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ABSTRACT 

In this thesis, a (2p-LFERs) two parameter Linear Free Energy Relationship have been 

designed and applied for varied sets of aquatic and air passive samplers. LFER models for 

polyethylene passive sampler to water, polyoxymethylene passive sampler to water, 

polyacrylic passive sampler to water, polydimethylsiloxane passive sampler to air and 

polyurethane foam passive sampler to air were designed.  

For water system the new 2p-LFER models excellently explained partitioning variability in the 

datasets with R2 and root mean square error (RMSE) ranging from 0.81 to 0.94 and from 0.45 

to 0.53 log units respectively. For air system my 2p-LFER models exhibited R2 and root mean 

square error in the range of 0.94 to 0.93 and from 0.38 to 0.54 log units. All models designed 

in this study were found statistically robust after testing by using four independent cross 

validations tests.  

The models developed provide us how the traits of hydrophobicity, volatility – octanol-water 

partition coefficient (Kow), air-water partition coefficient (Kaw) and organic carbon partition 

coefficient (Koc), manage the transfer of contaminants from one phase to another and indicates 

the dominance of octanol-water partition coefficient (Kow), hydrophobicity, in both aquatic 

and air phases.  

The significance of my research models is that they have a benefit over the predefined 

estimation approaches. The previous models either require super-fast computers, or parameter 

demanding, or the required parameters are not experimentally accessible or they are 

remarkably expensive. Whereas, the suggested LFER methods in this study are not only 

simple and accessible but also productive than different multi-parameter estimation methods. 



xi 
 

My 2p-LFER model is not only statistically potent but also theoretically-accurate and 

compliments the principle of parsimony. 
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Chapter 1 

INTRODUCTION 

1.1 Passive Sampling 

Organic and inorganic environmental pollutants monitoring is a great challenge today. It 

requires quite large number of samples from a location of interest over time duration when 

using active sampling methods, when finding out quality of different environmental 

compartments like atmosphere, indoor air, water basins, soil or biota. Such type of approach 

requires large number of resources as well as it is requires a great amount of time (Namies´nik 

et al., 2005). 

The discharge of contaminants into the environment is inevitable cost of human development.  

Innumerable amounts of various commercial chemicals are produced each year (Mackay et al., 

1997).  The micro organic chemicals are a serious potential hazard to human health and to other 

exposed organisms. Thus, development of an effective monitoring tool to protect the 

environment is very important (Vrana et al., 2005). 

Passive sampling is an alternate solution for such situations; it is the measure of analyte 

concentration represented as weighted average over the sampling time. Passive sampling 

methods are immune to unintentional, extreme differences or variations of pollutant 

concentrations as the analyte concentration is integrated over the exposure time. The data that 

is attained in such manner is appropriate for obtaining a long-term overview of pollutant levels 

in a given environmental compartment. 

In order to use passive samplers’ certain calibration parameters are required such as partition 

coefficients, sampling rates and loss rate constants, which are usually determined in the 
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laboratory or at the sampling site (Phi and Hiramatsu, 2012). Thus, to get useful information 

out of passive samplers we need partition and diffusion coefficients for field application. 

1.2 Partition Coefficient 

Equilibrium Partition coefficient (P) is the ratio at equilibrium of compound concentration in a 

mixture of two immiscible phases. It is therefore a measure of differences in solubility of 

compound present in two phases. (Kwon, 2001).  

The transport and distribution of chemicals in environment are greatly influenced by 

equilibrium partitioning properties (Schwarzenbach et al., 2002). Therefore, fate models for 

environmental behaviors and ecological impact assessment of chemicals typically engage 

partitioning properties, defined as follows; 

equilibrium 

Where Pxy,i is partition coefficient between two phases x and y, and Cx,i and Cy,i are the 

concentrations of contaminant i at partitioning equilibrium present in these phases. Thus, to 

assess the chemical exposure and transport in the environment, Equilibrium partition 

coefficients are required (Schwarzenbach et al., 1993). 

Partitioning of nonionic organic compounds between water and natural organic phases, which 

are the two phases is credited as hydrophobicity of compound i which is targeted compound.  

It is expressed as Kow i.e. octanol/water partition constant or coefficient. Likewise, Koa or 

octanol/air partition constant is a function of compound volatility which is partitioning of 

compound i between air and liquid or solid. In order to find out unknown equilibrium partition 

coefficient between two phases such partitioning constant parameters are used in one-

parameter Linear Free Energy Relationships (LFERs). As one-parameter LFERs use only one 
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such parameter so it has  limited predictive power because as we know that a single parameter 

does not or has no ability to completely all the molecular interactions which govern the 

equilibrium partitioning of a compound between any two phases. So, for different regression 

coefficients for different compound classes is required in LFERs (Goss and Schwarzenbach, 

2001).  

Therefore for handling of variability of both compound and sorbent, there is a need of a much 

refined approach than those of op-LFERs for quantification and improved prediction of 

equilibrium partitioning. A very useful tool exist for describing partitioning data of large and 

diverse data sets of compounds using an equation known as poly-parameter linear free energy 

relationships pp-LFERs (Abraham et al., 1999). 

The Abraham solvation model (ASM) has been widely explored in environmental chemistry 

to estimate several partitioning and transport properties. The model parameterizes the 

solution’s cavity model, and is based on the neutral molecules transfer from the gas phase to a 

condensed phase. There are many methods available for estimation of partition coefficients but 

there are limitations for them like discussed before for one-parameter LFER. Abraham 

solvation model has its own limitations. It has a limited database; only 8000 abraham solute 

descriptors are available for chemicals and are unavailable for many existing and emerging 

nonpolar environmental pollutants such as polychlorinated n-alkanes (PCAs), polyhalogenated 

dibenzo-pdioxins (PHDDs), dibenzofurans (PHDFs) (Greim et al., 1997; van den Berg et al., 

2013).  

The aim of the study is to find a simple, inexpensive method of estimation by taking few 

important and easily accessible descriptors. 
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1.3 Problem statement 

When it comes to freely dissolved chemicals and their presence in trace and ultra-trace level in 

our environment the existing sampling and estimation methods have certain limitations and 

there is a need for an easily-accessible, computationally inexpensive estimation approach. 

1.4 Objectives of the study 

Objectives of this study are 

 To develop theoretically-rigorous, robust and parsimonious models to estimate partition 

coefficient for widely-used passive samplers. 

 To understand which set of environmental properties control the partitioning behavior 

of chemicals to the passive samplers. 

1.5 Scope of Study 

The study is divided into two phases for aqueous and air system  

 In first phase two-parameter linear free energy estimation models were developed for 

diverse set of passive samplers for aqueous system. 

 In second phase two-parameter linear free energy estimation models were developed 

for diverse set of passive samplers for air system. 
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Chapter 2 

REVIEW OF LITERATURE 

2.1 Experimental Methods 

Traditional methods for environmental monitoring such as active sampling and spot or grab 

sampling (air, water, sediments) offer some difficulties. The information obtained from grab 

samples is less representative because it provides a snapshot at a particular instant and no 

temporal and spatial variations in contaminant concentrations is provided. Since contaminants 

are present in trace amounts, large volumes of samples are required in spot or grab sampling. 

This limitation can be overcome either by increasing sampling frequency or by installing 

automatic sampling systems. But this approach could be costly as well as impractical as it 

requires a safe location site and certain pre-treatment for water analysis. Depending upon the 

applied pre-treatment (e.g. filtration), spot/grab sampling yields different concentrations of 

contaminates but gives no information regarding truly dissolved or bioavailable fraction (BAF) 

of contaminants (Vrana et al., 2005). 

The collected samples volumes is limited in traditional methods which is ≤5 L, because of 

handling, processing, preserving, transport and extraction issues, the exposure assessment of 

organisms involve laborious multiple sample collections. As a consequence, for trace (≤ 1 μg 

L−1 or mg m−3) or ultra-trace (≤1 ng L−1 or μg m−3) hydrophobic organic chemical levels 

the method quantification limits (MQL) might not be sufficient. Low quantification limits are 

of particular importance when it comes to assessment of chemicals which can bio-concentrate 

(the uptake by skin absorption or respiration) or bio-accumulate (the uptake via skin diet, 

respiration and absorption) and other organic materials that are highly toxic (Huckins et al., 

2006). 
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For the trace and ultra-trace Suspended-Volatile-Organic-Compounds (SVOCs) analysis the   

applicability of grab sampling in air is limited. In addition, the sampling methods that might be 

chosen for assessment of global-atmospheric transport of pollutants are restricted by the 

sampling gadget’s size, weight and portability and the need of electrical power for their use 

(Górecki and Namieśnik, 2002).  

It can be summarized, that active and spot or grab sampling methods provide useful and reliable 

information about the total airborne or waterborne concentration of contaminants in a brief 

interval of time but no information regarding time-weighted average (TWA) concentrations of 

contaminants is provided. This shortcoming strictly limits their use for exposure analysis of 

organisms (Huckins et al., 2006). 

Bio-Monitoring organisms (BMOs or test organisms) for chemical risk and exposure analysis 

are another approach to investigate the bioavailable fraction of contaminants. They can be 

extended for longer periods of time and provide bioaccumulation and equilibrium level of 

waterborne chemicals but this approach also has limitations. The degree and inconsistency of 

chemical concentration hoarded in tissues can be influenced by the site-exposure conditions. 

The results can also be affected by BMO species specific physiological, anatomical and 

behavioral characteristics i.e. metabolism, excretion, stress, etc. Furthermore, prior to 

instrumental analysis the extraction of analytes from organisms is complex (Vrana el al., 2005).  

In regulatory toxicology, certain tests are carried out on animals for hazard assessment and are 

used to classify the toxicity properties of chemicals that are exposed to humans or our 

environment through a specific product or purpose. Presently for safety, certain regulatory 

testing of drugs and chemicals is compulsory to performed and for this standardized animal 

tests are there firstly for the protection of workers during the production phase and secondly 

for the protection of consumer and environment from that chemical product. The animals used 
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in these laboratory tests are exposed to hazardous chemicals which cause considerable pain and 

distress and might lead to death. (Liebsch and Spielmann, 2002) 

2.2 Passive Sampling 

Passive sampling is a sampling technique in which a sampling device is used to capture freely 

flowing analyte molecules from the sampling medium which is due to the analyte chemical 

potential difference present in two media. The process of analyte molecules movement between 

two mediums is a result of equilibrium that is established or till the time when sampling stops 

(Mackay et al., 1997). 

Passive sampling combines the three steps into one which are sampling, analyte isolation and 

pre concentration, simplifying the need of pre-treatment of sample before it is deployed. It also 

requires no or very little solvent. Passive sample determines time-weighted average (TWA) 

concentrations so the response speed is the result of duration for which time weighted average 

is determined over time (Gorecki and Namiesnik, 2002).  

The quantity of analyte being collected by sampler depends upon two things; firstly its 

concentration of analyte in the sampled medium and the other is the exposure time. Time 

weighted average TWA can easily be calculated if we have the information about the 

relationship between the rate of sampling and the concentration of analyte. But for such certain 

conditions must meet which are 

 There should not be any release of trapped molecules that has been captured even if 

the concentration of analyte reaches zero and this is called “zero sink”.  

 The rate of sampling must be constant throughout the time. This is achieved quite 

easily when the analyte is absorbed or chemisorbed but problems are there when there 

is a process of physical adsorption involved in collection of analytes. 

2.2.1 Types of Passive Samplers 
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There is a wide range of passive sampling devices present that can be for sampling of different 

contaminants that are present in different environment. It is also of great importance to select 

an appropriate passive sampling device for a particular sampling environment. Different 

materials are used as sorbents in passive sampling devices as it provides the device with a 

specific property which is good for example polyethylene passive samplers which are ethylene 

sheet based passive samplers are great when it comes to capturing of hydrophobic compounds. 

Sampling devices such as semipermeable membrane devices (SPMD) (Turgut et al., 2017), 

low density polyethylene (LDPE) film (Carls et al., 2004; Cornelissen et al., 2008; Zhu et al., 

2015), polyacrylic (PA) plastic sorbent (DiGiana et al., 1988; Namies´nik et al., 2005), 

polyoxymethylene (POM) devices (Beckingham and Ghosh, 2013), polydimethylsiloxane 

(PDMS) fibers (Zhang et al., 2014) and polyurethane foam (PUF) device (Bartkow et al., 2004; 

Nabi and Arey, 2017) can be used in different as well as more than one environment depending 

upon what type of compounds we are looking for. 

2.2.2 Passive sampling as an alternative monitoring tool 

Passive sampling is an alternative monitoring tool, which is affordable, reliable and produce 

quality representative data comparable between time and locations. Passive samplers can be 

places at site for extended time from few days to months and yields time weighted average 

concentrations of pollutants. From analytical point of view passive sampling offer many 

advantages over traditional methods, as it significantly simplifies sampling procedures by 

eliminating sample preservation and preparation, provides cleaner extracts with less use of 

solvents, speed up the processing time, eliminates power /electricity supplies, and evidently 

reduces the costs of analysis. It a greener technology with less matrix effect as it provides better 

detection and quantification limits as compare to other methods. This technique is in particular 

appropriate for the determination of time-weighted average concentrations of contaminants 

(Górecki and Namieśnik, 2002) and has a great potential because of the simplicity of the 
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principles underlying its function and structure and the low cost involved (Greenwood et al., 

2007). 

In order to use passive samplers’ certain calibration parameters are required such as partition 

coefficients, sampling rates and loss rate constants, which are usually determined in the 

laboratory or at the sampling site (Phi and Hiramatsu, 2012). Thus, to get useful information 

out of passive samplers we need partition and diffusion coefficients for field application. 

2.3 Equilibrium partition coefficient 

Mathematically partition coefficient is defines as the ratio of substance concentration in one 

phase versus the concentration in another phase at equilibrium written as  

 

The concentration units may be unalike. In inhalation toxico-kinetics different partition 

coefficients are used like for gases blood-air partition coefficient and for all other substances 

tissue-blood partition coefficient. For gas and a liquid which are at low concentration at 

equilibrium the partitioning between these is “Henry’s Law Constant” and it is a denotation 

particularly for vapor-liquid. In toxicology henry’s law at higher concentrations there may be 

deviations despite it is can be applied over the concentration range of interest. (Schlosser and 

Medinsky, 2010). 

When there is an interaction of organic compound with two immiscible solvents i.e. it dissolves 

in both of these solvent phases and it is measured by distribution coefficient or by the partition 

coefficient which is defined as the ratio at equilibrium of the substance present in mixture of 

two phases that are immiscible. This ratio tells us about the solubility of the substance that how 

differently it interacts with the two phases of which one is water and the other is hydrophobic. 



 

 
10 

Therefore, the partition coefficient gives us information about the hydrophobic and hydrophilic 

property of that chemical substance present in the two phases. 

Compounds hydrophobicity gives us information that the hydrophobic compound can get into 

the groundwater and pollute it. In hydrogeology, Kow can be used for modeling and prediction 

of migration of organic compounds with hydrophobic properties in groundwater and soil as it 

gives us information about specie mobility. (Speight, 2017) 

Different environmental phases interact with each other in a complex manner. However, at 

chemical equilibrium, the distribution of mixtures among different phases is due to their 

thermodynamic properties. This is defined by equilibrium partitioning theory. There are many 

conditions in the environment where it is appropriate to consider equilibrium, for example, the 

distribution of contaminants among the three phases of the sediment-water system: the pore 

water dissolved organic matter and amorphous organic carbon portions of the sediment. Even 

in situations when equilibrium is not attained, knowing the equilibrium partition coefficient is 

very useful in order to know a chemical’s tendency for accumulation in a specific phase. 

Equilibrium partition coefficients also tell us the exact direction in which the chemical moves 

in a complex environment. They also calculate the rate of mass transfer across different 

interfaces. 

2.3.1 Octanol-water partition coefficient (Kow) 

For aqueous system octanol–water partition coefficient (Kow) is mostly applied partition 

coefficient and it also has its major role in air and other media like soil and others. In air system 

we have many organic compounds i.e. carbon-carbon or carbon-hydrogen bond molecules and 

as we know like solvents dissolve like solutes so, the solubility can be differentiated as these 

under normal conditions of pressure and temperature can easily get dissolved into organic 

solvents. In such case we term it as hydrophilic or lipophilic as organic compounds can easily 
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dissolve into water or lipids and if they do not readily dissolve into organic solvent under 

normal conditions it is termed as hydrophobic or lipophobic.  

Kow is defined as ratio of concentration of a substance in octanol to the concentration of 

substance in aqueous phase at equilibrium. In general octanol is a surrogate for solvents that 

are lipophilic and this is because it has affinity for water as well as organic compounds which 

is termed as amphibilic. It is also an indicator which is of importance in environmental 

partitioning (Vallero, 2014). 

2.3.2 Organic Carbon Water Partition Coefficient (Koc)   

Organic carbon water partition coefficient (Koc) is unit less which is the ratio of concentration 

of chemical that is absorbed per unit mass of soil to its concentration in second phase which is 

aqueous phase. Koc is the representation of distribution coefficient (Kd) which is normalized to 

total organic carbon content. The Koc value for most “Persistent Organic Pollutants” is high as 

it explains partitioning of POPs that are present in soils with high organic matter contents. The 

binding of chemical with organic matter is controlled by the chlorination (or bromination), 

higher the chlorination (or bromination) more will it bind and it’s a general rule  (O’Sullivan 

and Megson,  2014). 

2.3.3 Air Water Partition Coefficient (Kaw) 

In environment the transport of organic compounds is affected by the transfer between the 

atmosphere and aqueous systems (Schwarzenbach et al., 2004). Henry’s law constant KH or 

Kaw is the air-water partition ratio for neutral compounds that are present in pure water at dilute 

solution concentrations.  But as we know we don’t have pure water but aqueous solutions which 

contain many chemicals, for this “air-water distribution ratio” is used, which is determined by 

approximating Henry’s Law constant. Kaw is a unit less defined as the ratio of substance 

https://www.sciencedirect.com/topics/social-sciences/organic-matter
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/chlorination
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/chlorination
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abundance in air phase to that of aqueous or water phase at equilibrium.  The compound’s 

transfer depends upon the value of Kaw; it will get into air phase from water or aqueous phase 

if Kaw value is large (Ji et al., 2008).  

2.4 Two-Dimensional Gas Chromatography (GCxGC) 

For several thousand compounds that are present in complex mixtures, two-dimensional gas 

chromatography (GC×GC) is an analytical technique of choice. Two-dimensional gas 

chromatography has two columns; one is primary which through a modulator is combined with 

the second column. The function of the modulator is to act as an inlet for the second dimension, 

cutting the primary broader peak into sub peaks and it does it continuously. The sub peaks are 

further separated in the secondary column. 

The length of both primary and secondary columns is different. The secondary column is kept 

shorter so that the separation that is achieved in the first dimension is preserved. Analytical 

detection limits in two-dimensional gas chromatography (GCxGC) are improved because as a 

result of different chemical selectivity of stationary phase in secondary column than that of 

primary column produces very sharp peaks but requires fast sampling detectors making it 

expensive (Nabi, 2014). 

 

2.5 Abraham Solvation Model 

The Abraham solvation model (ASM) is equation involving different parameters that can be 

used for the estimation of numerous transport properties and for estimation of partition 

coefficient in environmental chemistry. It is based on the parameters of cavity model and other 

intermolecular interactions. It is written as  

log SP = c + eE + sS + aA + bB + lL (eq. 1) 
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Depending upon the different type of intermolecular interactions the parameters can be chosen 

for example in case of transfer between two condensed phases it is written as  

log P = c + eE + sS + aA + bB + vV (eq. 2) 

The letters that are lower case are system constants whereas the capital letters are solute 

descriptors. Partition constant and other free energy terms describe the solute property which is 

log P. The complimentary interactions between the solute and solvent are described by 

lowercase letters. The solute descriptors are E describing the solute polarizability, S describing 

the solute polarity, solute’s hydrogen bond interactions are represented by A and B  where A 

represents hydrogen accepting capacity and B is hydrogen bond donating capacity. V tell us 

about the cavity formation by solute in solvent and L is the solute’s hexadecane-air partitioning 

constant at 25oC (Bradley et al., 2015). 

Using the Abraham solute descriptors Goss gave a single model telling about the transfer 

between condensed phases and transfer from gas to condensed phase. In Goss equation (eq. 3) 

V and L descriptors are used eliminating V. Both are these descriptors tell about dispersion 

interactions and contributions from the process of cavity formation in the process. 

log SP = c + sS + aA + bB + vV + lL (3) 

Goss model provide a good fit when it comes to experimental data but it has its limitations 

when it comes to describing the physical significance of factors that contribute to the process.   

Goss model is an additional estimation equation for calculating partition coefficients and helps 

in understanding the processes which involve closed thermodynamic cycles not replacing the 

Abraham model (Poole et al., 2013)  
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2.6 One Parameter-Linear Free Energy Relationship 

Currently using the double logarithmic correlations present between the constants that is not 

known and the partition constant of compound that is known, equilibrium partitioning can be 

evaluated. To understand this example can be taken that for organic matter and water or, air 

and water partitioning, it can be correlated with octanol-water and air-water partition 

coefficient.   

The limitations of such relationships which is one parameter linear free energy relationship or 

op-LFER is that it only predicts the variability of compound in only one substance class as a 

single coefficient is used.  This limitation of op-LFER is because of two reasons; the first reason 

is that as partitioning is a result of many independent and different kinds of interactions so a 

single parameter cannot describe compound variability completely. The second reason is that 

the phase that is being studied is not represented in variable parameter but it is represented in 

intercept and slope of double logarithmic correlation. Due to these reasons op-LFER gives us 

no understanding regarding the variability in between two substance classes as well as no 

information about the variability between two or different natural organic phases making this 

approach good for estimating certain properties for certain families alone. (Goss et al., 2001) 

2.7 Estimation Methods 

Ab-initio, LFER like op-LFER and pp-LFER, fragmental and group methods are some of the 

estimation methods that are widely used for screening of chemicals. 

At optimized level the mechanical structures of molecules can be found out using a quantum 

mechanical modeling method known as “Ab-initio” method. This method can be used to assess 

the chemical’s structural measurement and the difference of one chemical from another. 

Different other modeling methods like envelop function and bead function are used for the 
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scattering of data as it is based on simulation of system that explores other various available 

methods. (Nedyalkova, 2019; Singh, 1986)  

Solvent activity in polymer is used by group estimation method. The group method estimation 

is carried out in different stages, in the first stage the first order group assessment is carried out 

and later second order group gets assessed in advantage stage giving the value. To determine 

the properties isomer estimation and identification with precise application is used. 

(Constantinou, 1994).     

Poly-parameter LFERs (pp-LFERs) uses different parameters and considers all the interactions 

that are involved in partitioning, and complete compound variability can be predicted by a 

single equation also giving information about sorption characteristics in different natural 

phases (Goss et al., 2001). In many technical systems pp-LFERs model for estimation of 

partition coefficient has greater efficiency as it has ability to define and tell about the linear 

relationship between many properties of environment. The model equation of also has ability 

to tell and describe descriptors strong relationship present between them. (Endo, 2014; Endo, 

2009). 

For development of Quantitative Structure Activity Relationships or QSAR model, fragmental 

method has quite wide and extensive operation. This is use to estimate and to get information 

about chemicals physical and biological properties as well as its site specific physiochemical 

profiling. Chemicals functional group and active skeleton can also be estimated using this 

method. (Japertas, 2003). Quantum-Chemical Descriptors based on Quantitative Structure 

Activity Relationships or Quantitative Structure Property Relationships (QSAR/QSPR) require 

superfast computers which are not readily available and are highly expensive. These descriptors 

could have serious drawbacks depending on the nature of the chemical structures or processes 

involved (Poole et al., 2013).   
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Chapter 3 

METHODOLOGY 

3.1 Acquisition of Data 

The experimental values of for both water and air system were collected from the literature 

(Abraham and Ibrahim, 2006; Nabi et al., 2017)  Once the data set collected for each passive 

sampler was collected it was carefully curated to remove any duplication and organized 

according to its type and properties.  

For each chemical in 5 data set, its smiles code and cas number were collected. Smile codes 

are single line representation for chemical specie and cas number is a numeric identifier 

assigned to a chemical specie. 

After compiling our data sets the values for intermolecular descriptors such as octanol-water 

partition coefficient Kow (Hydrophobicity), air-water partition coefficient Kaw and organic 

carbon partition coefficient Koc were taken from different modules of EPI Suite™ which are 

KOWWIN v1.68 for Kow, HenryWin v3.20 for Kaw and KOCWIN v2.00 for Koc. 

Using smile code of chemicals Abraham solute descriptor values were collected from UFZ-

LSER Database.  

The data sets for both water and air system used in the study is diverse. The diversity is an 

important attribute which describes the data representativeness. The diversity for the data sets 

of water system is diverse and ranges over several orders of magnitude like in Polyethylene-

Water Partition Coefficient (KPE-w) it is 6 orders of magnitude, for Polyoxymethylene-Water 

Partition Coefficient (KPOM-w) it is 5 orders of magnitude and for Polyacrylic-Water Partition 

Coefficient (KPA-w) it is 6 orders of magnitude. Similarly for air system the data set for 
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Polydimethylsiloxane-Air Partition Coefficient (KPDMS-a) is 11 orders of magnitude and for 

Polyurethane Foam-Air Partition Coefficient (KPUF-a) it is 6 orders of magnitude. 

3.2 Statistical Analysis 

Before starting analytical analysis certain statistical criteria’s were set to which the model has 

to comply with. The model should bring in minimum “Akaike Information Criterion (AIC)”. 

F test and t-value of the variable coefficient is less than or equal to the critical t-values reported 

at the significance level i.e. p-value <0.05 and the confidence interval to be 95%. Variance 

inflation factor (VIF) for independent data should be <5. 

Keeping in view the statistical criteria, statistical analysis like step-wise regression, multi linear 

regression, cross validation tests and dimensionality analysis or principal component analysis 

were performed using R program. First of all step-wise regression was carried out followed by 

multiple linear regression. The significance of the selected variables and the criteria set was 

checked and variables were selected. After the selection of variables, regression diagnostics 

like studentidized residuals, hat values and cook’s distance were from regression analysis 

marked influential values or outliers that have influence on our model. The models after 

removing the outliers were rechecked and certain outliers which were representing major 

information were left. 

3.3 Cross Validation 

After selection of best model, Four different independent cross validation tests were carried 

out which are leave one out test, K- fold test, repeated K-Fold test and bootstrapping algorithm 

after selection of best model. For each of these tests the data set is split randomly into two sets 

i.e. training set and test set and regression is performed by the software.  

Leave one out cross validation (LOOCV) is n-1 i.e. out of total number of observations one 

observation is removed and on the remaining regression is performed and in similar manner 
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the exercise continues for numerous times. The final result is the average of each regression 

run and nearness of the final result with the real model is checked. R2 and root mean square 

error value is indicator for it.   

In K-Fold test and repeated K-Fold test the data set is randomly divided into folds or k groups 

of almost equal size. For the testing the first fold or group is kept and the model is trained on 

k-1 folds or group. This process is repeated K times and in each, for validation, there is a 

different fold or group of data is used. In this study for K-Fold test the K=3 whereas for repeated 

K-Fold test K=10.   

In bootstrapping algorithm the software resamples the data set and each time it the sub sample 

is different existing sub sample with sample size n. Analysis is performed on these sub samples 

and average is given as a final result. In this study Bootstrapping was carried out as n=100, 

n=500 and n=1000 on R program.  

3.4 Dimensionality Analysis 

Principal component analysis is a compressing tool that covers maximum information without 

compromising any loss in it while highlighting to us which set of variables are important.  

Dimensionality analysis using Abraham solute descriptors was carried out before finalizing 2p-

LFER model equations. Using R program principal component analysis was run on the 

collected Abraham solute descriptors. It was used to indicate whether our 2p-LFER model is 

as efficient or not and how much information is being covered in it. 
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Chapter 4 

RESULTS AND DISCUSSION 

4.1 Phase 1- Aqueous System 

4.1.1 Polyoxymethylene passive sampler to water  

Polyoxymethylene passive samplers are used for polar chemicals and for chemicals which have 

H bond donating capacity. 

 

 

 

 

 

 

 

Figure 4.1: Scale Location Plot for polyoxymethylene passive sampler to water 

For polyoxymethylene passive sampler to water stepwise and multi linear regression was 

carried out on the data set of 124 observations. Partition coefficient value was held as dependent 

variable and log Kow and log Koc was taken as independent variable for our final 2p-LFER 

model. Statistical analysis was also carried out while taking log Kow and log Kaw but it did not 

comply with the statistical criteria that we set for our model. 
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The anova result for my model showed that p value for both the independent variables are 

significant. The p value for my model is < 2.2e-16 which is well less than 0.05. 

Different regression diagnostics were run on the data set. Figure 4.1 is a scale location plot 

which tells about “Homodescasity”. It is an important assumption for a linear model, which is 

the equal distribution of variance across the data space. We can see in our scale location plot 

that there is an equal distribution of residuals along the red line across all the fitted values. The 

outliers can also be seen in the plot. In similar way other linear diagnostics plots like residuals 

v/s fitted values, normality plot, cook’s distance, residuals v/s leverage, cook’s distance v/s and 

leverage and influence plot were also generated to ensure that our data set is good and arranged 

linearly. These plots also give us information about the studentized residuals which gauges the 

influence arising from dependent variables, HAT values which are matrix of leverages that 

indicate the influence stamping from independent variables and cook’s distance, which is the 

measure of influential data points.  

The value for R2, Adjusted R2 and Q2 is 0.94 log units. The root mean square error for my data 

set is 0.45 and Press root mean square error is 0.44 log units. The Q2 and press root mean square 

are R2 and root mean square value of leave one out test that was used for cross validation. Four 

independent cross validations were carried out that support our values. 

The final model equation (eq. 4.1) after carrying out all the analysis for polyoxymethylene 

passive sampler to water is 

log KPOM-w=-0.70(±0.12) + 0.59(±0.04)log Kow + 0.50(±0.06)log Koc  (eq. 4.1) 

The bar plot (figure 4.2) is giving us information about the hydrophobicity. We can see that 

log Kow is exerting dominant effect and as we know higher the Kow, more hydrophobic are the 
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compounds. log Koc which is a proxy for residual intermolecular interactions also exerts the 

same response as of log Kow.  

 

 

 

 

 

 

 

Figure 4.2: Bar Plot for polyoxymethylene passive sampler to water. 

Dimensionality Analysis - Justification for 2p-LFERs 

Dimensionality analysis was carried out after successful development of 2-p LFER model on 

Abraham solute descriptors that were collected from UFZ-LSER Database. This was carried 

out to ensure that 2p-LFER model is covering maximum information without losing any 

information. 

The factor plot (figure 4.3) is showing that the nonspecific Abraham descriptors E, S and V are 

imparting major information to the first dimension. Whereas the hydrogen bonding interaction 

parameters A and B are bringing in major information to the second dimension. Very weak 

contributions from the Abraham Solute descriptors from 3rd to 5th dimension can be observed.      
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Figure 4.3: 

Factor Plot for polyoxymethylene passive sampler to water. 

The dimensionality analysis justify the two parameter model as it tells that only two dimensions 

are enough to explain 75.4% of the information encoded in the Abraham solute descriptors for 

organic chemicals.  

4.1.2 Polyethylene passive sampler to water  

 

 

 

 

 

 

 

Figure 4.4: Scale Location Plot for polyethylene passive sampler to water 
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Polyethylene passive samplers are ethylene sheets which are cheap and good for hydrophobic 

chemicals . For polyethylene passive sampler to water the total number of data set was of 192 

observations which was reduced to 170 after removing a outliers and problematic data like 

PCB 180, PCB 204, PCB 208, PCB 187, PCB 170, BDE 196, BDE 204, BDE 207, BDE 208, 

BDE 209, BDE 126, BDE 138, BDE 153, BDE 154, BDE 166, BDE 181, BDE 183, BDE 190, 

dieldrin, α-endosulfan, endrinaldehyde and n-decylcyclohexane. Partition coefficient value 

was held as dependent variable and log Kow and log Kaw was taken as independent variable for 

our final 2p-LFER model.  

Stepwise and multi linear regression was carried out on the data set and the results were found 

positive as all the regression diagnostics plots and other values showed that the data set is linear 

and diverse. The value for R2, Adjusted R2 and Q2 is 0.83 log units. The root mean square error 

for my data set is 0.52 and Press root mean square error is 0.52 log units. Cross validation tests 

support our results. The p value for my model is < 2.2e-16 which is well less than 0.05 and 

telling us that it is very significant.  

The final model equation (eq. 4.2) for polyethylene passive sampler to water is 

log KPE-w =  -0.90(±0.24) + 0.76(±0.05)log Kow + 0.39(±0.08)log Kaw  (eq. 4.2) 

In the bar plot (figure 4.5) we can see that log Kow and log Kaw both are indicating that 

compounds will prefer to get to the other phase from aqueous phase that is our sampler. This 

indicates that the compounds are hydrophobic. Here one thing is to be noted that polyethylene 

passive samplers is used for super hydrophobic compounds.   

Dimensionality Analysis - Justification for 2p-LFERs 

The dimensionality analysis for polyethylene passive sampler to water indicates only two  
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dimensions cover 68.3% of total information. Factor plot (figure 4.6)  is showing contribution 

of Abraham solute descriptors in two dimensions justifying the 2p-LFER. 

 

. 

 

 

 

 

 

Figure 4.5: Bar Plot for polyethylene passive sampler to water. 

  

 

 

 

 

 

 

 

Figure 4.6: Factor Plot for polyethylene passive sampler to water. 
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4.1.3 Polyacrylic Passive Sampler to Water 

Polyacrylic passive samplers are acrylic based samplers used for polar chemicals and chemicals 

with H bond accepting capacity.   

 

 

 

 

 

 

 

Figure 4.7: Scale Location Plot for polyacrylic passive sampler to water. 

For polyacrylic passive sampler to water the total number of data set was of 96 observations. 

log Kow and log Kaw was taken as independent variable for our final 2p-LFER model. Stepwise 

regression and multi linear regression was carried and the criteria set for model was checked. 

All the regression diagnostic plots confirmed that the data is linearly arranged and diverse. VIF 

for the data set was less than 5 while the p value was also less than 0.05 i.e. is < 2.2e-16.   

All four cross validations tests support the values that were attained from running regression. 

The value for R2 and Adjusted R2 is 0.81 log units whereas Q2 is 0.80 log units. The root mean 

square error for my data set is 0.53 and Press root mean square error is 0.52 log units.  

The final model equation (eq. 4.3) for polyacrylic passive sampler to water is 

log KPA-w=  0.001(±0.19) + 0.87(±0.04)log Kow - 0.08(±0.02)log Kaw  (eq.4.3) 



 

 
26 

In the bar plot (figure 4.8) we can see that log Kow is exerting dominant effect which is telling 

about hydrophobicity of the compounds while log Kaw indicates that compounds would not get 

to the sampler phase.  

 

 

 

 

 

 

 

Figure 4.8: Bar Plot for polyacrylic passive sampler to water. 

 

Dimensionality Analysis - Justification for 2p-LFERs 

The dimensionality analysis carried out using Abraham solute descriptors covers 70.4% for 

polyacrylic passive sampler to water showing that not much information is lost. Factor plot 

(figure 4.9) shows that the 2p-LFERs are justified as two dimensions are covering most of the 

information. 

 



 

 
27 

   

 

 

 

 

 

 

Figure 4.9: Factor Plot for polyacrylic passive sampler to water. 

4.2 Phase 2- Air System 

4.2.1 Polydimethylsiloxane passive sampler to air 

In air system the first passive sampler is a silicone polydimethylsiloxane passive sampler 

compatible with wide spectrum of polar and non-polar chemicals. The data set consisted of to 

140 observations. Stepwise regression and multi linear regression carried out on the data set 

indicated that the data set is linear. Considering the criteria log Kow and log Koc are taken for 

the final equation 2p-LFER after all the regression diagnostic plots and cross validations. R2 

and Adjusted R2 is 0.94 log units whereas Q2 is 0.93 log units. Root mean square error for data 

set is 0.54 and Press root mean square error is 0.53 log units. The anova result for 2p-LFER 

model is significant which is < 2.2e-16.   

The 2p-LFER model equation (eq. 4.4) for polydimethylsiloxane passive sampler to air is 

log KPDMS-a=-0.07(±0.08) + 0.98(±0.02)log Kow - 0.7(±0.02)log Kaw  (eg. 4.4) 
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Figure 4.10: Scale Location Plot for polydimethylsiloxane passive sampler to water. 

The bar plot (figure 4.10) is showing that log Kow has dominant effect and as we know higher 

the Kow, more hydrophobic the compounds. In air system log Kaw is showing hydrophilic 

nature of the compounds.  

    

 

 

 

 

 

 

Figure 4.11: Bar Plot for polydimethylsiloxane passive sampler to water. 
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Dimensionality Analysis - Justification for 2p-LFERs 

 

 

 

 

 

 

Figure 4.12: Factor Plot for polydimethylsiloxane passive sampler to air. 

The factor plot (figure 4.12) justifies 2p-LFER model as only two dimensions are bringing in 

strong information. The dimensionality analysis of polydimethylsiloxane passive sampler to 

air shows that 81% of information is covered in only two dimensions. 

4.2.2 Polyurethane Foam Passive Sampler to Air 

For polyurethane foam passive sampler stepwise regression and multi linear regression carried 

out on 104 observations while taking log Kow and log Kaw as independent variables for 2p-

LFER model equation (eq. 4.5).  

log KPUF-a =0.21(±0.12) + 1.05(±0.03)log Kow – 0.90(±0.02)log Kaw   (eq 4.5) 

Polyurethane foam passive samplers are widely used and are easier to manage.  The p value is 

< 2.2e-16, less than 0.05 telling the significance. The variance inflation factor for log Kow and 

log Kaw is 2.106 which is less than 5.  The value for R2, adjusted R2 is 0.93 log units and the 

root mean square error for data set is 0.38 log unit attained from running regression analysis. 

The diagnostic plots interpretation indicates clearly about the linear arrangement of data. The 
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cross validations tests support the value attained from regression analysis as Q2 is 0.93 log units 

and press root mean square error is 0.36 log units.    

 

 

 

 

 

 

 

Figure 4.13: Scale Location Values Plot for polyurethane foam passive sampler to water. 

The bar plot (figure 4.14) for polyurethane foam passive sampler like polydimethylsiloxane 

passive sampler to air indicates that log Kow is rationalizing the hydrophobicity while log Kaw 

is indicates that the compounds will prefer to stay in air phase than to get the sampler.  

 

 

 

 

 

 

Figure 4.14: Bar Plot for polyurethane foam passive sampler to water. 
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Dimensionality Analysis - Justification for 2p-LFERs 

 

 

 

 

 

 

 

Figure 4.15: Factor Plot for polyurethane foam passive sampler to water. 

The factor plot (figure 4.15) is showing that Abraham solute descriptors are mostly covered in 

first two dimensions. In polyurethane foam passive sampler it can be observed that descriptor 

V is being covered in second dimension as before it was covered in first dimension. The sorbent 

difference tells us that the descriptors may behave differently depending upon the type of 

sorbent material used. The first and second dimension brings 67.5% of information which 

justifies the 2p-LFER. 
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4.3 Results Summary 

Table 4. 1: Results summary 

Passive Samplers  

 POM-water PE-water PA-water PDMS-air PUF-air 

Regression Analysis (Stepwise/Multi Linear Regression) 

No. of Observations  123 170 96 140 106 

R2 0.94 0.83 0.81 0.94 0.93 

Adj. R2 0.94 0.83 0.81 0.94 0.93 

RMSE 0.45 0.52 0.53 0.54 0.38 

VIF log Kow = 

2.601            

log Koc = 

2.601 

log Kow = 

2.665                    

log Kaw = 

2.665 

log Kow =  

1.114          

log Kaw = 

1.114 

log Kow = 

1.006                     

log Kaw = 

1.006 

log Kow =  

2.106          

log Kaw = 

2.106 

Cross Validation Tests 

LOOCV 

R2 0.94 0.83 0.80 0.94 0.93 

RMSE 0.44 0.52 0.52 0.53 0.36 

K-Fold CV 

R2 0.94 0.85 0.82 0.93 0.94 

RMSE 0.43 0.52 0.50 0.52 0.35 

Repeated K-Fold CV (k=10) 

R2 0.95 0.84 0.84 0.94 0.94 

RMSE 0.43 0.50 0.50 0.52 0.35 

Bootstrapping (n=500) 

R2 0.94 0.83 0.81 0.94 0.93 

RMSE 0.45 0.52 0.53 0.53 0.37 
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Chapter 5 

CONCLUSION AND RECOMMENDATION 

5.1 Conclusion 

Models developed in this study are theoretically-rigorous and statistically robust respecting the 

principle of parsimony. The dimensionality analysis provides the statistical support for the 

justification in reducing 5p-ASM to 2p-LFER as it can be observed that it covers most of the 

information and supports the fact that only few information is lost. 2p-LFER models for aquatic 

passive samplers and air passive samplers with RMSE range 0.45 to 0.55 log units and 0.38 to 

0.54 log unit were successfully developed in this study. 

The LFERs developed in this study unanimously shows that the log Kow has a positive effect 

on the uptake for both water and air samples. The proposed LFER methods are accessible, 

simple and efficient than different multi-parameter estimation methods with very low cost as 

compare to other estimation techniques like Abraham Solvation Method that requires 

experimental values and Quantitative Structure Activity Relationships or Quantitative 

Structure Property Relationships model which require superfast computer and are highly 

expensive. 

5.2 Recommendations  

Though my 2p-LFER model has its limitation for ionize chemicals, metallic and 

organometallics chemicals but this model can be used for passive samplers such as EVA - 

Ethylene vinyl acetate passive sampler. This sampler can be modeled using the same principles. 
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