
CPC

Cloud Parallel Computing Using UNIX OS

By

Capt Naeem Amjad

NC Imtiaz Qumar

NC Sreman Qumar

Supervisor:

Col Naveed Sarfaraz Khattak

Submitted to the Faculty of Computer Science

National University of Sciences and Technology, Rawalpindi in partial fulfillment for

the requirements of a B.E Degree in Computer Software Engineering

June 2013

CERTIFICATE

Certified that the contents and form of project report entitled “Cloud Parrallel

Computing Using UNIX OS” submitted by 1) Naeem Amjad, 2) Imtiaz Qumar, and 3)

Sreman Qamar have been found satisfactory for the requirement of the degree.

Supervisor: ____________________

Col Naveed Sarfaraz Khattak

ABSTRACT

Many Computation task are depending on heavy calculation and analyzing large

amounts of data. These operations can take a long time on single computer. Cloud

Parallel Computing utilizes networked computers by making them to work together to

solve a problem, hence reducing the execution time.

“Cloud Parallel Computing Using UNIX OS” focuses on Implementation of Cloud

Infrastructure from the perspective of providing parallel processing to the jobs submitted

by users.

This system uses distributed memory model to perform network parallel computing. The

communication among systems is done through Message Passing Interface (MPI). Our

project will be running the parallel algorithms like matrix multiplication to display the

notion of work efficiency. We are using JPPF on our system which is an open source

Java message passing library that allows application developers to write and execute

parallel applications for computer clusters/clouds

Upon submission of a job by the user, it is broken into discrete parts that are solved

concurrently by further breaking them down to a series of instructions and executing

each instruction simultaneously on different CPUs through Message passing Interface

and end result of computation is displayed to user

This application proved to be very time saving and make the task of writing reports

easier for administrators and free them for more productive tasks. Various Testing and

evaluation results conducted on the product are extremely promising.

DECLARATION

No portion of the work presented in this dissertation has been submitted in support of

another award or qualification either at this institution or elsewhere.

DEDICATION

In the name of Allah, the Most Merciful, the Most Beneficent

To our parents, without whose unflinching support and unstinting cooperation,

a work of this magnitude would not have been possible

ACKNOWLEDEMENTS

In the name of Allah, The Most Gracious, The Most Merciful, All the praises and thanks

be to Allah, the Lord of the Universe, The Most Gracious, The Most Merciful. The only

owner of the day of Recompense, You (Alone) we worship and You (Alone) we ask for

help, Guide us to the straightway, The way of those on whom You have bestowed Your

grace, Not of those who earned Your anger, Nor of those who went astray.

Nothing is achievable without the will of ALLAH. We are grateful to ALLAH, who has

guide us and give us the strength to accomplish this task

We are also grateful to our parents for their unwavering faith in us, their continuous

support and love without which we would not have been able to succeed.

We would specially like to thank our supervisor Col Naveed Sarfaraz Khattak from MCS

who has been a great help for us in our project. We are highly thankful to all of our

teachers and staff of MCS who supported and guided us throughout our course and

research work. Their knowledge, guidance and training enabled us to carry out this

research work.

In the end we would like to acknowledge the support provided by all our friends,

colleagues, relatives and all the people who, in one way or the other had shared in our

activities.

Table of Contents

Chapter 1 .. 1

1. INTRODUCTION .. 1
1.1 Introduction ... 1
1.2 Background ... 1
1.3 Problem Statement ... 1
1.4 Objectives ... 2
1.5 Deliverables .. 2
1.6 Technological Requirements ... 2

2. LITERATURE REVIEW ... 4
2.1 Introduction ... 4
2.2 Literature Review .. 4
2.3 Previous Work ... 5
2.4 Issues Solved by CPC .. 5
2.5 Roles and Responsibilities .. 5
2.6 Work Breakdown Structure ... 6
2.7 Project Plan... 6

3. SYSTEM REUIREMENTS ... 7
3.1 Introduction ... 7
3.2 Product Scope .. 7
3.3 Product Perspective .. 8
3.4 Product Functions ... 8
3.5 User Classes and Characteristics ... 9
3.6 Operating Environment. .. 9
3.7 Design and Implementation Constraints .. 9
3.8 User Documentation ... 9
3.9 Assumption and Dependencies ... 10
3.10 External Interface Requirements ... 10

3.10.1 User Interfaces .. 10
3.10.2 Hardware Interfaces .. 10
3.10.3 Software Interfaces ... 11
3.10.4 Communication Interface .. 11

3.11 System Features ... 11
3.11.1 Registration ... 12
3.11.2 Login ... 12
3.11.3 Submit Job .. 13
3.11.4 Job Initialization ... 14
3.11.5 View Job Status .. 14
3.11.6 Delete Job ... 15
3.11.7 Delete Node .. Error! Bookmark not defined.
3.11.8 Add Node .. 16
3.11.9 Dispatch Job ... 16

3.12 Other Nonfunctional Requirements ... 17
3.12.1 Performance Requirements ... 17
3.12.2 Capacity .. 17

3.12.3 Security Requirements .. 17
3.13 Software Quality Attributes .. 18

3.13.1 Reliability: .. 18
3.13.2 Usability: ... 18
3.13.3 Maintainability ... 18
3.13.4 Testability: ... 18
3.13.5 Availability: .. 18

3.14 Other Requirements .. 19

4. System Design ... 20
4.1 Introduction ... 20
4.2 Scope.. 20
4.3 Architecture Design ... 20

4.3.1 Architecture Pattern:.. 20
Architecture Pattern ... 22
4.4 Detailed Design ... 23

4.4.1 ER Diagram .. 23
Class Diagram: .. Error! Bookmark not defined.
4.4.2 Use Cases: ... 24
4.4.3 Sequence Diagram ... 28
4.4.4 Activity Diagram: ... 30

5. SYSTEM IMPLEMENTATION ... 32
5.1 Tools and Technologies .. 32

5.1.1 Apache ANT .. 32
5.1.2 Java Development Kit ... 32
5.1.3 PuTTy ... 32
5.1.4 Shell Scripting ... 32
5.1.5 WinScp.. 32
5.1.6 Secure Shell (SSH) ... 33

5.2 Software Implementation... 33
5.2.1 Administration and Monitoring Console ... 33
5.2.2 Server Distribution ... 33
5.2.3 Node Distribution ... 33
5.2.4 Client Application .. 34

5.3 Implementation Terminologies and Code Snippets ... 34
5.3.1 Task Objects ... 34
5.3.2 JPPFTask ... 34
5.3.3 Job name and Identifier ... 36
5.3.4. Creating a job .. 37
5.3.5. Adding tasks to a job ... 38
5.3.6. Handling of execution results .. 38
5.3.7. Creating and closing a JPPFClient .. 39
5.3.8. Submitting a job .. 41
5.3.9. Cancelling a job ... 41
5.3.10. Receiving notifications for new and failed connections .. 42

6. TESTING AND RESULT ANALYSIS .. 43
6.1 Testing .. 43
6.2 Results and Analysis ... 46

6.2.1 Results .. 46
6.2.2 Analysis ... 47

7. CONCLUSION AND FUTURE WORK .. 48

List of Figures

Figures Page Number

2.1 Literature Review 4

2.6 Work Breakdown Structure 6

4.3.1 Architectural Design 21

4.3.2 Implementation View 22

4.4.1 ER Diagram 23

4.4.2 Class Diagram 24

4.4.3 Use Case Diagram 25

4.4.4 Sequence Diagram 29

4.4.5 Activity Diagram 31

List of Tables

Tables Page Number

2.5 Roles and Responsibilities 5

2.6 Project Plan 6

3.3 Operating System Requirements 9

1

Chapter 1

1. INTRODUCTION

1.1 Introduction

This section is written to specify the related work/background of Cloud Parallel

Computing Using Unix Operating System Project. Different streaming servers currently

available to users are also included in the section. Moreover need of Cloud Parallel

Computing is also justified.

This document also explains the objectives of Cloud Parallel Computing using Unix

Operating System, deliverables of project (Cloud Parallel Computing Using Unix

Operating System), technical requirements, and a comprehensive project plan,

explaining the work break down among the respective group members.

.

1.2 Background

Cloud parallel computing is the simultaneous use of multiple computing resources

(hardware and software) to solve a computation problem and these resources are

delivered as a service over a network. Cloud Computing makes computer infrastructure

and services available "on-need" basis. The computing infrastructure includes hard disk,

development platform, database, computing power or complete software applications.

1.3 Problem Statement

Many Computation task needs lots of mathematical calculations and take longer time on

a single computer. There is a need to establish a network of computer to perform such

tasks by splitting them and performing on multiple computers and obtaining the result

more efficiently. MCS Computer Software Engineering Department has sufficient no of

Servers and network computer available to utilize for Cloud Parallel Computing.

2

1.4 Objectives

The objectives of our project include:

i. To learn Cloud Parallel Computing Using Unix OS

ii. To Understand the configuration and architecture of Ultra Sparc server with Unix
operating Systems

iii. To learn different techniques for Cloud parallel Computing

iv. To develop an application for the end users to utilize the cloud parallel
processing

v. To implement cloud infrastructure from prospective of providing parallel
processing to the jobs.

vi. To configure a front end and a middleware using Sun Ultra Sparc workstation as
server

1.5 Deliverables

Deliverables of the project are:

i. Sun Ultra Sparc Server Configured as Master for Cloud Parallel Computing

ii. Configured Nodes With Heterogeneous OS

iii. Configured Administrative Console

iv. Matrix Multiplication application implemented through Cloud Parallel
Computing

v. Documentation/User Manual

1.6 Technological Requirements

i. Sun Ultra Sparc Server

ii. Java Parallel Processing Framework

iii. Networking Facility

iv. Computer Lab with Heterogeneous OS

v. MS Office for Documentation

vi. Java Standard Edition Version 1.5 or Later

3

vii. Unix Shell Scripting

viii. SSH Client and Server

ix. FTP Client and Server

x. Apache Ant, Version 1.7.0 or Later

4

Chapter 2

2. LITERATURE REVIEW

2.1 Introduction

This section is written to specify the related work/background of Cloud Parallel

Computing Project and what has been done in the domain, what the issues are and what

issues our project will resolve. Moreover need of need of Cloud Parallel Computing

using Unix Operating System is also justified.

This document also explains a comprehensive project plan, explaining the work break

down among the respective group members.

2.2 Literature Review

Presently parallel Cloud Computing Solutions are deployed on different platforms like

Intel based Machines, Linux and Unix. Its purpose is to broke a problem into discrete

parts in the form of series of instruction and to run on multiple CPUs simultaneously

Figure 2.2

5

2.3 Previous Work

i. Vector processors

ii. Cloud Services by Amazon, Zoho

iii. General-purpose computing on graphics processing units (GPGPU)

iv. Reconfigurable computing with field-programmable gate arrays

v. Automatic parallelization

2.4 Issues Solved by CPC

In MCS Cloud Computing has never been experimented on Unix based operating

systems and there are sufficient Ultra Sparc Server Machine available to use them for

providing cloud computing services.

Our System has provided Cloud Parallel Computing by configuring Java Parallel

Processing Framework on Sun Ultra Sparc Server Machines as Master node and on

Heterogeneous Slave nodes.

2.5 Roles and Responsibilities

Name Role Responsibility

Capt Naeem Amjad Project Leader Project Management,
Providing resources,
documentation and
presentation, Providing
Resources, Algorithm
testing

NC Imtiaz Qumar Team Member Server and client end
application development
and Configuration,
algorithms design

NC Sreman Qamar Team Member Server and client end
application development
and Configuration,
algorithms design

Table 2.5

6

2.6 Work Breakdown Structure

Figure 2.6

2.7 Project Plan

Table 2.7

7

.

Chapter 3

3. SYSTEM REUIREMENTS

3.1 Introduction

This chapter describes the functional and nonfunctional requirements of the Cloud

Parallel Computing using Unix OS. Objectives are briefly summarized followed by

detailed description of the system’s scope, vision, use case, features and other related

requirement issues.

3.2 Product Scope

This is a system to perform computation of a complex and time consuming task on

separate machines i.e. by breaking the problem into independent parts so that each

processing element can execute its part of the algorithm simultaneously on separate

machine.

There will be a master server that accepts a task from client, breaks it down into

subtasks that can be executed in parallel and then executes these tasks on different

machines then combining the results and giving the result back to client through an

interface.

There will be a front end interface through which a client submits tasks and select

resources. A middleware system at the backend will distribute the task work on multiple

available machines.

8

3.3 Product Perspective

This will be a standalone system that runs on UNIX based Sun Ultra25 workstations. It

will be responsible for receiving the jobs submitted by the user and delegating them to

the appropriate workstations by splitting the job into parts that can be executed

concurrently. CPC would not decide on its own how much workstation it will allow to one

task, it’s up to user to select the resources that suits his/her needs. After that CPC

dispatches the job to the chosen workstation. Once a subtask has been assigned to a

workstation, CPC is responsible for monitoring the progress and collecting the results

from each workstation when the task is done and finally providing the results to end

user. There will be no modifications to the UNIX Kernel.

3.4 Product Functions

The main purpose of the CPC is to perform computation of a complex and time

consuming task submitted by user. The job details submitted by the user will include

selection of number of workstations that the system should assign for one job. The

system then allocates workstations selected by the user, enabling the CPC to minimize

time needed to perform that job.

The overall functions of CPC are

i. Submit Job

ii. View Job Status

iii. Delete/Change Job

iv. Initialize Job

v. Determine Execution Host

vi. Dispatch Job

vii. Generate Report

9

3.5 User Classes and Characteristics

There are essentially two classes of users for the CPC system: the user who wishes to

submit jobs for the computing and the administrator who oversees scheduling and

computing usage. The user needs to know the exact nature of the submitted job, such

as the execution time as well as resources required, and must possess the technical

knowledge about how to use the interface for submitting jobs. The administrator must be

an advanced operator, fully qualified in using Solaris, and the CPC system.

3.6 Operating Environment.

Particulars Client Side Server Side

Operating System Sun Solaris 10 Sun Solaris 10

Processor 1.34-GHz UltraSPARC IIIi

processor

1.34-GHz UltraSPARC IIIi

processor

RAM 1 GB 1 GB

Hard Drive Customized Customized

Table 3.6

3.7 Design and Implementation Constraints

Cloud Parallel Computing using Unix OS is based on Java Parallel Processing

Framework which works on Unix/Window based system with above mentioned operating

system..

Moreover it require JDK Version 1.5 or later and Apache Ant Version 1.7 or later.

Network computers should support SSH and FTP.

3.8 User Documentation

A user manual is provided at the end of this document.

10

3.9 Assumption and Dependencies

External interface requirements specify hardware and software elements with which a

system or component must interface

A number of factors that may affect the requirements specified in the SRS include:

i. It is assumed that all workstations are running on Sun Solaris 10.

ii. It is assumed that all users will have basic knowledge of Solaris or any other UNIX.

iii. Users are assumed to have a fair estimate of job execution times, so that the

decision to accept or reject a job is facilitated.

3.10 External Interface Requirements

3.10.1 User Interfaces

The minimal requirements are that the CPC user would be able to interact with the

system through the command prompt, or through the graphical interface provided by the

system. There will be a menu driven interface in command prompt mode for each of the

following action.

i. Submit jobs with the associated workstations.

ii. Monitor the status of submitted jobs

iii. Cancel/delete jobs submitted by him

iv. Add Node

v. Delete Node/Restart Node

3.10.2 Hardware Interfaces

System involves only sun ultra25 workstations and it has no external hardware.The

communication among the system involves only the networking infrastructure including

i. Ethernet card

ii. The switch

11

3.10.3 Software Interfaces

CPC will directly interact with Sun Solaris 10, and other IDE’s and virtual servers for

example

i. Net Beans

ii. Management and Monitoring Console

iii. Java Parallel Programming Framework

iv. Any Internet browser

3.10.4 Communication Interface

CPC will utilize the communications architecture of Sun Solaris itself, and will not have

any unique communications interfaces.

The communication is performed over the network using Solaris communication utilities

like Telnet and FTP

3.11 System Features

This section is organized by the processes and features encapsulated in CPC, following

are the main use cases:

i. Registration

ii. Login

iii. Submit Job

iv. Job Initialization

v. View Job Status

vi. Delete Job

vii. Delete Node

viii. Add Node

12

ix. Determine Execution Host

x. Dispatch Job

3.11.1 Registration

3.11.1.1 Description and Priority

Users of the system need to register before using the cloud services. This functional

feature deals with the end-user (can also be used by the administrator) and is facilitated

by the interface of the CPC. The user details and other credentials are collected through

this interface.

3.11.1.2 Stimulus/Response SequencesActors: End users, administrator

Actor: End users, administrator

i. User: The user accesses login the interface of system

ii. System: The system asks the user to enter his username and password.

iii. User: The user enters his username and password and presses submit button.

iv. System: The system verifies the credentials from the database and either allows
the user to use the cloud service or generates an error message in case of invalid
details.

3.11.1.3 Functional Requirements

i. The system should provide the user registration module along with an interface
to access it.

ii. The system should maintain a database of registered users.

3.11.2 Login

3.11.2.1 Description and Priority

Administrator and the other registered members require to login to the system before

using the cloud services. After login they can do the further actions while using the cloud

service

3.11.2.2 Stimulus/Response Sequences

Actors: Registered users, administrator

i. User: The user accesses login the interface of system

13

ii. System: The system asks the user to enter his username and password.

iii. User: The user enters his username and password and presses submit button.

iv. System: The system verifies the credentials from the database and either allows

the user to use the cloud service or generates an error message in case of invalid

details.

3.11.2.3 Functional Requirements

The system should provide an interface for the user to login and system user login

module involves user authentication and session tracking

3.11.3 Submit Job

3.11.3.1 Description and Priority.

This functional feature deals with the registered user (can also be used by the

administrator) who is login to the system and is facilitated by the interface of the CPC.

The user input and other parameters required for the working of system are collected

through this interface.

3.11.3.2 Stimulus/Response Sequences

Actors: Registered users, administrator

i. User: The user accesses the job submission interface of system

ii. System: The system asks the user to select the job and available resources.

iii. User: The user provides the required input for the execution of the job including the

resources.

iv. System: The system acquires the user’s input after validating it.

3.11.3.3 Functional Requirements

i. The system should provide an interface for the user to submit a job.

ii. The system should collect the job specification from the user

14

iii. The system should maintain a database of submitted jobs.

iv. The system should have a mechanism to validate the user inputs for job submission.

3.11.4 Job Initialization

3.11.4.1 Description and Priority.

System will split the job submitted by registered user or administrator to run in parallel on

multiple machines of cloud..

3.11.4.2 Stimulus/Response Sequences

Actors: Registered users, administrator

i. User: The user should have already submit the job

ii. System: The system splits the defined job into chunks of code that can be

executed in parallel on multiple machines of cloud

3.11.4.3 Functional Requirements

The System should have a module to split the job.

3.11.5 View Job Status

3.11.5.1 Description and Priority.

Registered users or administrator will be able to view the status of their submitted job.

3.11.5.2 Stimulus/Response Sequences

Actors: Registered users, administrator

i. User: The user clicks the “view job status “button”.

ii. System: The system will display the job status to user

3.11.5.3 Functional Requirements

v. The system should provide an interface for the user to view job status.

vi. The system should have a module asks the relevant machines about the status of

job

15

vii. The system should have a module that receive the status of job from relevant

machines

3.11.6 Delete Job

3.11.6.1 Description and Priority.

Registered users or administrator will be able to delete their submitted job or stop it

during its execution..

3.11.6.2 Stimulus/Response Sequences

Actors: Registered users, administrator

i. User: The user clicks the “view job status “button”.

ii. System: The system will display the job status to user.

iii. User: The user then selects to stop/delete his job.

iv. System: The system responds to the selected action after reconfirmation from
user.

3.11.6.3 Functional Requirements

i. The system should provide an interface for the user to view job status.

ii. The system should have a module to send a

message to relevant machines of the cloud to stop/delete the job.

3.11.7 Delete Node

3.11.7.1 Description and Priority.

Registered users or administrator will be able to delete the any node or stop it during its

execution..

3.11.7.2 Stimulus/Response Sequences

Actors: Registered users, administrator

v. User: The user clicks the “view job status “button”.

vi. System: The system will display the job status to user.

vii. User: The user then selects to stop/delete his Node.

viii. System: The system responds to the selected action.

16

3.11.7.3 Functional Requirements

iii. The system should provide an interface for the user to view job status.

iv. The system should have a module to send a

message to relevant machines of the cloud to stop executing.

3.11.8 Add Node

3.11.8.1 Description and Priority.

Registered users or administrator will be able to add Node Remotely to execute their Job

3.11.8.2 Stimulus/Response Sequences

Actors: Registered users, administrator

ix. User: The user clicks the “view job status “button”.

x. System: The system will display the job status to user.

xi. User: The user then selects to add Node Remotely through SSH.

xii. System: The system responds to the user action

3.11.8.3 Functional Requirements

v. The system should provide an interface for the user to view job status.

vi. The system should have a module to send a

message to relevant machines of the cloud to add as a Node to CPC.

3.11.9 Dispatch Job

3.11.9.1 Description and Priority.

The system will delegate the initialized job to multiple machines of cloud by dispatching

the each subtask to separate machines

3.11.9.2 Stimulus/Response Sequences

Actors: Master workstation

i. Master workstation: The master workstation issues the dispatch command to

multiple machines.

ii. System: The will dispatch the sub tasks to relevant machines

17

3.11.9.3 Functional Requirements

The system should have a module to send a message to relevant machines of the cloud

to dispatch the job

3.12 Other Nonfunctional Requirements

Nonfunctional requirements of the automatic report generating system consist of

performance, security requirements.

3.12.1 Performance Requirements

The maximum response time for the submission of a job will be 2 minute.

3.12.2 Capacity

i. The maximum number of jobs schedulable at a time is limited only workstations

availability.

ii. Safety Requirements

iii. Load balancing must be ensured at every workstation in order to prevent the

system from failure.

iv. System should prevent any unauthorized access by any illegitimate user.

v. System must not violate any law or the rights of any individual or entity, and must

not expose product or users to harm or legal liability

3.12.3 Security Requirements

i. Users will get login only by their own username & password.

ii. System will ensure the privacy of user job status.

iii. Only assigned administrator for specific user can view all jobs status.

18

3.13 Software Quality Attributes

Software quality attributes of automatic report generating system are robustness,

usability measures and maintainability.

3.13.1 Reliability:

i. There will be a maximum of 5 bug/KLOC.

ii. In case of system crash, the CPC will be down while the Solaris operating

system will run. This will take less than five minutes.

iii. The system defect rate shall be less than 1 failure per 500 hours of operation

3.13.2 Usability:

i. Four out of five users shall be able to submit job within 3 minutes after a 2-hour

introduction to the system.

ii. Novice users shall perform any task in 10 minutes. While experienced users shall

perform any task in 2 minutes.

iii. At least 80% of customers polled after a 3 months usage period shall rate their

satisfaction with the system at 7 and more on a scale of 1 to 10.

3.13.3 Maintainability

i. No method in any object may exceed 300 lines of code.

ii. Installation of a new version shall leave all database contents and all personal
settings unchanged

3.13.4 Testability:

i. The delivered system shall include unit tests that ensure 98% branch coverage.

ii. Development must use regression tests (seeks to uncover new errors) allowing
for full retesting in 5 hours.

3.13.5 Availability:

i. The system shall meet or exceed 97.99% uptime.

19

ii. The system shall not be unavailable more than 1 hour per 500 hours of operation.
iii. Less than 40 seconds shall be needed to restart the system after a failure 95% of

the time.

3.14 Other Requirements

All requirements are already mentioned above.

20

Chapter 4

4. System Design

4.1 Introduction

System Design chapter provides a comprehensive architectural overview of the Cloud

Parallel Computing Using Unix OS. It presents various architectural views to show

different aspects of the system. It is intended to capture and communicate the

significant architectural decisions which have been made on the system.

This chapter will displays the logical, implementation and dynamic view with use cases

of the system in order to show the complete system.

4.2 Scope

The scope of this document is to depict the architecture of the Cloud Parallel Computing

Using Unix OS. This will allow various stakeholders to find what they need in the

software architecture.

4.3 Architecture Design

4.3.1 Architecture Pattern:

This system uses distributed memory model to perform network parallel

Computing. The communication among systems is done through Message

Passing Interface (MPI).

21

Figure 4.3.1

Application
Application

Application Layer

Parallel Virtuallization layer

22

Architecture Pattern

Figure 4.3.2

23

4.4 Detailed Design

Detail design of Cloud Parallel Computing system consists of uses cases, class diagram,

sequence diagram and activity diagram.

4.4.1 ER Diagram

Figure 4.4.1

The above entity relationship diagrams represent two entities in our system, The users

and the computations. The Users Table contains the information of registered users and

the computations table contains the history of the computations performed by a

registered user

4.4.2 Class Diagram

The Main classes of our system are

i. MasterNode

ii. SlaveNode

iii. Message

iv. Task

v. Environment

vi. The communication among nodes is done through parallel virtual machines

libraries

24

Figure 4.4.2

4.4.3 Use Cases:

Use cases show the interaction between the actors and system to achieve a goal. Use

cases of Cloud Parallel Computing are shown in figure 4.2 and figure 4.3. Actors and

use cases of CPC are.

Actors: User, Admin

25

Use Cases: Login, Adm Login, Logout, , Submit Job, Distribute Tasks, Receiver

Results, Execute Tasks.

 Master Node

Slave Nodes

«uses»
register

«extends»

Login adm
Client

Logout

Administrator

Master Node

Submit job

«uses»

Receive
Result

«uses»

Slave
Node

Execute
Tasks

Distribute
 tasks

Figure 4.4.3: Administrator /Client Use

case

26

4.4.3.1 Use Case Descriptions:

Use case descriptions provide the details of each use case.

i. Login:

Actor (Initiator): Client.

Purpose: To select to login to system.

Overview: System will open shell session for login

Preconditions: System must be running.

Flow of Events:

Actor Action: Enter valid user name and password.

System Response: System will login the client.

Post Conditions: System is running.

ii. Adm Login:

Actor (Initiator): Administrator.

Purpose: To Login the adm.

Overview: System will provide with a remote shell to login.

Preconditions: Selected Shell to open.

Flow of Events:

 Actor Action: Enter credentials.

 System Response: Login the adm.

Post Conditions: System is running.

iii. Submit Job:

Actor (Initiator): Administrator, Client.

Purpose: To submit a job.

Overview: System will provide with a remote access to server to submit a job.

Preconditions: Selected Shell to open.

Flow of Events:

Slave Nodes

Slave Nodes

27

Actor Action: Enter credentials and submit a job.

System Response: Submit the job.

Post Conditions: System is running.

iv. Logout:

Actor (Initiator): Administrator, Client.

Purpose: To Logout the user.

Overview: System will provide with a remote shell to logout.

Preconditions: Selected Shell to open.

Flow of Events:

Actor Action: Enter credentials.

System Response: Login the user.

Post Conditions: User Logged in.

v. Register:

Actor (Initiator): Administrator, Client.

Purpose: To Register the user.

Overview: System will provide with a remote shell to Register.

Preconditions: Selected Shell to open.

Flow of Events:

Actor Action: Enter credentials.

System Response: Register the user.

Post Conditions: System is running.

vi. Distribute Task:

Actor (Initiator): Administrator, Client.

Purpose: To distribute a job into tasks.

Overview: System will provide with a remote access to server to submit a job.

Preconditions: Selected Shell to open.

Flow of Events:

Actor Action: Enter submit a job.

System Response: Submit the job and distribute it into task to different

nodes..

Post Conditions: System is running.

28

vii. Distribute Task:

Actor (Initiator): Administrator, Client.

Purpose: To execute tasks.

Overview: System will provide with a remote access to server to submit a job.

Preconditions: Selected Shell is open and job submitted.

Flow of Events:

Actor Action: Enter submit a job.

System Response: Submit the job and distribute it into task to different

nodes to execute it.

Post Conditions: System is running and job is submitted

viii. Receive Results:

Actor (Initiator): Administrator, Client.

Purpose: To receive result of a computation.

Overview: System will provide with a remote access to server to submit a job.

Preconditions: Selected Shell to open and job submitted.

Flow of Events:

Actor Action: Enter submit a job.

System Response: Submit the job and distribute it into task to different

nodes and receive results.

Post Conditions: System is running and job submitted.

.

4.4.4 Sequence Diagram

Sequence diagrams shows how process operates with each other and operates in which

order

4.4.4.1 Login Sequence Diagram

Login Sequence diagram of Cloud Parallel Computing is shown at figure 4.5.

i. Main page GUI redirect user/client to login page.

ii. Here user/client will input his/her information.

iii. Information entered by user/client goes to Master Node.

iv. Master Node will send that information to Database for validation.

29

v. If information entered is correct database will acknowledge with true Boolean value

else false.

4.4.4.2 System Sequence Diagram

Login Sequence diagram of Cloud Parallel Computing is shown at figure 4.6.

Flow of the system is as follow;

i. Registered user commands Main GUI for job submission.

ii. Main GUI will redirect user to Job summit page and he/she will enter valid data..

iii. If user is already on Job summit page he/she will enter valid data.

iv. Job summit page will forward that job to MasterNode.

v. Master Node will split job into tasks.

vi. MasterNode then assign tasks to SlaveNodes.

vii. SlaveNodes will execute the tasks and send it to the MasterNode.

viii. MasterNode will compile the result and send it to the Job summit page.

ix. Job summit will show result to user.

Client UI login page Master Node database

1: login 2: Redirect

3: enter username and
password

4: validate
5: readDB

Boolean

Boolean

 Figure 4.4.4.1:Sequence Diagram

Login

30

Figure 4.4.4.2

4.4.5 Activity Diagram:

Activity diagram shows the graphically workflows of stepwise activities with options.

Activity diagram of automatic report generating system is shown at figure 4.6.

Description of Sign-up:

i. Precondition: User is not registered to the system.

ii. Client Entered Username: If entered username is available

iii. Invalid Username: If entered username is not valid or already taken user will be

redirected to the

iv. Signup page.

v. Entered Password and Retype: Client will enter password and retype it if both

passwords are same

31

vi. System will not generate error else system will generate error.

vii. Client logged in: Client is successfully logged in the system.

.

 Figure 4.4.5:Activity Diagram

32

Chapter 5

5. SYSTEM IMPLEMENTATION

5.1 Tools and Technologies

5.1.1 Apache ANT

Apache Ant is a Java library and command-line tool whose mission is to drive processes

described in build files as targets and extension points dependent upon each other. The

main known usage of Ant is the build of Java applications. Ant supplies a number of

built-in tasks allowing to compile, assemble, test and run Java applications. Ant can also

be used effectively to build non Java applications, for instance C or C++ applications.

5.1.2 Java Development Kit

The Java Development Kit (JDK) is an implementation of either one of the Java SE,

Java EE or Java ME platforms

5.1.3 PuTTy

PuTTY is a free implementation of Telnet and SSH for Windows and Unix platforms

5.1.4 Shell Scripting

A shell script is a script written for the shell, or command line interpreter, of an operating

system. The shell is often considered a simple domain-specific programming language.

Typical operations performed by shell scripts include file manipulation, program

execution, and printing text.

5.1.5 WinScp

Open source graphical SFTP client for Windows

33

5.1.6 Secure Shell (SSH)

Secure Shell (SSH) is a cryptographic network protocol for secure data communication,

remote shell services or command execution and other secure network services

between two networked computers that connects, via a secure channel over an insecure

network, a server and a client (running SSH server and SSH client programs,

respectively). The protocol specification distinguishes between two major versions that

are referred to as SSH-1 and SSH-2.

5.2 Software Implementation

The system is a distributed application implemented in java.

The System has four main modules. The detail of each module is given below.

5.2.1 Administration and Monitoring Console

Administration Console is a java application designed to monitor the job status

and execution time and results.

5.2.2 Server Distribution

Cloud Parallel Computing Server Application is a java Application with a

command Line Interface.

This application start the Cloud Server

The main functionalities of a cloud server are

i. Initializing the Parallel programming environment

ii. Accept Connection from a new node and add it to the existing environment

iii. Accept Connection request from a client and receive program data from client

iv. Prioritize the Connections and the job responsibilities

v. Maintain thread pool containing tasks of a job.

vi. Forward each thread data and code to an available node machine in Cloud

Environment

vii. Accept results from each worker or node machine

viii. Combine the results of a job by collecting the result from individual node

machine

ix. Send the job results back to the client

5.2.3 Node Distribution

Cloud Parallel Computing Node Application is a java based Application with

Command Line Interface

34

This Application offer the resources of a machine to cloud environment

Main features of Node application are as given below

I. Activate the Node Machine

II. Request a connection to the Server of Parallel Environment

III. Waiting for task assignment from server Machine

IV. Accepts Task assignment from Server machine

V. Execute the task received from a server locally using Java Development

Kit

VI. Return the results back to the server

5.2.4 Client Application

This is a java based application developed to test different features offered by

cloud Parallel System. This application has a command line interface

Main features of this application are given below

i. This application is programmed to split is a single job of matrix multiplication

into a number of tasks

ii. It maintain a thread pool containing tasks of a single processor hungry job.

iii. It requests a connection to the Parallel Cloud Server and submits the job to

the server

5.3 Implementation Terminologies and Code Snippets

5.3.1 Task Objects

A task is the smallest unit of execution that can be handled by the framework. We will

say that it is an atomic execution unit. A JPPF application creates tasks, groups them

into a job, and submits the job for execution on the cloud

5.3.2 JPPFTask

JPPFTask is the base super class for any task that is run by JPPF.

JPPFTask is defined as follows:

35

 public abstract class JPPFTask implements Task<Object> {

 ...

 }

We can see that this class implements the Task<T> interface, defined as follows:

 public interface Task<T> extends Runnable, Serializable {

 ...

 }

We have outlined three important keywords that characterize JPPFTask:

 abstract: JPPFTask cannot be used directly, it must be extended to construct a

real task

 Runnable, via Task<Object>: when writing a JPPF task, the run() method of

java.lang.Runnable must be implemented. This is the part of a task that will be

executed on a remote node.

 Serializable, via Task<Object>: tasks are sent to servers and nodes over a

network. JPPF uses the Java serialization mechanism to transform task objects

into a form appropriate for networking

To write a real task in your application, you simply extend JPPFTask to implement your

own type:

public class MyTask extends JPPFTask {

 public void run() {

 // ... code here ...

 }

 }

36

5.3.3 Job name and Identifier

Each job has a unique identifier (UUID) that allows JPPF to manage and monitor the job

while distinguishing it from other jobs. If this identifier is not explicitly specified via a

dedicated constructor, JPPF will create one as a string of 32 hexadecimal characters. It

is very important that all jobs across an entire JPPF grid have a unique distinct uuid,

otherwise there is no guarantee that a job will be executed properly.

Additionally, a job can have a name which doesn't need to be unique, and which is used

by the JPPF administration console for display purposes only. You may also use it in

your application for logging and tracing. If not set by the user, the name will be by default

equal to the uuid.

The class JPPFJob provides the following APIs for the job name and uuid:

 public class JPPFJob implements Serializable, JPPFDistributedJob {

 // create a blocking job with the specified uuid

 public JPPFJob(final String jobUuid)

 // get this job's UUID

 public String getUuid()

 // get the user-defined display name for this job

 public String getName()

 // set the user-defined display name for this job

 public void setName(final String name)

 }

37

5.3.4. Creating a job

To create a job, the JPPFJob class offers a number of constructors, which can be split in
2 groups:

Constructors for blocking jobs

// creates a blocking job with no data provider and default SLA values
 public JPPFJob()

// creates a blocking job with the specified data provider and default SLA values
 public JPPFJob(DataProvider dataProvider)

// creates a blocking job with the specified data provider and SLA
 public JPPFJob(DataProvider dataProvider, JPPFJobSLA jobSLA)

Constructors for non-blocking jobs

// creates a blocking job with the specified execution results listener,
 // no data provider and default SLA values
 public JPPFJob(TaskResultListener resultsListener)

// creates a blocking job with the specified execution results listener,
 // data provider and default SLA values
 public JPPFJob(DataProvider dataProvider, TaskResultListener resultsListener)

// creates a blocking job with the specified execution results listener,
 // data provider and SLA
 public JPPFJob(DataProvider dataProvider, JPPFJobSLA jobSLA,
 TaskResultListener resultsListener)

Basically, the distinction for a non-blocking job is made via the
presence of a TaskResultListener.

Finally, there is a more generic constructor that embraces everything
the other constructors do:

// creates a job with the specified data provider, SLA, blocking
indicator
 // and execution results listener
 public JPPFJob(DataProvider dataProvider, JPPFJobSLA jobSLA, boolean blocking,
 TaskResultListener resultsListener)

38

No matter which constructor is used, the job id is automatically
generated as a pseudo-random string of 32 hexadecimal characters.
It can then be obtained or changed with the job's getId() and
setId(String) methods. This mechanism ensures that a job always has
an id, and that developers always have the possibility to change it to
a more readable one.

5.3.5. Adding tasks to a job

public JPPFTask addTask(Object taskObject, Object...args) throws JPPFException

The taskObject parameter can be one of the following:

i. an instance of JPPFTask
ii. an instance of a class with a non-static public method annotated with

@JPPFRunnable
iii. a Class object representing a class that has a public static method or a

constructor annotated with @JPPFRunnable
iv. an instance of a a Runnable class
v. an instance of a Callable class

The args parameter is optional and is only used to pass the arguments of a method or
constructor annotated with @JPPFRunnable. It is ignored for all other forms of tasks.

The return value is an instance of (a subclass of) JPPFTask, regardless the type of task
that is added.

As JPPF is using reflection to properly wrap the task, an eventual exception may be
thrown. It will then be wrapped into a JPPFException.

5.3.6. Handling of execution results

The results of the tasks executions are handed over by an instance of
TaskResultListener.

We can thus say the TaskResultListener is an asynchronous receiver, whose job is to:

i. handle and store the execution results of the tasks
ii. ensure the results are in the same order as the tasks initially submitted
iii. handle errors occurring while receiving the results from the server
iv. update the state of the job's execution
v. optionally handle the persistence of the job's state for later recovery

39

To store the execution results, the JPPFJob class holds an instance of JobResults,
which is accessible via the getResults() method. JobResults provides the following API:

 public class JobResults {
// Get the current number of received results
 public synchronized int size()

// Determine whether the job received a result
 // for the task at the specified position
 public synchronized boolean hasResult(final int position)

// Add the specified results to the job
 public synchronized void putResults(final List<JPPFTask> tasks)

// Get all the tasks received as results for the job
 public synchronized Collection<JPPFTask> getAll()
 }

Since JPPFResultCollector holds a reference to the job, it will be able to update the
execution results each time it receives a resultsReceived(TaskResultEvent) notification.

A JPPF client is an object that will handle the communication between the
application and the server. Its role is to:

i. manage one or multiple connections with the server
ii. submit jobs and get their results
iii. handle notifications of job results
iv. manage each connection's life cycle events
v. provide the low-level machinery on the client side for the distributed class loading

mechanism
vi. provide an access point for the management and monitoring of each server

A JPPF client is represented by the class JPPFClient. We will detail its
functionalities in the next sub-sections.

5.3.7. Creating and closing a JPPFClient

A JPPF client is a Java object, and is created via one of the constructors of the class

JPPFClient. Each JPPF client has a unique identifier that is always transported along

with any job that is submitted by this client. This identifier is what allows JPPF to know

from where the classes used in the tasks should be loaded. In effect, each node in the

grid will have a map of each client identifier with a unique class loader, creating the class

loader when needed. The implication is that, if a new client identifier is specified, the

40

classes used in any job / task submitted by this client will be dynamically reloaded. This

is what enables the immediate dynamic redeployment of code changes in the

application. On the other hand, if a previously existing identifier is reused, then no

dynamic redeployment occurs, and code changes will be ignored (i.e. the classes

already loaded by the node will be reused), even if the application is restarted between 2

job submissions.

There are two forms of constructors for JPPFClient, each with a specific corresponding
semantics:

Generic constructor with automatic identifier generation

 public JPPFClient()

When using this constructor, JPPF will automatically create a universal unique identifier

(uuid) that is guaranteed to be unique on the grid. The first submission of a job will cause

the classes it uses to be dynamically loaded by any node that executes the job.

Constructor specifying a user-defined client identifier

 public JPPFClient(String uuid)

In this case, the classes used by a job will be loaded only the first time they are used,

including if the application has been restarted in the meantime, or if the JPPF client is

created from a separate application. This behavior is more adapted to an application

deployed in production, where the client identifier would only change when a new

version of the application is deployed on the grid. It is a good practice to include a

version number in the identifier.

As a JPPFClient uses a number of system and network resources, it is recommended to

use it as a singleton. It is designed for concurrent use by multiple threads, which makes

it safe for use with a singleton pattern. It is also recommended to release these

resources when they are no longer needed, via a call to the JPPFClient.close() method.

The following code sample illustrates what is considered a best practice for using a

JPPFClient:

 public class MyApplication {
// singleton instance of the JPPF client

41

 private static JPPFClient jppfClient = new JPPFClient();

// allows access to the client from any other class
 public static JPPFClient getJPPFClient() {
 return jppfClient;
 }

 public static void main(String...args) {
// enclosed in a try / catch to ensure resources are properly released
 try {
jppfClient = new JPPFClient();

// ... application-sepcific code here ...
 } finally {
// close the client to release its resources
 if (jppfClient != null) jppfClient.close();
 }
 }
 }

5.3.8. Submitting a job

To submit a job, JPPFClient provides a single method:

 public List<JPPFTasks> submit(JPPFJob job)

This method has two different behaviors, depending on whether the job is blocking or
non-blocking:

i. Blocking job: the submit() method blocks until the job execution is complete. The
return value is a list of tasks with their results, in the same order as the tasks that
were added to the job.

ii. Non-blocking job: submit() returns immediately with a null value. It is up to the
developer to collect the execution results by the means of a TaskResultListener set
onto the job (see section Non-blocking jobs).

5.3.9. Cancelling a job

The ability to cancel a job is provided by JPPFClient's superclass
AbstractGenericClient, which provides a cancelJob() method, defined as follows:

// superclass of JPPFClient
 public abstract class AbstractGenericClient extends AbstractJPPFClient {
// cancel the job with the specified UUID
 public boolean cancelJob(final String jobUuid) throws Exception;
 }

This method will work even if the client is connected to multiple drivers. In this
case, it will send the cancel request to all the drivers.

42

5.3.10. Receiving notifications for new and failed

connections

The JPPF client emits an event each time a new connection is established with a server.
It is possible to receive these events by registering an implementation of the listener
interface ClientListener with the client. Since the connections are generally established
during the initialization of the client, i.e. when calling its constructor, JPPFClient provides
a different form of the two constructors we have seen in Creating and closing a
JPPFClient :

// Initialize with the specified listeners and a generated uuid
 public JPPFClient(ClientListener...listeners)
// Initialize with the specified listeners and user-defined uuid
 public JPPFClient(String uuid, ClientListener...clientListeners)

It is also possible to add and remove listeners using these two more "conventional"
methods:

// register a listener with this client
 public void addClientListener(ClientListener listener)
// remove a listener from the registered listeners
 public synchronized void removeClientListener(ClientListener listener)

Here is a sample ClientListener implementation:

 public class MyClientListener implements ClientListener {
 @Override
 public void newConnection(ClientEvent event) {
// the new connection is the source of the event
 JPPFClientConnection connection = event.getConnection();
 System.out.println("New connection with name " + connection.getName());
 }

 @Override
 public void connectionFailed(ClientEvent event) {
 JPPFClientConnection connection = event.getConnection();
 System.out.println("Connection " + connection.getName() + " has failed");
 }
 }

 ClientListener myClientListener = new MyClientListener();
// initialize the client and register the listener
 JPPFClient jppfClient = new JPPFClient(myClientListener);

43

6. TESTING AND RESULT ANALYSIS

This Chapter shows the test cases designed to test the overall functionality of the

system.

6.1 Testing

Testing not only maintains the software and system quality but also improves over all

usability and stability of the project. At different stages of development suitable testing

techniques were used to ensure product worked accurately and efficiently. Almost all the

errors detected during testing were removed.

The overall approach of this test plan is Gray Box testing i.e. hybrid of Black Box and

White Box testing. Testing approach will be same for all features of the system.

Test case no.1

Name: Login to Server.

Description: To test the login functionality to Server or Establish SSH Connection

to Server.

Precondition: System shall be correctly installed and working.

Steps:

i. For Windows user enters values required by Putty.

ii. For UNIX user go in to “bash” mode write SSH command.

iii. System will need password to login in to server.

Expected Output: Output should be according to the one expected by the user,

user shall logged into the system.

Result: Pass

44

Test case no.2

Name: Run Server

Description: It will test is Server is running.

Precondition: SSH connection to should be established.

Steps:

i. Go to directory where JPPF server is.

ii. Start server by following commands.

startDriver.bat (for windows)

startDriver.sh (for UNIX)

ant (used in both OS

Expected Output: Server should start running.

Result: Pass

Test case no.3

Name: Add Node

Description: It will test is node added alright.

Precondition: System shall be correctly installed and working and Server should

be up.

Steps:

i. Go to Directory where JPPF node is.

ii. Start node by following commands:

startNode.bat (for Windows)

startNode.sh (for UNIX)

ant (works with both)

Expected Output: Node should be added to server.

Result: Pass

Test case no.4

Name: Create FTP Session with Server

Description: It will test the FTP session is created and working alright.

Precondition: Server shall be correctly installed and working.

Steps:

45

i. For Windows User opens WinSCP.exe.

ii. User fills all fields required by WinSCP.

iii. For UNIX user open terminal, go to “bash” mode and write commands needed to

establish FTP session.

Expected Output: FTP session should be created with server and user can move

files.

Result: Pass

Test case no.5

Name: Run Matrix Multiplication Application.

Description: It will test is matrix multiplication running properly.

Precondition: Server should be running and at least one node is add to server.

Steps:

i. Go to directory where application is.

ii. Start application by following commands:

run.bat (for Windows)

run.sh (for Unix)

ant (works with both)

Expected Output: System should provide desired output of application.

Result: Pass

Test case no.6

Name: Shut Down Node

Description: It will test shutdown functionality of node.

Precondition: Server should be up and at least one node is added.

Steps:

i. User opens Admin UI.

ii. User selects tab “topology”.

iii. Then shutdowns particular node.

Expected Output: Node should be shutdown (stop working as part of cloud).

Result: Pass

Test case no.7

46

Name: Restart Node

Description: It will test restart functionality of node.

Precondition: Server should be up and at least one node is added.

Steps:

i. User opens Admin UI.

ii. User selects tab “topology”.

iii. Then restart particular node.

a. Expected Output: Node should be restarted.

Result: Pass

6.2 Results and Analysis

The Cloud Parallel Computing Using Unix OS has been developed to work most

efficiently in the Military College of Signals. It is supposed to save time of heavy

Mathematical Calculation and serving as a platform for application developer to develop

their own application using JPPF. It has to provide its users with the freedom to add

definitions of their own functions, and running their own application on a well configured

platform. This System gave excellent result once tested for an application of matrix

multiplication which involves hundreds of calculations.

6.2.1 Results

The System is tested using variable number of nodes and the performance of system by

running a simple 1000*1000 Matrix Multiplication Application are given below.

The execution time in seconds approximately

1 node: 31 to 33 seconds

2 nodes: 20 to 24 seconds

3 nodes: 11 to 16 seconds

47

6.2.2 Analysis

Since the system is based on Java which is an open source application development

tool and a simple language generation performance, reliability and usability are

important features. Performance is an important aspect of this system thus it is its

special operation. The system is kept simple and its use very easy. The system consists

of simple GUI to provide user with the ability to monitor the performance of all nodes

involved in executing the job. The experiment shows how much faster a large job can be

perform by adding more nodes to the task. Although communication time and network

delay plays an important part in total execution time.

48

Chapter 7

7. CONCLUSION AND FUTURE WORK

The goal of the project “Cloud Parallel Computing Using Unix OS” was to learn about

Unix and develop and configure a Cloud for running the applications parallel thus

reducing the overall execution time using Suns Ultra Sparc Workstations as Server Node

and Network Computers based on Heterogeneous OS as Slave Node. This project was

select to provide MCS students with an application platform which will serve as a basis

for them to further develop and run their own parallel applications.. We envisioned

developing a system which is dynamic and scalable on demand and which can be up

and running in minutes. Sun Ultra Sparc Workstation of MCS CSE Lab which were not

been ultilize uptil now are now fully operational and been used as JPPF server. We

received the goal at the end but faced certain issue related to the resources and lack of

help specific to the domain of cloud parallel computing. The limitations forced us to limit

our system to minimum possible workstation. But nevertheless our efforts have paid us

and we got a system in working which was never been developed in MCS.

A flexible and open source platform is well configured and ready to be used by any

application developers. Our team intends to give full help and support to this project and

any other team which is intended to further work on our project. We have our all hopes

that one day Pakistani nation will be among the advanced nations in the field of

information technology, research and science and Pakistan will gain its respect amongst

all modern nations of the world. Aamin!

49

References:

[1] Cloud Computing Explained: Implementation Handbook for Enterprises (John

Rhoton)

[2] Cloud Computing and SOA Convergence in Your Enterprise: A Step-by-Step Guide

(David S. Linthicum)

[3]Cloud Computing and SOA Convergence in Your Enterprise: A Step-by-Step Guide

(David S. Linthicum)

[4][Parallel Computing:Principles and Practice

[5]Parallel Computing: Principles and Practice

[5] https://computing.llnl.gov/tutorials/mpi/

[6] https://computing.llnl.gov/tutorials/mpi/

[7] http://www.jppf.org/doc/v2/index.php?title=Introduction

[8] http://en.wikipedia.org/wiki/Message_passing

[9] https://computing.llnl.gov/tutorials/mpi/

50

Appendix A: USER MANUAL

51

TABLE OF CONTENTS

Page #

1 System Overview ... 1-1
2 How To Start Server .. 2-1

2.1 Creat SSH Session With Server Via Putty .. 2-1
2.2 Run Server ... 2-2
2.3 Creat FTP Session With Server Via WinSCP .. 2-2

3 Adding Node .. 3-1
4 Run Application ... 4-1
5 Admin UI .. 5-1

5.1 Starting Admin UI ... 5-1
5.2 Shut Down or Restart Node ... 5-2
5.3 Set Thread Pool Size and Priority For Node ... 5-3
5.5 Charts Configuration .. 5-4

6 How to Install Ant .. 6-1

52

System Overview

1.0 System Overview:

The main purpose of the Cloud Parallel Computing is to perform computation of a

complex and time consuming task submitted by user. The job details submitted by the

user will include selection of number of workstations that the system should assign for

one job. The system then allocates workstations selected by the user, enabling the

Cloud Parallel Computing (CPC) to minimize time needed to perform that job.

The overall functions of CPC are

i. Submit Job

ii. View Job Status

iii. Delete/Change Job

iv. Initialize Job

v. Determine Execution Host

vi. Dispatch Job

vii. Add Node

viii. Restart/Shut Down Node

.

PreRequisutes:

JPPF works on any system that supports Java. There is no operating system

requirement, it can be installed on all flavors of Unix, Linux, Windows, Mac OS, and

other systems such as OS or other mainframe systems.

JPPF requires the following installed on your machine:

 Java Standard Edition version 1.6 or later, with the environment variable
JAVA_HOME pointing to your Java installation root folder

 Apache Ant, version 1.7.0 or later, with the environment variable ANT_HOME
pointing to the Ant installation root folder

 Entries in the default system PATH for JAVA_HOME/bin and ANT_HOME/bin

Installation:

53

The JPPF distribution includes a number of standalone modules or components, which

can be deployed and run independently from any other on separate machines, and/or

from a separate location on each machine

These modules are the following:

i. Administration and Monitoring console
ii. Server Distribution
iii. Node Distribution
iv. Client Application

These modules can be run from either a shell script or an Ant script. The Ant script is

always called "build.xml" and it always has a default target called "run". To run any of

these modules, simply type "ant" or "ant run" in a command prompt or shell console. The

provided shell scripts are named start<Component>.<ext> where Component is the

JPPF component to run (e.g. “Node”, “Driver”, “Console”) and ext is the file extension,

“bat” for Windows systems, or “sh” for Linux/Unix-like systems.

54

How To Start Server

2.0 How to Start Server

2.1 Creat SSH Session With Server Via Putty

 Steps:

i. Download Putty from
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

ii. Open Putty.exe.

iii. Write Host Name (or Ip address), port number and select connection type
SSH.

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

55

iv. After that Enter UserName and Password of account created at Server end.

2.2 Run Server

 Steps:

As SSH Session is created with server.

i. Go to directory where JPPF server is.

ii. Start server by following commands.
startDriver.bat (for windows)

startDriver.sh (for Unix)

ant (used in both OS)

2.3 Creat FTP Session With Server Via WinSCP

 Steps:

i. Download WinSCP from http://winscp.net/eng/download.php

ii. Open WinSCP.exe.

iii. Creat New session, select file protocol to FTP, enter Host name (or IP
address) and port number and enter UserName and Password of account
created at Server end.

http://winscp.net/eng/download.php

56

Adding Node

3.0 Adding Node

 Steps:

i. Go to Directory where JPPF node is.

ii. Start node by following commands:
startNode.bat (for Windows)

startNode.sh (for Unix)

ant (works with both)

57

Run Application

4.0 Run Application

 Steps:

i. Check Server is running.

ii. Check Nodes are added.

iii. Go to directory where application is.

58

iv. Start application by following commands:
run.bat (for Windows)

run.sh (for Unix)

ant (works with both)

59

Admin UI

5.0 Admin UI

5.1 Starting Admin UI

 Steps:

i. Go to directory where Admin UI is.

60

iii. Start Admin UI by following commands:
startconsole.bat (for Windows)

startconsole.sh (for Unix)

ant (works with both)

61

5.2 Shut Down or Restart Node

 Steps:

i. Go to topology tab.

ii. Right click on node, then select restart or shutdown node.

iii. Or left click on node just little up from node there is option to shutdown or
restart node.

62

5.3 Set Thread Pool Size and Priority for Node

 Steps:

i. Go to topology tab.

ii. Right click on any node.

iii. Slect option “set thread poll size”.

iv. Enter number of threads and threads priority.

63

5.4 Charts Configuration

 Steps:

i. Go to Charts Configuration tab.

ii. By default there are three tabs select any one of them.

iii. Then select any chart you want to configure.

iv. Then go to configuration box and change configuration as you wish.

v. Them update it or save it as new.

64

How to Install Ant

6.0 How to Install Ant

 Steps:

i. First download ant from
http://ant.apache.org/bindownload.cgi?PreferrPr=ftp://apache.mirrors.pair.com/

ii. Right click “My Computer” go to “Properties”.

iii. Go to “Advanced System Settings”, then go to “Advanced” tab, then Go to

“Environment Variables”

http://ant.apache.org/bindownload.cgi?PreferrPr=ftp://apache.mirrors.pair.com/

65

iv. Add new variable in “System variables”

v. Enter variable name and in value it address (directory where ant is located).

