

Project Report

Visual Studio

D
T
M
F

D E V E L O P E R S T U D I O

Dual Tone Multiple Frequency Detector

Syndicate

Capt Muhammad Mukarram
Capt Mohsin Abbas
Capt Muhammad Haider Zaidi

Dissertation for Partial Fulfillment of requirements of
the National University of Sciences and Technology for

award of B.E degree in Software Engineering

 ii

Acknowledgments

 We would like to extend comprehensive gratitude for Almighty Allah who

bestowed upon us the great will. The inquisitive essence granted by Him has facilitated

the resolve to consummate this work.

 We wish to appreciate the valuable exhortation, persistent encouragement, and

sustained support as regards supervision to Dr Noman. Without his guidance and help

the completion of this work would have been impossible. We would also like to mention

here his patience to bear our numerous visits and telephone calls.

 Finally we would extend our appreciation to our session-mates who have

always given unending support, in the past three and a half years that we have been

together. It was only by the desire to excel of the entire class that today by the grace

of God we have attained enough knowledge to step into the challenging world of

information technology. We would also extend our gratitude to our families who

tolerated our extreme commitments through out our degree.

 iii

 TABLE OF CONTENTS

Contents Page
Number

Abstract 1

1 Introduction
1.1 Objectives
1.2 Report Layout

2

4

6

2 Simulator 7

2.1 Micro Engine Architecture and Working 8

2.2 Functional Units and Data Path
2.2.1 Add/Subtract and MAC Units
2.2.2 Logic Unit
2.2.3 Shifter Unit
2.2.4 Controller
2.2.5 Address Generation Unit
2.2.6 Data Register File

12

12

13

14

15

15

15

2.3 Simulator Execution Phases
2.3.1 Instruction Fetch
2.3.2 Execute Phase 1
2.3.3 Execute Phase 2

16

16

16

17

2.4 Design and implementation
2.4.1 Requirement Necessitated
2.4.2 Instruction Splitting

18

18

18

2.5 Class Diagram (UML) Simulator
2.5.1 Class:- CSimulate
2.5.2 Class:- CDRF
2.5.3 Class:- CController
2.5.4 Class:- CAddSubMacUnit
2.5.5 Class:- CAGU
2.5.6 Class:- CDataMemory
2.5.7 Class:- CProgMemory
2.5.8 Class:- CLogicShiftUnit
2.5.9 Class:- CComparator

21

22

23

24

26

26

28

28

29

29

3 Compiler 30

3.1 Phases of Compiler Development
3.1.1 Lexical Analysis
3.1.1.1 Role of Lexical Analyzer

31

32

32

 iv

3.1.2 Syntax Analysis
3.1.2.1 Context Free Grammar
3.1.2.2 Ambiguity in Grammar
3.1.2.3 Role of Parser
3.1.3 Semantic Analysis
3.1.4 Intermediate Code Generation
3.1.5 Code optimizer
3.1.6 Code Generator

33

33

34

36

37

37

37

37

3.2 Instruction Set for the Assembler
3.2.1 NOP
3.2.2 Load Instruction
3.2.3 Store Instruction
3.2.4 Add/Sub Instruction
3.2.5 MAC Instruction
3.2.6 AGU Instruction
3.2.7 Shifter Unit Instruction
3.2.8 Controller Instruction

38

38

38

39

39

41

42

43

44

3.3 Assembler Development
3.3.1 Lexical Analyzer for Assembler
3.3.2 Grammar for the Assembler
3.3.3 Recognition of Tokens
3.3.4 Lexical interface
3.3.5 Parser for Assembler
3.3.6 Error Recovery

44

46

47

50

52

54

55

3.4 Class Diagram (UML) Assembler
3.4.1 ClassName:-CLexAnalyzer
3.4.2 ClassName:-CParser
3.4.3 ClassName:-CSymbolTable
3.4.4 ClassName:-CSymbolEntry
3.4.5 ClassName:-CError

56

57

57

58

58

58

3.5 Compiler Development
3.5.1 Lexical Analyzer for the Compiler
3.5.2 Grammar for the Compiler
3.5.3 Type Check
3.5.4 Code Generation
3.5.5 Three Address Code
3.5.5.1 Syntax Directed Definition
3.5.5.2 Syntax Directed Translation

59

59

60

62

62

63

63

65

 v

3.5.6 Target Code Generation
3.5.6.1 Instruction Selection
3.5.6.2 Register Allocation
3.5.7 Class Diagram (UML) Compiler
3.5.7.1 ClassName:-Address Descriptor
3.5.7.2 ClassName:-Register Descriptor
3.5.7.3 ClassName:-Code Generator
3.5.7.4 ClassName:-Parser
3.5.7.5 ClassName:-Lexical Analyzer
3.5.7.6 ClassName:-Error
3.5.7.7 ClassName:-SymbolTable
3.6 Future recommendations

67

69

69

70

71

71

71

71

72

72

72

73

4 Software Manual
4.1 Menus
4.2 Compiler mode
4.3 Assembler Mode
4.4 Simulator
4.5 Test Program

74

74

75

76

77

78

References
ANNEX
Annex A INSTRUCTION SET FOR DTMF MICRO ENGINE
Annex B REGISTER SELECTION OF DRF
Annex C SELECTED INPUT FOR DRF SELECTION
Annex D SELECT OUTPUT OF AGU
Annex E OUTPUT OF INCREMENT DECREMENT UNIT
Annex F LOCATION FOR AGU FILE
Annex G OUTPUT OF LSU
Annex H SHIFTER SELECTION
Annex I OUTPUT OF ADDER MUX
Annex J OUTPUT OF AS 8
Annex K OUTPUT OF AS 7
Annex L OPERAND SELECTION
Annex M FUNCTION SELECTION
Annex O SPLIT INSTRUCTION
Annex A1 SYMBOL TABLE FOR ASSEMBLER

79

80

82

83

84

84

84

85

85

85

85

85

86

86

87

88

 vi

LIST OF FIGURES

FIGURE 1:- DTMF SCHEME

FIGURE 2:- PICTORIALVIEW OF THE PROJECT

FIGURE 3:- CYCLES PER INSTRUCTION

FIGURE 4:- DTMF MICRO ENGINE DATA PATH

FIGURE 5:- LOGIC UNIT

FIGURE 6:- DATA REGISTER FILE

FIGURE 7:- STAGES OF DTMF MICRO ENGINE

FIGURE 8:- CONTROLLER OF DTMF MICRO ENGINE

FIGURE 9:- ADDRESS GENERATION UNIT DTMF MICRO ENGINE

FIGURE10:- LANGUAGE PROCESSING HIERARCHY

FIGURE11:- STAGES OF COMPILER DEVELOPMENT

FIGURE12:- BLOCK DIAGRAM OF LEXICAL ANALYZER

FIGURE13:- PARSE TREE

FIGURE14:- PARSE TREE FOR AMBIGOUS GRAMMAR

FIGURE15:- BLOCK DIAGRAM OF ASSEMBLER

FIGURE16:- TRANSITION DIAGRAM

 1

Abstract

 The objective of this project was to develop and implement software simulator for a

specific Micro engine. Working on a simulator for Dual Tone Multiple Frequency Detector,

gave an immense opportunity to understand the working and the architecture of micro

engines, as well as that ofcompiler development.

 The Simulator is supposed to be testing software, enabling the designer to verify the

performance and optimality of the design, as well as check the clock cycles for instructions

executed as per the design constraints. The simulator software emulates the exact behavior of

the micro engine. Instructions are read into the Instruction register enabling the different

modules to work on the control signals, and values in the register file and memory updated

accordingly.

 The Input to the simulator is to be in the form of binary values as the machine only

understands its machine code. This requirement imposed the development of compiler and

assembler software for the specific dual tone multiple frequency detector. The purpose of

these two is primarily to convert the source program which shall be in the form of a C file to

the machine code, which could be fed into the simulator.

 2

1 INTRODUCTION

A total computer system includes both hardware and software .Hardware consists of

the physical components and all associated equipment. Software refers to the programs that

are written for the specific micro engine. Although the possibility of not being aware of the

hardware and writing the software or vice versa exits, but when the process of validation of

the hardware and of generating the machine language is concerned, knowledge of both the

aspects is overriding.

The scope of this project is primarily to exercise the knowledge of computer

architecture for the understanding and development of a simulator software for a micro

engine, recently designed and applying the knowledge of compiler design, to produce a

compiler and assembler for this new designed micro engine. A complete integrated

environment, of these three modules, to provide the user with the combined tools of

incorporating a Simulator and a Compiler plus assembler for the micro engine, is the goal of

this project. Subsequent chapters identify the approach to the problem and the design

parameters.

The need for a new micro engine for which these tools are being developed was

underlined due to the need of a high performance hardware for the detection of DTMF

(Dual Tone Multiple frequency). Dual Tone Multiple Frequency signaling is used in

telephone dialing, digital answering machine, computers and even in interactive banking

system. DTMF signaling represents each symbol on a telephone touchtone keypad (0-

Chapter

1

 3

9,A,B,C,D,*,#) using two sinusoidal tones, as shown in the figure on the next page . When a

key is pressed, a DTMF signal consisting of a row frequency tone plus a column frequency is

generated and transmitted.

The process of decoding this signal is performed at the exchange. The Micro

processors installed at the exchange performs number of operation to detect this signal. The

usually employed micro engines work on extensive floating point operation and thereby

require heavy computing power. The new design would work on an algorithm which

operates on fixed point operation written by Amey A.Deosthali , Shawn R. McCaslin and

Brial L.Evans, which was presented to IEEE in October 1999 for an optimized LOW –

COMPLEXITY ITU COMPLIANT DUAL TONE MULTIPLE FREQUENCY

DETECTOR.

Figure 1.DTMF SCHHEME

on 1.01

D # 0 *

C987

B 6 5 4

A321

Column

1209 1336 1447 1633 Hz

697 1336 1477 1633 H
z

 D T M F T O U C H T O N E S C H E M E

 4

1.1 OBJECTIVEs.
The objectives, defined by the hardware design team were to develop software

which would be able to check the design and working of the new micro engine.

Checking of the hardware design regarding it’s operations, are of utmost importance, as

the price of the first fabrication is extremely high. It could easily climb to figures like 2

million dollars. The expenditure entails the thorough and detailed working analysis, of

any new design. For this the Designs of new micro engines or hardware chips go

through extensive checks.

Simulator is also one of the methods to check the working of the hardware

design. This enables to check the various modules of the hardware design against the

input parameters passed to the simulator. It is to perform as per the design and comply

with any constraints the design may have. Each module of the micro engine enabled and

selected according to the control bits and different operands selected. Simulator software

would actually emulate the behavior of the designed micro engine.

Micro engines as known, operate on machine instructions. Machine instruction

inside the computer or the micro engine form a binary pattern, which if not impossible,

is extremely difficult to hand code. The requirement of emulating the new design

required that exact binary pattern be given as input to the simulator and each module

would work according to the machine instruction. It is preferable to write programs with

the more familiar symbols of alphanumeric character set , rather than hand coding binary

value. As a consequence, the need for translating user-oriented symbolic programs into

binary programs recognized by the hardware (based of the hardware design) necessitated

the development of an assembler.

 The requirement of the assembler was still short of providing a complete

integrated environment to complete the package. Today, when high level language are

available, it is preferred working on them. Assembly code is also relevantly difficult as

these languages provide the user a platform to write sequence of statements in a form

 5

that people prefer to think in, when solving a solution. However, each statement must be

translated into a sequence of binary instruction before the program can be executed in a

computer. Therefore the need of a compiler working on a subset of C (as per the design

constraints) was felt, in order to complete a package.

The task as defined above led to the selection of C and Visual C for the

implementation of the software. All three modules of the integrated environment use the

MFC classes of Visual C. For the purpose of carrying out analytic study of the problem

and to come up with a detailed design, Unified modeling language was selected and

Rational Rose software was used.

SIMULATOR

COMPILER

ASSEMBLER

Binary File served to the simulator as generated by the Assembler

Input program following C Syntax

Output from Compiler will be an Assembler file serving input to the assembler

PICTORIAL OVERVIEW OF THE PROJECT

Figure 2:- PICTORIAL VEIW OF THE PROJECT

 6

1.2 Report Layout.
This report has been divided into three chapters. The first chapter gives brief

introduction of the subject.

The second chapter of the report primarily covers the Simulator. It explains the

brief design of the micro engine for which this simulator has been designed. Explaining

the functional units in brief and the class diagram of the simulator, which was the

foundation for the development of the software for the simulator.

The third chapter of the report addresses issues related to the development of

the compiler and assembler. The instruction set of the micro engine and the technique

adopted to implement the design. It also describes the Grammar of the assembler and

that of the compiler.

The forth chapter primarily describes the way to operate the software. The user

who wishes to use the software will find the relevant details of the operating, all the three

modules in this chapter.

 7

2 SIMULATOR
The primary objective of the Project involved development of a simulator softawre. This

program would receive an input of a binary file format as generated by the assembler, and

would simulate the working of each instruction on the design parameters of the DTMF

engine. The value in the Register file and Address register including those of the data

memory and program memory being updated, and displayed at each clock cycle.

Simulator would actually operate on each instruction as it would handle each instruction.

The addition, multiplication, shifting and loop control is handled as these instructions are

being run on DTMF engine. This micro engine is designed to have one fetch stage, followed

by first execute and later the second execute stage. The simulator is to run in two modes of

operation, a debugger mode and a full simulation mode. The first one is a step by step

process in which each instruction is processed and the result displayed after each clock cycle.

In the full simulation mode, it operates on the entire input giving the result, in its register file

or as it may be.

The subsequent pages would be explaining the design based on different procedures

adopted..

Chapter

2

 8

2.1 Micro Engine Architectures and Working.
Numerous conventions or designed are followed as regards the architecture

of the micro engines. The first evolutionary design parameter were developed by

Von Neumann in the early forties of the twentieth century, know as the Von

Neumann Architecture.

Von Neumann architecture takes approx eight cycles to process a complete

instruction. These cycles or steps actually involve the steps to read the instruction

from the memory and execute the instruction. In the simplest fashion, it could be

best explained as fetch and execute . First fetch the instruction, as it would tell the

micro engine what exactly to do and next steps involve “what to do”. The

Instruction format therefore is also extremely important as this format should be of

the underline machine on which the instruction are actually to be performed.[ACH]

The usual steps proceed by first reading the instruction into the instruction

register (A register inside micro engines which holds the instruction to be processed).

This is fetched from the memory, another register is therefore used to keep track of

which instruction to be fetched next, and this register is termed as the PC or the

program counter. Unless told otherwise the Program counter is incremented in a

sequential manner in order to read the next instruction by default. This although may

not be the requirement each time, as the instruction of Jump or Conditional Jump

could be encountered. In that case the controller (a module) of the micro engine

works to identify where to jump and read the instruction for. Controller is also used

to identify the number of loops as given in loop statements.

The next stage is use to enable the working of the different modules/

components of the computer. This may involve the following action to be

performed.

 9

Figure 3: CYLES PER INSTRUCTION [a]

A1 Fetch I1 D/A Fetch Operand E PA

Instruction Cycle 1

Instruction Cycle 2

Von Neumann Architecture

D/A Fetch Op E D/A Fetch Op E

 A1 Fetch A2 Fetch I2 A3 Fetch I3

 Instruction 1 Instruction 2

Overlapped Instruction Fetch

D/A Fetch Op E/PA

D/A Fetch Op E/PA

D/A Fetch Op E/PA

I1

I2

I3

1 cycle per simple
2 cycles (approx)

A1 Get Address of next instr
Fetch I1 2,3 Fetch instruction from cache memory
D/A 4 Decode instruction, generate op address
Fetch Op 5,6 Fetch operand from cache memory
E 7 Execute instruction on operand
PA 8 Put result into the register

Legend

Pipelining

o CPU-Memory : Data may be transferred from CPU to memory or
from memory to CPU.

o CPU-I/O : Data may be transferred to or from the outside world by
transferring between the CPU and an Input/Output module.

o Data Processing : The CPU may perform some arithmetic or logic
operation on data.

o Control : An Instruction may specify that the sequence of the
instruction be altered as explained in the para above.

o Or a Combination of these actions.

 10

The figure above shows the different clock cycles per instruction taken by the

different architecture. The first one is the Von Neumann Architecture, which takes 8

cycles per simple instruction. Followed by the Overlapped instruction fetch which

takes 4 cycles per simple instruction.. The DTMF Micro Engine has been based on

the pipelining architecture. The first instruction would take three clock cycles to be

processed by subsequently each instruction would require only one clock cycle. This

achieves immense speed and performance over the Von Neumann architecture.

[PDP]

 The architecture of a micro processor in general consists of modules like

arithmetic unit, shifter and controllers. A summary of the major units used in the

DTMF micro engine are given below.

 Register File. Used to store the operands on which the different operations

are to be performed.

 ALU. The Arithmetic and logic unit is that part of the computer which

actually performs the arithmetic and logical operations on the data. All other

components of the computer system are there to mainly bring data into the ALU

for it to process and then to take the result back. Operations like Addition,

subtraction, multiplication , division are performed. The Logic Unit performs binary

operations like OR, XOR, AND. Shifter operation like shifting the binary bits are

performed by the Shifter logic Unit.

 Comparator. Used as part of the controller primarily to execute the

Conditional Jump statements.

 Controller. The specific job of determining the address of the next

instruction.

 11

Comparator

8 : 1

Signed/Unsiged
Cloud

MAC

3 : 2
Compressor

2 : 1

3 : 1

3 : 1

2 : 1

Carry Sum

+

4 : 1

3 : 1

SATURATION

SATURATION

16:1

A

To Controller

A

B

1616

3333

1717

{ r1,r0}
B

3333

33 33

Cin

32

32

C.V

A B

Immediate

16 16

32

WB~WB

>>1<<21<<

MINMAX 32

16

16

A

B

{r15,r14}

3 : 1
MINMAX

0

3232

16'h0

8:1Memory[31:0]

Immediate[15:0]

>>1

WB

2 : 1 2 : 1

2 : 1

Immediate

5 : 2

32323232

Immediate

A

{ r3,r2}

2 : 1

2 : 1

2 : 1
2 : 1

2 : 1
AS1

AS2
AS3

AS4

AS5

AS6

AS8AS7

SEL_IMM

SEL_IMM

ADD_IN

SAT1

SAT2

SHFT_CTRL

COND_JMP

SEL_LOG

LSU_OUT

DRF_IN_SEL
DRF

Barrel
Shifter

5
16

16'h0

B

Figure 4: DTMF DATA PATH [b]

 12

2.2 Functional Units and Data Path
The entire design of the DTMF micro engine is explained below. This design was the

base for the development of the Simulator software. [DTMF]

The design of the DTMF micro engine has three main functional units as listed below.

o Addition/Subtraction and MAC unit.

o Logic and shifter unit.

o Comparator.

2.2.1. Addition / Subtraction and MAC Unit
This is a unit which is connected in parallel and is a combination of a MAC unit and an

add./Sub unit connected in parallel. The carry and sum outputs of these units are

selected as per the operation.

MAC Unit. The MAC unit is capable of 16 bit signed and unsigned multiplication and

accumulation. The two operands are fetched from the DRF (Data Register File) through

mux A and mux B. A 6 bit immediate operand can also be fed as an operand to the Mac

Unit instead of operand B. For accumulator purpose the last two registers of the register

file, register 14 and 15 are used.

Add/Sub unit. The add/sub unit with an adder can perform the following operations:

o Add with Saturation

o Add with carry and Saturation

o Subtract with Saturation

o Subtract with Borrow and Saturation

The selection of these operations are selected by Correction vector(CV). The

add/sub unit is capable of handling either 32 bit or 16 bits operand. The first four

 13

registers of the data register file are reserved for the two 32 but operands. These

operands can be directly to the add/sub unit. If 16 bit addition is required the two

operands are loaded from the register file directly or a 6 bit immediate can also be

fed instead of operand B.

Adder. In the Execution phase 2, the 33 bits carry and sum from the respective

registers are added together in a 33 bit adder. The output of the adder is input to the

saturation unit, which checks the overflow of the addition output. The adder has an

option of carry , along with the provision of carry out. This can be used when carry

after the addition of two numbers is again used in another operation

Saturation unit. The responsibility of this logic is to control the maximum and

the minim range values. As the operation of Adder or that of the shifter may yield a

result outside the allowed range. This can be checked and compensated by the

saturation unit.

Shift unit. This instruction is used to load a 32 bit memory data in two

consecutive register of DRF. Here i= 0,2,4 to 14 and j= 0 to 7. The LSB of the

address from the ARF verifies whether to

take the upper 32 bits or lower 32 bits.

2.2.2. LOGIC UNIT

 This unit is connected in parallel with the

Add/Sub and MAC unit. It consists of the

logical unit and a Barrel shifter connected

in parallel. The inputs to this unit are two

16 bits operands A and B fetched from

Mux A and B or a 5 bit immediate value

instead of operand B. Figure 5: LOGIC UNIT[d]

 14

Logic Unit. This unit primarily performs simple logical operations. Three logical

gates XOR,AND, and OR , are connected in parallel. The selection of which is done

through a multiplexer.

2.2.3. SHIFTER UNIT

 The shifter unit consists of two types of shifters connected in parallel. The first one

is a simple 32-bit right shifter and the other is barrel shifter .

32-bit Shifter. This unit shifts the input (32 bit) by one bit to the right. Both

operands are combined to make a 32 bit input data. By this shift operation the LSB

of operand A replaces the MSB of operand B and the sign of the operand one is

extended.

Barrel Shifter. The barrel shifter is placed in parallel with the logical unit. The

input to the Barrel shifter is a 16 bit signed/unsigned value which is called shift

operand. The barrel shifter can perform a maximum of 16-bit left or 16 bit right

arithmetic/logical shifts on 16-bit signed/unsigned operand. The control signal for

the shifter consists:

o Shift Value : Encoded in 5 bit 2,s complement and selects how

much shift is to be performed

o Shift direction : A single bit control to select whether to shift in

right or left direction

o Shift type : A single bit control to perform logical shift or arithmetic

shift.

o Saturation on/off : A single bit control to select whether to use

the saturation check or not on the shifted operand.

 15

2.2.4. COMPARATOR

A comparator is connected in parallel with the above two units and is used for

conditional jump instruction. The output of the comparator is sent to the controller

for the execution of the jump instruction. The inputs are two 16 bits operands A and

B fetched from the register file. The comparator is connected to an 8:1 multiplexer

which is used to specify the jump condition for selection of comparator output to be

sent to the controller.

2.2.5. ADDRESS GENERATION UNIT (AGU)

 The AGU of the DTMF micro engine has a simple design consisting of eight

address register. An increment / decrement unit and output multiplexers and an

input de-multiplexer. Each register is 10 bits wide.

2.2.6. DATA REGISTER FILE

The micro engine has one data register file which constitutes of 16 Registers each

having a width of 16 bits(Each register can hold a word of 16 bits). A 16 bit word

and a 32 bit word

although can both be

written on these

registers. For 32 bit

operation two register

(consecutive) are used,

like register r0,r1 could

both be used to store a 32 bit word. However for read out only the first two pair are

Figure 6: DATA REGISTER FILE [e]

 16

INSTRUCTION FETCH

EXECUTE ONE

EXECUTE TWO

THREE

STAGE

PIPELINE

reserved i.e. register r0 through to register r4. The two 16 bit operations can be read

out from any one of 16 registers of DRF through MUX A and MUX B. The truth

table for the two MUX is attached as Annex B.

2.3 Simulator Execution phases

The simulator has three Stages according to the design. These three stages are discussed

in detail below.

2.3.1. Instruction Fetch

This process is the first in the simulator which enables the Instruction Register to be

loaded with the instruction. The program memory is loaded with the binary file

generated by the assembler. As the instruction is fetched into the Instruction register

the next phase is set ready to be executed

2.3.2. Execute Phase 1 (First)

The second stage involves the following steps:

o Operand select signals for Data path include

 Data Register File read port select signals (for MUX A and
MUX B)

Figure 7: STGES OF DTMF

 17

 Adder/Subtractor mode signal

 MAC Signal

 Logical unit signal

o Control signal to Shifter unit

 6-bit immediate value and select immediate signal.

 Control Signals for Loop Setup (including loop setup signal, end
address and the loop count value to be stored in the respective
registers).

 Control signal for Loop start (repeat bit)

 Control signals to next address generation and the 11 bit
absolute value for jump (conditional/unconditional)

o AGU control signals including

 Address register file read port select signals

 Address registers write enables in case of increment/decrement

 Inc/dec signal for AGU Increment/Decrement unit

o Memory

 Read and write signals

 Address to memory for load/store

 Data to memory for storing

2.3.3 Execution Phase 2 (EX 2)

 The Third stage of Execution 2 involved the following steps.

o Data Register File Write enabled

o Write enable signals

o Input (from memory, add/sub and MAC unit, Logic and Shifter unit,
immediate) select signals

o Adder signal

o Select Logic/Shifter signal .)

o ARF write enable in case of load from memory or move from ARF.

 18

2.4 Design And Implementation

2.4.1. Requirements Necessitated

The necessary requirements for the simulator as envisaged by the design and

requirement criteria are defined below:

o Data register File values to be viewed at each clock cycle.

o Address register value to be available at each clock cycle, and checking the

working of the AGU.

o Relating the instruction handling by each functional unit of the design

against desired results

o Cycle count for instruction

o Depict entire working of DTMF Design giving the values of Program

counter, Stack pointer and Instruction Register at each cycle.

2.4.2. Instruction Splitting

The next step requires that the instruction must be read and the value of each

subset be read out, and stores separately. Value of the instruction register is

temporarily saved in order to read all the separate control signals and values of

operands or immediate value as the case may be. As the IR is read it is also required

to identify which type of instruction it is .Therefore it is imperative that all different

combinations of instructions are read. The subject micro instruction has four major

formats for the instruction (combinations are shown below)

 19

2 bits 2 bits 1 bit 3 bits 4 bits 9 bits 2 bits 4 bits 5 bits

[31:30] [29:28] [27] [26:24] [23:20] [19:11] [10:9] [8:5] [4:0]

Normal Normal Read/Write Selection
of DRF

input

Selection
bits of
Op 1

Control signals to
Add/Subtract and MAC
units,AGU Comparator

 Selection
bits of Op

2

Storing
Operands
into DRF

Set
Status

AGU
Enable

6bit Immediate Operand
Acc Reset [20:5]16 bit Immediate

Repeat Loop
initial

9[24:16] Loop Count

[15:5] Loop end Address

Jump

Jump
Address

MSB
[19:17]

Jump Cond

8[16:9] Jump
Address

LSBs
Table 1: Instruction Breakdown

The values of each subset like the instruction decoder 1 and 2 etc are all read

into there respective register by masking the IR register value with the hexadecimal

numbers. The method adopted is described below by extracting out the value of the

instruction decoder 1 from the IR register.

o Store the value of the IR temporarily.

o Shift this value by a factor(times) of 30 to the right.

 IR >> 30

 Previous Value

 1000 0111 0000 0000 0000 0000 0010 0001

 After Shift

 0000 0000 0000 0000 0000 0000 0000 0010

o Store this value in the Instruction Decoder after anding it with (binary 3)

 0000 0000 0000 0000 0000 0000 0000 0011.

 20

o The value of the Instruction Decoder 1 (first 2 bits) are extracted out of IR.

 0000 0000 0000 0000 0000 0000 0000 0010

 0000 0000 0000 0000 0000 0000 0000 0011

 0000 0000 0000 0000 0000 0000 0000 0010

In this way all the possible value all extracted out. After analyzing the different

parameter the relevant process required are activated. Like an entry of all zeros in

the control field (9 bits) enable the simulator to understand that the last instruction

has been reached and the program must be terminated. Refer to Annex O.

 The instruction is decoded to enable the different modules of the micro

engine, to operate and select the preferred input and output lines. To make this

procedure simpler and follow the lines of the hardware design, for each component

a class was made, which behaves similar to the hardware module. The next pages

depicts the class diagram of the Simulator with brief explanation of each.

 21

2.5 Class Diagram (UML) Simulator

Classes

o CSimulate

o CLogicShiftUnit

o CController

o CDataMemory

o CComparator

o CDRF

o CAddSubMacUnit

o CAGU

o CProgMemory

CLogicShiftUnit
BarrelShiftResult : type = int
LogicResult : type = int
LSUResult : type = int
shiftResult : type = int

logicShift()
selectResult()

CDataMemory
dataMem : type = unsigned int[1000]

getData32()
getDataHi16()
getDataLo16()
loadData32()
loadDataHi16()
loadDataLo16()

CComparator

compare()

CController
endAddress : type = int
loopcount : type = int[]
NAmux : type = int
stackPointer : type = int
startAddress : type = int
name2 : type = initval

initLoop()
nextAddress()
startAddress()

CAddSubMacUnit
addcarry : type = int
<addsum : type = int
carry : type = int
maccarry : type = int
macsum : type = int
result : type = int
resultcarry : type = int
sum : type = int

addSubMacCycle()
addShiftSat()

CDRF
DRF : type = char[]

getA()
getAB()
getAcc()
getB()
getB32()
input()
resetAcc()
getA10()

CAGU
ARF : type = int[]

inputAddress()
outputAddress()
updateARegister()

CProgMemory
IP : type = unsigned int
progMemory : type = unsigned int[2000]

getInstr()
loadInstr()

CSimulate

fetch()
execute1()
execute2()

 22

2.5.1. CLASS NAME :- CSimulate:-
Class Operation:-

 Fetch
 Execute1
 Execute

Class Description:-

The entire operation of the simulator is controlled by this class. Principally this is the class

which enforces the pipelining operation of the Simulator, that is the repetitive cycle of

Fetch, and two execute cycles.

Fetch is responsible for reading the instruction into the instruction register from the

program memory. Whereas all operations of Execute One, which are reading operands

from the Data register, enabling Subtractor, Adder, or the multiplication unit. The

operation of the Shifters and the comparator is also initialized in this cycle.

The Execute two is responsible for the carry and sum output of Add/Sub unit or Mac

unit, which are added in adder and saturation unit works in this cycle. The output of the

functional units is written to the Register File or memory.

 23

2.5.2. CLASS NAME: - CDRF:-
Class Operation:-

 getA() getAB() getAcc() getB() get32() input()
 resetAcc() getA10()

Class Description:-

This Class represents the Data Register File of the Simulator. The DRF has 16 register

and this register file is depicted by the character array of 16. The entire array is equivalent

to the DRF and is used to store the value of the Data Registers. These operations refer to

the different requirement of the procedure involve in extracting this data out of the DRF

getA(), simply return the value of the operand 1, as does the operation getB() on the

operand 2. getAB() return the concatenated value of operand one and operand two.

Operand takes the last 16 LSB where as operand two takes first sixteen operands,

returning a 32 bit value. getA10() concatenates the value of the first two registers and

returns the concatenated value.get32() operation is performed to concatenate register two

and three.

Accumulator is by default the last two registers of the DRF, these are register 14 and 15.

Function getAcc() concatenates the result of the two operand of DRF 14 and 15.

Whereas the resetAcc(), reset the accumulator to zero.

The input(), operation is required to input the values in the data register, that is to store

the result in the data register. This operation is primarily performing the operation of the

truth table given in the Annex N.

 24

2.5.3. CLASS NAME: - CCONTROLLER:-
 Class Operation:-

 initLoop()
 nextAddress()

startAddress()

Class Description:-

The controller of DTMF Micro engine does the job of a program sequencer. It is

responsible for computing the address and then fetching the next instruction from the

program memory. The next address instruction computation can use the decision from a

conditional branch or from the zero-overhead looping logic or simply the next sequential

instruction.

The Operations above are responsible for keeping track of the next instruction to be

fetched the start and the end address including the number of loop counts that need to be

processed. The function of the Controller could be best understood after studying the

architecture of the controller.

The Controller has three main functions to perform. Fetch the next instruction, process a

conditional jump and or process a unconditional jump. For the later two cases it needs to

keep track of the start and the end address as well as decrement the loop count as it is

performed. The architecture is designed to support four nested loops therefore, it has the

capacity to store these values in three stack register files as marked on the figure on the

controller on the next page.

 25

/

// /

PC Register

/
+1

/ Program
RAM

32 x 2k

IR

EXR

/

00
10
01/11

Load loop start
address, flag

Loop start address

Jump
signal

11
11

11

11

32

To agu control signals, read/write port
To memory control signals

To data register file read ports

To Adder control signals

To data register file write ports

Stack Pointer

clkrst

Push Down Counter

\

NOR

11

End
Address

Reg

/

End
Address

Stack

/11

2
\

PC

XOR

\

11

NOR

\ 11
Comparator

Decoder

PC-1
/

Start
Address

Stack

/11

Enable

Push

\

count Reg Down Counter
9 \ 9

Decoder

/

Loop Count
Stack/9

2

Enable

clk
Dec

Zero
Check
Logic

9

9

AND

Push

load

Current

incremented

Current

incremented
or Current

Current

/

9
count Reg

\

Push or
load SA

reset

 To Loop Count
Stack

 Loop End Flag

AND

To Stack
Pointer

Loop End
Flag

Push OR
Loop End

Flag

clk

rst

To Down
Counter

load Start Address
to NAMux

&

clk
rst

/
/

Current

Incremented

2

2

/ 11

2

push

Load loop start
address, flag

en

rst en

rst
en

rst
en

rsten

rst
rst rst

Next Address

address

11

11

NAMuxen
rst

Count Reg

9

End address Reg

11
rsten

ldld rsten

address register write ports for load

From
Comparator

AND

Enable
Jump To Add/Sub unit and MAC unit

To DRF input select MUX

Figure 8: CONTROLLER OF DTMF MICRO ENGINE[f]

 26

2.5.4. CLASS NAME: - CAddSubMacUnit:-
 Class Operation:-

 addSubMacCycle()
 addShiftSat()

Class Description:-

The primary function of class CAddSubMacUnit is to exhibit the behavior of the Adder,

the MAC unit. The operation addSubMacCycle(), select the required input, either from

the MAC Unit or the adder unit. This also enable the Write Back Option if required. The

write option is cycle stealing, instead of the result being fed back into the DRF or the

Memory, it is directly feed back into the MAC/Adder.

This addShiftSat() operation is responsible for the shifting of the operands feed to it if

required, and is also responsible for keeping a check on the range of the operation. If the

range exceed the maximum allowed value or is less than the least allowed value, the

operands are automatically assigned the highest or the least number. The Max allowed

range is:-

2.5.5. CLASS NAME: - CAGU
 Class Operation:-

 inputAddress ()
 outputAddress ()
 updateARegister ()

Class Description:-

The AGU of the DTMF micro engine has a simple design consisting of an Address

Register File (ARF), An Increment/Decrement unit, input and output multiplexers

and an input demultiplexer.

Positive saturation (0x7fffffff)

Negative saturation (0x80000000)

 27

The ARF consists of 8 registers of 10 bits width to store address of the data

memory of 1k words. The feedback gives the provision of increment or

decrement of an address from ARF. The AGU shown in the following diagram:-

:

T

h

e

o

p

e

r

a

t

i

o

n

i

nputAdress() is required to store the value in the Address Register File. Whereas

the operation outputAddress() is primarily responsible for reading the value

stored in any of the Address Register. The last operation of updateARegister()

is used to store the incremented or the decremented vale of the address register as

the requirement may be.

8:1
2:1

++/--

Input from Datapath To Address Bus of Data
Memory

3

2

8:1

Enable ar0

Enable ar1

Enable ar2

Enable ar3

Enable ar4

Enable ar5

Enable ar6

Enable ar7

Enable ARF

3

Address Register File
(ARF)

AGU_IN

Increment/Decrement
Unit

Figure 9:- ADDRESS GENERATION UNIT DTMF MICRO ENGINE

 28

2.5.6. CLASS NAME: - CDataMemory
 Class Operation:-

 getData32() getDataHi16() getDataLo16()
 loadData32() loadDataHi16() loadDataLo16()

Class Description:-

Data Memory consists of single ported Synchronous RAM 4kB in size with 64-bit data

bus. The operations of Class Data Memory are responsible for either reading from the

memory 32 bit data or 16 bit data, Hi Word or Low Word, first sixteen bits or the last

sixteen bits. Similarly the load operation loads the Data Memory with required data, as 32

bit or in case of High 16 or Low 16 bit, it is loaded to the desired address inside the data

memory.

2.5.7. CLASS NAME: - CProgMemory
 Class Operation:-

 getInstru ()
 loadInstr ()

Class Description:-

The function of this class is to read from the program memory or two write back to the

program memory. These two operations are performed by the getInstr() and the

loadinstruction() methods of this class.

 29

2.5.8. CLASS NAME: - CLogicShiftUnit
 Class Operation:-

 logicShift ()
 selectResult ()

Class Description:-

The Logic, shift unit is connected in parallel with the Add/Sub and MAC unit. This unit

consists of a logical unit and a Barrel Shifter connected in Parallel. The inputs to this unit

are two 16 bits operands A and B fetch through MUX A and B or a 5 bit immediate value

sign extended to 16 bits which can be selected instead of operand B.

2.5.9. CLASS NAME: - CComparator
 Class Operation:-

 Compare()

Class Description:-

A comparator is connected in parallel with Register File location and Data Register File

Input Select and is used for the conditional jump instruction. The output of the

comparator is sent to the controller for execution of jump instruction, which is

performed by the compare() operation. The inputs are two 16 bits operands A and B

fetch from the register file. The comparator is connected to an 8:1 multiplexer which is

used to specify the jump condition for selection of comparator outputs to be sent to the

controller. The truth table of the conditional jump is as follows:

Bits Operation
000 0 (No Jump)
001 A < B
010 A > B
011 A = = B
100 A < = B
101 A > = B
110 A ! = B
111 1 (Unconditional Jump)

Table 2: Comparator Truth Table

 30

3. COMPILER & ASSEMBLER

To feed any micro engine, the machine language is used. Strictly speaking machine

language is a binary program of category one. Because of the simple equivalency between

binary and octal or hexadecimal representation, it is customary to refer to category 2 as

machine language. The task of writing machine language is extremely difficult and could be

termed as next to impossible.[ACH]

In order to provide the programmers a better working environment, a programming

language is defined by a set of rules. Users must conform with all format rules of the language

if they are desirous of translating the programs correctly to the machine language of the micro

engine they want to work on.

In today’s environment the availability of high level languages and their use facilitate the

working environment of the programmers. These are special languages developed to reflect

the procedures used in the solution of a problem rather than be concerned with the computer

hardware behavior. Examples of high level language include, BASIC, C/C++, and

FORTRAN etc. However each statement must be translated into a sequence of binary

instructions before the program can be executed on a micro processor. The job of converting

the high level languages into machine languages is performed by compilers. A typical

hierarchy of this process of conversion is shown in the diagram below, incorporating

compiler and assembler together.

Chapter

3

 31

3.1 Phases of Compiler Development
Conceptually, a compiler operates in phases, each of which transforms the

source program from one representation another. A typical decomposition is shown in

the diagram below.[CMP]

Figure 11: STAGES OF COMPILER DEVELOPMEWNT – COMPILERS BY ALFERED V.AHO

 The first three phases, deal with the analysis portion of the compiler are discussed

below.

Lexical analyzer

Syntax Analyzer

Semantic Analyzer

Intermediate Code Generator

Code Optimizer

Code Generator

Symbol Table Error Handler

compiler

assembler

Loader/linker

MACHINE CODE

SOURCE PROGRAM

Figure : Language Processing Hierarchy

 32

3.1.1. Lexical Analysis

Linear Analysis is called lexical Analysis. In a compiler or even in an assembler

the lexical analyzer converts the stream of input characters, which are given as the source

program into a stream of tokens, which are given to the next phase for the syntax

analysis. While talking about the lexical analysis, the terms, “token” and “pattern” have

specific meaning . In most of the programming languages the following constructs are

treated as tokens : keywords, operators, identifiers, constants, literal strings and

punctuation strings. A Pattern is a rule describing the set of lexemes that can represent a

particular token in the source program. A pattern for the keyword “if” would be the same

keyword if , but for the “relational operators” a pattern would be all the relational

operators i.e. <,>,<>,<=,>=,!=.

3.1.1.1. Role of the Lexical Analyzer
 Lexical Analyzer’s role primarily revolves along the question of identifying the

tokens as depicted or as allowed by the Grammar of the language. Lexical Analyzer

being the first phase of the design for assembler as well as the compiler primarily

depends upon the Grammar of the language as defined. In the case of the assembler

for the DTMF micro engine this is the instruction set as per Annex A.

Since the lexical analyzer reads the source text it also clears white spaces or

comments (it ignores them). It also keeps tracks of the line numbers and errors that

are reported by the lexical analyzer with the corresponding line number. Upon

receiving a “get token”

command from the parser the

lexical analyzer reads the input

characters till it can identify the

sent token.

In the statement :

If (rm < rn) goto label1

Get next token

LEXICAL
ANALYZER

PARSER

SYMBOL
TABLE

token

Figure 12: BLOCK DIAGRAM OF LEXICAL ANALYZER

 33

The lexical analyzer would analyze this statement and would in turn make

different tokens for the parser as given below.

Keyword If

Register rm.

Register rn.

Keyword goto.

Label label1.

3.1.2. Syntax Analysis
Every programming language has rules that prescribe the syntactic structure of well

formed programs. The syntax of the programming language constructs can be defined in

different notation. The usual technique used is addressed as the context free grammars,

or BNF notation. Grammars are capable of producing most of the syntax of

programming languages, but not all there is a requirement of other types of check also.

The syntax of the language can be checked by the grammar but for semantic rules

different types of check like type check, name related checks etc are performed.[CMP]

3.1.2.1. Context Free Grammar
A grammar describes the hierarchical structure of many programming languages.

For example an if-else statement in C has the form

If (expression) statement else statement

This implies , that the statement is the concatenation of the keyword if, an

opening parenthesis, an expression, a closing parenthesis, a statement, the keyword

else, and another statement. Using the variable expr to denote expression and stmt to

denote statement , this structuring rule can be expressed as

Stmt → if (expr) stmt else stmt

In this statement the arrow can be read as can have the form. Such a rule is called

a production. In a production lexical elements keyword if and parenthesis are called

 34

tokens, variables like expr and stmt represent sequence of token called the non

terminal. A context free grammar could be defined as having four components

o A set of tokens , know as the terminal.

o A set of non terminals .

o A set of productions where each production consists of a non terminal called

the left side of the production and an arrow, and a sequence of tokens and or

non terminals, called the right side of production.

The above expression can be expressed in a parse tree as

Figure 13:-Parse Tree

3.1.2.2. Ambiguity in Grammar
A grammar that produces more than one parse tree for some production is said to

be ambiguous. For certain type of parsers this ambiguity needs to removed. The

parse used in the assembler and the compiler requires that the ambiguity be

removed.As an example the ambiguity from the following grammar would be

removed.

Stmt → if expr then stmt
 | if exor then stmt else stmt
 | if exor then stmt
 | other

stmt

if (expr) stmt else stmt

 35

Here “other” stands for any other statement. According to this grammar, the

compound conditional statement is allowed

if expr then stmt else if expr then stmt else stmt

 This statement yields two parse tree as shown below.

This ambiguity can be removed by rearranging the above defined

grammar as.

Stmt → matched _ stmt

| unmatched statement

 matched_stmt → if expr the matched_ stmt else matched_stmt

 | other

 unmatched_stmt → if expr then stmt

 | if expr then matched_stmt else unmatched_stmt

stmt

if expr then stmt

 if expr then stmt else stmt

stmt

 if expr then stmt else stmt

if expr then stmt

Figure14:- Two parse trees for an ambiguous sentence

 36

3.1.2.3. Role of The Parser
 Every programming language has rules that prescribe the syntactic structure of

programs that are well formed. With the help of the Grammar in certain cases we

can very easily and efficiently develop a parser for the subject language. Parser

would obtain the strings from the lexical analyzer as shown in diagram below and

verifies that the string can be generated by the grammar of the source program.

Parser is also responsible for reporting most of the errors checking and recovery.

Figure15: BLOCK DIAGRAM OF ASSEMBLER

There are a number of techniques involved as regards the development of

parser. The one used in the development of the assembler for the DTMF micro

engine will only be described.

 Predictive parser follows the scheme of Recursive – descent parsing, which is a

top down method of syntax analysis in which we execute a set of recursive

procedures to process the input. A procedure is associated with each non terminal

of the grammar. (stmt) as given in the grammar of the language above. A

procedure match is used to match input token with that as defined in the

procedure of that non- terminal. If a match occurs the next token is fetched and

matched against the next argument. Thus this smooth process of fetching a token

form the lexical analyzer and matching this token with the syntax of the Grammar

as defined in the procedure of the respective non terminals; allows the process of

Next token

tokens
LEXICAL

ANALYZER

PARSER

Reads tokens
from the source.

ERROR

RECOVERY
&

BINARY

FILE
OUTPUT

 37

syntax validation. In predictive parsing methodology the careful elimination of left

recursion from the grammar is of paramount importance. Parser thereby enforces

the syntactic rules on the source language.

Besides the error recovery routines performed by the parser the predictive

parser also generates the binary file. The method of generating the binary code for

the instruction set is defined in detailed as below.

3.1.3. Semantic Analyzer
This phase checks the program for the semantic errors and gathers type information.

An important component of semantic analysis is type checking. Here the compiler checks

that each operator has operands that are permitted by the source language specification. A

compiler may allow two operand to be only integer for multiplication , such checks are

ensured by type checking.

3.1.4. Intermediate code Generation
After syntax and semantic analysis some compiler generate an explicit intermediate

representation of the source program. In order to make a compiler relocatable, that is to

be used for some other micro engine, this practice is used. As it is used in the case of

compiler for the DTMF micro engine. The intermediate code generation is explained in

the compiler development section of this report.

3.1.5. Code Optimization
 The code optimization phase attempts to improve the intermediate code, so that

faster-running machine code will result. There is a great amount of code optimization that

few compiler perform. In case of the DTMF micro engine, there is no code optimization

incorporated.

3.1.6. Code Generation
 The last phase incorporate the generation of the target code. Memory locations are

selected for each of variables, and the code for the subject machine is generated.

 38

3.2 Instruction Set for Assembler
Instructions are directly fetched and there is no decoding involved. The signals fetched

from the instruction set in the first cycle are described below. For the format of 32 bit

instruction set please refer to Annex A. This instruction set was the base for the development

of the assembler. It provided the source language and the target machine code. The Grammar

for the assembler was based on this instruction set.[IDTMF]

NOP INSTRUCTION
3.2.1. NOP means no operation. In case when no operation is required NOP

instruction is given. For NOP instruction the 32 bits of the instruction are divided

into the following fields as show in Annex A.

LOAD INSTRUCTIONS

3.2.2. Load Instructions are used for loading the operand in the Data Register File from

the Data Memory.

ri = HighWord (*arj[++/--]). In this instruction “ri” (where I = o to 15) represents

the location of the register of the DRF in which the data is to be stored. “arj” (where j

= 0 to 7) represents the location of the address register of ARF which stores the

address of memory from where the data word is to be fetched. The option inside

square brackets ++/-- are used when an incremented or decremented address is to

be stored back in the ARF. The LSB of the address from ARF shows whether to take

upper 32 bits of the 64 bit data from memory or lower 32 bits. “HighWord” means

that out of these 32 bits upper 16 are to be stored in the DRF.

ri = LowWord (*arj [++/--]). This instruction is the same as the previous one the

only difference being that here the command LowWord is used which means take the

lower 16 bit of the 32 bits memory data. The division of 32 bit instruction is the same

as the previous instruction, only the input select bits are 000 (Annex a)

{ri,ri+1 } = * arrj [++/--]. This instruction is used to load a 32 bit memory data in

two consecutive register of DRF. Here i= 0,2,4 to 14 and j= 0 to 7. The LSB of the

address from the ARF verifies whether to take the upper 32 bits or lower 32 bits.

 39

ri=OxYYYY. This instruction is for storing a 16 bit immediate data to the DRF.

Here I = 0 to 15 and YYYY is a 16 bit hexagonal number. The 32 bit instruction is

divided into the field shown as per Annex A.

ri=ri+1 = OxYYYY. This instruction is used to store the 16 bit immediate data to

two consecutive registers of DRF. Here i=0,2,4,6 to 14 and YYYY is a 16 bit

hexagonal number.

STORE INSTRUCTIONS

3.2.3. This instruction is meant to store 32 bit data from the specified address of DRF

into a specified address of data memory.

*arj [++/--] = {rm,rn}. Here “arj” (j= 0 to 7) represents the location of the address

register which stores the address of the memory location where the data is to be

stored from the DRF. The LSB of the address shows where to store the 32 bit word,

i.e. whether to store in the upper 32 bits of the 64 bit memory word or the lower 32

bit “rm”,”rn” (m= 0 to 15 and n=0 to 15) represent the location of the two particular

16 bit registers from where the data is to be stored. As in the earlier cases ++/-- is

used in the case when an incremented or decremented address is to be used and

loaded in the address register. Refer to Annex A.

ADDRER/SUBTRACTOR INSTRUCTIONS

3.2.4. These include the instructions for the addition and subtraction of 32 bit or 16 bits

operands and also the shifting commands of the result.

{ri,ri+1} = ± {r1,r0} ± {r3,r2} || >>/<< k. This instruction is used for

addition/subtraction of two unsigned 32 bit words taken directly from DRF and

storing the result in to consecutive registers of DRF. The shifting option is also given

{ri, ri+1} (where i=0, 2, 4 to 14) represents the locations of the two registers where

32 bit result is to be stored. The first operand is taken from the first register r0 and

the second register r1 and the second operand is taken from r3 and r2. The ± sign

before two operands decide which of the following operations are to be performed.

 40

• A+B

• A-B

• -A+B

• -A-B

The sign “<<” and “>>” represent shift right and shift left respectively. These

options are used only when shifting of the result is required. K represents the shift

value. Since the shifter can only shift up to 2 bits to left and 1 bit to the right , k can

be 0,1,2, for << and 0, 1 for >>. The 32 bit instruction is divided into the fields as

per Annex A.

ri = ± rm ± rn (c) ||>>/<< k. This instruction is used for 16 bit addition /

subtraction operation. “ri” (where I = 0 to 15) represents the location of the register

in the DRF where the 16 bit result is to be stored. The first operand is taken from the

mth register rm (m = 0 to 15) and the second operand is taken from the nth register

rn (n =) to 15). The option C is for specification whether to save the carry out of the

add/sub operation or not. Other options are same as previous instruction. Refer to

Annex A for sub division of the 32 bits.

ri= ±rm ± Y || >>/ << k. Used to perform addition/subtraction of a 6 bit

immediate value with an operand fetched from the DRF. “ri” (where I = 0 to 15)

represents the destination of the 16 bit result and “rm” (where m=0 to 15) represents

the location of the register in DRF from where the operand is to be taken. “Y” is a 6

bit immediate operand. Other options are same as in the earlier instruction

ri = ± rm || >>/<< K. This instruction is used for negation and shift operations

on a single operand. “ri” (where i = 0 to 15) and “rm” (m= 0 to 15) are the

destination and the source registers of the DRF respectively. K can be 0, 1, 2 for <<

and 0, 1 for >>. For this instruction, the 32 bit instruction is divided into the fields as

given in Annex A.

 41

ri= WB ± rm || >>/<< k. This instruction is used for the addition/subtraction or

MAC from the previous cycle with an operand from the DRF. WB is the write back

signal which is the result of the previous Add/sub or MAC operation, written back as

an operand. Refer to annex A for the sub division of the 32 bit instruction.

MAC Instructions

3.2.5. Instructions for the MAC Unit are as follows:

acc= rm[s/u] * Y [s/u] || >>/<< k. this instruction is for multiplying a 16 bit

signed/unsigned operand from DRF with 6-bit signed/unsigned immediate value.

“s/u” stands for signed/unsigned. “ri” and “rm” are the destination and source

registers respectively. Y is 6 bit immediate operand. Where k can be 0,1,2 for << and

0,1 for >>. Refer to the Annex A attached for the break down of the 32 bit

instruction.

acc + = rm [s/u] * Y || >>/<< k. This instruction is similar to the earlier

instruction only in this case the value in the registers of the DRF which are reserved

for accumulation input {r14, r15} will be added to the result of the above

multiplication. Other options are the same. Refer to the Annex A attached for the

format of the 32 bit instruction.

acc = rm [s/u] * rn [s/u] || >> /<<.This instruction is for multiplication of two

signed unsigned operands from the DRF.”ri” is the destination register and “rm”

and “rn” are the source registers of the DRF for the two operands. No accumulation

is requires. Other options are the same as in the earlier instruction.

acc += rm [s/u] * rn [s/u] || >>/<< k. This instruction is similar to the earlier

instruction only in this case the value in {r14, r15} will be added to the result of the

above multiplication. Other options are the same. The 32-bit instruction is divided

into the fields as per the Annex A.

|| Reset Accumulator. This instruction can be used with any instruction in parallel.

It clears the value in the accumulator register DRF {r14, r15}. The 32 bit instruction

is divided into the fields as per Annex A.

 42

AGU Instruction

3.2.6. These instructions are used for saving an address to a specified register of ARF

from a specified source register DRF.

arj= ri. Here “arj” (where j=0 to 7) represents the destination register in the ARF and

“ri” (i) represents the location of the register in the DRF from where the address is to

be taken. Refer to Annex A for the distribution of the 32 bits.

ri = rm & rn. This instruction is to be used for bit wise AND operation on two

operands. Here “ri” is the destination register of the DRF and “rm” and “rn” are the

source register of the DRF for the two operands. The 32-bits of the instruction are

divided into the fields as per Annex A.

ri = rm | rn. This instruction is used for bitwise XOR operation on two operands.

Refer to Annex A for bits division.

ri=rm ^ rn. This instruction is used for bitwise XOR operation on two operands.

The division of 32 bits of the instructions as shown in the Annex

A, attached to this document.

ri=rm & Y. This instruction is used for bitwise AND operation between an operand

from the DRF and an immediate 6-bit value which is given in the instruction. Y is 6

bit immediate operand. Following is the division of the 32 bit instruction set.

ri= rm |Y. This instruction is used for bitwise OR operation between an operand

from DRF and an immediate 6-bit value which is given in the instruction. Refer to

Annex A for 32-bit division of the instruction.

ri= rm^ y. This instruction is used for the bitwise XOR operation between an

operand from the DRF and an immediate 6-bit value which is given in the

instruction. 32-bit division is given in the Annex A to this document.

 43

Instructions for Shifter Unit

3.2.7. The include the instruction to 32-bit right shifter and the Barrel shifter as

described below. Please refer to Annex A for the division of the 32-bits for each

instruction given below.

{ri,ri+1}= {rm, rn} >>1. This instruction is for the 32-bit right shift. {ri,ri+1} (I

= 0, 2,4 to 14) show the destination registers of the 32-bit output of the shifter.

“rm” and “rn” are the source registers of the DRF for the two operands. These

two operands are combined as a single 32-bit word and the right shifted by 1 bit.

This means the LSB of the first operand becomes the sign bit of the second

operand. First operand is sign extended.

ri=rm.L/A <</>> k. This is the instruction of the Barrel shifter. There is only

one 16-bit shift operand which is to be shifted . “ri represents the destination of the

16-bit result and “rm” represents the location of the register in the DRF where the

shift operand is to be taken. L/A shows whether logic shift is to be required or the

arithmetic shift. << is for left shift and >> is for right shift. K is 5-bit shift value in

2’s complement which shows how much shift is required.

Controller Instructions

3.2.8. These instructions include the jump and the conditional jump instructions

including the loop instructions. Refer to the following paragraphs for the details of

each instruction. Refer to the Annex A for the 32-bit division of these instructions.

goto OxYYYY. This instruction is for an unconditional jump instruction where

OxYYYY is an 11-bit hexadecimal jump address of program memory.

 44

If (rm “relational operator” rn) goto OxYYYY | Label. A conditional jump

instruction which means that jump if operand 1 which is taken from register rm of

the DRF is as per relational operator than operand2 taken from the register rn of

DRF. OxYYYY is a 11-bit hexadecimal jump address of program memory or label.

Refer to the following table for the combination of the relational operators.

rm < rn Operand 1 is less than Operand 2

rm > rn

rm > = rn Operand 1 is greater than or equal to Operand
2

rm <= rn Operand 1 is less than or equal to Operand 2

rm = = rn Operand 1 is equal to Operand 2

rm !=rn Operand 1 is not equal to Operand 2

LOOOPCOUNT = number || LASTADDRESS = number. This is the loop

initialization instruction containing loop count and the loop end address. Here

OxYYY is the 7-bit hexadecimal loop count and 0xZZZZ is the 11-bit End

Address. The 32-bit instruction is divided as per Annex A.

||REPEAT. This instruction is used with the instruction inside the loop. This

instruction can be used in parallel with any other instruction. The 32 bit instruction is

divided as per Annex A.

Table3 : Allowed Operand Relationships

 45

3.3 Assembler Development

The instructions set explained above provided a platform for the development of

the Assembler. In order to carry out the analysis of the source program, which in this case

was to be based on the instruction set defined above a Grammar was to be defined for

the Lexical analyzer. Lexical Analyzer is basically the front hand technique used to identify

the tokens, its main task could be stated as “ to read the input characters and produce

as output a sequence of tokens that the parser uses for syntax analysis”.

In order to have the assembler of the DTMF micro engine to be autonomous, as

the requirement necessitated the assembler development followed a different suite.

Assembler has been developed in a fashion that it operates on it’s own as well.

o Lexical Analyzer (with error detection)

o Parser (with error detection)

o Code Generation embedded in Predictive Parser (with error detection)

3.3.1. Lexical Analyzer for Assembler
 Lexical Analyzer’s role primarily rotates along the question of identifying the

tokens as depicted or as allowed by the Grammar of the language. Lexical Analyzer being

the first phases of the design for assembler as well as the compiler primarily depends

upon the Grammar of the language as defined. In the case of the assembler for the

DTMF micro engine this is the instruction set as per Annex A.

Since the lexical analyzer reads the source text it also clears the white spaces or

the comments (it ignores them). It also keeps tracks of the line numbers and those errors

that are responsible to be reported by the lexical analyzer are reported with the

corresponding line number. Upon receiving a “get token” command from the parser the

lexical analyzer reads the input characters till it can identify the sent token.

 46

In the statement :

If (rm < rn) goto label1

The lexical analyzer would analyze this statement and would in turn make different tokens

for the parser as given below.

Keyword If
Register rm.
Register rn.
Keyword goto.
Label label1.

 47

3.3.2. Grammar for the Assembler
Grammar for the Assembler is defined below with the help of Regular Expressions.

stmts → stmt stmts | €

stmt → nop;

| ri = HighWord (* arj [++/- -])

| ri = LowWord (* arj [++/- -])

| {ri , ri+1} =*arj [++/- -]

| ri =OxYYYY

| ri = ri+1 =OxYYYY

| *arj[++/- -] ={rm,rn}

| {ri , ri + 1} = ± {r1, r0} ± {r3 ,r3} || >> /<< k

| ri = ± rm ± rn [c] || >> /<< k

| ri = ± rm ± Y || >>?<< k

| ri =± rm || >>/<< k

| ri =WB ± rm || >>/ << k

| acc + = rm [s/u] * Y || >>/<< k

| acc = rm [s/u] * rn [s/u] || >> /<<

| acc += rm [s/u] * rn [s/u] || >>/<< k

| arj = ri

| ri = rm & rn

| ri = rm | rn

| ri =rm ^ rn

| ri =rm & Y

| ri = rm |Y

 48

| ri = rm^ y

| {ri,ri+1} ={rm,rn} >>1

| ri =rm.L/A <</>> k

| goto OxYYYY

|if (rm “relational operator” rn) goto OxYYYY | Label.

|LOOOPCOUNT = number || LASTADDRESS = number

| ||REPEAT

relational operator → <

| >

| > =

| < =

| = =

| ! =

number → 1 |2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0

 49

3.3.3. Recognition of Token
 The problem of how to specify the language has been explained above. In order to

recognize the tokens we use the technique of transition diagrams. This is so done by

moving from position to position in the diagram as characters are read.

Positions in the transition diagram are drawn as circles and are called states. The

states are connected by arrows, called edges. Edges leaving state have labels indicating the

input characters that can appear next. The first state is labeled as the start state. This

could be best explained by the previously given example of identifiers.

letter → A|B|C|D|E|F……..|Z|a|b|c|d|e|f|……|z

digit → 0|1|2|3|4|5|6|7|8|9

id → letter (letter | digit)*

The transition diagram

for the above Regular

definition for

identifier would be :

The diagram above simply depicts that as a letter is encountered the transition to

the next phase takes place and that the first alphabet is valid and satisfies the grammar. As

more or any combination of letter and words are encountered they would all be valid and

would be accepted as per the Grammar defined. In case a non alphabet or numeric entry

is encountered and shall not be accepted and the transition to the final accepting state

take place there by depicting that a identifier has been dully recognized. This technique of

advancing to the next transition or that of pivoting around a particular state can be easily

implemented with the help of switch statement.[CMP]

1

start letter

Letter or digit

other

 50

Algorithm for implementation of the above described technique in C would be as

given below.

Switch (state)

Case 0 : c= next char();

if c is equal to blank, new line, tab state is equal to 0;

else if c is equal to alphanumeric state is equal to 1;

Case 1: c= next char();

if c is equal to alphanumeric state is equal to 1

else state = 2

Case 2: retract c;

accept the string before reaching state 2 as a valid string

 51

3.3.4. Lexical Interface
Lexical Analyzer is inserted between the parser and the input streams , this input

stream may be in the form of input from the keyboard or a text file. It reads characters

and recognizes them according to the transition diagram, implemented (most usual case

using switch) as shown above. As the characters are read theses characters along with

there value and or attribute are passed on to the parser.

Error Recovery by Lexical Analyzer. A few error are also identified by the

lexical analyzer. These usually include the recognition of unrecognized characters, invalid

entries. The scope of these error is extremely negligible but never the less there

importance is vital to the correct performance of the software.

Symbol Table. A data structure called a symbol table is generally used to store

information about various source language constructs. The information is collected by

lexical analyzer and is used for subsequent code generation. Refer to Annex A1 for

Symbol table entries of the Assembler. The symbol table routines are concerned primarily

with saving and retrieving lexemes. Two operations are of overriding importance to the

symbol table

• Insert function. To insert entries into the symbol table. Symbol table would insert

automatically identifiers defined in the construct of the program. In case of the

assembler these identifier are label. These are inserted into the symbol table as

encountered.

• Lookup function. To view the contents of the Symbol table and match them with

the a particular string.

Note: Symbol table handles reserved words of the language by initializing itself with the reserved words entries as

the program is initialized. Please refer to Annex A1 for the details of reserved words for the Assembler.

 52

Transition diagram for the DTMF lexical analyzer (assembler only) as derived

from the regular expressions , is given below.

Alpha digit
/,*

+

-

|

&-*-.-,-;-{-}-(-)-EOF-^<

>

=

!

/,*

+

-

|

=

=

=

=

*

*

*

*

*
*

* **

* *

*

*

*

*

**
alphabet

digit
Comment

Increment

Decrement

Concatenation

<=

==
>=

!=

Figure 14 TRANSITION DIAGRAM FOR THE LEXICAL ANALYZER OF THE ASSEMBLER

 53

3.3.5. Parser for Assembler
The parser developed for the assembler is a recursive parser. The ambiguity removed

from the grammar and without recursion. The parser is a two pass, parser, in the first go,

it reads the label and makes a note of all label entries. In the second parse it generates the

binary code. Each non terminal of the Grammar represents a function and the statement

of those non terminals are matched against the allowed words, as per the grammar. As

the match occurs, that is the word which should occur at the subject place exits , the next

token is fetched by the parser from the lexical analyzer and matched against the next

allowed word. In case of the Parser for the assembler the code generation was also

performed with in the function of each non terminal. This procedure of generating the

Besides the error recovery routines performed by the parser the predictive parser also

generates the binary file. The method of generating the binary code for the instruction set

is defined in detailed as below.

Code Generation. In order to generate binary code, primarily four functions have

been defined according to the instruction format. These function are :-

o GetNormalCode ().

o getNormalimm16Code ().

o getJumpCode().

o getLoopCode ().

The reason for defining these function was necessitated primarily because the

instruction format for these instruction varies and could be categorized in four sub group

(Each function stated above is primarily used for the generation of code, as the

instruction format varies). As each instruction is identified the corresponding function as

per the format f the instruction is passed the relevant parameters for the generation of the

binary number, which is inserted sequentially into an array of unsigned integers.

 54

The total instruction length inclusive of the control and the data field is fixed and

is of 32 bits. The instructions categorized as Normal are broken down into the

following sub divisions:-

o Instruction decoder 1 - 2 Bits

o Instruction decoder 2 - 2 Bits

o Memory Access - 1 Bit

o Input Select - 3 Bits

o Operand 1 - 4 Bits

o Control - 9 Bits

o Immediate - 2 Bits

o Operand 2 - 4 Bits

o Destination - 5 Bits

The instruction set for the jump instruction has sub division identifying the

signal for the two decoder, memory access , four bit for the MSB of Branch address

followed by operand 1, 8 bit for conditional select , followed by 4 bit for LSB and 4

bits reserved for Operand 2, terminating with 5 unused bits of the Destination sub

field:-

o Instruction decoder 1 - 2 Bits

o Instruction decoder 2- - 2 Bits

o Memory Access - 1 Bit

o Branch address MSB - 3 Bits

o Operand 1 - 4 Bits

o Conditional Select - 9 Bits

o Branch address LSB - 2 Bits

o Operand 2 - 4 Bits

o Destination(Unused) - 5 Bits

The requirement for defining the function getNormalimm16 was entailed by a

different format of instruction dealing with 16 bit Immediate operand . There are two

instruction of this format used to store a 16 bit immediate value to a Data Register.

Refer to Annex A serial 4, and 5 for instruction format. The forth function

getJumpcode() is evoked for the instructions entailing jump.

o Instruction decoder 1 - 2 Bits

 55

o Instruction decoder 2- - 2 Bits

o Input Select - 3 Bits

o Immediate - 16 Bits

o Destination(Unused) - 5 Bits

3.3.6. Error Recovery.
 Error recovery strategies adopted in the development of parser ensure smooth

progress of the syntax validation. There are a number of strategies used today for the

error recovery. (Non of these are universally accepted but only provide a platform)

1. Panic mode

2. Phrase level

3. Error Production

Panic Mode. This is the simplest method to implement and can be used by most

parsing methods. On discovering an error the parser discards all the input symbols one at

a time until one of the designated synchronization token is found. This synchronization

token is usually the delimiter.

Panic Mode recovery technique has been employed in the parser of the assembler.

The parser looks forward at few productions also before jumping to the terminator as this

technique suggests.

Phrase Level. The parser on discovering an error may be able to perform local

correction on the remaining input. A typical correction would be to replace a comma by a

semi colon, delete a semi colon and or add one.

Error Production. If the errors to be encountered are well known at the time of the

development of the software the grammar for the language at hand can be augmented

with the productions that generate erroneous constructs. If an error production is used by

the parser, appropriate error diagnostic could be generated to indicate the erroneous

construct that has been recognized in the input.

 56

3.4 Class Diagram (UML) Assembler

cSymEntry
Ctoken

getToken()
getTokenValue()

CSymbolTable

GetToken()
Insert()
Lookup()

CLexAnalyzer

CLexan()
getInput()
nextToken()

CError

cError()

CParser

Error()
getToken()
opname2()
match()
Parse1()
Parse()

 57

3.4.1. CLASS NAME:- CLexAnalyzer
Class Operation.

getInput()

NextToken()

CLexan()

 Class Description.

This class is primarily responsible for reading the input sequence from the text editor. It

Nextoken() operation is responsible for reading the tokes in a sequence. Reading each

token it forwards the input to the Parser. The operation of getting the input from the text

editors environment is performed by the operation getInput().

3.4.2. CLASS NAME:- CParse
Class Operation:- getNormalCode() getNormalimm16Code()

 getJumpCode() getLoopCode() error()

Class Description:-

 This class is primarily responsible for the syntax analysis of the Assembler. In this case it

also generates the target binary code using four functions as discussed above. For the

code generation it uses the functions GetNormalCode (),getNormalimm16Code (

),getJumpCode(),getLoopCode (). Error messages are sent to the error classes which are

displayed on to the screen.

The Error recover procedure as governed by panic mode error recovery are also handled,

by this class.

 58

3.4.3. CLASS NAME:-CSymbolTable

Class Operation:- init() lookup() insert()

Class Description:-

The operation of the symbol table are controlled by this class. The symbol table is first
initialized with the keyword. These are stored in a data structure. The function init()
initializes the symbol table, with its entries.

3.4.4. CLASS NAME:-CSymEntry

Class Description:-

Stores information regarding the entries in the symbol table. The function get address is

primarily used for the replacing the labels with the address of the instruction where that

label is used. Moreover it return the parameters as assigned and requires of the tokens

from the symbol table. Used to obtain token, lexeme type and address form the symbol

table for each specified entry.

3.4.5. CLASS NAME :-CError

Class Description:-

Used to display the error as reported and passed by the Parser and the lexical analyzer.

 59

3.5 Compiler Development

The Compiler developed has been based on a subset of C and it performs the main

functions as per the requirement of the hardware for which it has been written. There by

a number of aspects as in case of C have not been completed in totality. This compiler

supports all the major functions of C. Moreover this is a two front compiler; it has a front

end and back end logic. The front end of the compiler generates an intermediate code for

the source program and the details of the target program are confined to the back end, as

far as possible. The benefits of using a machine-independent intermediate form are :

o Retargeting is facilitated. A compiler for a different machine can be created by
attaching a back end for the new machine.

o A machine independent code optimizer could be used.

3.5.1. Lexical Analyzer for the Compiler
The technique adopted fort he development of the lexical analyzer is the same as defined

in the assembler section of the report. The difference comes in regards to the keywords

allowed by this lexical interface . The following table gives details of allowed key words

which are also the words which are initialized in to the symbol table of the compiler.

Reserved Words Type

if Keyword
while Keyword

for Keyword
switch Keyword
break Keyword
case Keyword

default Keyword
void Keyword
main Keyword
else Keyword
goto Keyword
do Keyword
int Keyword

Char Keyword

 60

3.5.2. Grammar of the Compiler
The Grammar for the compiler on which the entire working of the parser is based is

given below.[WPU]

Prog → void main (void) { funcA funcB}

funcA→ type id arrayDecl func AA; funcA

 | E

type → char | int |

arrayDecl → [exp] multiDimArrayDecl | E

multiDimArrayDecl → [exp] multiDimArrayDecl | E

funcAA → , id arrayDecl funcAA | E

funcB → stmt func B | E

stmts → if (boolExp) stmt stmtifA

 | switch (exp) {caseStmt default stmt}

 | while (boolexpr) stmt

 | for (id=intcon; id Relop [intcon|id] ; id [inc|dec]

 |label ;

 | goto label;

 | exp assgt;

 | {stmt stmt A}

 |;

stmtifA → else stmt | E

caseStmt→ case exp: stmt [break;] case stmt | E

defaultstmt → default : stmt break ;

stmtstmtA → stmtstmt stmtstmtA | E

 61

boolexp → id Relop boolexpr

| ! boolexpr boolexpr1

|(boolexp) boolexpr1

boolexpr1→ logop boolexp

boolexp2→ intcon| id

assgt → = exp assgt | E

exp → term moreterm

term → factor morefactor

moreterm → binopo term moreterm | E

morefactor → binop1 factor morefactor | E

factor → binopo exp

 |(exp)

 | id id Assoc

 | int con

 | char con

 | inc id

 | decide

idAssoc → [in/dec]

 | arrayelm

 | (parameter list)

 | E

arrayElm → [exp] more arrayElms

moreArrayElms→ [exp] | E

parameterlist→ exp moreparameterlist | E

 62

3.5.3. Type Check
A compiler is suppose to report an error if an operator is applied to an incompatible

operand ; for example if an array variable and a int variable are added together. There are

two of checking performed . One which is performed by the compiler is termed as the

static type checking, whereas the one performed when the target program runs is don

dynamically.

The most simplest way of applying type checking is with the help of the symbol table.

This is the kind of check incorporated in the Compiler developed. There are two symbol

tables for the compiler, one that stores the keywords and identifiers and the on that deals

with numeric values. As the parser scans the production for the identifiers, where the type

of variable to be declared is given by the user, the symbol table is updates with the type of

operand the numeric value has. As the same value or operand is applied or used in any

mathematical computation the symbol table scan for the type of the two operands to be

checked and generates an error if the two types are incompatible. The overhead of this

operation is the additional entry in the symbol table, which keeps track of the type of the

numeric or the operand declared, if not initialized.

3.5.4. Code Generation
The basic techniques of the Lexical Analyzer are the same in the case of the compiler as

they were followed and described in the Assembler development section. The major

difference between the implementation of the compiler and that of the assembler are in

the phase of Code Generation, type check, register allocation procedure. Code

Generation itself is a two phase process. From the source program first a target three

address code is generated, which in term is converted to the target assembly syntax and

feed to the assembler. This section defines the three address code and final code

generation

 63

3.5.5. Three Address Code

Three address code is a sequence of statements of the general form

Z = a operator b

Where a,b and z are names, constants, or compiler generated temporaries. Operator

stands for different arithmetic and logical operator applied on integer, floating point or

logical expression as the case may be. In three address code generation there is no build

up of arithmetic expression allowed, meaning that a expression like a+b+c , would be

translated into a sequence

Temp1 = a + b

Temp2= c + Temp1

Here the two names Temp 1 and Temp 2 are actually compiler generated names. A

function is implemented in the compiler which sequentially generates such variables.

The reason for term “ three address code” is that each statement usually contains three

addresses, two operands and one for the result.

3.5.5.1. Syntax Directed Definitions. A syntax directed definition is the

generalization of a context free grammar in which each grammar symbol has

an associated set of attributes. These are addressed as the synthesized and the

inherited attributes. The value of the synthesized attribute at the node is

computed from the values of the attributes at the children of that node in the

parse tree, the value of the inherited attribute is computed from the values of

attributes at the siblings and parent of that node. Consider the example below,

which is based on the grammar.

E → T { R.i = T.val}

 R {E.val = R.s}

R → + T { R1.i=R.i + T.val} R1 {R.s = R1.s}

R → - T {R1.i = R.i – T.val} R1 {R.s = R1.s}

R → E { R.s = R.i}

 64

T → (E) { T.val = E.val}

T → num { t.val = num.val}

Basing on the above translation scheme the parse tree for the expression “9 –

5+ 2” which is allowed by the parameters defined above could be easily

constructed as

Figure 2 Parse Tree for Expression 9 – 5 +2

This step of creating the parse tree for the expression is quite simple but for

computing the value of the expression the help from the semantic rules

provide a platform. The synthesized attributes for the above defines grammar

are given with the prefix of “.S” and inherited attributes “.I”.

Step1:- T.val is assigned 9

Step 2:-Value of T.val is passed to the inherited attribute of next node

Step 3:-R proceeds to the production

R → - T R T.val is assigned 5 and R1.i that is the inherited

attribute of level 1 is computed based on the translation scheme

where the value of the inherited attribute of the parent is

subtracted from the T.val to yield (9 – 5) 4.

Step 4:-The value computed is passed on as the inherited attribute of

level 2 node. The Production next to be processed is R → + T R

T R

E

- 5 R

+ 2 E

 9

 65

First T.val is assigned 2 and the inherited attribute computed as

the sum of the synthesized and the inherited attribute 2 +

4=6.This is assigned to the synthesized attribute of second level

and as the terminator sign is reached this value is finally assigned

to the Evaluation expression. Yielding the desired results.

3.5.5.2. Syntax Directed Translation. When three address code is generated

temporary names are made up for the interior modes of a syntax tree. This

procedure could be best understood with the help of an example. Consider

the production as given below

S → id = : E

E → E1 + E2

 | E1 * E2

 | - E1

T R.i=9

E

T.val=9

- T.val = 5 R.i=4

Num.val=9

Num.val=5 + T.val=2 R.i = 6

E

 66

 | (E1)

 | id

Basing on above Grammar if we make the parse tree for an allowed word

such as “a = b * - c + b * - c”, the procedure for the generation of the three

address code will be clear.

 Graphical Representation of a = b * - c + b * - c

Using the technique of synthesized and the inherited attribute the generation

fort he three address code is followed. The first temporarily generated

variable will be assigned the value –c .

Temp 1= - c

Temp 2 = b * Temp1

Temp 3 = - C

Temp 4 = b * temp 3

Temp 5 = Temp 2 + Temp 4

a = Temp 5

a +

assign

* *

b - b -

c
c

 67

Each node is represented by a temporary variable. In terms of

implementation of this step a simple function is declared which sequentially

generates the temporary variable/names. More over from the above

statement it can be seen that there are a number of redundant statement and

the optimal generation would involve fewer statement s than the ones

generated from the discussed technique. The DAG implementation

procedure achieves better result than the ones explained below. The

procedure adopted for the generation of code for three address, in the

compiler development has been based on Syntax tree and not DAG

therefore DAG has not been discussed here. The reason for the

implementation of syntax tree method was the time constraint.

3.5.6. Target Code Generation.

The last phase of compiler implementation is the code generation of the target machine.

The final phase takes the input form the intermediate representation scheme and

generates the equivalent target program. The requirements of the code generator are

severe. The output code must be correct and of high quality, meaning that it should use

the resources machine. It should preferably be using machine heuristic.

This is also the back end logic, which operates on the generated three address code only.

By this stage of the compiler all necessary checks like parsing, syntax evaluation and type

checks, type conversions are performed. The output of this generator could be, absolute

machine code, assembly code or relocatable machine code. In the case of the compiler for

the DTMF micro engine, the target program is the assembly language program as

defined in the assembler phase. This micro engine has assembly like constructs but with

few difference. As the assembler was developed before the compiler therefore the target

code for the compiler was chosen to be assembly (of the DTMF micro engine), so that it

could be feed to the assembler which in turn will generate the machine code for the

simulator.

 68

3.5.6.1. Instruction Selection. The nature of the instruction set of the target

machine determines the difficulty of the instruction section. For each type of

three address statement a code skeleton can be designed that outlines the

target code to be generated. A very simple type of instruction a=b+c, cn be

translated into the assembly code as:-

MOV b,RO

ADD z,RO

MOV RO,x

In the above example it is assumed that MOV is a recognized assembly construct

and the first operand represents the Source where as the second operand

represents the destination.

The quality of the code generated is determined by the speed and the size. A

target machine with a rich instruction set may provide several ways of

implementing a given operation. Since the cost difference between different

implementations could be significant, a native translation of the intermediate code

may lead to correct but inefficient code.

3.5.6.2. Register Allocation. Instructions involving the register operands are usually

shorter and faster than those involving operand in the memory. Therefore,

efficient utilization of the registers is particularly important in code generation.

Thus the use of registers is divided into the following sub categories.

• Register Allocation. The set of variables that will reside in the registers
at a point in the program.

• Register Assignment. Selection of specific register that a variable will
reside in.

For the purpose of tracking the values contained in the register, a symbol

table data structure was implemented. This table keeps track of the register

stored in the Data Register File and also there value. If the same value are to

be used these are looked up in the symbol table and returned. This could be

termed as the code descriptor.

 69

The implementation scheme or approach adopted for this problem could be

best explained with the help of the following example. Consider the

assignment statement d=(a-b) + (a-c) + (a-c). The three address code

generated could be.

t = a –b

u = a-c

v = t +u

d= v +u

For the first instruction the Code generated would be

Mov a, R0

Sub b, R0

Initially the register file is empty. After the generation of this code the register

the register descriptor is updates to indicate that the computed sum is

contained in the register R0. Code Generation Proceeds in the usual manner

as depicted in the table below.

STATEMENTS CODE
GENERATION

REGISTER
DESCRIPTOR

ADDRESS
DESCRIPTOR

t= a –b Mov a,RO

Sub b,R0

R0 contains t t in R0

u= a –c Mov a,R1

Sub c,R1

 t in R0

u in R1

v= t + u Add R1,Ro u in R1

d= v +u Add R1,R0

Mov R0,d

R0 contains d

d in R0

And Memory

 70

3.5.7. CLASS DIAGRAM (UML) COMPILER

cSymEntry

CSymbolTable

GetToken()
Insert()
Lookup()

CLexAnalyzer

CLexan()
getInput()
nextToken()

CError

cError()

CParser

Error()
getToken()
opname2()
match()
Pars e1()
Pars e()

AddressDescriptor

CCodeGenerator

genCode()
match()

Register Descriptor

 71

3.5.7.1. CLASS NAME:- Address Descriptor
Information regarding every variable, including the data register allocated, address

register allocated, memory location in the data memory, and the lexeme of the

identifier, is stored in the Address Descriptor. The functionality of Address

Descriptor is managed by this Class.

As discussed above in order to keep track of the allocation of the registers to different

variables generated, during the process of three address code generation, an address

descriptor is mandatory. This adopted procedure would usually not be found in case

of the Intel 86 family as there are no separate address registers.

3.5.7.2. CLASS NAME:- Register Descriptor
Information regarding the variable, it’s lexeme and the data register allocated. This

class is primarily used for the implementation of the register allocation procedure. As

a address descriptor is required, a register descriptor is used to track the register

allocation of the 16 registers available in the DTMF micro engine.

3.5.7.3. CLASS NAME:- CodeGenerator
The three address code generated from the parser is passed to the Code generator.

This class is responsible for generating the assembly code which in turn is fed to the

assembler. The Code Generator has its own parser which is based on the three

address code.

3.5.7.4. CLASS NAME:-CParser
Cparser is responsible for the basic functions of parser, where it gets token form the

Lexical analyzer in this case Class CLexAnalyzer and processes each received token

through allowed grammar of the subject language. The Parser is based on the

Grammar of C language, in this case.

 72

3.5.7.5. CLASS NAME:-CLexAnalyzer
Lexical Analyzer is responsible for tokenization of the input stream and passing these

tokens to the Parser. Lexical Analyzer has been implemented more or less in the same

fashion as in case of Assembler

3.5.7.6. CLASS NAME:-CError
An Error recovery procedure is of extreme importance, as it not just reports the error

but it also allows the parser to recover after encountering errors. The Panic mode

error recovery scheme has been implemented by this class with few modifications.

3.5.7.7. CLASS NAME :-CSymbolTable
Symbol table stores and updates itself at run time. All the reserved words are stored in

the symbol table and all identifiers variables and label during the run time are updated.

The two important operations controlled by this class are of looking up the symbol

table and of inserting a label, identifier or variable. CSybolTable.

 73

3.6 FUTURE RECOMMENDATIONS

The work on the Compiler can be carry forwarded, and a complete compiler for C could be

developed. The presently developed compiler has many limitations. The reasons for which

were the design specification and meeting the minimum criteria which satisfies the working of

the DTMF Micro Engine.

Considering the design parameters and the given requirements, option of including floating

point operations, division by odd numbers, structures, pointers and function calls were not

catered for in the compiler. In order to take this project further ,compiler may be embedded

with all above facilities and may also be given the extra advantage of including C header files.

The Future work on the assembler and the simulator can not be taken up as the requirement

for these tools was specific to a problem. No faults or future recommendations have been

forwarded by the design team, as regards these two modules of the project.

 74

4. Software Manual

The Developer Studio for the DTMF detector is an integrated developed environment, offering

extremely friendly user interface. It is quite similar to Standard windows application. To run the

simulator, first the binary file needs to be prepared which would be loaded into the program

memory of the simulator. The generation of the file could be done either by the compiler, or the

assembler. The end of the chapter has few test programs to assist the user.

4.1 Menus
The main frame of the software has the following Menus

File ► New ► Opens new window for Text Editor

 Open ► Open a saved file for the Text Editor

 Save ► Save the text editor window as a .cpp extension

 Save As ► Save as different name

 Print ► Print the Text Editor window

 Exit ►Exit the software

Chapter

4

 75

Edit ► Undo ► Undo the last step

 Redo ► Redo Undo

 Cut ► Cut the selection to the Clipboard

Paste ► Paste the selection from the clipboard at the specified place

 Delete ► Delete the selection

 Select All ► Select the entire editor entries

 Find ► Find dialog

 Find Next ► Find the next entry as per the Find dialog

Find Previous ►Find Previous entry

Replace ►Replace the entries against the specified word

Read Only ► Make the document Read only

Bookmarks ► Bookmark the place

 Goto Book marks ► Go to the specified bookmark

 More Bookmarks ► Toggle Bookmarks

View ►

Toolbar ► Enable/disable Visibility of Toolbar

 Status Bar ► Enable/disable Visibility of Status Bar

Window►

 New Window ► Disabled

 Cascade ► Display multiple cascaded window

 Tile ► Display multiple window tiled

 Arrange Icons ► Disabled

Tools►

 Lex Analyzer ► Lexical Analyzer Mode

 Parser ► Enable the Parser

 76

4.2 Compiler mode
The mode for the compiler and assembler can be changed through the button marked on the
toolbar.

After setting the mode to Compiler a Message will appear in the Message window. The user is

supposed to enter a C program in the text editor or open a already exiting C program. An

attempt to open and parse the assembly file will result in errors. The program must not

include any header file and should only start with the statement void main (void), followed

by parenthesis { and terminating parenthesis }.

The program needs to Parsed through so that three address code could be generated. Press

Marked button for parsing. If there are no errors in the program a Message window display

“Parsing OK”. And displays the three address code in the Message window.

Press the CG button on the tool bar, this generated the assembly code for the assembler.

Press the button marked P for the generation of the binary file.. This file is also saved with the

extension of asm in the default folder.

4.3 Assembler mode
The mode to the software can be switched from assembler to compiler or vice versa. In order

to make the software run in assembler mode, press the Assembler/Compiler switch mode

switch. The user at this stage is suppose to enter the program in the assembly language of the

DTMF micro engine. Refer to the Annex A attached for the brief on the instruction set in

assembly or to section 3.2.

Compiler / Assembler mode

 Three Address Code Generator Code Generator Generates the binary file for simulator

 77

4.4 Simulator
The simulator is a self descriptive user interface. After the binary file has been generated. It is

to be loaded into the program memory of the simulator. This is done by pressing the loader

button on the toolbar. As the file is loaded the simulator is ready to process this input.

Pressing the button for the simulator which is marked as”!” enable the simulator. The

Register File of 16 registers, shows the values of the register and the so does the address

register file. The Program memory and the data memory also display it’s entries. As the

program is processed these values are subsequently changed and updated. The clock cycles

are displayed in window as the instructions progress through the simulator.

The simulator has two modes to Operate

o Debugger mode

o Simulation mode

In the first case the simulator stops after each clock cycle, whereas in the other case it

progresses through to the end of the program with updated vales of the Register file, from

where the result could be seen.

 78

4.5 Test Programs

The following test program of simple mathematical operation was given

void main (void)

{

int b;

int c;

c = 2;

b = 3;

b ++;

c = c * b +5;

}

 The manual result of this program yields C=13. Executing this program on the simulator

yields the result 13 in the r1 register. This is the register which stores the value of the C.

 79

REFERENCES

[ACH] Computer Architecture and Organization by William Stalling

[PDP] Parallel and Distributed computing by Jeffry D Ulman

[DTMF] DUAL TOME MULTIPLE FREQUENCY DETECTOR BY Enabling

Technologies, under the supervision of Dr Noman

[IDTMF] INSTRUCTION SET FOR THE DUAL TONE MULTIPLE

FREQUENCY DETECTOR, by Dr Noman

[CMP] Compilers Alfred V.Aho

[WPU] Princeton University WebSite

