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ABSTRACT 

 
This thesis sheds light on the mechanistic aspects of chemodynamics of organic 

pollutants in three environmentally-important phases: fish, human skin and 

polydimethylsiloxane (PDMS) passive samplers. 

Thesis starts with the probing of variability embedded in depuration half-life data for 

a diverse set of chemicals using different sets of inter-molecular interactions. I 

started with Abraham solvation parameters and found that together with fish weight 

information (𝑊𝑓), molecular polarizability ( 𝐸), hydrogen donating capability (𝐵) 

and the size ( 𝑉) of molecule play important role in describing more than 85% of 

variability in half-lives of a diverse set of chemicals. Models based on three types of 

descriptors-equilibrium coefficients (for air-water, octanol-water, organic carbon-

water, and organism-water partitioning systems), rate-related coefficient (diffusion in 

water and ethanol, biotransformation rate), and allometric coefficient (𝑊𝑓)- were 

used to estimate the depuration half-lives. The model using descriptors of 

bioconcentration factor (𝐵𝐶𝐹), biotransformation rate constant (𝑘𝑀), and 𝑊𝑓-referred 

to as BIOCEF model in this study-outperformed other models with R2 of 0.87 and 

root-mean-square error (RMSE) of 0.44 log unit, when compared to experimental 

data. Finally, we showed that the estimates of depuration half-life can be directly 

applied to nonpolar chemicals detected on GC×GC chromatograms with an RMSE of 

0.64 log units. 

In the second part of this thesis, I developed a model to estimate skin – permeability 

coefficients (𝐾𝑝), by modifying the previous approach. The training dataset was 

diverse and comprised of representatives of different chemical families. The new 

two-parameter (2p) model comprising of octanol – water ( 𝐾𝑜−𝑤)  and air – water 

(𝐾𝑎−𝑤) partition coefficients.  The 2p- model were able to explain 77% of variability 
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in the dataset with RMSE of 0.53 log unit. The performance of my new model was 

compared with previously used model, DERMWIN, which focus only on one 

partitioning property 𝐾𝑜−𝑤 and 𝑀𝑊 and Abraham solvation model have limitation of 

data accessibility for billions of chemicals. 

In third phase, two models were developed to estimate the time for chemicals to 

reach 95 % of equilibrium state by using PDMS - log τ 95-PDMS Model based on inter 

molecular interaction parameters - (𝐵, 𝑉) was best performed, while other model 

having partitioning descriptors- 𝐾𝑜−𝑤, 𝐾𝑎−𝑤, 𝐾𝑜−𝑐, was also showing good predictive 

efficiency. 

All studied aspects of chemodynamics explained that partitioning coefficients, 

diffusion coefficients and intermolecular interaction parameters are important 

descriptors to understand the transport of chemicals across or near different 

interfaces. 
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Chapter 1 
 

INTRODUCTION 
 

 

1.1 Background 

 
Chemodynamics deal with the time dependent property of the chemicals. This 

primarily focuses on fate, transport and effect of chemicals leading various processes 

– transport, transformation, permeation, uptake and elimination by living organisms. 

These processes of chemical reactions and diffusion are regulated by existing 

ambient environment and conditions, such as, temperature, concentration of 

chemicals, reaction with others chemicals present in that medium and other 

physicochemical properties of chemicals. Environmental importance of 

chemodynamics explain by the fact that it is essential element to figure out the 

ecological and public health risk assessment because most of the chemicals are 

bioaccumulative in nature (Freed, Chiou, & Haque, 1977; Percuoco, Kalnejais, & 

Officer, 2015; ter Laak, Busser, & Hermens, 2008).  

Understanding bioconcentration kinetics is important in the fields of ecotoxicology, 

bioaccumulation, and environmental risk assessment(Bayen, Ter Laak, Buffle, & 

Hermens, 2009; Escher & Hermens, 2004; Schwarzenbach & Gschwend, 2016).  

Depuration rate constants have been described using the following diffusion-based 

mass transfer model(Bayen et al., 2009; Greenwood, Mills, & Vrana, 2007; Huckins, 

Petty, & Booij, 2006; Sijm & van der Linde, 1995; ter Laak et al., 2008).  

𝑘𝑑 =  
𝐴𝑓 

𝑊𝑓(1 − 𝛾) + 𝛾𝐾𝑚−𝑤
   

1

     
𝛿𝑤

𝐷𝑤
+  

𝛿𝑚

𝐷𝑚. 𝐾𝑚−𝑤

                                                     (1) 

These rate constants can be converted into a more convenient form, for example, 



4  

depuration half-lives using following equation:  

t1
2⁄ =  

ln(2)

𝑘𝑑
                                                                                                                      (2) 

Where 𝐴𝑓 and 𝑊𝑓 denote gill surface areas and weight (mass) of fish; 𝛿, 𝐷 and 𝐾 are 

the diffusion path length, diffusion constant and partition coefficient, respectively. 

Subscripts f, w, and m indicate fish, water and biomembrane, respectively, and 𝛾 is 

fish lipid content.  

The Abraham solvation model (ASM) is a 5- or 6-parameter equation (eq.3 a-d) that 

has been widely explored in environmental chemistry to estimate several partitioning 

and transport properties(Michael H Abraham & Ibrahim, 2006; DiFilippo & 

Eganhouse, 2010; Endo, Brown, & Goss, 2013; Endo, Droge, & Goss, 2011; Endo, 

Escher, & Goss, 2011; Endo & Goss, 2011; Endo, Hale, Goss, & Arp, 2011; Endo, 

Mewburn, & Escher, 2013; Endo, Pfennigsdorff, & Goss, 2012; Geisler, Endo, & 

Goss, 2012; Hoover, Acree Jr, & Abraham, 2005; Kamprad & Goss, 2007; 

Lohmann, 2011; Poole, Ariyasena, & Lenca, 2013; Sprunger, Proctor, Acree Jr, & 

Abraham, 2007). 

log P𝑥𝑦,𝑖 =   𝑐 + 𝑒𝐸𝑖  + 𝑠𝑆𝑖   + 𝑎𝐴𝑖 +  𝑏𝐵𝑖  + 𝑣𝑉𝑖                                               (3 a) 

log P𝑥𝑦,𝑖 =   𝑐 + 𝑒𝐸𝑖  + 𝑠𝑆𝑖   + 𝑎𝐴𝑖 +  𝑏𝐵𝑖  + 𝑙𝐿𝑖                                                (3 𝑏) 

log P𝑥𝑦,𝑖 =   𝑐 + 𝑠𝑆𝑖  + 𝑎𝐴𝑖   + 𝑏𝐵𝑖 +  𝑙𝐿𝑖  + 𝑣𝑉𝑖                                                (3 𝑐) 

log P𝑥𝑦,𝑖 =   𝑐 + 𝑠𝑆𝑖  + 𝑎𝐴𝑖   + 𝑏𝐵𝑖 + 𝑣𝑉𝑖                                                            (3 𝑑) 

Where, P𝑥𝑦,𝑖 is a partitioning property of a chemical 𝑖, dispersed between two 

phases 𝑥𝑦, 𝑐 denote the value of intercept; while 𝑒, 𝑠, 𝑎, 𝑏, 𝑣  is the value of 

coefficient of each Abraham solvation parameters explain the importance of each 
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parameter. In addition to this, 𝐸𝑖  explain the excess molar refractivity that use to 

check the polarizability of the solute (cm3 per mole)/10, 𝑆𝑖   describe the 

characteristics of polarity or dipolarity of the solute, 𝐴𝑖 represent the hydrogen bond 

accepting  capacity (hydrogen bond acidity) of the solute while 𝐵𝑖   is the hydrogen 

bond donating capacity (hydrogen bond basicity) of the chemical, 𝑉𝑖 is the McGowan 

characteristic of molecular volume of solute in specific unit of (cm3 per mole )/100 

and L is the  gas- hexadecane partitioning coefficient of solute  at 25oC (Bradley et 

al., 2015). 

In dermatotoxicology, skin sensitization and skin permeability is primarily controlled 

by several biological and physiological parameters, such as protein binding, quick 

response of dendrites, thermoregulation, anatomical configuration and genetic setup 

of organism.(Ghafourian, Samaras, Brooks, & Riviere, 2010b)  

Dermal absorption mostly occurs by appendageal, transcellular and intercellular 

pathways. Monitoring of chemicals transfer by transcellular route is important in the 

chemical diffusivity model.(Chauhan & Shakya, n.d.; Moss, Wilkinson, & Sun, 

2012; Tsakovska et al., 2017). The mechanistic pharmacokinetic modeling of skin 

permeability demonstrate that dermal permeability coefficient is specifically 

correlated with ability of a chemical to pass from Stratum corneum (SC) to blood 

circulatory system, then ultimately into the vascular body system, where resorption 

of a chemical take place.(Michael H Abraham & Martins, 2004; Chen et al., 2013; 

Fatemi & Malekzadeh, 2012; Ghafourian, Samaras, Brooks, & Riviere, 2010a) 

Passive and active diffusion channels of the chemical occupied in epidermal and 

hypodermal region (follicle and sweat glands). It can be explained by the following 

Fick’s first law of diffusion.(Magnusson, Anissimov, Cross, & Roberts, 2004; 

Pecoraro et al., 2019; Shen, Kromidas, Schultz, & Bhatia, 2014)  
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𝑄 =
𝐷𝐴𝑇∆𝐶

ℎ
                                                                                                 (4) 

When stratum corneum act like a pseudo- homogenous membrane, chemical flux 

(mol/cm2/s) in steady state condition will be expressed as:  

𝐽𝑠𝑠  =
𝑄

𝐴𝑇
=

𝐷∆𝐶

ℎ
                                                                                        (5) 

Where 𝐽𝑠𝑠 - maximum flux of the chemical calculated by concentration of the 

chemical 𝑄 which is a product of diffusivity 𝐷 and concentration gradient ∆𝐶 across 

the membrane, to  the exposed area of skin 𝐴 in a given time 𝑇 which collectively 

describe as ℎ - thickness of a biological membrane.(Pecoraro et al., 2019) 

In equilibrium condition, concentrations of chemicals at path length depend upon 

following relationship:  

𝐶 = 𝐾𝑚 . 𝐶𝑉                                                                                                   (6) 

In this equation, 𝐾𝑚  is the partition coefficient between SC and the targeted delivery 

vehicle, 𝐶𝑉 denote the concentration of drug vehicle. The final expression to describe 

skin –water permeability coefficient is given below.(Shen et al., 2014; Tsakovska et 

al., 2017)  

𝐾𝑝 =
𝐽𝑠𝑠

𝐶𝑣
                                                                                                       (7) 

Where 𝐾𝑝  is the skin permeability coefficient which depend upon 𝐽𝑠𝑠 and 𝐶𝑣, (cf – 

eq. 6, and 7).  

Equilibrium constant – time to reach 95% of equilibrium state in PDMS - . log τ 95-

PDMS is very useful for monitoring of truly dissolve and bioavailable concentrations 

of chemicals and it’s time to be at equilibrium stage for a chemicals diffuse on 

passive sampler used to investigate the level of ecological risk, accumulation of 

chemicals in biological tissues and biomagnification as well.(Cui, Mayer, & Gan, 
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2013; Endo, Escher, et al., 2011; Jahnke, McLachlan, & Mayer, 2008; 

Schwarzenbach & Gschwend, 2016) 

The aim of the study is understand the various aspects of chemodynamics for diverse 

set of chemicals by using simplest, inexpensive method of estimation by taking few 

important and easily accessible descriptors.  

1.2. Problem Statement 

Existing experimental methods to understand chemodynamics of diverse organic 

pollutant are laborious, expensive and also have ethical implications. 

1.3. Objectives of the Study 

 To estimate the bioconcentration kinetics in fish using LFER  

 To map the skin permeability coefficient for human skin using simplest model  

 To understand the variability in the diffusion coefficients in PDMS  

1.4. Scope of study 

Research work was divided into three phases,  

 In the first phase, elimination half – life was estimated by developing various 

estimation models  

 In the second phase, skin permeability coefficients were estimated for diversified set 

of chemicals. 

 In the third phase, time for a chemical to reach 95 % of equilibrium stage was 

estimated by using different estimation approach. 
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Chapter 2 

LITERATURE REVIEW 

2.1 Chemodynamics  

In the non- steady state conditions in different environmental medium, load of 

chemical pollutant fluctuate with time and response of each biological species varied 

accordingly (Nabi, Gros, Dimitriou-Christidis, & Arey, 2014). Experimental setup 

for the estimation of chemodynamics in soil and water medium depend  upon 

ambient condition – temperature, concentration of chemical, amount of chemical 

adsorbed in case of soil and amount of chemical diffuse in the water and for the 

estimation purpose adsorption coefficient on soil and its correlation with kinetic at 

first order level (Felsot, Wei, & Wilson, 1982). Molecular dynamic simulation 

method was taken by an author to understand the chemodynamics of chemicals on 

metal surfaces and this study conclude that hydrogen bonding is a main binding 

forcing for a chemical to transport and adsorb on the metal surface in water medium 

(Li, Zhang, Liao, & Zhang, 2019).  

 For the estimation of chemodynamics in living organisms, exposed surface area has 

significant importance that how much chemical react at a given surface area, while 

residues of the chemicals also need to be asses for proper estimation of chemical 

transport and its effect (Rahman, Rahman, & Alam, 2015).  

In the water treatment plant in USA, a study elaborate the role of chemodynamics for 

chemical risk assessment by taking values of solubility and octanol water partition 

coefficients theses estimation methods based on estimated values taken from Epi 

Suite for early risk assessment and the estimation of chemodynamics through 

partitioning coefficients and degradation estimators can assist in agriculture field for 

appropriate application of pesticide and for water treatment plants (Acharya & 
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Weidhaas, 2018).  

2.2. Bioconcentration Kinetics  

The experimental method to understand  bioconcentration kinetics, environmental 

characteristics such as temperature, flow regime, biogeochemistry, and many other 

factors need more attentions, because it may perturb the steady-state conditions of 

environmental systems (Bayen et al., 2009; Schwarzenbach & Gschwend, 2016). 

Such dynamic aspects determine an organism’s response to the fluctuating 

concentrations of contaminants in the environment. Responses to fluctuating 

environmental concentrations will depend on a fish’s allometry; large organisms will 

integrate exposure concentrations over a longer time window and vice versa (Bayen 

et al., 2009).  

In order to meet regulatory requirements, bioconcentration experiments must 

consume several test animals (Guideline, 1996). For instance, an estimated 2.6 

million test animals are required (Van der Jagt, Munn, Tørsløv, & de Bruijn, 2004) to 

meet the requirements set out in the European chemical management program, 

REACH.(“REACH,” 2007) and experimental methods required labor intensive 

system.  

Scientists have traditionally used linear first-order kinetics to model bioconcentration 

kinetics(Barber, 2003). 

𝑑𝐶𝑓

𝑑𝑡
=  𝑘𝑢𝐶𝑤 −  𝑘𝑑𝐶𝑓                                                                                                       (8) 

Where, 𝐶𝑓 and 𝐶𝑤 are the concentrations in fish and water respectively. 𝑘𝑢 and 𝑘𝑑 

are the uptake and depuration rate constants, and 𝑡 is the exchange time.  

Release kinetics is functions of biological parameters, physicochemical parameters 

and hydrodynamic conditions. Scientists have developed these models to predict 
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bioconcentration kinetics using both biological and chemical parameters (Barber, 

2003). Biological parameters include growth, size, age, gill surface area, and the 

composition of lipid and other constitutional units of fish (Brooke, Crookes, & 

Merckel, 2012). These biological parameters were empirically related to fish weight 

(Barber, 2003; Brooke et al., 2012; Hendriks, 1995; Hendriks & Heikens, 2001). 

Chemical parameters include diffusion coefficients in water and mucus layers, an 

equilibrium bioconcentration factor (i.e. whole-fish to water partition coefficient) and 

partition coefficients to compositional units such as biomembranes, lipids and 

proteins (Barber, 2003; Sijm & van der Linde, 1995). Such parameters were 

estimated using an octanol-water partition coefficient (𝐾𝑜−𝑤) (Brooke et al., 2012; 

Hendriks & Heikens, 2001; Sijm & van der Linde, 1995). Diffusion boundary layers 

𝛿𝑤 and 𝛿𝑝 are controlled by the anatomical configurations of gills, therefore, theses 

parameters are assumed relatively constant (Sijm & van der Linde, 1995).This forms 

the rationale for using correlations based on 𝐾𝑜−𝑤 and species weight to predict 

kinetic rate constants. 

In another studies, intermolecular interaction parameters derived from GC×GC (two 

dimensional gas chromatography) retention time information to develop a two-

parameter-linear free energy relationship (LFER) for 37 environmental partitioning 

and transport properties for nonpolar contaminants (Nabi & Arey, 2017; Nabi et al., 

2014). 

log 𝑃𝑥𝑦,𝑖 =  𝜆1𝑈1,𝑖  + 𝜆2𝑈2,𝑖  + 𝜆3                                                                   (9)  

Where 𝑃𝑥𝑦,𝑖 describe the partitioning property of a chemical 𝑖 in two different 

phases 𝑥𝑦, while 𝑈1,𝑖 and 𝑈2,𝑖 can be explained by the following equation: 

𝑈1,𝑖 = log 𝐿1,𝑖                                                                                                          (9a) 
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  𝑈2,𝑖 = log 𝐿2,i −  𝛽orth log 𝐿1,𝑖                                                                          (9b)      

In these equations, log 𝐿1,i and log 𝐿2,i explain base-10 log-transformed gas- 

stationary phase partition coefficients (mol L-1 L) at 120oC for chemical 𝑖 on two 

stationary phases 1 and 2. Furthermore the parameter 𝛽orth has a constant value of 

1.1353 for the stationary phases in the system; explain that the vectors 𝑈1,𝑖 , 𝑈2,𝑖 are 

mutually orthogonal for assigned training set of nonpolar chemicals. The value of 

coefficients 𝜆1 , 𝜆2 , 𝜆3  are assigned to specific partitioning phases 𝑥𝑦 .Goss et al. 

suggested that depuration half-lives were much better metrics for bioaccumulation 

potential than biomagnification factor (BMF) (K. Goss, Brown, & Endo, 2013). A 

short exposure phase can result in insufficient time for hydrophobic contaminants to 

reach the slower-clearing compartments of the fish.(Fisk, Norstrom, Cymbalisty, & 

Muir, 1998; Reinert, Giddings, & Judd, 2002) Furthermore, it is difficult to take into 

account such details as biotransformation (Arnot, Mackay, & Bonnell, 2008).  

Hendriks developed the following relationship for the depuration constants in 

fish(Hendriks, 1995):  

   𝑘𝑑 =  [(
1

4×10−4 𝐾𝑜−𝑤+5
) + 4 × 10−3] × 𝑊𝑓

−0.19                                                       (10) 

𝑛 = 140, 𝑅2 = 0.68 

However, 𝐾𝑜−𝑤 alone does not explain the interaction variability across different 

chemical families (Schwarzenbach & Gschwend, 2016). This calls for a set of 

descriptors that explore the whole spectrum of interactions across all chemical 

families. 

2.3. Skin permeability coefficients  

For any chemical to permeate through the skin, major factors - concentration, 
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solubility, exposure and sampling time of a chemical have considerable importance 

(Alves et al., 2015; Kupczewska-Dobecka, Jakubowski, & Czerczak, 2010). Various 

sub layers of epidermal layer from outer to inner side - stratum corneum (SC), 

stratum lucidium (SL), stratum granulusum (SG), stratum spinosum (SS) and stratum 

germinavtivum(SG) act as barrier to absorb and permeate any chemicals across the 

inner skin layers (Tsakovska et al., 2017). SC describes as brick and mortar model, in 

which brick is a protein keratinized structure which enclosed in lipid lamella. This 

layer characterized by thickness of 10 to 50 µm, 5- 20% water content and it is free 

from any metabolic activity. Quantified chemical composition of SC is 40-50% of 

ceramides, 25% of lipoprotein with 5% of sulfate, ester group and other 

glucosylceramides, 15% of free fatty acids and long chain of hydoxylated alkyl 

group.  

For calculation of skin- permeability coefficient, there are many problems in the case 

of in-vivo and in-vitro experimentation, As different data on permeability reported in 

literature ,but there is no standardize procedure of experimentation, so the variability 

in the data shows the importance of various  subjective factors (species, genetic 

makeup and ages), dose application regime as well as occlusion that can easily effect 

the results in a direct way (Karadzovska & Riviere, 2013; Pecoraro et al., 2019; 

Tsakovska et al., 2017). All of these condition describe that experimental setup 

always operate in a sophisticated conditions. The actual value of diffusion coefficient 

in (SC) is very difficult to calculate, so in this condition, the value of diffusion 

coefficient in ceramic can be use as an estimate to calculate the relative value of skin 

permeability coefficient. In addition to this, slow diffusion and poor partitioning of 

anions make it difficult to figure out the value of permeability in case of ionic species 

(Zhang et al., 2012).  



13  

Zhang et al develop a model by taking inter - molecular interaction parameters 

(Abraham solute descriptors) for estimating skin – water permeability coefficients 

and conclude that key physiochemical attributes, such as solute size, hydrophobicity 

and hydrogen bond donating capacity of a chemical assist in monitoring and 

estimation of 𝐾𝑝. Solute size of the chemical is directly proportional to permeability 

coefficient. This relationship has also being appropriate even at phase boundry level. 

Applicability of this model is restricted because of limited data of Abraham solute 

descriptors are available, therefore our proposed model introduced an easily 

computed proxies of Abraham solute descriptors that have enough potency to be 

fitted as suitable alternative assessment indicators in dermal risk assessment 

(Michael H Abraham & Martins, 2004; Kupczewska-dobecka, Jakubowski, & 

Czerczak, 2010; Zhang, Abraham, & Liu, 2017). Existing computational model 

(DERMWIN) of 𝐾𝑝 returned us with less estimation efficiency by taking two 

descriptors - 𝐾𝑜−𝑤 and 𝑀𝑊. 

According to the guideline develop by OECD - organization for economic co-

operation and development, modeling of pharmacokinetics is an emerging field that 

can resolve problem of ethical implication of human skin testing.  The ultimate 

results from the dermal - chemo kinetic modeling mostly used for the early screening 

of chemical  for dermal - application, risk assessment and the variability in the 

measurement process can also be reduce by it (Pecoraro et al., 2019).  

According to the guideline of European chemical management guideline, regarding 

dermal exposure, Those chemicals which have MW of less than 500, then that 

chemical would be 100 % absorb by the living skin and if the MW of the chemical 

would be higher than 500. Only 10 % of the chemical would be absorbed by the skin. 

The standard range of octanol water partition coefficient 𝑓𝑟𝑜𝑚 < −1 𝑡𝑜 > 4 has 
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allotted for minimum and maximum chemical absorption respectively (Berge, 2009).  

2.4. Monitoring using PDMS 

 
PDMS made up of various polymers and solvent having different capacities to 

perfume kinetic process.  For monitoring of chemical in the perspective of 

partitioning of chemical between different interfaces, material made up of single 

polymer mostly consider as favorable option. Exchange rates and diffusion 

coefficients between sampler and water phase decide the amount of chemical move 

toward passive sampler PDMS can monitor PCBs with wide range of hydrophobicity 

and complex organic chemicals by taking integrated approach between exposure and 

time (J. Arey, Samanipour, Dimitriou-Christidis, Nabi, & Gros, 2015).  

By simple diffusion model, equilibrium times are mapped out for hydrophobic 

compounds by consideration of surface – volume ratio of PDMS. in the field 

monitoring study using PDMS, sampling time and equilibrium constant need more 

attention to study the sorption behavior of chemical. (J. Arey, Samanipour, 

Dimitriou-Christidis, Nabi, & Gros, 2015).  

At molecular level, affinity of a chemical to get absorbed at passive sampler depends 

upon van der Waals forces and hydrogen bond interaction parameters. Size and 

symmetry of the chemical, sampling area, mixing and turning of water and 

physiochemical properties of the chemicals decide the time to reach at equilibrium 

state. Uptake Kinetics can be affected by limiting factors, such as aqueous boundary 

layer that limit the transfer of chemicals between two mediums. (ter Laak et al., 

2008).  

 Due to greater thickness and lipophilic nature of of PDMS, it mimic the inner 

epidermal layer of human skin SC so the permeation kinetics and it is affordable, 
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inexpensive and easy to available so experimental setup can be develop by it.  Ionic 

species can permeate through PDMS membrane (Liu, Zhang, & Abraham, 2018).  

 

2.5. Estimation Methods 

Widely used existing estimation methods are Ab initio, LFER, Fragmental and Group 

methods that are used to screen chemicals at early stage.  

Fragmental method of estimation has wide practical application to develop a QSAR 

model use to predict and estimate biological and physical properties of chemicals, 

site specific physiochemical profiling, active skeleton and functional group of the 

chemicals (Japertas, Didziapetris, & Petrauskas, 2003).  

Solvent activity in polymer has assessed by group estimation method. At basic level 

contribution of first order group and at advance level, 2nd order group get assessed 

and estimated by this method. Estimation and identification of isomers with accurate 

application used to identify properties (Constantinou & Gani, 1994). Poly parameter 

linear free energy relation model (PP- LFER) has higher efficiency to predict the 

partitioning coefficient in various technical systems and the applicability of this 

model has proven from the fact that the model describes the linear relationship 

between various environmental properties. Equation develops by LFERs model also 

describe the strong relationship between all mentioned descriptors (Endo & Goss, 

2014; Endo, Grathwohl, Haderlein, & Schmidt, 2009).  

Ab initio is a quantum mechanical modeling method use to identify mechanical 

structure of molecule at optimized level. This method based on simulation of the 

system to search different local approaches (Singh & Kollman, 1986). Structural 

dimension of the chemical with its ability to show uniqueness from other chemicals 

can be evaluated by this method.  
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Scattering data by ab initio method assist by various modeling methods, such as bead 

method and envelop function (Volkov & Svergun, 2003).  
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Chapter 3 
 

METHODOLOGY 

 
Details about materials and methods are described in this chapter which was used for 

the investigation purpose of the study. Analysis on available data was performed by 

authentic computational software on computer.  

3.1 Data Source  

Experimental values for depuration half-live 𝑡1
2⁄  , 𝐾𝑜−𝑤of contaminants, and fish 

weight data involving 192 chemicals were collected from literature (Fisk et al., 1998; 

Hendriks, 1995). To avoid over-representation, multiple values reported for a single 

chemical were averaged using arithmetic mean. This resulted in a final sample size 

of 82. Three compounds (DDT, permthrin and carbaryl) were excluded from the data 

because isomeric information was not given and the Cook’s D values for these 

compounds were higher than the critical value. Diffusion coefficients in water (𝐷𝑤) 

and in ethanol (𝐷𝑒𝑡ℎ) were estimated from the ASM-based relationships reported by 

Hills et al. (Hills, Abraham, Hersey, & Bevan, 2011). The values of 𝐾𝑜−𝑤 and 𝐾𝑎−𝑤 

were estimated using Abraham solvation model equations (Michael H Abraham, 

Nasezadeh, & Acree Jr, 2008; K.-U. Goss, 2006) and from EPI SuiteTM 4.1 – 

KOWWIN v1.68, HenryWin v3.20 (US-EPA, 2018). Estimated value of 𝐵𝐶𝐹 and 

𝑘𝑀 were taken from EPI SuiteTM 4.1 – BCFBAF v3.01. GC×GC retention 

parameters, 𝑢1 and 𝑢2, were taken from literature (Nabi & Arey, 2017; Nabi et al., 

2014).  

The diversity of the chemical set used in the study can be gauged in term of the wide 

ranges spanned by 𝑡1
2⁄ (33 to 990 days), 𝐾𝑜−𝑤 (9 order of magnitude), 𝐾𝑎−𝑤 (5 order 
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of magnitude), and by broad-spectrum ASM descriptors. The spread for other 

descriptors such as 𝐷𝑤 , 𝐷𝑒𝑡ℎ , 𝐵𝐶𝐹, 𝑘𝑀 , 𝑊𝑓 is given in table S15. Structurally, the 

dataset includes compounds from families such as chlorinated - and brominated- 

benzenes (CBs), chlorophenols, pesticides, insecticides, polycyclic aromatic 

hydrocarbons (PAHs), heterocyclic aromatic compounds, polychlorinated biphenyls 

(PCBs), polybrominated diphenyl ethers (PBDEs), polyhalogenated dibenzo-p-

dioxins (PHDDs), dibenzofurans (PHDFs), and polychlorinated naphthalenes 

(PCNs).  

Experimental values of skin permeability coefficient 𝐾𝑝, comprises of 275 chemicals 

were taken from literature (Zhang et al., 2017). It has been reported in the previous 

studies (Zhang et al., 2012) that ionized species penetrate less deeper than neutral 

species, and follow lateral diffusion due to steric resistance exert by interlinked lipid 

layer in the deeper region of the skin and estimated values of partitioning coefficients 

was very limited Therefore, we exclude ionic species from the data set. A final 

sample size for further computational modeling was 175 (n=175). 

The experimental data set of 𝐾𝑝 taken in this study spanned by 7 orders of 

magnitude. The estimated, experimental, and Abraham solvation derived values of 

𝐾𝑜−𝑤, 𝐾𝑎−𝑤, also have diversified range. Data set contain compounds from 

structurally different chemical families, such as steroids, alcohol, acids, amines, 

amides, carbonyls, esters, urea, carboxylic acids, ether, halides, nitriles and nitro 

compounds (Baba, Takahara, & Mamitsuka, 2015; Zhang et al., 2017)  

Experimental and estimated values of 𝐾𝑜−𝑤, 𝐾𝑎−𝑤, was extracted from easily 

accessible software - EPI SuiteTM 4.1 – (KOWWINv 1.68), (HenryWin v 3.20) 

respectively.(US-EPA, 2018) Another estimated data set of 𝐾𝑜−𝑤(𝐴𝑆𝑀), 𝐾𝑎−𝑤(𝐴𝑆𝑀), 
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was develop by Abraham solvation model equation (Michael H Abraham et al., 

2008; K.-U. Goss, 2006).  

For monitoring of chemical diffusion by PDMS, experimental value of log τ 95-PDMS 

for PCBs and CBs are taken as (n=21) was taken from literature(Rusina, Smedes, 

Koblizkova, & Klanova, 2009). This data set also diversified over 5 order of 

magnitude and the values of Abraham solute descriptors are taken from absolve data 

base, which also spanned over diversified range (Ulrich  S.; Brown, T.N.; Watanabe, 

N.; Bronner, G.; Abraham, M.H.; Goss, K.-U., 2017). In this case also, values of 

partitioning coefficients 𝐾𝑜−𝑤, 𝐾𝑎−𝑤, and 𝐾𝑜−𝑐,were also taken from EPI SuiteTM 4.1 

– (KOWWINv 1.68), (HenryWin v 3.20) and (KOCWIN v2.00) respectively.(US-

EPA, 2018).  

3.2. Statistical Analysis  

Statistical analyses such as multiple linear regression, Principle Component Analysis (PCA) 

and cross-validation were performed using R statistical environment (version - 3.5.3) 

(R(3.5.3), n.d.) and XLSTAT (2018) (xlstat, 2018). Contribution of a variable in the model 

was considered statistically significant if the computed t-value of the variable coefficient is 

less than or equal to the critical t-values reported at the significance level (p-value <0.05) for 

a given degree of freedom (Dempster, 1969). The Akaike Information Criterion (AIC) was 

used to select the optimum number of variables in the model. AIC penalizes the model upon 

adding new variables that do not impart sufficient information to the model.(Bozdogan, 

1987). Hence, a model with minimum AIC value was selected. Analysis of correlation 

was also performed to check any overlapping information bring by different 

descriptors  

After selection of variables, regression diagnostic (Studentidized Residuals, Hat 

Values and Cook’s Distance) were analyzed to identified influential values in each 



20  

model or approach proposed in this study. Standard errors of the fitting coefficients in 

each model were computed using bootstrapping algorithm. Following cross-validation tests 

were performed to assess the predictive capability of models: K- Nearest Neighbor, K-Fold, 

repeated K- Fold (r =10), Leave-One-Out (LOO), and bootstrapping (n=1000). For the 

external-validation of each model, the dataset was randomly split into training and test sets. 

Principle Component Analysis (PCA) was performed on model descriptors to investigate the 

dimensionality in the final data set.  
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Chapter 4 
 

RESULTS AND DISCUSSIONS 

 
4.1.Bioconcentration Kinetics in Fish (PHASE 1) 

4.1.1. Elimination half - life 

Different approaches used to explore the variability in depuration half-lives, and 

develop predictive models are discussed in the following sections.  

 

   

Figure1. Plots of experimental versus predicted depuration half-life using (a) 

Abraham solvation model (eq.11), (b) Triad Bioconcentration Kinetic Model (eq 12), 
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(c) Diffusivity Model (eq 13), and (d) BIOCEF model (eq. 14). At upper and lower 

line show 95% of confidence interval. 

4.1.1.1. Abraham Solvation Model  

A multiple linear regression of depuration half-lives against Abraham solvation 

parameters and fish weights resulted in eq.7. 𝐴𝑖and 𝑆𝑖 descriptors were not 

statistically significant (p > 0.05), and the Akaike information criterion (AIC) was 

not reduced further by adding these descriptors; therefore 𝐴𝑖 and 𝑆𝑖 were removed 

from the model. The removal of these descriptors may be justified chemically. The 

magnitude of descriptor 𝐴𝑖 generally tends to be small (for the depuration half-life 

data set 𝐴𝑖 ≤ 0.66). Solute descriptors 𝐸𝑖 and 𝑆𝑖 are found to be strongly correlated; 

this correlation is attributed to the fact that polarizability is embedded, to a greater or 

lesser extent, in the definitions of 𝐸𝑖 and𝑆𝑖 (J. S. Arey, Green, & Gschwend, 2005; 

Gritti, Felix, Achard, & Hardouin, 2001; Vitha & Carr, 2006). Polarizability also 

tends to increase with solute size, 𝑉𝑖. This covariance magnifies because all solute 

molecules are aromatic in the data set (Vitha & Carr, 2006). The Pearson product-

moment correlation coefficients between 𝐸𝑖 and 𝑆𝑖, and between 𝑉𝑖 and 𝑆𝑖, were 0.82 

and 0.81, respectively. This is further corroborated by the PCA of ASM descriptors. 

Hence, in the presence of one variable, the other becomes almost redundant and 

statistically insignificant.  

log t1
2⁄ = −1.29(±0.37) − 0.91(± 0.16)𝐸𝑖 − 2.25(±0.33)𝐵𝑖           

              +2.97(±0.24)𝑉𝑖 + 0.14(±0.04) log 𝑊𝑓                                                    (11) 

𝑛 = 80, 𝑅𝑀𝑆𝐸 = 0.47, 𝑃𝑅𝐸𝑆𝑆 𝑅𝑀𝑆𝐸 = 0.50,   𝑅2 = 0.85   

𝐴𝑑𝑗. 𝑅2 = 0.83, 𝑄2 = 0.82         
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Eq. 11 explains the 85% of variability in depuration half-live data with 𝑅𝑀𝑆𝐸 of 

0.47 log unit. The model is internally valid as indicated by the closeness of RMSE 

and 𝑃𝑅𝐸𝑆𝑆 𝑅𝑀𝑆𝐸 values, and of 𝑅2 and 𝑄2 values. This is further supported by 

other cross-validation tests. We trained eq.11 using estimated values of Abraham 

solute descriptors 𝐸𝑖 𝐵𝑖 𝑉𝑖 and fish weight information 𝑊𝑓 (n=80) computed 𝑅2 =

0.85 and 𝑅𝑀𝑆𝐸 = 0.46  log unit  

 In both cases (exp. and est. model) 85% of variability with RMSE in the range of 

0.46 to 0.47 log unit explained by eq.11.  

Eq. 11 depicts that the solute size is the most influential descriptor in controlling the 

exchange kinetics: bigger molecules tend to depurate slowly. Compounds with 

hydrogen-bonding interactions were fast in the exchange process. This was expected, 

as other rate-related properties, such as the skin permeation and the human intestinal 

absorption rate constants, have been found to have a similar dependence on solute 

size and hydrogen-bonding interactions (Michael H Abraham & Martins, 2004; 

Michael H Abraham et al., 2002; Zhang et al., 2012). Similarly, the weight of the fish 

species is positively correlated with the depuration half-lives, which can be 

rationalized based on the fact that heavier fish takes longer times to integrate the 

fluctuations in chemical concentration.  

4.1.1.2. Three-Parameter Kinetic (TPK) Model. 

As evident from equation 11, the depuration half-life is dictated by Van der Waals 

forces and hydrogen bond-donating trait of the chemicals- which may be constrained 

sufficiently using 𝐾𝑜−𝑤 and 𝐾𝑎−𝑤 for the types of chemicals present in the training 

dataset. This motivated us to develop TPK model.  

log t1
2⁄ = −0.91 (±0.39) +  0.17 (±0.05) log 𝑊𝑓  +  0.59(±0.05) log 𝐾𝑜−𝑤(𝐴𝑆𝑀) 
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                       +0.27 (±0.05) log 𝐾𝑎−𝑤(𝐴𝑆𝑀)                                                                    (12) 

𝑛 = 82, 𝑅𝑀𝑆𝐸 = 0.54, 𝑃𝑅𝐸𝑆𝑆 𝑅𝑀𝑆𝐸 = 0.57, 𝑅2 = 0.79  

 𝐴𝑑𝑗. 𝑅2 = 0.78,    Q2  = 0.77                                            

Here, eq 12 is trained with 𝐾𝑎−𝑤 and 𝐾𝑜−𝑤 values (n=82) estimated using ASM 

equations,(Michael H Abraham et al., 2008; K.-U. Goss, 2006) which are known to 

provide accurate estimations compared to EPI-Suite (Du, Valko, Bevan, Reynolds, & 

Abraham, 2001; Reppas-Chrysovitsinos, Sobek, & MacLeod, 2016) However, we 

report model (eq 12) training on values obtained from different estimation 

approaches in SI. Training of eq 12 on experimental values of 𝐾𝑎−𝑤 and 𝐾𝑜−𝑤 

(n=61) returned 𝑅2 = 0.73 and 𝑅𝑀𝑆𝐸 = 0.62  log unit. We also trained eq 12 using 

values of 𝐾𝑎−𝑤 and 𝐾𝑜−𝑤 (n=82) estimated from easily-accessible EPI-Suite, which 

resulted in of 𝑅2 = 0.78 and 𝑅𝑀𝑆𝐸 = 0.56  log unit.  

In all cases of trainings, eq 12 explains 73-79% of variability with RMSE in range of 

0.54-0.62 log unit. The fitting coefficients in all cases of trainings are not 

significantly different from each other. The nearness of values of 𝑅𝑀𝑆𝐸 and 

𝑃𝑅𝐸𝑆𝑆 𝑅𝑀𝑆𝐸, and of 𝑅2 and Q2  values shows the internal validity of eq. 12, which 

is further elaborated by other cross-validation analyses.  

Eq. 12 shows that octanol-water partitioning property strongly influences the 

depuration behavior of chemical. The chemicals with higher 𝐾𝑜−𝑤, being 

hydrophobic and persistent, tend to depurate slowly. The chemicals with higher 

𝐾𝑎−𝑤 tend to depurate at low rate. As in case of eq 11, 𝑊𝑓 shows a positive 

relationship with t1
2⁄ .  
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4.1.1.3. Prediction based on diffusivities 

Different studies showed that diffusion through stagnant layers, such as mucus layer 

on biological tissues, is a rate-limiting step in the mass transfer process (Michael H 

Abraham et al., 2002; Sijm & van der Linde, 1995). A mucus layer is composed of 

glycoprotein and sialic acid, with 95% water. Abraham et al. found that transport 

properties, such as diffusion constants in water and in ethanol, are closely related to 

such mass transfer processes (M H Abraham, 2003). However, due to the presence of 

glycoprotein and sialic acid, the actual diffusion constants of contaminants in mucus 

layers are higher than those in water (Verhaar et al., 1999). Hill et al. found that 

ethanol is a good model solvent for mimicking the mucus layer. This provided the 

rationale for these parameters to be considered in MLRs together with the 𝐾𝑜−𝑤, 

diffusion coefficient in water (𝐷w), diffusion constant in ethanol ( 𝐷𝑒 ), and fish 

weight information to estimate the elimination half lives of the contaminants. This 

exercise resulted in the following model.  

log t1
2⁄ = −2.13(±0.35) + 5.6 (±2.111) log 𝐷𝑒 + 0.391 (±0.068)log 𝐾𝑜−𝑤 

                     + 0.125 (±0.048) log 𝑊𝑓 − 3.759(±1.031) log 𝐷𝑤                                    (13) 

 𝑛 = 82,       𝑅𝑀𝑆𝐸 = 0.56, 𝑃𝑅𝐸𝑆𝑆 𝑅𝑀𝑆𝐸 = 0.63, 𝑅2 = 0.78,   

𝐴𝑑𝑗. 𝑅2 = 0.77,    Q2  = 0.77   

Eq. 13 explains 78 % of variability (𝑅2 = 0.78)  with 𝑅𝑀𝑆𝐸 of 0.63 log unit - 

Figure 1(c). As evident from the values of 𝑅𝑀𝑆𝐸, 𝑃𝑅𝐸𝑆𝑆 𝑅𝑀𝑆𝐸, 𝑅2, Q2 and other 

cross-validation tests (Table S5.3 and Table S9) for eq 13, this model is deemed 

valid and robust for predictive purpose. The success of eq. 13 can be mapped back to 

eq.2 where 𝐷𝑒  , 𝐾𝑜−𝑤 and  𝑊𝑓  act as proxy of 𝐷𝑚 , 𝐾𝑚−𝑤 and  𝐴 𝑉⁄  respectively.  
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Eq 13 shows that diffusivities have a profound effect in controlling the exchange 

kinetics:  𝐷𝑒  is positively related, and 𝐷𝑤 is negatively related to t1
2⁄ .  

4.1.1.4. BIOCEF Model  

The BIOCEF model, which is trained on 𝐵𝐶𝐹 and 𝑘𝑀 descriptors, resulted in the 

following eq.  

log t1
2⁄ = −1.08(±0.262) + 0.084 (± 0.035) log 𝑊𝑓 +  0.43(±0.088) log BCF 

                 −0.6 (±0.084) log 𝑘𝑀                                                                                (14) 

𝑛 = 82, 𝑅𝑀𝑆𝐸 = 0.44, 𝑃𝑅𝐸𝑆𝑆 𝑅𝑀𝑆𝐸 = 0.46, 𝑅2 = 0.87  

𝐴𝑑𝑗. 𝑅2 = 0.86,   Q2 =  0.85 

BIOCEF model (eq14) outperformed all estimation approaches developed in this 

study, and was able to explain 87 % of variability in the dataset with 𝑅𝑀𝑆𝐸 0.44 log 

unit (Figure 1d). The model is internally and externally valid as evident from the 

validation statistics  

Eq.14 shows that all variables bring significant information but 𝑘𝑀 is the most 

dominating parameter in the model. The model indicates that a chemical with low 

biotransformation rate constant and high 𝐵𝐶𝐹 value will depurate slowly. The better 

performance of BIOCEF may be attributed to the fact that 𝐵𝐶𝐹 and 𝑘𝑀 are closer 

relative of  𝐾𝑚−𝑤 and 𝐾𝑑, respectively (cf. eq.2) than the descriptors used for other 

models.  

4.1.1.5. Mapping elimination – half-lives onto GC×GC 

Previous studies (Nabi & Arey, 2017; Nabi et al., 2014) showed that eq. 9 is capable 

of estimating partitioning and transport properties. It was thus expected that, together 
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with weight information on fish, eq. 9 would be able to explain the variance in the 

depuration constant data for nonpolar chemicals. This exercise resulted in the 

following eq. 

log t1
2⁄ = −1.80 (±0.77) + 1.037  (±0.156) 𝑢1 − 8.01  (±1.125) 𝑢2 

                                +0.22 (±0.091) log 𝑊𝑓                                                                       (15)                

 𝑛 = 27, 𝑅𝑀𝑆𝐸 = 0.51, 𝑃𝑅𝐸𝑆𝑆 𝑅𝑀𝑆𝐸 = 0.63, 𝑅2 = 0.80,   

𝐴𝑑𝑗. 𝑅2 =   0.78, 𝑄2 =   0.70   

The regression and validation statistics for eq 15 shows that the estimates of half-

lives for nonpolar chemicals can be mapped onto GC×GC chromatograms with 

sufficient accuracy. 

The experimental dataset (n=27) used to train eq. 9 is diverse and has the 

representation of chemical families such as chlorinated aliphatic hydrocarbon, PAHs, 

PCBs, chlorobenzenes, PCN, OCPs and toxaphenes. Abraham solute descriptors for 

this dataset constitute quite a representative multidimensional space. However, for 

small sized dataset correlation among explanatory variables may adversely affect the 

predictive capability of the model (Golbraikh & Tropsha, 2000). Even though 

smaller in size (n=27), the experimental dataset used to calibrate eq.15 is 

representative of nonpolar contaminants, and was modeled parsimoniously with the 

orthogonal variables; therefore, we can deem eq.15 to be statistically robust for its 

predictive capability.  

However, another approach may also be taken that circumvents the issue of data size 

and representativeness. In this approach eq. 9 is trained against the values of 𝑡1
2⁄  that 

were estimated using eq. 11, which resulted in the following eq. 
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log t1
2⁄ = −2.46 (±0.122) + 1.15  (±0.064) 𝑢1 − 7.4  (±0. 314) 𝑢2 

                    + 0.141(±0.041) log 𝑊𝑓                                                                                (16) 

 𝑛 = 41, 𝑅𝑀𝑆𝐸 = 0.34, 𝑃𝑅𝐸𝑆𝑆 𝑅𝑀𝑆𝐸 = 0.37   

𝑅2 = 0.93, 𝐴𝑑𝑗. 𝑅2 = 0.93,   𝑄2 = 0.92            

When the experimental values of 𝑙𝑜𝑔𝑡1
2⁄  (n=27) were compared to the predicted 

values by eq.12, an RMSE of 0.57 log unit was obtained. This slightly higher value 

of RMSE of eq 16 compared to that of eq 14 was expected as the model was 

calibrated against ASM-estimated values. However, given the uncertainty in the 

experimental data this slightly higher RMSE values may still be acceptable. 

Nonetheless, eqs.14 and 15 satisfactorily explained the variability in depuration half-

lives  

4.1.1.6. Comparison with the Hendriks model 

The predictive performance of the estimation models developed in this study were 

compared with that of Hendriks model (eq.10) using the common experimental 

dataset Hendriks model returned an RMSE value of 0.64 and R2 = 0.71. In 

comparison eq 11 explained 12% more variance in the depuration half-lives with 

lower RMSE. This was expected as 𝐾𝑜−𝑤 only explores the variability for solutes 

that are structurally similar or belong to the same chemical family. Abraham solute 

descriptors capture the interactions across different chemical families  

with diverse structures and properties.  
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4.2. Human Skin Permeability Coefficient (Phase 2) 

Different Models and approaches used to describe the importance and utilization of 

descriptors that were involved in the estimation of 𝐾𝑝 (cm/s) described in the following 

section:  

 

 

Figure 1 Plots of predicted versus experimental values develop by splitting of data in to 

training and test data sets to describe robustness of all models. a) Two Parameter Model, b) 

GC×GC based Model, c) DERMWIN Model, d) Zhang Model  
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4.2.1 Two - Parameter Model   

In this model we regressed by observed values of 𝐾𝑝 against the estimated values of 

descriptors - 𝐾𝑜−𝑤, 𝐾𝑎−𝑤, which results in eq.6.  

Log 𝐾𝑝 =  −5.21(±0.12) + 0.39 (±0.03) log 𝐾𝑜−𝑤 +  0.16 (±0.01) log 𝐾𝑎−𝑤  (16) 

𝑛 = 175, 𝑅2 = 0.71, Adj. 𝑅2 =  0.71, 𝑄2 = 0.70, 𝑅𝑀𝑆𝐸 = 0.59,   

𝑃𝑅𝐸𝑆𝑆 𝑅𝑀𝑆𝐸 = 0.60                                   

Equation 16 portrait 71% of variability in the final permeability data set with 𝑅𝑀𝑆𝐸 of 0.59 

log units. Internal validity of the model highlighted by the nearness of RMSE and PRESS 

RMSE values and by another indication – closeness of 𝑅2
 and 𝑄2

 values. Furthermore, results 

of cross validation tests also confirm that model is robust with internally and external valid 

for predictive purpose  

In term of theoretical explanation, and both partitioning coefficients - 𝐾𝑜−𝑤, 𝐾𝑎−𝑤 are 

positively related, while 𝑀𝑊 is negatively correlated with 𝐾𝑝. The most significant variable 

in the model is 𝐾𝑜−𝑤. Thickness of epidermal region - SC in context with chemical diffusion 

is correlated with 𝐾𝑜−𝑤 and this characteristic is interlinked with water- liposome partition 

coefficient (Zhang et al., 2012) and those chemicals would transport through Existing link 

between 𝑀𝑊 and 𝐾𝑝 has justified by free - volume theory, that diffusion or permeability 

coefficient is inversely proportional to molecular weight (Kupczewska-dobecka et al., 2010). 

So the chemical with higher value of partitioning coefficients and lower value of molecular 

weight will permeate with faster rate through an exposed area of skin.  

In another multi- dimensional approach at inter-molecular interaction level, partitioning 

descriptors - 𝐾𝑜−𝑤 (𝐴𝑆𝑀), 𝐾𝑎−𝑤 (𝐴𝑆𝑀) with 𝑀𝑊 was derived by Abraham solvation equation 

to provide the alternative pitch with better efficiency, which results in eq. 17.  

log 𝐾𝑝 = −5.41 (±0.08) + 0.46(±0.03) log 𝐾𝑜−𝑤 (𝐴𝑆𝑀) 
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                 +0.14 (±0.007) log 𝐾𝑎−𝑤 (𝐴𝑆𝑀)                                                                            (17) 

𝑛 = 175,    𝑅2 = 0.82, Adj. 𝑅2 = 0.82, 𝑄2 = 0.81,    𝑅𝑀𝑆𝐸 = 0.47,   

𝑃𝑅𝐸𝑆𝑆 𝑅𝑀𝑆𝐸 = 0.48 

In eq.17, 82% of variability explained with 𝑅𝑀𝑆𝐸 of 0.47 log unit. Evidence of internal 

validity (nearness of 𝑅𝑀𝑆𝐸 and 𝑃𝑅𝐸𝑆𝑆 𝑅𝑀𝑆𝐸, 𝑅2 and 𝑄2) with cross validation of the 

model have indicated in the results  

As evident in eq.17 that both partitioning descriptors are showing positive relationship with 

𝐾𝑝.   

In the case of experimental values of partitioning coefficients, we have very limited data 

(n=68) for targeted chemicals in our study, we have trained an equation 6 by using 

experimental values to check the estimation power of resulting eq.18.  

log 𝐾𝑝 =  −5.43(±0.17) + 0.5 (±0.05) log 𝐾𝑜−𝑤 +  0.16 (±0.02) log 𝐾𝑎−𝑤     (18) 

𝑛 = 68, 𝑅2 = 0.85, Adj. 𝑅2 =  0.84, 𝑄2 = 0.83, 𝑅𝑀𝑆𝐸 = 0.34,   

𝑃𝑅𝐸𝑆𝑆 𝑅𝑀𝑆𝐸 = 0.36         

In eq.18, 85 % of variability with RMSE of 0.34 log unit explains that experimental values of 

descriptors have enormous potential to map - out the permeability coefficient. 

Statistical indicators of this model also depict that model is internally valid to calculate the 

value of 𝐾𝑝, and the results of cross validation also qualify the same  

Equation 18 also draw same conclusion that 𝐾𝑜−𝑤 is highly influential to calculate skin- 

permeability coefficient and these partitioning properties of chemical are positive related with 

𝐾𝑝 , which indicate that electrostatic interactions with hydrogen bond related properties are 

momentous at intermolecular level  
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4.2.2. GC×GC based Model  

To monitor the skin permeability of complex non polar organic chemicals, we trained the 

eq.6 to estimate the value of time retention indices by ASM equations (Table 16 and 17). The 

values of retention indices act as efficient proxies of partitioning descriptors, so the 

permeability of complex mixtures can be mapped by 𝑢1 and 𝑢2.  

log 𝐾𝑝 = −5.35 (±0.07) + 0.58(±0.02)𝑢1 − 3.51 (±0.19)𝑢2                                   (19) 

𝑛 = 79,    𝑅2 = 0.90, Adj. 𝑅2 = 0.89, 𝑄2 = 0.89,     

𝑅𝑀𝑆𝐸 = 0.23 (wrt ASM − redicted values),   

𝑃𝑅𝐸𝑆𝑆 𝑅𝑀𝑆𝐸 = 0.24 

 Eq.19 depicts 90% of variability with RMSE of 0.23 log units that explain higher prediction 

power of the model. This model was trained on model data set derived from analytes separate 

by GC×GC chromatogram. When we compare the values of 𝐾𝑝 estimated for analytes with 

the values derived from eq.19, we get higher RMSE of 0.39 log units wrt ASM-predicted 

values. (Table S15). Whereas, for the same analytes set, DERMAWIN exhibited RMSE value 

of 0.83 log unit wrt ASM-predicted values.  

Statistical indicator - closeness of 𝑅𝑀𝑆𝐸 and 𝑃𝑅𝐸𝑆𝑆 𝑅𝑀𝑆𝐸 and of 𝑅2 with 𝑄2 confirm that 

model is internal valid for prediction purpose, which is supported by cross validation results 

(Table 17.4, 16.4, 20).  

Eq.8 explains that 𝑢1 and 𝑢2 bring significant information to map K𝑝, while 𝑢2 is influential 

variable in the model. The descriptor - 𝑢2 is negatively correlated with 𝐾𝑝, which shows that 

those chemicals that retain fro longer time in the first dimension and for less time in second 

dimension of GC×GC will penetrate  with faster speed across the deeper region of the skin  
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4.2.3. DERMWIN 

The dermal permeability modeling program (Dermvin v2.02) for the estimation of skin 

permeability coefficient (cm/h) was develop for a diverse set of chemicals This is freely 

available in the EPI Suite package (Alves et al., 2015). The practicing model for dermal risk 

assessment rely on 𝐾𝑜−𝑤 and 𝑀𝑊, so we trained a model using same descriptors,  

 

which are fitted in dermin model. After this training of variables, we get a following 

equation.  

 log 𝐾𝑝 =  −5.58 +  0.61(±0.03) log 𝐾𝑜−𝑤 − 0.006(±0.00) 𝑀𝑊                            (9) 

𝑛 = 175, 𝑅2 = 0.74, Adj. 𝑅2 =  0.74, 𝑄2 = 0.73, 𝑅𝑀𝑆𝐸 = 0.56,   

𝑃𝑅𝐸𝑆𝑆 𝑅𝑀𝑆𝐸 = 0.57         

In eq.9, explained model’s variability is 74% with 𝑅𝑀𝑆𝐸 of 0.56.moreover, when we 

compare 𝑅𝑀𝑆𝐸 ofeq.9 with result derived by equation of Dermwin module of Epi Suite, we 

get higher 𝑅𝑀𝑆𝐸 of 0.78 log units,so it can be concluded that a small advancement by the 

addition of new descriptor definitely enhance the prediction proficiency of the model.  

4.2.3. Comparison with zhang model  

Zhang’s model was based on Abraham solute descriptors – 𝐸, 𝑆, 𝐴, 𝐵, 𝑉) which result in 

𝑅𝑀𝑆𝐸 of 0.44 log units. Primary focus of this model was to highlight interaction parameters 

at molecular level, which play an important role in the permeation of chemicals, specifically 

the structure and size of the molecule. Applicability of this model is restricted because of 

limited data of Abraham solute descriptors are available, therefore our proposed model 

introduced an easily computed proxies of Abraham solute descriptors that have enough 

potency to be fitted as suitable alternative assessment indicators in dermal risk assessment.  
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4.3. Equillibrium constant by PDMS (PHASE 3) 
Estimation of the time to reach 95 % of equilibrium state can be estimated by various models. 

Highly efficient models were selected.  

4.3.1. ASM Model for diffusivity  

log 𝜏95−𝑃𝐷𝑀𝑆 = −1.80 (±0.34) − 3.87 (±0.51)𝐵 +  3.38(±0.15)V                   (19) 

𝑛 = 21, 𝑅𝑀𝑆𝐸 = 0.15, 𝑃𝑅𝐸𝑆𝑆 𝑅𝑀𝑆𝐸 = 0.18, 𝑅2 = 0.99  

 𝐴𝑑𝑗. 𝑅2 = 0.99,    Q2  = 0.98            

Equation 19 is showing 99 % of variability to estimate the time to reach at 

equilibrium state.  

Nearness of RMSE with PRESS RMSE also shows that model is internally valid to 

explain the diffusion constant.  

Eq.19 also showing that hydrogen bond accepting capacity and size of the molecule 

play an important role to monitor diffusivity constant. And those chemical that are 

smaller in size will diffuse speedly in less time.  

4.3.2. Partitioning Model 

In another model, value of partitioning descriptors were taken to develop a model  

log 𝜏95−𝑃𝐷𝑀𝑆 =  −2.87(±0.46) + 0.53 (±0.1)log 𝐾𝑜−𝑤 + 0.43 (±0.15)log 𝐾𝑎−𝑤        

                 + 0.86 (±0.29)log 𝐾𝑜−𝑐                                                                    (20) 

𝑛 = 21, 𝑅𝑀𝑆𝐸 = 0.15, 𝑃𝑅𝐸𝑆𝑆 𝑅𝑀𝑆𝐸 = 0.23, 𝑅2 = 0.99  

 𝐴𝑑𝑗. 𝑅2 = 0.99,    Q2  = 0.97            

 Eq.20 is showing that model is able to explain ability of partitioning descriptors with explaining the 

variability of 99% with RMSE of 0.15 log unit. Nearness of the RMSE with PRESS RMSE showing 

the internal validity of the model and the result of cross validation also confirm the same.  
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Eq. 20 explaining that are hydrophobic in nature and have high absorbant capacity will diffuse 

quickly and reach at 95 % of equilibrium in less time.  
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Chapter 5 

 

CONCLUSION AND RECOMMENDATION 

 

5.1. Conclusions 

Our models were successfully able to describe the factor governing chemical 

dynamics for Fish, Human and Passive Sampler Use of multi-parameter 

intermolecular interactions considerably improved results when compared to the use 

of alone. All computational models are efficient for predictive purpose but BIOCEF 

outperformed other models.  

Proposed 2- parameter partitioning model have scientific and theoretical justification 

with best predictive efficiency. These proposed LFERS models are easily accessible 

than complicated multi- parameter model  

Both approaches to estimate the time for chemicals to reach 95 % of equilibrium 

state was performing well, but model having inter molecular interaction parameter is 

simplest one.  

Our models are not applicable for ionic, metallic and organo-metallic compounds. In case of 

ASM, we have limited data of all descriptors that is for only 8000 Chemicals.  

 

5.2. Recommendations 

We need to be extended for inorganic and ionized chemicals. It should be integrated 

with Epi Suite as separate module. Similar chemodynamics on other rate related 

properties, such as Intestinal absorption, Blood brain barrier,  Diffusion for bio and 

synthetic membrane draw solutions. 
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