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ABSTRACT

Speech is digitized, encrypted and sent between two parties in many situations. Digitized speech

signals are generally considered as ordinary binary data streams as far as encryption is concerned.

In this thesis, we present that the properties of speech signals are different from text, image, video

and other non speech signals and need special attention while being encrypted. These properties

of speech signals have to be kept in mind, not only, while designing encryption algorithms for

digitized speech signals but also during implementation of these algorithms in software and hard-

ware. We present that how the statistical properties of speech can be utilized to extract important

information, from cryptanalytic point of view, from the encrypted speech signals. We also study

some of the published cryptanalysis techniques particulary used for text based data and then study

the effectiveness of these techniques if the underlying plaintext data is digitized and compressed

speech. We discuss a particular situation in stream ciphers called the two time pad situation,

assuming the two underlying signals being speech. The two time pad situation is presented at

length in the literature with respect to text based data and not discussed at all with respect to

secure speech communications. We present techniques for exploitation of two time pad situation

in case of stream ciphered digitized speech. Separate techniques for exploitation are presented

for waveform (uncompressed) and parameter encoded (compressed) speech. We also analyze the

latest techniques of selective encryption applied on compressed speech signals and present that

some of these techniques can be effectively employed for content protection but may not conceal

the speaker’s identity. In the last part of the thesis we analyze the latest encryption techniques

used in voice over IP applications. We discuss that if speech is compressed using variable bit rate

encoding resulting into variable length packets can be used for speakers recognition even after

encryption. Experimental evaluation results for all the above techniques are presented.
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Chapter 1

INTRODUCTION

1.1 Speech

Speech is one of the basic and direct form of human interaction with each other. The syntac-

tic combination of lexicals and names drawn from very large vocabularies form the basis of this

human interaction. Each spoken word is created from the phonetic combination of a limited set

of vowel and consonant speech sound units. In the literature speech is broadly studied from two

different perspectives i.e. speech production and speech perception. Several academic disciplines

study speech production and perception which include acoustics, psychology, speech pathology,

linguistics, cognitive science, communication studies and computer science. We, in this thesis,

discuss speech from the perspective of a branch of computer science i.e. from information se-

curity point of view. We study speech while being sent from one person to another via some

communication medium in a secure form. In this, we study the peculiar properties of speech

and try to exploit these properties in order to gain some knowledge about the underlying security

mechanism, the speaker’s identity or the plain speech signal.

1.1.1 Speech Production

Most of the speech processing techniques currently in use greatly are either directly derived from

or at least strongly influenced by human speech production system and its principles [1]. The basic

human speech production system is depicted in Fig. 1.1. Air is expelled by the lungs upwards

1
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Figure 1.1: Human Speech Production System

through the trachea which then passes through the larynx. When the air passes through the tensed

vocal cords in the larynx they vibrate. As a result the air adopts a roughly periodic flow which

is then modulated in frequency while passing through the throat, the mouth cavity, and the nasal

cavity. The sound created is mainly radiated from the lips and, to some extent, from the nose.

The pharyngeal and mouth cavities in combination forms the vocal tract. The portion between the

velum and the nostrils forms the nasal tract. Certain nasal sounds are produced when the velum

acts as a trap door to acoustically couple the nasal tract.

This design of human speech production system has been the basis of most of the speech process-

ing applications such as speech coding, speech compression and speech synthesis. An engineering

simulation of the human speech production system is presented in Fig. 1.2.
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Figure 1.2: Engineering Simulation of the Human Speech Production System
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The throat , mouth and nasal cavities combinely act as an acoustic filter. The properties of this

acoustic filter are mainly determined by the changing position of the tongue, jaw, lips, velum,

mouth, etc. which are known as the articulators. The shape of the vocal tract is characterized

by a set of resonant frequencies called formants. The formant central frequencies are usually

denoted by F1, F2, F3, · · · with lower numbers corresponding to lower frequencies. The overall

spectrum of the voice is mainly shaped by the first 35 formant frequencies by amplifying certain

frequencies while attenuating others. The glottis is an opening between the vocal folds. Voiced

sounds like the sound associated with vowels in English language are produced when the vocal

cords are tensed and vibrate and the air passing through the glottis becomes quasi-periodic. For

men, the pitch range for voiced sounds generally varies between 50-250 Hz, while the range is

approximately 120-500 Hz for women [1]. When the vocal cords are relaxed, sound can still be

produced. Unvoiced sounds are produced when the airflow passes through a restriction in the

vocal tract and become turbulent. An example of unvoiced sound is the sound associated with s

in six). Plosive sounds (e.g. the sound associated with the letter t in English) is produced when

there is a point of total closure in the vocal tract (usually near the front) so that the air pressure

builds up behind this point and when the closure is opened, the air is suddenly released causing a

brief transient sound. Mixed sounds can also be produced which are simultaneously voiced and

unvoiced. An example of such sound is s in his, pronounced like a hiz).

1.1.2 Speech Perception

Speech perception is the process by which humans are able to understand and interpret the sounds

used in a language. Speech perception is closely associated with the fields of phonetics and

phonology in linguistics and cognitive psychology and perception in psychology. It seeks to un-

derstand how a human listener recognizes speech sounds and use this information to understand
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spoken language. The research in this field of Speech involves applications in building com-

puter systems for speech recognition, as well as improving speech recognition for hearing- and

language-impaired listeners. The design of efficient speech synthesis, recognition and even en-

coding, compression and encryption systems for human speech signals are mainly derived by

the human speech perception. A block level description of the human speech production and

perception is depicted in Fig. 1.3

Apart from the the above two main speech research directions, following are some of the impor-

tant speech processing techniques which are researched, discussed and applied in direct or indirect

human speech interactions especially after the development of digital processing techniques:-

1. Speech Encoding and Compression

2. Speech Synthesis

3. Speech Recognition

4. Speech Encryption

1.1.3 Speech Encoding and Compression

Speech coding is different from all other forms of audio coding. Speech is a much simpler sig-

nal than most other audio signals. Moreover, a lot of statistical information is available prehand

about the properties of speech [2]. As a result, some auditory information which is relevant in

other forms of audio coding may be completely or partially irrelevant in the speech coding con-

text. In speech coding, the most important criterion is preservation of intelligibility and quality

of speech, with a limited amount of transmitted data. The intelligibility of speech, in addition to

the actual literal content also includes the speaker’s identity. In addition to his identity his state
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of mind, emotions, intonation, timbre etc are also important. The concept of quality of speech

is more synonymous to pleasantness. It is completely different from intelligibility, since it is

possible that degraded speech is completely intelligible, but may be qualitatively annoying to the

listener. Another important factor which has to be kept in mind while designing speech process-

ing/transmisiion applications is that most speech applications require low coding delay, as long

coding delays may degrade the speech quality and interfere with speech interaction. In the speech

coding domain, the A-law and -law algorithms (G.711) [3] used in traditional Pulse Coded Mod-

ulated (PCM) digital telephony can be seen as a very early precursor of speech encoding. These

encoding techniques require only 8 bits per sample but gives effectively a resolution of 12 bits.

This type of coding mechanisms, if employed over music signals would generate unacceptable

distortion. Speech Waveforms have a peculiar peaky nature and simple frequency structure. It has

a periodic waveform with a single fundamental frequency and occasionally added noise bursts. It

is because of this peculiar nature of speech signals that the very simple instantaneous compression

algorithms of A-law and -law are perfectly suitable for coding. At the time of their design, their

low complexity with good (33%) bandwidth reduction made these techniques excellent coding

mechanisms. Much of the later work in speech compression was motivated by military research

into digital communications for secure military radios, where very low data rates were required

to allow effective operation in a hostile radio environment [2]. Today, a lot of processing power is

available today as compared to the one available for earlier compression techniques. As a result,

modern speech compression algorithms could use far more complex techniques thereby achiev-

ing much higher compression ratios.These techniques were available through the open research

literature to be used for civilian applications, allowing the creation of digital mobile phone net-

works with substantially higher channel capacities than the analog systems that preceded them.

In addition to the actual speech coding of the signal, it is often necessary to use channel coding
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for transmission, to avoid losses due to transmission errors. Usually, speech coding and channel

coding methods have to be chosen in pairs, with the more important bits in the speech data stream

protected by more robust channel coding, in order to get the best overall coding results. The

encoding and compression mechanisms for speech are developed based on the following basic

properties of speech signal [4].

• Speech signal maintains a particular frequency, the peaks generally occur after 65-85 sam-

ples with sampling rate of 8000 samples per second.

• Speech signal has smooth ups and downs and very seldom does abrupt changes take place

in the amplitude of the signal.

• Speech signal never continues to increase or decrease, it generally to go down after some

time as much as it has increased.

• Speech signal contains noise, after being smoothed by averaging operator, the noise lie

between two lines parallel to x-axis.

• Speech signal generally maintains an amplitude.

Speech coding and compression applications can be divided into two broad categories, narrow

band speech coding and wide band speech coding.

1.1.3.1 Narrow Band Speech Coding

This type of encoding considers speech signal between 300 to 3400 Hz of frequency band. The

biggest application of this type of encoding mechanism is the telephone network. Other appli-

cations include Narrow-band speech coding FNBDT (Future Narrow Band Digital Terminal) [5]

for military applications, SMV (Selectable Mode Vocoder) for CDMA networks [6], Full Rate,

8



Half Rate, EFR, AMR for GSM networks [7], G.723.1, G.726, G.728, G.729 [8], Internet Low

Bit Rate Codec (iLBC) [9] and others for voice over IP or video conferencing applications.

1.1.3.2 Wide Band Speech Coding

This type of encoding takes as input the speech signal in the frequency band of 50 to 7000 Hz.

Typical applications in this range include Wide-band speech coding AMR-WB for WCDMA

networks, VMR-WB for CDMA2000 networks, G.722, G.722.1, Speex and others for VoIP and

video conferencing applications.

1.1.4 Speech Synthesis

Speech synthesis is the artificial production of human speech. A system used for this purpose is

called a speech synthesizer, and can be implemented in software or hardware. Synthesized speech

can be created by concatenating pieces of recorded speech that are stored in a database. Systems

differ in the size of the stored speech units; a system that stores phones or diphones provides

the largest output range, but may lack clarity. For specific usage domains, the storage of entire

words or sentences allows for high-quality output. Alternatively, a synthesizer can incorporate a

model of the vocal tract and other human voice characteristics to create a completely ”synthetic”

voice output [2]. The quality of any speech synthesis system is judged by how similar it produced

sound is to the human voice, and by its ability to be understood. An intelligible speech synthesis

system helps people with visual impairments or reading disabilities to listen to written works.

Many computer operating systems have included speech synthesizers since the early 1980s. The

most important qualities of a speech synthesis system are naturalness and Intelligibility. Natu-

ralness describes how closely the output sounds like human speech, while intelligibility is the

ease with which the output is understood. The ideal speech synthesizer is both natural and intel-
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ligible. Speech synthesis systems usually try to maximize both characteristics. The two primary

technologies for generating synthetic speech waveforms are concatenative synthesis and formant

synthesis. Each technology has strengths and weaknesses, and the intended uses of a synthesis

system will typically determine which approach is used.

1.1.5 Speech Recognition

Speech recognition is the process of converting an acoustic signal, captured by a microphone or

a telephone, to a set of words for documenting or taking some action on the basis of the recog-

nized words [10]. The recognized set of words can also serve as the input to further linguistic

processing in order to achieve speech understanding. Speech recognition systems can be charac-

terized by a number of parameters. An isolated-word speech recognition system requires that the

speaker pause briefly between words, whereas a continuous speech recognition system does not.

Spontaneous, or speech produced extemporaneously or speech used in normal conversations are

quite different from speech read from script. The earlier contains disfluencies, and is much more

difficult to recognize than the latter. Some of the speech recognition systems require speaker en-

rollment. In this case a speaker must provide samples of his or her speech before he or she can be

correctly transcribed or interpreted. Other systems do not require any enrollment and are said to

be speaker-independent. Some of the other parameters depend on the specific task. Recognition

becomes more profound when the size of vocabulary is large or has numerous words with similar

acoustics or sounding nature. When speech is produced in a sequence of words, language models

or artificial grammars are used to restrict the search space of combination of words. The simplest

language model can be specified as a finite-state network, where the permissible words following

each word are mentioned explicitly. These language models generally approximate natural lan-

guage in terms of a context-sensitive grammar. The difficulty of the task in this case is generally
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measured by perplexity based on the vocabulary size and language models. Perplexity is defined

as the geometric mean of the number of words that can follow a word after the language model

has been applied. There are also some external parameters that can affect speech recognition sys-

tem performance. These include characteristics of the environmental noise and the type and the

placement of the microphone. Due to the large number of sources of variability associated with

the signal, speech recognition becomes a difficult proposition. The smallest sound units of which

words are composed are called phonemes. The acoustic realizations of phonemes are greatly

influenced by the context in which they appear. Furthermore, these phonetic variabilities are ex-

emplified by the acoustic differences of the phoneme t in two, trueand butter in American English.

At word boundaries, contextual variations can be quite dramatic—making gas shortage sound like

gash shortage in American English, and devo sound like devandare in Italian. Moreover, acoustic

variabilities can result from changes in the environmental conditions as well as in the position

and characteristics of the transducer. Other factors which can result into acoustic variabilities are

the speaker’s physical and emotional state, speaking rate, or voice quality. Finally, differences

in sociolinguistic background, dialect, and vocal tract size and shape can contribute to speaker

variabilities. As far as practical applications of speech recognition are concerned, these include

applications like voice dialing (e.g., ”Call home”), call routing (e.g., ”I would like to make a col-

lect call”), simple data entry (e.g., entering a credit card number), domotic appliance control and

content-based spoken audio search (e.g., find a pod cast where particular words were spoken),

speech-to-text processing (e.g., word processors or emails), preparation of structured documents

(e.g., a radiology report), in aircraft cockpits usually termed as Direct Voice Input and even in

cars to carry out small tasks like switching on the audio system [11].
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1.1.5.1 Speaker Recognition

Speaker recognition is closely related to speech recognition which is mainly concerned with the

problem of recognizing the speaker from a spoken utterance. Many of the techniques discussed

in the context of speech recognition are also relevant in case of speaker recognition. Speaker

recognition can be broadly divided into two sub tasks namely speaker verification and speaker

identification. Speaker verification is concerned with the problem of verifying whether a particular

speech segment under trial belongs to a specific speaker or not. It may be used to assert the

claimed identity of a person or verify an accused in case of a disputed speech segment. In this

thesis, we mainly discuss the latter aspect from encrypted speech point of view. On the other

hand, speaker identification is mainly concerned with the problem to determine who is speaking

at a particular moment from a known set of speakers. In this case, the speaker identification

system makes a basic assumption that the speaker is one in a fixed group of speakers. Speaker

recognition has also been discussed in this thesis from encrypted speech point of view. Several

useful biometric signals exist today including retina, face, fingerprint, and voice. In the field of

biometrics, voice recognition has recently been introduced as an emerging metric. There are two

main inherent strengths of voice which makes it as an attractive measure for biometrics. Speech

is a natural form of communication and users are not threatened by providing its samples for

analysis. It may be collected without even the speaker being aware of. Secondly, due to the

ubiquity of the telephone system, no specialized equipment is required to gain access to the voice.

Speaker recognition applications can be grouped into two categories namely text-dependent and

text-independent speaker recognition systems. In case of text-dependent applications, the system

assumes to know what text is to be spoken and it is expected that the speaker will utter the same

text. On the other hand, text-independent systems offer flexibility by obviating the user to speak
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specific text.

An important stage in case of speaker recognition is the feature extraction stage in which speaker

dependent information is extracted from the speech signal. Nearly all speaker recognition systems

employ similar feature extraction mechanisms, the difference mainly lies in how these features

are used. The main factor which distinguishes every speaker from other speakers is the combi-

nation of the speakers vocal tract and his/her speaking style. In almost all speaker recognition

systems a training or enrolment phase is employed in which a statistical representative model of

the speaker’s vocal tract and speaking style is created which is generally known as the speaker

model or voiceprint. Another stage is the test test phase in which the acquired speech segment

is compared to one or more statistical speaker models to probabilistically determine whether it

matches the models or not [12]. In this thesis, we introduce a new feature of speech when en-

coded with variable bit encoders i.e. packet size and use it for speaker recognition and verification

in case of encrypted speech.

1.1.6 Speech Encryption

Although speech encryption is not generally considered a part of the speech processing techniques

but since the main topic of this thesis is the study of encrypted speech and its properties, hence we

consider speech encryption as one of the speech processing techniques. From encryption point of

view, speech signal can be treated differently in the analog and digital domain. Although, in this

thesis, we mainly discuss encrypted speech in the digital domain, yet a brief description of the

analog speech encryption mechanisms generally known as speech scramblers is also presented.
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1.1.7 Speech Scrambling

Speech scrambling deals with the analog speech signal. The analog waveform is manipulated

in such way so as to make it unintelligible in a format which can be reversed by the intended

recipient. The most basic form of speech scrambling is speech inversion. Speech inversion simply

works by turning a signal ’inside out’, i.e. reversing the signal around a pre-set frequency. There

are three basic types speech inversion techniques namely, base-band or phase inversion, variable-

band or rolling phase inversion and split band inversion [13].

1.1.7.1 Baseband Inversion

In this case the signal is always inverted around the same pre-set frequency. Because the frequency

never changes, its makes base-band inversion highly insecure. Running the frequency through

another inverter set on the same frequency unscrambles it. Descrambling baseband inversion is

trivial.

1.1.7.2 Band Inversion

In this case the speech signal is inverted around a constantly varying frequency. This is also not

secure but not as simple to break as baseband inversion. This type of inversion can be identified

by observing the inverted signal. The burst of modem noise at the beginning of the transmission

and the repeated clicking sounds as the inverting frequency changes gives a clear indication of

band inversion.

1.1.7.3 Split Band Inversion

Split band inversion divides the signal into two different frequencies and inverts them separately

usually through baseband inversion. Enhanced security can be attained using split band inversion
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systems by randomly changing the frequency where the signal is split at given intervals. It is

better than baseband inversion but still far from perfect.

1.1.8 Encrypting Digitized Speech

Digitized speech signals are generally considered as ordinary binary bit streams as far as encryp-

tion is concerned. The properties of speech signals are different from text, image, video and

other non speech signals and need special attention while being encrypted. These peculiar prop-

erties of speech signals have to be kept in mind not only when designing encryption algorithms,

but more importantly, when these encryption algorithms are implemented in software and hard-

ware, to secure digitized speech signals. These special properties of speech are exploited in the

recently proposed encryption techniques particularly designed for speech signals. Partial or se-

lective encryption techniques have been introduced in which the perceptually relevant portions of

the speech signals are encrypted while the perceptually irrelevant portion are sent in plain in order

to conserve computational resources and battery life. These encryption techniques are particu-

larly focussed in this thesis. Two types of encryption techniques for speech encryption, like other

data encryption, namely block and stream ciphers: Block ciphers tend to simultaneously encrypt

groups of characters of a plaintext message using a fixed encryption transformation. Stream ci-

phers encrypt individual characters (usually binary digits) of a plaintext one at a time, using an

encryption transformation which varies with time [14]. In the real time speech processing appli-

cations stream ciphers are preferred over block ciphers. For these applications if block ciphers

are intended to be employed these are generally employed in the stream cipher modes normally

called the counter modes.

Following are a few examples of the encryption systems designed for encrypting digitized speech.
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1.1.8.1 Digital Voice Protection

Digital Voice Protection (DVP) is a proprietary speech encryption technique used by Motorola

for their higher-end secure communications products. DVP is considered to be very secure. DVP

sounds like data being passed.

1.1.8.2 Secure Telephone Unit

STU III (Secure Telephone Unit, Generation III) is the U.S. Government’s standard for voice en-

cryption. STU IIIs utilize the NSA Skipjack encryption algorithm, which is considered secure

against most eavesdropping but is supposedly backdoored by the NSA. STU IIIs are considered

incredibly secure, hence are restricted to government and military users, along with their civil-

ian contractors. STU IIIs are manufactured by Lucent, L-3 Communication Systems, General

Dynamics, Lockheed Martin, AT&T and Motorola. STU III compatible fax equipment is manu-

factured by Ilex.

1.1.8.3 STE

The NSA has finally realized that high-bandwidth telecom applications (like ISDN and DSL)

are all the rage, and decided to update their crypto systems accordingly with the development of

STEs (Secure Terminal Equipment). STEs provide a platform for secure ’high-speed’ (128k) data

allowing for video-conferencing, fax and voice applications. Unlike STU IIIs STEs have their

crypto engine on a PCMCIA card, so they can be distributed more freely. STEs are manufactured

exclusively by L-3 Communication Systems.
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1.1.8.4 PGPfone

PGPfone is another offering from Pretty Good Privacy Inc., a secure voice program for the PC.

The interface is pleasantly intuitive, and there are options for different encoders and decoders

(for either cellphone or landline use). PGPfone offers a selection of encryption schemes: 128 bit

CAST key (a DES-like crypto system), 168 bit Triple-DES key (estimated key strength is 112

bits) or 192 bit Blowfish key (unknown estimated key strength).

1.1.8.5 Nautilus

Nautilus is a free secure communications program. Its lacks many of the features of other com-

munications programs, and its interface is best described as user-hateful. Unlike most other voice

encryption programs, Nautilus uses a proprietary algorithm with a key negotiated by the Diffie-

Hellman Key Exchange.

1.1.8.6 Speak Freely

Speak Freely is a versatile, simple voice encryption system. Speak Freely offers a selection

of voice encryption techniques (IDEA or DES). Speak Freely also permits conferencing, and

contains several other useful functions. Unlike most voice encryption platforms, Speak Freely

includes options that it to connect to other encrypting and non-encrypting internet telephones.

1.1.8.7 AES in Counter/f8 Mode

The advanced encryption standard has also been used in the counter and f8 modes for speech

encrypt particularly in Voice over IP applications. In the counter mode, which is the default

encryption mode, an integer incremental counter is used with the default encryption key length of

128 bits and a default session salt key length of 112 bits.The f8 mode is a variation of the output
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feedback mode with a more elaborate initialization and feedback function. It uses the same default

sizes for session key and salt as the AES segmented integer counter mode.

1.2 About This Thesis

In this these, we present that how the peculiar properties of speech can be utilized to extract,

either directly or infer indirectly, some information from the encrypted speech signals that can

be later on used for deducing important (cryptanalytic) information about the cryptographic keys,

the plaintext and/or the speaker’s identity. The relevant background information is presented at

the start of each chapter. An important characteristic of speech signal is the presence of silence

between words in a one way communication and when one speaker speaks, the other listens, in

a two way conversation. We present that the linear complexity of a stream ciphered speech com-

munication in case of silence and speech zones is different. This difference can be exploited to

identify silent and speaking zones in an encrypted speech signal. It can also be utilized to extract

the portions of the keystream corresponding to the silence zones. Using some of the published

decimation cryptanalytic techniques it can also be used to infer the portions of the keystream

corresponding to the speech zone. We also study some of the published cryptanalysis techniques

particularly used for text based data and then study the effectiveness of these techniques if the

underlying plaintext data is digitized and compressed speech. We also discuss a particular sit-

uation in stream ciphers called the two time pad situation in which two different plaintext are

encrypted with the same keystream: a situation discussed at length in the literature with respect to

text based data. We present techniques for exploitation of two time pad situation in case of stream

ciphered digitized speech. Separate techniques for exploitation are presented for waveform (un-

compressed) and parameter encoded (compressed) speech. In the waveform encoding domain,

speech recognition approaches based on hidden Markov models can be successfully employed to
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decipher the two speech signals encrypted with the same keystream. In the compressed speech

domain, we present that the inter frame correlation between the different components of speech

frames can be exploited to reconstruct the two speech signals stream enciphered with the same

keystream. The concepts of language modeling and smoothing are adapted to be deployed on the

inter frame correlation between the different components in a speech frame. The mostly deployed

speech compression mechanism based on code exited linear prediction, is analyzed and recon-

structed from the two time pad. With the increased demand for content protection and privacy

with low computational load and power consumption, particularly in mobile multimedia appli-

cations, the peculiar properties of speech are utilized to selectively encrypt some portions of the

speech signal while transmitting the other portions in plain. We study the selective encryption

techniques and present that these techniques may provide content protection but may not conceal

the speaker’s identity. A particular selective encryption technique, considered secure so far, ap-

plied over the mostly deployed speech codec, based on code exited linear prediction, is analyzed.

By applying the hidden Markov modeling and Gaussian Mixture modeling techniques on the per-

ceptually irrelevant portions of the speech signals we were able to identify the speakers with a

plausible accuracy without any attempt to decrypt the communication. The recent advancement

in telecommunication technologies in the form of voice over IP have brought along a lot of se-

curity risks that concern the users of the current VoIP infrastructure. Since the IP traffic has to

pass through untrusted networks before it reaches its destination, it is now well understood that

all VoIP traffic has to be encrypted prior to its transmission over the internet. In order to conserve

bandwidth keeping in view the peculiar nature of speech conversation, the concept of variable

bit rate encoding has been introduced. Although, this variable bit rate encoding, resulting into

transmission of variable size packets over the internet saves considerable amount of network re-

sources, recent studies have shown that these may also leak some important information about

19



its contents even in case of encryption. In this thesis, we also present that these variable bit rate

encoded packets can be used to identify the speaker even without decrypting the speech content.

We show that the machine learning and classification techniques such as support vector machines

and ensemble of nested dichotomies, which are generally popular with data mining community,

can outperform the HMM and GMM approaches in case of speaker identification and verification

from encrypted VoIP traffic. We also introduce the concept of classification via regression in case

of speaker verification. Since, in case of speaker verification, the decision of verification is based

on the threshold beyond which an unknown utterance is attributed to the hypothesized speaker we

present that the regression techniques can be tricked to calculate the scores for the true speakers

and imposters.

1.2.1 Thesis Layout

The general outline of the thesis and the contributions presented in different chapters are summa-

rized below:

• In Chapter 2, we present how the statistical properties of speech can be exploited for cipher-

text only cryptanalysis of stream ciphered digitized speech. Both the main speech coding

techniques (waveform coding and parameter coding) have been discussed in detail. Our

contribution is to show that both the speech signal properties can be used for cryptanal-

ysis in case of stream encipherment of the speech signal even in the highly compressed

environment. The main emphasis of this chapter is on the exploitation of silence zones in

single channel communication and silent channels in time division multiplexed communi-

cation. Steps for resisting such exploitation are also presented in detail. Parts of the results

presented here are based on [15].
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• Chapter 3 presents exploitation of speech signal properties in a specific scenario pertain-

ing to all stream ciphers i.e. the keystream reuse situation. This chapter presents details

about this problem which is also known as the two time problem and has remained there

for several decades, yet the threat to real systems has still been under-appreciated. The

exploitation techniques presented so far in the literature in this domain deal with uncom-

pressed text based data and by relying on the literature survey in this field one can safely

say that keystream reuse in case the underlying plaintext is speech does not pose any serious

threat to the security of the communication system as no such exploitation techniques are

publicly known. Our contribution in this regards is to present techniques based on hidden

Markov model based speech recognition for the automated cryptanalysis of two time pads

in case of waveform encoded speech. The results presented here are based on our works

presented in [16, 17, 18].

• Chapter 4 presents the main contribution of this thesis. It is an extension of Chapter 3 but

the exploitation techniques presented over here are not based on speech recognition but

on speech synthesis. It has been shown that the present day speech coding techniques are

mainly based on different implementations of code exited linear prediction(CELP). Almost

all modern speech processing and communication equipment including voice over IP (VoIP)

employ this technique for speech encoding. In this chapter we present that how the Markov

models can be used to automatically recover the two speech signals stream ciphered with the

same keystream. The concept of using language models for the purpose of modeling speech

parameters has been introduced for the first time in this chapter. The conventional Viterbi

algorithm used for finding the internal states of an HMM from the observation symbols is

modified to make it applicable in this specific scenario. The results presented over here are

based on [19].
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• Chapter 5 presents the applicability of the network speech recognition technique for the pur-

pose of automated cryptanalysis of two time pads in case of speech. The three automatic

speech recognition (ASR) techniques in the mobile environment namely Embedded ASR,

Distributed ASR and Server based ASR are studied and their applicability for the purpose

of cryptanalysis in the keystream reuse situation has been analyzed. The server based ASR

has been found to be directly applicable in the situation of two time pad of stream ciphered

speech signals. The two different architectures of network speech recognition namely ASR

from decoded speech and ASR from Codec parameters are studied in detail and their appli-

cation in the two time pad situation along with experimental results are presented. Part of

the results presented in this chapter are based on [20].

• In Chapter 6, we discuss the latest selective or partial encryption techniques applied on

compressed speech signals particularly in wireless multimedia applications. We present

that how effective these techniques are from the perspective of confidentiality and privacy.

We show that that these techniques may provide content protection but in situations where

the identity of the speakers is also required to be protected then these techniques display

some limitations.The results presented in this chapter are mainly based on [21].

• Chapter 7 presents flaws in the latest techniques of encryption applied over voice over IP

communications. We discuss the variable bit rate encoding and its effects on the security of

the speech transmitted across the internet in the form of IP packets. Apart from language

and partial contents identification, we show that speaker identification and verification can

be effectively done even on the encrypted packets without being deciphered. The variable

length packets produced as a result of bandwidth saving variable bit rate speech encoding

can be used to extract the identity of the speaker with 75 percent accuracy. The results
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presented in this chapters are based on [22].

• In Chapter 8 we conclude and summarize the contributions presented in this thesis with di-

rections for future research and deliberations in the area of secure speech communications.
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Chapter 2

EXPLOITING SILENCE FOR CRYPTANALYSIS

2.1 Introduction

An important characteristic of speech communication is that it is half duplex by nature, one person

speaks while the other is silent. There are also silence zones between sentences and words with no

speech in either direction. Measurements show that the communication circuits used for carrying

speech are idle or silent 60 to 70 percent of the time, averaged over a large number of busy trunks

[23]. In case of digitized speech, the presence of silence zones and the way these silence zones

are encoded affect the distribution of zeros and ones in the digital bit streams. Silence between

two words is generally encoded with a fixed pattern usually (01)∗ occasionally a 1 is replaced

with a 0 and a 0 replaced with a 1 [24]. In case of multiple channel communications, a channel

itself may be silent or idle completely. The silent part of digitized speech is non random in

nature and portions of the digitized speech corresponding to words are random in nature. These

random and non random strings of bits, when encrypted using a linear feedback shift register

based stream cipher, display different statistical properties. Amongst different statistical tests for

distinguishing between cipher text corresponding to the random and non random bit streams, the

linear complexity profile test has shown significant difference between the two [24] and can be

used effectively for this bifurcation. These silence zones are randomly placed in the overall bit

stream and in order to mark the silent and non silent zones in the cipher text, the techniques

presented in [4] can be employed. The different types of ciphertext only attacks on stream ciphers
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Figure 2.1: LFSR based stream cipher using Combination Generator

presented uptil now e.g. [25, 26, 27] assume the plain text to be statistically biased i.e. P0 =

0.5 + ϵ. and all these attacks fail if the plain text is not statistically biased i.e. P0 = P1 = 0.5.

We present techniques for the cipher text only attacks on LFSR based stream ciphers even if the

plaintext is not statistically biased but assuming it to be speech. A generalized form of stream

cipher consisting of several LFSRs combined by a non linear Boolean function as shown in figure

2.1 is considered.

2.2 Related Work

No previous published work on exploitation of silence zones for the purpose of cryptanalysis

exist, however, previously distinguishing attacks have been discussed but in a different context

[28, 29]. In these types of distinguishing attacks no distinction is carried out between the portions

of ciphertext corresponding to a random plain text and portions of the cipher text corresponding

to a non random plain text. In all these attacks the distinction is made between the output of a

specific cipher and that of pure random bit stream selected from a uniform distribution. More-
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over, no significant cryptanalytic information is deduced during this distinction [30]. Large linear

complexity has been a necessary but not sufficient condition for randomness of binary streams

since long [31]. The use of linear complexity profile for distinguishing between random input

ciphertext and non random input ciphertext has been introduced for the first time in an unpub-

lished work by P. Chandra Sekhar in his masters thesis [24]. The linear complexity profile test

for breaking ciphertext into portions corresponding to silence zone and speaking zones has been

used by Sumankumar Pramanik, again in unpublished work of his MS thesis [4]. Although the

linear complexity profile tests have been conducted and experimental details are presented but the

mathematical reasoning for this has not been discussed.

2.3 Linear Complexity as Silence Distiguisher

The linear complexity of a binary stream is the minimum length of the LFSR which can generate

it. Large linear complexity has been an established necessary but not sufficient condition for

randomness of binary streams. A non random binary stream, like in case of silence zones encoding

stream (01)* have very low linear complexities, say 2 in this case. In case of LFSR based stream

ciphers, the keystream, which is a pseudorandom bit stream, has generally large but finite linear

complexity which is added modulo to the plain text streams. The addition of two binary streams

with different linear complexities is governed by the following proposition.

2.3.1 Proposition

Let P and Q be two non constant polynomials over F2 and let S(P) denotes the set of all sequences

produced by the LFSR with feedback polynomial P then we have

(ut+ vt)t > 0, u ∈ S(P ), v ∈ S(Q) = S(R)

where R is the least common multiple of P and Q [25, 30].
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This proposition leads to the following corollary.

2.3.1.1 Corollary

Let (ut)t > 0 and (vt)t > 0 be two binary sequences with linear Complexity L1 and L2 respec-

tively, then the binary sequence produced by the addition modulo 2 of u and v i.e. (ut + vt)t > 0,

has a linear complexity L where L = L1 + L2.

Now, the silence zone encoding, being a fixed pattern repeated at regular and short intervals,

has very low linear complexity as compared to the speech zone. This low linear complexity

sequence when added to the keystream with finite linear complexity will result in another low

linear complexity sequence. In case of speech zone, the linear complexity is generally very large.

This sequence when added to a finite and large linear complexity sequence results in a very large

linear complexity sequence. Hence linear complexity analysis can be used as an effective tool for

distinguishing between cipher text corresponding to silence zone and cipher text corresponding

to speech zones in stream ciphered digitized voice.

2.4 Exploiting Silence in Single Channel Communication

In this section, we present how to convert a ciphertext only attack to a known plain text at-

tack in case of single channel communication. Both possibilities of speech coding i.e. wave-

form(uncompressed) as well as predictive(compressed) coding are discussed.

2.4.1 Waveform (uncompressed) Coding

In this case, contrary to the conventional ciphertext only cryptanalysis of LFSR based stream

ciphers, the plain text need not be statistically biased. The silence zones are encoded as fixed

patterns of 1s and 0s. Table 2.4.1 shows the encoding of the silence zones according to different
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Table 2.1: Silence Zone Encoding in Various Speech Coding Standards

S No. Encoding Standard Silence Zones Coding

1 PCM 8kHz 8 bit 0x 80 and 0x 7F

2 CCIT µ-Law 0x FF

3 CCIT A- Law 0x 55 and 0x D5

4 ITU-T G.722 0x 7F and 0x FD

standard encoding techniques. By the linear complexity profile analysis presented in [4] we can

mark the silence and speech zones in the cipher text. In a typical speech file the length of the

silence zone is approximately 3000 samples [4] which correspond to 24000 bits in case of 8

bits/sample encoding and 48000 bits in case of 16 bits/sample encoding. Finding the silence

zone in the ciphertext is equivalent to finding the keystream, thereby converting a ciphertext only

attack to a know plain text attack. In [4] a complex mechanism for breaking the cipher without

even finding the keystream has been presented. A simple and more straight forward approach

would be to use the well established and efficient techniques of fast correlation attacks [24, 4, 25]

to find the internal states of the LFSRs. The keystream can then be calculated from that point

onwards and by just XORing the keystream and the cipher text the plain text can be deduced.

2.4.1.1 Experimental Results

We consider the following example of combination generator consisting of three LFSRs combined

by the non linear Boolean function

f(x1, x2, x3) = x1x2 + x1x3 + x2x3

and having connection polynomials as

P1(x) = 1 + x2 + x4 + x5 + x6 + x8 + x9 + x10 + x11 + x13 + x15
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P2(x) = 1 + x2 + x4 + x5 + x6 + x8 + x9 + x10 + x11 + x13 + x14 + x15 + x17

and

P3(x) = 1 + x+ x7 + x8 + x10 + x12 + x15 + x16 + x17 + x20 + x21 + x22 + x23

The linear complexity of the keystream produced by this stream cipher is 991. A typical speech

file encoded with PCM (8000 samples per second 8 bit per sample) is encrypted with it. The

linear complexity of the silent zones comes out to be 993 whereas those of the speech zones are

greater than 5000 in all cases. Hence linear complexity can be used effectively to identify the

silence and speech zones in an encrypted digitized speech file. About 25600 contiguous bits of

the keystream can be deduced from the silence zones, thereby converting a ciphertext only attack

to a known plain text attack without using the statistical bias of the plain text. Applying the fast

correlation attacks [32, 33], the initial states of the LFSRs can be deduced and the keystream can

be calculated from that point onwards. XORing the keystream and the ciphertext, the plain text

can be found out.

2.4.2 Coding Schemes with Compression

Silence in speech communication can also be exploited in case when compression is applied

on the speech while digitizing and encoding it. In this case, speech is linearly modeled and

instead of transmitting the quantized waveform, the quantized parameters of the linear model

are transmitted along with residual error between the actual and modeled speech [2]. In this

case we deal with frames which are about 20-30 millisecond duration of speech. The frames

corresponding to silence zones when encoded through linear predictive coding schemes also are

fixed and have a particular pattern which is repeated in each of the silence zone in the speech

signal. The concept of linear complexity profile analysis again become applicable.
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2.4.2.1 Experimental Results

Speech is encoded using a CELP encoder at 9.5 kbps. In this case, a frame consisting 160 samples

of speech is encoded as 190 bits. A frame corresponding to silence zone is always encoded with a

fixed pattern of bits comprising of 107 zeros and 83 ones. The linear complexity of one frame is

95 while that of more than one frame is 189. A typical silence zone comprises of about 18 frames

which corresponds to 3420 bits of silence zone having linear complexity as 189 stabled after 377

bits. The same speech is enciphered with a stream cipher of example 1. The linear complexity of

the cipher text corresponding to silence zone is 1180 whereas that of the speech zone is greater

than 5000.

2.5 Exploiting Silence in Multiplexed Communication

In this section, we present a technique to exploit silent channels in case of time division multi-

plexed communication systems. Time division multiplexed systems are widely used in telecom-

munication. The E1/T1 lines being the basic standards being used by the US and European com-

munity for Time division multiplexing of voice and data channels. The TDM scheme of multiple

channels transmission has also being adopted by the fiber optic community and the conventional

E1/T1 links have been replaced by the SONET and SDH [34]. Here we will confine to the voice

channels only. In the multiplexed communication environment the silence zones may also exist

at the individual channel level and the techniques of cryptanalysis discussed in section 2.4 would

still be applicable on these provided single channel encryption is carried out. However, if com-

pression is applied at the individual channel then our scheme of exploiting silence zones will not

work in this case directly; however since all the channels are not always active, we can in this case

exploit the presence of silent/idle channels. In case the channel is silent then a fixed pattern of
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zeros and ones is being transmitted in the TDM slot of the silent channel. The framing informa-

tion is not encrypted generally. The reason for this is the synchronization of the multiplexer and

the de-multiplexer. From the framing information, the channels can be demultiplexed and then

the silent channels can be identified using the techniques of linear complexity analysis of [4]. We

assume that the fixed pattern being transmitted in case of silent channels is standard and generally

known. By XORing that fixed pattern with the cipher text the keystream portion corresponding

to the silent channels can be found out. It is worth mentioning here that this key stream does

not correspond to a contiguous portion of the key stream but it is a decimated form of the key

stream. The factor of decimation depends on the position of the silent slot in the TDM frame. By

applying the decimation attack on the stream cipher technique presented in [27], the LFSR state

can be deduced using the decimated keystream. In this case the position of the silent channel in

the TDM frame determines the decimation factor d.

2.5.1 Experimental Results

Consider an eight channel multiplexed communication link as shown in figure2.2. Channel 2 is

the silent channel i.e. no voice communication is being transmitted on channel 2, instead a non

random pattern (say (01)∗) is transmitted on this channel. The four frames shown in the figure

are encrypted using a stream cipher of Example 1 as a bulk encryptor before the addition of the

framing information. The plain text stream in this case is represented as Ck[t]t > 0, where k is

the channel number. The plain text binary stream is

C1[1], C2[1], C3[1], C4[1], C1[2], C2[2], . . .

The keystream is represented as

K[1], K[2], K[3], K[4], K[5], . . .
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Figure 2.2: Time Division Multiplexed Communication with Channel 2 being Silent

The ciphertext becomes

C1[1]⊕K[1], C2[1]⊕K[2], C3[1]⊕K[3], C4[1]⊕K[4], C1[2]⊕K[5], C2[2]⊕K[6], . . .

Since the framing information is not encrypted hence the encrypted frame can be demultiplexed.

Applying linear complexity profile analysis of [4] on the four channels separately the silent chan-

nel 2 shows a significantly low linear complexity (i.e. 992) as compared to channel 1,3 and 4

(linear complexity ¿ 5000) and can easily be identified as silent. Since we know the non random

pattern transmitted by the silent channel, thereby we can find out the keystream bits with respect

to this channel (by XORing the cipher bits and the non random pattern). The keystream bits K[2],

K[6], K[10],correspond to a regularly decimated form of the keystream K with decimation factor

4. Applying the decimation attack of [27] with a slightly different concept, the initial states of the

LFSRs can be deduced.
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2.6 Resistance to Silent Zones Exploitation

The biggest assumption in case of exploitation of silence zones for cryptanalysis is that the linear

complexity of the stream cipher used is finite. This assumption is generally valid as there is a

requirement for a large linear complexity on one side but on the other hand a large correlation

immunity is also mandatory. Since there exists a trade off between linear complexity and corre-

lation immunity [35], hence the linear complexity cannot be increased beyond limits. The other

assumption deals with the encoding scheme and the size of the silence zones in terms of number

of bits, which is related to the sampling rate while digitizing speech and the number of bits per

sample as well. The larger the resolution and the sampling rate, the larger would be the size of the

silence zone and the more will be the cipher susceptible to such attack. A criterion for resisting

such types of attacks would be that the size of the silence zones should be less than twice the

linear complexity of the stream cipher in case of single channel communication. In case of mul-

tiplexed communication, it is not the silence zone which is exploited but the silent/idle channels

are used for this purpose. One way to resist the attack would be to send a random pattern of

data on the silent channel instead of transmitting a regular pattern which makes the distinguishing

attack on the basis of linear complexity profile more difficult. Another way to resist this type of

attack would be to use Digital Signal Interpolation [23]. Although, the purpose of digital signal

interpolation is efficient utilization of bandwidth but since it inserts data of other channels into

the silence zones thereby removing the silence zones and resisting this attack. Statistical time

division multiplexing will also resist such attacks.
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2.7 Summary

In this paper we have presented analysis of silence zones, for the purpose of cryptanalysis, the

speech zones also have specific properties which can be exploited for this purpose. The prelimi-

nary work in this regards has been presented in [4]. The algorithm presented here can be further

improved by the addition of dynamic correction capability. Techniques other than linear com-

plexity for the purpose of classifying the silent and speaking zones in the cipher text also needs

to be looked into. In case of very large linear complexities the, i.e. if the linear complexity is

larger than half the length of the silent zone then the linear complexity analysis test will fail. The

asymptotic analysis of the classification of silence zones and noise zones as well as that of the

cryptanalysis on the basis of this technique also needs to be investigated. Comparisons with the

other published cryptanalytic algorithms from the point of view of resources and time also require

some attention. The statistical properties of digitized speech are quite different from other digital

data such as text, image and video. The half duplex nature of speech can be exploited for the

purpose of cryptanalysis as well. Linear complexity profile can effectively be used to identify the

silent zones in single channel silent/idle channels in multiple channel communication systems.

By using the silent channel encoding, a cipher text only attack can be effectively converted to a

known plain text attack, even if the plain text is not assumed to be statistically biased. These lim-

itations of digitized speech are to be kept in mind while applying encryption on communication

links carrying speech data, in order to avoid exploitation of silence zones and silent/idle channels.
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Chapter 3

CRYPTANALYSIS OF TWO TIME PADS OF WAVEFORM ENCODED

SPEECH

3.1 Introduction

In a stream cipher, a message m is exclusive ORed with a keystream k to produce the ciphertext

c i.e. c = m ⊕ k . If the keystream k is random and is of the same size as that of the message

m then the stream cipher becomes a one time pad which is considered as a perfect cipher [36]

in the cryptographic community. If two different plaintexts m1 and m2 are encrypted with the

same keystream k then their results m1 ⊕ k and m2 ⊕ k can be XORed to neutralize the effect of

the keystream k, thereby obtaining m1 ⊕ m2 . The key reuse problem in stream ciphers and its

exploitation in different scenarios for uncompressed text based data have been studied since long.

It has also been mentioned in the literature as the two time pad problem [37]. The vulnerability of

keystream reuse exists with many practical systems which are still in use such as Microsoft Office

[37, 38], 802.11 Wired Equivalent Privacy (WEP) [39], WinZip [40], Point to point tunneling

protocol (PPTP) [41] etc. In addition to this, the two time pad problem is predicted to remain there

for quite some time in the near future also because of the endorsement of counter mode of AES by

NIST [37, 42] for high speed data transfer applications. In this case, cryptographers, who would

have otherwise used a block cipher with cipher block chaining (CBC) mode, are compelled to use

AES in the counter mode, thereby turning a block cipher into a stream cipher and the chances

of reusing key streams is further enhanced. Also, there is a compelling need for a cipher mode
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of operation which can efficiently provide authenticated encryptions at speeds of 10 gigabits/s

and is free of intellectual property restrictions. The counter mode of operation of a block cipher

(e.g. AES) has been considered to be the best method for this purpose [43, 44]. This has further

increased the possibility of keystream reuse in actual systems because an effective and secure key

management has still been an uphill task for the crypto designers as mentioned in [45] as: If you

think you know how to do key management, but you don’t have much confidence in your ability to

design good ciphers, a one-time pad might make sense. We’re in precisely the opposite situation,

however: we have a hard time getting the key management right.. And almost any system that

uses a one-time pad is insecure. It will claim to use a one-time pad, but actually uses a two-time

pad (oops). The keystream reuse exploitation techniques discussed so far in the literature assume

the underlying plaitxt to be uncompresed text-based data source encoded hrough conventional

encoding mechanisms such as ASCII coding etc. All the exploiattion techniques which are mainly

based on heuristic rules [46, 47] and even those based on mathematical modeling [37] fail if the the

underlying data is not uncompressed text. Keeping in view the literature presented so far on this

topic one can safely reuse key streams if one wants to stream encipher speech based data. In this

chapter we present the first ever use of hidden Markov model based speech recognition approach

to automated cryptanalysis of two time pads of speech based data. Speech is digitized, encrypted

and sent between two parties in many situations. Encryption schemes particularly designed for

speech whether these are analog speech scramblers (e.g. [48]) or modern digital selective speech

encryption techniques (e.g. [49]), have been the focus of security professionals since long. With

the advancement in the speech digitization and compression techniques, the speech signal is now

treated as an ordinary data stream of bits as far as encryption is concerned. But the acoustic

and articulatory features of speech signals exploited by the automatic speech recognition (ASR)

equipment especially in the distributed speech recognition (DSR) scenario [50] and automatic
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transcription of conversational speech [51] have encouraged us to look at their characteristics

from the cryptanalytic point of view in a keystream reuse situation. We have extended the natural

language approach from automated cryptanalysis of encrypted text based data to the digital data

extracted from the underlying verbal conversation. An interesting by product of our attack is

that it would not only decipher the information but would automatically transcribe it during the

process of cryptanalysis through speech recognition.

3.2 Background Information

3.2.1 Speech Coding and Compression

Speech coding is quite different from other forms of audio coding. The details of speech coding

are presented in Section 1.1.3. Speech signals are composed of a sequence of sounds. These

sounds and the transitions between them serve as a symbolic representation of information. In

order to encode this information mainly two types of encoding mechanisms are adopted, namely

waveform and parameter encoding techniques. Waveform coders attempt to code the exact shape

of the speech waveform without considering the nature of human speech production and speech

perception. In waveform encoding, the speech signal being a continuous-time signal is sampled,

quantized (and compressed) and then digitally encoded. Speech signal is typically quantized ei-

ther 16-bit uniform or 8-bit companded quatization. The A-law and µ-law algorithms [3] used

in traditional Pulse Coded Modulation (PCM) digital telephony can be seen as very early precur-

sors of speech digitization based on waveform encoding. Like many other signals the sampled

speech signal contains a great deal of information which is either redundant (non zero mutual

information between successive samples in the signal) or perceptually irrelevant (information that

is not perceived by human listeners). In case of parameter encoding, the speech coder converst a
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digitized speech signal into a coded representation which is transmitted in the form of frames. A

sppech decoders receives these coded frames and synthesizes them to reconstruct speech. Stan-

dards in parametr encoded speech simply dictate the input-output relationships of both coder and

decoder. In case of parameter encoding speech is considered as a source filter model in which the

parameters of the model alongwith excitation information in the form of voiced/unvoiced signals

is used for digital representation of speech. The transfer function of that model is assumed to

be all-pole (autoregressive model). The excitation function is a quasiperiodic signal constructed

from discrete pulses (18 per pitch period), pseudorandom noise, or some combination of the two.

If the excitation is generated only at the receiver, based on a transmitted pitch period and voicing

information, then the system is designated as an LPC vocoder. LPC vocoders that provide extra

information about the spectral shape of the excitation have been adopted as coder standards be-

tween 2.0 and 4.8 kbps. LPC-based analysis-by-synthesis coders (LPC-AS), on the other hand,

choose an excitation function by explicitly testing a large set of candidate excitations and choos-

ing the best. LPC-AS coders are used in most standards between 4.8 and 16 kbps. Subband coders

are frequency-domain coders that attempt to parameterize the speech signal in terms of spectral

properties in different frequency bands. These coders are less widely used than LPC-based coders

but have the advantage of being scalable and do not model the incoming signal as speech. Sub-

band coders are widely used for high-quality audio coding. In the analysis by synthesis class of

speech coding, Code Excited Linear Prediction (CELP)is the most popular and is in use in most

of the speech processing applications as well as digital communications of speech [52]. Table 3.1

presents some of the major standard speech coding techniques alongwith applications and data

rates [53]. Although speech coders based on CELP are well known and common coders used in

voice over IP networks and predominantly used in PC based systems yet some of the leading IP

phone vendors unfortunately stopped supporting some implementations of CELP. This leads to
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Table 3.1: Speech Coding Standards and Applications

Application Rate(kbps) Standard Coding Technique

Landline Telephone 64 G.711 PCM

16-40 G.726 ADPCM

16-40 G.727 ADPCM

Tele conferencing 48-64 G.722 Split Band ADPCM

16 G.728 LD-CELP

Cellular Telephones 13 Full-Rate GSM RPE-LTP

12.2 EFR ACELP

7.9 IS-54 VSELP

6.5 Half-Rate GSM VSELP

8.0 G.729 ACELP

4.75-12.2 AMR ACELP

1-8 IS-96 QCELP

Multimedia 5.3-6.3 G.723.1 MPLPC, CELP

2.0-18.2 MPEG-4 HVXC, CELP

Satellite Telephone 4.15 M IMBE

3.6 Mini-M AMBE

Secure Communications 2.4 FS1015 LPC-10e

2.4 MELP MELP

4.8 FS1016 CELP

16-32 CVSD CVSD

39



G.711, which is based on waveform coding, as the common coder for PC to IP phones [54]. More-

over, most of the telecommunication links still use the A-law and -law algorithms of waveform

coding for speech digitization. Keeping this fact in mind, we have developed our algorithms for

the keystream reuse exploitation of speech signals based on both waveform as well as parameter

encoding. In this chapter we will discuss the waveform encoded speech.

3.2.2 Language Modeling

3.2.2.1 Definition

A language model is a statistical model which assigns a probability to each word/alphabet of

the language through a probability distribution. Language models are used in many natural lan-

guage processing applications such as speech recognition, machine translation of speech, parts

of speech tagging, information retrieval, optical character recognition, handwriting recognition,

spell checking etc [55]. It is usually formulated as a probability distribution p(s) over string s

which determines how frequently a string s occurs as a sentence. For example, for language

model describing spoken language we might have the probability of the string good morning as

p(howareyou) = 0.05. This means that one out of every two hundred sentences a person speaks

is how are you. An interesting fact about language modeling is that the string might be grammat-

ically correct but its probability of occurrence might still be nearly zero. Like the probability of

the string good night is quite high whereas that of good mid night might be zero, whereas both

strings are grammatically correct.

3.2.2.2 n-gram Models

The most widely used language models by far are n-gram language models. These models are

introduced by considering the case for n = 2; these models are known as bi-gram models. For a
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sentence (word) s composed of words (alphabets)w1, w2, . . . wl, we can write

p(s) = p(w1)p(w2|w1)p(w3|w1w2) · · · p(wl|w1 · · ·wl−1) =
l∏

i=1

p(wi|w1 · · ·wi−1) (3.1)

In the bi-gram models we assume that the probability of a word letter depends only the immedi-

ately preceding word letter only. In our implementation of language models we will also restrict

to bi-gram models only. 3.1 for the bi-gram models can be expressed as

p(s) =
l∏

i=1

p(wi|w1 · · ·wi−1) ≈
l∏

i=1

p(wi | wi−1) (3.2)

To make p(wi | wi−1) meaningful for i=1, we can pad the beginning of a word or sentence with a

distinguished token < BOS > that is we pretend w0 =< BOS >. For a detailed description of

language models the reader is referred to [55].

3.2.2.3 Smoothing

Language models developed from even very large corpora of text based data do not incorporate

all possibilities as certain sequence may not be observed during the training process. In order to

solve this inherent problem with language models, they are often approximated using smoothed

n-gram models. Smoothing is a technique used to estimate better probabilities when data available

is not sufficient to estimate accurate probabilities [55]. The name smoothing comes from the fact

these techniques tend to make distributions more uniform by adjusting low probabilities such as

zero probabilities upwards and high probabilities downwards. Not only do smoothing methods

prevent zero probabilities but they also attempt to improve the accuracy of a model as a whole.

Whenever a probability is estimated from few counts, smoothing has the potential to significantly

improve estimation. This point has been proven in our case of implementation of smoothing

techniques while modeling interframe speech parameters. Out of the many smoothing techniques
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available we used additive and Witten Bell smoothing techniques during our experiments which

have significantly improved our results.

3.2.2.4 Additive Smoothing

It is the simplest of all the smoothing techniques. In this case we pretend that number of occur-

rence of a word/letter in a training data is δ times more than the actual occurrences where typically

0 < δ ≤ 1 i.e.

padd
(
wi | wi−1

i−n+1

)
=

δ + c
(
wi−1

i−n+1

)
δ | V | +∑

wi
c
(
wi−1

i−n+1

) (3.3)

3.2.2.5 Jelinek-Mercer Smoothing

The JM smoothing is based on linear interpolation. A unigram model or 1-gram model conditions

the probability of occurence of a word/letter on no other word/letter and just reflects the frequency

of word/letter in a text. For example the maximum likeleihood unigram model is

pML (wi) =
c (wi)∑
wi
c (wi)

(3.4)

where c represents the count. We can linearly interpolate a bigram model and unigram model as

follows:

pinterp (wi | wi−1) = λpML (wi | wi−1) + (1− λ) pML (wi) , 0 ≤ λ ≤ 1. (3.5)

It is always useful to interpolate higher order n-gram models using lower n-gram models because

when there is indufficient data to estimate a probability in the higher order model, the low order

model can often provide useful information. An elegant way of performing this interpolation is

as given by Brown et al. [56]

pinterp
(
wi | wi−1

i−n+1

)
= λwi−1

i−n+1
pML

(
wi | wi−1

i−n+1

)
+

(
1− λwi−1

i−n+1

)
pinterp

(
wi | wi−1

i−n+2

)
(3.6)

42



The nth-order smoothed model is defined recursively as a linear interpolation between the nth-

order maximum likelihood model and the (n-1)th-order smoothed model. To end the recursion

we can take the smoothed 1st-order model to be the maximum likelihood distribution or we can

take the smoothed 0th-order model to be the uniform distribution

punif (wi) =
1

| V |
(3.7)

where V represents the number of alphabets/words in a language. We take alpphabetsif we are

modellinf letters and take words if our n-gram models represent words in a language.

3.2.2.6 Witten Bell Smoothing

Witten Bell Smoothing was developed for text compression and can be considered as a particular

case of JM smoothing. In this case the nth-order smoothed model is defined recursively as a linear

interpolation between the nth order maximum likelyhood model and the (n-1)th-order smoothed

model as shown in 3.6

pWB

(
wi | wi−1

i−n+1

)
= λwi−1

i−n+1
pML

(
wi | wi−1

i−n+1

)
+

(
1− λwi−1

i−n+1

)
pWB

(
wi | wi−1

i−n+2

)
(3.8)

To compute the parameters λwi−1
i−n+1

for Witten Bell Smoothing, we will need to use the number of

unique words that follow the history wi−1
i−n+1. We will write this value as N1+(wi−1

i−n+1•)
, formally

defined as

N1+(wi−1
i−n+1•)

= {wi : c(w
i−1
i−n+1wi) 0} (3.9)

The notation N1+ is meant to evoke the number of words that have one or more counts and the •

is meant to evoke a free variable that is summed over. We can then assign the parameters λwi−1
i−n+1

for Witten Bell Smoothing such that

1− λwi−1
i−n+1

=
N1+(wi−1

i−n+1•)

N1+(wi−1
i−n+1•)

+
∑

wi
c(wi

i−n+1)
(3.10)
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In Witten Bell smoothing we use the higher order models if the corresponding n-grams occur in

the training data and back off to the lower order models otherwise.Then we should take the term

1 − λwi−1
i−n+1

to be the probability that a word/letter not observed after the history wi−1
i−n+1 in the

training data occurs after that history. To estimate the frequency of these novel words, imagine

traversing the training data in order and counting how many times he word following the history

wi−1
i−n+1 differs from the words in all such previous events. The number of such events is simply

N1+(wi−1
i−n+1•)

, the number of unique words that follow the history wi−1
i−n+1. Eq 3.10 can be viewed

as an approximation of this intuition. The use of Witten Bell Smoothing in our experiments has

significantly improved the accuracy of decoding speech parameters in the two time pad situation.

3.2.3 Hidden Markov Models

A Markov process is a stochastic process in which the future state of the process depends only

on the present states and not on any past state. A Markov model is a model in which the system

to be modeled is assumed to be a Markov Process. A hidden Markov model (HMM) is a statis-

tical model in which the system to be modeled is assumed to be a Makov process with hidden

parameters and the challenge is to find the hidden parameters of the model from the observable

parameters. An HMM is characterized by the following [57]:

1. N , the number of states S1, S2, . . . SN in the model. Although the states are hidden in an

HMM yet in every practical system some physical significance is attached to the states.

Generally the states are connected in such a way that any state can be reached from any

other state. We denote individual state at at time t as qt.

2. M , the number of distinct observation symbols per state, generally known as the alpha-

bet size. The observation symbols correspond to the physical output of the system being
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modelled. We denote the individual symbols as V = {v1, v2, . . . , vM}.

3. The state transition probability distribution A = {aij} where

aij = P [qt+1 = Sj | qt = Si] , 1 ≤ i, j ≤ N.

For the special case that any state can be reached from any other state aij 0 for all i, j.

4. The observation symbol probability distribution in state j, B = {bj(k)}, where

bj(k) = P [vk at t | qt = Sj] , 1 ≤ j ≤ N, 1 ≤ k ≤ M

5. The initial distribution π = {πi} where

πi = P [q1 = Si] , 1 ≤ i ≤ N

Given appropriate values of N,M,A,B and π, the HMM can be used as a generator to produce

an observation sequence

O = O1O2 . . . OT

(where each observation Ot is one of the symblos from V and T is the number of observations in

the sequence) as follows:

1. Choose an initial state q1 = Si according to the initial state distribution π.

2. Set t = 1.

3. Choose Ot = vk according to the symbol probability distribution in state Si, i.e. bi(k)..

4. Transit to a new state qt+1 = Sj according to the state transition probability distribution for

state Si i.e. aij .

5. Set t = t+ 1, if t < T go to step 3, else terminate the procedure.
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It is evident from the above discussion that an HMM can be completely described by two model

parameters M and N and three probability measures A, B and π. For convenience we use the

compact notation

λ = (A, B, π)

to indicate the complete parameter set of the model.

3.2.4 Automatic Speech Recognition

The purpose of speech recognition is to convert spoken words to machine readable input. Two

main techniques of speech recognition presently exist, one based on dynamic time warping

(DTW) and the other based on hidden Markov models (HMMs)[58]. Dynamic time warping

is used for measuring similarity between two sequences which may differ in time or speed [59].

DTW has been used for speech recognition for a long time but has now been replaced by HMM-

based approach which has proved to be more successful and this was the reason for our selection

of this approach. For complete details of the hidden Markov models and their applications in

speech recognition the reader is referred to [57]. All modern speech recognition tools use this

technique because of its robustness, flexibility and efficiency. The goal of any ASR system is

to find the most probable sequence of words/phonemes W = (w1, w2, w3, . . .) given an acoustic

observation O = O1 O2 . . . OT . Mathematically,

W = argmaxi∈V P (wi|O) (3.11)

where V indicates the phonetic units (generally phonemes) in a language and are modelled as

HMMs. Equation 3.11 cannot be solved directly but using Bayes Rule, the above equation can be

modified as

W = argmaxi∈V
P (O | wi)P (wi)

P (O)
(3.12)
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or it can also be written as

W = argmaxi∈V P (O | wi)P (wi) (3.13)

here, P (O | wi) is calculated using HMM based acoustic models, whereas P (wi) is determined

from the language model.

3.3 Related Work

3.3.1 Keystream Reuse Exploitation

Key stream reuse vulnerability exploitation of stream ciphers dates back to World War II. Follow-

ing are some of the significant and worth mentioning works presented in the literature.

3.3.1.1 Venona Project

The US Army Signals Intelligence Unit which later on became the National Security Agency

noticed that some of the soviet military and diplomatic telegraphic traffic used keystreams for

encryting more than one messages. Most of the messages which would later prove to be deci-

pherable were intercepted between 1942 and 1945, and they were decrypted beginning in 1946

and continuing until 1980, when Venona was cancelled. More than 3000 messages were at least

partially decrypted [60, 61]. The Soviet systems in general used a code to convert words and

letters into numbers, to which additive keys (from one-time pads) were added, encrypting the

content. When used correctly, one-time pad encryption is provably unbreakable. Cryptanalysis

by American and British code-breakers revealed that some of the one-time pad material had in-

correctly been reused by the Soviets (specifically, entire pages, although not complete books),

which allowed decryption (sometimes only partial) of a small part of the traffic. Generating the

one-time pads was a slow and labor-intensive process, and the outbreak of war with Germany in

47



June 1941 caused a sudden increase in the need for coded messages. It is probable that the Soviet

code generators started duplicating cipher pages in order to keep up with demand.

3.3.1.2 Formalization of Keystream Reuse Exploitation

Another worth mentioning work on the topic is that of Rubin in 1978, who for the first time

formalized the process of keystream reuse exploitation [46]. In this work the “classical” approach

of extracting p and q from p xor q is formalized assuming p and q to be taken from English

text. Initially, a word is guessed that is likely to appear in the messages, for example the word

commonly used word ”the”. Then, we try to xor the with each substring p and q of length equal

to three alphabets. Wherever it results into something that “looks like” English text, there are

fair chances that one of the messages has the in that position and the other message has the result

of the xor. The same process when repeated a number of times may help in extracting sufficient

words from the two plaintexts which are xored. It was Rubin if 1978 who formalized this process

for the first time.

3.3.1.3 Automating the Process of Keystream Reuse Exploitation

Dawson and Neilson in 1996 for the first time automated the process of cryptanalysis of plaintext

XORs [47]. They created a program which was based on a number of heuristic rules in order to

automatically deduce p and q from their xor. Their approach was simplified by the assumption

that p and q only belonged to the the 26 English letters that too only uppercase with the addition

of the space. Since in ASCII, an uppercase letter xored with a space can not be equal to any two

uppercase letters xored together, hence things get simplified further. It was further assumed that

if p xor q was equal to 0, both the characters were spaces. Between the recovered spaces a list of

common words of different lengths was used in conjunction with some ”tricks” to extract p and
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q. They tested their system on the first 0.6 million characters of the English Bible. It is worth

mentioning here that the rules adopted in this approach were designed to work well in the specific

example cases and there was no guarantee they would work on different examples with the same

accuracy.

3.3.1.4 Using Mathematical Models for Keystream Reuse Exploitation

It was only very recently in late 2006 that mathematical models were used for the first time for

this important area of cryptanalysis of two time pads by Joshua Mason et. al. [37]. Mostly the

keystream reuse exploitation discussed previously is with respect to the textual data and mainly

based on heuristic rules for obtaining the two plaintexts m1 and m2 from except for [37] which

uses statistical finite states language models and natural language approach. Prior works also

exist on automated cryptanalysis of analog speech scramblers (e.g. [62]), but no previous work

exists on the use of modern automated speech recognition (ASR) techniques based on hidden

Markov models (HMMs) being used for cryptanalysis of the two time pad problem for the dig-

itally encoded speech signals. In [37], the concepts borrowed from the natural language and

speech processing communities are used for text based data whereas we use similar concepts with

addition of speech recognition for speech based data.

3.3.1.5 Cryptanalysis of Encrypted Speech

The statistical properties of speech signals are different from text based data. It was this real-

ization of different statitical properties that the present day selective encrytion techniques were

developed which selectively encrypt portions of the speech signal while leave certain portions

unencrypted and still achieve a high degree of unitelligibility. Speech encryption devides can be

didde into two main categories i.e. analog encrytion (scrambling ) and digitla ncrytion devices.
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The analog speech scramblers can be considered as early precursors of the speech encryption

domain which were developed as early as 1919. Analog speech scrambless basically modify the

speech signal by operating in amplitude, time and frequency domain. For example, a relatively

elementary technique provides speech scrambling by inversion of the audio frequency band. A

major disadvantage of speech scrambling systems of this type that they are quite readily suscep-

tible to being intercepted and unscrambled by other than the desired receiver. While simple and

inexpensive, the system suffers from the further disadvantage that it is substantially unsuited to

implementation in a form providing more than a few scrambling codes. A related but slightly

more versatile and hence more complicated scrambling system which has been utilized in the

prior art divides the voice communications channel into a plurality of subchannels each includ-

ing a portion of the frequency range of the entire voice communication channel. Each of these

narrow frequency bands may be individually inverted and heterodyned with a fixed reference sig-

nal or plurality of fixed reference signals and then recombined in a preselected order to provide

a scrambled signal of greater complexity and therefore less susceptible to being intercepted and

unscrambled by other than the desired receiving station. Further, by merely changing the order

of recombination of the several speech sub-bands, a speech scrambler of the type described may

provide a number of different and distinct scrambling codes by merely reprogramming rather

than restructuring the device. More complicated techniques were developed in order to make

the reverse process more complex for any unintended recipient of the signal. The permutation

of speech segment [63] and transform based analog speech scramblers [64] can be considered as

the major analog speech scramblers. Sophisticated techniques for their cryptanalysis also exist

like [62, 65, 66, 67]. With the advancement in digital technology speech is now considered as an

ordinary stream of bits comprising of ones and zeros. All the properties of speech which were

exploited for cryptanalysis in case of analog encryption techniques are no more valid in the digital
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domain. The statistical properties of digitized speech, however, are studied and discussed from

crytpanalysis point of view for the first time in this thesis.

3.3.2 Use of HMMs in Cryptology

As regards to the use of hidden Markov models in cryptology, these have recently been used for

several problems in this area. Following are the most prominent of the works discussed in the

literature regarding use of HMMs for cryptanalysis.

3.3.2.1 Fast Dictionary Attacks on Computer Passwords

Human memorable passwords are the basis of first level computer security. A. Narayanan and

V. Shamtikov used hidden Markov models for improving fast dictionary attacks on human mem-

orable passwords [68]. The basis of this attack is that the distribution of letters in the human

memorable passwords is similar to the native language of the password user. It is shown that

using standard Markovian modeling techniques the password search space can be drastically re-

duced. The search speed is further augmented by time memory trade off. The algorithm presented

in [68] has been evaluated on the real world human memorable password hashes and successfully

recovered 67.6 percent of the passwords using a search space of 2x109. Our previous argument

that all the techniques involving use of HMM for cryptanalysis presented so far relate to text based

data is further reasserted by the use of HMMs for dictionary attacks on passwords.

3.3.2.2 Timing Attacks on Secure Shell

Secure Shell (SSH) is designed to provide secure communication between two hosts in a network.

In SSH interactive mode every individual keystroke is sent to the remote machine in a separate

packet immediately after the key is pressed. This immediate transmission of keystroke informa-
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tion can be captured and exploited to gain timing information of users’ typing. In [69] statistical

techniques using HMMs are applied for modeling the timing information of keystrokes to reveal

key sequences in a SSH session. If the attacker can infer what the user is typing from the inter

keystroke timings then he can learn what users type in a SSH session from the packet arrival

times. The technique using HMMs presented in [69] can reduce the cost of password cracking by

a factor of 50 for passwords of length upto eight characters and hence speed up exhaustive search

dramatically. The attack presented in [69] is not only applicable to SSH but can be effectively

applied to all such protocols which deal with interactive traffic. We see here agin that HMMs are

applied in cryptanalysis of text based data.

3.3.2.3 Deciphering Substitution Cipher

Language models have been effectively used in deciphering of simple substitution ciphers. In

[70] D. Lee proposed a solution to the substitution deciphering problem using hidden Markov

models and demonstrated its application to symbolically compressed document processing. It

has been point out the abstraction of state transitions from symbol observations in an HMM is

analogous to the separation of a Markov language source model and a substitution enciphering

process. Therefore, an HMM properly initialized with the statistics of a source language can be

used to find the most likely character mappings for a given cipher passage. Again the application

of HMMs to deciphering of substitution ciphers deal with use of HMMs for cryptanalysis of text

based data.

3.3.2.4 Modeling Keyboard Acoustic Emanations

Emanations produced by electronic devices have long been studied for the purpose of extracting

some hidden information about the emanating device. These emanations may be in the form of
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electromagnetic waves or may be sound waves, these render some useful information about their

source. It was only recently that acoustic amanations of keyboard were captured to find what was

being typed from the sound produced by different keys [71]. L. Zhuang, F. Zhou and J. D. Tygar

modeled the keyboard acoustic emanations as HMMs [72]. In this case a 10 minute sound record-

ing of a user typing English is taken and using hidden Markov models upto 96 percent of the typed

keys are successfully recovered. The attack uses a combination of standard machine learning and

speech recognition techniques, including Cepstrum features, Hidden Markov Models, linear clas-

sification and feedback-based incremental learning. In this case HMM based speech recognition

techniques are applied but not to identify speech but to identify the key pressed by a user from the

sound which it produces.

3.3.2.5 Counter Measure against Side Channel Attacks

Side channel attacks are recently introduced in the domain of crytpanalysis. These attacks in the

from of timing attacks, power analysis attacks and differential power analysis attacks have shown

encouraging results for breaking into the implementations of otherwise quite secure algorithms.

Randomized countermeasure is one of the techniques for thwarting side channel attacks. such

attacks. In [73], C. Karlof and D. Wagner used HMMs for breaking the randomized counter-

measures against side channel cryptanalysis by modeling these counter measures as Input Driven

Hidden Markov Models (IDHMMs) - the concept also introduced here for the first time. IDHMM

is a generalization of HMM that provides a powerful and unified cryptanalytic framework for

analyzing countermeasures whose operational behavior can be modeled by a probabilistic finite

state machine. The use of HMMs in this case differentiate this attack from other attacks on ran-

domized countermeasure in two ways. Firstly it makes the attack generalized over a broader class

of countermeasures and secondly it is applicable even if the side channel is noisy.
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3.3.2.6 Cryptanalysis of Two Time Pad of Text Based Data

Finally the most relevant work to ours is that of Mason et al [37] who used Markov models to solve

the two time pad problem for the stream ciphered uncompressed text based data. Our algorithm

for cryptanalysis differs from this work in two aspects. Firstly, the exploitation presented in [37]

will only work on text based data and will not be applicable if the underlying plaintext is speech

as it uses smoothed n-gram language models in which the transitional probabilities are calculated

from the probability of a specific character followed by another character in the English language.

Secondly, it assumes the underlying plaintext to have some probability distributions which is not

uniformly i.e. if compression is applied over the plaintext before encryption which make the data

uniformly distributed then the attack will fail. Our technique of exploitation on the speech signal

works even in the highly compressed encoding techniques applied over the speech signal before

being stream ciphered.

It is worth mentioning here that the works involving cryptanalysis with the aid of HMMs pre-

sented so far either do not relate to two time pad cryptanalysis or pertain only to text based data.

Our algorithm for cryptanalysis of the plaintext XOR of the digitized speech signals using hid-

den Markov model based speech recognition techniques is the first of its kind according to our

knowledge and has showed encouraging preliminary results.

3.4 Proposed Approach

Before discussing the concept behind our approach for exploiting keystream reuse in stream ci-

phered digitized speech signals, we first elaborate and justify our assumptions.
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3.4.1 Assumptions

We assume that the cryptanalyst knows before launching an attack, the details of the speech

digitization and encoding before being stream ciphered. As an a priori knowledge the cryptanalyst

must know whether the audio data which he targets is waveform encoded or parameter encoded.

This assumption becomes realistic from the fact that the audio encodings follow some standards

and by merely knowing the standard reference, the bit level details can be easily accessed as these

details are publicly available. For example, in the waveform coding we may have ITU-T G. 711

[3], the bit level details of which are publicly available. Had these details not been available then

even the plaintext speech without encryption would have not been possible to be decoded. We also

assume that the cryptanalyst has a priori knowledge of the language and genre of the underlying

speech signal. For example, we may like to model military telephonic conversations, corporate

discussions, and informal chat over mobile telephones, etc. In case of VENONA project [61], the

NSA knew before hand that the said link carried Soviet military and diplomatic communication.

Moreover, keeping in view the Kerckhoffs principle re-asserted by Claude Shannon as the enemy

knows the system, the language and encoding details of the underlying speech signals can be

rightly assumed to be known to the cryptanalyst before hand.

3.4.2 The Concept

Our method of cryptanalyzing the speech signals being encrypted with the same keystream is

based on the hidden Markov model based speech recognition techniques. All modern speech

recognition tools use this technique because of its robustness, flexibility and efficiency [57]. The

three basic questions with respect to the HMMs and their solutions as regards to speech recog-

nition are effectively utilized with some modification in our case. The three basic problems of
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interest that are to be solved for the model to be useful as regards to the cryptanalysis of speech

signals encrypted with the same key are:

3.4.2.1 Finding Probability of Observation Given a Model

Given an observation sequence O (XORed ciphered speech waveforms in our case) and a model

where is the initial probability of states (XORed phonemes in our case), A is the transition proba-

bility of states and B is the emission probability distribution of the observation sequence, how do

we compute the probability that the given sequence of observations was produced by the model

i.e. ? The solution to this problem allows us to choose the model which best matches the obser-

vation sequence which in our case would be a sequence of XORed speech samples.

3.4.2.2 Finding Internal States Given Model and Observation

Given the observation sequence O of XORed speech waveforms and the model , how do we

choose a corresponding sequence of states i.e. XORed spoken words in case of isolated word

recognizer and sequence of XORed phonemes in case of continuous speech recognizer, which is

optimal and best explains the observation? This is the problem in which we try to find the hidden

part of the model i.e. to find the correct state sequence. In this case we have to impose certain

optimality criterion like the sequence with maximum log probability may be selected.

3.4.2.3 Adjusting Model Parameters Given Observation

How do we adjust the model parameters to maximize the probability of the observation sequences

of XORed speech waveforms given the model ? This is the training part of the models and on

one hand is the most crucial part in the sequence of events but on the other hand gives a lot of

flexibility to the cryptanalyst thus empowering him to adjust his model for all sorts of varying
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situations like different languages, accents, different speech coding and compression techniques

and even different noisy conditions. This allows the crypanalyst to create best models for real

phenomena.

All the abovementioned problems and their efficient mathematical solutions have a very rich liter-

ature with respect to speech recognition [57]. In the conventional speech recognition techniques,

the hidden Markov models are trained for complete words in case of isolated word recogniz-

ers and for phonemes in case of continuous speech recognizers. In our case, for isolated word

recognition, we have to first list down all the possible combination of words resulting from the

XOR of the two speech signals and hence the HMMs required to be trained will increase from

n to n2. Since the list of words is generally very large, therefore, this approach of training the

HMMs would be very computational intensive and maybe impractical. A better and more effi-

cient approach is to train the HMMs for the exclusive ORed pairs of all the possible phonemes

in the language under test. In this case, since the number of phonemes is relatively very small

as compared to the number of possible words, the increase in computational complexity from n

to n2 does not become unachievable. For example, in English language there are about 40 to 50

phonemes and hence the number of HMMs to be trained in this case would be at the most 2500

(502) which are not high as regards to the computational resources available to a normal user

these days. Using this approach would not require any major modification in the conventional

phoneme based speech recognition procedure. In the pre-computation phase which comprises of

selection and training of HMMs, we will first list down all the possible phonemes in the language

and then we will pair each phoneme with every other phoneme including itself in the list. We will

then assign each HMM to each phoneme pair and then train it with the training data selected on

the basis of the a priori knowledge about the language and encoding mechanism of the speech

signal. Once the HMMs corresponding to phoneme pairs are fully trained then these can be used
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for the identification of phoneme pairs in a given sequence of XORed speech samples in a process

similar to the decoding part of a conventional HMM based ASR system. The decoded phoneme

pairs are first separated into two distinct groups and then the phonemes within a group can then

be and combined to form different words and sentences. For both these steps, help can be taken

from the semantics and syntactic rules of the language.

3.5 Implementation of Proposed Approach

The implementation part of our attack involves a pre computation phase which involves selection

and training of the models and then the decoding phase which corresponds to the recognition of

sequence of phoneme pairs which gives the highest log probability. Both the phases are interre-

lated and interdependent and the accuracy of the attack is greatly dependent on how well these

two parts of the attack are carefully employed and joined.

3.5.1 HMM Selection and Training Phase

This phase corresponds to the pre computation part of the speech recognition in which the HMMs

are first selected and then trained with the help of speech samples available with respect to each

phoneme pair. This is done once for a particular language and specific speech encoding procedure.

In order to prove the concept, we present a simple example in which we take two phonetically

balanced English sentences: Clothes and lodging are free to new men; and All that glitters is

not gold at all. We bit wise XORed the digital encoded forms of these sentences to simulate the

keystream reuse scenario. Figures 3.1, (b) show the spectrogram and waveform of the two sen-

tences along with their transcription. The transcription at the phoneme level is obtained from the

British English pronunciation dictionary BEEP [74]. For simplicity of implementation the silence

between words is not marked separately, only the initial silence and the end silence are marked.
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Fig 1(c) corresponds to the bitwise XOR of the two signals and the associated transcriptions in the

form of phoneme pairs. The + sign in the figure corresponds to XOR. For the individual sentences

the number of phonemes is 27 for sentence 1 and 26 including silence (sil) and hence the HMMs

required to be trained for the XOR case would be 702 (27x26) at the max. These are obtained by

pairing every phoneme of sentence 1 with every phoneme of sentence 2. We used ten utterances

each of the sentence 1 and sentence 2 from ten different speakers, labeled the wave files and then

bit wise XORed both the files again labeling these with the HMM boundaries clearly defined. For

recordings, transcription and speech recognition we used the HTK [75] which is a toolkit based on

C language for analysis of hidden Markov models particularly for machine recognition of speech.

The recordings and transcription can be obtained by the HTK tool HSLab. The above mentioned

acoustical events were modeled by 167 HMMs with each HMM corresponding to one XORed

pair of phonemes. Since all the possible phonemes do not occur hence the actual number (167) of

phoneme pairs is quite less than the total possible number (702). The basic design of the HMM we

used in this case for all the models is as shown in figure3.4. Since speech recognition equipment

cannot process waveforms directly, these are to be converted into more compact form. The con-

figuration we used for the speech recognition was based on Mel Frequency Cepstral Coefficients

(MFCC) [76] with 12 first MFCC coefficients, the null MFCC coefficient which is proportional to

the total energy in the frame, 13 Delta coefficients estimating the first order derivative of MFCC

coefficients and 13 acceleration coefficients estimating the second order derivatives, altogether a

39 coefficient vector is extracted from each signal frame. The frame length is 25 milliseconds

with 10 milliseconds frame periodicity. The parameters which are to be estimated for each HMM

during the training phase are transitional probabilities aij and the single Gaussian observation

function for each emitting state which is described by a mean vector and variance vector (the

diagonal elements of the autocorrelation matrix). In our case we have to estimate all these values
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for each of the 167 HMMs during the training phase. The HTK tools HInit, HCompV, and HRest

can be used for this purpose.

Before using our HMMs we have to define the basic architecture of our recognizer. In actual

case this depends on the language and the syntactic rules of the underlying task for which the

recognizer is used. We assume that these things like the language of the speakers and the digital

encoding procedures are known to the cryptanalyst before hand. HTK, like most speech recogniz-

ers, works on the concept of recognition network which are to be prepared in advance from task

grammars, and the performance of the recognizer is greatly dependent on how well the recog-

nition network maps the actual task of recognition. In addition to the recognition network, we

need to have a task dictionary which explains how the recognizer has to respond once a particu-

lar HMM is identified. The task grammar for our recognition network is shown in Fig. 3. The

recognition network for our experiment is shown in Fig. 4. The HParse tool of HTK can be used

to construct the recognition network from the task grammar. HSGen can be used for testing and

verification of the recognition network.

3.5.2 Decoding Phase

Once the pre-computation phase has carefully been completed, the decoding process becomes

pretty simple and elegant. An input speech signal, which in our case will be the bitwise XOR

of two unknown speech waveforms, is first converted to a sequence of n MFCC vectors and is

then fed as input to the recognizer. The prospective recognition hypothesis comprises every path

from the beginning node to the finishing node which passes through precisely n emitting states.

Every one of these paths has a log probability which is actually the sum of the log probability

of individual transition in the path and the log probability of each emitting state generating the

corresponding XORed vector. Within the model, transitions between two states are determined
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Figure 3.1: Spectrogram and waveform along with transcription of the sentence: Clothes and lodging

are free to new men

 

Figure 3.2: Spectrogram and waveform along with transcription of the sentence: All that glitters is

not gold at all
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Figure 3.3: Spectrogram and waveform along with transcription of XOR of the sentences

b3b2 b4 b5

S1 S2 S3 S4 S5 S6

a12

a22

a23

a33

a34

a35

a56a45

a55

a46

a44

a13 a24

Figure 3.4: Basic Topology of HMM
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/* Task grammar*/ 
$WORD = sil+ao | k+l | l+dh | ow+ae | dh+t | z+g | ae+g | n+l  | d+l | l+ih | l+t | l+ax | oh+ax | oh+r | jh+z 
|ih+ih | ng+z | ng+n | aa+n | r+oh | r+t | r+g | f+g | iy+g | iy+ow | iy+l | t+d | t+ax | uw+ax | uw+t | n+t | n+ao | 
y+ao | uw+ao | m+l | m+sil | eh+sil | n+sil | k+ao | ow+dh | ow+t | dh+g | z+l | ae+l | ae+ih | n+ih | d+t | l+r | 
oh+z | jh+ih | ih+z | aa+t | f+ow | r+ow | r+l | iy+d | iy+ax | iy+t | t+t | y+l | uw+sil | sil+l | f+oh | f+t | n+ax | y+t 
| m+ao | eh+l | l+ao | ow+ao | dh+ao | ae+dh | ae+ae | d+g | l+g | oh+l | jh+l | ng+t | aa+ax | r+ax | r+r | f+r | f+z 
| f+ih | r+ih | iy+z | t+z | uw+n | n+oh | uw+g | uw+ow | m+ow | eh+ow | n+d |  sil+ax | sil+t | n+ae | d+ae | l+ae 
| oh+ae | oh+t | oh+g | jh+g | ih+l | ng+l | aa+ih | f+ax | r+z | iy+ih | uw+z | n+n | y+oh | m+g | eh+g | n+ow | 
sil+ow | sil+d | l+l | ow+l | dh+l | z+dh | jh+t | ih+t | ng+g | aa+g | f+l | n+z | y+z | m+z | eh+n | eh+oh | sil+oh | 
dh+dh | ih+g | aa+l | t+ih | uw+ih | m+n | sil+g | k+sil | n+dh | ng+ax | aa+r | aa+z | f+n | l+sil | ow+sil | z+ao | 
ih+ax | ng+r | r+n | iy+oh | r+d | ae+t | oh+ih | jh+ax | ih+r | t+g | y+d | uw+d | m+ax | eh+ax | aa+oh ; 
 

( [ START_SIL ] { $WORD } [ END_SIL ] ) 

Figure 3.5: Task Grammar for the Recognition Network

 

START_SIL 

sil ⊕ ao 

k ⊕ l 

l⊕ dh 

m ⊕ ax 

eh ⊕ ax 

aa ⊕ oh 

END_SIL 

Figure 3.6: Recognition Network
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from the model parameters (aij). The transition probabilities between any two models are kept as

constant whereas the transition between two words words are determined by the language models

in case of large networks. upon the threshold set a list of the probable paths are listed by the

decoder. A Token Passing Algorithm [75] is used to find these paths. A token is placed in every

possible start node at time 0. At each ach time step, tokens are propagated along connected paths

which stop whenever an emitting HMM state is reached. In case the out going paths from a node

are more than one, all possible paths are explored in parallel by copying the token in all paths.

As the token passes across transitions the corresponding transition and emission probabilities add

up to its log probability. The token also maintains a history of its route during the process of

propagation. In a large network, which will definitely be in our the case, a beam search may be

used in case of which a record of the best token overall is kept while deactivating all tokens whose

log probability falls more than a beam width below the best. This beam search technique has one

problem i.e. if the beam width for pruning is set too small then it may result in a search error by

pruning the actual recognition path before its token reaches the end of the observation. Setting

the beam width is thus a compromise between computational load and avoiding search errors.

Fortunately, HTK tools HVite takes care of all these speed and computation problems [75]. The

initial experiments which we performed gave us up to 80 percent correct recognition of phoneme

pairs obtained though HResults tool of HTK as shown in Fig. 5.

=================== HTK Results Analysis=======================

Date: Mon Jun 11 20:05:23 2007

Ref : data2/ref22.mlf

Rec : data2/rec22.mlf

———————Overall Results ————————–
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SENT: %Correct=10.00 [H=1, S=9, N=10]

WORD: %Corr=86.98, Acc=83.72 [H=374, D=10, S=46, I=14, N=430]

===============================================================

Figure 3.6: HTK Recognition Performance

3.5.3 Detailed Experimentation

After getting encouraging results from the experiment in the controlled environment, we then

tested our technique on actual speech files. For this purpose, we selected the Switchboard Corpus

[77] which is a collection of telephone bandwidth conversational speech data collected from T1

Lines. The speech files are fully transcribed. The reason for this selection was to simulate the

situation of eavesdropped encrypted communication of waveform encoded speech. In order to

simulate the keystream reuse scenario, we selected 256 speech files and XORed them with each

other. The acoustical events were modeled with 588 HMMs with each HMM corresponding to

one pair of phonemes. Since all the possible phonemes do not occur always hence the actual

number of phoneme pairs (588) is quite less than the total possible number (2500). As discussed

earlier, speech recognition tools cannot process speech waveforms directly. Different acoustic

feature representations were used for recognition purposes. For all the representations, we used

frame length of 25 milliseconds with 10 milliseconds frame periodicity. The parameters which

were to be estimated for each HMM during the training phase were transitional probabilities

aij and the single Gaussian observation function for each emitting state which is described by

a mean vector and variance vector (the diagonal elements of the autocorrelation matrix). The

different acoustic features extracted for recognition purposes include linear predictive coefficients,

linear predictive reflection coefficients, linear predictive Cepstral coefficients and Mel frequency

Cepstral coefficients along with delta and reflection coefficients. For testing purpose, we selected
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Table 3.2: Recognition Accuracies of Different Acoustic Features

SNo Feature Extraction Mechanism Recognition Accuracy (%)

Training Data Test Files Arbitrary Test Files

1. Linear Predictive

Coefficients 65.93 29.51

2. Linear Predictive

Reflection Coefficients 69.06 28.61

3. Linear Predictive

Cepstral Coefficients 72.09 34.62

4. Mel Frequency Cepstral

Coefficients (MFCC) 74.72 40.73

5. Linear Predictive Cepstral

+ Delta Coefficients 77.15 37.81

6. Mel Frequency Cepstral

+ Delta + Acceleration Coef. 79.96 59.09

twenty different files from the Switchboard corpus not included in the training data, XORed these

to get ten files. As an initial test we also selected ten different files from the training data and fed

these to the recognizer. The experimental results with respect to test files selected from the training

data as well as arbitrary test files are depicted in Table I. The best accuracy results were presented

by the Mel Frequency Cepstral Coefficients (MFCC) with delta and acceleration coefficients for

both the test file categories.
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3.5.4 Complexity Analysis

For the complexity of the training phase, the increase in the number of models to be trained is

from n to n2 at the most, if we pair each phoneme with every other phoneme and of course itself.

For the decoding phase, the number of phonemes which are to be checked at each stage of the

decoding path is also increased from n to n2 and the number of possible paths increases from n2

at each stage to n4 at each stage. Hence we may expect an exponential increase in the decoding

from the conventional speech recognition. One way to reduce the number of iterations at each

stage is to carry out beam search in which the width of the beam should be carefully selected in

order to avoid pruning of useful paths at the early stage of the recognition network. Fortunately,

HTK supports the beam viterbi search approach and hence can be employed in our case with no

major modification in the decoding phase.

3.6 Summary

In this paper, we presented that how the keystream reuse problem of stream ciphers can be ex-

ploited in case of waveform encoded speech signals. Prior to this work, one could safely reuse

keystreams in case the underlying plaintext data was speech as all exploitation techniques pre-

sented before this transaction assumed the underlying plaintext to be uncompressed text-based

data encoded through conventional encoding techniques such as ASCII coding. We have shown

that the conventional speech recognition techniques can be adapted to be used for cryptanalysis

of two time pads in case of stream ciphered digitized speech signals. HTK and other automatic

speech recognition (ASR) tools can be effectively modified for this purpose. These speech recog-

nition tools work on the concept of context-dependent tied-state multi-mixture tri-phones [75]

which make the performance of the recognizer more flexible and robust. The use of tri-phones
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in the keystream reuse scenario needs to be looked into in the future assignments. The parameter

encoded and compressed speech signals in the keystream reuse situation can also be looked into

as a future work.
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Chapter 4

CRYPTANALYSIS OF TWO TIME PADS OF PARAMETER ENCODED

SPEECH

4.1 Introduction

The perfect security of the one time pad is based on the premise that the keystream is as long as

the plaintext and is never reused [36]. The keystream reuse problem from the speech signal point

of view was discussed for the first time by us in chapter 2 where we used hidden Markov model

based speech recognition techniques for this purpose. The techniques presented in chapter 1 can

be best applied on waveform encoded speech and does not produce very encouraging results on

parameter and hybrid encoded speech signal in the two time pad situation. Since waveform cod-

ing has now been replaced by modern parameter and hybrid encoding techniques. In this chapter

we address this problem viz a viz the modern speech encoding and compression mechanisms.

Digitization, compression and encryption of speech have been important areas of digital commu-

nications. Encryption schemes particularly designed for speech starting from the old aged analog

speech inverters to the modern aged partial speech encryption techniques have been the focus of

security professionals since long. With the advancement in the speech digitization and compres-

sion techniques such as low rate Vocoders which use parameter encoding, the speech signal is

now treated as an ordinary data stream of bits as far as encryption is concerned. The properties of

the digitized speech signals exploited by the low bit rate selective speech encryptor [78], speech

recognition equipment especially in the distributed speech recognition [50] and automatic tran-
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scription of telephone conversations [51] have encouraged us to look at their characteristics from

the cryptanalytic point of view in the keystream reuse scenario.

In case of parameter encoding speech is represented as a source filter model in which the parame-

ters of the model alongwith excitation information in the form of voiced/unvoiced signals are used

for digital representation of speech. In hybrid coding, which has become the most popular in mod-

ern speech coding, the excitation information is not only segregated as voiced or unvoiced signal

but the details of excitation information such as pitch, pulses position/signs and gains are used

for its representation. The most common coding technique in this domain is Code Excited Linear

Prediction (CELP), which is the most widely used speech coding algorithm. It is for this reason

that we have selected a particular implementation of CELP for our attack on parameter/hybrid

encoded speech. Different standard implementations of the CELP algorithms are available and

are in use in most of the modern speech processing applications. FS1016 CELP at 4.8 kbit/s [79],

ITU-T G-723.1 Algebraic CELP at 5.3/6.3 kbit/s [80], ETSI GSM AMR Algebraic CELP at 4.75

12.2 kbits/s [81], ITU-T G-728 Low Delay CELP at 16kbits/s [82], ITU-T G.729 , Conjugate

Structure Algebraic CELP at 8 kbits/s [83] are a few such examples. Our implementations will

not only address all these standard variations of CELP coded speech, but our technique of attack

can also be adapted for other parameter encoding standards, such as LPC 10 E Algorithm by the

US Department of Defence [84], Regular Pulse Exited Long Term Prediction (RPE-LTP) used in

GSM [85],etc. We will again use the concepts of hidden Markov models combined with some

dynamic programming search techniques but from a perspective which is different from the one

presented in Chapter 2. We will first devise a mechanism for creating bi-gram models of the

parameters obtained after speech encoding. Using these statistical models for each spectral and

excitation parameter we will try to find the individual plain text speech signals from their XOR.
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4.2 Proposed Approach

Our method of cryptanalyzing the speech signals being stream ciphered with the same key is

based on the type of encoding applied to the plain speech before encryption i.e. we assume that

the cryptanalyst knows before launching an attack, the details of the speech digitization and en-

coding before being stream ciphered. This assumption is not unrealistic as most modern speech

processing equipment generally use standard encoding procedure as discussed in section 2.1.

Moreover, the bit level details of these implementations are publicly available. Had these details

not being available then even the plain text speech without encryption would not be possible to

be decoded. Moreover, keeping in view the Kerckhoffs principle re-asserted by Claude Shannon

as the enemy knows the system, our assumptions do not seem unrealistic. Our attack on the two

time pad is based on Markov models and dynamic programming algorithms i.e. we will first

try to model the speech we want to cryptanalyze by using the a priori information regarding the

language and genre (accent, context, topic etc) of the speech and then the details of the encod-

ing procedure being applied on the plain speech. For example, we may like to model military

telephonic conversations, corporate discussions, informal chat over mobile telephones, etc. We

will have to first collect a corpus of speech files similar to the ones in genre which we want to

attack. We will then try to encode these with the encoding mechanism we want to attack. Then

we will create models for each parameter and then train our models on the encoded speech pa-

rameters. Since this can be done off line and is required to be done once for a particular genre

of speech, hence we can afford to have a high computational and memory complexity. Once we

have the trained models available, we can then use dynamic programming techniques like the

Viterbi search to find the most probable pair of p and q given x such that . As discussed earlier,

Code Excited Linear Predictive (CELP) coding is the most popular technique of speech encoding.
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Hence, we will be tackling the CELP coded speech signals. The same concepts can be applied

to all other speech encoding techniques in vogue. As discussed and justified earlier, we assume

that the frame structures and bit allocations to different parameters in the CELP coded frame like

Line Spectral Frequencies (LSFs)/Log Area Ratios (LARs), Pitch delay, Pitch gain, Excitation

pulse position, gain and signs, etc being transmitted are known to the cryptanalyst. But instead

of having these parameters independently he has two different speech signal parameters (bitwise)

XORed together as to simulate the two time pad situation. The job of the cryptanalyst is to find p

and q from . If we know the probability distributions of p and q as Pr1 and Pr2 respectively before

hand, we can estimate the joint probability of p and q which would be simply Pr1.Pr2 since both

p and q are independently selected.

4.2.1 Problem Definition

We can define our problem statement as: Given an observation sequence O of finite length l such

that , in the form of CELP coded vectors of two different speech signals, find the most probable

path through the finite state automaton formed by the intersection of two finite state automata

with probability distributions Pr1 and Pr2 respectively. Reading off the labels at each state of the

most probable path would give us p and q.

The challenge over here is how to estimate Pr1 and Pr2. For the text based data, language mod-

eling and Natural Language Processing have a very rich literature and the techniques are well

matured. If we are able to adapt those well matured techniques to our situation then our prob-

lem of cryptanalysis does not remain intractable. If we analyze each frame of a CELP coded

speech signal it comprises of certain spectral and the excitation/residual signal parameters and

each spectral and residual parameter is encoded with different number of bits in each standard

implementation of parameter encoded speech. It means that each component of the speech vector
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corresponding to each frame can be considered as an alphabet in a language with the total num-

ber of alphabets in that language as 2number of bits representing the alphabet . In all standard

implementations of parameter encoded speech, the maximum number of bits representing each

component generally does not exceed 10, thereby making the language size (the number of al-

phabets) to a maximum of 1024. Another important consideration over here is that we have to

model each component of the CELP vector separately over substantially long streams of CELP

frames. If the probability distribution of the component is uniform then our method of attack will

fail. Fortunately, in the practical scenario even in the most compressed speech files the probability

distribution of the individual component in the speech frame is not uniform for most of the com-

ponents. For text based data upto 32-gram models are available, and by having models of higher

order the accuracy of the attack can be enhanced. In our case, since the number of alphabets is

generally higher than text based data and for decoding the complete frames we will have to con-

sider as many language models as the number of components in a speech frame. Hence having

models of the order of 3 and more are generally not feasible and requires enormous computational

and memory requirements. The time and memory complexity of our algorithm are also discussed

in this chapter. Since we are modeling each component of the frame separately, hence we will

have to decode each component separately for the entire speech file. One complete frame will

only be available once all the components of all the available speech frames are decoded. For

the decoding part we used the Viterbi algorithm based on dynamic programming which finds the

most optimal path through the finite state automaton. After finding the most probable sequence of

frames of both the speech files the separate speech files can be re synthesized. Since 100 percent

recovery of the individual frames is not practically possible but fortunately even an accuracy of

about 60 percent at regular intervals also produces legible speech but with degraded quality. Since

quality may not be a consideration for the cryptanalyst, legibility of the spoken words serves the
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purpose in most of the cases. Hence, even if we are able to reconstruct the frames of speech with

around 60 percent correct components at some regular intervals over the stream of frames, then

our purpose of cryptanalysis is achieved.

4.3 Implementation of Proposed Approach

The implementation part of our algorithm can be divide into two main parts i.e. the pre compu-

tation part which includes modeling/training part and the decoding part. The pre computation is

required to be done once for a particular genre and encoding technique. It can be done off line

using the a priori knowledge about the target of interest.

4.3.1 Parameter Modeling and Training

We have implemented our proposed algorithm on one particular implementation of CELP in

which each frame corresponds to 20 ms of speech (160 samples at 8000 samples per second).

For the short term prediction, 10 line spectral frequencies (LSFs) are calculated for each frame.

In order to encode these line spectral frequencies these are divided into sub vectors of 3, 3 and

4. Each sub vector is represented by 10 bits that in fact correspond to the index of a code book

which is basically an array of size 1024x3 entries of LSF coefficients. The second code book is

also an array of 1024x3 whereas, the third code book is an array of size 1024x4. For a particular

implementation of CELP these code books are fixed and we assume that these code books are

known to the cryptanalyst before hand, just like the ASCII codes of different characters in a text

based data. Hence the initial 30 bits of the frame represent the 10 line spectral frequencies. For

the long term prediction coefficients each frame is further divided into four (in some implemen-

tations, two) sub frames. The long term prediction components include information regarding

the excitation signal in the form of pitch, significant pulse positions and gain information per sub
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frame which comprises of 40 samples in our case. The details of all these components for our

and different standard implementations per frame are tabulated in Table I. Each frame, generally

comprising of 10 to 30 milliseconds of speech, is represented by a vector of 30 to 50 components.

The CELP implementation, which we have selected, comprises of a total of 47 components (3

LSF indices, 4 Pitch delays, 4 Pitch gains, 16 pulse positions, 16 pulse signs, and 4 pulse gains)

per frame to represent 20 milliseconds of speech. The reason for this selection is that this imple-

mentation generally covers almost all the different components which are used for speech frame

representation. Looking at the bit allocation table, if we model the index of the 1st LSF vector

as a Markov process, then we will have 1024 different states. These 1024 different states can be

considered as 1024 alphabets in a language and can be modeled as language modeling is done

in case of text based data. Since the number of alphabets in a language are generally less than

1024, hence n-gram models of higher order are possible to be calculated but since the number of

alphabets is large in our case we will restrict to bi-gram models (at least in this implementation).

Moreover, the bi-gram models have produced much better results as compared to unigram mod-

els, n-gram models of higher order, if used in future, are expected to further improve the decoding

accuracies.

Since there are 47 different components in one frame of speech we will have to create models

for all these 47 components separately as discussed in the succeeding paragraphs. Some of the

components have high number of bits assigned to a particular attribute but these can be broken

down into smaller parts to keep the size of the alphabet within manageable limits for the purpose

of modeling as well as decoding. In order to model these different parameters, we selected 200

files (each comprising of about five minutes duration) from the SWITCHBOARD Corpus [77] of

conversational speech collected over the telephone bandwidth. The reason for this selection was

to simulate the environment of verbal conversation eavesdropped or wiretapped over a communi-
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Table 4.1: Bit Allocations for Various Parameters in Standard and Our Implementations of CELP

coded speech

Parameters Bits Allocation per Frame

G.723.1 Low Rate G.723.1 High Rate G.7291 GSM 6.60 Our

Bit rate 5.3 kbits/s 6.3 kbits/s 8 kbits/s 12.2 kbit/s 9.5 kbits/s

LSF/LAR2 Indices 24 24 18 38 30

Pitch Delay 18 18 14 30 28

Pitch Gain 48 48 6 16 24

Fixed Code Book

Pulse Positions 48 73 26 140 68

Fixed Code Book

Pulse Signs 16 22 8 03 16

Fixed Code Book

Gain / Grid Index4 4 4 8 20 24

Total 158 189 80 244 190
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cation channel.

4.3.1.1 Line Spectral Frequency Index Modeling

Since we have 3 components representing the 10 different LSFs and are represented using 30 bits

in total, if we model these parameters together then the size of the alphabet would be 230 but

by modeling each component separately the complexity is reduced to 210+ 210+210. Moreover,

each component has a different probability density function as shown in figures 4.1, 4.2 and 4.3,

hence modeling these separately will have a positive impact on the decoding accuracies as well.

In our implementation, the index of the 1st LSF vector has a minimum value of 2, maximum

value of 1022, mean value of 498.5 and standard deviation as 303.25. For the second index, the

minimum value is 0, maximum value is 1023, mean is 518.3 and the standard deviation is 290.3.

The third index has a minimum value of 0, maximum value of 1022, mean of 462.5 and a standard

deviation of 301.8. Here, instead of the mean we use the mode (i.e. the value with the highest

frequency) which may better represent the data, hence the mode for the three indices are 6, 629

and 262 respectively.

4.3.1.2 Pitch Delay Modeling

The pitch delay is represented by 7 bits per sub frame and we have to create four different models

for the pitch delays each of 128 alphabets each. Figure 4.4 represents the probability density

function of the pitch delay of the four sub frames. The mode for the pitch delay values is 111

for all the four sub frames whereas there is some variation in the means and standard deviation of

the pitch delay values of the four sub frames. The mean values are 74.02, 70.5, 70.28 and 75.67

whereas, the standard deviation values are 35.73, 36.4, 37.25 and 36.58 respectively for the four

sub frames. We can model these parameters jointly but we modeled them separately to keep the
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Figure 4.1: Probability Density Function of the Index of the Codebook which Represents LSF1 to

LSF3
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Figure 4.2: Probability Density Function of the Index of the Codebook which Represents LSF4 to

LSF6
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LSF10

80



0 20 40 60 80 100 120
0

0.002

0.004

0.006

0.008

0.01

0.012

Pitch Delay 1

D
en

si
ty

Figure 4.4: Probability Density Function of the Pitch Delay for the four sub frames

size of the alphabet low.

4.3.1.3 Pitch Gain Modeling

Although there are 6 bits dedicated for the pitch gain in our implementation yet mostly the values

lie between 49 and 51 as can be seen on the probability density plot in figure 4.5. For the alphabet

size we will still consider 64 because the XORed value may lie between 0 and 63. The high

frequency value of the pitch gain for all the four sub frames is 51. Similarly the mean value for all

the four sub frames remain at 50.8 whereas, the standard deviations vary slightly. The standard

deviation values for the four sub frames are 0.935, 0.959, 0.921, and 0.931 respectively. This data

can also be modeled jointly.
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Figure 4.5: Probability Density Function of Pitch Gain for sub frame 1
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4.3.1.4 Fixed Code Book Pulse Position Modeling

The fixed code book pulse positions refer to the 4 most significant pulses selected from a sub

frame comprising of 40 samples in our implementation of CELP. Hence there are a total of 16

different pulses selected out of 160 samples per frame. These pulse position values lie between 1

and 40 and a total of 17 bits are allocated for its representation per sub frame. All these 16 values

are modeled separately. As it is clearly evident from figure 4.6 of the four pulse position in one

sub frame that the 1st position value will be close to the earlier values, the second value will lie

in the first half, the third value in the second half and the fourth pulse will be selected in the later

or higher values. In our implementation the highest frequency value for the first pulse position of

a sub frame (pulse position 1, 5, 9 and 13 of the frame) is 1, for the second pulse position in a sub

frame (position 2, 6, 10, and 14 of the frame) it is 14, for the third pulse position in the sub frame

(position 3, 7, 11 and 15 of the frame) it is 31 and for the last pulse position in the sub frame

(position 4, 8, 12 and 16 of the frame) it is 40.

4.3.1.5 Fixed Code Book Pulse Sign Modeling

These refer to the polarity of the pulses selected as the significant pulse positions. Since there are

two possibilities for the sign, therefore one bit per sign will suffice for complete representation.

The size of the alphabet is just two, and the modeling can even be done collectively for even all

the 16 different signs per frame. We have not done it collectively in order to keep our decoding

simple as we have modeled each sub component of the 47 component speech vector separately. As

is evident from the probability density function of the signs shown in figure 4.7, the distribution

of the positive and negative pulses is almost uniform and that is why the accuracy of the signs

decoding is very low in our probabilistic model. Presently, we have randomly distributed our

83



5 10 15 20 25 30 35
0

0.05

0.1

0.15

0.2

FCB Position 1

D
e
n
s
it
y

Figure 4.6: Probability Density Function of the 4 Fixed Code Book Pulse Position of sub frame 1
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Figure 4.7: Probability Density Function of Fixed Code Book Sign 1 of sub frame 1

signs with uniform distribution over the decoded frames which has served the purpose of speech

cryptanalysis, but the decoding of signs may be taken up as a future task and we need to look into

modeling these differently from rest of the parameters, to yield better decoding results.

4.3.1.6 Fixed Code Book Gain Modeling

The fixed code book gain refers to the gain of the four pulses per sub frame, thereby having 4

fixed code book values per frame. 6 bits per sub frame are allocated for the four pulses. The

probability distributions of all the four sub frames in our training data are alike with the highest

frequency value as 20, mean as 28.15 and standard deviation as 13.5 for all the four sub frames.

It can be inferred from this that one model can be used to represent the fixed code book gains of

all the four sub frames but by careful examination of the probability density plots in fig 4.8, it is

evident that there is variation in the bi-gram probabilities of the individual alphabets. Hence the
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Figure 4.8: Probability Density Function of Fixed Code Book Gain for 4 sub frames

decoding part which is based on these probabilities will rightly yield different results for the four

different frames.

4.3.2 Decoding Phase

Once the models for each component of the speech frame, in the form of bi-gram probabilities,

are available, then these can be used to find the individual components pi and qi of two different

speech files given xi such that ; where l represents the number of speech frames to be decoded.

Considering the decoding of the first component of the CELP frame in our case, which is the 1st

LSF index representing LSF1 to LSF3 sub vector, the possible number of states at each stage is

10242. It means that we have to pair each alphabet with every other alphabet (and off course with

itself) to cater for all possibilities, but fortunately since we know x at each stage of the resultant

automaton formed by the intersection of two different automata, we only select those pairs which
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satisfies the relation . Hence the total number of pairs of our interest at each stage again reduce to

1024. i.e. we will only consider the pairs of the form (0, 0⊕ x), (1, 1⊕ x), · · · (1023, 1023⊕ x).

This means that there are 1024 possibilities for each LSF subvector. Now for 1000 frames of

speech signal, we will have 1000 values as 1st LSF sub vector (each of 10 bits). In the keystream

reuse situation, we will have 1000 frames each of two different speech signals encrypted with the

same key. If we take the first ten bits of each frame from all the 1000 frames of each speech signal

and bitwise XOR them, then we get another 1000 values each of ten bits (lets say x=x1, x2, x3

,, x1000;) which represent 1st LSF subvector of speech 1(p) XORed with 1st LSF subvector of

speech 2 (q) i.e. x=p q. Now the job of the cryptanalyst is to first list down all possible pairs (p,

q) for 1000 frames such that p q=x in a trellis of 1000 steps and then find out the most probable

path through the trellis using the a priori information of probability distributions of p and q. The

trellis of our interest for 1000 frames of speech will look like something shown at figure 4.9.

In the trellis shown in figure 4.9 the number of stages are equal to the number of frames we want

to decode. For one minute of speech we will have 3000 frames (if we have a sampling rate of

8000 samples per second and the frame length is 20 millisecond). At each stage of the frame we

will have 1024 nodes and between any two stages we will have 1024 x 1023 arcs between the

adjacent nodes of the two stages. The weights of the arcs ai(j,k) as shown in figure 4.9 can be

calculated for each stage as:

ai(j,k) = Pr1(k|j)× Pr2((k ⊕ xi+1)|(j ⊕ xi)) (4.1)

here Pr1 and Pr2 are the probability distributions pre-calculated and stored during the training

phase. For the decoding part of our algorithm we used Viterbi Algorithm which guarantees to find

the optimal path through a trellis. In order to apply Viterbi algorithm one needs to have a transition

matrix which lists all the transitional probabilities between all possible states of the trellis. In
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Figure 4.9: Trellis Diagram of the First LSF Index for 1000 frames of speech

order to cater for the XORed situation of the first LSF index in which 1024 different values

are paired with another 1024 values, we need to define an array of 10242 x 10242 dimensions.

Pre calculating such a huge matrix and storing it is not advisable and requires a lot of memory.

We calculated the individual transition matrix of 1024x1024 dimensions while the calculations

of transitions at every stage are done on the fly at each stage of the trellis during the course of

the Viterbi search for optimal path. Since all 47 components of our CELP frame are modeled

separately in our implementation, hence these are to be separately decoded as well. For each

component a separate trellis of the form shown in figure 4.9 has to be constructed.

4.3.3 Experimental Results

As discussed earlier, for the training phase of our bi-gram models we used the SWITCHBOARD

corpus. For the test purpose, we selected other ten file not included in the training data while
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Table 4.2: Decoding Accuracy of different parameters of the CELP Frame

Decoding Accuracy (%)

Parameters Test Files selected from Training Data Test Files not from Training Data

No Smoothing Additive WB No Smoothing Additive WB

1st LSF subvector 53.2 61.4 68.8 5.2 56.7 62.4

2nd LSF subvector 49.8 56.3 62.3 7.5 49.5 57.1

3rd LSF sub vector 51.3 52.7 58.1 8.5 47.6 51.7

Pitch Delay 45.6 60.1 56.2 2.3 51.2 49.8

Pitch Gain 78.3 81.4 89.5 26.1 67.5 67.9

FCB Pulse Position 61.2 60.2 59.9 9.3 52.7 51.3

FCB Pulse Sign 3.6 3.8 3.1 4.1 0.5 2.3

FCB Gain 59.3 61.0 58.6 48.9 49.2 47.7

we also tested our decoding algorithm initially on ten files selected from the training data as an

initial step. These files were bitwise XORed to simulate the keystream reuse situation and then

decoded. Table II shows the decoding accuracy results of p and q deduced from x ( ). Since

all the components are modeled separately and hence they are to be decoded separately. As

evident from the table the accuracy of the pulse signs are quite poor as compared to the rest of the

parameters, the reason for this is the uniform distribution of 0 (indicating negative pulses) and 1

(indicating positive pulses). The accuracy for the test data selected from the training data shows

good accuracy results even without smoothing but the results for the test data not selected from

the training data is very low for models trained without smoothing, hence for accurate results in

practical scenarios smoothing would be mandatory.

Parameters Decoding Accuracy (Test Files selected from Training Data Test Files not from train-
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ing Data No Smoothing Additive WB No Smoothing Additive WB 1st LSF subvector 53.2 61.4

68.8 5.2 56.7 62.4 2nd LSF subvector 49.8 56.3 62.3 7.5 49.5 57.1 3rd LSF sub vector 51.3 52.7

58.1 8.5 47.6 51.7 Pitch Delay 45.6 60.1 56.2 2.3 51.2 49.8 Pitch Gain 78.3 81.4 89.5 26.1 67.5

67.9 FCB Pulse Position 61.2 60.2 59.9 9.3 52.7 51.3 FCB Pulse Sign 3.6 3.8 3.1 4.1 0.5 2.3 FCB

Gain 59.3 61.0 58.6 48.9 49.2 47.7 Table II: Decoding Accuracy of different parameters of the

CELP Frame.

4.3.4 Complexity Analysis

The complexity analysis of our algorithm needs to be done from the pre-computation as well as

the decoding point of view. Since the pre computation or training part has to be done once for

a particular type of encoding and language, and the same models can be used again and again,

hence we can afford to have large processing and memory complexities. Efforts will be required

to reduce the time during the decoding phase of our attack. Using dynamic programming it

is possible in O(l) time to find the most probable path in a trellis comprising of l number of

frames for one particular component. We can achieve this by using single source shortest path

algorithm to find the shortest path to any state, taking the length of each edge as the negative of the

algorithm of probabilities, so that minimizing the sum of lengths will be equivalent to maximizing

the product of probabilities . The main issue here is the size of the automaton formed by the cross

product of two finite state automata which will have N nodes and E edges given by the following

equations:

N = l.2y(z−1) (4.2)

and

E = l.2yz (4.3)
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where l is the number of frames to be decoded, y is the number of bits representing the component

of the CELP Vector and z is the order of the n-gram model which represents that component of

CELP vector. For example for the first LSF index in our implementation as shown in figure 4.9,

l = 1000, y = 10, and z = 2 as we are using the bi-gram models for representation. As we

have discussed earlier that the accuracy of our results can be enhanced by using n-gram models

of higher order but it can easily be seen from Equation x and x that by increasing the order of the

n-gram models we exponentially increase the size of the automaton.

4.4 Summary

In this paper, we presented the first ever implementation of plaintext XORs of the key reuse

problem in case of speech encoded through the modern encoding techniques used for low bit

rate communication. It has been shown that the standard techniques of language modeling and

dynamic programming algorithm can be adapted to be used for cryptanalysis of keystream reuse

in case of stream ciphered digitized speech. The experimental results though preliminary, yet have

shown encouraging breakthroughs. Contrary to cryptanalysis in such situation for text based data,

which is mainly based on heuristics, a more mathematical approach has been adopted. We have

presented our technique for the CELP coded speech, but the same techniques may be adapted for

use with other modern speech digitization and compression mechanisms. Since the Fixed Code

Book Pulse signs have uniform distributions, hence our decoding algorithm could not produce

satisfactory results, some different techniques may be looked into for decoding of the pulse signs

as a future work. The option of joint distributions may be looked into.
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Chapter 5

NETWORK SPEECH RECOGNITION APPROACH TO AUTOMATED

CRYPTANALYSIS OF TWO TIME PADS

5.1 Introduction

A stream cipher takes a plaintext p as input, exclusive OR it with a keystream k and produces

ciphertext c as the output i.e. . If the keystream k is random and non-repeating then the stream

cipher becomes provably unbreakable [36] and the cipher is called the one time pad. The security

of a stream cipher rests on never reusing the keystream. If two different plaintexts p1 and p2

are encrypted with the same keystream k then their results and can be XORed to neutralize the

effect of the keystream k, thereby obtaining . The key reuse problem in stream ciphers and its

exploitation in different scenarios for the text based data have been studied since long. It has

recently been mentioned in the literature as the two time pad problem [37]. The vulnerability of

keystream reuse exists with many practical systems which are still in use. The practical systems

which are vulnerable to such type of attacks include Microsoft Office [37, 28], 802.11 WEP

[39], WinZip [40], PPTP [41]. The endorsement of AES counter mode by NIST [? ] and IETF

[44] has effectively turned a block encryption algorithm into stream cipher. Moreover, there is

a compelling need for a cipher mode of operation which can efficiently provide authenticated

encryptions at speeds of 10 gigabits/s and is free of intellectual property restrictions. The counter

mode of operation of a block cipher (e.g. AES) has been considered to be the best method for

this purpose in state of the art Giga-bit rate systems/links [44, 43]. Due to this compelling need
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of AES counter mode, the possibility of reusing keystreams has further increased.

The general technique for exploiting the vulnerability of keystream reuse situation for speech

signals has recently been introduced by us in [86]. The referred technique has shown promis-

ing preliminary results and has paved the way for further research in this area. This paper is

an endeavor in that direction to elaborate its application to practical secure speech communica-

tion systems. Since normal speech coders are only designed for speech communication and not

recognition, hence speech signals transmitted from a highly variable acoustic environment after

passing through a noisy wireless channel significantly degrades the performance of speech recog-

nition even in the un-encrypted situation. The addition of some more distortion and distraction in

the form of XORing the phonemes will worsen the situation. The past decade has seen a tremen-

dous increase in the use of mobile and hand-held wireless devices. The user interface has also

seen significant innovations but the use of hand-held devices has still been restricted and the main

hindrances have been their miniature size and the mobility of the user. Speech recognition solves

these limitations very efficiently by alleviating the mobile user from typing on tiny keyboards and

pointing of stylus in an uncomfortable and error prone environment. Since all mobile devices use

a communication link hence the automatic speech recognition (ASR) systems for mobile environ-

ment have been classified on the basis of location of the front-end (acoustic features extraction)

and back-end (Viterbi search) processing. Three different architectures are in use with each hav-

ing pros and cons in different situations. These are: client based (embedded) speech recognition,

server based (network) speech recognition (NSR) and client-server based (distributed) speech

recognition (DSR) [87]. In this paper we discuss the applicability of the NSR techniques in mo-

bile environment to the automated cryptanalysis of the two time pads problem in stream ciphered

digitized speech.
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5.2 Proposed Approach

In an embedded ASR system the entire process of speech recognition is based on the terminal

or mobile device which is generally applicable to relatively powerful devices such as PDAs. In

distributed speech recognition (DSR) systems the acoustic front end processing is carried out at

the client side, whereas the viterbi search is carried out at the server side. In network speech

recognition (NSR), speech is transmitted over a communication channel and the recognition is

performed on the remote server. The purpose of the NSR is to carry out speech recognition in

case of thin clients by shifting both the acoustic feature extraction and the back end viterbi search

algorithm to the fat server side. NSR provides access to recognizers based on different grammars

and even different languages since all the computations are carried out by the remote fat server.

Another advantage of NSR is that the recognition vocabulary might be secret and may not be

appropriate to be kept at the client terminal. In spite of these advantages, NSR is the most un-

favorite ASR architectures in mobile environment [87]. The reason for this is the performance

degradation of the recognizer due to the low bit rate Codecs not particularly designed for ASR and

further deteriorating the situation by transmission errors and background noise. But NSR is the

only technique, out of the ASR architectures for mobile environment, which is directly applicable

in our situation. Hence the otherwise phasing out server based ASR architecture (NSR) in mobile

environment has to be revisited and revitalized by the telecommunication security professionals

but from a very different perspective of speech recognition. The distortion introduced in speech

during source coding can be catered for to a certain extent by training the ASR models with the

corrupted speech. A better approach would be to carry out the recognition process on the basis

of the features extracted from the parametric representation of the encoded speech. There are two

main architectures for automatic speech recognition in mobile environment where the complete
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speech engine lies on the server. The division is based on the acoustic features extraction either

from the decoded speech at the server or from the speech codec parameters without the use of

speech decoder at the server. We will discuss both these architectures from the point of view of

automated cryptanalysis of stream ciphered digitized speech in a keystream reuse situation.

5.2.1 ASR Feature Extraction After Speech Decoding

Figure 5.1 shows server based ASR architecture in which the acoustic front end processing is

carried out after the decoding of the speech signal received from the data transmission link. This

architecture corresponds to the actual architectures presented in [87] to [88] but with the addition

of encryption. In this case the ASR features are extracted from the XORed speech signals being

decoded by the speech decoder. In the plain speech domain, this type of arrangement shows

a degraded performance due to the presence of data transmission errors and background noise.

The best approach in this regards would be to train the recognizer under similar codec and noise

conditions, hence the word error rate can be minimized by simulating the actual scenarios from

coding and noise point of view but the combination of these conditions result in a large number

of possible recognition scenarios. In this case we create our hidden Markov models on the same

lines of [86]. However, the training of the HMMs is carried out with acoustic features extracted

from the noisy decoded XORed speech signals.

5.2.2 ASR Features Extraction from Speech Codec Parameters

The distortion produced by the coders and the channel can be somewhat compensated by training

the recognizer in a similar situation but this leads to very large number of models to be trained

for the diversified combinations of coders and noisy conditions. A better approach is to extract

the ASR features directly from the codec parameters [89, 90? ]. Fig. 2 displays the architecture
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Figure 5.1: ASR features being extracted from the decoded XORed speech
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which is used for speech recognition based on this concept but in keystream reuse situation. It is

worth mentioning here that speech coding is based on the analysis of short term and long term in-

formation in the speech signal whereas speech recognizers employ only short term information as

ASR features [89]. Different optimization techniques for different standard codecs are presented

in the literature e.g. ITU-T G.723.1[89], ETSI GSM 06.10, CELP 3.3 [90], FS1015/1016 [91].

All these techniques can be applied in the keystream reuse situation also.

5.3 Simulation Results

For simulations we used HTK [75] which is an open source toolkit based on C language, available

for building hidden Markov models (HMMs) and is primarily designed for speech recognizers.

The simulation is comprised of two phases: the pre-computation phase which is basically the

training of the recognizer whereas, the decoding phase corresponds to the Viterbi beam search of

the most optimal paths in the recognition network. The accuracy of the attack is greatly depen-

dent on how well the selected HMMs are trained and how accurately the simulated environment

matches the actual situation. To simulate the keystream reuse situation, we selected 256 files

from the SwitchBoard corpus [77]. The reason for this selection was to simulate the environment

of eavesdropped conversational speech. We first XORed different pairs of the selected files to

simulate the plaintext XOR situation. Fig. 3 shows the spectrogram and waveform obtained af-

ter XOR of two speech files selected from our corpus along with their transcription in the form

of phoneme pairs. In the training part of our simulation, we first selected our HMMs, the basic

of architecture of which is shown in Fig. 4. We then trained these HMMs on the transcribed

SwitchBoard files obtained after XORing. A total of 588 HMMs were trained with each HMM

corresponding to one phoneme pair. For testing purpose we selected ten different speech files

from the Switchboard Corpus which were not included in the training data. An initial test was
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Table 5.1: Recognition Accuracies

Feature Extraction Procedure Recognition Accuracy (%)

Test Files selected Arbitrary

from training data Test Files

From Speech Files without transmission 81.53 76.41

From Decoded Speech Files after transmission 71.81 61.26

From Codec Bit streams after transmission 69.32 58.21

also performed on ten speech files selected from the training data. The experimental results of the

recognition of the XORed phonemes are depicted in Table 5.3. The front end processing on the

codec bit stream shows a relatively poor performance as compared to the front end processing on

the decoded speech.

5.4 Summary

In this paper we presented how the keystream reuse problem can be exploited by an adversary in

case of stream ciphered digitized speech in a secure speech transmission system. The text based

plaintext XORs have been discussed in the literature for quite some time now and the techniques

have matured quite well. The network speech recognition (NSR) approach, although, not favorite

for ASR in mobile environment, has shown to be directly applicable in this case. All the optimiza-

tion endeavors for different Codecs in the plain speech scenario are also directly applicable in the

keystream reuse situation. The experimental results, though of preliminary nature, have showed

promising results, thereby paving the way for further deliberations on the topic.
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Chapter 6

SPEAKER RECOGNITION FROM PARTIALLY ENCRYPTED SPEECH

6.1 Introduction

Various methods involving numerous measurement techniques and signals have been proposed

and investigated for use in forensic identification and verification systems. Among the most pop-

ular measurements are finger prints, DNA and voice. While each one has pros and cons with

respect to accuracy and deployment mechanism, there are two main factors that have recently in-

troduced speech as a popular and upcoming source of forensic identification and verification [92].

First, speech is a natural signal to produce and is not considered threatening by users to provide,

it may be collected without the subject being aware of [93]. Second, the telephone system (in-

cluding voice over IP applications over the internet) provides a ubiquitous and well established

network of sensors for obtaining and delivering speech signal. In many applications the available

speech may be the only forensic evidence available especially in cases of threatening, teasing or

blackmailing someone or also in case of linkages to heinous crimes like drug trafficking and ter-

rorist activities. Moreover, as pointed out in [94], many forensic cases boil down to the question

whether a set of recordings some of which are from the perpetrator and others from a single sus-

pect, do or do not originate from the same speaker. In such cases the role of automatic speaker

verification in forensic investigation becomes extremely useful.

Over the past few years, voice over IP has become an attractive form of telephony. Since VoIP

calls may traverse through untrusted networks, the need for encrypting the packets has increased
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manifold [95]. Since the packet has to be encrypted and decrypted several times before it reaches

its destination, low computational encryption techniques have become the need of the hour. More-

over, with the advancement in mobile multimedia applications, the demand for privacy and con-

tent protection with lean computational load and low power consumption is also on the rise.

This demand has generated intense research in the design of low complexity encryption tech-

niques [96][97]. One of such techniques for speech encryption is the low complexity perception

based partial encryption technique presented in [78] applied on the mostly deployed speech codec

recommended by the International Telecommunication Union vide ITU-T G.729 [98]. This en-

cryption technique is applied on a fraction of the bit stream and lowers the computational load,

thereby freeing resources for other tasks and/or extending battery life. These partial encryption

techniques, may provide confidentiality as far as content protection is concerned but we show that

it may not conceal (completely) the identity of the speaker and can still be used in forensic speaker

verification with a fair degree of certainty. In this paper, we are studying the problem of speaker

verification by focusing on two forensically significant scenarios: First, given two partially en-

crypted conversations, out of which, one is known to belong to a perpetrator and the other segment

is to be determined if it also belong to the same speaker or not? [94]. Second, given a potential

suspect allegedly associated with one or more pre-identified perpetrators, the investigator assumes

to have access to a set of (perception based partially) encrypted conversations (tapped from a tele-

phone line or cellular devices) of the perpetrator with the suspect. The problem is to analyze the

available speech conversations and verify that these belong to the suspect i.e. the suspect has

conversed with the criminal. We explore the possibility of verifying the speaker identity from the

perceptually irrelevant portion of the speech signal which is not encrypted in partial encryption

techniques with a view that it (in isolation) contains little or no significant information regarding

the speech content or the speaker. The popular techniques of text independent speaker verification
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based on hidden Markov Modeling [99], Gaussian Mixture Modeling [100]and adapted Gaussian

Mixture Modeling [101] are applied on the perceptually irrelevant portion of the speech signal.

Although the verification accuracies are not comparable to those obtained from the perceptually

relevant portion of the speech but at the same time these are not as inaccurate as obtained from

random data as expected in case of encrypted speech. We show that even these perceptually irrel-

evant features of the speech signal convey sufficient information (in isolation) to reveal or confirm

the identity of the speaker.

The rest of the paper is organized as follows: Section 7.2 presents the background information

regarding speaker verification and the modeling techniques used in this paper. In Section 6.3, we

present our proposed approach to apply the existing speaker verification techniques on the par-

tially encrypted speech files. Section 6.4presents the experimental results obtained by comparing

the different approaches of automatic speaker verification systems. The paper is concluded in

Section 7.7 and directions for future research are also presented.

6.2 Related Work

In this section we present background information regarding speaker verification, hidden Markov

and Gaussian Mixture models which we use for modeling the unencrypted portion of the speech.

6.2.1 Speaker Verification

Given an observation sequence in the form of a speech segment O, and a hypothesized speaker S,

the task of speaker verification is to determine if O was spoken by S [102]. Mathematically, the

task of speaker verification can be termed as a basic hypothesis test between

H0: O is from the hypothesized speaker S and
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H1: O is not from the hypothesized speaker S.

The optimum test to decide between these two hypotheses is a likelihood ratio test given by

p (O/H0)

p (O/H1)
≥ θ,

accept H0, otherwise reject H0 (accept H1) where p(O/Hi), i = 0, 1 is the probability density

function for the hypothesis Hi evaluated for the observed speech segment O and θ is the decision

threshold for accepting or rejecting H0. The basic goal of the speaker verification system is to find

techniques for finding the two likelihood functions p(O/H0) and p(O/H1). Various approaches

have been in place for finding these two likely hood functions, hidden Markov and Gaussian

Mixture models being the most common ones. Two types of errors can occur in the speaker veri-

fication system namely false rejection (rejecting a valid speaker) and false acceptance (accepting

an invalid speaker), the probability of both being termed as Pfr and Pfa, respectively. Both the

errors depend on the value of the threshold θ. It is therefore possible to represent the performance

of the system by plotting Pfa versus Pfr, the curve generally known as the detection error trade

offs (DET ) curve. In order to judge the performance of the speaker verification systems different

performance measuring means are in place, among which the Equal Error Rate (EER) and Min-

imum Detection Cost Function (minDCF ) are the popular ones. The EER corresponds to the

point where Pfa = Pfr. The minDCF punishes strictly the false acceptance rate and is defined

as the minimum value of “0.1 ∗ falserejectionrate+ 0.99 ∗ falseacceptancerate” [103].

6.2.2 Hidden Markov Models

A Markov model is a model in which the system to be modeled is assumed to be a Markov

Process : a stochastic process in which the future state of the process depends only on the present
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states and not on any past state. A hidden Markov model (HMM) is a statistical model in which

the system to be modeled is assumed to be a Markov process with hidden parameters and the

challenge is to find the hidden parameters of the model from the observable parameters. An

HMM is characterized by the following [104]:

(a) N , the number of states {S1, · · · , SN} in the model. Although the states are hidden in an

HMM yet in every practical system some physical significance is attached to the states. Generally

the states are connected in such a way that any state can be reached from any other state. We

denote individual state at time t as qt.

(b) M , the number of distinct observation symbols per state, generally known as the alphabet

size. The observation symbols correspond to the physical output of the system being modeled.

We denote the individual symbols as V = {v1, · · · , vM}.

(c) The state transition probability distribution A = aij where

aij = P [qt+1 = Sj/qt = Si] , 1 ≤ i, j ≤ N. (6.1)

For the special case that any state can be reached from any other state aij > 0 for all i, j.

(d) The observation symbol probability distribution in state j, B = bj(k), where

bj (k) = P [vk at t/qt = Sj] , 1 ≤ j ≤ N, 1 ≤ k ≤ M (6.2)

(e) The initial distribution π = {πi} where

πi = P [q1 = Si] , 1 ≤ i ≤ N (6.3)
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It is evident from the above discussion that an HMM can be completely described by two model

parameters M and N and three probability measures A, B and π . For convenience we use the

compact notation

λ = P (A,B, π) (6.4)

to indicate the complete parameter set of the model.

6.2.3 Gaussian Mixture Models

A Gaussian mixture density is a weighted sum of M component densities and given by the equa-

tion [101]:

p (x/λ) = ΣM
i=1pibi (6.5)

where x is a D-dimensional random vector,bi(x), i = 1, . . . ,M , are the component densities and

pi, i = 1, . . . ,M are the mixture weights in the Gaussian mixture model λ. Each component

density is a D-variate Gaussian function of the form

bi (x) =
1

(2π)
D
2 |Σi|

1
2

exp
{
−1

2
(x− µi)

′
Σ−1

i (x− µi)
}

(6.6)

with mean vector µi and covariance matrix Σi. The mixture weights satisfy the constraint

∑M
i=1 pi = 1. The complete Gaussian mixture density is parameterized by the mean vectors,

covariance matrices and mixture weights from all component densities. These parameters are

collectively represented by the notation

λ = {pi, µi,Σi} , i = 1, . . . ,M (6.7)
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The GMMs can have different forms of covariance matrices. These can be full or diagonal matri-

ces. We used GMM with diagonal covariance matrix in this paper.

6.3 Speaker Verification from Perceptually Irrelevant Speech

Figure 6.1 shows the block diagram of our speaker verification system. In a conventional speaker

verification system the front end processing is to extract speaker dependent information usually

Mel frequency Cepstral coefficients [105] from the speech signal which can be used for classifying

whether the input speech segment belongs to the hypothesized speaker or otherwise. Techniques

to minimize the confounding effects from these features such as linear filtering [105] or noise may

also be employed in the front end processing. In our case we are confronted with two main issues

in this domain. First, the input speech signal is perception based partially encrypted speech in

which the perceptually relevant portion is just noise. We are left only with the perceptually irrele-

vant portion of the speech. Secondly, we are confronted with a specific encoding and compression

mechanism of ITU-T G.729, contrary to the speech waveform or Mel Frequency Cepstral features

for which speech and speaker recognition applications have proven better performance [105]. In

our speaker verification system the feature extraction corresponds to extracting the perceptually

irrelevant (unencrypted) portion from the CELP coded frames to simulate the partial encryption

scenario. Figure 6.2 (a) shows the partially encrypted frame with the high encryption rate of [97]

in which only 6 out of the 15 parameters per frame are left un-encrypted while the rest are either

completely or partially encrypted. The feature extraction in our case boils down to extracting the

feature frame as shown in Figure 6.2 (a). The description and bit allocations for the features are

shown in Table 6.1 with the encrypted bits shown in grey.

By analyzing the distribution of the unencrypted parameters for different speakers, it was found

that these distributions display a non uniform structure. Figure 6.3 shows the histograms and
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Figure 6.1: Block Diagram of the proposed speaker verification system

Frame/subframe Symbol Description Bits 

L0 Switched LSP quantizer MA predictor index 1 

L1 First code book index 7 

L2 Second LSP Code book index (lower vector) 5 
Per Frame 

L3 Second LSP Code book index (higher vector) 5 

P1 Pitch Delay 8 

P0 Parity bit for pitch delay 1 

S1 Fixed Codebook Pulses signs 4 

C1 Fixed Codebook Pulse Position 13 

   GA1 Gain Codebook (1
st
  stage) 3 

1
st
 

Sub-frame 

   GB1 Gain Codebook (2
nd
 stage) 4 

P2 Pitch Delay 5 

S2 Fixed Codebook Pulses signs 4 

C2 Fixed Codebook Pulse Position 13 

   GA2 Gain Codebook (1
st
  stage) 3 

2
nd
 

Sub-frame 

  GB2 Gain Codebook (2
nd
 stage) 4 

 

Table 6.1: Bit allocation for various parameters in one frame (with 2 subframes) of ITU-T G.729.

(The encrypted parameters are marked grey)

probability density functions of the parameter L3 (which corresponds to the second part of the

line spectral frequency in the CELP frame) for two different speakers in our test corpus. The non

uniform distribution of the parameters encourages us to statistically model these parameters. Out

of the various modeling techniques available, we tried to model these features as hidden Markov

and Gaussian Mixtures. The adapted Gaussian mixture modeling has shown better performance

in terms of equal error rates and minimum cost detection function.
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L0 L1 L2 L3 

       P1 P0 

S1 C1 

GA1 GB1 

P 2 

S2 C2 

GA2 GB2 

0 8 16 bit 

Figure 6.2: (a) Partial Encryption scheme of ITU-T G.729 single frame where the encrypted param-

eters are shown in grey. (b) shows the unencrypted frame comprising of six features which we used

during our modeling.

6.3.1 Hidden Markov Modeling Approach

The hidden Markov modeling of speech parameters have been successfully used in various ap-

plications of speech processing particularly for speech recognition. For speech recognition ap-

plications HMMs have proved to be the most successful [104]. The HMMs not only very well

model the underlying speech sounds but also the temporal sequencing of these sounds which is

significant in case of text dependent speaker recognition but in case of text independent speaker

recognition the sequencing of sounds found in the training data does not necessarily reflect the

sequences of sounds in the test data and contains little speaker dependent information. In our case

also, since we are dealing with text independent speaker verification, ergodic (fully connected)

HMMs were used to model the sequence of vectors, each comprising of 6 features. In speaker

verification the selection of cohort or world model plays an important role in the accuracy of the

speech verification system [102]. The cohort is generally defined as the group of speakers whose

models are considered to be close or more competitive with the hypothesized speaker. A different
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Figure 6.3: Histogram of a partial line spectral frequency component for a 50 second utterance by

two different speakers.

cohort is thus assigned to every speaker and is determined during the training phase. Another

approach is to estimate a speaker independent model generally termed as universal background

model (UBM) in addition to the model for the hypothesized speaker and carryout classification of

the input speech segment whether to belong to the hypothesized speaker or the UBM. We created

two reference models one for female and the other one for the male speakers in our database.

We used HMMs with different number of states and number of Gaussians per state for speaker

verification.

6.3.2 Gaussian Mixture modeling Approach

The Guassian Mixture modeling approach for speaker verification for unencrypted speech has

proven to be one of the most promising and accurate [100]. For the perceptually irrelevant speech

in our case we tried to models the 6 dimensional vector per frame of the partially encrypted

speech file as GMM for the hypothesized speaker with a speaker independent universal back-

ground model as the reference model. Various mixture densities starting from 8 upto 128 mixtures
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were used for modeling. The equal error has shown significant rise with the increase in the num-

ber of mixtures from 8 to 32 whereas above 32 the increase in accuracy declined and displayed

insignificant improvement beyond 32 mixture densities. The mean EER in case of GMM could

be brought to 27% and minDCF to 9%.

6.3.3 Adapted Guassian Mixture Modeling Approach

The adapted Gaussian mixture modeling approach has shown significant improvement in the con-

text of using GMMs for speaker verification [101]. In this case a universal background model

was trained using the perceptually irrelevant portion from speech files of the complete database.

The speaker dependent GMMs were derived from this UBM through adaptation by using the per-

ceptually irrelevant features from the speaker’s training speech. In the adapted GMM case, the

perceptually irrelevant features of the speech showed a significant improvement in equal error

rates and minimum cost detection function from 8 to 32 mixture densities whereas the increase in

accuracy was insignificant from mixture densities of 32 and higher.

6.4 Experimental Results

The experiments were performed on an 84 speaker AN4 database [106]. The AN4 database

was recorded at Carnegie Mellon University from 24 female and 60 male speakers, each speaker

having 13 speech files from 4 to 20 second duration in raw PCM format. Although the database

is primarily collected for speech recognition in which 74 speakers data is marked for training

while 10 speaker files are reserved for testing. We used the entire data of 84 speakers for speaker

verification, bifurcating the 7 files per speaker for training and 6 files per speaker for testing

purposes. In order to simulate the perception based partial encryption of CELP coded speech,

the speech files were first encoded using an open source implementation of ITU-T G.729 encoder
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by VoiceAge [107]. The six features per frame which are considered as perceptually irrelevant

were separated from each frame and speaker verification experiments were conducted using these

features as input to our trainer and classifier. For this purpose we wrote a file in Matlab which

extracts the feature from the encoded file and appends header to it recognizable by HTK. The

six feature vector per frame for each speaker was used for training and testing the models. The

experiments can be divided into two main categories as HMM and simple/adapted GMM tests.

The typical DET curves for HMM, GMM and adapted GMM for one of the test speakers are

shown in Figure 6.4. Conventionally, the DET curve is drawn on a deviate scale, since in our case

the EER is above 20% in the best case, we used a normal scale.
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Figure 6.4: Typical DET curves for HMM, GMM and adapted GMM for one of the speakers in our

test data.

6.4.1 HMM Tests

For the HMM modeling we used HTK [? ] which is an open source toolkit based on C language

available for building hidden Markov models particularly for speech recognizers. Seven of the

training speech files per speaker in the AN4 database were used for training and six were used
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for testing. The tests were conducted by modeling the feature vectors as 3, 5 and 8 state ergodic

(fully connected) HMMs. It is now well established that the models parameters are very sensitive

to initial estimates [99]. An adequate choice for the initial estimates, which we also adopted,

is to start with uniform distribution based on all the training files and then iteratively converge

using the Baum Welch Algorithm [? ]. The number of Gaussian mixtures per state in the HMM

also plays a vital role and the optimum number varies in different situations. We performed the

experiment on 1, 4 and 8 Gaussian mixtures per state. Figure 6.8 shows the Equal Error Rate

as it varies with the number of states and the Gaussian mixtures per state in the HMM. The 3

state model showed comparatively better accuracies with less number of Gaussians per state. By

increasing the number of states with less number of Gaussians per state reduced the verification

accuracies. The 8 state only showed better accuracies with increased number of Gaussians per

state. The reason for this could be the difference of temporal sequencing between the training and

test data. The variation of minimum detection cost function with number of states and Gaussian

mixture per state are depicted in Figure 6.6.
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Figure 6.5: Variation of mean EER with number of HMM states and number of Gaussian mixtures

per state.
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Figure 6.6: Minimum Cost detection function variation with HMM states and number of Gaussian

per state.

6.4.2 GMM and Adapted GMM Tests

For the Gaussian mixture modeling we tricked the HTK by using single state HMM for each

user thereby ignoring the temporal sequencing of the sounds in the training and test data. The

tests were conducted by modeling the 6 feature vectors of each speakers as GMMs with 8 to 256

mixture densities. As expected, the GMMs displayed better verification accuracies in terms of

EER and minDCF as compared to the HMMs. Since the GMM ignore the temporal sequencing

of sounds in the data and model the distribution of different features as mixtures of Gaussians,

thereby increasing the number of Gaussian densities per model increased the verification accura-

cies. In case of adapted GMMs we used a universal background model trained by the perceptually

irrelevant portion of the speech segments from all the speakers and then adaptation of that UBM

was carried out for each speaker. Figure 6.7 shows the mean equal error rate as a function of

the number of Gaussian mixtures for the GMM and adapted GMMs. The EER improves with

increasing the number of Gaussians per model upto 64 Gaussians but do not show any significant

improvement beyond 64 mixtures.
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Figure 6.7: Variation of mean EER with number of Gaussian mixtures per model

The minimum cost detection function is depicted in Figure 6.8. With the GMM, the minimum

cost detection function does not show any improvement with the increase in number of mixtures,

whereas with the adapted GMMs, the minDCF improves from 8 to 56 mixtures per model and

then shows no improvement beyond 56 mixtures.
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Figure 6.8: Variation of minimum detection cost function with number of Gaussian mixtures per

model.

The variation of EER and minimum detection cost function with the model order (number of
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Gaussian mixtures per model) is shown in Figure 6.9. The models orders from 8 to 256 are

marked in the figure for both the modeling approaches. The adapted GMMs with 256 models

display the minimum value for EER as 23.4% and minDCF as 8.4%.
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Figure 6.9: Verification accuracies of GMM and adapted GMM in terms of EER and minDCF with

increase in model order (from 8 to 16).

6.5 Conclusion

Speaker verification from features of speech which are generally considered irrelevant from per-

ception point view is presented. It has been shown that perception based partial encryption tech-

niques may conceal the speech content but not the speaker’s identity completely. The statistical

modeling techniques such as HMMs and GMMs have proven to be useful in case of speaker veri-

fication. The adapted Gaussian mixture modeling technique with universal background model has

shown better verification accuracies as compared to HMMs and simple GMMs. Perception based

partial encryption techniques may be used for content protection but where complete confiden-

tiality of the speaker is also intended, usage of such encryption techniques is not recommended.

Other modeling and classification techniques such as vector quantization, Support Vector Ma-
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chines, artificial neural networks etc may be taken up as a future work.
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Chapter 7

SPEAKER RECOGNITION FROM ENCRYPTED VOIP

COMMUNICATION

7.1 Introduction

Recent statistics show shrinking market share for traditional public switched telephone networks

(PSTNs). This decline of PSTN market share is a direct result from the substitution of voice plat-

forms as fixed wire-line operators migrate customers to all-IP voice platforms and as consumers

opt for mobile voice platforms, which will also become all-IP. Unlike the traditional telephony

systems where calls are transmitted through dedicated networks, voice over IP (VoIP) calls are

transmitted through the Internet, a mix of public and private networks, which presents a threat

to the privacy and confidentiality of VoIP communications. In order to overcome this problem,

VoIP traffic is usually encrypted prior to its dispatch over the Internet [108]. Encrypting VoIP

traffic, on one hand, helps preserving the privacy and confidentiality of legitimate users, but on

the other hand might be exploited in criminal activities. Scammers, terrorists and blackmailers

may abuse the end-to-end encryption facility to conceal their true identity. To address the prob-

lem of anonymity and to identify or confirm the true speaker of a disputed anonymous speech, the

area of speaker recognition has long been the focus of forensic investigation. Research in speaker

recognition has a relatively long history starting from introducing the term voiceprint identifica-

tion [109] in 1962 to the tremendous development in the field of automatic speaker recognition

in the last decade [110] which is marked by the National Institute of Standards and Technology
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(NIST) evaluation campaigns [111, 112, 113]. Famous cases include the 1974 investigation of a

conversation of the former US president, Richard Nixon, and former chief of staff, Harry Halde-

man, which was recorded in the executive office building in 1972 [114]. The authentication of

the speech recordings of Osama Bin Laden and other terrorists [115] using modern automatic

speaker recognition techniques has also been the last resort to provide some forensic evidence in

these recent cases.

Automatic speaker recognition can be divided into two categories: identification and verification.

In the former scenario, given a set of suspected speakers together with their recorded speech seg-

ments, the problem would be to determine the likelihood that a disputed encoded speech segment

belongs to one of these suspects. In the second scenario, a forensic investigator is given a disputed

speech along with a set of recordings of a potential perpetrator and is asked to analyze if both sets

of speech segments originate from the same individual [116]. Both scenarios are addressed in this

paper but from the perspective of encrypted VoIP communications. Existing speaker identifica-

tion and verification techniques are employed for analyzing un-encrypted speech only. However,

to the best of our knowledge, there is no such study available for encrypted speech.

Variable bit rate (VBR) encoding techniques, which result into variable length VoIP packets, have

been introduced to preserve the network bandwidth. The encryption techniques currently in use

in order to preserve privacy of the calling and called parties do not change the packet length [117].

Hence any exploitation mechanism based on the packet length information remains valid in the

encrypted communication. In this paper, we propose speaker identification and verification tech-

niques based on using packet-length information without even knowing the contents of encrypted

VoIP conversations. We demonstrate that the packet-length information, being extracted from

either the file headers (in case of multimedia container formats) or being physically monitored
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during a VoIP conversation, can be used to identify or verify the speaker. In particular, we use

discrete hidden Markov models to model each speaker by the sequence of packet lengths produced

from her conversation in a VoIP call. Tri-gram probabilities of the packet length sequences were

also used to create Gaussian mixture models and decision trees based on these probability dis-

tributions for each speaker. Various statistical modelling and classification/regression techniques

were also applied, out of which the Ensemble of Nested Dichotomies (ENDs) achieved more than

10 fold improvement over random guessing in identifying a speaker from a group of 20 suspects.

In case of speaker verification, an equal error rate of 17% was obtained using Support Vector

Machine (SVM) based regression techniques.

The significant contributions of our approach are:

1. We are the first, to the best of our knowledge, to apply speaker identification and verification

to encrypted VoIP conversations.

2. The recently developed container formats which are used to store and carry multimedia

information over the Internet are explored from the perspective of speaker recognition in

case of encrypted communications.

3. Our experimental results indicate that different types of classification and regression tech-

niques, that are usually used in data mining and machine learning applications, outperform

Gaussian mixture models and hidden Markov models-the classifiers which perform very

accurately in the conventional speaker recognition studies.

The rest of the paper is organized as follows. In Section 7.2, we discuss the related work in the

area of speaker recognition as well as packet-length information exploitation in encrypted VoIP

conversations. The basic idea behind our work is discussed in Section 7.3. The problem statement
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of our work is presented in Section 7.4 and the proposed approach in explained in Section 7.5.

Section 7.6 presents the experimental evaluation and the paper is concluded in Section 7.7.

7.2 Related Work

In this section, we briefly summarize the state-of-the-art in the field of speaker recognition. in

two directions, namely, recently proposed techniques for automatic speaker recognition. Second,

whether speech segments, used for speaker recognition, are encrypted or un-encrypted. Although

significant work has been done in the area of speaker recognition, throughout this section, we

only focus on two pertinent approaches: Gaussian Mixture Model Universal Background Model

(GMM-UBM) [100], and Mixed GMM-UBM and SVM technique [118]. These models are com-

monly used in text-independent speaker recognition problems especially in speaker verification

or source confirmation disputes. The mixed GMM-UBM and SVM approach combines the mod-

elling efficacy of Guassian Mixtures and the discriminative power of SVMs and has shown sig-

nificant improvement in terms of identification accuracies. In case of speaker identification, the

accuracy measurement is simple and can be termed as the ratio of the correctly identified speech

segments to the total number of segments in a group of speakers. This accuracy measure is greatly

dependent on the potential number of suspects; increasing the population size reduces the accu-

racy. Speaker verification, being a two class classification problem, can generate two types of

errors, namely false rejection (rejecting a valid speaker) and false acceptance (accepting an in-

valid speaker). The probability of both are denoted as Pfr and Pfa, respectively. Both errors

depend on the value of the threshold set for classification. It is, therefore, possible to represent

the performance of the system by plotting Pfa versus Pfr, a curve that is generally known as the

detection error trade offs (DET ) curve. In order to judge the performance of the speaker verifi-

cation systems, different performance measures are in place, among which the Equal Error Rate
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(EER) and Minimum Detection Cost Function (minDCF ) are the popular ones. The EER cor-

responds to the point where Pfa = Pfr. The minDCF punishes strictly the false acceptance rate

and is defined as the minimum value of 0.1×false rejection rate+0.99×false acceptance rate [? ].

Another noticeable work in the field of speaker recognition is the National Institute of Standards

and Technology (NIST) Speaker Recognition Evaluation (SRE) framework used to evaluate dif-

ferent text-independent speaker recognition techniques and models [113]. It started in 1996 and

continues till date.

As far as speaker recognition from encrypted speech is concerned, there is no study available, at

least as of now. However, Wright et. al [95][119] have studied the utilization of packet-length

information in extracting some crucial information about the encrypted VoIP traffic. In particular,

the authors were able to identify the spoken language of the transmitted encrypted media with an

average accuracy of 66%. In the second case, partial speech contents were extracted using packet-

length information. Both these techniques do not disclose the identity of the speaker beyond her

language of communication.

7.3 Main Observation

The basic idea behind this work stems from observing the relationship between the speaker’s iden-

tity and the length of the packet carrying her VoIP speech contents. In order to save bandwidth,

especially in case where, on average, 63% of the time one of the two channels in a VoIP call is

idle, variable bit rate (VBR) encoding has been introduced [120]. VBR techniques allow a codec

to change its bit rate dynamically to adapt to the acoustics of the audio being encoded. Sounds

like vowels and high-energy transients require a higher bit rate to achieve good quality, while

fricatives such as the s and f sounds can be coded comparatively with fewer bits. For this reason,

for a given bandwidth, VBR can achieve lower bit rates for the same quality. As demonstrated
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in [119], the bit rate used for encoding speech and the length of the packets carrying it are in per-

fect synchronization. The reason for this is the fixed frame length (10-30 milliseconds, typically

20 milliseconds) in case of speech compression and encoding mechanisms used in VoIP commu-

nications. For example, a VBR encoder operating at 13.6 kbps will produce a packet-length of 34

bytes, excluding the header, for speech sampled at 8000 samples per second.

In order to determine the correlation of the speaker’s identity with packet-lengths of the en-

coded speech, we conducted some experiments on the AN4 Low Vocabulary Speech Recognition

Database [121] which consists of identical phrases uttered by different speakers. Fig. 7.1 shows

the histogram of the packet lengths with Gaussian curve fitting of the same phrase uttered by three

different speakers randomly selected from the AN4 speech recognition corpus and encoded by the

VBR encoder, Speex [122], which encodes this phrase with eight distinct bit rates resulting into

eight different packet lengths. It is interesting to note that different speakers produce different

distributions for the same eight packet sizes. Various experiments were conducted with similar

speech contents but uttered by different speakers. Throughout our experiments, the distribution

of frame length sequences produced by different speakers were visually distinguishable. This de-

pendence of the frame length sequencing on the speaker’s identity encouraged us to model each

speaker with respect to frame length sequences.

In order to understand the effect of encryption on the frame lengths, we studied the practically

in-vogue security mechanisms in VoIP communication. One of the techniques proposed to secure

real time speech communication over the Internet is to tunnel VoIP over IPSec but this proposal

has a serious limitation of inducing unacceptable delays on the real time traffic [123]. In order to

address the issue of confidentiality and privacy in VoIP communications without compromising

the quality of service, the real time transport protocol (RTP) for multimedia applications was
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Figure 7.1: Histogram of the packet-lengths of letters ”P I T T S B U R G H” spoken by different

speakers

replaced by the Secure Real Time Transport Protocol (SRTP) [117]. SRTP standardizes only a

single encryption algorithm namely the Advanced Encryption Standard (AES) which can be used

in two cipher modes: segmented integer counter mode and f8 mode. In the former mode, which

is the default encryption mode, an integer incremental counter is used with the default encryption

key length of 128 bits and a default session salt key of length 112 bits. The f8 mode is a variation

of the output feedback mode with a more elaborate initialization and feedback function. It uses

the same default sizes for session key and salt as the AES segmented integer counter mode. As

clearly mentioned in [117] “none of the pre-defined encryption transforms uses any padding;

the RTP and SRTP payload sizes match exactly.” Hence the packet length information remains

unchanged after encryption and all exploitation techniques based on this information remain as

valid after encryption as they were before encryption.
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7.4 Problem Statement

The break up of the speaker recognition as a forensic investigation problem is given by the fol-

lowing two subproblems.

7.4.1 Speaker Identification

Given a set of n suspected speakers {S1, · · · , Sn} and a disputed anonymous encrypted speech

segment O, the investigator is asked to identify the speaker S ∈ {S1, · · · , Sn} of the anonymous

speech segment. The identified speaker is one which gives the maximum value for p(S|O). It is

assumed that the investigator has access to m speech segments V = {v1, · · · , vm} of each suspect

and the true speaker is assumed to be one of the suspected speakers.

7.4.2 Speaker Verification

Given an observation sequence in the form of a speech segment O, and a hypothesized speaker S,

speaker verification is a basic hypothesis test between H0 (O is from the hypothesized speaker S)

and H1 (O is not from the hypothesized speaker S.) If p(O|H0)
p(O|H1)

≥ θ, we accept H0, otherwise reject

H0 (accept H1) where p(O|Hi), i = 0, 1 is the probability density function for the hypothesis Hi

evaluated for the observed speech segment O and θ is the decision threshold for accepting or

rejecting H0.

7.5 Proposed Approach

Fig. 7.2 shows an overview of our proposed approach. First, the packet length information

from the encrypted VoIP conversation are extracted and used to create suitable models for the

different speakers. The unknown communication can then be classified, using some classifica-

tion/regression techniques on the basis of the pre-trained models for each speaker. These steps
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are further explained throughout the rest of this section.

Speaker 
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Figure 7.2: Overview of the proposed approach for speaker identification from encrypted VoIP com-

munications

7.5.1 Packet Length Extraction

The packet length information can be extracted from the encrypted VoIP conversation using one

of the numerous open source packet sniffing tools or the techniques mentioned in [119, 95]. In

addition, multimedia container formats like the Ogg [124] and MPEG-4 [125] are also used for

carrying multimedia information in packets over the Internet. For the voice transmission over

packet switched networks, Ogg uses the Speex encoder which handles voice data at low bit rates
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(8-32 kbit/s/channel) and the Vorbis encoder which handles general audio data at mid to high-

level variable bit rates (16-500 kbit/s/channel) [122]. To cater for the VBR encoding mechanism,

the Ogg page headers reserve a specific field in the page header as segment table. On one hand,

it provides for efficient multiplexing and seamless integration of multimedia data independent of

the underlying compression and encoding mechanisms. On the other hand, the segment length

information can be retrieved from the page header without even inspecting the internal packet

contents.

7.5.2 Modelling and Classification

For modelling the speaker’s identity with respect to the variable packet-length information, vari-

ous modelling approaches are explored. In case of conventional speaker recognition approaches,

the observations on which the models are based are multidimensional vectors generally in the form

of Cepstral features extracted per frame [102]. In the encrypted VoIP scenario, we only know the

length of the frame, or for that matter the packet, which is a scalar value per frame. We used dis-

crete hidden Markov models (HMMs) to create a model for each speaker based on the sequence

of packet-length information. An HMM is characterized by two model parameters, M and N, and

three probability measures A, B and π, where N denotes the number of states {S1, · · · , SN} in the

model, M denotes the number of distinct observation symbols per state, A is the state transition

probability distribution, B is the observation symbol probability distribution and π is the initial

distribution. HMMs use the Baum Welch expectation maximization algorithm [126] for calcu-

lating the model parameters and the Viterbi search [127] for finding the most likely sequences of

hidden states.

The other approach which is also used in [119] for language identification is to create tri-gram

models out of the frame lengths for each speaker. Using trigram probabilities, speakers were
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modelled as GMMs with different model orders. Mathematically, a GMM λ(y) is given by [118]:

λ(y) =
M∑
i=1

αiG(y;mi; Σi) (7.1)

where G(y;mi; Σi) is a Gaussian model with mean m and covariance Σ. The weight of each

mixture is represented by αi and M denotes the total number of Gaussians. Different Expec-

tation Maximization algorithms are used to find the optimum values of mixture weights [128].

Each Gaussian in the mixture has its own mean and covariance matrix that has to be estimated

separately [129].

In addition to the HMMs and GMMs described above, we have also tested several other classifiers.

The classifier which obtained the best accuracies for speaker identification was based on the En-

semble of Nested Dichotomies (END) [130] which is a recently introduced statistical technique

for tackling multi-class problems by decomposing it into multiple two-class problems. Using

C4.5 decision tree [131] and logistic regression [132] as base learners, the ensemble of nested

dichotomies shows better classification accuracies compared to the case where we apply these

learners directly to multi-class problems. The probability estimates produced by binary classifiers

are multiplied together, considering these to be independent, in order to obtain multi-class proba-

bility estimates. Nested dichotomies can be represented as binary trees. At each node, we divide

the set of classes A associated with the node into two subset B and C that are mutually exclusive

such that B and C together contain all the classes in A. The nested dichotomies root node contains

all the classes of the corresponding multi class classification problem. Let Li1 and Li2 be the two

subsets of class labels produced by a decomposition of the set of classes Li at internal node i of

the tree and let p(l ∈ Li1|y , l ∈ Li) and p(l ∈ Li2|y , l ∈ Li) be the conditional probability

distribution estimated by the two class model at node i for a given instance y. Then the estimated
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class probability distribution for the original multi-class problem is given by:

p(l = L|y) =
n−1∏
i=1

(I(l ∈ Li1)p(l ∈ Li1|y, l ∈ Li)

+ I(l ∈ Li2)p(l ∈ Li2|y, l ∈ Li))

(7.2)

where I(·) is the indicator function and the product is over all the internal nodes of the tree.

In the speaker verification domain, various classification and modelling approaches can be applied

in order to determine whether a particular speech utterance belongs to a particular speaker or not.

We used several classification techniques to verify the speaker identity using the tri-grams of the

packet lengths of the speech encoded by VBR encoding mechanism. One way to deal with the

speaker verification problem is to consider it as a two-class classification problem and assign the

probability of the likelihood of the model as the true and imposters scores in order to calculate

the equal error rates and minimum detection cost function. Another technique which we also

used is to tackle the speaker verification problem as a regression problem [133] by assigning

different numerical values to true speakers and imposters during the training process. Then we set

a threshold for the binary decision. For any unknown utterance, we calculate the values via the

same regression modelling technique and attribute the utterance to the target speaker depending

upon the threshold and the calculated value. The classifier we used for this approach is the SVM

with RBF kernel [134] [135].

7.6 Experimental Evaluation

Our experiments were conducted on the CSLU speaker recognition database [136] which consists

of speech files from 91 speakers recorded in twelve sessions over a period of two years. Each

session comprises of 96 files each of 2 to 20 seconds duration. We first encoded the wave files of
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the database with Speex using variable bit rate encoding in narrow band mode. This encodes the

files with eight different bit rates depending upon the speech contents in each 20 msec frame. The

VBR encoder encoded the speech files with eight distinct bit rates resulting into different frame

sizes each of 6, 10, 15, 20, 28, 38, 46 and 62 bytes. The sequence of these frame sizes depends on

the content as well as acoustics of the underlying speech. A Matlab application was developed for

extracting the packet-length information from the encrypted files. Various techniques were then

employed to correlate the frames sizes with the speaker identity.

7.6.1 Speaker Identification

In case of speaker identification, the job of the forensic investigator is to identify the potential

perpetrator in a group of potential suspects. The number of potential suspects may vary from

one case to another. We conducted experiments on groups of 5, 10, 15 and 20 suspects. Various

modelling and classification approaches were used for the experimental evaluation of identify-

ing the potential perpetrator from the packet length information extracted from encrypted VoIP

conversations. The following are the worth mentioning experiments.

HMM Tests: The HTK toolkit [? ] was used to develop HMM models, for different speaker

based on their corresponding sequence of frame sizes. 300 speech files per speaker were used

for training and 100 files were used for testing. The HMM modelling approach achieves an

identification accuracy of 54% for a group of ten speakers.

GMM Tests: For the GMM tests, we calculated the tri-gram probability of the eight symbols

(frame lengths) thereby creating a 512 component vector for each speech file. For example, the

first component of the the 512 component vector corresponds to the probability of the sequence

(6,6,6) in the sequence of symbols, the second component to (6,6,10) and so on. These probability
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distribution of the tri-grams of each speaker were modelled as a GMM. Again we used 300 files

per speaker for training and 100 files for testing. Various model orders, from 8 to 64 were used,

but no significant improvement could be observed with increase in models orders. The speaker

identification accuracies obtained through the GMM approach showed slightly better results as

compared to the HMMs. For example the identification accuracy in case of 10 speakers increased

form 54.2% to 58.9% in case of GMMs with model order 16.

Bayes Net and ENDs Tests: The WEKA tool kit [137] was used to investigate the performance

of different types of classifiers and regression techniques in our speaker identification problem.

Among various classification techniques available, the Bayesian Network classification tech-

nique [138] showed results better than both HMMs and GMMs. For the training data and test data

we used the tri-gram probability as features and the speakers identity as classes. We conducted

experiments using 10 fold cross validation evaluation to avoid any biases in the data. Furthermore,

the use of meta classification has showed significant improvement over simple classification tech-

niques. In this case, the discriminative power of various base classifier is combined to achieve

better classification accuracies. We conducted some tests using various meta classifiers with dif-

ferent combinations of base classifiers. The Ensemble of Nested Dichotomies (ENDs) showed

significant improvement over all other classification methods. For the training and testing data we

again used the tri-gram probability distributions of the frame length sequencing to compare the

accuracies with the same data set and features.

7.6.1.1 Results

Table 7.1 shows a summary of the identification accuracies of the above mentioned four significant

classification techniques on a group of 5, 10 , 15 and 20 speakers.
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Table 7.1: Speaker Identification Accuracies of Various Classification Methods

Identification Accuracies (%)

No. of Speakers HMM GMM BayesNet ENDs

5 60.5 63.7 68.4 74.9

10 54.2 58.9 59.2 72.4

15 43.7 41.7 51.7 59.8

20 38.4 39.6 43.2 51.2

We also measured the precision and recall of all the above proposed techniques. The average

values of the precision, recall for 10 speakers obtained throughout the above mentioned four clas-

sification techniques are presented in Table 7.2. The variation of F-measure, which is defined as

harmonic mean of precision and recall, with number of speakers with respect to the classification

techniques is depicted in Fig. 7.3.

Table 7.2: Average Precision, Recall and F-measure values of speaker identification on a group of 10

speakers

Classification Technique Precision Recall F-Measure

HMM 0.557 0.542 0.553

GMM 0.599 0.589 0.591

Bayes Net 0.601 0.592 0.598

ENDs 0.734 0.724 0.723

7.6.2 Speaker Verification

Speaker verification can be thought of as a two class classification problem. We conducted exper-

iments on the same data set of speakers as the speaker identification but in this case we first used
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Figure 7.3: F Measure Variation with Number of Speakers and Classification Techniques

classification techniques to model two classes, one for the target speaker and one for the cohort

or background model. Two types of cohort models were created, one for the male group and

another one for the female group. The two cohort models were trained using the complete data

sets of male and female speakers respectively. For the target speaker, we used four hundred files

per speaker. For evaluation of our classification methods, we used the 10 fold cross validation

approach to avoid any biases in the evaluation experiments and to judge the classification method

over the entire database reserving 90% for training and 10% for testing. The NIST toolkit was

used to calculate the equal error rates. For the true speakers and imposters’ scores, we used the

probability scores of our classifier as input.

7.6.2.1 Speaker verification via classification

For classification, we used three different classification techniques, namely Adaboost.M1 [139],

Discriminative Multinomial Naive Bayes (DMNB) [140] and Bayesian Network [141] classifiers.

Fig. 7.4 shows a typical DET plot of one speaker from our database using the three classification
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techniques. The point on the DET plot which gives the minimum cost detection function is marked

on each curve.
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Figure 7.4: A typical DET plot of speaker verification with different classification and regression

techniques

7.6.2.2 Speaker Verification via Regression

In this case, we again used three different regression techniques. These are linear regression [137],

SVM with Sequential Minimum Optimization (SMO) [142] and SVM with RBF kernel [134]. We

used regression scores of the true speakers and imposters for calculating the equal error rates and

minimum detection cost function. The regression approach via SVM with RBF kernel produced

lower EER as compared to the Bayesian Network classifier. Fig. 7.5 shows the typical DET plots

of one randomly selected speaker from our database when using the three regression techniques

described above.
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Figure 7.5: A typical DET plot of speaker verification with different classification and regression

techniques

7.6.3 Discussion

Although the identification and verification accuracies achieved in our experiments are not com-

parable to the ones achieved in the un-encrypted speech domain, yet these are by far superior to

random guessing as one would expect in case of encrypted communication. In the speaker iden-

tification domain, the results obtained on modeling the packet lengths as discrete HMMs could

not achieve very encouraging results. The reason for this could be that since HMMs are based

mainly on the temporal sequencing of the observations. They do not depend much on the overall

average statistics of the modeled signal. In the frame length sequencing information since the

total number of discrete symbols is very small (just eight) hence large similarities in the temporal

sequencing of these symbols between different speakers could be observed.

In order to cater for the average statistics of the signal to be modeled, we switched to Gaussian
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mixture modeling approach. This time we did not use the temporal sequencing of the underly-

ing discrete symbols as input features to our models. Instead, we created tri-gram probability

distributions to incorporate the the overall signal statistics along with temporal sequencing. This

time we could achieve comparatively better identification accuracies validating our premise. We

observed that the probability distributions are very sparse and for most of the tri-gram sequences

like 6,6,62 and 10,10,6 etc we could not observe even a single occurrence in the complete data

set. One way to address this issue is to use smoothing techniques used by the natural language

processing community. We reserve this task for future work. For the time being we concentrated

on other modeling and classification techniques. Moreover, from the insignificant improvement

in results with increase in model orders in case of GMMs, we derived that the distribution of the

packet lengths cannot be distinctively attributed to different speakers using Gaussian Mixtures

with distinct Gaussian weights, means or covariance matrices for each speaker. The Bayesian

Network which is basically probabilistic graphical model that represents a set of random variables

and their conditional independencies via a directed acyclic graph. The conditional probabilities

of the packet length sequences mapped better via the Bayesian Network classifier to the speak-

ers’identity as compared to HMMs and GMMs. The result shown by the ensemble of nested

dichotomies suggest that this problem can be best solved by the combination of different classifi-

cation techniques. Using the C4.5 decision tree algorithm with logistic regression as base learners,

the meta classifier could achieve comparatively better recognition accuracies suggesting that this

problem can be better solved through binary classification methods applied over multi-class prob-

lems. As far as the variation of recognition accuracies with increasing number of speakers is

concerned, this is in perfect synchronism to any conventional multi-class classification problem

where the recognition accuracies decline with increasing number of classes.

In the speaker verification domain, which is a binary classification problem, the regression tech-
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niques have shown better EER and minDCF as compared to the classification techniques. The

accuracy in case of speaker verification depends on how the two predicted scores of the two

classes are distinctly apart. This helps in choosing a suitable threshold for the binary decision.

The output of a classifier is the predicted class label with the probability score. In case of regres-

sion, the classifier predicts the score directly. This gives us more freedom to choose the scores for

the true speaker and the background model. Moreover, since SVMs generally perform better in

two class classification problem, the general observation remained valid in our case also.

Table 7.3 shows the mean EER and minimum CDF obtained when using the above discussed

classification and regression methods.

Table 7.3: Speaker Verification Accuracies of Various Classification Methods

Classification Regression

Verification A.Boost DMNB Bayes SVM-SMO Lin. Reg SVM-RBF

EER(%) 23.4 20.1 19.5 22.3 21.3 17.1

minDCF 0.0856 0.0838 0.0690 0.0901 0.0830 0.0681

7.7 Summary

With the advancement in voice over IP applications in which the un-encrypted speech commu-

nication is diminishing, access to un-encrypted speech can prove to be a very difficult task for

investigators. Therefore, future forensic applications need to look into the possibility of identi-

fying perpetrators from encrypted speech segments. This paper is an endeavor in this direction.

Several techniques for forensic speaker recognition from encrypted VoIP conversations were pre-

sented. It has been shown that the variable packet-length information in case of variable bit speech

encoding mechanism can be exploited to extract speaker dependent information from encrypted
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VoIP conversations. Although the identification and verification accuracies achieved in our ex-

periments are not comparable to the ones achieved in the un-encrypted speech domain, these are

by far superior to random guessing as one would expect in case of encrypted communication. It

should also be noted that while the current state of the art speaker recognition techniques have

not matured enough to be produced in a court as the sole source of evidence against a suspect,

these techniques are nonetheless valuable tools that can facilitate forensic investigations. In the

same context, the computational data obtained by our experiments, obviously, cannot be used as

a complete forensic evidence. However, together with other sources of evidence they can provide

some clues for further directions to the forensic investigators.
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Chapter 8

CONCLUSION

8.1 Introduction

In this chapter we summarize the contributions and results presented in this thesis and deliberate

on some of the issues which may be taken up as a future work. The concept of using linear

complexity for distinguishing between the speech and silence zones in an encrypted conversation

has been presented. The two time pad situation has been discussed in the literature and all the

exploitation techniques presented so far concern the text based data. In this thesis the cryptanalysis

of two time pads of encrypted speech signals is also presented for the first time. The idea has been

discussed keeping in view almost all the modern speech coding and compression techniques. The

idea of speaker recognition from partially encrypted speech has been introduced for the recently

introduced selective encryption techniques for mobile multimedia applications. Since all modern

speech communication are switching to voice over IP, thereby discussing speech without referring

to voice over IP would be an incomplete correspondence. Most of the simulations presented in the

thesis are coded in MATLAB , C-language and Perl Scripting Language. Since some of the ideas

are presented for the first time, therefore room for detailed simulations in different experiments in

varied situations still exists.

8.2 Contributions of this Thesis

The contributions presented in this thesis can be summarized as under:
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• The statistical properties of digitized speech signals are different from text and other forms

of data. We also present techniques in this thesis to exploit these statistical properties of

speech signal for ciphertext only cryptanalysis of stream ciphered digitized speech both in

the single and multiplexed communication environment.

• A specific situation of stream ciphered transmission of data known as the two time pad

situation has been discussed at length with respect to text based data encoded through con-

ventional encoding mechanism. The exploitation techniques in this situation for speech

data has been introduced for the first time in this thesis. Both the parameter and waveform

encoded speech signals have been discussed at length.

• The concept of language modeling has been extended to inter frame speech parameters

modelling the idea presented for the first time by us. All the parameters present in the

speech frames have been found to be non uniformly distributed except for the fixed code

book pulse signs which are uniformly distributed between positive and negative signs.

• The recently introduced partial encryption techniques for mobile multimedia applications

have been analyzed from the perspective of speaker’s identity protection.

• We are the first, to the best of our knowledge, to apply speaker identification and verification

to encrypted VoIP conversations.

• The recently developed container formats which are used to store and carry multimedia

information over the Internet are explored from the perspective of speaker recognition in

case of encrypted communications.

• Our experimental results on speaker recognition from encrypted VoIP conversations indi-

cate that different types of classification and regression techniques, that are usually used in
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data mining and machine learning applications, outperform Gaussian mixture models and

hidden Markov models-the classifiers which perform very accurately in the conventional

speaker recognition studies.

8.3 Future Work

Following are some of the open problems for research in the research work presented in this

thesis:

• Techniques other than linear complexity for the purpose of classifying the silent and speak-

ing zones in the cipher text presented in Chapter 2 also needs to be looked into. In case of

very large linear complexities the, i.e. if the linear complexity is larger than half the length

of the silent zone then the linear complexity analysis test will fail. The asymptotic analysis

of the classification of silence zones and noise zones as well as that of the cryptanalysis on

the basis of this technique also needs to be investigated.

• The concept of context-dependent tied-state multi-mixture tri-phones has shown signifi-

cantly better performance from speech recognition point of view. The same concept when

applied to cryptanalysis of two time pads in case of stream ciphered digitized speech using

ASR techniques is expected to show better accuracy of decoded phoneme pairs.

• The inter frame speech parameters modeling idea presented in Chapter 6 can be extended

to lossless compression using an adaptive lossless compression techniques e.g. Adaptive

Hufman coding since the all the parameters are non uniformly distributed from inter frame

point of view except for Fixed Code Book Pulse Signs which are uniformly distributed

between positive and negative pulses.
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• The selective encryption technique discussed in Chapter 6 is shown to reveal the speakers

identity, modification of the technique can be looked into to avoid this disclosure. Language

identification from the partially encrypted speech can also be taken up as a future work.

• Modifications in the SRTP protocols can be suggested to avoid exploitation of packet length

information for revelation of speaker’s identity.
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Appendix A

SOURCE CODE FOR PARAMETER ENCODED SPEECH DECODING

A.1 Matlab Code for XOR of two Wave Files

clear all

[x_filename,x_filepath] = uigetfile(’*.wav’,’Open File X’);

fid1=fopen(strcat(x_filepath,x_filename),’r’);

a=fread(fid1, ’uint16’);

[y_filename,y_filepath] = uigetfile(’*.wav’,’Open File Y’);

fid2=fopen(strcat(y_filepath,y_filename),’r’);

b=fread(fid2, ’uint16’);

a_s = size(a);

b_s = size(b);

if (a_s(1) > b_s(1)) % b is smaller in size

c = bitxor(b,a(1:b_s));

c(1:512)=b(1:512);

else % a is smaller in size

c = bitxor(b(1:a_s),a);

c(1:512)=a(1:512);

end

c=bitxor(b(1:11812),a);
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c(1:512)=a(1:512);

x_s = size(x_filename);

y_s = size(y_filename);

c_filename = strcat(x_filename(x_s(1,1):x_s(1,2)-4),’_’,

y_filename(y_s(1,1):y_s(1,2)-4),’.wav’);

fid3=fopen(strcat(’C:\simulations\wavxor\’,c_filename),’w’);

fwrite(fid3,c,’int16’);

msgbox(’XOR of file X and Y has been saved.’,’warn’)

fclose all;

clear all;

A.2 MATLAB Code for Transitional Probability Calculations with Simple Back Off

Smoothing

clear all

Lamda = 0.5;

% Prob(1-->2)= lamda * P(1-->2) + (1-lamda)* P(2)

P = LSFIndex1;

% the data on which the bigram prob is being calculated

l_P = length(P);

l_T = 1024;

% No of alphabets in the data

T_count = zeros(l_T,l_T);

Trans_prob = zeros(l_T,l_T);

for (m=1:l_T)
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Index = find (P==m-1);

% find the locations of m in P

l_Index = length(Index);

% gets the total number of instances where

% m is occuring in P

if (l_Index > 0)

% check if no of instances is greater than 0

for (n=1:l_Index)

% iterate for the total number of items in index

if ((Index(n)+1)<=l_P)

% check if index for P,

%(Index(n)+1)we are not going beyond the lenght of P

i = P(Index(n))+1;

j = P(Index(n)+1)+1;

T_count(i,j) = T_count(i,j)+1;

% increment that i->j has occured

end

end

end

% calculate the probabilities of the row number m

Trans_prob(m,:) = (1+T_count(m,:))/(l_T + l_Index);

%length of T and 1 added to cater for

%smoothing in case of zero entries

for(k=1:l_T)
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Trans_prob(m,k) = (Lamda*Trans_prob(m,k)) +

((1-Lamda)*UniProb(k));

% To cater for back off smoothing

end

% T_count of row m is complete

end

clear Index T_count P i j l_Index m n Index

l_P l_T Lamda k;

A.3 MATLAB Code for Transitional Probability Calculations with Witten Bell Smoothing

N=1;

% here N is the number of unique entries that follow

% the history i.e. P(1-->2) = {Count(1-->2) +

% N1 * UniProb(2)}/{N1 + Count(1-->?)} where N1

% is the number of unique entries that follow 1.

P = LSFIndex1;

% The data on which transitional prob is calculated

l_P = length(P);

l_T = 1024; % No of alphabets in the data.

T_count = zeros(l_T,l_T);

Trans_prob = zeros(l_T,l_T);

for (m=1:l_T)

Index = find (P==m);

% find the locations of m in P
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l_Index = length(Index);

% gets the total number of instances where

% m is occuring in P

if (l_Index > 0)

% check if no. of instances is greater than 0

for (n=1:l_Index)

% iterate for the total number of items in index

if ((Index(n)+1)<=l_P)

% check if index for P,

%(Index(n)+1)we are not going beyond the length of P

i = P(Index(n));

j = P(Index(n)+1);

T_count(i,j) = T_count(i,j)+1;

% increment that i->j has occurred

end

end

N=length(find(T_count(m,:))) ;

%find the number of non zero entries in row m

%which is the number of unique entries

%that follow m

else

N=1;

end

% calculate the probabilities of the row number m
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%Trans_prob(m,:) = (1+T_count(m,:))/(l_T + l_Index);

%length of T and 1 added to cater for smoothing

%in case of zero entries

for(k=1:l_T)

Trans_prob(m,k) = (T_count(m,k)

+ N * UniProb(k)) / (N + l_Index); % To cater

%for back off smoothing

end

% T_count of row m is complete

end

clear Index T_count P i j l_Index m n Index l_P l_T k N

A.4 MATLAB Code for Customized Viterbi Decoding

% complete implementation of Decoding

% for values ranging between 1 and 2ˆn

% where n is the number of bits representing the value

% Seq = input sequence

% T = Transition Matrix

% L = log probability transition matrix

% S1,S2.. states

% S1S2, S2S3,... weights of edges from

% the corresponding stages

% R1 = L + S1S2 Resultant wight matrix of Stage 1 to Stage 2

% W1_2 Min log prob paths from stage 1 to 2
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% Short_Node1_2 index of node at stage 1 with the

% shortest path to stage 2

clear all

% initialization

%load(’C:\Documents and Settings\Liaqat

%\Desktop\sim\Sequence.mat’);

Seq = data;

l_Seq = length (Seq);

%T=[0.364 0.273 0.182 0.09; 0.103 0.241 0.413 0.241;

0.115 0.385 0.269 0.231; 0.05 0.3 0.25 .3];

T=Trans_prob;

size_T = 1024; %nter the number of alphabets

%to cater for the zeros in transition

%probability matrix since log of zero

%is not defined

% for i=1:4

% for j=1:4

% if (T(i,j)==0)

% T(i,j)=0.00001;

% end

% end

% end

L = -log(T);

%if using log prob
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% L=T;

%If not using log prob

%Initializing Variables

S1 = zeros(1,size_T);

S2 = zeros(1,size_T);

S1S2 = zeros(size_T);

R = zeros(size_T);

R_t = zeros(size_T);

W = zeros(1,size_T);

W_Prev = zeros(1,size_T);

% if using log probabilities

% W_Prev = ones(1,size_T);

% if not using log probabilities

Short_Node = zeros(1,size_T);

% Outer loop depending upon the sequence length

for (loop = 1:l_Seq-1)

% for calculating S1

for i=1:size_T

S1(i) = bitxor(i-1,Seq(loop));

S2(i) = bitxor(i-1,Seq(loop+1));

end

% for calculating weights of edges

for (i=1:size_T)

for (j=1:size_T)
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S1S2(i,j) = L (S1(i)+1,S2(j)+1);

end

end

% Resultant matrix

R_t = L + S1S2;

% if using log probabilities

% R_t = L .* S1S2;

% if not using log of probabilities

for (i=1:size_T)

R(i,:) = R_t(i,:) + W_Prev(i);

%if using log probabilities

% R(i,:) = R_t(i,:) * W_Prev(i);

% if not using log probabilities

end

% min/max weight edges

%(min for log prob and max for prob without log)

W = min(R);

% If using log probabilities

% W = max(R);

%if not using log probabilities

% to find index of the shortest node to S2

for (i=1:size_T)

[tt,j] = find (R(:,i)==W(i));

Short_Node(i) = tt(1);
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end

% to update the edges weight of the previous

% stage to be added to the new minimum weights

W_Prev = W;

%writing shortest edges from different

% nodes at each stage to file

name = strcat(’C:\Documents and Settings\Liaqat

\Desktop\sim\ShortNode\SN’,num2str(loop),’.txt’);

fid = fopen (name,’w’);

fwrite(fid,num2str(Short_Node));

% if (loop == l_Seq-1)

% fwrite (fid,’ ’);

% fwrite (fid,num2str(W));

% end

fclose(fid);

end

% end of loop

% Back Tracking the shortest path

% and reading off the labels

% P and Q are the arrays such that P xor Q = Seq

P = zeros(1, l_Seq);

Q = zeros(1, l_Seq);

% back tracking the last node. We already have the W

% and Short_Node of the last stage
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P_temp = find(W == min(W)) - 1;

% if using log probabilities

% P_temp = find(W == max(W)) - 1;

% If not using log probabilities

P(l_Seq) = P_temp(1);

Q(l_Seq) = bitxor(P(l_Seq),Seq(l_Seq));

for (i = l_Seq-1:-1:1)

name = strcat(’C:\Documents and Settings\Liaqat

\Desktop\sim\ShortNode\SN’,num2str(i),’.txt’);

fid2 = fopen(name,’r’);

Short_Node = fread(fid2,’uint8=>char’);

%read Short_Node as character string

fclose(fid2);

% convert to double

Short_Node = str2num(Short_Node’);

% Calculate P & Q

P(i) = Short_Node(P(i+1)+1)-1;

Q(i) = bitxor(P(i),Seq(i));

end

fclose all;

clear fid fid2 i j l_Seq loop name size_T tt

W W_Prev Short_Node Seq S1 S2 S1S2 R_t R P_temp L T ans;

153



Appendix B

SOURCE CODE FOR PARTIALLY ENCRYPTED SPEECH

CRYPTANALYSIS

B.1 Matlab Code for Extracting the Non Encrypted Portion from the CELP Frame

%This file extracts the non encrypted portion

%from the 80 bit CELP frame

clear all;

fid=fopen(’D:\CMUexp\encoded\train\mcen\an129-mcen-b’,’rb’);

% to open the file that contains the CELP frames

A=fread(fid);

A=uint8(A);

L=length(A);

for (i=0:L/10-1)

L0(i+1)=bitget(A(i*10 +1),8); j=i*10+2;

% to get the 2nd byte of every frame

%(each frame is 10bytes(80 bits long))

x=bitand(A(j),7);

% to get the last three bits

x1=bitshift(x,2);

% to append two zeros at the right to make it 5 bits
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y=bitshift(A(j+1),-6);

% to get the two left most bits of the 3rd byte

L3(i+1)=bitor(x1,y); k=i*10+4;

% to get the 4th byte of every frame

xx=bitand(A(k),31);

% to get the last five bits

xx1=uint16(xx);

%to make it 16 bit integer

xx2=bitshift(xx1,8);

C1(i+1)=bitor(xx2,uint16(A(k+1)));

l=i*10+6;

% to get the 4th byte of every frame

%(each frame is 10bytes(80 bits long))

S1(i+1)=bitshift(A(l),-4);

% to get the ist four bits

m=i*10+8;

% to get the 8th byte of every frame

xxx=uint16(A(m));

% to get the 8th byte in 16 bit format

xxx1=bitshift(xxx,5);

%to make it the most significant bits in 13 bit integers

yyy=bitshift(A(m+1),-3);

%to get the next five bits of the 13 bit integer

C2(i+1)=bitor(xxx1,uint16(yyy));
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n=i*10+9;

% to get the 8th byte of every frame

xxxx=bitand(A(n), 7);

% to get the last three bits

xxxx1=bitshift(xxxx,1);

%to make room for the fourth bit

yyyy=bitshift(A(n+1),-7);

%to get the most significant bit

S2(i+1)=bitor(xxxx1,yyyy);

end

fclose(fid);

numsample= L/10;

num1=bitshift(numsample, -8);

% to get the eight most significant bits

num2=bitand(numsample,255);

% to get the eight least significant bits

%NOTE: The numsamples should be less than 2ˆ16 (65536).

%For higher numbers change the leading two zeros accordingly.

header= [0 0 num1 num2 0 1 134 160 0 24 0 9];

% for the header, the first four bytes correspond to the

%binary representation of the number of vectors in the

%file eg [0 0 17 47] corresponds to 4399. keep the other

%components as it is.

for p=0:L/10-1

156



q=6*p+1;

V(q)=single(L0(p+1));

V(q+1)=single(L3(p+1));

V(q+2)=single(C1(p+1));

V(q+3)=single(S1(p+1));

V(q+4)=single(C2(p+1));

V(q+5)=single(S2(p+1));

end

fid=fopen(’D:\CMUexp\reduced\train\mcen\an129-mcen-b’,’a’);

%To open the file to write the reduced CELP vector into.

fwrite(fid,header);

fwrite(fid,V,’single’, ’b’);

% single means floating point with 32 bits and

%’b’ represents the IEEE 754 floating point format

fclose(fid);

clear A i j k l m n x xx1 xx2 xxx xxxx xxxx1 x1 y xxx1

yyy yyyy fid xx L p q header num1 num2 numsample;

B.2 Matlab Code for Converting CELP files to HTK Recognizable Format

%This file converts the CELP encoding to

%HTK Recognizable Format

clear all;

fid=fopen(’D:/OGIPartial/encoded/1022/10221aa1.raw.celp’,’rb’);

A=fread(fid);
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A=uint8(A);

L=length(A);

for (i=0:L/10-1)

L0(i+1)=bitget(A(i*10 +1),8);

j=i*10+2;

x=bitand(A(j),7);

x1=bitshift(x,2);

y=bitshift(A(j+1),-6);

L3(i+1)=bitor(x1,y);

k=i*10+4;

xx=bitand(A(k),31);

xx1=uint16(xx);

xx2=bitshift(xx1,8);

C1(i+1)=bitor(xx2,uint16(A(k+1)));

l=i*10+6;

S1(i+1)=bitshift(A(l),-4);

m=i*10+8;

xxx=uint16(A(m));

xxx1=bitshift(xxx,5);

yyy=bitshift(A(m+1),-3);

C2(i+1)=bitor(xxx1,uint16(yyy));

n=i*10+9;

xxxx=bitand(A(n), 7);

xxxx1=bitshift(xxxx,1);
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yyyy=bitshift(A(n+1),-7);

S2(i+1)=bitor(xxxx1,yyyy);

end

L0=double(L0);

L3=double(L3);

C1=double(C1);

S1=double(S1);

C2=double(C2);

S2=double(S2);

sumL0=0;

sumL3=0;

sumC1=0;

sumS1=0;

sumC2=0;

sumS2=0;

for j=1:length(L0)

sumL0=sumL0+L0(i);

sumL3=sumL3+L3(i);

sumC1=sumC1+C1(i);

sumS1=sumS1+S1(i);

sumC2=sumC2+C2(i);

sumS2=sumS2+S2(i);

end

avgL0=sumL0/length(L0);
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avgL3=sumL3/length(L3);

avgC1=sumC1/length(C1);

avgS1=sumS1/length(S1);

avgC2=sumC2/length(C2);

avgS2=sumS2/length(S2);

X=[avgL0; avgL3; avgC1; avgS1; avgC2; avgS2];

fid1=fopen(’D:/OGIPartial/arff/test.arff’,’a’)

fprintf(fid1,’%d, %d, %d, %d, 1022\n\n’,X);

fclose all;

B.3 MATALB Code for Speaker Verification Decision

%This file extracts the log probabilities from the

%rec.mlf file and generates data for speaker

%verification decision

clear all;

close all;

fid=fopen(’D:\SV2\recout\trainingdata\mdcs2.mlf’, ’rt’);

% Open the file containing the results from HTK.

C = textscan(fid,’%s %s %s %f’,’headerlines’,2,...

’commentStyle’,{’"’,’"’});

% Read the results into a four column cell array C.

A=C{3};

% Take the third cell which is either the speaker

% or reference.
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A=A’;

X=cell2mat(A);

% Matlab cannot manipulate the data in cell format,

% hence it has to be changed to matrix fmt.

B=C{4};

% Take the log prob values into B.

j=1;

m=1;

k=0;

sum=0;

var=0;

for i=1:+2:length(A)-1

Y=X(4*k+1:4*k+4);

% to take every fourth character and check whether

% it is ref or speaker

if Y == ’MSDC’

% ************Change to speaker name***********

speaker(j)=B(i);

% Put the speaker prob values into array speaker.

j=j+1;

else

ref(m)=B(i);

% Put the prob values of ref into array ref

m=m+1;
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end

k=k+1;

end

Diff= speaker-ref;

% to get positive values in case the log prob values of

% speaker is better than reference.

for n=1:length(Diff)

sum=sum+Diff(n);

end

mean=sum/length(Diff);

for p=1:length(Diff)

var=var + (Diff(p) - mean)ˆ2;

end

stddev=sqrt(var/length(Diff));

for q=1:length(Diff)

norm(q)=(Diff(q)-mean)/stddev;

end

fclose(fid);

result=[speaker’ ref’ Diff’ norm’];

result1=[speaker; ref; Diff; norm];

% speaker1=num2str(speaker);

% ref1=num2str(ref);

% Diff1=num2str(Diff);

% norm1=num2str(norm);
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fid1=fopen(’D:\SV2\results\trainingdata\mdcs2.xls’,’w’);

fprintf(fid1, ’%f\t %f\t %f\t %f\n’, result1);

fclose(fid1);

clear A B C X Y fid i j k m n p q sum var fid1 norm1;
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Appendix C

SOURCE CODE FOR SPEAKER RECOGNITION FROM ENCRYPTED

VOIP COMMUNICATIONS

C.1 Matlab Code for Extracting Packet Lengths

%This file extracts the segments length from OGG encoded files

fid=fopen(’D:/OGIVOIP/ogg/0042/00421aa1’, ’r’);

B=fread(fid);

fclose (fid);

num_pages=0;

start=0;

for i=1:length(B)-1

if B(i)==79 && B(i+1)==103 && B(i+2)==103 && B(i+3)==83

num_pages=num_pages+1; start_page(num_pages)=i;

if num_pages > 2

num_segment_index=i+26;

for j=1:B(num_segment_index)

segment_length(start+j)=B(num_segment_index+j);

end

start=start+B(num_segment_index);

end
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end

end

C=segment_length;

fid1=fopen(’D:/OGIVOIP/SegmentLengths/0042/00421aa1’, ’a’);

fwrite(fid1,C);

fclose(fid1);

clear segment_length C A fid fid1 start B i j k m

num_segment_index num_pages start_page;

C.2 Matlab Code for Calculating Trigram Probabilities of Packet Lengths

%This file calculates the Trigram Probabilities

%of the Packet Lengths

fid=fopen(’D:/OGIVOIP/SegmentIndex/1022/10221aa1’,’r’);

C=fread(fid);

fclose(fid);

count=zeros(8,8,8);

m=1;

for i=1:8

for j=1:8

for k=1:8

for m=1:length(C)-2

if C(m)==i && C(m+1)==j && C(m+2)==k

count(i,j,k)=count(i,j,k)+1;

end
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end

end

end

end

prob=count/(length(C)-2);

prob=reshape(prob,512,1);

fid1=fopen(’D:/OGIVOIP/SegmentProb/1022/10221aa1’,’w’);

fwrite(fid1,prob, ’single’);

fclose(fid1);

clear fid fid1 m i j k count prob ans C;

C.3 MATLAB Code for Counting the Occurrences

%This file counts the number of occurrences of a specific

%packet length

fid=fopen(’D:/OGIVOIP/ogg/1022/10221aa1’, ’r’);

B=fread(fid);

fclose (fid);

num_pages=0;

start=0;

for i=1:length(B)-1

if B(i)==79 && B(i+1)==103 && B(i+2)==103 && B(i+3)==83

num_pages=num_pages+1; start_page(num_pages)=i;

if num_pages > 2

num_segment_index=i+26;
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for j=1:B(num_segment_index)

segment_length(start+j)=B(num_segment_index+j);

end

start=start+B(num_segment_index);

end

end

end

C=segment_length;

A=[6 10 15 20 28 38 46 62];

for k=1:8

for m=1:length(C)

if C(m)==A(k)

C(m)=k;

end

end

end

fid1=fopen(’D:/OGIVOIP/SegmentIndex/1022/10221aa1’, ’a’);

fwrite(fid1,C);

fclose(fid1);

clear segment_length C A fid fid1 start B i j k m

num_segment_index num_pages start_page;
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