
i Copyrights Reserved

ONLINE MODEL BASED VISUAL PROGRAMMING LANGUAGE

(OMBVPL)

 By

Usama Ahmed

Rabia Naghman

Abeera Zainab

Submitted to the Faculty of Computing Software Engineering
National University of Sciences and Technology, Islamabad
in partial fulfillment for the requirements of a B.E Degree in

Computer Software Engineering

JUNE 2018

ii Copyrights Reserved

ABSTRACT

In computing, a visual programming language (VPL) is any programming language that lets users

create programs by manipulating program elements graphically rather than by specifying them textually.

A VPL allows programming with visual expressions, spatial arrangements of text and graphic symbols,

used either as elements of syntax or secondary notation. For example, many VPLs (known as dataflow or

diagrammatic programming) are based on the idea of "boxes and arrows", where boxes or other screen

objects are treated as entities, connected by arrows, lines or arcs which represent relations.

http://en.wikipedia.org/wiki/Computing
http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/Computer_program
http://en.wikipedia.org/wiki/Syntax
http://en.wikipedia.org/wiki/Secondary_notation

iii Copyrights Reserved

CERTIFICATE FOR CORRECTNESS AND APPROVAL

It is certified that work contained in the thesis “Online Model Based Visual Programming
Language”was carried out by Usama Ahmed, Rabia Naghman and Abeera Zainab under
supervision of Dr. Tauseef Rana for partial fulfilment of Degree of Bachelor of Software
Engineering is correct and approved.

Approved by

(Assistant Professor Tauseef Ahmed Rana, PhD)

Department of Computer Software Engineering

Project Directing Staff (DS)

Military College of Signals

National University of Sciences and Technology

Dated: ___ June 2018

iv Copyrights Reserved

This page is left intentionally blank.

v Copyrights Reserved

DECLARATION

No portion of the work presented in this dissertation has been submitted in support of another
award or qualification either at this institution or elsewhere.

vi Copyrights Reserved

DEDICATION

To Allah belongs the dominion of the heavens and the earth; He creates what he wills. He gives
to whom He wills female [children], and He gives to whom He wills males. Or He makes them
[both] males and females, and He renders whom He wills barren. Indeed, He is Knowing and

Competent.

(Chapter25: Surah Ash-Shura: Ayat 49-50)

Dedicated to our beloved families and our country Pakistan.

vii Copyrights Reserved

 ACKNOWLEDGEMENT

We are grateful to Allah Almighty for giving us strength to keep going on with this
project, irrespective of many challenges and troubles.

Next, we are grateful to all our families. Without their consistent support and prayers, a
work of this magnitude wouldn’t have been possible.

We are very grateful to our Project Supervisor Assistant Professor Dr. Tauseef Rana who
supervised the project in a very encouraging and helpful manner. As a supervisor, his support
and supervision has always been a valuable resource for our project.

Last but not the least special acknowledgement to all the members of this group who
tolerated each other throughout the whole year.

viii Copyrights Reserved

This page is left intentionally blank.

ix Copyrights Reserved

Table of Content
1. Chapter 1: Introduction ..1

1.1 Overview ... 1

1.2 Problem Statement .. 1

1.3 Approach ... 1

1.4 Scope ... 1

1.5 Objectives ... 2

1.6 Deliverables .. 3

2. Chapter 2: Literature Review ..4
2.1 Introduction .. 4

2.1.1 Liberherr ... 4

2.1.2 VanHilst and Notkin: .. 4

2.1.3 Model Driven Visual programming language .. 4

3. Chapter 3: Software Requirement Specification ..5
3.1 Introduction. .. 5

3.1.1 Purpose ... 5

3.1.2 Document Conventions ... 5

3.1.3 Intended Audience and Reading Suggestions .. 5

3.1.4 Product Scope .. 6

3.2 Overall Description ... 6

3.2.1 Product Perspective .. 6

3.2.2 Product Function .. 7

3.2.3 User Classes and Characteristics .. 7

3.2.4 Operating Environment ... 8

3.2.5 Design and Implementation Constraints .. 8

3.2.6 User Documentation ... 8

3.2.7 Dependencies .. 9

3.3 External Interface Requirements ... 9

x Copyrights Reserved

3.3.1 User Interfaces ... 9

3.3.2 Hardware Interfaces ... 9

3.3.3 Software Interfaces ... 9

3.3.4 Communication Interfaces .. 9

3.4 System Features .. 10

3.4.1 Tool Bar .. 10

3.4.2 Tool Box ... 10

3.4.3 Work Space ... 10

3.4.4 Error Detection .. 10

3.5 Non-Functional Requirements .. 10

3.5.1 Performance Requirements ... 10

3.5.2 Safety Requirements ... 10

3.5.3 Software Quality Attributes ... 11

4. Chapter 4: Design and Development ... 12
4.1 Introduction ... 12

4.1.1 Purpose of this Document ... 12

4.1.2 Scope of the Development Project ... 12

4.1.3 Definitions, acronyms, and abbreviations .. 13

4.1.4 Overview of document.. 13

4.2 System Architecture Description .. 15

4.2.1 Overview of the modules .. 15

4.2.2 User Interface Issues .. 21

4.3 Detailed Description of Components .. 28

4.3.1 Tool Bar .. 28

4.3.2 Tool Box ... 28

xi Copyrights Reserved

4.3.3 Work Space ... 29

4.3.4 Components and Connectors ... 29

4.3.5 Output... 30

4.4 Reusability and Relationships to Other Products .. 30

4.5 Design decisions and tradeoffs ... 30

4.6 Pseudo Code for Components ... 31

4.6.1 New Program... 31

4.6.2 Execute the Program .. 31

4.6.3 Delete Program .. 31

5. Chapter 5: Project Analysis and Evaluation .. 32
5.1 Introduction ... 32

5.1.1 Testplan Identifier .. 32

5.1.2 Test Items ... 32

5.1.3 Features tobe tested .. 33

5.1.4 Features not tobe tested ... 33

5.1.5 Approach .. 33

5.1.6 Itempass/failcriteria .. 34

5.1.7 Suspension criteriaandresumption requirements .. 34

5.1.8 Test deliverables ... 35

5.1.9 Testing tasks ... 39

5.1.10 Environmental needs ... 40

5.1.11 Responsibilities .. 40

5.1.12 Staffing and training needs .. 40

5.1.13 Schedule .. 41

5.1.14 Risks and contingencies .. 41

xii Copyrights Reserved

5.1.15 Approvals ... 41

6. Chapter 6: Future work .. 42
6.1 Introduction ... 42

6.1.1 GUI feature ... 43

For now we are prompting user for input via textbox. In future we can add GUI feature by
which user can develop beautiful GUI and can offer more user friendly input method. User
can also develop beautiful GUI to make different type of games. 43

6.1.2 Database ... 43

In future we can add database feature of any one of the famous database. By using which
user can add his data to database and even make login page for other users who are going to
use. E.g. we can add firebase feature to our ombvpl tool. Firebase provide many features
such as firebase login, storage space, realtime database, cloud messaging and much more. 43

6.1.3 More component .. 43

We can add more components to existing ombvpl tool in future. Components such as math
functions like square, square root can be added. We can add event listeners also. 43

Future work also includes the evaluation of the framework using models that utilize the
support for IEEE floating-point arithmetic. ... 43

Further research will include the development of test-suite generation algorithms that exploit
the strong isolation of the components and the information about the structure of their
composition. ... 43

7. Bibliography .. 44
8. Appendix ... 45

xiii Copyrights Reserved

Table of Figures/Tables

1 TABLE 1 - 1 ... 3
2 FIGURE 4 - 1 OVERVIEW OF MODULES .. 15
3 FIGURE 4 - 2 SYSTEM ARCHITECTURE ... 16
4 FIGURE 4 - 3 OVERALL STRUCTURE OF THE SYSTEM ... 17
5 FIGURE 4 - 4 USE CASE DIAGRAM ... 18
6 FIGURE 4 - 5 CLASS DIAGRAM .. 19
7 FIGURE 4 - 6 USER INTERFACE ISSUES... 21
8 FIGURE 4 - 7 EXECUTE PROGRAM ACTIVITY ... 23
9 FIGURE 4 - 8 EDIT PROGRAM ACTIVITY .. 23
10 FIGURE 4 - 9 DELETE PROGRAM ACTIVITY.. 24
11 FIGURE 4 - 10 EXECUTE PROGRAM SEQUENCE .. 25
12 FIGURE 4 - 11 EDIT PROGRAM SEQUENCE ... 25
13 FIGURE 4 - 12 DELETE PROGRAM SEQUENCE .. 26
14 FIGURE 4 - 13 PROTOCOL USAGE .. 26
15 FIGURE 4 - 14 PROTOCOL .. 27
16 FIGURE 4 - 15 OMBVPL INTERFACE .. 27
17 TABLE 4 - 1 ... 28
18 TABLE 4 – 2 ... 28
19 TABLE 4 - 3 ... 29
20 TABLE 4 -4 .. 29
21 TABLE 4 - 5 ... 30
22 TABLE 5 – 1 ... 35
23 TABLE 5 - 2 ... 36
24 TABLE 5 - 3 ... 36
25 TABLE 5 - 4 ... 37
26 TABLE 5 – 5 ... 37
27 TABLE 5 – 6 ... 38
28 TABLE 5 – 7 ... 38
29 TABLE 5 - 8 ... 39
30 TABLE 5 – 9 ... 39
31 TABLE 5 - 10 ... 40
32 TABLE 5 - 11 ... 40
33 TABLE 5 – 12 ... 41

1 Copyrights Reserved

 This page is left intentionally blank.

1 Copyrights Reserved

1. Chapter 1: Introduction
1.1 Overview
Innovations like the graphical user interface have exposed basic elements like the filesystem to a
wider audience, and the Internet has become increasingly democratized as user-friendly tools
like WordPress, Youtube and Soundcloud allow anyone to create, publish and distribute content
without writing a line of code. Today an explosion of accessible prototyping kits is making it
possible for amateurs and hobbyists to sink their teeth into the growing Internet of Things by
cobbling together connected computing projects.

But when it comes to making that hardware do your bidding, most tinkerers will still encounter a
“language barrier”. Even the most user-friendly development boards need to be programmed;
and even the simplest programming languages still look like alphabet soup to the uninitiated.

Fortunately, developers like us have started to step in and provide user-friendly, visual
programming tools. These platforms abstract away the functions, variables and idiosyncratic
syntax rules of the underlying code and give users a simple drag-and-drop interface for building
apps out of discrete chunks of logic.

This project provides an environment for students to learn the basic concepts of programming by
using the graphical elements and connecting them to create a program.

1.2 Problem Statement
Our aim is to develop a visual programming language which will provide the students of

computer science a platform to learn the basic concepts of programming.

1.3 Approach
To create a visual programming language which is based on a model. The model-based

approach makes it extendable and new functionality can be added as needed.

1.4 Scope
The motivation behind this project is to help out anyone who doesn’t know how to code

by moving the focus of work from programming to solution modeling. It will be done by
constructing and transforming models that can be round-trip engineered into code which will
increase development productivity and quality by describing important aspects of a solution with
more human-friendly abstractions and by generating common application fragments with
templates.

The one who will be using this product will have no involvement in the background
coding being done by the developer. The user will only be able to use visual expressions, spatial
arrangements of text, graphic symbols and will drag & drop the objects, being provided by this

2 Copyrights Reserved

product but will have no access to the backend processes and hence will be able to create
programs without having any knowledge regarding programming.

Thus “Online Model Based Visual Programming” provides a set of predefined components with
different libraries for performing the functionalities and connectors which users can use to
develop a program by just DRAG and DROP without writing any line of code.

In computing, a visual programming language is any programming language that lets users create
programs by manipulating program elements graphically rather than writing a code.

Our aim is to develop a web based tool an online environment where the beginner or
programmers with basic understanding of concepts like variables and logic can be assisted

This tool may appeal to more advanced programmers for rapid prototyping or code development

1.5 Objectives
During the course of this project, all the aspects of software engineering will be covered i.e.
requirement gathering, software design, implementation and testing along with documentation
(SRS, SDS, Test Document, Final Report and User manual).

This project intends to implement the fundamentals of the x-man model designed by University
of Manchester. X-MAN component model is a framework that’s laid down on the foundation
that defines “Separation of concern”, i.e. that the computation and control are being dealt with at
two separate levels of encapsulation.

We aim to develop the IDE based on X-Man model that will provide the user with atomic
components encapsulated in separate files and the composition connectors which will provide
coordination control among a set of components of a program.

In the X-MAN component-based approach, components are constructed from two kinds of basic
entities: (i) computation units, and (ii) connectors. A computation unit U encapsulates
computation. It provides a set of methods. Encapsulation means that U’s methods do not call
methods in other computation units; rather, when invoked, all their computation occurs inside U.
Thus, U can be thought of as a class that does not call methods in other classes.

A composition connector encapsulates control. It is used to define and coordinate the control for
a set of components. Connectors form a hierarchy i.e., composition is performed in a hierarchical
manner. Furthermore, each composition preserves encapsulation. This kind of compositionality
is the distinguishing feature of the X-MAN approach. A single component encapsulates
computation, namely the computation encapsulated by its computation unit. A composite
component encapsulates computation and control. The computation it encapsulates is that
encapsulated in its sub-components; the control it encapsulates is that encapsulated by its
composition connector. In a composite, the encapsulation in the sub-components is preserved.
Indeed, the hierarchical nature of the connectors means that composite components are self-
similar to their sub-components, i.e., composites have the same structure as their sub-
components; this property provides a basis for hierarchical composition. In general, a system

3 Copyrights Reserved

constructed using this approach consists of a hierarchy of composition connectors sitting atop a
flat layer of decoupled single components

1.6 Deliverables

Sr. Tasks Deliverables

1 Literature Review Literature Survey

2 Requirements Gathering SRS Document

3 Application Design Design Document (SDS)

4 Implementation Implementation on computer with a live test to
show the accuracy and ability of the project

5 Testing Evaluation plan and test document

6 Training Deployment Plan

7 Deployment Complete application along with
necessary documentation

1 Table 1 - 1

4 Copyrights Reserved

2. Chapter 2: Literature Review
2.1 Introduction

Previous work done on this idea are discussed in this chapter. There were a few projects
that were based on the idea of thought recognition following is a detailed description of projects
previously carried out in this context.

2.1.1 Liberherr
For adaptive OOP, a system was produced by Liberherr who used graph-based

customization.Adaptive OOP helps to view such items which are important for an application as
they do not commit themselves to a class structure of the respective application. In order to
develop a resultant system, a class structure which is compatible can be used which can be
automatically integrated.

2.1.2 VanHilst and Notkin:
Using templates of the class for programming in an unstructured manner, a method was

generated by VanHilst and Notkin. Some aspect/behavior was expressed by each class used.
When combine the class templates or behaviors by using inheritance, an object can be created
which is the result. Thus, a small piece of code has this structure whereas the rest of the code has
unstructured pieces relatively.

2.1.3 Model Driven Visual programming language
This visual language was developed by umer namdar and his team. This is visual

programming language made using eclipse. They have used model driven approach. They were
generating code in java to be run in backend. They were also providing different component to
the user which user can drag and drop and connect to make new program. But there project was
not based on any model.

5 Copyrights Reserved

3. Chapter 3: Software Requirement Specification
3.1 Introduction.

In this chapter we are going to discuss purpose of SRS. Its document conventions, who
are intended audience. In general this chapter is going to provide overview of ombvpl in term of
explanation of what we are going to develop. It also contain some diagram which explains
ombvpl even further. It contains class diagram by which one can get brief overview of how the
user will interact with the ombvpl tool.

3.1.1 Purpose
This document details the software requirements specification for the Online Model

Based Visual Programming Language. It reflects all the requirements, constraints and design
activities of this project. The release number of the software is 1.0.

In designing a software product model based approach is used which is a set of rules that
defines the basic structure and logics of the language, expressed as a model, used in the project.

A Visual Programming Language is a programming language which enables the user to
create programs by using pre-defined graphical objects/elements instead of using the
conventional way of creating programs i.e. by writing the lines of code in any programming
language.

The main purpose of developing the Online Model Based Visual Programming Language
is to provide those people with the platform to create programs who have no or very little
knowledge about software development and who do not have any level of skill in any
programming language.

3.1.2 Document Conventions
Italics: The words in italics are further explained in the glossary.

3.1.3 Intended Audience and Reading Suggestions
The Intended audience for this document is listed below:

3.1.3.1 Examiners/Evaluators
The document will provide the FYP evaluators with the scope, requirements and details

of the project to be built. It will also be used as basis for the evaluation of the implementation
and final project.

3.1.3.2 Developers
The document will provide guidance to the developers to determine what the

requirements are and how they should continue with the project.

6 Copyrights Reserved

3.1.3.3 Project Supervisor
This document will be used by the project supervisor to check whether all the

requirements have been understood and in the end whether the requirements have been
implemented properly and completely.

3.1.3.4 Project Testers
Project testers can use this document as a base for their testing strategy as some bugs are

easier to find using a requirements document. It will help in building up test cases for the testing
process. This way testing becomes more methodically organized.

3.1.3.5 Up gradation Engineers
Up gradation engineers can review projects capabilities and more easily understand

where their efforts should be targeted to improve or add more features to it. It sets the guidelines
for future developments.

3.1.3.6 End Users
This document can be read by the end users if they wish to know what the project is

about and what requirements have been fulfilled in this project.

3.1.4 Product Scope
This project will assist anyone who has no knowledge about coding by orienting their

focus of work from programming to solution modeling. It will be done by constructing a model
which will be engineered into code in such a way that will help to produce such abstractions and
graphical templates which will help a novice to get along with this language very easily.

The one who will be using this product will have no involvement in the background
coding being done by the developer. The user will only be able to use visual expressions, spatial
arrangements of text, graphic symbols and will drag & drop the objects, being provided by this
product but will have no access to the backend processes and hence will be able to create
programs without having any knowledge regarding programming.

3.2 Overall Description

3.2.1 Product Perspective
In order to write a software program, one does not need to have a good know how of the

popular programming languages which include C, C++, and Java etc. At the student level the
aim should be to develop basic understanding of programming concepts such as making
decisions, writing code in loop etc. Thus, in order to solve this problem, we introduce this

7 Copyrights Reserved

“Online Model Based Visual Based Programming” which contains set of predefined components
which users can develop basic understanding of programming concepts by using drag and drop.
Hence, the program/software can be developed using only the atomic components and the
connectors without writing any line of code.

3.2.2 Product Function
This Visual Programming Language have the following functionalities:

• Provides graphical units/elements which users can drag and drop.
• Each unit/element performs a specific function.
• These graphical units/elements can be integrated together to create a working program or

software.
• There is no need to write any line of code.
• All the code is generated automatically at the back end.

3.2.3 User Classes and Characteristics
Following are our targeted users:

• Beginners: The students of school or colleges who have no knowledge of programming.

 User and his interaction with the system is shown in Figure A.

8 Copyrights Reserved

1 Figure 3 - 1

3.2.4 Operating Environment
• Microsoft Windows/Mac OS/Linux
• HTML Code Editor: Visual Studio Code
• JavaScript enabled web browser

3.2.5 Design and Implementation Constraints
• The user can only use the predefined graphical elements to create a program
• The language based on the X-man component model
• User can create programs by following the tutorials given in the user manual.

3.2.6 User Documentation
A user manual will be provided which will help new users to get started with the Online

Visual Programming Language. The user manual will provide the instructions on how to work
with this Online Visual Programming Language.

A summary will also be provided to the user which will highlight the features and
limitations of this language.

9 Copyrights Reserved

3.2.7 Dependencies
• The system requires JavaScript enabled web browser to run.
• The system also requires bootstrap framework files.

3.3 External Interface Requirements

3.3.1 User Interfaces

2 Figure 3 - 2

3.3.2 Hardware Interfaces
We do not require any hardware for this project.

3.3.3 Software Interfaces
This Online Model Based Visual Programming Language will be developed in HTML,

CSS and JavaScript using visual studio code.

JavaScript enabled web browser will be required to run this tool.

3.3.4 Communication Interfaces
N/A - No communication interfaces are required.

10 Copyrights Reserved

3.4 System Features

3.4.1 Tool Bar
The tool bar shall provide the options to save current project. The tool bar will also have

the button to run the program.

3.4.2 Tool Box
The tool box shall contain all the graphical objects/elements i.e. connectors and

components which the user will drag and drop to make programs.

3.4.3 Work Space
The editor where the graphical objects will be dropped to interact with each other.

In the work space the user will create his/her own logic and implement the
objects/elements according to the requirements to obtain the desired program/software.

3.4.4 Error Detection
Whenever the user will make any syntax error or logical error or give invalid input the

error will be detected and the error will be displayed on the screen.

3.5 Non-Functional Requirements

3.5.1 Performance Requirements

3.5.1.1 Response Time
The response time of the system is very less.

3.5.1.2 Capacity
 At a time user would be able to execute only one program.

3.5.2 Safety Requirements
The system editor shall not crash accidently even if a program fails to execute.

The user program will be saved automatically after some time, so in case of system
shutdown the user will not lose the program.

11 Copyrights Reserved

3.5.3 Software Quality Attributes

3.5.3.1 Extensibility and Maintainability
The graphical user interface of app is to be designed with usability as the first priority.

The app will be presented and organized in a manner that is both visually appealing and easy for
the user to navigate or play.

3.5.3.2 Portability
This tool can be used and moved to any device having JavaScript enable web browser.

3.5.3.3 Reliability
This software will not fail in any condition.

3.5.3.4 Availability
The application will always be available unless user close the browser or his personal

computer.

3.5.3.5 Flexibility
The design and architecture of the application will be flexible enough for catering any

new requirements, if any at some later stage or for the application enhancement.

3.5.3.6 Usability

 This tool provides easy to understand components and connectors with name of each
component and connector written above each components/connector.

12 Copyrights Reserved

4. Chapter 4: Design and Development
4.1 Introduction

This design document contains all functional requirements and displays their
relationships with each other conceptually. This document also shows our planning towards
implementation of our project. It contains diagrams which shows the design of the language and
user interaction with the language followed by their responses. This document also consists of
some tradeoffs of few aspects of the design, intended to be included.

4.1.1 Purpose of this Document
The aim of this document is to present the detailed design description of our project. It

will explain the aim and features of the language, the interface of the IDE, which graphical
objects it provides, the model on which it will work, the constraints under which it must operate
and how the language will run the different programs. This document is intended for both the
stakeholders and the developers of the system. It will explain that how users with no
programming skills create programs by dragging and dropping objects from predefined set of
elements.

,

4.1.2 Scope of the Development Project
A Visual Programming Language is a programming language which enables the user to

create programs by using pre-defined graphical objects/elements instead of using the
conventional way of creating programs i.e. by writing the lines of code in any programming
language.

The main purpose of developing the Model Based Visual Programming Language is to
create an online integrated development environment in order to help out the beginner
programmers to create programs visually who have very little knowledge about codingand do not
have any level of skill in any programming language. This project will assist anyone who has no
knowledge about coding stuff by orienting their focus of work from programming to solution
modeling. It will be done by using the basic principles laid down by the X-man component
Model. Basically, the scope of our software defines “Separation of concern”, i.e. that the
computation and control are being dealt with at two separate levels of encapsulation. The IDE
will provide the user with atomic components encapsulated in separate files and the connectors
which will provide control to the program. In this way the programming will be made easier to
understand for the programmer. The coder who will be using this tool will have no involvement
in the background coding being done by the developer. The user will only be able to use visual
expressions, spatial arrangements of text, graphic symbols and will drag & drop the objects,
being provided by this tool but will have no access to the back-end processes and hence will be
able to create programs without having any knowledge regarding programming.

13 Copyrights Reserved

4.1.3 Definitions, acronyms, and abbreviations
Visual Programming language: In computing, a visual programming language (VPL) is

any programming language that lets users create programs by manipulating program elements
graphically rather than by specifying them textually.

Our project is based on X-MAN component model.X-MAN component model is a
framework that’s laid down on the foundation that defines “Separation of concern”, i.e. that the
computation and control are being dealt with at two separate levels of encapsulation.

4.1.3.1 Visual Programming language:
In computing, a visual programming language (VPL) is any programming language that

lets users create programs by manipulating program elements graphically rather than by
specifying them textually.

4.1.3.2 Model Based Architecture:
Our project is based on X-MAN component model.X-MAN component model is a

framework that’s laid down on the foundation that defines “Separation of concern”, i.e. that the
computation and control are being dealt with at two separate levels of encapsulation.

4.1.4 Overview of document
The document is divided into sections and is already listed in the table of contents and

figures list. However, here is a brief description of all the sections.

4.1.4.1 System Architecture Description
Here, the overall architecture of our language is described, including the introductionof

various components. It has a system Architecture diagram which shows an insider’s perspective
of the project by describing the high level software components that perform the major functions
to make the project operational.

4.1.4.2 Structure and relationships
 In this section, the interrelationships and dependencies among various components are
discussed. It is mainly described by a UML Class diagram also helps us understanding the
system structure.

4.1.4.2.1 UML Class diagram
UML Class diagram further manifests the description of low level components of the

software that include the language editor and graphical elements, thus making the system
adequately comprehensible.

14 Copyrights Reserved

4.1.4.3 User Interface Issues
This section ponders upon the main principles of the project's user interface. Not

touching about the technical details, the section is described by an overall diagram. Moreover,
UML Activity diagrams, UML Sequence diagrams, and UI Design diagrams also elaborate the
User Interface issues in a more intelligible manner.

4.1.4.3.1 UML Activity diagrams
UML Activity Diagrams follow a workflow-based approach to describe the overall

functioning of the project. They are a very good means to see how various steps are involved in
major tasks inside our project using a flow chart pattern without getting into the technical details.

4.1.4.3.2 UML Sequence diagrams
UML Sequence diagrams show how different steps are involved in the completion of a

functionality of the project. They have a unique format that allows the reader to see how many
graphical objects are used in a sequence for the completion of a system requirement.

4.1.4.4 UI Design
Some snapshots of graphical user interfaces are shown in this section that prototype the

way a user shall be interacting with the system.

4.1.4.5 Detailed description of components
This section contains detailed description of all the major components of the system in a

structured pattern (table), comprising of 10 x rows. The pattern (table) maintains symmetry in the
document structure; and therefore it is followed for each of the components. Each part/row of the
table is identified by a label, explaining the purpose of each point. The description of each point
vis-à-vis the component being discussed, ponders upon the detailed account of it in the system.

4.1.4.6 Reusability and relationships to other products
This section highlights the Reusability aspects of the various components of the system.

Since the project in hand is all new and doesn’t carry out any enhancement work in the already
existing system, so Reusability is just a recommended strategy to be employed while organizing
various system components.

4.1.4.7 Design decisions and tradeoffs
This section focuses upon various design decisions and the ideas behind those. It enables

the reader to understand the important crux of the design that is being usedwhile excavating a bit
more about the motivations behind those decisions.

15 Copyrights Reserved

4.2 System Architecture Description

4.2.1 Overview of the modules
The system will be architected mainly in 2 fundamental modules “Front End Interface”

and “Core System” having other sub modules too as shown in the following abstract diagram:

2 Figure 4 - 1 Overview of Modules

4.2.1.1 Description of the modules
The “Front End Interface” will be used by the user to give input by dragging and

dropping elements. Once user has created his program, the program will be executed. The
elements are converted into JavaScript code, and processed information will lead to generation of
final results in “Generate Results” module; where from the result will be sent back to the “Front
End Interface”.

4.2.1.2 System Architecture
Layered Architecture (2-Tiers) will be used to implement OMBVPL. First layer is the

Presentation layer which comprises of our Language Editor (IDE). Second layer which is the
Business Logic layer comprises of various services provided by OMBVPL.

16 Copyrights Reserved

3 Figure 4 - 2 System Architecture

4.2.1.3 Layers Details
The details of the layers have been discussed below.

4.2.1.3.1 Presentation Layer
The presentation layer provides the platform for interaction of the users (Programmer)

with the system. It displays Graphical Elements to the user and accepts input from the user. The
Presentation layer can only receive input from and return responses to, an outside agent. The
Presentation layer also sends acquired input to the Business Logic layer.

4.2.1.3.2 Business Logic
Business Logic has been used as a service layer to expose the business functionality of

the tool. Comprising of elements of “Conversion to JavaScript”, “Display Errors”, “Display
Output” and “Display Code”, the layer caters for the core functionality of the system.

4.2.1.3.3 Structure and Relationships
Focusing upon the internal structure of the system, this section ponders upon the

interrelationships and dependencies among various components.

17 Copyrights Reserved

4.2.1.4 Overall Structure of the system
The diagram shows the main components of the system along with their interactions with

each other. It mainly describes the system structure which is further augmented by the
explanatory text as follows:

4 Figure 4 - 3 Overall Structure of the System

4.2.1.4.1 Front End Interface
Front End Interface caters for the visual needs of the tool, wherein the Human-Computer-

Interaction aspects are considered to enable the user to communicate with the system profoundly.
It is connected with the Core System, and Generate Results modules to pass on the user inputs as
well as display the output feedback to the user respectively.

4.2.1.4.2 Core System
This Core System comprises of execution of User Input by converting user program into

JavaScript code. Errors and Generated Results are send to Front End Interface for user to view.

4.2.1.4.3 User Input
User Input is received in the first module (Front End Interface) and then sent to Second

module (Core System).

18 Copyrights Reserved

4.2.1.4.4 Execute
In this, User Input is mapped with the model and therefore converted to the

corresponding JavaScript code.

4.2.1.4.5 Java Compiler
The converted JavaScript Code is compiled and executed.

4.2.1.4.6 Check Errors
Errors are checked and displayed to the user. User can edit their program.

4.2.1.4.7 Results
Output is generated and sent to the “Front End Interface” module.

4.2.1.5 Use Case Diagram

5 Figure 4 - 4 Use Case Diagram

19 Copyrights Reserved

4.2.1.6 Class Diagram with Description

6 Figure 4 - 5 Class Diagram

4.2.1.6.1 Description of Diagram

4.2.1.6.1.1 OMBVPL tool
This Class Provides the interface to the user and sends User input to respective classes.

4.2.1.6.1.2 Atomic components
Defines the whole component used for computation and results. It contains invocation

connector and computation unit.

4.2.1.6.1.3 Composition Connector

4.2.1.6.1.4 Math operator
Defines components for math operation.

20 Copyrights Reserved

4.2.1.6.1.5 Selector
Based on the input value this component selects amongst the components and the path it

has to follow. It behaves just like a switch statement. After the execution of the composed
component the results are passed on to the originator connector.

4.2.1.6.1.6 Sequencer
On receiving control, it takes the data from component A and executes it for the output.

Then takes data from component B and performs its services, holds the results in the possible
sequences for the user to select in which order they expect the execution to be in, then pass the
held results to the control originator.

4.2.1.6.1.7 JavaScript Code generator
Defines a class which generates JavaScript code from graphic elements.

4.2.1.6.1.8 Guard
Defines a class which act as an if statement. It corresponds to an if statement, it needs a

condition that must be true in order to pass the control to the connected component.

4.2.1.6.1.9 Loop
Defines a class which acts as a for loop or while loop in OMBVPL. Basically, it is a Loop

connector with a terminating condition.

4.2.1.6.1.10 Display
Defines a class which display results on browser.

4.2.1.6.1.11 Pipe
Defines a class which coordinates flow of control in program. Pipe takes the output of

component A and gives it as an input to component B.

21 Copyrights Reserved

4.2.2 User Interface Issues

7 Figure 4 - 6 User Interface Issues

4.2.2.1 Description of the diagram

4.2.2.1.1 IDE
It harnesses all the functionalities of the application, including all the interactions

involved between the user and the system. It is supported by various buttons to meet all the
requirements of the users and enable them to interact with the system.

4.2.2.1.2 Tool Bar
It consists of various functionalities, such as, Creating Project, Saving Project, Open

existing Project, Deleting Project, Executing Project, Help about the tool, etc.

4.2.2.1.3 Tool Box
It contains all the Graphical Elements which User can use to create program.

22 Copyrights Reserved

4.2.2.1.4 Components and Connectors
These elements are chosen by the user as per his requirement to create program. They are

dragged and then dropped on to workspace.

These elements comprise of:

CONNECTORS:

Sequencer: On receiving control, it takes the data from component A and executes it for
the output. Then takes data from component B and performs its services, holds the results in the
possible sequences for the user to select in which order they expect the execution to be in, then
pass the held results to the control originator.

Selector: Based on the input value this component selects amongst the components and
the path it has to follow. It behaves just like a switch statement. After the execution of the
composed component the results are passed on to the originator connector.

Pipe: Pipe takes the output of A and gives it as an input to B.

ADAPTERS: (Since this connecter is used directly in the system construction)

• Loop: connector with a terminating condition
• Guard: It corresponds to an if statement, it needs a condition that must be true in order to

pass the control to the connected component.
• Invocation connector: It’s used at the lowest level to invoke a method in the computation

unit. Invocation connector connects to the computational unit to create an atomic component
thus providing encapsulation at the component level with separation of concern.

4.2.2.1.5 Workspace
This is used by the user to create his program. This is where he drags and then drops the

graphical elements.

4.2.2.1.6 Output
The output generated, once the program is executed, is displayed on the output window.

4.2.2.2 UML Activity Diagram
This section shows the activities that a user need to perform to accomplish a task.

4.2.2.2.1 Execute Program
Description: This scenario describes the flow of activities necessary for the user to

execute a program.

23 Copyrights Reserved

8 Figure 4 - 7 Execute Program Activity

4.2.2.2.2 Edit Program
Description: This scenario describes the flow of activities necessary for the user to edit an

existing program.

9 Figure 4 - 8 Edit Program Activity

24 Copyrights Reserved

4.2.2.2.3 Delete Program

Description: This scenario describes the flow of activities necessary for the user to delete
an existing program.

10 Figure 4 - 9 Delete Program Activity

4.2.2.3 UML Sequence Diagrams
Different Scenarios and their corresponding events are discussed in this section with the

help of sequence diagrams.

4.2.2.3.1 Execute Program
Description: This scenario describes the sequence of events that take place when user

executes a program.

25 Copyrights Reserved

11 Figure 4 - 10 Execute Program Sequence

4.2.2.3.2 Edit Program
Description: This scenario describes the sequence of events that take place when user

edits an existing program. The alternative prospects of the events have also been catered for in
case his program contains error.

12 Figure 4 - 11 Edit Program Sequence

26 Copyrights Reserved

4.2.2.3.3 Delete Program
Description: This scenario describes the sequence of events that take place when user

deletes an existing program.

13 Figure 4 - 12 Delete Program Sequence

4.2.2.4 UML State Machine Diagrams
Different Scenarios and their corresponding events are discussed in this section with the

help of state machine diagrams.

4.2.2.4.1 Execute Program
Behavior (discrete) of the parts of the system is represented by a behavior diagram using

finite state transitions. Protocol usage of a part of a system can also be shown by this diagram.

14 Figure 4 - 13 Protocol Usage

27 Copyrights Reserved

4.2.2.4.2 Delete Program
In order to delete program, user will select the required program and will then click the

delete button. Hence the selected program will be deleted.

15 Figure 4 - 14 Protocol

4.2.2.5 UI Design
OMBVPL is an online application and intended to be used by the users from diverse

background knowledge. This requires that the interface of OMBVPL should have an easy
learning curve for the user. Most of the important features should be visible to the user and no
functionality should be hidden.

Please note that the interface provided is just for demonstration purposes. Actual
interface may be different.

16 Figure 4 - 15 OMBVPL Interface

28 Copyrights Reserved

4.3 Detailed Description of Components

4.3.1 Tool Bar
Identification

Toolbar

Type

Component

Purpose

User interface to access different features of the IDE
Function

Displays a bar of different buttons and each button performs
its own function.

Subordinates

An array will hold different buttons, one for each option of
the Tool Bar.

Dependencies

Calls instances of the button class.

Interfaces

Performs an action when any button is clicked.
 JavaScript code that runs when the system is started
Processing

When the IDE will start it will appear on top of the IDE web
browser.

 Array of button classes that will be used to hold different
buttons in the Tool Bar.

Table 1 – Toolbar description
17 Table 4 - 1

4.3.2 Tool Box
Identification

 Toolbox

Type

Component

Purpose User interface to access different elements and connectors of the language.
Function Displays a list of different elements which user will use to create a component and

the connectors he would use to define logic

Subordinate A panel will hold all the elements.

Dependencies Calls the method of each elements.
18 Table 4 – 2

29 Copyrights Reserved

4.3.3 Work Space
Identification Workspace
Type Component
Function Convert the graphical objects into JavaScript code in backend and then show

output.
Subordinate A panel will hold the graphical objects of all the programs.
Dependencies Uses the model to convert the graphical elements into executable code in the

backend.
Interfaces Connects different graphical elements to create a logical program.
Resources A panel on which user will create a program from graphical elements.
Processing When the IDE starts it appears in the center of the IDE when the interface ()

method is called.
Data A panel in work space will hold the graphical objects of all the programs.

19 Table 4 - 3

4.3.4 Components and Connectors
Identification Output
Type Class

Purpose Creation of components and functionality is added through the

exogenous connectors (guard, loop, sequencer, pipe, selector etc.)
Function

To perform different operations on the components through
separation of control through the connectors.

Subordinate

A panel will hold all the text fields and drop-down menus.

Dependencies

Atomic components are the basic building block of the language.
These units along with the hierarchy given by the connectors creates
all the programs and all the sub components are inter connected
through the exogenous connectors.

Interfaces

Uses user input or input from other parts of program and performs a
certain action on that input data and gives the corresponding output.

Resources

An input from the user or any other part of the program is required by
any component to perform its action.

Processing

Each connector is called by its specific call method when the user
drags and drops it in the work space.

Data

Each component will keep the input in specific variables and pass it
to other variables in other connected components.

20 Table 4 -4

30 Copyrights Reserved

4.3.5 Output
Identification Output
Type Class
Purpose To display the output of the user program
Function Show the user with the output of the created program.
Subordinate The output will be displayed in the output dialog box.
Dependencies Depends on the program created.
Interfaces Gets the input from the graphical objects of the program and gives the

corresponding output.
Resources A dialog box will be used to create output dialog box.

21 Table 4 - 5

4.4 Reusability and Relationships to Other Products
Since our IDE is made in accordance with the X-Man model with is already defined but

its implementation has not yet been done and our model in many ways does this model’s
implementation. Our Online X-Man driven visual programming language is a new language and
no enhancement is being done in any already existing language. Therefore, no explicit
component is being reused. Although the components, once defined can be reused in the program
compilation. However, the strategic aspects of future reusability of this model are supposed to be
considered. As our language is domain specific, it can be extended and further developed
whenever required.

4.5 Design decisions and tradeoffs
We are creating an online visual programming language by using the X-Man model

principles due to which a user can only create programs by simply dragging and without getting
into language syntax complexities.

X-man follows the component-based software which in turn is the key to short time-to-
market, high productivity and cost saving through the components reuse. X-MAN is a
framework for compositional software design. Its features include:

• Strong separation of components, that is, components are strictly separated with respect to
data and side-effects of execution at the functional level that coordination control among a
set of components is entirely governed by composition connectors.

• A simple user interface has been incorporated, so as to extend the usability of the language to
all the novice users.

• Thus “Online Model Based Visual Programming” provides a set of predefined components
which users can use to develop some basic understanding of programming concepts by using
drag and drop.

• In this way a program can be developed using only the atomic components and the
connectors without writing any line of code.

31 Copyrights Reserved

4.6 Pseudo Code for Components

4.6.1 New Program
 Begin

Open IDE

Select new Program

Drag and drop graphical objects

End

4.6.2 Execute the Program

If Program is correct

Display the Output

Else

Display the error

Go back to Drag/drop phase

4.6.3 Delete Program

Begin

Open IDE

Select existing Program

Delete program

End

32 Copyrights Reserved

5. Chapter 5: Project Analysis and Evaluation

5.1 Introduction
The purpose of this document is to outline the test strategy and overall testing approach

that has been used for the OMBVPL Project. This includes test methodologies, traceability, and
resources required, and estimated schedule.

This plan will include testing of the modules created for the visual programming
language. These include the components which are already defined in the library: Math (ADD,
SUBTRACT, MULTIPLY, DIVIDE), Text (gets the string as input for if/else statements).

It will also test the functionality of the connectors. These include:

• Pipe
• Selector
• Sequencer
• Guard
• Loop

The type of testing being used is incremental integration testing where we have tested math
functionalities continuously as they are added both individually and then together.

5.1.1 Testplan Identifier
This test plan aims for Online Model Based Visual Programming Language Project. It is

named as “OMBVPL Functionality Testing”.

5.1.2 Test Items
Math library elements are being tested which are ADD, SUBTRACT, MULTIPLY,

DIVIDE.

Text component is being tested whether it are correctly displayed by the code generator.

Also, the connectors are being tested which include pipe, selector, sequencer, loop, guard.

Hierarchy of the functions being called by the components in the model will be tested.

Error displaying will also be tested.

The transmittal media used for OMBVPL is through the web browser. Since the project is
based on online model based visual programming.

The code has been written in HTML, CSS and JavaScript and the document has been
made in accordance with the libraries and classed defined in the design specification document.
The user installation guide is given below:

33 Copyrights Reserved

As per the bug report, there were around twenty bugs reported but most of them were
fixed. One of the bugs included the selection of only one entry for the math function which is not
possibly correct; this bug was fixed by adding a conditional statement in the code. On the other
hand, another bug was reported where the control connectors which actually should not be
connected to each other in the hierarchy were being connected through a line. This bug is yet to
be fixed.

The user interface is not to be tested specifically since the aim of the OMBVPL is to
provide separation of concern and control through the implementation of the connectors and
components defined by the user.

5.1.3 Features tobe tested
The workspace is to be tested which consists of two categories as defined below:

Drag and drop operations of the elements are being tested which connects different
graphical elements to create a logical program. This is done in the workspace as defined in title
3.3 in the SDS document. Here the graphical objects are converted into JavaScript code in the
backend and the output is then displayed.

The code generated that is displayed in the workspace dropdown is also tested.

Connections made via connectors are tested. Each connector is called by its specific call
method when the user drags and drops it in the workspace. All the design specifications that
concern the connections is defined in title 3.4 of SDS document version 1.1.

Also, mathematical operations being performed are checked that whether they are
operating correctly or not.

Loops, selection, and control functionalities provided via pipe and sequencer are tested.

The outputs of the code will be tested. The output is integrated in two categories as
mentioned in section 3.5 of SDS document:

1. Result display

2. Error display

5.1.4 Features not tobe tested
The user interface is not to be tested specifically since the aim of the OMBVPL is to

provide separation of concern and control through the implementation of the connectors and
components defined by the user.

5.1.5 Approach
General Test Strategy: Component testing will be performed on the components as they

are developed. Each component will be individually tested by using several test cases and then
tested as a whole system in order to find out any inconsistencies in the system.

34 Copyrights Reserved

Component testing: Tests will be conducted to verify the implementation of the design
for one module. The purpose of component testing is to ensure that the program logic is
complete and correct and ensuring that the component works as designed.

Integration Testing:As the components will be developed from the bottom-up, the test
strategy will also align to the order of development of components. After the unit testing phase
modules are integrated incrementally and tested to ensure smooth interface and interaction
between modules. In this approach, every module is combined incrementally, i.e., one by one till
all modules or components are added logically to make the required application, instead of
integrating the whole system at once and then performing testing on the end-product.
Afterwards, integrated modules are tested as a group to ensure successful integration and data
flow between modules.

Browser Compatibility Testing: Browser Compatibility Testing is performed for web
applications and it ensures that the software can run with the combination of different browser
and operating system.

Black Box Testing: Internal system design is not considered in this type of testing. Tests
are based on the requirements and functionality.

5.1.6 Itempass/failcriteria
The criteria are as follows

• The pre-conditions are met
• Inputs are carried out as specified
• Test case will pass if it produces the desired output for a specified input
• Test will fail otherwise

5.1.7 Suspension criteriaandresumption requirements
If the tests are not giving appropriate results according to the expected outputs then further

testing is stopped. The criteria for pausing of testing are given below.

• If other than numeric values given to the Entry element.
• If the connectors aren’t used in an appropriate way.
• If operators aren’t working properly.
• If an operator is directly connected to the other operator.
• If a connector is directly connected to another connector.

 If the program does not reconstruct after the changes have been saved, the program may be
constructed again and saved again then the testing may resume.

35 Copyrights Reserved

5.1.8 Test deliverables

5.1.8.1 Testing tasks
• Develop Test Cases.
• Execute tests based on the test cases developed.
• Report defects during tests if any.
• Manage the changes made after testing.

5.1.8.2 Test cases
Following are the test cases that will be delivered as per test plan.

5.1.8.2.1 Input Data Testing for math element
Test Case Name Input Data Testing for math element
Test case number 1
Description In this test case numeric values entered in math elements are

tested.
Testing technique used Black box testing
Preconditions There are no values inside the entry entity
Input values Any value like b,5 etc.
Valid inputs Valid inputs are of type integer like 2,3,4 etc.
Steps 1. Connect connector with math operator

2. Press play button to run program
3. Input an integer
4. Input alphabet

Expected outputs No output will be obtained because all values are not
numeric

Actual output No result obtained
Status Passed

22 Table 5 – 1

5.1.8.2.2 Input Data Testing for text element
Test Case Name Input Data Testing for text element
Test case number 2
Description In this test case string value entered in text element is tested
Testing technique used Black box testing
Preconditions No value is entered
Input values Text string e.g. “Hello world”
Valid inputs Any kind of text which includes symbols, integer and

alphabets

36 Copyrights Reserved

Steps 1. Connect selector with text
2. Input conditions
3. Input string like “Hello world” in text box
4. Run the program

Expected outputs The text entered (Hello World) will be displayed on the
screen in alert box

Actual output “Hello World”
Status Passed

23 Table 5 - 2

5.1.8.2.3 Connector’s functionality testing
Test Case Name Connector’s functionality testing
Test case number 3
Description In this test case functionality of connectors in general will be

tested
Testing technique used Black box testing
Preconditions The desired connector should not be already dragged in

workspace
Input values Attach only one desired function in connector
Valid inputs Math function and text function. There will be more than one

functions attached to the sequencer.
Steps 1. Drag sequencer and subtract function

2. Attach sequencer with subtract function according to
the required hierarchy.
3. Run program
4. Input values for the function

Expected outputs Error
Actual output Error: attach more than one items to sequencer
Status Passed

24 Table 5 - 3

5.1.8.2.4 Sequencer Functionality Testing
Test Case Name Sequencer’s functionality testing
Test case number 4
Description In this test case functionality of sequencer will be tested
Testing technique used Component testing
Preconditions Sequencer should not be connected to the components
Input values Attach more than one components e.g. add, subtract,

multiply, divide etc. to the sequencer
Valid inputs More than one components attached
Steps 1. Drag and drop sequencer, add and subtract

37 Copyrights Reserved

2. Attach connector with components
3. Run program
4. It takes the data from add and executes it for the
output
5. Then takes data from component B and performs its
services
6. Then pass the held results to the control originator

Expected outputs It takes the data from add and executes it for the output
Then takes data from component B and performs its
services
Then pass the held results to the control originator

Actual output Functions will be called in sequence which can be seen in
code generated by code generator

Status passed
25 Table 5 - 4

5.1.8.2.5 Pipe Functionality Testing
Test Case Name Pipe Functionality Testing
Test case number 5
Description In this test case functionality of pipe is tested
Testing technique used Component testing
Preconditions Pipe should not be connected to the components
Input values Attach more than one connectors along with their functions.
Valid inputs More than one different connectors with their functions are

attached
Steps 1. Drag pipe, sequencer, selector, add, subtract and text.

2. Attach selector with two texts.
3. Enter text in both text box
4. Enter conditions for which text will be displayed.
5. Attach add and subtract with sequencer
6. Attach sequencer and selector with pipe
7. Run program

Expected outputs It takes the output of sequencer and gives it as an input to
selector in sequence

Actual output Data will be passed from sequencer to selector as seen in
the code generated by code generator.

Status passed
26 Table 5 – 5

38 Copyrights Reserved

5.1.8.2.6 Selector’s Functionality Testing
Test Case Name Selector Functionality Testing
Test case number 6
Description In this test case functionality of selector is tested
Testing technique used Component testing
Preconditions Selector should not be connected to the components
Input values Functions from the library such as add, subtract or text will

be attached
Valid inputs Text function
Steps 1. Drag pipe, sequencer, selector, add, subtract and text.

2. Enter “less than 20” in first text box
3. Enter “greater than 20” in second text box
4. Attach selector with two texts.
5. Enter condition "<20" for first textbox and “>20” in
second textbox.
6. Attach add and subtract with sequencer.
7. Attach sequencer and selector with pipe.
8. Run program.
9. Input 5 to each prompt

Expected outputs Less than 20
Actual output Less than 20
Status passed

27 Table 5 – 6

5.1.8.2.7 Save functionality Testing
Test Case Name Save Functionality Testing
Test case number 7
Description Program once developed can be saved
Testing technique used Integration testing
Preconditions Save button shall not be pressed
Input values Program is developed
Valid inputs Program is developed according to hierarchy
Steps 1.Develop a program by dragging one selector and any two

math elements
2. Press save button
3. Select folder in which you want to save program

Expected outputs Program will be saved in specified folder
Actual output Program saved in specified folder
Status Passed

28 Table 5 – 7

39 Copyrights Reserved

5.1.8.2.8 Load functionality Testing
Test Case Name Load Functionality Testing
Test case number 8
Description User can load program once he save it
Testing technique used Incremental integration testing
Preconditions Ombvpl is opened in browser
Input values Select file to open
Valid inputs Select file having .html extension
Steps 1. Click open program button in menu

2. Select folder and then file to open
3. Load file in workspace

Expected outputs Program will be opened successfully
Actual output Program is opened successfully
Status

29 Table 5 - 8

5.1.8.2.9 Browser Compatibility Testing
Test Case Name Browser Compatibility Testing
Test case number 9
Description In this testing program will be testing in browser and

checked whether it is loaded correctly
Testing technique used Browser Compatibility Testing
Preconditions OMBVPL is not loaded in browser
Input values URL of OMBVPL
Valid inputs URL of visual programming language
Steps 1. Open browser

2. Input URL of OMBVPL
3. Check design of tool

Expected outputs The OMBVPL is successfully executed in browser.
Actual output OMBVPL is executed successfully in browser
Status passed

30 Table 5 – 9

5.1.9 Testing tasks
Testing Tasks Assigned to
Component Testing Developer
Incremental Integration Testing Developer
Acceptance Testing Customer/Project Manager
Reports Verification Customer/Project Manager

40 Copyrights Reserved

UI Requirements Verification Customer
Defect Reporting

Customer/Project Manager/Developer

31 Table 5 - 10

5.1.10 Environmental needs
• Hardware: No hardware required
• Software: HTML, CSS, JavaScript.

5.1.11 Responsibilities
Roles Responsibilities
Test Manager Generates test plan & test resources

Reviews the requirement analysis, system architecture
design & object design
Generates Test Cases
Periodically updates the Program Director on the progress
of test execution

Test Leads Create detailed test specifications
Manage day-to-day progress of subcomponents and compile
and report the metrics to the test manager
Ensures testers makes adequate progress & follow strategy
defined by test manager

Component Testers Responsible for test execution on daily basis
Leads the effort during most of the integration test cycle
and hand off the testing to the System Testers during the last
states of incremental integration testing.

System Testers Responsible for functional testing
Responsible for performance testing.

32 Table 5 - 11

5.1.12 Staffing and training needs
Basics knowledge of testing strategies and techniques is needed for the testing of the

project.

Techniques such as Black Box testing, integration testing should be known to developers.

All the developers will be testing each other’s work and will be actively participating in
the development and testing of the project simultaneously.

41 Copyrights Reserved

5.1.13 Schedule
Test Phase Time Owner
Test plan creation 1 week Test manager
Test specification
creation

2 weeks Test leads

Test Specification
Team Review

1 week Project team

Component Testing 4 weeks Component testers
Integration testing 4 weeks System and component tester

33 Table 5 – 12

5.1.14 Risks and contingencies
• Internet connection may not work correctly.
• Program may not load correctly due to slow internet connection.
• May not get the expected output.

5.1.15 Approvals
It is approved by all the team members of OMBVPL Project

42 Copyrights Reserved

Working example of the online IDE can be taken from the bank ATM card reading system. It can
be demonstrated in the example below:

It realizes a simple atm example consisting of three basic components which are Card Reader,
Bank A and Bank B. Bank system has one atm to serve two banks. Selector connector routes the
request to one of the component at a time.

Here atm component reads the atm card and get the authentication. As soon as the component
reads the pin code entered by the user the control passed on to the pipe passes the value to the
guard which authenticates the card and on the basis of authentication the control is passed on to
one of the bank selected by the selector condition connector.

 The composite for bank system is then adapted by non-terminating infinite loop connector so
after serving one client the system is ready to serve another.

6. Chapter 6: Future work

6.1 Introduction
In this chapter we are going to discuss different possibilities that we can integrate with

this ombvpl tool to make this tool more user friendly. This chapter describes different types of
future work that we can use to make our tool even more complex.

43 Copyrights Reserved

6.1.1 GUI feature
For now we are prompting user for input via textbox. In future we can add GUI feature

by which user can develop beautiful GUI and can offer more user friendly input method. User
can also develop beautiful GUI to make different type of games.

6.1.2 Database

In future we can add database feature of any one of the famous database. By using which
user can add his data to database and even make login page for other users who are going to use.
E.g. we can add firebase feature to our ombvpl tool. Firebase provide many features such as
firebase login, storage space, realtime database, cloud messaging and much more.

6.1.3 More component
We can add more components to existing ombvpl tool in future. Components such as math
functions like square, square root can be added. We can add event listeners also.

Future work also includes the evaluation of the framework using models that utilize the support
for IEEE floating-point arithmetic.
Further research will include the development of test-suite generation algorithms that exploit the
strong isolation of the components and the information about the structure of their composition.

44 Copyrights Reserved

7. Bibliography

Microsoft Visual Programming Language.

(https://msdn.microsoft.com/en-us/library/bb483088.aspx)

Scratch Visual Programming Language (Offline Editor).
(https://en.wikipedia.org/wiki/Scratch_(programming_language))

Model Based Architecture

(https://en.wikipedia.org/wiki/Model-based_architecture)

Visual Programming Language

(https://en.wikipedia.org/wiki/Visual_programming_language)

(http://users.dcc.uchile.cl/~rbaeza/cursos/vp/todo.html)

(http://dictionary.reference.com/browse/visual+programming+language)

https://msdn.microsoft.com/en-us/library/bb483088.aspx
https://en.wikipedia.org/wiki/Scratch_(programming_language))
https://en.wikipedia.org/wiki/Model-driven_architecture
https://en.wikipedia.org/wiki/Visual_programming_language
http://users.dcc.uchile.cl/~rbaeza/cursos/vp/todo.html
http://dictionary.reference.com/browse/visual+programming+language

45 Copyrights Reserved

8. Appendix
Tutorial for OMBVPL

Go to this link: https://usama4745.github.io/

Here you will see workspace. Here we are going to develop an example known as atm
machine.

• Click on logic section.

• Click on pipe.

https://usama4745.github.io/

46 Copyrights Reserved

• Click on selector.

• Click on guard.

47 Copyrights Reserved

• Now go to text section and click on text two times.

• Now click on card reader.

• Now go to logic section again and click on loop and type “enter bank1” in first text box
and “enter bank2” in second text box.

48 Copyrights Reserved

• Now connect loop with pipe.

• Now click on red play button so the program will run. Now enter pin code 1234 in dialog
box and press enter.

49 Copyrights Reserved

• Message will be shown which confirms that pin is entered correctly.

• Now in dialog box type bank number you want to enter. For now we are typing 2.

50 Copyrights Reserved

• Now the message will be shown which confirms that we have entered bank2

• Suppose in previous step we have entered wrong pin that message will be shown and
program will run again from start.

51 Copyrights Reserved

52 Copyrights Reserved

This page is left intentionally blank.

	Chapter 1: Introduction
	Overview
	Problem Statement
	Approach
	Scope
	Objectives
	Deliverables

	Chapter 2: Literature Review
	Introduction
	Liberherr
	VanHilst and Notkin:
	Model Driven Visual programming language

	Chapter 3: Software Requirement Specification
	Introduction.
	Purpose
	Document Conventions
	Intended Audience and Reading Suggestions
	Examiners/Evaluators
	Developers
	Project Supervisor
	Project Testers
	Up gradation Engineers
	End Users

	Product Scope

	Overall Description
	Product Perspective
	Product Function
	User Classes and Characteristics
	Operating Environment
	Design and Implementation Constraints
	User Documentation
	Dependencies

	External Interface Requirements
	User Interfaces
	Hardware Interfaces
	Software Interfaces
	Communication Interfaces

	System Features
	Tool Bar
	Tool Box
	Work Space
	Error Detection

	Non-Functional Requirements
	Performance Requirements
	Response Time
	Capacity

	Safety Requirements
	Software Quality Attributes
	Extensibility and Maintainability
	Portability
	Reliability
	Availability
	Flexibility
	Usability

	Chapter 4: Design and Development
	Introduction
	Purpose of this Document
	Scope of the Development Project
	Definitions, acronyms, and abbreviations
	Visual Programming language:
	Model Based Architecture:

	Overview of document
	System Architecture Description
	Structure and relationships
	UML Class diagram

	User Interface Issues
	UML Activity diagrams
	UML Sequence diagrams

	UI Design
	Detailed description of components
	Reusability and relationships to other products
	Design decisions and tradeoffs

	System Architecture Description
	Overview of the modules
	Description of the modules
	System Architecture
	Layers Details
	Presentation Layer
	Business Logic
	Structure and Relationships

	Overall Structure of the system
	Front End Interface
	Core System
	User Input
	Execute
	Java Compiler
	Check Errors
	Results

	Use Case Diagram
	Class Diagram with Description
	Description of Diagram
	OMBVPL tool
	Atomic components
	Composition Connector
	Math operator
	Selector
	Sequencer
	JavaScript Code generator
	Guard
	Loop
	Display
	Pipe

	User Interface Issues
	Description of the diagram
	IDE
	Tool Bar
	Tool Box
	Components and Connectors
	Workspace
	Output

	UML Activity Diagram
	Execute Program
	Edit Program
	Delete Program

	UML Sequence Diagrams
	Execute Program
	Edit Program
	Delete Program

	UML State Machine Diagrams
	Execute Program
	Delete Program

	UI Design

	Detailed Description of Components
	Tool Bar
	Tool Box
	Work Space
	Components and Connectors
	Output

	Reusability and Relationships to Other Products
	Design decisions and tradeoffs
	Pseudo Code for Components
	New Program
	Execute the Program
	Delete Program

	Chapter 5: Project Analysis and Evaluation
	Introduction
	Testplan Identifier
	Test Items
	Features tobe tested
	Features not tobe tested
	Approach
	Itempass/failcriteria
	Suspension criteriaandresumption requirements
	Test deliverables
	Testing tasks
	Test cases
	Input Data Testing for math element
	Input Data Testing for text element
	Connector’s functionality testing
	Sequencer Functionality Testing
	Pipe Functionality Testing
	Selector’s Functionality Testing
	Save functionality Testing
	Load functionality Testing
	Browser Compatibility Testing

	Testing tasks
	Environmental needs
	Responsibilities
	Staffing and training needs
	Schedule
	Risks and contingencies
	Approvals

	Chapter 6: Future work
	Introduction
	GUI feature
	For now we are prompting user for input via textbox. In future we can add GUI feature by which user can develop beautiful GUI and can offer more user friendly input method. User can also develop beautiful GUI to make different type of games.
	Database
	In future we can add database feature of any one of the famous database. By using which user can add his data to database and even make login page for other users who are going to use. E.g. we can add firebase feature to our ombvpl tool. Firebase prov...
	More component
	We can add more components to existing ombvpl tool in future. Components such as math functions like square, square root can be added. We can add event listeners also.
	Future work also includes the evaluation of the framework using models that utilize the support for IEEE ﬂoating-point arithmetic.
	Further research will include the development of test-suite generation algorithms that exploit the strong isolation of the components and the information about the structure of their composition.

	Bibliography
	Appendix

