Implementation
of
E-Mail via Phone

Undergraduate Degree Project BESE-I|
By
Ahmar Ghaffar (Project Leader)
Muhammad Usman Tahir

Project supervised by
Col. Dr. Muhammad Akbar

Dissertation to be presented as partial requirement for the award of

B.E. Degree in Software Engineering.

Military College of Signals

National University of Sciences and Technology, Rawalpindi.

In The Name Of Allah,
The Most Benevolent,
The Most Merciful.

To Our Parents.

Acknowledgments

We are grateful to Allah Almighty, for giving us the strength to visualize, undertake and

complete this project.

Our humble gratitude to our teacher and project supervisor Col. Dr. Muhammad Akbar, for
guiding and encouraging us through out the course of this project. We are thankful to him for
providing us with innovative ideas, project management techniques and constant moral

support.

We are very grateful to Dr. Masood-ul-Haque and Mr. Fakhar Hameed for providing
guidance, support and in depth knowledge to understand contemporary systems and their

problems.

We are thankful to al our friends for lively discussions, exchange of ideas and source of

encouragement during this project.

Finally, we would like to thank our parents and family members for their perseverance and

continued moral support, which helped us to get through hard times.

Abstract

This document has been prepared as a dissertation of final year degree project, to
be presented to MCS/NUST in partial requirement for the award of B.E. degree in
the discipline of Software Engineering.

This dissertation discusses E-Mail via Phone: An on-demand phone in service. It
encompasses the vision behind the project, the way its feasibility and requirements
were analyzed, the design was drawn and implementation took place. The aim of
the project was to implement an automated voice messaging system providing a
variety of features. Some of these features include recording voice messages for

other users a the server, listening to voice messages, and download e-mail

messages.

The research and subsequent development of this E-mail via Phone system was
carried out by Mr. Muhammad Usman Tahir and Mr. Ahmar Ghaffar under the

guidance and supervision of Col. Dr. Muhammad Akbar.

Project Specifications

Statement

E-Mail via Phone: Implementation of e-mail by phone and on demand phone-in services.

Development Environment/Tools

1. Microsoft Visual C++ 6.0.
2. Microsoft Speech SDK 4.0.
3. Microsoft TAPI.

4. Active Server Pages (ASP).

Development Languages

1. C++

2. HTML.

Platforms Supported

1. MSWindows 95, 98.
2. MSWindowsNT 4.0 with Service Pack 3.

3. MS Windows 2000.

System Modeling/Design

1. Unified Modeling Language (UML)
2. Rational ROSE.

3. OOD.

Table of Contents

ACKNOWLEDGMENTS ... s
ABSTRACT e s
PROJECT SPECIFICATIONS ... s

RSN 1N = 1= N
DEVELOPMENT ENVIRONMENT/TOOLS....ciiiiiiieiiittttieeeteeee e e e e eessissbaeeeeeasasesessssssssssseseeasesssssssssssssssssessasssesanns
DEVELOPMENT LANGUAGES.uuttuttieiteieeteeeeeeeteeteeeesssstesssasaaaseasaeaasseereseessrrrrantanneaesaaaaasaessesseesseereeees
PLATFORMS SUPPORTEDccevvvtttttttuuiiiaeaaeeeeeeeeseesteseessssssssssssssasaasseesesesseseesssssssssssnaseeseesssesseesessssrssnmnn.
SYSTEM MODELING/DESIGN.....ceciiiiiiieeittttteeeeeeeeeeeeieseestabassseesseeseessasssssabssseeseeassssssassssbasesseesaasssssbeserenesesesess

LINTRODUCTION ...t e e

1.1 WHAT ISE-MAIL VIA PHONE, AND WHAT CAN [T DO ettt e et e een e e e ee s
1.2 MINIMUM REQUIREMENTS FOR E-MAIL VIA PHONEucutttiiiiiieiee e e e eecteieeee e e e e e e e e e esavsvseseeee e e s e s e snasnenns
1.3 AREAS OF APPLICATIONiiieiuuutteeeereeeeeeesiasassssesseesesasesssassssssseseessasssssssssssssssesssasessessassssseesesssssassssssnns
S o U RSP

2 TEXT-TO-SPEECH

2L WHAT IS TEXT-TO-SPEECH? ..ttt eeiitttee ettt e e e ettt e e e ettt e e e e e tbee e e e s bbee e e e eabbe e e e e aanbeeeeesanbeeeeasnbeeannseeaesanneeaaean
2.2 WHY USE TEXT-TO-SPEECH?. ..ce et ittttie ettt ee e e ettt e ettt e e s aee e e e s aabee e e e s aabe e e e e aanbeeeeaaaseeeeeannsaeeesansnneaeeansnnean
2.3 USES OF TEXT-TO-SPEECHttttieiitiieeeaatieeeeaatteeeeaauteeeaaaaaseeaaeasbeeaaeasbeeeaesnbeeeeaaanseeeeaanneesannbeeaeaanneeaaean
2.4 GAMES AND EDUTAINMENT ...ttt tittttt e ettt ta e e ettt e e e s aatee e e e s astaeeeaaaaseeeeaaansseeaeaaneeaasanbbeeaesansbeeeesansseaesanneeaaean
2.5 HARDWARE AND SOFTWARE REQUIREMENTScutiitieitteeteeteesteesseessessssessseasseesseesseesssssssssssesseensesssesssns
2.6 TEXT-TO-SPEECH CONVERSIONuittiieiiiteeeaaauteeaeaaseeaasausaeaaaaassseasaaassseassaasseeassansaseassansseeessanssesssannsseessn
PG T A (R o = 12 U1 o o USSR
2.6.2 Homograph DiSambigUALIONeiiiiiiiiie et eie st e e e e see e st e e snee e e sneeesreeeenreee e
2.6.3 WO PrONUNCIATION.......eieiiiie ettt ettt et e e et e e st e et eeaste e e smae e e neeeaneeeenneeanaeeenneeeans
PR o 0o | ST SPRSURR SR
2.6.5 AUAIO PIAY BACK........eeiiiieiiieeitii ettt ettt et e e e et e e et e e smae e et e e anteeenneeearneeeareeeans
2 A T 7 £ SRR
2.7.1 Text-to-Speech VOICe QUANILYcuiieiiie ettt e e et e e et e e s e neeeanaeeen
2.7.2 Factors affecting Text-to-Speech V0ice QUAITY.........cceveiiiiiiiie e
2.7.3 Creating and Localizing Text-t0-SPeech VOICEScuviiuiiiiiieiie e
2.7.4 Where the ENgiNe COMES FIOMiiiiiii et eee et e e te e ee et e et e st e sneeeanteeesnaeeaneeeanaeeens
2.8 IMPLEMENTATION OF T TS ittt ettt ettt ettt ettt e e skt e e e e e st bt e e e e sanb e e e e e sante e e e ennee e anneeeaesanneeaaean

3 THE MICROSOFT SPEECH API ...

B L OVERVIEWceeiiieeeeeeettt e e et e e e e e e e e e e e e eee e et eee s s s s es bbb eaeseeaeeaaaaaeeeseeesesasssssaaas s aasaeseeaaeaesessesssssrssrnsrens
3.2 SPEECH APl ARCHITECTUREuuutttttiieieeeeeeeieieisssssseseeessessssassssssssssesaassessssassssssssssssesesessesssssrsssssreeeees
3.3 SAPI LEVELS OF ACCESScciiiieittttteeeteeeeeeseesesssbaaaeseseesaesssessabsbaseeaeaeaaeeassassssbabasseeeesseessssassssbasnsnresees
3.4 TTS OPERATION WITH LOW-LEVEL SPEECH OBJECTS...cceiiiiiiiiieiiiirtereeeeeseeeeesiesssssssssssrsssssssssssssssssesssssanns
3.5 AUDIO AND SHARING OBJECT S ..uuiitiiiieeeeieeeieeeeeeeeesttssst i aaaaasaeseaaaeaeseeeresessssttasrsaaaaasasseeaesssseeressssrrnrens
Y Ao [or =i I =G I URRUPRRSRTRRN
3.6.1 VOICE-TEXE ODJECL. ... eeee ettt ettt et e e st e e snee e e seeeteeesmneeenneeeanaeeans
3.6.2 VOICE-TEXt NOLITICALION SINK ...vvvvviiiiiiieii it e e e e e s e r e e e e e e e e s s eeaab b e b eaeeeeas
3.7 LOW-LEVEL TEXT-TOSPEECHciiiittititttttttitiiaeeaasaeeeeaaeeeeeeeeeessssastaasaaaaasaesaeaaeeesseeessssssssreeessrsrrnnrans
B 1Y = I S o =Tt USRS
3.7.2 Main NOTIICAION SINK.....ooiiiiiiiiiieiiie e e e e e e e s s e s st r e e e e e e e e e s e s sabrabreeeees
3.7.3 AUIO-DESLINALION ODJECLt iiiieeiieeet ettt ee st eenae e sneeeanaeeens
3.7.4 Audio-Destination NOtIfICAtION SINK.........cooiiiiiiiiiiiiiie e e e e e e e e s bbb reee s
3.7.5 BUfer NOTIFICATION SINKooiieiiiiiiiieee e et e e e e e et e e e e e e e s s b e e e e e e e eeaeas
3.8 SIGNIFICANCE IN E-MAIL VIA PHONEccciiiiieieeeeeettiiee et e e e e e e e ee et e e e s e e eeeaaeaaeeeeeseeessssens

A E-MAIL CLIENT .o e

4.1 WHY DO WE NEED AN E-IMAIL CLIENT?...ccvtttttttiiiiieieeeeeeeeeeeeeeeeeeeeeesesssasssssaaaaasaaseaeaesassesresesssssrrsssnnnnnnnnns
4.2 POST OFFICE PROTOCOL (POP3) ... iiiitieeiiiee et e siee sttt e ettt e seeeeateeesneeesseeessteesnseeesnseeessseesnseeesnseeansenenns

16
17

47

4.2.1 Connection EStabliISNMENTvviiiiiiieie e e e 48

A O o T U o S T T = O = 48
4.2.3 RESPONSES 1N POPS ...ttt ettt st et e e st e e st e e e st e e amee e e nneenteeesnneeenneeeaneeeans 48
S =Y (oI I =g LT L0 3 49

S5 TELEPHONY MODULE ...ttt ettt et e e e e e e e e s s e st a b e e e e e e e e e e e e s essesaaaees 59
5.1 TELEPHONY APPLICATIONS ..uuuuieetieeeeeeeeeeeeeeeeeesesstassssaaaaeseeseaassesseseesssssssssannnnnsaaesaesaeeasesseeseesssssssrsnnsnns 60
5.1.1 Voice Mail or Answering Maching SOftWArE.c.ooiiiriiie i e 60
5.1.2 ACCESSING DALADASES. ... eeeeeieieetiee ettt e et et e e et e e st e e nteeearte e e anee e e aeeeareennae e nneeeareeeans 60
LTI 0= 11 I (o 10 T PSRRI 60
5.2 HARDWARE AND SOFTWARE REQUIREMENTS.ccuuuuiiiiittteeeiettaseesisstasssssssssassssssssanssssssssnssssnssssesrssnnns 61
5.2.1 PrOCESSOF SPEEUueeieiiiie et e etee ettt e ettt e st e et e e et e e smee e e saeeeasteeesseeeeteeeaste e e seeeaneeeennbeeenseeennteeenraeas 61
LA Y LT 1 To] o PO SP TP 61
LT B 1 1= o o]) VA = g TSRS 61
5.3 APPLICATION DESIGN CONSIDERATIONSceevttttrtrttuutiiiaaeeeeeeeeeaeesesrerreessssssmsssssnsaeseesaeasssesseseessssssmmne. 62
5.3.1 MUILI-LING APPIHCALIONS.cciuiiiiiiiesie ettt st e et e st e e nne e e e aeeesreeenaeeesneeeaneeeans 62
5.4 TYPES OF TELEPHONY TODAY ...iiiiiiiiiiiiieietittiiiaeeaeeeeeeeeeeeeeeeeeesassssssaaaaaaaaseasaeaaaeesseressssssssseesssssssnnrans 62
5.4.1 Public Switched Telephony Network (PSTN)......coiiiiiiiriiiie e 62
5.4.2 Traditional "Computer Telephony (CT)" TEChNOIOQYccoiveeiiiieiiii et 63
LR 1 1T [T o] o PSPPSR 64
5. 4.4 INEINEt TEIEPNONY .. .eeiiiee ettt e st e e e e et e e snte e e nnee e et e e enteeenneeeenneens 66
ST 1Y Ko] 0] = Y £ T UO PRSP 67
5.6 THE INTELLIGENT NETWORKuiiiiiiietieeeeeeiiieeeeeeeesstssssaa i aaaaaesaseeeaasasseesessssssssssssssnnnaaasaseeesesesseeressssssnnnns 69
D A L =T O 1 10\ 70
B. L WHAT ISDTIMI? ..ottt ettt et ettt e e e s eeeeeeaeaeeee e e e s e e s s s ssabba s e e saaseaaaaaaseesesenesssrees 71
6.2 AT& T SPECIFICATIONS FOR TONE GENERATION: ..vuutuuuieeieeeeeeeeeeeeereeeesssssssssnsnsaaeseeseeessesseseresssssssmsnnmnn. 71
6.3 DTMEF TONE GENERATION.......ccccuuttteirieeeeeesieiaissssesereeeesesassasasssssssseraesssssssassssssssssesessseessesssssssssssreseees 72
6.3.1 Methods Of TONE GENEIALIONciiiiiiiiii ittt e e e e e e e s e e et bt e e e e e e e s e e s sesarbabreaeeeeeseessesanes 72
6.4 DTMF TONE DETECTIONttt ettt e e e e e e e e e et e e e e e e e e e e s e s ssasabaaasseeesaeeessessssssbassneeeseeas 77
6.4.1 Collecting Spectral Information Using Goertzel’s Algorithm...........ccccoviiiiiiiiieni e 77
OB = U To 11 Y O o <RSP SR 80
6.5 MODIFICATION IN GOERTZEL ALGORITHMeevttuitritiuiiiiiaaeeeeeeeeeaeeeeereeeeessssssmsssssnsaeseeseessssessesressssssmmne. 83
T REGISTRATION WEB SITE ... oottt ettt e e e e e e e s s e et bbbt e e e e e e e s sbbbataeeeeeeeeens 85
7.1 WHY DO WE NEED A REGISTRATION WEB SITE? .uuuuiiiiiiiiieieeieeeeeeeeeeettttese e s e e e e e e eaeeeeeeeesesaeeeseeeeessssssnnanns 86
7.2 ACTIVE SERVER PAGES. AN INTRODUCTIONuuuuuuieiieeeeeeeeeieeiereressssssssssssaaaesesseesesesseeeeesessesseesssssssssnmnn. 86
7.3 SOFTWARE DEVELOPMENT WITH ASP ...ttt e e e e e e e e e e e e e e e e e eeeasssaaanaaans 86
A N A = N N 87
T D FEATURES OF ASP...citittiiiiiiie it e ettt e e e e e e e e e e e e et ee e e e e e e e e et e e e e e se s s s s b s aaeseeeaeaaaeeseeseeessssrsssnnnnnn 87
7.6 INTERNET INFORMATION SERVER AND ASP DEVELOPMENT PLATFORMuciiieieieeieieeeiieeeeeeereeeeeeeesesssnnnens 88
7.7 IMPLEMENTATION OF THE WEB SITEcciiiiiiiieieeeitiitieeeaeseeeeeeeeeeeeeeeeeeessssssssasssnnaesaeseeaaeasseeeeeesssssssnnanns 89
8 E-MAIL VIA PHONE: SYSTEM DESIGN.....oooiiiiiiii ittt e et aene s 91
8.1 FINITE STATE IMACHINES. ...t ttuieeiieeeeeeeeeeeeeeeeeeeeetesttas i aaaeaaesaeeeaaaeasreeseesssssssaasssaanaassesaeaasseeseeressssrrnrnns 92
8.1.1 BOOT UP SEIVICES. ... eeeeiiieeiiie et ettt s ettt e ettt e et e et e et e e et e e smte e et e e anteeenneeeeneeeanteeennneeenneens 92
8.1.2 E-mail Download using POP3 CHENEc.ooiiiieiiee ettt 93
8.1.3 USer AULNOMIZAtION/USEE IMEINUvvviiiiiiieee ettt e e e e e s e e e a e e e e e e e e e s e e s sasabbbaaneeeeeeeas 94
8.1.4 MESSAYPE RECOITINGeeiitieeiiiie ettt ettt ettt e ettt e et e e st e e et e e sate e e nteeeenaeeeaneeeensenseeesmaeeenneeeanneeans 95
8.1.5 E-Mail Playback USING TTS . ..ottt sttt e e st e e et e e e e nne e enneeenneees 96
8.2 CLASS DIAGRAMSutttteeeee i ettt e e e e ee e ettt e e e e e aeeeeaeeaetaeeaaaaeaae e e e e e s e s s s s s baaa s e aasaasaeaaesaseeseeessssrsssnnnnnn 97
L T Lo P 410 T 97
LR OF- 1| I F- 12 o | 1= o 98
LR A OF- 1| I o F- 12 o | 1= o I 99
LI 1oAY Tt o = T | =T O 100
L RO] T O [7=1 1 T 101
L I D T L= R Y oL TR U PO SPP 102
LSRR U 1S = X =S 103
8.3.1 Connection EStabliISNMENTuviiiiiiieie e e 103
LR I O LY X1 1 g Lo 4= 1 o] o T 104

8.3 3 USEI IMIBIU ...ttt ettt ettt e e e e e e e e e e e eeeee e e et e s s as bbb bbb a e s e e eaaaeeeaseeeeaeeerens 105

8.3.4 MESSAYPE RECOIUETeeiiiieieeie ettt ettt s e bt e et e et e e st e e snte e et e e smteeenneeeanaeeeneeennaeas 106
8.3.5 IMESSAYE PIAYEK ... eieeiie ettt ettt et e e st e et e et e e st e e ae e e e r et e nnte et e e nnte e nnaeas 107
8.3.6 Delete CONNECLION IMBINUeeiiiieeiiie ettt et et e et e et e et e e et e e snaeeanneeesneeeenneeas 108
8.3.7 CONNECLION DIBLION. ... ittt e ettt et e et e e snee e e saeeeanaeeeneeenneeas 109
8.3.8 BACK 10 BASICS....eeeeiteeeiieeeitie et e ettt et s et e e et e ettt et e et e e et e nn e e et e e nnte e e nne e e enteeeneeennaeas 110
LT e (=0 T 1514 =1 [0 SRR 111
9 E-MAIL VIA PHONE: IMPLEMENTATIONooiiiiiiiiiiieee ettt 112
LS R I PO P TR P PRSPPI 113
0. 1.1 WINUOWCIASS ..ottt ettt et e e et e e s nte s e et e e et e e emt e e et e e amte e e nnteeeneeeanseeennneaennnens 113
9.1.2 INVISIDIEWINAOWSINK ...ttt et et e et e e et e e nna e e enneeenneeeenneeas 114
0.1.3 INVISIDIEWINTOW. ...ttt et e et e e et e e nnte e et e e nneeeenneeenneeas 114
0. 1.4 CLAUAIESSCAPS - eenveeeirieeanieeeateeestteeateeesaeasssteeateeesseeeesseeeasteeeaseeeenseeeasaeeeseeasseesneeeanseeennnensnneens 114
TSR O3 A= T T o] (-] B | - USSR 116
0.1.8 CLAPPSINK ...tttk bt bkt b bbbt et an e b e 117
0,17 CHCAIL. .t h bbbt b bbbt 117
TSI U o 1o Y/ 1=1 1 g To o L PSR 118
0.1 LN ettt b bR E Rt b e bt bt bt e bbb n e 119
IR O 0 @ (=] 0]V 1= U =] TSR 123
0,111 CHCAIIINTO ...t eb ettt b e btk e b et ear ettt et nne et 123
0.1.02 CHCAIILISE ...ttt bbbt b et b bbbt b e na e bbb nne et 126
0.1.13 CHCAIISHNK. ...ttt bbbttt b e bbb e bt eat ettt b e ne et 127
TN O O (=11 S = (1SR 127
I 0 T (o1 1 T TSP 128
0.1.16 CHDEVICEID ...tttk b ettt bt ekt e bbbttt et b et e nne et 129
0.1.17 CHDIAISTIINGSINKee ettt ettt e et e et e et e e st e e sste e et eesneeeesneeeanteeenneeeenneaenneeas 130
TR N R O (D= 133 oo PR 130
0.1.19 CUDIMI ...ttt bbbt b E et b bbbt b s 131
0.1.20 THMBE ettt et b ekt b ek h bbb Rt E e e R e AR bt bbbt e bt e nan e n e 131
TN I O AT oY= S PUB 132
TN 0 I 141] 1 PSR 132
0.1.23 CEWAVE ...ttt b ke b e h bbbttt E bt R e Rt Rt bbbt et e nn e 132
TN I T o T =TT 1 OSSP 133
0.1.25 LINETAPIRECOVEN ..ottt ettt ettt ettt et e et e e st e e sst e e ekt eesnteeennteeenteeenneeeensenennaeas 134
9.1.26 PRONETAPIRECOVET ... veeeiiiieetiee et ste ettt et e e e st e e et e e ente e e sntee et e e enteeennteeenteeenneeeenseaennaeas 134
TR A O 1 (=0 D] T P B 135
TN O (1= B O T oL USSR 135
0.1.29 CHLINESINK ...ttt b bbbt h bttt b bttt eb e n e b e b ne e 138
0.1.30 CHPRIONE ...ttt bbbt bbbttt b e nn s 138
TN N O (o o O T oL OTR 141
TR 7 @ 1 o T [OB 143
TN R FC T @ 1 o o) 0 TSR 144
TR R 7 O {01V T [T o I SR 144
TN L O I =T] P (=T o3 TSR 145
9.1.36 CLTIaNSIAtEOULPUL. eeieiee ettt et e et e et e et e e s s e e et e e st e e sneeeeaeeeneeennseeanneeans 147
S A [N =TT 7. o N SRR PRR 148
0.2, CPRILEST ..tttk ettt bbbt b bt e bbb bt 148
0.2, 2 HCALL ..t b bbbtk a bbbt bbbttt b e b nn s 148
R N O o L 7Y 4 - | TP R PP 148
0.2 4 HLINE ...ttt a et ettt b bt e b et h e Rttt b e bt et 148
0. 2.5 HPHONEttt bbbt a bbbt e bt e bt e kb e e b bt eab ettt et e nne et s 148
0.2.8 HLINEAPP ...ttt bbbt h ettt b e bttt e e be e eat e sttt et e e nneeneees 148
0.2.7 HPHONEAPPttt bbbt ettt b e bttt e sbe e nnb e s 148
0. 2.8 WAVEHDR ...ttt eh et b e a bbbttt e bt kbbbt a et b e b 148
9.2.9 WAVEFRORMATEX ...ttt ittt etttk h ettt et b ek e bt et bbb e s b e nneenne et 148
9.2 10 HWAVEIN. ...ttt bbbttt ettt b e bbb e e be e e st e s et et e e nneentees 148
0.2. 11 HWAVEOUT ...tttk b bbbt h e h bt bt ekt e bt e bttt e sbeennnennb e s 148
1SR I 0T = Y PR RITTSUSRR 149
T TN I 1V o o = T 1= USRI 149

0.3.2 CPOP3MESSAGEeeeeeeiutteiees ettt e e ettt e e ekttt e e s et bt e e e et bt e e e e e abe e e e e e b b et e e e e b b et e e e eabb et e bbb e e e e e nbb e e e e anrreae s 150

0.3.3 CPOP3SOCKEL. ...ttt ettt e et et e st e e b e e e skt e e ase e e et e e e st e e st e e enne e e nnbeeene e e nnreeennaes 150
eI R @ n o o e O] T T ox 1 To] o PSR 151
LT TR T O3 1= 1 10 PR 152
eI G T @A Lo T Tt 1Y AN o o SR 153
0.3.7 CVOICEMVIBW ...ttt ettt ettt e et e e ettt e s n e et e e et e e smte e e nteeeemteeennteeenteeenneeeansenennneas 155
0.3.8 CVOICEMDOC ...ttt ettt ettt et e e e e e st s e et e e et e e emte e et e e emteeennteeenneeeanseeennteeenneeas 155
0.3.9 CADOUIDIG. ...ttt ettt btk h Rt b et b et 156

10 FUTURE EXPANSION POSSIBILITIESooiiiiiiiiiiie e 157
F0.2 NEWS UPDATE ... tieeeteteetieeesteeeeteeaseaesnteeesseeesaseaeasteesaseanseeeaseeesseeesmseeanseeeamseeeaseeeanseeennseeanseeennsesannens 158
10.2 WEATHER FORECAST ...ttt iteteeiteesteeessteeaateeessseeasseeesmseeesseeeanseeeanseesnseeeantesaaneeesnseeaaeeennseesseeesnseeennees 158
10.3 SPORTS INEWSeeeiiieeeeiee et e et e e stee e s te e ettt e smteeessaeesseeesmteeanseeeamseeaseeeanseeeneeeanseeeasaeesnneeesnseeenneeesnnes 158
F0.4 FLIGHT TIMINGS. ... ttetee ittt e ettt e e e ettt e e e ekttt e e e e bbe e e e e st be e e e e e atbe e a2 e aasee e e e aasaeeeaeaabbeeeeesmnbeeaeeannbeaaeannnneaanan 159
10.5 ON LINE TRANSACTION PROCESSINGceeeiuuteeeeaauereaeaaieetasaautaeaasaassseaesaansseassassseassansseessssnssesssasnsseesss 159
11 CONCLUSION. ...ttt ettt b ekt h e bt e s bR bt e bt e bt e kb e e beenab e et e e bt e beenbeenee e 160
12 BIBLIOGRAPHY ..ottt b bbbt st b e e bt e bttt et nnnennre e 161
L3 APPENDIX ...ttt ettt bbbt bt bR ettt et nneentr e 165
13.1 POST OFFICE PROTOCOL —VERSION 3 (POP3) RFC.......cooiiiiiiiieeiie et 165
LA INDEX ..ottt ettt h et b ekt E R Ao E e b e R Rt R Rt b bttt e b e b e 180

10

1 Introduction

11

The basic idea behind an E-mail via Phone system is to make a number of useful
services available to the user through the normal telephone set. These services can
include E-mail by phone, News update, Weather forecast, Sports news, Personalized

messaging and many more.

The service that will be most useful in this context is the e-mail by phone facility
that will enable the users to check their mail messages through a telephone from
anywhere. This facility can also include the option of personalized messaging in
which a user can record his message for another person at the server maintained by
the Phone-In Service Provider (PSP). This message can later be retrieved by the
person, for whom it isintended, by calling the PSP's number.

1.1 What Is E-Mail via Phone, and What Can It Do?

E-mail via Phone is a service that enables a user to access voice mail and e-mail
messages using any touch-tone phone. E-mail via Phone "reads’ the new e-mail
messages using text-to-speech technology. E-mail via Phone also serves as a voice

mail system, recording callers messages and making them available by phone.

Valid PIN codes

Registration Web Site

E-Mail Server

Block Diagram of the System

12

1.2 Minimum Requirements for E-Mail via Phone

Intel Pentium Processor (100 MHz min).

Voice Modem.

Touch Tone Telephone.

Microsoft Windows 9x,NTx. Operating System.

Microsoft Speech Engine.

1.3 Areas of Application

The areas of application of such a service are as vast as the combined domain of
Computer Telephony and Text-to-Speech. An existing PSTN, Internet or Internet
Telephony Service Provider can add e-mail by phone facility to its existing services

and provide its customers with an advanced mode of communication.

A start-up company can aso initiate its business with this service. Many dot.com
companies in U.S. are offering similar services. Notable among them are JFAX,
ShoutMail, MailCall, eVoice, eFax, CallWave, Message Click, OneBox, uReach,
Pagoo, Cool Speak etc.

With the advent of PTCL Personal Mail Box service, and its subsequent success, it
can easily be said that providing this service on a commercial basis in Pakistan is
monetarily feasible plan. Two companies in Karachi have started similar servicesin

the last few months.

13

1.4 Security

One of the most important issues regarding an interactive user application is
Security. The syndicate has tried to assure the secure transaction of e-mail
information to the user by introducing a registration procedure from its Registration
Website. Each user is assigned a unique PIN code. Only a user having avalid PIN

code is allowed to access the system and listen to his/her e-mails.

14

2 Text-to-Speech

15

2.1 What is Text-to-Speech?

Text-to-speech is a process through which text is rendered as digital audio and then
"spoken." Most text-to-speech engines can be categorized by the method that they
use to translate phonemes into audible sound. Some of the widely used TTS systems

are summarized below:

Concatenated Word. Although Concatenated Word systems are not really
synthesizers, they are one of the most commonly used text-to-speech systems
around. In a concatenated word engine, the application designer provides
recordings for phrases and individual words. The engine pastes the
recordings together to speak out a sentence or phrase. As in voice-mail
systems the engines speaks, "[You have] [three] [new messages].” The

engine has recordings for "Y ou have", al of the digits, and "new messages".

Synthesis. A text-to-speech engine that uses synthesis generates sounds
similar to those created by the human vocal cords and applies various filters
to simulate throat length, mouth cavity, lip shape, and tongue position. The
voice produced by synthesis technology tends to sound less human than a
voice produced by diphone concatenation, but it is possible to obtain
different qualities of voice by changing afew parameters. IBM isworking on

such systems for the last twenty-five years.

Subword Concatenation. A text-to-speech engine that uses subword
concatenation links short digital -audio segments together and performsinter-
segment smoothing to produce a continuous sound. In diphone
concatenation, for example, each segment consists of two phonemes, one that
leads into the sound and one that finishes the sound. Thus, the word "hello"

16

consists of the phonemes, h eh | og and the corresponding subword segments
are silence-h h-eh eh-| |-ceesilence.

Subword segments are acquired by recording many hours of a human voice and
painstakingly identifying the beginning and ending of phonemes. Although this
technique can produce amore realistic voice, it takes a considerable amount of work
to create a new voice and the voice is not localizable because the phonemes are

specific to the speaker's language.

The syndicate has decided to use Subword concatenation technique in the Text-to-
Speech modul e of this project. All phonemes recorded in human voices are available
through Microsoft’s Speech Application Programming Interface (SAPI) 4.0. Text is
converted to speech with the concatenation of theses phonemes.

2.2 Why Use Text-to-Speech?

Text-to-speech should be used to audibly communicate information to the user,
when digital audio recordings are inadequate. Generally, text-to-speech is better than

audio recordings when:
1. Audio recordings are too large to store on disk or expensive to record.

2. Audio recording isimpossible because the application doesn't know ahead of
time what it will speak.

Text-to-speech was used in this project because every time anew mail arrives, it has
to be automatically converted in speech to be accessed by the user. TTS was the

only available and viable option to implement this feature.

17

2.3 Uses of Text-to-Speech

Text-to-speech also offers a number of benefits. In general, text-to-speech is most
useful for short phrases or for situations when prerecording is not practical. Text-to-

speech has the following practical uses:

Reading dynamic text. Text-to-speech is useful for phrases that vary too
much to record and store using all possible aternatives. For example,
speaking the time is a good use for text-to-speech, because the effort and

storage involved in concatenating all possible timesis not manageable.

Proofreading. Audible proofreading of text and numbers helps the user

catch typing errors missed by visual proofreading.

Conserving storage space. Text-to-speech is useful for phrases that would
occupy too much storage space if they were pre-recorded in digital-audio

format.

Notifying the user of events. Text-to-speech works well for informational
messages. For example, to inform the user that a print job is complete, an
application could say "Printing complete” rather than displaying a message
box and requiring the user to click OK. This should be used for non-critical
notifications in case the user turns the computer's sound off or is out of

hearing range.

Providing audible feedback. Text-to-speech can provide audible feedback
when visual feedback is inadequate or impossible. For example, the user's
eyes might be busy with another task, such as transcribing data from a paper
document. Usersthat have low vision may rely on text-to-speech astheir sole
means of feedback from the computer. Thisisthe foremost reason for which

Text-to-speech was incorporated in this project.

18

2.4 Games and Edutainment

Text-to-speech is useful in games and edutainment to alow the characters in the
application to "talk" to the user instead of displaying speech balloons. Of course, it's
also possible to have recordings of the speech. An application would use text-to-

speech instead of recordings in the following cases:

It's always possible to use concatenated word/phrase text-to-speech to
replace recorded sentences. The application designer can easily pass the

desired sentence strings to the text-to-speech engine.

Synthesized text-to-speech inevitably sounds unnatural and weird. However,
it's very good for character voices that are supposed to be robots, aliens, or

maybe even foreigners.

If the application cannot afford to have recordings of all the possible dialogs
or if the dialogs cannot be recorded ahead of time, then text-to-speech is the

only aternative.

2.5 Hardware and Software Requirements

A speech application requires certain hardware and software on the user's computer
to run. These hardware and software requirements should be considered when

designing a speech application:
Processor speed. Text-to-speech engines currently on the market typically
require a486/33 (DX or SX) or faster processor.

Memory. On the average, text-to-speech uses about 1 MB of RAM.

Sound card. Almost any sound card will work for speech recognition and
text-to-speech, including Sound Blaster™, Media Vision™, ESS
Technology, cards that are compatible with the Microsoft® Windows Sound

System, and the audio hardware built into multimedia computers.

Speakers. The user can choose between wearing headphones and using
freestanding speakers. Headphones are useful in office cubicles. Some

19

companies manufacture a combination headphone and microphone that can

also be used for telephone conversations.

Operating system. The Microsoft Speech application-programming

interface (API) requires either Windows 95 or Windows NT version 4.0.

Text-to-speech engine. Text-to-speech software must be installed on the
user's system. Many new audio-enabled computers and sound cards are
bundled with speech recognition and text-to-speech engines. As an
alternative, many engine vendors offer retail packages for speech recognition

or text-to-speech, and some license copies of their engines.

2.6 Text-to-Speech Conversion

Text-to-speech fundamentally functions as a pipeline that converts text into PCM

digital audio. The elements of the pipeline are:

1. Text normalization

2. Homograph disambiguation
3. Word pronunciation

4. Prosody

5. Concatenate wave segments

2.6.1 Text Normalization

The "text normalization" component of text-to-speech converts any input text into a
series of spoken words. Trivially, text normalization converts a string like "John
rode home." to a series of words, "john", "rode", "home", along with a marker
indicating that a period occurred. However, this gets more complicated when strings
like "John rode home at 23.5 mph", where "23.5 mph" is converted to "twenty three

point five miles per hour". Here’'s how text normalization works:

20

First, text normalization isolates words in the text. For the most part thisis astrivia
as looking for a sequence of alphabetic characters, allowing for an occasional
apostrophe and hyphen.

Text normalization then searches for numbers, times, dates, and other symbolic
representations. These are analyzed and converted to words. (Example: "Rs.54.32"
is converted to "fifty four rupees and thirty two paisas.") Someone needs to code up
the rules for the conversion of these symbolsinto words, since they differ depending
upon the language and context.

Next, abbreviations are converted, such as"in." for "inches’, and "St." for "street" or
"saint". The normalizer will use a database of abbreviations and what they are
expanded to. Some of the expansions depend upon the context of surrounding
words, like "St. John" and "John St.".

Once the text has been normalized and simplified into a series of words, it is passed

onto the next module, homograph disambiguation.

2.6.2 Homograph Disambiguation

The next stage of text-to-speech is called "homograph disambiguation.” Often it’'s
not a stage by itself, but is combined into the text normalization or pronunciation
components. It has been separated out since it doesn’t fit cleanly into either.

In English and many other languages, there are hundreds of words that have the
same text, but different pronunciations. A common example in English is "read,"
which can be pronounced "reed" or "red" depending upon it's meaning. A
"homograph” is a word with the same text as another word, but with a different
pronunciation. The concept extends beyond just words, and into abbreviations and
numbers. "Ft." has different pronunciations in "Ft. Wayne" and "100 ft.". Likewise,

the digits "1997" might be spoken as "nineteen ninety-seven" if the author is talking

21

about the year, or "one thousand nine hundred and ninety seven" if the author is
talking about the number of people at a concert.

Text-to-speech engines use a variety of techniques to disambiguate the
pronunciations. The most robust is to try to figure out what the text is talking about
and decide which meaning is most appropriate given the context. Once the right

meaning is known, it's usually easy to guess the right pronunciation.

Text-to-speech engines figure out the meaning of the text, and more specifically of
the sentence, by parsing the sentence and figuring out the part-of-speech for the
individual word. This is done by guessing the part-of-speech based on the word
endings, or by looking the word up in alexicon. Sometimes a part of speech will be
ambiguous until more context is known, such as for "read". Disambiguation of the

part-of -speech may require hand-written rules.

Once the homographs have been disambiguated, the words are sent to the next stage

to be pronounced.

2.6.3 Word Pronunciation

The pronunciation module accepts the text, and outputs a sequence of phonemes,
just like a dictionary. To get the pronunciation of a word, the text-to-speech engine
first looks the word up in it’s own pronunciation lexicon. If the word is not in the

lexicon then the engine reverts to "letter to sound" rules.

L etter-to-sound rules guess the pronunciation of aword from the text. They’re kind
of the inverse of the spelling rules taught in school. There are a number of
techniques for guessing the pronunciation, but the algorithm described here is one of

the more easily implemented ones.

22

The letter-to-sound rules are "trained" on alexicon of hand-entered pronunciations.

The lexicon stores the word and it’ s pronunciation, such as:

helloheh | oe

An agorithm is used to segment the word and figure out which letter "produces"
which sound. The "h" in "hello" produces the "h" phoneme, the "€" produces the
"eh" phoneme, the first "I" produces the "I" phoneme, the second "I" nothing, and
"0" produces the "o€" phoneme. Of course, in other words the individua letters

produce different phonemes. The "€" in "he" will produce the "ee" phoneme.

Once the words are segmented by phoneme, another algorithm determines which
letter or sequence of letters is likely to produce which phonemes. The first pass
figures out the most likely phoneme generated by each letter. "H" amost always
generates the "h" sound, while "0" almost always generates the "ow" sound. A
secondary list is generated, showing exceptions to the previous rule given the
context of the surrounding letters. Hence, an exception rule might specify that an "o"
occurring at the end of the word and preceded by an "I" produces an "o€e" sound. The

list of exceptions can be extended to include even more surrounding characters.

When the | etter-to-sound rules are asked to produce the pronunciation of aword they
do the inverse of the training model. To pronounce "hello", the letter-to-sound rules
first try to figure out the sound of the "h" phoneme. It looks through the exception
table for an "h" beginning the word followed by "€"; Since it can’t find one it uses
the default sound for "h", which is "h". Next, it looks in the exceptions for how an
"e" surrounded by "h" and "I" is pronounced, finding "eh". The rest of the characters

are handled in the same way.

This technique can pronounce any word, even if it wasn't in the training set, and
does a very reasonable guess of the pronunciation, sometimes better than humans. It
doesn’'t work too well for names because most names are not of English origin, and
use different pronunciation rules. (Example: "Usman" is pronounced as "uz-h-man"

by anyone that doesn't know it is Arabic.) Some letter-to-sound rules first guess

23

what language the word came from, and then use different sets of rules to pronounce
each different language.

Word pronunciation is further complicated by people's laziness. People will change
the pronunciation of a word based upon what words precede or follow it, just to
make the word easier to speak. An obvious example is the way "the" can be
pronounced as "thee" or "thuh. A commonly used American phrase such as "What

you doing?" sounds like "Wacha doin?"

Once the pronunciations have been generated, these are passed onto the prosody

stage.

2.6.4 Prosody

Prosody isthe pitch, speed, and volume that syllables, words, phrases, and sentences
are spoken with. Without prosody text-to-speech sounds very robotic, and with bad

prosody text-to-speech sounds like it’s been drunk.

The technique that engines use to synthesize prosody varies, but there are some

general techniques.

First, the engine identifies the beginning and ending of sentences. In English, the
pitch will tend to fall near the end of a statement, and rise for a question. Likewise,
volume and speaking speed ramp up when the text-to-speech first starts talking, and

fall off on the last word when it stops. Pauses are placed between sentences.

Engines also identify phrase boundaries, such as noun phrases and verb phrases.
These will have similar characteristics to sentences, but will be less pronounced. The
engine can determine the phrase boundaries by using the part-of-speech information
generated during the homograph disambiguation. Pauses are placed between phrases

or where commas occur.

24

Algorithms then try to determine which words in the sentence are important to the
meaning, and these are emphasized. Emphasized words are louder, longer, and will
have more pitch variation. Words that are unimportant, such as those used to make
the sentence grammatically correct, are de-emphasized. In a sentence such as "John
and Bill walked to the store,” the emphasis pattern might be "JOHN and BILL
walked to the STORE." The more the text-to-speech engine "understands’ what’'s

being spoken, the better its emphasis will be.

Next, the prosody within aword is determined. Usually the pitch and volume rise on
stressed syllables.

All of the pitch, timing, and volume information from the sentence level, phrase
level, and word level are combined together to produce the final output. The output
from the prosody module is just a list of phonemes with the pitch, duration, and

volume for each phoneme.

2.6.5 Audio Play Back

The speech synthesis is almost done by this point. All the text-to-speech engine has
to do is convert the list of phonemes and their duration, pitch, and volume, into
digital audio.

Methods for generating the digital audio will vary, but many text-to-speech engines
generate the audio by concatenating short recordings of phonemes. The recordings
come from areal person. In a simplistic form, the engine receives the phoneme to
speak, loads the digital audio from a database, does some pitch, time, and volume
changes, and sends it out to the sound card.

It isn't quite that simple for a number of reasons. Most noticeable is that one

recording of a phoneme will not have the same volume, pitch, and sound quality at

25

the end, as the beginning of the next phoneme. This causes a noticeable glitch in the
audio. An engine can reduce the glitch by blending the edges of the two segments
together so at their intersections they both have the same pitch and volume.
Blending the sound quality, which is determined by the harmonics generated by the

voice, is more difficult, and can be solved by the next step.

The sound that a person makes when he/she speaks a phoneme, changes depending
upon the surrounding phonemes. If we record "cat" in sound recorder, and then
reverse it, the reversed audio doesn't sound like "tak", which has the reversed
phonemes of cat. Rather than using one recording per phoneme (about 50), the text-
to-speech engine maintains thousands of recordings (usually 1000-5000). Ideally it
would have all possible phoneme context combinations recorded, 50 * 50 * 50 =
125,000, but this would be too many. Since many of these combinations sound
similar, one recording is used to represent the phoneme within several different

contexts.

Even a database of 1000 phoneme recordings is too large, so the digital audio is
compressed into a much smaller size, usually between 8:1 and 32:1 compression.

The more compressed the digital audio, the more muted the voice sounds.

Once the digital audio segments have been concatenated they’re sent off to the
sound card, making the computer talk to the user at the phone who is calling the E-

mail via Phone system.

2.7 Limitations

2.7.1 Text-to-Speech Voice Quality

Most text-to-speech engines can render individual words successfully. However, as

soon as the engine speaks a sentence, it is easy to identify the voice as synthesized

26

because it lacks human prosody -- i.e., the inflection, accent, and timing of speech.
For this reason, most text-to-speech voices are difficult to listen to and require

concentration to understand, especially for more than afew words at atime.

Some engines allow an application to define text-to-speech segments with human
prosody attached, making the synthesized voice much clearer. The engine provides
this capability by prerecording a human voice and allowing the application
developer to transfer its intonation and speed to the text being spoken.

In effect, this acts as a highly effective voice compression algorithm. Although text
with prosody attached requires more storage than ASCII text (1K per minute
compared to a few hundred bytes per minute), it requires considerably |less storage

than pre-recorded speech, which requires at least 30K per minute.

2.7.2 Factors affecting Text-to-Speech Voice Quality

These factors also influence the quality of a synthesized voice:

Emotion. Although many text-to-speech engines can parse and interpret
punctuation, such as periods, commas, exclamation points, and questions, none of

the engines that are currently available can render the sound of human emotion.

Mispronunciation. Text-to-speech engines use a set of pronunciation rules to
trandate text into phonemes. This is fairly easy for languages with phonetic
alphabets, but it is very difficult for the English language, especialy if last names
are to be pronounced correctly. (Pronunciation rules seldom fail on common words,

but they almost always fail on names that are unusua or of non-English origin.)

If an engine mispronounces a word, the only way that the user can change the
pronunciation is by entering either the phonemes, which is not an easy task, or by

27

choosing a series of "sound-alike" words that combine to make the correct

pronunciation.

2.7.3 Creating and Localizing Text-to-Speech Voices

Creating anew voice for an engine that uses synthesis can be done relatively quickly
by altering a few parameters of an existing voice. Although the pitch and timbre of
the new voice are different, it uses the same speaking style and prosody rules as the

existing voice.

Creating a new voice for a text-to-speech engine that uses diphone concatenation
can take a considerable amount of work, because the diphones must be acquired by
recording a human voice and identifying the beginning and ending of phonemes,
which are specific to the speaker's language.

Whether a text-to-speech engine uses synthesis or diphone concatenation, the work
of localizing an engine for a new language requires a skilled linguist to design
pronunciation and prosody rules and reprogram the engine to simulate the sound of
the language's phonemes. In addition, diphone-concatenation systems require a new
voice to be constructed for the new language. As a consequence, most engines

support only five to ten major languages.

2.7.4 Where the Engine Comes From

Of course, for text-to-speech to work on an end user's PC the system must have a

text-to-speech engine installed on it. The application has two choices:

1. The application can come bundled with a text-to-speech engine and install it
itself. This guarantees that text-to-speech will be installed and also
guarantees a certain level of quality from the text-to-speech. However, if an

application does this, royalties will need to be paid to the engine vendor.

28

2. Alternatively, an application can assume that the text-to-speech engine is
already on the PC or that the user will purchase one if they wish to use text-
to-speech. The user may already have text-to-speech because many PCs and
sound cards will come bundled with an engine, or, the user may have
purchased another application that included an engine. If the user has no text-
to-speech engine installed then the application can tell the user that they need
to purchase a text-to-speech engine and install it. Several engine vendors

offer retail versions of their engines.

The syndicate has decided to prefer option 2 and assume that a text-to-speech
engine is aready on the PC running the application developed during this
project. Itsis recommended to install Microsoft SAPI Suite 4.0 before installing

e-mail via phone application.

2.8 Implementation of TTS

There are two basic technologies: speech recognition (SR) and speech synthesis,
depending on who is doing the talking, person or the computer. Speech synthesisis
commonly called "text-to-speech” or TTS, since the speech is usually synthesized

from text data. Figure 1 shows the architecture of atypical text-to-speech engine.

“The man thiuh hAN wia LIkt
tElked down e - - —» DOUN fibftee
akth 5t SIHKSTH street

ST

Abbreyiation Word Pronunciation Phoneme-to-

and acrorym Ermphasis dictionany sound
database FUles database

Figure 1 Text-to-Speech Engine

The process begins when the application hands the engine a string of text such as,
"The man walked down 56th St." The text analysis module converts numbers into

words, identifies punctuation such as commas, periods, and semicolons, converts

29

abbreviations to words, and even figures out how to pronounce acronyms. Some

acronyms are spelled out (MSJ) whereas others are pronounced as aword (NUST).

Text analysis is quite complex because written language can be so ambiguous. A
human has no trouble pronouncing "St. John St." as "Saint John Street,” but a
compuiter, in typically mechanical fashion, might come up with "Street John Street”
unless a clever programmer gives it some help.

Once the text is converted to words, the engine figures out what words should be
emphasized by making them louder or longer, or giving them a higher pitch. Other
words may be de-emphasised. Without word emphasis, or "prosody,” the result is a

monotone voice that sounds robotic.

Next, the text-to-speech engine determines how the words are pronounced, either by
looking them up in a pronunciation dictionary, or by running an algorithm that
guesses the pronunciation. Some text strings have ambiguous pronunciations, such
as "read." The engine must use context to disambiguate the pronunciations. The
result of this analysis is the original sentence expressed as phonemes. "Th-uh M-A-
Nw-au-I-k-tD-OU-Nf-ih-f-t-eeS-IH-K-S-TH s-t-r-ee-t".

Next, the phonemes are parsed and their pronunciations retrieved from a phoneme-
to-sound database that numerically describes what the individual phonemes sound
like. If speech were simple, this table would have only forty-four entries, one for
each of the forty-four English phonemes. In practice, each phoneme is modified
dlightly by its neighbours, so the table often has as many as 1600 or more entries.
Depending on the implementation, the table might store either a short wave
recording or parameters that describe the mouth and tongue shape. Either way the
sound database values are finally smoothed together using signal processing
techniques, and the digital audio signal is sent to an output device such as a PC

sound card and out the speakers to human ears.

Both text-to-speech and speech recognition involve quite a bit of processing, but
speech recognition is harder because it usually requires more processing for
equivalent user satisfaction. A few years ago, one needed a high-end workstation to

30

do speech recognition. Today, just about every new PC and even many older PCs
can handle speech. But Speech Recognition is not used in this project becauseitis a
vast research field in itself.

While the exact requirements vary from one speech engine to another, Figure 2
gives a rough idea of the hardware needed to run various kinds of speech
applications under Windows. The faster the CPU and the more memory available,
the higher the accuracy for speech recognition and the better the text-to-speech

sounds.

Figure 2 Speech Hardware Minimum Requirements

Technology CPU RAM
Discrete command and control

User speaks simple commands like "mail," "change time," "minimize." 386/33 500KB
Continuous command and control

User speaks complex commands, like "Send mail to Fred," "Change the time to ten 486/33 1MB

o'clock," and "Minimize the window."
Discrete dictation

Transcribes whatever the user says into a word processor. The user must pause 486/66 8MB

between words.

Continuous dictation

Transcribes natural speech into a word processor P6 16MB
Text-to-speech

Convert ASCII or Unicode strings to natural speech. 486/33 1IMB

A sound card, microphone, and speakers are also needed. Most speech engines will

work with any sound card. Some systems offload processing onto a DSP (digital

31

signal processor) chip that comes on some high-end sound cards, which cuts the
CPU speed requirement in half. Better microphones and speakers will also improve
things.

As speech has become more feasible on average PCs, vendors have been busy
developing and promoting their speech engines. Many multimedia PCs and sound
cards come bundled with speech software. Others vendors sell their engines as

standal one products. Some applications even come bundled with speech engines.

Unfortunately, as with any budding technology, the situation is a bit chaotic. Even
though they all support similar functionality, each speech engine hasits own specific
features and proprietary API. If one wants to use speech in one's application, one
first got to pick which engine to use, and write program for that engine. If a better
engine comes along, one’s out of luck. One will probably have to rewrite a program
substantially to use the other API. The syndicate has decided to limit themselves to
MS SAPI Suite 4.0 and the engine that comes with it.

32

3 The Microsoft Speech API

33

3.1 Overview

The Microsoft Speech API is specified as a collection of OLE Component Object
Model (COM) objects. Using OLE makes speech readily available to developers
writing in Visua Basic®, C/C++, or any other programming language that can
access OLE objects directly or through automation. The Speech APl requires
Windows 95 or Windows NT 3.51.

3.2 Speech API Architecture

As with other Windows Open Services Architecture (WOSA) services, the Speech
APl is intended as a standard interface that application developers and engine
vendors alike can code to. Programmers can write applications without worrying
about which engine to use, engine vendors can get instant compatibility with all
speech apps, and users gain the freedom to choose whichever speech engine meets
their budget and performance requirements. The situation is analogous to GDI,
which lets programs draw graphics without worrying about what kind of display
card or monitor the user has. Just like GDI, the Speech API provides escape hooks to

access proprietary engine features when we need to do something special.

3.3 SAPI levels of access

The Speech API offers two levels of access: high-level objects designed to make
implementation easy, and low-level objects that offer total control but make us do a
little more work. If all a program does is listen for a few voice commands and utter
some simple phrases, one can use the high-level objects. To do more sophisticated

stuff, one needs the low-level.

The high-level objects, provided by Microsoft, don't do any SR or TTS themselves,
they just cal the low-level objects to do the work. The low-level objects are
provided by the speech engine vendor, just like the video and sound card drivers that
come with display or sound card. In our case, the engine is provided by Microsoft as
well.

Figure-3 describes the relationship between MS SAPI and third party engines,
which too is provided by Microsoft in this project:

0 (] Micmsuft
voice Text Yaice Cammands E' P"E“’El

:

Speech Recognition
aharing Object

Third-party
[ow-|Evel
TTS]] AP

Engine #2 Engine #1 Engine #2

Figure 3 Using the Low-level Speech API

Figures 4 and 5 show the main OLE objects and interfaces that constitute the
Speech API. The objects used by the syndicate voice text for text-to-speech.
Microsoft also provides a speech recognition-sharing object that lets severd

applications share engines.

Figure 4 High-level Speech Objects

Voice Commands Object

IUnknown Provide access to other interfaces in the object.
IVoiceCmd Simple command and control speech recognition. Member functions let the
app create Voice Menu objects.

IVCmdAttributes Controls the attributes of the speech recognition engine such as the automatic

gain, speaker name, and recognition threshold.

IVCmdDiaogs Displays Windows dialog boxes that let the user configure the speech recognition

engine, such as training.

IVCmdNotifySink (Supplied by the app.) Used to notify the app when a command is recognized, the

35

user is speaking too loudly or softly, or something else happens.

Voice Menu Object
IUnknown Provide access to other interfaces in the object.

IVCmdMenu Methods to add/remove/modify voice commands, and to start listening for them.

Voice Text Object

IUnknown Provide access to other interfaces in the object.

IVoiceText Main interface for generating speech; contains the Speak function.
IVTxtAttributes ControlstheattributesoftheT T Senginesuchasthevoi ce'spitchandgender.
IVTxtDialogs Displays dialog boxes that |et the user configure the TTS engine.

IVTxtNotifySink Supplied by the app. Used to notify the app when talking has begun or ended, or

when a bookmark is reached or something el se happens.

Figure 5 Low-level Speech Objects

Speech Recognition Engine Object
IUnknown Provides access to other interfaces in the object.

ISRAttributes Controls the attributes of the speech recognition engine such as the automatic gain,

processor usage, speaker name, and recognition threshold.

ISRCentral Controls the engine object. Methods let the app create grammar objects and register

notification sinks.

ISRDialogs Displays Windows dialog boxes that let the user configure the speech recognition

engine, such astraining.

ISRNotifySink Supplied by the app. Used to pass information asynchronously from the engine to the
application.

| SRSpeaker Optional. Manages speaker profile information, such as for "training" the SR engine

to recognize phrases.

ILexPronounce Optional. Lets apps query and control the pronunciation of words.

36

Speech Recognition Grammar Object

IUnknown

ISRGramCommon

ISRGramCFG

|SRGramDictation

| SRGramNotifySink

Provides access to other interfaces in the object.

Provides methods to activate and deactivate the grammar object, or archive it to
disk.

Provides interfaces specific to context-free grammars and methods to manage

lists of words and link grammars together.

Used for dictation grammars. Apps can supply hints about what the user might
be dictating next.

Supplied by the app. Used to pass grammar notifications from the engine to the
app.

Speech Recognition Results Object

(All interfaces are optional except lUnknown)

IUnknown
|SRResAudio

|SRResBasic

| SRResCorrection

|SRResEval

| SRResGraph

| SRResMemory

ISRResMerge

| SRResModifyGUI

| SRResSpeaker

Provides access to other interfaces in the object.
Gets an audio recording of what was spoken.

Provides general information about what was spoken, such as the phrase that was

recognized and when it was spoken.

Lets the app confirm that the phrase was correctly or incorrectly recognized, so

the engine can learn from its mistakes.

Tells the engine to re-evaluate a recognition decision based on what it now

knows about the context.

Provides a graph of aternate recognition hypotheses, either for words or

phonemes.

Since storing results objects consumes memory, this interface is provided to let

apps control how results objects are stored.
To merge or split two results objects.

Tells the engine to display a graphical user interface so the user can correct a

recognition result.

If an engine supports this, the application can use it to identify that spoke.

37

Text-to-Speech Engine Object
IUnknown Provides access to other interfaces in the object.

ITTSAttributes Controls the attributes of the text-to-speech engine such as the volume,

processor usage, speaking speed, and pitch.

ITTSCentral Controls the engine object. Member functions allow an application to add
buffers, and start and stop speech.

ITTSDiaogs Displays windows dialog boxes that allow the end-user to configure the text-to-

speech engine, such as correcting word pronunciations.

ITTSBufNotifySink Supplied by the app. Used to notify the app of changes to text buffer, such as

when bookmarks are reached.

ITTSNotifySink Supplied by the app. Used to notify the app when audio starts or stops, or when
attributes are changed.

ILexPronounce Optional. Lets app query and control the pronunciation of words.

3.4 TTS operation with low-level speech objects

The operation of a TTS engine with a custom destination, as explained in the last
chapter is shown in Figure 6 below:

38

Application

Buffer #1

Figure 6 Low-level TTS Objects with Custom Audio Destination

3.5 Audio and Sharing Objects

The speech aobjects are implemented on several levels. The Voice Command, Voice
Dictation, and V oice Text objects occupy the highest level. A Sharing object (which
allows the high-levels objects to share speech engines) occupies the next level. The
DirectSpeechRecognition and DirectTextToSpeech objects occupy the next level.
The audio objects occupy the lowest level. These levels are shown in the following

figure:

39

Voice Voice Dictation Voice Text
Command API AP API

Sharing Objects

i ! i 1

DirectSpeechRecogni DirectTextToSpeech
tion API API

Audio Objects

The DirectSpeechRecognition and DirectTextToSpeech objects provide full access

to speech engines. They interface to speech engines at the lowest possible level,
giving good speed and maximum control. They load the enginesin process and take
control of the speakers and microphone. The Voice Command, V oice Dictation, and

Voice Text objects provide higher-level access to speech engines.

The Voice Telephony objects alow speech synthesis, speech recognition, wave

synthesis, and DTMF on single or multi-line voice telephone devices.

The Speech Tools objects provide commonly used functionality to speed application
development.

3.6 Voice Text

Voice Text is the high-level interface for text-to-speech. Adding voice text is fairly

simple. An application has to make only the following modifications:

CoCreatelnstance (CLSID VTxt, NULL, CLSCTX_ LOCAL_SERVER,
|1 D I Voi ceText, &pl VoiceText);

Cal ling CoCreatelnstance creates an instance of the voice
text object.

pl Voi ceText - >Regi ster ("", "Denp Application", NULL,
I 1D I VTxt NotifySink, NULL, NULL);

Applications have to call Register so the voice text knows the name of the
application and to what audio device the speech will be played, because some
applications will be telephone-aware. Also, an application can provide a notification

sink so that it's aerted when speaking starts or stops; but thisisn't necessary.

The next step is to send out text to be spoken.

pl Voi ceText - >Speak ("Hello world.", 0, NULL);

Finally, when the application is finished using voice text it releases the object.

pl Voi ceText - >Rel ease() ;

Two objects are involved in text-to-speech:

1. Voice-Text Object isthe object that handles speech and the only one that the
application deals with.

2. Notification Sink code is optional and is supplied by the application. The
voice-text object calls methods in this object when audio starts or stops

playing, or with mouth-animation cues.

3.6.1 Voice-Text Object

The Voice-Text Object supports four interfaces:
1. IDispatch allows an application to use voice text through OLE Automation.

2. IVTxtAttributes controls attributes of a voice-text site such as the audio
device, the speaking speed, the text-to-speech mode, and whether text-to-
speech is enabled.

3. IVTxtDialogs displays Windows dialog boxes that allow an end user to

configure the text-to-speech engine.

41

4. 1VoiceText registers an application to use voice text on a site and controls

playback of text.

3.6.2 Voice-Text Notification Sink

The Voice-Text Notification Sink supports one interface:

1. IVTxtNotifySink. is used by the voice-text module to notify an application
that speaking has started or stopped, or that an attribute has been changed for

the site.

3.7 Low-Level Text-to-Speech

When an application uses the low-level text-to-speech interfaces, it is talking
directly to the engine. This provides the application with much more control, but

reguires more work of it.

The low-level API consists of many more objects than the high-level API (voice

text). The process works as follows:

The application determines where the text-to-speech audio should be sent
and creates an audio-destination object through which the engine sends the
data. Microsoft supplies an audio-destination object that sends its audio to
the multimedia wave-out device, but the application may use customized

audio destinations, such as an audio destination that writesto a .wav file.

The application, through atext-to-speech enumerator object (not shown here,
but provided by Microsoft), locates a text-to-speech engine and voice that it
wants to use. It then creates an instance of the engine object and passes it the
audio-destination object.

42

The engine object has a dialog with the audio-destination object to find a
common data format for the digital audio. Once an acceptable format is
established, the engine creates an Audio-Destination Notification Sink that it
passes to the audio-destination object. From then on, the audio-destination

object submits status information to the engine through the notification sink.

The application can then register a Main Notification Sink that receives
buffer-independent notifications, such as whether the synthesized voice is

speaking and mouth positions for animation.

When it is ready, the application passes one or more text buffers down to the
engine. These will be queued up and then spoken (to the audio destination)
by the engine.

Tofind out what words are currently being spoken, the application can create
a Buffer Notification Sink for every buffer object. When the engine speaks a
word, reaches a bookmark, or some other event occurs, it calls functions in
the Buffer Notification Sinks. The notification sink is released when the
buffer is finished being read.

3.7.1 Main TTS Object

The Main TTS Object supports four interfaces:

1.

ILexPronounce allows an application to query and control the pronunciation

lexicon for a speech-recognition or text-to-speech engine.

ITTSAttributes controls the attributes of a text-to-speech engine. Member
functions allow an application to adjust the pitch, speed, and volume of the

voice and the engine's share of the processor.

ITTSCentral controls an engine object. Member functions allow an
application to send text to the engine; inject speech-inflection tags into text

as it is spoken; convert Unicode text to a phonemic representation; pause,

resume, and reset the audio output; get information about the text-to-speech
mode; register or release a notification interface; get the time that a byte in
the audio stream was played, and convert the time to a Win32 FILETIME

value.

4. ITTSDialogs displays Windows dialog boxes that alow the end-user to
configure the text-to-speech engine, such as controlling how symbols and

currencies are pronounced.

3.7.2 Main Notification Sink

The Main Notification Sink supports one interface:

1. ITTSNotifySink notifies an application of engine-specific events related to
processing text into speech, such as a change of attributes, the time that audio
starts or stops playing, and hints for synchronizing animation with the

phoneme that is being spoken.

3.7.3 Audio-Destination Object

The Audio-Destination Object supports three interfaces:

1. lAudio alows an audio-destination or audio-source object to manage its

internal buffer and control attributes of the audio device it represents.

2. lAudioMultiMediaDevice alows an audio-destination or audio-source

object to access features specific to multimedia devices.

3. 1AudioDest sends information and data to an audio-destination object.

3.7.4 Audio-Destination Notification Sink

The Audio-Destination Notification Sink supports one interface:

1. 1AudioDestNotifySink notifies a text-to-speech engine of changes to the
internal buffer of an audio-destination object.

3.7.5 Buffer Notification Sink

The Buffer Notification Sink supports one interface:

1. ITTSBufNotifySink notifies an application of changes to the buffer that

contains the text being spoken.

3.8 Significance in E-Mail via Phone

The Microsoft Speech API provides complete application control text-to-speech,
which is the backbone of e-mail via phone system. The syndicate selected Microsoft
Speech API because it exposes two levels for development, one that is easy for
application writing, and the other that provides more flexibility. Its universal
acceptability is an added advantage and was one of the main reasons for which it
was selected.

4 E-Mail Client

46

4.1 Why do we need an E-Mail Client?

The aim of this project was to facilitate a user to check his’her e-mail from any

location using a normal touch-tone telephone. For that purpose we needed to

develop an e-mail client to download users’ e-mail to the system to be converted

into speech. Post Office Protocol Version 3 (POP3) was used to develop such a

client. Features provided by this e-mail client include list, download and delete the

e-mails on a particular user client. POP3 protocol and its implementation are

explained in the following.

4.2 Post Office Protocol (POP3)

POP3 is intended to permit a workstation to dynamically access a mail drop on a
server host in auseful fashion. Usually, this means that the POP3 protocol is used to

allow aworkstation or another server to retrieve mail that the server is holding for it,

as shown in the following figure:

f

F g A1/ L!;!,il'

o O
Router /
— POP3

e
" Global Internet’s
= POP3 Server

The
Internet

POP3 is not intended to provide extensive manipulation operations of mail on the

server; normally, mail is downloaded and then del eted.

47

4.2.1 Connection Establishment

Initially, the server host starts the POP3 service by listening on TCP port 110.
When a client host wishes to make use of the service, it establishes a TCP
connection with the server host. When the connection is established, the POP3
server sends agreeting. The client and POP3 server then exchange commands and

responses (respectively) until the connection is closed or aborted.

4.2.2 Commands in POP3

Commands in the POP3 consist of a case-insensitive keyword, possibly followed by
one or more arguments. All commands are terminated by a CRLF pair. Keywords
and arguments consist of printable ASCII characters. Keywords and arguments are
each separated by a single SPACE character. Keywords are three or four characters

long. Each argument may be up to 40 characters long.

4.2.3 Responses in POP3

Responses in the POP3 consist of a status indicator and a keyword possibly followed
by additional information. All responses are terminated by a CRLF pair. Responses
may be up to 512 characters long, including the terminating CRLF. There are
currently two status indicators: positive ("+OK") and negative ("-ERR"). Servers
MUST send the "+OK" and "-ERR" in upper case.

Responses to certain commands are multi-line. In these cases, which are clearly
indicated below, after sending the first line of the response and a CRLF, any
additional lines are sent, each terminated by a CRLF pair. When all lines of the
response have been sent, a fina line is sent, consisting of a termination octet
(decimal code 046, ".") and a CRLF pair. If any line of the multi-line response
begins with the termination octet, the line is "byte-stuffed" by pre-pending the
termination octet to that line of the response. A server must respond to an

unrecognised, unimplemented, or syntactically invalid command by responding with

a negative status indicator. A server must respond to a command issued when the
session isin an incorrect state by responding with a negative status indicator. There
is no general method for a client to distinguish between a server that does not
implement an optional command and a server that is unwilling or unable to process

the command.

4.2 .4 State Transitions

The functionality of POP3 Client consists of three states. These sates are briefly
explained below and are depicted in the following figure:

Frobe Measurements FOP3 Service

Resolve POPT Serer's IP-Address = =]

iy

N1
CRlS S=rver

ONS Satup
Tirre

POF3 Server's IP-Addrass

Setup Time
f
F

Connect to POF3 Server E

[
. ||
Connection established —

1

{11111
POPRS Server

TCP

| Time |

F 3

Tirne

Sarvar
Response Salup

FOF3 greeting recemed

F
+*

|
¥
+*

Send uzemame

Auith-
entication
Tirne

Tatal Respanse Tima

'y
I
1
|
1
i
[}
I
|
[}
i
]
1
i
+*

Transler Timea

Ter DownTime-._ | | eeeeeeeeemeeemeeeeseeeemeeeeeeeceeieeeieeees

4.2.4.1 Authorization State

A POP3 session progresses through a number of states during its lifetime. Once the

TCP connection has been opened and the POP3 server has sent the greeting, the

49

session enters the Authorization state. In this state, the client must identify itself to
the POP3 server.

Once the POP3 server has determined through the use of an authentication command
that the client should be given access to the appropriate mail drop, the POP3 server
then acquires an exclusive-access lock on the mail drop, as necessary to prevent
messages from being modified or removed before the session enters the UPDATE
state.

If the lock is successfully acquired, the POP3 server responds with a positive status
indicator. The POP3 session now enters the TRANSACTION state, with no
messages marked as deleted. |f the mail drop cannot be opened for some reason (for
example, alock can not be acquired, the client is denied access to the appropriate
mail drop, or the mail drop cannot be parsed), the POP3 server responds with a
negative status indicator. (If alock was acquired but the

POP3 server intends to respond with a negative status indicator, the POP3 server
must release the lock prior to rejecting the command.) After returning a negative
status indicator, the server may close the connection. If the server does not close the
connection, the client may either issue a new authentication command and start

again, or the client may issue the QUIT command.

After the POP3 server has opened the mail drop, it assigns a message-number to
each message, and notes the size of each message in octets. The first message in the
mail drop is assigned a message-number of "1", the second is assigned "2", and so
on, so that the nth message in amail drop is assigned a message-number of "n". In
POP3 commands and responses, all message-numbers and message sizes are
expressed in base-10 (i.e., decimal).

Here is the summary for the QUIT command when used in the AUTHORIZATION
state:

50

42.411QUIT
Arguments:

None

Restrictions:

None

Possible Responses:

+0OK

Examples:
C: QUIT

S: +OK dewey POP3 server signing off

4.2.4.2 Transaction State

Once the client has successfully done this, the server acquires resources associated
with the client's mail drop, and the session enters the Transaction state. In this state,

the client requests actions on the part of the POP3 server.

The POP3 commands valid in the TRANSACTION state are:

4.2.4.2.1 STAT

Arguments:

None

51

Restrictions:

May only be given in the TRANSACTION state

The POP3 server issues a positive response with a line containing information for

themail drop. Thislineiscalled a"drop listing” for that mail drop.

In order to simplify parsing, all POP3 servers are required to use a certain format for
drop listings. The positive response consists of "+OK" followed by a single space,
the number of messages in the mail drop, a single space, and the size of the mail
drop in octets. This memo makes no requirement on what follows the mail drop

size.

Minimal implementations should just end that line of the response with a CRLF pair.

More advanced implementations may include other information.
Possible Responses:
+OK nn mm
Examples:
C: STAT

S: +OK 2320

4.2.4.2.2 LIST [msg]

Arguments:

A message-number (optional), which, if present, may NOT refer to a
message marked as deleted

Restrictions:

May only be given in the TRANSACTION state

52

If an argument was given and the POP3 server issues a positive response with aline

containing information for that message. This line is called a "scan listing" for

that message.

If no argument was given and the POP3 server issues a positive response, then the
response given is multi-line. After the initial +OK, for each message in the mail
drop, the POP3 server responds with a line containing information for that
message. Thislineis also called a "scan listing” for that message. If there are no
messages in the mail drop, then the POP3 server responds with no scan listings--it
issues a positive response followed by a line containing a termination octet and a
CRLF pair.

In order to simplify parsing, all POP3 servers are required to use a certain format for
scan listings. A scan listing consists of the message-number of the message,
followed by a single space and the exact size of the message in octets. Methods for
calculating the exact size of the message are described in the "Message Format"
section below. This memo makes no requirement on what follows the message size
in the scan listing. Minima implementations should just end that line of the
response with a CRLF pair. More advanced implementations may include other

information, as parsed from the message.

Possible Responses:

+OK scan listing follows

-ERR no such message

Examples:

C: LIST

53

S: +OK 2 messages (320 octets)

S: 1120

S: 2200

C:LIST 2

S: +0OK 2 200

C.LIST 3

S: -ERR no such message, only 2 messages in mail drop

4.2.4.2.3 RETR [msg]

Arguments:
A message-number (required) which may NOT refer to a
message marked as deleted

Restrictions:
May only be given in the TRANSACTION state

If the POP3 server issues a positive response, then the response given is multi-line.
After theinitial +OK, the POP3 server sends the message corresponding to the given
message-number, being careful to byte-stuff the termination character (as with all

multi-line responses).

Possible Responses:

+OK message follows

-ERR no such message

Examples:
C:RETR1
S: +OK 120 octets
S: <the POP3 server sends the entire message here>

S..

4.2.4.2.4 DELE [msg]

Arguments:

A message-number (required) that may NOT refer to a message marked as
deleted

Restrictions:

May only be given in the TRANSACTION state

The POP3 server marks the message as deleted. Any future reference to the
message-number associated with the message in a POP3 command generates an
error. The POP3 server does not actually delete the message until the POP3 session
enters the UPDATE state.

Possible Responses:
+OK message deleted

-ERR no such message

Examples:

55

C:DELE1

S: +OK message 1 deleted

C: DELE 2

S: -ERR message 2 already deleted

4.2.4.2.5 NOOP

Arguments:

None

Restrictions:

May only be given in the TRANSACTION state

The POP3 server does nothing, it merely replies with a positive response.
Possible Responses:

+0OK

Examples:
C: NOOP

S. +OK

4.2.4.2.6 RSET

Arguments:

None

56

Restrictions;

May only be given in the TRANSACTION state

If any messages have been marked as deleted by the POP3 server, they are
unmarked. The POP3 server then replies with a positive response.

Possible Responses:
+OK

Examples:
C: RSET

S: +OK mail drop has 2 messages (320 octets)

4.2.4.3 Update State

When the client has issued the QUIT command, the session enters the Update state.
In this state, the POP3 server releases any resources acquired during the Transaction
state and says goodbye. The TCP connection is then closed. A POP3 server may
have an inactivity auto logout timer. Such a timer must be of at least 10 minutes
duration. The receipt of any command from the client during that interval should
suffice to reset the auto logout timer. When the timer expires, the session does not
enter the Update state--the server should close the TCP connection without

removing any messages or sending any response to the client.

If a session terminates for some reason other than a client-issued QUIT command,
the POP3 session does NOT enter the UPDATE state and MUST not remove any
messages from the mail drop.

42431 QUIT

57

Arguments:

None

Restrictions:

None

The POP3 server removes all messages marked as deleted from the mail drop and
replies as to the status of this operation. If there is an error, such as a resource
shortage, encountered while removing messages, the mail drop may result in having
some or none of the messages marked as deleted be removed. In no case may the

server remove any messages not marked as del eted.

Whether the removal was successful or not, the server then releases any exclusive-

access lock on the mail drop and closes the TCP connection.

Possible Responses:

+0OK

-ERR some deleted messages not removed

Examples:

C:QUIT

S: +OK dewey POP3 server signing off (mail drop empty)

C:QUIT

S: +OK dewey POP3 server signing off (2 messages | eft)

58

5 Telephony Module

59

Telephony applications are applications that are accessed via the telephone rather
than locally over the PC. A GUI application may also support telephony features,
although the user interface design for the two interaction mechanisms are
significantly different. Many GUI applications support telephony because of the
flexibility that along-distance connection to the PC provides. The telephony module
in E-Mail via phone allows the user to dial in to the server from where the serviceis
provided.

5.1 Telephony Applications

Some typical telephony applications include:

5.1.1 Voice Mail or Answering Machine Software.

Most users are familiar with "Voice mail" or computerized answering machine
software. These pieces of software allow users to cal into a computer and access
audio messages that have been left for them. Voice-mail and answering machine
software programs are often extended to E-mail, address books, and other types of

data. E-Mail via phone can be included in this kind of telephony applications.

5.1.2 Accessing Databases.

Large numbers of telephony applications alow users to access databases such as

movie listings, stock quotes, or news.

5.1.3 Call Routing.

Many of the same telephony applications that provide voice-mail or database access

also allows incoming calls to be routed to other phone lines. Because most

60

contemporary call routing systems rely on DTMF (touch-tone) to rout the call they
ask for an extension number, but with speech recognition this could just as easily be

aname.

5.2 Hardware and Software Requirements

Telephony applications use the same speech recognition engines used for Command
and Control speech recognition, and the same text-to-speech engines used on the PC.
These hardware and software reguirements should be considered when designing as

speech application:

5.2.1 Processor speed

The speech recognition and text-to-speech engines currently on the market typically

require a 486/66 or faster processor.

5.2.2 Memory

On the average, the combination of speech recognition and text-to-speech will use 2
megabytes (MB) of random-access memory (RAM) in addition to that required by
the running application.

5.2.3 Telephony Card

A number of telephony cards are on the market today. On the low end are cards that
use FAX/MODEM chips that have been augmented to handle speech. These are
included in almost every new home PC. Higher end cards include DSPs or support

for multiple phone lines.

61

5.3 Application Design Considerations

5.3.1 Multi-Line Applications

Most telephony applications are designed to handle several phone lines coming into
the same PC. Multi-line telephony applications need to be designed to handle the
multiple input channels in such a way that one channel doesn't slow down or harm

another channel.

The easiest multi-line application has one process running at least one thread per
phone line. Because each line has its own thread, the lines are independent and
(generaly) one line will not cause another line to slow down. Multi-threaded lines

also allow for improved performance on multi-processor CPUSs.

The most stable multi-line telephony design is to have one process per phone line.
This insures that one phone line cannot crash and pull down the other lines. It also
parallelizes well. It is more difficult to code. E-Mail via Phone is initialy
implemented to cater for one user at a time. Special devices are available in the
market that allow up to 16 incoming lines. This feature is proposed in the future

expansion possibilities.

5.4 Types of Telephony Today

Different types of telephony services provided these days are briefly mentioned in
the following. Since E-Mail via phone is a cross roads of PSTN, IP, Internet and
Computer Telephony; it is but obvious that they should be defined.

5.4.1 Public Switched Telephony Network (PSTN)

Wired or wireless circuit switched phone service delivered in the form of cell
phone service, analog lines, or digital lines (BRI ISDN, PRI ISDN, T1/E1l).

62

Signaling (Call Setup/Teardown/Billing/Number Lookup/Etc) done by a
separate network SS7 network — closed controlled secure network.

Digital signaling for call progress, etc.

5.4.2 Traditional "*Computer Telephony (CT)" Technology

5.4.2.1 Basics
Interfaces a HOST to the PSTN
Interface cards provide telephony services at the edge of the PSTN network

Traditionally has been stand-alone systems — purely a host-based solution

5.4.2.2 Common uses

PBX or IVR type applications (MoviePhone, bank balance, auto-attendant,
etc.)

Figure 8: Traditional Computer Telephony

63

5.4.3 IP Telephony
5.4.3.1 Basics
InterfacesaLAN to the PSTN.
Minimum use is traditional CT applications with a network twist.

Typical useisabasic IP phone system.

Phone Phone Phone

Figure 9: IP Telephony

5.4.3.2 Common uses

Next generation phone systems with email-vmail bridges, unified messaging,
etc.

Uses either low or high-density hardware, often uses Voice over Frame
Relay, dedicated networks.

Strong deployment of this technology for dedicated phone links over data

networks.
Inter-Office PBX links, especially for international offices.
Audio requires no significant needs beyond that needed for traditional CT.

Bandwidth use and latency are not issues, since it's a dedicated LAN

application, often on a managed network.
Signaling is done over the network, not on a separate (SS7) private network.
Needed atotally new signaling protocol that works over I1P networks.

There are issues with this — security, privacy, etc.

5.4.3.3 Solution

H.323.
SIP.

MGCP.

65

5.4.4 Internet Telephony

5.4.4.1 Basics
Telephony applications across a WAN, perhaps with interfaces to the PSTN.

Core differences: bandwidth and latency are major issues.

5.4.4.2 Requirements

Audio compression to reduce bandwidth.

Sensitivity to latency on the audio path — 200 milliseconds is considered
acceptable.

Realization that some packet loss is inevitable and network conditions
unpredictable.

Use Jitter Buffers and codecs that minimize the network impacts.
5.4.4.3 Applications
Direct Point-to-Point Internet Telephony

"Hop-on" and/or "Hop-off" applications for Toll-Bypass

I

PSTH PSTH
(Europe] [Morth America)

Figure 10: Internet Telephony

66

5.5 Modems

The word modem isacontraction of the words modulator-demodulator. A modem
is typically used to send digital data over a phone line. The sending modem
modulates the data into a signal that is compatible with the phone line, and the
receiving modem demodulates the signal back into digital data. Wireless modems

are also fregquently seen converting data into radio signals and back.

Modems came into existence in the 1960s as a way to allow terminals to connect to

computers over the phone lines. A typical arrangement is shown below:

Computer Terminal
--"--"-- mm| 1o derm Modem
= ll_l_lr ||||’§ (1] | S At s
Telephone 5
Mletwiark

Figure 11: Modem Operation

In aconfiguration like this, adumb terminal at an off-site office or store could "dial
in" to alarge, central computer. The 1960s were the age of time-shared computers,
so a business would often buy computer time from a time-share facility and connect

to it viaa 300 bit-per-second (BPS) modem.

A dumb terminal is simply a keyboard and a screen. A very common dumb terminal
at the time was called the DEC VT-100. The VT-100 could display 25 lines of 80
characters each. When the user typed a character on the terminal, the modem sent
the ASCII code the character to the computer. The computer would then send the

character back to the computer so it would appear on the screen.

67

When personal computers started appearing in the late 1970s, bulletin board
systems became the rage. A person would set up a computer with a modem or two
and some BBS software, and other people would dial in to connect to the bulletin
board. The users would run terminal emulators on their computers to emulate a

dumb terminal.

People got along at 300 BPS for quite awhile. The reason this speed was tolerable
was because 300 BPS represents about 30 characters per second, and that is much
faster than a person can type characters or read. Once people started transferring

large programs and images to and from bulletin.

For E-Mail via Phone system, we need a voice modem with a high speed (56 kbpsis
recommended) at the server end. This modem is the service point between server’s
telephony module and the user through a normal touch-tone phone. It is assumed
that the whole system is functioning in an ideal Intelligent Network.

68

5.6 The Intelligent Network

The PSTN is an intelligent network throughout much of the world. In practical
terms, this means that the network has the capacity to utilize real-time database
interactions to control the routing of telephone calls. Many of the services that
modern telephone users expect rely upon this capability. As mentioned earlier the
environment in which E-Mail via Phone system will be working is supposed to be an
Intelligent Network. This supposition is not far from the fact as well because almost
90% of datalinesin Pakistan are on fibre optics and controlled by digital switches of
PTCL.

Voice Tmnbt*.:_
. o _ -

ST
SCP
-

] STP P
S57T
Links
sSSP S5P SSP

SCP

Figure 12: An Intelligent Network

69

6 DTMF Detection

70

6.1 What is DTMF?

The word DTMF is the acronym for “Dual Tone Multiple Frequency”. DTMF tones

are the sounds emitted when one dials a number on a touch-tone phone.

A DTMF codec incorporates an encoder that translates key strokes or digit
information into dual-tone signals, as well as a decoder that detects the presence and
the information content of incoming DTMF tone signals. Each key on the keypad is

identified uniquely by its row frequency and its column frequency.

lfAJ|LErII~FN3|LlCI‘IE)’GrMD

1,
Normal Key- 1208 He 13385 Hz 1477 He 1633 Hz
pad \“\i

come—
et

Row- |

Freguency & |
[[eg] [4 |__| e i_

52 He l [l [l
|

Group
|
- 04l He I-IIDIII'—-'D{_
| I Y [s

Figure 1. Touch-Tone Telephone Keypad
(A row tone and column tone are associated with each digit.)

Touch Tone Keypad

6.2 AT&T Specifications for Tone Generation:

Tone duration specifications by AT&T state the following: 10 digits/sec is the
maximum data rate for touch-tone signals. For a 100-msec time slot, the duration for

71

the actual toneis at least 45 msec and not longer than 55 msec. The tone generator

must be quiet during the remainder of the 100-msec time slot.

100 ms

TOME SILEMCE
43 -55ms a2 -d45ms

6.3 DTMF Tone Generation

Though the domain of this project is limited to DTMF tone detection, the syndicate
conducted a thorough study to understand the mechanism of DTMF tone generation.
These techniques, in theory, directly affect the algorithm used to detect DTMF

tones.

Modems have traditionally been the device used to generate these tones from a
computer. But the more sophisticated modems on the market today are nothing
more than a DSP (digital signal processor) with accompanying built-in software to
generate and interpret analog soundsinto digital data. The computers sitting on desk
have more CPU power, a more complex OS, and very often ajust as sophisticated
DSP. There is no reason one cannot duplicate the functionality of a modem from

right inside of software, providing with alot easier to understand and modify code.

6.3.1 Methods of Tone Generation

There are three methods for generating DTMF tones by summing two sine waves.

These are:

Table Look-up
Taylor Series

Harmonic Resonator

72

6.3.1.1 Table Look-up Method

The table look-up method retrieves previously computed sine wave values from
memory. The sine function is periodic and only one period must be computed. Since
thisis sampled data, an accurate sine wave generator must confirm that the sample’s
starting and ending point are the same. The easiest way to determine this is to find
the smallest value of | (an integer) that when multiplied by the ratio below will result

in an integer.

(Fs/ Fo) * I = integer # of samples

where
Fs = sampling frequency

Fo = frequency of tone to be generated

The period of the frequency to be generated must be evenly divisible by a multiple
of the sampling rate. This method can require large amounts of memory if the
frequency is not an easy divisor of the sampling rate. If there are numerous
frequencies to generate, or the frequency is unknown beforehand, then the table
look-up method may not be the best solution.

6.3.1.2 Taylor Series Expansion

The Taylor series expansion method reduces the memory required to compute an

approximation of the sine value. The accuracy can be selected. The Taylor series

73

expansion method expresses a function by polynomia approximation. The

expansion for asine function order 5 is:

sin(x) = 3.140625*x + 0.02026367 * x* - 5.325196* x * + 0.544678 x * +
1.800293 x°

where 0 < x < p/2.

Note that x isin radians and that the other three quadrants must be accounted for by
manipulating the sign and the input value, x. The Taylor series expansion method

reguires more computations but less memory than the table.

6.3.1.3 Harmonic Resonator

This method is based on two programmable, second-order digital sinusoidal

oscillators, one for the row tone and one for the column tone.

Two oscillators, instead of eight, facilitate the code and reduce the code size. Of
course, for each digit that is to be encoded, each of the two oscillators needs to be
loaded with the appropriate coefficient and initial conditions before oscillation can
beinitiated.

Since typica DTMF freguencies range from approximately 700 Hz to 1700 Hz, a
sampling rate of 8 kHz for this implementation is within a safe area of the Nyquist
criteria. The following figure displays the block diagram of the digital oscillator
pair. Note that 1/z corresponds to a delay of one sampling period.

74

Figure! Two Second-Order Digital Sinuseidal Oscillators
{Program-flow description of the DTMF generator)

Figure 14: Two Second Order Digital Sinusoidal Oscillators

6.3.1.3.1 Working of Harmonic Resonator

It is a direct implementation of the Z-transform of a discrete sine function, sin
(nwT). Where T is the sampling time, w is the frequency to be generated in radians
per sec.

The transfer function of the oscillator is:

: by
Hid = 1+ a8,z + a,z%
b, = Asin(wy)
ay = -2cos(Wo)

@=1

The complex conjugate poles of the system lie on the unit circle:

75

Pro =€

The discrete time impul se response

H(n)=Asin((n+1)w,)*u(n)

corresponding to the above second-order system clearly indicates a clean sinusoidal
output due to a given impulse input. Therefore, this system can be termed a digital
sinusoidal oscillator or digital sinusoidal generator. For the actual implementation of
adigital sinusoidal oscillator, the corresponding difference equation is the essential
system descriptor, given by

y(n)= -a:*y(n-1) - a;*y(n-2) + bo*d(n)

Where initial conditions y(-1) and y(-2) are zero. Note that the impulse applied at
the system input serves the purpose of beginning the sinusoidal oscillation.
Thereafter, the oscillation is self-sustaining, as the system has no damping and is
exactly marginally stable. Instead of applying a delta impulse at the input, let the
initial condition y(—2) be the systems oscillation initiator and remove the input. With

thisin mind, the final difference equation is given by:

y(n) = 2*cos (wo)*y(n-1) - y(n-2)

where

y(-1)=0

y(—2) = —Asin (W)
wo = 2*p*fy/fs

With f s being the sampling frequency, f o being the frequency of tone and A being
the amplitude of the sinusoid to be generated. Note that the initial condition y(-2)

solely determines the actual amplitude of the sine wave.

76

Coefficients and Initial Conditions for Sinusoidal Oscillators

fiHz} at =1} p=2HA
ae7 0.85382 o 052047
770 0AFRES o 0 56857
52 078435 0 062033
441 0.73411 o DATIEA
120018 0L5RA0E b 01314
1338 0.4B20 0 0 AETIG
1477 03649332 b 081680
1633 (120434 b 0185474

6.4 DTMF TONE DETECTION

DTMF tone detection was one of the major tasks involved in this project. Different
functions are performed by the system with different keystrokes of the user. Theory
behind this whole processis explained in the following.

The task to detect DTMF tonesin an incoming signal and to convert them into actual
digitsis certainly more complex than the encoding process. The decoding processis
by its nature a continuous process, meaning it needs to continually search an

incoming data stream for the presence of DTMF tones.

6.4.1 Collecting Spectral Information Using Goertzel’s Algorithm

The Goertzel algorithm is the basis of the DTMF detector. This method is a very
effective and fast way to extract spectral information from an input signal. This
algorithm essentially utilizes two-pole IIR type filters to compute DFT values
effectively. It is, thereby, a recursive structure (always operating on one incoming
sample at atime), as compared to the DFT (or FFT) that needs a block of data before
being able to start processing.

77

Another major advantage of Goertzel’s algorithm is that it gives only the magnitude

of the frequency in demand.

For the actual tone detection, the magnitude (here, squared magnitude) information
of the DFT is sufficient. After a certain number of samples N (equivalent to a DFT
block size), the Goertzel filter output converges towards a pseudo DFT value vk(n),
which can then be used to determine the squared magnitude.

The Goertzel algorithm is much faster than a true FFT, as only few of the set of

spectral line values are needed and only for those values are filters provided.

Squared magnitudes are needed for eight row/column frequencies and for their
eight-second harmonics. The second harmonics information later enables

discrimination of DTMF tones from speech or music.

The choice of N is mainly driven by the frequency resolution needed, which sets a
lower boundary. N also is chosen so that (k/N)fs most accurately coincides with the
actual DTMF frequencies (see Table 1) assuming ks are integer values and fsis a

sampling frequency of 8 ksps.

As the first stage in the tone-detection process, the Goertzel algorithm is one of the
standard schemes used to extract the necessary spectral information from an input
signal. Essentially, the Goertzel algorithm is a very fast way to compute DFT values

under certain conditions. It takes advantage of two facts:

The periodicity of phase factors wXy alows the expression of the
computation of the DFT as a linear filter operation utilizing recursive

difference equations.

Only a few of the spectral values of an actual DFT are needed (in this
application, there are eight row/column tones plus an additional eight tones

or corresponding 2nd harmonics).

78

Keeping in mind that a DFT of size N is defined as

Xy = 3, xmei km2 7 /N
0

m=l

It is possible to find the sequence of a one-pole resonator

H-1 2
Yiln) = 2 x(m)el2 k1)

which has a sample value at n = N coinciding exactly with the actual DFT value. In
other words, each DFT value X (k) can be expressed in terms of the sample value at

n = N resulting from alinear filter process (one-pole filter).

It can be verified that

Xk = Y(M)= Eﬂ}{(m}e-j 2nkm /N

The difference equation corresponding to the above one-pole resonator which is
essential for the actual implementation, is given by

ye(n) =e/* My, (n- 1) +x(n)
with y(-1) = 0 and pole location .

Being a one-pole filter, this recursive filter description yet contains complex
multiplications, not very convenient for a DSP implementation. Instead, by using a
two-pole filter with complex conjugate poles and only real multiplications in its
difference equation,

79

v, (n) =2cos(Zpk /N)*v, (n- 1) - v, (n- 2)+x(n)

wherev k (1) and v k (—2) are zero.

In the Nth iteration, only a complex multiplication is needed to compute the DFT

value, whichis

X =Y (N) =V, (N)- e_jzpk/NVk(N -1

However, the DTMF tone-detection process does not need the phase information of

the DFT; squared magnitudes of the computed DFT values, in general, suffices.
| X(K) 7=y, (N)y« (N)

After some arithmetical manipulation, it is found that

| X (k) P=v,*(N) +v,*(N - 1) - 2cos(2pk/ N)v, (N)v, (N - 1)

Which gives the energy of the tone.

6.4.2 Validity Checks

Once the spectral information (in the form of squared magnitude at each of the row
and column freguencies and their second harmonics) is collected, a series of tests

need to be executed to determine the validity of tone and digit results.

80

6.4.2.1 Signal Strength Check

A first check makes sure the signal strength of the possible DTMF tone pair is
sufficient. The sum of the squared magnitudes of the peak spectral row component
and the peak spectral column component needs to be above a certain threshold.
Since aready small twists (row and column tone strength are not equal) result in
significant row and column peak differences, the sum of row and column peak

provides a better parameter for signal strength than separate row and column checks.

6.4.2.2 Twist Check

Tone twists (the ratio of column to row or row to column signal strength)are

investigated in a separate check to make sure the twist ratio specifications are met.

The spectral information can reflect the types of twists.

The more likely one, called “reverse twist”, assumes the row peak to be larger than
the column peak. Row frequencies (lower frequency band) are typically less
attenuated as compared to column frequencies (higher frequency band), assuming a
low-pass filter type telephone line. The decoder, therefore, computes a reverse twist
ratio and sets athreshold of 8 dB acceptable reverse twist.

The other twist, called “standard twist”, occurs when the row peak is smaller than
the column peak. Similarly, a*“standard twist ratio” is computed and its threshold is
set to 4 dB acceptable standard twist.

81

6.4.2.3 Relative Peak Check

The program makes a comparison of spectral components within the row group as
well as within the column group. The strongest component must stand out (in terms
of squared amplitude) from its proximity tones within its group by more than a
certain threshold ratio.

6.4.2.4 Second Harmonic Strength Check

Finally, the program checks on the strength of the second harmonics in order to be
able to discriminate DTMF tones from possible speech or music. It is assumed that
the DTMF generator generates tones only on the fundamental frequency; however,
speech will always have significant even-order harmonics added to its fundamental
frequency component. This second harmonics check, therefore, makes sure that the
ratio of the second harmonics component and the fundamental frequency component
isbelow acertain threshold . If the DTMF signal pair passes all these checks, we say
avalid DTMF tone pair, which corresponds to a digit, is present.

6.4.2.5 Check For Validity Of Tone

We now need to determineif the valid DTMF tone information contains stable digit
information. This is done by mapping the tone-pair to its corresponding digit and
comparing it with the previously detected digit. We call the digit information stable

if it has been detected twice successively.

6.4.2.6 Check Whether New Digit Pressed

Finally, we compare the detected digit with the previous-to-last digit. Only if the last
digit was preceded by a pause do we accept the current digit as a valid digit. The

detector is then forced into a state where it waits for a pause before being able to

82

accept a new digit. This last step is necessary to ensure the discrimination of
identical keystrokes succeeding one another.

6.5 Modification in Goertzel Algorithm

Since we only require the magnitude information associated with Goertzel we

modify it further to output only the energies.

The block diagram for the further modified version of Goertzel is shown below.

Left Hand Side Right Hand Side

Input Samples
A&) TONE
Delay ENERGY
Q‘ 2*C \ 4

Figure 16: A Simplified Form of Goertzel’s Algorithm To Calculate
Tone Enerav

83

Figure 17: Flow Chart for the implementation of Goertzel’s Algorithm q
niaalize

4

N r\ Groetzel's DFT >

A

@ample

Use Sample in 16
lIR Filters

Nth Sample o
DFT
YES

Calculate Magnitude
Squared To Get
Energy

BELOW Signal
-«
THRESHOL Strength?
D
ABOVE
THRESHOLD
Yes
BELOW
¢—THRESHOL Relative Peak?
D
ABOVE
THRESHOLD

2nd Harmonic
Signal Too Strong?

< Valid Tone

¢—YES

7 Registration Web Site

85

7.1 Why do we need a Registration Web Site?

In order to ensure the security of the system and to make it foolproof, some sort of
authorization was necessary. For this purpose it was decided by the syndicate that a
registration web site will be developed, where the users can register themselves with
their e-mail addresses. A unique PIN code is allotted to each user. This PIN is later
used as ID cum Password of that user. This web site is developed using Active
Server Pages (ASP).

7.2 Active Server Pages: An Introduction

Active Server components actually constitute what we traditionally think of as the
'middl€ tier, or business rule layer of an enterprise application. These components
are responsible for encapsulating the majority of an application's transaction and
database logic. For example, one might decide to place the logic for a complex
calculation that requires access to several database tables inside an Active Server
component. This component would then be invoked by other Active Server

components during execution of one or more of our enterprise applications.

The server-side execution environment that makes much of this possible is named
Active Server Pages (formerly code-named "Denali"), an environment in Microsoft
Internet Information Server that executes ActiveX Scripts and ActiveX Components

on aserver.

7.3 Software Development with ASP

Active Server Pages are a key component of Microsoft's dynamic web content
strategy. With Active Server Pages, a software developer can create interactive and
personalized web pages for their World Wide Web site or corporate intranet without
having to understand the internals of a web server or complex application
programming interfaces. In addition, Active Server Pages is extensible via software

components written using Microsoft’s Component Object Model. This last feature

86

was the main reason because of which the authors of this document decide to
develop the web sitein ASP, asit allows to take advantage of code we have already

written using languages such as Visual Basic, C++ etc.

7.4 Advent of ASP

Active Server Pages were introduced with release 3 of Microsoft’s web server,
Internet Information Server or IIS. Active Server Pages are actually a series of
dynamic link libraries or DLLs that are installed on a web server by either a
standalone installation program or as part of the Visual Studio 97 setup for Visual
InterDev. These DLLs give 1S the ability to interpret and process information via
the use of a script file (called an ASP script) that is resident in a web application

directory.

7.5 Features of ASP

Some of the several features of ASP include:

Active Server Pages is an environment that hosts one of several scripting
languages that can be used to produce output, in the form of HTML. This
interactivity is the key method used to 'activate’ a web site.

To create an Active Server Page script, we simply write a combination of
script and HTML and placeit in afile with the extension .ASP.

Once installed, the Active Server Pages environment will process the script
and interact with the server environment to produce HTML that will be sent

to the requesting browser.

87

7.6 Internet Information Server and ASP Development Platform

Microsoft's Internet Information Server (1IS) is an open platform designed
specifically for creating powerful, scaleable Internet and intranet applications.
However, IIS is not just a web server, it's much more. 1IS is a complete set of
software components that provide the capability to develop robust data-driven web
applications.

ASP applications run within the context of I1S. In simple terms, ASP provides the
'glue’ that lets developers, like the authors, integrate these components and take

advantage of their functionality in applications.

88

7.7 Implementation of the Web Site

The registration web site was developed, as discussed earlier, using ASP in
Microsoft InterDev. This site has an MS Access database at its backend. All the
information provided by the user is stored in the database and can be later accessed
by the application. Every new user is assigned a unique randomly generated PIN that
can later be used for authorization purposes.

A sample screen shot of the main registration form is shown in the below:

hMuhammad Usman Tahir

89

When the user is finished with filling in the information and submits his/her request
for registration a unique PIN code is assigned and a page similar to the one below

appears:

Thanks for registering with E-Mail via
Phone.
Now you can avail the following facilities:

+ Voice Mal

+ Personalized Messaging

+ Automated Answering Services

Back to Registration

90

8 E-mail via Phone: System Design

91

This chapter describes the low level design of E-Mail via Phone system, including

the finite state machines, UML class diagrams and use cases developed for
implementation of the whole system.

8.1 Finite State Machines

Finite State Machines (FSM) graphically represent all the states E-Mail via Phone
system goes through during its lifetime. Different FSM’s shown below explain

various states of operation, which the system may be in during its entire operation
cycle.

8.1.1 Boot Up Services

O

Check
Connection
State

Start Boot
up Services

Check for
incoming
call

Established
Connection

Play Prompt
“Enter PIN”

92

8.1.2 E-mail Download using POP3 Client

Start Boot up
Services

Activate POP
Client

Check Response

Retrieve

Store as txt File

Delete Message

93

8.1.3 User Authorization/User Menu

Play Prompt
“Enter PIN”

Detect DTMF

Read or Write
mail

Delete
Connection

Check for
message

Enable Voice
Mail

8.1.4 Message Recording

Enable Voice
Mail

Play Prompt, “Record
up to 30 seconds’

Process channel for
media

Save as audio
file
—>

95

8.1.5 E-Mail Playback using TTS

Check for
message

Activate E-
Mail Reader

—O

Play Prompt “No
Message”

Play Prompt, “Do
you want to
continue’

Delete
Connection

8.2 Class Diagrams

UML Class diagrams in this section explain the classes identified for
implementation of the system in Visual C++. Their relationships; collaboration,
association, realization and generalization, with other classes is represented using
standard UML notations.

8.2.1 Timer Handler

QMaeSTK
01
InvisbeWrdonSk
amae | 2
WhdonCass
I Timesrk
[\
01
1
TnvseWindow
1
1
Timer
\ —
i 1
Cond | Daigae |
>—
1 1

01

97

8.2.2 Call Handler 1

CtReplyTarget

/\

0.1

CtPhone

CtCall

1

CtLine

CtRequestList

0..1

CtAppSink

98

8.2.3 Call Handler 11

99

8.2.4 Device Handler

CtDevicelD

CtAddressCaps

OProviderL

CiTranslateCaps

CiVariableData

OtCountryLst

CtCallStatus

CtCallList

0.1 VARDATA

CiCallinfo

CiTransiateOutput

OtLineDevCaps

100

8.2.5 POP3 Client

0.1

CPoi3vessage
QMinFrane Ghooutlg CSelings
QwiceVDx
CPo3Sodet CPg3Comedion
1
Qiciaw Qubicevimp

101

8.2.6 Data Types

LPTSTR CPtrList HPHONE LPSTR CFrameWnd
DWORD HWND HCALL size_t WAVEHDR SOCKET
LPCSTR HLINE CPtrArray string HPSTR CString
HPHONEAPP HLINEAPP LONG UINT WAVEFORMATEX BOOL
CToolBar CStatus Bar bool HWAVEOUT HWAVEIN CDWordArray
CFormView CDocument CWinApp fstream CDialog CStringArray

102

8.3 Use Cases

Below is a description of a set of sequences of actions, including variants that our

system performs to yield an observable result of values to an actor.

8.3.1 Connection Establishment

Overview: This use case explains how the connection is established between the

user and the system.

Use Case View:

Use Case Name Actor’s Action System Response

Connection Establishment USERDIALSTHE SERVER'S | After three rings the
PHONE NUMBER.

system picks up the call
and plays a greeting.

103

8.3.2 User Authorization

Overview: This use case explains how security checks are observed during the

authorization of auser.

Use Case View:

Use Case Name Actor’s Action System Response
| User Authorization. | UserPuNcHESHISPINCODE. | 1. System detects the
DTMF tones and

stores in a buffer.

USER WAITS FOR SERVER’S 2. Server checksthe
RESPONSE. o

ID in its database and
playsauser menuin
case of success or asks
two more times for the
PIN in casethelID is

incorrect.

104

8.3.3 User Menu

Overview: User Menu use case describes the behaviour of the system when the

menu is played to the user.

Use Case View:

Use Case Name Actor’s Action System Response
User Menu USER DIALS THE DIGITS 1. System detects the
CORRESPONDING TO THE
DESIRED ACTION DTMF tone and
(READ/WRITE MESSAGE)
plays another
message.

105

8.3.4 Message Recorder

Overview: Message recorder analyses the situation when a message is played back

to the user.

Use Case View:

Use Case Name Actor’s Action System Response
User Menu | IFUSERWANTSTORECORDA | 1. Systeminitiaises
MESSAGE.

the recorder and

plays a beep.

106

8.3.5 Message Player

Overview: This use case explains how a TTS message is played to the user.

Use Case View:

Use Case Name Actor’s Action System Response

Message Player IF THE USER WANTS TO 1. Systeminitialises
LISTEN TO HIS/HER EMAILS.
the TTS.

107

8.3.6 Delete Connection Menu

Overview: Connection deletion use case describes the situation when a connection
is to be deleted.

Use Case View:

Use Case Name Actor’s Action System Response

Delete Connection Menu. AFTER THE EMAIL IS 1. System detects the
PLAYED OR A
MESSAGE IS DTMF and
RECORDED BY THE T
USER, THE USER initialisesthe TTS.
WAITS.

108

8.3.7 Connection Deletion

Overview: This use case view explains how a connection is del eted.

Use Case View:

Use Case Name Actor’s Action System Response

Connection Deletion THE USER DECIDES 1. System frees
TO DROP THE CALL .
System resources
(buffers, timers etc)
and deletes the

connection.

109

8.3.8 Back to Basics

Overview: This use case view explains how a connection is deleted.

Use Case View:

Use Case Name Actor’s Action System Response

Back to Basics The user decidesto 1. System detects the
Continue with the call. DTME tone and

plays the welcome

menu, like normal

style.

110

8.3.9 Registration

Overview: This use case view explains how a user is registered at the web site.

Use Case View:

Use Case Name Actor’s Action System Response
Regis[ra[i on USER ENTERS HISHER NAME, 1. The system stores
EMAIL ADDRESSAND ITS
PASSWORD AT THE E-MAIL the name and
VIA PHONE REGISTRATION .
WEB SITE. email address of

the new user in its
database and
returns anew PIN
code to the user.
ThisPIN codeis
also stored in the
database.

111

9 E-Mail via Phone: Implementation

112

This chapter outlines the implementation of E-Mail via Phone system
including all three packages related to Telephony (TFX), Voice Messaging
(VoiceM) and Integration. This implementation is based on the design
explained in the last chapter. The packages explained in this chapter
include the classes for POP3 client, Text-to-Speech conversion, message
recording and playback. These packages are explained below.

9.1 TFX

TEX library provides al the functionality required for building a telephony
applications. APl includes listening for incoming calls, initiating calls and
processing media from the line. Classes included in this package are
described in the following sections.

9.1.1 WindowClass

9.1.1.1 Public Methods:

9.1.1.1.1 WindowClass (pszClassName : LPCTSTR, pfnwndProc : WNDPROC) :
WindowClass

9.1.1.1.2 ~WindowClass () :

9.1.1.1.3 ClassName () : LPCTSTR

9.1.1.1.4 IsRegistered () : bool

113

9.1.2 InvisibleWindowSink

9.1.2.1 Public Methods:

9.1.2.1.1 OnWindowMessage (hwnd : HWND, nMsg : UINT, wparam : WPARAM,

Iparam : LPARAM) : LRESULT

9.1.3 InvisibleWindow

9.1.3.1 Public Methods:

9.1.3.1.1 InvisiblewWindow () : InvisibleWindow
9.1.3.1.2 ~InvisibleWindow () :

9.1.3.1.3 Create (pSink : InvisibleWindowSink*) : bool
9.1.3.1.4 Destroy () : void

9.1.3.1.5 GetHwnd () : HWND

9.1.3.2 Private Methods:

9.1.3.2.1 InvisibleWindowProc (hwnd : HWND, nMsg
WPARAM, Iparam : LPARAM) : int

9.1.4 CtAddressCaps

Derived from CtVariableData

UINT, wparam

114

9.1.4.1 Public Methods:

9.1.4.1.1 GetAddressCaps (nLinelD : DWORD, nAddressiD

TRESULT

9.1.4.1.2 operator const LPLINEADDRESSCAPS

LPLINEADDRESSCAPS

9.1.4.1.3 GetLineDevicel D () : DWORD

9.1.4.1.4 GetAddress () : LPCSTR

9.1.4.1.5 GetAddressSharing () : DWORD
9.1.4.1.6 GetAddressStates () : DWORD

9.1.4.1.7 GetCallInfoStates () : DWORD

9.1.4.1.8 GetCallerIDFlags () : DWORD

9.1.4.1.9 GetCalledIDFlags () : DWORD

9.1.4.1.10 GetConnectedIDFlags () : DWORD
9.1.4.1.11 GetRedirectionIDFlags () : DWORD
9.1.4.1.12 GetRedirectingl DFlags () : DWORD
9.1.4.1.13 GetCalIStates () : DWORD

9.1.4.1.14 GetDial ToneModes () : DWORD
9.1.4.1.15 GetBusyModes () : DWORD

9.1.4.1.16 GetSpecidlnfo () : DWORD

9.1.4.1.17 GetDisconnectModes () : DWORD
9.1.4.1.18 GetMaxNumActiveCalls () : DWORD
9.1.4.1.19 GetMaxNumOnHoldCalls () : DWORD
9.1.4.1.20 GetMaxNumOnHoldPendingCalls () : DWORD
9.1.4.1.21 GetMaxNumConference () : DWORD
9.1.4.1.22 GetMaxNumTransConf () : DWORD
9.1.4.1.23 GetAddrCapFlags () : DWORD
9.1.4.1.24 GetCallFeatures () : DWORD

9.1.4.1.25 GetRemoveFromConfCaps () : DWORD
9.1.4.1.26 GetRemoveFromConf State () : DWORD
9.1.4.1.27 GetTransferModes () : DWORD
9.1.4.1.28 GetParkModes () : DWORD

9.1.4.1.29 GetForwardModes () : DWORD
9.1.4.1.30 GetMaxForwardEntries () : DWORD

const

115

9.1.4.1.31 GetMaxSpecificEntries () : DWORD

9.1.4.1.32 GetMinFwdNumRings () : DWORD

9.1.4.1.33 GetMaxFwdNumRings () : DWORD

9.1.4.1.34 GetMaxCallCompletions () : DWORD

9.1.4.1.35 GetCall CompletionConds () : DWORD

9.1.4.1.36 GetCallCompletionModes () : DWORD

9.1.4.1.37 GetNumCompl etionM essages () : DWORD

9.1.4.1.38 GetCompletionMsgText (nMsg : DWORD) : LPCSTR
9.1.4.1.39 GetAddressFeatures () : DWORD

9.1.4.2 Protected Methods:

9.1.4.2.1 FillBuffer () : TRESULT

9.1.4.3 Private Methods:

9.1.4.3.1 GetData () : const LPLINEADDRESSCAPS

9.1.5 CtVariableData

9.1.5.1 Public Methods:

9.1.5.1.1 CtVariableData () : CtVariableData
9.1.5.1.2 ~CtVariableData () :

116

9.1.5.2 Protected Methods:

9.1.5.2.1 UpdateData () : TRESULT

9.1.5.2.2 GetStringPtr (nOffset : DWORD, nSize : DWORD, dwStringFormat :
DWORD = STRINGFORMAT_ASCII) : LPCSTR

9.1.5.2.3 GetDataPtr (nOffset : DWORD) : void*

9.1.5.2.4 FillBuffer () : TRESULT

9.1.6 CtAppSink

9.1.6.1 Public Methods:

9.1.6.1.1 OnLineCreate (nLinelD : DWORD) : void

9.1.6.1.2 OnPhoneCreate (nPhonel D : DWORD) : void

9.1.6.1.3 OnLineRequest (nRequestMode : DWORD, hRequestWnd : HWND,
nRequestID : TREQUEST) : void

9.1.7 CtCall

Derived from CtReplyTarget

117

9.1.8 Public Methods:

9.1.8.1.1 CtCall (pLine: CtLine*) : CtCall

9.1.8.1.2 CtCall (pLine: CtLine*, hCall : HCALL, pInitialSink : CtCalSink* = 0) :
CtCal

9.1.8.1.3 GetLine () : CtLine*

9.1.8.1.4 ~CtCdl () :

9.1.8.1.5 GetHandle () : HCALL

9.1.8.1.6 Attach (hCall : HCALL, pInitialSink : CtCallSink* = 0) : HCALL
9.1.8.1.7 Detach () : HCALL

9.1.8.1.8 AddSink (pSink : CtCallSink*) : void

9.1.8.1.9 RemoveSink (pSink : CtCallSink*) : void

9.1.8.1.10 IsRequestPending (nRequestiD : TREQUEST = 0, pnRequestType :
DWORD* = 0) : BOOL

9.1.8.1.11 IsRequestTypePending (nNRequestType : DWORD) : BOOL

9.1.8.1.12 FromHandle (hCall : HCALL) : CtCall*

9.1.8.1.13 Accept (psUserUserinfo : LPCSTR = 0, nSize : DWORD = 0) :
TRESULT

9.1.8.1.14 Answer (psUserUserinfo : LPCSTR = 0, nSize : DWORD = 0) :
TRESULT
9.1.8.1.15Dial (szDestAddress : LPCSTR, dwCountryCode : DWORD = 0) :

TRESULT

9.1.8.1.16 Drop (psUserUserinfo : LPCSTR = 0, nSize: DWORD =0) : TRESULT
9.1.8.1.17 GenerateDigits (szDigits : LPCSTR, nDuration : DWORD = 0,
nDigitMode : DWORD = LINEDIGITMODE_DTMF) : TRESULT

9.1.8.1.18 GenerateTone (nToneMode : DWORD, nDuration : DWORD,
nCustomTones : DWORD = 0, pCustomTones : LINEGENERATETONE* = 0) :
TRESULT

9.1.8.1.19 Dedllocate () : TRESULT

9.1.8.1.20 GatherDigits (pszDigits : LPSTR, nDigits : DWORD,
pszTerminationDigits : LPCSTR = 0, nFirstDigitTimeout : DWORD = 5000,
ninterDigitTimeout : DWORD = 5000, nDigitMode : DWORD =

LINEDIGITMODE_DTMF) : TRESULT
9.1.8.1.21 Handoff (szFileName: LPCSTR) : TRESULT

118

9.1.8.1.22 Handoff (nMediaMode : DWORD) : TRESULT

9.1.8.1.23 MakeCall (szDestAddress : LPCSTR = 0, nCountryCode : DWORD = 0,
pinitiadSink : CtCalSink* = 0, pCallParams : LINECALLPARAMS* = 0) :
TRESULT

9.1.8.1.24 MonitorDigits (dwDigitModes : DWORD = LINEDIGITMODE_DTMF)
:TRESULT

9.1.8.1.25 Oninfo (nCalllnfo : DWORD) : void

9.1.8.1.26 OnState (nCallState : DWORD, dwParam2 : DWORD, nCallPriviledge :
DWORD) : void

9.1.8.1.27 OnGatherDigits (nGatherTerm : DWORD) : void

9.1.8.1.28 OnGenerate (nGenerateTerm : DWORD) : void

9.1.8.1.29 OnMonitorDigits (cDigit : char, nDigitMode : DWORD) : void
9.1.8.1.30 OnMonitorMedia (nMediaMode : DWORD) : void

9.1.8.1.31 OnMonitorTone (dwAppSpecific : DWORD) : void

9.1.8.1.320nReply (nRequestiD : TREQUEST, nResult : TRESULT,
nRequestType : DWORD) : void

9.1.8.2 Protected Methods:

9.1.8.2.1 AddToCalls (pCall : CtCall*) : void
9.1.8.2.2 RemoveFromCalls (pCall : CtCal*) : void

9.1.9 CtLine

Derived from CtReplyTarget

119

9.1.9.1 Public Methods:

9.19.1.1CtLine() : CtLine

9.1.9.1.2 GetHandle () : HLINE

9.1.9.1.3 ~CtLine() :

9.1.9.1.4 GetDevicelD () : DWORD

9.1.9.1.5 AddSink (pSink : CtLineSink*) : void

9.1.9.1.6 RemoveSink (pSink : CtLineSink*) : void

9.1.9.1.7 IsRequestPending (nReguestiD : TREQUEST = 0, pnRequestType :
DWORD* = 0) : BOOL

9.1.9.1.8 IsRequest TypePending (nRequestType : DWORD) : BOOL

9.1.9.1.9 FromHandle (hLine : HLINE) : CtLine*

9.1.9.1.10 GetNumbDevs () : DWORD

9.1.9.1.11 GetAppHandle () : HLINEAPP

9.1.9.1.12 GetAppVersion () : DWORD

9.1.9.1.13 SetAppVersion (dwLoVersion : DWORD, dwHiVersion : DWORD) :
void

9.1.9.1.14 GetApiVersion (nLinelD : DWORD) : DWORD

9.1.9.1.15Initidlize (pAppSink : CtAppSink*, szAppName : LPCSTR, hinst :
HINSTANCE) : TRESULT

9.1.9.1.16 Shutdown () : TRESULT

9.1.9.1.17 GetM akeCallRequest (pimc : LPLINEREQMAKECALL) : TRESULT
9.1.9.1.18 GetMediaCalIRequest (plmc : LPLINEREQMEDIACALL) : TRESULT
9.1.9.1.19 RegisterRequestRecipient (dwRequestMode : DWORD, bEnable :
BOOL) : TRESULT

9.1.9.1.20 TrandateDialog (nLinelD : DWORD, hwndOwner : HWND, szAddressin
: LPCSTR) : TRESULT

9.1.9.1.21 ConfigDialog (nLinelD : DWORD, hwndOwner : HWND,
pszDeviceClass: LPCSTR =0) : TRESULT

9.1.9.1.22 Getlcon (nLinelD : DWORD, phicon : LPHICON, pszDeviceClass :
LPCSTR=0): TRESULT

9.1.9.1.23 SetCurrentL ocation (nLocationID : DWORD) : TRESULT

120

9.1.9.1.24 Open (nLinelD : DWORD, plnitialSink : CtLineSink* = 0, dwPriviledges
: DWORD = LINECALLPRIVILEGE_NONE, dwMediaModes : DWORD =
LINEMEDIAMODE_INTERACTIVEVOICE) : TRESULT

9.1.9.1.25 Close () : TRESULT

9.1.9.1.26 GetAddressID (pdwAddressiD : LPDWORD, nAddressMode : DWORD,
pszAddress : LPCSTR, nSize: DWORD) : TRESULT

9.1.9.1.27 GetNumRings (nAddressiD : DWORD, pnRings : DWORD¥*)
TRESULT

9.1.9.1.28 SetNumRings (nAddressID : DWORD, nRings: DWORD) : TRESULT
9.1.9.1.29 ForwardAll (plfl : const LPLINEFORWARDLIST, nRings : DWORD) :
TRESULT

9.1.9.1.30 ForwardAddress (nAddresssD : DWORD, plfl : const
LPLINEFORWARDLIST, nRings: DWORD) : TRESULT

121

9.1.9.2 Protected Methods:

9.1.9.2.1 NegotiateApiVersions () : void

9.1.9.2.2 AddToLines (pLine: CtLine*) : void

9.1.9.2.3 RemoveFromLines (pLine : CtLine*) : void

9.1.9.2.4 OnCresate (dwDevicelD : DWORD) : void

9.1.9.250nRequest (nRequestMode : DWORD, hRequestWnd : HWND,
nRequestID : TREQUEST) : void

9.1.9.2.6 OnEvent (dwDevice : DWORD, nMsg : DWORD, dwParaml : DWORD,
dwParam2 : DWORD, dwParam3 : DWORD) : void

9.1.9.2.7 OnAddressState (NAddressiD : DWORD, nAddressState : DWORD) : void
9.1.9.2.8 OnClose () : void

9.1.9.2.9 OnDev Specific (dwDevice : DWORD, dwParaml : DWORD, dwParam?2 :
DWORD, dwParam3 : DWORD) : void

9.1.9.2.10 OnDevSpecificFeature (dwDevice : DWORD, dwParaml : DWORD,
dwParam2 : DWORD, dwParam3 : DWORD) : void

9.1.9.2.11 OnDevState (nDevState : DWORD, dwParam2 : DWORD, dwParam3 :
DWORD) : void

9.1.9.2.12 OnCadllInfo (hCall : HCALL, nCallinfo : DWORD) : void

9.1.9.2.13 OnCadlState (hCall : HCALL, nCdlState : DWORD, dwParam?2 :
DWORD, nCallPriviledge : DWORD) : void

9.1.9.2.14 OnNewCall (nAddressiD : DWORD, hCall : HCALL, nCalPriviledge :
DWORD) : void

9.1.9.2.15 OnGatherDigits (hCall : HCALL, nGatherTerm : DWORD) : void
9.1.9.2.16 OnGenerate (hCall : HCALL, nGenerateTerm : DWORD) : void
9.1.9.2.17 OnMonitorDigits (hCall : HCALL, cDigit : char, nDigitMode : DWORD)
:void

9.1.9.2.18 OnMonitorMedia (hCall : HCALL, nMediaMode : DWORD) : void
9.1.9.2.19 OnMonitorTone (hCall : HCALL, dwAppSpecific : DWORD) : void
9.1.9.220 OnReply (NReguestiD : TREQUEST, nResult : TREQUEST,
nRequestType : DWORD) : void

9.1.9.2.21 TfxLineCallback (dwDevice : DWORD, nMsg : DWORD, dwlnstance :
DWORD, dwParaml : DWORD, dwParam2 : DWORD, dwParam3 : DWORD) : int

122

9.1.9.3 Private Methods:

9.1.9.3.1 CiLine (: const CtLine&) : CtLine

9.1.9.3.2 AddRequest (nRequestiD : TREQUEST, pTarget : CtReplyTarget*,
dwRequestType : DWORD) : void

9.1.9.3.3 RemoveAllRequests (pTarget : CtReplyTarget* = 0) : void

9.1.9.34 IsCallRequestPending (nRequestiD : TREQUEST, pnRequestType :
DWORD*) : BOOL

9.1.9.3.5 IsCallRequestTypePending (pCall : const CtCall*, nRequestType :
DWORD) : BOOL

9.1.9.3.6 operator = (: const CtLine&) : CtLine&

9.1.10 CtReplyTarget

9.1.10.1 Public Methods:

9.1.10.1.1 OnReply (nRequestiD : TREQUEST, nResult : TRESULT,
nRequestType : DWORD) : void

9.1.11 CtCallInfo

Derived from CtVariableData

123

9.1.11.1 Public Methods:

9.1.11.1.1 GetCallnfo (pCall : const CtCall*) : TRESULT
9.1.11.1.2 GetCallInfo (hCall : const HCALL) : TRESULT
9.1.11.1.3 operator const LPLINECALLINFO () : const LPLINECALLINFO
9.1.11.1.4 GetLineHandle () : HLINE

9.1.11.1.5 GetLinel D () : DWORD

9.1.11.1.6 GetAddressID () : DWORD

9.1.11.1.7 GetBearerMode () : DWORD

9.1.11.1.8 GetRate () : DWORD

9.1.11.1.9 GetMediaMode () : DWORD

9.1.11.1.10 GetAppSpecific () : DWORD

9.1.11.1.11 GetCalllD () : DWORD

9.1.11.1.12 GetRelatedCallID () : DWORD

9.1.11.1.13 GetCallParamFlags () : DWORD

9.1.11.1.14 GetCallStates () : DWORD

9.1.11.1.15 GetMonitorDigitModes () : DWORD
9.1.11.1.16 GetMonitorMediaM odes () : DWORD
9.1.11.1.17 GetDiaParams () : const LPLINEDIALPARAMS
9.1.11.1.18 GetOrigin () : DWORD

9.1.11.1.19 GetReason () : DWORD

9.1.11.1.20 GetCompletionID () : DWORD

9.1.11.1.21 GetNumOwners () : DWORD

9.1.11.1.22 GetNumMonitors () : DWORD

9.1.11.1.23 GetCountryCode () : DWORD

9.1.11.1.24 GetTrunk () : DWORD

9.1.11.1.25 GetCallerIDFlags () : DWORD

9.1.11.1.26 GetCallerID () : LPCSTR

9.1.11.1.27 GetCallerIDName () : LPCSTR

9.1.11.1.28 GetCalledI DFlags () : DWORD

9.1.11.1.29 GetCalledID () : LPCSTR

9.1.11.1.30 GetCalledIDName () : LPCSTR

9.1.11.1.31 GetConnectedI DFlags () : DWORD
9.1.11.1.32 GetConnectedID () : LPCSTR

124

9.1.11.1.33 GetConnectedlIDName () : LPCSTR
9.1.11.1.34 GetRedirectionIDFlags () : DWORD
9.1.11.1.35 GetRedirectionID () : LPCSTR
9.1.11.1.36 GetRedirectionIDName () : LPCSTR
9.1.11.1.37 GetRedirectingl DFlags () : DWORD
9.1.11.1.38 GetRedirectingID () : LPCSTR
9.1.11.1.39 GetRedirectinglDName () : LPCSTR
9.1.11.1.40 GetAppName () : LPCSTR
9.1.11.1.41 GetDisplayableAddress () : LPCSTR
9.1.11.1.42 GetCalledParty () : LPCSTR
9.1.11.1.43 GetComment () : LPCSTR
9.1.11.1.44 GetDisplay () : LPCSTR

9.1.11.1.45 GetUserUserInfoSize () : DWORD
9.1.11.1.46 GetUserUserInfo () : void*
9.1.11.1.47 GetHighLevel CompSize () : DWORD
9.1.11.1.48 GetHighLevel Comp () : void*
9.1.11.1.49 GetL owL evel CompSize () : DWORD
9.1.11.1.50 GetLowL evelComp () : void*
9.1.11.1.51 GetCharginglnfoSize () : DWORD
9.1.11.1.52 GetCharginginfo () : void*
9.1.11.1.53 GetNumTerminals () : DWORD
9.1.11.1.54 GetTerminaModes (nTermID : DWORD) : DWORD
9.1.11.1.55 GetDevSpecificSize () : DWORD
9.1.11.1.56 GetDevSpecificlnfo () : void*

9.1.11.2 Protected Methods:

9.1.11.2.1 FillBuffer () : TRESULT

125

9.1.11.3 Private Methods:

9.1.11.3.1 GetData () : const LPLINECALLINFO

9.1.12 CtCallList

Derived from CtVariableData

9.1.12.1 Public Methods:

9.1.12.1.1 GetNewCalls (hLine: HLINE) : TRESULT

9.1.12.1.2 GetNewCalls (nAddress : DWORD) : TRESULT

9.1.12.1.3 operator const LPLINECALLLIST () : const LPLINECALLLIST
9.1.12.1.4 GetNumCalls () : DWORD

9.1.12.1.5 GetCall (nCall : DWORD) : HCALL

9.1.12.2 Protected Methods:

9.1.12.2.1 FillBuffer () : TRESULT

9.1.12.3 Private Methods:

9.1.12.3.1 GetData () : const LPLINECALLLIST

126

9.1.13 CtCallSink

9.1.13.1 Public Methods:

9.1.13.1.1 OnCallInfo (pCall : CtCall*, nCalllnfo : DWORD) : void

9.1.13.1.2 OnCadlState (pCal : CtCal*, nCalState : DWORD, dwParam2 :
DWORD, nCallPriviledge : DWORD) : void

9.1.13.1.3 OnCallGatherDigits (pCall : CtCall*, nGatherTerm : DWORD) : void
9.1.13.1.4 OnCallGenerate (pCall : CtCall*, nGenerateTerm : DWORD) : void
9.1.13.1.5 OnCdlIMonitorDigits (pCall : CtCal*, cDigit : char, nDigitMode :
DWORD) : void

9.1.13.1.6 OnCallMonitorMedia (pCall : CtCall*, nMediaMode : DWORD) : void
9.1.13.1.7 OnCalMonitorTone (pCall : CtCall*, dwAppSpecific : DWORD) : void
9.1.13.1.8 OnCallReply (pCall : CtCall*, nRequestID : TREQUEST, tr : TRESULT,
nRequestType : DWORD) : void

9.1.14 CtCallStatus

Derived from CtVariableData

9.1.14.1 Public Methods:

9.1.14.1.1 GetCalStatus (pCall : const CtCall*) : TRESULT

9.1.14.1.2 GetCal Status (hCall : const HCALL) : TRESULT

9.1.14.1.3 operator const LPLINECALLSTATUS () : const LPLINECALLSTATUS
9.1.14.1.4 GetCallState () : DWORD

9.1.14.1.5 GetCall StateM ode () : DWORD

9.1.14.1.6 GetCalPrivilege () : DWORD

9.1.14.1.7 GetCallFeatures () : DWORD

9.1.14.1.8 GetDevSpecificSize () : DWORD

9.1.14.1.9 GetDevSpecificlnfo () : void*

127

9.1.14.2 Protected Methods:

9.1.14.2.1 FillBuffer () : TRESULT

9.1.14.3 Private Methods:

9.1.14.3.1 GetData () : const LPLINECALLSTATUS

9.1.15 CtCountryList

Derived from CtVariableData

9.1.15.1 Public Methods:

9.1.15.1.1 GetCountryList () : TRESULT

9.1.15.1.2 operator const LPLINECOUNTRYLIST 0
LPLINECOUNTRYLIST

9.1.15.1.3 GetNumCountries () : DWORD

9.1.15.1.4 GetCountryCode (nCountry : DWORD) : DWORD
9.1.15.1.5 GetCountryName (nCountry : DWORD) : LPCSTR
9.1.15.1.6 GetSameAreaRule (nCountry : DWORD) : LPCSTR
9.1.15.1.7 GetLongDistanceRule (nCountry : DWORD) : LPCSTR
9.1.15.1.8 GetInternational Rule (nCountry : DWORD) : LPCSTR

9.1.15.2 Protected Methods:

9.1.15.2.1 FillBuffer () : TRESULT

const

128

9.1.15.3 Private Methods:

9.1.15.3.1 GetData () : const LPLINECOUNTRYLIST

9.1.16 CtDevicelD

Derived from CtVariableData

9.1.16.1 Public Methods:

9.1.16.1.1 GetID (szDeviceClass : LPCSTR, hPhone : HPHONE) : TRESULT
9.1.16.1.2 GetID (szDeviceClass : LPCSTR, hLine: HLINE) : TRESULT
9.1.16.1.3 GetID (szDeviceClass : LPCSTR, hLine : HLINE, nAddressiD :
DWORD) : TRESULT

9.1.16.1.4 GetlID (szDeviceClass: LPCSTR, hCall : HCALL) : TRESULT
9.1.16.1.5 operator const LPVARSTRING () : const LPVARSTRING

9.1.16.1.6 GetString () : LPCSTR

9.1.16.1.7 GetHandleAndString (ph : HANDLE*) : LPCSTR

9.1.16.1.8 GetDevicel D () : DWORD

9.1.16.1.9 GetDevicel Ds () : DWORD*

9.1.16.2 Protected Methods:

9.1.16.2.1 FillBuffer () : TRESULT

9.1.16.3 Private Methods:

9.1.16.3.1 GetData () : const LPVARSTRING

129

9.1.17 CtDialStringSink

9.1.17.1 Public Methods:

9.1.17.1.1 OnDialDone () : void
9.1.17.1.2 OnDialError () : void

9.1.18 CtDialString

Derived from CtWaveSink, TimerSink

9.1.18.1 Public Methods:

9.1.18.1.1 CtDialString (pSink : CtDia StringSink* = 0, pszDigits : const TCHAR*
=0) : CtDia String

9.1.18.1.2 ~CtDiaString () :

9.1.18.1.3 operator = (pszDigits : const TCHAR*) : CtDia String&

9.1.18.1.4 Dia (nWaveOut : UINT, nDigitDuration : UINT, nCommaDelay : UINT)
> bool

9.1.18.1.5 operator const TCHAR* () : const TCHAR*

9.1.18.1.6 Cancsel () : void

9.1.18.2 Private Methods:

9.1.18.2.1 PlayDigit () : bool
9.1.18.2.2 OnTimer () : void
9.1.18.2.3 OnWaveOutOpen () : void
9.1.18.2.4 OnWaveOutDone () : void

130

9.1.19 CtDtmf

Derived from CtWave

9.1.19.1 Public Methods:

9.1.19.1.1 CtDtmf (pSink : CtWaveSink* = 0) : CtDtmf
9.1.19.1.2 SetTone (cTone : char) : bool

9.1.19.2 Private Methods:

9.1.19.2.1 Load (prgDtmf : BY TE*, nSize : size t) : bool

9.1.20 Timer

Derived from InvisibleWindowSink

9.1.20.1 Public Methods:

9.1.20.1.1 Timer (pSink : TimerSink*) : Timer

9.1.20.1.2 Start (nElapse : UINT, nMinDelta: UINT = 0) : bool
9.1.20.12.3 ~Timer () :

9.1.20.1.4 Running () : bool

9.1.20.1.5 Stop () : void

131

9.1.20.2 Private Methods:

9.1.20.2.1 OnWindowMessage (hwnd : HWND, nMsg : UINT, wparam

WPARAM, Iparam : LPARAM) : LRESULT

9.1.21 CtWaveSink

9.1.21.1 Public Methods:

9.1.21.1.1 OnWaveOutOpen () : void
9.1.21.1.2 OnWaveOutDone () : void
9.1.21.1.3 OnWaveOutClose () : void
9.1.21.1.4 OnWavelnOpen () : void
9.1.21.1.5 OnWavelnData () : void
9.1.21.1.6 OnWavelnClose () : void

9.1.22 TimerSink

9.1.22.1 Public Methods:

9.1.22.1.1 OnTimer () : void

9.1.23 CtWave

Derived from InvisibleWindowSink

132

9.1.23.1 Public Methods:

9.1.23.1.1 CtWave (pSink : CtWaveSink* = 0) : CtWave
9.1.23.1.2 Load (hinst : HINSTANCE, nID : UINT) : bool

9.1.23.1.3 Load (hinst : HINSTANCE, pszID : LPCTSTR) : bool

9.1.23.1.4 Load (pszFileName : LPCSTR) : bool
9.1.23.1.5 ~CtWave () :
9.1.23.1.6 Save (pszFileName : LPCSTR) : bool

9.1.23.1.7 Play (nWaveOut : UINT, bLoop : bool = false) : bool

9.1.23.1.8 Record (nWaveln : UINT, nSecs: UINT) : bool
9.1.23.1.9 Stop () : bool

9.1.23.1.10 Close () : boal

9.1.23.1.11 AddSink (pSink : CtWaveSink*) : void

9.1.23.2 Protected Methods:

9.1.23.2.1 Load (hmmio : HMMIO) : bool
9.1.23.2.2 OnWindowMessage (hwnd : HWND, nMsg
WPARAM, Iparam : LPARAM) : LRESULT

9.1.24 TapiRecover

9.1.24.1 Public Methods:

9.1.24.1.1 Prelnitialize () : void
9.1.24.1.2 Initialize (happ : void*) : void
9.1.24.1.3 Shutdown () : void

UINT, wparam

133

9.1.24.2 Private Methods:

9.1.24.2.1 SubKeyName () : const char*
9.1.24.2.2 ShutdownApp (happ : void*) : long

9.1.25 LineTapiRecover

Derived from TapiRecover

9.1.25.1 Private Methods:

9.1.25.1.1 SubKeyName () : const char*
9.1.25.1.2 ShutdownApp (happ : void*) : long

9.1.26 PhoneTapiRecover

Derived from TapiRecover

9.1.26.1 Private Methods:

9.1.26.1.1 SubKeyName () : const char*
9.1.26.1.2 ShutdownApp (happ : void*) : long

134

9.1.27 CtRequestList

9.1.27.1 Public Methods:

9.1.27.1.1 AddRequest (nRequestiD : TREQUEST, pTarget : CtReplyTarget*,
nRequestType : DWORD) : void

9.1.27.1.2 ~CtRequestList () :

9.1.27.1.3 IsRequestPending (nRequestiD : TREQUEST = 0, pnRequestType :
DWORD* = 0) : BOOL

9.1.27.1.4 IsRequestTypePending (nRequestType : DWORD, pTarget : const
CtReplyTarget* = 0) : BOOL

9.1.27.1.5 RemoveRequest (NRequestID : TREQUEST, ppTarget : CtReplyTarget**
=0, pnReguestType : DWORD* = 0) : BOOL

9.1.27.1.6 RemoveAllRequests (pTarget : CtReplyTarget* = 0) : void

9.1.27.2 Private Methods:

9.1.27.2.1 FindRequest (nRequestID : TREQUEST, ppar
CtRequestList::AsyncRequest** = 0, ppos : POSITION* = 0) : BOOL

9.1.28 CtLineDevCaps

Derived from CtVariableData

135

9.1.28.1 Public Methods:

9.1.28.1.1 GetDevCaps (nLinelD : DWORD) : TRESULT

9.1.28.1.2 operator const LPLINEDEVCAPS () : const LPLINEDEVCAPS

9.1.28.1.3 GetProviderinfo () : LPCSTR

9.1.28.1.4 GetSwitchinfo () : LPCSTR

9.1.28.1.5 GetPermanentLinel D () : DWORD

9.1.28.1.6 GetLineName () : LPCSTR

9.1.28.1.7 GetAddressModes () : DWORD

9.1.28.1.8 GetNumAddresses () : DWORD

9.1.28.1.9 GetBearerModes () : DWORD

9.1.28.1.10 GetMaxRate () : DWORD

9.1.28.1.11 GetMediaModes () : DWORD

9.1.28.1.12 GetGenerateToneModes () : DWORD
9.1.28.1.13 GetGenerateToneM axNumFreq () : DWORD
9.1.28.1.14 GetGenerateDigitModes () : DWORD
9.1.28.1.15 GetMonitorToneMaxNumFreq () : DWORD
9.1.28.1.16 GetMonitorToneMaxNumEntries () : DWORD
9.1.28.1.17 GetMonitorDigitModes () : DWORD
9.1.28.1.18 GetGatherDigitsMinTimeout () : DWORD
9.1.28.1.19 GetGatherDigitsMaxTimeout () : DWORD
9.1.28.1.20 GetMedCtIDigitMaxListSize () : DWORD
9.1.28.1.21 GetMedCtIMediaMaxListSize () : DWORD
9.1.28.1.22 GetMedCtIToneMaxListSize () : DWORD
9.1.28.1.23 GetM edCtICall StateM axListSize () : DWORD
9.1.28.1.24 GetDevCapFlags () : DWORD

9.1.28.1.25 GetMaxNumActiveCalls () : DWORD
9.1.28.1.26 GetAnswerMode () : DWORD

9.1.28.1.27 GetRingModes () : DWORD

9.1.28.1.28 GetLineStates () : DWORD

9.1.28.1.29 GetUUIAcceptSize () : DWORD

9.1.28.1.30 GetUUIANnswerSize () : DWORD

9.1.28.1.31 GetUUIMakeCallSize () : DWORD
9.1.28.1.32 GetUUIDropSize () : DWORD

136

9.1.28.1.33 GetUUI SendUserUserInfoSize () : DWORD

9.1.28.1.34 GetUUICalInfoSize () : DWORD

9.1.28.1.35 GetMinDiaParams () : const LPLINEDIALPARAMS

9.1.28.1.36 GetMaxDialParams () : const LPLINEDIALPARAMS
9.1.28.1.37 GetDefaultDial Params () : const LPLINEDIALPARAMS
9.1.28.1.38 GetNumTerminals () : DWORD

9.1.28.1.39 GetTermina Text (nTermID : DWORD) : LPCSTR

9.1.28.1.40 GetTermCaps (nTermID : DWORD) : const LPLINETERMCAPS
9.1.28.1.41 GetLineFeatures () : DWORD

9.1.28.2 Protected Methods:

9.1.28.2.1 FillBuffer () : TRESULT

9.1.28.3 Private Methods:

9.1.28.3.1 GetData () : const LPLINEDEVCAPS

137

9.1.29 CtLineSink

9.1.29.1 Public Methods:

9.1.29.1.1 OnLineAddressState (pLine : CtLine*, nAddressiD : DWORD,
nAddressState : DWORD) : void

9.1.29.1.2 OnLineNewCall (pLine : CitLine*, hCal : HCALL, nAddressiD :
DWORD, nCallPriviledge : DWORD) : void

9.1.29.1.3 OnLineClose (pLine: CtLine*) : void

9.1.29.1.4 OnLineDevSpecific (pLine : CtLine*, dwDevice : DWORD, dwParaml :
DWORD, dwParam2 : DWORD, dwParam3 : DWORD) : void

9.1.29.1.5 OnLineDevSpecificFeature (pLine : CtLine*, dwDevice : DWORD,
dwParaml : DWORD, dwParam2 : DWORD, dwParam3 : DWORD) : void
9.1.29.1.6 OnLineDevState (pLine : CtLine*, nDevState : DWORD, dwParam? :
DWORD, dwParam3 : DWORD) : void

9.1.29.1.7 OnLineReply (pLine : CiLine*, nRequestiD : TREQUEST, nResult :
TRESULT, dwRequestType : DWORD) : void

9.1.30 CtPhone

Derived from CtReplyTarget

138

9.1.30.1 Public Methods:

9.1.30.1.1 CtPhone () : CtPhone

9.1.30.1.2 GetHandle () : HPHONE

9.1.30.1.3 ~CtPhone () :

9.1.30.1.4 GetDevicel D () : DWORD

9.1.30.1.5 AddSink (pSink : CtPhoneSink*) : void

9.1.30.1.6 RemoveSink (pSink : CtPhoneSink*) : void

9.1.30.1.7 IsRequestPending (nRequestiD : TREQUEST, pnRequestType
DWORD* = 0) : BOOL

9.1.30.1.8 IsRequestTypePending (nRequestType : DWORD) : BOOL

9.1.30.1.9 FromHandle (HPHONE : HPHONE) : CtPhone*

9.1.30.1.10 GetNumbDevs () : DWORD

9.1.30.1.11 GetAppHandle () : HPHONEAPP

9.1.30.1.12 GetAppVersion () : DWORD

9.1.30.1.13 SetAppVersion (dwLoVersion : DWORD, dwHiVersion : DWORD) :
void

9.1.30.1.14 GetApiVersion (nPhonel D : DWORD) : DWORD

9.1.30.2.15 Initialize (pAppSink : CtAppSink*, szAppName : LPCSTR, hinst :
HINSTANCE) : TRESULT

9.1.30.1.16 Shutdown () : TRESULT

9.1.30.1.17 Getlcon (nPhonelD : DWORD, phicon : LPHICON, pszDeviceClass :
LPCSTR) : TRESULT

9.1.30.1.18 Open (nPhonelD : DWORD, plnitiadSink : CtPhoneSink* = 0,
dwPriviledges : DWORD = PHONEPRIVILEGE_OWNER) : TRESULT
9.1.30.1.19 Close () : TRESULT

9.1.30.1.20 SetHookSwitch (dwHookSwitchDevs : DWORD, nHookSwitchMode :
DWORD) : TRESULT

139

9.1.30.2 Protected Methods:

9.1.30.2.1 NegotiateApiVersions () : void

9.1.30.2.2 AddToPhones (pPhone : CtPhone*) : void

9.1.30.2.3 RemoveFromPhones (pPhone : CtPhone*) : void

9.1.30.2.4 OnCreate (dwDevicelD : DWORD) : void

9.1.30.2.5 OnEvent (dwDevice : DWORD, nMsg : DWORD, dwParaml : DWORD,
dwParam2 : DWORD, dwParam3 : DWORD) : void

9.1.30.2.6 OnButton (nButtonOrLampID : DWORD, nButtonMode : DWORD,
nButtonState : DWORD) : void

9.1.30.2.7 OnClose () : void

9.1.30.2.8 OnDevSpecific (dwDevice : DWORD, dwParaml1 : DWORD, dwParam2
: DWORD, dwParam3 : DWORD) : void

9.1.30.2.9 OnState (dwPhoneStates : DWORD, dwPhoneStateDetails : DWORD) :
void

9.1.30.2.10 OnReply (nRequestiD : TREQUEST, nResult : TREQUEST,
nRequestType : DWORD) : void

9.1.30.2.11 TfxPhoneCallback (dwDevice : DWORD, nMsg : DWORD, dwlnstance
: DWORD, dwParaml : DWORD, dwParam2 : DWORD, dwParam3 : DWORD) :

int

9.1.30.3 Private Methods:

9.1.30.3.1 CtPhone (: const CtPhone&) : CtPhone

9.1.30.3.2 AddRequest (nRequestID : TREQUEST, pTarget : CtReplyTarget*,
dwRequestType : DWORD) : void

9.1.30.3.3 RemoveAllRequests (pTarget : CtReplyTarget* = 0) : void

9.1.30.3.4 operator = (: const CtPhone&) : CtPhone&

140

9.1.31 CtPhoneCaps

Derived from CtVariableData

9.1.31.1 Public Methods:

9.1.31.1.1 GetDevCaps (nPhonel D : DWORD) : TRESULT
9.1.31.1.2 operator const LPPHONECAPS () : const LPPHONECAPS

9.1.31.1.3 GetProviderinfo () : LPCSTR

9.1.31.1.4 GetPhonelnfo () : LPCSTR

9.1.31.1.5 GetPermanentPhonel D () : DWORD
9.1.31.1.6 GetPhoneName () : LPCSTR

9.1.31.1.7 GetPhoneStates () : DWORD

9.1.31.1.8 GetHookSwitchDevs () : DWORD

9.1.31.1.9 GetHandsetHookSwitchModes () : DWORD
9.1.31.1.10 GetSpeakerHookSwitchModes () : DWORD
9.1.31.1.11 GetHeadsetHookSwitchModes () : DWORD
9.1.31.1.12 GetVolumeFlags () : DWORD

9.1.31.1.13 GetGainFlags () : DWORD

9.1.31.1.14 GetDisplayNumRows () : DWORD
9.1.31.1.15 GetDisplayNumColumns () : DWORD
9.1.31.1.16 GetNumRingModes () : DWORD
9.1.31.1.17 GetNumButtonLamps () : DWORD

9.1.31.1.18 GetButtonM odes (nButton : DWORD) : DWORD
9.1.31.1.19 GetButtonFunction (nButton : DWORD) : DWORD
9.1.31.1.20 GetLampModes (nLamp : DWORD) : DWORD

9.1.31.1.21 GetNumSetData () : DWORD

9.1.31.1.22 GetSetData (nDatum : DWORD) : DWORD
9.1.31.1.23 GetNumGetData () : DWORD

9.1.31.1.24 GetGetData (nDatum : DWORD) : DWORD
9.1.31.1.25 GetDevSpecificSize () : DWORD
9.1.31.1.26 GetDevSpecificData () : void*

141

9.1.31.2 Protected Methods:

9.1.31.2.1 FillBuffer () : TRESULT

9.1.31.3 Private Methods:

9.1.31.3.1 GetData () : const LPPHONECAPS

142

9.1.32 CtPhoneNo

9.1.32.1 Public Methods:

9.1.32.1.1 CtPhoneNo () : CtPhoneNo
9.1.32.1.2 CtPhoneNo (szWholePhoneNo : LPCSTR) : CtPhoneNo

9.1.32.1.3 CtPhoneNo (szCountryCode : LPCSTR, szAreaCode :

szPhoneNo : LPCSTR) : CtPhoneNo

9.1.32.1.4 CtPhoneNo (nCountryCode : DWORD, szAreaCode
szPhoneNo : LPCSTR) : CtPhoneNo

9.1.32.1.5 CtPhoneNo (pno : const CtPhoneNo&) : CtPhoneNo
9.1.32.1.6 operator = (pno : const CtPhoneNo&) : CtPhoneNo&
9.1.32.1.7 GetCountryCode () : LPCSTR

9.1.32.1.8 ~CtPhoneNo () :

9.1.32.1.9 GetCountryCodeNum () : DWORD

9.1.32.1.10 GetAreaCode () : LPCSTR

9.1.32.1.11 GetPhoneNo () : LPCSTR

9.1.32.1.12 GetCanonical () : LPCSTR

9.1.32.1.13 GetDisplayable () : LPCSTR

9.1.32.1.14 GetTranslatable (pszMap : LPCSTR = "4442447") : LPCSTR

9.1.32.1.15 SetWholePhoneNo (szZWholePhoneNo : LPCSTR) : void
9.1.32.1.16 SetCanonical (szCanonical : LPCSTR) : void

9.1.32.1.17 SetCanonical (szCountryCode : LPCSTR, szAreaCode :

szPhoneNo : LPCSTR) : void

9.1.32.1.18 SetCanonical (nCountryCode : DWORD, szAreaCode :

szPhoneNo : LPCSTR) : void

9.1.32.1.19 ResetToL ocation () : void

9.1.32.1.20 SetCountryCode (szCountryCode : LPCSTR) : void
9.1.32.1.21 SetCountryCode (nCountryCode : DWORD) : void
9.1.32.1.22 SetAreaCode (szAreaCode : LPCSTR) : void
9.1.32.1.23 SetPhoneNo (szPhoneNo : LPCSTR) : void

LPCSTR,

LPCSTR,

LPCSTR,

LPCSTR,

143

9.1.32.2 Private Methods:

9.1.32.2.1 ClearConstructs () : void

9.1.32.2.2 CheckDefaults () : void

9.1.32.2.3 ResetAll () : void

9.1.32.2.4 Copy (pno : const CtPhoneNo&) : void

9.1.33 CtPhoneSink

9.1.33.1 Public Methods:

9.1.33.1.1 OnPhoneButton (pPhone : CtPhone*, nButtonOrLamplD : DWORD,
nButtonMode : DWORD, nButtonState : DWORD) : void

9.1.33.1.2 OnPhoneClose (pPhone : CtPhone*) : void

9.1.33.1.3 OnPhoneDevSpecific (pPhone : CtPhone*, dwDevice : DWORD,
dwParaml : DWORD, dwParam2 : DWORD, dwParam3 : DWORD) : void
9.1.33.1.4 OnPhoneReply (pPhone : CtPhone*, nRequestiD : TREQUEST, nResult :
TRESULT, dwRequestType : DWORD) : void

9.1.33.1.5 OnPhoneState (pPhone : CtPhone*, dwPhoneStates : DWORD,
dwPhoneStateDetails : DWORD) : void

9.1.34 CtProviderList

Derived from CtVariableData

144

9.1.34.1 Public Methods:

9.1.34.1.1 GetProviderList () : LONG

9.1.34.1.2 operator const LPLINEPROVIDERLIST 0
LPLINEPROVIDERLIST

9.1.34.1.3 GetNumProviders () : DWORD

9.1.34.1.4 GetProviderPermanentl D (nProvider : DWORD) : DWORD
9.1.34.1.5 GetProviderFilename (nProvider : DWORD) : LPCSTR

9.1.34.2 Protected Methods:

9.1.34.2.1 FillBuffer () : TRESULT

9.1.34.3 Private Methods:

9.1.34.3.1 GetData () : const LPLINEPROVIDERLIST

9.1.35 CtTranslateCaps

Derived from CtVariableData

const

145

9.1.35.1 Public Methods:

9.1.35.1.1 GetTranglateCaps () : TRESULT

9.1.35.1.2 operator const LPLINETRANSLATECAPS 0 : const
LPLINETRANSLATECAPS

9.1.35.1.3 GetCurrentLocationl D () : DWORD

9.1.35.1.4 GetNumL ocations () : DWORD

9.1.35.1.5 GetPermanentL ocationl D (nLocation : DWORD) : DWORD
9.1.35.1.6 GetL ocationName (nLocation : DWORD) : LPCSTR
9.1.35.1.7 GetCountryCode (nLocation : DWORD) : DWORD
9.1.35.1.8 GetAreaCode (nLocation : DWORD) : LPCSTR

9.1.35.1.9 GetCityCode (nLocation : DWORD) : LPCSTR

9.1.35.1.10 GetPreferredCardID (nLocation : DWORD) : DWORD
9.1.35.1.11 GetL ocal AccessCode (nLocation : DWORD) : LPCSTR
9.1.35.1.12 GetL ongDistanceAccessCode (nLocation : DWORD) : LPCSTR
9.1.35.1.13 GetTollPrefixList (nLocation : DWORD) : LPCSTR
9.1.35.1.14 GetCountryID (nLocation : DWORD) : DWORD
9.1.35.1.15 GetL ocationOptions (nLocation : DWORD) : DWORD
9.1.35.1.16 GetCancel CallWaiting (nLocation : DWORD) : LPCSTR
9.1.35.1.17 GetCurrentPreferredCardID () : DWORD

9.1.35.1.18 GetNumCards () : DWORD

9.1.35.1.19 GetPermanentCardID (nCard : DWORD) : DWORD
9.1.35.1.20 GetCardName (nCard : DWORD) : LPCSTR

9.1.35.1.21 GetCardNumberDigits (nCard : DWORD) : DWORD
9.1.35.1.22 GetSameAreaRule (nCard : DWORD) : LPCSTR
9.1.35.1.23 GetL ongDistanceRule (nCard : DWORD) : LPCSTR
9.1.35.1.24 Getlnternational Rule (nCard : DWORD) : LPCSTR
9.1.35.1.25 GetCardOptions (nCard : DWORD) : DWORD

146

9.1.35.2 Protected Methods:

9.1.35.2.1 FillBuffer () : TRESULT

9.1.35.3 Private Methods:

9.1.35.3.1 GetData () : const LPLINETRANSLATECAPS

9.1.36 CtTranslateOutput

Derived from CtVariableData
9.1.36.1 Public Methods:

9.1.36.1.1 TranslateAddress (nLinelD : DWORD, pszAddressin : LPCSTR,
nCardID : DWORD = 0, dwTranslateOptions : DWORD =0) : TRESULT
9.1.36.1.2 operator const LPLINETRANSLATEOUTPUT () : const
LPLINETRANSLATEOUTPUT

9.1.36.1.3 GetDialableString () : LPCSTR

9.1.36.1.4 GetDisplayableString () : LPCSTR

9.1.36.1.5 GetCurrentCountry () : DWORD

9.1.36.1.6 GetDestCountry () : DWORD

9.1.36.1.7 GetTranslateResults () : DWORD

9.1.36.2 Protected Methods:

9.1.36.2.1 FillBuffer () : TRESULT

9.1.36.3 Private Methods:

9.1.36.3.1 GetData () : const LPLINETRANSLATEOUTPUT

147

9.2 Integration

This section includes all the datatypes that have benn used for the integration of the
telephony, TTS and POP3 client modules. These datatypes include:

9.2.1 CPtrList

9.22 HCALL

9.2.3 CPtrArray

9.24 HLINE

9.2.5 HPHONE

9.2.6 HLINEAPP

9.2.7 HPHONEAPP

9.2.8 WAVEHDR

9.2.9 WAVEFORMATEX

9.2.10 HWAVEIN

9.2.11 HWAVEOUT

148

9.3 VoiceM

VoiceM package embodies the application that downloads the e-mails using POP3
and plays it using Text-to-Speech conversion. It also listens for incoming calls using

TFEX. Classes included in this package are explained below.

9.3.1 CMainFrame

Derived from CFrameWnd

9.3.1.1 Public Properties:

93111 CLOSE AFX_VIRTUAL :

9.3.1.2 Public Methods:

9.3.1.21_OPEN_AFX_VIRTUAL (: CMainFrame) : int
9.3.1.2.2 PreCreateWindow (cs: CREATESTRUCT&) : BOOL
9.3.1.2.3 ~CMainFrame () :

9.3.1.3 Protected Methods:

9.3.1.3.1 DECLARE_DYNCREATE (: CMainFrame) : int

9.3.1.3.2 CMainFrame () : CMainFrame
9.3.1.3.3_OPEN_AFX_MSG (: CMainFrame) : int

9.3.1.3.4 OnCreate (IpCreateStruct : LPCREATESTRUCT) : afx_msg
9.3.1.3.5 DECLARE_MESSAGE_MAP () : __ CLOSE_AFX_MSG

149

9.3.2 CPop3Message

9.3.2.1 Public Properties:

9.3.21.1 m_pszMessage : char*

9.3.2.2 Public Methods:

9.3.2.2.1 CPop3Message () : CPop3Message
9.3.2.2.2 GetMessageText () : LPCSTR
9.3.2.2.3 ~CPop3Message () :

9.3.2.2.4 GetHeader () : CString

9.3.2.2.5 GetHeaderltem (sName : const CString&, nltem : int = 0) : CString
9.3.2.2.6 GetBody () : CString

9.3.2.2.7 GetRawBody () : LPCSTR
9.3.2.2.8 GetSubject () : CString

9.3.2.2.9 GetFrom () : CString

9.3.2.2.10 GetDate () : CString

9.3.2.2.11 GetReplyTo () : CString

9.3.3 CPop3Socket

9.3.3.1 Public Methods:

9.3.3.1.1 CPop3Socket () : CPop3Socket

9.3.3.1.2 ~CPop3Socket () :

9.3.3.1.3 Create () : BOOL

9.3.3.1.4 Connect (pszHostAddress : LPCTSTR, nPort : int = 110) : BOOL
9.3.3.1.5 Send (pszBuf : LPCSTR, nBuf : int) : BOOL

9.3.3.1.6 Close () : void

9.3.3.1.7 Receive (pszBuf : LPSTR, nBuf : int) : int

9.3.3.1.8 IsReadible (bReadible : BOOL&) : BOOL

150

9.3.3.2 Protected Methods:

9.3.3.2.1 Connect (IpSockAddr : const SOCKADDR*, nSockAddrLen : int) : BOOL

9.3.4 CPop3Connection

9.3.4.1 Protected Properties:

9.3.4.1.1 m_nNumberOfMails: int

9.3.4.2 Public Methods:

9.3.4.2.1 CPop3Connection () : CPop3Connection
9.3.4.2.2 ~CPop3Connection () :

9.3.4.2.3 Connect (pszHostName : LPCTSTR, pszUser : LPCTSTR, pszPassword :

LPCTSTR, nPort : int = 110) : BOOL

9.3.4.2.4 Disconnect () : BOOL

9.3.4.2.5 Statistics (NNumberOfMails : int&, nTotalMailSize : int&) : BOOL
9.3.4.2.6 Delete (nMsg : int) : BOOL

9.3.4.2.7 GetMessageSize (nMsg : int, dwSize : DWORD&) : BOOL
9.3.4.2.8 GetMessagel D (nMsg : int, sID : CString&) : BOOL

9.3.4.2.9 Retrieve (NMsg : int, message : CPop3Message&) : BOOL
9.3.4.2.10 GetMessageHeader (nMsg : int, message : CPop3Message&) : BOOL
9.3.4.2.11 Reset () : BOOL

9.3.4.2.12 UIDL () : BOOL

9.3.4.2.13 Noop () : BOOL

9.3.4.2.14 GetL astCommandResponse () : CString

9.3.4.2.15 GetTimeout () : DWORD

9.3.4.2.16 SetTimeout (dwTimeout : DWORD) : void

151

9.3.4.3 Protected Methods:

9.3.4.3.1 ReadStatResponse (nNNumberOfMails : int&, nTotalMailSize : int&) :
BOOL

9.3.4.3.2 ReadCommandResponse () : BOOL

9.3.4.3.3 ReadListResponse (nNumberOfMails : int) : BOOL

9.3.4.3.4 ReadUI DL Response (nNNumberOfMails : int) : BOOL

9.3.4.3.5 ReadReturnResponse (message : CPop3Message&, dwSize : DWORD) :
BOOL

9.3.4.3.6 ReadResponse (pszBuffer : LPSTR, ninitialBufSize : int, pszTerminator :
LPSTR, ppszOverFlowBuffer : LPSTR*, nGrowBY : int = 4096) : BOOL

9.3.4.3.7 List () : BOOL

9.3.4.3.8 GetFirstCharlnResponse (pszData: LPSTR) : LPSTR

9.3.5 CSettings

Derived from CDialog

9.3.5.1 Private Properties:

9.35.11_ NOTE_AFX_INSERT_LOCATION:

9.3.5.2 Public Methods:

9.3.5.2.1 CSettings (pParent : CWnd* = NULL) : CSettings

152

9.3.6 CVoiceMApp

Derived from CWinApp, CtCallSink, CtLineSink, CtWaveSink
9.3.6.1 Public Properties:

9.3.6.1.1m_Rings: int
9.3.6.1.2m_Seconds: int

9.3.6.2 Protected Properties:

9.3.6.2.1 AutoLinelD : int

153

9.3.6.3 Public Methods:

9.3.6.3.1__ OPEN_AFX_VIRTUAL (: CVoiceMApp) : int

9.3.6.3.2 CVoiceMApp () : CVoiceMApp

9.3.6.3.3 InitInstance () : BOOL

9.3.6.3.4 Exitlnstance () : int

9.3.6.350nCdlInfo (pCall : CtCdl*, nCdlinfo : DWORD)
__CLOSE_AFX_VIRTUAL

9.3.6.3.6 OnCallState (pCall : CtCal*, nCalState : DWORD, dwParam2 :
DWORD, nCallPriviledge : DWORD) : void

9.3.6.3.7 OnCalIMonitorDigits (pCall : CtCal*, cDigit : char, nDigitMode :
DWORD) : void

9.3.6.3.8 virtua void OnCallMonitorMedia(CtCall* pCall, DWORD nMediaMode);
9.3.6.3.9 virtual void OnCallMonitorTone(CtCall* pCall, DWORD
dwA ppSpecific);

9.3.6.3.10 OnCdlIReply (pCall : CtCall*, nRequestID : TREQUEST, tr : TRESULT,
nRequestType : DWORD) : void

9.3.6.3.11 virtual void OnLineAddressState(CtLine* pLine, DWORD
nAddressiD, DWORD nAddressState);

9.3.6.3.12 OnLineNewCall (pLine : CtLine*, hCal : HCALL, nAddressiD :
DWORD, nCalPriviledge : DWORD) : void

9.3.6.3.13 OnLineDevState (pLine : CtLine*, nDevState : DWORD, dwParam? :
DWORD, dwParam3 : DWORD) : void

9.3.6.3.14 OnWaveOutDone () : void

9.3.6.3.15 OnWavelnData () : void

9.3.6.4 Protected Methods:

9.3.6.41__OPEN_AFX_MSG (: CVoiceMApp) : int
9.3.6.4.2 OnAppAbout () : afx_msg
9.3.6.4.3 DECLARE_MESSAGE_MAP() : _ CLOSE_AFX_MSG

154

9.3.7 CVoiceMView

Derived from CFormView

9.3.7.1 Private Properties:

9.3.7.1.1 __ NOTE_AFX_INSERT_LOCATION :

9.3.7.2 Protected Methods:

9.3.7.2.1 CVoiceMView () : CVoiceMView

9.3.7.3 Private Methods:

9.3.7.3.1 GetDocument () : CVoiceMDoc*

9.3.8 CVoiceMDoc

Derived from CDocument

9.3.8.1 Public Properties:

9.38.1.1__ CLOSE AFX_VIRTUAL :

155

9.3.8.2 Public Methods:

9.3.8.21 OPEN_AFX_VIRTUAL (: CVoiceMDoc) : int
9.3.8.2.2 OnNewDocument () : BOOL

9.3.8.2.3 Seridize (ar : CArchive&) : void

9.3.8.2.4 ~CVoiceMDoc () :

9.3.8.3 Protected Methods:

9.3.8.3.1 DECLARE_DYNCREATE (: CVoiceMDoc) : int
9.3.8.3.2CVoiceMDoc () : CVoiceMDoc

9.3.8.3.3__ OPEN_AFX_MSG (: CVoiceMDaoc) : int

9.3.8.3.4 DECLARE_MESSAGE_MAP () : _ CLOSE_AFX_MSG

9.3.9 CAboutDlg

Derived from CDialog

9.3.9.1 Public Methods:

9.3.9.1.1 CAboutDIg () : CAboutDlg

9.3.9.2 Private Methods:

9.3.9.2.1 CAboutDIg () : CAboutDlg
9.3.9.2.2 DoDataExchange (pDX : CDataExchange*) : void

156

10 Future Expansion Possibilities

157

There is a lot of room for future expansions in this system. Some of the other

services that can be added to the E-Mail via Phone system include the following:

10.1 News Update

The News update will allow the users to listen to latest news via any touch-tone
phone from anywhere. The news will be updated at the server regularly via Internet.
The text-to-speech technology will be incorporated to convert the newsin text form

to speech, enabling the user to listen to the latest news update.

10.2 Weather Forecast

Similarly the weather forecast will keep the users in touch with the latest weather
forecast. The user will dial the service provider’s phone number and will choose the
weather forecast option from the available options. Weather forecast will be
constantly updated at the PSP server. Text-to-speech technology will make the

weather forecast available to the user in audible form via telephone.

10.3 Sports News

The sports update service will alow the usersto listen to latest sports news and live
commentary of important sports events. Again the user will dial the PSP's number
and will choose the sports option. The server will establish connection with an
online radio/sports station and will allow the user to listen to live commentary or
sports update being broadcasted from that station.

158

10.4 Flight Timings

Flight timings service will inform the users about the flight schedules of the local as
well as international airlines. The access and lookup procedure for this service will

be more or less the same as in case of the news and sports update.

10.5 On Line Transaction Processing

Online Transaction Processing (OLTP) service will allow the users to purchase or
order products via any touch-tone phone. Online Transaction Processing will involve
ordering products from alist of offered products by just dialling the PSP's number.
These may include placing orders to a restaurant or purchasing an item from a

departmental store.

159

11 Conclusion

On the whole, the project has been a success as it gave us a valuable chance to gain
knowledge in the latest fields of Internet telephony and e-commerce. The experience
gained during the course of this project will help us in our future endeavours. This

project will indeed be a milestone in our academic and professional careers.

While analysing, designing and implementing this project, we tried to apply all we
had studied in different courses through out this undergraduate degree program. This
exercise not only allowed us to implement the theoretical concepts of Computer
Science, but also provided us with an excellent opportunity to revise and refresh
everything in great detail, making us ready for the challenges of practical life and
abreast of the cutting edge technological breakthroughs.

160

12 Bibliography

1. Allen, J., Hunnicutt, M. S. and Klatt, D. H. (1987). From text to speech: The
MITalk system, Cambridge: Cambridge University Press.

2. Amundsen, Michael C. (1996), MAPI, SAPI &TAPI Developer’s Guide, New
Y ork: Sams Publishing.

3. Beckman, M., Hertz, S., and Fujimura, O. (1983). “SRS Pitch Rules for
Japanese”, Working Papers of the Cornell Phonetics Laboratory 1, 1-16.

4. Chomsky, N. and Halle, M. (1968). The Sound Pattern of English, New

Y ork: Harper and Row.

5. Clements, G. N., Hertz, S. R., Lauret, B. (1995). A representational basisfor
modeling English vowel duration, Proceedings of the XllIth International

Congress of Phonetic Sciences.

6. Clements, G. N., Hertz, S. R. (1966). An integrated approach to phonology
and phonetics, in J. Durand and B. Laks (eds.), Current Trends in
Phonology: Models and Methods, CNRS, Paris X and University of Salford
Publications.

7. Campbell, N. and A. Black (1997). Prosody and the selection of source units
for concatenative synthesis, in J. van Santen, R. Sprout, J. Olive and J.
Hirshberg (eds.), Progress in Speech Synthesis, Berlin: Springer Verlag,
279-292.

161

8.

10.

11.

12.

13.

14.

Dutoit, T. (1997). An Introduction to Text-to-Speech Synthesis, Dordrecht:

Kluwer.

Hertz, S. R. (1979). Appropriateness of different rule types in speech
synthesis, in J. J Wolf and D. H. Klatt (eds.), ASA*50 Speech

Communication Papers, 511-514.

Hertz, S. R. (1982). From text to speech with SRS, Journal of the Acoustical
Society of America 72, 1155-1170.

Hertz, S. R. (1990a). A modular approach to multi-dialect and multi-
language speech synthesis using the Delta System, Proceedings of the
Workshop on Speech Synthesis, European Speech Communication
Association, 225-228.

Hertz, S. R. (1990b). The Delta programming language: an integrated
approach to non-linear phonology, phonetics, and speech synthesis, in J.
Kingston and M. Beckman (eds.), Papers in Laboratory Phonology I:
Between the Grammar and the Physics of Speech, Cambridge University
Press, 215-257.

Hertz, S. R. (1991). Streams, phones, and transitions: toward a phonological

and phonetic model of formant timing, Journal of Phonetics 19, 91-109.

Hertz, S. R. and M. K. Huffman (1992). A nucleus-based timing model
applied to multi-dialect speech synthesis by rule, Proceedings of the

International Conference on Spoken Language Processing 2, 1171-1174.

162

15.

16.

17.

18.

19.

20.

21.

Hertz, S. R. and L. Zsiga (1995). The Delta System with Syllt: increased
capabilities for teaching and research in phonetics, Proceedings ICPhS 95
Stockholm 2, 322-325.

Hertz, S. R. (1997). The technology of text-to-speech, Speech Technology,
April/May, 18-21.

Hertz, S. R., R. J. Younes and N. Zinovieva (1999). Language-universal and
language-specific components in the multi-language ETI-Eloguence text-to-
speech system, Proceedings of the XIV International Congress of Phonetic
Sciences, 2283-2286.

Holmes, J. (1973). Influence of the glottal waveform on the naturalness of
speech from aparallel formant synthesizer, IEEE Transactions on Audio and
Electroacoustics, AU-21, 298-305.

Hunt, A and A. Black (1996). Unit selection in a concatenative speech
synthesis system using a large speech database, ICASSP 1, 373-376.

Klatt, D. H. and L. C. Klatt (1990). Anaysis, synthesis, and perception of
voice quality variations among female and male talkers, Journal of the
Acoustical Society of America 87(2), 820-857.

McCormick, S. and Hertz, S. R. (1989). “A new approach to English text-to-
phoneme conversion using Delta Version 27, Journal of the Acoustical
Society of America, Supplement 1 85, S124.

163

22.Moulines, E. and F. Charpentier (1990). Pitch synchronous waveform
processing techniques for text-to-speech synthesis using diphones, Speech

Communication 9, no. 5-6.

23. [RFC821] Postel, J., "Simple Mail Transfer Protocol”, STD 10, RFC821,
USC/Information Sciences Institute, August 1982.

24. [RFC822] Crocker, D., "Standard for the Format of ARPA-Internet
TextMessages', STD 11, RFC 822, University of Delaware, August 1982.

25.[RFC1321] Rivest, R. "The MD5 Message-Digest Algorithm", RFC
1321,MIT Laboratory for Computer Science, April, 1992.

26. Sagisaka, Y., C. d’'Alessandro, J. S. Liénard, R. Sproat, K. McKeown and J.
Moore (1995). Spoken output technologies, in R. Cole (ed.), Survey of the
State of the Art in Human Language Technology, Center for Spoken
Language Understanding, Oregon Graduate I nstitute, 189-226.

27. Sproat, R. (ed.) (1990). Multilingual Text-to-Speech Synthesis: the Bell Labs

Approach, Dordrecht: Kluwer.

28. Zsiga, E. C. (1994). Syllt User’s Manual (Eloguent Technology, Inc., Ithaca,
New Y ork).

164

13 Appendix

13.1 Post Office Protocol — Version 3 (POP3) RFC

Net wor kK Wor ki ng Group J. Mers
Request for Conments: 1725 Carnegie Ml on
bsol etes: 1460 M Rose
Cat egory: Standards Track Dover Beach Consulting, Inc.

Novenber 1994

Post O fice Protocol - Version 3

Status of this Menp

This docunment specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for

i mprovenents. Please refer to the current edition of the "Internet
O ficial Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this nem is
unlimted.

Overvi ew

This menp is a revision to RFC 1460, a Draft Standard. It makes the
foll owi ng changes fromthat docunent:

- renoved text regarding "split-UA nodel", which didn't add
anything to the understandi ng of POP

- clarified syntax of commands, keywords, and argunents

- clarified behavior on broken connection

- explicitly pernmitted an inactivity autol ogout tiner

- clarified the requirenents of the "exclusive-access | ock"

- removed i npl enentati on-specific wording regardi ng the parsing of
the mail drop

- allowed servers to close the connection after a failed
aut henti cati on command

- renoved the LAST command
- fixed typo in exanple of TOP conmand

- clarified that the second argument to the TOP conmand i s non-
negative

- added the optional U DL comrand

- added warning regarding | ength of shared secrets with APOP

165

- added additional warnings to the security considerations section
1. Introduction

On certain types of snmaller nodes in the Internet it is often

i npractical to maintain a nessage transport system (MIS). For
exanpl e, a workstation may not have sufficient resources (cycles,

di sk space) in order to pernmit a SMIP server [RFC821] and associ at ed
local mail delivery systemto be kept resident and continuously
running. Sinmilarly, it may be expensive (or inpossible) to keep a
personal conputer interconnected to an IP-style network for |ong
amounts of time (the node is |acking the resource known as
"connectivity").

Despite this, it is often very useful to be able to manage mail on
these smal |l er nodes, and they often support a user agent (UA) to aid
the tasks of mail handling. To solve this problem a node which can
support an MIS entity offers a mail drop service to these |ess
endowed

nodes. The Post O fice Protocol - Version 3 (POP3) is intended to
permit a workstation to dynamically access a nail drop on a server
host in a useful fashion. Usually, this neans that the POP3 is used
to allow a workstation to retrieve nail that the server is holding
for it.

For the remmi nder of this nenb, the term"client host" refers to a
host maki ng use of the POP3 service, while the term"server host"
refers to a host which offers the POP3 service

2. A Short Digression

This nmeno does not specify how a client host enters mail into the
transport system although a nethod consistent with the phil osophy
of

this nmeno is presented here:

When the user agent on a client host wishes to enter a nessage
into the transport system it establishes an SMIP connection to
its relay host (this relay host could be, but need not be, the
POP3 server host for the client host).

3. Basic Qperation

Initially, the server host starts the POP3 service by |istening on
TCP port 110. When a client host wi shes to make use of the service,
it establishes a TCP connection with the server host. Wen the
connection is established, the POP3 server sends a greeting. The
client and POP3 server then exchange commands and responses
(respectively) until the connection is closed or aborted

Commands in the POP3 consist of a keyword, possibly followed by one
or nore arguments. All conmands are term nated by a CRLF pair
Keywor ds and argunents consist of printable ASCI | characters.
Keywor ds and argunents are each separated by a single SPACE
character. Keywords are three or four characters |ong. Each
argunent may be up to 40 characters |ong

Responses in the POP3 consist of a status indicator and a keyword
possibly foll owed by additional information. All responses are
term nated by a CRLF pair. There are currently two status

i ndi cators: positive ("+OK") and negative ("-ERR").

166

Responses to certain comands are nulti-line. In these cases, which
are clearly indicated below, after sending the first line of the

response and a CRLF, any additional lines are sent, each term nated
by a CRLF pair. Wen all lines of the response have been sent, a

final line is sent, consisting of a termnation octet (decimal code
046, ".") and a CRLF pair. If any line of the nulti-line response

begins with the termi nation octet, the line is "byte-stuffed" by
pre-pending the ternmination octet to that line of the response

Hence a multi-line response is terninated with the five octets
"CRLF. CRLF". Wien examining a multi-line response, the client
checksto see if the line begins with the ternination octet. If so
and ifoctets other than CRLF follow, the the first octet of the |ine
(the termination octet) is stripped away. If so and if CRLF
imediately follows the termination character, then the response
fromthe POP server is ended and the Iine containing ".CRLF" is not
considered part of the nmulti-line response

A POP3 session progresses through a nunber of states during its
lifetime. Once the TCP connection has been opened and the POP3
server has sent the greeting, the session enters the AUTHORI ZATI ON
st at e. In this state, the client nust identify itself to the POP3
server. Once the client has successfully done this, the server

acqui res resources associated with the client's mail drop, and the
session enters the TRANSACTI ON st at e. In this state, the client
requests actions on the part of the POP3 server. When the client
has issued the QU T command, the session enters the UPDATE state.
In this state, the POP3 server releases any resources acquired
during the TRANSACTION state and says goodbye. The TCP connection
is then cl osed.

A POP3 server MAY have an inactivity autol ogout timer. Such a tinmer
MJUST be of at least 10 ninutes' duration. The receipt of any
command fromthe client during that interval should suffice to reset
the autol ogout tiner. Wen the tiner expires, the session does NOT
enter the UPDATE state--the server should close the TCP connection
wi t hout renobving any nessages or sending any response to the client.

4. The AUTHORI ZATION State

Once the TCP connection has been opened by a POP3 client, the POP3
server issues a one line greeting. This can be any string
term nated by CRLF. An exanple m ght be

S: +OK POP3 server ready

Note that this greeting is a POP3 reply. The POP3 server should
al ways give a positive response as the greeting.

The POP3 session is now in the AUTHORI ZATI ON state. The client nust
now identify and authenticate itself to the POP3 server. Two
possi bl e nechani sns for doing this are described in this docunent,
the USER and PASS command conbination and the APOP conmand. The
APOP command is described later in this docunent.

To authenticate using the USER and PASS comrand conbi nation, the
client must first issue the USER command. |If the POP3 server
responds with a positive status indicator ("+OK"), then the client
may i ssue either the PASS command to conplete the authentication, or
the QU T conmand to term nate the POP3 session. |f the POP3 server
responds with a negative status indicator ("-ERR') to the USER

167

command, then the client may either issue a new authentication
command or may issue the QU T conmmmand.

VWhen the client issues the PASS command, the POP3 server uses the
argunent pair fromthe USER and PASS commands to determine if the
client should be given access to the appropriate mail drop.

Once the POP3 server has determ ned through the use of any

aut henti cation command that the client should be given access to the
appropriate mail drop, the POP3 server then acquires an excl usive-
access lock on the mail drop, as necessary to prevent nessages from
being nodified or renmoved before the session enters the UPDATE
state. If the lock is successfully acquired, the POP3 server
responds with positive status indicator. The POP3 session now
enters the TRANSACTION state, with no nessages narked as del eted.
If the mail drop cannot be opened for some reason (for exanple, a
lock can not be acquired, the client is denied access to the
appropriate mail drop, or the mail drop cannot be parsed), the POP3
server responds with a negative status indicator. (I'f a lock was
acquired but the POP3 server intends to respond with a negative
status indicator, the POP3 server nust release the lock prior to
rejecting the comand.) After returning a negative status indicator,
the server may close the connection. If the server does not close
the connection, the client may either issue a new authentication
command and start again, or the client may issue the QU T conmand.

After the POP3 server has opened the mail drop, it assigns a
nessage-

nunber to each nessage, and notes the size of each nessage in
octets.

The first nessage in the mail drop is assigned a nessage- nunber of
"1", the second is assigned "2", and so on, so that the n'th message
in a mil drop is assigned a nmessage-nunber of "n". In POP3
conmands

and responses, all nessage-nunber's and nessage sizes are expressed
in base-10 (i.e., decimal).

Here are summaries for the three POP3 conmands di scussed thus far:
USER nane

Argunents:
a string identifying a mailbox (required), which is of
significance ONLY to the server

Restrictions:
may only be given in the AUTHORI ZATI ON state after the POP3
greeting or after an unsuccessful USER or PASS command

Possi bl e Responses:
+COK nane is a valid mail box
- ERR never heard of nmil box nane

Exanpl es:
C. USER nrose
S +OK nrose is a real hoopy frood

C;.USER frated
S: -ERR sorry, no mailbox for frated here

168

PASS string

Argunent s:
a server/ mail box-specific password (required)

Restrictions:
may only be given in the AUTHORI ZATI ON state after a
successful USER command

Di scussi on:

Since the PASS command has exactly one argunent, a POP3
server may treat spaces in the argunent as part of the
password, instead of as argunment separators.

Possi bl e Responses:

+OK nail drop | ocked and ready
-ERR invalid password

-ERR unable to lock mail drop

Exanpl es:

C. USER nrose

S +OK nrose is a real hoopy frood

C. PASS secret

S +OK nrose's mail drop has 2 messages (320 octets)
C. USER nrose

S +OK nrose is a real hoopy frood

C. PASS secret

S: -ERR mail drop already | ocked

QT

Argunents: none
Restrictions: none

Possi bl e Responses:
+OK

Exanpl es:

C QT

S: +OK dewey POP3 server signing off

5. The TRANSACTION State

Once the client has successfully identified itself to the POP3
server and the POP3 server has |ocked and opened the appropriate
mail drop, the POP3 session is now in the TRANSACTI ON state. The
client may now issue any of the follow ng POP3 commuands repeatedly.
After each command, the POP3 server issues a response. Event ual 1y,
the client issues the QU T command and the POP3 session enters the
UPDATE st at e.

Here are the POP3 commands valid in the TRANSACTI ON st ate:

STAT

Argunents: none

Restrictions:

169

may only be given in the TRANSACTI ON state

Di scussi on:

The POP3 server issues a positive response with a |line
containing information for the mail drop. This line is
called a "drop listing" for that nail drop

In order to sinplify parsing, all POP3 servers required to
use a certain format for drop listings. The positive
response consists of "+0OK" followed by a single space, the
nunber of messages in the mail drop, a single space, and the
size of the mail drop in octets. This nmeno makes no

requi renent on what follows the mail drop size. M ninal

i mpl ement ati ons should just end that |ine of the response
with a CRLF pair. Mre advanced inplenentations nay

i ncl ude other information.

NOTE: This meno STRONGY di scourages inpl ementations
from supplying additional information in the drop
listing. Oher, optional, facilities are discussed
later on which pernit the client to parse the nessages
in the mail drop

Not e that messages narked as del eted are not counted in
ei ther total

Possi bl e Responses:
+OK nn mm

Exanpl es:
C. STAT
S +OK 2 320

LI ST [msg]

Argunent s:
a nmessage-nunber (optional), which, if present, may NOT
refer to a nmessage narked as del eted

Restrictions:
may only be given in the TRANSACTI ON state

Di scussi on:

I f an argunent was given and the POP3 server issues a
positive response with a line containing information for
that nmessage. This line is called a "scan listing" for
t hat nessage.

If no argunent was given and the POP3 server issues a
positive response, then the response given is nulti-Iline.
After the initial +OK, for each nessage in the mail drop
the POP3 server responds with a line containing information
for that message. This line is also called a "scan
listing" for that message.

In order to sinplify parsing, all POP3 servers are required
to use a certain format for scan listings. A scan listing
consi sts of the nessage-nunber of the nessage, followed by
a single space and the exact size of the nmessage in octets.
This meno makes no requirenment on what follows the nessage

170

size in the scan listing. Mnimal inplenmentations should
just end that |ine of the response with a CRLF pair. More
advanced i npl ement ati ons may include other information, as
parsed fromthe nessage

NOTE: This meno STRONGY di scourages inpl ementations
from supplying additional information in the scan
listing. Oher, optional, facilities are discussed
|ater on which pernmit the client to parse the messages
in the nmail drop

Not e that messages narked as del eted are not listed
Possi bl e Responses:

+OK scan listing foll ows
-ERR no such nessage

Exanpl es:

C. LIST

S: +OK 2 messages (320 octets)
S: 1 120

S: 2 200

S .

C LIST 2

S +OK 2 200

C LIST 3

S: -ERR no such nessage, only 2 messages in nmail drop
RETR nsg

Argunent s:

a nmessage-nunber (required) which may not refer to a
nmessage narked as del et ed

Restrictions:
may only be given in the TRANSACTI ON state

Di scussi on:

If the POP3 server issues a positive response, then the
response given is multi-line. After the initial +OK, the
POP3 server sends the nessage corresponding to the given
nmessage- nunber, being careful to byte-stuff the ternination
character (as with all multi-line responses).

Possi bl e Responses:
+OK nessage fol |l ows
- ERR no such nessage

Exanpl es:

C RETR 1

S: +OK 120 octets

S: <the POP3 server sends the entire nmessage here>
S:

DELE nsg
Argunent s:

a nmessage-nunber (required) which may not refer to a
nmessage marked as del et ed

171

Restrictions:
may only be given in the TRANSACTI ON state

Di scussi on:

The POP3 server marks the nmessage as deleted. Any future
reference to the nessage- nunber associated with the nmessage
in a POP3 conmand generates an error. The POP3 server does
not actually delete the nessage until the POP3 session
enters the UPDATE state.

Possi bl e Responses:
+OK nessage del et ed
- ERR no such nessage

Exanpl es:
C. DELE 1
S: +OK nessage 1 del eted

C. DELE 2
S: -ERR nessage 2 already del eted

NOCP

Argunents: none

Restrictions:
may only be given in the TRANSACTI ON state

Di scussi on:
The POP3 server does nothing, it nerely replies with a
positive response.

Possi bl e Responses:
+OK

Exanpl es:
C. NOOP
S: +XK

RSET
Argunents: none

Restrictions:
may only be given in the TRANSACTI ON state

Di scussi on:

I f any nessages have been marked as del eted by the POP3
server, they are unmarked. The POP3 server then replies
with a positive response.

Possi bl e Responses:
+OK

Exanpl es:
C. RSET
S: +OK mail drop has 2 nessages (320 octets)

6. The UPDATE State

172

When the client issues the QU T command fromthe TRANSACTI ON state
the POP3 session enters the UPDATE state. (Note that if the client
i ssues the QU T command fromthe AUTHORI ZATI ON state, the POP3
session term nates but does NOT enter the UPDATE state.)

If a session term nates for some reason other than a client-issued
QUI T coomand, the POP3 session does NOT enter the UPDATE state and
MJST not renove any messages fromthe mail drop

QUT
Argunents: none
Restrictions: none

Di scussi on:

The POP3 server renoves all nessages marked as del eted from
the mail drop. It then rel eases any excl usive-access | ock
on the mail drop and replies as to the status of these
operations. The TCP connection is then cl osed.

Possi bl e Responses:
+OK

Exanpl es:
C QUT
S: +OK dewey POP3 server signing off (mail drop enpty)

C QT
S: +OK dewey POP3 server signing off (2 nessages |eft)

7. Optional POP3 Commands

The POP3 commands di scussed above nmust be supported by all ninimal
i npl ement ati ons of POP3 servers.

The optional POP3 conmmands described bel ow permit a POP3 client
greater freedomin nmessage handling, while preserving a sinple POP3
server inplenentation.

NOTE: This meno STRONGLY encourages i npl enentations to support
these conmands in |ieu of devel opi ng augnented drop and scan
listings. |In short, the philosophy of this menp is to put
intelligence in the part of the POP3 client and not the POP3
server.

TOP nsg n

Argunent s:
a nmessage-number (required) which may NOT refer to a
nmessage marked as del eted, and a non-negative nunber
(required)

Restrictions:
may only be given in the TRANSACTI ON state

Di scussi on:

If the POP3 server issues a positive response, then the
response given is multi-line. After the initial +CK, the

173

POP3 server sends the headers of the message, the bl ank
line separating the headers fromthe body, and then the
nunber of |ines indicated nessage's body, being careful to
byte-stuff the term nation character (as with all rmulti-
Iine responses).

Note that if the nunber of |ines requested by the POP3
client is greater than the nunmber of lines in the
body, then the POP3 server sends the entire message.

Possi bl e Responses:
+OK top of nessage foll ows
- ERR no such nessage

Exanpl es:
C TOP 1 10
S: +XK

S. <the POP3 server sends the headers of the
nmessage, a blank line, and the first 10 |ines
of the body of the message>

S.

C ToP 100 3
S: -ERR no such nessage

U DL [nsg]

Argunent s:
a nmessage-nunber (optionally) |If a message-numnber is given
it my NOT refer to a nessage marked as del et ed

Restrictions:
may only be given in the TRANSACTI ON st ate.

Di scussi on:

I f an argunent was given and the POP3 server issues a positive
response with a line containing information for that nessage
This line is called a "unique-id listing" for that nmessage

If no argunent was given and the POP3 server issues a positive
response, then the response given is nulti-line. After the
initial +OK, for each nessage in the mail drop, the POP3 server
responds with a line containing information for that nessage.
This line is called a "unique-id listing" for that nmessage

In order to sinplify parsing, all POP3 servers are required to
use a certain format for unique-id listings. A unique-id
listing consists of the nessage-nunber of the nessage

foll owed by a single space and the unique-id of the nessage

No information follows the unique-id in the unique-id listing.

The unique-id of a nmessage is an arbitrary server-detern ned
string, consisting of characters in the range 0x21 to Ox7E
whi ch uniquely identifies a message within a mail drop and
whi ch persists across sessions. The server should never reuse
an unique-id in a given mail drop, for as long as the entity
usi ng the unique-id exists.

Not e that messages narked as del eted are not |i sted.

174

Possi bl e Responses:
+OK unique-id listing foll ows
- ERR no such nessage

Exanpl es:

C. U DL

S: +XK

S: 1 whqgt swOOOVBWA18f 9t 5IxYwZ

S: 2 GhdPYR OOWVBWLPh7x7

S .

C uUDL 2

S: +OK 2 ChdPYR 00VBWLPh7x7

C ubDL 3

S: -ERR no such nessage, only 2 nmessages in mail drop

APOP nane di gest

Argunent s:
a string identifying a mail box and a MD5 di gest string
(bot h required)

Restrictions:
may only be given in the AUTHORI ZATI ON state after the POP3
greeting

Di scussi on:

Normal |y, each POP3 session starts with a USER/ PASS
exchange. This results in a server/user-id specific
password being sent in the clear on the network. For
intermttent use of POP3, this may not introduce a sizable
risk. However, many POP3 client inplenentations connect to
the POP3 server on a regular basis -- to check for new
mail. Further the interval of session initiation my be on
the order of five nminutes. Hence, the risk of password
capture is greatly enhanced

175

An alternate method of authentication is required which
provides for both origin authentication and replay
protection, but which does not involve sending a password
in the clear over the network. The APOP conmmand provides
this functionality.

A POP3 server which inplenents the APOP conmand wil |
include a tinestanp in its banner greeting. The syntax of
the timestanp corresponds to the “nmsg-id" in [RFC822], and
MUST be different each tine the POP3 server issues a banner
greeting. For exanple, on a UNI X inplenentation in which a
separate UNI X process is used for each instance of a POP3
server, the syntax of the tinestanp mnight be:

<process- | D. cl ock@ost name>

where “process-1D is the decimal value of the process's
PID, clock is the decimal value of the system clock, and
hostnanme is the fully-qualified donmai n-nane correspondi ng
to the host where the POP3 server is running

The POP3 client makes note of this tinestanp, and then

i ssues the APCOP command. The “nane' paraneter has
identical semantics to the "nane' paraneter of the USER
command. The “digest' paraneter is calcul ated by applying
the MD5 al gorithm [RFC1321] to a string consisting of the
ti mestanp (including angl e-brackets) foll owed by a shared
secret. This shared secret is a string known only to the
POP3 client and server. Geat care should be taken to
prevent unaut horized disclosure of the secret, as know edge
of the secret will allow any entity to successfully
masquer ade as the naned user. The “digest' paraneter
itself is a 16-octet value which is sent in hexadeci nal
format, using | ower-case ASCI| characters.

When t he POP3 server receives the APOP command, it verifies
the digest provided. |If the digest is correct, the POP3
server issues a positive response, and the POP3 session
enters the TRANSACTION state. Qherw se, a negative
response is issued and the POP3 session remains in the
AUTHORI ZATI ON st at e.

Note that as the length of the shared secret increases, so
does the difficulty of deriving it. As such, shared
secrets should be long strings (considerably |onger than

t he 8-character exanpl e shown bel ow).

Possi bl e Responses:
+OK nail drop | ocked and ready
- ERR perm ssi on deni ed

Exanpl es:

S: +OK POP3 server ready <1896.697170952@lbc. nt vi ew. ca. us>
C. APOP nrose c4c9334bac560ecc979e58001b3e22f b

S +OK mai |l drop has 1 nessage (369 octets)

In this exanple, the shared secret is the string “tan-
staaf'. Hence, the MD5 algorithmis applied to the string

<1896. 697170952@lbc. nt vi ew. ca. us>t anst aaf

176

whi ch produces a di gest val ue of
c4c9334bac560ecc979e58001b3e22f b
8. POP3 Command Sunmary

M ni mal POP3 Commands:

USER nane valid in the AUTHORI ZATI ON st ate
PASS string
QUT

STAT valid in the TRANSACTI ON state
LI ST [msg]

RETR nsg

DELE nsg

NOOP

RSET

QUT valid in the UPDATE state

Optional POP3 Conmands:

APOP nane di gest valid in the AUTHORI ZATI ON state
TOP msg n valid in the TRANSACTI ON state
U DL [nsg]

POP3 Replies:

+OK
- ERR

Note that with the exception of the STAT, LIST, and U DL
commands, the reply given by the POP3 server to any
command is significant only to "+OK' and "-ERR'. Any text
occurring after this reply may be ignored by the client.

9. Exanpl e POP3 Session

S: <wait for connection on TCP port 110>
C. <open connection>

+OK 200 octets
<t he POP3 server sends nessage 2>

S: +OK POP3 server ready <1896.697170952@ibc. nt vi ew. ca. us>
C APCP nr ose c4c9334bac560ecc979e58001b3e22f b

S: +OK nrose's mail drop has 2 nessages (320 octets)
C STAT

S +OK 2 320

C LI ST

S: +OK 2 nessages (320 octets)

S: 1120

S: 2 200

S .

C RETR 1

S +OK 120 octets

S <the POP3 server sends nessage 1>

S .

C DELE 1

S: +OK nessage 1 del eted

C RETR 2

S

S

DELE 2

+OK nessage 2 del eted

QIT

+OK dewey POP3 server signing off (mail drop enpty)
<cl ose connecti on>
<wait for next connection>

10. Message For mat

All messages transmitted during a POP3 session are assunmed to
conform to the standard for the format of Internet text nessages
[RFC822] .

It is inportant to note that the octet count for a nessage on the
server host may differ fromthe octet count assigned to that nmessage
due to local conventions for designating end-of-line. Usually,
during the AUTHORI ZATION state of the POP3 session, the POP3 server
can calculate the size of each nessage in octets when it opens the
mail drop. For exanple, if the POP3 server host internally
represents

end-of-line as a single character, then the POP3 server sinply
counts each occurrence of this character in a message as two octets.
Note that lines in the message which start with the termnation
octet need not be counted twice, since the POP3 client will renpve
all byte-stuffed termination characters when it receives a nulti-
i ne response.

11. References

[RFC821] Postel, J., "Sinple Mail Transfer Protocol", STD 10, RFC
821, USC/ Information Sciences Institute, August 1982.

[RFC822] Crocker, D., "Standard for the Format of ARPA-Internet Text
Messages", STD 11, RFC 822, University of Del aware, August 1982.

[RFC1321] Rivest, R "The NMD5 Message-Di gest Al gorithn, RFC 1321,
M T Laboratory for Conputer Science, April, 1992.

12. Security Considerations

It is conjectured that use of the APOP comand provides origin
identification and replay protection for a POP3 session.
Accordingly, a POP3 server which inplenments both the PASS and APOP
commands nust not allow both nethods of access for a given user;
t hat

is, for a given "USER nane" either the PASS or APOP conmand is

al | owed, but not both.

Further, note that as the length of the shared secret increases, so
does the difficulty of deriving it.

Servers that answer -ERR to the USER command are giving potenti al
attackers clues about which nanes are valid

Use of the PASS command sends passwords in the clear over the
net wor k.

Use of the RETR and TOP conmands sends nail in the clear over the
net wor k.

178

O herwi se, security issues are not discussed in this neno.
13. Acknow edgemnent s

The POP family has a | ong and checkered history. Although prinmarily
a minor revision to RFC 1460, POP3 is based on the ideas presented
in

RFCs 918, 937, and 1081.

In addition, Alfred Ginstad, Keith MC oghrie, and Neil OCstroff
provi ded significant corments on the APOP conmand.

14. Authors' Addresses

John G Mers

Car negi e- Mel | on Uni versity

5000 Forbes Ave

Pi ttsburgh, PA 15213

EMai | : j gmt@mu. edu

Marshall T. Rose

Dover Beach Consulting, Inc.

420 Wi sman Court

Mountain View, CA 94043-2186

EMai | : nrose@ilbc. mt vi ew. ca. us

179

14 Index

— | |

IS e 87, 88
Actor e, e 181 Implementation............. 1.5, 15, 29, 89, 91
Answering Machine.........ccococeeveiveieeennenn. 60 ;
Architecture 24 Intelligent Networkcccovveieeennnnn. 68, 69
... Internet.......... 13, 62, 66, 86, 87, 88, 158, 160
ASP.i e 5, 86, 87, 88, 89 Internet Telephony 13. 66
AUNOMIZAION. oo 49,50, 94, 104 ISDN oo 181
Y 63

CallWave........cooeeniiiiiiciceeeeee 181
Class. .. 97 N S 181
Client......coooeeeeeee e, 46, 47, 49, 93
Computer Telephony.........ccceeeeeeee. 13, 62, 63 L I
COoOISPEEK ... 181

LIST e 52, 53,54

DELE oot 55, 56

(DI oo WO 6, 62, 112 MalCall ..o 181
] = USSR 180 MEMOIY ... 19,61
DIAGIAIMS ..o e 97 Message ClicK ... 181
DLL ettt 180 MiSpronounCiation...........ccceceereereereeenen 181
DTMF.....oveeei. 40, 60, 70, 71, 72, 74, MOOEM ..ot 13, 67

77,78, 80, 81, 82, 104, 105, 106, 107, 108,

109, 110, 118, 119 N 1

ot S 181

ECOMMENCE......cee e oot 181 o I
Edutainment.........cccvveeeeeeeeeieeeeeeeeeeeeee, 19

EFaX...oii 181 OLTP oo 181
E-mail................. 4,11, 12, 15, 26, 60, 91, 93 ONEBOX cv.vveeeeeeeeeeeeeeeeeeeeeees e 181
EVOICE ... 181 OOD ... 6

Flight TImings ..o 181 (=16 o FOT T 181
FSM s 180 PBX oo 181
[= 1 0] 1 1 T 88
G I POP3............. 47, 48, 49, 50, 51, 52, 53, 54,
55, 56, 57, 58, 93

GaAMBS oo 19 POTS.... oo 181
(16 1 181 Processor ..., 13,19, 61
Proof Reading........ccooveveiviiieeiieeeeee 181
Prosodyccoceeveeniineseeee e 20, 24
I PSP oo 181
Homograph Disambiguation....................... 21 E?gﬁ """"""""""""""" 13,62, 63, 64, 66’128

HTML v 5,87 0 T

180

Rational ROSEovvvviiieeeiieeeeeeee 6
Recording......... 95, 97, 98, 99, 100, 101, 102
REGISLEN .o 181
Registrationcccceeeeeevenenn. 14, 85, 86, 111
[I 54, 55
[S 56, 57

SAPL ..o, 17, 29, 32, 34, 35
SECUMLY weeeeiiee et 14
SIS AV G 5, 86, 87, 88, 104
S 21010 111 =1 181
SINK s 41, 42, 43, 44, 45
SIP e 181
Speech............. 5, 13, 16, 17, 18, 20, 26, 27,

28, 29, 31, 33, 34, 35, 36, 37, 38, 40, 42, 45
Speech Recognition...........cccccue..... 31, 36, 37
SPOMS et 181
Y 63, 65
] N 51, 52
SYNthESIS .. 181

I 181
TAPL e 5
Telephony... 13, 40, 59, 60, 61, 62, 63, 64, 66
Text Normalizationcc.eeeeeeeeeeeeeiieiiinnnes 20
TimeSharedooooeevvvieeieeeeeee e 180
Transaction...........coeveeveeveveenennnnns 51, 57, 159

TTS... 16, 17, 29, 34, 36, 38, 39, 43, 96, 107,
108

L 1 6
UNIfied ... 6
(01010 - (TSR 57, 158
UREECN ..o 181

Use Case...............103, 104, 105, 106, 107,
108, 109, 110, 111

V I

VOIiCEMal.uuueeeiiiiiiiiieeieeeee s 60
VOoICETEXE....ooeeeeeeeeeeeee 36, 39, 40

Weather FOrecastooovvvuvveveeieeeeiieiiennns 181
WED Site...eeiiiieiiic e 86, 89
WOSA. ... 180

181

