
CASE TOOL FOR DATABASE SYSTEMS

BY:

NC SAANIA FEROZE KHAN

Project Report for partial fulfillment of the requirement of

MCS/NUST for the award of the B.E Degree in

Software Engineering

Department of Computer Science

Military College of Signals

Rawalpindi

September, 2000

2

2

DECLARATION:

No portion of the work presented in this dissertation has been submitted in support of

another award or qualification either in this institution or elsewhere.

ACKNOWLEDGMENTS:

 For their help with this project, I would like to thank all my friends and instructors, in

particular:

 Gen. Shua-ul-Qamar, Lec. Asad-ullah- Khan, and Col. Waseem Suleman.

 Furthermore, I would like to thank Dr. Riaz for his guidance and encouragement.

3

3

ABSTRACT:

 Many methodologies exist that can make the database design process easier for both

designers and users. They vary from general design technique described in the literature to

commercial products whose aim is to automate the design process. CASE (Computer-aided

Software Engineering) packages provide the engineer with the ability to automate software

development.

CASE Tools are used in this project, in order to reduce the manual effort involved in

mapping ERDs onto relational model and generating the SQL code. The project is aimed at

taking input from the user in the form of ERD and then generating SQL code, after going

through all the stages of mapping and normalization automatically.

4

4

CONTENTS Pages
Chapter 1:

 CASE TOOLS AND DATABASE SYSTEMS IN BRIEF……………………. 2

1.1 Introduction…………………………………………………………………………2

1.2 CASE Tools………………………………………………………………………...2

1.2.1 Building Blocks for CASE………………………………………………………..3

1.2.2 Categories…………………………………………………………………………4

1.3 Database Systems…………………………………………………………….…….4

1.3.1 Data and Information……………………………………………………………5

1.3.2 Levels of Data…………………………………………………………………...5

1.3.2.1 Level-1………………………………………………………………………5

1.3.2.2 Level-2………………………………………………………………………6

1.3.2.3 Level-3………………………………………………………………………7

1.3.3 Three Level Architecture………………………………………………………..7

1.3.3.1 External Views………………………………………………………………8.

1.3.3.2 Conceptual Model…………………………………………………………...9

1.3.3.3 Internal Model……………………………………………………………….9

1.4 Logical Data Models………………………………………………………………..10

1.4.1 Semantic Data Models…………………………………………………………..10

1.4.1.1 Entity Relationship Model…………………………………………………..11

1.4.2 Record Based Models…………………………………………………………...11

1.4.2.1 Network Model……………………………………………………………...11

1.4.2.2 Hierarchical Model………………………………………………………….11

1.4.2.3 Relational Model…………………………………………………………….12

1.5 Mapping ER model to Relational Model……………………………….…………..12

1.6 Normalization……………………………………………………………………….13

1.7 Computerization of Database Design……………………………………………….13

1.8 The Project…………………………………………………………………………..13

5

5

Chapter 2:

 DATABASE DESIGN CONCEPTS…………………………………………….15

2.1 Database Design……………………………………………………………………...15

2.2 Database Design Process…………………………………………………………….16

2.2.1 Functional Requirements…………………………………………………………..16

2.2.2 Physical Constraints………………………………………………………………..17

2.2.3 Information Level Design Process…………………………………………………17

2.2.4 Physical Level Design Process…………………………………………………….18

2.3 Database Design Goals………………………………………………………………18

2.4 Database Design Methodology………………………………………………………18

2.5 Entity Relationship Diagrams………………………………………………………19

2.5.1 Entities…………………………………………………………………………...20

2.5.2 Attributes…………………………………………………………………………20

2.5.2.1 Candidate and Primary Keys………………………………………………...20

2.5.3 Relationships……………………………………………………………………..21

2.5.3.1 Degree of Relationships……………………………………………………...21

2.5.3.2 Cardinalities in Relationships………………………………………………..21

2.6 Relational Model…………………………………………………………………...22

2.6.1 Relations…………………………………………………………………………23

2.6.2 Properties of Relations…………………………………………………………...23

2.7 Transforming ERDs to Relations…………………………………………………..24

2.7.1 Represent Entities………………………………………………………………..24

2.7.2 Represent Relationships………………………………………………………….24

2.7.2.1 Binary 1:N Relations…………………………………………………………25

2.7.2.2 Binary N:M Relations………………………………………………………..25

2.7.2.3 Unary Relations……………………………………………………………...26

2.8 Normalization………………………………………..……………………………..26

2.8.1 Steps in Normalization…………………………………………………………..26

2.8.2 Dependencies…………………………………………………………………….27

2.8.2.1 Functional Dependence………………………………………………………27

2.8.2.2 Partial Functional Dependence………………………………………………28

2.8.2.3 Transitive Dependence………………………………………………………28

6

6

2.8.3 Basic Normal Forms…………………………………………………………….28

2.8.3.1 First Normal Form…………………………………………………………..28

2.8.3.2 Second Normal Form………………………………………………………..29

2.8.3.3 Third Normal Form………………………………………………………….29

2.8.4 Additional Normal Forms……………………………………………………….29

2.8.5 Merging Relations………………………………………………………………29

Chapter 3:

 PROJECT DESIGN……………………………………………………………...31

3.1 Object-Oriented Data Model…………………………………………………………31

3.2 Objects Identified…………………………………………………………………….31

3.3 Detailed Design………………………………………………………………………33

3.4 Attributes Identified………………………………………………………………….34

3.5 Complete Object-Oriented Design…………………………………………………...35

3.6 Class Definitions……………………………………………………………………..36

Chapter 4

 FLOW OF CONTROL………………………………………………………….45

4.1 Behavioral Diagrams………………………………………………………………...45

4.1.1 Sequence Diagrams………………………………………………………………..45

4.1.1.1 Notation………………………………………………………………………….46

4.2 Explanation…………………………………………………………………….……46

4.2.1 Entity………………………………………………………………………………47

4.2.2 Attribute…………………………………………………………………………...47

4.2.3 End Points…………………………………………………………………………49

4.2.4 Relationships………………………………………………………………………50

4.2.5 2NF………………………………………………………………………………..51

4.2.6 3NF………………………………………………………………………………..52

4.3 Complete Sequence Diagram………………………………………………………..53

Chapter 5

 IMPLEMENTATION……………………………………………………………54

7

7

5.1 Steps in Implementation……………………………………………………………..54

5.1.1 Drawing ERDs……………………………………………………………………..54

5.1.2 Mapping……………………………………………………………………………58

5.1.3 Normalization……………………………………………………………………...59

Chapter 6

 RESULTS AND RECOMMENDATIONS……………………………………...64

6.1 Problems Encountered……………………………………………………………….64

6.2 Results………………………………………………………………………………..64

6.3 Conclusions…………………………………………………………………………..66

6.4 Recommendations…………………………………………………….………….…..66

6.4.1 Weak/Strong Entities………………………………………………………………66

6.4.2 Unary/Ternary Relationships………………………………………………………67

6.4.3 Attributes with Relationships………………………………………………………67

6.4.4 Aggregation/Generalization………………………………………………………..67

6.4.5 Mapping……………………………………………………………………………68

6.4.6 Normalization Beyond 3NF………………………………………………………..69

SUMMARY OF THE PROJECT………………………………………………………..71

REFERENCES……………………………………………………………………….….72

8

8

CHAPTER 1

CASE TOOLS AND DATABASE SYSTEMS

 IN BRIEF

1.1. INTRODUCTION:

 Computer Aided Software Engineering (CASE) is one of the largest approaches to

solving the problems of software application development quickly. CASE provides automated

support for the process of software engineering, thereby speeding up the development process

and increasing efficiency, while at the same time retaining the benefits of quality.

 Databases represent centralization. A poorly designed database may fail to provide the

required information, or may provide outdated, flawed, or contradictory information; there is

therefore a need for a comprehensive tool for engineering Databases.

 This chapter gives an introduction to Case Tools and database systems. After that types

of logical models and methods of improving logic design process are explained.

1.2 CASE TOOLS: -

 CASE is the automation of software engineering methods and practices, with the use of

automated tools to support the creation of computer applications. Organizations today invest

enormous resources in CASE technologies with the hope of gaining significant increase in the

programmer productivity. It is now established that most of the CASE projects are coded in

less time than the non-CASE projects.

 CASE tools add to the software engineer’s toolbox. CASE provides the engineer with

the ability to automate manual activities and to improve engineering insight. Like computer-

9

9

aided engineering and design tools that are used by engineers in other disciplines, CASE tools

help to ensure that quality is designed in before the product is built.

 Quality and efficiency are important features of an application, so that fewer errors

occur while running the application. Software engineering methods have been developed in an

attempt to alleviate both the efficiency and quality problems of development. CASE is an

attempt towards removing the tradeoff between quality and efficiency.

1.2.1 BUILDING BLOCKS FOR CASE:

 The building blocks for CASE are illustrated in the following figure:

 Each building block forms a foundation for the next, with the tools sitting at the top of

the heap. However, the foundation for effective CASE environment has relatively little to do

with software engineering tools themselves. Rather, successful environments for software

engineering are built on environment architecture that encompasses appropriate hardware and

systems software. In addition, the environment architecture must consider the human work

patterns that are applied during the software engineering process. The environment

architecture, composed of hardware platform and operating system support (including

networking and databases management software), lays the groundwork for CASE. But the

CASE environment itself demands other building blocks. A set of portability services provides

CASE tools

Integration framework

Portability services

Operating systems

Hardware platform

Environment architecture

10

10

a bridge between CASE tools and their integration framework and the environment

architecture.

1.2.2 CATAGORIES: -

Of the various CASE Tool categories that are currently in use there are two main types:

a) CASE- Workbenches are integrated tools that automate the software life

cycle phase of analysis, design and implementation. This integration enables

these tools to check for inconsistencies and incompleteness between the

various phases of the life cycle.

b) CASE tool-kits are the collection of tools that focus on providing support

for one particular phase of software development.

Whether one implements a number of CASE tool-kits or a single CASE workbench, it

has gained wide acceptance that CASE tools should support a method. Basically, CASE

products that do not support a proven method only help to develop poor systems far faster than

without the use of CASE. However, a problem for CASE manufacturers is the large number of

methods available, and which of these to automate.

CASE tools provide many productivity benefits, whether they are stand-alone, tool-kits,

or sophisticated workbenches. However to ensure that CASE adequately improves “the time a

software takes to market” it must be implemented correctly.

1.3 DATABASE SYSTEMS:

 Databases are used in thousands of organizations, ranging from large government

agencies to small businesses. Databases often replace earlier file processing systems, in which

departments have control over their own data. The resulting data redundancy leads to

inconsistency from data entry errors or inconsistent updates. In an integrated database

environment, all data is kept in a single large repository called the database and is managed by

a database administrator (DBA). All access to the database is through the database

11

11

management system (DBMS), in a software package that sets up storage structures, loads data,

provides access for programs and on-line users, formats retrieved data, hides certain data, does

updates, controls concurrency, and does backup and recovery for the database. Data in a

database is integrated, self- describing and shared concurrently by many users. The DBMS

provides a program interface and a user interface for on-line queries that are expressed in the

query language of the particular DBMS.

1.3.1 DATA AND INFORMATION:

 The term data refers to the base facts recorded in the database. They may be items

about people, events or concepts. Information is processed data that is in a form that is useful

for making decisions. Information is derived from the stored data by rearranging, selecting,

combining, summarizing, or performing other operations on the data.

1.3.2 LEVELS OF DATA:

 When the term data is discussed, it is important to distinguish between objects in the

real world, the structure of the database, and the data stored in the database. These are actually

three levels of discussion or abstraction to be considered.

1.3.2.1 LEVEL – 1:

 The first level is the real world or reality. On this level the organization for which the

database is designed is discussed. In the realm of reality, we identify entities, which are

persons, places, events, objects or concepts about which we collect data. We group similar

entities into entity sets. Each entity has certain attributes, which are characteristics or

properties that describe the entity and that the organization considers important. Some entities

may have relationships or associations between them.

 As an organization functions in the real world, it is impossible to obtain information

needed for decision-making by direct observation of reality. There is just too much detail

involved for us to keep track of all the facts we need. Instead a model of the organization is

12

12

developed. The database should be designed to be a faithful model or representation of the

organization and its operations. Every entity should be represented, along with its attributes

and the relationships in which it participates. To keep track of the facts about entities and the

changes made in real world, we need to develops a model that allows not only the

representation of the basic entities, attributes, and relationships, but also allows us to make

changes that mirror the changes, that is, reality.

1.3.2.2 LEVEL – 2:

 The structure of the database, called the logical model of the database, forms the second

level. At this level we talk about the matadata or data about data. For each entity set in the real

world, we have a record type in the logical model of the database. A record type contains

several data item types, each of which represents an attribute of an entity. A data item is infact,

the smallest unit of stored data.

 Other words sometimes used for data item are data element filled or attribute .

Generally , a field means a set of adjacent bytes identified as the physical location for a data

item , so it has a more physical meaning than the term data item . Attribute usually refers to a

characteristic of an entity in the real world , but since there is a correspondence between

attributes and data items , the two words are interchanged .

 Data items are sometimes grouped together to form data aggregates, which are named

groups of data items within a record. Data aggregates, which are named groups of data items

within a record. Data aggregates allow us to refer to the group of data items as a whole or to

the individual items in the group . A record is a named collection of related data items and/or

data aggregates .

Information about the logical structure of the database is stored in a data dictionary or

data directory. This repository of information contains the database schema , a written

description of the logical structure of the database . It contains description of the record types ,

data item types , and data aggregates in the database as well as other information . For data

aggregates , the dictionary / Directory would list the components . The data dictionary /

directory is usually a database about the database . However , data dictionaries usually do

13

13

much more than simply store the schema . They often control database documentation , and for

some systems , are actively involved in all database accesses .

1.3.2.3 LEVEL - 3:

 The third level is concerned with actual data in the database itself . It consists of data

instances or occurrences . For each entity in the real world , there is an occurrence of a

corresponding record in the database . Similarly , there are many instances of each of the data

item types the correspond to attributes . A file (sometimes called a data set) is a named

collection of record occurrences . Usually a file contains all occurrences of one record type.

 These levels of data lead to the three – level architecture concept. When we discuss a

database , we need some means of describing different aspects of it’s structure .

1.3.3 THREE -LEVEL ARCHITECTURE:

 Databases infact can be viewed at three levels of abstraction. The levels form a three –

level architecture and are depicted by three schemas , or three models . The models refer to the

permanent structure of the database , not to the data that is stored at any given moment . This

permenant structure is called the intention of the database , or the database schema , while the

information store at given moment is called an extension of the database , or a database

instance .

The purpose of the three – level architecture is to separate the way the database is

physically represented from the way the users think about it. There are several reasons why this

separation is desirable.

• Different users need different views of the same data .

• The way a particular user needs to see the data may change over time .

• Users should not have to deal with the complexities of the database storage structures.

• Database structure should be unaffected by changes to the physical aspects of storage, such

as changes to storage devices.

14

14

 The way users think about data is called the external view level. The way the operating

system and the DBMS see the data is the internal or physical level . There is a middle level that

provides both the mapping and the desired independence between the external and physical

levels . This is called the conceptual level.

1.3.3.1 EXTERNAL VIEWS:

 The external level consists of many different external views or external models of the

database. Each user has the model of the real world represented in a form that is suitable for

the user. A particular user interacts with only certain entities in the real world and is interested

in only some of their attributes and relationships. Therefore, that user’s view will contain only

information about those aspects of the real world. Other entities or other attributes or

relationships not of interest may actually be represented in the database, but the user will be

unaware of them. Views may even include data combined or calculated from several records.

An external record is a record as seen by a particular user, a part of his or her external views.

 Thus, an external view is actually a collection of external records. The external views

are described in external schemas, which are written in data definition language (DDL). Each

user’s schema gives a complete description of each type of external record that appears in that

user’s views. The DBMS uses the external schema to create a user interface, which are both a

facility and a barrier. An individual user sees the database through this interface. It also acts as

a boundary below which the user is not permitted to see. It hides the conceptual, internal and

physical details from the user.

EXTERNAL VIEWS

CONCEPTUAL MODEL

INTERNAL MODEL

15

15

1.3.3.2 CONCEPTUAL OR LOGICAL MODEL:

The middle level, in the three level architecture is the logical or conceptual level. This

model includes the entire information structure of the database, as seen by the database

administrator (DBA). All the entities, their attributes, and their relationships are represented in

the logical model. The data record types that represent the entities, the data item types the

represent their attributes, the relationships that will be stored, the constraints on the data,

semantic information about the data meanings, and security and integrity information are all

part of the conceptual model.

The conceptual model supports the external views, in that any data available to any user

must be present in or derivable from the conceptual model. The conceptual model is relatively

constant. When the DBA originally designs it, he or she tries to determine present and future

information needs and attempts to develop a lasting model of the organization.

The conceptual schema is a complete description of the information content of the

database, including every record type with all its fields. The DBMS uses the conceptual

schema to create the logical record interface, which is a boundary below which everything is

invisible to the conceptual level and which defines and creates the working environment for the

conceptual level. The conceptual level is actually a collection of logical records.

1.3.3.3 INTERNAL OR PHYSICAL MODEL:

The internal, or physical, level covers the physical implementation of the database. It

includes the data structures and file organizations used to store data on physical storage devices.

The DBMS chosen determines, to a large extent, what structures are available. It works with the

operating system access methods to lay out the data on the storage devices, build the indexes,

and /or set the pointers that will be used for data retrieval. The internal schema, written in DDL

is a complete description of the internal model. It includes such items as how data is

represented, how records are sequenced, what indexes exist, what pointers exist, and what

hashing schemes, if any, are used. The stored record interface is the boundary between the

16

16

physical level, for which the operating system may be responsible, and the internal level, for

which the DBMS is responsible.

The operating system creates the physical record Interface, which is a boundary below

which storage details such as exactly what portion of what track contains what data are hidden.

This project deals mainly with the conceptual or logical data model. The conceptual model

should be a complete and accurate representation of the workings of the organization and its

environment. If the conceptual model is correct, it should support any external view needed.

The conceptual model should be the most permanent part of the database architecture. External

views can and should be changed. The internal model should change when new devices or new

techniques for representing data and improving performance are developed. However, the

conceptual model represents the permenant structure of the data resource of the organization. It

should require changes only when the actual workings of the organization or the environment

change.

1.4 LOGICAL DATA MODELS:

 Developing the logical model is the most challenging, interesting, and rewarding part of

database design. During the logical design process, there may be many errors and several false

starts. Like many other problem-solving processes, logical database design is a matter of

intuition, guided by knowledge. Logical models are classified as semantic models and record-

based models.

1.4.1 SEMANTIC DATA MODELS:

 These models are used to describe the conceptual and external levels of data and are

independent of the internal and physical aspects. In addition to specifying what is to be

represented in the database, they attempt to incorporate some meanings or semantic aspects of

data, such as explicit representation of objects, attributes, and relationships, categorization of

objects, abstractions, and explicit data constraints. These include the Entity-Relationship

Model, among others.

17

17

1-4-1-1 ENTITY-RELATIONSHIP MODEL:

 This model is widely used for logical design and is used for this project as well because

record-based models do not provide much semantic information about the database. It is based

on identifying real-world objects called entities which are described by their attributes and

which are connected by relationships.

 Entities are defined as any object that exists and is distinguishable from other objects.

The attributes describe the entities and distinguish them from one another. Relationships may

themselves have descriptive attributes. The E-R model also provides utility of expressing

constraints, or restrictions, on the entities or relationships.

One of the most useful attractive features of E-R model is that it provides a graphical

method for depicting the logical structure of the database. E-R diagrams contain symbols for

entities, attributes and relationships.

1-4-2 RECORD-BASED MODELS:

 These models are used to describe the external, conceptual, and to some extent, the

internal levels of the database. They allow the designer to develop and specify the logical

structure and provide some options for implementation of the design. These are further

classified as “relational”, “hierarchical”, and “network”.

1-4-2-1 NETWORK MODEL:

 A network model database is perceived by the user as a collection of record types and

relationships between these record types. Such a structure is called a network, and it’s from

this that the model takes its name.

1-4-2-2 HIERARCHICAL MODEL:

18

18

 A hierarchical model database is perceived by a user as a collection of hierarchies, or

trees. A hierarchy is really a network with an added restriction; no box can have more than one

arrow entering the box.

1-4-2-3 RELATIONAL MODEL:

 The relational model uses the theory of relations from mathematics and adapts it for use

in database theory. In the relational model, both entities and relationships are represented by

relations, which are physically represented as tables or two-dimensional arrays, and the

attributes as columns of those tables.

 The basic structure of the relational model is simple, making it easy to understand on an

intuitive level. It allows separation of the logical and physical levels, so that logical design can

be performed without considering storage structures.

 A relational database consists of any number of relations. We can represent relation

schemes by giving the name of the relation, followed by the attribute names in parentheses.

Normally, primary key is underlined. When an attribute appears in more than one relation, its

appearance usually represents a relationship or interconnection between tuples of the two

relations. These common attributes play an important role in performing data manipulation.

1-5 MAPPING AN E-R MODEL TO A RELATIONAL MODEL: -

 An E-R diagram can be converted to a relational model fairly easily. The entity sets

represented by rectangles become relations represented by tables. The table name is the same

as the entity name, which is the name written inside the rectangle. For strong entity sets, the

attributes represented by ovals become attributes of the relation, or column headings of the

table. Weak entity sets are also represented by tables, but may require additional attributes.

 Relationship sets can be translated directly into tables as well. Although not explicitly

represented on the E-R diagram, it is understood that a relationship set has the primary keys of

19

19

the associated entities as attributes. To analyze the design of a relational database to see

whether it is good or bad we need to normalize the relations.

1.6 NORMALIZATION:

 “Normalization” means putting a relation into a higher normal form. A relation is in a

specific normal form if it satisfies the set of requirements or constraints for that form. All of

the normal forms are nested in that each satisfies the constraints of the previous one but is a

better form because each eliminates flaws found in the previous form.

1.7 COMPUTERIZATION OF DATABASE DESIGN:

 No matter how straightforward the application of a methodology, the process of

database design can be very time-consuming, particularly for large, complex systems. Some

form of computer assistance for the design process is clearly desirable.

 CASE (Computer Aided Software Engineering) tools are becoming increasingly

popular. These tools assist in various phases of the systems development life cycle. Such tools

include components that relate to database design. These tools provide:

1. Assistance in the creation and modification of entity-relationship or data structure

diagrams.

2. Some assistance in the normalization process.

3. Generation of the SQL code.

1.8 THE PROJECT:

 The aim of the project is to draw ERDs quickly and efficiently, by using Case Tools.

This reduces much of the manual effort involved in mapping ERDs onto Relational model and

it’s normalization. Much work has already been done in the past on database systems. This

20

20

project is however aimed at helping users in designing error free databases. As case tools are

being used, thus this project also provides some knowledge of how software applications with

sophisticated user interfaces are developed.

21

21

CHAPTER 2

 DATABASE DESIGN CONCEPTS

2.1 DATABASE DESIGN:

Database design is really a two step design process. In the first step, user requirements

are gathered together and a database is designed to meet these requirements as cleanly as

possible. This step is called information-level design and is independent of any individual

DBMS.

In the second step, the information-level design is transformed into a design for the

specific DBMS that will be used to implement the system in question. In this step, which is

called physical-level design, we are concerned with the characteristics of the specific DBMS

that will be used. We are also concerned with the adequate performance of the system.

Both of these database design steps are critical. A poor effort made with regard to the

information-level design is extremely difficult to counteract when it comes to the physical-

level design. On the other hand, even an excellent information-level design is not enough to

avoid a poorly performing system if the physical-level design is not done well.

Various approaches or methodologies have been proposed for the information-level

database design. Among them are the canonical schema, the entity-relationship model, and the

semantic data models. This project adopts a methodology that depends heavily on the relational

model.

2.2 DATABASE DESIGN PROCESS:

22

22

The overall design process is represented as:

For any design process one expects the user requirements to be as complete as possible.

Specifically this means that the user requirements for the system should address both the

functional requirements and the physical constraints of the target system.

2.1.1 FUNCTIONAL REQUIREMENTS:

 The functional requirements must include:

• All reports that must be produced.

FUNCTIONAL
REQUIREMENTS

INFORMATION-
LEVEL DESIGN

PROCESS

FINAL INFORMATION-
LEVEL DESIGN

PHYSICAL
CONSTRAINTS

PHYSICAL-LEVEL
DESIGN PROCESS

FINAL DATABASE
STRUCTURE

23

23

• All inquiries that must be supported.

• All other outputs that must be sent to other systems or to external destinations.

• All update transactions that must be processed.

• All calculations that must be performed.

• All restrictions that the system must enforce.

• All synonyms that are used for each attribute. (Synonyms are different names used by

different users for the same attribute).

2.2.2 PHYSICAL CONSTRAINTS:

When physical design process is considered, we also need the user requirements to

provide information about processing volumes and performance measurements. We call these

volumes and measurements physical constraints. These include:

• The number of occurrences of each type of entity.

• The frequency with which each report will be printed.

• The length in number of lines for each report.

• The response-time requirements for each query.

• The response-time requirements for each update transaction.

• The special security constraints that define who can access which data and in what way.

Taking these user requirements as input, the information-level and physical-level

design processes should produce a database design for a specific DBMS that supports these

requirements and performs in an acceptable manner.

2.2.3 INFORMATION-LEVEL DESIGN PROCESS:

 Information-level design process does not entail the physical constraints from the user

requirements. Instead, the information-level design process is based on all other user

requirements. This process results in a logical design that cleanly supports the user

requirements and is independent of the characteristics of any individual DBMS.

24

24

2.2.4 PHYSICAL-LEVEL DESIGN PROCESS:

 Physical-level design process utilizes this logical design, the physical constraints from

the user requirements and information concerning the particular DBMS involved producing the

final database structure.

2.3 DATABASE DESIGN GOALS:

Database design is the process that takes a set of user requirements as input and

produces database structures capable of supporting these requirements as output.

We must keep certain goals in mind as we proceed through the information-level and

physical-level design processes. The information-level design process must result in a design

that is complete. That is, all user functional requirements must be satisfied by this design. The

design itself should enforce as many of the requirements as possible, rather than force

programs to do so. Hence the ultimate goal during this step is a clean, redundancy-free design.

The physical-level design process must result in a DBMS-specific design that is

basically concerned with system efficiency in terms of storage space, processing time and

response time. The goals in this step can conflict with the goals of the information-level design

process.

2.4 DATABASE DESIGN METHODOLOGY:

 The methodology adopted here involves representing user views, refining them to

eliminate any problems and then merging them into a cumulative design. For each user view

we need to complete the following steps:

• Represent the user view in the form of an ERD.

• Mapping this ERD onto a relational model to get a collection of relations.

• Normalize these relations

25

25

• Represent all keys.

• Determine any special restrictions.

• Merge the result of the previous steps to get SQL code.

 Obtaining information on user views is a critical task, but not an easy one. The only

source for obtaining the information is the users who will be involved in the new system. One

of the ways of getting the required information is by using ERDs (Entity Relationship

Diagrams).

2.5 ENTITY RELATIONSHIP DIAGRAMS:

An Entity-relationship data model is a detailed, logical representation of the data for an

organization or for a business area. The E-R model is expressed in terms of entities in the

business environment, the relationships among those entities, and the attributes of both the

entities and their relationships. An E-R model is normally expressed as an Entity-Relationship

Diagram (or E-R Diagram), which is a graphical representation of an E-R model.

The major constructs of E-R models are entities, relationships, and associated

attributes. The notations used to represent these are:

 Entity

 Attribute

 Relationship

26

26

2.5.1 ENTITIES:

An entity is defined as a person, place, object, event, or concept in the user

environment about which the organization wishes to maintain data. There is an important

distinction between entity types and entity instances. An entity type is a collection of entities

that share common properties or characteristics. Each entity type in an E-R model is given a

name. Since the name represents a class, it is singular. In an E-R diagram the name is placed

inside the box representing the entity.

An entity instance is a single occurrence of an entity type. An entity type is described

once in a database, while many instances of that entity type may be represented by data stored

in the database.

2.5.2 ATTRIBUTES:

 Each entity type has a set of attributes associated with it. An attribute is a property or

characteristic of an entity that is of interest to the organization (relationships may also have

attributes). In E-R diagram, we represent an attribute by placing its name in an ellipse with a

line connecting it to its associated entity

2-5.2.1 CANDIDATE KEYS AND PRIMARY KEYS:

 Every entity type must have an attribute or set of attributes that uniquely identifies each

instance and clearly distinguishes that instance from other instances of the same type. A

candidate key is an attribute (or a combination of attributes) that uniquely identifies each

instance of an entity type.

 Some entities may have more than one candidate key. If there is more than one

candidate key the designer must choose one of the candidate keys as the primary key. A

primary key is a candidate key that has been selected as the identifier for an entity type. The

criteria for selecting primary keys, as suggested by some experts, is as:

27

27

1- Choose a candidate key that will not change its value over the life of each instance of the

entity type.

2- Choose a candidate key such that for each instance of the entity, the attribute is guaranteed

to have valid values and not be null. If the candidate key is a combination of two or more

attributes, make sure that all parts of the key will have valid values.

3- Avoid the use of so-called intelligent keys, whose structure indicates classification,

locations, and so on.

4- Consider substituting single-attribute surrogate keys for large composite keys.

The primary key could be highligtened by underlining it on the E-R diagram.

2.5.3 RELATIONSHIPS:

 Relationships are the glue that holds together the various components of an E-R model.

A relationship is an association between the instances of one or more entity types that is of

interest to the organization. A diamond shape in the E-R diagram indicates a relationship.

2.5.3.1 DEGREE OF A RELATIONSHIP:

 The degree of a relationship is the number of entity types that participate in that

relationship. The three most common relationships in E-R model are unary (degree one),

binary (degree two), and ternary (degree three). Higher degree relationships are possible but

they are rarely encountered during practice.

2.5.3.2 CARDINALITIES IN RELATIONSHIPS:

 Suppose there are two entity types, A and B, that are connected in a relationship. The

cardinality of a relationship is the number of instances of entity B that can be associated with

each instance of entity A.

28

28

 The minimum cardinality of a relationship is the minimum number of instances of

entity B that may be associated with each instance of entity A. the maximum cardinality is the

maximum number of instances. It is possible for the maximum cardinality to be a fixed

number, not an arbitrary ‘many’ value.

Mandatory 1 cardinality

Many (M) cardinality

Optional 0 or 1 cardinality

Optional 0-M cardinality

 The E-R Diagram is mapped onto the relational model for further data manipulation.

2.6 RELATIONAL MODEL:

 The relational database model represents data in the form of tables or relations. The

relational model is based on the mathematical theory, and therefore has a solid theoretical

foundation. The relational model consists of the following three components

1- Data structure: Data are organized in the form of tables or relations.

29

29

2- Data manipulation: Powerful operations (such as those incorporated in the SQL language)

are used to manipulate data stored in the relations.

3- Data integrity: Facilities are included to specify business rules that maintain the integrity of

data when they are manipulated.

2.6.1 RELATIONS:

 A relation is named, two-dimensional table of data. Each relation (or table) consists of a

set of named columns and an arbitrary number of unnamed rows. Each column in a relation

corresponds to an attribute of the relation. Each row of the relation corresponds to a record that

contains data values for an entity.

 We can express the structure of a relation by a shorthand notation in which the name of

the relation is followed (in parenthesis) by the names of the attributes in the relation.

2.6.2 PROPERTIES OF RELATIONS:

 Although relations are defined as two-dimensional tables of data; however, not all

tables are relations. Relations have several properties that distinguish them from nonrelational

tables. These properties are defined as:

1- An entry at the intersection of each row and column is atomic (or single-valued). There can

be no multivalued attributes or repeating groups in a relation. An attribute that can have

more than one value for each entity instance is termed as a multivalued attribute.

2-In a relation, all entries in a given column are drawn from the same domain. Where domain

is a definition of the types and ranges of values that attributes may assume.

3- No two rows in a relation are identical. Uniqueness in a relation is guaranteed by the

designation of a primary key for each relation.

4- The sequence of columns (left to right) is insignificant. Hence the columns of a relation can

be interchanged without changing the meaning or use of the relation. As a consequence of

this property, there is no hidden meaning implied by the order in which columns occur.

30

30

Another consequence is that columns of a table can be stored in any arbitrary sequence, and

users can also retrieve columns in any sequence.

5- As with columns, the rows of a relation may be interchanged or stored in any sequence.

2.7 TRANSFORMING E-R DIAGRAM TO RELATIONS:

 This transformation consists of four steps: represent entities and then represent

relationships. The relations that result from this transformation can then be normalized using

the techniques described later. The redundant relations could than be removed by merging

these relations.

2.7.1 REPRESENT ENTITIES:

 Each entity type in an E-R diagram is transformed into a relation. The primary key (or

the identifier) of the entity type becomes the primary key of the corresponding relation. Make

sure that this key satisfies the following two properties of a candidate key for a relation

described earlier:

1- The value of the key must uniquely identify every row of the relation.

2- The key should be nonredundant; that is, no attribute in the key can be deleted without

destroying its unique identification.

Each nonkey attribute (or descriptor) of the entity type becomes a nonkey attribute of the

relation. The relations that are formed from the entity type may be modified as relationships

are represented.

2.7.2 REPRESENT RELATIONSHIPS:

 The procedure for representing relationships depends on both the degree of the

relationship (unary, binary, ternary) and the cardinalities of the relationship.

31

31

2.7.2.1 BINARY 1:N RELATIONSHIPS:

 A binary one-to-many relationship in an E-R diagram is represented by adding the

primary key attribute of the entity on the one-side of the relationship, as a foreign key in the

relation that is on the many-side of the relationship. A foreign key is an attribute or a

combination of attributes of an entity that is the primary key of another entity.

 A special case of the above rule applies foe a binary one-to-one relationship between

two entities A and B. In this case, the relationship can be represented by:

1- Adding the primary key of A as a foreign key of B.

2- Adding the primary key of B as a foreign key of A.

3- Both of the above.

2.7.2.2 BINARY M: N RELATIONSHIP:

 Suppose that there is a binary many-to-many relationship between two entity types A

and B. For such a relationship, we create a separate relation C. The primary key of this relation

is a composite key consisting of the primary key for each of the two entities in the relationship.

Any nonkey attributes that are associated with the M: N relationship are included with the

relation C.

 Occasionally, the relation created from an M: N relationship requires a primary key that

includes more than just the primary keys from the two related relations.

 In some cases, there may be an n-ary relationship among three or more entities. In such

cases, we create a separate relation that has as a primary key the composite of the primary keys

of each of the participating entities (plus any necessary additional key elements). This rule is a

simple generalization of the rule for a binary M:N relationship.

32

32

2.7.2.3 UNARY RELATIONSHIPS:

 For a unary relationship, the entity type is modeled as a relation. The primary key of

that relation is the same as for the entity type. Then a foreign key is added to the relation that

references the primary key values.

 A relation that contains a minimum amount of redundancy and allows users to insert,

modify and delete the rows in a table without errors or inconsistencies is said to be a well-

structured relation. In order to get well-structured relations we need to normalize them.

2.8 NORMALIZATION:

 Normalization is the process for converting complex data structures into simple, stable

data structures.

2.8.1 STEPS IN NORMALIZATION:

 Normalization is often accomplished in stages, each of which corresponds too a normal

form. A normal form is a state of a relation that can be determined by applying simple rules

regarding dependencies (or relationships between attributes) to that relation.

33

33

 Other normal forms

 In order to understand the concept of normalization the basic idea behind dependencies

should be well understood.

2.8.2 DEPENDENCIES:

2.8.2.1 FUNCTIONAL DEPENDENCE:

 Normalization is based on the analysis of functional dependence. A functional

dependency is a particular relationship between two attributes. For any relation R, attribute B is

functionally dependent on attribute A if, for every valid instance of A, that value of A uniquely

determines the value of B. The attribute B is said to be the determinant.

Table with
repeating
groups

First
Normal

form

Second
Normal

form

Third
Normal

form

Remove
repeating
groups

Remove
partial

dependencies

Remove
transitive

dependencies

34

34

2.8.2.2 PARTIAL FUNCTIONAL DEPENDENCE:

 A dependency in which one or more nonkey attributes are functionally dependent on

part (but not all) of the primary key. The partial functional dependency creates redundancy in

the relation, which results in anomalies of various types (insertion, deletion and modification

anomalies).

2.8.2.3 TRANSITIVE DEPENDENCY:

 A functional dependency between two (or more) nonkey attributes in a relation.

Anomalies can also arise due to transitive dependencies.

2.8.3 THE BASIC NORMAL FORMS:

 After examining functional and transitive dependencies the next step is the

normalization of relations.

2.8.3.1 FIRST NORMAL FORM:

 A relation is in first normal form (1NF) if it contains no repeating groups. This idea

emerges from the basic property of a relation, that is, that the value at the intersection of each

row and column is atomic. Thus a table that contains multivalued attributes or repeating groups

is not a relation.

 A table with repeating groups is converted to a relation in first normal form by

extending the data in each column to fill cells that are empty because of the repeating group

structure.

2.8.3.2 SECOND NORMAL FORM:

35

35

 A relation is in second normal form (2NF) if it is in first normal form and every nonkey

attribute is fully functionally dependent on the primary key. A relation that is in first normal

form will be in second normal form if any one of the following conditions apply.

1- The primary key consists of only one attribute

2- No nonkey attributes exist in the relation.

3- Every nonkey attribute is functionally dependent on the full set of primary key attributes.

A relation could be converted into second normal form by forming a new relation that

consists of the nonkey attributes dependent on a part of the primary key along with that part of

the primary key. So the original relation is left with the composite primary key and the nonkey

attributes that are dependent on all of the primary key.

2.8.3.3 THIRD NORMAL FORM

 A relation is in third normal form if it is in second normal form and no transitive

dependencies exist. In order to remove transitive dependency we form a new relation

consisting of the nonkey attributes, one of which is dependent on the other. In this case the

nonkey attribute on which the other depends forms the primary key. This attribute (the

primary key) is also included in the original relation in order to remove anomalies.

2.8.4 ADDITIONAL NORMAL FORMS

 Relations in third normal form are sufficient for most practical database applications.

However other normal forms also exist that are used to remove all types of anomalies.

2.9MERGING RELATIONS:

 If normalized relations have been created from a number of separate E-R diagrams and

other user views, some of the relations may be redundant; that is, they might refer to the same

entities. If so, we should merge those relations to remove the redundancy.

36

36

 Most people agree that a relational database is perceived by its users as a collection of

tables in which all data relationships are represented by common values, not links. A relational

database management system (RDBMS), then, is a data management system that uses this

view of data. To provide some direction for the development of RDBMSs, the American

Standards Institute (ANSI) and the International Organization for Standardization have

approved a standard for the SQL relational query language.

37

37

CHAPTER 3

PROJECT DESIGN

3.1 OBJECT-ORIENTED DATA MODEL:

 The project is designed using object-oriented data model, in which the entities,

attributes, their relationship etc. are treated as objects.

An object is a structure that encapsulates attributes and method that operate on those

objects. The state of an object is expressed in the values of the attributes of the object. The

behavior of an object is expressed by a set of methods that operate on its attributes.

3.1.1 NOTATION:

 Classes are represented by rectangles which either bear only the name of the class (in

bold), or show attributes and operations as well. In the second case, the three rubrics-- class

name, attributes, operations-- are divided from each other by a horizontal line. Class names

begin with an upper case letter and are singular nouns (collective classes or similar may be in

the plural form, if required).

The objects defined in the project and their corresponding attributes and methods are

as:

3.2 OBJECTS IDENTIFIED:

• The entities, attributes and relationships are all derived from the class Basic Symbols. The

features that are common in all the symbols drawn are included in the class Basic Symbols

38

38

• For each relationship in order to generate error messages the symbols at the end need to be

known (Because relationships can only be shown between entities).

• For each Attribute End points are required, in order to know the entity to which it is going

to be attached.

• The Relations obtained after normalization to 2NF are stored in an object which has

features in common with the class Entity, namely the attribute ‘name’, and the linked list

that stores information about the attributes attached to the entity.

• Similarly the Relations in 3NF also have features in common with the class Entity.

Basic Symbols

Entity

Attribute

Relationship

Relationship End points

Attribute End points

39

39

3.3 DETAILED DESIGN:

Entity

Attribute

Relationship

Basic Symbols

2NF 3NF

End-points

3NF 2NF

Entity

40

40

3.4 IDENTIFYING ATTRIBUTES:
 The next step is related to identification of attributes for each object. Each object with

its related attributes is indicated as:

Entity

Height

Width
Struct node

{
AttribName

Key
*next

}

Attribute

Radius

Key
*pStart , *pEnd

Relationship

*pStart, *pEnd
X1,X2,X3,X4

CardFrom, CardTo

Basic Symbols

Name
Center

2NF

Number

3NF

Number End-points

*pTerminal
Type

41

41

3.5 COMPLETE OBJECT-ORIENTED DESIGN:

ENTITY
Height
Width

Struct node {
AttribName

Key
*next}

CreateLinkList (),
Draw (), GetDimRect (),

SetDimensions ()

ATTRIBUTE
Radius

Key
*pStart , *pEnd
GetDimRect ()

SetDimen(), Draw ()
GetInterPoint ()

GetStart (), SetStart ()
GetEnd (), SetEnd ()

RELATIONSHIP

*pStart, *pEnd
X1,X2,X3,X4

Card From, Card To

Draw (), GetDimRect (),
Set Card (),
Get Card (),

Set Start (), Get Start (),
Get Start (), Get End ()

BASIC SYMBOLS
Name
Center

GetName (), SetName (),
Get Center (), Set Center (),

Draw (), GetInterPoint ()

2NF
Number

GetNumber()
SetNumber()

3NF
Number
GetNumber ()
SetNumber ()

ENDPOINTS
*pTerminal

Type
GetTandT ()
SetTandT ()

42

42

3.6 CLASS DEFINITIONS:

Class name: Basic Symbols

Definition: A set of symbols used to represent entities, relationships and attributes in an ERD.

Relationships: Derived from class CObject.

Attributes:

• Name {text}

 A string of characters used to identify each symbol.

• Center {text}

 A number computed to calculate screen coordinates of the symbol drawn.

Public Methods:

• Draw

 Purpose: Used to draw symbols on screen.

Arguments: CDC *PDC

Return Values: none

• GetDimRect

 Purpose: to define a bounding rectangle (The basis for each symbol drawn)

Arguments: none

Return Values: a rectangle

• SetName

 Purpose: to set the value of the attribute ‘name’

Arguments: a string of characters

Return Values: none

• GetName

Purpose: to get the value of attribute name

Arguments: none

Return Values: a string of characters

• SetCenter

Purpose: To set the value of attribute ‘center’

Arguments: a point

Return Values: none

43

43

• GetCenter

Purpose: to get the value of protected member variable center

Arguments: none

Return Values: a Point (representing the center)

• GetIntersectionPoint

Purpose: To find the point of intersection of the center and any of the bounding

lines of the symbol drawn.

Arguments: Two Points

Return Values: Point of intersection.

Class name: Entity.

Definition: Used to draw the symbol for entity in the ERD.

Relationships: Derived from class Basic Symbols.

Attributes:

• Height {text}

 A number representing the height of the symbol drawn.

• Width {text}

 A number used to represent the width of the symbol drawn..

• Node {structure}

A structure used to store the names and key values of the attributes attached to the

Entity, in the form of a linked list.

Public Methods:

BASIC SYMBOLS

Name
Center

GetName (), SetName (),
Get Center (), Set Center (),

Draw (), GetInterPoint ()

44

44

• Draw

 Purpose: Overriding function, Used the draw the symbol of Entity on screen

Arguments: CDC *pDC (i-e a pointer to the device context object)

Return Values: none

• GetDimRect

 Purpose: To get the bounding rectangle of the symbol of Entity.

Arguments: none

Return Values: a Rectangle

• SetDimensions

Purpose: To Set the values for the protected members height and width.

Arguments: height, width

Return Values: none

• CreateLinkList

Purpose: To create a new node in the linked list, and assign values to the info field

of the linked list.

Arguments: Name of the Attribute, Value of key

Return Values: none

Class name: Attribute

Definition: Used to draw the symbol of an attribute, and store its values.

ENTITY

Height
Width

Struct node {
AttribName

Key
*next}

CreateLinkList (),

Draw (), GetDimRect (),
SetDimensions ()

45

45

Relationships: Derived from class Basic Symbols.

Attributes:

• Radius {text}

 A number used to determine the radius of the elliptical attribute symbol

• Key {BOOL}

 A number that is TRUE if the key is primary and FALSE if it is not.

• *pStart {pointer}

An instance of the class End Points. Represents the type of symbol at the start of the

line drawn from attribute to entity

• *pEnd {pointer}

An instance of the class End Points. Represents the type of symbol at the end of the

line drawn from attribute to entity

Public Methods:

• GetDimRect

Purpose: Overriding function used to compute the bounding rectangle of the

elliptical symbol.

Arguments: none

Return Values: coordinates of a rectangle.

• Draw

 Purpose: overriding function. Used to draw the symbol of attribute

Arguments: CDC *pDC

Return Values: none

• SetKeyValues

 Purpose: To set the value of the protected member variable key.

Arguments: value of key

Return Values: none

• SetStart

 Purpose: To set the value of *pStart

Arguments: pointer to the class Basic symbols and number to represent the type.

Return Values: none

• GetStart

46

46

Purpose: to get pointer to the starting symbol

Arguments: none

Return Values: pointer to the starting symbol

• SetEnd

 Purpose: To set the value of *pEnd

Arguments: pointer to the class Basic symbols and number to represent the type.

Return Values: none

• GetEnd

Purpose: to get pointer to the ending symbol

Arguments: none

Return Values: pointer to the class Basic Symbols

• GetIntersectionPoint

Purpose: Overriding function used to find the intersection point.

Arguments: Two points

Return Values: a point

Class name: Relationship

Definition: Used to store the values of the symbol relationship and draw the symbol.

Relationships: Derived from class Basic Symbols.

Attributes:

• CardFrom {text}

ATTRIBUTE

Radius
Key

*pStart , *pEnd

GetDimRect ()
SetDimen(), Draw ()

GetInterPoint ()
GetStart (), SetStart ()
GetEnd (), SetEnd ()

47

47

A number used to store the cardinality of the strong entity.

• CardTo {text}

A number to store the value of cardinality of the weak entity

• X1,X2,X3,X4 {point}

Four points used to represent the four vertices of the diamond symbol

• *pStart {pointer}

An instance of the class End Points. Represents the type of symbol at the start of the

line drawn from attribute to entity

• *pEnd {pointer}

An instance of the class End Points. Represents the type of symbol at the end of the

line drawn from attribute to entity

Public Methods:

• Draw

 Purpose: overriding function used to draw the symbol of diamond and to connect

the two entities with a line.

Arguments: CDC *pDC

Return Values: none

• SetCard

 Purpose: To set the values of the member functions cardfrom and cardto.

Arguments: numbers CardFrom and CardTo

Return Values: none

• SetStart

 Purpose: To set the value of *pStart

Arguments: pointer to the class Basic symbols and number to represent the type.

Return Values: none

• GetStart

Purpose: to get pointer to the starting symbol

Arguments: none

Return Values: pointer to the starting symbol

• SetEnd

 Purpose: To set the value of *pEnd

48

48

Arguments: pointer to the class Basic symbols and number to represent the type.

Return Values: none

• GetEnd

Purpose: to get pointer to the ending symbol

Arguments: none

Return Value: pointer to the class Basic symbols

Class name: End points

Definition: A class to obtain the type of the symbol at the end of the line to be drawn.

Relationships: Collaboration with attribute and relationship

Attributes:

• *pTerminal {pointer}

 Pointer to the Basic symbols.

• Type {text}

 A number of type enum used to represent the type of symbol.

Public Methods:

• GetTandT:

Purpose: to get the value of the protected members

Arguments: protected members

Return Values: pointer to class Basic symbols

RELATIONSHIP

*pStart, *pEnd
X1,X2,X3,X4

Card From, Card To

Draw (), GetDimRect (),
Set Card (),
Get Card (),

Set Start (), Get Start (),
Get Start (), Get End ()

49

49

• SetTandT:

Purpose: to set the values of the protected members

Arguments: protected members

Return Values: none

Class name: 2NF

Definition: A set of relations in second normal form

Relationships: Derived from class Entity.

Attributes:

• Number {text}

 A number computed to set the name of the new relations.

Public Methods:

• GetNumber

Purpose: to get the value of the protected member

Arguments: none

Return Values: number

• SetNumber

Purpose: to set the value of the protected member

Arguments: number

Return Values: none

ENDPOINTS

*pTerminal
Type

GetTandT ()
SetTandT ()

50

50

Class name: 3NF

Definition: A set of relations in third normal form

Relationships: Derived from class Entity.

Attributes:

• Number {text}

 A number computed to set the name of the new relations.

Public Methods:

• GetNumber

Purpose: to get the value of the protected member

Arguments: none

Return Values: number

• SetNumber

Purpose: to set the value of the protected member

Arguments: number

Return Values: none

2NF

Number

GetNumber()
SetNumber()

3NF

Number

GetNumber()
SetNumber()

51

51

CHAPTER 4

FLOW OF CONTROL

4.1 BEHAVIORAL DIAGRAMS:

The overall behavior of the object-oriented design is depicted using Unified Modeling

Language (UML). The UML is a modeling language, and as such predestined for translation

into programming languages, that is, for code generation. It offers extensive modeling

capabilities, which makes it easier to use. If the development of a major software project is

carried out without the use of any conscious application of a development strategy, the

problems encountered become increasingly complex during the course of program

development and more and more sub- and side-problems are likely to arise. Applications of a

well-proven procedure help to avoid such problems.

The behavioral diagram used to explain the flow of control in this project is the

sequence diagram.

4-1-1 SEQUENCE DIAGRAMS:

 A sequence shows a series of messages exchanged by a selected set of objects in a

temporally limited situation, with an emphasis on the chronological course of events.

 In the sequence diagram the emphasis is on the chronological course of messages.

Objects are merely shown by vertical lifelines. This highlights the chronological sequence of

the messages.

4-1-1-1 NOTATION:

52

52

 Dashed vertical lines represent objects. On top of the line, we find the name. Messages

are drawn as horizontal arrows between the object lines, on which the message itself is noted in

the form message (arguments). Similarly the response is shown in textual form as a separate,

but dashed arrow with an open head.

 Overlapping of the dashed lifelines with broad, empty (or gray) bars symbolizes the

control focus. The control focus specifies which object currently holds program control, that is,

which object is currently active. The left or right hand borders can be used to note freely

formulated explanations, time requirements, and the like.

 Creation and removal of objects can also be represented in sequence diagrams. The

creation of an object is indicated by a message that meets an object symbol; the destruction of

an object by a cross at the end of the control focus.

 Messages can be additionally provided with conditions in the notation [condition]

message (). To indicate iterations, that is, multiple sending of a message, an asterik * is placed

in front of the message.

As in drawing of ERDs the mapping and normalization can take place only when the

ERD has been drawn, so the flow of control followed is sequential.

4.2 EXPLANATION:

 The main class or the base class of Basic Symbols is derived from the class CObject.

All the remaining classes are derived from the class Basic Symbols. So the control focus lies

with the class Basic symbols through out the course of program execution.

 Each object in the sequence diagram is explained separately, and in the order in which

the control focus is shifted.

4.2.1 ENTITY:

53

53

 The Class Entity is derived from the Class Basic Symbols. So the message is sent from

the base class (Basic Symbols) to Entity, as indicated by the direction of the arrow. The

message sent is to initialize its name (Set Name ()). The response, which is in the form of the

name of the entity, is given a name, that is, EName.

 The class Entity is given the sequence number 1, because attributes can only be

displayed with entities, same is the case with relationships, so an entity should exist before an

attribute or a relationship is drawn. The Esteric depicts that it is an iterative procedure, as there

is no restriction on the number of entities that can be drawn.

 New * ()

 Set Name ()

 EName

4.2.2 ATTRIBUTE:

 The sequence number shows that this Object needs to be created after drawing the

entity. This is also an iterative message. The message passed to this object is to set its value.

The argument of this message is the name of the entity. Because an attribute sets its values

according to the Entity to which it is attached. The response given by this object is Avalues.

: Basic Symbols : CObject : Entity

54

54

 New * ()

 Set Values (EName)

 AValues

 The response Avalues basically consists of two parameters. One is the name of the

attribute and the other is the value of the key, that is, whether the attribute has been specified as

a primary key or not.

 The response Avalues is passed as argument to a message of the class Entity. The

message tells the object Entity to create a linked list of the attributes attached to that entity.

Whenever an attribute gets created, a new node of the linked list is created.

 Create Link List(AValues)

 LinkedList

: Basic Symbols : Attribute

: Entity: Basic Symbols

55

55

This sequence shows only that part of information that is stored and required later on

for the process of mapping and normalization. In order to display the connection between the

entity and attribute physically we need to know the pointers and type of symbols at the two end

points of the line.

4.2.3 END POINTS:

This object gets created whenever an attribute or a relationship is drawn on the screen.

When an attribute is passed the message to set its values, a new object of the class end points

gets created twice. Once to get the starting point of the connecting line between the entity and

the attribute, and the next time to get the end points.

 New * ()

 Set Start (AName)

 Pointer

: Attribute
: End points

56

56

 New * ()

 Set End (EName)

 Pointer

4.2.4 RELATIONSHIP:

 Before mapping the ERD onto relational model each entity should have some

relationship with another entity of the ERD. Further more this project only deals with binary

relations, that is, unary and ternary relations are not supported, thus before creating an Instance

of Relation the condition that should be checked is that the number of entities should be greater

than two. The message passed to the Relation class is to Set Cardinalities () and here too the

argument passed is the name of the Entity. The response given is the name of the relationship,

and the value of its cardinalities.

: Attribute : End points

57

57

 New * ()

 Set Card (EName)

 Rvalues

As was the case with attributes, here too the end points need to be known, so the

instances of the class End points are also needed here twice. The creation of a new object of

the class Relationship is also an iterative procedure. Any number of relationships can be

drawn. But the number cannot exceed beyond the number of entities present. Incase of binary

relations this number would always be one less than the number of entities

4.2.5 2NF:

Once the relational model has been generated the relations need to be normalized. For

this purpose the basic information required is available from the object Entity. Further more

the response from this object is required in generating relations in the third normal form. But

there are certain preconditions that must be satisfied before going to 2NF. These conditions

show that a completed ERD should be present before proceeding with normalization. Hence

the sequence is given accordingly.

: Relationship: Basic Symbols

58

58

 New ()

 Get2NF (Llist, EName)

 RelIn2NF

 It is not an iterative procedure because once the relations have been mapped, you

cannot have relations in 2NF recursively.

4.2.5 3NF:

 To create a linked list of relations in third normal form the sequence shows that it

should be in 2NF. The object of the class 3NF is passed a message with the relations in second

normal form as its arguments. The response from this object is used in the generation of the

SQL code.

 New ()

 Get3NF (Llist, EName)

 RelIn3NF

: 2NF: Basic Symbols

: 3NF: Basic Symbols

59

59

The Complete sequence diagram is depicted as:

 New* ()

 SetName ()

 EName New* ()

 {i=1,2}New *()

 SetValues(Ename) GetPointer(Ename|| Aname)

 AValues Pointer

 CreateLList(Avalues)

 LList

 {i=1,2} New* ()

 New* ()

 [NumEntities>2] Connect(Ename) GetPointer(Ename)

 RelName Pointer

 New ()

 Get2NF (Llist, Ename)

 RelationsIn2NF

 New ()

 Get3NF (RelationsIn2NF)

 RelationsIn3NF

 Delete ()

:CObject : 3NF : 2NF : Endpo : Rel : Attrib : Entity : BasicS

60

60

CHAPTER 5

IMPLEMENTATION

 After going through all the phases of the software development process, namely

Planning, Analysis and Design, the final and most important phase of Implementation is

reached. The language used for implementation of the object-oriented design is Visual C++.

5.1 STEPS IN IMPLEMENTATION:

5.1.1-DRAWING ERDs:

 Most of the information related to ERDs has to be entered by the user. So the first step

in the implementation part is a user interface. As was mentioned during the design phase, the

symbols for Entity, Attribute and Relationships are treated as Objects. Whenever a symbol is

drawn a new Instance of the related class gets created.

 The features that are common in all the Symbols drawn are specified in the Base class,

named as Basic Symbols. Thus an important feature of the object oriented design is made use

of, that is, Inheritance. The Objects are referenced by their name, which in case of entities and

relationships should be unique.

 The user draws the Symbols using fixed dimensions, these dimensions are modifiable.

The attribute Center is used to move the symbols to the desired location on the main window.

 In the user interface the first symbol drawn is the symbol for Entity. As the attributes

can only be attached to entities, so one entity atleast has to exist before an attribute can be

drawn. Also relationships can be shown between entities only. Appropriate error messages are

generated if the user violates these conditions.

A toolbar button named Develop is available, which helps in checking whether the ERD is

ready for mapping or not. If none of the symbols is drawn the develop button is disabled (

61

61

dimmed). The buttons for Mapping, 2NF and 3NF are also dimmed and are operational only

when a particular condition is satisfied.

 For instance, the button of mapping is operational only if the message displayed by the

Develop button is that the ERD is ready for mapping.

 Similarly once the relations are mapped and functional dependencies specified only

then can the relations be viewed in second normal form.

 When a user selects the entity button from the toolbar, a dialog box of the form shown

below is displayed.

62

62

 The instance created is stored in an array of entities, uniquely identified by its name.

The next symbol drawn is an attribute.

The user is prompted to enter the information relating to name of the attribute and the

key value, that is , whether it is a primary key or not. The name of the entity to which this

attribute is to be attached also needs to be specified. The names of only those entities are

displayed which exist. The user is not given the option to specify the name of an entity that has

not been drawn yet.

63

63

When an instance of this class gets created a method of the class Entity is called. This

methods creates a new node of the linked list which stores these attribute values with the

specified entity.

The relationship exists between two entities. The user is prompted to specify the name

of the relationship, plus the cardinalities also need to be specified.

 There are certain features which are not incorporated in this project. But the basic idea

behind developing a comprehensive ERD development tool is kept into view.

 The ERD thus drawn is as:

64

64

5.1.2- MAPPING:

 This ERD can now be mapped onto relational model. For this purpose the name of the

Relation is taken to be same as that of the Entity, also the attribute values are also the same. As

the user is not given the option to attach an attribute with a relationship so the mapping is quite

simple. The mapped relation can be viewed by selecting the specified button in the toolbar.

5.1.3 NORMALIZATION:

65

65

 The mapped relations are considered to be in first normal form by default. Because

1NF can be checked, only when data is entered into the database. So, we directly move onto

second normal form. As 2NF deals with functional dependencies, hence functional

dependencies can only be specified with relations that have a composite primary key. The user

is asked to specify the functional dependencies at this stage.

 If he selects the option Yes then the dialog box is displayed with the composite

primary key on one side and the non-key attributes on the other.

66

66

If the user does select to specify the functional dependencies, we get the normalized

relations in 2NF. This is done by creating a new object of class 2NF. This class is derived

from the class Entity. Because it also contains attributes for name of the relation, and a linked

list for the associated attributes. The additional feature in this class is the attribute Number.

This attribute is used to assign numbers to name of the normalized relations. For instance, if

the relation has the name class and the user specifies functional dependencies on its attributes

two new relations are created, one is given the name class1 and the other is given the name

class2.

The relations in 2NF can be viewed by selecting the option from the toolbar.

Similarly the relations in third normal form can be obtained by specifying transitive

dependencies.

For relations with a single primary key, the transitive dependencies cannot be specified.

So the relation is already in 3NF.

67

67

Which gives relations in third normal form.

If the relation is already in 3NF then the new relation has the same name as the name of

the relation in 2NF, also it has the same attributes.

Once the normalization has been completed the SQL code is generated and stored in a

file. For this purpose you need to specify the type of each attribute.

68

68

 When the Type of the attribute is selected as being CHAR or NUMBER than the user is

prompted to specify the number of characters or numbers. Thus floating point attribute types

can also be specified.

The SQL code created is stored in a file, the path of which is displayed to the user.

69

69

 These relations can now be simply copied from the file and pasted onto the SQL

compiler.

70

70

CHAPTER 6

RESULTS AND RECOMMENDATIONS

6.1 PROBLEMS ENCOUNTERED:

 Most of the problems encountered during this project were basically due to lack of

knowledge of the language used. The basic concepts related to drawing of ERDs, their

mapping onto Relational model and their normalization were quite clear right from the start., as

most of it was covered as a part of course on ‘Database Systems’.

6.2 RESULTS:

 After drawing the ERD, the relations are mapped onto the relational model. The ERD

and the corresponding relational model are viewed as:

71

71

 These relations are normalized, following the rules for 2NF and 3NF. The relations in

2NF are viewed as:

72

72

 Here the new relation formed consists of that part of the primary key on which another

non-key attribute depends, plus the dependent attribute. The original relation is left with the

whole of the primary key and all the remaining attributes, other than the one which showed

dependency on a part of the primary key. In the given example, this is shown for the relation

‘class’.

Similarly after 2NF, the relations in 3NF are as:

 The relation ‘student’ is normalized to 3NF, where the dependent attribute and the non-

key attribute on which it depends (determinant) form the new relation. The determinant is the

Primary key of the new relation. In the original relation the dependent attribute is removed.

The determinant appears as foreign key in the original relation.

 The relations in 3NF can now be used to generate the SQL code.

73

73

6.3 CONCLUSIONS:

 The results show that given any ERD the entities, attributes and relationships would be

mapped onto the relational model according to the rules of mapping. These relations would be

normalized upto 3NF and after the user has specified the type of the attributes, the SQL code

gets stored in a file.

 This ensures that the decomposition is loss-less and that the data stored in the database

is accurate. Thus the aims outlined in the beginning of the project were reached successfully.

6.4 RECOMMENDATIONS:

 ERD design is a very vast field. This project does not cover some of the features, which

were not required to understand the basic concept, but for an efficient and comprehensive

CASE Tool these features should be included. Some of the very prominent of these features

are:

• Symbols to distinguish weak Entity from Strong Entity.

• Representation of Unary and ternary Relationships.

• Ability to attach an attribute to a Relationship.

• Representing Aggregation and Generalization etc.

• Keeping the above-mentioned features into view, mapping the relations accordingly.

• Normalization of relations beyond 3NF i-e. Incorporating the conditions for BCNF, 4NF

and 5NF.

6.4.1 WEAK ENTITY/STRONG ENTITY:

 If X and Y are entities and each instance of Y must have a corresponding instance of X,

it means that Y entity cannot exist without some X entity. A Y cannot enter the database unless

its corresponding X is there, and if the X is dropped from the database, the Y must be dropped

as well. X is referred to as Strong, Parent or Dominant Entity and Y as the Weak, Child or

Dependent entity.

74

74

 When the cardinalities are specified in the relationships, we are taking into account the

dependency of one entity on the other, but there are no distinguishing features available for

identifying these strong and weak entities as far as the view goes. This can be accomplished by

drawing another rectangle outside or inside the rectangle already drawn for the Entity, to

represent weak entity.

6.4.2 UNARY/TERNARY RELATIONSHIPS:

 As a relationship can involve more than two entity sets, or it may exist for a single

entity only, the features of unary and ternary relations can be incorporated to get a very

comprehensive CASE Tool.

6.4.3 ATTRIBUTES WITH RELATIONSHIPS:

 Attributes can be attached with relationships as well. This feature is not included in this

project. This should be taken into account as well in the future designs.

6.4.4 AGGREGATION/GENERALIZATION:

 Two types of abstractions can further be added in ERDs, called aggregation and

generalization. These abstractions make the model more powerful by allowing the designer to

express concepts that are not easily included in the basic model.

 The purpose of any type of abstraction is to allow different perceptions of the objects

under discussion. The aggregation abstract allows the designer to either decompose objects ,

breaking them into more detailed components, or to aggregates objects, grouping them together

into higher level objects. Decomposition, is simply the opposite process to aggregation. Both

processes are considered part of the aggregation abstract.

 Another powerful abstraction is generalization. Generalization allows objects of

different types to be considered as examples of a higher-level set or, conversely, objects in a

75

75

set to be categorized into specialized types. Breaking up a set of objects into the various types

it contains, or categorizing the objects in the set according to their roles in a relationship, is

called Specialization. Its inverse is generalization, which means combining different types of

objects into a higher-level set.

6.4.5 MAPPING:

 Including the above mentioned features in the ERD would result in some changes in

mapping to be incorporated as well.

 In converting an ERD into a relational model, strong entities become tables having a

column for each of the entity’s attributes. Tables of weak entities have columns for the key

attributes of the corresponding strong entity. Relationship tables have columns for the primary

key attributes of the related entities and a column for each descriptive attribute of the

relationship. Many-to-many relationships require a separate table, but one-to-one and one-to-

many relationships can often be represented by foreign keys, instead of by separate tables.

 When generalization has been used, there may be no table for the higher level entity,

but each lower level entity table can contain columns for all the attributes of the higher level

entity in addition to the columns for their own attributes. Alternatively, there may be a table for

the higher-level entity that contains its attributes and the tables for the lower-level entities

contain columns for the key of the higher-level entity plus columns for their own attributes.

Aggregation is not represented explicitly by tables.

6.4.6 NORMALIZATION BEYOND 3NF:

 Although normalization till 3NF is sufficient for relations with a single candidate key,

but it is deficient in cases where there are multiple candidate keys and where candidate keys

are composite and overlapping. Therefore, an improved definition of third normal form, named

for its developer, Boyce and Codd, was formulated to take care of all the cases.

76

76

 A relation is in Boyce-Codd Normal Form (BCNF) if and only if every determinant is a

candidate key.

 So for a relation with one candidate key, 3NF and BCNF are equivalent.

 Similarly a relation is in 4NF, if and only if it is in BCNF and there are no multivalued

dependencies.

 A relation is in 5NF if no remaining nonloss projections are possible, except the trivial

one in which the key appears in each projection.

77

77

SUMMARY OF THE PROJECT

 In this project CASE Tools are used to develop ERDs and generate SQL code. A

Database is designed in various stages. The staged approach to database design is a top-down

approach that allows the designer to develop a logical model that mirrors the operations of the

organization. Standard database architecture uses three levels of abstraction: external, logical

and internal.

 This project focuses on the logical model. The logical model is the heart of the

database. A good logical design is easy to implement and supports the desired external views.

Logical design is a challenging and rewarding task. The design of the project starts with the

design of the Entity Relationship Diagram (ERD), which are used to show entity sets, attributes

of entities, relationship sets, and describe attributes relationships. A relation is any subset of

the Cartesian product of the domains of the attributes. Properties of database relations are:

each cell is single-valued, column names are distinct, column values come from the same

domain, column order is immaterial, row order is immaterial, and there are no duplicate rows.

 Here the symbols for entities, attributes and relationships are treated as objects.

Whenever a symbol is drawn, an instance of the respective class is created. This ERD is than

mapped onto relational model. The mapping is quite simple, because here attributes are

attached with entities only and not with relationships. As is the case with relations, it must have

atleast one primary key. Entity integrity is a constraint that states that no attribute of a primary

key may be null. These features are also incorporated in the design.

Then the relations are normalized. The relations are considered to be in First Normal

Form by default (as it can be checked only when the data is placed in the database). The

normalization goes only till the Third Normal Form. After normalization has been completed

the SQL code is generated, once the user has specified the type of each Attribute.

78

78

REFERENCES

• Ricardo, Catherine. Database Systems: Principles, Design and Implementation. New York:
Macmillan Publishing Company, 1990.

• Tsichritzis, D. and F. Lochovsky. Data Models. Englewood Cliffs, NJ: Prentice-Hall, 1982.
• Oestereich, Bernd. Developing Software with UML: Object-Oriented analysis and Design

in Practice. Addison- Wesley, 1997.
• Shaw, Robert and Osier, Dan. Teach Yourself MFC in 21 days. SAMS Publishing, 1995.
• Young, Michael J. Mastering Visual C++ 6, BPB Publications, 1998.
• Maruzzi, Stefano. The Microsoft Windows 95: Developers guide. Ziff-Davis Press, 1996.
• Pressman, Robert S. Software Engineering: A Practitioner’s Approach. McGraw-Hill

Publications, 1997.

