

 Implementation
 of

E-Mail via Phone

Undergraduate Degree Project BESE-II

By

Ahmar Ghaffar (Project Leader)

Muhammad Usman Tahir

Project supervised by

Col. Dr. Muhammad Akbar

Dissertation to be presented as partial requirement for the award of

B.E. Degree in Software Engineering.

Military College of Signals

 National University of Sciences and Technology, Rawalpindi.

 2

In The Name Of Allah,In The Name Of Allah,
The Most Benevolent,The Most Benevolent,

The Most Merciful.The Most Merciful.

To Our Parents.

 3

Acknowledgments

We are grateful to Allah Almighty, for giving us the strength to visualize, undertake and

complete this project.

Our humble gratitude to our teacher and project supervisor Col. Dr. Muhammad Akbar, for

guiding and encouraging us through out the course of this project. We are thankful to him for

providing us with innovative ideas, project management techniques and constant moral

support.

We are very grateful to Dr. Masood-ul-Haque and Mr. Fakhar Hameed for providing

guidance, support and in depth knowledge to understand contemporary systems and their

problems.

We are thankful to all our friends for lively discussions, exchange of ideas and source of

encouragement during this project.

Finally, we would like to thank our parents and family members for their perseverance and

continued moral support, which helped us to get through hard times.

 4

Abstract

This document has been prepared as a dissertation of final year degree project, to

be presented to MCS/NUST in partial requirement for the award of B.E. degree in

the discipline of Software Engineering.

This dissertation discusses E-Mail via Phone: An on-demand phone in service. It

encompasses the vision behind the project, the way its feasibility and requirements

were analyzed, the design was drawn and implementation took place. The aim of

the project was to implement an automated voice messaging system providing a

variety of features. Some of these features include recording voice messages for

other users at the server, listening to voice messages, and download e-mail

messages.

The research and subsequent development of this E-mail via Phone system was

carried out by Mr. Muhammad Usman Tahir and Mr. Ahmar Ghaffar under the

guidance and supervision of Col. Dr. Muhammad Akbar.

 5

Project Specifications

Statement

E-Mail via Phone: Implementation of e-mail by phone and on demand phone-in services.

Development Environment/Tools

1. Microsoft Visual C++ 6.0.

2. Microsoft Speech SDK 4.0.

3. Microsoft TAPI.

4. Active Server Pages (ASP).

Development Languages

1. C++.

2. HTML.

Platforms Supported

1. MS Windows 95, 98.

2. MS Windows NT 4.0 with Service Pack 3.

3. MS Windows 2000.

 6

System Modeling/Design

1. Unified Modeling Language (UML)

2. Rational ROSE.

3. OOD.

 7

Table of Contents
ACKNOWLEDGMENTS.. 3

ABSTRACT ... 4

PROJECT SPECIFICATIONS ... 5

STATEMENT .. 5
DEVELOPMENT ENVIRONMENT/TOOLS...5
DEVELOPMENT LANGUAGES.. 5
PLATFORMS SUPPORTED ...5
SYSTEM MODELING/DESIGN.. 6

1 INTRODUCTION... 11

1.1 WHAT IS E-MAIL VIA PHONE, AND WHAT CAN IT DO? ... 12
1.2 MINIMUM REQUIREMENTS FOR E-MAIL VIA PHONE .. 13
1.3 AREAS OF APPLICATION .. 13
1.4 SECURITY ... 14

2 TEXT-TO-SPEECH.. 15

2.1 WHAT IS TEXT-TO-SPEECH? .. 16
2.2 WHY USE TEXT-TO-SPEECH?... 17
2.3 USES OF TEXT-TO-SPEECH ... 18
2.4 GAMES AND EDUTAINMENT... 19
2.5 HARDWARE AND SOFTWARE REQUIREMENTS ... 19
2.6 TEXT-TO-SPEECH CONVERSION ... 20

2.6.1 Text Normalization... 20
2.6.2 Homograph Disambiguation .. 21
2.6.3 Word Pronunciation... 22
2.6.4 Prosody ... 24
2.6.5 Audio Play Back... 25

2.7 LIMITATIONS... 26
2.7.1 Text-to-Speech Voice Quality ... 26
2.7.2 Factors affecting Text-to-Speech Voice Quality... 27
2.7.3 Creating and Localizing Text-to-Speech Voices .. 28
2.7.4 Where the Engine Comes From .. 28

2.8 IMPLEMENTATION OF TTS ... 29

3 THE MICROSOFT SPEECH API ... 33

3.1 OVERVIEW .. 34
3.2 SPEECH API ARCHITECTURE ... 34
3.3 SAPI LEVELS OF ACCESS ... 34
3.4 TTS OPERATION WITH LOW-LEVEL SPEECH OBJECTS ... 38
3.5 AUDIO AND SHARING OBJECTS .. 39
3.6 VOICE TEXT .. 40

3.6.1 Voice-Text Object... 41
3.6.2 Voice-Text Notification Sink ... 42

3.7 LOW-LEVEL TEXT-TO-SPEECH... 42
3.7.1 Main TTS Object.. 43
3.7.2 Main Notification Sink.. 44
3.7.3 Audio-Destination Object ... 44
3.7.4 Audio-Destination Notification Sink.. 44
3.7.5 Buffer Notification Sink .. 45

3.8 SIGNIFICANCE IN E-MAIL VIA PHONE ... 45

4 E-MAIL CLIENT.. 46

4.1 WHY DO WE NEED AN E-MAIL CLIENT?.. 47
4.2 POST OFFICE PROTOCOL (POP3).. 47

 8

4.2.1 Connection Establishment .. 48
4.2.2 Commands in POP3... 48
4.2.3 Responses in POP3 .. 48
4.2.4 State Transitions .. 49

5 TELEPHONY MODULE ... 59

5.1 TELEPHONY APPLICATIONS ... 60
5.1.1 Voice Mail or Answering Machine Software. .. 60
5.1.2 Accessing Databases. ... 60
5.1.3 Call Routing... 60

5.2 HARDWARE AND SOFTWARE REQUIREMENTS ... 61
5.2.1 Processor speed ... 61
5.2.2 Memory ... 61
5.2.3 Telephony Card.. 61

5.3 APPLICATION DESIGN CONSIDERATIONS .. 62
5.3.1 Multi-Line Applications.. 62

5.4 TYPES OF TELEPHONY TODAY ... 62
5.4.1 Public Switched Telephony Network (PSTN)... 62
5.4.2 Traditional "Computer Telephony (CT)" Technology .. 63
5.4.3 IP Telephony.. 64
5.4.4 Internet Telephony ... 66

5.5 MODEMS... 67
5.6 THE INTELLIGENT NETWORK ... 69

6 DTMF DETECTION .. 70

6.1 WHAT IS DTMF? .. 71
6.2 AT&T SPECIFICATIONS FOR TONE GENERATION: ... 71
6.3 DTMF TONE GENERATION.. 72

6.3.1 Methods of Tone Generation .. 72
6.4 DTMF TONE DETECTION... 77

6.4.1 Collecting Spectral Information Using Goertzel’s Algorithm... 77
6.4.2 Validity Checks .. 80

6.5 MODIFICATION IN GOERTZEL ALGORITHM ... 83

7 REGISTRATION WEB SITE .. 85

7.1 WHY DO WE NEED A REGISTRATION WEB SITE? ... 86
7.2 ACTIVE SERVER PAGES: AN INTRODUCTION... 86
7.3 SOFTWARE DEVELOPMENT WITH ASP.. 86
7.4 ADVENT OF ASP ... 87
7.5 FEATURES OF ASP... 87
7.6 INTERNET INFORMATION SERVER AND ASP DEVELOPMENT PLATFORM .. 88
7.7 IMPLEMENTATION OF THE WEB SITE .. 89

8 E-MAIL VIA PHONE: SYSTEM DESIGN.. 91

8.1 FINITE STATE MACHINES... 92
8.1.1 Boot Up Services.. 92
8.1.2 E-mail Download using POP3 Client ... 93
8.1.3 User Authorization/User Menu ... 94
8.1.4 Message Recording .. 95
8.1.5 E-Mail Playback using TTS .. 96

8.2 CLASS DIAGRAMS ... 97
8.2.1 Timer Handler ... 97
8.2.2 Call Handler I.. 98
8.2.3 Call Handler II .. 99
8.2.4 Device Handler .. 100
8.2.5 POP3 Client... 101
8.2.6 Data Types... 102

8.3 USE CASES.. 103
8.3.1 Connection Establishment .. 103
8.3.2 User Authorization... 104

 9

8.3.3 User Menu ... 105
8.3.4 Message Recorder.. 106
8.3.5 Message Player.. 107
8.3.6 Delete Connection Menu .. 108
8.3.7 Connection Deletion... 109
8.3.8 Back to Basics.. 110
8.3.9 Registration ... 111

9 E-MAIL VIA PHONE: IMPLEMENTATION .. 112

9.1 TFX ... 113
9.1.1 WindowClass ... 113
9.1.2 InvisibleWindowSink .. 114
9.1.3 InvisibleWindow... 114
9.1.4 CtAddressCaps .. 114
9.1.5 CtVariableData.. 116
9.1.6 CtAppSink.. 117
9.1.7 CtCall.. 117
9.1.8 Public Methods:... 118
9.1.9 CtLine.. 119
9.1.10 CtReplyTarget.. 123
9.1.11 CtCallInfo .. 123
9.1.12 CtCallList .. 126
9.1.13 CtCallSink.. 127
9.1.14 CtCallStatus... 127
9.1.15 CtCountryList .. 128
9.1.16 CtDeviceID.. 129
9.1.17 CtDialStringSink .. 130
9.1.18 CtDialString... 130
9.1.19 CtDtmf ... 131
9.1.20 Timer ... 131
9.1.21 CtWaveSink.. 132
9.1.22 TimerSink... 132
9.1.23 CtWave .. 132
9.1.24 TapiRecover... 133
9.1.25 LineTapiRecover .. 134
9.1.26 PhoneTapiRecover ... 134
9.1.27 CtRequestList... 135
9.1.28 CtLineDevCaps.. 135
9.1.29 CtLineSink ... 138
9.1.30 CtPhone... 138
9.1.31 CtPhoneCaps ... 141
9.1.32 CtPhoneNo .. 143
9.1.33 CtPhoneSink .. 144
9.1.34 CtProviderList ... 144
9.1.35 CtTranslateCaps .. 145
9.1.36 CtTranslateOutput.. 147

9.2 INTEGRATION .. 148
9.2.1 CPtrList ... 148
9.2.2 HCALL .. 148
9.2.3 CPtrArray.. 148
9.2.4 HLINE ... 148
9.2.5 HPHONE... 148
9.2.6 HLINEAPP .. 148
9.2.7 HPHONEAPP.. 148
9.2.8 WAVEHDR .. 148
9.2.9 WAVEFORMATEX .. 148
9.2.10 HWAVEIN.. 148
9.2.11 HWAVEOUT.. 148

9.3 VOICEM ... 149
9.3.1 CMainFrame ... 149

 10

9.3.2 CPop3Message .. 150
9.3.3 CPop3Socket.. 150
9.3.4 CPop3Connection.. 151
9.3.5 CSettings.. 152
9.3.6 CVoiceMApp.. 153
9.3.7 CVoiceMView .. 155
9.3.8 CVoiceMDoc ... 155
9.3.9 CAboutDlg... 156

10 FUTURE EXPANSION POSSIBILITIES .. 157

10.1 NEWS UPDATE .. 158
10.2 WEATHER FORECAST... 158
10.3 SPORTS NEWS ... 158
10.4 FLIGHT TIMINGS.. 159
10.5 ON LINE TRANSACTION PROCESSING ... 159

11 CONCLUSION.. 160

12 BIBLIOGRAPHY ... 161

13 APPENDIX.. 165

13.1 POST OFFICE PROTOCOL – VERSION 3 (POP3) RFC.. 165

14 INDEX ... 180

 11

1 Introduction

 12

The basic idea behind an E-mail via Phone system is to make a number of useful

services available to the user through the normal telephone set. These services can

include E-mail by phone, News update, Weather forecast, Sports news, Personalized

messaging and many more.

The service that will be most useful in this context is the e-mail by phone facility

that will enable the users to check their mail messages through a telephone from

anywhere. This facility can also include the option of personalized messaging in

which a user can record his message for another person at the server maintained by

the Phone-In Service Provider (PSP). This message can later be retrieved by the

person, for whom it is intended, by calling the PSP's number.

1.1 What Is E-Mail via Phone, and What Can It Do?

E-mail via Phone is a service that enables a user to access voice mail and e-mail

messages using any touch-tone phone. E-mail via Phone "reads" the new e-mail

messages using text-to-speech technology. E-mail via Phone also serves as a voice

mail system, recording callers' messages and making them available by phone.

Block Diagram of the System

PSP
Server:

UsE-Mail Server

POTS

Valid PIN codes
Registration Web Site

POP3

 13

1.2 Minimum Requirements for E-Mail via Phone

• Intel Pentium Processor (100 MHz min).

• Voice Modem.

• Touch Tone Telephone.

• Microsoft Windows 9x,NTx. Operating System.

• Microsoft Speech Engine.

1.3 Areas of Application

The areas of application of such a service are as vast as the combined domain of

Computer Telephony and Text-to-Speech. An existing PSTN, Internet or Internet

Telephony Service Provider can add e-mail by phone facility to its existing services

and provide its customers with an advanced mode of communication.

A start-up company can also initiate its business with this service. Many dot.com

companies in U.S. are offering similar services. Notable among them are JFAX,

ShoutMail, MailCall, eVoice, eFax, CallWave, Message Click, OneBox, uReach,

Pagoo, CoolSpeak etc.

With the advent of PTCL Personal Mail Box service, and its subsequent success, it

can easily be said that providing this service on a commercial basis in Pakistan is

monetarily feasible plan. Two companies in Karachi have started similar services in

the last few months.

 14

1.4 Security

One of the most important issues regarding an interactive user application is

Security. The syndicate has tried to assure the secure transaction of e-mail

information to the user by introducing a registration procedure from its Registration

Website. Each user is assigned a unique PIN code. Only a user having a valid PIN

code is allowed to access the system and listen to his/her e-mails.

 15

2 Text-to-Speech

 16

2.1 What is Text-to-Speech?

Text-to-speech is a process through which text is rendered as digital audio and then

"spoken." Most text-to-speech engines can be categorized by the method that they

use to translate phonemes into audible sound. Some of the widely used TTS systems

are summarized below:

• Concatenated Word. Although Concatenated Word systems are not really

synthesizers, they are one of the most commonly used text-to-speech systems

around. In a concatenated word engine, the application designer provides

recordings for phrases and individual words. The engine pastes the

recordings together to speak out a sentence or phrase. As in voice-mail

systems the engines speaks, "[You have] [three] [new messages]." The

engine has recordings for "You have", all of the digits, and "new messages".

• Synthesis. A text-to-speech engine that uses synthesis generates sounds

similar to those created by the human vocal cords and applies various filters

to simulate throat length, mouth cavity, lip shape, and tongue position. The

voice produced by synthesis technology tends to sound less human than a

voice produced by diphone concatenation, but it is possible to obtain

different qualities of voice by changing a few parameters. IBM is working on

such systems for the last twenty-five years.

• Subword Concatenation. A text-to-speech engine that uses subword

concatenation links short digital-audio segments together and performs inter-

segment smoothing to produce a continuous sound. In diphone

concatenation, for example, each segment consists of two phonemes, one that

leads into the sound and one that finishes the sound. Thus, the word "hello"

 17

consists of the phonemes, h eh l œ, and the corresponding subword segments

are silence-h h-eh eh-l l-œ œ-silence.

Subword segments are acquired by recording many hours of a human voice and

painstakingly identifying the beginning and ending of phonemes. Although this

technique can produce a more realistic voice, it takes a considerable amount of work

to create a new voice and the voice is not localizable because the phonemes are

specific to the speaker's language.

The syndicate has decided to use Subword concatenation technique in the Text-to-

Speech module of this project. All phonemes recorded in human voices are available

through Microsoft’s Speech Application Programming Interface (SAPI) 4.0. Text is

converted to speech with the concatenation of theses phonemes.

2.2 Why Use Text-to-Speech?

Text-to-speech should be used to audibly communicate information to the user,

when digital audio recordings are inadequate. Generally, text-to-speech is better than

audio recordings when:

1. Audio recordings are too large to store on disk or expensive to record.

2. Audio recording is impossible because the application doesn't know ahead of

time what it will speak.

Text-to-speech was used in this project because every time a new mail arrives, it has

to be automatically converted in speech to be accessed by the user. TTS was the

only available and viable option to implement this feature.

 18

2.3 Uses of Text-to-Speech

Text-to-speech also offers a number of benefits. In general, text-to-speech is most

useful for short phrases or for situations when prerecording is not practical. Text-to-

speech has the following practical uses:

• Reading dynamic text. Text-to-speech is useful for phrases that vary too

much to record and store using all possible alternatives. For example,

speaking the time is a good use for text-to-speech, because the effort and

storage involved in concatenating all possible times is not manageable.

• Proofreading. Audible proofreading of text and numbers helps the user

catch typing errors missed by visual proofreading.

• Conserving storage space. Text-to-speech is useful for phrases that would

occupy too much storage space if they were pre-recorded in digital-audio

format.

• Notifying the user of events. Text-to-speech works well for informational

messages. For example, to inform the user that a print job is complete, an

application could say "Printing complete" rather than displaying a message

box and requiring the user to click OK. This should be used for non-critical

notifications in case the user turns the computer's sound off or is out of

hearing range.

• Providing audible feedback. Text-to-speech can provide audible feedback

when visual feedback is inadequate or impossible. For example, the user's

eyes might be busy with another task, such as transcribing data from a paper

document. Users that have low vision may rely on text-to-speech as their sole

means of feedback from the computer. This is the foremost reason for which

Text-to-speech was incorporated in this project.

 19

2.4 Games and Edutainment

Text-to-speech is useful in games and edutainment to allow the characters in the

application to "talk" to the user instead of displaying speech balloons. Of course, it's

also possible to have recordings of the speech. An application would use text-to-

speech instead of recordings in the following cases:

• It's always possible to use concatenated word/phrase text-to-speech to

replace recorded sentences. The application designer can easily pass the

desired sentence strings to the text-to-speech engine.

• Synthesized text-to-speech inevitably sounds unnatural and weird. However,

it's very good for character voices that are supposed to be robots, aliens, or

maybe even foreigners.

• If the application cannot afford to have recordings of all the possible dialogs

or if the dialogs cannot be recorded ahead of time, then text-to-speech is the

only alternative.

2.5 Hardware and Software Requirements

A speech application requires certain hardware and software on the user's computer

to run. These hardware and software requirements should be considered when

designing a speech application:

• Processor speed. Text-to-speech engines currently on the market typically

require a 486/33 (DX or SX) or faster processor.

• Memory. On the average, text-to-speech uses about 1 MB of RAM.

• Sound card. Almost any sound card will work for speech recognition and

text-to-speech, including Sound Blaster™, Media Vision™, ESS

Technology, cards that are compatible with the Microsoft® Windows Sound

System, and the audio hardware built into multimedia computers.

• Speakers. The user can choose between wearing headphones and using

freestanding speakers. Headphones are useful in office cubicles. Some

 20

companies manufacture a combination headphone and microphone that can

also be used for telephone conversations.

• Operating system. The Microsoft Speech application-programming

interface (API) requires either Windows 95 or Windows NT version 4.0.

• Text-to-speech engine. Text-to-speech software must be installed on the

user's system. Many new audio-enabled computers and sound cards are

bundled with speech recognition and text-to-speech engines. As an

alternative, many engine vendors offer retail packages for speech recognition

or text-to-speech, and some license copies of their engines.

2.6 Text-to-Speech Conversion

Text-to-speech fundamentally functions as a pipeline that converts text into PCM

digital audio. The elements of the pipeline are:

1. Text normalization

2. Homograph disambiguation

3. Word pronunciation

4. Prosody

5. Concatenate wave segments

2.6.1 Text Normalization

The "text normalization" component of text-to-speech converts any input text into a

series of spoken words. Trivially, text normalization converts a string like "John

rode home." to a series of words, "john", "rode", "home", along with a marker

indicating that a period occurred. However, this gets more complicated when strings

like "John rode home at 23.5 mph", where "23.5 mph" is converted to "twenty three

point five miles per hour". Here’s how text normalization works:

 21

First, text normalization isolates words in the text. For the most part this is as trivial

as looking for a sequence of alphabetic characters, allowing for an occasional

apostrophe and hyphen.

Text normalization then searches for numbers, times, dates, and other symbolic

representations. These are analyzed and converted to words. (Example: "Rs.54.32"

is converted to "fifty four rupees and thirty two paisas.") Someone needs to code up

the rules for the conversion of these symbols into words, since they differ depending

upon the language and context.

Next, abbreviations are converted, such as "in." for "inches", and "St." for "street" or

"saint". The normalizer will use a database of abbreviations and what they are

expanded to. Some of the expansions depend upon the context of surrounding

words, like "St. John" and "John St.".

Once the text has been normalized and simplified into a series of words, it is passed

onto the next module, homograph disambiguation.

2.6.2 Homograph Disambiguation

The next stage of text-to-speech is called "homograph disambiguation." Often it’s

not a stage by itself, but is combined into the text normalization or pronunciation

components. It has been separated out since it doesn’t fit cleanly into either.

In English and many other languages, there are hundreds of words that have the

same text, but different pronunciations. A common example in English is "read,"

which can be pronounced "reed" or "red" depending upon it’s meaning. A

"homograph" is a word with the same text as another word, but with a different

pronunciation. The concept extends beyond just words, and into abbreviations and

numbers. "Ft." has different pronunciations in "Ft. Wayne" and "100 ft.". Likewise,

the digits "1997" might be spoken as "nineteen ninety-seven" if the author is talking

 22

about the year, or "one thousand nine hundred and ninety seven" if the author is

talking about the number of people at a concert.

Text-to-speech engines use a variety of techniques to disambiguate the

pronunciations. The most robust is to try to figure out what the text is talking about

and decide which meaning is most appropriate given the context. Once the right

meaning is known, it’s usually easy to guess the right pronunciation.

Text-to-speech engines figure out the meaning of the text, and more specifically of

the sentence, by parsing the sentence and figuring out the part-of-speech for the

individual word. This is done by guessing the part-of-speech based on the word

endings, or by looking the word up in a lexicon. Sometimes a part of speech will be

ambiguous until more context is known, such as for "read". Disambiguation of the

part-of-speech may require hand-written rules.

Once the homographs have been disambiguated, the words are sent to the next stage

to be pronounced.

2.6.3 Word Pronunciation

The pronunciation module accepts the text, and outputs a sequence of phonemes,

just like a dictionary. To get the pronunciation of a word, the text-to-speech engine

first looks the word up in it’s own pronunciation lexicon. If the word is not in the

lexicon then the engine reverts to "letter to sound" rules.

Letter-to-sound rules guess the pronunciation of a word from the text. They’re kind

of the inverse of the spelling rules taught in school. There are a number of

techniques for guessing the pronunciation, but the algorithm described here is one of

the more easily implemented ones.

 23

The letter-to-sound rules are "trained" on a lexicon of hand-entered pronunciations.

The lexicon stores the word and it’s pronunciation, such as:

hello h eh l oe

An algorithm is used to segment the word and figure out which letter "produces"

which sound. The "h" in "hello" produces the "h" phoneme, the "e" produces the

"eh" phoneme, the first "l" produces the "l" phoneme, the second "l" nothing, and

"o" produces the "oe" phoneme. Of course, in other words the individual letters

produce different phonemes. The "e" in "he" will produce the "ee" phoneme.

Once the words are segmented by phoneme, another algorithm determines which

letter or sequence of letters is likely to produce which phonemes. The first pass

figures out the most likely phoneme generated by each letter. "H" almost always

generates the "h" sound, while "o" almost always generates the "ow" sound. A

secondary list is generated, showing exceptions to the previous rule given the

context of the surrounding letters. Hence, an exception rule might specify that an "o"

occurring at the end of the word and preceded by an "l" produces an "oe" sound. The

list of exceptions can be extended to include even more surrounding characters.

When the letter-to-sound rules are asked to produce the pronunciation of a word they

do the inverse of the training model. To pronounce "hello", the letter-to-sound rules

first try to figure out the sound of the "h" phoneme. It looks through the exception

table for an "h" beginning the word followed by "e"; Since it can’t find one it uses

the default sound for "h", which is "h". Next, it looks in the exceptions for how an

"e" surrounded by "h" and "l" is pronounced, finding "eh". The rest of the characters

are handled in the same way.

This technique can pronounce any word, even if it wasn’t in the training set, and

does a very reasonable guess of the pronunciation, sometimes better than humans. It

doesn’t work too well for names because most names are not of English origin, and

use different pronunciation rules. (Example: "Usman" is pronounced as "uz-h-man"

by anyone that doesn’t know it is Arabic.) Some letter-to-sound rules first guess

 24

what language the word came from, and then use different sets of rules to pronounce

each different language.

Word pronunciation is further complicated by people’s laziness. People will change

the pronunciation of a word based upon what words precede or follow it, just to

make the word easier to speak. An obvious example is the way "the" can be

pronounced as "thee" or "thuh. A commonly used American phrase such as "What

you doing?" sounds like "Wacha doin?"

Once the pronunciations have been generated, these are passed onto the prosody

stage.

2.6.4 Prosody

Prosody is the pitch, speed, and volume that syllables, words, phrases, and sentences

are spoken with. Without prosody text-to-speech sounds very robotic, and with bad

prosody text-to-speech sounds like it’s been drunk.

The technique that engines use to synthesize prosody varies, but there are some

general techniques.

First, the engine identifies the beginning and ending of sentences. In English, the

pitch will tend to fall near the end of a statement, and rise for a question. Likewise,

volume and speaking speed ramp up when the text-to-speech first starts talking, and

fall off on the last word when it stops. Pauses are placed between sentences.

Engines also identify phrase boundaries, such as noun phrases and verb phrases.

These will have similar characteristics to sentences, but will be less pronounced. The

engine can determine the phrase boundaries by using the part-of-speech information

generated during the homograph disambiguation. Pauses are placed between phrases

or where commas occur.

 25

Algorithms then try to determine which words in the sentence are important to the

meaning, and these are emphasized. Emphasized words are louder, longer, and will

have more pitch variation. Words that are unimportant, such as those used to make

the sentence grammatically correct, are de-emphasized. In a sentence such as "John

and Bill walked to the store," the emphasis pattern might be "JOHN and BILL

walked to the STORE." The more the text-to-speech engine "understands" what’s

being spoken, the better its emphasis will be.

Next, the prosody within a word is determined. Usually the pitch and volume rise on

stressed syllables.

All of the pitch, timing, and volume information from the sentence level, phrase

level, and word level are combined together to produce the final output. The output

from the prosody module is just a list of phonemes with the pitch, duration, and

volume for each phoneme.

2.6.5 Audio Play Back

The speech synthesis is almost done by this point. All the text-to-speech engine has

to do is convert the list of phonemes and their duration, pitch, and volume, into

digital audio.

Methods for generating the digital audio will vary, but many text-to-speech engines

generate the audio by concatenating short recordings of phonemes. The recordings

come from a real person. In a simplistic form, the engine receives the phoneme to

speak, loads the digital audio from a database, does some pitch, time, and volume

changes, and sends it out to the sound card.

It isn’t quite that simple for a number of reasons. Most noticeable is that one

recording of a phoneme will not have the same volume, pitch, and sound quality at

 26

the end, as the beginning of the next phoneme. This causes a noticeable glitch in the

audio. An engine can reduce the glitch by blending the edges of the two segments

together so at their intersections they both have the same pitch and volume.

Blending the sound quality, which is determined by the harmonics generated by the

voice, is more difficult, and can be solved by the next step.

The sound that a person makes when he/she speaks a phoneme, changes depending

upon the surrounding phonemes. If we record "cat" in sound recorder, and then

reverse it, the reversed audio doesn’t sound like "tak", which has the reversed

phonemes of cat. Rather than using one recording per phoneme (about 50), the text-

to-speech engine maintains thousands of recordings (usually 1000-5000). Ideally it

would have all possible phoneme context combinations recorded, 50 * 50 * 50 =

125,000, but this would be too many. Since many of these combinations sound

similar, one recording is used to represent the phoneme within several different

contexts.

Even a database of 1000 phoneme recordings is too large, so the digital audio is

compressed into a much smaller size, usually between 8:1 and 32:1 compression.

The more compressed the digital audio, the more muted the voice sounds.

Once the digital audio segments have been concatenated they’re sent off to the

sound card, making the computer talk to the user at the phone who is calling the E-

mail via Phone system.

2.7 Limitations

2.7.1 Text-to-Speech Voice Quality

Most text-to-speech engines can render individual words successfully. However, as

soon as the engine speaks a sentence, it is easy to identify the voice as synthesized

 27

because it lacks human prosody -- i.e., the inflection, accent, and timing of speech.

For this reason, most text-to-speech voices are difficult to listen to and require

concentration to understand, especially for more than a few words at a time.

Some engines allow an application to define text-to-speech segments with human

prosody attached, making the synthesized voice much clearer. The engine provides

this capability by prerecording a human voice and allowing the application

developer to transfer its intonation and speed to the text being spoken.

In effect, this acts as a highly effective voice compression algorithm. Although text

with prosody attached requires more storage than ASCII text (1K per minute

compared to a few hundred bytes per minute), it requires considerably less storage

than pre-recorded speech, which requires at least 30K per minute.

2.7.2 Factors affecting Text-to-Speech Voice Quality

These factors also influence the quality of a synthesized voice:

Emotion. Although many text-to-speech engines can parse and interpret

punctuation, such as periods, commas, exclamation points, and questions, none of

the engines that are currently available can render the sound of human emotion.

Mispronunciation. Text-to-speech engines use a set of pronunciation rules to

translate text into phonemes. This is fairly easy for languages with phonetic

alphabets, but it is very difficult for the English language, especially if last names

are to be pronounced correctly. (Pronunciation rules seldom fail on common words,

but they almost always fail on names that are unusual or of non-English origin.)

If an engine mispronounces a word, the only way that the user can change the

pronunciation is by entering either the phonemes, which is not an easy task, or by

 28

choosing a series of "sound-alike" words that combine to make the correct

pronunciation.

2.7.3 Creating and Localizing Text-to-Speech Voices

Creating a new voice for an engine that uses synthesis can be done relatively quickly

by altering a few parameters of an existing voice. Although the pitch and timbre of

the new voice are different, it uses the same speaking style and prosody rules as the

existing voice.

Creating a new voice for a text-to-speech engine that uses diphone concatenation

can take a considerable amount of work, because the diphones must be acquired by

recording a human voice and identifying the beginning and ending of phonemes,

which are specific to the speaker's language.

Whether a text-to-speech engine uses synthesis or diphone concatenation, the work

of localizing an engine for a new language requires a skilled linguist to design

pronunciation and prosody rules and reprogram the engine to simulate the sound of

the language's phonemes. In addition, diphone-concatenation systems require a new

voice to be constructed for the new language. As a consequence, most engines

support only five to ten major languages.

2.7.4 Where the Engine Comes From

Of course, for text-to-speech to work on an end user's PC the system must have a

text-to-speech engine installed on it. The application has two choices:

1. The application can come bundled with a text-to-speech engine and install it

itself. This guarantees that text-to-speech will be installed and also

guarantees a certain level of quality from the text-to-speech. However, if an

application does this, royalties will need to be paid to the engine vendor.

 29

2. Alternatively, an application can assume that the text-to-speech engine is

already on the PC or that the user will purchase one if they wish to use text-

to-speech. The user may already have text-to-speech because many PCs and

sound cards will come bundled with an engine, or, the user may have

purchased another application that included an engine. If the user has no text-

to-speech engine installed then the application can tell the user that they need

to purchase a text-to-speech engine and install it. Several engine vendors

offer retail versions of their engines.

The syndicate has decided to prefer option 2 and assume that a text-to-speech

engine is already on the PC running the application developed during this

project. Its is recommended to install Microsoft SAPI Suite 4.0 before installing

e-mail via phone application.

2.8 Implementation of TTS

There are two basic technologies: speech recognition (SR) and speech synthesis,

depending on who is doing the talking, person or the computer. Speech synthesis is

commonly called "text-to-speech" or TTS, since the speech is usually synthesized

from text data. Figure 1 shows the architecture of a typical text-to-speech engine.

Figure 1 Text-to-Speech Engine

The process begins when the application hands the engine a string of text such as,

"The man walked down 56th St." The text analysis module converts numbers into

words, identifies punctuation such as commas, periods, and semicolons, converts

 30

abbreviations to words, and even figures out how to pronounce acronyms. Some

acronyms are spelled out (MSJ) whereas others are pronounced as a word (NUST).

Text analysis is quite complex because written language can be so ambiguous. A

human has no trouble pronouncing "St. John St." as "Saint John Street," but a

computer, in typically mechanical fashion, might come up with "Street John Street"

unless a clever programmer gives it some help.

Once the text is converted to words, the engine figures out what words should be

emphasized by making them louder or longer, or giving them a higher pitch. Other

words may be de-emphasised. Without word emphasis, or "prosody," the result is a

monotone voice that sounds robotic.

Next, the text-to-speech engine determines how the words are pronounced, either by

looking them up in a pronunciation dictionary, or by running an algorithm that

guesses the pronunciation. Some text strings have ambiguous pronunciations, such

as "read." The engine must use context to disambiguate the pronunciations. The

result of this analysis is the original sentence expressed as phonemes. "Th-uh M-A-

Nw-au-l-k-tD-OU-Nf-ih-f-t-eeS-IH-K-S-TH s-t-r-ee-t".

Next, the phonemes are parsed and their pronunciations retrieved from a phoneme-

to-sound database that numerically describes what the individual phonemes sound

like. If speech were simple, this table would have only forty-four entries, one for

each of the forty-four English phonemes. In practice, each phoneme is modified

slightly by its neighbours, so the table often has as many as 1600 or more entries.

Depending on the implementation, the table might store either a short wave

recording or parameters that describe the mouth and tongue shape. Either way the

sound database values are finally smoothed together using signal processing

techniques, and the digital audio signal is sent to an output device such as a PC

sound card and out the speakers to human ears.

Both text-to-speech and speech recognition involve quite a bit of processing, but

speech recognition is harder because it usually requires more processing for

equivalent user satisfaction. A few years ago, one needed a high-end workstation to

 31

do speech recognition. Today, just about every new PC and even many older PCs

can handle speech. But Speech Recognition is not used in this project because it is a

vast research field in itself.

While the exact requirements vary from one speech engine to another, Figure 2

gives a rough idea of the hardware needed to run various kinds of speech

applications under Windows. The faster the CPU and the more memory available,

the higher the accuracy for speech recognition and the better the text-to-speech

sounds.

Figure 2 Speech Hardware Minimum Requirements

Technology CPU RAM

Discrete command and control

User speaks simple commands like "mail," "change time," "minimize." 386/33 500KB

Continuous command and control

User speaks complex commands, like "Send mail to Fred," "Change the time to ten

o'clock," and "Minimize the window."

486/33 1MB

Discrete dictation

Transcribes whatever the user says into a word processor. The user must pause

between words.

486/66 8MB

Continuous dictation

Transcribes natural speech into a word processor P6 16MB

Text-to-speech

Convert ASCII or Unicode strings to natural speech. 486/33 1MB

A sound card, microphone, and speakers are also needed. Most speech engines will

work with any sound card. Some systems offload processing onto a DSP (digital

 32

signal processor) chip that comes on some high-end sound cards, which cuts the

CPU speed requirement in half. Better microphones and speakers will also improve

things.

As speech has become more feasible on average PCs, vendors have been busy

developing and promoting their speech engines. Many multimedia PCs and sound

cards come bundled with speech software. Others vendors sell their engines as

standalone products. Some applications even come bundled with speech engines.

Unfortunately, as with any budding technology, the situation is a bit chaotic. Even

though they all support similar functionality, each speech engine has its own specific

features and proprietary API. If one wants to use speech in one’s application, one

first got to pick which engine to use, and write program for that engine. If a better

engine comes along, one’s out of luck. One will probably have to rewrite a program

substantially to use the other API. The syndicate has decided to limit themselves to

MS SAPI Suite 4.0 and the engine that comes with it.

 33

3 The Microsoft Speech API

 34

3.1 Overview

The Microsoft Speech API is specified as a collection of OLE Component Object

Model (COM) objects. Using OLE makes speech readily available to developers

writing in Visual Basic®, C/C++, or any other programming language that can

access OLE objects directly or through automation. The Speech API requires

Windows 95 or Windows NT 3.51.

3.2 Speech API Architecture

As with other Windows Open Services Architecture (WOSA) services, the Speech

API is intended as a standard interface that application developers and engine

vendors alike can code to. Programmers can write applications without worrying

about which engine to use, engine vendors can get instant compatibility with all

speech apps, and users gain the freedom to choose whichever speech engine meets

their budget and performance requirements. The situation is analogous to GDI,

which lets programs draw graphics without worrying about what kind of display

card or monitor the user has. Just like GDI, the Speech API provides escape hooks to

access proprietary engine features when we need to do something special.

3.3 SAPI levels of access

The Speech API offers two levels of access: high-level objects designed to make

implementation easy, and low-level objects that offer total control but make us do a

little more work. If all a program does is listen for a few voice commands and utter

some simple phrases, one can use the high-level objects. To do more sophisticated

stuff, one needs the low-level.

The high-level objects, provided by Microsoft, don't do any SR or TTS themselves;

they just call the low-level objects to do the work. The low-level objects are

provided by the speech engine vendor, just like the video and sound card drivers that

come with display or sound card. In our case, the engine is provided by Microsoft as

well.

 35

Figure-3 describes the relationship between MS SAPI and third party engines,

which too is provided by Microsoft in this project:

Figure 3 Using the Low-level Speech API

Figures 4 and 5 show the main OLE objects and interfaces that constitute the

Speech API. The objects used by the syndicate voice text for text-to-speech.

Microsoft also provides a speech recognition-sharing object that lets several

applications share engines.

Figure 4 High-level Speech Objects

Voice Commands Object

IUnknown Provide access to other interfaces in the object.

IVoiceCmd Simple command and control speech recognition. Member functions let the

 app create Voice Menu objects.

IVCmdAttributes Controls the attributes of the speech recognition engine such as the automatic

gain, speaker name, and recognition threshold.

IVCmdDialogs Displays Windows dialog boxes that let the user configure the speech recognition

engine, such as training.

IVCmdNotifySink (Supplied by the app.) Used to notify the app when a command is recognized, the

 36

user is speaking too loudly or softly, or something else happens.

Voice Menu Object

IUnknown Provide access to other interfaces in the object.

IVCmdMenu Methods to add/remove/modify voice commands, and to start listening for them.

Voice Text Object

IUnknown Provide access to other interfaces in the object.

IVoiceText Main interface for generating speech; contains the Speak function.

IVTxtAttributes ControlstheattributesoftheTTSenginesuchasthevoice'spitchandgender.

IVTxtDialogs Displays dialog boxes that let the user configure the TTS engine.

IVTxtNotifySink Supplied by the app. Used to notify the app when talking has begun or ended, or

when a bookmark is reached or something else happens.

Figure 5 Low-level Speech Objects

Speech Recognition Engine Object

IUnknown Provides access to other interfaces in the object.

ISRAttributes Controls the attributes of the speech recognition engine such as the automatic gain,

processor usage, speaker name, and recognition threshold.

ISRCentral Controls the engine object. Methods let the app create grammar objects and register

notification sinks.

ISRDialogs Displays Windows dialog boxes that let the user configure the speech recognition

engine, such as training.

ISRNotifySink Supplied by the app. Used to pass information asynchronously from the engine to the

application.

ISRSpeaker Optional. Manages speaker profile information, such as for "training" the SR engine

to recognize phrases.

ILexPronounce Optional. Lets apps query and control the pronunciation of words.

 37

Speech Recognition Grammar Object

IUnknown Provides access to other interfaces in the object.

ISRGramCommon Provides methods to activate and deactivate the grammar object, or archive it to

disk.

ISRGramCFG Provides interfaces specific to context-free grammars and methods to manage

lists of words and link grammars together.

ISRGramDictation Used for dictation grammars. Apps can supply hints about what the user might

be dictating next.

ISRGramNotifySink Supplied by the app. Used to pass grammar notifications from the engine to the

app.

Speech Recognition Results Object

(All interfaces are optional except IUnknown)

IUnknown Provides access to other interfaces in the object.

ISRResAudio Gets an audio recording of what was spoken.

ISRResBasic Provides general information about what was spoken, such as the phrase that was

recognized and when it was spoken.

ISRResCorrection Lets the app confirm that the phrase was correctly or incorrectly recognized, so

the engine can learn from its mistakes.

ISRResEval Tells the engine to re-evaluate a recognition decision based on what it now

knows about the context.

ISRResGraph Provides a graph of alternate recognition hypotheses, either for words or

phonemes.

ISRResMemory Since storing results objects consumes memory, this interface is provided to let

apps control how results objects are stored.

ISRResMerge To merge or split two results objects.

ISRResModifyGUI Tells the engine to display a graphical user interface so the user can correct a

recognition result.

ISRResSpeaker If an engine supports this, the application can use it to identify that spoke.

 38

Text-to-Speech Engine Object

IUnknown Provides access to other interfaces in the object.

ITTSAttributes Controls the attributes of the text-to-speech engine such as the volume,

processor usage, speaking speed, and pitch.

ITTSCentral Controls the engine object. Member functions allow an application to add

buffers, and start and stop speech.

ITTSDialogs Displays windows dialog boxes that allow the end-user to configure the text-to-

speech engine, such as correcting word pronunciations.

ITTSBufNotifySink Supplied by the app. Used to notify the app of changes to text buffer, such as

when bookmarks are reached.

ITTSNotifySink Supplied by the app. Used to notify the app when audio starts or stops, or when

attributes are changed.

ILexPronounce Optional. Lets app query and control the pronunciation of words.

3.4 TTS operation with low-level speech objects

The operation of a TTS engine with a custom destination, as explained in the last

chapter is shown in Figure 6 below:

 39

Figure 6 Low-level TTS Objects with Custom Audio Destination

3.5 Audio and Sharing Objects

The speech objects are implemented on several levels. The Voice Command, Voice

Dictation, and Voice Text objects occupy the highest level. A Sharing object (which

allows the high-levels objects to share speech engines) occupies the next level. The

DirectSpeechRecognition and DirectTextToSpeech objects occupy the next level.

The audio objects occupy the lowest level. These levels are shown in the following

figure:

 40

The DirectSpeechRecognition and DirectTextToSpeech objects provide full access

to speech engines. They interface to speech engines at the lowest possible level,

giving good speed and maximum control. They load the engines in process and take

control of the speakers and microphone. The Voice Command, Voice Dictation, and

Voice Text objects provide higher-level access to speech engines.

The Voice Telephony objects allow speech synthesis, speech recognition, wave

synthesis, and DTMF on single or multi-line voice telephone devices.

The Speech Tools objects provide commonly used functionality to speed application

development.

3.6 Voice Text

Voice Text is the high-level interface for text-to-speech. Adding voice text is fairly

simple. An application has to make only the following modifications:

CoCreateInstance (CLSID_VTxt, NULL, CLSCTX_LOCAL_SERVER,

IID_IVoiceText, &pIVoiceText);

Calling CoCreateInstance creates an instance of the voice

text object.

Voice
Command API

Voice Dictation
API

Voice Text
API

Sharing Objects

Audio Objects

DirectSpeechRecogni
tion API

DirectTextToSpeech
API

 41

pIVoiceText->Register ("", "Demo Application", NULL,

IID_IVTxtNotifySink, NULL, NULL);

Applications have to call Register so the voice text knows the name of the

application and to what audio device the speech will be played, because some

applications will be telephone-aware. Also, an application can provide a notification

sink so that it's alerted when speaking starts or stops; but this isn't necessary.

The next step is to send out text to be spoken.

pIVoiceText->Speak ("Hello world.", 0, NULL);

Finally, when the application is finished using voice text it releases the object.

pIVoiceText->Release();

Two objects are involved in text-to-speech:

1. Voice-Text Object is the object that handles speech and the only one that the

application deals with.

2. Notification Sink code is optional and is supplied by the application. The

voice-text object calls methods in this object when audio starts or stops

playing, or with mouth-animation cues.

3.6.1 Voice-Text Object

The Voice-Text Object supports four interfaces:

1. IDispatch allows an application to use voice text through OLE Automation.

2. IVTxtAttributes controls attributes of a voice-text site such as the audio

device, the speaking speed, the text-to-speech mode, and whether text-to-

speech is enabled.

3. IVTxtDialogs displays Windows dialog boxes that allow an end user to

configure the text-to-speech engine.

 42

4. IVoiceText registers an application to use voice text on a site and controls

playback of text.

3.6.2 Voice-Text Notification Sink

The Voice-Text Notification Sink supports one interface:

1. IVTxtNotifySink. is used by the voice-text module to notify an application

that speaking has started or stopped, or that an attribute has been changed for

the site.

3.7 Low-Level Text-to-Speech

When an application uses the low-level text-to-speech interfaces, it is talking

directly to the engine. This provides the application with much more control, but

requires more work of it.

The low-level API consists of many more objects than the high-level API (voice

text). The process works as follows:

• The application determines where the text-to-speech audio should be sent

and creates an audio-destination object through which the engine sends the

data. Microsoft supplies an audio-destination object that sends its audio to

the multimedia wave-out device, but the application may use customized

audio destinations, such as an audio destination that writes to a .wav file.

• The application, through a text-to-speech enumerator object (not shown here,

but provided by Microsoft), locates a text-to-speech engine and voice that it

wants to use. It then creates an instance of the engine object and passes it the

audio-destination object.

 43

• The engine object has a dialog with the audio-destination object to find a

common data format for the digital audio. Once an acceptable format is

established, the engine creates an Audio-Destination Notification Sink that it

passes to the audio-destination object. From then on, the audio-destination

object submits status information to the engine through the notification sink.

• The application can then register a Main Notification Sink that receives

buffer-independent notifications, such as whether the synthesized voice is

speaking and mouth positions for animation.

• When it is ready, the application passes one or more text buffers down to the

engine. These will be queued up and then spoken (to the audio destination)

by the engine.

• To find out what words are currently being spoken, the application can create

a Buffer Notification Sink for every buffer object. When the engine speaks a

word, reaches a bookmark, or some other event occurs, it calls functions in

the Buffer Notification Sinks. The notification sink is released when the

buffer is finished being read.

3.7.1 Main TTS Object

The Main TTS Object supports four interfaces:

1. ILexPronounce allows an application to query and control the pronunciation

lexicon for a speech-recognition or text-to-speech engine.

2. ITTSAttributes controls the attributes of a text-to-speech engine. Member

functions allow an application to adjust the pitch, speed, and volume of the

voice and the engine's share of the processor.

3. ITTSCentral controls an engine object. Member functions allow an

application to send text to the engine; inject speech-inflection tags into text

as it is spoken; convert Unicode text to a phonemic representation; pause,

 44

resume, and reset the audio output; get information about the text-to-speech

mode; register or release a notification interface; get the time that a byte in

the audio stream was played, and convert the time to a Win32 FILETIME

value.

4. ITTSDialogs displays Windows dialog boxes that allow the end-user to

configure the text-to-speech engine, such as controlling how symbols and

currencies are pronounced.

3.7.2 Main Notification Sink

The Main Notification Sink supports one interface:

1. ITTSNotifySink notifies an application of engine-specific events related to

processing text into speech, such as a change of attributes, the time that audio

starts or stops playing, and hints for synchronizing animation with the

phoneme that is being spoken.

3.7.3 Audio-Destination Object

The Audio-Destination Object supports three interfaces:

1. IAudio allows an audio-destination or audio-source object to manage its

internal buffer and control attributes of the audio device it represents.

2. IAudioMultiMediaDevice allows an audio-destination or audio-source

object to access features specific to multimedia devices.

3. IAudioDest sends information and data to an audio-destination object.

3.7.4 Audio-Destination Notification Sink

The Audio-Destination Notification Sink supports one interface:

 45

1. IAudioDestNotifySink notifies a text-to-speech engine of changes to the

internal buffer of an audio-destination object.

3.7.5 Buffer Notification Sink

The Buffer Notification Sink supports one interface:

1. ITTSBufNotifySink notifies an application of changes to the buffer that

contains the text being spoken.

3.8 Significance in E-Mail via Phone

The Microsoft Speech API provides complete application control text-to-speech,

which is the backbone of e-mail via phone system. The syndicate selected Microsoft

Speech API because it exposes two levels for development, one that is easy for

application writing, and the other that provides more flexibility. Its universal

acceptability is an added advantage and was one of the main reasons for which it

was selected.

 46

4 E-Mail Client

 47

4.1 Why do we need an E-Mail Client?

The aim of this project was to facilitate a user to check his/her e-mail from any

location using a normal touch-tone telephone. For that purpose we needed to

develop an e-mail client to download users’ e-mail to the system to be converted

into speech. Post Office Protocol Version 3 (POP3) was used to develop such a

client. Features provided by this e-mail client include list, download and delete the

e-mails on a particular user client. POP3 protocol and its implementation are

explained in the following.

4.2 Post Office Protocol (POP3)

POP3 is intended to permit a workstation to dynamically access a mail drop on a

server host in a useful fashion. Usually, this means that the POP3 protocol is used to

allow a workstation or another server to retrieve mail that the server is holding for it,

as shown in the following figure:

POP3 is not intended to provide extensive manipulation operations of mail on the

server; normally, mail is downloaded and then deleted.

 48

4.2.1 Connection Establishment

Initially, the server host starts the POP3 service by listening on TCP port 110.

When a client host wishes to make use of the service, it establishes a TCP

connection with the server host. When the connection is established, the POP3

server sends a greeting. The client and POP3 server then exchange commands and

responses (respectively) until the connection is closed or aborted.

4.2.2 Commands in POP3

Commands in the POP3 consist of a case-insensitive keyword, possibly followed by

one or more arguments. All commands are terminated by a CRLF pair. Keywords

and arguments consist of printable ASCII characters. Keywords and arguments are

each separated by a single SPACE character. Keywords are three or four characters

long. Each argument may be up to 40 characters long.

4.2.3 Responses in POP3

Responses in the POP3 consist of a status indicator and a keyword possibly followed

by additional information. All responses are terminated by a CRLF pair. Responses

may be up to 512 characters long, including the terminating CRLF. There are

currently two status indicators: positive ("+OK") and negative ("-ERR"). Servers

MUST send the "+OK" and "-ERR" in upper case.

Responses to certain commands are multi-line. In these cases, which are clearly

indicated below, after sending the first line of the response and a CRLF, any

additional lines are sent, each terminated by a CRLF pair. When all lines of the

response have been sent, a final line is sent, consisting of a termination octet

(decimal code 046, ".") and a CRLF pair. If any line of the multi-line response

begins with the termination octet, the line is "byte-stuffed" by pre-pending the

termination octet to that line of the response. A server must respond to an

unrecognised, unimplemented, or syntactically invalid command by responding with

 49

a negative status indicator. A server must respond to a command issued when the

session is in an incorrect state by responding with a negative status indicator. There

is no general method for a client to distinguish between a server that does not

implement an optional command and a server that is unwilling or unable to process

the command.

4.2.4 State Transitions

The functionality of POP3 Client consists of three states. These sates are briefly

explained below and are depicted in the following figure:

4.2.4.1 Authorization State

A POP3 session progresses through a number of states during its lifetime. Once the

TCP connection has been opened and the POP3 server has sent the greeting, the

 50

session enters the Authorization state. In this state, the client must identify itself to

the POP3 server.

Once the POP3 server has determined through the use of an authentication command

that the client should be given access to the appropriate mail drop, the POP3 server

then acquires an exclusive-access lock on the mail drop, as necessary to prevent

messages from being modified or removed before the session enters the UPDATE

state.

If the lock is successfully acquired, the POP3 server responds with a positive status

indicator. The POP3 session now enters the TRANSACTION state, with no

messages marked as deleted. If the mail drop cannot be opened for some reason (for

example, a lock can not be acquired, the client is denied access to the appropriate

mail drop, or the mail drop cannot be parsed), the POP3 server responds with a

negative status indicator. (If a lock was acquired but the

POP3 server intends to respond with a negative status indicator, the POP3 server

must release the lock prior to rejecting the command.) After returning a negative

status indicator, the server may close the connection. If the server does not close the

connection, the client may either issue a new authentication command and start

again, or the client may issue the QUIT command.

After the POP3 server has opened the mail drop, it assigns a message-number to

each message, and notes the size of each message in octets. The first message in the

mail drop is assigned a message-number of "1", the second is assigned "2", and so

on, so that the nth message in a mail drop is assigned a message-number of "n". In

POP3 commands and responses, all message-numbers and message sizes are

expressed in base-10 (i.e., decimal).

Here is the summary for the QUIT command when used in the AUTHORIZATION

state:

 51

4.2.4.1.1 QUIT

 Arguments:

None

 Restrictions:

None

 Possible Responses:

 +OK

 Examples:

 C: QUIT

 S: +OK dewey POP3 server signing off

4.2.4.2 Transaction State

Once the client has successfully done this, the server acquires resources associated

with the client's mail drop, and the session enters the Transaction state. In this state,

the client requests actions on the part of the POP3 server.

The POP3 commands valid in the TRANSACTION state are:

4.2.4.2.1 STAT

 Arguments:

None

 52

 Restrictions:

 May only be given in the TRANSACTION state

The POP3 server issues a positive response with a line containing information for

the mail drop. This line is called a "drop listing" for that mail drop.

In order to simplify parsing, all POP3 servers are required to use a certain format for

drop listings. The positive response consists of "+OK" followed by a single space,

the number of messages in the mail drop, a single space, and the size of the mail

drop in octets. This memo makes no requirement on what follows the mail drop

size.

Minimal implementations should just end that line of the response with a CRLF pair.

More advanced implementations may include other information.

 Possible Responses:

 +OK nn mm

 Examples:

 C: STAT

 S: +OK 2 320

4.2.4.2.2 LIST [msg]

 Arguments:

A message-number (optional), which, if present, may NOT refer to a

message marked as deleted

 Restrictions:

 May only be given in the TRANSACTION state

 53

If an argument was given and the POP3 server issues a positive response with a line

containing information for that message. This line is called a "scan listing" for

that message.

If no argument was given and the POP3 server issues a positive response, then the

response given is multi-line. After the initial +OK, for each message in the mail

drop, the POP3 server responds with a line containing information for that

message. This line is also called a "scan listing" for that message. If there are no

messages in the mail drop, then the POP3 server responds with no scan listings--it

issues a positive response followed by a line containing a termination octet and a

CRLF pair.

In order to simplify parsing, all POP3 servers are required to use a certain format for

scan listings. A scan listing consists of the message-number of the message,

followed by a single space and the exact size of the message in octets. Methods for

calculating the exact size of the message are described in the "Message Format"

section below. This memo makes no requirement on what follows the message size

in the scan listing. Minimal implementations should just end that line of the

response with a CRLF pair. More advanced implementations may include other

information, as parsed from the message.

 Possible Responses:

 +OK scan listing follows

 -ERR no such message

 Examples:

 C: LIST

 54

 S: +OK 2 messages (320 octets)

 S: 1 120

 S: 2 200

 S: .

 ...

 C: LIST 2

 S: +OK 2 200

 ...

 C: LIST 3

 S: -ERR no such message, only 2 messages in mail drop

4.2.4.2.3 RETR [msg]

 Arguments:

A message-number (required) which may NOT refer to a

 message marked as deleted

 Restrictions:

 May only be given in the TRANSACTION state

If the POP3 server issues a positive response, then the response given is multi-line.

After the initial +OK, the POP3 server sends the message corresponding to the given

message-number, being careful to byte-stuff the termination character (as with all

multi-line responses).

 Possible Responses:

 +OK message follows

 55

 -ERR no such message

 Examples:

 C: RETR 1

 S: +OK 120 octets

 S: <the POP3 server sends the entire message here>

 S: .

4.2.4.2.4 DELE [msg]

 Arguments:

A message-number (required) that may NOT refer to a message marked as

deleted

 Restrictions:

 May only be given in the TRANSACTION state

The POP3 server marks the message as deleted. Any future reference to the

message-number associated with the message in a POP3 command generates an

error. The POP3 server does not actually delete the message until the POP3 session

enters the UPDATE state.

 Possible Responses:

 +OK message deleted

 -ERR no such message

 Examples:

 56

 C: DELE 1

 S: +OK message 1 deleted

 ...

 C: DELE 2

 S: -ERR message 2 already deleted

4.2.4.2.5 NOOP

 Arguments:

None

 Restrictions:

 May only be given in the TRANSACTION state

The POP3 server does nothing, it merely replies with a positive response.

 Possible Responses:

 +OK

 Examples:

 C: NOOP

 S: +OK

4.2.4.2.6 RSET

 Arguments:

None

 57

 Restrictions:

 May only be given in the TRANSACTION state

If any messages have been marked as deleted by the POP3 server, they are

unmarked. The POP3 server then replies with a positive response.

 Possible Responses:

 +OK

 Examples:

 C: RSET

 S: +OK mail drop has 2 messages (320 octets)

4.2.4.3 Update State

When the client has issued the QUIT command, the session enters the Update state.

In this state, the POP3 server releases any resources acquired during the Transaction

state and says goodbye. The TCP connection is then closed. A POP3 server may

have an inactivity auto logout timer. Such a timer must be of at least 10 minutes'

duration. The receipt of any command from the client during that interval should

suffice to reset the auto logout timer. When the timer expires, the session does not

enter the Update state--the server should close the TCP connection without

removing any messages or sending any response to the client.

If a session terminates for some reason other than a client-issued QUIT command,

the POP3 session does NOT enter the UPDATE state and MUST not remove any

messages from the mail drop.

4.2.4.3.1 QUIT

 58

 Arguments:

None

 Restrictions:

None

The POP3 server removes all messages marked as deleted from the mail drop and

replies as to the status of this operation. If there is an error, such as a resource

shortage, encountered while removing messages, the mail drop may result in having

some or none of the messages marked as deleted be removed. In no case may the

server remove any messages not marked as deleted.

Whether the removal was successful or not, the server then releases any exclusive-

access lock on the mail drop and closes the TCP connection.

 Possible Responses:

 +OK

 -ERR some deleted messages not removed

 Examples:

 C: QUIT

 S: +OK dewey POP3 server signing off (mail drop empty)

 ...

 C: QUIT

 S: +OK dewey POP3 server signing off (2 messages left)

 59

5 Telephony Module

 60

Telephony applications are applications that are accessed via the telephone rather

than locally over the PC. A GUI application may also support telephony features,

although the user interface design for the two interaction mechanisms are

significantly different. Many GUI applications support telephony because of the

flexibility that a long-distance connection to the PC provides. The telephony module

in E-Mail via phone allows the user to dial in to the server from where the service is

provided.

5.1 Telephony Applications

Some typical telephony applications include:

5.1.1 Voice Mail or Answering Machine Software.

Most users are familiar with "Voice mail" or computerized answering machine

software. These pieces of software allow users to call into a computer and access

audio messages that have been left for them. Voice-mail and answering machine

software programs are often extended to E-mail, address books, and other types of

data. E-Mail via phone can be included in this kind of telephony applications.

5.1.2 Accessing Databases.

Large numbers of telephony applications allow users to access databases such as

movie listings, stock quotes, or news.

5.1.3 Call Routing.

Many of the same telephony applications that provide voice-mail or database access

also allows incoming calls to be routed to other phone lines. Because most

 61

contemporary call routing systems rely on DTMF (touch-tone) to rout the call they

ask for an extension number, but with speech recognition this could just as easily be

a name.

5.2 Hardware and Software Requirements

Telephony applications use the same speech recognition engines used for Command

and Control speech recognition, and the same text-to-speech engines used on the PC.

These hardware and software requirements should be considered when designing as

speech application:

5.2.1 Processor speed

The speech recognition and text-to-speech engines currently on the market typically

require a 486/66 or faster processor.

5.2.2 Memory

On the average, the combination of speech recognition and text-to-speech will use 2

megabytes (MB) of random-access memory (RAM) in addition to that required by

the running application.

5.2.3 Telephony Card

A number of telephony cards are on the market today. On the low end are cards that

use FAX/MODEM chips that have been augmented to handle speech. These are

included in almost every new home PC. Higher end cards include DSPs or support

for multiple phone lines.

 62

5.3 Application Design Considerations

5.3.1 Multi-Line Applications

Most telephony applications are designed to handle several phone lines coming into

the same PC. Multi-line telephony applications need to be designed to handle the

multiple input channels in such a way that one channel doesn't slow down or harm

another channel.

The easiest multi-line application has one process running at least one thread per

phone line. Because each line has its own thread, the lines are independent and

(generally) one line will not cause another line to slow down. Multi-threaded lines

also allow for improved performance on multi-processor CPUs.

The most stable multi-line telephony design is to have one process per phone line.

This insures that one phone line cannot crash and pull down the other lines. It also

parallelizes well. It is more difficult to code. E-Mail via Phone is initially

implemented to cater for one user at a time. Special devices are available in the

market that allow up to 16 incoming lines. This feature is proposed in the future

expansion possibilities.

5.4 Types of Telephony Today

Different types of telephony services provided these days are briefly mentioned in

the following. Since E-Mail via phone is a cross roads of PSTN, IP, Internet and

Computer Telephony; it is but obvious that they should be defined.

5.4.1 Public Switched Telephony Network (PSTN)

• Wired or wireless circuit switched phone service delivered in the form of cell

phone service, analog lines, or digital lines (BRI ISDN, PRI ISDN, T1/E1).

 63

• Signaling (Call Setup/Teardown/Billing/Number Lookup/Etc) done by a

separate network SS7 network – closed controlled secure network.

• Digital signaling for call progress, etc.

5.4.2 Traditional "Computer Telephony (CT)" Technology

5.4.2.1 Basics

• Interfaces a HOST to the PSTN

• Interface cards provide telephony services at the edge of the PSTN network

• Traditionally has been stand-alone systems – purely a host-based solution

5.4.2.2 Common uses

• PBX or IVR type applications (MoviePhone, bank balance, auto-attendant,

etc.)

Figure 8: Traditional Computer Telephony

 64

5.4.3 IP Telephony

5.4.3.1 Basics

• Interfaces a LAN to the PSTN.

• Minimum use is traditional CT applications with a network twist.

• Typical use is a basic IP phone system.

 Figure 9: IP Telephony

5.4.3.2 Common uses

• Next generation phone systems with email-vmail bridges, unified messaging,

etc.

• Uses either low or high-density hardware, often uses Voice over Frame

Relay, dedicated networks.

 65

• Strong deployment of this technology for dedicated phone links over data

networks.

• Inter-Office PBX links, especially for international offices.

• Audio requires no significant needs beyond that needed for traditional CT.

• Bandwidth use and latency are not issues, since it’s a dedicated LAN

application, often on a managed network.

• Signaling is done over the network, not on a separate (SS7) private network.

• Needed a totally new signaling protocol that works over IP networks.

• There are issues with this – security, privacy, etc.

5.4.3.3 Solution

• H.323.

• SIP.

• MGCP.

 66

5.4.4 Internet Telephony

5.4.4.1 Basics

• Telephony applications across a WAN, perhaps with interfaces to the PSTN.

• Core differences: bandwidth and latency are major issues.

5.4.4.2 Requirements

• Audio compression to reduce bandwidth.

• Sensitivity to latency on the audio path – 200 milliseconds is considered

acceptable.

• Realization that some packet loss is inevitable and network conditions

unpredictable.

• Use Jitter Buffers and codecs that minimize the network impacts.

5.4.4.3 Applications

• Direct Point-to-Point Internet Telephony

• "Hop-on" and/or "Hop-off" applications for Toll-Bypass

Figure 10: Internet Telephony

 67

5.5 Modems

The word modem is a contraction of the words modulator-demodulator. A modem

is typically used to send digital data over a phone line. The sending modem

modulates the data into a signal that is compatible with the phone line, and the

receiving modem demodulates the signal back into digital data. Wireless modems

are also frequently seen converting data into radio signals and back.

Modems came into existence in the 1960s as a way to allow terminals to connect to

computers over the phone lines. A typical arrangement is shown below:

Figure 11: Modem Operation

In a configuration like this, a dumb terminal at an off-site office or store could "dial

in" to a large, central computer. The 1960s were the age of time-shared computers,

so a business would often buy computer time from a time-share facility and connect

to it via a 300 bit-per-second (BPS) modem.

A dumb terminal is simply a keyboard and a screen. A very common dumb terminal

at the time was called the DEC VT-100. The VT-100 could display 25 lines of 80

characters each. When the user typed a character on the terminal, the modem sent

the ASCII code the character to the computer. The computer would then send the

character back to the computer so it would appear on the screen.

 68

When personal computers started appearing in the late 1970s, bulletin board

systems became the rage. A person would set up a computer with a modem or two

and some BBS software, and other people would dial in to connect to the bulletin

board. The users would run terminal emulators on their computers to emulate a

dumb terminal.

People got along at 300 BPS for quite awhile. The reason this speed was tolerable

was because 300 BPS represents about 30 characters per second, and that is much

faster than a person can type characters or read. Once people started transferring

large programs and images to and from bulletin.

For E-Mail via Phone system, we need a voice modem with a high speed (56 kbps is

recommended) at the server end. This modem is the service point between server’s

telephony module and the user through a normal touch-tone phone. It is assumed

that the whole system is functioning in an ideal Intelligent Network.

 69

5.6 The Intelligent Network

The PSTN is an intelligent network throughout much of the world. In practical

terms, this means that the network has the capacity to utilize real-time database

interactions to control the routing of telephone calls. Many of the services that

modern telephone users expect rely upon this capability. As mentioned earlier the

environment in which E-Mail via Phone system will be working is supposed to be an

Intelligent Network. This supposition is not far from the fact as well because almost

90% of data lines in Pakistan are on fibre optics and controlled by digital switches of

PTCL.

Figure 12: An Intelligent Network

 70

6 DTMF Detection

 71

6.1 What is DTMF?

The word DTMF is the acronym for “Dual Tone Multiple Frequency”. DTMF tones

are the sounds emitted when one dials a number on a touch-tone phone.

A DTMF codec incorporates an encoder that translates key strokes or digit

information into dual-tone signals, as well as a decoder that detects the presence and

the information content of incoming DTMF tone signals. Each key on the keypad is

identified uniquely by its row frequency and its column frequency.

Touch Tone Keypad

6.2 AT&T Specifications for Tone Generation:

Tone duration specifications by AT&T state the following: 10 digits/sec is the

maximum data rate for touch-tone signals. For a 100-msec time slot, the duration for

 72

the actual tone is at least 45 msec and not longer than 55 msec. The tone generator

must be quiet during the remainder of the 100-msec time slot.

6.3 DTMF Tone Generation

Though the domain of this project is limited to DTMF tone detection, the syndicate

conducted a thorough study to understand the mechanism of DTMF tone generation.

These techniques, in theory, directly affect the algorithm used to detect DTMF

tones.

Modems have traditionally been the device used to generate these tones from a

computer. But the more sophisticated modems on the market today are nothing

more than a DSP (digital signal processor) with accompanying built-in software to

generate and interpret analog sounds into digital data. The computers sitting on desk

have more CPU power, a more complex OS, and very often a just as sophisticated

DSP. There is no reason one cannot duplicate the functionality of a modem from

right inside of software, providing with a lot easier to understand and modify code.

6.3.1 Methods of Tone Generation

There are three methods for generating DTMF tones by summing two sine waves.

These are:

• Table Look-up

• Taylor Series

• Harmonic Resonator

 73

6.3.1.1 Table Look-up Method

The table look-up method retrieves previously computed sine wave values from

memory. The sine function is periodic and only one period must be computed. Since

this is sampled data, an accurate sine wave generator must confirm that the sample’s

starting and ending point are the same. The easiest way to determine this is to find

the smallest value of I (an integer) that when multiplied by the ratio below will result

in an integer.

(Fs/ Fo) * I = integer # of samples

 where

 Fs = sampling frequency

 Fo = frequency of tone to be generated

The period of the frequency to be generated must be evenly divisible by a multiple

of the sampling rate. This method can require large amounts of memory if the

frequency is not an easy divisor of the sampling rate. If there are numerous

frequencies to generate, or the frequency is unknown beforehand, then the table

look-up method may not be the best solution.

6.3.1.2 Taylor Series Expansion

The Taylor series expansion method reduces the memory required to compute an

approximation of the sine value. The accuracy can be selected. The Taylor series

 74

expansion method expresses a function by polynomial approximation. The

expansion for a sine function order 5 is:

sin(x) = 3.140625*x + 0.02026367 * x2 - 5.325196* x 3 + 0.544678 x 4 +

1.800293 x5

where 0 < x < p/2.

Note that x is in radians and that the other three quadrants must be accounted for by

manipulating the sign and the input value, x. The Taylor series expansion method

requires more computations but less memory than the table.

6.3.1.3 Harmonic Resonator

This method is based on two programmable, second-order digital sinusoidal

oscillators, one for the row tone and one for the column tone.

Two oscillators, instead of eight, facilitate the code and reduce the code size. Of

course, for each digit that is to be encoded, each of the two oscillators needs to be

loaded with the appropriate coefficient and initial conditions before oscillation can

be initiated.

Since typical DTMF frequencies range from approximately 700 Hz to 1700 Hz, a

sampling rate of 8 kHz for this implementation is within a safe area of the Nyquist

criteria. The following figure displays the block diagram of the digital oscillator

pair. Note that 1/z corresponds to a delay of one sampling period.

 75

Figure 14: Two Second Order Digital Sinusoidal Oscillators

6.3.1.3.1 Working of Harmonic Resonator

It is a direct implementation of the Z-transform of a discrete sine function, sin

(nwT). Where T is the sampling time, w is the frequency to be generated in radians

per sec.

The transfer function of the oscillator is:

 bo = Asin(wo)

 a1 = -2cos(wo)

 a2 = 1

The complex conjugate poles of the system lie on the unit circle:

 76

 P1,2 = e+-jw

The discrete time impulse response

H(n)=Asin((n+1)wo)*u(n)

corresponding to the above second-order system clearly indicates a clean sinusoidal

output due to a given impulse input. Therefore, this system can be termed a digital

sinusoidal oscillator or digital sinusoidal generator. For the actual implementation of

a digital sinusoidal oscillator, the corresponding difference equation is the essential

system descriptor, given by

 y(n)= -a1*y(n-1) – a2*y(n-2) + bo*δδ(n)

Where initial conditions y(–1) and y(–2) are zero. Note that the impulse applied at

the system input serves the purpose of beginning the sinusoidal oscillation.

Thereafter, the oscillation is self-sustaining, as the system has no damping and is

exactly marginally stable. Instead of applying a delta impulse at the input, let the

initial condition y(–2) be the systems oscillation initiator and remove the input. With

this in mind, the final difference equation is given by:

 y(n) = 2*cos (wo)*y(n-1) – y(n-2)

where

y(–1) = 0

y(–2) = –Asin (wo)

wo = 2*π*fo/fs

With f s being the sampling frequency, f 0 being the frequency of tone and A being

the amplitude of the sinusoid to be generated. Note that the initial condition y(–2)

solely determines the actual amplitude of the sine wave.

 77

6.4 DTMF TONE DETECTION

DTMF tone detection was one of the major tasks involved in this project. Different

functions are performed by the system with different keystrokes of the user. Theory

behind this whole process is explained in the following.

The task to detect DTMF tones in an incoming signal and to convert them into actual

digits is certainly more complex than the encoding process. The decoding process is

by its nature a continuous process, meaning it needs to continually search an

incoming data stream for the presence of DTMF tones.

6.4.1 Collecting Spectral Information Using Goertzel’s Algorithm

The Goertzel algorithm is the basis of the DTMF detector. This method is a very

effective and fast way to extract spectral information from an input signal. This

algorithm essentially utilizes two-pole IIR type filters to compute DFT values

effectively. It is, thereby, a recursive structure (always operating on one incoming

sample at a time), as compared to the DFT (or FFT) that needs a block of data before

being able to start processing.

 78

Another major advantage of Goertzel’s algorithm is that it gives only the magnitude

of the frequency in demand.

For the actual tone detection, the magnitude (here, squared magnitude) information

of the DFT is sufficient. After a certain number of samples N (equivalent to a DFT

block size), the Goertzel filter output converges towards a pseudo DFT value vk(n),

which can then be used to determine the squared magnitude.

The Goertzel algorithm is much faster than a true FFT, as only few of the set of

spectral line values are needed and only for those values are filters provided.

Squared magnitudes are needed for eight row/column frequencies and for their

eight-second harmonics. The second harmonics information later enables

discrimination of DTMF tones from speech or music.

The choice of N is mainly driven by the frequency resolution needed, which sets a

lower boundary. N also is chosen so that (k/N)fs most accurately coincides with the

actual DTMF frequencies (see Table 1) assuming ks are integer values and fs is a

sampling frequency of 8 ksps.

As the first stage in the tone-detection process, the Goertzel algorithm is one of the

standard schemes used to extract the necessary spectral information from an input

signal. Essentially, the Goertzel algorithm is a very fast way to compute DFT values

under certain conditions. It takes advantage of two facts:

• The periodicity of phase factors wk
N allows the expression of the

computation of the DFT as a linear filter operation utilizing recursive

difference equations.

• Only a few of the spectral values of an actual DFT are needed (in this

application, there are eight row/column tones plus an additional eight tones

or corresponding 2nd harmonics).

 79

Keeping in mind that a DFT of size N is defined as

It is possible to find the sequence of a one-pole resonator

which has a sample value at n = N coinciding exactly with the actual DFT value. In

other words, each DFT value X(k) can be expressed in terms of the sample value at

n = N resulting from a linear filter process (one-pole filter).

It can be verified that

The difference equation corresponding to the above one-pole resonator which is

essential for the actual implementation, is given by

with y(–1) = 0 and pole location .

Being a one-pole filter, this recursive filter description yet contains complex

multiplications, not very convenient for a DSP implementation. Instead, by using a

two-pole filter with complex conjugate poles and only real multiplications in its

difference equation,

)()1()(/2 nxnyeny k
Nkj

k +−= ∆

 80

where v k (–1) and v k (–2) are zero.

In the Nth iteration, only a complex multiplication is needed to compute the DFT

value, which is

However, the DTMF tone-detection process does not need the phase information of

the DFT; squared magnitudes of the computed DFT values, in general, suffices.

After some arithmetical manipulation, it is found that

Which gives the energy of the tone.

6.4.2 Validity Checks

Once the spectral information (in the form of squared magnitude at each of the row

and column frequencies and their second harmonics) is collected, a series of tests

need to be executed to determine the validity of tone and digit results.

)()2()1(*)/2cos(2)(nxnvnvNknv kkk +−−−= π

)1()()(/2 −−== − NveNvNyX k
Nkj

kkk
π

)()(|)(| *2 NyNykX kk=

)1()()/2cos(2)1()(|)(| 222 −−−+= NvNvNkNvNvkX kkkk π

 81

6.4.2.1 Signal Strength Check

 A first check makes sure the signal strength of the possible DTMF tone pair is

sufficient. The sum of the squared magnitudes of the peak spectral row component

and the peak spectral column component needs to be above a certain threshold.

Since already small twists (row and column tone strength are not equal) result in

significant row and column peak differences, the sum of row and column peak

provides a better parameter for signal strength than separate row and column checks.

6.4.2.2 Twist Check

Tone twists (the ratio of column to row or row to column signal strength)are

investigated in a separate check to make sure the twist ratio specifications are met.

The spectral information can reflect the types of twists.

The more likely one, called “reverse twist”, assumes the row peak to be larger than

the column peak. Row frequencies (lower frequency band) are typically less

attenuated as compared to column frequencies (higher frequency band), assuming a

low-pass filter type telephone line. The decoder, therefore, computes a reverse twist

ratio and sets a threshold of 8 dB acceptable reverse twist.

The other twist, called “standard twist”, occurs when the row peak is smaller than

the column peak. Similarly, a “standard twist ratio” is computed and its threshold is

set to 4 dB acceptable standard twist.

 82

6.4.2.3 Relative Peak Check

The program makes a comparison of spectral components within the row group as

well as within the column group. The strongest component must stand out (in terms

of squared amplitude) from its proximity tones within its group by more than a

certain threshold ratio.

6.4.2.4 Second Harmonic Strength Check

Finally, the program checks on the strength of the second harmonics in order to be

able to discriminate DTMF tones from possible speech or music. It is assumed that

the DTMF generator generates tones only on the fundamental frequency; however,

speech will always have significant even-order harmonics added to its fundamental

frequency component. This second harmonics check, therefore, makes sure that the

ratio of the second harmonics component and the fundamental frequency component

is below a certain threshold . If the DTMF signal pair passes all these checks, we say

a valid DTMF tone pair, which corresponds to a digit, is present.

6.4.2.5 Check For Validity Of Tone

We now need to determine if the valid DTMF tone information contains stable digit

information. This is done by mapping the tone-pair to its corresponding digit and

comparing it with the previously detected digit. We call the digit information stable

if it has been detected twice successively.

6.4.2.6 Check Whether New Digit Pressed

Finally, we compare the detected digit with the previous-to-last digit. Only if the last

digit was preceded by a pause do we accept the current digit as a valid digit. The

detector is then forced into a state where it waits for a pause before being able to

 83

accept a new digit. This last step is necessary to ensure the discrimination of

identical keystrokes succeeding one another.

6.5 Modification in Goertzel Algorithm

Since we only require the magnitude information associated with Goertzel we

modify it further to output only the energies.

The block diagram for the further modified version of Goertzel is shown below.

+ +

++

+

Figure 16: A Simplified Form of Goertzel’s Algorithm To Calculate
Tone Energy

TONE

Delay

Delay

2*C

-1

Input Samples

Left Hand Side Right Hand Side

-2*C

ENERGY
+

 84

Initialize

Groetzel's DFT

Get Sample

Use Sample in 16
IIR Filters

Nth Sample of
DFT

Calculate Magnitude
Squared To Get

Energy

 Signal
Strength?

Twist Normal?

Relative Peak?

 2nd Harmonic
Signal Too Strong?

Valid Tone

New Tone?

NO

YES

BELOW
THRESHOL

D

ABOVE
THRESHOLD

No

Yes

BELOW
THRESHOL

D

ABOVE
THRESHOLD

NO

YES

Yes

No

Figure 17: Flow Chart for the implementation of Goertzel’s Algorithm

 85

7 Registration Web Site

 86

7.1 Why do we need a Registration Web Site?

In order to ensure the security of the system and to make it foolproof, some sort of

authorization was necessary. For this purpose it was decided by the syndicate that a

registration web site will be developed, where the users can register themselves with

their e-mail addresses. A unique PIN code is allotted to each user. This PIN is later

used as ID cum Password of that user. This web site is developed using Active

Server Pages (ASP).

7.2 Active Server Pages: An Introduction

Active Server components actually constitute what we traditionally think of as the

'middle' tier, or business rule layer of an enterprise application. These components

are responsible for encapsulating the majority of an application's transaction and

database logic. For example, one might decide to place the logic for a complex

calculation that requires access to several database tables inside an Active Server

component. This component would then be invoked by other Active Server

components during execution of one or more of our enterprise applications.

The server-side execution environment that makes much of this possible is named

Active Server Pages (formerly code-named "Denali"), an environment in Microsoft

Internet Information Server that executes ActiveX Scripts and ActiveX Components

on a server.

7.3 Software Development with ASP

Active Server Pages are a key component of Microsoft’s dynamic web content

strategy. With Active Server Pages, a software developer can create interactive and

personalized web pages for their World Wide Web site or corporate intranet without

having to understand the internals of a web server or complex application

programming interfaces. In addition, Active Server Pages is extensible via software

components written using Microsoft’s Component Object Model. This last feature

 87

was the main reason because of which the authors of this document decide to

develop the web site in ASP, as it allows to take advantage of code we have already

written using languages such as Visual Basic, C++ etc.

7.4 Advent of ASP

Active Server Pages were introduced with release 3 of Microsoft’s web server,

Internet Information Server or IIS. Active Server Pages are actually a series of

dynamic link libraries or DLLs that are installed on a web server by either a

standalone installation program or as part of the Visual Studio 97 setup for Visual

InterDev. These DLLs give IIS the ability to interpret and process information via

the use of a script file (called an ASP script) that is resident in a web application

directory.

7.5 Features of ASP

Some of the several features of ASP include:

• Active Server Pages is an environment that hosts one of several scripting

languages that can be used to produce output, in the form of HTML. This

interactivity is the key method used to 'activate' a web site.

• To create an Active Server Page script, we simply write a combination of

script and HTML and place it in a file with the extension .ASP.

• Once installed, the Active Server Pages environment will process the script

and interact with the server environment to produce HTML that will be sent

to the requesting browser.

 88

7.6 Internet Information Server and ASP Development Platform

Microsoft's Internet Information Server (IIS) is an open platform designed

specifically for creating powerful, scaleable Internet and intranet applications.

However, IIS is not just a web server, it's much more. IIS is a complete set of

software components that provide the capability to develop robust data-driven web

applications.

ASP applications run within the context of IIS. In simple terms, ASP provides the

'glue' that lets developers, like the authors, integrate these components and take

advantage of their functionality in applications.

 89

7.7 Implementation of the Web Site

The registration web site was developed, as discussed earlier, using ASP in

Microsoft InterDev. This site has an MS Access database at its backend. All the

information provided by the user is stored in the database and can be later accessed

by the application. Every new user is assigned a unique randomly generated PIN that

can later be used for authorization purposes.

A sample screen shot of the main registration form is shown in the below:

 90

When the user is finished with filling in the information and submits his/her request

for registration a unique PIN code is assigned and a page similar to the one below

appears:

 91

8 E-mail via Phone: System Design

 92

This chapter describes the low level design of E-Mail via Phone system, including

the finite state machines, UML class diagrams and use cases developed for

implementation of the whole system.

8.1 Finite State Machines

Finite State Machines (FSM) graphically represent all the states E-Mail via Phone

system goes through during its lifetime. Different FSM’s shown below explain

various states of operation, which the system may be in during its entire operation

cycle.

8.1.1 Boot Up Services

Start

Check
Connection

State

Start Boot
up Services

Check for
incoming

call

Play Ring

Established
Connection

Play Prompt
“Enter PIN”

a

b

b

 93

8.1.2 E-mail Download using POP3 Client

Activate POP
Client

User Name

Pass Word Check Response

Retrieve

Store as txt File Delete Message

a

T < 3600 s a Start Boot up
Services

 94

8.1.3 User Authorization/User Menu

Detect DTMF Check
Database for

ID

Retry PIN

Check for
message

Delete
Connection

Read or Write
mail

Count < 3

Play Prompt
“Enter PIN”

Enable Voice
Mail

 95

8.1.4 Message Recording

Enable Voice
Mail

Play Prompt, “Record
up to 30 seconds”

Play Beep Start Timer

Process channel for
media

Save as audio
file

T < 30s c

NOP

 96

8.1.5 E-Mail Playback using TTS

Play Prompt “No
Message”

Play Prompt, “Do
you want to
continue”

Detect
DTMF

Delete
Connection

Activate E-
Mail Reader

TTS
Voice out

c

b

Mail queue
< 0

c

Check for
message

 97

8.2 Class Diagrams

UML Class diagrams in this section explain the classes identified for

implementation of the system in Visual C++. Their relationships; collaboration,

association, realization and generalization, with other classes is represented using

standard UML notations.

8.2.1 Timer Handler

CtDialStringSink
0..1

1

DialState
11

CtDialString1

1

1 1

CtDtmf

CtWaveSink

TimerSink

0..1

1

InvisibleWindowSink

Timer
1

1

InvisibleWindow

1

1

WindowClass

1

1

0..1

1
CtWave

 98

8.2.2 Call Handler I

1

1

CtPhone

0 ..1

1

C tReplyTarget

C tCal l

0 ..1

1

C tLine

1

1

CtReques tLis t

C tAppSink
0 ..11

 99

8.2.3 Call Handler II

1

1

CtPhone

0..1

1

CtReplyTarget

CtCall

0..1

1

CtLine

1

1

CtRequestList

CtAppSink
0..11

LineTapiRecover

TapiRecover

PhoneTapiRecover

TRESULT

CtCallSink CtPhoneNo

CtPhoneSink TREQUEST

CtLineSink

 100

8.2.4 Device Handler

CtPhoneCapsCtCallList
CtCallStatusCtCountryList

CtTranslateCaps

CtProviderList

CtAddressCaps

CtDeviceID

CtVariableData

VARDATA

CtCallInfo

CtTranslateOutput

CtLineDevCaps

0..1

1

 101

8.2.5 POP3 Client

CMainFrame

CPop3Message

CSettings

CVoiceMDoc

CAboutDlg

CPop3Socket CPop3Connection

1 1

CVoiceMView CVoiceMApp

0..1 1

1 1

0..1 1

 102

8.2.6 Data Types

LPTSTR

HWNDDWORD

CPtrList

HCALL

CPtrArrayHLINELPCSTR

HPHONE

size_t

s tring

UINTLONGHLINEAPPHPHONEAPP

LPSTR

WAVEHDR

HPSTR

WAVEFORMATEX

HWAVEINHWAVEOUTboolCStatus BarC ToolBar

CFrameWnd

SOCKET

CString

BOOL

CDWordArray

CStringArrayCDialogfstreamCWinAppCDocumentCFormView

 103

8.3 Use Cases

Below is a description of a set of sequences of actions, including variants that our

system performs to yield an observable result of values to an actor.

8.3.1 Connection Establishment

Overview: This use case explains how the connection is established between the

user and the system.

Use Case View:

Use Case Name Actor’s Action System Response

Connection Establishment

USER DIALS THE SERVER’S

PHONE NUMBER.
After three rings the

system picks up the call

and plays a greeting.

 104

8.3.2 User Authorization

Overview: This use case explains how security checks are observed during the

authorization of a user.

Use Case View:

Use Case Name Actor’s Action System Response

User Authorization. USER PUNCHES HIS PIN CODE. 1. System detects the

DTMF tones and

stores in a buffer.

 USER WAITS FOR SERVER’S

RESPONSE.
2. Server checks the

ID in its database and

plays a user menu in

case of success or asks

two more times for the

PIN in case the ID is

incorrect.

 105

8.3.3 User Menu

Overview: User Menu use case describes the behaviour of the system when the

menu is played to the user.

Use Case View:

Use Case Name Actor’s Action System Response

User Menu USER DIALS THE DIGITS

CORRESPONDING TO THE

DESIRED ACTION

(READ/WRITE MESSAGE)

1. System detects the

DTMF tone and

plays another

message.

 106

8.3.4 Message Recorder

Overview: Message recorder analyses the situation when a message is played back

to the user.

Use Case View:

Use Case Name Actor’s Action System Response

User Menu IF USER WANTS TO RECORD A

MESSAGE.
1. System initialises

the recorder and

plays a beep.

 107

8.3.5 Message Player

Overview: This use case explains how a TTS message is played to the user.

Use Case View:

Use Case Name Actor’s Action System Response

Message Player

IF THE USER WANTS TO

LISTEN TO HIS/HER EMAILS.
1. System initialises

the TTS.

 108

8.3.6 Delete Connection Menu

Overview: Connection deletion use case describes the situation when a connection

is to be deleted.

Use Case View:

Use Case Name Actor’s Action System Response

Delete Connection Menu. AFTER THE EMAIL IS
 PLAYED OR A
 MESSAGE IS
 RECORDED BY THE
 USER, THE USER
 WAITS.

1. System detects the

DTMF and

initialises the TTS.

 109

8.3.7 Connection Deletion

Overview: This use case view explains how a connection is deleted.

Use Case View:

Use Case Name Actor’s Action System Response

Connection Deletion THE USER DECIDES
 TO DROP THE CALL .

1. System frees

system resources

(buffers, timers etc)

and deletes the

connection.

 110

8.3.8 Back to Basics

Overview: This use case view explains how a connection is deleted.

Use Case View:

Use Case Name Actor’s Action System Response

Back to Basics The user decides to
Continue with the call.

1. System detects the

DTMF tone and

plays the welcome

menu, like normal

style.

 111

8.3.9 Registration

Overview: This use case view explains how a user is registered at the web site.

Use Case View:

Use Case Name Actor’s Action System Response

Registration USER ENTERS HIS/HER NAME,
EMAIL ADDRESS AND ITS

PASSWORD AT THE E-MAIL

VIA PHONE REGISTRATION

WEB SITE.

1. The system stores

the name and

email address of

the new user in its

database and

returns a new PIN

code to the user.

This PIN code is

also stored in the

database.

 112

9 E-Mail via Phone: Implementation

 113

This chapter outlines the implementation of E-Mail via Phone system

including all three packages related to Telephony (TFX), Voice Messaging

(VoiceM) and Integration. This implementation is based on the design

explained in the last chapter. The packages explained in this chapter

include the classes for POP3 client, Text-to-Speech conversion, message

recording and playback. These packages are explained below.

9.1 TFX

TFX library provides all the functionality required for building a telephony

applications. API includes listening for incoming calls, initiating calls and

processing media from the line. Classes included in this package are

described in the following sections.

9.1.1 WindowClass

9.1.1.1 Public Methods:

9.1.1.1.1 WindowClass (pszClassName : LPCTSTR, pfnWndProc : WNDPROC) :

WindowClass

9.1.1.1.2 ~WindowClass () :

9.1.1.1.3 ClassName () : LPCTSTR

9.1.1.1.4 IsRegistered () : bool

 114

9.1.2 InvisibleWindowSink

9.1.2.1 Public Methods:

9.1.2.1.1 OnWindowMessage (hwnd : HWND, nMsg : UINT, wparam : WPARAM,

lparam : LPARAM) : LRESULT

9.1.3 InvisibleWindow

9.1.3.1 Public Methods:

9.1.3.1.1 InvisibleWindow () : InvisibleWindow

9.1.3.1.2 ~InvisibleWindow () :

9.1.3.1.3 Create (pSink : InvisibleWindowSink*) : bool

9.1.3.1.4 Destroy () : void

9.1.3.1.5 GetHwnd () : HWND

9.1.3.2 Private Methods:

9.1.3.2.1 InvisibleWindowProc (hwnd : HWND, nMsg : UINT, wparam :

WPARAM, lparam : LPARAM) : int

9.1.4 CtAddressCaps

Derived from CtVariableData

 115

9.1.4.1 Public Methods:

9.1.4.1.1 GetAddressCaps (nLineID : DWORD, nAddressID : DWORD) :

TRESULT

9.1.4.1.2 operator const LPLINEADDRESSCAPS () : const

LPLINEADDRESSCAPS

9.1.4.1.3 GetLineDeviceID () : DWORD

9.1.4.1.4 GetAddress () : LPCSTR

9.1.4.1.5 GetAddressSharing () : DWORD

9.1.4.1.6 GetAddressStates () : DWORD

9.1.4.1.7 GetCallInfoStates () : DWORD

9.1.4.1.8 GetCallerIDFlags () : DWORD

9.1.4.1.9 GetCalledIDFlags () : DWORD

9.1.4.1.10 GetConnectedIDFlags () : DWORD

9.1.4.1.11 GetRedirectionIDFlags () : DWORD

9.1.4.1.12 GetRedirectingIDFlags () : DWORD

9.1.4.1.13 GetCallStates () : DWORD

9.1.4.1.14 GetDialToneModes () : DWORD

9.1.4.1.15 GetBusyModes () : DWORD

9.1.4.1.16 GetSpecialInfo () : DWORD

9.1.4.1.17 GetDisconnectModes () : DWORD

9.1.4.1.18 GetMaxNumActiveCalls () : DWORD

9.1.4.1.19 GetMaxNumOnHoldCalls () : DWORD

9.1.4.1.20 GetMaxNumOnHoldPendingCalls () : DWORD

9.1.4.1.21 GetMaxNumConference () : DWORD

9.1.4.1.22 GetMaxNumTransConf () : DWORD

9.1.4.1.23 GetAddrCapFlags () : DWORD

9.1.4.1.24 GetCallFeatures () : DWORD

9.1.4.1.25 GetRemoveFromConfCaps () : DWORD

9.1.4.1.26 GetRemoveFromConfState () : DWORD

9.1.4.1.27 GetTransferModes () : DWORD

9.1.4.1.28 GetParkModes () : DWORD

9.1.4.1.29 GetForwardModes () : DWORD

9.1.4.1.30 GetMaxForwardEntries () : DWORD

 116

9.1.4.1.31 GetMaxSpecificEntries () : DWORD

9.1.4.1.32 GetMinFwdNumRings () : DWORD

9.1.4.1.33 GetMaxFwdNumRings () : DWORD

9.1.4.1.34 GetMaxCallCompletions () : DWORD

9.1.4.1.35 GetCallCompletionConds () : DWORD

9.1.4.1.36 GetCallCompletionModes () : DWORD

9.1.4.1.37 GetNumCompletionMessages () : DWORD

9.1.4.1.38 GetCompletionMsgText (nMsg : DWORD) : LPCSTR

9.1.4.1.39 GetAddressFeatures () : DWORD

9.1.4.2 Protected Methods:

9.1.4.2.1 FillBuffer () : TRESULT

9.1.4.3 Private Methods:

9.1.4.3.1 GetData () : const LPLINEADDRESSCAPS

9.1.5 CtVariableData

9.1.5.1 Public Methods:

9.1.5.1.1 CtVariableData () : CtVariableData

9.1.5.1.2 ~CtVariableData () :

 117

9.1.5.2 Protected Methods:

9.1.5.2.1 UpdateData () : TRESULT

9.1.5.2.2 GetStringPtr (nOffset : DWORD, nSize : DWORD, dwStringFormat :

DWORD = STRINGFORMAT_ASCII) : LPCSTR

9.1.5.2.3 GetDataPtr (nOffset : DWORD) : void*

9.1.5.2.4 FillBuffer () : TRESULT

9.1.6 CtAppSink

9.1.6.1 Public Methods:

9.1.6.1.1 OnLineCreate (nLineID : DWORD) : void

9.1.6.1.2 OnPhoneCreate (nPhoneID : DWORD) : void

9.1.6.1.3 OnLineRequest (nRequestMode : DWORD, hRequestWnd : HWND,

nRequestID : TREQUEST) : void

9.1.7 CtCall

Derived from CtReplyTarget

 118

9.1.8 Public Methods:

9.1.8.1.1 CtCall (pLine : CtLine*) : CtCall

9.1.8.1.2 CtCall (pLine : CtLine*, hCall : HCALL, pInitialSink : CtCallSink* = 0) :

CtCall

9.1.8.1.3 GetLine () : CtLine*

9.1.8.1.4 ~CtCall () :

9.1.8.1.5 GetHandle () : HCALL

9.1.8.1.6 Attach (hCall : HCALL, pInitialSink : CtCallSink* = 0) : HCALL

9.1.8.1.7 Detach () : HCALL

9.1.8.1.8 AddSink (pSink : CtCallSink*) : void

9.1.8.1.9 RemoveSink (pSink : CtCallSink*) : void

9.1.8.1.10 IsRequestPending (nRequestID : TREQUEST = 0, pnRequestType :

DWORD* = 0) : BOOL

9.1.8.1.11 IsRequestTypePending (nRequestType : DWORD) : BOOL

9.1.8.1.12 FromHandle (hCall : HCALL) : CtCall*

9.1.8.1.13 Accept (psUserUserInfo : LPCSTR = 0, nSize : DWORD = 0) :

TRESULT

9.1.8.1.14 Answer (psUserUserInfo : LPCSTR = 0, nSize : DWORD = 0) :

TRESULT

9.1.8.1.15 Dial (szDestAddress : LPCSTR, dwCountryCode : DWORD = 0) :

TRESULT

9.1.8.1.16 Drop (psUserUserInfo : LPCSTR = 0, nSize : DWORD = 0) : TRESULT

9.1.8.1.17 GenerateDigits (szDigits : LPCSTR, nDuration : DWORD = 0,

nDigitMode : DWORD = LINEDIGITMODE_DTMF) : TRESULT

9.1.8.1.18 GenerateTone (nToneMode : DWORD, nDuration : DWORD,

nCustomTones : DWORD = 0, pCustomTones : LINEGENERATETONE* = 0) :

TRESULT

9.1.8.1.19 Deallocate () : TRESULT

9.1.8.1.20 GatherDigits (pszDigits : LPSTR, nDigits : DWORD,

pszTerminationDigits : LPCSTR = 0, nFirstDigitTimeout : DWORD = 5000,

nInterDigitTimeout : DWORD = 5000, nDigitMode : DWORD =

LINEDIGITMODE_DTMF) : TRESULT

9.1.8.1.21 Handoff (szFileName : LPCSTR) : TRESULT

 119

9.1.8.1.22 Handoff (nMediaMode : DWORD) : TRESULT

9.1.8.1.23 MakeCall (szDestAddress : LPCSTR = 0, nCountryCode : DWORD = 0,

pInitialSink : CtCallSink* = 0, pCallParams : LINECALLPARAMS* = 0) :

TRESULT

9.1.8.1.24 MonitorDigits (dwDigitModes : DWORD = LINEDIGITMODE_DTMF)

: TRESULT

9.1.8.1.25 OnInfo (nCallInfo : DWORD) : void

9.1.8.1.26 OnState (nCallState : DWORD, dwParam2 : DWORD, nCallPriviledge :

DWORD) : void

9.1.8.1.27 OnGatherDigits (nGatherTerm : DWORD) : void

9.1.8.1.28 OnGenerate (nGenerateTerm : DWORD) : void

9.1.8.1.29 OnMonitorDigits (cDigit : char, nDigitMode : DWORD) : void

9.1.8.1.30 OnMonitorMedia (nMediaMode : DWORD) : void

9.1.8.1.31 OnMonitorTone (dwAppSpecific : DWORD) : void

9.1.8.1.32 OnReply (nRequestID : TREQUEST, nResult : TRESULT,

nRequestType : DWORD) : void

9.1.8.2 Protected Methods:

9.1.8.2.1 AddToCalls (pCall : CtCall*) : void

9.1.8.2.2 RemoveFromCalls (pCall : CtCall*) : void

9.1.9 CtLine

Derived from CtReplyTarget

 120

9.1.9.1 Public Methods:

9.1.9.1.1 CtLine () : CtLine

9.1.9.1.2 GetHandle () : HLINE

9.1.9.1.3 ~CtLine () :

9.1.9.1.4 GetDeviceID () : DWORD

9.1.9.1.5 AddSink (pSink : CtLineSink*) : void

9.1.9.1.6 RemoveSink (pSink : CtLineSink*) : void

9.1.9.1.7 IsRequestPending (nRequestID : TREQUEST = 0, pnRequestType :

DWORD* = 0) : BOOL

9.1.9.1.8 IsRequestTypePending (nRequestType : DWORD) : BOOL

9.1.9.1.9 FromHandle (hLine : HLINE) : CtLine*

9.1.9.1.10 GetNumDevs () : DWORD

9.1.9.1.11 GetAppHandle () : HLINEAPP

9.1.9.1.12 GetAppVersion () : DWORD

9.1.9.1.13 SetAppVersion (dwLoVersion : DWORD, dwHiVersion : DWORD) :

void

9.1.9.1.14 GetApiVersion (nLineID : DWORD) : DWORD

9.1.9.1.15 Initialize (pAppSink : CtAppSink*, szAppName : LPCSTR, hInst :

HINSTANCE) : TRESULT

9.1.9.1.16 Shutdown () : TRESULT

9.1.9.1.17 GetMakeCallRequest (plmc : LPLINEREQMAKECALL) : TRESULT

9.1.9.1.18 GetMediaCallRequest (plmc : LPLINEREQMEDIACALL) : TRESULT

9.1.9.1.19 RegisterRequestRecipient (dwRequestMode : DWORD, bEnable :

BOOL) : TRESULT

9.1.9.1.20 TranslateDialog (nLineID : DWORD, hwndOwner : HWND, szAddressIn

: LPCSTR) : TRESULT

9.1.9.1.21 ConfigDialog (nLineID : DWORD, hwndOwner : HWND,

pszDeviceClass : LPCSTR = 0) : TRESULT

9.1.9.1.22 GetIcon (nLineID : DWORD, phicon : LPHICON, pszDeviceClass :

LPCSTR = 0) : TRESULT

9.1.9.1.23 SetCurrentLocation (nLocationID : DWORD) : TRESULT

 121

9.1.9.1.24 Open (nLineID : DWORD, pInitialSink : CtLineSink* = 0, dwPriviledges

: DWORD = LINECALLPRIVILEGE_NONE, dwMediaModes : DWORD =

LINEMEDIAMODE_INTERACTIVEVOICE) : TRESULT

9.1.9.1.25 Close () : TRESULT

9.1.9.1.26 GetAddressID (pdwAddressID : LPDWORD, nAddressMode : DWORD,

pszAddress : LPCSTR, nSize : DWORD) : TRESULT

9.1.9.1.27 GetNumRings (nAddressID : DWORD, pnRings : DWORD*) :

TRESULT

9.1.9.1.28 SetNumRings (nAddressID : DWORD, nRings : DWORD) : TRESULT

9.1.9.1.29 ForwardAll (plfl : const LPLINEFORWARDLIST, nRings : DWORD) :

TRESULT

9.1.9.1.30 ForwardAddress (nAddressID : DWORD, plfl : const

LPLINEFORWARDLIST, nRings : DWORD) : TRESULT

 122

9.1.9.2 Protected Methods:

9.1.9.2.1 NegotiateApiVersions () : void

9.1.9.2.2 AddToLines (pLine : CtLine*) : void

9.1.9.2.3 RemoveFromLines (pLine : CtLine*) : void

9.1.9.2.4 OnCreate (dwDeviceID : DWORD) : void

9.1.9.2.5 OnRequest (nRequestMode : DWORD, hRequestWnd : HWND,

nRequestID : TREQUEST) : void

9.1.9.2.6 OnEvent (dwDevice : DWORD, nMsg : DWORD, dwParam1 : DWORD,

dwParam2 : DWORD, dwParam3 : DWORD) : void

9.1.9.2.7 OnAddressState (nAddressID : DWORD, nAddressState : DWORD) : void

9.1.9.2.8 OnClose () : void

9.1.9.2.9 OnDevSpecific (dwDevice : DWORD, dwParam1 : DWORD, dwParam2 :

DWORD, dwParam3 : DWORD) : void

9.1.9.2.10 OnDevSpecificFeature (dwDevice : DWORD, dwParam1 : DWORD,

dwParam2 : DWORD, dwParam3 : DWORD) : void

9.1.9.2.11 OnDevState (nDevState : DWORD, dwParam2 : DWORD, dwParam3 :

DWORD) : void

9.1.9.2.12 OnCallInfo (hCall : HCALL, nCallInfo : DWORD) : void

9.1.9.2.13 OnCallState (hCall : HCALL, nCallState : DWORD, dwParam2 :

DWORD, nCallPriviledge : DWORD) : void

9.1.9.2.14 OnNewCall (nAddressID : DWORD, hCall : HCALL, nCallPriviledge :

DWORD) : void

9.1.9.2.15 OnGatherDigits (hCall : HCALL, nGatherTerm : DWORD) : void

9.1.9.2.16 OnGenerate (hCall : HCALL, nGenerateTerm : DWORD) : void

9.1.9.2.17 OnMonitorDigits (hCall : HCALL, cDigit : char, nDigitMode : DWORD)

: void

9.1.9.2.18 OnMonitorMedia (hCall : HCALL, nMediaMode : DWORD) : void

9.1.9.2.19 OnMonitorTone (hCall : HCALL, dwAppSpecific : DWORD) : void

9.1.9.2.20 OnReply (nRequestID : TREQUEST, nResult : TREQUEST,

nRequestType : DWORD) : void

9.1.9.2.21 TfxLineCallback (dwDevice : DWORD, nMsg : DWORD, dwInstance :

DWORD, dwParam1 : DWORD, dwParam2 : DWORD, dwParam3 : DWORD) : int

 123

9.1.9.3 Private Methods:

9.1.9.3.1 CtLine (: const CtLine&) : CtLine

9.1.9.3.2 AddRequest (nRequestID : TREQUEST, pTarget : CtReplyTarget*,

dwRequestType : DWORD) : void

9.1.9.3.3 RemoveAllRequests (pTarget : CtReplyTarget* = 0) : void

9.1.9.3.4 IsCallRequestPending (nRequestID : TREQUEST, pnRequestType :

DWORD*) : BOOL

9.1.9.3.5 IsCallRequestTypePending (pCall : const CtCall*, nRequestType :

DWORD) : BOOL

9.1.9.3.6 operator = (: const CtLine&) : CtLine&

9.1.10 CtReplyTarget

9.1.10.1 Public Methods:

9.1.10.1.1 OnReply (nRequestID : TREQUEST, nResult : TRESULT,

nRequestType : DWORD) : void

9.1.11 CtCallInfo

Derived from CtVariableData

 124

9.1.11.1 Public Methods:

9.1.11.1.1 GetCallInfo (pCall : const CtCall*) : TRESULT

9.1.11.1.2 GetCallInfo (hCall : const HCALL) : TRESULT

9.1.11.1.3 operator const LPLINECALLINFO () : const LPLINECALLINFO

9.1.11.1.4 GetLineHandle () : HLINE

9.1.11.1.5 GetLineID () : DWORD

9.1.11.1.6 GetAddressID () : DWORD

9.1.11.1.7 GetBearerMode () : DWORD

9.1.11.1.8 GetRate () : DWORD

9.1.11.1.9 GetMediaMode () : DWORD

9.1.11.1.10 GetAppSpecific () : DWORD

9.1.11.1.11 GetCallID () : DWORD

9.1.11.1.12 GetRelatedCallID () : DWORD

9.1.11.1.13 GetCallParamFlags () : DWORD

9.1.11.1.14 GetCallStates () : DWORD

9.1.11.1.15 GetMonitorDigitModes () : DWORD

9.1.11.1.16 GetMonitorMediaModes () : DWORD

9.1.11.1.17 GetDialParams () : const LPLINEDIALPARAMS

9.1.11.1.18 GetOrigin () : DWORD

9.1.11.1.19 GetReason () : DWORD

9.1.11.1.20 GetCompletionID () : DWORD

9.1.11.1.21 GetNumOwners () : DWORD

9.1.11.1.22 GetNumMonitors () : DWORD

9.1.11.1.23 GetCountryCode () : DWORD

9.1.11.1.24 GetTrunk () : DWORD

9.1.11.1.25 GetCallerIDFlags () : DWORD

9.1.11.1.26 GetCallerID () : LPCSTR

9.1.11.1.27 GetCallerIDName () : LPCSTR

9.1.11.1.28 GetCalledIDFlags () : DWORD

9.1.11.1.29 GetCalledID () : LPCSTR

9.1.11.1.30 GetCalledIDName () : LPCSTR

9.1.11.1.31 GetConnectedIDFlags () : DWORD

9.1.11.1.32 GetConnectedID () : LPCSTR

 125

9.1.11.1.33 GetConnectedIDName () : LPCSTR

9.1.11.1.34 GetRedirectionIDFlags () : DWORD

9.1.11.1.35 GetRedirectionID () : LPCSTR

9.1.11.1.36 GetRedirectionIDName () : LPCSTR

9.1.11.1.37 GetRedirectingIDFlags () : DWORD

9.1.11.1.38 GetRedirectingID () : LPCSTR

9.1.11.1.39 GetRedirectingIDName () : LPCSTR

9.1.11.1.40 GetAppName () : LPCSTR

9.1.11.1.41 GetDisplayableAddress () : LPCSTR

9.1.11.1.42 GetCalledParty () : LPCSTR

9.1.11.1.43 GetComment () : LPCSTR

9.1.11.1.44 GetDisplay () : LPCSTR

9.1.11.1.45 GetUserUserInfoSize () : DWORD

9.1.11.1.46 GetUserUserInfo () : void*

9.1.11.1.47 GetHighLevelCompSize () : DWORD

9.1.11.1.48 GetHighLevelComp () : void*

9.1.11.1.49 GetLowLevelCompSize () : DWORD

9.1.11.1.50 GetLowLevelComp () : void*

9.1.11.1.51 GetChargingInfoSize () : DWORD

9.1.11.1.52 GetChargingInfo () : void*

9.1.11.1.53 GetNumTerminals () : DWORD

9.1.11.1.54 GetTerminalModes (nTermID : DWORD) : DWORD

9.1.11.1.55 GetDevSpecificSize () : DWORD

9.1.11.1.56 GetDevSpecificInfo () : void*

9.1.11.2 Protected Methods:

9.1.11.2.1 FillBuffer () : TRESULT

 126

9.1.11.3 Private Methods:

9.1.11.3.1 GetData () : const LPLINECALLINFO

9.1.12 CtCallList

Derived from CtVariableData

9.1.12.1 Public Methods:

9.1.12.1.1 GetNewCalls (hLine : HLINE) : TRESULT

9.1.12.1.2 GetNewCalls (nAddress : DWORD) : TRESULT

9.1.12.1.3 operator const LPLINECALLLIST () : const LPLINECALLLIST

9.1.12.1.4 GetNumCalls () : DWORD

9.1.12.1.5 GetCall (nCall : DWORD) : HCALL

9.1.12.2 Protected Methods:

9.1.12.2.1 FillBuffer () : TRESULT

9.1.12.3 Private Methods:

9.1.12.3.1 GetData () : const LPLINECALLLIST

 127

9.1.13 CtCallSink

9.1.13.1 Public Methods:

9.1.13.1.1 OnCallInfo (pCall : CtCall*, nCallInfo : DWORD) : void

9.1.13.1.2 OnCallState (pCall : CtCall*, nCallState : DWORD, dwParam2 :

DWORD, nCallPriviledge : DWORD) : void

9.1.13.1.3 OnCallGatherDigits (pCall : CtCall*, nGatherTerm : DWORD) : void

9.1.13.1.4 OnCallGenerate (pCall : CtCall*, nGenerateTerm : DWORD) : void

9.1.13.1.5 OnCallMonitorDigits (pCall : CtCall*, cDigit : char, nDigitMode :

DWORD) : void

9.1.13.1.6 OnCallMonitorMedia (pCall : CtCall*, nMediaMode : DWORD) : void

9.1.13.1.7 OnCallMonitorTone (pCall : CtCall*, dwAppSpecific : DWORD) : void

9.1.13.1.8 OnCallReply (pCall : CtCall*, nRequestID : TREQUEST, tr : TRESULT,

nRequestType : DWORD) : void

9.1.14 CtCallStatus

Derived from CtVariableData

9.1.14.1 Public Methods:

9.1.14.1.1 GetCallStatus (pCall : const CtCall*) : TRESULT

9.1.14.1.2 GetCallStatus (hCall : const HCALL) : TRESULT

9.1.14.1.3 operator const LPLINECALLSTATUS () : const LPLINECALLSTATUS

9.1.14.1.4 GetCallState () : DWORD

9.1.14.1.5 GetCallStateMode () : DWORD

9.1.14.1.6 GetCallPrivilege () : DWORD

9.1.14.1.7 GetCallFeatures () : DWORD

9.1.14.1.8 GetDevSpecificSize () : DWORD

9.1.14.1.9 GetDevSpecificInfo () : void*

 128

9.1.14.2 Protected Methods:

9.1.14.2.1 FillBuffer () : TRESULT

9.1.14.3 Private Methods:

9.1.14.3.1 GetData () : const LPLINECALLSTATUS

9.1.15 CtCountryList

Derived from CtVariableData

9.1.15.1 Public Methods:

9.1.15.1.1 GetCountryList () : TRESULT

9.1.15.1.2 operator const LPLINECOUNTRYLIST () : const

LPLINECOUNTRYLIST

9.1.15.1.3 GetNumCountries () : DWORD

9.1.15.1.4 GetCountryCode (nCountry : DWORD) : DWORD

9.1.15.1.5 GetCountryName (nCountry : DWORD) : LPCSTR

9.1.15.1.6 GetSameAreaRule (nCountry : DWORD) : LPCSTR

9.1.15.1.7 GetLongDistanceRule (nCountry : DWORD) : LPCSTR

9.1.15.1.8 GetInternationalRule (nCountry : DWORD) : LPCSTR

9.1.15.2 Protected Methods:

9.1.15.2.1 FillBuffer () : TRESULT

 129

9.1.15.3 Private Methods:

9.1.15.3.1 GetData () : const LPLINECOUNTRYLIST

9.1.16 CtDeviceID

Derived from CtVariableData

9.1.16.1 Public Methods:

9.1.16.1.1 GetID (szDeviceClass : LPCSTR, hPhone : HPHONE) : TRESULT

9.1.16.1.2 GetID (szDeviceClass : LPCSTR, hLine : HLINE) : TRESULT

9.1.16.1.3 GetID (szDeviceClass : LPCSTR, hLine : HLINE, nAddressID :

DWORD) : TRESULT

9.1.16.1.4 GetID (szDeviceClass : LPCSTR, hCall : HCALL) : TRESULT

9.1.16.1.5 operator const LPVARSTRING () : const LPVARSTRING

9.1.16.1.6 GetString () : LPCSTR

9.1.16.1.7 GetHandleAndString (ph : HANDLE*) : LPCSTR

9.1.16.1.8 GetDeviceID () : DWORD

9.1.16.1.9 GetDeviceIDs () : DWORD*

9.1.16.2 Protected Methods:

9.1.16.2.1 FillBuffer () : TRESULT

9.1.16.3 Private Methods:

9.1.16.3.1 GetData () : const LPVARSTRING

 130

9.1.17 CtDialStringSink

9.1.17.1 Public Methods:

9.1.17.1.1 OnDialDone () : void

9.1.17.1.2 OnDialError () : void

9.1.18 CtDialString

Derived from CtWaveSink, TimerSink

9.1.18.1 Public Methods:

9.1.18.1.1 CtDialString (pSink : CtDialStringSink* = 0, pszDigits : const TCHAR*

= 0) : CtDialString

9.1.18.1.2 ~CtDialString () :

9.1.18.1.3 operator = (pszDigits : const TCHAR*) : CtDialString&

9.1.18.1.4 Dial (nWaveOut : UINT, nDigitDuration : UINT, nCommaDelay : UINT)

: bool

9.1.18.1.5 operator const TCHAR* () : const TCHAR*

9.1.18.1.6 Cancel () : void

9.1.18.2 Private Methods:

9.1.18.2.1 PlayDigit () : bool

9.1.18.2.2 OnTimer () : void

9.1.18.2.3 OnWaveOutOpen () : void

9.1.18.2.4 OnWaveOutDone () : void

 131

9.1.19 CtDtmf

Derived from CtWave

9.1.19.1 Public Methods:

9.1.19.1.1 CtDtmf (pSink : CtWaveSink* = 0) : CtDtmf

9.1.19.1.2 SetTone (cTone : char) : bool

9.1.19.2 Private Methods:

9.1.19.2.1 Load (prgDtmf : BYTE*, nSize : size_t) : bool

9.1.20 Timer

Derived from InvisibleWindowSink

9.1.20.1 Public Methods:

9.1.20.1.1 Timer (pSink : TimerSink*) : Timer

9.1.20.1.2 Start (nElapse : UINT, nMinDelta : UINT = 0) : bool

9.1.20.1.3 ~Timer () :

9.1.20.1.4 Running () : bool

9.1.20.1.5 Stop () : void

 132

9.1.20.2 Private Methods:

9.1.20.2.1 OnWindowMessage (hwnd : HWND, nMsg : UINT, wparam :

WPARAM, lparam : LPARAM) : LRESULT

9.1.21 CtWaveSink

9.1.21.1 Public Methods:

9.1.21.1.1 OnWaveOutOpen () : void

9.1.21.1.2 OnWaveOutDone () : void

9.1.21.1.3 OnWaveOutClose () : void

9.1.21.1.4 OnWaveInOpen () : void

9.1.21.1.5 OnWaveInData () : void

9.1.21.1.6 OnWaveInClose () : void

9.1.22 TimerSink

9.1.22.1 Public Methods:

9.1.22.1.1 OnTimer () : void

9.1.23 CtWave

Derived from InvisibleWindowSink

 133

9.1.23.1 Public Methods:

9.1.23.1.1 CtWave (pSink : CtWaveSink* = 0) : CtWave

9.1.23.1.2 Load (hinst : HINSTANCE, nID : UINT) : bool

9.1.23.1.3 Load (hinst : HINSTANCE, pszID : LPCTSTR) : bool

9.1.23.1.4 Load (pszFileName : LPCSTR) : bool

9.1.23.1.5 ~CtWave () :

9.1.23.1.6 Save (pszFileName : LPCSTR) : bool

9.1.23.1.7 Play (nWaveOut : UINT, bLoop : bool = false) : bool

9.1.23.1.8 Record (nWaveIn : UINT, nSecs : UINT) : bool

9.1.23.1.9 Stop () : bool

9.1.23.1.10 Close () : bool

9.1.23.1.11 AddSink (pSink : CtWaveSink*) : void

9.1.23.2 Protected Methods:

9.1.23.2.1 Load (hmmio : HMMIO) : bool

9.1.23.2.2 OnWindowMessage (hwnd : HWND, nMsg : UINT, wparam :

WPARAM, lparam : LPARAM) : LRESULT

9.1.24 TapiRecover

9.1.24.1 Public Methods:

9.1.24.1.1 PreInitialize () : void

9.1.24.1.2 Initialize (happ : void*) : void

9.1.24.1.3 Shutdown () : void

 134

9.1.24.2 Private Methods:

9.1.24.2.1 SubKeyName () : const char*

9.1.24.2.2 ShutdownApp (happ : void*) : long

9.1.25 LineTapiRecover

Derived from TapiRecover

9.1.25.1 Private Methods:

9.1.25.1.1 SubKeyName () : const char*

9.1.25.1.2 ShutdownApp (happ : void*) : long

9.1.26 PhoneTapiRecover

Derived from TapiRecover

9.1.26.1 Private Methods:

9.1.26.1.1 SubKeyName () : const char*

9.1.26.1.2 ShutdownApp (happ : void*) : long

 135

9.1.27 CtRequestList

9.1.27.1 Public Methods:

9.1.27.1.1 AddRequest (nRequestID : TREQUEST, pTarget : CtReplyTarget*,

nRequestType : DWORD) : void

9.1.27.1.2 ~CtRequestList () :

9.1.27.1.3 IsRequestPending (nRequestID : TREQUEST = 0, pnRequestType :

DWORD* = 0) : BOOL

9.1.27.1.4 IsRequestTypePending (nRequestType : DWORD, pTarget : const

CtReplyTarget* = 0) : BOOL

9.1.27.1.5 RemoveRequest (nRequestID : TREQUEST, ppTarget : CtReplyTarget**

= 0, pnRequestType : DWORD* = 0) : BOOL

9.1.27.1.6 RemoveAllRequests (pTarget : CtReplyTarget* = 0) : void

9.1.27.2 Private Methods:

9.1.27.2.1 FindRequest (nRequestID : TREQUEST, ppar :

CtRequestList::AsyncRequest** = 0, ppos : POSITION* = 0) : BOOL

9.1.28 CtLineDevCaps

Derived from CtVariableData

 136

9.1.28.1 Public Methods:

9.1.28.1.1 GetDevCaps (nLineID : DWORD) : TRESULT

9.1.28.1.2 operator const LPLINEDEVCAPS () : const LPLINEDEVCAPS

9.1.28.1.3 GetProviderInfo () : LPCSTR

9.1.28.1.4 GetSwitchInfo () : LPCSTR

9.1.28.1.5 GetPermanentLineID () : DWORD

9.1.28.1.6 GetLineName () : LPCSTR

9.1.28.1.7 GetAddressModes () : DWORD

9.1.28.1.8 GetNumAddresses () : DWORD

9.1.28.1.9 GetBearerModes () : DWORD

9.1.28.1.10 GetMaxRate () : DWORD

9.1.28.1.11 GetMediaModes () : DWORD

9.1.28.1.12 GetGenerateToneModes () : DWORD

9.1.28.1.13 GetGenerateToneMaxNumFreq () : DWORD

9.1.28.1.14 GetGenerateDigitModes () : DWORD

9.1.28.1.15 GetMonitorToneMaxNumFreq () : DWORD

9.1.28.1.16 GetMonitorToneMaxNumEntries () : DWORD

9.1.28.1.17 GetMonitorDigitModes () : DWORD

9.1.28.1.18 GetGatherDigitsMinTimeout () : DWORD

9.1.28.1.19 GetGatherDigitsMaxTimeout () : DWORD

9.1.28.1.20 GetMedCtlDigitMaxListSize () : DWORD

9.1.28.1.21 GetMedCtlMediaMaxListSize () : DWORD

9.1.28.1.22 GetMedCtlToneMaxListSize () : DWORD

9.1.28.1.23 GetMedCtlCallStateMaxListSize () : DWORD

9.1.28.1.24 GetDevCapFlags () : DWORD

9.1.28.1.25 GetMaxNumActiveCalls () : DWORD

9.1.28.1.26 GetAnswerMode () : DWORD

9.1.28.1.27 GetRingModes () : DWORD

9.1.28.1.28 GetLineStates () : DWORD

9.1.28.1.29 GetUUIAcceptSize () : DWORD

9.1.28.1.30 GetUUIAnswerSize () : DWORD

9.1.28.1.31 GetUUIMakeCallSize () : DWORD

9.1.28.1.32 GetUUIDropSize () : DWORD

 137

9.1.28.1.33 GetUUISendUserUserInfoSize () : DWORD

9.1.28.1.34 GetUUICallInfoSize () : DWORD

9.1.28.1.35 GetMinDialParams () : const LPLINEDIALPARAMS

9.1.28.1.36 GetMaxDialParams () : const LPLINEDIALPARAMS

9.1.28.1.37 GetDefaultDialParams () : const LPLINEDIALPARAMS

9.1.28.1.38 GetNumTerminals () : DWORD

9.1.28.1.39 GetTerminalText (nTermID : DWORD) : LPCSTR

9.1.28.1.40 GetTermCaps (nTermID : DWORD) : const LPLINETERMCAPS

9.1.28.1.41 GetLineFeatures () : DWORD

9.1.28.2 Protected Methods:

9.1.28.2.1 FillBuffer () : TRESULT

9.1.28.3 Private Methods:

9.1.28.3.1 GetData () : const LPLINEDEVCAPS

 138

9.1.29 CtLineSink

9.1.29.1 Public Methods:

9.1.29.1.1 OnLineAddressState (pLine : CtLine*, nAddressID : DWORD,

nAddressState : DWORD) : void

9.1.29.1.2 OnLineNewCall (pLine : CtLine*, hCall : HCALL, nAddressID :

DWORD, nCallPriviledge : DWORD) : void

9.1.29.1.3 OnLineClose (pLine : CtLine*) : void

9.1.29.1.4 OnLineDevSpecific (pLine : CtLine*, dwDevice : DWORD, dwParam1 :

DWORD, dwParam2 : DWORD, dwParam3 : DWORD) : void

9.1.29.1.5 OnLineDevSpecificFeature (pLine : CtLine*, dwDevice : DWORD,

dwParam1 : DWORD, dwParam2 : DWORD, dwParam3 : DWORD) : void

9.1.29.1.6 OnLineDevState (pLine : CtLine*, nDevState : DWORD, dwParam2 :

DWORD, dwParam3 : DWORD) : void

9.1.29.1.7 OnLineReply (pLine : CtLine*, nRequestID : TREQUEST, nResult :

TRESULT, dwRequestType : DWORD) : void

9.1.30 CtPhone

Derived from CtReplyTarget

 139

9.1.30.1 Public Methods:

9.1.30.1.1 CtPhone () : CtPhone

9.1.30.1.2 GetHandle () : HPHONE

9.1.30.1.3 ~CtPhone () :

9.1.30.1.4 GetDeviceID () : DWORD

9.1.30.1.5 AddSink (pSink : CtPhoneSink*) : void

9.1.30.1.6 RemoveSink (pSink : CtPhoneSink*) : void

9.1.30.1.7 IsRequestPending (nRequestID : TREQUEST, pnRequestType :

DWORD* = 0) : BOOL

9.1.30.1.8 IsRequestTypePending (nRequestType : DWORD) : BOOL

9.1.30.1.9 FromHandle (HPHONE : HPHONE) : CtPhone*

9.1.30.1.10 GetNumDevs () : DWORD

9.1.30.1.11 GetAppHandle () : HPHONEAPP

9.1.30.1.12 GetAppVersion () : DWORD

9.1.30.1.13 SetAppVersion (dwLoVersion : DWORD, dwHiVersion : DWORD) :

void

9.1.30.1.14 GetApiVersion (nPhoneID : DWORD) : DWORD

9.1.30.1.15 Initialize (pAppSink : CtAppSink*, szAppName : LPCSTR, hInst :

HINSTANCE) : TRESULT

9.1.30.1.16 Shutdown () : TRESULT

9.1.30.1.17 GetIcon (nPhoneID : DWORD, phicon : LPHICON, pszDeviceClass :

LPCSTR) : TRESULT

9.1.30.1.18 Open (nPhoneID : DWORD, pInitialSink : CtPhoneSink* = 0,

dwPriviledges : DWORD = PHONEPRIVILEGE_OWNER) : TRESULT

9.1.30.1.19 Close () : TRESULT

9.1.30.1.20 SetHookSwitch (dwHookSwitchDevs : DWORD, nHookSwitchMode :

DWORD) : TRESULT

 140

9.1.30.2 Protected Methods:

9.1.30.2.1 NegotiateApiVersions () : void

9.1.30.2.2 AddToPhones (pPhone : CtPhone*) : void

9.1.30.2.3 RemoveFromPhones (pPhone : CtPhone*) : void

9.1.30.2.4 OnCreate (dwDeviceID : DWORD) : void

9.1.30.2.5 OnEvent (dwDevice : DWORD, nMsg : DWORD, dwParam1 : DWORD,

dwParam2 : DWORD, dwParam3 : DWORD) : void

9.1.30.2.6 OnButton (nButtonOrLampID : DWORD, nButtonMode : DWORD,

nButtonState : DWORD) : void

9.1.30.2.7 OnClose () : void

9.1.30.2.8 OnDevSpecific (dwDevice : DWORD, dwParam1 : DWORD, dwParam2

: DWORD, dwParam3 : DWORD) : void

9.1.30.2.9 OnState (dwPhoneStates : DWORD, dwPhoneStateDetails : DWORD) :

void

9.1.30.2.10 OnReply (nRequestID : TREQUEST, nResult : TREQUEST,

nRequestType : DWORD) : void

9.1.30.2.11 TfxPhoneCallback (dwDevice : DWORD, nMsg : DWORD, dwInstance

: DWORD, dwParam1 : DWORD, dwParam2 : DWORD, dwParam3 : DWORD) :

int

9.1.30.3 Private Methods:

9.1.30.3.1 CtPhone (: const CtPhone&) : CtPhone

9.1.30.3.2 AddRequest (nRequestID : TREQUEST, pTarget : CtReplyTarget*,

dwRequestType : DWORD) : void

9.1.30.3.3 RemoveAllRequests (pTarget : CtReplyTarget* = 0) : void

9.1.30.3.4 operator = (: const CtPhone&) : CtPhone&

 141

9.1.31 CtPhoneCaps

Derived from CtVariableData

9.1.31.1 Public Methods:

9.1.31.1.1 GetDevCaps (nPhoneID : DWORD) : TRESULT

9.1.31.1.2 operator const LPPHONECAPS () : const LPPHONECAPS

9.1.31.1.3 GetProviderInfo () : LPCSTR

9.1.31.1.4 GetPhoneInfo () : LPCSTR

9.1.31.1.5 GetPermanentPhoneID () : DWORD

9.1.31.1.6 GetPhoneName () : LPCSTR

9.1.31.1.7 GetPhoneStates () : DWORD

9.1.31.1.8 GetHookSwitchDevs () : DWORD

9.1.31.1.9 GetHandsetHookSwitchModes () : DWORD

9.1.31.1.10 GetSpeakerHookSwitchModes () : DWORD

9.1.31.1.11 GetHeadsetHookSwitchModes () : DWORD

9.1.31.1.12 GetVolumeFlags () : DWORD

9.1.31.1.13 GetGainFlags () : DWORD

9.1.31.1.14 GetDisplayNumRows () : DWORD

9.1.31.1.15 GetDisplayNumColumns () : DWORD

9.1.31.1.16 GetNumRingModes () : DWORD

9.1.31.1.17 GetNumButtonLamps () : DWORD

9.1.31.1.18 GetButtonModes (nButton : DWORD) : DWORD

9.1.31.1.19 GetButtonFunction (nButton : DWORD) : DWORD

9.1.31.1.20 GetLampModes (nLamp : DWORD) : DWORD

9.1.31.1.21 GetNumSetData () : DWORD

9.1.31.1.22 GetSetData (nDatum : DWORD) : DWORD

9.1.31.1.23 GetNumGetData () : DWORD

9.1.31.1.24 GetGetData (nDatum : DWORD) : DWORD

9.1.31.1.25 GetDevSpecificSize () : DWORD

9.1.31.1.26 GetDevSpecificData () : void*

 142

9.1.31.2 Protected Methods:

9.1.31.2.1 FillBuffer () : TRESULT

9.1.31.3 Private Methods:

9.1.31.3.1 GetData () : const LPPHONECAPS

 143

9.1.32 CtPhoneNo

9.1.32.1 Public Methods:

9.1.32.1.1 CtPhoneNo () : CtPhoneNo

9.1.32.1.2 CtPhoneNo (szWholePhoneNo : LPCSTR) : CtPhoneNo

9.1.32.1.3 CtPhoneNo (szCountryCode : LPCSTR, szAreaCode : LPCSTR,

szPhoneNo : LPCSTR) : CtPhoneNo

9.1.32.1.4 CtPhoneNo (nCountryCode : DWORD, szAreaCode : LPCSTR,

szPhoneNo : LPCSTR) : CtPhoneNo

9.1.32.1.5 CtPhoneNo (pno : const CtPhoneNo&) : CtPhoneNo

9.1.32.1.6 operator = (pno : const CtPhoneNo&) : CtPhoneNo&

9.1.32.1.7 GetCountryCode () : LPCSTR

9.1.32.1.8 ~CtPhoneNo () :

9.1.32.1.9 GetCountryCodeNum () : DWORD

9.1.32.1.10 GetAreaCode () : LPCSTR

9.1.32.1.11 GetPhoneNo () : LPCSTR

9.1.32.1.12 GetCanonical () : LPCSTR

9.1.32.1.13 GetDisplayable () : LPCSTR

9.1.32.1.14 GetTranslatable (pszMap : LPCSTR = "4442447") : LPCSTR

9.1.32.1.15 SetWholePhoneNo (szWholePhoneNo : LPCSTR) : void

9.1.32.1.16 SetCanonical (szCanonical : LPCSTR) : void

9.1.32.1.17 SetCanonical (szCountryCode : LPCSTR, szAreaCode : LPCSTR,

szPhoneNo : LPCSTR) : void

9.1.32.1.18 SetCanonical (nCountryCode : DWORD, szAreaCode : LPCSTR,

szPhoneNo : LPCSTR) : void

9.1.32.1.19 ResetToLocation () : void

9.1.32.1.20 SetCountryCode (szCountryCode : LPCSTR) : void

9.1.32.1.21 SetCountryCode (nCountryCode : DWORD) : void

9.1.32.1.22 SetAreaCode (szAreaCode : LPCSTR) : void

9.1.32.1.23 SetPhoneNo (szPhoneNo : LPCSTR) : void

 144

9.1.32.2 Private Methods:

9.1.32.2.1 ClearConstructs () : void

9.1.32.2.2 CheckDefaults () : void

9.1.32.2.3 ResetAll () : void

9.1.32.2.4 Copy (pno : const CtPhoneNo&) : void

9.1.33 CtPhoneSink

9.1.33.1 Public Methods:

9.1.33.1.1 OnPhoneButton (pPhone : CtPhone*, nButtonOrLampID : DWORD,

nButtonMode : DWORD, nButtonState : DWORD) : void

9.1.33.1.2 OnPhoneClose (pPhone : CtPhone*) : void

9.1.33.1.3 OnPhoneDevSpecific (pPhone : CtPhone*, dwDevice : DWORD,

dwParam1 : DWORD, dwParam2 : DWORD, dwParam3 : DWORD) : void

9.1.33.1.4 OnPhoneReply (pPhone : CtPhone*, nRequestID : TREQUEST, nResult :

TRESULT, dwRequestType : DWORD) : void

9.1.33.1.5 OnPhoneState (pPhone : CtPhone*, dwPhoneStates : DWORD,

dwPhoneStateDetails : DWORD) : void

9.1.34 CtProviderList

Derived from CtVariableData

 145

9.1.34.1 Public Methods:

9.1.34.1.1 GetProviderList () : LONG

9.1.34.1.2 operator const LPLINEPROVIDERLIST () : const

LPLINEPROVIDERLIST

9.1.34.1.3 GetNumProviders () : DWORD

9.1.34.1.4 GetProviderPermanentID (nProvider : DWORD) : DWORD

9.1.34.1.5 GetProviderFilename (nProvider : DWORD) : LPCSTR

9.1.34.2 Protected Methods:

9.1.34.2.1 FillBuffer () : TRESULT

9.1.34.3 Private Methods:

9.1.34.3.1 GetData () : const LPLINEPROVIDERLIST

9.1.35 CtTranslateCaps

Derived from CtVariableData

 146

9.1.35.1 Public Methods:

9.1.35.1.1 GetTranslateCaps () : TRESULT

9.1.35.1.2 operator const LPLINETRANSLATECAPS () : const

LPLINETRANSLATECAPS

9.1.35.1.3 GetCurrentLocationID () : DWORD

9.1.35.1.4 GetNumLocations () : DWORD

9.1.35.1.5 GetPermanentLocationID (nLocation : DWORD) : DWORD

9.1.35.1.6 GetLocationName (nLocation : DWORD) : LPCSTR

9.1.35.1.7 GetCountryCode (nLocation : DWORD) : DWORD

9.1.35.1.8 GetAreaCode (nLocation : DWORD) : LPCSTR

9.1.35.1.9 GetCityCode (nLocation : DWORD) : LPCSTR

9.1.35.1.10 GetPreferredCardID (nLocation : DWORD) : DWORD

9.1.35.1.11 GetLocalAccessCode (nLocation : DWORD) : LPCSTR

9.1.35.1.12 GetLongDistanceAccessCode (nLocation : DWORD) : LPCSTR

9.1.35.1.13 GetTollPrefixList (nLocation : DWORD) : LPCSTR

9.1.35.1.14 GetCountryID (nLocation : DWORD) : DWORD

9.1.35.1.15 GetLocationOptions (nLocation : DWORD) : DWORD

9.1.35.1.16 GetCancelCallWaiting (nLocation : DWORD) : LPCSTR

9.1.35.1.17 GetCurrentPreferredCardID () : DWORD

9.1.35.1.18 GetNumCards () : DWORD

9.1.35.1.19 GetPermanentCardID (nCard : DWORD) : DWORD

9.1.35.1.20 GetCardName (nCard : DWORD) : LPCSTR

9.1.35.1.21 GetCardNumberDigits (nCard : DWORD) : DWORD

9.1.35.1.22 GetSameAreaRule (nCard : DWORD) : LPCSTR

9.1.35.1.23 GetLongDistanceRule (nCard : DWORD) : LPCSTR

9.1.35.1.24 GetInternationalRule (nCard : DWORD) : LPCSTR

9.1.35.1.25 GetCardOptions (nCard : DWORD) : DWORD

 147

9.1.35.2 Protected Methods:

9.1.35.2.1 FillBuffer () : TRESULT

9.1.35.3 Private Methods:

9.1.35.3.1 GetData () : const LPLINETRANSLATECAPS

9.1.36 CtTranslateOutput

Derived from CtVariableData

9.1.36.1 Public Methods:

9.1.36.1.1 TranslateAddress (nLineID : DWORD, pszAddressIn : LPCSTR,

nCardID : DWORD = 0, dwTranslateOptions : DWORD = 0) : TRESULT

9.1.36.1.2 operator const LPLINETRANSLATEOUTPUT () : const

LPLINETRANSLATEOUTPUT

9.1.36.1.3 GetDialableString () : LPCSTR

9.1.36.1.4 GetDisplayableString () : LPCSTR

9.1.36.1.5 GetCurrentCountry () : DWORD

9.1.36.1.6 GetDestCountry () : DWORD

9.1.36.1.7 GetTranslateResults () : DWORD

9.1.36.2 Protected Methods:

9.1.36.2.1 FillBuffer () : TRESULT

9.1.36.3 Private Methods:

9.1.36.3.1 GetData () : const LPLINETRANSLATEOUTPUT

 148

9.2 Integration

This section includes all the datatypes that have benn used for the integration of the

telephony, TTS and POP3 client modules. These datatypes include:

9.2.1 CPtrList

9.2.2 HCALL

9.2.3 CPtrArray

9.2.4 HLINE

9.2.5 HPHONE

9.2.6 HLINEAPP

9.2.7 HPHONEAPP

9.2.8 WAVEHDR

9.2.9 WAVEFORMATEX

9.2.10 HWAVEIN

9.2.11 HWAVEOUT

 149

9.3 VoiceM

VoiceM package embodies the application that downloads the e-mails using POP3

and plays it using Text-to-Speech conversion. It also listens for incoming calls using

TFX. Classes included in this package are explained below.

9.3.1 CMainFrame

Derived from CFrameWnd

9.3.1.1 Public Properties:

9.3.1.1.1 __CLOSE_AFX_VIRTUAL :

9.3.1.2 Public Methods:

9.3.1.2.1 __OPEN_AFX_VIRTUAL (: CMainFrame) : int

9.3.1.2.2 PreCreateWindow (cs : CREATESTRUCT&) : BOOL

9.3.1.2.3 ~CMainFrame () :

9.3.1.3 Protected Methods:

9.3.1.3.1 DECLARE_DYNCREATE (: CMainFrame) : int

9.3.1.3.2 CMainFrame () : CMainFrame

9.3.1.3.3 __OPEN_AFX_MSG (: CMainFrame) : int

9.3.1.3.4 OnCreate (lpCreateStruct : LPCREATESTRUCT) : afx_msg

9.3.1.3.5 DECLARE_MESSAGE_MAP () : __CLOSE_AFX_MSG

 150

9.3.2 CPop3Message

9.3.2.1 Public Properties:

9.3.2.1.1 m_pszMessage : char*

9.3.2.2 Public Methods:

9.3.2.2.1 CPop3Message () : CPop3Message

9.3.2.2.2 GetMessageText () : LPCSTR

9.3.2.2.3 ~CPop3Message () :

9.3.2.2.4 GetHeader () : CString

9.3.2.2.5 GetHeaderItem (sName : const CString&, nItem : int = 0) : CString

9.3.2.2.6 GetBody () : CString

9.3.2.2.7 GetRawBody () : LPCSTR

9.3.2.2.8 GetSubject () : CString

9.3.2.2.9 GetFrom () : CString

9.3.2.2.10 GetDate () : CString

9.3.2.2.11 GetReplyTo () : CString

9.3.3 CPop3Socket

9.3.3.1 Public Methods:

9.3.3.1.1 CPop3Socket () : CPop3Socket

9.3.3.1.2 ~CPop3Socket () :

9.3.3.1.3 Create () : BOOL

9.3.3.1.4 Connect (pszHostAddress : LPCTSTR, nPort : int = 110) : BOOL

9.3.3.1.5 Send (pszBuf : LPCSTR, nBuf : int) : BOOL

9.3.3.1.6 Close () : void

9.3.3.1.7 Receive (pszBuf : LPSTR, nBuf : int) : int

9.3.3.1.8 IsReadible (bReadible : BOOL&) : BOOL

 151

9.3.3.2 Protected Methods:

9.3.3.2.1 Connect (lpSockAddr : const SOCKADDR*, nSockAddrLen : int) : BOOL

9.3.4 CPop3Connection

9.3.4.1 Protected Properties:

9.3.4.1.1 m_nNumberOfMails : int

9.3.4.2 Public Methods:

9.3.4.2.1 CPop3Connection () : CPop3Connection

9.3.4.2.2 ~CPop3Connection () :

9.3.4.2.3 Connect (pszHostName : LPCTSTR, pszUser : LPCTSTR, pszPassword :

LPCTSTR, nPort : int = 110) : BOOL

9.3.4.2.4 Disconnect () : BOOL

9.3.4.2.5 Statistics (nNumberOfMails : int&, nTotalMailSize : int&) : BOOL

9.3.4.2.6 Delete (nMsg : int) : BOOL

9.3.4.2.7 GetMessageSize (nMsg : int, dwSize : DWORD&) : BOOL

9.3.4.2.8 GetMessageID (nMsg : int, sID : CString&) : BOOL

9.3.4.2.9 Retrieve (nMsg : int, message : CPop3Message&) : BOOL

9.3.4.2.10 GetMessageHeader (nMsg : int, message : CPop3Message&) : BOOL

9.3.4.2.11 Reset () : BOOL

9.3.4.2.12 UIDL () : BOOL

9.3.4.2.13 Noop () : BOOL

9.3.4.2.14 GetLastCommandResponse () : CString

9.3.4.2.15 GetTimeout () : DWORD

9.3.4.2.16 SetTimeout (dwTimeout : DWORD) : void

 152

9.3.4.3 Protected Methods:

9.3.4.3.1 ReadStatResponse (nNumberOfMails : int&, nTotalMailSize : int&) :

BOOL

9.3.4.3.2 ReadCommandResponse () : BOOL

9.3.4.3.3 ReadListResponse (nNumberOfMails : int) : BOOL

9.3.4.3.4 ReadUIDLResponse (nNumberOfMails : int) : BOOL

9.3.4.3.5 ReadReturnResponse (message : CPop3Message&, dwSize : DWORD) :

BOOL

9.3.4.3.6 ReadResponse (pszBuffer : LPSTR, nInitialBufSize : int, pszTerminator :

LPSTR, ppszOverFlowBuffer : LPSTR*, nGrowBy : int = 4096) : BOOL

9.3.4.3.7 List () : BOOL

9.3.4.3.8 GetFirstCharInResponse (pszData : LPSTR) : LPSTR

9.3.5 CSettings

Derived from CDialog

9.3.5.1 Private Properties:

9.3.5.1.1 __NOTE_AFX_INSERT_LOCATION :

9.3.5.2 Public Methods:

9.3.5.2.1 CSettings (pParent : CWnd* = NULL) : CSettings

 153

9.3.6 CVoiceMApp

Derived from CWinApp, CtCallSink, CtLineSink, CtWaveSink

9.3.6.1 Public Properties:

9.3.6.1.1 m_Rings : int

9.3.6.1.2 m_Seconds : int

9.3.6.2 Protected Properties:

9.3.6.2.1 AutoLineID : int

 154

9.3.6.3 Public Methods:

9.3.6.3.1 __OPEN_AFX_VIRTUAL (: CVoiceMApp) : int

9.3.6.3.2 CVoiceMApp () : CVoiceMApp

9.3.6.3.3 InitInstance () : BOOL

9.3.6.3.4 ExitInstance () : int

9.3.6.3.5 OnCallInfo (pCall : CtCall*, nCallInfo : DWORD) :

__CLOSE_AFX_VIRTUAL

9.3.6.3.6 OnCallState (pCall : CtCall*, nCallState : DWORD, dwParam2 :

DWORD, nCallPriviledge : DWORD) : void

9.3.6.3.7 OnCallMonitorDigits (pCall : CtCall*, cDigit : char, nDigitMode :

DWORD) : void

9.3.6.3.8 virtual void OnCallMonitorMedia(CtCall* pCall, DWORD nMediaMode);

9.3.6.3.9 virtual void OnCallMonitorTone(CtCall* pCall, DWORD

dwAppSpecific);

9.3.6.3.10 OnCallReply (pCall : CtCall*, nRequestID : TREQUEST, tr : TRESULT,

nRequestType : DWORD) : void

9.3.6.3.11 virtual void OnLineAddressState(CtLine* pLine, DWORD

nAddressID, DWORD nAddressState);

9.3.6.3.12 OnLineNewCall (pLine : CtLine*, hCall : HCALL, nAddressID :

DWORD, nCallPriviledge : DWORD) : void

9.3.6.3.13 OnLineDevState (pLine : CtLine*, nDevState : DWORD, dwParam2 :

DWORD, dwParam3 : DWORD) : void

9.3.6.3.14 OnWaveOutDone () : void

9.3.6.3.15 OnWaveInData () : void

9.3.6.4 Protected Methods:

9.3.6.4.1 __OPEN_AFX_MSG (: CVoiceMApp) : int

9.3.6.4.2 OnAppAbout () : afx_msg

9.3.6.4.3 DECLARE_MESSAGE_MAP () : __CLOSE_AFX_MSG

 155

9.3.7 CVoiceMView

Derived from CFormView

9.3.7.1 Private Properties:

9.3.7.1.1 __NOTE_AFX_INSERT_LOCATION :

9.3.7.2 Protected Methods:

9.3.7.2.1 CVoiceMView () : CVoiceMView

9.3.7.3 Private Methods:

9.3.7.3.1 GetDocument () : CVoiceMDoc*

9.3.8 CVoiceMDoc

Derived from CDocument

9.3.8.1 Public Properties:

9.3.8.1.1 __CLOSE_AFX_VIRTUAL :

 156

9.3.8.2 Public Methods:

9.3.8.2.1 __OPEN_AFX_VIRTUAL (: CVoiceMDoc) : int

9.3.8.2.2 OnNewDocument () : BOOL

9.3.8.2.3 Serialize (ar : CArchive&) : void

9.3.8.2.4 ~CVoiceMDoc () :

9.3.8.3 Protected Methods:

9.3.8.3.1 DECLARE_DYNCREATE (: CVoiceMDoc) : int

9.3.8.3.2 CVoiceMDoc () : CVoiceMDoc

9.3.8.3.3 __OPEN_AFX_MSG (: CVoiceMDoc) : int

9.3.8.3.4 DECLARE_MESSAGE_MAP () : __CLOSE_AFX_MSG

9.3.9 CAboutDlg

Derived from CDialog

9.3.9.1 Public Methods:

9.3.9.1.1 CAboutDlg () : CAboutDlg

9.3.9.2 Private Methods:

9.3.9.2.1 CAboutDlg () : CAboutDlg

9.3.9.2.2 DoDataExchange (pDX : CDataExchange*) : void

 157

10 Future Expansion Possibilities

 158

There is a lot of room for future expansions in this system. Some of the other

services that can be added to the E-Mail via Phone system include the following:

10.1 News Update

The News update will allow the users to listen to latest news via any touch-tone

phone from anywhere. The news will be updated at the server regularly via Internet.

The text-to-speech technology will be incorporated to convert the news in text form

to speech, enabling the user to listen to the latest news update.

10.2 Weather Forecast

Similarly the weather forecast will keep the users in touch with the latest weather

forecast. The user will dial the service provider’s phone number and will choose the

weather forecast option from the available options. Weather forecast will be

constantly updated at the PSP server. Text-to-speech technology will make the

weather forecast available to the user in audible form via telephone.

10.3 Sports News

The sports update service will allow the users to listen to latest sports news and live

commentary of important sports events. Again the user will dial the PSP's number

and will choose the sports option. The server will establish connection with an

online radio/sports station and will allow the user to listen to live commentary or

sports update being broadcasted from that station.

 159

10.4 Flight Timings

Flight timings service will inform the users about the flight schedules of the local as

well as international airlines. The access and lookup procedure for this service will

be more or less the same as in case of the news and sports update.

10.5 On Line Transaction Processing

Online Transaction Processing (OLTP) service will allow the users to purchase or

order products via any touch-tone phone. Online Transaction Processing will involve

ordering products from a list of offered products by just dialling the PSP's number.

These may include placing orders to a restaurant or purchasing an item from a

departmental store.

 160

11 Conclusion

On the whole, the project has been a success as it gave us a valuable chance to gain

knowledge in the latest fields of Internet telephony and e-commerce. The experience

gained during the course of this project will help us in our future endeavours. This

project will indeed be a milestone in our academic and professional careers.

While analysing, designing and implementing this project, we tried to apply all we

had studied in different courses through out this undergraduate degree program. This

exercise not only allowed us to implement the theoretical concepts of Computer

Science, but also provided us with an excellent opportunity to revise and refresh

everything in great detail, making us ready for the challenges of practical life and

abreast of the cutting edge technological breakthroughs.

 161

12 Bibliography

1. Allen, J., Hunnicutt, M. S. and Klatt, D. H. (1987). From text to speech: The

MITalk system, Cambridge: Cambridge University Press.

2. Amundsen, Michael C. (1996), MAPI, SAPI &TAPI Developer’s Guide, New

York: Sams Publishing.

3. Beckman, M., Hertz, S., and Fujimura, O. (1983). “SRS Pitch Rules for

Japanese”, Working Papers of the Cornell Phonetics Laboratory 1, 1-16.

4. Chomsky, N. and Halle, M. (1968). The Sound Pattern of English, New

York: Harper and Row.

5. Clements, G. N., Hertz, S. R., Lauret, B. (1995). A representational basis for

modeling English vowel duration, Proceedings of the XIIIth International

Congress of Phonetic Sciences.

6. Clements, G. N., Hertz, S. R. (1966). An integrated approach to phonology

and phonetics, in J. Durand and B. Laks (eds.), Current Trends in

Phonology: Models and Methods, CNRS, Paris X and University of Salford

Publications.

7. Campbell, N. and A. Black (1997). Prosody and the selection of source units

for concatenative synthesis, in J. van Santen, R. Sprout, J. Olive and J.

Hirshberg (eds.), Progress in Speech Synthesis, Berlin: Springer Verlag,

279-292.

 162

8. Dutoit, T. (1997). An Introduction to Text-to-Speech Synthesis, Dordrecht:

Kluwer.

9. Hertz, S. R. (1979). Appropriateness of different rule types in speech

synthesis, in J. J. Wolf and D. H. Klatt (eds.), ASA*50 Speech

Communication Papers, 511-514.

10. Hertz, S. R. (1982). From text to speech with SRS, Journal of the Acoustical

Society of America 72, 1155-1170.

11. Hertz, S. R. (1990a). A modular approach to multi-dialect and multi-

language speech synthesis using the Delta System, Proceedings of the

Workshop on Speech Synthesis, European Speech Communication

Association, 225-228.

12. Hertz, S. R. (1990b). The Delta programming language: an integrated

approach to non-linear phonology, phonetics, and speech synthesis, in J.

Kingston and M. Beckman (eds.), Papers in Laboratory Phonology I:

Between the Grammar and the Physics of Speech, Cambridge University

Press, 215-257.

13. Hertz, S. R. (1991). Streams, phones, and transitions: toward a phonological

and phonetic model of formant timing, Journal of Phonetics 19, 91-109.

14. Hertz, S. R. and M. K. Huffman (1992). A nucleus-based timing model

applied to multi-dialect speech synthesis by rule, Proceedings of the

International Conference on Spoken Language Processing 2, 1171-1174.

 163

15. Hertz, S. R. and L. Zsiga (1995). The Delta System with Syllt: increased

capabilities for teaching and research in phonetics, Proceedings ICPhS 95

Stockholm 2, 322-325.

16. Hertz, S. R. (1997). The technology of text-to-speech, Speech Technology,

April/May, 18-21.

17. Hertz, S. R., R. J. Younes and N. Zinovieva (1999). Language-universal and

language-specific components in the multi-language ETI-Eloquence text-to-

speech system, Proceedings of the XIV International Congress of Phonetic

Sciences, 2283-2286.

18. Holmes, J. (1973). Influence of the glottal waveform on the naturalness of

speech from a parallel formant synthesizer, IEEE Transactions on Audio and

Electroacoustics, AU-21, 298-305.

19. Hunt, A and A. Black (1996). Unit selection in a concatenative speech

synthesis system using a large speech database, ICASSP 1, 373-376.

20. Klatt, D. H. and L. C. Klatt (1990). Analysis, synthesis, and perception of

voice quality variations among female and male talkers, Journal of the

Acoustical Society of America 87(2), 820-857.

21. McCormick, S. and Hertz, S. R. (1989). “A new approach to English text-to-

phoneme conversion using Delta Version 2”, Journal of the Acoustical

Society of America, Supplement 1 85, S124.

 164

22. Moulines, E. and F. Charpentier (1990). Pitch synchronous waveform

processing techniques for text-to-speech synthesis using diphones, Speech

Communication 9, no. 5-6.

23. [RFC821] Postel, J., "Simple Mail Transfer Protocol", STD 10, RFC821,

USC/Information Sciences Institute, August 1982.

24. [RFC822] Crocker, D., "Standard for the Format of ARPA-Internet

TextMessages", STD 11, RFC 822, University of Delaware, August 1982.

25. [RFC1321] Rivest, R. "The MD5 Message-Digest Algorithm", RFC

1321,MIT Laboratory for Computer Science, April, 1992.

26. Sagisaka, Y., C. d’Alessandro, J. S. Liénard, R. Sproat, K. McKeown and J.

Moore (1995). Spoken output technologies, in R. Cole (ed.), Survey of the

State of the Art in Human Language Technology, Center for Spoken

Language Understanding, Oregon Graduate Institute, 189-226.

27. Sproat, R. (ed.) (1990). Multilingual Text-to-Speech Synthesis: the Bell Labs

Approach, Dordrecht: Kluwer.

28. Zsiga, E. C. (1994). Syllt User’s Manual (Eloquent Technology, Inc., Ithaca,

New York).

 165

13 Appendix

13.1 Post Office Protocol – Version 3 (POP3) RFC

Network Working Group J. Myers
Request for Comments: 1725 Carnegie Mellon
Obsoletes: 1460 M. Rose
Category: Standards Track Dover Beach Consulting, Inc.
November 1994

Post Office Protocol - Version 3

Status of this Memo

This document specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for
improvements. Please refer to the current edition of the "Internet
Official Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this memo is
unlimited.

Overview

This memo is a revision to RFC 1460, a Draft Standard. It makes the
following changes from that document:

- removed text regarding "split-UA model", which didn't add
anything to the understanding of POP

- clarified syntax of commands, keywords, and arguments

- clarified behavior on broken connection

- explicitly permitted an inactivity autologout timer

- clarified the requirements of the "exclusive-access lock"

- removed implementation-specific wording regarding the parsing of
the mail drop

- allowed servers to close the connection after a failed
authentication command

- removed the LAST command

- fixed typo in example of TOP command

- clarified that the second argument to the TOP command is non-
negative

- added the optional UIDL command

- added warning regarding length of shared secrets with APOP

 166

- added additional warnings to the security considerations section

1. Introduction

On certain types of smaller nodes in the Internet it is often
impractical to maintain a message transport system (MTS). For
example, a workstation may not have sufficient resources (cycles,
disk space) in order to permit a SMTP server [RFC821] and associated
local mail delivery system to be kept resident and continuously
running. Similarly, it may be expensive (or impossible) to keep a
personal computer interconnected to an IP-style network for long
amounts of time (the node is lacking the resource known as
"connectivity").

Despite this, it is often very useful to be able to manage mail on
these smaller nodes, and they often support a user agent (UA) to aid
the tasks of mail handling. To solve this problem, a node which can
support an MTS entity offers a mail drop service to these less
endowed
nodes. The Post Office Protocol - Version 3 (POP3) is intended to
permit a workstation to dynamically access a mail drop on a server
host in a useful fashion. Usually, this means that the POP3 is used
to allow a workstation to retrieve mail that the server is holding
for it.

For the remainder of this memo, the term "client host" refers to a
host making use of the POP3 service, while the term "server host"
refers to a host which offers the POP3 service.

2. A Short Digression

This memo does not specify how a client host enters mail into the
transport system, although a method consistent with the philosophy
of
this memo is presented here:

When the user agent on a client host wishes to enter a message
into the transport system, it establishes an SMTP connection to
its relay host (this relay host could be, but need not be, the
POP3 server host for the client host).

3. Basic Operation

Initially, the server host starts the POP3 service by listening on
TCP port 110. When a client host wishes to make use of the service,
it establishes a TCP connection with the server host. When the
connection is established, the POP3 server sends a greeting. The
client and POP3 server then exchange commands and responses
(respectively) until the connection is closed or aborted.

Commands in the POP3 consist of a keyword, possibly followed by one
or more arguments. All commands are terminated by a CRLF pair.
Keywords and arguments consist of printable ASCII characters.
Keywords and arguments are each separated by a single SPACE
character. Keywords are three or four characters long. Each
argument may be up to 40 characters long.

Responses in the POP3 consist of a status indicator and a keyword
possibly followed by additional information. All responses are
terminated by a CRLF pair. There are currently two status
indicators: positive ("+OK") and negative ("-ERR").

 167

Responses to certain commands are multi-line. In these cases, which
are clearly indicated below, after sending the first line of the
response and a CRLF, any additional lines are sent, each terminated
by a CRLF pair. When all lines of the response have been sent, a
final line is sent, consisting of a termination octet (decimal code
046, ".") and a CRLF pair. If any line of the multi-line response
begins with the termination octet, the line is "byte-stuffed" by
pre-pending the termination octet to that line of the response.
Hence a multi-line response is terminated with the five octets
"CRLF.CRLF". When examining a multi-line response, the client
checksto see if the line begins with the termination octet. If so
and ifoctets other than CRLF follow, the the first octet of the line
(the termination octet) is stripped away. If so and if CRLF
immediately follows the termination character, then the response
from the POP server is ended and the line containing ".CRLF" is not
considered part of the multi-line response.

A POP3 session progresses through a number of states during its
lifetime. Once the TCP connection has been opened and the POP3
server has sent the greeting, the session enters the AUTHORIZATION
state. In this state, the client must identify itself to the POP3
server. Once the client has successfully done this, the server
acquires resources associated with the client's mail drop, and the
session enters the TRANSACTION state. In this state, the client
requests actions on the part of the POP3 server. When the client
has issued the QUIT command, the session enters the UPDATE state.
In this state, the POP3 server releases any resources acquired
during the TRANSACTION state and says goodbye. The TCP connection
is then closed.

A POP3 server MAY have an inactivity autologout timer. Such a timer
MUST be of at least 10 minutes' duration. The receipt of any
command from the client during that interval should suffice to reset
the autologout timer. When the timer expires, the session does NOT
enter the UPDATE state--the server should close the TCP connection
without removing any messages or sending any response to the client.

4. The AUTHORIZATION State

Once the TCP connection has been opened by a POP3 client, the POP3
server issues a one line greeting. This can be any string
terminated by CRLF. An example might be:

S: +OK POP3 server ready

Note that this greeting is a POP3 reply. The POP3 server should
always give a positive response as the greeting.

The POP3 session is now in the AUTHORIZATION state. The client must
now identify and authenticate itself to the POP3 server. Two
possible mechanisms for doing this are described in this document,
the USER and PASS command combination and the APOP command. The
APOP command is described later in this document.

To authenticate using the USER and PASS command combination, the
client must first issue the USER command. If the POP3 server
responds with a positive status indicator ("+OK"), then the client
may issue either the PASS command to complete the authentication, or
the QUIT command to terminate the POP3 session. If the POP3 server
responds with a negative status indicator ("-ERR") to the USER

 168

command, then the client may either issue a new authentication
command or may issue the QUIT command.

When the client issues the PASS command, the POP3 server uses the
argument pair from the USER and PASS commands to determine if the
client should be given access to the appropriate mail drop.

Once the POP3 server has determined through the use of any
authentication command that the client should be given access to the
appropriate mail drop, the POP3 server then acquires an exclusive-
access lock on the mail drop, as necessary to prevent messages from
being modified or removed before the session enters the UPDATE
state. If the lock is successfully acquired, the POP3 server
responds with positive status indicator. The POP3 session now
enters the TRANSACTION state, with no messages marked as deleted.
If the mail drop cannot be opened for some reason (for example, a
lock can not be acquired, the client is denied access to the
appropriate mail drop, or the mail drop cannot be parsed), the POP3
server responds with a negative status indicator. (If a lock was
acquired but the POP3 server intends to respond with a negative
status indicator, the POP3 server must release the lock prior to
rejecting the command.) After returning a negative status indicator,
the server may close the connection. If the server does not close
the connection, the client may either issue a new authentication
command and start again, or the client may issue the QUIT command.

After the POP3 server has opened the mail drop, it assigns a
message-
number to each message, and notes the size of each message in
octets.

The first message in the mail drop is assigned a message-number of
"1", the second is assigned "2", and so on, so that the n'th message
in a mail drop is assigned a message-number of "n". In POP3
commands
and responses, all message-number's and message sizes are expressed
in base-10 (i.e., decimal).

Here are summaries for the three POP3 commands discussed thus far:

USER name

Arguments:
a string identifying a mailbox (required), which is of
significance ONLY to the server

Restrictions:
may only be given in the AUTHORIZATION state after the POP3
greeting or after an unsuccessful USER or PASS command

Possible Responses:
+OK name is a valid mailbox
-ERR never heard of mailbox name

Examples:
C: USER mrose
S: +OK mrose is a real hoopy frood
...
C: USER frated
S: -ERR sorry, no mailbox for frated here

 169

PASS string

Arguments:
a server/mailbox-specific password (required)

Restrictions:
may only be given in the AUTHORIZATION state after a
successful USER command

Discussion:
Since the PASS command has exactly one argument, a POP3
server may treat spaces in the argument as part of the
password, instead of as argument separators.

Possible Responses:
+OK mail drop locked and ready
-ERR invalid password
-ERR unable to lock mail drop

Examples:
C: USER mrose
S: +OK mrose is a real hoopy frood
C: PASS secret
S: +OK mrose's mail drop has 2 messages (320 octets)
...
C: USER mrose
S: +OK mrose is a real hoopy frood
C: PASS secret
S: -ERR mail drop already locked

QUIT

Arguments: none

Restrictions: none

Possible Responses:
+OK

Examples:
C: QUIT
S: +OK dewey POP3 server signing off

5. The TRANSACTION State

Once the client has successfully identified itself to the POP3
server and the POP3 server has locked and opened the appropriate
mail drop, the POP3 session is now in the TRANSACTION state. The
client may now issue any of the following POP3 commands repeatedly.
After each command, the POP3 server issues a response. Eventually,
the client issues the QUIT command and the POP3 session enters the
UPDATE state.

Here are the POP3 commands valid in the TRANSACTION state:

STAT

Arguments: none

Restrictions:

 170

may only be given in the TRANSACTION state

Discussion:
The POP3 server issues a positive response with a line
containing information for the mail drop. This line is
called a "drop listing" for that mail drop.

In order to simplify parsing, all POP3 servers required to
use a certain format for drop listings. The positive
response consists of "+OK" followed by a single space, the
number of messages in the mail drop, a single space, and the
size of the mail drop in octets. This memo makes no
requirement on what follows the mail drop size. Minimal
implementations should just end that line of the response
with a CRLF pair. More advanced implementations may
include other information.

NOTE: This memo STRONGLY discourages implementations
from supplying additional information in the drop
listing. Other, optional, facilities are discussed
later on which permit the client to parse the messages
in the mail drop.

Note that messages marked as deleted are not counted in
either total.

Possible Responses:
+OK nn mm

Examples:
C: STAT
S: +OK 2 320

LIST [msg]

Arguments:
a message-number (optional), which, if present, may NOT
refer to a message marked as deleted

Restrictions:
may only be given in the TRANSACTION state

Discussion:
If an argument was given and the POP3 server issues a
positive response with a line containing information for
that message. This line is called a "scan listing" for
that message.

If no argument was given and the POP3 server issues a
positive response, then the response given is multi-line.
After the initial +OK, for each message in the mail drop,
the POP3 server responds with a line containing information
for that message. This line is also called a "scan
listing" for that message.

In order to simplify parsing, all POP3 servers are required
to use a certain format for scan listings. A scan listing
consists of the message-number of the message, followed by
a single space and the exact size of the message in octets.
This memo makes no requirement on what follows the message

 171

size in the scan listing. Minimal implementations should
just end that line of the response with a CRLF pair. More
advanced implementations may include other information, as
parsed from the message.

NOTE: This memo STRONGLY discourages implementations
from supplying additional information in the scan
listing. Other, optional, facilities are discussed
later on which permit the client to parse the messages
in the mail drop.

Note that messages marked as deleted are not listed.

Possible Responses:
+OK scan listing follows
-ERR no such message

Examples:
C: LIST
S: +OK 2 messages (320 octets)
S: 1 120
S: 2 200
S: .
...
C: LIST 2
S: +OK 2 200
...
C: LIST 3
S: -ERR no such message, only 2 messages in mail drop

RETR msg

Arguments:
a message-number (required) which may not refer to a
message marked as deleted

Restrictions:
may only be given in the TRANSACTION state

Discussion:
If the POP3 server issues a positive response, then the
response given is multi-line. After the initial +OK, the
POP3 server sends the message corresponding to the given
message-number, being careful to byte-stuff the termination
character (as with all multi-line responses).

Possible Responses:
+OK message follows
-ERR no such message

Examples:
C: RETR 1
S: +OK 120 octets
S: <the POP3 server sends the entire message here>
S: .

DELE msg

Arguments:
a message-number (required) which may not refer to a
message marked as deleted

 172

Restrictions:
may only be given in the TRANSACTION state

Discussion:
The POP3 server marks the message as deleted. Any future
reference to the message-number associated with the message
in a POP3 command generates an error. The POP3 server does
not actually delete the message until the POP3 session
enters the UPDATE state.

Possible Responses:
+OK message deleted
-ERR no such message

Examples:
C: DELE 1
S: +OK message 1 deleted
...
C: DELE 2
S: -ERR message 2 already deleted

NOOP

Arguments: none

Restrictions:
may only be given in the TRANSACTION state

Discussion:
The POP3 server does nothing, it merely replies with a
positive response.

Possible Responses:
+OK

Examples:
C: NOOP
S: +OK

RSET

Arguments: none

Restrictions:
may only be given in the TRANSACTION state

Discussion:
If any messages have been marked as deleted by the POP3
server, they are unmarked. The POP3 server then replies
with a positive response.

Possible Responses:
+OK

Examples:
C: RSET
S: +OK mail drop has 2 messages (320 octets)

6. The UPDATE State

 173

When the client issues the QUIT command from the TRANSACTION state,
the POP3 session enters the UPDATE state. (Note that if the client
issues the QUIT command from the AUTHORIZATION state, the POP3
session terminates but does NOT enter the UPDATE state.)

If a session terminates for some reason other than a client-issued
QUIT command, the POP3 session does NOT enter the UPDATE state and
MUST not remove any messages from the mail drop.

QUIT

Arguments: none

Restrictions: none

Discussion:
The POP3 server removes all messages marked as deleted from
the mail drop. It then releases any exclusive-access lock
on the mail drop and replies as to the status of these
operations. The TCP connection is then closed.

Possible Responses:
+OK

Examples:
C: QUIT
S: +OK dewey POP3 server signing off (mail drop empty)
...
C: QUIT
S: +OK dewey POP3 server signing off (2 messages left)
...

7. Optional POP3 Commands

The POP3 commands discussed above must be supported by all minimal
implementations of POP3 servers.

The optional POP3 commands described below permit a POP3 client
greater freedom in message handling, while preserving a simple POP3
server implementation.

NOTE: This memo STRONGLY encourages implementations to support
these commands in lieu of developing augmented drop and scan
listings. In short, the philosophy of this memo is to put
intelligence in the part of the POP3 client and not the POP3
server.

TOP msg n

Arguments:
a message-number (required) which may NOT refer to a
message marked as deleted, and a non-negative number
(required)

Restrictions:
may only be given in the TRANSACTION state

Discussion:
If the POP3 server issues a positive response, then the
response given is multi-line. After the initial +OK, the

 174

POP3 server sends the headers of the message, the blank
line separating the headers from the body, and then the
number of lines indicated message's body, being careful to
byte-stuff the termination character (as with all multi-
line responses).

Note that if the number of lines requested by the POP3
client is greater than the number of lines in the
body, then the POP3 server sends the entire message.

Possible Responses:
+OK top of message follows
-ERR no such message

Examples:
C: TOP 1 10
S: +OK
S: <the POP3 server sends the headers of the
message, a blank line, and the first 10 lines
of the body of the message>
S: .
...
C: TOP 100 3
S: -ERR no such message

UIDL [msg]

Arguments:
a message-number (optionally) If a message-number is given,
it may NOT refer to a message marked as deleted.

Restrictions:
may only be given in the TRANSACTION state.

Discussion:
If an argument was given and the POP3 server issues a positive
response with a line containing information for that message.
This line is called a "unique-id listing" for that message.

If no argument was given and the POP3 server issues a positive
response, then the response given is multi-line. After the
initial +OK, for each message in the mail drop, the POP3 server
responds with a line containing information for that message.
This line is called a "unique-id listing" for that message.

In order to simplify parsing, all POP3 servers are required to
use a certain format for unique-id listings. A unique-id
listing consists of the message-number of the message,
followed by a single space and the unique-id of the message.

No information follows the unique-id in the unique-id listing.

The unique-id of a message is an arbitrary server-determined
string, consisting of characters in the range 0x21 to 0x7E,
which uniquely identifies a message within a mail drop and
which persists across sessions. The server should never reuse
an unique-id in a given mail drop, for as long as the entity
using the unique-id exists.

Note that messages marked as deleted are not listed.

 175

Possible Responses:
+OK unique-id listing follows
-ERR no such message

Examples:
C: UIDL
S: +OK
S: 1 whqtswO00WBw418f9t5JxYwZ
S: 2 QhdPYR:00WBw1Ph7x7
S: .
...
C: UIDL 2
S: +OK 2 QhdPYR:00WBw1Ph7x7
...
C: UIDL 3
S: -ERR no such message, only 2 messages in mail drop

APOP name digest

Arguments:
a string identifying a mailbox and a MD5 digest string
(both required)

Restrictions:
may only be given in the AUTHORIZATION state after the POP3
greeting

Discussion:
Normally, each POP3 session starts with a USER/PASS
exchange. This results in a server/user-id specific
password being sent in the clear on the network. For
intermittent use of POP3, this may not introduce a sizable
risk. However, many POP3 client implementations connect to
the POP3 server on a regular basis -- to check for new
mail. Further the interval of session initiation may be on
the order of five minutes. Hence, the risk of password
capture is greatly enhanced.

 176

An alternate method of authentication is required which
provides for both origin authentication and replay
protection, but which does not involve sending a password
in the clear over the network. The APOP command provides
this functionality.

A POP3 server which implements the APOP command will
include a timestamp in its banner greeting. The syntax of
the timestamp corresponds to the `msg-id' in [RFC822], and
MUST be different each time the POP3 server issues a banner
greeting. For example, on a UNIX implementation in which a
separate UNIX process is used for each instance of a POP3
server, the syntax of the timestamp might be:

<process-ID.clock@hostname>

where `process-ID' is the decimal value of the process's
PID, clock is the decimal value of the system clock, and
hostname is the fully-qualified domain-name corresponding
to the host where the POP3 server is running.

The POP3 client makes note of this timestamp, and then
issues the APOP command. The `name' parameter has
identical semantics to the `name' parameter of the USER
command. The `digest' parameter is calculated by applying
the MD5 algorithm [RFC1321] to a string consisting of the
timestamp (including angle-brackets) followed by a shared
secret. This shared secret is a string known only to the
POP3 client and server. Great care should be taken to
prevent unauthorized disclosure of the secret, as knowledge
of the secret will allow any entity to successfully
masquerade as the named user. The `digest' parameter
itself is a 16-octet value which is sent in hexadecimal
format, using lower-case ASCII characters.

When the POP3 server receives the APOP command, it verifies
the digest provided. If the digest is correct, the POP3
server issues a positive response, and the POP3 session
enters the TRANSACTION state. Otherwise, a negative
response is issued and the POP3 session remains in the
AUTHORIZATION state.

Note that as the length of the shared secret increases, so
does the difficulty of deriving it. As such, shared
secrets should be long strings (considerably longer than
the 8-character example shown below).

Possible Responses:
+OK mail drop locked and ready
-ERR permission denied

Examples:
S: +OK POP3 server ready <1896.697170952@dbc.mtview.ca.us>
C: APOP mrose c4c9334bac560ecc979e58001b3e22fb
S: +OK mail drop has 1 message (369 octets)

In this example, the shared secret is the string `tan-
staaf'. Hence, the MD5 algorithm is applied to the string

<1896.697170952@dbc.mtview.ca.us>tanstaaf

 177

which produces a digest value of

c4c9334bac560ecc979e58001b3e22fb

8. POP3 Command Summary

Minimal POP3 Commands:

USER name valid in the AUTHORIZATION state
PASS string
QUIT

STAT valid in the TRANSACTION state
LIST [msg]
RETR msg
DELE msg
NOOP
RSET

QUIT valid in the UPDATE state

Optional POP3 Commands:

APOP name digest valid in the AUTHORIZATION state

TOP msg n valid in the TRANSACTION state
UIDL [msg]

POP3 Replies:

+OK
-ERR

Note that with the exception of the STAT, LIST, and UIDL
commands, the reply given by the POP3 server to any
command is significant only to "+OK" and "-ERR". Any text
occurring after this reply may be ignored by the client.

9. Example POP3 Session

S: <wait for connection on TCP port 110>
C: <open connection>
S: +OK POP3 server ready <1896.697170952@dbc.mtview.ca.us>
C: APOP mrose c4c9334bac560ecc979e58001b3e22fb
S: +OK mrose's mail drop has 2 messages (320 octets)
C: STAT
S: +OK 2 320
C: LIST
S: +OK 2 messages (320 octets)
S: 1 120
S: 2 200
S: .
C: RETR 1
S: +OK 120 octets
S: <the POP3 server sends message 1>
S: .
C: DELE 1
S: +OK message 1 deleted
C: RETR 2
S: +OK 200 octets
S: <the POP3 server sends message 2>

 178

S: .
C: DELE 2
S: +OK message 2 deleted
C: QUIT
S: +OK dewey POP3 server signing off (mail drop empty)
C: <close connection>
S: <wait for next connection>

10. Message Format

All messages transmitted during a POP3 session are assumed to
conform to the standard for the format of Internet text messages
[RFC822].

It is important to note that the octet count for a message on the
server host may differ from the octet count assigned to that message
due to local conventions for designating end-of-line. Usually,
during the AUTHORIZATION state of the POP3 session, the POP3 server
can calculate the size of each message in octets when it opens the
mail drop. For example, if the POP3 server host internally
represents
end-of-line as a single character, then the POP3 server simply
counts each occurrence of this character in a message as two octets.
Note that lines in the message which start with the termination
octet need not be counted twice, since the POP3 client will remove
all byte-stuffed termination characters when it receives a multi-
line response.

11. References

[RFC821] Postel, J., "Simple Mail Transfer Protocol", STD 10, RFC
821, USC/Information Sciences Institute, August 1982.

[RFC822] Crocker, D., "Standard for the Format of ARPA-Internet Text
Messages", STD 11, RFC 822, University of Delaware, August 1982.

[RFC1321] Rivest, R. "The MD5 Message-Digest Algorithm", RFC 1321,
MIT Laboratory for Computer Science, April, 1992.

12. Security Considerations

It is conjectured that use of the APOP command provides origin
identification and replay protection for a POP3 session.
Accordingly, a POP3 server which implements both the PASS and APOP
commands must not allow both methods of access for a given user;
that
is, for a given "USER name" either the PASS or APOP command is
allowed, but not both.

Further, note that as the length of the shared secret increases, so
does the difficulty of deriving it.

Servers that answer -ERR to the USER command are giving potential
attackers clues about which names are valid

Use of the PASS command sends passwords in the clear over the
network.

Use of the RETR and TOP commands sends mail in the clear over the
network.

 179

Otherwise, security issues are not discussed in this memo.

13. Acknowledgements

The POP family has a long and checkered history. Although primarily
a minor revision to RFC 1460, POP3 is based on the ideas presented
in
RFCs 918, 937, and 1081.

In addition, Alfred Grimstad, Keith McCloghrie, and Neil Ostroff
provided significant comments on the APOP command.

14. Authors' Addresses

John G. Myers
Carnegie-Mellon University
5000 Forbes Ave
Pittsburgh, PA 15213

EMail: jgm+@cmu.edu

Marshall T. Rose
Dover Beach Consulting, Inc.
420 Whisman Court
Mountain View, CA 94043-2186

EMail: mrose@dbc.mtview.ca.us

 180

14 Index

A

ActiveX ...180
Actor ...181
Answering Machine60
Architecture ...34
ASP 5, 86, 87, 88, 89
Authorization......................... 49, 50, 94, 104

C

C++ ... 5, 34, 87
CallWave...181
Class..97
Client....................................... 46, 47, 49, 93
Computer Telephony...................... 13, 62, 63
CoolSpeak ...181

D

DELE ..55, 56
Design ... 6, 62, 112
DFT...180
Diagrams ...97
DLL...180
DTMF…………………40, 60, 70, 71, 72, 74,

77, 78, 80, 81, 82, 104, 105, 106, 107, 108,
109, 110, 118, 119

E

E1..181
eCommerce..181
Edutainment...19
eFax...181
E-mail.................4, 11, 12, 15, 26, 60, 91, 93
eVoice ...181

F

FFT ...180
Flight Timings ...181
FSM ..180

G

Games ...19
GUI ...181

H

Homograph Disambiguation.......................21
HTML ...5, 87

I

IIS ... 87, 88
Implementation................ 1, 5, 15, 29, 89, 91
Intelligent Network 68, 69
Internet 13, 62, 66, 86, 87, 88, 158, 160
Internet Telephony............................... 13, 66
ISDN...181
IVR ...63

J

JFax...181

L

LIST.. 52, 53, 54

M

MailCall ..181
Memory... 19, 61
Message Click ...181
Mispronounciation...................................181
Modem .. 13, 67

N

News Update ...181
NOOP..181

O

OLTP ..181
OneBox ...181
OOD..6
Operating System.....................................181

P

Pagoo ..181
PBX ..181
Platform...88
POP3………….47, 48, 49, 50, 51, 52, 53, 54,

55, 56, 57, 58, 93
POTS...181
Processor 13, 19, 61
Proof Reading..181
Prosody ... 20, 24
PSP ...181
PSTN............................13, 62, 63, 64, 66, 69
PTCL...180

 181

Q

QUIT....................................... 50, 51, 57, 58

R

Rational ROSE ..6
Recording 95, 97, 98, 99, 100, 101, 102
Register ...181
Registration 14, 85, 86, 111
RETR ..54, 55
RSET...56, 57

S

SAPI.................................. 17, 29, 32, 34, 35
Security ...14
Server 5, 86, 87, 88, 104
ShoutMail ..181
Sink 41, 42, 43, 44, 45
SIP ..181
Speech………….5, 13, 16, 17, 18, 20, 26, 27,

28, 29, 31, 33, 34, 35, 36, 37, 38, 40, 42, 45
Speech Recognition........................ 31, 36, 37
Sports ..181
SS7..63, 65
STAT ..51, 52
Synthesis ...181

T

T1..181
TAPI ...5
Telephony... 13, 40, 59, 60, 61, 62, 63, 64, 66
Text Normalization20
Time Shared ..180
Transaction.................................. 51, 57, 159
TTS ... 16, 17, 29, 34, 36, 38, 39, 43, 96, 107,

108

U

UML ...6
Unified ..6
Update... 57, 158
uReach ..181
Use Case.. ………….103, 104, 105, 106, 107,

108, 109, 110, 111

V

Voice Mail...60
Voice Text..................................... 36, 39, 40

W

Weather Forecast181
Web Site.. 86, 89
WOSA...180

