
I

Mobile Phone Self Encryption

By

Yawar Khan

Hamza Yousaf

Ali Anwar Siddiqui

Submitted to the Faculty of Computer Software Engineering

National University of Sciences and Technology, Islamabad in partial fulfillment

For the requirements of a B.E. Degree in Computer Software Engineering

JUNE 2018

II

ABSTRACT

Mobile Phone Self Encryption

This Application is aimed to provide a platform for the end user to store data in
encrypted form on an Android device and also provide backup of data.

This project allows users to store sensitive data on their mobile phones without
having to worry about its confidentiality even if the mobile phone is lost. This
system is developed so that employees and other mobile users can store and
operate on sensitive data on their mobile phones without having to worry of it
being leaked. This software project concentrates on securing data on mobile
phones by storing it in an encrypted form. This data is encrypted with a stream
cipher whose key is stored on a trusted server. When the mobile device is lost, it
sends a report to the server and the server then destroys the respective key so that
the data on the mobile can never be decrypted and remains confidential.

III

CERTIFICATE FOR CORRECTNESS AND APPROVAL

Certified that work contained in the thesis – Mobile Phone Self Encryption carried out by Yawar
Khan, Hamza Yousaf and Ali Anwar under supervision of A/P Mr. Mian Muhammad Waseem
Iqbalfor partial fulfilment of Degree of Bachelor of Software Engineering is correct and
approved.

 Approved by

 A/P Mr. Mian Muhammad Waseem Iqbal

 CSE DEPARTMENT MCS

DATED:

IV

DECLARATION

No portion of the work presented in this dissertation has been submitted in support
of another award or qualification either at this institution or elsewhere.

V

 DEDICATION

In the name of Allah, the Most Merciful, the Most Beneficent

To our parents, without whose support and cooperation,

a work of this magnitude would not have been possible

To our supervisor A/P Mr. Mian Muhammad Waseem Iqbal who

has given us great support and valuable suggestions throughout

the implementation process.

And finally, to our Friends and siblings for their encouragement.

VI

ACKNOWLEDGEMENTS

There is no success without the will of ALLAH Almighty. We are grateful to
ALLAH, who has given us guidance, strength and enabled us to accomplish this
task. Whatever we have achieved, we owe it to Him, in totality. We are also grateful
to our parents and family and well-wishers for their admirable support and their
critical reviews. We would like to thank our supervisor. A/P Mr. Mian Muhammad
Waseem Iqbal, for his continuous guidance and motivation throughout the course
of our project. Without their help we would have not been able to accomplish
anything.

VII

Table of Contents

List of Figures.. X

Chapter 1: Introduction ... 1

1.1 Overview ... 1

1.2 Problem Statement .. 1

1.3 Approach ... 1

1.4 Scope ... 1

1.5 Objectives ... 2

1.6 Deliverables .. 2

1.7 Overview of the document .. 2

1.8 Purpose of the document:.. 3

Chapter 2: Literature Review .. 3

Chapter 3: Software Requirement Specification ... 4

3.1Introduction .. 4

3.2 Overall Description ... 5

3.2.1 Product Perspective .. 5

3.2.2 Product Functions .. 5

3.2.3 User Classes and Characteristics ... 5

3.2.4 Operating Environment .. 6

Software requirements: ... 6

3.2.5 Design and Implementation Constraints .. 6

3.2.6 User Documentation .. 6

3.2.7 Assumptions and Dependencies .. 6

3.3 External Interface Requirements ... 7

3.3.1 User Interfaces ... 7

3.3.2 Software Interfaces .. 8

3.4 System Features .. 8

3.5 Other Nonfunctional Requirements .. 10

VIII

3.5.1 Performance Requirements .. 10

3.5.2 Security Requirements ... 10

3.5.4 Software Quality Attributes ... 10

Chapter 4: Design and Development ... 13

4.1 INTRODUCTION: ... 13

4.2 Scope of the Development Project .. 13

4.3 System Architecture Description .. 14

4.3.1OVERVIEW OF MODULES/COMPONENTS ... 14

4.3.2 Structure and Relationships .. 14

Use Case Diagram .. 15

Sequence Diagrams ... 24

Logical View (State Transition Diagram) ... 33

Android Activity Lifecycle .. Error! Bookmark not defined.

User Interface .. 42

4.3.2 Detailed Description of Components ... 47

4.4 Reuse and Relationship to other products .. 54

4.5 Design and Tradeoffs ... 54

Chapter 5: Testing and Evaluation ... 55

5.1 Introduction ... 55

5.2 Test Items ... 55

5.3 Features tested .. 56

5.4 Approach .. 57

5.5 Item Pass/Fail Criteria .. 57

5.6 Suspension Criteria and Resumption Requirements ... 58

5.7 Test Deliverables ... 58

5.8 Environmental Needs ... 83

Hardware ... 83

Software .. 83

5.9 Responsibilities, Staffing and Training Needs ... 83

Responsibilities ... 83

Skills ... 83

5.10 Risks and contingencies .. 84

Chapter 6: Future Work .. 84

Chapter 7: Conclusion .. 85

IX

Bibliography .. 86

Appendix (Proposal) ... 87

Pseudo code for components .. 88

HomeActivity.java .. 97

MainActivity.java .. Error! Bookmark not defined.

X

List of Figures

Figure 1 Interface ... 17

Figure 2 General Working of the system Error! Bookmark not defined.

Figure 3 Use Case Diagram .. Error! Bookmark not defined.

Figure 4 Sequence diagram 1 ... 34

Figure 5 Sequence diagram 2 ... 35

Figure 6Sequence diagram 3 .. 35

Figure 7 Sequence diagram 4 ... 36

Figure 8 Sequence diagram 5 ... 36

Figure 9 Sequence diagram 6 ... 37

Figure 10 Sequence diagram 7 ... 37

Figure 11 Sequence diagram 8 ... 38

Figure 12Overall System Sequence diagram .. 40

Figure 13 State Transition Diagram ... 43

Figure 14 Activity Diagram ... 45

Figure 15Class Diagram .. 52

Figure 16Main Screen .. 53

Figure 17Menu .. Error! Bookmark not defined.

Figure 18Encrypt/Decrypt Image... 54

Figure 19Encrypt/Decrypt Video .. Error! Bookmark not defined.

Figure 20Settings ... 55

XI

Figure 21Lock Apps Screen ... 56

Figure 22 Signup .. 57

1

Chapter 1: Introduction

1.1 Overview
This poject allows users to store sensitive data on their mobile phones without having to worry
about its confidentiality even if the mobile phone is lost. This system is developed so that
employees and other mobile users can store and operate on sensitive data on their mobile phones
without having to worry of it being leaked. This software project concentrates on securing data
on mobile phones by storing it in an encrypted form. This data is encrypted with a stream cipher
whose key is stored on a trusted server. When the mobile device is lost, it sends a report to the
server and the server then destroys the respective key so that the data on the mobile can never be
decrypted and remains confidential.

1.2 Problem Statement

Smart phone usage is increasing day by day in every sector. Its growing so fast. The world is
becoming more digital. They do make life of everyone easier. With this increase in usage, the
vulnerabilities also increase with time. Smart phones are more prone to attacks, which is
becoming a real problem for smart phone users now-a-days. So, what should we do? Stop smart
phone usage? No, that doesn’t sound like a solution. We can provide more security, than there is
today, for smart phones to overcome this problem.

1.3 Approach

 We are working with data that is selected by users that can be Images, Videos, Audio,
Documents, Messages and Contacts, respectively. Selected data will go through stream cipher
and will be encrypted. It will be saved in encrypted form and will be removed/hidden from its
location. Also, this data will be saved on server in encrypted form to provide backup incase
mobile phone is lost. We aim to provide an application that can provide confidentiality and
integrity.

1.4 Scope

2

This project will assist users who are most concerned with their mobile phone’s security and
want their data to remain confidential. It will be done by securing the data of the mobile phones
in an encrypted form. This data is encrypted with a stream cipher whose key is stored on a
trusted server. When the mobile device is lost, the user sends a report to the server simply by
logging into his account to set the status of phone as “Lost” and the server then destroys the
respective key so that the data on that mobile phone can never be decrypted and remains
confidential. In this way, user does not have to worry about the confidential data even if the
mobile phone is lost.

1.5 Objectives

The Objectives of this project are following:

• All mobile data will be in encrypted form. User doesn’t have to worry about data theft.
• Data Remains Secured: - Data stored in database is in encrypted format, so malicious

user would not able to understand the data even if hacks the database.
• Data Retrieval: - User can retrieve his confidential data by logging in to the system
• Access from anywhere: - User can access the data even if his mobile phone is lost

anywhere at any time.

1.6 Deliverables

1.7 Overview of the document

This document shows the working of our application Mobile Phone Self Encryption. It starts off
with the system architecture which highlights the modules of the software and represents the

Table 1

Sr. Tasks Deliverables

1 Literature Review Literature Survey

2 Requirements Gathering SRS Document

3 Application Design Design Document (SDS)

4 Implementation Implementation on computer with a live test to show
the accuracy and ability of the project

5 Testing Evaluation plan and test document

6 Deployment Complete application along with

3

system in the form of component diagram, Use Case Diagram, Sequence Diagram and general
design of the system. Then we move on to discuss the detailed Description of all the components
involved. Further we discuss the dependencies of the system and its relationship with other
products and the capacity of it to be reused.

1.8 Purpose of the document:

This document aims to elaborate the idea and design of the project that is Mobile Phone Self
Encryption. This document will highlight all the specifications of our project i.e. how it will be
used, what will be the scenario in which the project will be useful. This document will help in
defining functional and non-functional requirements.

Chapter 2: Literature Review

There was a lot research work done and also different projects were made that were based on the
idea of Stream cipher-based encryption following is a detailed description of research work and
projects previously carried out in this context.

 AMIT BANERJEE, MAHAMUDUL HASAN, MD. AUHIDUR
RAHMAN, AND RAJESH CHAPAGAIN

Department of Computer Science, South Asian University, New Delhi 110021, India
Corresponding author: Mahamudul Hasan (m.hasan@students.sau.ac.in)

 CLOAK: A Stream Cipher Based Encryption Protocol for Mobile Cloud Computing

 IEEE Access.

 Received July 26, 2017, accepted August 4, 2017, date of publication August 25, 2017,
date of current version September 27, 2017.

Digital Object Identifier 10.1109/ACCESS.2017.2744670

 Andreas Klein
 Dept. of Pure Mathem. & Computer Algebra State University of Ghent, Ghent, Belgium

Stream Ciphers

Springer London Heidelberg New York Dordrecht

4

ISBN 978-1-4471-5079-4(eBook)

Library of Congress Control Number: 2013936538

Mathematics Subject Classification: 94A60, 68P25, 11T71

• Software Projects
Following are some project based on encryption:

o Text Secure Private Messenger (Free)
o Red Phone: Private Calls (Free)
o Crypt4All Lite (AES) - (Free File Encryption Software)
o Orbot: Proxy with Tor (Free Privacy and Online Anonymity)
o AppLock (Free Application Lock Utility)
o BitVise XTS-AES Based Disk Encryption Software

Conclusion
Keeping our private data secure, it means only user can access and use the data. The purpose of
this project is to allow users to store sensitive data on their mobile phones without having to
worry about its confidentiality even if the mobile phone is lost. This system is developed so that
employees and other mobile users can store and operate on sensitive data on their mobile phones
without having to worry of it being leaked. Security is the main purpose of the project and
security provided using encryption scheme.

Chapter 3: Software Requirement Specification

3.1Introduction

The purpose of this part is to describe the project titled “Mobile Phone Self Encryption”. This
part contains the functional and non-functional requirements of the project. It contains the
guidelines for developers and examiners of the project.

This purpose of this project is to allow users to store sensitive data on their mobile phones
without having to worry about its confidentiality even if the mobile phone is lost. This system is

5

developed so that employees and other mobile users can store and operate on sensitive data on
their mobile phones without having to worry of it being leaked.

3.2 Overall Description

3.2.1 Product Perspective

Data needs to be secured just like any of your other business assets, like your property, your
stock/merchandise, your hardware, etc. Depending on the sort of data you’re storing, there may
well be security and privacy regulations to follow, particularly when it comes to personal data. If
the personal data gets in hand of a hacker he could black mail the person using that person. In
business the financial data being in wrong hands could lead to huge loses to the company and
much more. This shows how valuable the data is and therefore there is a need for some
mechanism to secure this valuable data. Mobile phone self-encryption using stream cipher
encrypts all of the data and even when the phone is lost the hacker cannot get hold of the data as
the data is in encrypted form and the key is on the trusted server. We can also delete the key
from the server upon mobile phone loss so that there is no way left to recover the data on the lost
phone.

3.2.2 Product Functions

The mobile phone self-encryption have the following functionalities:

• We will also provide a website where user can login.

• The user can lock the phone from the website and sync data.

• The data will be stored in a database in encrypted form.

• The data on the mobile phone and the server will be synced every time the data is
modified, deleted or added.

3.2.3 User Classes and Characteristics

Following are the user classes and their brief description.

• Company Employees

6

Employees that are working in a company are having very important data of the
company in the form of emails which needs protection.

• Government Officials

Government Employees have secret Intel in their phones which needs protection from
hackers.

• General Public

Securing personal data like photos, contacts, emails etc. is everyone’s need nowadays.

3.2.4 Operating Environment

The operating environment required for this project is:

Android Studio

Software requirements:

OS: Android Operating System

3.2.5 Design and Implementation Constraints

Following are the constraints of design and implementation in our project

• Mobile Phone Self-encryption is based on client-server architecture that is Mobile
phone act as client and Firebase act as server. They are connected through the internet.

• The user must decrypt all the files before decrypting the key.
• If the user changes the key he cannot retrieve the data on server because it’s with old

key so it cannot be decrypted.

3.2.6 User Documentation

• A user manual will be provided which will help new users to get started with the Mobile
Phone self-encryption. The user manual will provide the instructions on how to work
with this Mobile Phone self-Encryption.

• A summary will also be provided to the user which will highlight the features and
limitations of this language

3.2.7 Assumptions and Dependencies

7

• The mobile phone needs to have internet access to be able to get synced with the server.

• The amount of data to be encrypted depends on the storage space at the server.

• The user has to login in to the server to delete data on his phone when it gets lost.

3.3 External Interface Requirements
3.3.1 User Interfaces

The System comprises of an android based application, using java and XML, which shall provide
a graphical user interface for user friendly environment. The user would be asked for input i.e.
select images etc. that need to be processed.

The user interface for the android application of the System, shall be compatible to all android
devise but for best user experience the following versions are preferable

 Jelly beans 4.1.2

 ICS 4.1.1

User Interface:

8

 Figure 3.3.1 Interfaces

3.3.2 Software Interfaces

 Android App will be installed on android device with android version Jelly beans
4.1.1 or later.

 The android app would be built using Android Studio.

 For this system, following API and external libraries will be used:

- Google APIs

- Android APIs

3.4 System Features

SF-1 Decrypt

Description The user would be allowed to decrypt the selected file

Priority High

Pre-Condition User has an account and the application is running

9

Stimulus/Response File is decrypted

Post-Conditions Selected file is decrypted, saved and encrypted file is deleted

Risk Medium

 Functional Requirements:

 REQ-1 App shall decrypt the file and save it in original form.

SF-2 Encrypt

Description The user would be allowed to encrypt selected/desired data

Priority High

Normal Course User add a file and file is encrypted.

Pre-Condition User has files on the device to be encrypted and is logged in

Stimulus/Response Data would be encrypted

Post-Conditions Selected file is encrypted, saved and original file is deleted

Risk High

 Functional Requirements:

 REQ-2 App shall encrypt the data, save and delete original file.

SF-3 Synchronization

Description The user would be allowed to upload data on server for backup

Priority High

Pre-Condition User has a working internet connection

Normal Course All user data is synchronized with the server

Post-Condition The data on phone and server is identical

Alternate Course Error occurred if user connection to the internet is interrupted

Post-Condition The data on phone and server is identical

Risk Medium

 Functional Requirements:

10

 REQ-3 Android phone must be connected with the internet.

SF-4 Update Status

Description The user would be allowed to upload data on server for backup

Priority High

Normal course User sets the status of his/her mobile phone

Pre-condition User has an account and is logged in from browser

Post-condition The status of the mobile phone is updated

Risk Low

3.5 Other Nonfunctional Requirements

3.5.1 Performance Requirements

• The system shall not crash accidently even if a program fails to execute.
• The response time of the system shall be less than 100ms

3.5.2 Security Requirements

• The password of the user to login into the server will contain letters A-Z and a-z and
alphanumeric and must be minimum 8 characters.

3.5.4 Software Quality Attributes

Usability

The application will be easy to operate for any user. The graphical user interface will be
designed, organized and presented in a manner that is both visually appealing and easy to use.

Accuracy

11

To ensure accuracy and correctness of file, the file processing algorithms will be written with no
tolerance for error.

Availability

The application will available to the user until the phone is in working state and the application is
installed and configured properly.

Flexibility

The design and architecture of the application will be flexible enough for catering any new
requirements, if any at some later stage or for the application enhancement.

Data Integrity

If the application crashes during any phase, the input images will stay safe in phone’s
memory/SD card.

12

Figure 3.5

13

Chapter 4: Design and Development

4.1 INTRODUCTION:

This document includes software design for Mobile Phone Self-Encryption. It specifies the

detailed architectural design of Mobile Phone Self-Encryption which is being developed. It will

act as a guideline for developers and all the other stakeholders throughout the development.

Document include classes and their inter-relationships, use cases with detailed descriptions,

sequence diagrams, activity diagrams and various others.

This document is intended for developers, testers, users, documentation writers, project clients,

project supervisor and project evaluators. A copy of this document will be made available to all

stakeholders.

4.2 Scope of the Development Project

This project will assist users who are most concerned with their mobile phone’s security and

want their data to remain confidential. It will be done by securing the data of the mobile phones

in an encrypted form. This data is encrypted with a stream cipher whose key is stored on a

trusted server. When the mobile device is lost, the user sends a report to the server simply by

logging into his account to set the status of phone as “Lost” and the server then destroys the

respective key so that the data on that mobile phone can never be decrypted and remains

confidential. In this way, user does not have to worry about the confidential data even if the

mobile phone is lost.

A stream cipher is a symmetric key cipher where plaintext digits are combined with

a pseudorandom cipher digit stream (key stream). In a stream cipher, each plaintext digit is

encrypted one at a time with the corresponding digit of the key stream, to give a digit of the

https://en.wikipedia.org/wiki/Symmetric_key_algorithm
https://en.wikipedia.org/wiki/Cipher
https://en.wikipedia.org/wiki/Pseudorandom
https://en.wikipedia.org/wiki/Plaintext
https://en.wikipedia.org/wiki/Numerical_digit

14

cipher text stream. Since encryption of each digit is dependent on the current state of the cipher.

In practice, a digit is typically a bit and the combining operation an exclusive-or (XOR).

4.3 System Architecture Description

This Section overview of application, its higher and lower levels details and user interfaces.

4.3.1OVERVIEW OF MODULES/COMPONENTS
 Here we will give brief overview of

all the modules.

4.3.1.1 Add Module: This module allows users to encrypt data on their phones.

4.3.1.2 Remove Module: This module allows users to decrypt data on their

phones.

4.3.1.3 Sync Module: This module allows users to sync files with server for

backup.

4.3.1.4 Settings Module: This module allows users to set key for

encryption/decryption and set time for synchronization.
4.3.1.5 Login Module: This module allows users to login to their respective

accounts that are registered on the server.
4.3.1.6 Registration Module: This Module allows users to register
themselves on the server and create an account.

4.3.2 Structure and Relationships

This section covers the overall technical description of Mobile Phone Self Encryption. It shows

the working of application in perspective of different point-of-views and also shows relationships

between different components.

https://en.wikipedia.org/wiki/Bit
https://en.wikipedia.org/wiki/Exclusive-or

15

Use Case Diagram

Fig. 4.3.2.1:Use Case

Actors

Primary Actor(s): Application User Secondary Actor(s): Server

Use Cases

1. Login

2. Signup

16

3. Open Gallery

4. Open Messages

5. Open Files

6. Open Contacts

7. Add

8. Remove

9. Encrypt

10. Decrypt

11. Logout

12. Sync

13. Configure Settings

14. Update Status

Use Case Description

Use Case 1: Login

Use case name Login

Primary actor Deploying Person

Secondary actor N/A

Normal course User logs in successfully

Alternate course Error occurred due to wrong username or wrong password

Pre-condition User has an account and the application is running

Post-condition Menu is displayed to the user

Extend N/A

Include Signup

Assumptions User has a working internet connection

17

Use Case 2: Sign Up

Use case name Sign Up

Primary actor Deploying Person

Secondary actor N/A

Normal course User creates account successfully

Alternate course Error occurred due to invalid username or username already taken

or password length less than 8 characters

Pre-condition User has the app installed and running

Post-condition User is created.

Extend N/A

Include N/A

Assumptions User has a working internet connection

Use Case 3: Add

Use case name Add

Primary actor Deploying Person

Secondary actor N/A

Normal course User adds a file and the file is encrypted

Alternate course Error occurred if the file format is not supported or user is out of

memory

Pre-condition User has files on the device to be encrypted and is logged in

Post-condition Selected file is encrypted, saved and original file is deleted

Extend N/A

18

Include Encrypt

Assumptions User has selected a valid file and has enough memory to save

encrypted file

Use Case 4: Remove

Use case name Remove

Primary actor Deploying Person

Secondary actor N/A

Normal course User removes the files and the file is decrypted

Alternate course Error occurred if the user is out of memory

Pre-condition User has an account and the application is running

Post-condition Selected file is decrypted, saved and encrypted file is deleted

Extend N/A

Include Decrypt

Assumptions User has enough memory to save decrypted file

Use Case 5: Sync

Use case name Sync

Primary actor Deploying Person

Secondary actor N/A

Normal course All user data is synchronized with the server

Alternate course Error occurred if user connection to the internet is interrupted

Pre-condition User has a working internet connection

19

Post-condition The data on phone and server is identical

Extend N/A

Include N/A

Assumptions User has an account and a working internet connection, and the

application is running

Use Case 6: Configure Settings

Use case name Configure Settings

Primary actor Deploying Person

Secondary actor N/A

Normal course The key is configured, sync time is set

Alternate course Error occurred if invalid key entered (invalid length)

Pre-condition User is logged in

Post-condition Key is set and sync time is set

Extend N/A

Include N/A

Assumptions User has the app running

Use Case 7: Open Messages

Use case name Open Messages

Primary actor Deploying Person

Secondary actor N/A

Normal course User clicks “messages” button and message activity is displayed

20

Alternate course N/A

Pre-condition User has an account and the application is running

Post-condition Message activity shown

Extend N/A

Include N/A

Assumptions User has an account and the application is running

Use Case 8: Open Gallery

Use case name Open Gallery

Primary actor Deploying Person

Secondary actor N/A

Normal course User clicks “gallery” button and gallery activity is displayed

Alternate course N/A

Pre-condition User has an account and the application is running

Post-condition Gallery activity shown

Extend N/A

Include N/A

Assumptions User has an account and the application is running

Use Case 9: Open Contacts

Use case name Open Contacts

Primary actor Deploying Person

Secondary actor N/A

21

Normal course User clicks “contacts” button and contact activity is displayed

Alternate course N/A

Pre-condition User has an account and the application is running

Post-condition Contact activity shown

Extend N/A

Include N/A

Assumptions User has an account and the application is running

Use Case 10: Open Files

Use case name Open Files

Primary actor Deploying Person

Secondary actor N/A

Normal course User removes the files and the file is decrypted

Alternate course N/A

Pre-condition User has an account and the application is running

Post-condition Selected file is decrypted, saved and encrypted file is deleted

Extend N/A

Include N/A

Assumptions User has an account and the application is running

Use Case 11: Encrypt

Use case name Encrypt

Primary actor Deploying Person

22

Secondary actor N/A

Normal course The file is encrypted successfully

Alternate course N/A

Pre-condition User has an account and the application is running, user has files to

encrypt and has free memory

Post-condition Selected file is encrypted, saved and original file is deleted

Extend N/A

Include N/A

Assumptions User has an account and the application is running, user has soe

free memory

Use Case 12: Decrypt

Use case name Decrypt

Primary actor Deploying Person

Secondary actor N/A

Normal course The file is decrypted successfully

Alternate course Error occurred if the user is out of memory

Pre-condition User has an account and the application is running, user has files to

decrypt and has free memory

Post-condition Selected file is decrypted, saved and encrypted file is deleted

Extend N/A

Include N/A

Assumptions User has an account and the application is running, user has soe

free memory

23

Use Case 13: Log Out

Use case name Log Out

Primary actor Deploying Person

Secondary actor N/A

Normal course User logged out successfully

Alternate course N/A

Pre-condition User has an account and the application is running, and user is

logged in

Post-condition Logged out and log in screen shown

Extend N/A

Include N/A

Assumptions User has an account and the application is running

Use Case 14: Update Status

Use case name Update Status

Primary actor Deploying Person

Secondary actor N/A

Normal course User sets the status of his/her mobile phone

Alternate course N/A

Pre-condition User has an account and is logged in from browser

Post-condition The status of the mobile phone is updated

24

Extend N/A

Include N/A

Assumptions User has a working internet connection

Sequence Diagrams

Following sequence diagrams show the sequence of activities performed in all use cases

described above.

Figure 5– Sign up Sequence Diagram

25

Figure 6 – Login Sequence Diagram

Figure 7 – Messages Sequence Diagram

26

Figure 8 – Contacts Sequence Diagram

Figure 9 – Gallery Sequence Diagram

27

Figure 10 – Files Sequence Diagram

Figure 11 – Add Sequence Diagram

28

Figure 12 – Remove Sequence Diagram

Figure 13 – Sync Sequence Diagram

29

Figure 14 – Logout Sequence Diagram

Figure 15 – Settings Sequence Diagram

30

Figure 16 - Update Status Sequence Diagram

31

Figure 17 – Overall System Sequence Diagram

Class Description

MainMenuView This is main menu viewclass of the System.

It creates the interface for the main menu which includes Messages

Button, Contacts Button, Gallery Button, Sync Button, Files

Button, Settings Button and Logout Button and Method sync()

MainController It is the main Controller class. It constructs all the necessary

elements for the application to run

It invokes the events by making function calls to different methods

FileManager, ActivityMenu and MainMenuView

ActivityWindow This is the class for handling all activities displayed to user. It has

four sub classes i.e. MessagesActivityWindow,

FilesActivityWindow, GalleryActivityWindow,

ContactsActivityWindow

SettingsActivityWindow This class enables the user to configure settings i.e. Enter key for

encryption, set passcode for the application to start and also specify

which times can the application synchronize data with the server

Cipher This class is responsible to generate key stream using a standard

algorithm which is then used to encrypt files. It needs the key

entered by the user to generate key stream

LoginController This class is responsible for managing login activity and how the

user is verified

32

LoginWindow This class has all the necessary elements to make the interface for

login window

SignupController This class is used to create user accounts by creating instances of

‘ApplicationUser’ class. The data is sent to the server and saved in

the database

SignupWindow This class has all the necessary elements to make the interface for

signup window

MessagesActivityWindow This is a subclass of the class “ActivityWindow” and it handles

messages activity. It is used to display messages view so that the

user can add messages to it and secure it

GalleryAvtivityWindow This is a subclass of the class “ActivityWindow” and it handles

gallery activity. It is used to display gallery view so that the user

can add images and videos to it and secure it

ContactsActivityWindow This is a subclass of the class “ActivityWindow” and it handles

contacts activity. It is used to display comtacts view so that the user

can add contacts to it and secure it

FilesActivityWindow This is a subclass of the class “ActivityWindow” and it handles

files activity. It is used to display files view so that the user can add

files to it and secure it

FileManager This class handles all the activities which are concerned with

getting the data (files) from mobile phone.

Validation This class is used to validate users’ accounts by checking the

username and password combination

ApplicationUser This class contains all the information about users that are

registered i.e. username, password.

33

Logical View (State Transition Diagram)

The State Transitions occurring in the application are shown in Fig. 4.3.2.8 below:

 Fig. 4.3.2.8:State diagram for Mobile Phone Self Encryption

34

Dynamic view (Activity Diagram)In activity diagram, the dynamic view of

the system is shown. All the activities are shown concurrently with their respective

start and end states.

35

Figure 18 – Signup Activity

36

Figure 19 – Login Activity

37

Figure 20 – Add Activity

38

Figure 21 – Remove Activity

39

Figure 22 – Sync Activity

40

Figure 23 – Update Status Activity

41

Figure 24 – Configure Settings Activity

42

Class Diagram

 Fig. 4.3.2.10:Class diagram used Mobile Phone Self Encryption

User Interface

Main Screen Activity would be displayed to the user. Here the user can choose from 4 different

options. He canLogin. Can access Offline Mode. Can Signup and can select Lock Apps feature

43

 Fig. 4.3.2.15:Main Screen

By Clicking on the Login, the user would be asked for credentials (Email and Password). After

successful login, Menu will be displayed.

44

 Fig. 4.3.2.16:Menu

User can select Messages, Contacts, Files(Images and Videos), Settings and Logout

 Fig. 4.3.2.17:Encrypt/Dectypt Images Screen

45

 Fig. 4.3.2.18:Encrypt/Decrypt Videos Screen

46

 Fig. 4.3.2.19:Settings Screen

The user can change offline pin and also change token which is used to wipe data in future.

 Fig. 4.3.2.20:Lock Apps Screen

User can turn on the lock to lock any app.

47

 Fig. 4.3.2.21: Signup Screen

4.3.2 Detailed Description of Components
This section describes in detail all the modules of Mobile Phone Self-encryption.

These modules have been assigned responsibilities. Modules are further sub classified into

components.

4.4 Add Module: This module performs the encryption for Mobile Self

Encryption Application i.e. it encrypts messages, contacts, Gallery (images) and

Files (Documents, videos, notes etc.). This module provides the main functionality

of the project.

48

Identification Name: Add

Type Component

Purpose This component fulfils following requirement from Software Requirements

Specification Document:

Add

Requirement

The system shall be able to encrypt Messages, Contacts, Gallery (images)

and Files (Documents, videos, notes etc.) and save it in encrypted form on

Mobile Self Encryption Application respectively.

Description

This feature enables the user to encrypt their Messages, Contacts, Gallery

(images) and Files (Documents, videos, notes etc.) and save them on

Mobile Application and sync with server.

Function This component of system gets Messages, Contacts, Gallery (images) and

Files (Documents, videos, notes etc.) from Mobile phones Messages,

contacts, Gallery (images) and Files (Documents, videos, notes etc.) for

encryption.

Subordinates It has no subordinates

Dependencies This component is independent.

Interfaces N/A

Resources Software: Open source android studio libraries, Android SDK, Java

libraries.

Processing Component would get Messages, Contacts, Gallery (images) and Files

(Documents, videos, notes etc.) from mobile phone’s Messages, Contacts,

Gallery (images) and Files (Documents, videos, notes etc.) and encrypt it.

Data This component uses following information of the application

49

Messages, Contacts, Images, Videos, Files etc.

4.5 Remove Module:This module performs the decryption for Mobile Self

Encryption Application i.e. it decrypts messages, contacts, Gallery (images) and

Files (Documents, videos, notes etc.). This module provides the main functionality

of the project.

Identification Name: Remove

Type Component

Purpose This component fulfils following requirement from Software

Requirements Specification Document:

Remove

Requirement

The system shall be able to decrypt Messages, Contacts, Gallery (images)

and Files (Documents, videos, notes etc.) and save it in decrypted form on

Mobile Phone.

Description

This feature enables the user to decrypt the encrypted Messages, Contacts,

Gallery (images) and Files (Documents, videos, notes etc.) and then save

these decrypted Messages, Contacts, Gallery (images) and Files

(Documents, videos, notes etc.) on Mobile Phone.

Function This component of system gets encrypted Messages, Contacts, Gallery

(images) and Files (Documents, videos, notes etc.) from applications

Messages, Contacts, Gallery (images) and Files (Documents, videos, notes

etc.) for decryption and decrypt it.

Subordinates It has no subordinates

50

Dependencies This component is independent.

Interfaces N/A

Resources Software: Open source android studio libraries, Android SDK, Java

libraries.

Processing Component would get encrypted Messages, Contacts, Gallery (images)

and Files (Documents, videos, notes etc.) from application Messages,

Contacts, Gallery (images) and Files (Documents, videos, notes etc.) and

decrypt encrypted message.

Data This component uses following information of the application

Messages, Contacts, Images, Videos, Files etc.

4.6 Sync Module:This module allows users to sync files with server.

Identification Name: Sync

Type Component

Purpose This component fulfils following requirement from Software Requirements

Specification Document:

Add

Requirement

The system shall be able to sync encrypted Messages, Contacts, Gallery

(images) and Files (Documents, videos, notes etc.) saved on Mobile Phone

with server.

Description

This feature enables the user to create back up of their encrypted Messages,

Contacts, Gallery (images) and Files (Documents, videos, notes etc.) on

51

server.

Function This component of system gets encrypted Messages, Contacts, Gallery

(images) and Files (Documents, videos, notes etc.) from Mobile

Applications and sync it with server

Subordinates It has no subordinates

Dependencies This component is dependent on add and remove.

Interfaces N/A

Resources Software: Open source android studio libraries, Android SDK, Java

libraries and Firebase

Processing Component would sync messages, contacts, images, videos, files etc.

Data This component uses following information of the application

Messages, Contacts, Images, Videos, Files etc.

4.7 Settings Module: This module allows users to set key for

encryption/decryption and set time for synchronization.

Identification Name: Settings

Type Component

Purpose This component fulfils following requirement from Software Requirements

Specification Document:

Add

Requirement

The system shall be able to get key from user and set sync time

Description

52

This feature enables the user to create key for encryption/decryption and

enables them to set time for automatic sync

Function This component of system gets key to encrypt/decrypt data and gets sync

time from user so that it can synchronize with server at that specific time

period

Subordinates It has no subordinates

Dependencies This component is independent

Interfaces N/A

Resources Software: Open source android studio libraries, Android SDK, Java

libraries

Processing Component would get sync time and key from user

Data This component uses following information of the application

Key, sync time

4.8 Login Module

Identification Name: Login

Type Component

Purpose This component fulfils following requirement from Software Requirements

Specification Document:

Add

Requirement

The system shall be able authenticate users and log them in

Description

This feature enables users to enter credentials and log in to their accounts

53

Function This component of system authenticates users and does the login process

Subordinates It has no subordinates

Dependencies This component is independent

Interfaces N/A

Resources Software: Open source android studio libraries, Android SDK, Java

libraries

Processing Component would get username and password from user for authentication

Data This component uses following information of the application

Username, password

4.9 Registration Module

Identification Name: Registration

Type Component

Purpose This component fulfils following requirement from Software Requirements

Specification Document:

Add

Requirement

The system shall be able to register users

Description

This feature enables the user to create accounts so to login and use those

accounts to secure their data on the database of the server

Function This component of system username, password from user

Subordinates It has no subordinates

Dependencies This component is independent

54

Interfaces N/A

Resources Software: Open source android studio libraries, Android SDK, Java

libraries

Processing Component would get username and password from user

Data This component uses following information of the application

Username, password

4.4 Reuse and Relationship to other products

Mobile Phone Self-encryption is a new product, Security enhancement is done on already

existing operating system of Android, and therefore, android OS is reused. Mobile Phone Self-

encryption has the potential to have more features to it. The system is being designed signed in

modular fashion.

4.5 Design and Tradeoffs

Mobile Phone Self-encryption is based on client-server architecture that is Mobile phone act as

client and Firebase act as server. They are connected through the internet.

The constraints of our project are:

• The user must decrypt all the files before decrypting the key.

• If the user changes the key he cannot retrieve the data on server because it’s with old key

so it cannot be decrypted.

55

Chapter 5: Testing and Evaluation

5.1 Introduction

This test plan chapter describes the appropriate strategies, process and methodologies used to
plan, execute and manage testing of the Mobile Self Encryption Android application project. The
test plan will ensure that the application meets the customer requirements at an accredited level.

Manual Testing will be followed which includes testing a software manually, i.e., without using
any automated tool or any script. In this type, the tester takes over the role of an end-user and
tests the software to identify any unexpected behavior or bug. Each Unit will be tested separately
and then will be integrated with other units, therefore Unit Testing and Integration testing will be
followed. For each unit Black box Testing is done and for combined units Acceptance Testing is
done.

The test scope includes the Testing of all functional, application performance and use cases
requirements listed in the requirement document

Software testing, depending on the testing method employed, can be implemented at any time in
the development process. However, most of the test effort occurs after the requirements have
been defined and the coding process has been completed.

This document includes the plan, scope, approach and procedure of Mobile Self Encryption
Application test. The pass/fail criteria of the test items are also defined. The Test Plan document
documents and tracks the necessary information required to effectively define the approach to be
used in the testing of the product.

5.2 Test Items

Based on the Mobile Self Encryption Application requirements and design description,
application modules of mobile Android application and non-functional scenario will be
tested. The Requirements Defined in Software Requirements Specification and the
Design entities as explained in Software Design Document will be tested.

56

5.3 Features tested

Following Features are Tested:

• Ability to Register new user into System.
• Ability to Log in into the System.
• Ability to encrypt Images from application.
• Ability to encrypt Videos from application.
• Ability to encrypt Files from application.
• Ability to encrypt Messages from application.
• Ability to encrypt Contacts from application.
• Ability to decrypt Images from application.
• Ability to decrypt Videos from application.
• Ability to decrypt Files from application.
• Ability to decrypt Messages from application.
• Ability to decrypt Contacts from application.
• Ability to Upload unsynced Images from application to server.
• Ability to Upload unsynced Videos from application to server.
• Ability to Upload unsynced Files from application to server.
• Ability to Upload unsynced Messages from application to server.
• Ability to Upload unsynced Conctacts from application to server.
• Ability to download unsynced Images from server to application.
• Ability to download unsynced Videos from server to application.
• Ability to download unsynced Files from server to application.
• Ability to download unsynced Messages from server to application.
• Ability to download unsynced Contacts from server to application.
• Feature to set pincode.
• Feature to use offline mode.

57

5.4 Approach

Acceptance test will be executed based on this acceptance test plan. And after all test
cases are executed, a test report will be summarized to show the quality of Mobile Self
Encryption Application. Following test approaches will be used in test execution:

• Unit test. Developers are responsible for unit test as white-box testing. The
implementation of each module and individual component will be verified
separately.

• Integration test. After the unit test is passed above the defined quality
threshold, testers will execute the integration test cases. After all the modules
are integrated, it’s crucial to test the product as a black-box. End-to-end
scenarios will be tested to ensure the communication functionality.

• Regression test. After developers fix the bug in one feature, regression test
will be executed by testers to ensure that the other functions are not affected.

• Field test. Firstly, untrained end users recreate one or more existing (but
narrow) mass observation events in the Self Encryption Android Application.
A number of observers will be invited to help with evaluation. After that, post
event questionnaires will be used to collect quantitative usage data as well as
qualitative data and further improvement will be taken into consideration.

• Positive and negative testing design technique. This approach will be
combined with unit test and integration test. Test cases are designed in obvious
scenarios, which ensure that all functional requirements are satisfied. What’s
more, different test cases will also be covered to show how the system reacts
with invalid operations.

5.5 Item Pass/Fail Criteria

Details of the test cases are specified in section Test Deliverables. Following the
principles outlined below, a test item would be judged as pass or fail.

• Preconditions are met
• Inputs are carried out as specified
• The result works as what specified in output => Pass

58

• The system doesn't work or not the same as output specification => Fail

5.6 Suspension Criteria and Resumption Requirements

Any bugs found can be fixed by developers quickly and no need to start the testing
process from the beginning. However, when major bugs will block the some test cases as
they are interdependent and the testing has to be paused. The test will restart from the
very beginning until the major error is solved.

5.7 Test Deliverables

Following are the Test Cases:

Test Case Name Registration(with valid data)

Test Case No 1

Description Testing feature to register a new user into system

Preconditions The user must have installed Mobile Self Encryption Application
in android operating system

Input Values Enter username and password

Click sign up button

Valid Inputs Enter valid username and password and click on sign up button

Steps First select the Self Encryption android application installed in
Android Operating System then enter username and password in
the respective fields on the registration page

Expected Output Registration successful, log in user into the system

Actual Output Registration successful, log in user into the system

Test Case Name Registration(with invalid data)

Test Case No 2

Description Testing feature to register a new user into system

59

Preconditions The user must have installed Mobile Self Encryption Application
in android operating system

Input Values Enter username and password

Click sign up button

Valid Inputs Enter invalid username and password and click on sign up button

Steps First select the Self Encryption android application installed in
Android Operating System then enter username and password in
the respective fields on the registration page

Expected Output Registration failed, shows invalid data pop up message

Actual Output Registration failed, shows invalid data pop up message

Test Case Name Login(with correct username and password)

Test Case No 3

Description Testing feature to login into the system with correct data

Testing Technique
Used

Unit Testing

Preconditions The user must have installed Mobile Self Encryption Application
in android operating system

Input Values Enter username and password

Click sign in button

Valid Inputs Enter correct username and password and click on sign in button

Steps First select the Self Encryption android application installed in
Android Operating System then enter username and password in
the respective fields on the login page

Expected Output Login successful application takes user to main menu

Actual Output Login successful application takes user to main menu

Test Case Name Login(with incorrect username and password)

60

Test Case No 4

Description Testing feature to login into the system with false data

Testing Technique
Used

Unit Testing

Preconditions The user must have installed Mobile Self Encryption Application
in android operating system

Input Values Enter incorrect username and password

Click sign in button

Valid Inputs Enter incorrect username and password and click on sign in
button

Steps First select the Self Encryption android application installed in
Android Operating System then enter username and password in
the respective fields on the login page

Expected Output Login failed application stays on login page

Actual Output Login failed application stays on login page

Test Case Name Feature Choice image option

Test Case No 5

Description Testing Feature Choose images

Testing Technique
Used

Unit Testing

Preconditions Application should be installed in Android Operating System

Input Values Select image button on the main menu

Valid Inputs Select image button on the main menu

Steps Select the Mobile Self Encryption application installed in
Android Operating System

Log in into application

Select Files option

Select image option

61

Expected Output Mobile Self Encryption android application displays Image page
to the user

Actual Output Mobile Self Encryption android application displays Image page
to the user

Test Case Name Feature Choice Video option

Test Case No 6

Description Testing Feature Choose Videos

Testing Technique
Used

Unit Testing

Preconditions Application should be installed in Android Operating System

Input Values Select video button on the main menu

Valid Inputs Select video button on the main menu

Steps Select the Mobile Self Encryption application installed in
Android Operating System

Log in into application

Select Files option

Select video option

Expected Output Mobile Self Encryption android application displays video page
to the user

Actual Output Mobile Self Encryption android application displays video page
to the user

Test Case Name Feature Choice select file option

Test Case No 7

Description Testing Feature Choose Files

Testing Technique
Used

Unit Testing

62

Preconditions Application should be installed in Android Operating System

Input Values Select File button on the main menu

Valid Inputs Select File button on the main menu

Steps Select the Mobile Self Encryption application installed in
Android Operating System

Log in into application

Select File option

Expected Output Mobile Self Encryption android application displays Files page to
the user

Actual Output Mobile Self Encryption android application displays Files page to
the user

Test Case Name Feature Choice Messages option

Test Case No 8

Description Testing Feature Choose Messages

Testing Technique
Used

Unit Testing

Preconditions Application should be installed in Android Operating System

Input Values Select Messages button on the main menu

Valid Inputs Select Messages button on the main menu

Steps Select the Mobile Self Encryption application installed in
Android Operating System

Log in into application

Select Messages option

Expected Output Mobile Self Encryption android application displays Messages
page to the user

Actual Output Mobile Self Encryption android application displays Messages
page to the user

63

Test Case Name Feature Choice Contacts option

Test Case No 9

Description Testing Feature Choose Contacts

Testing Technique
Used

Unit Testing

Preconditions Application should be installed in Android Operating System

Input Values Select Contacts button on the main menu

Valid Inputs Select Contacts button on the main menu

Steps Select the Mobile Self Encryption application installed in
Android Operating System

Log in into application

Select Contacts option

Expected Output Mobile Self Encryption android application displays Contacts
page to the user

Actual Output Mobile Self Encryption android application displays Contacts
page to the user

Test Case Name Feature Choice Settings option

Test Case No 10

Description Testing Feature Choose Settings

Testing Technique
Used

Unit Testing

Preconditions Application should be installed in Android Operating System

Input Values Select Settings button on the main menu

Valid Inputs Select Settings button on the main menu

Steps Select the Mobile Self Encryption application installed in
Android Operating System

64

Log in into application

Select Settings option

Expected Output Mobile Self Encryption android application displays Settings
page to the user

Actual Output Mobile Self Encryption android application displays Settings
page to the user

Test Case Name Encrypt Image from Gallery

Test Case No 11

Description Testing Select add/encrypt Image from Gallery Feature for
Encryption Application

Testing Technique
Used

Unit Testing

Preconditions The user must have selected Images option from application
Choice Menu

Input Values Choose images from Gallery

Valid Inputs Choose Select Image form Gallery option by clicking on the add
images button

Press encrypt

Steps First select the Self Encryption android application installed in
Android operating system

Log in into system/use offline mode

choose the select image feature which is displayed on Feature
Choice Menu

choose the add image button displaying on the top of screen

select images

press encrypt button

Expected Output The Gallery of the android mobile phone should be accessed by
Self Encryption Application and should enable user to select
desired image from Gallery to encrypt

65

Actual Output The Gallery of the android mobile phone is accessed by Self
Encryption Application enabling user to select desired image
from Gallery to encrypt

Test Case Name Encrypt Videos from Gallery

Test Case No 12

Description Testing Select add/encrypt Video from Gallery Feature for
Encryption Application

Testing Technique
Used

Unit Testing

Preconditions The user must have selected Video option from application
Choice Menu

Input Values Choose Video from Gallery

Valid Inputs Choose Select Video form Gallery option by clicking on the add
Video button

Press encrypt button

Steps First select the Self Encryption android application installed in
Android operating system

Log in into system/use offline mode

choose the select Video feature which is displayed on Feature
Choice Menu

choose the add Video button displaying on the top of screen

select videos

press encrypt

Expected Output The Gallery of the android mobile phone should be accessed by
Self Encryption Application and should enable user to select
desired Video from Gallery to encrypt

Actual Output The Gallery of the android mobile phone is accessed by Self
Encryption Application enabling user to select desired Video
from Gallery to encrypt

66

Test Case Name Encrypt Files from File manager

Test Case No 13

Description Testing add/encrypt Files from File manager Feature for
Encryption Application

Testing Technique
Used

Unit Testing

Preconditions The user must have selected Files option from application Choice
Menu

Input Values Choose add/encrypt File from file manager

Valid Inputs Choose add/encrypt files form File Manager option by clicking
on the add Files button

Steps First select the Self Encryption android application installed in
Android operating system

Log in into system

choose the select Files feature which is displayed on Feature
Choice Menu

choose the add files button displaying on the top of screen

select files

press encrypt

Expected Output The File manager of the android mobile phone should be accessed
by Self Encryption Application and should enable user to select
desired File from Memory to encrypt

Actual Output The File manager of the android mobile phone is accessed by Self
Encryption Application enabling user to select desired File from
memory to encrypt

Test Case Name Encrypt Messages from System

Test Case No 14

Description Testing add/encrypt Messages from memory Feature for

67

Encryption Application

Testing Technique
Used

Unit Testing

Preconditions The user must have selected Messages option from application
Choice Menu

Input Values Choose add/encrypt Messages from System

Valid Inputs Choose add/encrypt Messages form System option by clicking on
the add Messages button

Steps First select the Self Encryption android application installed in
Android operating system

Log in into system/use offline mode

choose the select Messages feature which is displayed on Feature
Choice Menu

choose the add Messages button displaying on the top of screen

select meassages

press encrypt

Expected Output The memory of the android mobile phone should be accessed by
Self Encryption Application and should enable user to select
desired Message from Memory to encrypt

Actual Output The memory of the android mobile phone is accessed by Self
Encryption Application enabling user to select desired Message
from memory to encrypt

Test Case Name Encrypt Contacts from System memory

Test Case No 15

Description Testing add/encrypt Contacts from memory Feature for
Encryption Application

Testing Technique
Used

Unit Testing

Preconditions The user must have selected Contacts option from application
Choice Menu

68

Input Values Choose add/encrypt Contacts from System

Valid Inputs Choose add/encrypt Contacts form System option by clicking on
the add Contacts button

Steps First select the Self Encryption android application installed in
Android operating system

Log in into system/use offline mode

choose the select Contacts feature which is displayed on Feature
Choice Menu

choose the add Contacts button displaying on the top of screen

select contacts

press encrypt

Expected Output The memory of the android mobile phone should be accessed by
Self Encryption Application and should enable user to select
desired Contact from Memory

Actual Output The memory of the android mobile phone is accessed by Self
Encryption Application enabling user to select desired Contact
from memory

Test Case Name Decrypt Image

Test Case No 16

Description Testing Decrypt Image from Application Feature for Self
Encryption Application

Testing Technique
Used

Unit Testing

Preconditions The user must have selected Images option from application
Choice Menu

Input Values Decrypt images from application images vault

Valid Inputs Choose decrypt Image form application images vault by clicking
on the delete button

Steps First select the Self Encryption android application installed in
Android operating system

69

Log in into system/use offline mode

choose the select image feature which is displayed on Feature
Choice Menu

choose the delete image button displaying in front of

selected image

Expected Output Image decrypted and removed from Application vault moves
back to original location

Actual Output Image decrypted and removed from Application vault moves
back to original location

Test Case Name Decrypt Video

Test Case No 17

Description Testing Decrypt Video from Application Feature for Self
Encryption Application

Testing Technique
Used

Unit Testing

Preconditions The user must have selected Video option from application
Choice Menu

Input Values Decrypt Video from application Video vault

Valid Inputs Choose decrypt Video form application Video vault by clicking
on the delete button

Steps First select the Self Encryption android application installed in
Android operating system

Log in into system/use offline mode

choose the select Video feature which is displayed on Feature
Choice Menu

choose the delete Video button displaying in front of

selected Video

Expected Output Video decrypted and removed from Application vault moves back
to original location

70

Actual Output Video decrypted and removed from Application vault moves back
to original location

Test Case Name Decrypt File

Test Case No 18

Description Testing Decrypt File from Application Feature for Self
Encryption Application

Testing Technique
Used

Unit Testing

Preconditions The user must have selected File option from application Choice
Menu

Input Values Decrypt File from application File vault

Valid Inputs Choose decrypt File form application File vault by clicking on the
delete button

Steps First select the Self Encryption android application installed in
Android operating system

Log in into system/use offline mode

choose the select File feature which is displayed on Feature
Choice Menu

choose the delete File button displaying in front of

selected File

Expected Output File decrypted and removed from Application vault moves back
to original location

Actual Output File decrypted and removed from Application vault moves back
to original location

Test Case Name Decrypt Message

Test Case No 19

Description Testing Decrypt Message from Application Feature for Self

71

Encryption Application

Testing Technique
Used

Unit Testing

Preconditions The user must have selected Message option from application
Choice Menu

Input Values Decrypt Message from application Message vault

Valid Inputs Choose decrypt Message form application Message vault by
clicking on the delete button

Steps First select the Self Encryption android application installed in
Android operating system

Log in into system/use offline mode

choose the select Message feature which is displayed on Feature
Choice Menu

choose the delete Message button displaying in front of

selected Message

Expected Output Message decrypted and removed from Application vault moves
back to original location

Actual Output Message decrypted and removed from Application vault moves
back to original location

Test Case Name Decrypt Contact

Test Case No 20

Description Testing Decrypt Contact from Application Feature for Self
Encryption Application

Testing Technique
Used

Unit Testing

Preconditions The user must have selected Contact option from application
Choice Menu

Input Values Decrypt Contact from application Contact vault

Valid Inputs Choose decrypt Contact form application Contact vault by

72

clicking on the delete button

Steps First select the Self Encryption android application installed in
Android operating system

Log in into system/use offline mode

choose the select Contact feature which is displayed on Feature
Choice Menu

choose the delete Contact button displaying in front of

selected Contact

Expected Output Contact decrypted and removed from Application vault moves
back to original location

Actual Output Contact decrypted and removed from Application vault moves
back to original location

Test Case Name Upload Images

Test Case No 21

Description Testing Upload Images from Application to server a Feature for
Self Encryption Application

Testing Technique
Used

Unit Testing

Preconditions The user must have selected Image option from application
Choice Menu

Input Values Upload Image from application Images vault

Valid Inputs Choose upload image form application image vault by clicking on
the upload button

Steps First select the Self Encryption android application installed in
Android operating system

Log in into system

choose the select Image feature which is displayed on Feature
Choice Menu

choose the upload image button displaying on the top of

73

screen

Expected Output Image successfully uploaded on the server

Actual Output Image successfully uploaded on the server

Test Case Name Upload Videos from application

Test Case No 22

Description Testing Upload Videos from Application to server a Feature for
Self Encryption Application

Testing Technique
Used

Unit Testing

Preconditions The user must have selected Video option from application
Choice Menu

Input Values Upload Video from application Video vault

Valid Inputs Choose upload Video form application Video vault by clicking on
the upload button

Steps First select the Self Encryption android application installed in
Android operating system

Log in into system

choose the select Video feature which is displayed on Feature
Choice Menu

choose the upload Video button displaying on the top of

screen

Expected Output Video successfully uploaded on the server

Actual Output Video successfully uploaded on the server

Test Case Name Upload File from application

74

Test Case No 23

Description Testing Upload Files from Application to server a Feature for Self
Encryption Application

Testing Technique
Used

Unit Testing

Preconditions The user must have selected File option from application Choice
Menu

Input Values Upload File from application File vault

Valid Inputs Choose upload File form application File vault by clicking on the
upload button

Steps First select the Self Encryption android application installed in
Android operating system

Log in into system

choose the select File feature which is displayed on Feature
Choice Menu

choose the upload File button displaying on the top of

screen

Expected Output File successfully uploaded on the server

Actual Output File successfully uploaded on the server

Test Case Name Upload Message from application

Test Case No 24

Description Testing Upload Message from Application to server a Feature for
Self Encryption Application

Testing Technique
Used

Unit Testing

Preconditions The user must have selected Message option from application
Choice Menu

Input Values Upload Message from application Message vault

75

Valid Inputs Choose upload Message form application Message vault by
clicking on the upload button

Steps First select the Self Encryption android application installed in
Android operating system

Log in into system

choose the select Message feature which is displayed on Feature
Choice Menu

choose the upload Message button displaying on the top of

screen

Expected Output Message successfully uploaded on the server

Actual Output Message successfully uploaded on the server

Test Case Name Upload Contact from application

Test Case No 25

Description Testing Upload Contact from Application to server a Feature for
Self Encryption Application

Testing Technique
Used

Unit Testing

Preconditions The user must have selected Contact option from application
Choice Menu

Input Values Upload Contact from application Contact vault

Valid Inputs Choose upload Contact form application Contact vault by
clicking on the upload button

Steps First select the Self Encryption android application installed in
Android operating system

Log in into system

choose the select Contact feature which is displayed on Feature
Choice Menu

choose the upload Contact button displaying on the top of

76

screen

Expected Output Contact successfully uploaded on the server

Actual Output Contact successfully uploaded on the server

Test Case Name Download Images from server to mobile

Test Case No 26

Description Testing Download Images from Server to Application a Feature
for Self Encryption Application

Testing Technique
Used

Unit Testing

Preconditions The user must have selected Image option from application
Choice Menu

Input Values Download Image from server to application vault

Valid Inputs Choose Download image form server to application vault by
clicking on the download button

Steps First select the Self Encryption android application installed in
Android operating system

Log in into system

choose the select Image feature which is displayed on Feature
Choice Menu

choose the download image button displaying on the top of

screen

Expected Output Image successfully downloaded from server to application

Actual Output Image successfully downloaded from server to application

Test Case Name Download Video from server to mobile

77

Test Case No 27

Description Testing Download Video from Server to Application a Feature
for Self Encryption Application

Testing Technique
Used

Unit Testing

Preconditions The user must have selected Video option from application
Choice Menu

Input Values Download Video from server to application vault

Valid Inputs Choose Download Video form server to application vault by
clicking on the download button

Steps First select the Self Encryption android application installed in
Android operating system

Log in into system

choose the select Video feature which is displayed on Feature
Choice Menu

choose the download Video button displaying on the top of

screen

Expected Output Video successfully downloaded from server to application

Actual Output Video successfully downloaded from server to application

Test Case Name Download File from server to mobile

Test Case No 28

Description Testing Download File from Server to Application a Feature for
Self Encryption Application

Testing Technique
Used

Unit Testing

Preconditions The user must have selected File option from application Choice
Menu

Input Values Download File from server to application vault

78

Valid Inputs Choose Download File form server to application vault by
clicking on the download button

Steps First select the Self Encryption android application installed in
Android operating system

Log in into system

choose the select File feature which is displayed on Feature
Choice Menu

choose the download File button displaying on the top of

screen

Expected Output File successfully downloaded from server to application

Actual Output File successfully downloaded from server to application

Test Case Name Download Message from server to mobile

Test Case No 29

Description Testing Download Message from Server to Application a Feature
for Self Encryption Application

Testing Technique
Used

Unit Testing

Preconditions The user must have selected Message option from application
Choice Menu

Input Values Download Message from server to application vault

Valid Inputs Choose Download Message form server to application vault by
clicking on the download button

Steps First select the Self Encryption android application installed in
Android operating system

Log in into system

choose the select Message feature which is displayed on Feature
Choice Menu

choose the download Message button displaying on the top of

79

screen

Expected Output Message successfully downloaded from server to application

Actual Output Message successfully downloaded from server to application

Test Case Name Download Contact from server to mobile

Test Case No 30

Description Testing Download Contacts from Server to Application a Feature
for Self Encryption Application

Testing Technique
Used

Unit Testing

Preconditions The user must have selected Contact option from application
Choice Menu

Input Values Download Contact from server to application vault

Valid Inputs Choose Download Contact form server to application vault by
clicking on the download button

Steps First select the Self Encryption android application installed in
Android operating system

Log in into system

choose the select Contact feature which is displayed on Feature
Choice Menu

choose the download Contact button displaying on the top of

screen

Expected Output Contact successfully downloaded from server to application

Actual Output Contact successfully downloaded from server to application

Test Case Name Login into Offline mode(with correct pin code)

80

Test Case No 31

Description Testing feature to login into the system when offline

Testing Technique
Used

Unit Testing

Preconditions The user must have installed Mobile Self Encryption Application
in android operating system

Input Values Click Offline mode button

Enter pin code

Valid Inputs Click on Offline mode button

Enter pin code

Steps First select the Self Encryption android application installed in
Android Operating System

click on Offline mode button

Enter pin code

Expected Output Login successful application takes user to main menu

Actual Output Login successful application takes user to main menu

Test Case Name Login into Offline mode(with incorrect pin code)

Test Case No 32

Description Testing feature to login into the system when offline

Testing Technique
Used

Unit Testing

Preconditions The user must have installed Mobile Self Encryption Application
in android operating system

Input Values Click Offline mode button

Enter incorrect pin code

Valid Inputs Click on Offline mode button

81

Enter incorrect pin code

Steps First select the Self Encryption android application installed in
Android Operating System

click on Offline mode button

Enter incorrect pin code

Expected Output Login Failed, pop up message invalid pin code, user stays on
same page

Actual Output Login Failed, pop up message invalid pin code, user stays on
same page

Test Case Name Feature set pin code

Test Case No 33

Description Testing Feature Setting pin code

Testing Technique
Used

Unit Testing

Preconditions Application should be installed in Android Operating System

User must select Setting option

Input Values Press set pin code, enter pin code

Valid Inputs Press set pin code, enter pin code

Steps Select the Mobile Self Encryption application installed in
Android Operating System

Log in into application/use offline mode

Select Settings option

Select set pin option

Enter pin code

Expected Output Pin code successfully updated

Actual Output Pin code successfully updated

82

Test Case Name Feature to view Image in application

Test Case No 34

Description Testing feature to view Image in the application

Testing Technique
Used

Unit Testing

Preconditions The user must have selected Image option from application
Choice Menu

Input Values Click on image icon in image vault

Valid Inputs Click on image icon in image vault

Steps First select the Self Encryption android application installed in
Android operating system

Log in into system/use offline mode

choose the select Image feature which is displayed on Feature
Choice Menu

click on image icon

Expected Output The original image is shown

Actual Output The original image is shown

Test Case Name Feature to view Video in application

Test Case No 34

Description Testing feature to view Video in the application

Testing Technique
Used

Unit Testing

Preconditions The user must have selected Video option from application
Choice Menu

Input Values Click on Video icon in Video vault

Valid Inputs Click on Video icon in Video vault

Steps First select the Self Encryption android application installed in

83

Android operating system

Log in into system/use offline mode

choose the Video feature which is displayed on Feature Choice
Menu

click on Video icon

Expected Output The original Video is shown

Actual Output The original Video is shown

5.8 Environmental Needs

Hardware

• Mobile with Android platform

Software
• Mobile Platform: Android 3.0/3.1 or later (Eclair Based on Linux Kernel 2.6.29 or

later
• Eclipse 3.4 (Ganymede) or 3.5 (Galileo) with ADT Plugin

5.9 Responsibilities, Staffing and Training Needs

Responsibilities

• Yawar Khan is responsible for Acceptance Testing
• Hamza Yousaf is responsible for Integration Testing
• Ali Anwar is responsible for testing each separate unit that is Unit Testing.

Skills
• Skills needed to test Mobile Self Encryption Application using Mobile/Android

Application

84

5.10 Risks and contingencies

We have tried to test on various android platforms as much as possible, but it’s
impossible to test for all android platforms. What’s more, mobile Android application is
tested on Android devices and is tested on limited mobiles, thus we cannot predict the
system behavior on the other mobile platforms (e.g. iPhone, Blackberry, Symbian
platform etc.). Further investigation is required to verify and improve Self Encryption
Application.

Chapter 6: Future Work

This project will be a benchmark for future encryption project. For now we worked
on a single stream cipher. In the future we will:

• We will work on different stream ciphers and users will choose a cipher
according to his/her requirements i.e. if they want security over speed they
will choose different cipher, vice versa.

• We will also work on block cipher to look at its effect on functionality of our
project.

• Investigate potential problems and benefits when merging different
applications together such as merge of encryption algorithms and
compression algorithms

85

Chapter 7: Conclusion

Lack of effective protection of sensitive data in mobile devices is a major concern
that prevents the mobile devices from being used. The proposedsystem will
remove the barrier and enable employees to enjoy the high efficiency and
convenience brought by mobile devices. It will provide user to store data in
encrypted form so it cannot be used falsely and also provide backup in case phone
is lost.

Keeping our private data secure, it means only user can access and use the data.
Encryption is used for securing files from thefts. AES algorithm is mostly used for
encryption scheme. Approaches to encryption are endpoint encryption, file and
folder encryption.

The purpose of this project is to allow users to store sensitive data on their mobile
phones without having to worry about its confidentiality even if the mobile phone
is lost. This system is developed so that employees and other mobile users can
store and operate on sensitive data on their mobile phones without having to worry

86

of it being leaked. Security is the main purpose of the project and security provided
using encryption scheme.

Bibliography

Similar Projects at MCS

1. BitVise XTS-AES Based Disk Encryption Software

by Myra Khalid, Laraib Zahid and Usama Ahmad

2. A similar approach was made by Amit Banerjee, Muhamadul Hassan, MD.
Auhidur Rahman and Rajesh Chapagain, Department of Computer Science,
South Asian University, New Delhi 110021, India.

CLOAK: A Stream Cipher Based Encryption Protocol for Mobile Cloud
Computing.

Link: http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8016572

87

Appendix (Proposal)

Description:
This project allows users to store sensitive data on their mobile phones without
having to worry about its confidentiality even if the mobile phone is lost. This
system is developed so that employees and other mobile users can store and
operate on sensitive data on their mobile phones without having to worry of it
being leaked. This software project concentrates on securing data on mobile
phones by storing it in an encrypted form. This data is encrypted with a stream
cipher whose key is stored on a trusted server. When the mobile device is lost, it
sends a report to the server and the server then destroys the respective key so that
the data on the mobile can never be decrypted and remains confidential.

Scope of Work:
Suggested and sponsored by NESCOM. Can be utilized in android devices.

Academic Objective:
Studying the different security techniques and the applying our own knowledge to
overcome such vulnerabilities. To utilize the knowledge of all the software
engineering related subjects which we have studied during our tenure.

End Goal Objective:
To build a software/application, that prevents confidential information being lost or
misused.

88

Pseudo code for components

Video Activity.java
public class VideoActivity extends AppCompatActivity {

 String realPath[];
 Button uploadVideo, downloadVideo;
 DataInputStream reader;
 DataOutputStream writer;
 String[] filePathStrings;
 String[] fileNameStrings;

 ListView lv;
 MyListAdapterVideos listAdapter;

 File file;
 File[] listFile;

private String[] videoListServer;
private Uri[] fileUriArray;

 StorageReference storageReference;
 DatabaseReference databaseReference;
final String databasePathVideos="Encrypted_Videos";
 ProgressDialog progressDialog;

@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_video);

storageReference = FirebaseStorage.getInstance().getReference();
databaseReference= FirebaseDatabase.getInstance().getReference(databasePathVideos);
progressDialog=new ProgressDialog(VideoActivity.this);

 Button add = (Button) findViewById(R.id.addVideo);
 add.setOnClickListener(new View.OnClickListener() {
@Override
public void onClick(View view) {
 Intent i = new Intent(Intent.ACTION_PICK);
 i.setType("video/*");
 i.putExtra(Intent.EXTRA_ALLOW_MULTIPLE, true);
//i.setAction(Intent.ACTION_GET_CONTENT);
startActivityForResult(i, 1);

 }
 });

uploadVideo = (Button) findViewById(R.id.uploadVideos);
uploadVideo.setOnClickListener(new View.OnClickListener() {
@Override
public void onClick(View view) {
 getImageNamesFromDatabase(1);
final ProgressDialog progressDialog=new ProgressDialog(VideoActivity.this);
 progressDialog.setTitle("Uploading..");
 progressDialog.setMessage("Please wait");
 progressDialog.show();

89

final Handler handler = new Handler();
 handler.postDelayed(new Runnable() {
@Override
public void run() {
progressDialog.hide();
 Intent intent=new
Intent(VideoActivity.this,VideoActivity.class);
 startActivity(intent);
// Toast.makeText(VideoActivity.this, "Please Wait File is Being Encrypted",
Toast.LENGTH_SHORT).show();
}
 },3000);

 }
 });
downloadVideo = (Button)findViewById(R.id.downloadVideos);
downloadVideo.setOnClickListener(new View.OnClickListener() {
@Override
public void onClick(View view) {
 getImageNamesFromDatabase(2);
 }
 });

file = new File(Environment.getExternalStorageDirectory() + File.separator +
"EncryptedVideos");
file.mkdirs();
if (file.isDirectory()) {
listFile = file.listFiles();

if(listFile == null){
filePathStrings = new String[0];
fileNameStrings = new String[0];
fileUriArray = new Uri[0];

for (int i = 0; i <0; i++) {
filePathStrings[i] = listFile[i].getAbsolutePath();
fileNameStrings[i] = listFile[i].getName();
fileUriArray[i] = Uri.fromFile(listFile[i]);
 }
 }
else {
filePathStrings = new String[listFile.length];
fileNameStrings = new String[listFile.length];
fileUriArray = new Uri[listFile.length];

for (int i = 0; i <listFile.length; i++) {
filePathStrings[i] = listFile[i].getAbsolutePath();
fileNameStrings[i] = listFile[i].getName();
fileUriArray[i] = Uri.fromFile(listFile[i]);
 }
 }
 }

 Button encrypt = (Button) findViewById(R.id.encVideo);
 encrypt.setOnClickListener(new View.OnClickListener() {
@Override
public void onClick(View view) {
if(realPath[0] == null){
 Toast.makeText(VideoActivity.this, "please choose first",

90

Toast.LENGTH_SHORT).show();
 }
else{
 enc3(realPath);
 File a = new File(realPath[0]);
 a.delete();
 Intent scanIntent = new
Intent(Intent.ACTION_MEDIA_SCANNER_SCAN_FILE);
 scanIntent.setData(Uri.fromFile(a));
 sendBroadcast(scanIntent);

final ProgressDialog progressDialog=new ProgressDialog(VideoActivity.this);
 progressDialog.setTitle("Encrypting..");
 progressDialog.setMessage("Please wait");
 progressDialog.show();

final Handler handler = new Handler();
 handler.postDelayed(new Runnable() {
@Override
public void run() {
progressDialog.hide();
 Intent intent=new
Intent(VideoActivity.this,VideoActivity.class);
 startActivity(intent);
// Toast.makeText(VideoActivity.this, "Please Wait File is Being Encrypted",
Toast.LENGTH_SHORT).show();
}
 },3000);

 }

 }
 });
 ui();
 }

public boolean checkNamesOnServer(String name){
boolean flag = false;
for(int i = 0; i <videoListServer.length; i++){
//System.out.println("FileName: "+name);
 //System.out.println("FileNameServer: "+imageListServer[i]);
if(name.equals(videoListServer[i])){
 flag = true;
 }
 }
 System.out.println(flag);
return flag;
 }
public boolean checkNamesOnPhone(String name){
boolean flag = false;
for(int i = 0; i <fileNameStrings.length; i++){
//System.out.println("FileName: "+name);
 // System.out.println("FileNameServer: "+fileNameStrings[i]);
if(name.equals(fileNameStrings[i])){
 flag = true;
 }
 }

return flag;
 }

public void getImageNamesFromDatabase(final int choice){

91

databaseReference.addListenerForSingleValueEvent(new ValueEventListener() {
@Override
public void onDataChange(DataSnapshot dataSnapshot) {
videoListServer = new String[(int)dataSnapshot.getChildrenCount()];
int i = 0;
for (DataSnapshot snapshot : dataSnapshot.getChildren()) {
//ImageUpload class require default constructor
VideoUpload vid = snapshot.getValue(VideoUpload.class);
videoListServer[i] = vid.getName();
//Toast.makeText(GalleryActivity.this,
imageListServer[i]+"Length"+imageListServer.length, Toast.LENGTH_SHORT).show();
i++;
 }
 i = 0;
 System.out.println("GOGOGO");
if(choice == 1){
for(int j = 0; j <fileUriArray.length; j++){

boolean isPresentOnServer = checkNamesOnServer(fileNameStrings[j]);
if(isPresentOnServer == false){
 System.out.println("Not Present: "+fileNameStrings[j]);
 uploadVideo(fileNameStrings[j], fileUriArray[j]);
 }
 }
 }
if(choice == 2){
for(int j = 0; j <videoListServer.length; j++){

boolean isPresentOnPhone = checkNamesOnPhone(videoListServer[j]);
if(isPresentOnPhone == false){
 System.out.println("Not Present: "+videoListServer[j]);
try {
 downloadVideo(videoListServer[j]);
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
 }
 }
 }

@Override
public void onCancelled(DatabaseError databaseError) {

 }
 });

 }

private void uploadVideo(final String fileName, final Uri filePath) {
if(filePath != null)
 {

progressDialog.setTitle("Uploading...");
progressDialog.show();

 StorageReference ref = storageReference.child("Encrypted_Videos/"+
fileName);
 ref.putFile(filePath)
 .addOnSuccessListener(new
OnSuccessListener<UploadTask.TaskSnapshot>() {
@Override

92

public void onSuccess(UploadTask.TaskSnapshot taskSnapshot) {
 VideoUpload videoUpload = new VideoUpload(fileName,
filePath.toString());
 String videoId=databaseReference.push().getKey();
databaseReference.child(videoId).setValue(videoUpload);

progressDialog.dismiss();
 Toast.makeText(VideoActivity.this, "Uploaded",
Toast.LENGTH_SHORT).show();
 }
 })
 .addOnFailureListener(new OnFailureListener() {
@Override
public void onFailure(@NonNull Exception e) {
progressDialog.dismiss();
 Toast.makeText(VideoActivity.this, "Failed
"+e.getMessage(), Toast.LENGTH_SHORT).show();
 }
 })
 .addOnProgressListener(new
OnProgressListener<UploadTask.TaskSnapshot>() {
@Override
public void onProgress(UploadTask.TaskSnapshot taskSnapshot) {
double progress = (100.0*taskSnapshot.getBytesTransferred()/taskSnapshot
 .getTotalByteCount());
progressDialog.setMessage("Uploaded "+(int)progress+"%");
 }
 });
 }
 }
private void downloadVideo(final String fileName) throws IOException {
progressDialog.setTitle("Downloading...");
progressDialog.show();
 StorageReference ref = storageReference.child("Encrypted_Videos/"+ fileName);
final File storagePath = new File("/storage/emulated/0/EncryptedVideos/"+fileName);
//final File localFile = File.createTempFile("sam", null , storagePath);
ref.getFile(storagePath).addOnSuccessListener(new
OnSuccessListener<FileDownloadTask.TaskSnapshot>() {
@Override
public void onSuccess(FileDownloadTask.TaskSnapshot taskSnapshot) {
progressDialog.dismiss();
 Toast.makeText(VideoActivity.this, "Downloaded: "+fileName,
Toast.LENGTH_SHORT).show();
 }
 }).addOnFailureListener(new OnFailureListener() {
@Override
public void onFailure(@NonNull Exception e) {
progressDialog.dismiss();
 Toast.makeText(VideoActivity.this, "Failed "+e.getMessage(),
Toast.LENGTH_SHORT).show();
 }
 }).addOnProgressListener(new
OnProgressListener<FileDownloadTask.TaskSnapshot>() {
@Override
public void onProgress(FileDownloadTask.TaskSnapshot taskSnapshot) {
double progress = (100.0*taskSnapshot.getBytesTransferred()/taskSnapshot
 .getTotalByteCount());
progressDialog.setMessage("Downloaded "+(int)progress+"%");
 }
 });
 }

93

public void ui(){
new Thread(new Runnable() {
@Override
public void run() {
 runOnUiThread(new Runnable() {
@Override
public void run() {
lv = (ListView)findViewById(R.id.listView2);
listAdapter = new MyListAdapterVideos(VideoActivity.this, filePathStrings,
fileNameStrings);
lv.setAdapter(listAdapter);
 }
 });
 }
 }).start();

 }

@Override
protected void onActivityResult(int reqCode, int resCode, Intent data) {

if(resCode == Activity.RESULT_OK && data != null){
if(data.getClipData() == null){
realPath = new String[1];
// SDK < API11
if (Build.VERSION.SDK_INT <11)
realPath[0] = RealPathUtil.getRealPathFromURI_BelowAPI11(this, data.getData());

// SDK >= 11 && SDK < 19
else if (Build.VERSION.SDK_INT <19)
realPath[0] = RealPathUtil.getRealPathFromURI_API11to18(this, data.getData());

// SDK > 19 (Android 4.4)
else
realPath[0] = RealPathUtil.getRealPathFromURI_API19(this, data.getData());
 }
else{
realPath = new String[data.getClipData().getItemCount()];
for(int i = 0; i < data.getClipData().getItemCount(); i++) {
// SDK < API11
if (Build.VERSION.SDK_INT <11)
realPath[i] = RealPathUtil.getRealPathFromURI_BelowAPI11(this,
data.getClipData().getItemAt(i).getUri());

// SDK >= 11 && SDK < 19
else if (Build.VERSION.SDK_INT <19)
realPath[i] = RealPathUtil.getRealPathFromURI_API11to18(this,
data.getClipData().getItemAt(i).getUri());

// SDK > 19 (Android 4.4)
else
realPath[i] = RealPathUtil.getRealPathFromURI_API19(this,
data.getClipData().getItemAt(i).getUri());
 }
 }

//setTextViews(Build.VERSION.SDK_INT, data.getData().getPath(),realPath);
 //enc();

}

94

 }
public void enc3(String[] pathIn){
for(int i=0; i<pathIn.length;i++){
 File file1 = new File(pathIn[i]);
 String filename = file1.getName();
try{
 initialize(pathIn[i],
"/storage/emulated/0/EncryptedVideos/"+filename);
 encrypt();
//initialize("/storage/emulated/0/Encrypted/abcde.jpg",
"/storage/emulated/0/Decrypted/de.jpg");
 //encrypt();
}
catch(FileNotFoundException e){
 System.out.println(e.getMessage()+"NOTFOUNFEX");

 }
catch(IOException e){
 System.out.println(e.getMessage()+"IOEX");
 }
 }

 }
public void initialize(String inputFilePath, String outputFilePath) throws
FileNotFoundException{
reader = new DataInputStream(new FileInputStream(new File(inputFilePath)));
writer = new DataOutputStream(new FileOutputStream(new File(outputFilePath)));
 }
public void encrypt() throws IOException {
int readBytes = 0;
 RC4Cipher rc4Encryption = new RC4Cipher("123abcde");
byte[] buffer = new byte[2048];
do {
 readBytes = reader.read(buffer, 0, 2048);
 buffer = rc4Encryption.rc4(buffer);
if (readBytes >0) {
writer.write(buffer, 0, readBytes);
writer.flush();
 }
//System.out.println(k++);

} while (readBytes >0);
 }

}

MainActivity.java

public class MainActivity extends AppCompatActivity {

 FirebaseAuth auth;
 EditText email;
 EditText password;
 Button signup,login,offline,other,lockapps;
 String pin;
 TextView forgetpassword;

@Override

95

protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
 getWindow().addFlags(WindowManager.LayoutParams.FLAG_FULLSCREEN);
 getWindow().requestFeature(Window.FEATURE_NO_TITLE);
 setContentView(R.layout.activity_main);

 SharedPreferences settings = getSharedPreferences("PREFS", 0);
pin = settings.getString("pin", "");

signup = (Button)findViewById(R.id.Signup);
lockapps = (Button)findViewById(R.id.lockapps);
forgetpassword=(TextView)findViewById(R.id.forgetpassword);
signup.setOnClickListener(new View.OnClickListener() {
@Override
public void onClick(View view) {
 Intent i = new Intent(MainActivity.this, SignupActivity.class);
 startActivity(i);
 }
 });
lockapps.setOnClickListener(new View.OnClickListener() {
@Override
public void onClick(View v) {
 Intent i = new Intent(MainActivity.this, LockSplashActivity.class);
 startActivity(i);
 }
 });
forgetpassword.setOnClickListener(new View.OnClickListener() {
@Override
public void onClick(View v) {
 Intent intentforget=new
Intent(MainActivity.this,ForgetPassword.class);
 startActivity(intentforget);

 }
 });

email = (EditText)findViewById(R.id.Email);
password = (EditText)findViewById(R.id.Password);
auth = FirebaseAuth.getInstance();

//final LottieAnimationView animationView =
(LottieAnimationView)findViewById(R.id.animation_view);
 /*animationView.addAnimatorListener(new Animator.AnimatorListener() {
 @Override
 public void onAnimationStart(Animator animator) {

 }

 @Override
 public void onAnimationEnd(Animator animator) {
 Intent i = new Intent(SecondMainActivity.this, MenuActivity.class);
 startActivity(i);
 }
 @Override
 public void onAnimationCancel(Animator animator) {

 }
 @Override
 public void onAnimationRepeat(Animator animator) {

 }
 });*/

96

offline = (Button)findViewById(R.id.OfflineButton);
offline.setOnClickListener(new View.OnClickListener() {
@Override
public void onClick(View view) {
if(pin.equals("")){
 Intent i = new Intent(MainActivity.this, CreatePinActivity.class);
 startActivity(i);
 finish();
 }
else{
 Intent i = new Intent(MainActivity.this, EnterPinActivity.class);
 startActivity(i);
 finish();
 }
 }
 });
login=(Button)findViewById(R.id.Login);
login.setOnClickListener(new View.OnClickListener() {
@Override
public void onClick(View view){

 String em = email.getText().toString();
final String pass = password.getText().toString();

if (TextUtils.isEmpty(em)) {
 Toast.makeText(getApplicationContext(), "Enter email address!",
Toast.LENGTH_SHORT).show();
return;
 }

if (TextUtils.isEmpty(pass)) {
 Toast.makeText(getApplicationContext(), "Enter password!",
Toast.LENGTH_SHORT).show();
return;
 }

auth.signInWithEmailAndPassword(em, pass).addOnCompleteListener(MainActivity.this, new
OnCompleteListener<AuthResult>() {
@Override
public void onComplete(@NonNull Task<AuthResult> task) {
if(!task.isSuccessful()){
if (password.length() <6) {
password.setError("Short Password");
 } else {
 Toast.makeText(MainActivity.this, "Authorization
Failed", Toast.LENGTH_LONG).show();
 }
 }
else{
 Intent i = new Intent(MainActivity.this,
MenuActivity.class);
 startActivity(i);
 finish();
 }
 }
 });

 }
 });

97

 }
}

Gallery Activity.java
public class GalleryActivity extends AppCompatActivity {
 String realPath[];
 TextView txtSDK;
 Button uploadImage, downloadImage;
 TextView txtUriPath,txtRealPath;
 ImageView imageView;
 DataInputStream reader;
 DataOutputStream writer;
 String path;
private Uri[] fileUriArray;
 String filePathUriToString;
 ProgressDialog progressDialog;

 ListView lv;
 MyListAdapter listAdapter;

private String[] imageListServer;

 File file;
 File[] listFile;
 String[] filePathStrings;
 String[] fileNameStrings;
 StorageReference storageReference;
 DatabaseReference databaseReference;
final String databasePathImages="Encrypted_Images";
 String[] countryNames = {"Greece","Spain"};
int[] countryFlags = {R.drawable.flag_1, R.drawable.flag_2};
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_gallery);

 StrictMode.VmPolicy.Builder builder = new StrictMode.VmPolicy.Builder();
 StrictMode.setVmPolicy(builder.build());
storageReference = FirebaseStorage.getInstance().getReference();
databaseReference= FirebaseDatabase.getInstance().getReference(databasePathImages);
progressDialog=new ProgressDialog(GalleryActivity.this);

 Button add = (Button) findViewById(R.id.add);
 add.setOnClickListener(new View.OnClickListener() {
@Override
public void onClick(View view) {
 Intent i = new Intent(Intent.ACTION_PICK);
 i.setType("image/*");
 i.putExtra(Intent.EXTRA_ALLOW_MULTIPLE, true);
//i.setAction(Intent.ACTION_GET_CONTENT);
startActivityForResult(i, 1);

 }
 });
uploadImage = (Button) findViewById(R.id.uploadImages);
uploadImage.setOnClickListener(new View.OnClickListener() {

98

@Override
public void onClick(View view) {
 getImageNamesFromDatabase(1);

 }
 });
downloadImage = (Button)findViewById(R.id.downloadImages);
downloadImage.setOnClickListener(new View.OnClickListener() {
@Override
public void onClick(View view) {
 getImageNamesFromDatabase(2);
 }
 });

file = new File(Environment.getExternalStorageDirectory() + File.separator +
"EncryptedImages");
file.mkdirs();
if (file.isDirectory()) {
listFile = file.listFiles();

if(listFile == null){
filePathStrings = new String[0];
fileNameStrings = new String[0];
fileUriArray = new Uri[0];

for (int i = 0; i <0; i++) {
filePathStrings[i] = listFile[i].getAbsolutePath();
fileNameStrings[i] = listFile[i].getName();
fileUriArray[i] = Uri.fromFile(listFile[i]);
 }
 }
else {
filePathStrings = new String[listFile.length];
fileNameStrings = new String[listFile.length];
fileUriArray = new Uri[listFile.length];

for (int i = 0; i <listFile.length; i++) {
filePathStrings[i] = listFile[i].getAbsolutePath();
fileNameStrings[i] = listFile[i].getName();
fileUriArray[i] = Uri.fromFile(listFile[i]);
 }
 }
 }

//String[] empty1 = {};
 //myTask mt = new myTask();
 //mt.execute();

 //lv = (ListView)findViewById(R.id.listView1);
 //listAdapter = new MyListAdapter(GalleryActivity.this, filePathStrings,
fileNameStrings);
 //lv.setAdapter(listAdapter);
 //generateListContent();
 //lv.setAdapter(new MyListAdapter(this, R.layout.listview_items, data));

Button encrypt = (Button) findViewById(R.id.enc);
 encrypt.setOnClickListener(new View.OnClickListener() {
@Override
public void onClick(View view) {
if(realPath[0] == null){
 Toast.makeText(GalleryActivity.this, "please choose first",

99

Toast.LENGTH_SHORT).show();
 }
else{
 enc3(realPath);
//Toast.makeText(GalleryActivity.this, realPath[0]+"", Toast.LENGTH_SHORT).show();
File a = new File(realPath[0]);
 a.delete();
 Intent scanIntent = new
Intent(Intent.ACTION_MEDIA_SCANNER_SCAN_FILE);
 scanIntent.setData(Uri.fromFile(a));
 sendBroadcast(scanIntent);

final ProgressDialog progressDialog=new ProgressDialog(GalleryActivity.this);
 progressDialog.setTitle("Encrypting..");
 progressDialog.setMessage("Please wait");
 progressDialog.show();

final Handler handler = new Handler();
 handler.postDelayed(new Runnable() {
@Override
public void run() {
progressDialog.hide();
 Intent intent=new
Intent(GalleryActivity.this,GalleryActivity.class);
 startActivity(intent);
 }
 },3000);
 }
 }
 });
 ui();
 }

public boolean checkNamesOnServer(String name){
boolean flag = false;
for(int i = 0; i <imageListServer.length; i++){
//System.out.println("FileName: "+name);
 //System.out.println("FileNameServer: "+imageListServer[i]);
if(name.equals(imageListServer[i])){
 flag = true;
 }
 }
 System.out.println(flag);
return flag;
 }
public boolean checkNamesOnPhone(String name){
boolean flag = false;
for(int i = 0; i <fileNameStrings.length; i++){
//System.out.println("FileName: "+name);
 // System.out.println("FileNameServer: "+fileNameStrings[i]);
if(name.equals(fileNameStrings[i])){
 flag = true;
 }
 }

return flag;
 }

public void getImageNamesFromDatabase(final int choice){
databaseReference.addListenerForSingleValueEvent(new ValueEventListener() {
@Override
public void onDataChange(DataSnapshot dataSnapshot) {
imageListServer = new String[(int)dataSnapshot.getChildrenCount()];

100

int i = 0;
for (DataSnapshot snapshot : dataSnapshot.getChildren()) {
//ImageUpload class require default constructor
ImageUpload img = snapshot.getValue(ImageUpload.class);
imageListServer[i] = img.getName();
//Toast.makeText(GalleryActivity.this,
imageListServer[i]+"Length"+imageListServer.length, Toast.LENGTH_SHORT).show();
i++;
 }
 i = 0;
 System.out.println("GOGOGO");
if(choice == 1){
for(int j = 0; j <fileUriArray.length; j++){

boolean isPresentOnServer = checkNamesOnServer(fileNameStrings[j]);
if(isPresentOnServer == false){
 System.out.println("Not Present: "+fileNameStrings[j]);
 uploadImage(fileNameStrings[j], fileUriArray[j]);
 }
 }
 }
if(choice == 2){
for(int j = 0; j <imageListServer.length; j++){

boolean isPresentOnPhone = checkNamesOnPhone(imageListServer[j]);
if(isPresentOnPhone == false){
 System.out.println("Not Present: "+imageListServer[j]);
try {
 downloadImage(imageListServer[j]);
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
 }
 }
 }

@Override
public void onCancelled(DatabaseError databaseError) {

 }
 });

 }

public void ui(){
new Thread(new Runnable() {
@Override
public void run() {
 runOnUiThread(new Runnable() {
@Override
public void run() {
lv = (ListView)findViewById(R.id.listView1);
listAdapter = new MyListAdapter(GalleryActivity.this, filePathStrings,
fileNameStrings);
lv.setAdapter(listAdapter);
 }
 });
 }
 }).start();

 }

101

public void generateListContent(){
for(int i=0; i<55; i++){
//data.add("This is row number "+i);
}
 }
/*@Override
 protected void onActivityResult(int requestCode, int resultCode, Intent data) {
 super.onActivityResult(requestCode, resultCode, data);

 if (resultCode == RESULT_OK) {
 Uri photoUri = data.getData();
 if (photoUri != null) {
 path = photoUri.toString();
 }
 }
 }*/
@Override
protected void onActivityResult(int reqCode, int resCode, Intent data) {

if(resCode == Activity.RESULT_OK && data != null){
if(data.getClipData() == null){
realPath = new String[1];
// SDK < API11
if (Build.VERSION.SDK_INT <11)
realPath[0] = RealPathUtil.getRealPathFromURI_BelowAPI11(this, data.getData());

// SDK >= 11 && SDK < 19
else if (Build.VERSION.SDK_INT <19)
realPath[0] = RealPathUtil.getRealPathFromURI_API11to18(this, data.getData());

// SDK > 19 (Android 4.4)
else
realPath[0] = RealPathUtil.getRealPathFromURI_API19(this, data.getData());
 }
else{
realPath = new String[data.getClipData().getItemCount()];
for(int i = 0; i < data.getClipData().getItemCount(); i++) {
// SDK < API11
if (Build.VERSION.SDK_INT <11)
realPath[i] = RealPathUtil.getRealPathFromURI_BelowAPI11(this,
data.getClipData().getItemAt(i).getUri());

// SDK >= 11 && SDK < 19
else if (Build.VERSION.SDK_INT <19)
realPath[i] = RealPathUtil.getRealPathFromURI_API11to18(this,
data.getClipData().getItemAt(i).getUri());

// SDK > 19 (Android 4.4)
else
realPath[i] = RealPathUtil.getRealPathFromURI_API19(this,
data.getClipData().getItemAt(i).getUri());
 }
 }

//setTextViews(Build.VERSION.SDK_INT, data.getData().getPath(),realPath);
 //enc();

}

 }
private void uploadImage(final String fileName, final Uri filePath) {
if(filePath != null)

102

 {

progressDialog.setTitle("Uploading...");
progressDialog.show();

 StorageReference ref = storageReference.child("Encrypted_Images/"+
fileName);
 ref.putFile(filePath)
 .addOnSuccessListener(new
OnSuccessListener<UploadTask.TaskSnapshot>() {
@Override
public void onSuccess(UploadTask.TaskSnapshot taskSnapshot) {
 ImageUpload imageUpload = new ImageUpload(fileName,
filePath.toString());
 String imageId=databaseReference.push().getKey();
databaseReference.child(imageId).setValue(imageUpload);

progressDialog.dismiss();
 Toast.makeText(GalleryActivity.this, "Uploaded",
Toast.LENGTH_SHORT).show();
 }
 })
 .addOnFailureListener(new OnFailureListener() {
@Override
public void onFailure(@NonNull Exception e) {
progressDialog.dismiss();
 Toast.makeText(GalleryActivity.this, "Failed
"+e.getMessage(), Toast.LENGTH_SHORT).show();
 }
 })
 .addOnProgressListener(new
OnProgressListener<UploadTask.TaskSnapshot>() {
@Override
public void onProgress(UploadTask.TaskSnapshot taskSnapshot) {
double progress = (100.0*taskSnapshot.getBytesTransferred()/taskSnapshot
 .getTotalByteCount());
progressDialog.setMessage("Uploaded "+(int)progress+"%");
 }
 });
 }
 }
private void downloadImage(final String fileName) throws IOException {
progressDialog.setTitle("Downloading...");
progressDialog.show();
 StorageReference ref = storageReference.child("Encrypted_Images/"+ fileName);
final File storagePath = new File("/storage/emulated/0/EncryptedImages/"+fileName);
//final File localFile = File.createTempFile("sam", null , storagePath);
ref.getFile(storagePath).addOnSuccessListener(new
OnSuccessListener<FileDownloadTask.TaskSnapshot>() {
@Override
public void onSuccess(FileDownloadTask.TaskSnapshot taskSnapshot) {
progressDialog.dismiss();
 Toast.makeText(GalleryActivity.this, "Downloaded: "+fileName,
Toast.LENGTH_SHORT).show();
 }
 }).addOnFailureListener(new OnFailureListener() {
@Override
public void onFailure(@NonNull Exception e) {
progressDialog.dismiss();
 Toast.makeText(GalleryActivity.this, "Failed "+e.getMessage(),
Toast.LENGTH_SHORT).show();
 }
 }).addOnProgressListener(new

103

OnProgressListener<FileDownloadTask.TaskSnapshot>() {
@Override
public void onProgress(FileDownloadTask.TaskSnapshot taskSnapshot) {
double progress = (100.0*taskSnapshot.getBytesTransferred()/taskSnapshot
 .getTotalByteCount());
progressDialog.setMessage("Downloaded "+(int)progress+"%");
 }
 });
 }

public void enc3(String[] pathIn){
for(int i=0; i<pathIn.length;i++){
 File file1 = new File(pathIn[i]);
 String filename = file1.getName();
try{
 initialize(pathIn[i],
"/storage/emulated/0/EncryptedImages/"+filename);
 encrypt();
//initialize("/storage/emulated/0/Encrypted/abcde.jpg",
"/storage/emulated/0/Decrypted/de.jpg");
 //encrypt();
}
catch(FileNotFoundException e){
 System.out.println(e.getMessage()+"NOTFOUNFEX");

 }
catch(IOException e){
 System.out.println(e.getMessage()+"IOEX");
 }
 }

 }
public void initialize(String inputFilePath, String outputFilePath) throws
FileNotFoundException{
reader = new DataInputStream(new FileInputStream(new File(inputFilePath)));
writer = new DataOutputStream(new FileOutputStream(new File(outputFilePath)));
 }
public void encrypt() throws IOException {
int readBytes = 0;
 RC4Cipher rc4Encryption = new RC4Cipher("123abcde");
byte[] buffer = new byte[2048];
do {
 readBytes = reader.read(buffer, 0, 2048);
 buffer = rc4Encryption.rc4(buffer);
if (readBytes >0) {
writer.write(buffer, 0, readBytes);
writer.flush();
 }
//System.out.println(k++);

} while (readBytes >0);
 }
public void abctask(){
lv = (ListView)findViewById(R.id.listView1);
listAdapter = new MyListAdapter(GalleryActivity.this, filePathStrings,
fileNameStrings);
lv.setAdapter(listAdapter);
 }

}

104

	List of Figures
	Chapter 1: Introduction
	1.1 Overview
	1.2 Problem Statement
	1.3 Approach
	1.4 Scope
	1.5 Objectives
	1.6 Deliverables
	1.7 Overview of the document
	1.8 Purpose of the document:

	Chapter 2: Literature Review
	Chapter 3: Software Requirement Specification
	3.1Introduction
	3.2 Overall Description
	3.2.1 Product Perspective
	3.2.2 Product Functions
	3.2.3 User Classes and Characteristics
	3.2.4 Operating Environment
	Software requirements:

	3.2.5 Design and Implementation Constraints
	3.2.6 User Documentation
	3.2.7 Assumptions and Dependencies

	3.3 External Interface Requirements
	3.3.1 User Interfaces
	3.3.2 Software Interfaces

	3.4 System Features
	3.5 Other Nonfunctional Requirements
	3.5.1 Performance Requirements
	3.5.2 Security Requirements
	3.5.4 Software Quality Attributes

	Chapter 4: Design and Development
	INTRODUCTION:
	4.2 Scope of the Development Project
	4.3 System Architecture Description
	4.3.1OVERVIEW OF MODULES/COMPONENTS
	4.3.2 Structure and Relationships
	Use Case Diagram
	Sequence Diagrams
	Logical View (State Transition Diagram)
	Class Diagram
	/
	User Interface
	Detailed Description of Components

	Reuse and Relationship to other products
	Design and Tradeoffs
	Chapter 5: Testing and Evaluation
	5.1 Introduction
	5.2 Test Items
	5.3 Features tested
	5.4 Approach
	5.5 Item Pass/Fail Criteria
	5.6 Suspension Criteria and Resumption Requirements
	5.7 Test Deliverables
	5.8 Environmental Needs
	Hardware
	Software

	5.9 Responsibilities, Staffing and Training Needs
	Responsibilities
	Skills

	5.10 Risks and contingencies
	Chapter 6: Future Work
	Chapter 7: Conclusion
	Bibliography
	Appendix (Proposal)
	Pseudo code for components
	Video Activity.java
	MainActivity.java
	Gallery Activity.java

