

INTERNET CALL MANAGER

(ICM)

Syndicate Members

NC MOHIB RAZA
CSUO KASHIF ALAM
SGT USMAN MOHSIN
GC ZEESHAN KHALID

Directing Staff (DS)

LT COL AHSEN SAEED ZAIDI

A DISSERTATION

Submitted
To

Nation University of Sciences & Technology
In partial fulfillment of the requirements

For the degree of

Bachelors of Engineering (BE) Computer Software

Department of Computer Software Engineering
Military College of Signals

October 2001

 2

ABSTRACT

The basic idea of this project is to use the same telephone line for

Internet browsing and receiving telephone calls. Thus not missing any

important phone call while on Internet. Our project comprises 2 servers and

a module on a client side. Server 1 deals with the phone calls coming from

the collee and server 2 deals with the client side that is connected on the

Internet. These servers are implemented using JComm API, JMF API,

JDBC, Motorola AT command set and Multithreading for the Internet

clients.

 3

ACKNOWLEDGEMENTS

First of all, Thanks to Allah Almighty for His continued help and

guidance. We would also like to thank the following people for their support

and guidance in completion of our project.

LT COL AHSEN SAEED ZAIDI ISI

LT COL YOUNAS EME

MAJ DR SHOAIB EME/ET

CAPT ADIL PASCOMS

MR ALI ASHAN MCS

MR ARSHAD INFONET

MR SHAHZAD MARI GAS

MR ZAFAR ALCATEL

MR OBAIDULLAH SILICON

MR NAVEED PTCL

We would also like to thank family members and colleagues for their

continuous feedback and moral support.

 4

TABLE OF CONTENTS

1. BACKGROUND -- 8

2. INTRODUCTION -- 9

3. IP TELEPHONY -- 9

3.1 INTERNET TELEPHONE? AND WHAT CAN IT DO? --------- 10
3.2 SYSTEM RESOURCE USAGE -- 11
3.3 AREAS OF APPLICATION -- 12
3.4 PRIVACY ISSUES -- 13
3.5 THE FUTURE OF INTERNET TELEPHONY --------------------- 13
3.6 OVERVIEW OF EXISTING VOICE OVER IP STANDARDS - 14

4. SOFTWARE ARCHITECTURE -- 15

4.1 PROJECT SPECIFICATIONS --- 15
4.2 CLASS HIERARCHY -- 15

4.2.1 CLIENT LISTENER SERVER SIDE ------------------------------ 15
4.2.1.1 HIERARCHY FOR CLIENT LISTENER CLASSES ---------- 15
4.2.1.2 LIST OF ALL MEMBER FUNCTIONS ------------------------ 16
4.2.1.3 CLASS CLIENTLISTENER ------------------------------------- 17
4.2.1.4 CLASS DBMANAGER -- 23

4.2.2 IUSER SIDE --- 28
4.2.2.1 CLASS HIERARCHY FOR IUSER CLASSES ---------------- 28
4.2.2.2 LIST OF ALL MEMBER FUNCTIONS ------------------------ 28
4.2.2.3 CLASS IUSER -- 29

4.2.3 MODEM MANAGER SERVER SIDE ---------------------------- 36
4.2.3.1 HIERARCHY FOR MODEM MANAGER SERVER -------- 36
4.2.3.2 LIST OF ALL MEMBER FUNCTIONS ------------------------ 36
4.2.3.3 CLASS MODEMMANAGER ----------------------------------- 38
4.2.3.4 CLASS IUMANAGER --- 43
4.2.3.5 CLASS CLMANAGER -- 44

 5

4.2.4 MESSAGE PLAYER SIDE --- 46
4.2.4.1 HIERARCHY FOR MESSAGE PLAYER CLASSES --------- 46
4.2.4.2 LIST OF ALL MEMBERS FUNCTIONS ---------------------- 46
4.2.4.3 CLASS MESSAGEPLAYER ------------------------------------ 47
4.2.4.4 CLASS SOUNDLIST -- 49
4.2.4.5 CLASS SOUNDLOADER --------------------------------------- 51

4.2.5 VOICE TRANSMISSION SIDE ------------------------------------ 52
4.2.5.1 CLASS HIERARCHY FOR VOICE TRANSMISSION ------- 52
4.2.5.2 LIST OF ALL MEMBER FUNCTIONS ------------------------ 53
4.2.5.3 CLASS TEST --- 54
4.2.5.4 CLASS VTSERVER --- 55
4.2.5.5 CLASS VTCLIENT -- 57
4.2.5.6 CLASS MYCONTROLLERLISTENER ------------------------ 59

4.3 CLASS DIAGRAM --- 62
4.4 ACTIVITY DIAGRAMS -- 63

4.4.1 INTERNET USER --- 63
4.4.2 PHONE LISTENER --- 65

5. OVERVIEW OF AT COMMAND ------------------------------------- 68

5.1 VOICE SUBMODES --- 68
5.1.1 ONLINE VOICE COMMAND MODE ---------------------------- 68
5.1.2 VOICE RECEIVE MODE -- 69
5.1.3 VOICE TRANSMIT MODE --- 70

5.2 VOICE CAPABILITIES --- 70
5.2.1 CALL ESTABLISHMENT - ANSWER ---------------------------- 70

5.2.1.2 VOICE --- 71
5.2.1.3 FAX CAPABILITIES --- 72
5.2.1.4 DATA -- 72

5.2.2 CALL ESTABLISHMENT - ANSWER ---------------------------- 72
5.2.2.1 VOICE --- 73
5.2.2.2 FAX CAPABILITIES --- 73
5.2.2.3 DATA -- 73

5.2.3 ADAPTIVE ANSWER --- 74
5.2.3.1 DATA/FAX DISCRIMINATION -------------------------------- 74
5.2.3.2 VOICE/FAX DISCRIMINATION ------------------------------- 74
5.2.3.3VOICE/DATA/FAX DISCRIMINATION ------------------------ 75

5.3 VOICE DATA TRANSFER -- 75
5.4 TABLE SHIELDED CODES SENT TO THE DTE --------------- 76
5.5 VOICE PLAYBACK --- 77

 6

5.6 VOICE CALL TERMINATION --------------------------------------- 78
5.6.1 LOCAL DISCONNECT -- 78
5.6.2 REMOTE DISCONNECT DETECTION -------------------------- 78

5.7 MODE SWITCHING--- 74
5.7.1 VOICE TO FAX --- 79
5.7.1.1 UNSUCCESSFUL FAX CONN ATTEMPT TO VOICE ----- 79
5.7.2 VOICE TO DATA --- 79
5.7.2.1 UNSUCCESSFUL DATA CONN ATTEMPT TO VOICE --- 80

5.8 CALLER ID -- 80
5.9 AT VOICE COMMAND SUMMARY ------------------------------- 80

5.9.1 GLOBAL AT COMMAND SET EXTENSIONS ----------------- 80
5.9.2 ATA - ANSWERING IN VOICE ----------------------------------- 81

5.10 COMMANDS ENABLED IN VOICE MODE (#CLS=8) ------ 86
5.11 DEVICE TYPES SUPPORTED BY #VLS ------------------------- 87

5.11.1 ASCII DIGIT DEVICE TYPE AND CONSIDERATIONS ----- 87
5.12 S-REGISTERS -- 88
5.13 RESULT CODES FOR VOICE OPERATION -------------------- 89

6 OVERVIEW OF JCOMM -- 90

6.1 JAVAX.COMM EXTENSION PACKAGE ------------------------- 90
6.2 SERIAL SUPPORT WITH JAVAX.COMM PACKAGE ------- 92
6.3 SUGGESTED STEPS FOR USING JAVAX.COMM------------- 96
6.4 CONCLUSION -- 98

7. VOICE TRAMSMISSION OVER INTERNET----------------99

7.1 UNDERSTANDING JMF --- 99
7.1.1 TIME MODEL --- 100
7.1.2 EVENT MODEL --- 103
7.1.3 PUSH AND PULL DATA SOURCES --------------------------- 104
7.1.4 SPECIALTY DATASOURCES ----------------------------------- 105
7.1.5 PLAYERS -- 108
7.1.5.1 PLAYER STATES -- 108
7.1.6 PROCESSORS --- 110
7.1.7 PROCESSING --- 111
7.1.7.1 METHODS AVAILABLE IN EACH STATE ---------------- 113
7.1.8 PROCESSING CONTROLS --------------------------------------- 114

8. REAL TIME PROTOCOL -- 118

8.1 INTRODUCTION --- 118

 7

8.2 RTP USE SCENARIOS -- 120
8.2.1 SIMPLE MULTICAST AUDIO CONFERENCE --------------- 120
8.2.2 AUDIO AND VIDEOCONFERENCE --------------------------- 121
8.2.3 MIXERS AND TRANSLATORS --------------------------------- 122

8.3 DEFINITIONS --- 123
8.4 MULTIPLEXING RTP SESSIONS --------------------------------- 127
8.5 RTP PROFILES AND FORMAT SPECIFICATION ------------ 130

9. CLASS HIERARCHY -- 132

9.1 JCOMM --- 132

10. CONCLUSION -- 133

11. FUTURE ENHANCEMENTS -- 134

12. BIBLIOGRAPHY -- 135

 8

1. BACKGROUND

In order to check the feasibility of this project we carried out research

work and came to know that this idea has never been implemented in

Pakistan. Although there are some sites available in Canada and USA, there

were very few servers, who were giving full real time communication, but

majorities of them were based on either answering machine or voice

messaging. But the problem with real time communication providers is that

they wanted others to forward their calls to their number, which is highly

infeasible for the local market of Pakistan, in terms of cost of long distance

call charges.

During the research we went to Alcatel office and came to know that they

are providing hardware equipment, which can be used for this purpose. But

the cost of that server was round about 1 million. So it was unaffordable for

general-purpose usage.

Then we started visiting different exchanges and ISP’s for the feasibility of

this project and finally decided to implement the idea using a PC having

modem. So we started with a rough model and implemented the idea.

 9

2. INTRODUCTION

When you're using your only phone line to surf the net, that line is

completely tied up. Call Waiting won't help, and if you have voice mail, you

won't know about any messages until you get off the line. That means people

calling you get a busy signal or your voice mail, and you don't even know

they called. Some of those calls could be important or even urgent - perhaps

a call from a family member, client, customer, your boss - anyone! Did you

know that approximately one third of all calls placed to households with

Internet service receive a busy signal because someone is on the Internet at

the time? That mean's you're missing a lot many calls because of busy line.

We can use Internet Call Manager (ICM) to get rid of this problem.

ICM server provides a connection between a user and the telecom company

while his telephone line is busy for a pp Internet connection and the user is

connected on the Internet.

Thus connecting the incoming calls to the user through Internet using VOIP.

3. IP TELEPHONY

IP telephone is defined as any telephony application that can be

enable across a packet-switched data network via the internet protocol.

Packet-switched networks are not optimized for any one type of traffic,

allowing intelligent end-user devices to encode and decode speech to make

better use of available bandwidth. The voice compression algorithms now

 10

used in IP-based telephony can deliver voice in a fraction of bandwidth used

by circuit-switched cells. In addition, by treating voice another form of data

and sending it over the same network as data, IP telephony is enabling new

applications that use the best characteristics of voice communication and

data processing. These applications can include PC-to-PC connection, PC to

phone connections. Example applications include voice over the internet or

internets, fax traffic (both real time and store-and-forward), unified message

via web-enabled call centers, Internet call waiting, and much more.

 Internet telephones have the potential to change the rules for long-

distance telephone co. open the way to increased electronic commerce, and

make corporate intranets more useful and productive. This is because

Internet phones can improve communication while cutting travel and long

distance costs. These benefits have already led more then two million people

to use the Internet phones daily.

3.1 WHAT IS AN INTERNET TELEPHONE, AND WHAT

CAN IT DO?

In a nutshell an internet telephone is a device that convert s voice into

data for transmission over the internet, compresses that data for faster

transmission, transmit the data in small “packets”, and then reassembles

those packets, decompresses the data, and convert it back into voice at the

other end. One advantage of IP telephony is that it dramatically improves

efficiency of bandwidth use for real-time voice transmission, in many cases

by a factor of 10 or more. Another advantage IP telephony has over the

 11

PSTN is that it enables the creation of new class of service that includes

applications such as web-enabled call centers, collaborative white boarding,

and remote tele-working. This combination of human interaction and the

power and efficiency of computers is opening up an entirely new world of

communications. A final advantage of IP telephony is that it is additive to

toady’s communications networks. IP technology can be used in conjunction

with the existing PSTN leased and dial-up lines, PBXs and other customer

premise equipment (CPE), local area networks (LANs), and the internet

connections. IP telephony applications can be implemented through

dedicated servers, which in turn can be based on the state of art PC hardware

and software platforms plus interface boards providing computer technology

(CT), internet and IP telephony functions.

3.2 SYSTEM RESOURCE USAGE

The amount of system bandwidth used by the Internet telephony

conversations varies directly and proportionally with the number of

simultaneous conversations, and inversely with the amount of data

compression used. Unfortunately, the trade off for additional compression is

compromised by audio quality.

Bandwidth assumption with the Internet phones runs as little as 6720 bps per

conversation, meaning that even 9600-baud modems can support Internet

telephony. This level of consumption is efficient for standalone desktops

using a dedicated telephone line, but for intranets that are local area

networks (LAN) based and wide area networks (WAN) based, multiple

conversations can quickly eat up bandwidth capacity. This problem is

 12

execrated by the fact that Internet telephony software is designed to run in

the background to allow multitasking, meaning that the same user can

transmit other data to the network at the same time.

For example on a network with 100 users, 50 concurrent Internet phone

conversations can eat up 350 kbps or more bandwidth, in addition to the

current load on the network. Because many networks do not operate well

with sustained loads over 30 to 50 % of capacity, this level of consumption

can be significant. Indeed, it equates to almost 25% of a WAN TI

connection.

3.3 AREAS OF APPLICATION

The main goal of VOIP is to piggyback voice and fax calls over an IP

data network to save on long distance charges. A secondary goal is to

incorporate IP voice and fax in to certain applications for enhanced services.

These two goals are the primary focus in seven main VOIP market

applications. Market Applications Corporate tool By-pass Toll free intra-

company voice and fax between corporate locations. Fax over the Internet

Tool free or reduced rate fax machines, fax between any two locations. PC

phone to PC phone Tool free voice between two PC’s on the Internet. IP

based public phone services new public phone services, at reduced rates

(especially internationally), where voice is sent over the Internet or over the

new public IP networks. Voice is phone to phone, or phone to PC.Call center

IP telephony, agent click new IP voice applications that allows a PC user on

the internet to click on a phone icon in a catalog in the customer services

homepage and talk to an agent via the PC as a phone. IP line Double A PC

user at a home or in a hotel etc with just one connection to the internet

 13

would subscribe to a new service that allows the single phone line to carry

one or more phone calls in addition to the PC data. Premise IP telephony

PC’s in a building on an IP LAN would be able to make phones calls to

ordinary phones in the same building or to make outside calls, using special

VOIP equipment on the premise.

3.4 PRIVACY ISSUES

Most Internet phone software sends and receives audio directly

between the users without going through a central server, although the server

might track who is on line. The real time protocol (RTP) allows for the

encryption of the multimedia stream between the conference members.

This means that Internet phone calls are usually hard to trace or listen on in.

3.5 THE FUTURE OF INTERNET TELEPHONY

Both private and public organizations are working to connect

conventional telephones with Internet telephones big industry giants such as

NTT DoCoMo, AT&T, Cisco and Lucent Technologies have realized the

importance of Internet Telephony in the future and are investing heavily in

such applications. According to study by the International Data Corporation

(IDC), the current growth rate in the Internet Telephony industry is

150% and the market value is expected to reach §3.6 Billion by the year

2002.

 14

3.6 OVERVIEW OF EXISTING VOICE OVER IP

STANDARDS

When the IP telephony equipment manufacturers began to move their

technologies from the laboratory into the real world, it became clear that the

technical challenge of building a scalable network of end devices and

gateways was greater than expected. The technologies needed to encode and

transmit voice and fax traffic had been perfected, but the art of call control

and address management for large corporate or service provider platforms

still needed to evolve. As a result a number of protocols have been defined

that allow IP telephony systems to inter-communicate. This section

examines three common IP telephony protocols used in systems to date:

H.323, MGCP, and SIP. These protocols lead an intertwined existence often

being combined in many applications.

 15

4. SOFTWARE ARCHITECTURE

4.1 PROJECT SPECIFICATIONS

SOFTWARE REQUIREMENTS

• SOFTWARE MODULE ON THE CLIENT SIDE.
• PHONE LISTENER SERVER FOR HANDLING TELEPHONE

CALLS
• CLIENT LISTENER SERVER FOR MANAGING DATABASE.
• JMF
• JCOMM

HARDWARE REQUIREMENTS

• CALL FORWARDING ON INTERNET USER SIDE

• MULTIMEDIA SUPPORT

• FULL DUPLEX VOICE MODEM

• TELEPHONE LINE

4.2 CLASS HIERARCHY

4.2.1 CLIENT LISTENER SERVER SIDE

4.2.1.1 CLASS HIERARCHY FOR CLIENT LISTENER CLASSES

o class java.lang.Object

o class java.awt.Component (implements
java.awt.image.ImageObserver, java.awt.MenuContainer,
java.io.Serializable)

 class java.awt.Container

 16

 class java.awt.Window (implements
javax.accessibility.Accessible)

 class java.awt.Frame (implements
java.awt.MenuContainer)

 class ClientListener

o class DBManager

4.2.1.2 LIST OF ALL MEMBER FUNCTIONS

C
checkIP(String) - Method in class DBManager

This method is used check the duplicate IP address in the database.
checkTelNo(String) - Method in class DBManager

This method is used check the duplicate telephone number in the
database.

ClientListener - class ClientListener.
This class is used to make the threads for the clients.

ClientListener() - Constructor for class ClientListener
Constructor only sets the GUI and Action Listeners.

con - Variable in class DBManager

D
DBManager - class DBManager.

This class is handling all database transactions.
DBManager() - Constructor for class DBManager

Constructor only loads the driver necessary for the data base
connections and then establishes the connection with the database.

deleteTelTuple(String) - Method in class DBManager
This function is used to delete the Telephone number from the data
base.

deleteTuple(String) - Method in class DBManager
This function is used to delete the IP address from the data base.

display(String) - Method in class ClientListener
This function is only used to display the Strings on the GUI.

 17

I
insertRequest(String, String, String) - Method in class DBManager

This function is called for any request of log on from the Internet user.
insertSequence(String, String, String) - Method in class DBManager

This function is called for any request of log on from the Internet user.

M
main(String[]) - Static method in class ClientListener

This function is only used to start the application.

R
runServer() - Method in class ClientListener

It receives the requests of the clients and call the ServerThread class
to handle it.

4.2.1.3 CLASS CLIENTLISTENER

java.lang.Object
 |
 +--java.awt.Component
 |
 +--java.awt.Container
 |
 +--java.awt.Window
 |
 +--java.awt.Frame
 |
 +--ClientListener

All Implemented Interfaces:

javax.accessibility.Accessible, java.awt.image.ImageObserver,
java.awt.MenuContainer, java.io.Serializable

 18

public class ClientListener
extends java.awt.Frame
This class is used to make the threads for the clients. Clients of this
class PhoneListener class and IUser class

Version:

1.0, 9-Oct-2001
Author:

ksum
See Also:

IUser, ServerThread, Serialized Form

Inner classes inherited from class java.awt.Frame

java.awt.Frame.AccessibleAWTFrame

Inner classes inherited from class java.awt.Window

java.awt.Window.AccessibleAWTWindow

Inner classes inherited from class java.awt.Container

java.awt.Container.AccessibleAWTContainer

Inner classes inherited from class java.awt.Component

java.awt.Component.AccessibleAWTComponent

Fields inherited from class java.awt.Frame

CROSSHAIR_CURSOR, DEFAULT_CURSOR,
E_RESIZE_CURSOR, HAND_CURSOR, ICONIFIED,
MOVE_CURSOR, N_RESIZE_CURSOR, NE_RESIZE_CURSOR,

 19

NORMAL, NW_RESIZE_CURSOR, S_RESIZE_CURSOR,
SE_RESIZE_CURSOR, SW_RESIZE_CURSOR, TEXT_CURSOR,
W_RESIZE_CURSOR, WAIT_CURSOR

Fields inherited from class java.awt.Component

BOTTOM_ALIGNMENT, CENTER_ALIGNMENT,
LEFT_ALIGNMENT, RIGHT_ALIGNMENT, TOP_ALIGNMENT

Fields inherited from interface java.awt.image.ImageObserver
ABORT, ALLBITS, ERROR, FRAMEBITS, HEIGHT, PROPERTIES,
SOMEBITS, WIDTH

Constructor Summary
ClientListener()
 Constructor only sets the GUI and Action Listeners.

Method Summary

 void display(java.lang.String s)
 This function is only used to display the Strings on the
GUI.

static void main(java.lang.String[] arg)
 This function is only used to start the application.

 void runServer()
 It recieves the requests of the clients and call the
ServerThread class to handle it.

Methods inherited from class java.awt.Frame

 20

addNotify, finalize, getAccessibleContext, getCursorType, getFrames,
getIconImage, getMenuBar, getState, getTitle, isResizable,
paramString, remove, removeNotify, setCursor, setIconImage,
setMenuBar, setResizable, setState, setTitle

Methods inherited from class java.awt.Window

addWindowListener, applyResourceBundle, applyResourceBundle,
dispose, getFocusOwner, getGraphicsConfiguration, getInputContext,
getListeners, getLocale, getOwnedWindows, getOwner, getToolkit,
getWarningString, hide, isShowing, pack, postEvent, processEvent,
processWindowEvent, removeWindowListener, setCursor, show,
toBack, toFront

Methods inherited from class java.awt.Container

add, add, add, add, add, addContainerListener, addImpl,
countComponents, deliverEvent, doLayout, findComponentAt,
findComponentAt, getAlignmentX, getAlignmentY, getComponent,
getComponentAt, getComponentAt, getComponentCount,
getComponents, getInsets, getLayout, getMaximumSize,
getMinimumSize, getPreferredSize, insets, invalidate, isAncestorOf,
layout, list, list, locate, minimumSize, paint, paintComponents,
preferredSize, print, printComponents, processContainerEvent,
remove, remove, removeAll, removeContainerListener, setFont,
setLayout, update, validate, validateTree

Methods inherited from class java.awt.Component

 21

action, add, addComponentListener, addFocusListener,
addHierarchyBoundsListener, addHierarchyListener,
addInputMethodListener, addKeyListener, addMouseListener,
addMouseMotionListener, addPropertyChangeListener,
addPropertyChangeListener, bounds, checkImage, checkImage,
coalesceEvents, contains, contains, createImage, createImage,
disable, disableEvents, dispatchEvent, enable, enable, enableEvents,
enableInputMethods, firePropertyChange, getBackground,
getBounds, getBounds, getColorModel, getComponentOrientation,
getCursor, getDropTarget, getFont, getFontMetrics, getForeground,
getGraphics, getHeight, getInputMethodRequests, getLocation,
getLocation, getLocationOnScreen, getName, getParent, getPeer,
getSize, getSize, getTreeLock, getWidth, getX, getY, gotFocus,
handleEvent, hasFocus, imageUpdate, inside, isDisplayable,
isDoubleBuffered, isEnabled, isFocusTraversable, isLightweight,
isOpaque, isValid, isVisible, keyDown, keyUp, list, list, list, location,
lostFocus, mouseDown, mouseDrag, mouseEnter, mouseExit,
mouseMove, mouseUp, move, nextFocus, paintAll, prepareImage,
prepareImage, printAll, processComponentEvent,
processFocusEvent, processHierarchyBoundsEvent,
processHierarchyEvent, processInputMethodEvent,
processKeyEvent, processMouseEvent, processMouseMotionEvent,
removeComponentListener, removeFocusListener,
removeHierarchyBoundsListener, removeHierarchyListener,
removeInputMethodListener, removeKeyListener,
removeMouseListener, removeMouseMotionListener,

 22

removePropertyChangeListener, removePropertyChangeListener,
repaint, repaint, repaint, repaint, requestFocus, reshape, resize,
resize, setBackground, setBounds, setBounds,
setComponentOrientation, setDropTarget, setEnabled,
setForeground, setLocale, setLocation, setLocation, setName,
setSize, setSize, setVisible, show, size, toString, transferFocus

Methods inherited from class java.lang.Object

clone, equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

Methods inherited from interface java.awt.MenuContainer
getFont, postEvent

Constructor Detail

ClientListener
public ClientListener()

Constructor only sets the GUI and Action Listeners.
Method Detail

runServer
public void runServer()

It receives the requests of the clients and call the ServerThread class
to handle it. It's clients are PhoneListener class and IUser class.
See Also:
ServerThread, IUser, ModemManager

display

public void display(java.lang.String s)
This function is only used to display the Strings on the GUI.
Parameters:

 23

s - string to be dispalyed

main
public static void main(java.lang.String[] arg)

This function is only used to start the application.
Parameters:
arg[] - array of string from the command line, not applicable here

4.2.1.4 CLASS DBMANAGER

java.lang.Object
 |
 +--DBManager

public class DBManager
extends java.lang.Object
This class is handling all database transactions.
Version:

1.0, 9-Oct-2001
Author:

kusm
See Also:

ServerThread

Field Summary
 java.sql.Connection con

 24

Constructor Summary
DBManager()
 Constructor only loads the driver necessary for the data base
connections and then establishes the connection with the database.

Method Summary
 int checkIP(java.lang.String checkIP)

 This method is used check the duplicate IP address in the
database.

 int checkTelNo(java.lang.String checkTel)
 This method is used check the duplicate telephone number in the
database.

 int deleteTelTuple(java.lang.String anyTel)
 This function is used to delete the Telephone number from the
data base.

 int deleteTuple(java.lang.String anyIP)
 This function is used to delete the IP address from the data base.

 int insertRequest(java.lang.String name, java.lang.String telNo,
java.lang.String ipAdd)
 This function is called for any request of log on from the Internet
user.

 int insertSequence(java.lang.String name, java.lang.String telNo,
java.lang.String ipAdd)
 This function is called for any request of log on from the Internet
user.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString,
wait, wait, wait

 25

Field Detail
con

public java.sql.Connection con
Constructor Detail

DBManager
public DBManager()

Constructor only loads the driver necessary for the data base
connections and then establishes the connection with the database.

Method Detail
insertSequence

public int insertSequence(java.lang.String name,
 java.lang.String telNo,
 java.lang.String ipAdd)

This function is called for any request of log on from the Internet user.
First of all it is checked that this ip or tel no is present in the data base
or not if yes then they are deleted and new information inserted
otherwise information is inserted as it is.
Parameters:
name - name of the internet user

telNo - telephone number of the internet user

ipAdd - IP address of the internet user
Returns:
status of the request,1 -> successful, 0 -> not successful
See Also:
ServerThread, checkIP(java.lang.String), #CheckTelNo,

deleteTuple(java.lang.String), deleteTelTuple(java.lang.String),
insertRequest(java.lang.String, java.lang.String,
java.lang.String)

insertRequest

public int insertRequest(java.lang.String name,

 26

 java.lang.String telNo,
 java.lang.String ipAdd)

This function is called for any request of log on from the Internet user.
Parameters:
name - name of the internet user

telNo - telephone number of the internet user

ipAdd - IP address of the internet user
Returns:
status of the request,1 -> sucessful, 0 -> not successful
See Also:
insertSequence(java.lang.String, java.lang.String,
java.lang.String)

deleteTuple

public int deleteTuple(java.lang.String anyIP)
This function is used to delete the IP adress from the data base. It may
be in the case that user wants to log off or somehow he was not able to
log off and new request for log on is of the same ip then previous
entry will be deleted from the data base using this function.
Parameters:
anyIP - ip address to be deleted
Returns:
result of the query, 1 -> success, 0 -> no success
See Also:
insertSequence(java.lang.String, java.lang.String,
java.lang.String), ServerThread

deleteTelTuple

public int deleteTelTuple(java.lang.String anyTel)
This function is used to delete the Telephone number from the data
base. It may be in the case that user was not able to log off and new
request for log on is of the same number, then previous entry will be
deleted from the data base using this function.
Parameters:

 27

anyTel - Telephone number to be deleted
Returns:
result of the query, 1 -> success, 0 -> no success
See Also:
insertSequence(java.lang.String, java.lang.String,
java.lang.String)

checkTelNo

public int checkTelNo(java.lang.String checkTel)
This method is used check the duplicate telephone number in the
database. It takes the telephone number to be checked. end return the
result.
Parameters:
checkTel - telephone number to be checked
Returns:
return the result of the query 1 -> success, 0 -> no success
See Also:
insertSequence(java.lang.String, java.lang.String,
java.lang.String)

checkIP

public int checkIP(java.lang.String checkIP)
This method is used check the duplicate IP address in the database. It
takes the IP address to be checked. and return the result.
Parameters:
checkIP - IP address to be checked
Returns:
return the result of the query 1 -> success, 0 -> no success
See Also:
insertSequence(java.lang.String, java.lang.String,
java.lang.String)

 28

4.2.2 IUSER SIDE

4.2.2.1 CLASS HIERARCHY FOR IUSER CLASSES

o class java.lang.Object

o class java.awt.Component (implements
java.awt.image.ImageObserver, java.awt.MenuContainer,
java.io.Serializable)

 class java.awt.Container

 class java.awt.Window (implements
javax.accessibility.Accessible)

 class java.awt.Frame (implements
java.awt.MenuContainer)

 class javax.swing.JFrame
(implements
javax.accessibility.Accessible,
javax.swing.RootPaneContainer,
javax.swing.WindowConstants)

 class IUser

4.2.2.2 LIST OF ALL MEMBER FUNCTIONS

C
connectCL() - Method in class IUser

This function is used for Logging on.

D
disConnectCL() - Method in class IUser

This function is used for Logging off.
display(String) - Method in class IUser

This function dispalys the data in the text area to the user.

 29

I
IUser - class IUser.

This class builds the GUI for the user and does the remaining all tasks.
IUser() - Constructor for class IUser

This constructor is used to build the GUI.

M
main(String[]) - Static method in class IUser

This function is used to make the object of the class.

S
sendData(String) - Method in class IUser

This function flushes the data in the output stream.

W
waitForCall() - Method in class IUser

This function initiate the session with the server.

4.2.2.3 CLASS IUSER

java.lang.Object
 |
 +--java.awt.Component
 |
 +--java.awt.Container
 |
 +--java.awt.Window
 |
 +--java.awt.Frame
 |
 +--javax.swing.JFrame
 |
 +--IUser
All Implemented Interfaces:

javax.accessibility.Accessible, java.awt.image.ImageObserver,
java.awt.MenuContainer, javax.swing.RootPaneContainer,
java.io.Serializable, javax.swing.WindowConstants

 30

public class IUser
extends javax.swing.JFrame
This class builds the GUI for thr user and does the remaining all tasks.
Version:

1.0, 9-Oct-2001
Author:

ksum
See Also:

IUManager, ServerThread, Serialized Form

Inner classes inherited from class javax.swing.JFrame

javax.swing.JFrame.AccessibleJFrame

Inner classes inherited from class java.awt.Frame

java.awt.Frame.AccessibleAWTFrame

Inner classes inherited from class java.awt.Window

java.awt.Window.AccessibleAWTWindow

Inner classes inherited from class java.awt.Container

java.awt.Container.AccessibleAWTContainer

Inner classes inherited from class java.awt.Component

java.awt.Component.AccessibleAWTComponent

Fields inherited from class javax.swing.JFrame

accessibleContext, EXIT_ON_CLOSE, rootPane,
rootPaneCheckingEnabled

Fields inherited from class java.awt.Frame

CROSSHAIR_CURSOR, DEFAULT_CURSOR,

 31

E_RESIZE_CURSOR, HAND_CURSOR, ICONIFIED,
MOVE_CURSOR, N_RESIZE_CURSOR, NE_RESIZE_CURSOR,
NORMAL, NW_RESIZE_CURSOR, S_RESIZE_CURSOR,
SE_RESIZE_CURSOR, SW_RESIZE_CURSOR, TEXT_CURSOR,
W_RESIZE_CURSOR, WAIT_CURSOR

Fields inherited from class java.awt.Component

BOTTOM_ALIGNMENT, CENTER_ALIGNMENT,
LEFT_ALIGNMENT, RIGHT_ALIGNMENT, TOP_ALIGNMENT

Fields inherited from interface javax.swing.WindowConstants

DISPOSE_ON_CLOSE, DO_NOTHING_ON_CLOSE,
HIDE_ON_CLOSE

Fields inherited from interface java.awt.image.ImageObserver

ABORT, ALLBITS, ERROR, FRAMEBITS, HEIGHT, PROPERTIES,
SOMEBITS, WIDTH

Constructor Summary

IUser()
 This constructor is used to build the GUI.

Method Summary

 void connectCL()
 This function is used for Logging on.

 void disConnectCL()
 This function is used for Logging off.

 void display(java.lang.String show)

 32

 This function dispalys the data in the text area to the user.

static void main(java.lang.String[] arg)
 This function is used to make the object of the class.

 void sendData(java.lang.String data)
 This function flushes the data in the output stream.

 void waitForCall()
 This function initiate the session with the server.

Methods inherited from class javax.swing.JFrame

addImpl, createRootPane, frameInit, getAccessibleContext,
getContentPane, getDefaultCloseOperation, getGlassPane,
getJMenuBar, getLayeredPane, getRootPane,
isRootPaneCheckingEnabled, paramString, processKeyEvent,
processWindowEvent, remove, setContentPane,
setDefaultCloseOperation, setGlassPane, setJMenuBar,
setLayeredPane, setLayout, setRootPane,
setRootPaneCheckingEnabled, update

Methods inherited from class java.awt.Frame

addNotify, finalize, getCursorType, getFrames, getIconImage,
getMenuBar, getState, getTitle, isResizable, remove, removeNotify,
setCursor, setIconImage, setMenuBar, setResizable, setState,
setTitle

Methods inherited from class java.awt.Window

addWindowListener, applyResourceBundle, applyResourceBundle,
dispose, getFocusOwner, getGraphicsConfiguration, getInputContext,
getListeners, getLocale, getOwnedWindows, getOwner, getToolkit,

 33

getWarningString, hide, isShowing, pack, postEvent, processEvent,
removeWindowListener, setCursor, show, toBack, toFront

Methods inherited from class java.awt.Container

add, add, add, add, add, addContainerListener, countComponents,
deliverEvent, doLayout, findComponentAt, findComponentAt,
getAlignmentX, getAlignmentY, getComponent, getComponentAt,
getComponentAt, getComponentCount, getComponents, getInsets,
getLayout, getMaximumSize, getMinimumSize, getPreferredSize,
insets, invalidate, isAncestorOf, layout, list, list, locate, minimumSize,
paint, paintComponents, preferredSize, print, printComponents,
processContainerEvent, remove, removeAll,
removeContainerListener, setFont, validate, validateTree

Methods inherited from class java.awt.Component

action, add, addComponentListener, addFocusListener,
addHierarchyBoundsListener, addHierarchyListener,
addInputMethodListener, addKeyListener, addMouseListener,
addMouseMotionListener, addPropertyChangeListener,
addPropertyChangeListener, bounds, checkImage, checkImage,
coalesceEvents, contains, contains, createImage, createImage,
disable, disableEvents, dispatchEvent, enable, enable, enableEvents,
enableInputMethods, firePropertyChange, getBackground,
getBounds, getBounds, getColorModel, getComponentOrientation,
getCursor, getDropTarget, getFont, getFontMetrics, getForeground,
getGraphics, getHeight, getInputMethodRequests, getLocation,

 34

getLocation, getLocationOnScreen, getName, getParent, getPeer,
getSize, getSize, getTreeLock, getWidth, getX, getY, gotFocus,
handleEvent, hasFocus, imageUpdate, inside, isDisplayable,
isDoubleBuffered, isEnabled, isFocusTraversable, isLightweight,
isOpaque, isValid, isVisible, keyDown, keyUp, list, list, list, location,
lostFocus, mouseDown, mouseDrag, mouseEnter, mouseExit,
mouseMove, mouseUp, move, nextFocus, paintAll, prepareImage,
prepareImage, printAll, processComponentEvent,
processFocusEvent, processHierarchyBoundsEvent,
processHierarchyEvent, processInputMethodEvent,
processMouseEvent, processMouseMotionEvent,
removeComponentListener, removeFocusListener,
removeHierarchyBoundsListener, removeHierarchyListener,
removeInputMethodListener, removeKeyListener,
removeMouseListener, removeMouseMotionListener,
removePropertyChangeListener, removePropertyChangeListener,
repaint, repaint, repaint, repaint, requestFocus, reshape, resize,
resize, setBackground, setBounds, setBounds,
setComponentOrientation, setDropTarget, setEnabled,
setForeground, setLocale, setLocation, setLocation, setName,
setSize, setSize, setVisible, show, size, toString, transferFocus

Methods inherited from class java.lang.Object

clone, equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

Methods inherited from interface java.awt.MenuContainer

 35

getFont, postEvent

Constructor Detail

IUser
public IUser()

This constructor is used to build the GUI. iIt also sets the actoin
listeners for the LOG OFF and LOG ON butons.

Method Detail
sendData

public void sendData(java.lang.String data)
This function flushes the data in the output stream.
Parameters:
data - String to be sent

display

public void display(java.lang.String show)
This function displays the data in the text area to the user.
Parameters:
show - String to be shown

connectCL

public void connectCL()
This function is used for Logging on. It sends request to the
ServerThread class for logging on.
See Also:
ServerThread

disConnectCL

public void disConnectCL()
This function is used for Logging off. It sends request to the
ServerThread class for logging off.
See Also:
ServerThread

waitForCall

public void waitForCall()

 36

This function initiate the session with the server. It creates the Server
socket and listen for the response from the PhoneListener.Then it
makes the object of Test class to initiate voice conversation.
See Also:
Test, ServerThread

main

public static void main(java.lang.String[] arg)
This function is used to make the object of the class.
Parameters:
arg[] - any command line argument,null in this case

4.2.3 MODEM MANAGER SERVER SIDE

4.2.3.1 CLASS HIERARCHY FOR MODEM MANAGER SERVER

o class java.lang.Object

o class CLManager

o class IUManager

o class ModemManager

4.2.3.2 LIST OF ALL MEMBER FUNCTIONS

C
callCenter() - Method in class ModemManager

This function is the main function of the class which performs all the
tasks.

CLManager - class CLManager.
This class is used for interaction with the Data Base.

CLManager() - Constructor for class CLManager
It opens the connection with the ServerThread class to get the IP of
the user.

command(String) - Method in class ModemManager
It is used to send the commands to modem through stream.

 37

G

getTelNoIP(String) - Method in class CLManager
It passes the telephone number to the data base to get the IP of the
Internt user from there.

giveNumber() - Method in class ModemManager
It is used to extract the telephone no.

I

initializeModem(CommPortIdentifier, String) - Method in class
ModemManager

This method is used to initialized the modem.
isUserLogon(String) - Method in class IUManager

This is the main function of the class.It checks whether the user is
offline or online and tells him/her that there is a call for this phone
number.

IUManager - class IUManager.
This class is used for interaction with the Internet User.

IUManager() - Constructor for class IUManager

L

lookIn(char) - Method in class ModemManager
It is used to extract the only the telephone no.

M

main(String[]) - Static method in class ModemManager
It is the main function to run the aplication.

ModemManager - class ModemManager.
This class is used to interact with the modem.

ModemManager() - Constructor for class ModemManager
This constructor makes the object of the classes which are needed
during the execution.

N

numberBolo(char) - Method in class ModemManager
It is used to tell the dialed telephone no.

numberNikalo() - Method in class ModemManager
It is used to send numberNikalo numbers to say it aloud to user.

 38

P
print(byte[]) - Method in class ModemManager

It is used to print responses of the modem.

R
response() - Method in class ModemManager

It is used to take the response from the modem through stream.

T
telNoExtractor() - Method in class ModemManager

It is used to take the telephone number from user.

V
validateNo() - Method in class ModemManager

It is used to validate the number which is entered by the user.

4.2.3.3 CLASS MODEMMANAGER

java.lang.Object
 |
 +--ModemManager

public class ModemManager
extends java.lang.Object
This class is used to interact with the modem. This class also uses
objects of IUManager, CLManager and MessagePlayer to accomplish
the task.
Version:

1.0, 9-Oct-2001
Author:

ksum
See Also:

IUManager, CLManager, MessagePlayer

 39

Constructor Summary
ModemManager()
 This constructor makes the object of the classes which are needed
during the execution.

Method Summary

 void callCenter()
 This function is the main function of the class which
performs all the tasks.

 void command(java.lang.String atComm)
 It is used to send the commands to modem through stream.

 void giveNumber()
 It is used to extract the telephone no.

 void initializeModem(CommPortIdentifier portId,
java.lang.String COMport)
 This method is used to initialized the modem.

 void lookIn(char c)
 It is used to extract the only the telephone no.

static void main(java.lang.String[] args)
 It is the main function to run the aplication.

 void numberBolo(char awaz)
 It is used to tell the dialed telephone no.

 void numberNikalo()
 It is used to send numberNikalo numbers to say it aloud to
user.

 void print(byte[] received)
 It is used to print responses of the modem.

 byte[] response()
 It is used to take the response from the modem through

 40

stream.
 void telNoExtractor()

 It is used to take the telephone number from user.
 void validateNo()

 It is used to validate the number which is entered by the
user.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString,
wait, wait, wait

Constructor Detail

ModemManager
public ModemManager()

This constructor makes the object of the classes which are needed
during the execution. Secondly it also locates the ports available to
find the modem.

Method Detail
initializeModem

public void initializeModem(CommPortIdentifier portId,
 java.lang.String COMport)

This method is used to initialized the modem. It first creates the
streams with the modem and then give it AT commands to bring in it
online voice command mode to recieve the telephone calls.
Parameters:
portId - id of the required port

COMport - port at which modem is coonected

command
public void command(java.lang.String atComm)

It is used to send the commands to modem through stream.
Parameters:

 41

atComm - AT command to be send
See Also:
#initializedModem

response

public byte[] response()
It is used to take the response from the modem through stream. It
takes response in the form of Byte array.
Returns:
response from the modem
See Also:
command(java.lang.String)

callCenter

public void callCenter()
This function is the main function of the class which performs all the
tasks. it recieves the telephone call, give responses to the user,call
other objects to connect to database and internet user etc. Finally it
makes the object of test class to start conversation.
See Also:
IUManager, CLManager, MEssagePLayer, Test,
numberNikalo(), telNoExtractor(), #telNoBolo, validateNo()

print

public void print(byte[] received)
It is used to print responses of the modem.
Parameters:
received - Bytes to be printed.
See Also:
response()

telNoExtractor

public void telNoExtractor()
It is used to take the telephone number from user.

 42

See Also:
giveNumber()

lookIn

public void lookIn(char c)
It is used to extract the only the telephone no. from the response of
user.
See Also:
telNoExtractor()

giveNumber

public void giveNumber()
It is used to extract the telephone no. from the response of it.
See Also:
lookIn(char)

numberNikalo

public void numberNikalo()
It is used to send numberNikalo numbers to say it aloud to user.
See Also:
numberBolo(char)

numberBolo

public void numberBolo(char awaz)
It is used to tell the dialed telephone no. to user.
See Also:
numberNikalo()

validateNo

public void validateNo()
It is used to validate the number which is entered by the user.
See Also:
callCenter()

 43

main
public static void main(java.lang.String[] args)

It is the main function to run the aplication.
See Also:
ModemManager()

4.2.3.4 CLASS IUMANAGER

java.lang.Object
 |
 +--IUManager

public class IUManager
extends java.lang.Object
This class is used for interaction with the Internet User. This class
checks whether IUser is online or offline.
Version:

1.0, 9-Oct-2001
Author:

ksum
See Also:

ModemManager, IUser, CLManager

Constructor Summary
IUManager()

Method Summary
 int isUserLogon(java.lang.String IP)

 This is the main function of the class.It checks whether the user is

 44

offline or online and tells him/her that there is a call for this phone
number.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString,
wait, wait, wait

Constructor Detail

IUManager
public IUManager()
Method Detail

isUserLogon
public int isUserLogon(java.lang.String IP)

This is the main function of the class.It checks whether the user is
offline or online and tells him/her that there is a call for this phone
number. It takes the IP of the Internet user from th e ClManger nad
user it for checking purposes.
Parameters:
IP - IP of the Internet user
See Also:
CLManager, ModemManager

4.2.3.5 CLASS CLMANAGER

java.lang.Object
 |
 +--CLManager

public class CLManager
extends java.lang.Object

 45

This class is used for interaction with the Data Base. This class is
used to send the telephone number to the database to get the ip
adress of the respective number from there.
Version:

1.0, 9-Oct-2001
Author:

ksum
See Also:

ClientListener, IUManager, ModemManager

Constructor Summary
CLManager()
 It opens the connection with the ServerThread class to get the IP of
the user.

Method Summary
 int getTelNoIP(java.lang.String tel)

 It passes the telephone number to the data base to get the IP of the
Internt user from there.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString,
wait, wait, wait

Constructor Detail

CLManager
public CLManager()

It opens the connection with the ServerThread class to get the IP of
the user.
See Also:
ServerThread

 46

Method Detail
getTelNoIP

public int getTelNoIP(java.lang.String tel)
It passes the telephone number to the data base to get the IP of the
Internt user from there.
Parameters:
tel - telephone number of the called party.
See Also:
ServerThread

4.2.4 MESSAGE PLAYER SIDE

4.2.4.1 CLASS HIERARCHY FOR MESSAGE PLAYER CLASSES

o class java.lang.Object

o class java.util.Dictionary

 class java.util.Hashtable (implements
java.lang.Cloneable, java.util.Map, java.io.Serializable)

 class SoundList

o class MessagePlayer

o class SoundLoader

4.2.4.2 LIST OF ALL MEMBERS FUNCTIONS

G
getClip(String) - Method in class SoundList

This function gets the audio clip to be palyed.

M
MessagePlayer - class MessagePlayer.

This class is used to play the messages to the phone user.

 47

MessagePlayer() - Constructor for class MessagePlayer

P

putClip(AudioClip, String) - Method in class SoundList
This function puts the audio clip to be palyed.

S
SoundList - class SoundList.

This class Loads and holds a bunch of audio files whose locations are
specified.

SoundList(URL) - Constructor for class SoundList
This constructor constructs the url and inturn the list of the files to be
loaded.

SoundLoader - class SoundLoader.
This class is used to load thefiles of the messages to be played for the
phone user.

SoundLoader(SoundList, URL, String) - Constructor for class
SoundLoader

This constructor does all the job of loading the sounds.
start(String, int) - Method in class MessagePlayer

This function is used to start the clip once loaded.
startLoading(String) - Method in class SoundList

This function start loading the files basing on the relative url by
passing the information to SOundLoader class.

stop() - Method in class MessagePlayer
This function is used stop the clip.

4.2.4.3 CLASS MESSAGEPLAYER

java.lang.Object
 |
 +--MessagePlayer

public class MessagePlayer
extends java.lang.Object
This class is used to play the messages to the phone user. This class loads all
the messages before hand and palys them for the user on demand.
Version:

1.0, 9-Oct-2001

 48

Author:
ksum

See Also:
ModemManager, SoundList, SoundLoader

Constructor Summary

MessagePlayer()

Method Summary

 void start(java.lang.String chosenFile, int time)
 This function is used to start the clip once loaded.

 void stop()
 This function is used stop the clip.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString,
wait, wait, wait

Constructor Detail

MessagePlayer
public MessagePlayer()
Method Detail

stop
public void stop()

This function is used stop the clip.

start
public void start(java.lang.String chosenFile,
 int time)

This function is used to start the clip once loaded.
Parameters:
chosenFile - name of the file to be started

 49

time - interval for which execution will not proceed so that message
can be played

4.2.4.4 CLASS SOUNDLIST

java.lang.Object
 |
 +--java.util.Dictionary
 |
 +--java.util.Hashtable
 |
 +--SoundList
All Implemented Interfaces:

java.lang.Cloneable, java.util.Map, java.io.Serializable

public class SoundList
extends java.util.Hashtable
This class Loads and holds a bunch of audio files whose locations are
specified. relative to a fixed base URL.
Version:

1.0, 9-Oct-2001
Author:

ksum
See Also:

MessagePlayer, SoundLoader, Serialized Form

Inner classes inherited from class java.util.Map

java.util.Map.Entry

Constructor Summary

SoundList(URL baseURL)
 This constructor constructs the url and inturn the list of the files to be
loaded.

 50

Method Summary

 AudioClip getClip(java.lang.String relativeURL)
 This function gets the audio clip to be played.

 void putClip(AudioClip clip, java.lang.String relativeURL)
 This function puts the audio clip to be played.

 void startLoading(java.lang.String relativeURL)
 This function start loading the files basing on the relative
url by passing the information to SoundLoader class.

Methods inherited from class java.util.Hashtable

clear, clone, contains, containsKey, containsValue, elements,
entrySet, equals, get, hashCode, isEmpty, keys, keySet, put, putAll,
rehash, remove, size, toString, values

Methods inherited from class java.lang.Object

finalize, getClass, notify, notifyAll, wait, wait, wait

Constructor Detail

SoundList
public SoundList(URL baseURL)

This constructor constructs the url and inturn the list of the files to be
loaded. For this process it uses SoundLoader class
Parameters:
baseURL - base url of the file
See Also:
SoundLoader

Method Detail
startLoading

public void startLoading(java.lang.String relativeURL)
This function start loading the files basing on the relative url by
passing the information to SOundLoader class.
Parameters:

 51

relativeURL - relative url of the file

relativeURL - relative url of the file to be loaded

See Also:
SoundLoader

getClip

public AudioClip getClip(java.lang.String relativeURL)
This function gets the audio clip to be palyed.
Parameters:
relativeURL - relative url of the file
Returns:
audio clip of the relative URL

putClip

public void putClip(AudioClip clip,
 java.lang.String relativeURL)

This function puts the audio clip to be palyed.
Parameters:
relativeURL - relative url of the file

clip - clip to be put

4.2.4.5 CLASS SOUNDLOADER

java.lang.Object
 |
 +--SoundLoader

public class SoundLoader
extends java.lang.Object
This class is used to load thefiles of the messages to be played for the phone
user. This class helps in loading all the messages before hand and palys them
for the user on demand.
Version:

 52

1.0, 9-Oct-2001
Author:

ksum
See Also:

ModemManager, SoundList, MessagePlayer

Constructor Summary

SoundLoader(SoundList soundList, URL baseURL,
java.lang.String relativeURL)
 This constructor does all the job of loading the sounds.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString,
wait, wait, wait

Constructor Detail

SoundLoader
public SoundLoader(SoundList soundList,
 URL baseURL,
 java.lang.String relativeURL)

This constructor does all the job of loading the sounds.
Parameters:
soundList - list of files to be loaded

baseURL - base URL of the file

relativeURL - relative URL of the file

4.2.5 VOICE TRANSMISSION SIDE

4.2.5.1 CLASS HIERARCHY FOR VOICE TRANSMISSION

o class VTServer

o class VTClient

 53

o class java.lang.Object

o class Test

o class MyControllerListener

4.2.5.2 LIST OF ALL MEMBER FUNCTIONS

C

close() - Method in class MyControllerListener
This function is used to close the palyer.

configure(int) - Method in class MyControllerListener
This function is used to configure the palyer.

controllerUpdate(ControllerEvent) - Method in class
MyControllerListener

This function is used for event handling.
createManager(String, int, int, boolean, boolean) - Method in class
VTClient

This function is used to cerate the session with the Server.

D
devices_actionPerformed(String) - Method in class VTServer

This function is used to cerate the session with the client.

M
MyControllerListener - class MyControllerListener.

This class is used for transition of the player from one state to other.

P
playToEndOfMedia(int) - Method in class MyControllerListener

This function is used to detect end of media stream for the palyer.
prefetch(int) - Method in class MyControllerListener

This function is used for prefetching.

R
realize(int) - Method in class MyControllerListener

 54

This function is used to realize the palyer.

T
Test - class Test.

This class use makes the objects of VTServer and VTClient
Test(String) - Constructor for class Test

It takes the IP address of the client.

U
update(ReceiveStreamEvent) - Method in class VTClient

update(RemoteEvent) - Method in class VTClient

This function is used to handle RemoteEvent.
update(SendStreamEvent) - Method in class VTServer

This function is used to handle SendStreamEvent.

V
VTClient - class VTClient.

This class initiate the Audio session with the Server.
VTClient() - Constructor for class VTClient

VTServer - class VTServer.

This class initiate the Audio session with the client.
VTServer() - Constructor for class VTServer

4.2.5.3 CLASS TEST

java.lang.Object
 |
 +--Test

public class Test
extends java.lang.Object
This class use makes the objects of VTServer and VTClient

 55

Version:
1.0, 9-Oct-2001

Author:
ksum

See Also:
VTServer, VTClient

Constructor Summary
Test(java.lang.String ip)
 It takes the IP address of the client.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString,
wait, wait, wait

Constructor Detail

Test
public Test(java.lang.String ip)

It takes the IP address of the client. It passes the IP address to the
VTServer method and to VTClient method createManager.
See Also:
createManager

4.2.5.4 CLASS VTSERVER

VTServer

public class VTServer
This class initiate the Audio session with the client. It sends request
to VTClient to initiate the session. This class implements
SendStreamListener and RemoteListener interfaces.

 56

Version:
1.0, 9-Oct-2001

Author:
ksum

See Also:
VTClient

Constructor Summary
VTServer()

Method Summary
 void devices_actionPerformed(java.lang.String ip)

 This function is used to cerate the session with the client.
 void update(SendStreamEvent evt)

 This function is used to handle SendStreamEvent.

Constructor Detail

VTServer
public VTServer()
Method Detail

devices_actionPerformed
public void devices_actionPerformed(java.lang.String ip)

This function is used to cerate the session with the client. This is the
main function of the class which performs all the task of of the class.
Parameters:
ip - IP address of the client with which session will be initialized.

update

public void update(SendStreamEvent evt)
This function is used to handle SendStreamEvent.
Parameters:

 57

evt -

4.2.5.5 CLASS VTCLIENT

VTClient

public class VTClient
This class initiate the Audio session with the Server. It accepts
request of VTServer to initiate the session. This class implements
ReceiveStreamListener and RemoteListener interfaces.
Version:

1.0, 9-Oct-2001
Author:

ksum

See Also:

VTServer

Constructor Summary
VTClient()

Method Summary
 SessionManager createManager(java.lang.String address,

int dataport, int cport, boolean listener,
boolean sendlistener)
 This function is used to cerate the session with the
Server.

 void update(ReceiveStreamEvent event)

 58

 void update(RemoteEvent revent)
 This function is used to handle RemoteEvent.

Constructor Detail

VTClient
public VTClient()
Method Detail

createManager
public SessionManager createManager(java.lang.String address,
 int dataport,
 int cport,
 boolean listener,
 boolean sendlistener)

This function is used to cerate the session with the Server. This is the
main function of the class which performs all the task of of the class.
Parameters:
address - IP address of the client with which session will be
initialized.
dataport - data port for the communicaton

cport - control port for the communication

listener -
sendlistener -
Returns:
SessionManager

update
public void update(ReceiveStreamEvent event)

 59

update

public void update(RemoteEvent revent)
This function is used to handle RemoteEvent.
Parameters:
revent -

4.2.5.6 CLASS MYCONTROLLERLISTENER

MyControllerListener

public class MyControllerListener
This class is used for transition of the player from one state to other.
Version:

1.0, 9-Oct-2001
Author:

ksum
See Also:

VServer

Method Summary
 void close()

 This function is used to close the palyer.

 boolean configure(int timeOutMillis)
 This function is used to configure the palyer.

 void controllerUpdate(ControllerEvent ce)
 This function is used for event handling.

 boolean playToEndOfMedia(int timeOutMillis)
 This function is used to detect end of media stream for the
palyer.

 60

 boolean prefetch(int timeOutMillis)
 This function is used for prefetching.

 boolean realize(int timeOutMillis)
 This function is used to realize the palyer.

Method Detail

configure
public boolean configure(int timeOutMillis)

This function is used to configure the palyer.
Parameters:
int - Time to stay in that state
Returns:
boolean state of the player

close

public void close()
This function is used to close the palyer.

playToEndOfMedia

public boolean playToEndOfMedia(int timeOutMillis)
This function is used to detect end of media stream for the palyer.
Parameters:
int - Time to stay in that state
Returns:
boolean state of the stream

realize

public boolean realize(int timeOutMillis)
This function is used to realize the palyer.
Parameters:
int - Time to stay in that state
Returns:
boolean state of the player

 61

prefetch
public boolean prefetch(int timeOutMillis)

This function is used for prefetching.
Parameters:
int - Time to stay in that state
Returns:
state of the palyer

controllerUpdate

public void controllerUpdate(ControllerEvent ce)
This function is used for event handling.
Parameters:
ce - event to update the controller

 62

4.3 CLASS DIAGRAM

 63

4.4 ACTIVITY DIAGRAMS

4.4.1 INTERNET USER

LOGON WINDOW
OPENS

LOGON REQUEST TO
CLIENTLISTENER

SENDS ESSENTIAL INFO TO
CL

WAITS FOR VALIDATION

CHECK

?
TRY
AGAIN

A

B

 64

 NO

YES

OPENS SEVER SOVKET

LISTENS FOR
REQUESTS FROM PL

PROCESS VT CLIENT

STARTS AUDIO
COMMUNICATION

FINISH
COMMUNICATION

LOG OFF REQUEST

PROC
REQ

LOGGED OFF

A

TRY AGAIN

B

 65

4.4.2 PHONE LISTENER

PL Server

Modem Detect

Find

Initialize Modem

 Bring Modem to voice mode

Waiting for Calls

Call Received

Welcome Message Plays

Extract Tel. No

Make Connection With Client Listener

Fetch IP address Against Tel. No

Verify Internet User

Convey the Info to VTServer

 66

4.4.3 CLIENT LISTENER

SERVER STARTS

SERVER SOCKET OPENS

ESTABLISHES CONNECTION
WITH DATABASE

ACCEPT INTERNET USER’S
LOGON REQUEST

U[PDATE DATABASE WITH
NEW REQUEST

CONNECTION CLOSE

A

 67

LISTENS FOR PHONE
LISTENER

ACCEPT
CONNECTIONS

SEARCH DATABASE
FOR IP

SEND IP

FIND
IP

MESSAGE FOR “NO
IP FOUND”

CLOSES
CONNECTION

A

 68

5. OVERVIEW OF AT COMMAND

The modem may be configured in response to AT voice commands to

provide enhanced Adaptive Differential Pulse Code Modulation (ADPCM)

coding and decoding for the compression and decompression of digitized

voice. ADPCM compression supports the efficient storage of voice

messages, while optional coder silence deletion and decoder silence

interpolation significantly increase compression rates. The ADPCM Voice

Mode Supports three sub modes once a voice connection is established (see

#CLS command): Online Voice Command Mode, Voice Receive Mode, and

Voice Transmit Mode.

5.1 VOICE SUBMODES

5.1.1 ONLINE VOICE COMMAND MODE

Online Voice Command Mode is the default Voice sub mode entered

when the #CLS=8 command is issued, and may also be entered from Voice

Receive Mode or Voice Transmit Mode. Entry Into Online Voice Command

Mode is indicated to the DTE via the VCON message, after which AT

commands can be entered without aborting the telephone line connection.

If the modem is the answerer, it enters Online Voice Command Mode

immediately after going off-hook, and can report instances of DTMF tones

 69

and calling tones to the DTE. If the modem is the originator, it enters Online

Voice Command Mode based on detection of the ring back cadence going

away, upon expiration at the ring back never came timer, or upon detection

of answer tone, and the modem can report DTMF tones, answer tones, busy

tone, and dial tone to the DTE.

(Note that DTMF tone reporting is supported in this mode if DTMF

reporting is enabled via the #VTD command.)

When this mode is entered as a result of going off-hook with the D or A

command, VCON is always sent to the DTE, after which the modem accepts

commands. If this mode is entered from Voice Transmit Mode, the DTE has

issued the <DLE><ETX>, and the modem responds with VCON. If this

mode is entered from the Voice Receive Mode because of a key abort, the

modem issues the <DLE><ETX> followed by VCON.

If the #VLS command has switched in a handset or other device in place of

the telephone line, Online Voice Command Mode is immediately entered,

whereas if the telephone line is selected, a physical connection with another

station must occur before entering this mode.

5.1.2 VOICE RECEIVE MODE

Voice Receive Mode is entered when the DTE issues the #VRX

command because it wants to receive voice data. This typically occurs when

either recording a greeting message, or when recording voice messages from

a remote station.

In Voice Receive Mode, voice samples from the modem analog-to-digital

converter (ADC) are sent to the ADPCM codec for compression, and can

 70

then be read by the host. AT commands control the codec bits-per-sample

rate and select (optional) silence deletion including adjustment at the silence

detection period.

In this mode, the modem detects and reports DTMF, dial tone, busy tone

cadence, and inactivity (periods of silence) as enabled by the #VTD and

#VSS commands, respectively. The modem can exit the Voice Receive

Mode only via a DTE Key Abort, or via Dead man Timer expiration (S30).

5.1.3 VOICE TRANSMIT MODE

Voice Transmit Mode is entered when the DTE issues the #VTX

command because it wants to transmit voice data. In this mode, the modem

continues to detect and report DTMF and calling tones if enabled by the

#VTD command. This mode is typically used when playing back greeting

messages or previously received/recorded messages. In this mode, voice

decompression is provided by the codec, and decompressed data is

reconstituted into analog voice by the DAC at the original voice

compression quantization sample-per-bits rate. Optional silence interpolation

is enabled if silence deletion was selected for voice compression.

5.2 VOICE CAPABILITIES

5.2.1 CALL ESTABLISHMENT - ANSWER

 For most call originations, it is known ahead of time what type of call is

being attempted, and it is acceptable to disconnect if the remote side of the

 71

connection does not cooperate. In this case, the modem can be configured

ahead of time with the existing +FCLASS (and +FAA) or the #CLS

command to be a data, fax, or voice modem. For Data and Fax Modes, the

modem subsequently either succeeds with the desired type of connection, or

eventually hangs up. For the Voice Mode, the DTE has the option of

hanging up if there are indications that the remote station has not answered

in voice, thus implementing a directed originate for voice. The following are

the three connection type choices:

5.2.1.2 VOICE

 The modem dials and reports call progress to the DTE, which reduces

to reporting NO DIALTONE, or BUSY. The modem allows the DTE to

program a time period, which if elapsed after any ring back is detected,

forces the modem to assume the remote has gone off-hook. A secondary

time period (safety valve) can define a maximum elapsed time after dialing

for receiving no ring back before the modem assumes that the remote has

gone off-hook. This safety valve is devised in case the remote picks up the

telephone before any ring back is generated, and no other tones are detected.

In this mode, the modem is attempting to make a voice connection only and

therefore, while waiting for ring back to disappear, it is also feasible to

disconnect upon detection something which is definitely not Voice from the

remote, such as any answer tone. The modem provides detection of "ring

back" went away or never came.

 72

5.2.1.3 FAX CAPABILITIES

The modem dials and reports call progress to the DTE as in all modes.

A fax Class 1 or Class 2 handshake is pursued according to the current

configuration.

5.2.1.4 DATA

The modem dials and reports call progress to the DTE as in all modes.

A data handshake is pursued according to the current configuration.

Adaptive Originate (Dial with Voice/Data/Fax Discrimination). The DTE

may wish to originate a call, which adapts to the remote answerer. For

instance, the user may wish to send a voice message if a human picks up the

telephone, but a facsimile if a fax machine answers. The modem can

facilitate this type of adaptive originate by extending what it does for the

directed originate modes. Alter determining that the remote station has

picked up the line, the modem goes back to Online Voice Command Mode,

thus terminating the "connecting state." Once in this mode, the modem

reports what it receives from the answerer via specific result codes to the

DTE. The DTE can then have the option of pursuing a data, fax, or voice

connection.

5.2.2 CALL ESTABLISHMENT - ANSWER

If the DTE wants to be only one kind of answerer (i.e., voice, fax, or

data), it can configure the modem to answer exclusively in the chosen mode.

 73

5.2.2.1 VOICE

The modem is configured to answer in Voice Mode only and assumes

the caller will cooperate. After going off-hook, the voice VCON is issued,

no answer tone is generated, and the modem is immediately placed In Online

Voice Command Mode. The DTE typically responds by sending a greeting

message of some type, and DTMF tone recognition/reporting can be

enabled. Eventually, an Incoming voice message can be recorded by the

host. (Unpredictable results occur if the caller is not prepared for a voice

call.)

5.2.2.2 FAX CAPABILITIES

The modem is configured to answer in Class 1 or Class 2 Fax Mode

only, and it assumes the caller is going to cooperate. This configuration has

the effect of disabling Voice Mode, forcing +FCLASS to either 1 or 2, and

forcing both +FAA and +FAE to 0.

5.2.2.3 DATA

The modem is configured to answer in Data Mode only and assumes

the caller is going to cooperate. This configuration has the effect of disabling

Voice Mode, forcing +FCLASS=0, and forcing both +FAA and +FAE to 0.

 74

5.2.3 ADAPTIVE ANSWER (ANSWER WITH VOICE/DATA/FAX

DISCRIMINATION)

In normal operation, it is desirable for a modem supporting fax and

voice to provide the ability to discriminate between the two when answering

unsolicited or unattended calls. (It is most often the case that a fax is

received or a Voice message recorded when nobody is present.)

5.2.3.1 DATA/FAX DISCRIMINATION

If the DTE wishes to allow for a data or fax call, the +FCLASS and

+FAA or +FAE commands can be configured for adaptive answer between

data and Class 1 or Class 2 fax

5.2.3.2 VOICE/FAX DISCRIMINATION

This is the most important discrimination capability needed from the

users standpoint. The modem must be configured for Voice (#CLS=8),

causing the modem to enter Online Voice Command Mode immediately

upon going off-hook. In Voice Mode, the DTE automatically receives

indications of DTMF tones and Calling Tones. The DTE can now switch to

Voice Transmit Mode in order to play a greeting message, perhaps one

which instructs the caller how to enter specific DTMF sequences to switch

modes. The DTE can then react to the response, or the lack thereof, to such a

message. The modem supports switching to a Class 1 or Class 2 answer

mode by virtue of the #CLS=1 or 2 commands, and if such a switch is made

and fails, the modem reports the failure but does not hang up, allowing the

DTE further experimentation time. If the user wishes to switch to Class 1 or

2, but also wants the DTE to indeed hang up the line if the fax fails, the

 75

+FCLASS command should be used instead of the #CLS command. The

only difference between these commands is that issuing +FCLASS cancels

the modems memory of voice, where as #CLS causes the modem to remain

off-hook, even if a fax or data handshake fails, until it receives an H

command.

5.2.3.3VOICE/DATA/FAX DISCRIMINATION

The DTE can try data modem operation after an answer by changing

the #CLS setting to 0. A data handshake attempt can be added based upon

DTMF responses or lack thereof.

5.3 VOICE DATA TRANSFER

A significant area of concern when handling the transfer of voice data

is the data transfer rate on the modem/DTE interface. Data transfer rates can

be expressed as the number of interrupts which must be serviced per time

period to keep up. This is a function of the sampling rate and compression

method (if any) used by the modem, and the DTE interface speed required to

handle the data flow on the telephone line side.

The modem can detect specific tones and other status information, and

report these to the DTE while in any of the three voice sub modes. The

modem simultaneously looks for 1300 and 1100 Hz calling tones when

answering, and for CCITT and Bell answer tones when originating. The

modem can also detect dial or busy tones in any of the three voice sub

modes. All detected tones, as well as certain other statuses addressed such as

silence and "teleset off-hook" (i.e., handset off-hook) are reported as

 76

shielded codes. When in Online Voice Command Mode or Voice Transmit

Mode, the codes are sent to the DTE immediately upon verification by the

modem of the associated tone, status, or cadence. In this mode, the 2-

character code is not buffered, nor does the DTE have the ability to stop the

code with flow control. If the DTE has started (but not completed) sending

any AT command, the Tone Monitoring function is disabled until the

command has been received and processed. The modem can discriminate

between single and multiple DTMF tones received. If calling tone, dial tone,

busy tone, or answer tone is detected, this detection is reported repeatedly (at

reasonable intervals) if the DTE takes no action, and the tone continues to be

detected.

5.4 TABLE SHIELDED CODES SENT TO THE DTE

CODE SENT TO DTE MEANING

<DLE>0-<DLE>9 DTMF. Digits 0 through 9, *, #, or A

through D detected

<DLE>*,<DLE># by the modem, i.e., user has pressed a key

on a local or <DLE>A-<DLE>D

remote telephone. The modem sends only

one <DLE> code per DTMF button pushed.

<DLE>a Answer Tone (CCITT). Send to the DTE

when the V.25/T.30 2100 Hz Answer Tone

(Data or Fax) is detected. If the DTE fails to

react to the code, and the modem continues

 77

to detect Answer tone, the code is repeated

as often as once every half second.

<DLE>b Busy. Sent in Voice Receive Mode when

the busy cadence s detected, after any

remaining data in the voice in receive buffer.

The modem sends the busy <DLE>b code

every 4 seconds if busy continues to be

detected and the DTE does not react. This

allows the DTE the flexibility

of ignoring what could be a false busy

detection.

5.5 VOICE PLAYBACK

To effect playback of a message recorded via a handset or

microphone, or of a message recorded during a voice call, the DTE must

configure the modem for Voice Mode (#CLS=8) and select the proper relay

setup (#VLS) to instruct the modem whether to use the handset or speaker.

The modem responds to the #VLS command by issuing a relay activate

command to select the input device. The hardware must provide a means of

selecting a handset and/or microphone instead of the telephone line, as this

input device. When a device other that the telephone line is selected, the

modem immediately enters Online Voice Command Mode (indicated by

VCON). DTMF detection is thus enabled as soon as the DTE selects the

device, such as a handset, although the user still needs to physically pick up

the telephone before he can issue DTMF tones. Once selected, however, the

 78

user can indeed pick up the telephone and "press buttons." Even if the DTE

has not entered Voice Receive or Transmit Modes (#VTX or #VRX), these

DTMF tones are delivered via shielded codes, identically to when a physical

telephone connection exists but the DTE has not yet commanded receive nor

transmit.

When the DTE decides to play the message, it issues the #VTX command,

and the modem immediately switches to Voice Transmit Mode. Since the

speaker or handset is already switched in, the modem immediately issues the

CONNECT message indicating that the modem is in Voice Transmit Mode

and is expecting Voice data from the DTE. A subsequent <DLE><ETX> has

to be issued to switch back to Online Voice Command Mode.

5.6 VOICE CALL TERMINATION

5.6.1 LOCAL DISCONNECT

The DTE can disconnect from a telephone call by commanding a

mode change to Online Voice Command Mode (if not already in it), and by

issuing the H command.

5.6.2 REMOTE DISCONNECT DETECTION

When In Voice Receive Mode, the modem sends the proper shielded

<DLE> code when loop break, dial tone, or busy tone is detected. The

modem stays in Voice Receive Mode, however, until the DTE issues a key

 79

abort to force Online Voice Command Mode. The DTE must issue the H

command if it wishes to hang up.

5.7 MODE SWITCHING

5.7.1 VOICE TO FAX

If the modem is in Online Voice Command Mode (i.e. it has gone off-

hook with #CLS=8 in effect), the DTE can attempt a fax handshake by

setting #CLS=1 or #CLS=2 followed by the A or D command corresponding

to fax receive or send. This has the effect of beginning a fax Class 1 or Class

2 handshake (see #CLS command).

5.7.1.1 UNSUCCESSFUL FAX CONNECTION ATTEMPT TO VOICE

A fax handshake which does not succeed, attempted as the result of

the DTE modifying the #CLS setting from voice (8) to fax (1 or 2) does not

result in the modem hanging up, allowing the DTE the flexibility of

commanding a switch back to Voice Mode with #CLS=8.

5.7.2 VOICE TO DATA

If the modem is in the Online Voice Command Mode the DTE can

attempt a data

handshake by setting #CLS=0 followed by the A or D command. This has

the effect of beginning a Data Mode handshake according to the current

Data Mode S-register and command settings.

 80

5.7.2.1 UNSUCCESSFUL DATA CONNECTION ATTEMPT TO

VOICE

A data handshake which does not succeed attempted as the result of

the DTE modifying the #CLS setting from voice (8) to data (0), does not

result in the modem hanging up, allowing the DTE the flexibility of

commanding a switch back to Voice Mode with #CLS=8.

5.8 CALLER ID

The modem supports Caller ID by passing the information received in

Bell 202 FSK format to the DTE after the first RING detect. The modem

supports both formatted and unformatted reporting of Caller ID information

received in ICLID (Incoming Call Line ID) format as supported in certain

areas of the U.S. and Canada. The DTE enables this feature via the #CID

command.

5.9 AT VOICE COMMAND SUMMARY

Table provides a complete summary of the AT voice commands

described in detail in following sections

5.9.1 GLOBAL AT COMMAND SET EXTENSIONS

The AT commands in the following section are global meaning that

they can be issued in any appropriate mode (i.e., any #CLS setting).For

consistency, the command set is divided into action commands and

 81

parameters (non-action commands). Those commands which are action

commandsi.e., those which cause some change in the current operating

behavior of the modem) are identified as such, and the remaining commands

are parameters.

5.9.2 ATA - ANSWERING IN VOICE

The answer action command works analogously to the way it works in

Data and Fax Modes except for the following:

1. When configured for Voice Mode (#CLS=8), the modem

enters Online Voice Command Mode immediately after going off-

hook. When the #CLS=8 command is issued, the modem can be

programmed to look for 1100 and 1300 Hz calling tones (see

#VTD), thus eliminating the need to do so as part of A command

processing. After the VCON message is issued the modem re-enters

Online Voice Command Mode while sending any incoming DTMF or

calling Tone indications to the DTE

2. After answering in Voice Mode (#CLS=8) the DTE, as part of

its call discrimination processing can decide to change the #CLS

setting to attempt receiving a fax in Class 1 or to make a data

connection. In such a case the DTE commands the modem to proceed

with the data or fax handshake via the A command even though the

modem is already off-hook.

5.9.3 VCON

Issued in Voice Mode (#CLS=8) immediately after going off-hook

 82

Command Function

A Answering in Voice Mode.

D Dial command in Voice Mode.

H Hang up in Voice Mode.

Z Reset from Voice Mode.

#BDR Select baud rate (turn off auto baud).

#CID Enable Caller ID detection and select reporting format.

#CLS Select data fax or voice

#MDL? Identify model.

#MFR? Identify manufacturer.

#REV? Identify revision level.

#VBQ? Query buffer size.

#VBS Bits per sample (ADPCM).

#VBT Beep tone timer.

#VCI? Identify compression method (ADPCM).

#VLS Voice line select (ADPCM).

#VRA Ringback goes away timer (originate).

#VRN Ringback never came timer (originate).

#VRX Voice Receive Mode (ADPCM).

#VSD Silence deletion tuner (voice receive ADPCM).

#VSK Buffer skid setting.

#VSP Silence detection period (voice receive ADPCM)

#VSR Sampling rate selection (ADPCM).

#VSS Silence deletion tuner (voice receive)

#VTD DTMF/tone reporting capability.

#VTX Voice Transmit Mode (ADPCM).

 83

5.9.4 ATD

 Dial Command In Voice

The dial action command works analogously to the way it works in Data or

Fax modes. When In Voice Mode (#CLS=8):

1. The modem attempts to determine when the remote has picked up the

 telephone line and once this determination has been made, the VCON

 message is sent to the DTE. This determination is initially made based

upon ringback detection and disappearance. (See #VRA and #VRN

commands.)

2. Once connected in Voice Mode the modem immediately enters the

command state and switches to Online Voice Command Mode which

enables unsolicited reporting of DTMF and answer tones to the DTE.

Parameters: Same as Data and Fax modes.

5.9.5 VCON

 Issued in Voice Mode (#CLS=8) when the modem determines that the

remote modem or handset has gone off-hook, or when returning to the

Online Voice Command Mode. (See #VRA and #VRN.)

 84

5.9.6 NO ANSWER

 Issued in Voice Mode (#CLS=8) when the modem determines that the

remote has not picked up the line before the S7 timer expires.

5.9.7 ATH

 Hang Up In Voice

This command works the same as in Data and Fax modes by hanging up

(disconnecting) the telephone line. There are, however, some specific

considerations when in Voice Mode:

1. The H command forces #CLS=0 but does not destroy any of the voice

parameter settings such as #VBS, #VSP, etc. Therefore if the DTE

wishes to issue an H command and then pursue another voice call it

must issue a subsequent #CLS=8 command, but it needn't reestablish

the voice parameter settings again unless a change in the settings is

desired.

2. The #BDR setting is forced back to 0, re-enabling auto baud.

3. If the #VLS setting is set to select a device which is not, or does not

include the telephone line (such as a local handset or microphone), the H

command deselects this device and reselects the normal default setting

(#VLS=0). Normally, the DTE should not issue the H command while

connected to a local device each as a handset, because merely selecting this

device results in VCON. The normal sequence of terminating a session with

 85

such a device is to use the #VLS command to select the telephone line,

which by definition makes sure it is on-hook.

5.9.8 ATZ

Reset from Voice Mode

This command works the same as in Data and Fax modes. In addition,

the Z command resets all voice related parameters to default states, forces

the #BDR=0 condition (autobaud enabled), and forces the telephone line to

be selected with the handset on-hook. No voice parameters are stored in

NVRAM so the profile loaded does not affect the voice aspects of this

command.

5.9.9 #BDR

 Select Baud Rate (Turn off Autobaud)

This command forces the modem to select a specific DTE/modem baud rate

without further speed sensing on the interface. When a valid #BDR=n

command is entered, the OK result code is sent at the current assumed speed.

After the OK has been sent, the modem switches to the speed indicated by

the #BDR=n command it has just received.

 When In Online Voice Command Mode and the #BDR setting is

nonzero (no autobaud selected), the modem supports a full duplex DTE

interface. This means that the DTE can enter commands at any time, even if

the modem is in the process of sending a shielded code indicating DTMF

 86

detection to the DTE. When in Online Voice Command Mode and the #BDR

setting is zero (autobaud selected), shielded code reporting to the DTE is

disabled. [Note that when #BDR has been set nonzero, the modem employs

the S30 Deadman Timer, and this timer starts at the point where #BDR is set

nonzero. If this period expires (nominally 60 seconds) with no activity on

the DTE interface, the modem reverts to #BDR=0 and #CLS=0.

5.9.10 #BDR?

Returns the current setting of the #BDR command as an ASCII

decimal value in result code format.

5.10 AT#V COMMANDS ENABLED ONLY IN VOICE

MODE (#CLS=8)

The commands described in the following subsection are extensions

to the command set which the modem recognizes only when configured for

Voice Mode with the #CLS=8 command.

#VBQ? Query Buffer Size

#VBQ? Returns the size of the modem voice transmit and Voice receive

buffers.

#VBS Bite Per Sample (Compression Factor)

#VBS? Returns the current setting of the #VBS command as an ASCII

decimal value in result code format.

#VBS=? Returns "2,3,4", which are the ADPCM compression bits/sample

rates available. These bits/sample rates are correlated with the #VCI?

 87

query command response which provides the single compression method

available.

#VBS=2 Selects 2 bits per sample.

#VBS=3 Selects 3 bits per sample.

#VBS=4 Selects 4 bits per sample.

#VBT Beep Tone Timer

5.11 DEVICE TYPES SUPPORTED BY #VLS

5.11.1 ASCII DIGIT DEVICE TYPE AND

CONSIDERATIONS

0 Telephone Line with Telephone handset. This is the default

 device selected. In this configuration, the user can pick up a

 handset which is connected to the same telephone line as the

 modem, and * record both sides of a conversation with a remote

 station. The modem currently supports one telephone

 line/handset, which is in the first position of the #VLS=?

 response. (Note that the modem can interface to multiple

 telephone lines by having "0"'s in multiple positions in the

 #VLS? response.) I telephone line is selected, the modem must

 be on-hook or it hangs up. The OK message is generated.

1 Transmit/Receive Device (other than telephone line). This is a

 handset, headset, or speaker-phone powered directly by the

 modem. When such a device is selected, the modem immediately

 enters Online Voice Command Mode, DTMF monitoring is

 88

 enable if applicable, and the VCON response is sent. The modem

 supports one such device as the second device listed in the

 #VLS=? response.

2 Transmit Only Device. Normally, this is the onboard speaker.

 When this device is selected, the modem immediately enters

 Online Voice Command Mode, and the VCON response is sent.

 The modem supports selection of the internal speaker as the third

 device listed in #VLS=? response.

3 Receive Only Device. Normally, this is a microphone. When such

 a device is selected, the modem immediately enters Online Voice

 Command Mode, DTMF monitoring is enabled if applicable, and

 the VCON response is sent. The modem supports one microphone

 as the fourth element returned in the #VLS=? response.

4 Telephone line with Speaker ON and handset. This device type

 can be used to allow the DTE to select the telephone

 line/handset (if picked up) with the modem speaker also turned

 ON. This can be used by the DTE to allow the user to monitor

 an incoming message as it is recorded.

5.12 S-REGISTERS

The following S-register is global, meaning that it can be set in any

appropriate mode (i.e., any #CLS setting).

 89

S30 - Deadman (Inactivity) Timer

Range: n = 0 - 255

Default: 0 (OFF, which means DTE should usually set it to some value

 for Voice)

Command options:

S30=0 Dead man timer off. No matter how long it might continue, the

 modem never spontaneously hangs up the telephone line or

 switches to auto baud mode as a result of inactivity.

S30=1 to 255 This is the period of time (in seconds), which if expired

 causes the modem to hang up the telephone line if it is

 off-hook and no data has passed during the period. The timer

 is also active whenever the #BDR setting is non-zero. In order

 to avoid a state where speed sense is disabled (even though

 the PC can crash, come back up, and try to issue commands at

 what should be a supported speed), the inactivity time-out

 occurs if there is no data passed on the DTE interface within

 the S30 period, even if the modem is on-hook. DTE software must

 not select a nonzero setting for #BDR until it is ready to

 establish a telephone call or virtual connection to a speaker

 or microphone. When there is an inactivity time out with

 #CLS=8, the modem always forces #CLS=0 and #BDR=0.

5.13 RESULT CODES FOR VOICE OPERATION

VCON is sent when the modem is configured for Voice (#CLS=8), or

when after answering or originating a call, the modem enters the Online

Voice Command Mode for the first time. Typically, this is immediately

 90

after an off-hook in answer mode, and after ringback ceases in originate

mode. VCON is also sent when the DTE requests a switch from Voice

Transmit Mode to Online Voice Command Mode by issuinq a

<DLE><ETX> to the modem, or when the DTE requests a switch from

Voice Receive Mode to Online Voice Command Mode via the key abort.

CONNECT CONNECT is sent when switching from the Online Voice

Command Mode to either Voice Receive Mode via the #VRX command, or

to Voice Transmit Mode via the #VTX command. This message is sent to

the DTE to inform it that it may begin receiving or sending ADPCM data.

6 OVERVIEW OF JCOMM

6.1 JAVAX.COMM EXTENSION PACKAGE

There are three levels of classes in the Java communications API:

• High-level classes like CommPortIdentifier and CommPort manage

access and ownership of communication ports.

• Low-level classes like SerialPort and ParallelPort provide an

interface to physical communications ports. The current release of

the Java communications API enables access to serial (RS-232) and

parallel (IEEE 1284) ports.

• Driver-level classes provide an interface between the low-level

classes and

 91

the underlying operating system. Driver-level classes are part of the

implementation but not the Java communications API. They should

not be used by application programmers.

The javax.comm package provides the following basic services:

• Enumerate the available ports on the system. The static method

CommPortIdentifier.getPortIdentifiers returns an enumeration object

that contains a CommPortIdentifier object for each available port.

This CommPortIdentifier object is the central mechanism for

controlling access to a communications port.

• Open and claim ownership of communications ports by using the high

level methods in their CommPortIdentifier objects.

• Resolve port ownership contention between multiple Java

applications. Events are propagated to notify interested applications

of ownership contention and allow the port's owner to relinquish

ownership. PortInUseException is thrown when an application fails

to open the port.

• Perform asynchronous and synchronous I/O on communications ports.

Low-level classes like SerialPort and ParallelPort have methods for

managing I/O on communications ports.

• Receive events describing communication port state changes. For

example, when a serial port has a state change for Carrier Detect,

Ring Indicator, DTR, etc. the SerialPort object propagates a

SerialPortEvent that describes the state change.

 92

A Simple Reading Example

• SimpleRead.java opens a serial port and creates a thread for

asynchronously reading data through an event callback technique.

A Simple Writing Example

• SimpleWrite.java opens a serial port for writing data.

6.2 SERIAL SUPPORT WITH JAVAX.COMM

PACKAGE

Sun's JavaSoft division provides support for RS-232 and parallel

devices with standard extensions.

 SUMMARY

One of the most popular interfaces on a PC is the serial port. This

interface allows computers to perform input and output with peripheral

devices. Serial interfaces exist for devices such as modems, printers,bar code

scanners, smart card readers, PDA interfaces, and so on. Sun's JavaSoft

division recently has made available the javax.comm package to add serial

support to Java. This package provides support for serial and parallel devices

using traditional Java semantics such as streams and events. In order to

communicate with a serial device using a serial port on a host computer from

a Java application or applet, an devices connected to your serial port. In

addition, the API provides a complete set of options for setting all of the

parameters associated with serial and parallel devices.This article focuses on

 93

how to use javax.comm to communicate with a serial device based on RS-

232; discusses what the javax.comm API does and does not provide; and

offers a small example program that shows you how to communicate to the

serial port using this API. We will end with a brief discussion of how this

API will work with other device drivers, and also go over the requirements

for performing a native port of this API to a specific OS. (2,700 words)

The Java Communications (a.k.a. javax.comm) API is a proposed

standard extension that enables authors of communications applications to

write Java software that accesses communications ports in a platform-

independent way. This API may be used to write terminal emulation

software, fax software, smart-card reader software, and so on. Developing

good software usually means having some clearly defined interfaces. The

high-level diagram of the API interface layers are shown in this figure.

In this article we will show you how to use javax.comm to

communicate with a serial device based on RS-232. We'll also discuss what

the javax.comm. API provides and what it doesn't provide. We'll present a

small example program that shows you how to communicate to the serial

port using this API. At the end of the article we'll briefly detail how this

javax.comm. API will work with other device drivers, and we'll go over the

requirements for performing a native port of this API to a specific OS.

Unlike classical drivers, which come with their own models of

communication of asynchronous events, the javax.comm API provides an

event-style interface based on the Java event model (java.awt.event

package). Let's say we want to know if there is any new data sitting on the

input buffer. We can find that out in two ways -- by polling or listening.

With polling, the processor checks the buffer periodically to see if there is

any new data in the buffer. With listening, the processor waits for an event

 94

to occur in the form of new data in the input buffer. As soon as new data

arrives in the buffer, it sends a notification or event to the processor.

Dialer management and modem management are additional

applications that can be written using the javax.comm API. Dialer

management typically provides an interface to the modem management's AT

command interface. Almost all modems have an AT command interface.

This interface is documented in modem manuals.Perhaps a little example

will make this concept clear. Suppose we have a modem on COM1 and we

want to dial a phone number. A Java dialer anagement application will

query for the phone number and interrogate the modem. These commands

are carried by javax.comm, which does no interpretation. To dial the number

918003210288, for example, the dialer management probably sends an

"AT," hoping to get back an "OK," followed by ATDT918003210288. One

of the most important tasks of dialer management and modem management

is to deal with errors and timeouts.

GUI for serial port managemen Normally, serial ports have a dialog

box that configures the serial ports, allowing users to set parameters suchas

baud rate, parity, and so on. The following diagram depicts the objects

involved in reading and/or writing data to a serial port from Java. Support

for X, Y, and Z modem protocols. These protocols provide support error

detection and correction.

The programming basics

Too often, programmers dive right into a project and code

interactively with an API on the screen without giving any thought to the

problem they are trying to solve. To avoid confusion and potential problems,

gather the following information before you start a project. Remember,

 95

programming devices usually requires that you consult a manual. Get the

manual for the device and read the section on the RS-232 interface and RS-

232 protocol.

Most devices have a protocol that must be followed. This protocol

will be carried by the javax.comm API and delivered to the device. The

device will decode the protocol, and you will have to pay close attention to

sending data back and forth. Not getting the initial set-up correct can mean

your application won't start, so take the time to test things out with a simple

application. In other words, create an application that can simply write data

onto the serial port and then read data from the serial port using the

javax.comm. API. Try to get some code samples from the manufacturer.

Even if they are in another language, these examples can be quite

useful.Find and code the smallest example you can to verify that you can

communicate with the device. In the case of serial devices, this can be very

painful -- you send data to a device connected to the serial port and nothing

happens. This is often the result of incorrect conditioning of the line. The

number one rule of device programming (unless you are writing a device

driver) is to make sure you can communicate with the device. Do this by

finding the simplest thing you can do with your device and getting that to

work. If the protocol is very complicated, consider getting some RS-232 line

analyzer software.

This software allows you to look at the data moving between the two

devices on the RS-232 connection without interfering with the transmission.

Using the javax.comm API successfully in an application requires you

toprovide some type of interface to the device protocol using the serial

APIas the transport mechanism. In other words, with the exception of the

simplest devices, there is usually another layer required to format thedata for

 96

the device. Of course the simplest protocol is "vanilla" --meaning there is no

protocol. You send and receive data with no interpretation.

6.3 OVERVIEW OF SUGGESTED STEPS FOR USING

JAVAX.COMM

In addition to providing a protocol, the ISO layering model used for

TCP/IP also applies here in that we have an electrical layer, followed by a

very simple byte transport layer. On top of this byte transport layer you

could put your transport layer. For example, your PPP stack could use the

javax.comm API to transfer bytes back and forth to the modem. The role of

the javax.comm layer is quite small when looked at in this context: Give the

javax.comm API control of some of the devices. Before you use a device,

the javax.comm API has to know about it. Open the device and condition the

line. You may have a device that requires a baud rate of 115 kilobits with no

parity. Write some data and/or read data following whatever protocol the

device you are communicating with requires. For example, if you connect to

a printer, you may have to send a special code to start the printer and/or end

the job. Some PostScript printers require you to end the job by sending

CTRL-D 0x03. Close the port.Initializing the javax.comm API registry with

serial interface ports

The javax.comm API can only manage ports that it is aware of. The

latest version of the API does not require any ports to be initialized. On start-

up, the javax.comm API scans for ports on the particular host and adds them

automatically. You can initialize the serial ports your javax.comm API can

use. For devices that do not follow the standard naming convention Writing

 97

and reading data For javax.comm, this is no different than any other read and

write method call to the derived output stream.

For write:

try {

output.write (outputArray, 0 , length);

For read:

try {

int b = input.read()

Closing the port:

Closing the port with javax.comm is no different than with other

requests to close a device. This step is very important to javax.comm

because it attempts to provide exclusive access. Multiplexing multiple users

on a serial line requires a Multiplexor protocol.

try {

inout.close();

output.close();

} ...

 98

6.4 CONCLUSION

The javax.comm API provides a modern disciplined approach to serial

communications and will move Java into new application spaces, allowing

devices like bar code scanners, printers, smart card readers, and hundreds of

other serial devices to be connected with ease. The API is easy to use, as

demonstrated by the example. It is also easy to port to new hardware

platforms. The API has not been tested for high data rate and real time

applications; therefore, developers looking to use the API in those types of

environments should perform careful instrumentation with subsequent

analysis of the code. In determining whether the API is suitable for high data

rate or mission sensitive applications, look for the following:

• Characters lost on input

• Characters lost in output

• Frequency of flow control

• Time it takes to deliver an event

• Character processing times

• Block processing times

When we first started our series on smart cards, we were lucky if we

understood a few native method calls to send bytes to serial devices. We

end our smart card series with this article. The software APIs we have

been discussing in this series come together from a device point of view.

For example, a user developing an application for smart cards can write

to some well-defined APIs such as OpenCard Framework or

communicate directly using javax.comm -- or alternatively use

 99

javax.smartcard, which in turn uses javax.comm. The javax.comm API

facilitates the interfacing of serial and parallel devices to Java.

7. OVERVIEW OF VOICE TRAMSMISSION OVER

INTERNET

7.1 UNDERSTANDING JMF

 JavaTM Media Framework (JMF) provides a unified architecture and

messaging protocol for managing the acquisition, processing, and delivery

of time-based media data. JMF is designed to support most standard media

content types, such as AIFF, AU, AVI, GSM, MIDI, MPEG, QuickTime,

RMF, and WAV. By exploiting the advantages of the Java platform, JMF

delivers the promise of "Write Once, Run AnywhereTM" to developers

who want to use media such as audio and video in their Java programs.

JMF provides a common cross-platform Java API for accessing underlying

media frameworks. JMF implementations can leverage the capabilities of the

underlying operating system, while developers can easily create portable

Java programs that feature time-based media by writing to the JMF API.

 With JMF, you can easily create applets and applications that

present, capture, manipulate, and store time-based media. The framework

enables advanced developers and technology providers to perform custom

processing of raw media data and seamlessly extend JMF to support

additional content types and formats, optimize handling of supported

formats, and create new presentation mechanisms.

 100

 High-Level Architecture Devices such as tape decks and VCRs provide a

familiar model for recording, processing, and presenting time-based media.

When you play a movie using a VCR, you provide the media stream to the

VCR by inserting videotape. The VCR reads and interprets the data on the

tape and sends appropriate signals to your television and speakers.

 JMF uses this same basic model. A data source encapsulates the

media stream much like videotape and a player provides processing and

control mechanisms similar to a VCR. Playing and capturing audio and

video with JMF requires the appropriate input and output devices such as

microphones, cameras, speakers, and monitors. Data sources and players are

integral parts of JMF's high-level API for managing the capture,

presentation, and processing of time-based media. JMF also provides a

lower-level API that supports the seamless integration of custom processing

components and extensions. This layering provides Java developers with an

easy-to-use API for incorporating time-based media into Java programs

while maintaining the flexibility and extensibility required to support

advanced media applications and future media technologies.

7.1.1 TIME MODEL

JMF keeps time to nanosecond precision. A particular point in time is

typically represented by a Time object, though some classes also support the

specification of time in nanoseconds. Classes that support the JMF time

model implement Clock to keep track of time for a particular media stream.

The Clock interface defines the basic timing and synchronization operations

that are needed to control the presentation of media data.

 101

 A Clock uses a TimeBase to keep track of the passage of time while a

media stream is being presented. A TimeBase provides a constantly ticking

time source, much like a crystal oscillator in a watch. The only information

that a TimeBase provides is its current time, which is referred to as the

time-base time. The time-base time cannot be stopped or reset. Time-base

time is often based on the system clock. A Clock object's media time

represents the current position within a media stream--the beginning of the

stream is media time zero, the end of the stream is the maximum media

time for the stream. The duration of the media stream is the elapsed time

from start to finish--the length of time that it takes to present the media

stream. (Media objects implement the Duration interface if they can report

a media stream's duration.) To keep track of the current media time, a

Clock uses: The time-base start-time--the time that its Time Base reports

when the presentation begins. The media start-time--the position in the

media stream where presentation begins. The playback rate--how fast the

Clock is running in relation to its Time Base. The rate is a scale factor that is

applied to the TimeBase. For example, a rate of 1.0 represents the normal

playback rate for the media stream, while a rate of 2.0 indicates that the

presentation will run at twice the normal rate. A negative rate indicates that

the Clock is running in the opposite direction from its TimeBase--for

example, a negative rate might be used to play a media stream backward.

When presentation begins, the media time is mapped to the time-base time

and the advancement of the time-base time is used to measure the passage

of time. During presentation, the current media time is calculated using the

following formula:

 MediaTime = MediaStartTime + Rate(TimeBaseTime -

TimeBaseStartTime)

 102

 When the presentation stops, the media time stops, but the time-base

time continues to advance. If the presentation is restarted, the media time

is remapped to the current time-base time. Managers The JMF API

consists mainly of interfaces that define the behavior and interaction of

objects used to capture, process, and present time-based media.

Implementations of these interfaces operate within the structure of the

framework. By using intermediary objects called managers, JMF makes it

easy to integrate new implementations of key interfaces that can be used

seamlessly with existing classes. JMF uses four managers: Manager--

handles the construction of Players, Processors, DataSources, and

DataSinks. This level of indirection allows new implementations to be

integrated seamlessly with JMF. From the client perspective, these objects

are always created the same way whether the requested object is constructed

from a default implementation or a custom one. PackageManager--maintains

a registry of packages that contain JMF classes, such as custom Players,

Processors, DataSources, and DataSinks. CaptureDeviceManager--maintains

a registry of available capture devices. PlugInManager--maintains a registry

of available JMF plug-in processing components, such as Multiplexers,

Demultiplexers, Codecs, Effects, and Reindeers.

To write programs based on JMF, you'll need to use the Manager

create methods to construct the Players, Processors, DataSources, and

DataSinks for your application. If you're capturing media data from an input

device, you'll use the CaptureDeviceManager to find out what devices are

available and access information about them. If you're interested in

controlling what processing is performed on the data, you might also query

the PlugInManager to determine what plug-ins have been registered. If you

extend JMF functionality by implementing a new plug-in, you can register it

 103

with the PlugInManager to make it available to Processors that support the

plug-in API. To use a custom Player, Processor, DataSource, or DataSink

with JMF, you register your unique package prefix with the

PackageManager.

7.1.2 EVENT MODEL

 JMF uses a structured event reporting mechanism to keep JMF-based

programs informed of the current state of the media system and enable JMF-

based programs to respond to media-driven error conditions, such as out-of

data and resource unavailable conditions. Whenever a JMF object needs to

report on the current conditions, it posts a MediaEvent. MediaEvent is

subclassed to identify many particular types of events. These objects follow

the established Java Beans patterns for events. For each type of JMF object

that can post MediaEvents, JMF defines a corresponding listener interface.

To receive notification when a MediaEvent is posted, you implement the

appropriate listener interface and register your listener class with the object

that posts the event by calling its addListener method. Controller objects

(such as Players and Processors) and certain Control objects such as

GainControl post media events.

 RTPSessionManager objects also post events. For more information,

see RTP Events. Data Model JMF media players usually use DataSources to

manage the transfer of media-content. A DataSource encapsulates both the

location of media and the protocol and software used to deliver the media.

Once obtained, the source

 104

 cannot be reused to deliver other media, A DataSource is identified by

either a JMF MediaLocator or a URL (universal resource locator). A

MediaLocator is similar to a URL and can be constructed from a URL, but

can be constructed even if the corresponding protocol handler is not installed

on the system. (In Java, a URL can only be constructed if the corresponding

protocol handler is installed on the system.) A DataSource manages a set of

SourceStream objects. A standard data source uses a byte array as the unit

of transfer. A buffer data source uses a Buffer object as its unit of transfer.

JMF defines several types of DataSource objects:

7.1.3 PUSH AND PULL DATA SOURCES

 Media data can be obtained from a variety of sources, such as local

or network files and live broadcasts. JMF data sources can be categorized

according to how data transfer is initiated: Pull Data-Source--the client

initiates the data transfer and controls the flow of data from pull data-

sources. Established protocols for this type of data include Hypertext

Transfer Protocol (HTTP) and FILE. JMF defines two types of pull data

sources: PullDataSource and PullBufferDataSource, which uses a Buffer

object as its unit of transfer. Push Data-Source--the server initiates the data

transfer and controls the flow of data from a push data-source. Push data-

sources include broadcast media, multicast media, and video-on-demand

(VOD). For broadcast data, one protocol is the Real-time Transport Protocol

(RTP), under development by the Internet Engineering Task Force (IETF).

The MediaBase protocol developed by SGI is one protocol used for VOD.

JMF defines two types of push data sources: PushDataSource and

PushBufferDataSource, which uses a Buffer object as its unit of transfer.The

degree of control that a client program can extend to the user depends on the

 105

type of data source being presented. For example, an MPEG file can be

repositioned and a client program could allow the user to replay the video

clip or seek to a new position in the video. In contrast, broadcast media is

under server control and cannot be repositioned. Some VOD protocols might

support limited user control--for example, a client program might be able to

allow the user to seek to a new position, but not fast forward or rewind.

7.1.4 SPECIALTY DATASOURCES

 JMF defines two types of specialty data sources, cloneable data

sources and merging data sources. A cloneable data source can be used to

create clones of either a pull or push DataSource.To create a cloneable

DataSource, you call the Manager createCloneableDataSource method and

pass in the DataSource you want to clone.Once a DataSource has been

passed to createCloneableDataSource, you should only interact with the

cloneable DataSource and its clones; the original DataSource should no

longer be used directly. Cloneable data sources implement the

SourceCloneable interface, which defines one method, createClone. By

calling createClone, you can create any number of clones of the

DataSource that was used to construct the cloneable DataSource. The clones

can be controlled through the cloneable DataSource used to create them--

when connect, disconnect, start, or stop is called on the cloneable

DataSource, the method calls are propagated to the clones.

 The clones don't necessarily have the same properties as the cloneable

data source used to create them or the original DataSource. For example, a

cloneable data source created for a capture device might function as a master

data source for its clones--in this case, unless the cloneable data source is

used, the clones won't produce any data. If you hook up both the cloneable

 106

data source and one or more clones, the clones will produce data at the same

rate as the master. A MergingDataSource can be used to combine the

SourceStreams from several DataSources into a single DataSource. This

enables a set of DataSources to be managed from a single point of control--

when connect, disconnect, start, or stop is called on the

MergingDataSource, the method calls are propagated to the merged

DataSources. To construct a MergingDataSource, you call the Manager

createMergingDataSource method and pass in an array that contains the

data sources you want to merge To be merged, all of the DataSources must

be of the same type; for example, you cannot merge a PullDataSource and

a PushDataSource. The duration of the merged DataSource is the maximum

of the merged DataSource objects' durations. The ContentType is

application/mixed-media. Data Formats The exact media format of an

object is represented by a Format object. The format itself carries no

encoding-specific parameters or global timing information, it describes the

format's encoding name and the type of data the format requires. JMF

extends Format to define audio- and video-specific formats. An

AudioFormat describes the attributes specific to an audio format, such as

sample rate, bits per sample, and number of channels. A VideoFormat

encapsulates information relevant to video data. Several formats are derived

from VideoFormat to describe the attributes of common video formats,

including:IndexedColorFormat RGBFormat YUVFormat JPEGFormat

H261Format H263Format . To receive notification of format changes from

a Controller, you implement the ControllerListener interface and listen for

FormatChangeEvents. (For more information, see Responding to Media

Events.) Controls JMF Control provides a mechanism for setting and

querying attributes of an object. A Control often provides access to a

 107

corresponding user interface component that enables user control over an

object's attributes. Many JMF objects expose Controls, including Controller

objects, DataSource objects, DataSink objects, and JMF plug-ins. Any

JMF object that wants to provide access to its corresponding Control

objects can implement the Controls interface. Controls defines methods for

retrieving associated Control objects. DataSource and PlugIn use the

Controls interface to provide access to their Control objects. Standard

Controls JMF defines the standard Control interfaces shown in Figure 2-8:,

"JMF controls."

 CachingControl enables download progress to be monitored and

displayed. If a Player or Processor can report its download progress, it

implements this interface so that a progress bar can be displayed to the

user. GainControl enables audio volume adjustments such as setting the

level and muting the output of a Player or Processor. It also supports a

listener mechanism for volume changes.

 DataSink or Multiplexer objects that read media from a DataSource

and write it out to a destination such as a file can implement the

StreamWriterControl interface. This Control enables the user to limit the

size of the stream that is created. FramePositioningControl and

FrameGrabbingControl export frame-based capabilities for Players and

Processors. FramePositioningControl enables precise frame positioning

within a Player or Processor object's media stream. FrameGrabbingControl

provides a mechanism for grabbing a still video frame from the video

stream. The FrameGrabbingControl can also be supported at the Renderer

level. Objects that have a Format can implement the FormatControl interface

to provide access to the Format. FormatControl also provides methods for

querying and setting the format. A TrackControl is a type of

 108

FormatControl that provides the mechanism for controlling what processing

a Processor object performs on a particular track of media data. With the

TrackControl methods, you can specify what format conversions are

performed on individual tracks and select the Effect, Codec, or Renderer

plug-ins that are used by the Processor. (For more information about

processing media data, see Processing Time-Based Media with JMF.)

7.1.5 PLAYERS

 A Player processes an input stream of media data and renders it at a

precise time. A DataSource is used to deliver the input media-stream to the

Player.The rendering destination depends on the type of media being

presented.

 A Player does not provide any control over the processing that it

performs or how it renders the media data. Player supports standardized

user control and relaxes some of the operational restrictions imposed by

Clock and Controller.

7.1.5.1 PLAYER STATES

 A Player can be in one of six states. The Clock interface defines the

two primary states: Stopped and Started. To facilitate resource management,

Controller breaks the Stopped state down into five standby states:

Unrealized, Realizing, Realized, Prefetching, and Prefetched.

 In normal operation, a Player steps through each state until it reaches

the Started state: A Player in the Unrealized state has been instantiated, but

does not yet know anything about its media. When a media Player is first

created, it is Unrealized. When realize is called, a Player moves from the

Unrealized state into the Realizing state. A Realizing Player is in the

process of determining its resource requirements. During realization, a

 109

Player acquires the resources that it only needs to acquire once. These

might include rendering resources other than exclusive-use resources.

(Exclusive-use resources are limited resources such as particular hardware

devices that can only be used by one Player at a time; such resources are

acquired during Prefetching.) A Realizing Player often downloads assets

over the network.

 When a Player finishes Realizing, it moves into the Realized state. A

Realized Player knows what resources it needs and information about the

type of media it is to present. Because a Realized Player knows how to

render its data, it can provide visual components and controls. Its

connections to oither objects in the system are in place, but it does not own

any resources that would prevent another Player from starting. When

prefetch is called, a Player moves from the Realized state into the

Prefetching state. A Prefetching Player is preparing to present its media.

During this phase, the Player preloads its media data, obtains exclusive-use

resources, and does whatever else it needs to do to prepare itself to play.

Prefetching might have to recur if a Player object's media presentation is

repositioned, or if a change in the Player object's rate requires that

additional buffers be acquired or alternate processing take place. When a

Player finishes Prefetching, it moves into the Prefetched state. A

Prefetched Player is ready to be started. Calling start puts a Player into the

Started state. A Started Player object's time-base time and media time are

mapped and its clock is running, though the Player might be waiting for a

particular time to begin presenting its media data. A Player posts

TransitionEvents as it moves from one state to another. The

ControllerListener interface provides a way for your program to determine

what state a Player is in and to respond appropriately. For example, when

 110

your program calls an asynchronous method on a Player or Processor, it

needs to listen for the appropriate event to determine when the operation is

complete. Using this event reporting mechanism, you can manage a Player

object's start latency by controlling when it begins Realizing and

Prefetching. It also enables you to determine whether or not the Player is in

an appropriate state before calling methods on the Player.

7.1.6 PROCESSORS

Processors can also be used to present media data. A Processor is just

a specialized type of Player that provides control over what processing is

performed on the input media stream. A Processor supports all of the same

presentation controls as a Player.

 In addition to rendering media data to presentation devices, a

Processor can output media data through a DataSource so that it can be

presented by another Player or Processor, further manipulated by another

Processor, or delivered to some other destination, such as a file. For more

information about Processors, see Processing. Presentation Controls In

addition to the standard presentation controls defined by Controller, a

Player or Processor might also provide a way to adjust the playback volume.

If so, you can retrieve its GainControl by calling getGainControl. A

GainControl object posts a GainChangeEvent whenever the gain is

modified. By implementing the GainChangeListener interface, you can

respond to gain changes. For example, you might want to update a custom

gain control Component. Additional custom Control types might be

supported by a particular Player or Processor implementation to provide

other control behaviors and expose custom user interface components. You

access these controls through the getControls method. For example, the

 111

CachingControl interface extends Control to provide a mechanism for

displaying a download progress bar. If a Player can report its download

progress, it implements this interface. To find out if a Player supports

CachingControl, you can call getControl(CachingControl) or use

getControls to get a list of all the supported Controls. Standard User

Interface Components A Player or Processor generally provides two

standard user interface components, a visual component and a control-

panel component.You can access these Components directly through the

getVisualComponent and getControlPanelComponent methods.

7.1.7 PROCESSING

 A Processor is a Player that takes a DataSource as input, performs

some user-defined processing on the media data, and then outputs the

processed media data.

 A Processor can send the output data to a presentation device or to a

DataSource. If the data is sent to a DataSource, that DataSource can be used

as the input to another Player or Processor, or as the input to a DataSink.

While the processing performed by a Player is predefined by the

implementor, a Processor allows the application developer to define the

type of processing that is applied to the media data. This enables the

application of effects, mixing, and compositing in real-time. The

processing of the media data is split into several stages:

 Demultiplexing is the process of parsing the input stream. If the

stream contains multiple tracks, they are extracted and output separately.

For example, a QuickTime file might be demultiplexed into separate

audio and video tracks. Demultiplexing is performed automatically

 112

whenever the input stream contains multiplexed data. Pre-Processing is

the process of applying effect algorithms to the tracks extracted from the

input stream. Transcoding is the process of converting each track of media

data from one input format to another. When a data stream is converted

from a compressed type to an uncompressed type, it is generally referred

to as decoding. Conversely, converting from an uncompressed type to a

compressed type is referred to as encoding. Post-Processing is the

process of applying effect algorithms to decoded tracks. Multiplexing is

the process of interleaving the transcoded media tracks into a single

output stream. For example, separate audio and video tracks might be

multiplexed into a single MPEG-1 data stream. You can specify the data

type of the output stream with the Processor setOutputContentDescriptor

method. Rendering is the process of presenting the media to the user. The

processing at each stage is performed by a separate processing component.

These processing components are JMF plug-ins. If the Processor supports

TrackControls, you can select which plug-ins you want to use to process a

particular track. There are five types of JMF plug-ins: Demultiplexer--

parses media streams such as WAV, MPEG or QuickTime. If the stream

is multiplexed, the separate tracks are extracted. Effect--performs special

effects processing on a track of media data. Codec--performs data

encoding and decoding.

 Multiplexer--combines multiple tracks of input data into a single

interleaved output stream and delivers the resulting stream as an output

DataSource. Renderer--processes the media data in a track and delivers it

to a destination such as a screen or speaker. Processor States A

Processor has two additional standby states, Configuring and Configured,

which occur before the Processor enters the Realizing state..

 113

 A Processor enters the Configuring state when configure is called.

While the Processor is in the Configuring state, it connects to the

DataSource, demultiplexes the input stream, and accesses information

about the format of the input data. The Processor moves into the

Configured state when it is connected to the DataSource and data format

has been determined. When the Processor reaches the Configured state, a

ConfigureCompleteEvent is posted. When Realize is called, the Processor

is transitioned to the Realized state. Once the Processor is Realized it is

fully constructed. While a Processor is in the Configured state,

getTrackControls can be called to get the TrackControl objects for the

individual tracks in the media stream. These TrackControl objects enable

you specify the media processing operations that you want the Processor to

perform. Calling realize directly on an Unrealized Processor automatically

transitions it through the Configuring and Configured states to the Realized

state. When you do this, you cannot configure the processing options

through the TrackControls--the default Processor settings are used. Calls

to the TrackControl methods once the Processor is in the Realized state will

typically fail, though some Processor implementations might support them.

7.1.7.1 METHODS AVAILABLE IN EACH PROCESSOR STATE

 Since a Processor is a type of Player, the restrictions on when

methods can be called on a Player also apply to Processors. Some of the

Processor-specific methods also are restricted to particular states. The

following table shows the restrictions that apply to a Processor. If you call

a method that is illegal in the current state, the Processor throws an error or

exception.

 114

7.1.8 PROCESSING CONTROLS

 You can control what processing operations the Processor performs

on a track through the TrackControl for that track. You call Processor

getTrackControls to get the TrackControl objects for all of the tracks in the

media stream. Through a TrackControl, you can explicitly select the Effect,

Codec, and Renderer plug-ins you want to use for the track. To find out

what options are available, you can query the PlugInManager to find out

what plug-ins are installed. To control the transcoding that's performed on

a track by a particular Codec, you can get the Controls associated with the

track by calling the TrackControl getControls method. This method returns

the codec controls available for the track, such as BitRateControl and

QualityControl. (For more information about the codec controls defined by

JMF, see Controls.) If you know the output data format that you want, you

can use the setFormat method to specify the Format and let the Processor

choose an appropriate codec and renderer. Alternatively, you can specify

the output format when the Processor is created by using a

ProcessorModel.

 A ProcessorModel defines the input and output requirements for a

Processor. When a ProcessorModel is passed to the appropriate Manager

create method, the Manager does its best to create a Processor that meets

the specified requirements. Data Output The getDataOutput method

returns a Processor object's output as a DataSource. This DataSource can

be used as the input to another Player or Processor or as the input to a data

sink. (For more information about data sinks, see Media Data Storage and

Transmission.) A Processor object's output DataSource can be of any type:

PushDataSource, PushBufferDataSource, PullDataSource, or

 115

PullBufferDataSource. Not all Processor objects output data--a Processor

can render the processed data instead of outputting the data to a

DataSource. A Processor that renders the media data is essentially a

configurable Player. Capture A multimedia capturing device can act as a

source for multimedia data delivery. For example, a microphone can

capture raw audio input or a digital video capture board might deliver

digital video from a camera. Such capture devices are abstracted as

DataSources. For example, a device that provides timely delivery of data

can be represented as a PushDataSource. Any type of DataSource can be

used as a capture DataSource: PushDataSource, PushBufferDataSource,

PullDataSource, or PullBufferDataSource. Some devices deliver multiple

data streams--for example, an audio/video conferencing board might

deliver both an audio and a video stream. The corresponding DataSource

can contain multiple SourceStreams that map to the data streams provided

by the device. Media Data Storage and Transmission

A DataSink is used to read media data from a DataSource and render

the media to some destination--generally a destination other than a

presentation device. A particular DataSink might write data to a file, write

data across the network, or function as an RTP broadcaster. (For more

information about using a DataSink as an RTP broadcaster, see

Transmitting RTP Data With a Data Sink.) Like Players, DataSink objects

are constructed through the Manager using a DataSource. A DataSink can

use a StreamWriterControl to provide additional control over how data is

written to a file. See Writing Media Data to a File for more information

about how DataSink objects are used. Storage Controls A DataSink posts

a DataSinkEvent to report on its status. A DataSinkEvent can be posted

with a reason code, or the DataSink can post one of the following

 116

DataSinkEvent subtypes: DataSinkErrorEvent, which indicates that an

error occurred while the DataSink was writing data.

EndOfStreamEvent, which indicates that the entire stream has successfully

been written.

To respond to events posted by a DataSink, you implement the

DataSinkListener interface. Extensibility You can extend JMF by

implementing custom plug-ins, media handlers, and data sources.

Implementing Plug-Ins By implementing one of the JMF plug-in interfaces,

you can directly access and manipulate the media data associated with a

Processor: Implementing the Demultiplexer interface enables you to

control how individual tracks are extracted from a multiplexed media

stream. Implementing the Codec interface enables you to perform the

processing required to decode compressed media data, convert media data

from one format to another, and encode raw media data into a compressed

format. Implementing the Effect interface enables you to perform custom

processing on the media data. Implementing the Multiplexer interface

enables you to specify how individual tracks are combined to form a

single interleaved output stream for a Processor. Implementing the

Renderer interface enables you to control how data is processed and

rendered to an output device. Note: The JMF Plug-In API is part of the

official JMF API, but JMF Players and Processors are not required to

support plug-ins. Plug-ins won't work with JMF 1.0-based Players and

some Processor implementations might choose not to support them. The

reference implementation of JMF 2.0 provided by Sun Microsystems, Inc.

and IBM Corporation fully supports the plug-in API. Custom Codec,

Effect, and Renderer plug-ins are available to a Processor through the

TrackControl interface. To make a plug-in available to a default Processor

 117

or a Processor created with a ProcessorModel, you need to register it with

the PlugInManager. Once you've registered your plug-in, it is included in

the list of plug-ins returned by the PlugInManager getPlugInList method and

can be accessed by the Manager when it constructs a Processor object.

Implementing MediaHandlers and DataSources If the JMF Plug-In API

doesn't provide the degree of flexibility that you need, you can directly

implement several of the key JMF interfaces: Controller, Player, Processor,

DataSource, and DataSink. For example, you might want to implement a

high-performance Player that is optimized to present a single media format

or a Controller that manages a completely different type of time-based

media.

The Manager mechanism used to construct Player, Processor,

DataSource, and DataSink objects enables custom implementations of these

JMF interfaces to be used seamlessly with JMF. When one of the create

methods is called, the Manager uses a well-defined mechanism to locate

and construct the requested object. Your custom class can be selected and

constructed through this mechanism once you register a unique package

prefix with the PackageManager and put your class in the appropriate place

in the predefined package hierarchy. MediaHandler Construction Players,

Processors, and DataSinks are all types of MediaHandlers--they all read

data from a DataSource. A MediaHandler is always constructed for a

particular DataSource, which can be either identified explicitly or with a

MediaLocator. When one of the createMediaHandler methods is called,

Manager uses the content-type name obtained from the DataSource to find

and create an appropriate MediaHandler object.

 118

 JMF also supports another type of MediaHandler, MediaProxy. A

MediaProxy processes content from one DataSource to create another.

Typically, a MediaProxy reads a text configuration file that contains all of

the information needed to make a connection to a server and obtain media

data. To create a Player from a MediaProxy, Manager: Constructs a

DataSource for the protocol described by the MediaLocator Uses the

content-type of the DataSource to construct a MediaProxy to read the

configuration file. Gets a new DataSource from the MediaProxy. Uses

the content-type of the new DataSource to construct a Player.

 The mechanism that Manager uses to locate and instantiate an

appropriate MediaHandler for a particular DataSource is basically the same

for all types of MediaHandlers: Using the list of installed content

package-prefixes retrieved from PackageManager, Manager generates a

search list of available MediaHandler classes. Manager steps through

each class in the search list until it finds a class named Handler that can be

constructed and to which it can attach the DataSource.

8. REAL TIME PROTOCOL

8.1 INTRODUCTION

The real time transport protocol provides end-to-end delivery Services for

data with real time characteristics, such as interactive audio and Video.

Those services include payload type identification, sequence numbering,

times stamping and delivering monitoring. Application typically run RTP on

top Of UDP to make use of its multiplexing and checksome services, both

 119

protocol contribute parts of the transport protocol functionally. However

RTP may be used with other suitable under lying network or transport

protocols.RTP supports data transfer to multiple dstination using multicast

distribution if provided by the network.

 Note that RTP itself does not provide any mechanism to ensure timely

delivery or provide other quality of service guarantees, but relies on lower

layer services to do so. It does not guarantee delivery or prevent out of order

delivery, nor does it assume that the under lying network is reliable and

delivers packets in sequence. The sequence number included in RTP allow

the receiver to reconstruct the sender's packet sequence, but sequence

number might also be used to determine the proper location of a packet, for

example in video decoding, without necessary decoding packets in sequence.

While RTP is primarily designed to satisfy the needs of multi participant

multimedia conferences, it is not limited to that particular application.

Storage of continuous data, interactive distributed simulation, active badge,

and control and measurement applications may also find RTP applicable.

 RTP consists of two closely linked parts:

• The real time transport protocol (RTP), to carry data that has real time

properties.

• The RTP control protocol (RTCP), to monitor the quality of service

and to convey information about the participants in an on-going

session. The later aspect of RTCP may be sufficient for “loosely

controlled” sessions, i.e., where there is no explicit membership

control and set-up, but it is not necessarily intend to support all of an

application’s control communication requirements.

RTP is intended to be malleable to provide the information by a

particular application and will often be integrated into the application

 120

processing rather than being implemented as a separate layer. RTP is a

protocol framework that is deliberately not complete.

8.2 RTP USE SCENARIOS

 The following sections describe some aspects of use of RTP. The

examples were chosen to illustrate the basic operation of applications using

RTP, not to limit what RTP may be used for .In these examples RTP is

carried on top of IP and UDP, and follows the conventions established by

the profile for audio and video.

8.2.1 SIMPLE MULTICAST AUDIO CONFERENCE

 A working group of the IETF meets to discuss the latest protocol

draft, using the IP multicast services of the Internet for voice

communications. Through some allocation mechanism the working group

chair obtains a multicast group address and pairs of ports. One port is used

for audio data, and the other is used for control (RTCP) packets.

 This address and port information is distributed to the intended

participants. If privacy is desired the data and control packets may be

encrypted in which case an encryption key must also be generated and

distributed. The exact details of these allocations and distribution

mechanisms are beyond the scope of RTP.

 The audio conferencing application used by each conference

participant sends audio data in small chunks of say 20 ms duration. Each

chunk of audio data is preceded by an RTP header ;RTP header and data are

in turn contained in a UDP packet. The RTP header indicates what type of

audio encoding is contained in each packet so that senders can change the

encoding during a conference, for example, to accommodate a new

 121

participant that is connected through a low - bandwidth link or react to

indications of network congestion.

 The Internet like other packet networks occasionally loses and records

packets and delays them by variable amounts of time. To cop with these

impairments, RTP header contains timing information.

 This timing reconstruction is performed separately for each source of

RTP packets in the conference. The sequence number can also be used by

the receiver how many packets are being lost.

 Since members of working group leave and join during the

conference, it is useful to know who is participating at any moment and how

well they are receiving the audio data. For that purpose each instance of the

audio application in the conference periodically multicasts a reception

report plus the name of its user on the RTCP control port. The reception

report tells how well the current speaker is being received and may be

used to control adaptive encoding. In addition to the user name, other

identifying information may be included subject to control bandwidth limits.

A site sends the RTCP BYE packet when it leaves the conference.

8.2.2 AUDIO AND VIDEOCONFERENCE

If both audio and video media are used in a conference, they are

transmitted as separate RTP session RTCP packets are transmitted for each

medium using two different UDP port pair and multicast address. There is

no direct coupling at the RTP level between the audio and video sessions,

except that a user participating in both sessions should use the same

distinguished name in the RTCP packets for both so that the sessions can be

associated. One motivation for this separation is to allow some participants

in the conference to receive only one medium if they choose. Despite the

 122

separation, synchronized playback of the source’s audio and video can be

achieved using timing information carried in the RTCP packets for both

sessions.

8.2.3 MIXERS AND TRANSLATORS

So far we have assumed that all sites want to receive media data in the

same format. However this may not always be appropriate. Consider the

case where the participants in one area are connected through a low speed

link to the majority of the conference participants who enjoy high-speed

network access. Instead of forcing everyone to use a lower bandwidth,

reduced quality audio encoding, an RTP level really called a mixer may be

placed near the low bandwidth area. This mixer resynchronizes incoming

audio packets to reconstruct the constant 20 ms spacing generated by the

senders, mixers these reconstructed audio streams in to a single stream,

translates the audio encoding to a lower bandwidth one and forwards the

lower bandwidth packet stream across the low speed link.

These packets might be unicast to a single recipient or multicast on a

different address to multiple recipients. The RTP header includes a means

for mixers to identify the sources that contributed to a mixed packet so that

correct talker indication can be provided at the receivers. Some of the

intended participants in the audio conference may be connected with high

bandwidth links but might not be directly reachable via IP multicast. For

example, they might be behind an application level firewall that will not let

any IP packets pass. For these sites mixing may not be necessary, in which

case another type of RTP level really called a translator may be used. Two

translators are installed one on either side of the firewall, with the outside

one funneling all multicast packets received through a secure connection to

 123

the translator inside the firewall. The translator inside the firwewall sends

them again as multicast packets to a multicast group restricted to the site’s

internal network. Mixers and translators mat be for a variety of purposes.

An example is a video mixer that scales the images of individual peoples in

separate video streams and composites them into one video stream to

stimulate a group scene. Other examples of translation include the

connection of a group of hosts speaking only IP/UDP to a group of hosts that

understands only ST-II, or packet-by-packet encoding translation of video

streams from individual sources without resynchronization or mixing.

8.3 DEFINITIONS

• RTP payload: The data transported by RTP in a packet, for example

audio samples or compressed video data. The payload format and

interpretation is beyond the scope of this document.

• RTP packet: A data packet consisting of the fixed RTP header, a

possibly empty list of contributing sources and the payload data.

Some underlying protocols may require an encapsulation of the

RTP packet to be defined. Typically one packet of the underlying

protocols contains a single RTP packet, but several RTP packets

may be contained if permitted by the encapsulation method.

• RTCP packet: A control packet consisting of a fixed header part

similar to that of RTP data packets, followed by structured elements

that varies depending upon the RTCP packet type. Typically,

multiple RTCP packets are sent together a compound RTCP packet

 124

in a single packet of the underlying protocol: this is enable by the

length Field in the fixed header of each RTCP packet.

• Port: The “abstraction that transport protocol used to distinguish

among multiple destination within a given host computer.

• TCP/IP protocols: identify ports using small positive integers.” The

transport selectors used by the OSI transport layer are equivalent to

ports. RTP depends upon the lower layer protocol to provide some

mechanism such as ports to multiplex the RTP and RTCP packets of

the session.

• Transport address: The combination of a network address and port

that identifies a transport level endpoint, for example an IP address

and a UDP port. Packets are transmitted a source transport address to

a destination transport address.

• RTP session: The association among a set of participants

communicating with RTP. For each participant, a particular pair of

destination transport address defines the session. The destination

transport address may be common for all participants, as in the case

of IP multicast, or may be different for each, as in the case of

individual unicast network address plus a common port pair. In a

multi cast session, each medium is carried in a separate RTP session

with its own RTCP packets. The multiple RTP session are

distinguished by different port number pairs and different multicast

addresses. Synchronization source (SSRC): The source of a stream

of RTP packet, identified by a 32 bits numeric SSRC identifier

carried in the RTP header so as not to be dependent upon the

network address. All packets from a synchronization source form

part of the same timing and number space, so a receiver groups

 125

packet by a synchronization source for play back. Examples of

synchronization sources include the sender to stream of packets

derived from a signal source such as microphone. The SSRC is a

randomly chosen value meant to globally unique with a particular

RTP session. If a participant generates multiple streams in RTP

session, e.g. from separate video cameras, each must be identified as

different SSRC.

• End system: An application that generates the content to be sent in

RTP packets and/or consumes the contents of received RTP packets.

An end system can act as one or more synchronization in particular

RTP session, but typically only one.

• Mixer: An intermediate system that receives RTP packets from one

more sources possibly changes the data format, combines the packets

in some manner and then forwards a new RTP packet. Since the

timing among multiple input sources, the mixer will make timing

adjustments and generates its own timing for combined stream. Thus

all data packets originating from a mixer will be identified as having

the mixer as their synchronization source

• TRANSLATOR: An intermediate system that forwards RTP packets

with their synchronization with their source identifier interacts.

Examples of translators are replicators from multicast to unicast and

application level filter in firewalls.

• MONITOR: An application that receives RTCP packets sent by

participants in an RTP session, in particular the reception reports,

estimates the current quality. The monitor function is likely to be

built into the application participating in the session, and does not

 126

send or receive the KTP data packets. These are called third party

monitors.

• NON_RTP-means: Protocols and mechanisms that may be needed

in addition to RTP to provide a usable service. In particular for

multimedia processing, a control application may distribute

multicast addresses ann keys for encryption formats that represents

formats that that do not have predefined play load type value. For

simple applications electronic mail or a conference database may

also be used. The specification of each of such protocols and

mechanisms is outside the scope of this document.

• BYTE ORDER, ALIGNMENT, and TIME FORMAT: All integer

fields are carried in network byte order that is most significant byte

first. This byte order is commonly known as big endian. The

transmission order is described in detail in. All header data is aligned

to its natural length i.e. 16-bit fields are aligned on even Offsets, 32

bits fields aligned at offsets divisible by four, etc. Octets designated

as padding have the value zero.

Wall clock time (absolute time) is represented using the time stamp

format of the Network Time Protocol (NTP). The full resolution NTP

timestamp is a 64-bit unsigned fixed-point number with integer part in

its 32-bits and fractional part in the last. The low 16-bits of the integer

 127

part and the high bits of the fractional part. The high 16 bits of the

integer part must be determined independently.

8.4 MULTIPLEXING RTP SESSIONS

For efficient protocol processing the number of multiplexing points

should be minimized as described in the integrated layer processing design

principle. In RTP multiplexing is provided by the destination transport

address, which define an RTP session. For example in a teleconference

composed of Audio and Video media encoded separately each medium

should be carried in a separate RTP Session with its own destination

transport address. It is not intended that the audio and video be carried in a

single RTP session and demultiplexed based on the payload type or SSRC

fields. Inter leaving packets with various payload typed but using the same

SSRC would introduce several problems;

1. If one payload type were switched during a session there would be no

general means to identify which of the old values the new one replaced.

2. An SSRC is defined to identify a single timing and sequence number

space. Inter leaving multiple payload types would require different timing

spaces if the media lock rates differ would require different sequence

number spaces to tell which load type suffered packet loss.

3. The RTCP sender and receiver reports can only describe one timing and

sequence number space per SSRC and do not carry a payload type failed.

4. An RTP mixer would not be able to combine interleaved streams of

incompatible media into one stream.

5. Carrying multiple media in one RTP session Preclude:

 128

 The Use of different network paths or network resource allocations in

appropriate reception of a subset of the media if desired, if for example just

audio if video would exceed the Available bandwidth and receiver

implementations that use separate processes for different media, where as

using separate RTP sessions permits either single or multiple process

implementations.

Count of sequence number cycles. Note that different receivers within

the same session will generate different extensions to the sequence number if

their start times differ significantly. It is expected that reception that

reception quality feedback will be useful not only for the sender but also for

other receivers and third-party monitors. The sender may modify its

transmissions based on the feedback; receivers can determine whether

problems are local, regional or global; network managers may use profile-

independent monitors that receive only the RTCP packets and not the

corresponding RTP data packets to evaluate the performance of their

networks for multicast distribution.

Cumulative counts are used in both the sender information and

receiver report blocks so that differences may be calculated between any two

reports to make measurements over both short and long time periods, and to

provide resilience against the loss of a report. The difference between the

last two reports received can be used to estimate the recent quality of the

distribution. The NTP timestamp is included so that rates may be calculated

from these differences over the interval between two reports. Since that

timestamp is independent of the clock rate for the data encoding, it is

possible to implement encoding- and profile-independent quality monitors.

An example calculation is the packet loss rate over the interval between two

reception reports. The difference in the cumulative number of packets lost

 129

gives the number lost during that interval. The differ3ence in the extended

last sequence numbers received gives the number of packets expected during

the interval. The ratio of these two is the packet loss fraction over the

interval. This ration should equal the fraction lost field if the two reports are

consecutive, but otherwise not. The loss rate per second can be obtained by

dividing the loss fraction by the difference in NTP timestamps, expressed in

seconds. The number of packets received is the number of packets expected

minus the number lost. The number of packets received is the number of

packets expected minus the number lost. The number of packets expected

may also be used to judge the statistical validity of any loss estimates. For

example, 1 out of 5 packets lost has a lower significance than 200 out of

1000.

From the sender information, a third-party monitor can calculate the

average payload data rate and the average packet rate over an interval

without receiving the data. Taking the ratio of the two gives the average

payload size. If it can be assumed that packet loss is independent of packet

size, then the number of packets received by particular receiver times the

average payload size (or the corresponding packet size) gives the apparent

throughput available to that receiver. In addition to the cumulative counts,

which allow long-term packet loss measurements using differences between

reports, the fraction lost field provides a short-term measurement from a

single report. This becomes more important as the size of a session scales up

enough that reception state information might not be kept for all receivers or

the interval between reports becomes long enough that only one report might

have been received from a particular receiver.

The inter-arrival jitter field provides a second short-term measure of

network congestion. Packet loss tracks persistent congestion while the jitter

 130

measure tracks transient congestion. The jitter measure may indicate

congestion before it leads to packet loss. Since the inter-arrival jitter field is

only a snapshot of the jitter at the time of a report, it may be necessary to

analyze a number of reports from one receiver over time or from multiple

receivers, e.g., within a single network.

8.5 RTP PROFILES AND PAYLOAD FORMAT

SPECIFICATION

A complete specification of RTP for a particular application will

require one or more companion documents of two types described here:

profiles, and payload format specifications.

RTP may be used for a variety of application with somewhat differing

requirements. The flexibility to adapt to tho9se requirements is provided by

allowing multiple choices in the main protocol specification, then selecting

the appropriate in a separate profile document. Typically an application will

operate under only one profile so there is no explicit indication of which

profiles is in use. A prof9ile for audio and video applications may be found

in the companion Internet-Draft draft-ieft-avt-profile for the second type of

companion document is payload format specification, which defines how a

particular kind of payload data, such as H.261 encoded video, should be

carried in RTP. These documents are typically titled “RTP Payload Format

for XYZ Audio/Video Encoding”. Payload formats may be useful under

multiple profiles and may therefore be define independently of any

particular profile. The profile documents are then responsible for assigning a

default mapping of that format to a payload type value if needed.

 131

Within this specification, the following items have been identified for

possible definition within a profile, but this list is not meant to be

exhaustive.

RTP data header: The octet in the RTP data header that contains the

marker bit and payload type field may be redefined by a profile to suit

different requirements, for example with more or fewer market bits.

Payload types: Assuming that a payload type field is included, the

profile will usually define a set of payload formats (e.g., media encoding)

and a default static mapping of those formats to payload type values. Some

of the payload formats may be defined by reference to separate payload

format specifications. For each payload type define, the profile must specify

the RTP timestamp clock rate to be use.

RTP data header additions: Additional fields maybe appended to the

fixed RTP data header if some additional functionality is required across the

profile’s class of applications independent of payload type

RTP data header extensions: The contents of the first 16 bits of the

RTP data header extension structure must be defined if use of that

mechanism is allowed under the profile for implementation-specific

extensions.

RTCP report interval: A profile should specify that the values

suggested for the constants employed in the calculation of the RTCP report

interval will be used. Those are the RTCP fraction of session bandwidth, the

minimum report interval, and the bandwidth split between senders and

receivers. A profile may specify alternate values if they have been

demonstrated to work in a scalable manner.

 132

9. CLASS HIERARCHY

9.1 JCOMM

• class java.lang.Object

• interface javax.comm.CommDriver

• class javax.comm.CommPort

• class javax.comm.ParallelPort

• class javax.comm.SerialPort

• class javax.comm.CommPortIdentifier

• interface javax.comm.CommPortOwnershipListener (extends

• java.util.EventListener)

• class java.util.EventObject (implements java.io.Serializable)

• class javax.comm.ParallelPortEvent

• class javax.comm.SerialPortEvent

• interface javax.comm.ParallelPortEventListener (extends

• java.util.EventListener)

• interface javax.comm.SerialPortEventListener (extends

• java.util.EventListener)

• class java.lang.Throwable (implements java.io.Serializable)

• class java.lang.Exception

• class javax.comm.NoSuchPortException

• class javax.comm.PortInUseException

• class javax.comm.UnsupportedCommOperationException

 133

10. CONCLUSION

This ICM server is the first server in Pakistan through which you can talk to

your friend while he is surfing on Internet. The server is in final shape and

working properly. We have made this server as a research project which can

be extended commercially.

 134

11. FUTURE ENHANCEMENTS

• AUDIO ON DEMAND

We can make a server that can entertain the request of its users on

telephone and playback any desired audio.

• VOICE MAILING SYSTEM THROUGH TELEPHONE

EXCHANGE

A voice mail can be recorded and sent to the desired user. The voice

mail can be send in two different ways

• PHONE TO PHONE

A person can send voice mail to a person’s inbox, which can be

listened by calling to the server from any telephone no and accessing

the inbox.

• PHONE TO PC

Voice or text mail can be send to a person’s email account. Which can

be easily accessed from the Internet.

• ANSWERING MACHINE

If a person is not present at his/her place then it can be enhanced as an

answering machine.

• MULTIPLE USERS
This project can be enhanced for commercial purposes. Just like

Internet service providers this can be made a service provider through

which anyone can be benefited from this project.

o Soft Exchange

o Phone To Phone

 135

12. BIBLIOGRAPHY.

Resources:

1. http://java.sun.com/products/javacomm/

2. http://www.embedded.com/98/toc9801.htm

3. http:ridgewater.mnscu.edu/classes/dc/io/

4. The book Understanding Data Communications,

by Gilbert Held and George

5. http://www.clbooks.com/sqlnut/SP/

6. http:bbec.com/catalog/software/serialte.html

7. http://www.openbsd.org/

8. http://www.javaworld.com/javaworld/jw-12-
1997/jw-12-javadev.html

9. The January issue of JavaWorld ran the

second article in the smart card series: "Smart
cards and the OpenCard Framework"

10. http://www.javaworld.com/javaworld/jw-01-

1998/jw-01-javadev.html

11. In JavaWorld's February issue, you can
read "Get a jumpstart on the Java Card"

12. http://www.javaworld.com/javaworld/jw-02-

1998/jw-02-javadev.html

13. Also in the February issue is "Giving
currency to the Java Card API"

 136

14. http://www.javaworld.com/javaworld/jw-02-

1998/jw-02-javacard.html

15. For more on Java Card 2.0, see
"Understanding Java Card 2.0" in the March
issue of JavaWorld

16. http://www.javaworld.com/javaworld/jw-03-

1998/jw-03-javadev.html

17. How to program JAVA by Dietel and Dietel

18. JMF Guide

THE END

