
 1

Table of Contents

TABLE OF CONTENTS -- 1

CHAPTER 1 --- 5

INTRODUCTION TO LOAD BALANCING ALGORITHMS ------------------------ 5

1.1 INTRODUCTION --- 5

1.2 DISTRIBUTED SYSTEMS -- 6

1.3 LOAD BALANCING -- 7

1.3.1 Centralized Load Balancing -- 8

1.3.2 Distributed Load Balancing --- 9

1.3.3 Categorization of Load Balancing Algorithms --- 10
1.3.3.1 Static Load Balancing Algorithms -- 10

1.3.3.2 Dynamic Load Balancing Algorithms -- 11

1.4 CLASSIFICATION OF DYNAMIC LOAD BALANCING ALGORITHMS ---------------------- 12

1.4.1 Random Algorithm -- 12

1.4.2 Sender Algorithm -- 12

1.4.3 Receiver Algorithm -- 13

1.4.4 Symmetric Algorithm --- 13

1.5 PERIODIC SYMMETRICALLY-INITIATED LOAD BALANCING (PSI) ALGORITHM ---- 15

1.6 PROJECT BRIEF -- 18

CHAPTER 2 -- 20

SYSTEM SPECIFICATIONS -- 20

2.1 WIN32 API --- 20

2.2 WINDOWS 95 --- 21

2.2.1 Task Scheduling and Multitasking --- 23

2.3 WINDOWS 95 PROCESSES -- 23

2.3.1 The Windows 95 Process Database (PDB) -- 24

2.3.2 The Environment database -- 30

 2

2.4 SYNCHRONOUS AND ASYNCHRONOUS COMMUNICATION -------------------------------- 32

2.5 INTER PROCESS COMMUNICATION --- 34

2.5.1 Semaphores --- 35

2.5.2 Mutexes -- 35

2.5.3 Events -- 40

2.5.4 Critical Sections -- 41

CHAPTER 3 -- 37

SOFTWARE STRUCTURE -- 37

3.1 BALANCER --- 37

3.1.1 Public Properties --- 38

3.1.2 Private Properties -- 38

3.1.3 Public Methods --- 38

3.2 DECISION MIGRATION -- 39

3.2.1 Private Properties -- 39

3.2.2 Public Methods --- 39

3.3 COMMUNICATION --- 40

3.3.1 Public Methods --- 40

3.4 MIGRATION -- 40

3.4.1 Private Properties -- 41

3.4.2 Public Methods --- 41

3.5 CINCOMING -- 42

3.5.1 Private Properties -- 42

3.5.2 Public Methods --- 42

3.6 COUTGOING -- 43

3.6.1 Private Properties -- 43

3.6.2 Public Methods --- 43

3.7 COUTPROCESS --- 43

3.7.1 Private Properties -- 50

3.8 CINPROCESS --- 50

3.8.1 Private Properties -- 44

3.9 COMPUTERPERFORMANCE -- 45

3.9.1 Public Methods --- 45

 3

3.10 NETWORKPERFORMANCE --- 45

3.10.1 Public Methods -- 46

3.11 OVERALL STRUCTURE --- 53

CHAPTER 4 -- 48

PROCEDURAL FLOW -- 48

4.1 DESIGN BEHAVIOUR -- 48

4.2 BASIC MODULES OF THE ACTIVITY DIAGRAM --- 48

4.3 INITIALIZATION --- 49

4.3.1 Initialization of Flags -- 50

4.3.2 Calculation of Load -- 50

4.4 LOAD COMMUNICATION --- 51

4.5 CALCULATION OF PARAMETERS -- 52

4.5.1 Threshold Value -- 53

4.5.2 Determination of state and decision -- 54

4.6 PROCESS MIGRATION -- 55

4.6.1 Path Selection --- 56
4.6.2.1 Process Selection --- 58

4.6.2.2 Sending a Process --- 58

4.6.3 Underloaded Node --- 59
4.6.3.1 Receiving a Process -- 60

4.7 RECORD UPDATING AND WAITING -- 61

4.8 THE OVERALL ACTIVITY DIAGRAM --- 62

CHAPTER 5 -- 64

USER INTERFACE --- 64

5.1 LOAD BALANCING --- 64

5.2 GRAPHS -- 65

5.2.1 Load on the computers -- 66

5.2.2 Overall Network Performance -- 66

5.3 OPTIONS -- 67

 4

5.3.2 Outgoing Processes -- 68

CHAPTER 6 -- 71

RESULTS & FURTHER RECOMMENDATIONS --------------------------------------- 71

6.1 LOAD BALANCING --- 71

6.2 TESTING FOR DIFFERENT TIME PERIODS -- 71

6.2.1 Time period at 15 ms -- 73

6.2.2 Time period at 30 milliseconds -- 75

6.2.3 Time period at 45 milliseconds -- 78

6.2.4 Time period at 60 milliseconds -- 81

6.2.5 Time period at 75 milliseconds -- 85

6.3 VALUE OF TIME PERIOD --- 87

6.4 PROBLEMS ENCOUNTERED --- 91

6.5 FURTHER RECOMMENDATIONS --- 92

SUMMARY -- 94

REFERENCES -- 95

GENERAL REFERENCES / BOOKS CONSULTED --- 96

APPENDIX A --- 97

APPENDIX A-1: LOAD COMMUNICATION FOR ONE THREAD -------------------------------------- 97

APPENDIX A-2: LOAD COMMUNICATION FOR SECOND THREAD --------------------------------- 97

APPENDIX A-3: DETERMINING WHETHER MOST OVERLOADED OR NOT ------------------------ 98

APPENDIX A-4: DETERMINING WHETHER MOST UNDERLOADED OR NOT ---------------------- 98

APPENDIX A-5: FINDING THE MOST OVERLOADED COMPUTER ---------------------------------- 98

 5

CHAPTER 1

Introduction to Load Balancing Algorithms

1.1 Introduction

The ever-growing use of computer networks is attracting

much attention in the design, development and implementation of

distributed computing systems. High speed computation is required

to solve many real world problems like flight simulation, real-time

image processing, parallel processing of robotic computations etc.

These motivations led to many changes in the architecture and

organization of computing systems but due to limitations at

microelectronic level such systems do not go beyond a certain

speed barrier and all system resources are not put to maximum

use. An option available is to use multiple processors where

computational power of a set of processors is harnessed and the

given task is distributed on different processors.

 In this chapter, first distributed systems are discussed along

with their different configurations. Next the requirement of load

balancing is gauged as are the different arrangements used to

balance the load. After studying the advantages and disadvantages

of different existing techniques, the algorithm chosen to be

implemented is detailed.

 6

1.2 Distributed Systems

A distributed system comprises of a network of autonomous

processors, each having private resources (such as CPU, memory

and disks) and all sites share the network resources. The programs

compiled at one site in the system can be executed at any other.

Distributed systems provide users with access to remote resources

spread across a room, a community, or a country.

In Homogeneous Distributed System, there are machines

having same configurations and architecture. While in

Heterogeneous Distributed system, the host machines with different

architectures and configurations are connected together to form a

network.

Distributed systems are divided into two groups: those

processors that have shared memory are known as tightly coupled

systems and those that do not have shared memory are called

loosely coupled systems. Tightly coupled processors communicate

through their shared memory while loosely coupled through

message passing. In loosely coupled processors the resources

such as network and disks can be shared transparently among the

processes at different sites; local processes can only access other

resources, such as CPU and memory

As distributed computing systems become increasingly

popular, resource sharing among a number of computers

connected by communication networks becomes feasible and

desirable. Some of the possible resources to share are computing

 7

power, data, and hardware devices. The sharing of computing

power is usually in the form of load transfer. The transfer of load

among different processors in a distributed system leads to the

area of balancing the load among different processors, which is the

aim of this project.

1.3 Load Balancing

It is a common observation in a network of autonomous

processors that, at some point during execution, at least one

processor will be idle while there are multiple tasks queued for

execution on other processors. In such a situation, it may be

advantageous to move some of the work from the busy processors

to the idle ones. This movement of load is referred to as load

balancing.

As a result of load balancing, job throughput rate and

average job response time is likely to improve. Without buying new

resources, load balancing as a system service can offer much more

resources and better response times to all users, and can

effectively avoid disasters that sometimes can arise from bad load

distribution.

Load balancing is a critical factor in achieving optimal

performance more than ever in applications where tasks are

created in a dynamic fashion. It is basically focused on application

response time and system resource utilization, measured by task

elapsed times, application elapsed times, CPU utilization, paging

rates and sometimes disk and network utilization

 8

There are basically two methods adopted for load balancing.

First is to balance the load such that every processor has some

work at any time. The second is to adapt some technique such that

the load must be distributed nearly evenly across all the

processors. Both these methods require the system to be

monitored for balancing the load. The responsibility of monitoring

and balancing the load may be assigned to one particular

processor or all the processors may share the responsibility.

As regard to hosting the responsibility for information

collection and decision-making, there are two approaches for load

balancing:

1.3.1 Centralized Load Balancing

In Centralized approach, status information about the entire

system is collected and decision to load balance is made at one

location. It provides one central agent for collecting load information

and decision-making.

Centralized load balancing usually comes along with central

task queuing. Hence load control is possible, because tasks can be

queued until enough resources are available. Otherwise, heavy

load situations saturate the system and reduce the throughput due

to process switching, memory paging and network congestion.

Central queuing also enables late decisions, because tasks may

not be assigned when they are born but when they are removed

from the queue for immediate execution.

This approach has several strong advantages:

 9

• The measurement information and predictions consistently reside in

one place and may not be distributed or replicated among the

system which would cause message traffic and could lead to

outdated, inconsistent information and contradictory load balancing

decisions.

• Centralized load balancing can exploit the global knowledge about

the system and application behavior and can utilize sophisticated

strategies.

1.3.2 Distributed Load Balancing

Distributed load balancing becomes necessary for large parallel

and distributed systems. These concepts try to keep load balancing

efforts (resource consumption as well as delays) constant

regardless to the system size, prevent single points of failure by

local decision autonomy and reduce information and task exchange

between nodes by simple, load balancing policies.

The main advantages of distributed strategy are:

• The jobs arrive at their nodes, so there is no overhead for sending

the jobs to the server node.

• The normal operation of the whole system continues even if one or

more nodes crash.

Each of the above approach has its merits and demerits in

different situation, thus one or the other cannot simply be ruled out.

 10

Central load balancing can avoid load imbalances before they

arise, whereas distributed load balancing always has tasks waiting

or running at the node where they originated and tries to defeat the

imbalances. This project also has to balance the load on the

system keeping in view the condition of the system, thus it also

requires an efficient method to keep track of system changes. By

distributing this task to all the processors on the system, the

overhead of communication is greatly reduced.

1.3.3 Categorization of Load Balancing Algorithms

 Every load-balancing algorithm involves the following three

steps

• Calculating the load parameters / gathering system

information

• Making decisions for task migration

• Practically migrating the tasks

In the above section, the main difference between algorithms on

the basis of collection of system information has already been

discussed. The effect of the next two factors can be seen by the

following two type of algorithms,

1.3.3.1 Static Load Balancing Algorithms

 11

A static load-balancing algorithm assigns a process to a host

upon invocation. Policies that use only information about the

average behavior of the system, ignoring the current state of the

system, are referred to as static policies. Static load balancing

policies are generally evaluated at compile-time and cannot adapt

to unexpected load distributions.

1.3.3.2 Dynamic Load Balancing Algorithms

A dynamic load-balancing algorithm assigns a process to

another host after executing on its current host for some time.

Problems that have unpredictable computational requirements are

best suited for dynamic load balancing policies. Dynamic policies

use the current state of the system to make load-balancing

decisions at run-time.

When balancing load dynamically, a distributed system must

be able to migrate a process from its current host to a destination

host. The migration policy determines how to balance the

processing load across the hosts in the distributed system. That is,

the migration policy decides when a migration should occur. The

migration mechanism extracts a process and its associated context

from its source host and establishes the process on its destination

host for execution. Since for many applications it is almost

impossible to predict how much computation a given sub problem

involves, a dynamic load balancing strategy is necessary which is

able to keep the processors busy without incurring an undue

overhead.

 12

The methods of estimating the load of a processor and

determining maintenance policy are of primary importance in

designing a dynamic load-balancing algorithm. An estimating

function can combine several load indicators, including length of the

CPU queue, rate of memory occupancy, rate of CPU utilization,

rate of communication, and more. However, it has been shown that,

in most multi-threaded systems, the length of the ready queue is a

good indicator of processor load.

1.4 Classification of Dynamic Load Balancing Algorithms

 There are many algorithms available that are used for the

distribution of load in a distributed system. On the basis of different

policies used for job transfer, these algorithms are categorized as

follows:

1.4.1 Random Algorithm

 In this algorithm, when a node load level crosses the threshold,

it sends the newly arrived job to a randomly selected node. It has

the lowest overhead since no system information collection is

needed but has the poorest performance due to large job

movements and high percentage of wrong job transfers. There is a

possibility that a job may oscillate in the network without being

executed at any of the nodes.

1.4.2 Sender Algorithm

 13

 In Sender Algorithm, when a node becomes overloaded, it polls

for the destination and transfers the job after getting ACCEPT

message from the destination. The job is processed locally when

either the maximum number of probes is reached or if a polling

session is already in progress when the job arrives. This algorithm

gives better performance at low to moderate load levels because all

the nodes become heavily loaded, it becomes difficult to find an idle

or underloaded node.

1.4.3 Receiver Algorithm

When a node becomes underloaded, it polls for the overloaded

nodes and gets the job transferred from one of them. This algorithm

performs well at heavy load levels but not at low load levels

because of the difficulty of finding a heavily loaded node, when all

the nodes are underloaded.

1.4.4 Symmetric Algorithm

 This algorithm is a combination of the Sender and Receiver

algorithm, therefore better than the above mentioned algorithms. It

initiates the Sender Algorithm when it is overloaded, and initiates

the Receiver Algorithm when it is underloaded giving a better

performance over the whole range of load levels. However, it

involves a higher number of load balancing messages and job

movements. This tends to increase the percentage of CPU

utilization significantly and also higher negotiation failures result

from the concentration of the probing on the time scale.

 14

During an experimental study, load balancing was

implemented on a cluster of diskless SUN-2 workstations, running

in a distributed systems laboratory under the SUN/UNIX operating

system, connected by an Ethernet and supported by file servers [1-

2] and load balancing in such an experimental environment was

studied.

During a simulation it had already been observed that

transparent, and flexible load balancing at the job level could be

achieved at a low cost, and without modifying either the system

kernel or any of the existing application programs. It was also

proved that load balancing is capable of substantially reducing the

mean of the process response times, and their standard deviation,

especially when the system is heavily loaded, and/or the

instantaneous loads on the hosts are considerably unbalanced. A

number of load balancing algorithms using periodic load information

exchanges or acquiring such information on demand produced

comparable performance improvements. Load balancing can still

be highly effective when only a small fraction of the workload can

be executed remotely.

In another study, Random Polling has proved to be very

efficient in practice for applications like depth first search [1-3]. In a

recent study of load balancing, an arbitrary network (graph) was

used to model a distributed system [1-4]. It was assumed that the

load consists of independent tokens that may be processed

anywhere. An adversary that determines the locations and the

number of tokens that are added or deleted at any time controls the

arrival and departure of load. The main result obtained was that a

simple, locally controlled distributed load-balancing algorithm could

 15

maintain the load of the network within a stable level against this

powerful adversary.

1.5 Periodic Symmetrically-Initiated Load Balancing (PSI)

Algorithm

 After discussing some of the systems based on the above

mentioned algorithms it was found that the feasibility of these

algorithms does not apply to our project. The Symmetric Algorithm

produces the lowest job response time but involves larger number

of load balancing messages at heavy load levels. Periodic

Symmetrically Initiated (PSI) algorithm is one such algorithm which

uses periodic probing of nodes to balance the load in a distributed

system [1-1]. The performance level provided by the PSI algorithm

and its robustness over a range of system attributes and workload

makes it a very promising algorithm.

PSI Algorithm involves a smaller number of load-balancing

messages than the Symmetric Algorithm and a spreading of

probing messages over time. Probing involves the sequential

polling of a set of nodes for communication. It is symmetrically

initiated and uses periodic polling of a single remote and random

node. This algorithm aims at fixing (reducing) the Lp parameter (the

probing limit) to one, and at the same time fixing the frequency of

algorithm invocation through a timer parameter Pt. This would

result in a spreading of the probing messages over time and limit

the overhead at high system loads in comparison to the Symmetric

algorithm where the algorithm is invoked each time a job departs or

starts.

 16

For every timer period the node load is checked against the

threshold T.

• If exceeding the threshold (load.i > T+1), a request is sent to

a random node (Lp = 1), the node replies with an ACCEPT

message if it is underloaded (load.j < T+1), otherwise it ignores the

request. The requesting node transfers a job from its transferable

jobs queue as a response to an ACCEPT message, or ignores the

request if it is no longer overloaded.

• If below the threshold (load.j < T + 1), a request to receive

a job is made to a random node. The chosen node will respond by

sending a job from its transferable job queue, or just ignores the

message if it is also underloaded (load.j < T+1).

• If the load is normal (load.i = T + 1), no load balancing is

attempted.

This algorithm is adaptive in the sense that based on the

current load level, it activates either its sender-initiated component

or its receiver-initiated component. The main measure of the

performance of the load balancing algorithms is the metric, job

mean response time. This measures the average time that a job

spends in the system.

 The loosely coupled distributed system which was used for the

simulation of the algorithm consisted of a set of autonomous

computers connected by a local area network that exchange

information through a message passing mechanism and operate in

a cooperative fashion. The nodes were homogeneous with no

priority for local jobs over remote jobs of the same category. The

 17

jobs were assumed to being executed on the basis of the First-

Come-First-Serve local scheduling discipline.

Simulation results showed that:

• PSI Algorithm produces the highest improvement of the job

mean response time and that the algorithm ranking based on the

increase in the CPU utilization is in the reverse order of the

improvement in job response time.

• A higher value of the threshold was found more appropriate

when a large compute/communicate ratio (R) is used (T=2 for

R=0.4).

• The performance order of the algorithm remains the same

for heterogeneous as for homogeneous jobs.

• The level of performance improvement increases with the

system size; the best results were obtained for a 20 nodes system.

• The performance becomes insensitive to the number of

nodes if they increase beyond a certain limit.

• There is no significant difference between the performance

ordering of the algorithms for the diskless and disk-based models of

the base-line system.

• It produces the lowest mean job response time and results

in less number of messages and job movements than the

Symmetric one.

 18

• The file system structure, communication bandwidth, work-

load model and system size have no significant effect on the

working of the algorithms but leads to different levels of

performance by the algorithm.

• For the case of adaptive load balancing schemes based on

dynamic parametric tuning the essential parameters to monitor are

the communication delay, system load and the system size,

whereas the adjustable parameters are the threshold and the timer

period

The PSI Algorithm has proved to have better performance

and lowest job response time than all the other algorithms. This

algorithm has been simulated and tested, with one of the important

result that it is not necessary to consider the communication

protocols and the heterogeneous workload model. However, only

the correct representation of the communication bandwidth and the

algorithm parameters tuning (i.e. T, Pt) is important to get the

required results.

1.6 Project Brief

The system specifications on which this algorithm is

implemented are quite similar to the one on which it had been

simulated. The project involved a system of loosely coupled

computers connected by a local area network, which communicate

through message passing. The simulation results had proved that

the PSI algorithm shows the highest improvement in the job mean

response time with the least number of messages and job

 19

movements. Also the performance level increases with the increase

in system size upto a certain limit.

This project involved the implementation of PSI algorithm on

a distributed system using Windows 95. This operating system

support loosely coupled distributed system consisting of

autonomous computers. Hence it is best suited since the simulation

results had been obtained on a similar system. Windows 95 does

not support load balancing and with the implementation of this

algorithm, it would be possible to include an important feature of a

distributed operating system and hence obtain overall better system

performance of the network.

 20

Chapter 2

System Specifications

 The introduction to distributed systems and load balancing

provides a firm foundation to proceed with the project. In this

chapter, an overview of the specifications of the system along with

the reasons for this specific implementation are discussed. After an

introduction to Win32 API, architecture of Windows 95 is studied.

The implementation of processes in Windows 95 as well as their

movement across the network is thoroughly reviewed.

2.1 WIN32 API

Win32 defines a set of operating system functions that

application programs can use to carry out their work. By writing a

program in win32 API (Application Programming Interface), the

same executable can be run on any win32 implementation. In

theory, win32 implementation should be such that each operating

system should gloss over any underlying differences in hardware or

low level operating system design. One of the key advantages of

the win32 is that it is 32bit and has 32 bit executable file formats

(Primary Executable).

There are a number of implementations of the win32 API,

out of which Windows NT is just one example. Windows NT is the

choice of implementation for powerful high-end machines where

 21

robustness and security are of primary importance. Windows 95

also uses a subset of the win32 API but in systems where security

is not of major concern. Another subset of the win32 API is the

Win32s. It basically compromises of a collection of DLLs and Virtual

Drivers (VXDs) that could be added to an existing win 3.1 machine

to enable it to run win32 programs. The Win32s libraries provide

some of the API functions that Windows NT & Windows 95 have.

However, it does not support many features of the modern

operating system such as threads and separate address spaces.

Threads are a feature of the advanced operating system that allow

more than one portion of the program to execute at once.

Presented with these options, Windows 95 seemed the appropriate

choice with a combination of 16-bit and 32-bit code. Also using a

subset of the win32 API allowed the implementation to be extended

onto Windows NT 4.

2.2 Windows 95

The PSI algorithm was simulated and tested on a network of

loosely coupled computers communicating through message

passing. A system was needed to replicate these features, and thus

Windows 95 was chosen for the implementation of the algorithm.

Windows 95 is not completely a 32-bit operating system. It strikes a

balance between 3 requirements: delivering compatibility with

existing applications and drivers; decreasing size of operating

system to run on 4MB of RAM; and offering system performance.

That is why it uses a combination of 32-bit and 16-bit code. It

employs 32-bit code where 32-bit code significantly improves

performance without sacrificing application compatibility. Existing

16-bit code is retained where it is required to maintain compatibility

 22

or where 32-bit code would increase memory requirements without

significantly improving performance. All of the I/O subsystem,

device drivers such as networking and file systems; all memory

management and scheduling such as kernel and virtual memory

manager are fully 32 bit.

Each process in Windows 95 gets its own address space but

all loaded system DLLs are visible to a Windows 95 process, not

just the DLLs that the process has loaded itself. This means that

parts of DOS, win16, win32 processes all mingle in the same

address space. Each 32-bit Windows 95 process is in the CPUs

page mapping tables only when that process is the current process.

When the scheduler switches to another 32-bit process the private

memory of the first process is no longer accessible to any other

process. This makes it impossible for one task to scribble on

another task’s memory. Current 32-bit Windows 95 process can

see all the memory in use by 16 bit programs. A 32-bit process

cannot see the memory of other 32 bit processes.

The implementation of the PSI algorithm means that a

process will need to be shifted from one computer to another and

required to execute on the other computer. It is, therefore,

imperative to gain an understanding of how the Operating System

(Windows 95) stores the processes, maintains their essential

information, shifts between processes and changes their states.

Different communication techniques available and methods

employed for communicating between the processes e.g. Inter

Process Communication in Windows 95 also needs to be

understood.

 23

2.2.1 Task Scheduling and Multitasking

 Windows 95 uses a task scheduler to determine the order and

priority of processes running on the computer. These processes run

as threads. In Windows 95 and Windows NT, which are switched

preemptively. Each thread has its own message queue and a

separate input system. It assigns mouse and keyboard events to

the appropriate queues. This allows one thread to be as

unresponsive and take as much time it wants without affecting

other programs.

There are two parts of a scheduler process: Primary and

Secondary. The Primary evaluates all thread priorities and gives a

time slice of execution time to the thread of highest priority. If two or

more threads have the same priority, they are stacked. Each

stacked thread is granted a time slice of execution in sequence,

until no threads have the same priority. The Secondary scheduler

can boost the priority of non-executing threads. This boost helps

threads having low base priority from being blocked of receiving

execution time.

Windows 95 is not very smooth in multitasking in the

presence of 16 bit programs because 16 bit system DLLs are non

reentrant and they do not expect to be switched in between

execution. The problem is that there are no real synchronization

primitives as the multitasking is non pre-emptive. Win32 programs

can expect to be switched at any suitable time

2.3 Windows 95 Processes

 24

 A process is a unit of ownership. A process owns memory, file

handles that the application code can use to read and write files,

threads and a list of DLL modules that have been loaded into the

process’s memory context.

 When Windows 95 creates a new process, it also creates a

new memory context for the process’s threads to execute in. In

addition, Windows 95 creates an initial thread of execution for the

process, a file handle table in which the process can keep a list of

open handles and a process database to represent the process.

2.3.1 The Windows 95 Process Database (PDB)

 A process database is a KERNEL 32 object that contains a vast

quantity of information about a process. The process database

memory is allocated out of KERNEL 32 shared memory heap, so all

process databases are visible to all tasks.

The fields of the process database are as follows:

00h DWORD Type

This DWORD contains 5, the KERNEL32 object type for a process.

04h DWORD cReference

This is the number of things that are currently using the process

structure for something.

08h DWORD un1

The meaning of this DWORD is unknown, it appears to always be

0.

 25

0Ch DWORD pSomeEvent

This DWORD is a pointer to an event object (K32OBJ_EVENT).

10h DWORD TerminationStatus

This DWORD is the value that would be returned by calling

GetExitCodeProcess.

14h DWORD un2

The meaning of this DWORD is unknown. It appears to always be

0.

18h DWORD DefualtHeap

It contains the address of the default process heap.

1Ch DWORD MemoryContext

This DWORD is a pointer to the process’s memory context. A

memory context contains the page directory mappings to provide a

process with its own private region in the 4GB-address space.

20h DWORD flags

24h DWORD pPSP

This DWORD holds the linear address of the DOS PSP created for

this process.

28h WORD PSPSelector

This WORD is a selector that points to the DOS PSP for this

process.

2Ah WORD MTEIndex

 26

This WORD contains an index into the global module table

(pModuleTableArray).

2Ch WORD cThreads

This field is the number of threads belonging to this process.

2Eh WORD cNotTermThreads

This field holds the number of threads for this process that haven’t

yet been terminated.

30h WORD un3

The meaning of this WORD is unknown. It appears to always be 0.

32h WORD cRing0Threads

This WORD holds the number of ring 0 threads.

34h HANDLE HeapHandle

This DWORD holds the handle of the HEAP that handle tables

belonging to this process should be allocated from.

38h HTASK W16TDB

This DWORD holds the Win16 Task Database (TDB) selector

associated with this process.

3Ch DWORD MemMapFiles

A pointer to the head node in the list of memory mapped files in use

by this process. A node in the list represents each memory-mapped

file. The format of each node is:

 DWORD Base address of the memory mapped region

 DWORD Pointer to next node, or 0

 27

40h PENVIRONMENT_DATABASE pEDB

This DWORD is a pointer to the environment database.

44h PHANDLE_TABLE pHandleTable

This field is a pointer to a process handle table.

48h PPROCESS_DATABASE ParentPDB

This DWORD is a pointer to the PROCESS_DATABASE for the

process that created this process.

4Ch PMODEREF MODREFlist

This field points to the head of the process’s module list.

50h DWORD ThreadList

A pointer to the list of threads owned by the process.

54h DWORD DebuggerCB

This DWORD appears to be a debugger context block. When a

process is being debugged, this field points to a block of memory

above 2GB. This block includes a pointer to the debugger’s process

database.

58h DWORD LocalHeapFreeHead

This DWORD points to the head of the free list in the default heap

for the process.

5Ch DWORD InitialRing0ID

The meaning of this DWORD is unknown. It appears to always be

0.

60h CRITICAL_SECTION crst

 28

This field is a CRITICAL_SECTION used by various API functions

for synchronizing threads within the same process.

78h DWORD un4[3]

These three DWORDS appear to always be set to 0.

84h DWORD pConsole

If this process uses the console, this DWORD points to the console

object (K32OBJ_CONSOLE) used for output.

88h DWORD tIsInUseBits1

These 32 bits represent the status of the lowest 32 TLS (Thread

Local Storage) indexex.

8Ch DWORD tIsInUseBits2

This DWORD represents the status of TLS indices 32 through 63.

90h DWORD ProcessDWORD

The meaning of this DWORD is unknown.

94h PPROCESS_DATABASE ProcessGroup

This field is either 0 or points to the master process in a process

group. Process Groups are collections of processes that belong

together. When the group is destroyed, all processes in that group

are destroyed.

98h DWORD pExeMODREF

This field points to EXE’s MODREF (module list entry).

9Ch DWORD TopExcFilter

 29

This DWORD holds the “Top Exception Filer” for the process. This

is the routine that will be called if no other exception handlers

choose to handle an exception.

A0h DWORD BasePriority

This DWORD holds the scheduling priority for this process.

Windows 95 supports 32 priority levels, grouped into four classes.

A4h DWORD HeapOwnList

This field points to the head of the linked list of heaps for the

process.

A8h DWORD HeapHandleBlockList

Moveable memory blocks in the process heap are managed via

movable handle tables embedded within the heap. This field is a

pointer to the head of the moveable handle table list within the

default process heap.

ACh DWORD pSomeHeapPtr

The exact meaning of this field is unknown. It’s normally 0, but

when not, it’s a pointer to a movable handle table block in the

default process heap.

B0h DWORD pConsoleProvider

This field is either 0, or a pointer to a KERNEL32 console object

(K32OBJ_CONSOLE).

B4h WORD EnvironSelector

This WORD holds a selector that points to the process’s

environment.

 30

B6h WORD ErrorMode

This field contains the value set by the SetErrorMode function.

B8h DWORD penvtLoadFinished

This DWORD points to a KERNEL32 Event object

(K32OBJ_EVENT).

BDh WORD UTState

The meaning of this field is unknown, it has something to do with

Universal Thunks. It’s usually set to 0.

2.3.2 The Environment database

At offset 40h in the process database is a pointer to a vital

data structure, process environment database that also contains

process-related information. Its fields are:

00h PSTR pszEnvironment

This field points to the process environment. The process

environment is in the block of memory in the per-process data area,

and usually resides just above where the EXE module loads.

04h DWORD un1

The meaning of this DWORD is unknown. It appears to always

have a value of 0.

08h PSTR pszCmdLine

This field points to the command line passed to CreateProcess to

start this process.

 31

0Ch PSTR pszCurrentDirectory

This field is a pointer to the current directory of the process.

10h LPSTARTUPINFO pStartupInfo

This pointer points to the process’s STARTUPINFO structure. A

STARTUPINFO structure is passed to CreateProcess to specify the

process’s window size, standard file handles etc.

14h HANDLE hStdIn

This is the file handle the process uses for the standard input

device.

18h HANDLE hStdOut

This is the file handle the process uses for the standard output

device.

1Ch HANDLE hStdErr

This is the file handle the process uses for the standard error

device.

20h DWORD un2

The meaning of this field is unknown. It seems to always be 1.

24h DWORD InheritConsole

This field indicates whether the process is inheriting the console

from its parent process.

28h DWORD BreakType

This field indicates how console events should be handled.

2Ch DWORD BreakSem

 32

Normally this field is 0, but if application calls

SetConsoleCtrlHandler, this DWORD points to a KERNEL32

semaphore object (K32OBJ_SEMAPHORE).

30h DWORD BreakEvent

Normally this field is 0, but if application calls

SetConsoleCtrlHandler, this DWORD points to a KERNEL32

EVENT object (K32OBJ_EVENT).

34h DWORD BreakThreadID

Normally this field is 0, but if application calls

SetConsoleCtrlHandler, this DWORD points to the thread object

(K32OBJ_THREAD) of the thread that installed the handler.

38h DWORD BreakHandlers

Normally this field is 0, but if application calls

SetConsoleCtrlHandler, this DWORD points to a data structure

allocated from the KERNEL32 shared heap. This data structure is a

list of the installed console control handlers.

 After looking at the details of the process structure, the different

methods available for communication were studied.

2.4 Synchronous and Asynchronous Communication

Most distributed applications today use synchronous

communication (such as remote procedure calls) and do not use

queuing. Communications are synchronous (not queued) when the

sender of a request must wait for a response from the receiver of

the request before it can proceed to performing other tasks. The

 33

time that the sender must wait is completely dependent on the time

it takes for the receiver to process the request and return a

response. It's acceptable to use synchronous communication for

workgroup applications if using adequate hardware to handle the

workload. Though, a large peak workload can require a lot of

hardware. One of the limitations of the synchronous approach is the

overhead involved in starting the server objects. When a client is

done with a service, the server object is destroyed.

With asynchronous communication (queuing), senders make

requests to receivers and then immediately move on to other tasks.

There is no guarantee that receivers will process requests within

any particular period of time, but good real time responsiveness

can usually be achieved in all but peak load conditions.

Communication operations can be either blocking or non-

blocking. A blocking operation does not return until the resources

specified in the call can be reused. When sending a message, this

means the message has been copied from the send buffer, and the

user is free to reuse this buffer. When receiving a message, this

means the message has actually arrived in the specified buffer, and

the buffer's contents are available for use. When a blocking

operation is called, the entire process is blocked, and does not

regain control of the processor until the call has completed.

Non-blocking operations may return before the operation

completes, i.e., before the user is free to use resources specified in

the call. Non-blocking calls return a handle, which may be used for

checking the status of the operation. This handle can be used

either to wait for the operation to complete (a form of blocking call),

or to test if the operation has completed. The resources specified in

 34

the call should not be reused until either a wait is called or a test

returns true. Once the user returns from a wait call, or tests positive

for completion, the user may reuse the resources, including the

handle, specified in the original non-blocking call.

 After reviewing the alternatives available for communicating

and the structure of processes, the method for IPC could be

decided.

2.5 Inter Process Communication

Typically, cooperating and communicating applications can

be categorized as clients or servers. A client is an application or a

process that requests a service from some other process. A server

is an application or a process that responds to a client request.

Many applications act as both a client and a server, depending on

the situation. The process of communication between two or more

applications, regardless of their client/server status, is called Inter

Process communications (IPC). The use of threads is strictly

related to the Inter Process Communication (IPC) mechanism

supported by Win32. The basic idea is that the developer needs to

coordinate all the thread activities, protect shared resources, and

synchronize access to system devices or memory areas.

Many IPC mechanisms, such as dynamic-link libraries and

shared memory, are implemented only on the local system. Other

IPC mechanisms, such as distributed COM (DCOM) and remote

procedure calls (RPCs), find their primary functionality across

networks and between different computer systems. Each IPC

mechanism has unique features that singularly describe it, and

 35

which should be considered during the development of an

application. Depending upon the actual task win32 provides the

following tools:

2.5.1 Semaphores

 A semaphore is useful in limiting the number of

simultaneous accesses to a counter that is a shared resource. This

IPC mechanism is either in the signaled or non-signaled state. Its

state depends on the value of the counter. Setting a semaphore

counter is an operation that is strictly related to the creation of the

synchronization object.

2.5.2 Mutexes

 A mutex is an IPC mechanism that allows mutually

exclusive access to a shared resource to all waiting threads except

one. Writing in a shared memory block is a typical example of

effectively using a mutex. When an application must grant access

or ownership to a specific resource to a single thread at a time a

mutex is the appropriate IPC tool to use. A mutex is the only IPC

object that is owned by a thread.

2.5.3 Events

 An event is extremely useful in coordinating the activities of

two or more threads. A thread can be created in suspended mode,

though once activated, there is no other way to re-suspend it unless

 36

invoked. Events offer a valid and more efficient alternative to

implementing a thread that is always alive, though the event

actually executes only when necessary. For example, several

threads have to be created when the application starts, but

executes only a few of them. Some threads will block waiting for an

event to occur therefore entering a wait state. When the event is

signaled, the waiting threads are free to continue execution. An

event acts like a signal informing other threads that a specific event

has occurred. Events are extremely useful to dynamically suspend

and resume the execution of one or more threads, implementing

the underlying application design and logic.

2.5.4 Critical Sections

The critical section is a very simple IPC mechanism that

protects a set of data in a multithreaded environment. According to

Win32 terminology a critical section is a portion of code that

accesses some application data that require additional protection

because other threads can perform some changes on them. By

encapsulating all these portions of code between APIs, it can be

ensured that only one thread at a time is allowed to access and

modify those data. Critical sections work only inside a

multithreaded process. They are the simplest form of IPC because

they enforce a rather weak form of thread synchronization.

 37

Chapter 3

Software Structure

The implementation of any project is preceded by analysis of

how the project will be structured. After reviewing the requirements

of the load balancer, the objects, in the form of class diagram, are

discussed in this chapter. These objects encapsulate appropriate

functions and attributes.

3.1 Balancer

Creates the thread to handle the decision module and the

migration of the processes. It contains all the load information and

acts as the base class of all the other classes. All the other classes

are associated with this during some time of execution. One

instance of each class will be associated with the Balancer class.

Balancer

InitializeFlags()
CreatePeriodic Thread()

 38

3.1.1 Public Properties

load : int*
An array to hold all the loads of the computers on the network

3.1.2 Private Properties

IPAddress : char*
An array of the IP addresses of all the computers on the

network

STATE : char
State of the computer

ThresholdHistory : int*
Array of integers to hold the threshold values of the past time

periods

3.1.3 Public Methods

InitializeFlags (void) : void
At every time period, all the flags are initialized controlling the

operations.

CreatePeriodicThread (lpvoid)

The periodic thread handles the execution of load balancing

algorithm periodically.

 39

3.2 Decision Migration

This class incorporates most of the functions, which are

required for making the decision relating the course of action taken

by the computer. To reach a decision the computer needs to

communicate with other computers on the network. It is thus

associated with the Communication class. Thus, each instance of

the decision migration class will associate with an instance of the

Communication class. It will also need to prompt the Migration

class to inform it of its decision, as the migration class will have to

act upon it.

3.2.1 Private Properties

SelfLoad : char*
A string variable to hold the status of load on the computer.

3.2.2 Public Methods

CalculateLoad (void) : void
Calculates the total load on the computer

CalculateThreshold (void) void

Decis ion Migration

CalculateLoad()
CalculateThreshold()

 40

Calculates the threshold value of the network based on the total

load of all the computes on the network.

3.3 Communication

This class performs all the functions of communication

required by the load balancer. It is associated with the decision

migration class, as it needs to pass any information that it

communicates to the decision migration class.

3.3.1 Public Methods

ClientCommLoad (void) : void
It communicates load with a subset of the network acting as a

client in the communication

ServerCommLoad (void) : void
It communicates load with a subset of computers acting as a

server to other computers

3.4 Migration

Communication

ClientCommLoad()
ServerCommLoad()

 41

This class performs the functions, which are actually

required for migration of a process or reception of a process. It

communicates with the MFC classes, which keep a record of the

processes, migrated or received.

3.4.1 Private Properties

InProcessCount : int
Total number of the foreign processes present in the system

OutProcessCount : int
Total number of processes sent to other computers on the

network

3.4.2 Public Methods

ReceiveProcess (AddrCount : int) : void
This process is invoked when underloaded receives the

process from the overloaded computer

SendProcess (void) : void
This process is invoked when overloaded and responsible for

sending a process to an underloaded computer

M ig ra tio n

R e c e ive P ro c e s s ()
S e n d P r o c e s s ()
S e le c tP ro c e s s ()

 42

SelectProcess (void) : ProcessStructure
Selects one of the processes chosen from the processes

present in the ready queue of the computer, to be migrated to

the other computer. System processes cannot be migrated.

3.5 CIncoming

This is a Dialog Class representing the total number of

processes, which are migrated, into that computer from other

computers of the network.

3.5.1 Private Properties

m_Select : CComboBox
Gives the option of seeing the detail of any incoming process

3.5.2 Public Methods

OnPaint (void) : void
Displays the total number of processes and also gives the

option of seeing the detail of any of them

OnDetail (void) : void
The details of the process selected is shown to the user

CIncoming
m_Select : CComboBox

OnPaint()
OnDetail()

 43

3.6 COutgoing

Descendent of the CDialog Class representing the total

number and details of the Outgoing Processes

3.6.1 Private Properties

m_select : CComboBox
Gives the list of the outgoing processes whose details can be

seen

3.6.2 Public Methods

OnPaint (void) : void
Displays the total number of outgoing processes and also gives

the option of seeing the details of them

OnDetail (void) : void
Gives the details of the selected outgoing process

3.7 COutProcess

COutgoing
m_select : CComboBox

OnPaint()
OnDetail()

 44

Class representing the details of the migrated processes

3.7.1 Private Properties

m_ID : DWORD
Process identifier

m_name : CString
Name of the Process

m_thread : DWORD
Gives the total number of Threads of that process

3.8 CInProcess

Class representing the details of the incoming process

3.8.1 Private Properties

m_ID : DWORD

Gives the Process ID

COutProcess
m_ID : DWORD
m_name : CString
m_thread : DWORD

OnPaint()

CInProcess
m_ID : DWORD
m_name : String
m_IP : String

OnPaint()

 45

m_name : CString
Represents the Name of the Process

m_IP : CString

 IP Address of the source computer

3.9 ComputerPerformance

This class is the descendent of CDialog Class of MFC. It is

responsible for showing the graph representing the total load on

each computer on the network.

3.9.1 Public Methods

OnPaint (void) : void
The values for the load of all the computers on the network are

taken from the Balancer Class

3.10 NetworkPerformance

This class has CDialog as its parent class. It displays the

overall network performance by drawing the graph of the threshold

value changing with time.

ComputerPerformance

OnPaint()

 46

3.10.1 Public Methods

OnPaint (void) : void
It takes the parameter from the Balancer Class for drawing the

graph.

3.11 Overall Structure

At first the balancer class is instantiated, it creates instances

of all the classes, as each class is associated with the balancer

class. It also creates a period thread, which is required because the

execution has to be split into two paths. The threads then use the

function of each class to communicate load, calculate the threshold,

decide the computer’s state, and finally send or receive the process

NetworkPerformance

OnPaint()

 47

CInProcess
m_ID : DWORD
m_name : String
m_IP : String

OnPaint()

COutProcess
m_ID : DWORD
m_name : CString
m_thread : DWORD

OnPaint()

CIncoming
m_Select : CComboBox

OnPaint()
OnDetail()

1

1

1

1

COutgoing
m_select : CComboBox

OnPaint()
OnDetail()

1

1

1

1

NetworkPerformance

OnPaint()

ComputerPerformance

OnPaint()

Decision Migration

CalculateLoad()
CalculateThreshold()

Communication

ClientCommLoad()
ServerCommLoad()** **

Migration

ReceiveProcess()
SendProcess()
SelectProcess()

1

*

1

*

1

*

1

*

Balancer

InitializeFlags()
CreatePeriodic

1

1

1

1

11 11

*

1

*

1

*

1

*

1

*

1

*

1

 48

Chapter 4

Procedural Flow

The whole design can be viewed as the flow of different processes

running. These processes running can be best depicted using

activity diagram, which takes into account the synchronization as

well as the simultaneous running of different threads.

4.1 Design Behaviour

 All the activities related to classes in this design can be

combined together to form an activity diagram. The whole design of

the project is such that one activity is leading to another activity

where activity represents the operation on a particular class. The

class diagram is used to represent the overall structure, while the

activity diagram is used to show the behavior of the design.

4.2 Basic Modules of the Activity Diagram

The activities in the whole design can be divided into two

modules:

• Decision

• Migration

 49

The “Decision” module comprises of a number of activities.

The load is calculated, it is communicated with other nodes on the

network to calculate the threshold value, own state is found and

then depending upon the state, either a process is migrated to

another node or a process is accepted from some overloaded

node.

The “Migration” module is responsible for the successful

migration of the process. If a node is overloaded, it randomly

selects one of the processes from its ready queue and moves it to

the underloaded computer. Care is taken that the process selected

is not a system process or the load balancer itself. In case the node

is underloaded, it accepts a process from the underloaded node

and executes it. The decision of finding a node for communication

is also part of this module.

The whole design of the activity diagram can be divided into

the following steps:

4.3 Initialization

Having a multithreaded design optimizes the whole process.

A thread is the smallest unit of execution and helps to handle

several activities in parallel. They are a convenient way to keep

various portions of the program running while other portions are

waiting for some external action to occur.

Initially a thread is created to handle the periodic execution

of the whole algorithm. Flags and variables are initialized in order to

avoid wrong values usage in the program. The thread then

 50

calculates the load on the node by taking in to account the number

of processes in the ready queue of that node (Fig 4.1).

Fig 4.1: Initialization

4.3.1 Initialization of Flags

The flags are used for the synchronization of threads

running. Hence for every time period these global flags are

initialized for the proper synchronization of the software.

4.3.2 Calculation of Load

The load on each computer is defined in terms of the

number of processes running on that computer. The periodic thread

at the start of every time period initiates this process. The method

“CalculateLoad” is defined in the DecisionMigration class, which

does not take any input parameters nor does it return any value. It

uses its own variables to calculate the number of processes

running in the system and displays other important details of those

Create Thread

Initialize Flags

Calculate Load

 51

processes like the process identifiers, process size, number of

threads owned by the process etc.

4.4 Load Communication

The next phase is to create two threads, which are used to

handle the communication with other nodes on the network. Each

thread communicates with a subset of the network to find the loads

on all the computers on the network. These thread procedures are

the SendThread() and the ReceiveThread(). Both the threads call a

separate method for communication of load across the network.

This divides the work of each thread.

One thread starts from one end of the network, starting from

(n-1) node (if it is the nth node) and sends its load to other

computer and receives the other computers load, after which it

communicates with (n-2) node (see Appendix A for details).

At the same time the other thread communicates with

(n+1)th node and repeats the same process of send and receives,

moving onto the (n+2)th node (see Appendix A for details).

This enables the computer to cover the network from both

sides at the same time making the process of communication of

load twice efficient time-wise. If the network consists of three

computers, the process of each thread is executed only once as

each thread gets the load of one computer at the same time. Since

both of the threads are executing at the same time, the

communication of load will be only five times i.e. half the total

number of computers, for a network of ten computers.

 52

The process is repeated for every time period as each

computer recalculates its load. The process of sending and

receiving the loads is through sockets. Using standard Winsock

API’s a connection is first established and then the load is sent and

received on it.

After both of the threads have communicated loads, the next

phase is invoked. It is represented in the activity diagram by using

{AND} at the synchronization bar (fig 4.2).

 {AND}

Fig 4.2: Load Communication

4.5 Calculation of Parameters

After obtaining the loads of all the nodes, certain values are

to be calculated which are used for the migration of processes (fig

4.3).

Create Thread1 Create Thread2

Comm Load Comm Load

 53

Fig 4.3: Calculation of Parameters

4.5.1 Threshold Value

A similar value of load on all the computers in the network

can only be achieved if at any stage an average of the load of the

complete network can be computed. The objective is to find such a

value from within the network instead of setting a goal for the

network without considering the overall state and capabilities of the

complete network. This would be the case when the threshold

value of a very busy network is set low, which the network will not

be able to handle. In that case all the computers of the network

would be overloaded, and there would be no computer to receive a

process. Similarly, if the threshold of the network is statically set to

a high value when the loads on each computer are low. The

computers will be below the threshold of the network and will again

not migrate any process. Thus by looking at the existing value of

loads on each computer of the network, an average value is

calculated which the algorithm can execute with.

As each computer has a list of the loads on the network; its

own as well as of all the other computers on the network, the

average value calculated is the threshold of the network. This

Calculate Threshold

Find Own State

 54

threshold value will differ from network to network depending upon

the time of calculation. If the threshold value is being calculated at a

time when most of the computers of the network are under utilized,

the threshold will subsequently be low. However, if the threshold is

calculated for a network, which is being used extensively, the

threshold value calculated for the network will be high.

The method “CalculateThreshold” used is from the

DecisionMigration class. The average of these loads is calculated

on each computer. Since the number of computers is the same as

is the load since it is communicated across the network, the value

obtained for the threshold is the same on each computer. This is

the threshold for load on the network in one period of time. This

process is repeated for every time period by the periodic thread as

the load continues to change across the network.

4.5.2 Determination of state and decision

Once the threshold is calculated the computers can

determine their state on the network with respect to other

computers. Each computer compares its own load with the

threshold value and sets its state, which can be one of the

following:

• Overloaded

• Underloaded

• Balanced

 55

The state of the computer then governs the further actions

that the computer takes. If the computer is overloaded, it will

migrate a process from its system. If the computer is underloaded,

it will look for other computers on the network, which are

overloaded and take a process from one of them. If the computer is

on the threshold level of the network, it will neither migrate a

process from itself nor will it migrate a process from any other

computer on the network. In each time period, each of the

computers will change its state as the load condition on itself as

well the network changes.

Thus, calculating the load on the computer and in the

network enables each computer to check its state against the state

of the complete network and accordingly make a decision to

proceed further. The process of decision making is repeated in

each time period to accommodate changes made in the state of the

network by running the algorithm once.

4.6 Process Migration

Once each computer has calculated its load, determined its

state with respect to the threshold value of load in the network, it

either sends or receives a process depending upon the output of

the decision making module. After this starts the job of the

migration module.

4.6.1 Path Selection

Each computer will execute according to its state calculated.

Once the decision to send a process or receive a process has been

 56

taken, execution is divided between two threads, the sending

thread and the receiving thread.

The sending thread starts execution on the overloaded

computers from which processes have to be migrated. The

receiving thread in over loaded computers becomes dormant at this

stage. Similarly, the receiving thread starts execution on the under

loaded computers which will receive a process. Again the sending

thread becomes dormant in the under loaded computer.

Another important issue when the threads take control is

which computer is going to send or receive the process. In one time

period, the most overloaded computer will transfer a process to the

most under loaded computer in the network. The migration thread

will determine first whether it is the most overloaded computer or

not (see Appendix A for details).

If it is the most overloaded one, it will wait for the most under

loaded computer to connect to it, otherwise it will not do anything.

The receiving thread, in the under loaded computer, will also verify

that it is the most under loaded computer in the network (see

Appendix A for details), otherwise it will also not do anything. Else it

will determine which is the most over loaded computer in the

network, take its IP address and connect to it (see Appendix A for

details).

Fig 4.4: Overloaded Node

Send Process

Establish comm

Select process

 57

4.6.2 Overloaded Node

The computers, which are being used extensively, will have

a higher number of processes running on them and will have a high

value of load (fig 4.4). They will need to move some processes

executing on them to other computers, which are running less

number of processes. An overloaded computer will simply connect

to the most under loaded computer, select a process and move it to

another computer but this requires a number of steps, which are

explained below.

4.6.2.1 Process Selection

The first step in the migration of a process is to select a

process that is to be moved. This is given importance because of a

few reasons. Firstly, the scope of the PSI algorithm does not extend

to processes, which require interaction with the user during

execution as including the user would mean that the time of

execution of the process would become user dependent.

Secondly, a system process should not be moved to another

computer. This is only because that the system processes do not

add to the overall load on the computer. If there is no user process

running on any computer in the network, because of similar

operating system the number of system processes running on each

computer will be the same. Thus each computer will have the same

number of processes, the calculation of the threshold of such a

network will be easy. The threshold value of the network will be the

same as the number of processes running on each computer and

 58

each computer will be on the threshold value. In such a case there

will be no need to shift any process across the network.

The method used for this purpose is SelectProcess() of the

Decision Migration class. It is called from the SendProcess() of the

Migration class. The sending thread initiates this method in each

time period of migration if the state of the computer is over the

threshold level of the network. This method returns a structure

containing information about the selected process. The method

used to actually select the process is quite similar to the method

used to calculate the load on a computer. From the list of

processes obtained from the running queue of the system, the

system processes are separated. Another process that should not

be moved is the load balancer, which is the current process. The

running processes are thus divided into two groups, those allowed

for migration and those not allowed.

4.6.2.2 Sending a Process

The procedure of selection leads to the main purpose of the

whole, the actual movement of the process from the overloaded

computer to the under loaded one. The main job of this method is

to select a process and move it to another computer. The essential

points to consider during this method is to establish a connection

with an under loaded computer which is to receive the migrating

process. The receiving computer also needs certain information

about the process being migrated.

The method used is SendProcess() of the Migration class. It

is invoked every time period of the load-balancing program. The

migrating thread calls this method when it is overloaded. It calls the

 59

SelectProcess() of the Decision Migration class. This method in

turn returns to it a structure containing necessary information about

the process to be shifted. The SendProcess() function uses APIs to

retrieve the information and manages this information to send it

over to the receiving end, where the process is being shifted. This

will include the name of the process that is to be shifted, its process

identifier and also the size of that process. A connection is

established with the other computer on the network using standard

Winsock API’s. The under loaded computer to which the connection

has to be made has already been decided. Once the connection is

created, first the information related to the process is shifted and

then the complete process is shifted. After the successful migration

of the process the process is no longer running on the overloaded

computer. The number of processes on that computer is thus one

less.

Fig 4.5: Underloaded Node

4.6.3 Underloaded Node

Under loaded computers will allow other computers with

heavy job loads to shift their processes to them. Once their state is

established as being below the threshold level of the network. They

connect to overloaded computers and take a process from them

Establish Comm

Receive Process

 60

and execute that process. Resulting in increasing its own load till

the process finishes execution (fig 4.5).

4.6.3.1 Receiving a Process

The method ReceiveProcess() of the Migration class is used

for receiving a process from the overloaded computer. The

receiving thread initiates this process at every time period, after it

checks that it is the most under loaded. It is provided the address of

the most over loaded computer, from which it will receive a

process. It connects to that computer.

First, the method requires certain information about the

process that it has to receive. It normally takes the name of the

incoming process and its size. This method then waits till the

complete process has been received. Once it is complete, the

process is initiated on the computer so that it starts executing.

4.7 Record updating and Waiting

 After the migration of the processes, the structure containing

information about the incoming and outgoing processes is updated.

The sending computer updates its information about the

processes running on it, in addition to maintaining record of the

processes migrated. The CoutGoing class has defined a structure

for this purpose. This will include the name, identifier of the process

shifted and the computer it is shifted to.

 61

The under loaded computer, after receiving a process from

the over loaded computer, updates its record structure. This

structure is defined in the class and includes the name of the

process, the process identifier and details of the computer from

where it was migrated.

All the computers in the network wait for a specific time in

every time period, whether over loaded, under loaded or balanced.

After executing its required jobs in a particular time period, each

computer waits for a pre-defined amount of time. This is the time for

the periodic recalculation of the load of all the computers on the

network. This time period was calculated through repeated

calculations and experimentations with different values of the time

period. This is necessary because the next time period must start at

the same time for all the computers. If a computer is on threshold

level in a time period, it will not have to do anything. Thus at the

end of each of the above described processes, the computer will

wait for the next time period to begin.

Fig 4.6: Record updating and Waiting

Update Record

Wait for next
time period

 62

4.8 The Overall Activity Diagram

Figure 4.7 gives the complete activity diagram of the load

balancer and shows the complete procedural flow of the balancer.

At the start of each time period, flags are initialized which are used

for the synchronization of the threads. The periodic thread is

created once at the start of the program execution, which handles

all the activities in a periodic manner. After initialization of the flags,

load is calculated which represents the total number of processes

in the ready queue of the system. Then two threads are created for

the communication of calculated load with all of the computers on

the network. Each thread communicates with a subset of the

computers for improved performance. After the communication of

load, threshold value is calculated representing the network load.

This threshold value is used for the categorization of own load as

underloaded, overloaded or balanced. The most overloaded

computer on the network selects a process and migrates it to the

most underloaded computer on the network. After migration, both

these computers update their structure containing record of

outgoing and incoming processes. Rest of the computers wait till

the start of the next time period.

 63

Establish comm Establish comm

 {AND}

 [load<threshold] [load>threshold]

 [load=threshold]

Figure 4.7 Complete Activity Diagram

Create Thread

Initialize Flags

Calculate Load

Create Thread1 Create Thread2

Comm Load Comm Load

Calculate Threshold

Find Own State

Select Process

Send Process

Update Record Update Record

Wait for next
Time period

Receive
Process

 64

Chapter 5

User Interface

 The movement of processes in the network in user-

transparent manner was the main aim of the project. Hence for the

user, the interface available is a window showing the performance

of the network.

5.1 Load Balancing

 When the application starts, main window gives the

information about the project and different options are available for

the user to choose from the Toolbar as well as the Main Menu (fig

5.2). These options are the source to see and monitor the network

as well as the load on the computer.

 The graphs give an insight into the overall performance of

the network, while the data available is a source of information

about all the processes moving across the network.

Fig 5.1: Cover Window

 65

Fig 5.2: Main Window

5.2 Graphs

There are two types of graphs available. The first shows the

total load present on each computer while the second gives the

network performance by giving the change of threshold value with

each time period.

5.2.1 Load on the computers

Taking the computers on the x-axis and the load on them on y-

axis shows the load on each computer. For one time period, the

graph remains the same and is updated each time period when the

load is communicated to other computers on the network (fig 5.3).

 66

Fig 5.3: Network Performance

5.2.2 Overall Network Performance

 Taking the time on the x-axis and the total load on the y-axis

shows the overall network performance. This graph is also updated

each time interval and gives the overall performance of the network

with time. The time interval on the x-axis is taken equal to the time

period of the algorithm. Hence by changing the time period, the

time interval for the graph is also changed. The graph is drawn with

5 previous values of the total load, hence the load history is

maintained for the previous 5 time intervals (fig 5.4).

 67

Fig 5.4: Network Performance with Time (time vs. total load)

5.3 Options

The various options available are in accordance with the

presence of processes in the ready queue of the computer. The

processes, which are present as a result of migration from other

computers, as well as the processes, which are migrated to other

computers, from that particular computer are shown in detail to the

user.

Fig 5.5 Incoming Processes

 68

5.3.1 Incoming Processes

The details of all the foreign processes are kept in a data

structure and are available to the user. The main window gives the

total number of incoming processes, and their names. The user can

also see the detail of any of those processes by selecting the option

“View Details” (fig 5.5).

In the detail of each process, Process Name, Process size,

IP Address of the computer from where it was migrated and the

Process Identifier is shown to the user (fig 5.6).

Fig 5.6: Incoming Process Detail

5.3.2 Outgoing Processes

 The data of all the processes, which have been migrated to

other computers, is also available for the user. If an appropriate

option is selected, a window gives the total number of processes

and their names (fig 5.7). The user can then select one of the name

 69

and use the option “View Details” to have the details of that

process.

Fig 5.7: Outgoing Processes

The detail of each process contains the name of that process,

its Identifier, Size of the process and the total number of threads in

that process (fig 5.8).

Fig 5.8: Outgoing Process Detail

 70

The only purpose of such type of interface to the user is to display

the desired information and also to give the overall performance

aquired as a result of the implementation of the load balancing

algorithm.

 71

 Chapter 6

Results and Further Recommendations

 This chapter gives an overview of the results that the project

has produced. This includes the aims of the project, its

accomplishments, and its performance on a practical system, the

difficulties faced in implementation and the limitations of the load

balancer.

9

9.5

10

10.5

11

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

Time

Th
re

ah
ol

d
Va

lu
e

of
 th

e
ne

tw
or

k

Series1
Series2
Series3
Series4
Series5
Series6
Series7
Series8
Series9
Series10

Figure 6.1: Cumulative load on the network changing with time

6.1 Load Balancing

 The project was tested for computational jobs only. The graph

(figure 6.1) shows the cumulative load on the three computers

during each test time period. This gives an overall view of the load;

each computer’s load is not taken into account separately. The

graph shows the execution of the load balancer on a three-

computer network. Initially the load is high as a number of

processes are initiated (in Series 2, 3 & 4) but when they finish

 72

execution the graph goes down (in Series 5, 6 & 7). The graph

peaks as the other processes are started.

6.2 Testing for different time periods

In view of the fact that the algorithm to be implemented was

periodic, time period was an important parameter in the load

balancer. This is the time period for the load balancer to recalculate

the load of each computer and communicate it on the network in

order to migrate a process. The time period was to be adjusted

keeping in mind that enough time period be adjusted to allow

migration to take place entirely. Also the time should not be too

large for the migration to become ineffective. Both these conditions

were tested on a network of three computers.

 The time period was tested at different experimental values to

determine the optimal value. The detail of each testing period is

discussed below. Each graph shows the load of the computers after

20 milliseconds.

6.2.1 Time period at 15 ms

The time period was initially set to 15 milliseconds. When the

time period started, the balancer took some time to calculate the

load on the computer, communicate it with the other computers on

the network, and then perform the actual migration. Before the

migration was complete, the time period expired and the third

computer restarted its calculations. The other two computers, which

were still shifting a process, could not exchange their new

recalculated loads with the third computer. The third computer thus

 73

got abandoned in the process of load communication, as the other

computers could not communicate at that time. In another time

period, the migration of the process did not take as long as before

and all three computers started the next time period to

communicate the load successfully. Thus in certain cases the

balancer had a possibility of being suspended due to lack of

synchronization during communication.

0

2

4

6

8

10

12

Number of
processes

20 40 60 80 100 120
Time (ms)

1st
2nd
3rd

Figure 6.2: Balancer with a 15 ms time period

The graph (in figure 6.2) shows the results of the load

balancer at the 15 milliseconds time period. Initially the load on

computers 1, 2 and 3 is 12, 11 and 8 respectively. The load is again

checked after 20 milliseconds and is the same. This shows that no

load balancing took place in the first time period. At 40 milliseconds

there is a change in the load, which shows that exchange of

process did take place. The next observation in the graph at 60

milliseconds also shows the same load but there is a change at 80

milliseconds. This shows that the time period does not allow a

complete migration to take place in every time period. The rest of

the graph also shows that a process does not necessarily migrate

in every time period.

 74

 75

6.2.2 Time period at 30 milliseconds

 The next experiment was carried out for a time period of 30

milliseconds. This was considered to be enough to allow the

balancer to complete its process of migration completely, unlike the

first time period of 15 milliseconds. This time period gave relatively

good performance, it allowed the balancer to completely shift the

process and did not make it wait too long to start the next time

period. Thus a process was shifted in nearly every time period

except when the load of the three computers was near or on the

threshold value.

 76

0

2

4

6

8

10

12

Number of
processes

20 40 60 80 100 120

Time (ms)

1st
2nd
3rd

Figure 6.3: Balancer with 30 ms time period

 The graph (in figure 6.3) shows the performance of the load

balancer at the time period of 30 milliseconds. The first values at 20

millisecond show quite a difference in the loads of Computer 1 and

Computer 3, but at 40 milliseconds after the first period of the

balancer this difference is bridged a little as a process is shifted

from Computer 3 to Computer 1. At 60 milliseconds, which

completes the second time period of the balancer another process

is shifted from Computer 3 to Computer 1. The load of Computer 3

did not change because more processes were initiated during the

execution of the balancer. At 80 milliseconds there is no change in

the load as the time period of the balancer is not complete, but at

100 milliseconds a process has been shifted. Thus a process was

being shifted for every time period. At 100 milliseconds the loads of

the computer were 10, 11 and 11, which meant that there would be

no migration. At 120 milliseconds, two processes at computer 1

finished execution and changed the scenario of the load so that a

process was again migrated in the next time period.

 77

2

 78

6.2.3 Time period at 45 milliseconds

The next experimental value for the time period of the load

balancer was 45 milliseconds. This did show a difference in

execution from the time period at 30 milliseconds as the re-

calculation of the load took place after a bit of wait. Even though the

balancer migrated a process in every time period but the gap

between two migrations increased.

 79

0

5

10

15

20

Number of
processes

20 40 60 80 100 120

Time (ms)

1st
2nd
3rd

Figure 6.4: Balancer with 45 ms time period

The graph (in figure 6.4) shows the result of the balancer at

45 milliseconds. The first three tests show no change in the load,

as the change in load due to migration is only visible when the load

has been recalculated after the complete time period. No change in

the graph is seen till 60 milliseconds when the next time period had

started. When the second time period started, the loads of the three

computers did not require any migration. But during that time period

the load of Computer 2 changed drastically which the balancer

could not detect till it started its next time period at 90 milliseconds.

The balancer, thus, did not do anything in the second time period.

 80

 81

6.2.4 Time period at 60 milliseconds

 The next experimental value of the time period was at 60

milliseconds. This again guaranteed that a process would be

shifted in every time period only if the states of the three computers

was different, overloaded, underloaded or at threshold, at the

beginning of the time period. It also did not cater for a sudden

change in the load of a computer, which could occur during a time

period.

 82

0

5

10

15

20

Number of
processes

20 40 60 80 100 120
Time (ms)

1st
2nd
3rd

 Figure 6.5: Balancer with 60 ms time period

 The graph (in figure 6.5) shows the results of the load balancer

with the 60 milliseconds time period. As was the case when the

balancer had a time period of 45 milliseconds, the graph does not

show any change in the loads till the 60 milliseconds mark, when

the balancer finishes its first time period. The next period, which

continues till 120 milliseconds, also migrated a process between

computers 1 and 3, as the load of computer 3 was above the

threshold value and computer 1 was below the threshold. The

drawback for this balancer was that over a time of 120 milliseconds,

only two processes were migrated when this time could have been

used for more migrations.

 83

 84

6.2.5 Time period at 75 milliseconds

 In another case, the time period was set at 75 milliseconds.

The load balancer, once started, went through its sequence of

events and migrated a process from the highest loaded to the most

lightly loaded. When this was done, it waited for the next time

period as it did for the time period of 45 milliseconds and 60

milliseconds. Till the start of the next time period, any change in the

network could not be detected. This did not lead to any remarkable

increase in the average job response time of the network. Also in

some cases when the time period started, the load was evenly

composed and there was no need of migration, however during the

time period one of the processor became heavily loaded. The

change in the load could not be communicated to the other

computers and nothing could be done about it. Thus the long time

period was not beneficial for load balancing.

 85

0

5

10

15

20

Number of
processes

20 40 60 80 100 120 150

Time (ms)

1st
2nd
3rd

Figure 6.6: Balancer with 75 ms time period

The graph (in figure 6.6) shows the results of the balancer

with the time period of 75 milliseconds. As can be seen from the

graph the balancer does not change the load condition of the

network for a long time. The process is shifted after 80 milliseconds

and another one after 150 milliseconds. The effect of the balancing

is thus cancelled by the time the balancer has to wait to re-start its

loop of re-calculation and communication.

 86

 87

6.3 Value of Time period

Since the value of the time period of the balancer was very

important, it was programmed after much deliberation. The results

of all the above experiments were taken into account. The 15

milliseconds time period was not even considered, as it did not

allow the balancer to completely migrate a process which at least

was possible in all the other time periods. The other difference

between the rest of the experiments was, the time the load

balancer had to wait after migrating one process, till it could

continue with the re-calculation of load for the next. The above

experiments showed a definite difference in the load for the 30

milliseconds time period compared to all the rest. Consider each

graph after 60 milliseconds; figure 6.3 shows that two processes

have been migrated. Figure 6.4 shows that one process has been

migrated. Figure 6.5 and 6.6 shows that there is no change in load

of the three computers. Thus the maximum transfer of processes

 88

was possible with a time period of 30 milliseconds. Even if the time

period is cumulated, considering each graph after 120 milliseconds,

the number of processes shifted by the balancer at 30 milliseconds

will be the greatest. Thus the load balancer was implemented with

a time period of 30 milliseconds.

A few parameters, which would effect the time period being

used, are discussed below:

6.3.1 Job Size

One of the parameters on which the execution of the load

balancer depends is the size of the processes being shifted. The

experiments show that even though the load balancer did not

produce desired results with a time period of 15ms, if the processes

being shifted are limited to small sizes, the performance of the load

balancer increases. The graph (in Figure 6.7) shows the results of

the load balancer with a time period of 15 milliseconds, when the

size of the processes was limited to below 10KB. The initial state of

each computer is seen at 10 milliseconds, then at 30 milliseconds

two periods of the load balancer have been executed and two

processes have been shifted from computer 2 to computer 3. as the

size of the processes is small the process is completely migrated

within the same time.

0

5

10

15

20

10 30 50 70 90

1st
2nd
3rd

Figure 6.7: With job size less than10kb

 89

Similarly, if the small size processes are used for migration

in the load balancer with a time period of 30ms, the delay before

the next migration becomes too long. This scenario can be seen

with the load balancer having time period of 30 milliseconds (in

figure 6.8). In this case the balancing effect is taking longer to be

converge as till 30 milliseconds only a single process has been

shifted. If this graph (figure 6.8) is compared to the previous one

(figure 6.7), at 70 milliseconds (figure 6.7) shows a more balanced

network than (figure 6.8). However, it must be remembered that this

is only the case while using small processes.

0
2
4
6
8

10
12
14
16
18

10 30 50 70 90

1st
2nd
3rd

Figure 6.8: With smaller job size at 30 ms

On the other hand, if a processor only runs large size

processes, the load balancer at 30 ms becomes inefficient for it and

it produces better results with the balancer at 45ms. The graph (in

figure 6.9) shows that the load balancer with a time period of 30

milliseconds takes nearly two of its periods to migrate a single

process, if the size of the process exceeds 30KB. Thus the shifting

of processes does not make complete use of the time period but

wastes 60 milliseconds for one migration to take place. Now if the

load balancer is run at 45 milliseconds using the same batch of

processes, the difference can be observed (in figure 6.10).

 90

0
2
4
6
8

10
12
14
16
18

20 40 60 80 100 120 140

1st
2nd
3rd

Figure 6.9 With larger job size at 30ms time period

0
2
4
6
8

10
12
14
16
18

20 40 60 80 100 120 140

1st
2nd
3rd

Figure 6.10 with 45ms time period

The graph (in figure 6.10) shows that the first change in load

is visible at 60 milliseconds when a complete time period of the

balancer has occurred. This is the same as in (figure 6.9) but the

difference is that where with the time period of 30 ms the process

was migrating in 60 milliseconds ie using two time periods of the

balancer. This difference can also be seen when at 140

milliseconds, the graph (in figure 6.10) shows a more balanced

state of the network than the graph (in figure 6.9). Therefore, the

time period of the load balancer must be kept at an optimum value,

or should be modified depending on the nature of work being done

in the network.

 91

6.3.2 Network Size

Even though the load balancer was tested for only three

computers while calculating the value for the time period. It was

observed that if the number of computers were increased in the

network the time required for communicating load as well as for

migrating processes would also increase. Thus again the time

period of 30 ms will not remain optimum, it would need to be

recalculated depending upon the number of computers in the

network.

6.4 Problems Encountered

The implementation and execution of the load balancer in real

time allowed such problems to be visible which were not imaginable

during the design or initial planning of the balancer. This section will

summarize some of the problems faced during the implementation

of the load balancer.

One of the main problems was to synchronize all the computers

when starting the load balancer. Since each step of the project was

a prerequisite for the next step, until each computer had executed

to one point in execution none of the computers could proceed

further. Similarly, if the time period of the load balancer was not set

with care, it also led to different times of execution on each

computer causing any of the computers on the network to be

stranded at a point. Selection of a process was another hurdle in

the implementation. The design of the project did not allow the

migration of such processes that required user input during

execution this was a limitation in the project. Another problem with

 92

the implementation was that if a process was shifted which

produced or displayed results to the user at the end of its

execution, these results could not be shifted back to the originating

computer as moving back the results would create a

communication overhead as well as create an imbalance in the

balance the balancer was trying to achieve. When calculating the

load on any computer, the parameter considered was the number

of processes in the ready queue of the computer. This parameter

did not give the actual utilization of the processor.

6.5 Further Recommendations

 This implementation can be considered as a prologue to the

subject of load balancing. This reflects on how the simulated results

would behave in a real time environment. It is recommended that

the limitations of this project be taken as future milestones to be

accomplished. This would specially include that the load be

calculated considering a number of parameters in addition to the

number of processes. The number of processes running on a

computer does not realistically report the utilization of a computer

unlike stated previously that “in most multi-threaded systems, the

length of the ready queue is a good indicator of processor load”.

The implementation brought to light the fact that if one process

running on a computer uses a lot of system resources whereas five

processes running on another system use the same amount of

resources. Thus, shifting a process to the computer with the single

process running would be very expensive for its resources.

Therefore, load balancing can be made more effective by including

the system resources, the system utilization and such

comprehensive parameters. The load balancer can also be

enhanced to work on Windows NT 3.5 with a few changes in

 93

implementation since the load balancer is only incompatible on

Windows NT 3.5 because of a few APIs being used. It can also be

implemented on a heterogeneous network of Windows 95 and

UNIX.

 94

SUMMARY

The Load Balancer is the implementation of the Periodic

Symmetrically Initiated (PSI) algorithm. The algorithm was

implemented and tested on a network of three computers. Each

computer on the network kept a record of the loads on all

computers on the network. It decided its state depending on the

threshold value of the network and migrated or received a process

accordingly. This loop was repeated periodically after a fixed time

period. The loop of actions constituted the load balancer, which

effectively shifts processes between two computers depending on

their states in the network. This decreases the average time taken

by a process to be executed on the network.

 95

References

[1-1] K. Benmohammed-Mahieddine, P.M. Dew and M. Kara, “A Periodic

Symmetrically-Initiated Load Balancing Algorithm for Distributed

Systems”, School of Computer Studies, University of Leeds, UK.

[1-2] Songnian Zhou and Domenico Ferrari, “An Experimental Study of

Load Balancing Performance”, Report No. U B/CSD 87l336,

January 1987, Computer Science Division (EECS), University of

California, Berkeley, California 9204629

[1-3] Peter Sanders, “Analysis of Random Polling Dynamic Load

Balancing”, University of Karlsruhe, Karlsruhe (Germany)

[1-4] S.Muthukrishnan and Rajmohan Rajaman, “An Adversarial Model

for Distributed Dynamic Load balancing”, DIMACS Center, Rutgers

University, Piscataway.

General References / Books Consulted

• Oestereich, B., “Developing Software with UML”, Addison-Wesley, 1999.

• Tony T.Y. Suen and Johnny S.K. Wong, “Efficient Task Migration

Algorithm for Distributed Systems”, IEEE Transactions on Parallel and

Distributed Systems, Vol 3, No 4, July 1992.

• Hart, J. M. and Rosenberg, B., “Client Server Computing for Technical

Professionals”, Addison-Wesley, 1995.

 96

• Platt, D. S., “Windows 95 and NT Win32 API From Scratch”, Prentice

Hall, 1996.

• Maruzzi, S., “The Microsoft Windows 95 Developer’s Guide”, Ziff-Davis

Press, 1996.

• Cohen A. and Woodring M., “Win32 Multithreaded Programming”,

O’Reilly & Associates, 1998.

• Bonner, P., “Network Programming with Windows Sockets”, Prentice Hall,

1996.

 97

Appendix A

Appendix A-1: Load Communication for one thread

Position is position of computer in the network
LoopCount is number of computers in network divided by two

While ‘i’ is less than LoopCount
Connect to computer at (position – i)
Send load
Receive load
Increment I

Appendix A-2: Load Communication for second thread

Position is position of computer in the network
LoopCount is number of computers in network divided by two

While’ i’ is less than LoopCount
Connect to computer at position + i
Send load
Receive load
Increment ‘i’

Appendix A-3: Determining whether most overloaded or not

count is an index
number is the number of computers on the network
found is a flag having values TRUE or FALSE
load(number) is an array containing loads of computers on the network
self load is load of the computer

while(count<(number-1))
{
 if load(count) is greater than self load

 found=TRUE;
 break;
else
 count++;

 98

 }
if found is not equal to TRUE, node is most over loaded

Appendix A-4: Determining whether most underloaded or not

count is an index
number is the number of computers on the network
found is a flag having values TRUE or FALSE
load(number) is an array containing loads of computers on the network
self load is load of the computer

while(count<(number-1))
{
 if load(count) is less than self load
 found=TRUE;
else
 count++;
 }
if found is not equal to TRUE, node is most under loaded

Appendix A-5: Finding the most overloaded computer

i is an index
number is the number of computers on the network
load(number) is the load of all computers
count will store the index of the computer

while i is less than the number
{
high = load(0)
If high is less than load(i)
 high = load(i)
 count = i;

increment i
}
load(count) is the most over loaded

