off-the shelf 3D computer animation software in 1985. Only a handful of

computer animation production companies existed. Most of the animations that they

produced were “flying logos” for TV commercials or TV program’s opening sequences.

These were often 15 to 30 seconds long per piece. The readers who saw “Brilliance”

(also called “Sexy Robot”) in the 1980s probably still remember the astonishment of

seeing a computer generated character, a shiny female robot, moving like a real human

being.

2.2 Types of Motion Capture

It is sometimes suggested that the roots of motion capture can be seen in the motion

studies of Eadweard Muybridge and Etienne Jules Marey. In the form thought today,

 18

MOCAP technology has been developing since the 1970s, when it was created for

military use, and has been used in entertainment since the mid-198Os[2]. Over the years,

MOCAP has taken many forms, each with its own strengths and weaknesses. Following

is a summary of three types of MOCAP used in entertainment and the ways in which

they work. Examples and more description of all these types of motion capture systems

are available on the website at La Trobe University, "Introduction to Motion Capture in

Music." [3] [4]

2.2.1. Mechanical

Performer wears a human-shaped set of straight metal pieces (like a very basic skeleton)

that is hooked onto the performer's back; as the performer moves, this exoskeleton is

forced to move as well and sensors in each joint feel the rotations. Other types of

mechanical motion capture involve gloves, mechanical arms, or articulated models(like

Monkey), which are used for 'key framing'. Its advantage is that there is no interference

from light or magnetic fields. It has certain disadvantages such as: The technology has

no awareness of ground, so there can be no jumping, plus feet data tends to slide,

equipment must be calibrated often, unless there is some other type of sensor in place, it

does not know which way the performer's body is pointing and absolute positions are not

known but are calculated from the rotations.

2.2.2 Optical

Performer wears reflective dots that are followed by several cameras and the information

is triangulated between them. Markers are either reflective, such as a system

 19

manufactured by Vicon or Motion Analysis, or infra-red emitting, many of which have

been developed for musical applications (such as conducting).It was developed

primarily for biomedical applications (sports injuries, analysis of athletic performance,

etc.).Its advantages include performer feels free to move due to no cables connecting

body to the equipment, larger volumes are possible, more performers are possible and

very clean, detailed data. Disadvantages include: It is prone to light interference,

reflective dots can be blocked by performers or other structures, causing loss of data, or

occlusion-this can be compensated for with software which estimates the position of a

missing dot, rotations of body parts must be solved for and are not absolute, performer

must wear a suit with dots and balls (20-30 for body, in 1995), which may be

uncomfortable, information has to be post-processed or 'tracked' before viewing so

performer cannot see his or her image and so cannot be as creative or identify potential

problems (a hand hitting a giant nose, for example),higher cost than magnetic (a cost of

US$150,000 to 250,000 in 1995),tracking can take 1-2 minutes per captured second for

straightforward data (complicated can take 15-30 minutes per second, according to 1995

data).

2.2.3 Electromagnetic (magnetic)

Performer wears an array of magnetic receivers which track location with respect to a

static magnetic transmitter. One of the first uses was for the military, to track head

movements of pilots. Often this type of motion capture is layered with animation from

other input devices. The two main manufacturers of this type of motion capture

equipment are Polhemus and Ascension. Advantages include: Positions are absolute,

 20

rotations are measure absolutely; orientation in space can be determined, which is very

useful, can be real-time, which allows immediate broadcast as well as the opportunity

for performers to puppeteer themselves with instantaneous feedback (more spontaneity

in the performance), relatively cheaper than optical (1995 price under US$40,000 for a

typical system). Disadvantages include: Magnetic distortion occurs as distance

increases, data can be noisy - it's not as good as optical, prone to interference from

magnetic fields - cement floors usually contain metal, so stages must be built;

performers wear cables connecting them to a computer, which limits their freedom, and

in 1995, sampling speed too low for many sports applications.

 21

 CHAPTER 3

REQUIREMENT ANALYSIS

3.1 Introduction

This section of the document contains a structure for a software requirements

specification (SRS) document. It describes the services and functions which the system

should provide, the constraints under which the system must operate, overall properties

of the system. Often misunderstandings arise between the customer and the developer

and maintenance operator due to miscommunication. So this section of document will

help in clarifying the requirements of the proposed system. Some of the intended

audiences of this section include system customer, project manager, system engineer,

system test engineer and system maintenance engineer.

3.2 System Overview

This system was developed to capture human motion through cameras and use 3d

reconstruction to model that motion in computer graphics. The first part i.e. tracking was

done by neighborhood matching and region growing. A number of marked points on the

human body can be tracked through this technique. The reconstruction process can be

divided into three parts: first, calibration of cameras being used; second, compute the

camera matrices from camera matrices; in the end, compute the points in space that

project to these two image points. This system can reconstruct a point in 3d from two

 22

views of an object. Also the system has been employed with a Matlab calibration

toolbox for calibration to compute the camera matrix. The resulting sequence of points

will be used later to reconstruct a set of points in space representing the object surfaces

on the scene. In the last system rebuilds the extracted 3d motion frame by frame in a

computer graphics application like OpenGL.

3.3 Assumptions and Dependencies

The MOCAP has certain limitations. All motion capture has to be done in a controlled

environment i.e. a black background behind the actor. Large amount of external sunlight

that might hinder the cameras from capturing the markers is also discouraged .The actor

is required to wear black clothing so he becomes indistinguishable from the black

background and for the easy detection of the white markers .The markers need to b

considerably small to allow speedy computation and avoid any errors in tracking and

translating motion. At least 2 and not more than 4 cameras would suffice for the

MOCAP system with resolution 320x240.All cameras are to be calibrated exactly as per

the instructions so that scene geometry can be constructed accurately.

3.4 Operating Environment

Motion Capture, MOCAP, should run on Operating Systems such as Windows XP,

Windows Vista, Windows 7.Client PC Requirements include Pentium 2 GHz Core 2

Duo Processor, 1 GB Ram or more. Server PC Requirements include Pentium 2 GHz

Core 2 Duo Processor, 1 GB Ram or more. System also requires laptop or PC for each

client, 320x240 resolution webcams, one for each client, and room of 13 by 20 by 7 feet.

 23

For faster and better tracking, it was sought to place the actor and the background in

similar rather than contrasting colors, i.e., black background and black apparel for actor.

System requires white markers made of any cloth. The reason for using white markers is

that the team has worked on very basic human motion tracking. Even with different

colored markers their aims can be achieved but when they would consider a more

advanced and detailed tracking markers of different colors might start to produce

redundant data.

3.5 Product Features

 Product features include Motion Capture/Recording that is done by using 3 to 4 cameras

in a controlled environment so that the motion of an actor would be captured who would

be wearing a black suit with white markers in front of a black background. The motion

would be captured using the assistance of all present cameras so that cases of occlusion

could be avoided. The motion can be recorded to be analyzed later for study. Another

feature is to analyze human motion. The recorded human motion can be analyzed to find

the necessary requirement to translate that very motion on to graphical models. Another

feature is for calculating 3d correspondences of motion. Using camera calibration data

and tracking from each camera 3d motion in the real world scene will be computed and

motion will be modeled on a virtually created object.

 3.6 User Problem Statement

Motion capture for use in animations is too much expensive around the world. A single

motion capture studio takes 10,000 USD / day rent and whole equipment is sold around

 24

200,000 USD. In Pakistan not many animation houses use this technology due to its

expensiveness. The developed system can hopefully provide them a cheaper system.

NexGen gaming consoles like Microsoft XBox 360, Sony Play Station 3 and Nintendo

Wii are using motion capture techniques to provide immersive gaming environment.

This system can be used to build applications to compete even these systems as this

solution is both robust and real time. A lot of work will be needed to done but it is

achievable at a much cheaper price than the above mentioned systems.

Virtual Reality systems need to be real time and it is also a small industry in Pakistan so

this system also tends to resolve this problem as well.

3.7 Specific Requirements

This section includes the functional requirements as well as the non-functional

requirements.

3.7.1 Functional Requirements

System will use web cameras of resolution of 320 x240 to capture the motion of actor.

Camera calibration will be done by the user for each camera to find extrinsic and

intrinsic parameters. To start tracking, user must initialize tracking on each camera by

clicking on each track-able point and then tell the program to start tracking. Calibration

will be used to calculate camera projection matrices. Calibration will give 1 intrinsic

matrix (K3x4) and 2 extrinsic matrices (rotation:R3x3, translation:T3x1). Use the camera

projection matrices and tracking data for 3D scene reconstruction. The video is

 25

transferred in the form of frames one by one and motion is reconstructed with every new

coming frame.

3.7.2 Non-Functional Requirements

The performance of the system is directly dependant on the number of cameras being

used, i.e., the more the cameras, the better the parameter calculation as more data would

be available and it would drastically reduce cases of occlusion, processing speed of

server, i.e., the better the procession power, the faster the calculations etc. , image

background, i.e., the background is an important constraint in the system as it leads to

easier tracking with a darker background or background of same color as actor’s apparel.

The quality attributes of the system include: The system is flexible as it can adapt to

more changes when more clients are added. System would be easy to maintain as cheap

hardware is used which would be replaceable. A lot of work has been done on Motion

Capture in the market already which helps in better understanding of this field. MOCAP

would be quite reliable in its results as it would be tested with various data sets. Test

cases from the Brown University’s dataset “Human Eva” are going to be used to test its

workings. The system can be reused to enhance it for other applications like physio

therapy, video games etc. It is easy to test as only actor is required in the working

environment. This system can withstand changes occurring over time as it can be

equipped with better cameras if the expenses are available.

 26

3.8 Target Environment

The target environment for MOCAP would be the animation development studios or 3D

simulation studios in Pakistan. MOCAP also has its applications in the field of VR

simulations, NexGen gaming consoles, automatic animation of CG models, automation

of physical therapy, gesture driven applications, immersive trainings and many more.

3.9 System Requirements

Technical requirements cover Hardware and Software requirements implementing the

proposed system.

3.9.1 Hardware Requirements

Presently, the hardware components and interfaces that are needed include Pentium 2

GHz Core 2 Duo Processor, 1 GB Ram or more , computers to create client server

network, and 2 webcams to capture video but more can be required if advance level

support/functionality is desired of the system.

3.9.2 Software Requirements

The functional modules of this system require MATLAB, OpenCV, OpenGL, Visual

C++ Runtime Environment, Windows XP, Windows Vista, Windows 7 to properly

work.

 27

CHAPTER 4

SYSTEM DESIGN AND ARCHITECTURE

 4.1 Introduction

This section of the document contains a structure for a software design specification.

Most software projects fail because of the flaws in the design, so the design phase can be

referred to as a very crucial stage in the software development lifecycle. The purpose of

writing this document is to describe the design of the system in detail. This document

contains a detailed description of the design of the system, and helps in clearing any

doubts which might have been left in the specification of the requirements of the system.

Misunderstanding between the users of the system and those developing it can further be

clarified if the user can see the design of the system. So this document will help in

clarifying the requirements as well as design of the proposed system. Some of the

intended audiences (readers) of this document include system customer, project

manager, system engineer, system test engineer and system maintenance engineer.

4.2 System Overview

This part of the document describes the design relationship between the system, its

components and the external environment of the system. The complete system network

includes both hardware (the web cameras) and the software (motion tracker, motion

 28

analyzer and the motion modeler). The system is a stand-alone system and does not

depend upon any other existing system.

4.3 System Architecture

Architectural Diagrams shows the basic architectural layout of the system being

designed. In the initial stages of this project, the team started off with a simple single

machine based architecture where all processing and modules were implemented using a

single program. Even though this would have given satisfactory results but it was

decided to opt for a different scheme so as to employ techniques for faster processing

and better results. This subsequently led them towards the Client Server Architecture.

The project is based on the client server architecture .There are various reasons for this

requirement .The team could have used a simpler approach by not adopting the client

server architecture but they wanted this system to be both fast and robust.

The client server architecture has many advantages over a single machine based system.

The following are the reasons that lead the team to the adoption of the client server

architecture in this system.

They needed to implement complex functions of image processing for tracking and

calibration and for that they required fast processing and the client server architecture

gives the required output. Allowing different modules to be created for and implemented

by separate machines and thus giving more processing power per module. The system

becomes more scalable by using the client server architecture. The number of clients can

 29

be increased to accommodate more sophistication and allowing the user with even more

processing power.

System is a TCP client server based where tracking is part of client’s functionality and

3D reconstruction is done by the server. Architecture is represented in figure 4.1.

Figure 4.1 The Architectural Framework of MOCAP

The architecture diagram shows that multiple clients are communicating and working in

collaboration with a single server. Client 1, Client2 and Client 3 are all working

simultaneously with their own cameras and would be handling their own functions and

working. Each client does its own tracking and calibration which is associated with its

own camera. The server used the data fed by all three clients for 3D Reconstruction.

 30

4.4 Decomposition Description

Under this heading, all the functionalities of all modules present at both the client and

server sides are discussed in detail.

4.4.1 Motion Tracker

The actor wearing black apparel stands in front of webcam with black background and

white markers attached at his joints. The actor will act in front of webcam and the video

is captured and tracked by motion tracker. This module is present at the client side and

sends the tracked video frames to the server.

4.4.2 Motion Analyzer

This module receives the tracked data send by the motion tracker and analyzes it at the

server side. It analyzes the motion i.e. it finds the relation between objects, their

orientation and most importantly their mathematical angles with each other.

4.4.3 Motion Modeler

The analyzed data is received by motion modeler from the motion analyzer. The server

used this input and uses that data to translate that motion onto a 3D graphical model.

4.5 Data Design and Data Description

 The data items to be used by the system are real time video, number of tracked video

frames and tracked data and projection matrices for 3D scene reconstruction. The figure

4.2 is a data flow model of the system on client side.

 31

Figure 4.2 Data Flow Diagram at Client Side

The cameras will give two kinds of data. Video feed will be used by the tracking module

for tracking initialization leading to object recognition which will be used for tracking in

subsequent frames. This tracking is performed by the 2d tracker which then sends the

data to data sending module which sends the data across the network. The other kind of

data from the cameras, calibration data is calculated by still snapshots of the calibration

object. These stills are used by the corner detection process to detect corners which are

 32

then used to do the calibration. Calibration gives two calibration matrices. Both the

intrinsic and extrinsic matrices are sent to the data sending module.

Figure 4.3 Data Flow Diagram at Server Side

In the figure 4.3, the socket entity collects data from the client. The calibration data is

sent to the projection data calculator process and tracking data to the projection

calculating module. The projection data calculator computes projection matrix. This

matrix is then sent to projection calculating module. Projection then computes 3d

projections and sends the 3d point data to 3d point analyzer. 3d object modeler sends the

mesh data 3d scene modeler which sends the data to motion translator. Motion translator

 33

translates the mesh data according to the calculated projections. This data is sent to

renderer who renders the system.

4.6 External Interface Requirements

These are the interface requirements of the system.

4.6.1 Hardware Interfaces

First are the webcams which use USB interface to connect to PC. The client-server

architecture is supported by standard LAN cables.

4.6.2 Software Interfaces

Data from Webcam is acquired through standard USB port by OPENCV inbuilt function

“cvCaptureFromCAM(int portno)”. The client server architecture between different

modules is handled by C++ Winsock’s TCP functions.

 34

 CHAPTER 5

SYSTEM IMPLEMENTATION

5.1 Introduction

This section of the document contains the implementation details of the system. It

describes the functionality of the system and also a complete explanation of the system

from the implementation point of view. The basic idea is to make the reader familiar

with the implementation details of the system so that he can have some idea about the

actual working of the system.

The System comprises of a Calibration tool in MatLab, a server, a client (both

implemented in C++) and the environment itself. Client acts as the eyes of the system

and acquiesce video stream through web cam attached to the system. The video is then

processed upon by the client and the required motion is tracked. The client connects

with the server in the meantime. Calibration data is exchanged first. Then comes the

tracking initialization part where user specifies the points to be tracked that will be used

eventually for 3d reconstruction. The client then starts to send the tracked data frame by

frame to the server. The Server then using the calibration and tracked data from two

clients reconstruct the scene in 3d for which OpenGl is being used. The environment

consists of an actor in black apparel against any black background with white markers

on the joints to be tracked. These can be of any material (cloth, tape, plastic etc).

 35

5.2 Calibration Toolbox

Following is the description of calibration toolbox.

5.2.1 Overview

This is used for calibration, it’s a free open source code written in MatLab. It uses a

number of images of the calibration object and based on user data on real world units it

provides the camera parameters. Camera parameters are exported to a file named

“Extrinsic.txt” which is then used by the client to read calibration data.

Figure 5.1 Calibration ToolBox

The figure 5.1 is the snapshot of calibration tool box GUI. Functionality is explained

below.

5.2.2 Detailed Explanation

 a) Calibration itself

Reading the images: First user clicks on the Image names button in the Camera

calibration tool window. Then the base name of the calibration images (Image) and the

image format (jpg) are entered. All the images (the 20 of them) are then loaded in

 36

memory (through the command Read images that is automatically executed) in the

variables I_1, I_2 , ..., I_20 as in figure 5.2. The number of images is stored in the

variable n_ima (=20 here).

Figure 5.2 Images Read

Extracting Corners: The Extract grid corners button is clicked. The corners are

extracted by clicking on them one by one on each image. It’s a lengthy process but once

camera is calibrated it need not be repeated for intrinsic parameters.

 37

 Figure 5.3 Clicking on Corners Figure 5.4 Corners Extracted (Red)

First figure 5.3 shows the result of clicking on the tool box and when the required inputs

are given i.e. number of boxes and measurement in real units the corners extracted are

shown in figure 5.4. The green lines show the XY axis as indicated and red points are

showing the corners.

Calibration: Now Calibration button is pressed which computes the intrinsic

calibration parameters as shown in the figure 5.5.

 Figure 5.5 Calibration of intrinsic parameters

Figure 5.5 Calibration Results

This data is saved using the Save button and for another run of the system this data will

only be needed to load using the Load button.

Calibration results (with uncertainties):

Focal Length: fc = [893.97550 903.17247] ± [5.07640 6.91673]
Principal point: cc = [308.96719 218.50977] ± [14.56654 12.67625]

Pixel error: err = [0.60609 0.71381]

Note: The numerical errors are approximately three times the standard deviations (for reference).

 38

For Extrinsic Calibration: It is done whenever the environment is changed or

specifically camera position is changed. Intrinsic parameters are loaded first. Then the

button Comp. Extrinsic is pressed which prompts user to enter the name of the image.

Corners are clicked same as in corner extraction part but this time position and

orientation of camera with respect to the environment is computed.

Figure 5.6 Extrinsic Parameter Image

The actor held the calibration object as snapshots from each camera was taken for

extrinsic parameter calculation. The three green lines show the XYZ axis as indicated

and red points are showing the corners. The extrinsic parameters are calculated in figure

5.6 and are listed as in the figure 5.7:

 39

Figure 5.7 Extrinsic Parameters

Parameters Exported: This is done by clicking the Export Calib Data button. User is

required to enter the name of the file which should be “Extrinsic.txt” and after its

creation; it is copied with the client executable.

5.3 Client

This section includes the description for client module.

5.3.1 Overview

The client is responsible for handling the camera, tracking through it and sending the

data to the server through a TCP connection. It comprises of the following modules.

1. Calibration Reader

2. TCP Networking module

3. Video Acquisition Module

4. Tracking

It was developed completely in Visual Studio 2008 in C++ using OpenCV.

Extrinsic parameters:

Translation vector: Tc_ext = [-366.205029 -158.439767 1064.895319]
Rotation vector: omc_ext = [-2.198348 -2.161748 0.011205]
Rotation matrix: Rc_ext = [0.017612 0.998781 -0.046109
 0.999205 -0.015933 0.036531
 0.035752 -0.046715 -0.998268]
Pixel error: err = [0.70663 0.61109]

 40

Figure 5.8 Client Module

In the figure 5.8, on the left is shown result of tracking module and on the right is shown

the video.

5.3.2 Detailed Explanation

1. Calibration Reader

The calibration from MatLab is read here into the client program. This is done by file

I/O operations in C++. A separate class Camera is used for handling the camera. Whose

function doCalibration() extracts the intrinsic and extrinsic data from the file and stores

it in the Intrinsic_mtrx[] and Extrinsic_mtrx[] respectively.

 41

Figure 5.9 Reading Calibration Data

Figure 5.9 shows the calibration data being read from Extrinsic.txt. Then the projection

is calculated as Intrinsic x Extrinsic Matrix by the function calc_Projection() in Camera

class as shown in figure 5.10:

Figure 5.10 Projection Matrix

Figure 5.10 shows the projection matrix obtained by multiplying extrinsic and intrinsic

matrix.

Reading Calibration Data from Extrinsic.txt
0: -366.205
1: -158.44
2: 1064.9
3: 0.0176124
4: 0.999206
5: 0.0357522
6: 0.998781
7: -0.0159334
8: -0.0467153
9: -0.0461086
10: 0.0365314
11: -0.998268
12: 893.976
13: 308.967
14: 903.172
15: 218.51

Projection matrix:
26.7913
878.452
-349.652
1639.33
910.267
-24.5983
-185.137
89591.5
0.0357522
-0.0467153
-0.998268
1064.9

 42

2. TCP Networking module

The library utilized for TCP networking is visual studio’s winsock 2.0 library. The client

establishes the connection with the server and then sends the data one by one. First it

converts the float projection matrix to char values and then sends it across the stream.

Then tracking initialization data is sent i.e. names of the tracked objects and in the last

when tracking is performed in a loop the data from tracking is also sent in the loop. This

last data is in the form of X and Y coordinates of tractable objects in a float array which

is converted to char for network streaming. This Communication is shown in figure 5.11

Figure 5.11 Communications between Client and the Server

 43

Figure 5.11 shows communication between client and server. Client sends request to

server for connection establishment and server acknowledges it. Then client sends

calibration data, initializes tracking, and sends tracking data which are acknowledged by

the server and this communication continues repeatedly until all data is sent.

3. Video Acquisition Module

This part is responsible for handling the video feed: connection with the webcam,

acquisition of the video, getting frames out of it. Functions and variables used for this

were from Intel’s OpenCv library.

Explanation of the code elements used is shown in the following table.

Name Nature Functionality

CvCapture data type Used as the video container

IpImage data type used as the frame(image) container

cvCreateCameraCapture() Function Used to capture video from cam

cvNamedWindow() Function Used to create video window

cvThreshold() Function Used to convert image to black and white

cvQueryFrame() Function Get frame from video

cvShowImage() Function Show the frame from video

As shown in figure 5.12 it shows the video in black and white. On the right is the

original video on WM player.

 44

Figure 5.12 Acquired Video on Right and Original on Left

Figure 5.12 shows a comparison between original video and acquired video detecting

the markers.

4. Tracking

Tracking as already explained in the design chapter is accomplished by neighborhood

search. The feature class is used to instantiate the individual features. This class contains

the tracking code. There are two parts to tracking.

a. Initialization

This was done by giving the initial coordinates of the feature to the system by drawing a

marquee around it, the system then asks for the name of the feature which is then

provided. The mouse listener function used for this part is my_mouse_callback(int

event, int x, int y, int flags, void* param). This function draws the marquee and then

searches for the object in this marquee. Then it creates a separate feature object and

intialize it with the name and the coordinates. As shown in the figure 5.13 the red circled

 45

objects are in the squares indicated by the mouse. Rest of the objects (in white) are

waitingto be initialized.

Figure 5.13 Feature Initialization

Figure 5.13 shows feature initialization in which the circles marked red are objects that

are initialized and the unmarked white markers are the objects waiting for initialization.

b. Tracking

This was done by a modified neighborhood search. The searching function starts to

search from the last mean i.e. centre and searched in concentric circles outwards until it

finds the object. There is no limit for the neighbors which increase the chance of object

getting found. Once found it labels the object in only a single horizontal and vertical line

and mean is found in x and y direction. As using small markers are being used so correct

centre is found anyways. In this way it saves time and helps in achieving the goal of a

real time system. Labeling is done in the label () function in the feature class. It gets an

 46

initial index and labels the surrounding connected white pixels. Search is done in the

search_concentric(int) function which takes the index from last frame and searches in

circles outwards until it finds the object. The figures 5.14 and 5.15 show this algorithm

at work.

 Figure 5.14 Searching Figure 5.15 Labeling

In Figure 5.14 the object in blue represent the object’s location in frame 1 and red one in

frame 2. Objects are always white in the system, colors are used here for understanding

purpose. The white path shows the concentric search and how it finds the moved object

in frame 2 starting from last position index. In Figure 5.15 corner labelling is shown.

5.4 Server

This section includes the description of server module.

 47

5.4.1 Overview

The server is responsible for handling the clients i.e. cams, 3d reconstruction, and

rendering the scene. It comprises of three modules, a multi-threaded Server, 3d

reconstructor, renderer.

It was developed completely in Visual Studio 2008 in C++ using OpenCV and OpenGl.

5.4.2 Detailed Explanation

1. A multi Threaded Server

It controls n number clients. It was implemented using winsock 2.0 library. One

accomplishment at this level was multi-threading. It was needed to run project’s

renderer separately from the comm. server so that both can work independently. Not one

hinders the efficiency of the other. Option for multi threading was chosen. Threading

was achieved by using inheritance with the class thread .The structure of threading is

given in the figure 5.16.

Figure 5.16 Multi Threading Structure

Main Thread

Server
Thread

Renderer

Cam3
Thread

Cam2
Thread

Cam1
Thread

 48

In Figure 5.16 it is shown that renderer runs separate from the Server. The data

exchange is explained later when 3d reconstructor is explained. Different clients interact

independently with the server. Synchronization is necessary in this case which is

handled by the server and hence no data is misplaced.

A new thread for each client is created each time a client connects. The communication

between server and client is explained below.

The server starts and wait for the client to communicate. When client connects and sends

the calibration data, it is saved in separate camera instances associated with each client

held in a vector camera_list. Initialization data is used to create instances of the

feature_server class which acts as objects on server side .

When another client connects, server doesn’t allow it to initialize when one has already

initialized. This is to ensure that features get initialized correctly. Same data from two

different sources can include redundant feature points in the list. Once the server starts

receiving tracking data it updates the Feature server accordingly.

This data is then used by the 3d Reconstructor which when completes reconstruction,

signals the server by setting the projection_flag = 0 so that it can update the tracking

data. Now data from at least two clients is needed to find projection so it is the server’s

job to maintain synchronization between clients. One more issue here was to restrict

clients to update tracking when projection is being calculated so that only fresh and in-

sync data reaches the reconstructor.

 49

This synchronization is attained by using a locking methodology. The piece of code that

updates keeps a check. Only one client accesses it at a time. Other clients are locked

outside by using a locked loop. When one by one, the data is updated by at least any two

clients the reconstructor is signaled which project the 3d point and updates the scene.

2. 3d Reconstructor

Two classes Projection and FeatureServer collaborate to perform the strong matrix

computations to calculate the projections whenever following requirements are met.

1. Tracking data from at least two clients is received.

2. Tracking data is fresh and sync-ed.

FeatureServer::setProjectionParams() saves the tracking data and keeps a check by the

variable int f_no. Whenever it gets two sync-ed tracking data, it calls the

Projection::calc3DProjection() which calculates the 3d Projection for the current feature.

A loop has been used in the myClient side to ensure every feature’s projection gets

calculated..

3. Renderer

This is done by the Rendering class. The rendering thread waits for the bool

Rendering_flag to render the update projection data. Server signals the renderer once

projection gets calculated by the 3d Reconstructor. Renderer does the following jobs.

It creates an openGl window for rendering titled MOCAP: A Cheap Approach

(Rendering::displayGl ()). It draws the scene with a horizontal grid in the middle

 50

(grid()). It draws a skeletal model to represent human motion and then move it according

to the data (make_lines()).

Figure 5.17 Skeletal Model Moving According to Tracked Data

The figure 5.17 shows 3d rendering being done by the server from the input from the

two clients on the lower corners.

 51

CHAPTER 6

COMPARATIVE ANALYSIS

6.1 Introduction

In this chapter a comparison of this system with state of the art systems in the world has

been given. Now this comparison has been done keeping in mind necessary qualitative,

quantitative and technical attributes of a motion capture systems. First, test results of this

system have been presented then description of the systems around the world that have

been compared with this system. After that actual comparison has been given followed

by a conclusion.

6.2 Test Results

This section gives the testing methodology and the results for the system.

6.2.1 Introduction

An extensive amount of testing has been performed on this system. Since the system

contains a lot of modules which share and modify data and produce results based on that

data. Testing path as shown in figure 6.1 was chosen.

 52

Figure 6.1 Testing Path

Figure 6.1 shows that testing was first performed on modules independently, once

satisfied the modules were integrated and integration testing was performed which

ended up in system testing.

6.2.2 Unit Testing

Details about results of unit testing are given below.

6.2.2.1 Tracking

Tracking algorithm was tested by running it through one CG video (created

automatically for testing) and several recorded videos.

CG video

 Figure 6.3 Tracking Initialization Figure 6.4 5 Seconds into the Video

Unit Integration
Testing System

 53

Real Video

 Figure 6.5 Tracking Initialization Figure 6.6 2 Seconds into the Video

The test results shown in the figures 6.3-6.6 show both initialization and tracking in (a)

and (b) parts. The squares around the objects show that they are getting tracked.

There were too properties to check in this testing. One to check if tracking looses any

object during the video due to intricate motion paths, second if tracking is fast enough to

be real time.

First that the tracking does not loose any object unless the motion is very fast which is

not the short coming of tracking algorithm itself but due to slow fps of webcams?

Second that the Tracking is fast enough as its average speed was 120 frames/sec.

Tracking from a live video test was passed successfully.

 54

6.2.2.2 3D Reconstruction and Rendering

It has been performed on the 3d Reconstruction and Rendering modules as they could

not tested correctly by unit testing as they needed real data and other modules to work.

They could be tested independently with hypothetical data but it would have taken a lot

of time and it still would not have known if all the computations are correct. E.g. If 3d

Reconstruction gives some 3d coordinates without rendering them its hard to make out

where they exactly lie. One can only make an intuitive guess. So it was better to test

these at integration level.

The best way to test this was to use a real video of some motion so that it can be clearly

seen if reconstruction is accurate. Only there was a little jitter in the movement which

indicated in some percentage of error in the 3d data.

Figure 6.7 Motion Representation is Accurate Enough

 55

The figure 6.7 shows 3d rendering performed at the server side. As is evident from the

figures the 3d representation is right enough.

6.2.3 Integration and System Testing

Details about integration and system testing are below.

6.2.3.1 Data Transfer

The issue of faulty data transfer was expected to occur between server and the client as a

lot of data transfer has to occur and it should be accurate.

Calibration Data: A float array of 16 elements is sent across networks. By displaying

data on both sides it was tested successfully as in figure 6.8.

Figure 6.8 Calibration Data in Client (up) and Server (Lower)

 56

Initialization Data: This was tested in the same way. An extra thing to test at this point

was that server should allow initialization from any and only one client. Other clients

should just start sending tracking data once initialization is complete as in figure 6.9.

Figure 6.9 Shows Server Allowing Only One Client to Initialize

Tracking Data: Data was a float array of 24 values it was tested just by comparing the

values on both sides and was successful.

6.2.3.2 Rendering

This was performed in real environment with three PCs. A server and two clients.

Connection was on LAN.

 57

Figure 6.10 Environment Used While Testing

Environment for the actor is as per requirement as shown in the figure 6.10 and final

result in figure 6.11

Figure 6.11 Motions Being Generated in Real Time

 58

6.3 Systems to be compared

Only Optical MOCAP systems to be considered with the system.

6.3.1 Optical Motion Capture by Phase Space

This is a motion capture system produced by Meta Motion. Meta Motion was founded in

1999 by Lee Dickholtz, an animator whom has worked professionally with 3D

animation and production since 1986. Prior to founding Meta Motion Mr. Dickholtz was

the Vice President of Multi-Media development for CADCrafts / ID8 Media / Ideate Inc.

Mr. Dickholtz helped take CADCrafts from verging on loosing their Kinetix dealership

to being the world's second largest dealer for 3D Studio MAX.

6.3.2 Optotrak Certus Motion Capture System

This is produced by Northern Digital Inc. specializes in designing and

manufacturing research-grade motion capture systems as opposed to animation-grade

motion capture systems. The Optotrak Certus is a research-grade motion capture system.

6.3.3 Vicon – Motion Capture Services

Vicon is the new name for the combined MOCAP services provided by Vicon Motion

Systems and Peak Performance Inc.

Vicon was established in Oxford, UK in 1984 as a privately owned company and grew

from organically generated profits, establishing itself as a world leader in its core

business of motion capture and analysis. Peak Performance Inc was established in

 59

Colorado, USA in 1984. The combined Vicon offers an integrated solution for both

digital and video based motion tracking.

6.4 Comparison

Table 6.1 Comparative Analysis

Attribute Phase
Space

Opto
Track

Vicon The System

Markers Active LEDs Opto Track
Smart
Markers

Active
LEDs

White Passive
circles(any material)

Camera
Resolution

12
Megapixels

10
Megapixels

16 Mega
Pixels

5 Megapixels

Capture Rate 480 fps 460 fps 120 fps 15 fps
Camera Price $230 $118 $5000 $29
Learning
Curve

1 day
training

1 hr Few minutes Instant

Environment
Flexibility

Can be setup
anywhere

Indoor Studio Indoor Indoor Studio

Scalability Yes Yes No Yes
Multiple
Object
Tracking

No No Yes No

Occlusion
Handling

Yes Yes Yes no

Direct Link
to Graphics
Renderer

No No No Yes

Real Time No Yes No Yes
Compatible
with VR

No Yes No Yes

Accuracy 95% 93% 97% 92%
Max.
Cameras

up to 24 Up to 3 Up to 244 Up to 2

Max Markers Unlimited 8 Unlimited 9
Price Around

$100,000
Around
$15000

Around
$250,000

Around $150

 60

As shown in the table, the system is not up to competition according to hardware aspects

like camera resolution and capture rate but that was one of the goals i.e. to use minimal

hardware costs. This makes the system to suffer on the software side but still the system

gives a stiff competition in the results of the overall system performance.

6.5 Conclusion

The presented system is simple yet effective and true to its goal that is enabling real time

motion capture. Considering low development costs and small development time,

qualitatively it is not that marvelous but it will get the job done none the less and in

much less price than the systems it is up against.

 61

CHAPTER 7

CONCLUSION

7.1 Introduction

Here a conclusion is presented on the effort put into this project linking the effort to the

results followed by future prospects of this project.

7.2 Conclusion

Motion capture system was developed in seven months with the features described

below. Object motion tracking through markers placed at motion points of a body was

implemented successfully. System can perform tracking of up to ten individual motion

points per frame. Tracking occurs in real time (up to 120 fps).

System is implemented on a client server architecture thus allowing it to render and

track on separate machines hence causing resource distribution which effects in real time

motion translation. It also 3d scene rendering which represents actual motion performed

by the actor in real time. System has easy to use interface and presently no learn ability

issues.

Issues related to the system are as follows. More cameras cannot be added hence

environment is restricted. Occlusion handling has not been implemented.

 62

System is completely implemented in OOP/C++ so it carries the qualitative features of

OOP and integrity of a strong language such as C++. It is integration ready in a VR

motion simulation. It is much less expensive than its competitor systems in the market.

The system is totally portable. It can be setup anywhere.

7.3 Future Work

With the basic frame work developed in this project, many different directions can be

taken and quite wonderful projects can be envisioned. Following are the future prospects

of Motion Capture system hence developed.

A system similar to Nintendo Wii gaming station employing optical makers can be

developed by optimizing tracking a little. It can create a market for itself and be a good

addition to Pakistani industry.

It can be used to create VR simulations but tracking needs to be heavily optimized and

good fps cameras will also be needed. This VR system can be used for virtual training in

almost every institution. It can be a huge budget saver for organizations like Army, Air

Force, Navy, Police, Heavy machinery complexes, flying clubs etc. which rely heavily

on good trained individuals.

Using this motion capture system, gesture controlled systems can be developed which

means machines be controlled by human gestures. This will increase usability and

machine-friendliness. The field of human computer interaction will certainly benefit

from an endeavor like this.

 63

Applications can be developed using this system which will enable doctors to study their

patients more accurately. Those will be patients suffering from some physical

impairment.

Microsoft is currently developing an add on for its Xbox 360 called kinect. It will be

used to create an immersive gaming experience using a special kind of camera. Similar

kind of entertainment system can be developed using this project, but cameras will have

to be upgraded.

 64

CHAPTER 8

BIBLIOGRAPHY

1. History of MOCAP Pg 2-8. MOCAP for Artists Workflow and Techniques for

Motion Capture by Midori Kitagawa and Brian Windsor.

2. Maria Matzer, "Animation's New 'Toon Advances Mean 'Motion Capture' is about

to Make a Splash," Los Angeles Times (8 Sept 1997), n.p. (business section)

3. La Trobe University, "Applications of Motion Capture"

4. Motion Capture by Maureen Furniss

5. Arne Henrichsen. 3D Reconstruction and Camera Calibration from 2D Images

6. R. Hartley and J.L. Mundy. The relationship between photogrammetry and

computer vision. In E.B. Barrett and D.M. McKeown, editors, SPIE Proceedings,

volume 1944 of Integrating Photogrammetric Techniques with Scene Analysis and

Machine Vision, pages 92–105. SPIE Press, September 1993.

7. O. Faugeras. What can be seen in three dimensions with an uncalibrated stereo

rig? Computer

8. Vision-ECCV’92, Springer Verlag, Lecture Notes in Computer Science, 588:563–

578, 1992.

9. Z. Zhang. Determining the Epipolar Geometry and its Uncertainty: A Review.

The International Journal of Computer Vision, 27(2):161–195, March 1998. Also

Research Report No.2927, INRIA Sophia-Antipolis.

 65

10. L. Kitchen and A. Rosenfeld. Gray-level corner detection. Pattern Recognition

Letters,1(2):95–102, December 1982.

11. C.J. Taylor and D.J. Kriegman. Structure and Motion from Line Segments in

Multiple Images. IEEE Transactions on Pattern Analysis and Machine Intelligence,

17(11):1021–1032, November 1995.

12. M. Pilu. Uncalibrated Stereo Correspondence by Singular Value Decomposition.

Technical Report HPL-97-96, Digital Media Department, HP Laboratories Bristol,

August 1997.

13. Z. Zhang, R. Deriche, O. Faugeras, and Q.-T. Luong. A Robust Technique for

Matching Two Uncalibrated Images Through the Recovery of the Unknown Epipolar

Geometry.

14. Artificial Intelligence Journal, 78:87–119, 1995. Also Research Report No.2273,

INRIA Sophia-Antipolis.

15. O. Faugeras. Stratification of 3-D vision: projective, affine, and metric

representations.

16. Journal of the Optical Society of America, 12(3):465–484, March 1995.

17. D. Liebowitz and A. Zisserman. Metric Rectification for Perspective Images of

Planes.

18. In Proceedings of the Conference on Computer Vision and Pattern Recognition,

pages 482–488, 1998.

19. M. Pollefeys. Self-Calibration and Metric 3D Reconstruction from Uncalibrated

Image Sequences. PhD thesis, ESAT-PSI, K.U. Leuven, 1999.

 66

20. R. Hartley. Kruppa’s Equations Derived from the Fundamental Matrix. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 19(2):133–135, February

1997.

21. M.I.A. Lourakis and R. Deriche. Camera Self-Calibration Using the Singular

Value Decomposition of the Fundamental Matrix: From Point Correspondences to 3D

Measurements.

22. Technical Report 3748, INRIA Sophia Antipolis, Project Robotvis, 1999.

23. C. Zeller and O. Faugeras. Camera Self-Calibration from Video Sequences: the

Kruppa Equations Revisited. Technical Report 2793, INRIA Sophia Antipolis, Project

Robotvis,1996.

24. B. Caprile and V. Torre. Using Vanishing Points for Camera Calibration.

International Journal of Computer Vision, 4:127–140, 1990.

25. D. Liebowitz, A. Criminisi, and A. Zisserman. Creating Architectural Models

from Images. In Proc. EuroGraphics, volume 18, pages 39–50, September 1999.

26. D. Liebowitz and A. Zisserman. Metric Rectification for Perspective Images of

Planes.

27. In Proceedings of the Conference on Computer Vision and Pattern Recognition,

pages 482–488, 1998.

28. D. Liebowitz and A. Zisserman. Combining Scene and Auto-calibration

Constraints. In Proc. 7th International Conference on Computer Vision, Kerkyra,

Greece, pages 293–300,September 1999.

29. Z. Zhang. A Flexible New Technique for Camera Calibration. Technical Report

MSRTR-98-71, Microsoft Research, December 1998.

 67

30. R. Mohr and B. Triggs. Projective Geometry for Image Analysis. In International

Symposium of Photogrammetry and Remote Sensing, Vienna, July 1996.

31. M. Pollefeys, R. Koch, and L. van Gool. A simple and efficient rectification

method for general motion. In Proc. 7th International Conference on Computer Vision,

Kerkyra,Greece, pages 496–501, September 1999.

32. S. Roy, J. Meunier, and I. Cox. Cylindrical Rectification to Minimize Epipolar

Distortion.

33. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition,pages 393–399, 1997.

34. Fusiello, E. Trucco, and A. Verri. Rectification with unconstrained stereo

geometry.

35. In A.F. Clark, editor, Proceedings of the British Machine Vision Conference,

pages 400–409. BMVA Press, September 1997. Also Research Memorandum

RM/98/12, 1998,

36. Department of Computing and Electrical Engineering, Heriot-Watt University,

Edinburgh,UK.

37. Fusiello, E. Trucco, and A. Verri. A compact algorithm for rectification of stereo

pairs.

38. Machine Vision and Applications, 12(1):16–22, 2000.

39. R. Koch. Automatic Reconstruction of Buildings from Stereoscopic Image

Sequences.

40. Proceedings of Eurographics ’93, 12(3):339–350, September 1993.

 68

41. R. Koch. 3-D Surface Reconstruction from Stereoscopic Image Sequences. In

Proc. 5thInternational Conference on Computer Vision, Cambridge, MA., USA, pages

109–114, June 1995.

42. Fusiello, V. Roberto, and E. Trucco. Efficient stereo with multiple windowing. In

Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 858–863, June 1997.

43. http://en.wikipedia.org/wiki/Kalman_filter#Overview_of_the_calculation

44. Wei Zhang, Sui Wei: A Simple Method for 3D Reconstruction from Two Views

45. Zhang: Flexible Camera Calibration by Viewing a Plane from Unknown

Orientations

46. http://www.metamotion.com/about/meta-motion-history.html

47. http://www.ndigital.com/lifesciences/certus-motioncapturesystem.php

48. http://www.vicon.com/company/

