ABSTRACT

This undergraduate dissertation discusses the implementation of
three key management and security servers, the Ticket Granting
Server, the Record Keeping Server and the SYSLOG Server, in the
Packet Cable Network. A detail picture of the Packet Cable project
also includes a general overview of how it is able to achieve transfer
of voice over the HFC network and communicate with the PSTN
network. This document also encompasses the pros and cons of how
the authors implemented the Kerberos protocol with PKINIT extension,
the Internet Key Exchange protocol implementation, the RADIUS
protocol, the SYSLOG server.

The research and subsequent development of the key management
and security servers was carried out by Mubashir Hayat, Hammad
Amjad, Arslan Javed and Farid Anwar, under the supervision of Dr.

Muhammad Riaz and Lt. Col. Muhammad Tufail.

ACKNOWLEDGEMENTS

We would like to thank Dr. Muhammad Riaz and Lt. Col. Muhammad
Tufail, our project supervisors, for their continuous support and
motivation. We are extremely grateful to Dr. Sohail Naqvi for his
unlimited support and guidance which helped us successfully
complete the project. We would also like to thank Mr. Ali Khayam and
Miss Sania for guiding us in the implementation of the project,
especially the encryption and digest algorithms, Mr. Umair for helping
us understand networking issues and Mr. Khalid Jameel for extending

all the possible technical support.

We would also like to thank our families for supporting us and
understanding our commitments throughout the tenure of the project.

1.

TABLE OF CONTENTS

INTRODUCTION

1.1 PacketCable Overview
1.1.1 PacketCable Architecture Framework
1.1.2 PacketCable Functional Components
1.1.3 PacketCable Security Features

1.2 OSS Back Office Components
1.2.1 Ticket Granting Server
1.2.2 Record Keeping Server
1.2.3 SYSLOG Server

1.3 Future Of IP Over Cable

PROJECT SPECIFICATIONS
2.1 Statement

2.2 Development Environments
2.3 Platform Supported

2.4 System/Modeling Design

ENCRYPTION ALGORITHMS
3.1 Introduction
3.2 Data Encryption Algorithm
3.2.1 Data Encryption Algorithm Description
3.2.2 Triple Data Encryption Algorithm
3.2.3 Cipher Block Chaining

DIGEST ALGORITHMS
4.1 Introduction
4.2 Message Digest (MD5)
4.2.1 MD5 Algorithm Description

10
11
13
14
15
16
16

17
18
18
19

20
20
20
24
24

25
25
26

5.

4.2.2 Append Padding Bits
4.2.3 Append Length
4.2.4 Initialize MD Buffer

4.2.5 Process Message In 16-Word Blocks

4.2.6 Output

ABSTRACT SYNTAX NOTATION
5.1 Introduction To ASN.1

5.2 Encoding Rules

5.3 ASN.1 Compiler

TICKET GRANTING SERVER
6.1 Introduction
6.2 Kerberos
6.2.1 Authentication Process
6.2.2 Message Processing
6.2.3 TGS Exchange
6.3 Kerberos/PKINIT
6.3.1 PKINIT Exchange In PacketCable
6.3.2 PKINIT Request
6.3.3 PKINIT Reply
6.4 UML Design
6.4.1 Class Diagram
6.4.2 Classes
6.4.2.1 OSS Servers
6.4.2.2 TGS
6.4.2.3 Database
6.4.2.4 MD5
6.4.2.5 SDESCBC
6.4.3 Sequence Diagram

6.4.3.1 Request Processing

27
27
28
28
31

32
34
34

36
36
37
37
39
45
46
47
48
49
49
49
49
50
50
50
50
50
50

6.4.3.1.1 Req Body
6.4.3.1.2 Pre-authentication Data
6.4.3.2 Reply Processing

6.4.3.2.1 Pre-authentication Data

6.4.3.2.2 Ticket

6.4.3.2.3 Client Data
6.5 ASN Structures For Ticket Granting Server
6.6 Database For The Ticket Granting Server
6.7 Encryption Algorithm Employed
6.8 Digest Algorithm Employed

RECORD KEEPING SERVER
7.1 Introduction
7.2 Integrity Of Record Keeping Server
7.3 Responsibilities
7.4 Record Keeping Server Interfaces
7.4.1 CMS-RKS Interface
7.4.2 CMTS-RKS Interface
7.5 ISAKMP And IKE
7.5.1 Introduction
7.5.2 ISAKMP
7.5.2.1 ISAKMP Exchanges
7.5.2.1.1 Base Exchange
7.5.2.1.2 ldentity Protection Exchange
7.5.2.1.3 Authentication Only Exchange
7.5.2.1.4 Aggressive Exchange
7.5.2.1.5 Informational Exchange
7.5.3 Internet Key Exchange
7.5.3.1 IKE Modes
7.5.3.1.1 Main Mode
7.5.3.1.2 Aggressive Mode

51
51
53
53
54
54
55
60
61
61

62
62
63
63
63
64
64
64
65
66
66
66
67
67
67
67
69
69
70

7.5.3.1.3 Quick Mode
7.5.3.1.4 New Group Mode

7.5.3.2 IKE Authentication Modes
7.5.3.2.1 Authentication With Digital Signature
7.5.3.2.2 Authentication With Public Key
7.5.3.2.3 Authentication With Revised Mode
7.5.3.2.4 Authentication With Shared Key

7.5.3.3 IKE Security Considerations
7.5.3.3.1 Protection From Attacks

7.5.4 Perfect Forward Secrecy

7.6 RADIUS
7.6.1 Introduction
7.6.2 Event Message Structure
7.7 Internet Key Exchange in Record Keeping Server
7.7.1 Aggressive Exchange
7.7.2 Quick Mode
7.8 RADIUS Messages in Record Keeping Server
7.8.1 Signaling_Start
7.8.2 Signaling_Stop
7.8.3 Call_Answer
7.8.4 Call_Disconnect
7.9 UML Design
7.9.1 Class Diagram
7.9.2 Classes
7.9.3 Sequence Diagram

TELEPHONY SYSLOG SERVER
8.1 SYSLOG Overview
8.2 Message Format

8.3 Management Information Base

72
72
73
74
74
74
75
75
75
76

77
77
78
80
81
83
85
86
87
88
88
89
89
89
90

91
91
92

10.
11.
12.
13.
14.

8.3.1 Features of MIB

8.3.2 Structure of MIB

8.3.3 Categories of MIB Objects
8.3.3.1 Discrete Objects
8.3.3.2 Table MIB Objects

8.3.4 MIB Object Types

8.4 Multimedia Terminal Adapter

8.4.1 Groups in MTA MIB

8.4.2 Events and Traps Group in MTA-MIB
8.4.2.1 Types of Traps

USER MANUAL

9.1 Ticket Granting Server
9.1.1 Server GUI
9.1.2 Client GUI

9.2 Record Keeping Server
9.2.1 Server GUI
9.2.2 Client GUI

9.3 SYSLOG Server
9.3.1 Server GUI
9.3.2 Client GUI

FUTURE EXPANSION
CONCLUSION
APPENDICES
GLOSSARY
BIBLIOGRAPHY

93
93
94
94
95
95
97
97
101
101

103
103
106
107
107
108
110
110
111

112
113
115
129
136

CHAPTER 1

INTRODUCTION

1.1. PacketCable Overview

The PacketCable project is aimed at defining interface specifications
that can be used to develop interoperable equipment capable of
providing packet-based voice, video and other high-speed multimedia
services over hybrid fiber coax (HFC) cable systems utilizing the
DOCSIS protocol.

PacketCable utilizes a network superstructure that overlays the two-
way data-ready broadband cable access network. The PacketCable
project is aimed at defining interface specifications that can be used
to develop interoperable equipment capable of providing packet-based
voice, video and other high-speed multimedia services over hybrid

fiber coax (HFC) cable systems utilizing the DOCSIS protocol.

The initial PacketCable offering comprising of packet-based voice
communications will soon be extended to encompass a large suite of

packet-based capabilities.

1.1.1. PacketCable Architecture Framework

The PacketCable architecture consists of the following three main

networks;

e The DOCSIS HFC Access Network;
e The Managed IP Network;
e The PSTN.

The Cable Modem Termination System (CMTS) provides connectivity
between the DOCSIS HFC Access Network and the Managed IP
Network. Both the Signaling Gateway (SG) and the Media Gateway

(MG) provide connectivity between the Managed IP Network and the
PSTN.

Call Annocuncemant
Management Server
Embedded MTA, Foaigig
=< P T T 4 T
CMS} Cormmdbar
Mo el o)
MEA] juemn | HFC ancass { ;
nia sk ML T G T
IDDCSIS) o
AN

!

Tadia Galaway
Cosmircdlar
(MIGE)

Managed IF Mebwork

Meodia Gotoemy i
Ernbadded MTA (RS

Cliant

Labis
tadam | HPD access
notwars
(OHOCEEE)

MTA

Sigrafing Gateneay
58]

- Ticket Granting Sarer [TES)

IS - OHCP Serves
Back Oitica OME Samors
Servars arel TFTP ar HTTP Sorears
Applications EVELOE Sarvor
Aecord Keeping Samer [AKS)

- Froaisicring Sareern

Figure 1.1 — PacketCable Architecture Framework

The DOCSIS HFC access network provides high-speed, reliable, and
secure transport between the customer premise and the cable head
end. This access network may provide all DOCSIS 1.1 capabilities
including Quality of Service. The DOCSIS HFC access network

includes the following functional components:

e Cable Modem (CM);
e Multi-media Terminal Adapter (MTA);
e Cable Modem Termination System (CMTS).

The Managed IP network serves several functions. First, it provides
interconnection between the basic PacketCable functional components
responsible for signaling, media, provisioning, and quality of service
establishment. In addition, the managed IP network provides long-
haul IP connectivity between other Managed IP and DOCSIS HFC
networks. The Managed IP network includes the following functional

components:

e Call Management Server (CMS);

e Announcement Server (ANS);

e Operational Support System (OSS) back-office servers;
e Signaling Gateway (SG);

e Media Gateway (MG);

e Media Gateway Controller (MGC)

1.1.2. PacketCable Functional Components

Each of the functional components in the packet cable architecture,
has a precise role to play in the entire scenario. Figure 1.2 helps

illustrate the functionality of each of these components.

The main components with respect to the Packet Cable framework

are:

e Multimedia Terminal Adapter (MTA);

e Cable Modem Termination System (CMTS);
e Operation Support System (OSS);

e Call Management Server (CMS);

e Media Servers;

e PSTN Gateways;

10

Cable Modom
Tamrninatian Syslam

Ermbreded
CMTS

Call Managemaent
Sarver Medin Servers Gabeways

o e F . £
r T T -\'\
Pebesdia
-
L ey
Call Agpanl - Contraliar
- AnraurcerEn|
GZale - Playet - adia
Cantriller Cinhermay
Anrcunca- || | Sigraing |

mani Gateway
Cormile

b iy . AN

Figure 1.2 — PacketCable Reference Model

1.1.3. PacketCable Security Features

The Packet Cable protocol interfaces are subject to threats that could
pose security risks to both the subscriber and service provider. The
PacketCable architecture addresses these threats by specifying, for
each defined protocol interface, the underlying security mechanisms
that provide the protocol interface with the security services it
requires for example, authentication, integrity, confidentiality.

For example, the media stream path may traverse a large number of

potentially unknown Internet service and backbone service providers’

wires.

11

As a result, the media stream may be vulnerable to malicious
eavesdropping, resulting in a loss of communications privacy. Packet
Cable core security services include a mechanism for providing end-
to-end encryption of RTP media streams, thus substantially reducing
the threat to privacy.

The security services available through Packet Cable’s core service
layer are authentication, access control, integrity, confidentiality and
non-repudiation. A PacketCable protocol interface may employ zero or

more of these services to address its particular security requirements.

PacketCable security addresses the security requirements of each
constituent protocol interface by:

e Identifying the threat model specific to each constituent protocol
interface;

e Identifying the security services (authentication, authorization,
confidentiality, integrity, and non-repudiation) required to
address the identified threats;

e Specifying the particular security mechanism providing the

required security services.

The security mechanisms include both the security protocol, for
example IPSec, RTP-layer security, and SNMPv3 security and the
supporting key management protocol, for example IKE,
PKINIT/Kerberos.

The various security interfaces in the entire scenario are illustrated in

the following Figure 1.3.

12

Figure 1.3 — PacketCable Security Interfaces

These interfaces illustrate the importance of the security features in
the entire scenario and thus, the significance of the security and key

management protocols implemented to protect these interfaces.

1.2. OSS Back Office Components

The Operation Support System (OSS) back office contains business,

service, and network management components supporting the core

13

business processes. The main functional areas for Operation Support
System are fault management, performance management, security
management, accounting management, and configuration

management.

The various servers comprising these back office components are:

e Ticket Granting Server (TGS);

e Record Keeping Server (RKS);

e SYSLOG Server,;

e Dynamic Host Configuration Protocol (DHCP) Server;

e Domain Name System (DNS) Server,;

e Trivial File Transfer Protocol (TFTP) Server or Hyper Text
Transfer Protocol (HTTP) Server;

e Simple Network Management Protocol (SNMP) Server.
The following three servers have been implemented in this project.
These mainly deal with key management and security features related
to the Packet Cable scenario.
1.2.1. Ticket Granting Server
The Ticket Granting Server is actually a Key Distribution Center
(KDC), which is employed for key management on the Multimedia

Terminal Adapter and Call

Management Server interface. This is an implementation of the

Kerberos protocol with the public key PKINIT extension.

The Ticket Granting Server is responsible for granting Kerberos

tickets to a Multimedia Terminal Adapter. A ticket contains

14

information used to set up authentication, privacy, integrity and
access control for the call signaling between the Multimedia Terminal

Adapter and the Call Management Server.

The Multimedia Terminal Adapter requests tickets from the Ticket
Granting Server in case of device provisioning, so that it can then
establish a secure session with the Cal Management Server using this
ticket. Each of these tickets remain saved with the client device until
expiry, after which the client device should request for another ticket
by executing PKINIT.

The Ticket Granting Server thus prevents the provisioning of any alien
client, and hence, the use of any unauthorized services by any

unidentified device on the network.

1.2.2. Record Keeping Server

The Record Keeping Server is a trusted network element component
that receives Packet Cable Event Messages from other trusted Packet
Cable network elements such as the Call Management Server, Cable
Management Termination Server, and Media Gateway Controller. The
Record Keeping Server also, at a minimum, is a short-term repository
for Packet Cable Event Messages. The Record Keeping Server may
assemble the Event Messages into coherent sets or Call Detail
Records (CDR), which are then made available to other back office
systems such as billing, fraud detection, and other systems.

The RKS acts as a database and stores each event as sent by the
Cable Modem Termination System. The Record Keeping Server stores
the messages by attaching received time and network element

information. The Record Keeping Server has to have sufficient

15

interface and/or processing power to allow additional processing to be

done.

The Record Keeping Server is basically an implementation of a
number of protocols, in which the key management is achieved via the
Internet Key exchange Protocol, and further generation and receipt of
event messages is achieved under the protection of the security

associations negotiated in Internet Key Exchange.

1.2.3. SYSLOG Server

The SYSLOG Server is responsible for capturing any kind of traps
generated by the client device, that is the Multimedia Terminal
Adapter, and then maintain a log of these traps. This server is mainly
linked with the network management aspects, and helps administrate

the network with minimal errors and traps on the client end.

1.3. Future of IP over Cable

Transmitting IP over a cable network has come a long in a relatively
short duration of time but it still has a ling way to go. Throughout the
world, the cable network is spread over far and wide and is accessible
to the mass population. Transferring IP packets over the cable back-
bone not only reduces cost but also provides much wider bandwidth
and resources to the user so that many diverse services can be

provided to the user.
The use of cable back-bone for transferring IP data is still being

researched upon and already some service providers have started

employing this technology.

16

CHAPTER 2

Project Specifications

2.1 Statement

The key management and security servers allow the various entities
in the Packet Cable framework to communicate securely over the
network. In case of the Ticket Granting Server, the client will have to
obtain a Kerberos ticket from the server by executing PKINIT to
further communicate with the Call Management Server. In case of the
Record Keeping Server, the communicating entities need to negotiate
security associations using Internet Key Exchange and then further
exchange event messages using RADIUS protocol. Finally, whenever
the client may generate traps and errors, which will be captured by
the SYSLOG server.

The project is designed following proper software engineering
methodologies. For this purpose the Unified Modeling Language
(UML) has been used as the primary design and modeling language.
The project will be developed on the Linux platform, due to its
improved networking capabilities and to develop a Dbetter

understanding of the environment.

The Ticket Granting Server is based on the Kerberos protocol with
PKINIT extension, which will enable the client to negotiate with the
server for a valid key to further initiate the communication with the

Call Management Server and use the available services.

The Record Keeping Server is based on the RADIUS protocol, which
achieves the exchange of messages, and is preceded by the Internet

17

Key Exchange protocol, which enables the exchange of security

associations over an open network.

The SYSLOG server is based on the generation of traps and errors at
the client end, which are captured and recorded by the server and

help in network management issues.

2.2 Development Environments

The following environments were utilized in the implementation of this
project:

e K-Developer Linux environment for C/C++

e Visual C++ for testing and debugging individual modules

e Rational Rose for UML development

e Microsoft Project for Gantt Charts

e Qt libraries for GUI development in Linux

e Qt designer

e T-make for makefile generation

e OSS Nokalva ASN.1 Compiler and associated libraries

e MIB Browser

e MIB Builder

e MIB Compiler

The programming language used for implementation purposes is C++.

2.3 Platform Supported

The implementation is consistent on following platforms:

e Red Hat Linux Zoot

18

e Red Hat Linux Guinness

2.4 System Modeling/Design

Unified Modeling Language (UML) was employed in the development
of the project. All the phases of UML designing were followed. The

environment used was Rational Rose Enterprise.

19

CHAPTER 3
ENCRPYTION ALGORITHMS

3.1 Introduction

The PacketCable specifications list a number of encryption algorithms
that can be incorporated in the framework. Among these, three

DESCBC is mandatory while others like RSA are optional.

3.2 Data Encryption Algorithm

This implementation utilizes SDESCBC. The Data Encryption Standard
Algorithm is designed to encipher and decipher blocks of data
consisting of 64 bits under control of a 64-bit key . Deciphering must
be accomplished by using the same key as for enciphering, but with
the schedule of addressing the key bits altered so that the

deciphering process is the reverse of the enciphering process.

3.2.1 Data Encryption Algorithm Description

A block to be enciphered is subjected to an initial permutation IP,
then to a complex key-dependent computation and finally to a
permutation which is the inverse of the initial permutation IP -1 . The
key-dependent computation can be simply defined in terms of a
function f, called the cipher function, and a function KS, called the
key schedule. The cipher function f <can be defined in terms of
primitive functions which are called the selection functions Si and the

permutation function P.

20

The following diagram (on the next page) illustrates the enciphering
procedure, where L and R are two blocks of bits and LR denotes a

block with bits of L followed by bits of R.

The permutation IP takes a 64-bit input and produces a 64-bit output
depending on the permutation function. This 64-bit output is then
undergoes a complicated key dependent computation. Thus, the 64-bit
output is first divided into two 32-bit blocks, L(i) and R(i). Then the
following operations are performed 16 times, that is from i equals to

zero to i equals to 15

i_ T (B UL AN) T _—l
CINITIAL PERPAUTATION)
|
|] Y
FPERMUTED L R
IMPUT | - o - | = |
1 F |
47 [F_} ’+
L) R
T ———
- ¥ S] %
l‘l-_E-I:' .r Ry=Lg e | Rgw, K]]
& —
[!7_ - . T K':-_“
o —F2
L o
e
| B
La=R, | | Ro L, (= HR, ijl
: | |
; T “
C T T ———— — A Fp—————— —
. L 3
T Tme—=o T
[. |
L1 s=Rjpq | |“|5—L|1+,FtF!:4 Kysh
K
] i 16
L4} L1
, 3 ! i
PRECUTFUT [Kys=Ly s +1HRjs, K].ﬁ}l | Lye=Rygs]
) |
- . - — -"\
klmﬁ.-lznszumil 1AL PERM 7
| ' CUTPUT T ___l

Figure 3.1 — Data Encryption Standard

21

L(i+1) = R(i)
R(i+1) = L(i+1) xor f(R,K)
Here, the key, K, is a 48-bit

block chosen from a 64-bit block

depending upon the number of iteration. This key is generated using a

Key Schedule,

KS, which is illustrated in the following diagram.

| KEY |
SPERAMUDIED™
L EHCHCE 1
Co I Do
L -
N b
{ LEFT LEFT ™
., >HIFT . HIFT
Cy | [“:I]
I_ S PERMUTED ™ -
i . CHOICE 2 1
IS i S -
LEFT ; LEFT ™
HIFTS . SHIFTS _,-J
I) 1)
+ o]
T | I:'rl
1 S PERMUTED"
1 i . CHOICE =2 4~ En
S k. -
LEFT ™ LEFT]
SHIFTS - ... SHIFTS _-
1 I
; + , _
C | 0.
| 15 | I &
| L STEPERMUTED™ "y i
. CHOMCE 2 ¢

Figure 3.2 — DES Key Generation

Thus, here the key is first fed to the permutation function PC1 and

then predetermined number of shifts are applied to two blocks of 28-

bits each, as 8-bits from the 64-bit key are utilized for error detection

in key generat

ion, distribution and storage.

22

The cipher function, f, is applied on the R bits and the KS output K.
This is a combination of the permutation functions E and P and a set
of selection functions S(i). This is illustrated in the following
diagram.

E (32 BITS|

EEES—

48 BITS | | I'I.I'-ﬂE BITS)

) il
- I

._
L
-
—_
L]
B
[
L
e
{
L%]
B
.
L%
Lni
-
o
&

Figure 3.3 — DES Selection and Permutation Function

Thus, here the 32-bits are fed to the permutation function E which
yields a 48-bit output. This is then XORed with the 48-bit K and then
fed to the selection functions S(i) which produce a 32-bit output.
These 32-bits are then fed to the permutation function P thus

obtaining a 32-bit output.

23

Finally, when the 16 iterations are complete the final 32-bit blocks are
swapped and fed to the permutation function IP-1 which yields the

final enciphered output.

To decipher the output the reverse procedure is employed and the

input message is obtained if the keys are properly handled.

3.2.2 Triple Data Encryption Algorithm (TDEA)

Triple Data Encryption Algorithm (TDEA) is achieved by first
enciphering an input block with the given key. Then this enciphered
block is deciphered using a key different from the first one used for
enciphering. Finally, this deciphered block is again enciphered using
the same key, which was used for the first enciphering. This is as

shown in the following diagram.

| >DES Exi| 2|DES Dk 2 DES Ex3 = O

Figure 3.4 — Three DES

Here the keys K1 and K3 are normally kept the same to avoid storage
and generation overheads.

3.2.3 Cipher Block Chaining (CBC)

Cipher Block Chaining (CBC) is employed for further security by
XORing the output of the TDEA for the first 64-bit input with an
initialization vector, IV, and then consequently XORing the output of
the TDEA for the next 64-bit blocks with the output for the previous
block.

24

CHAPTER 4
DIGEST ALGORITHMS

4.1 Introduction

The PacketCable specifications list a number of digest algorithms that
can be incorporated in the framework. Among these, MD5 s

mandatory while others like SHAL1 are optional.

4.2 Message Digest MD5

The MD5 message-digest algorithm is an extension of its predecessor,
the MD4 message digest algorithm, and incorporates enhanced
security features. The MD5 message-digest algorithm takes as input a
message of arbitrary length and produces as output a 128-bit
"fingerprint” or "message digest" of the input. It is conjectured that it
is computationally infeasible to produce two messages having the
same message digest, or to produce any message having a given pre-

specified target message digest.

The MD5 algorithm is intended for digital signature applications,
where a large file must be "compressed” in a secure manner before
being encrypted with a private (secret) key under a public-key

cryptosystem such as RSA.
The MD5 algorithm is designed to be quite fast on 32-bit machines. In

addition, the MD5 algorithm does not require any large substitution

tables and can be coded quite compactly.

25

4.2.1 MD5 ALGORITHM DESCRIPTION

Supposing that the input to the MD5 message digest algorithm is a b-
bit message, where b is an arbitrary nonnegative integer. Thus, b may
be zero, it need not be a multiple of eight, and it may be arbitrarily

large. The bits of the message can thus be written down as follows:

m Om_1...m_{b-1}

Now, the MD5 message digest algorithm comprises of five main steps
which perform various computations on the given input data and

finally produce as output a 128-bit message digest.

However, before discussing the five steps of the digest algorithm
some terminologies and notations used in the following discussion are

as follows;

e "word" is a 32-bit quantity and a "byte" is an 8-bit quantity.
Moreover, a sequence of bits can be interpreted in a natural
manner as a sequence of bytes, where each consecutive group
of eight bits is interpreted as a byte with the high-order (most
significant) bit of each byte listed first. Similarly, a sequence of
bytes can be interpreted as a sequence of 32-bit words, where
each consecutive group of four bytes is interpreted as a word
with the low-order (least significant) byte given first.

e Let x_ i denote "x sub i". If the subscript is an expression,
surround it in braces, as in x_{i+1}. Similarly, x"i denotes x to

the i-th power.

26

e Let the symbol "+" denote addition of words (i.e., modulo-2732
addition).

e Let X <<< s denote the 32-bit value obtained by circularly
shifting (rotating) X left by s bit positions.

e Let not(X) denote the bit-wise complement of X, and let X v Y

denote the bit-wise OR of X and Y. Let X xor Y denote the
bit-wise XOR of X and Y, and let XY denote the bit-wise AND of
X and Y.

The five steps for computing the MD5 message digest of a given input

are as follows:

4.2.2 Append Padding Bits

The message is "padded" (extended) so that its length (in bits) is
congruent to 448, modulo 512. That is, the message is extended so
that it is just 64 bits shy of being a multiple of 512 bits long. Padding
is always performed, even if the length of the message is already

congruent to 448, modulo 512. Padding is performed as follows:

a single "1" bit is appended to the message, and then "0" bits are
appended so that the length in bits of the padded message becomes
congruent to 448, modulo 512. In all, at least one bit and at most 512

bits are appended.

4.2.3 Append Length

A 64-bit representation of b (the length of the message before the
padding bits were added) is appended to the result of the previous

step. In the unlikely event that b is greater than 27264, then only the

low-order 64 bits of b are used. (These bits are appended as two 32-

27

bit words and appended low-order word first in accordance with the
previous conventions.) At this point the resulting message (after
padding with bits and with b) has a length that is an exact multiple of
512 bits.

Equivalently, this message has a length that is an exact multiple of 16
(32-bit) words. Let M[O ... N-1] denote the words of the resulting
message, where N is a multiple of 16.

4.2.4 Initialize MD Buffer

A four-word buffer (A,B,C,D) is used to compute the message digest.
Here each of A, B, C, D is a 32-bit register. These registers are
initialized to the following values in hexadecimal, low-order bytes

first:

word A: 01 23 45 67
word B: 89 ab cd ef
word C: fe dc ba 98
word D: 76 54 32 10

4.2.5 Process Message in 16-Word Blocks

We first define four auxiliary functions that each take as input three

32-bit words and produce as output one 32-bit word.

F(X,Y,Z) = XY v not(X) Z
G(X,Y,Z) = XZ v Y not(2)
H(X,Y,Z) = X xor Y xor Z
[(X,Y,Z) =Y xor (X v not(Z))

28

This step uses a 64-element table T[1 ... 64] constructed from the
sine function. Let T[i] denote the i-th element of the table, which is
equal to the integer part of 4294967296 times abs(sin(i)), where i is in

radians.

Now, perform the following computations N/16 times and sequentially

process each 16-word block of M.
First of all, copy the 16-word block to be processed into X and save
the initial values of the registers A, B, C and D into temporary
registers AA, BB, CC and DD.
Next, perform the computations specified by the following four rounds.
Round 1: Here [abcd k s i] denotes the operation

a=>b+ ((a+ F(b,c,d) + X[k] + T[i]) <<< 8)
Do the following operations;
[ABCD 0 7 1] [DABC 1 12 2] [CDAB 2 17 3] [BCDA 3 22 4]
[ABCD 4 7 5] [DABC 5 12 6] [CDAB 6 17 7] [BCDA 7 22 8]
[ABCD 8 7 9] [DABC 9 12 10] [CDAB 10 17 11] [BCDA 11 22 12]
[ABCD 12 7 13] [DABC 13 12 14] [CDAB 14 17 15] [BCDA 15 22 16]
Round 2: Here [abcd k s i] denotes the operation

a=>b+ ((a+ G(b,c,d) + X[k] + T[i]) <<< 8)

Do the following operations;

29

[ABCD
[ABCD
[ABCD
[ABCD

Round

Do the

[ABCD
[ABCD
[ABCD
[ABCD

Round

Do the

[ABCD
[ABCD
[ABCD
[ABCD

1517] [DABC 6 18] [CDAB 11 14 19] [BCDA 0 20 20]
55 21] [DABC 10 9 22] [CDAB 15 14 23] [BCDA 4 20 24]
9 5 25] [DABC 14 9 26] [CDAB 3 14 27] [BCDA 8 20 28]
13 5 29] [DABC 2 9 30] [CDAB 7 14 31] [BCDA 12 20 32]

3: Here [abcd k s t] denotes the operation

a=Db+ ((a+ H(b,c,d) + X[k] + T[i]) <<<'8)

following 16 operations;

5 4 33] [DABC 8 11 34] [CDAB 11 16 35] [BCDA 14 23 36]
1 4 37] [DABC 4 11 38] [CDAB 7 16 39] [BCDA 10 23 40]
13 4 41] [DABC 0 11 42] [CDAB 3 16 43] [BCDA 6 23 44]
9 4 45] [DABC 12 11 46] [CDAB 15 16 47] [BCDA 2 23 48]

4: Here [abcd k s t] denotes the operation
a=>b+ ((a+ I(b,c,d) + X[k] + T[i]) <<<'s)
following 16 operations.
0 6 49] [DABC 7 10 50] [CDAB 14 15 51] [BCDA 5 21 52]
12 6 53] [DABC 3 10 54] [CDAB 10 15 55] [BCDA 1 21 56]

8 6 57] [DABC 15 10 58] [CDAB 6 15 59] [BCDA 13 21 60]
4 6 61] [DABC 11 10 62] [CDAB 2 15 63] [BCDA 9 21 64]

Finally, perform the following additions. (That is increment each of

the four registers by the value it had before this block was started.)

A=A+ AA

30

B=B + BB
C+CC
D=D+ DD

O
I

4.2.6 Output

The message digest produced as output is A, B, C and D, that is,

starting with the low-order byte of A, and end with the high-order byte
of D.

31

CHAPTER 5
ABSTRACT SYNTAX NOTATION

5.1 Introduction to ASN1

ASN.1 is an abstract notation for data values and structures. It is very
much like a type declaration in C or C++. In other words, it can be
described as a formal notation used for describing data transmitted by
telecommunications protocols, regardless of language implementation
and physical representation of these data, whatever the application,

whether complex or very simple.

The notation provides a certain number of pre-defined basic types

such as:

e Integers (INTEGER)

e Booleans (BOOLEAN)

e Character strings (IA5String, UniversalString etc)
e Bit strings (BIT STRING), etc.

Moreover, it also makes it possible to define constructed types such

as.

e Structures (SEQUENCE)
e Lists (SEQUENCE OF)
e Choice between types (CHOICE), etc.

Sub-typing constraints can be also applied on any ASN.1 type in order
to restrict its set of values. Moreover, ASN.1 only covers the

structural aspects of information and there are no operators to handle

32

the values once these are defined or to make calculations with.

Therefore it is not a programming language.

ASN.1 is also associated with several standardized encoding rules
such as the BER (Basic Encoding Rules), the DER (Distinguished
Encoding Rules) or more recently the PER (Packed Encoding Rules),
which prove useful for applications that undergo restrictions in terms
of bandwidth. These encoding rules describe how the values defined

in ASN.1 can be translated into the bytes 'over the wire' and reverse.

ASN.1 defines four main kind of types, where types can be defined as
a set of values. These are:

e Simple types (which are ‘atomic’ and have no components)
e Structured types (which have components)

e Tagged types (which are derived from other types)

e Other types (which include the CHOICE and ANY types)

Each of these types can also be assigned names in ASN.1 by
employing the assignment operator (:=) and these names can further

be employed for other types and values.

Every ASN.1 type, except CHOICE and ANY, has tags, which consist
of a class and a nonnegative tag number. There are four main classes

of tags in ASN.1 and these are as follows:

e Universal
e Application
e Private

e Context Specific.

33

Thus, it is the tag number which effects the ASN.1 type and not the
name of the type. There are a certain set of rules and some

standardized values associated with these tag numbers.

5.2 Encoding Rules

Encoding rules are basically a set of pre-defined rules employed for
representing the ASN.1 values as an octet string. These mainly

include the following three rules:

e Basic Encoding Rules (BER)
e Distinguished Encoding Rules (DER)
e Packed Encoding Rules (PER)

Among these the Basic Encoding Rules was the original set of rules
employed for transforming an ASN.1 value into a sequence of bits and
bytes. However, in case of Basic Encoding Rules there were a number
of representations possible for a certain value in ASN.1l, therefore,
the Distinguished Encoding Rules was introduced. Distinguished
Encoding Rules is a subset of the Basic Encoding Rules and defines

only one possible representation for a certain ASN.1 value.
Furthermore, the Packed Encoding Rules was introduced which

reduced the size of the representation in case of the Basic Encoding

Rules by approximately four to five times.

5.3 ASN.1 Compiler

There a number of compilers capable of interpreting ASN.1 structures

into some specified language constructs, like for C, C++ etc. These

34

take as input an input file consisting of ASN.1 structures and then
generate corresponding files to be used with the application, for

example in case of C or C++ a ‘cpp’ and a ‘header’ file is generated.

Moreover, encoders and decoders accompany the compiler for
encoding and decoding the application data. Thus, the encoder takes
as input the values assigned to the C structures and convert them to
a sequence of bits employing any one of the encoding rules and these
can then be transmitted over a communication line. Similarly, the
decoder takes as input a string of bits and interprets them into values

and assigns them to the specified C structure.

There are mainly two types of encoders and decoders and these are:

e Space Optimized Encoders And Decoders

e Time Optimized Encoders And Decoders

35

CHAPTER 6
TICKET GRANTING SERVER

6.1 Introduction

Ticket Granting Server (TGS) is an essential component of the OSS
(Operation Support System) back office components. The ticket-
granting server is used to authenticate the MTA (Multimedia Terminal
Adapter / Client) and issue a ticket so that the client can establish a
session with the CMS (Call Management Server). The TGS maintains
a database containing the client name, server name, secret key of
CMS, key version number and maximum lifetime for tickets. Kerberos
protocol is used for the implementation of Ticket Granting Server. An
extension PKINIT of the Kerberos protocol has been used to improve

security.

6.2 Kerberos

Kerberos provides means of verifying the identities of principals,(e.g.,
a workstation user or a network server) on an open (unprotected)
network. This is accomplished without relying on authentication by
the host operating system, without basing trust on host addresses,
without requiring physical security of all the hosts on the network, and
under the assumption that packets traveling along the network can be
read, modified, and inserted at will. Kerberos performs authentication
as a trusted third-party authentication service by using conventional
cryptography, i.e., shared secret key. Thus, in public Kkey

cryptosystems, one has a public and a private key.

36

6.2.1 Authentication Process

The authentication process proceeds as follows:
A client sends a request to the authentication server (AS) requesting
"credentials” for a given server. The AS responds with these

credentials, encrypted in the client's key. The credentials consist of:

e a "ticket" for the server

e a temporary encryption key (often called a "session key").

The client transmits the ticket (which contains the client's identity and
a copy of the session key, all encrypted in the server's key) to the
server. The session key (now shared by the client and server) is used
to authenticate the client, and may optionally be used to authenticate
the server. It may also be used to encrypt further communication
between the two parties or to exchange a separate sub-session key to

be used to encrypt further communication.

The implementation consists of one or more authentication servers
running on physically secure hosts. The authentication servers
maintain a database of principals (i.e., users and servers) and their
secret keys. In order to add authentication to its transactions, a
typical network application adds one or two calls to the Kerberos
library, which results in the transmission of the necessary messages

to achieve authentication.

6.2.2 Message Processing

There are two methods by which a client can ask a Kerberos server

for credentials. In the first approach, the client sends a clear text
request for a ticket for the desired server to the AS. The reply is sent

37

encrypted in the client's secret key. Usually this request is for a
ticket-granting ticket (TGT), which can later be used with the ticket-
granting server (TGS). In the second method, the client sends a
request to the TGS. The client sends the TGT to the TGS in the same
manner as if it were contacting any other application server, which
requires Kerberos credentials. The reply is encrypted in the session
key from the TGT.

Once obtained, credentials may be used to verify the identity of the
principals in a transaction, to ensure the integrity of messages
exchanged between them, or to preserve privacy of the messages.
The application is free to choose whatever protection may be
necessary. To verify the identities of the principals in a transaction,
the client transmits the ticket to the server. Since the ticket is sent
"in the clear"” (parts of it are encrypted, but this encryption does not
thwart replay) and might be intercepted and reused by an attacker,
additional information is sent to prove that the message was
originated by the principal to whom the ticket was issued. This
information (called the authenticator) is encrypted in the session key,
and includes a timestamp. The timestamp proves that the message
was recently generated and is not a replay. Encrypting the
authenticator in the session key proves that a party possessing the
session key generated it. Since no one except the requesting
principal and the server know the session key (it is never sent over

the network in the clear) this guarantees the identity of the client.

The integrity of the messages exchanged between principals can also
be guaranteed using the session key (passed in the ticket and
contained in the credentials). This approach provides detection of
both replay attacks and message stream modification attacks. It is

accomplished by generating and transmitting a collision-proof

38

checksum (elsewhere called a hash or digest function) of the client's
message, keyed with the session key. Privacy and integrity of the
messages exchanged between principals can be secured by
encrypting the data to be passed using the session key passed in the
ticket, and contained in the credentials.

The authentication exchanges mentioned above require read-only
access to the Kerberos database. Sometimes, however, the entries in
the database must be modified, such as when adding new principals

or changing a principal's key.

6.2.3. TGS-Exchange

Message direction Message type
Client to Kerberos KRB_TGS_REQ
Kerberos to client KRB_TGS_REP

The TGS exchange between a client and the Kerberos Ticket-Granting
Server is initiated by a client when it wishes to obtain authentication
credentials for a given server (which might be registered in a remote
realm). In the first case, the client must already have acquired a
ticket for the Ticket-Granting Service using the AS exchange (the
ticket-granting ticket is wusually obtained when a client initially
authenticates to the system, such as when a user logs in). The
message format for the TGS exchange is almost identical to that for
the AS exchange. The primary difference is that encryption and
decryption in the TGS exchange does not take place under the client's

key. Instead, the Session key from the ticket-granting ticket is used.

The TGS exchange consists of two messages:

39

e A request (KRB_TGS _REQ) from the client to the Kerberos
Ticket-Granting Server.

e A reply (KRB_TGS_REP or KRB_ERROR).

The KRB_TGS_ REQ message includes information authenticating the
client plus a request for credentials. The authentication information

consists of the authentication header (KRB_AP_REQ).

application
client KDC server

(request a TGT) >
AS Request
(return TGT)
AS Reply

/Phase 1
I

(request an application server ticket) with:
TGS Request

—
o or
3 AS Request (if phase 1 is skipped)
@
E (return application server ticket) with:
TGS Reply
or
AS Reply
2 AP Reguest >
ol - AP Reply
£

Figure 6.1 — TGS Exchanges

The TGS reply (KRB_TGS_REP) contains the requested credentials,
encrypted in the session key from the ticket-granting ticket. The
KRB_ERROR message contains an error code and text explaining
what went wrong. The KRB_ERROR message is not encrypted. The
KRB_TGS_REP message contains information, which can be used to
detect replays, and to associate it with the message to which it
replies. The KRB_ERROR message also contains information which
can be used to associate it with the message to which it replies, but

40

the lack of encryption in the KRB_ERROR message precludes the

ability to detect replays or fabrications of such messages.

Generation of KRB_TGS_REQ Message

Before sending a request to the ticket-granting service, the client
must determine in which realm the application server is registered. It
might be known beforehand (since the realm is part of the principal
identifier). Presently, however, this information is obtained from a
configuration file. If the client does not already possess a ticket-
granting ticket for the appropriate realm, then one must be obtained.
This is first attempted by requesting a ticket-granting ticket for the
destination realm from the local Kerberos server (using the
KRB_TGS_REQ message recursively). The Kerberos server may
return a TGT for the desired realm in which case one can proceed.
Alternatively, the Kerberos server may return a TGT for a realm which
is "closer" to the desired realm (further along the standard
hierarchical path), in which case this step must be repeated with a
Kerberos server in the realm specified in the returned TGT. If neither
are returned, then the request must be retried with a Kerberos server
for a realm higher in the hierarchy. This request will itself require a
ticket-granting ticket for the higher realm which must be obtained by

recursively applying these directions.

Once the client obtains a ticket-granting ticket for the appropriate
realm, it determines which Kerberos servers serve that realm, and
contacts one. The list might be obtained through a configuration file
or network service; as long as the secret keys exchanged by realms
are kept secret, only denial of service results from a false Kerberos

server.

41

As in the AS exchange, the client may specify a number of options in
the KRB_TGS_REQ message. The client prepares the KRB_TGS_REQ
message, providing an authentication header as an element of the
padata field, and including the same fields as used in the
KRB_AS_ REQ message along with several optional fields: the enc-
authorization-data field for application server use and additional

tickets required by some options.

Once prepared, the message is sent to a Kerberos server for the

destination realm.

Receipt of KRB_TGS_REQ Message

The KRB_TGS_REQ message is processed in a manner similar to the
KRB_AS REQ message, but there are many additional checks to be
performed. First, the Kerberos server must determine which server
the accompanying ticket is for and it must select the appropriate key
to decrypt it. For a normal KRB_TGS_REQ message, it will be for the
ticket granting service, and the TGS's key will be used. If no ticket
can be found in the padata field, the
KDC_ERR_PADATA_TYPE_NOSUPP error is returned.

Once the accompanying ticket has been decrypted, the user-supplied
checksum in the Authenticator must be verified against the contents
of the request, and the message rejected if the checksums do not
match (with an error code of KRB_AP_ERR_MODIFIED) or if the
checksum is not keyed or not collision-proof (with an error code of
KRB_AP_ERR_INAPP_CKSUM). If the <checksum type is not
supported, the KDC_ERR_SUMTYPE_NOSUPP error is returned. If
any of the decryptions indicate failed integrity checks, the
KRB_AP _ERR_BAD INTEGRITY error is returned.

42

Generation of KRB_TGS_REP Message

The KRB_TGS_REP message shares its format with the KRB_AS_REP
(KRB_KDC_REP), but with its type field set to KRB_TGS_REP. The
response will include a ticket for the requested server. The Kerberos
database is queried to retrieve the record for the requested server
(including the key with which the ticket will be encrypted). If the
request is for a ticket granting ticket for a remote realm, and if no key
is shared with the requested realm, then the Kerberos server will
select the realm "closest"” to the requested realm with which it does
share a key, and use that realm instead. This is the only case where
the response from the KDC will be for a different server than that

requested by the client.

By default, the address field, the client's name and realm, the list of
transited realms, the time of initial authentication, the expiration time,
and the authorization data of the newly-issued ticket will be copied
from the ticket-granting ticket (TGT). If the transited field needs to
be updated, but the transited type is not supported, the
KDC_ERR_TRTYPE_NOSUPP error is returned.

If the request specifies an endtime, then the endtime of the new ticket

is set to the minimum of

e that request

e the endtime from the TGT

e the starttime of the TGT plus the minimum of the maximum life
for the application server and the maximum life for the local
realm (the maximum life for the requesting principal was already

applied when the TGT was issued).

43

If the ENC-TKT-IN-SKEY option has been specified and an additional
ticket has been included in the request, the KDC will decrypt the
additional ticket using the key for the server to which the additional
ticket was issued and verify that it is a ticket-granting ticket. If the
name of the requested server is missing from the request, the name
of the client in the additional ticket will be used. Otherwise the name
of the requested server will be compared to the name of the client in
the additional ticket and if different, the request will be rejected. If
the request succeeds, the session key from the additional ticket will
be used to encrypt the new ticket that is issued instead of using the
key of the server for which the new ticket will be used (This allows
easy implementation of user-to-user authentication, which uses ticket-
granting ticket session keys in lieu of secret server keys in situations

where such secret keys could be easily compromised).

Whenever a request is made to the ticket-granting server, the
presented ticket(s) is(are) checked against a hot-list of tickets which
have been canceled. This hot-list might be implemented by storing a
range of issue dates for "suspect tickets"; if a presented ticket had an
authtime in that range, it would be rejected. In this way, a stolen
ticket-granting ticket cannot be used to gain additional tickets
(renewals or otherwise) once the theft has been reported. Any normal
ticket obtained before it was reported stolen will still be valid
(because they require no interaction with the KDC), but only until

their normal expiration time.

The ciphertext part of the response in the KRB_TGS_REP message is
encrypted in the session key from the ticket-granting ticket. It is not
encrypted using the client's secret key. Furthermore, the client’'s

key’'s expiration date and the key version number fields are left out

44

since these values are stored along with the client's database record,
and that record is not needed to satisfy a request based on a ticket-

granting ticket.

Receipt of KRB_TGS_REP Message

When the KRB_TGS_REP is received by the client, it is processed in
the same manner as the KRB_AS_ REP processing described above.
The primary difference is that the ciphertext part of the response must
be decrypted using the session key from the ticket-granting ticket

rather than the client's secret key.

6.3. Kerberos/PKINIT

The popularity of public key cryptography has produced a desire for
its support in Kerberos. The advantages provided by public key
cryptography include simplified key management (from the Kerberos
perspective) and the ability to leverage existing and developing public
key certification infrastructures. Public key cryptography can be
integrated into Kerberos in a number of ways. One is to associate a
key pair with each realm. Another way is to allow users with public

key certificates to use them in initial authentication.

PKINIT utilizes ephemeral-ephemeral Diffie-Hellman keys in
combination with digital signature keys as the primary, required
mechanism. It also allows for the use of RSA keys and/or (static)
Diffie-Hellman certificates. In particular PKINIT supports the use of

separate signature and encryption keys.

PKINIT enables access to Kerberos-secured services based on initial
authentication utilizing public key cryptography. PKINIT utilizes

45

standard public key signature and encryption data formats within the

standard Kerberos messages. The basic mechanism is as follows:

The user sends an AS-REQ message to the KDC as before, except
that if that user is to use public key cryptography in the initial
authentication step, his certificate and a signature accompany the
initial request in the pre-authentication fields. Upon receipt of this
request, the KDC verifies the certificate and issues a ticket granting
ticket (TGT) as before, except that the encPart from the AS-REP
message carrying the TGT is now encrypted utilizing either a Diffie-
Hellman derived key or the user's public key. This message is

authenticated utilizing the public key signature of the KDC.

Note that PKINIT does not require the use of certificates. A KDC may
store the public key of a principal as part of that principal's record. In
this scenario, the KDC is the trusted party that vouches for the
principal (as in a standard, non-cross realm, Kerberos environment).
Thus, for any principal, the KDC may maintain a secret key, a public

key, or both.

6.3.1. PKINIT Exchange in Packet Cable

The PKINIT Request is carried as a Kerberos pre-authenticator field
inside an AS_Request and the PKINIT Reply is a pre-authenticator
inside the AS Reply. The PKINIT client is referred to as an MTA, as it
is currently the only Packet Cable element that authenticates itself to
the KDC with the PKINIT protocol.

46

A -<Ejerui::e He;.r}m

FEINIT Req:
MTA & KDC or CMS name, time, nonce,
— Dhffie-Hellman parameters, ——
Signature,
MTA certificate

PEIMIT Reply:
TGT or CMS Ticket,
KDC certificate
Diffie-Hellman parametors+ nonce + signature
session key =« key validity period
cncryptad with DH key

U Ticket,
”LSessmn Key
r

Figure 6.2 — PKINIT Exchange

The above diagram lists several important parameters in the PKINIT

Request and Reply messages. These parameters are:

6.3.2. PKINIT Request

MTA (Kerberos principal) name - found in the KDC-REQ-BODY

Kerberos structure. Its format is based on the MTA’'s X.500name in

the certificate.

KDC or Application Server (Kerberos principal) name - found in the
KDC-REQ-BODY Kerberos structure.

Time — found in the PKAuthenticator structure, specified by PKINIT
Nonce - found in the PKAuthenticator structure, specified by PKINIT

(There is also a 2 nd nonce in the KDC-REQ-BODY Kerberos

structure).

47

Diffie-Hellman parameters, signature and MTA certificate — these are
all specified by PKINIT.

6.3.3. PKINIT Reply

Application Server Ticket — found in the KDC-REP Kerberos

structure.

KDC Certificate, Diffie-Hellman parameters, signature — these are all
specified by PKINIT.

Nonce — found in the KdcDHKeylnfo structure. This nonce must be the
same as the one found in the PKAuthenticator structure of the PKINIT
Request. There is another nonce in EncKDCRepPart Kerberos
structure This nonce must be the same as the one found in the KDC-
REQ-BODY of the PKINIT Request.

Session key, key validity period - found in the EncKDCRepPart

Kerberos structure

48

6.4 UML Design

6.4.1. Class Diagram

OSSServers
1
1
DES 1
1 TGS 1 ASN
1 1
MD5 1
1
DataBase

6.4.2. Classes

6.4.2.1. OSSServers

This is the main parent class from which all the server classes are

derived.

49

6.4.2.2. TGS
This class represents the Ticket Granting Server that is a child of the
OSS Servers class.

6.4.2.3. Database

This class represents the Database maintained by the Ticket Granting

Server to keep record of a variety of information.

6.4.2.4. MD5

This class is used to produce a hash using the MD5 digest algorithm

on a given data.

6.4.2.5. SADESCBC

This class is used to encrypt a message using a given key.

6.4.3. Sequence Diagram

The sequence diagram (attached in APPENDIX A)can be divided into

two main portions.

e Request processing

e Reply processing

6.4.3.1. Request Processing

The client sends a encoded request to the Ticket Granting Server

when it wants to establish a session with the call management server.

50

The request, which is sent to the Ticket Granting Server is composed
of two things.
e Reg-Body

e Pre-authentication Data

6.4.3.1.1 Req-Body

The request body consists of time and nonce to check for replay
attacks, along with the client and server names which have to be
looked up in the database for authentication.

6.4.3.1.2. Preauthentication Data

The pre-authentication field in the request mainly consists of the

Signature and the Certificate.

When the Ticket Granting Server receives the request it first sends
the request to the ASN complier to be decoded .The name of the
client is looked up in the database to check if the client is a valid
member of our system .If the client is not a valid member of our
system then an error is returned to the client indicating that the
principal or the client is unknown to the ticket granting server.
However if the result of the search is true or the client is a valid
member then we check the name of the server, which the client is
trying to access .If the server is not a valid part of the database then
we return an error to the client that the server is unknown to the
Ticket Granting Server. The time has to be matched to ensure that it

is not a replay.

The Ticket Granting Server has to now pass through the pre-

authentication phase after it has successfully authenticated the client

51

and the server. First the ticket granting server checks the pre-
authentication data type .If the pre-authentication type is null then an
error is returned to the client indicating that pre-authentication is
required. The pre-authentication data value contains the encoded
signed data or the PA_PK_AS_REQ so this is sent to the ASN
compiler to be decoded .The Ticket Granting Server checks for the
digest algorithm, if the digest algorithm is not sha-1 then an error is
returned to the client indicating that the digest is invalid and if the
digest is valid then it compares the client name that is sent to the
Ticket Granting Server in the request body and the client name that is
obtained from the certificate, if they mismatch then an error is

returned to the client indicating a client name mismatch.

The Ticket Granting Server has to now verify the signature .The
certificate in the signed data structure contains the encoded value of
the public key .The Ticket Granting Server sends the RSA-public-key
to the ASN complier so that it can be decoded. Now the value of the
public key is obtained from the certificate and the value of the
signature is obtained from the signerinfo (PA_PK_AS REQ). These
two parameters are passed to the RSA encryption algorithm which
returns the sha-1 digest that has been sent to the Ticket Granting
Server by the client.

The eContent value in the signed data (PA_PK_AS_ REQ) contains the
encoded value of the auth pack so the Ticket Granting Server sends
the value of the authpack to the ASN compiler to be decoded. SHA-1
digest algorithm is now applied to the pkAuthenticator structure in the
authpack. The digest that is obtained is compared with the one that
was obtained by applying the RSA algorithm over the public key and
the signature value. If the two values mismatch then the pre-

authentication has failed and an error is returned to the client

52

indicating that the pre-authentication has not been successful .The
authpack contains the encoded value of the dh parameters .The dh
parameters in the authpack are checked, if the range of parameters is
not valid then an error is returned to the client indicating that the
range is violated. Similarly the Ticket Granting Server also checks the
strength of the key, if the key is weak an error is returned to the

client indicating that the key is weak.

6.4.3.2. Reply Processing

After the Ticket Granting Server has finished the processing of the
request it prepares to send data to the client so that the client can
establish a session with the Call Management Server. The data, which

has to be sent to the client, is mainly composed of the following:

e Pre-authentication data
e Ticket
e Client Data

6.4.3.2.1. Pre-authentication Data

The DH public key value is first encoded since it is part of the kdc-
dhkeyinfo structure of the pre-authentication data. The Ticket
Granting server passes the encoded kdc-dhkeyinfo as parameter to
the digest algorithm sha-1. Applying the message digest algorithm
(SHA-1) on the message (kdc-dhkeyinfo) returns the digest to the
Ticket Granting Server. The Ticket Granting Server obtains the
private key of the server from the database. Then the message digest
is encrypted with the private key of Ticket Granting Server by
applying rsa encryption algorithm. This process prepares the

signature that is to be sent to the client. A certificate is also sent to

53

the client which carries the public key that will be used at the client

end for pre-authentication.

6.4.3.2.2. Ticket

The ticket is a record or structure that the Ticket Granting Server
generates for the Call Management Server. Ticket Granting Server
generates a session key, which is to be sent as part of the ticket. The
ticket is sent encrypted to the client in the Call Management Server
secret key, which is obtained from the database. The ticket is
encrypted with the encryption type set to des3-cbc-md5. The following
data must be concatenated and processed in the following sequence
before being encrypted with 3-DES CBC, 1V=0:

e 8-byte random byte sequence, called a confounder
e MD5 checksum over the ticket
e Ticket that is to be encrypted

e Random padding up to a multiple of 8

6.4.3.2.3. Client Data

The data that is sent to the client is encrypted in the DH key that is
derived from the Deffie-Hellman parameters sent to the Ticket
Granting Server as part of the certificate in the pre-authentication
data. The encryption is done with the same encryption as was done
for the ticket i.e. DES algorithm in CBC mode with the MD5 message
digest.

All these fields pre-authentication, ticket, client data in addition to

some other fields are first encoded using the ASN.1 compiler and then

54

sent to the client which uses this data to establish a session with the

Call Management Server.

6.5. ASN Structures for Ticket Granting Server

The ASN.1 structures employed in Ticket Granting Server are as
attached in the Appendix A. These files were fed as input to the
ASN.1 compiler and the output files generated are as attached in the

Appendix A.

The C++ structures generated by the ASN.1 compiler are discussed in
the following paragraphs with respect to the hierarchical relation

between these structures.

First of all, there are PDU(s) (Protocol Data Unit(s)) defined for each
of the independent structures and are used for the encoding and

decoding of values of those structures.
Next, the first main structure is the KDC_REQ, which basically
consists of the values sent as request by the client to the server. This

consists of the following:

Bit_ mask : This is an unsigned character (8 bits) and indicates

whether the

KDC_REQ_padata : This is optional. The presence is indicated by the
bit sequence equivalent to 0x80.

Pvno : This is an integer and consists of the version number.

msg_type : This an integer and indicates the message type.

55

seqof3 : This is a structure and consists of the pointer to the next
_seqof3 structure in sequence as well as the value of type PA_DATA

(which is discussed below).

req _body : This is of type KDC_REQ_BODY (which is discussed

below).

The KDC_REQ further refers to two main structures, which are the
PA_DATA and the KDC_REQ_BODY. First of all, the PA_DATA

structure consists of the following:

padata_type : This is an integer value corresponding to the padata

type

padata value : This is a structure which further consists of the
encoded value of the PA_PK_AS REQ and the length of this

encoding.

In this case, the PA_PK_AS REQ consists of:

SignedAuthPack : This is of type SignedData

SignedData : further consists of the following information:

bit mask : This is an unsigned character and consists of a sequence
of bits which represent whether or not the ‘certificates’ and/or the

‘crls’ are present or not.

Version : This is of type CMSVersion, which basically indicates the

version number of the CMS indicated by a pre-defined integer value.

56

DigestAlgorithms : This is of type DigestAlgorithmldentifiers, which is

mainly a structure referring to the DigestAlgorithmldentifier. The
DigestAlgorithmlidentifier then further refers to the Algorithmldentifier,
which is supposed to have the ObjectID corresponding to the

algorithm employed, which in this case would be SHA-1.

EncapContentinfo : This is of type EncapsulatedContentinfo, which in

this case, is supposed to have the encoding of the AuthPack in the
‘value’ field of the eContentType structure. The main fileds in the
AuthPack are the ‘pkAuthenticator’ and the ‘clientPublicValue’. The
pkAuthenticator is supposed to have the general information like the
kdcname, kdcRealm, cusec, ctime and nonce. On the other hand, the
clientPublicvValue, which is of type SubjectPublicKeylnfo, has the
Algorithmldentifier, which is RSA in this case, and the _bitl, which
has the encoded value and length of the DomainParameters. The
DomainParameters are basically the DH-parameters.

Certificates : This is of type CertificateSet, which further refers the

TBSCertificate via the CertificateChoices and the Certficate. It is here
that the encoded value of the RSA public key is stored in the
SubjectPublicKeylnfo’s ‘_bitl’ field.

Signerinfos : This is of type Signerinfo, which further refers to the

SignatureValue, where the encoded value of the digest of the
pkAuthenticator is placed. This value is encrypted before being

encoded.

Next is the KDC_REQ_BODY which consists of the following fields:

57

bit mask : This is an unsigned character, which indicates whether the

sname, cname and from fields exist or not.

Cname : This is of type PrincipalName, which mainly consists of info

regarding the client.

Realm : This is of type Realm, which offers information regarding the

realm.

Sname : This is of type PrincipalName, which this time consists of

information regarding the server.

From : This is of type KerberosTime, and consists of the requested

starting time of the session.

Till : This is of type KerberosTime, and consists of the requested

termination time of the session.

Nonce : This is basically a random number generated at the client end
and is retransmitted in the reply so that the client can be assured that

the reply is from the true server.

This concludes the request part of the Ticket Granting Server. Next is
the reply part that is the reply to be sent from the server to the client.
The reply part has the main structure KDC_REP. This consists of the

following main fields:

bit mask : This is of type unsigned character, and indicates whether

the padata is present or not.

58

Padata : This is a structure of type _seqof4 and consists of the
PA_DATA value. This PA_data value is now supposed to have the
encoding of the PA_PK_AS REP, which consists of the pre-

authentication information for the client.

Crealm : This is of type Realm, which consists of the information of

the client’s realm.

Cname : This is of type PrincipalName, which consists of the

information regarding the client.

Ticket : This is of type Ticket, which is supposed to have general
information regarding the ticket and an enc_part, which is of type
EncryptedData. The main information in the EncryptedData is the
encoded value of the encrypted value of the EncTicketPart,
confounder and the checksum of the EncTicketPart. This is placed in
the value field of the cipher structure. The EncTicketPart is supposed
to have the ‘session key’ for the server and plus other general

information regarding the client.

enc_part : This is of type EncryptedData, which is now supposed to
have the encoded value of the EncKDCRepPart in the value field of
the cipher structure. The EncKDCRepPart is supposed to have the
session key for the client and plus other general information

regarding the server.

The third important structure is the KRB_ERROR, which is to be
employed whenever some kind of an error is generated. The main
field here is the ‘error_code’, which indicates the type of error that
has occurred. Other fields provide general information time, realm,

name etc.

59

6.6. Database for the Ticket Granting Server

The Data Base in the Ticket Granting Server has the following

contents:
Field Value
name Principal's identifier
key Principal's secret key
p_kvno Principal's key version
max_life Maximum lifetime for Tickets

The purpose of the above mentioned fields are briefly explained as

follows

e The name field is an unsigned character array and contains the
principal's identifier that is either the client or the server name.

e The key field is an unsigned character array and contains an
encryption key. This key is the principal's secret key.

e The p_kvno field is an integer value corresponding to the key
version number of the principal's secret key.

e The max_life field is an integer value and contains the maximum
allowable lifetime for any ticket issued for this principal by the

server.

The Data Base is employed by the Ticket Granting Server (TGS) for
authenticating principles (that is, either clients or servers). Initially,
the records of the Data Base are stored in a file. These entries are
sorted according to the principle name and in case of entry of a new

record, which is achieved by employing the insert() function, the

60

sorting algorithm is applied again, by employing the compare() and
sortfile() functions. These functions employ the quick sort algorithm

for achieving the required sorting.

Now, in order to allow the TGS to access the records in the Data
Base, these records are read into an array by using the readfile()
function. Thus, in order to perform any operation on these records the
TGS accesses this array and can accordingly perform the search for a
specific principle by employing the binsearch() function call. This call
results in a binary search over the elements of the array and in case
of success returns the index of the corresponding record in the array.

Otherwise, -1 is returned in case of failure.

6.7. Encryption Algorithm Employed

The encryption algorithm used is threeDESCBC.

6.8. Digest Algorithm Employed

The digest algorithm used is MD5.

61

CHAPTER 7
RECORD KEEPING SERVER

7.1. Introduction

The Record Keeping Server is responsible for collecting billing events
and reporting the back to the billing system. The Record Keeping
Server (RKS) is a trusted network element function. The RKS is the
mediation layer between the call signaling and transport layer and the
back-office applications. The RKS is expected to pre-process the data
from the Call Signaling and Transport layer and present it to the back-
office applications in the format and within the time constraints

deemed necessary by the MSO.

The Record Keeping Server also, at a minimum, is a short-term
repository for PacketCable Event Messages. It receives Event
Messages from various trusted PacketCable network elements. The
RKS assembles the Event Messages into coherent sets, which are
then made available to a usage-processing platform and potentially to
several other back office systems. It acts as the demarcation point

between the PacketCable network and the back office applications.

7.2. Integrity of Record Keeping Server

Security of the Record Keeping Server is of vital importance. A

compromised Record Keeping Server may result in
e Free or reduced service;

e Billing to a wrong account;

e Billing customers for communications that were never made;

62

e Unauthorized disclosure of the customer identities and personal

information.

7.3. Responsibilities

The Record Keeping Server performs the following functions:

e Receives Event Messages.

e Correlates all Event Messages related to an individual call

e Assembles events and determine completeness. This includes the
capability to distinguish Event Messages, and recognize when a
complete set, representing a coherent set of billing data is
available for transport to the back office system.

e Can store the Event Messages for at least one week or until sent to
the other back office systems and successful receipt is

acknowledged from those systems.

The Record Keeping Server receives messages from a Call
Management Server, Cable Modem Termination System and also a
Media Gateway Controller. Either of these initiators that want to
communicate with the Record Keeping Server does so by first
generating a mutually agreed upon key through Internet Key Exchange
and then sending the required information encrypted in with this key

using the RADIUS protocol.

7.4. Record Keeping Server Interfaces

7.4.1. CMS-RKS Interface

CMS and RKS will negotiate a shared secret (CMS-RKS Secret) using
IKE. IKE uses one of the modes with pre-shared keys for this

63

interface. IKE runs asynchronous to the billing event generation and
will guarantee that there is always a valid, non-expired CMS-RKS

Secret. This shared secret is unique to this particular CMS and RKS.

7.4.2. CMTS-RKS Interface

CMTS and RKS negotiate a shared secret (CMTS-RKS Secret) using
IKE. IKE uses one of the modes with pre-shared keys.

IKE runs asynchronous to the billing event generation and will
guarantee that there is always a valid, non-expired CMTS-RKS
Secret. This shared secret is unique to this particular CMTS and RKS.
The RKS communicates with other entities in such a manner that first
a secret key is established using the Internet Key Exchange and then
this key is used to provide security to RADIUS event messages that

are passed from initiator to responder and vice-versa.

7.5. ISAKMP And IKE

7.5.1. Introduction

The IPSec protocol suite is used to provide privacy and authentication
services at the IP layer. However, secure internet sessions need uni-
directional Security Associations (SA) between the communicating
parties. A Security association describes what operations should be
applied to a packet. The information that security association

specifies include:

e An authentication method;
e An encryption algorithm;
e Encryption and authentication keys;

e A lifetime of the encryption key;

64

e A lifetime of the security association;

e A sequence number for replay prevention.

Secure associations can be set manually or automatically. The
automatic secure association management is required to make
possible deployment of IPSec or when on-demand creation of security

association is needed.

Internet Key Exchange (IKE) is an automated protocol for
establishing, negotiating, modifying, and deleting security
associations between two hosts in a network. Security associations
contain information to establish a secure connection between the

parties on pre-defined manners.

The IKE is a combination of the Internet Security Association and Key
Management Protocol (ISAKMP), Oakley, SKEME. ISAKMP is a key
exchange independent framework for authentication, security
association management, and establishment. Oakley defines series of
key exchanges and services provided by each of them. SKEME
defines a key exchange which provides anonymity, repudiability, and

fast key refreshment.

7.5.2. Internet Security Association and Key Management Protocol
(ISAKMP)

ISAKMP defines the procedures for authentication of communicating
peers, creation and management of security associations, key
generation techniques, and threat mitigation. It provides a framework
for the Internet Key Exchange (IKE), which can be identified as one

implementation of ISAKMP to be used with IPSec.

The ISAKMP negotiation is divided into two separate phases.

65

(1) In the first phase, ISAKMP Security Association is
established between two entities to protect further
negotiation traffic.

(i) In the second phase, the security association for some
security protocol is negotiated and established. One
ISAKMP security association can be used to establish many

security associations for other protocols.

Two phase approach is chosen to allow establishing many security
associations without the need to start over for each communication
and thus reducing the cost of ISAKMP management by reducing the

need to go through costly re-authentication.

7.5.2.1. ISAKMP Exchanges

ISAKMP mainly comprises of the following five main types of
exchanges:

7.5.2.1.1. Base Exchange

The Base Exchange is designed to allow the key exchange and
authentication related information to be transmitted together. This
reduces the number of round-trips at the expense of identity
protection. Identity protection is not provided in this exchange
because identities are established before a common shared secret

has been established.

7.5.2.1.2. ldentity Protection Exchange
The Identity Protection Exchange is designed to separate the Key

Exchange information from the identity and authentication related

information. A common share secret can be established before

66

identification and authentication related information is exchanged and
encryption provides protection of the communicating identities. This
identity protection is achieved at the expense of two additional

messages as compared to the base exchange.

7.5.2.1.3. Authentication Only Exchange

The Authentication Only Exchange allows only the authentication
related information to be transmitted. The benefit of this exchange is
the ability to perform only authentication without the computational

expense of computing keys.

7.5.2.1.4. Aggressive Exchange

The Aggressive Exchange allows the security association, key
exchange and authentication related payloads to be transmitted
together. Combining all this information into one message reduces the
number of round-trips at the expense of not providing identity

protection.

7.5.2.1.5. Informational Exchanges

The Informational Exchange is one-way transmittal that can be used
for security association management. If the Informational Exchange
occurs to the keying material exchange during an ISAKMP phase one

then there will be no protection for the Informational Exchange.
7.5.3. Internet Key Exchange (IKE)

Internet Key Exchange is an implementation of the ISAKMP and is
currently being used with IPSec, though it can be employed with a

number of protocols in the future. IKE mainly achieves the automatic

67

configuration of keying material and security associations, which not
only helps improve the security issues but furthermore relieves the
complications of manual configuration. Moreover, it also supports the
refreshing of keys and obtaining of multiple security associations for
the protocol, based on the initially established security associations
of the IKE.

IKE can be employed in the negotiation of virtual private networks
(VPN) and also for providing a remote user from a remote site, with
an unknown IP address, to access a secure host or network.
Moreover, it also incorporates features which provide Perfect Forward
Secrecy (PFS), that is, the compromise of one key will not effect the
transmission of data encrypted with subsequent keys. This s

achieved by preventing the usage of a key to derive subsequent keys.

IKE negotiations must be protected, so each IKE negotiation begins
by each peer agreeing on a common (shared) IKE policy. This policy
states which security parameters will be used to protect subsequent
IKE negotiations. After the two peers agree upon a policy, the
security parameters of the policy are identified by a security
association established at each peer, and these security associations

apply to all subsequent IKE traffic during the negotiation.

When the IKE negotiation begins, IKE looks for an IKE policy that is
the same on both peers. The peer that initiates the negotiation will
send all its policies to the remote peer, and the remote peer will try to
find a match. The remote peer looks for a match by comparing its own
highest priority policy against the other peer's received policies. The
remote peer checks each of its policies in order of its priority (highest

priority first) until a match is found.

68

A match is made when both policies from the two peers contain the
same encryption, hash, authentication, and Diffie-Hellman parameter
values, and when the remote peer's policy specifies a lifetime less
than or equal to the lifetime in the policy being compared. (If the
lifetimes are not identical, the shorter lifetime--from the remote peer's

policy--will be used).

If no acceptable match is found, IKE refuses negotiation and IPSec
will not be established. If a match is found, IKE will complete

negotiation, and IPSec security associations will be created.

Multiple IKE policies can be created, each with a different
combination of parameter values. For each policy that is created, a
unique priority (1 through 10,000, with 1 being the highest priority) is

assigned.

Multiple policies can be configured on each peer--but at least one of
these policies must contain exactly the same encryption, hash,
authentication, and Diffie-Hellman parameter values as one of the

policies on the remote peer.

7.5.3.1. IKE Modes

IKE comprises of the following four main modes. These are as follows:
7.5.3.1.1. Main Mode

The Main Mode is an exchange in the first phase of IKE/ISAKMP, and
falls under the ISAKMP lIdentity Protection Exchange. The first two

messages are used for negotiating the security policy for the

exchange, the next two messages are used for the Diffie-Hellman

69

keying material exchange and the last two messages are used for

authenticating

the peers with signatures or

hashes and optional

certificates. Last two authentication messages are encrypted with the

previously negotiated key, thus protecting the identities of the parties

from eavesdroppers.

Iitiator EFeszponder
HI >R, S48 -
= HI»F, S5
HIF. KF. INTonce -

HIF. KF. INTonce

i}

HI>RE™*, IT 11, Ssuath -

= HIOE ™, IT0ir, Ssauath
T

Figure 7.1 — Main Mode

Exchanges

7.5.3.1.2. Aggressive Mode

The Aggressive Mode is an

exchange in

the first phase

of

IKE/ISAKMP and falls under the ISAKMP Aggressive Exchange. The

70

first message proposes the policy, and passes data for key-exchange,
the nonce and some information for identification. The second
message is a response which authenticates the responder and
concludes the policy and key-exchange. At this point all the
information for encryption key for the ISAKMP SA is exchanged and
last the message could be encrypted, however, this is not mandatory.
The last message is used for authenticating the initiator and provides
a proof of participation in the exchange. The identity of the responder
could not be protected, but by encrypting the last message the

identity of the initiator is protected.

Irtiator Fesponder

HI»F. S4a;, KFE. HMonce, I54E

IﬂDR; Doy KR INMonce, I5dr, Ssaath

HISE ™, Auth

Figure 7.2 — Agqgressive Mode Exchanges

71

7.5.3.1.3. Quick Mode

The Quick Mode is used for exchange in the second phase of IKE. An
IKE security association is established in the first phase to protect
the second phase exchange by previously described Main or
Aggressive Mode. The Quick Mode is used for negotiating security
association and generating new keying material. All the payloads
except ISAKMP header are encrypted. A Diffie-Hellman key exchange
may be done to achieve perfect forward secrecy. Many security
associations can be negotiated during one Quick Mode exchange.
Either one of the parties might initiate the quick mode exchange,

independent of the fact regarding who initiated the first phase.

Initiator Fesponder

HDE*, HASH(1), 54, Monce, [EE]; [IDci;, [Der] o

HDR; HASHC 2, 54, MNonce, [EE]; [IDc1;, IDier]

HOR*, HASH 3)

Figure 7.3 — Quick Mode Exchanges

72

7.5.3.1.4. New Group Mode

The New Group Mode is used for negotiating a new group where to do
Diffie-Hellman exchange. The MODP defines group characteristics
where to calculate Diffie-Hellman. Even if New Group Mode exchange

is not phase two exchange it must follow phase one exchange

Initiator Fesponder

HDR*, HASH(1) S4

HDE*; HASH{ 2%, S4

Figure 7.4 — New Group Mode Exchanges

7.5.3.2. IKE Authentication Methods

Four different authentication methods are allowed with the Main Mode

and Aggressive Mode. These include the following:

73

7.5.3.2.1. Authentication With Digital Signatures

The exchange is authenticated by applying a negotiated signature
algorithm to hashes, which are available only to the negotiating
parties. A hashing algorithm is applied to almost all of the exchanged

parameters. Certificates might also be provided within the exchange.

7.5.3.2.2. Authentication With Public Key Encryption

The exchange is authenticated by encrypting the identities and nonce
with the other party's public key and then examining the hash sent by
the other party. A right hash value proves that the other party can
decrypt a data encrypted with its public key. The public keys must be
provided somehow before hand.

The usage of public key encryption adds security to the key
exchange, since an attacker would have to break the Diffie-Hellman
exchange and RSA encryption. An identity is protected also with

Aggressive Mode.

The authentication with public key encryption is computing wise
relatively expensive, two public key encryption and decryption keys

needed by each party.

Then each party can construct both sides of the exchange so there is

no proof that the conversation ever took place.

7.5.3.2.3. Authentication With a Revised Mode of Public Key
Encryption

The idea of revised mode of public key encryption is to take
significant advantages of the previously described authentication and
replace some of the costly public key encryptions with symmetric

encryptions. Certificates might be provided also within exchange

74

7.5.3.2.4. Authentication With a Pre-shared Key

A key shared by secure out-of-band mechanism may also be used to
authenticate parties. This authentication limits identifying methods in
the Main Mode to an IP address. The authentication with a pre-shared
key is the only authentication method, which is mandatory in IKE.

7.5.3.3. IKE Security Considerations
7.5.3.3.1. Protection From Attacks

ISAKMP sets requirements for its key exchange components and
authentication. These requirements guard against protocol targeted
attacks.

Man In The Middle

Man-In-The-Middle attack is a situation where a bad guy sits between
communicating parties (A and B) on the network and intercepts traffic.
The man in the middle acts as B to A and as A to B and relays traffic
between them. The man in the middle could also modify, delete or
insert traffic.The linking of ISAKMP exchanges is designed to prevent
insertion of messages. The deletion of messages will cancel the
creation of security association so partial security association will not
be created. Strong authentication of the parties prevents the risk of

establishing a SA with other than intended party.
Denial Of Service

Denial of Service attack is where an user can set the system unusable

for legitimate users by using the system's resources. Computers on a

75

public network are vulnerable +to denial of service attacks.
A cookie pair at the ISAKMP header is used to protect computing
resources without spending a lot of own resources to drop bogus
messages before computing intensive public key operations. Also
aggressive garbage state collection should be implemented to discard
protocol state information, which are created for started bogus
exchanges. Absolute denial of service protection is impossible to
create, but the design of the ISAKMP makes situation easier to

handle.

Replay / Rejection

Replay or Reflection attack is a situation when a third party records
network traffic and replays it. ISAKMP sets requirement for cookies to

include a time variable material which eases detection of replay.

Connection Hijacking

The connection hijacking is an attack where a third party jumps in the
middle of transaction and steals the connection. IKE is protected from
the connection hijacking by linking the authentication, key exchange,
and security association exchanges. The linking of exchanges
prevents a third party attacker to jump in after authentication and act
as one of the authenticated party during key exchange or security

association exchange.

7.5.4. Perfect Forward Secrecy

Perfect Forward Secrecy (PFS) refers to the notion that compromise
of a single key will permit access to only data protected by a single
key. For PFS to exist the key used to protect transmission of data
must not be used to derive any additional keys, and if the key used to

76

protect transmission of data was derived from some other keying

material, that material must not be used to derive any more keys.
To provide Perfect Forward Secrecy both parties must:

e Use the Main Mode to protect identities, when establishing

ISAKMP security association.
e Use the Quick Mode to negotiate security associations.

e Delete ISAKMP security associations after each Quick Mode
exchange pairs to force a creation of the new ISAKMP security

association.

When the ISAKMP security associations are deleted a new Diffie-
Hellman key generation from the new keying material will be done and
bindings to the old keys are totally lost, thus, preserving Perfect

Forward Secrecy.

7.6. Remote Authentication Dial In User Service (RADIUS)

7.6.1. Introduction

The RADIUS Accounting protocol is a client/server protocol that

consists of two message types:

e Accounting—Request

e Accounting-Response

PacketCable network elements that generate Event Messages are
RADIUS clients that send Accounting-Request messages to the RKS.
The RKS is a RADIUS server that sends Accounting-Response
messages back to the PacketCable network elements indicating that it

has successfully received and stored the Event Message. Although

77

PacketCable 1.0 specifies RADIUS as the transport protocol, alternate
transport protocols may be supported in future PacketCable releases.
The RADIUS messages are transported over UDP, which does not
guarantee reliable delivery of messages, hence the request/response
nature of the protocol.

7.6.2. Event Message Structure

An Event Message contains a header followed by attributes. The
header is required on every Event Message. The attributes will vary
based on the type of service the Event Message is describing.

Example information contained in the header includes:

e version of Event
e message structure
e timestamp indicating when the trigger event occurred

e Billing Correlation ID used to associate multiple Event Messages

with a single service.
Example information contained in attributes includes:
e Called Party Number

e Calling Party Number
e Trunk Group ID

Header

Adtribute #1
Attribute #2
Altribute #3

Adtribute #n

Figure 7.5 — RADIUS Packet

78

Each RADIUS message starts with the standard RADIUS header

Field Name Semantics Field Length

Code Accounting-Request = 4 | byte

Accounting-Response = 3

Identifier Used to match accounting- I byte
request and accounting-response
1IIl.ZFi.‘:'~i'IgL'H.

Length Total length of RADIUS 2 bytes
1IIl:F{.‘_\'-i'IgL'.

min value = 20, max value =
4096

Authenticator value = 0 as per PacketCable 16 bytes
Security Specification [5].

Figure 7.6 — RADIUS Header

The standard RADIUS Acct_Status_Type attribute follows the RADIUS
Message Header in every Accounting-Request message. This attribute
indicates the type of this RADIUS Accounting-Request and is specific
to the use of RADIUS as the transport protocol.

An Acct-Status-Type value of Interim-Update is used to represent
PacketCable Event Messages. This improves interoperability with
existing RADIUS server implementation. The Acct_Status_Type
attribute is the only standard RADIUS attribute used by PacketCable.

Type Length Value

40 b bytes Interim-Update = 3

Figure 7.7 — RADIUS Accounting Status Type

PacketCable attributes are encoded in the RADIUS Vendor Specific
Attributes (VSA) structure. The Vendor-Specific attribute includes a

79

field to identify the vendor and the Internet Assigned Number
Authority (IANA) has assigned PacketCable an SMI Network
Management Private Enterprise Number of 4491 for the encoding of

these attributes.

The RKS server ignores Event Messages where the PacketCable
“Event Message type” is unidentified. The RKS server also ignores
PacketCable event attributes where the event attribute type is
unidentified.

Field Name Semantics Field Length
Type Vendor Specific = 26 1 byte
Length Total Attribute Length 1 byte
note: vilue is Vendor Length + 8
Wendor 1D CableLabs = 4491 4 bytes
Wendaor Attribute Type PacketCable Attribute Tvpe 1 byie
(refer to table 34)
Wendor Attribute Length PacketCable Attribute Length I byte
{refer o table 34)
Wendor Attribute Value PacketCable Attribute Value Wendor Length bytes

Figure 7.8 — RADIUS Vendor Specific Attributes Structure

7.7. Internet Key Exchange in Record Keeping Server

The communication between the RKS and other entities is first
secured using the Internet Key Exchange. There are two phases in

IKE through which a secure session is established.

The Record Keeping Server (RKS) utilizes the following modes of the

Internet Key Exchange (IKE):

e Phasel — Aggressive Mode;
e Phase2 — Quick Mode.

80

Each of this mode requires an exchange of a certain set of messages
resulting in the negotiation of a certain set of security associations,
cookies and keys to protect further exchange of data. The

implementation details of each of the modes is as follows:

7.7.1. Aggressive Exchange

Aggressive Exchange consists of three massages. The exchange is
initiated by the Call Management Server (CMS), the Media Gateway
Controller (MGC) or the Cable Modem TermiNation System (CMTS).
The first message is supposed to consist of a generic header, security
associations, initiator key exchanges, initiator nonce and the

initiator’s identification.

The security associations consist of a number of proposals, which
further consist of a number of transforms. These proposals present a
number of options for the security association to be negotiated with
the Record Keeping Server. These security associations determine
the type of the encryption algorithm, digest algorithm, the key
lifetime, type of the key lifetime and various other attributes needed

to protect the Phase 2 exchanges.

The Record Keeping Server is supposed to save all the initiator
information and select one of the most suitable proposal from the
available choices. The currently implemented version supports DES
and MD5 as the available encryption and digest algorithms,
respectively. The other attributes can be changed to allow various

permutations.

The Record Keeping Server receives this first message and parses it.
It retrieves the security associations passed into the message and
compares them with its own capabilities. If no match is found, it
simply send a PHASE1 NO_MATCH_FOUND error and terminates the

81

session. If, on the other hand, a match is found, then the Record
Keeping Server saves the nonce, the matched security association
and the client ID. The Record Keeping Server generates its own
nonce and KE values. It maintains a database log of all the trusted
clients that can communicate with it. For each trusted client, the
Record Keeping Server maintains a pre-shared secret key in this
database. Once the Record Keeping Server receives the first message
of phase one, it retrieves the key for the client. It generates the key
SKEYID:

SKEYID=prf(pre-shared key, Initiator Nonce | Responder Nonce)

The prf is a function that takes as input a key and data to be
encrypted. It then calculates digest on that data using MD5 and then

encrypts it with the given key to generate a signed digest.

The Record Keeping Server then generates Hash_r:

Hash_r=prf(SKEY_ID,dh values | Responder Cookie | Initiator

Cookie | Security Assocation | Identity of Responder)

The second message sent by the Record Keeping Server includes the
generic header, the security associations with the selected proposal,
the server’'s key exchange, the server’'s nonce, the server’s
identification and the signature generated by the server. The
receiving entity then parses the message, computes a corresponding
signature and compares it with the received signature. After the
authentication is successful, it compiles the third message and sends

it to the Record Keeping server.

The third message consists of the generic header and the other
entity’s signature. In this case the payload, that is everything else

than the generic header, is encrypted according the algorithm agreed

82

upon in the first two messages. The used to encrypt this message is

the pre-shared key between the client and the Record Keeping Server.

The Record Keeping Server on receiving the third message
authenticates it. The Record Keeping Server decrypts this message
and retreives the Hash_i generated by the client. The Hash_i is given

by the follwing formula:

Hash_I=prf(SKEYID,dh values | Initiator Cookie | Responder

Cookie | Security Association | Identity of Initiator)

The Record Keeping Server generates the same Hash | using the
values in the third message of phase onr. It then compares the two
signatures to ensure that the third message received is correct and
without error. If an error is found, it simply returns an error message

to the client and terminates the session.

After this each side computes a set of keys from the exchanged
information, which are to be employed in the second phase. The keys

generated are given below:

SKEYID _d=prf(SKEYID, dh values | Initiator Cookie | Responder
Cookie | 0)

SKEYID_ _a=prf(SKEYID,SKEYID_d | dh values | Initiator Cookie |
Responder Cookie | 1)

SKEYID_ _e=prf(SKEYID,SKEYID_a | dh values | Initiator Cookie |
Responder Cookie | 1)

7.7.2. Quick Mode

Quick mode follows the Aggressive mode and is the only supported

mode for the second phase. It consists of three messages which are

83

employed to negotiate the security associations for a protocol

following the IKE exchanges, like IPSec.

Either the Call Management Server (CMS), or the Cable Modem
Termination System (CMTS) or the Media Gateway Controller (MGC)
sends the first message. This message consists of the generic header
along with a Hash value computed using the information exchanged in
the first phase, the security associations with a number of proposals,

the initiator’'s nonce and the identification information.

The Record Keeping Server again performs an authentication check

and compares the sent Hash with its own computed Hash value.

The Hashl sent in first message of phase two is computes as follows:

HASH(1) = prf(SKEYID_a, message ID | Security Association |

Initiator Nonce)

After successful comparison of Hashl generated on both sides, the
Record Keeping Server then generates the second message of phase
two. The second message consists of the generic header, nonce,
security associations selected from the offered set of choices and the
second HASH value computed from a different set of the first phase

values. Hash2 can be computed by the following formula:

HASH(2) = prf(SKEYID_a, message ID | Security Association |
Responder Nonce)

This is then verified on the other end, which generates the third

message on successful authentication.

84

The third message received by the record keeping server consists of
the third Hash (Hash3) value which completes the phase 2. The
attributes and information negotiated in these exchanges are to be
used to protect further communication between the record keeping

server and the other entity.

Again, the Record Keeping Server retrieves Hash3 from the third
message of phase2 and calculates its own Hash3 with the required
values. Hash3 is calculated by the following formula:

HASH(3) = prf(SKEYID_a, 0 | message ID | Initiator Nonce |

Responder Nonce)

Finally, a Master Key is generated for that particular session with
which further communication regarding that session will take place.

This Key is given by the following formula:

Final Key=prf(SKEYID _d, Protocol | SPISize | Initiator Nonce |

Responder Nonce)
7.8. RADIUS Messages in Record Keeping Server

The client transmits a radius event message to the RKS. This
message is authenticated using a signed Hash. The signature is
computed using the Final Key generated above. The RKS logs that
event message and accordingly sends an acknowledgement to the

client.

When an RKS receives and successfully records all PacketCable
Event Messages in a RADIUS Accounting-Request message, it sends
an Accounting-Response message to the client. The PacketCable
network element continues resending the Accounting-Request until it

receives an acknowledgement from an RKS or the message expires

85

from its cache. The RADIUS server does not transmit any Accounting-

Response reply if it fails to successfully record the Event Message.

The PacketCable event messages supported in this implementation

are listed below:

e Signaling_Start
e Signaling_Stop
e Call Answer

e Call Disconnect

7.8.1. Signaling_Start

This Event Message indicates the time at which signaling starts. The
originating CMS or MGC issues this Event Message for any given call.
The originating CMS or MGC that issues this Event Message must
issue the corresponding Signaling_Stop Event Message. The
terminating CMS or MGC may issue this Event Message. If the
terminating CMS or MGC issues this Event Message, then that
terminating CMS or MGC MUST also issue the corresponding
Signaling_Stop Event Message. The CMS or MGC must timestamp this

message.

86

Attribute Name Required or Comment
Optional

[Event Message Header] R none.

(see Table 32)

Direction_indicator R none.

MTA_Endpoint_Name 4 This attribute if required when the CMS
generates this message. This attribute is NOT
required when the MGC generates this message,

Calling_Party_MNumber R none.

Called_Party_MNumber R none.

Carrier_ldentification_Code O This attribute MUST be included when the
MGC generates this message.

Trunk_Group_ID O This attribute MUST be included when the
MGC generates this message.

Figure 7.9 — RADIUS Signaling Start Event Messaqe

7.8.2. Signaling_Stop

This Event Message indicates the time at which signaling terminates.
The originating CMS or MGC that issues the corresponding
Signaling_Start Event Message issues this Signaling_Stop Event
Message. If the terminating CMS or MGC issues a corresponding
Signaling_Start Event Message, then that terminating CMS or MGC
must also issue this corresponding Signaling_Stop Event
Message.The CMS must timestamp this message.

Attribute Name Required or Comment
Optional
[Event Message Header] R TV

{see Table 32)

Direction_indicator R none.

MTA_Endpoint_Name R This attribute MUST be included if the CMS
generates this message. This attribute is NOT
required it the MGC generates this message.

Figure 7.10 — RADIUS Signaling Stop Event Message

87

7.8.3. Call _Answer

This Event Message indicates that the media connection is open because answer has
occurred. The terminating CMS or MGC generates this Event Message. The originating
CMS or MGC may generate this Event Message. The CMS MUST timestamp this

message.

Attribute Name Required or Comment
Optional

[Event Message Header] R none,

{see Table 32)

Direction_indicator R none.

MTA_Endpoint_Name R This attribute MUST be included if the CMS
generates this message. This attribute is NOT
required if the MGC generates this message.

Figure 7.11 — RADIUS Call Answer Event Message

7.8.4. Call_Disconnect

This Event Message indicates the time at which the media connection
is closed because the calling party has terminated the call by going
on-hook, or that the destination party has gone on-hook and the
called-party’s call-continuation timer has expired. This message is be
issued by the first party, either terminating or originating, to detect call

termination. The CMS MUST timestamp this message.

Attribute Name Required or Comment
Optional
[Event Message Header] R none.
(see Table 32)
Direction_indicator 9] none.
Call_Termination_Cause R MNormal Termination

Figure 7.12 — RADIUS Call Disconnect Event Message

88

7.9. UML Design

7.9.1. Class Diagram

JIDESRCEC

Qne RERVER

RE3

MDi

PHAREL

PHARE!

7.9.2. Classes

LOG

RADIUTS

EEY DE

RKS : This is the record keeping server class

MD5 : This is

the MD5 digest

relationship with the RKS

class which has a one to one

3DESCBC : This is the three DES CBC class which has a one to one
relationship with the RKS

89

RADIUS : This is a RADIUS class which has a one to tone relationship
with the RKS.

PHASE1 : This is the phase 1 class which is encapsulated within the
RKS and consists of all the phasel functionality
PHASE2 : This is the phase 2 class which is encapsulated within the
RKS and consists of all the phasel functionality

LOG : This is the log class for maintaining all logging functionality

KEY DB : This is the key data base that consists of the keys against

the client identification information.

7.9.3. Sequence Diagram

The sequence diagram is attached in Appendix B.

90

CHAPTER 8
TELEPHONY SYSLOG SERVER

8.1. SYSLOG Overview

The SYSLOG server is an OSS back office network element used to
collect events such as traps and errors from an Multimedia terminal
Adapter. This server keeps a log of the traps that are send to it by the
Multimedia Terminal Adapter so that they can be properly addressed
at a later stage. The trap message is a message generated
asynchronously by the MTA to notify the server of a problem aspect.
Multimedia Terminal Adapter sends notification that provisioning has
completed to the SYSLOG server via UDP. The only interface that the
SYSLOG server has is with the Multimedia Terminal Adapter, which

sends the trap messages

MTA TRAP MESSAGE SYSLOG

Figure 8.1 - MTA-SYSLOG Interface

8.2. Message Format

The message send by the Multimedia Terminal Adapter(MTA) to the

SYSLOG server is send in the following format

<level> MTA[vendor] :<event Id> text

91

level — ASCII presentation of the event priority. The resulted level has
the range between 128 and 135.The digit send to the SYSLOG server

represents the priority of the event which has occurred.

Vendor — This field specifies the vendor name for the vendor-specific
SYSLOG messages The vendor name is PACKET CABLE for the

packet cable trap messages that are send to the SYSLOG server.

Event-Id — This number uniquely identifies the type of event, which is
being sent to the SYSLOG server by the MTA. This number is the
same number which is stored in the Management Information Base of
the Multimedia Terminal Adapter. In the Management Information
Base this number is specified in the MtaDevEvid object in

pktcDevEventTable.

text — This is the textual description of the error message that is
being sent to the SYSLOG server. This string MUST have the textual
description as defined in the MtaDevEventText in the Management
Information Base of the Multimedia Terminal Adapter.

Example: SYSLOG event for AC power failure in the MTA

<132> MTA [PACKET CABLE]: <435> AC Power Fail

The Multimedia Terminal Adapter stores information about the various

elements in the Management Information Base.

8.3. Management Information Base (MIB)

Management information bases (MIBs) are a collection of definitions,

which define the properties of the managed object within the device to

92

be managed. Every managed device keeps a database of values for
each of the definitions written in the MIB. The MIB can be thought of
as a information ware house. MIB is simply an abstraction like
"Database” which can be applied to mean all data, or any portion
there of , associated with the network.

8.3.1. Features of MIB

e Objects are uniquely named.

e Abstract structure of the MIB is universal.

e Allow for private extensions

e Object must be general and not too device dependant

e Objects can not be easily derivable from their objects

8.3.2. Structure of MIB

The object set is arranged in a tree structured fashion, similar in
many ways to a disk directory Structure of files. The top level branch
begins with the 1SO *“internet" directory, which contains four main
branches: The "mgmt" branch contains the standard objects usually
supported (at least in part) by all network devices. The “private"
branch contains those extended objects defined by network equipment
vendors; the "experimental” and "directory"” branches, also defined
within the "internet" root directory, are usually devoid of any
meaningful data or objects. The "tree" structure described above is an
integral part of the standard MIBS, however the most pertinent parts
of the tree are the "leaf" objects of the tree that provide actual
management data regarding the device. Generally, leaf objects can be
partitioned into two similar but slightly different types that reflect the

organization of the tree structure.

93

MIB

The Registered Tree

root
s TIE(O) isof1} Joint—iso —ccitt{2Z)
standard{O} registration memkber identified
authority({1} body (=) organization{3}
standards ... dod{&Y - ________.

Aunstralia(36) / \

Figure 8.2 — MIB Tree

8.3.3. Categories of MIB Objects

e Discrete objects

e Table objects

8.3.3.1. Discrete Objects

Discrete objects contain one precise piece of management data.
Discrete objects often represent summary values for a device,
particularly useful for scanning information from the network for the
purposes of comparing network device performance. These objects
are often distinguished from "Table" items (below) by adding a ".0"
(dot-zero) extension to their names. (If the ".0" extension is omitted

from a leaf object name, it is almost always implied.

94

8.3.3.2. Table MIB Objects

Table objects contain multiple pieces of management data. The tables
are special types of objects that allow parallel arrays or information
to be supported These objects are distinguished from Discrete” items

by requiring a (dot) extension to their names that uniquely
distinguishes the particular value being referenced. The "." (dot)
extension is referred to in some literature as the "instance" number of
an object. In the case of "Discrete" objects, this instance number will
be zero. In the case of "Table" objects, this instance number will be

the index into the table.

8.3.4. MIB Object Types

There are several primitive types that can be assigned to the MIB

objects. These types are classified as follows:

Text Type : This type that can contain arbitrary textual information to

a maximum of 255 characters. The text must contain only printable

characters.

Counter Type : This type is a numeric value that can only increase.

This is the most common type of object in the standard MIB. Counters

roll over at their maximum value, and can never be less than zero.

Gauge Type : This type is a numeric value that can increase or

decrease.

Integer Type : The Integer type can contain positive or negative

values. This value is usually supplanted by "Counter” or "Gauge" type

95

values, but is sometimes expressed in "private”" MIBs of vendor

equipment.

EnumVal : This type defines an "Enumerated Value" type that

associates a textual label with a numeric value. This type is quite
common in the standard MIB, and includes objects, whose enumerated
values are

"up(1)", "down(2)", and "testing(3)".

Time Type : This type represents an elapsed time. This time always

has a resolution of one hundredth of a second, even if this resolution

is not used.

Object Type : The "Object" type can contain the identifier for another

object

IPAddr Type : The "IP address" type contains the IP address of a

network device.

Table Type : The "Table" type is a branch object that contains table

entries. This object type is always an intermediate name that contains
an "Entry" directory, which in turn contains various table objects.

Branch Type : The "Branch" type is a branch object that contains

additional branches, tables, or any of the discrete objects types listed
above.

MIB description files are written in a particular format called ASN.1

(Abstract Syntax Notation One)

96

8.4. Multimedia Terminal Adapter (MTA)

This MIB provides a set of objects required for the management of
DOCSIS compliant Cable Modems (CM) and Multimedia Terminal
Adapter.

8.4.1. Groups in MTA MIB

This MIB is structured into seven groups:

e The docsDevBase group contains the objects needed for cable
device system management.

e The docsDevNmAccessGroup provides a minimum level of
access security.

e The docsDevSoftware group provides information for network-
downloadable software upgrades.

e The docsDevServer group provides information about the
progress of the interaction between the CM or CMTS and
various provisioning servers.

e The docsDevEvent group provides control and logging for event
reporting.

e The docsDevFilter group configures filters at link layer and IP
layer for bridged data traffic. This group consists of a link-
layer filter table, docsDevFilterLLCTable, which is used to
manage the processing and forwarding of non-IP traffic; and IP
packet classifier table, docsDevFilterlpTable, which is used to
map classes of packets to specific policy actions; a policy table,
docsDevFilterPolicyTable, which maps zero or more policy
actions onto a specific packet classification, and one or more
policy action tables. At this time, this MIB specifies only one
policy action table, docsDevFilterTosTable, which allows the

97

manipulation of the type of services bits in an IP packet based
on matching some criteria. The working group may add
additional policy types and action tables in the future.

e The docsDevCpe group provides control over which IP addresses
may be used by customer premises equipment (e.g. PCs)
serviced by a given cable modem. This provides anti-spoofing
control at the point of origin for a large cable modem
system.This group is separate from docsDevFilter primarily as
this group is only implemented on the Cable Modem (CM) and
MUST NOT be implemented on the Cable Modem Termination
System (CMTS).

The main purpose of the syslog was concerned with the logging of
events so the docsDevEvent Group was implemented. In order to
obtain the tree structure of the Multimedia Terminal Adapter the
following tools were used in the project.

e MIB Compiler
e MIB Builder

The Multimedia Terminal Adapter MIB file written in the Abstract
Syntax Notation (ASN.1l) was given as input to the MIB Compiler
which checks the syntax of the file written in ASN and generates

different errors according to the errors that have occurred.

98

£|MG-50FT MIE Compiler - HIDX25-MIB.my

File Edit Wiew Modulez Toolz “Window Help

el | @ Boaagnn DEGZP oS x|

=|MIB Database3 N =] B) o] MI0X25-MIE . my =] =3
EI|:| ipL3PDUErrorT able j‘ MIOXZS5-MIE DEFIHITIOHS ::= BEGIH =

= =ipL3PDUE rrorE ning

@ =ipL3FDUE rrorlndex IMPORTS
-#@&p sipL3PDUEmaType
- sipL3PDUEmarsa,

Counter,

A TimeTicks
@ sipL3PDUEmarDA FROM RFC1155-SHMI-|
----- &% sipL3PDUEmarTimeSt:
EI@ frameR elavD TE mioxPeerXz5CallParamld O0BJECT-TR|
E'D frameRelauT raps = I SYHTAY InstanceFointer
i s HDLCIStatusChange ACCESS read-write
=3 frDlemiT able STATUS mandatory
. FriD il nikry DESCRIPTIOH e
g fiDlomilfindes TThe instance of
i’ @B Bl take _'I;I xZ5CallParmTakle _
AT Fodules &, MMIB Tree & | EX N _"l—.é!
=l radule - I Root OID I:l =] Error 232 Item 'InstanceF‘Dinter' i3 [y=13 defined or iml:u:il;l
2l Bt ISDMN-MIE 1361211020 2l : Error 23 1 [kemn InstancePaointer’ iz not defined or impor
""" . A0 -1 MY TE25] ;0 Error 23 ¢ Item InstancePointer’ iz not defined or impo
Gt MAL-MIB 1381.21.26 PAIC325~7 (534 : Error 19 ¢ Missing ' or '
i MIO=25-MIB U rik o A0 25™7 MY[534] : Error 13 : Mizzing ', or ' iy
&. MIP-MIE 136121 44 A0 25™7 MY [534] : Error 20 : Expected =" but found " =
. L] | >
SModentn 13612130 =

Item InstancePointer is not defined orimported ~ Ln 525 Cald

|CarP OVR

Figure 8,3 — MIB Compiler

The other tool that was used was the MIB Builder. The file which has
been compiled is given as input to the MIB builder and this tool
generates the tree structure of the given MIB. The tree structure for
the Multimedia Terminal Adapter generated with the help of this tool

is attached in Appendix C which follows the document.

99

o Fle Edr view anindows - Help
D= e B |

L] MMG-SOFT wisual HI6 Bullder — [MGSOFT-MGBEER-— IS

-

= lef =]

-1 ded =]
= -] internnst
=1-- [private
—--[E0] enkarprises
= ﬁ ng-soft
=) S anplss
=i speaker
3 F:EI? spesabe nCoritrod
i speakerBeeps
= ifé_% speeakarTssk
L speakerGespsTounter

i speakeripTime

oamorient

OBJECT TYFE

== I&psaker'r sl ol

olD: 1.2 1.4, 131599.1.6

Lhéld mammber: I =]

i— % spealksrFreginc

o i speeakarTraphiodis = -
S EEEe speakerTrapbestaddre: T B e e T
i speakerTrapFrequency Sioriten: INTEGER
=1 [7] speakerFragTabls =i I
=1-[E5l speakerFrecontry Moz Access [read-vaile

LogglEe speakerFreqhe: Skatus: Ec:l_:rrerﬂ ;I

speakerFregllip’
Fual comwenktiorns @’. Drefval ID Ij
Displaystring L pnits; [
e assiopnmeanits T
o bopes ascigninments i

= B | Chrs |
EE]| s
[T e e e e e e e s e e el e] e | e
Figure 8.4 — MIB Builder

In addition to these two tools the other tool that was used to view the

static values in the MIB was the MIB Browser. With the help of this

tool you can view the values in

52 Info 1 =] EA |

the tables of the MIB.

EI@IEI |21 2307370 LI EI IV Pall even IEiD ﬁseconds [Log | &%
M arme | Syntax | W alue

@S}ISDEWLD actets Hardware: =26 Family 5 tModel 2 Stepping 11 AT /...
@ sy=0ObjectD.0O aid enterprizes.311.1.1.2.1.1

@ spsllpTime.D timeticks 9 day= 16h:54m: 26z 86th

& sysContact.D actets supportEmg-soft. s

& sypsMame.0 actets APOLLO

& syslocation. actets M G-SOFT Labs. karibor

& susServices.N int32 TG

& ifNurmber.0 int32 3

@ifDescr.‘l octets S TCP Loopback interface

@ ifDescr. 2 octets ELMEZ Ethernet Adapter.

@ ifDescr. 3 octets Movell 2000 Adapter.

@ ifAsdrinS tatus. 1 int32 up[1]

@ ifAdrminStatus. 2 int32 upl1]

@ ifAdminStatus. 3 int32 upl1]

& ifinDctets. 1 cntr3z 128

& iflnO ctets. 2 chtrd2 54710831

& iflnO ctets.3 chtrd2 17954230

& if0utO chets. 1 chtr32 128

& if0utOclets. 2 chtrd2 2E55E20

& if0ut0 chets. 3 crtr32 FYEETT

@@ |32 |212307270 |y SMMPYE 181 |1 |Last successful poll at 11/4/99 3.0

Figure 8.5 — MIB Browser

100

8.4.2. Events and Traps Group in MTA-MIB :

This group of MIB provides control facilities for reporting events
through syslog, traps, and non-volatile logging.The trap messages
follow a specified conventions . The definition and coding of events is
vendor-specific.Trap definition in the abstract syntax notation file are

defined as folows:

trapName NOTIFICATION-TYPE

OBJECTS {
iflndex,
eventReason,
other useful objects

}
STATUS current

DESCRIPTION
"trap description”
::= Object Id

8.4.2.1. Types of Traps
There are various types of traps that can be send to the syslog server
for logging. These traps are sent in response to different conditions.

Some of the more generic traps are as follows:

Cold-Start: This trap is sent when the Multimedia Terminal Adapter

restarts as a result of a crash or a major fault.

101

Warm-Start: This trap is sent when the Multimedia Terminal Adapter

reinitializes itself.

Link-Down: This trap is sent to signal a failure in one of the

communication links of the Multimedia Terminal Adapter.

Link-Up: This trap is sent to signal that one of the communication

links has again come up.

Authentication-Failure: This signals that the authentication of

Multimedia Terminal Adapter has failed.

These are some of the generic traps .In addition to these traps there
are also some specific traps, which occur in response to different
error conditions. The Syslog server keeps a record of all the traps
that are sent to it by the Multimedia Terminal Adapter. The user can
view the details of different errors generated in the Multimedia

Terminal Adapter.

102

CHAPTER 9

User Manual

9.1. Ticket Granting Server

9.1.1 Server GUI

The Ticket granting server consists of a simple easy to operate

interface as shown in the following figure:

atart Configure

Staring server....

Server listening on port 6000....
Request recieved.....

decoding request....

Freparing the reply...
Freparing the Ticket.

Sending the reply to the client...
Reply sent.

Server listening on port G000.....

atatls | Error i Reply]

Exit I

Figure 9.1 — TGS User Interface

103

The server can be initiated by clicking on the ‘Start’ button. This
sends the server in the blocking call of listening to a pre-defined
socket. On receipt of a message the server will display the status
in the ‘Status’ tab, with the corresponding received structures and
any possible errors in the ‘Reply’ tab and ‘Error’ tab, respectively.

To view the database of the ticket granting server click on the
‘Configure’ button, which will invoke the following dialog
consisting of the database contents:

47| View Database S e

Fricipal Mame Pricipal Key Key Version # Max Lifetime

client asdf] &

cint asdf o 43

hammad ardfa o A7

sErver sdfsd 5 Jed

Insert Record Delete Record
Exit

Figure 9.2— Database View

104

To insert a record in the database click on the ‘Insert Record’,

which invokes the following dialog box:

451 sert Record Data >

Figure 9.3— Insert Record Dialog

Here enter the attributes for the new record in the corresponding
edit boxes and click ‘Ok’. All fields are required. To delete a
record click on the ‘Delete Record’ button, which invokes the

following dialog box:

Delete Recovd *

Figure 9.4— Delete Record Dialog

105

Here enter the principle name for the record to delete and click

‘Delete’.

9.1.2. Client GUI

This consists of a simple interface, which invokes a request from
the client by clicking on the ‘Send Request’ button, as shown in

the following figure:

Status IErru:ur I Reguest

encoding the shared key...

encoding the authPack...
generating the mds digest for
Authpack...

Encoding the request...

Sending request....

Waiting for reply fram the server..
Ticket recieved...

SEH e s

Figure 9.5— TGS Client User Interface

106

The status of the client is visible in the ‘Status’ tab, while the
corresponding request and possible errors can be viewed under
the ‘Request’ tab and the ‘Error’ tab, respectively.

9.2. Record Keeping Server

9.2.1. Server GUI

The record keeping server graphical user interface is as shown in
the following figure:

Status

Starting server...

Server sefup now waiting for input...
Message Recieved

Vearsion Yerified

HchygType Verified

Length of header payload verified
S8 Payload Length verified

DOl Verified

Situation W erified

KE next payload correct

kE payload length correct

Monce nest payload correct
Monce payload lendgth correct

ID nest payload Conflict

kE payload length Correct

EfaH Exit

Figure 9.6 — RKS User Interface

107

Click on the ‘Start’ button to start the server, which enters the

listening mode waiting for a request from the client.

The server status is visible in the ‘Status’ view, which displays all

the messages and current status of the server.

9.2.2. Client GUI

The client end user interface is as follows:

atatus | Radius hessages

Setting [dentification Aftributes :_j
Initiator [dentification = 134843332

sending Phasel .. Message 1 ..

Waiting For Phasel .. Message 2 . _J

Recieved Phasel ... Message 2 ..

PH&SET_MO_ERROR
Parsing Phasel ... Message 2 ..

Checking Header &ttributes. .

b E
lnitiator T aalkin - PORCOQTFES0!

Initiate ke

Mumber of Transforms iT

Initiate |

Figure 9.7 — RKS Client User Interface

Enter the number of transforms to include in the first message of

the internet key exchange. These number of transforms should not

108

be less than zero and not more than five. Click on the ‘Initiate’
button to start an Internet Key Exchange with the server. This will

invoke the following dialog.

2
Encryption Type iEI (0 far 30esCBC)
Hash Type 1 (1 for MDS)
Life Duration |5 (9 recommended)
Life Type lIZI (0 recommended)
QK

Figure 9.8 — Transform Details Dialog

Enter the attribute values in the corresponding fields and click
‘Ok’. This dialog requests input depending on the number of

transforms specified.
This initiates the internet key exchange, the status for which is

displayed in he corresponding ‘Status’ tab. Click on the ‘Radius’

tab. This will display the following:

109

Figure 9.9 — RKS Client User Interface (RAIUS)

Click on the ‘Start Signaling’ button to send a Radius start
signaling event message. Click on the ‘Call Answer’ button to
send a Radius call answer event message. Click on the ‘Call
Disconnect’ button to send a Radius call disconnect event
message. Click on the ‘Stop Signaling’ button to send a Radius

stop signaling event message.

9.3. SYSLOG Server

9.3.1. Server GUI

The server user interface is as follows:

110

;3]

Traps Recieved I
--trap # 0
B-frap # 4
E----Text— hessage authe_failure
Event-ID 4
E----Vendnr PaCkETCABLE
“Level 10
E-frap # 3
E-frap # 2
B-trap # 1
é----Tex’t—Message porer_failure
Event-1D 2
E----vEndnr PaCKETCABLE
- Level 40

Exit

Figure 9.10 — SYSLOG User Interface

The view displays the traps captured and their details in a tree
view. These can be viewed by clicking on the expand icon as

shown. The traps are displayed as they are captured.

9.3.2. Client GUI

The client user interface consists of two input fields for port
number and IP address of the server, and three buttons for
generating and sending traps, pausing trap generation, and
exiting the application. Enter the port number and IP address of
the SYSLOG server before sending traps. Click ‘Send’ to invoke
the trap generation. Click ‘Pause’ to pause the trap generation
process. Click ‘Exit’ to quit from the client interface.

111

CHAPTER 10

Future Expansion

The current implementation of the key management and security
servers is based on the PacketCable 1.0 specifications, which have
recently been updated to incorporate a number of other features,
along with enhanced security features. Thus the current
implementation will provide a solid infrastructure for further
development and enhancements. Moreover, the Ticket Granting
Server, which currently consists of public key PKINIT, can be
improved with added feature of pre-shared keys and certificates.
Similarly, the basic implementation of the Record Keeping Server,
which consists of all the necessary features, as prescribed in the
specifications, can be improved with the incorporation of the optional

features.

112

Conclusion

This project helped us develop a better understanding and gain
practical hands-on experience of the theoretical knowledge we
attained through out our under graduate course. The implementation
of this project covered almost all the aspects of our degree and thus,

improved our concepts of the various software courses we attended.

The software engineering principles were improved as we practiced
the pure software engineering approach to design and develop the
system. Unified Modeling Language was used to carry out the design
process and Rational Rose was employed as the tool to achieve a

sophisticated design.

The development was carried out on the Linux platform, which is
comparatively less user friendly then the popular Windows, and
therefore helped us develop a better understanding of the Operating
Systems and helped us clear some of our doubts in this regard.

The development was carried out in C++, which helped us not only in
improving our object oriented approach and implementation, but also
helped us practice development of algorithms for various programming

issues.

The Networking concepts were further fortified with the project, as the
entire project was a networking environment with various client-server
interactions involving exchange of data over the sockets using various
protocols. The Abstract Syntax Notation usage helped us in obtaining
a better understanding of the conceptual picture of transfer of

information over the network.

113

The development of the graphical user interface (GUI), in Linux, for
the servers was not only a new experience, but also enhanced our
knowledge of graphics and the inter-relationship of the various

graphical components in a user interface.

Finally, the study and development of the encryption algorithms and
the digest algorithms provided us an exposure to the field of
cryptology and network security, which was an outstanding
experience. The study and implementation of all the protocols,
including Kerberos with PKINIT extension, Internet Key Exchange and

Radius, was surely an extraordinary learning experience.

114

APPENDICES

APPENDIX A

The ASN structures used for the Ticket Granting Server are listed below:

KDC-REQ ::= SEQUENCE {
pvno[l] INTEGER,
msg-type[2] INTEGER,
padata[3] SEQUENCE OF PA-DATA OPTIONAL,
req-body[4] KDC-REQ-BODY
}

PA-DATA ::= SEQUENCE {
padata-type[1l] INTEGER,
padata-value[2] OCTET STRING

}

SignedData ::= SEQUENCE {
digestAlgorithms DigestAlgorithmlidentifiers,
encapContentinfo EncapsulatedContentinfo,
certificates [0] IMPLICIT CertificateSet OPTIONAL,
crls [1] IMPLICIT CertificateRevocationLists OPTIONAL,
signerinfos Signerinfos

}

DigestAlgorithmldentifier ::= Algorithmldentifier

Algorithmlidentifier ::= SEQUENCE {
algorithm OBJECT IDENTIFIER,

115

parameters ANY DEFINED BY algorithm OPTIONAL
}

EncapsulatedContentinfo ::= SEQUENCE {
eContentType ContentType,
eContent [0] EXPLICIT OCTET STRING OPTIONAL

}

AuthPack ::= SEQUENCE {
pkAuthenticator [0] PKAuthenticator,
clientPublicValue [1] SubjectPublicKkeylnfo OPTIONAL

}

PKAuthenticator ::= SEQUENCE {
kdcName [0] PrincipalName,
kdcRealm [1] Realm,
cusec [2] INTEGER,
ctime [3] KerberosTime,
nonce [4] INTEGER}

SubjectPublicKeylnfo ::= SEQUENCE {
algorithm Algorithmldentifier,
subjectPublicKey BIT STRING
-- for DH, equals public exponent (INTEGER encoded
-- as payload of BIT STRING)

}

Signerinfo ::= SEQUENCE {
version CMSVersion,
sid Signerldentifier,
digestAlgorithm DigestAlgorithmldentifier,

116

signatureAlgorithm SignatureAlgorithmldentifier,

signature SignatureValue

}

Signerldentifier ::= CHOICE {
issuerAndSerialNumber IssuerAndSerialNumber,

subjectKeyldentifier [0] SubjectKeyldentifier
}

SignatureValue ::= OCTET STRING

SignatureAlgorithmldentifier ::= Algorithmldentifier

KDC-REQ-BODY ::= SEQUENCE {
cname[1] PrincipalName OPTIONAL, -- Used only in AS-REQ
realm[2] Realm, -- Server's realm -- Also client's in AS-REQ
sname[3] PrincipalName OPTIONAL,
from[4] KerberosTime OPTIONAL,
till[5] KerberosTime,
nonce[7] INTEGER,
etype[8] SEQUENCE OF INTEGER, -- EncryptionType

}

KDC-REP ::= SEQUENCE {
pvno[O] INTEGER,
msg-type[1] INTEGER,
padata[2] SEQUENCE OF PA-DATA OPTIONAL,
crealm[3] Realm,
cname[4] PrincipalName,
ticket[5] Ticket,
enc-part[6] EncryptedData

117

PA-PK-AS-REP ::= CHOICE {
dhSignedData [0] SignedData,
encKeyPack [1] EnvelopedData,

}

KdcDHKeylnfo ::= SEQUENCE {
nonce [0] INTEGER,
subjectPublicKey [2] BIT STRING

}

Ticket ::= [APPLICATION 1] SEQUENCE {
tkt-vno[O] INTEGER,
realm[1] Realm,
sname([2] PrincipalName,
enc-part[3] EncryptedData

}

EncTicketPart ::= [APPLICATION 3] SEQUENCE {

key[1] EncryptionKey,
crealm[2] Realm,

cname[3] PrincipalName,
transited[4] TransitedEncoding,
authtime[5] KerberosTime,
endtime[7] KerberosTime

}

TransitedEncoding ::= SEQUENCE {

tr-type[0] INTEGER, -- must be registered

contents[1] OCTET STRING

118

EncKDCRepPart ::= SEQUENCE {
key[0] EncryptionKey,
last-req[1] LastReq,
nonce[2] INTEGER,
authtime[5] KerberosTime,
endtime[7] KerberosTime,
srealm[9] Realm,

sname[10] PrincipalName

}

Certificate ::= SEQUENCE {
tbsCertificate TBSCertificate,
signatureAlgorithm Algorithmldentifier,
signatureValue BIT STRING }
TBSCertificate ::= SEQUENCE {
version [0] EXPLICIT Version DEFAULT v1,
serialNumber CertificateSerialNumber,
signature Algorithmldentifier,
issuer Name,
validity Validity,
subject Name,
subjectPublicKeyInfo SubjectPublicKeylInfo,
issuerUniquelD [1] IMPLICIT Uniqueldentifier OPTIONAL, -- If present,
version shall be v2 or v3
subjectUniquelD [2] IMPLICIT Uniqueldentifier OPTIONAL, -- If
present, version shall be v2 or v3
extensions [3] EXPLICIT Extensions OPTIONAL -- If present, version
shall be v3

}

119

Version ::= INTEGER { v1(0), v2(1), v3(2) }

CertificateSerialNumber ::= INTEGER

Validity ::= SEQUENCE {
notBefore Time,

notAfter Time

}

Time ::= CHOICE {
utcTime UTCTime,
generalTime GeneralizedTime

}

Uniqueldentifier ::= BIT STRING

SubjectPublicKeyInfo ::= SEQUENCE {
algorithm Algorithmldentifier,
subjectPublicKey BIT STRING

}

Extensions ::= SEQUENCE SIZE (1..MAX) OF Extension

Extension ::= SEQUENCE {
extnID OBJECT IDENTIFIER,
critical BOOLEAN DEFAULT FALSE,
extnValue OCTET STRING

}

120

APPENDIX B

THe Sequence diagram for the TGS is shown below:

/O\
. MTA TGS ASN EncDec Digest Dbase
1: TGS-REQ -
2: Decode

3: Decoded info

4: Looku&client

5: Search results
e

P 6: [resp==FALSE] ‘

7: [resp==TRUE]

I~ Error(client not found) \

‘ 8: Seéich results

Lookup server

~

L 9: [resp=FALSE] ‘10: [resp==TRUE]
‘ Error(server not found) Check pa-data type

11: [pa-data type == NULL] 12: [pa-data type==PA-PK-AS-REQ]
Error(pre-auth required)

Send pa-data value

13: Decoded pa-data value

‘ 14: Check digest algo
»
<

15: [digest algo &= SHA-1] |16: [digest algo == SHA-1]

Error(invalid digest) Compare(certificate.cname,request.cname)

17: [resp == FALSE] 18: [resp==TRUE]
Error(client name mismatch) HObtain public key from certificate

19: Store public key

EO: Obtain signature from signerinfo

21: Send public key and signature

Lzz: Return SHA-1 digest

2£4: Return decoded AuthPack
<

[
|
\
‘ 25: Send PKAuthenticatod

@: Return SHA-1 digest
<<

‘ L3: Send encoded AuthPack
‘ 27: Compare digests

L 28: [resp==FALSE] ‘29; [resp==TRUE]
Error(invalid signature) | Check for possible replay
30: [replay] 31: ['replay]
‘ Error(preauthentication failed) Check for the p{gsiance of DH parameters

32: [DH parameters not present] 33: [DH parameters present]
T Error(DH param not found) : Check valid range for parameters

\
38: Send KdcDHkeyinfo
FQ: Encoded KdcDH keyinfo

40: Send encoded KdcDHkeyinf

o]
L ~)
‘41: Return SHA-1 digest j

‘ 42: Send digest

@: Return signature
<

: Generate session key

45: Compose client specific part of reply

46: Send client specific part of reply

47: Return encoded value

48: Send(encoded value,confounder,cksum)

49: Return MD5 digest

LO: Replace cksum

P

51: Send(concatenated bitstring,DH key)

|
‘ 52: Return encrypted reply part

L3: Compose EncTicketPart

54: Send EncTicketPart

55: Encoded value ‘
56: Send(encoded value,confounder,cksunl)

57: Return MD5 digest

58: Replace cksum

59: Send(concatenated bitstring,server secret key)

60: Return encrypted ticket part

‘61: Compose ticket

Ezz Compose reply

63: Send reply

E4: Return encoded reply

|
P 65: Send TGS-REP
’\

|
|
o
|
|
|
| |

122

APPENDIX C

10§

EEY IIE

RATI0S

M

FEASES

FHASE]

RES

: Client

||||||||||||||||||||||||||||||| |_||||||||||
1
=z | F
||||||||||||||||||||||||||||| = FE----—-—--—— ===
(=) -—
= =
_—
=
||||||||||||||||||||||||||||||| - —
||||||||||||||||||||||| — - - - |- _____
P —_—
= 3 2
—_—
= == o
(=2 = a
B, = £
= | = = g
T 3 o —
e i B R i B i
— =l = =
Fa— _n W =]
=2 = E_ = &
=) = = = |
= bl —_— = [= >
=1k E i = Z |2
o e -
||||||| P
uU“ (=2] m.l- -_—
— - = = = <
= z| =
= I
m —_ m
= = m
=3 = —
| P m
- - — _ =
—
= =
= e
— k4
e
= =
= =
=11 =
— a
[=

123

i
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
:
It

an Bey

55 gk

L

17 phaselmsg? 1 phase syl :|

1 18 phase | magd

L
rd

& encryptHash()
&8 sigred Bash

2% g B

19 parseMaq]

E 28 [errarl=prezent|getE
29 compareSiqedash
30 [erars =prezent] 3

setd RITOr Essage

|
|
]

AL ennorthessags

124

-
=
N
||| =1 |1 W
= o
e
-t
L3
|| 1— —
e
= -—
= =
e =
(== [==]
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII - - BHl--——"=E2 7 =
j— —
= = —_ = = =
= = = b = =
= =] i = ==
[==] = [==] - o
z =l = g
i = g =
|||||||||||||||||||||||||||| [= 1— — g
g & m
= =
u=
-
[=o
=
IIIIIIIIIIIIIIIIIIIIIIIIII = - - L L L L L L L L L L L D -
L)
=
L
h
p— p— —_ i
= = i > =
o— = =l =
H — — —
e | fre] £ Ed
e [Et [
m L L' Lr]
=25 = T T
£odi = = =
N = = s

3; phased sl

125

IIIIIIIIIIIIIIIIIIIII — [
=
a =
=
IIIIIIIIIIIIIIIIIII - - - - - - - - - - - L -
L=2u] o
—i =
[F =)
—— - - - - — - - - - — - — - - - - — = I F - — - — — — — — — — — — — — — — - - — - — - — —
L | Lo |
= =
o b
= [==]
ey —1 - =------ Bl - - m e mmmm e m = —— = — == - — — —1—
= — = —
—_— =3 = = f—]
= =
= = = = = = = | =
== B = = i & B
= =i (el = =i
= £ s = =]
= = e =
e =~ —
—_ -] [N =
um - — - 1 - — I 1— - - - - - = 1+ 5 1 } —
=
—
= pr=3
L
-
= = | a
| = =3 =| E| =
as iy = = as o
T b X
IIIIII arFrsse----—-—-"—-"—-"-"-"----------%S3F+F------"=S-|-55&] £e--"—-"—-"-"=-"=-"=-"=-=--
T = 2 e T =
o b= = o | =
= =] =
= = = B S| 5
L =T m-llw.- s —
| = Py = —_ =
= | = &2 | =
=
||||||| —1 - ———_—_————— - - — - - - - - —-E= - - - - - - - = =
e 1)
a, =3 = =
o = = e
bl = = o=
a -3 -3 2
= s g =
=] bl =
= —_— —_— =
= [= X
- = s &
o
= [)

126

T3 qetHash()
T cm‘mareSignedHash[

"
Z| =z
“ElETo oo =
e
E o - - - 1 F — —
—_ N
= =
o L
=l [==]
_-— -
_ = a
B] = | = £ &
_ ol _____ = = = =
||||||||| mIH.Ilﬁn Ly
L= le.n T
Lo] — ..‘.m -
m - -
= .w".,ﬂ =
L 5])
=3 z|- - - = z —
s z B =
= L) i T T = """~
: E = nm = - -----=-----
- - =1 = =
[N =) 5
o = = B & F
= = =
E. - =
£] %
o = Z
--— -= = £
1 = =
m. T+ - - F oo - - - - - - - - =
2 = S
-
s
N
||||||||||||||||| =]
T - - - - - - - - - --r - - - ==
n = -~ -~ -~ -"-—"-r-~""""7""""""="7"""""=""=""=""="”"=>?”="-""="===-7-
= | E o
= =
Eo i
—_e —
z
||||||||||| — - - - —
. o
= o
ﬁ (= 1)
= =
= =
= =
= —
a3 o
o [=
||||||| sy —
|||||||||||||||| -

127

80 [errartzpresent]

o
.

semd e wessage
1. senddck]

|
l
ol

82 Radiuz Ak

128

GLOSSARY

Announcement Server
An announcement server plays informational announcements in PacketCable network.
Announcements are needed for communications that do not complete and to provide

enhanced information services to the user.

Asymmetric Key An encryption key or a decryption key used in a public key

cryptography, where encryption and decryption keys are always distinct.

Authentication The process of verifying the claimed identity of an entity to another entity.

Authorization The act of giving access to a service or device if one has the permission to
have the access.

CBC Cipher block chaining mode is an option in block ciphers that combine (XOR) the
previous block of ciphertext with the current block of plaintext before
encrypting that block of the message.

Cipher An algorithm that transforms data between plaintext and ciphertext.

Ciphertext The (encrypted) message output from a cryptographic algorithm that is in a

format that is unintelligible.

Cleartext The original (unencrypted) state of a message or data.

CM DOCSIS Cable Modem.

CMS Cryptographic Message Syntax

129

CMS Call Management Server. Controls the audio call connections. Also called a Call
Agent in MGCP/SGCP terminology.

CMTS Cable Modem Termination System, the device at a cable head-end which
implements the DOCSIS RFI MAC protocol and connects to CMs over an HFC network.

Codec COder-DECoder

Cryptographic algorithm

An algorithm used to transfer text between plaintext and ciphertext.

Decipherment A procedure applied to ciphertext to translate it into plaintext.

Decryption A procedure applied to ciphertext to translate it into plaintext.

Decryption key The key in the cryptographic algorithm to translate the ciphertext to
plaintext

DHCP Dynamic Host Configuration Protocol.

Digital certificate A binding between an entity’s public key and one or more attributes
relating to its identity, also known as a public key certificate

Digital signature A data value generated by a public key algorithm based on the
contents of a block of data and a private key, yielding an individualized cryptographic
checksum

DNS Domain Name Server

DOCSIS Data Over Cable System Interface Specification.

130

DQoS Dynamic Quality of Service, i.e. assigned on the fly for each call depending on the

QoS requested

E-MTA Embedded MTA — a single node which contains both an MTA and a cable

modem.

Encipherment A method used to translate information in plaintext into ciphertext.

Encryption A method used to translate information in plaintext into ciphertext.

Encryption Key The key used in a cryptographic algorithm to translate the plaintext to

ciphertext.

Event Message Message capturing a single portion of a call connection

Header Protocol control information located at the beginning of a protocol data unit.

HFC Hybrid Fiber/Coaxial , HFC system is a broadband bi-directional shared media
transmission system using fiber trunks between the head-end and the fiber nodes, and
coaxial distribution from the fiber nodes to the customer locations.

HTTP Hyper Text Transfer Protocol. Refer to IETF RFC 1945 and RFC 2068.

IETF Internet Engineering Task Force. A body responsible, among other things, for

developing standards used in the Internet.

IKE Internet Key Exchange is a key management mechanism used to negotiate and

derive keys for SAs in IPSec.

IKE— A notation defined to refer to the use of IKE with pre-shared keys for authentication.

131

IKE+ A notation defined to refer to the use of IKE, which requires digital certificates for

authentication.

Integrity A way to ensure that information is not modified except by those who are

authorized to do so.

IP Internet Protocol. An Internet network-layer protocol.

IPSec Internet Protocol Security, a collection of Internet standards for protecting IP

packets with encryption and authentication.

ISDN Integrated Services Digital Network

ISUP ISDN User Part is a protocol within the SS7 suite of protocols that is used for call

signaling within an SS7 network.

ISTP Internet Signaling Transport Protocol

ISTP — User Any element, node, or software process that uses the ISTP stack for

signaling communications.

ITU International Telecommunication Union

Kerberos A secret-key network authentication protocol that uses a choice of

cryptographic algorithms for encryption and a centralized key database for authentication.

Key A mathematical value input into the selected cryptographic algorithm.

Key Exchange The swapping of public keys between entities to be used to encrypt

communication between the entities.

132

Key Management The process of distributing shared symmetric keys needed to run a

security protocol.

MAC Message Authentication Code - a fixed length data item that is sent together with a

message to ensure integrity, also known as a MIC.

MD5 Message Digest 5 - a one-way hash algorithm which maps variable length plaintext

into fixed length (16 byte) ciphertext.

MIB Management Information Base

MSO Multi-System Operator, a cable company that operates many head-end locations in

several cities.
MTA Media Terminal Adapter — contains the interface to a subscribers’ CPE, a network
interface, CODECs, and all signaling and encapsulation functions required for VolP

transport, class features signaling, and QoS signaling.

Nonce A random value used only once which is sent in a communications protocol

exchange to prevent replay attacks.

Non-Repudiation The ability to prevent a sender from denying later that he or she sent a

message or performed an action.

OSS Operations Systems Support. The back office software used for configuration,

performance, fault, accounting and security management.

PDU Protocol Data Unit

PKINIT The extension to the Kerberos protocol that provides a method for using public

key cryptography during initial authentication.

133

Proxy A facility that indirectly provides some service or acts as a representative in
delivering information there by eliminating a host from having to support the services

themselves.

PSTN Public Switched Telephone Network.

Public Key The key used in public key cryptography that belongs to an individual entity
and is distributed publicly. Other entities use this key to encrypt data to be sent to the

owner of the key.

Public Key Certificate
A binding between an entity’s public key and one or more attributes relating to its identity,

also known as a digital certificate.

Public Key Cryptography

A procedure that uses a pair of keys, a public key and a private key for encryption and
decryption, also known as asymmetric algorithm. A user’s public key is publicly available
for others to use to send a message to the owner of the key. A users private key is kept
secret and is the only key which can decrypt messages sent encrypted by the users

public key.

QoS Quality of Service, guarantees network bandwidth and availability for applications.
RADIUS Remote Access Dial-In User Service, an internet protocol (RFC 2138 and RFC
2139) originally designed for allowing users dial-in access to the internet through remote

Servers.

RKS Record Keeping Server, the device which collects and correlates the various Event
Messages

134

Secret Key The cryptographic key used in a symmetric key algorithm, which results in the
secrecy of the encrypted data depending solely upon keeping the key a secret, also

known as a symmetric key.

Session Key A cryptographic key intended to encrypt data for a limited period of time,

typically between a pair of entities.
TGS Ticket Granting Server used to grant Kerberos tickets.
UDP User Datagram Protocol, a connectionless protocol built upon Internet Protocol (IP).

VolIP Voice over IP

CHAPTER 14
References And Bibliography

135

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

PacketCable Product Specification, Cable Television Laboratories Inc.,November 25,
1998.

PacketCable Security Specification, PKT-SP-SEC-101-991201, Cable Television
Laboratories, Inc., December 1, 1999, http://www.PacketCable.com./

PacketCable 1.0 Architecture Framework Technical Report, PKT-TR-ARCH-I01-
991201, December 1, 1999, Cable Television Laboratories, Inc.,

http://www.PacketCable.com./

PacketCable Event Messages White Paper, PKT-OSS-TD01-990329.
C. Rigney, “RADIUS Accounting”, IETF RFC-2139, April 1997
PacketCable Architecture Call Flow Technical Report, On-Net MTA to On-Net MTA,

PKT-TR-CF-ON-ON-D01-991201, December 1, 1999, Cable Television Laboratories,

Inc., http://www.PacketCable.com./

PacketCable Architecture Call Flow Technical Report, On-Net MTA to PSTN, PKT-TR-
CF-ON-PSTN-D01-991201, December 1, 1999, Cable Television Laboratories, Inc.,

http://www.PacketCable.com/

PacketCable Architecture Call Flow Technical Report, PSTN to On-Net MTA, PKT-TR-
CF-PSTN-ON-D01-991201, December 1, 1999, Cable Television Laboratories, Inc.,

http://www.PacketCable.com/

Data Encryption Standard, FIPS-PUB 46-3, October 25, 1999.

“PacketCable MTA MIB,” PKT-SP-MIBS-MTA-101-991201, Cable Television

Laboratories, Inc., December 1, 1999. http://www.PacketCable.com./

136

[11] Simple Network Management Protocol Version 2 (SNMPv2), William Stallings.

[12] Networking Essentials, Tanenbaum.

[13] “PacketCable NCS MIB,” PKT-SP-MIBS-NCS-101-991201, Cable Television

Laboratories, Inc., December 1, 1999. http://www.PacketCable.com./

[14] SNMPv2-TM, RFC1449.

[15] SNMPv2-TC, RFC1903.

[16] Operations Support System Interface Specification Radio Frequency Interface, sp-0ssi-

rfi-i03-990113, Cable Television Laboratories, Inc., January 13, 1999,

http://www.CableLabs.com/

[17] A Simple Network Management Protocol (SNMP), IETF RFC-1157, May 1990.

[18] “PacketCable Provisioned QoS Specification,” PKT-SP-PQo0S-D02-990603, June 18,

1999, Cable Television Laboratories, Inc.

[19] PacketCable Event Messages, PKT-SP-EM-101-991201, December 1, 1999, Cable
Television Laboratories, Inc., http://www.PacketCable.com./

[20] PacketCable OSS Overview, PKT-TR-OSS-101-991201, December 1, 1999, Cable

Television Laboratories, Inc., http://www.PacketCable.com./

[21] HMAC: Keyed-Hashing for Message Authentication, IETF (Krawczyk, Bellare,and
Canetti), Internet Proposed Standard, RFC 2104, March 1996.

137

[22] The Kerberos Network Authentication Service (V5), IETF Draft, Clifford Neuman, John
Kohl, Theodore Ts'o, http://www.ietf.org/internet-drafts/draft-ietf-cat-kerberos-revisions-
04.txt, July, 1999.

[23] Public Key Cryptography for Initial Authentication in Kerberos, IETF Draft (B.Tung, C.

Neuman, J. Wray, A. Medvinsky, M. Hur, S. Medvinsky, J. Trostle), http://www.ietf.org/internet-

drafts/draft-ietf-cat-kerberos-pk-init-09.txt, July, 1999.

[24] Cryptographic Message Syntax, IETF (R. Housley), Internet Proposed Standard,
RFC 2630, June 1999.

[25] RADIUS Accounting, IETF (C. Rigney), Internet Proposed Standard, RFC 2139,April
1997.

[26] Secure Hash Algorithm, Department of Commerce, NIST, FIPS 180-1, April,1995.

[27] PKCS #1: RSA Encryption Standard. Version 1.5, RSA Laboratories, November, 1993.

[28] PKCS #1: RSA Encryption Standard. Version 2, RSA Laboratories, September, 1998.

[29] PKCS #7: Cryptographic Message Syntax Standard, RSA Laboratories,
November, 1993.

[30] The ESP CBC-Mode Cipher Algorithms, IETF (R. Pereira, R. Adams), Internet
Proposed Standard, RFC 2451, November 1998.

[31] The Use of HMAC-SHA-1-96 within ESP and AH, IETF (C. Madson, R. Glenn) ,Internet
Proposed Standard, RFC 2404, November 1998.

[32] The Internet Key Exchange (IKE), IETF (D. Harkins, D. Carrel), Internet
Proposed Standard, RFC 2409, November 1998.

138

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

PacketCable MTA MIB, PKT-SP-MIBS-MTA-101-991201, Cable Television

Laboratories, Inc., December 1, 1999. http://www.PacketCable.com./

Schneier “Applied Cryptography,” John Wiley & Sons Inc, second edition,1996.

Operations Support System Framework for Data Over Cable Services, TR-DOCS-
OSSIW08-961016, Cable Television Laboratories Inc., October 16, 1996.

PacketCable MTA Device Provisioning Specification, PKT-SP-PROV-101-

991201, December 1, 1999, Cable Television Laboratories, Inc.,
http://www.PacketCable.com./

RADIUS White paper, Lucent Technologies, February 2000.

Diffie-Hellman Key Exchange Method, RFC-2631.

Abstract Syntax Notation (ASN.1), France Telecom, 1997.

Linux Unleashed.

Redhat Unleashed.

Linux Complete Command Reference.

ASN.1, Communication between heterogeneous systems, Oliver Dubuisson, June 5,
2000.

ASN.1 Complete, Prof. John Larmouth, May 31, 1999.

139

