
 1
CHAPTER 1

1 INTRODUCTION: Within last decade there has been a vast
increase in the accumulation and communication of digital computer data in
all public, private and most important defense sectors. Much of this data has
a significant value. Sensitive data concerning the organization is processed
by computer systems. Thus it becomes vulnerable. So either directly or
indirectly, it requires protection.

The rapid growth of computer data banks increases threats to personal
and organizational privacy. Since this information is often accessible from
remote terminals, there is a threat of easy, unchecked and unauthorized
access to the information from any place in the data communication systems.

As introductory remarks ENCRYPTION may be used for data
security applications. With improper use and implementation data
encryption may provide only an illusion of security. With inadequate
understanding of encryption applications, data encryption could deter the
utilization of other needed protecting techniques. However with proper
management controls, adequate understanding and careful implementation,
data encryption will not only help in protecting data communications but can
provide a myriad of specific data processing applications.

1.1 Objectives: This application is developed after keeping in view the

organizational compulsion of secrecy in defense applications.
Nevertheless this application can also be used by other organizations,
which are very particular about safekeeping of their critical data.
Moreover, computer networks have become part and parcel of almost
every large and small organization. Thus communication within the
network and out side is never safe, if no special measures are taken for
data protection. Military has also become one of the biggest users of
networks in present world. That is mainly due to increase in the role
of military from local defenses to global deployment.

Pakistan is a very active member of UN. By virtue of its
importance in the region particularly and in the globe generally,
Pakistan military forces are being deployed all around the world for
different type and natures of duties. Consequently to communicate
with the forces deployed outside the Pakistan, a very secure
application is needed to protect the data of critical nature.

1.2 Technical achievements: Once the syndicate undertook the project, it

 2
was merely an idea. To design it, was really a gigantic task, because
it was to be started from nowhere. There was a misunderstanding that
this project was previously done, but never succeeded. While tracing
that project we found out that it was misleading rather than being of
some help.

We started it again from “ZERO”. And by the grace of
Almighty Allah, we were able to make following achievements (only
introduction is given here).

• We were able to develop a truly user-friendly application.
• It is a totally platform independent application.
• User can select any data file (text) of any size from his system.
• User can encrypt the file with or without use of enhanced

encryption technique of “DATA ENCRYPTION
STANDARD”.

• User can select image of his own choice but of .BMP file
extension.

• Our application is capable of hiding the data, encrypted or
unencrypted, in an image without distortion.

• Application is capable of decrypting the file hidden in an
image.

• The application can be placed in highly secure rating because of
the “KEY” it uses for encrypting and decrypting data.

• To decrypt the file user must use the same key used for
encryption.

• The application guides the user at run time if he goes astray.
Which enhances the relation between the user and the
application.

• Besides these we learnt a lot during the development of the
project in the form of java language, cryptography, how to
tackle and overcome the problems encountered.

1.3 Software Processes: Like any other application this application also
employs a lot of different software processes. All of them are listed
and introduced as follow.

1.3.1 Encryption: There is an independent module for encryption. This
module requires a text file, which is to be encrypted. Basically it
uses a 64-bit key to run its encryption process. Once the key is fed ion
it precedes on to encryption. This module works on 64-bit key and 64
bit block for encryption.

 3
1.3.2 Decryption: The decryption module works on the same footing as

encryption module. But if the key for decryption is other than the key
from encryption then the resultant document will be a garbage and
unintelligible document.

1.3.3 Image Processing: Image processing module reads in the user given

image. It then reads its pixels and then hides the encrypted text in it.
The same module retrieves the hidden text once decryption is done.

 4

 Chapter 2

JAVA PROGRAMMING LANGUAGE:

2.1 Introduction: In 1995, Sun Microsystems introduced the Java
programming language to the world. Although this language derives heavily
from C++, it has many special features that have made it a huge success with
programmers at all levels. For example the portable nature of Java program
makes it ideal for developing applets to be run on the World Wide Web.
However it is easy, and often as advantageous to develop applications ion
Java that run completely outside of a browser.

The java programming language provides an excellent
opportunity that produces appealing and sophisticated standalone
applications. Additionally, the object-oriented nature of Java allows
programmers to develop the code that easily can be reused in other
applications. Although there are many different definitions of the java
programming language today, most of them are similar to the following:

“Java is a simple, object-oriented, secure, interpreted, platform
independent, portable, multithreaded language ”.

2.2 Java is Platform-independent: Java program unlike those in
other programming languages are platform-independent. This allows the
java applets and applications to be run on varying platforms without
recompiling the source code. This feature is realized because Java is an
interpreted language. This means that the byte code of the Java application
can be executed independently of the platform the user is running without
any changes. The disadvantage of the byte code is execution speed.

2.2.1 Java byte code and java Interpreters: When a java source

code is compiled to create an application and applet, the resulting
executable, can run on a variety of machines-regardless of the
platform used for development. This happens because the java
compiler generates a byte code file, which looks the same no matter
what kind of computer you use as shown in the figure.

 5

 Java Source Code

 Java Compiler Java Compiler Java Compiler

 Intel Power PC SPARC

 Java Byte Code

 Compaq Power Macintosh Sun SPARC
 Station

Identical byte code produced by the java compiler that can run on
different machines

_

1000100
00
1111000
01
1110000
01

 6
 A java byte code interpreter is specific to the machine
it runs on. For example, the java interpreter used on a power
Macintosh knows how to interpret a byte code file, so it runs properly
on a computer driven by a power PC Chip. A different java
interpreter, such as the one used on the computer running Windows
95, knows how to interpret the same byte code file, so it executes on a
computer with an Intel microprocessor as shown in the figure.

Java Byte code

Java Interpreter Java Interpreter Java Interpreter
 Intel Power PC SPARC

 Compaq Power Macintosh Sun SPARC
 Station

Different machines can run the same byte code, but they require
different interpreters

1000100
00
1111000
01
1110000
01

 10110001 10110001 10110001

 7
2.3 Java Applications: Java can be used to create full-scale

applications as well as applets. After the source code for the java
application is written and compiled. The end result is a single
executable file that can be run on all of the popular computer systems
in the market. The interpreter is itself a stand-alone software
application. Java code can run on any machine –provided that the
machine has a java interpreter. At the time of this writing, the
application interpreter is available for computers running Windows,
Windows NT and Solaris 2.3 or higher version.

2.4 Reasons for choosing java as developing tool: Following are
the characteristic which made us to use java as a programming language for
this project:

2.4.1 Simple: As it is already mentioned that the java has got its origin

from C and C++. So transforming from C++ to Java was not very
difficult for us. But while java is quite similar to C and C++, it is
actually much simpler. Memory management probably the most
bugging area of programming has been greatly simplified by Java’s
elimination of pointers. Phrases like “Dangling pointers” and
“Memory leaks” are not part of Java terminology.

2.4.2 Object-oriented: an object-oriented language forces

programmers to focus not only on data but also how data be
manipulated. The chief advantage of an object-oriented language is
said to be its “code reusability”. Sun Microsystems and Microsoft
have fostered code reusability by developing a huge set of reusable
java classes and by making these classes freely available to java
programmers. Moreover one can find thousands of reusable classes
left on the Internet for free use by the programmers.

2.4.3 Distributed: java is the language of the Web because it fully
supports applications that were developed to execute over a network.
So in order to have a touch of Internet programming we opted for java
as our choice for software development.

2.4.4 Interpreted: as it is already mentioned that java is an interpreted

language. So we wanted to make our application to be able to run on
any machine because it will be best utilized only when it will be

 8
distributed or installed on number of computers
irrespective of the operating system installed on those computers.

2.4.5 Exception handling: the java programming language provides a

construct for handling certain types of errors. This is known as
exception and exception handling. In our application we have defined
our own classes to throw exceptions if a certain error condition is
encountered.

2.4.6 Multithreading: one of the major advantages of java programming

language is that it has built in support for multithreading. In other
words, applications can perform multiple tasks simultaneously. This
feature also compensates for the some of the relatives slowness
introduced by java’s interpretive nature.

2.4.7 Garbage collection: is one of the unique features of java. The part

of temporary memory, which is not referred to by any active part of
program, is automatically reclaimed

2.4.8 Java packages: A package is the way of grouping together several
logically related classes. A package holds the compiled code for
several classes. To reference a single class in a package, both the
package hierarchy and the class separated by periods have to be
mentioned. unlike a C library, which holds the object code of
compiled functions, a java package holds the object code of compiled
classes. The under mentioned table gives a short overview of purpose
of each of the six packages found in the java package.

Java’s Six Packages
Java Packages Purpose
Java.lang Holds the essential java classes-classes that define

the java language.
Java.io Holds the classes used when working with data

input and output.
Java.awt Holds the classes used to give your applications a

graphical user interface
 AWT stands for Abstract windowing toolkit.

 9
Java.applet Holds the classes necessary to create an applet.
Java.net Holds the classes used for communicating with a

network.
Java.util Holds the classes used for utility functions

The purpose of java package is to contain other packages

Java Package

 lang Package awt Package applet Package

 io Package net Package util Package

 10

 Chapter 3

CRYPTOGRAPHY

3.1 Introduction: Classical cryptography provided secrecy for
information sent over channels where eavesdropping and message
interception was possible. The sender selected a cipher and encryption key,
and either gave it directly to the receiver or else sent it indirectly over a slow
but secure channel (typically a trusted courier). Messages and replies were
transmitted over the insecure channel in cipher text as shown in the figure.

 KEY

Modern cryptography protects data transmitted over
high-speed

electronic lines or stored in computer systems. There are two principal
objectives: secrecy (for privacy) to prevent the unauthorized disclosure of
data, and authenticity or integrity to prevent the unauthorized modification
of the data.
 Information transmitted over electronic lines is vulnerable to passive
wiretapping, which threatens secrecy, and to active wiretapping which
threatens authenticity. Passive wiretapping refers to the interception of
message usually without detection. Protection against disclosure of message
contents is provided by enciphering transformations and by the
cryptographic techniques. Active wiretapping refers to the deliberate

Plain
Text

Cipher
Text

Plain
Textencipher decipher

 11
modifications made to the message stream. This can be done for the
purpose of making arbitrary changes to a message, or replacing the data in a
message with replays of data from earlier messages. Encryption protects
against message modification and injection of false messages by making it
infeasible for an opponent to create cipher text that deciphers into
meaningful plain text.

3.2 Cryptographic terms:
3.2.1 Cryptography: is the science and study of secret writing.
3.2.2 Cipher: is a secret method of writing, whereby plaintext (or clear

text) is transformed into cipher text (sometimes called as
cryptogram).

3.2.3 Encryption: The process of transforming plain text into cipher text is
called encipherment or encryption.

3.2.4 Decryption: The reverse process of transforming cipher text into
plain text is called decipherment or decryption.

Plain Text Key Cipher Text

3.2.5 Transposition Ciphers: In transposition ciphers bits or characters

in the data are rearranged.
3.2.6 Substitution Ciphers: in substitution ciphers bits, characters or

blocks of characters are replaced. In computer applications,
transposition is usually combined with substitution as it is done in this
application in case of DES.

3.3 Threats to Data Stored in Computer System: Various threats to
data stored in computer systems are as under:
3.3.1 Overwriting: As name refers, it means completely changing the

correct data with an incorrect data.

Encipher

Decipher

 12
3.3.2 Modifying: As name implies, the intruder may modify the

existing data with some changes thus making the data incorrect. The
difference between overwriting and modifying is that in case of
overwriting, the data is completely replaced by incorrect data by the
intruder. While in case of modification, Part of the data is replaced
with the incorrect data.

3.3.3 Replaying: In this case, the current data is replaced by an old data.
This type of threat is very difficult to be detected as it makes use of
the correct data but of older version.

3.3.4 Inserting: In this case, intruder inserts some data in the actual data.
This is done with the intention to change the context of the actual
data.

3.3.5 Deleting: In this case, some important information is deleted from the
actual data. Thus making the actual data incorrect or unreadable.

3.3.6 Leaking: Here the information is leaked to some user who is not entitled to have
that information. No modification is made to the data. Thus making it almost
impossible to detect the unauthorized access to the data.

 overwriting

 replaying

 browsing inserting

 deleting

 Inference leaking

Faulty
program

Classified
Data

Confidential
Data

Statistics

 13

3.4 Where Should Data Encryption Be Used? Cryptography
(encryption) has historically been used to protect sensitive information darn~
communication. It can be used for protecting computer data transmitted
between terminals and computers or between computers. Data is encrypted
before transmission and decrypted after it is received. The algorithm used to
decrypt the received cipher must be the inverse of the algorithm used to
encrypt the transmitted data. In general, a device used to transmit and
receive data would contain algorithms for both encryption and decryption.

Encryption can be used between data processing machines and data
storage devices such as magnetic tape and magnetic disk. In this application,
the data is encrypted before it is written on the storage device and decrypted
before it is subsequently read. Data is stored in its cipher form and
transformed to plaintext only when it is to be processed within the computer.

Encryption can be used to authenticate the identities of users,
terminals, and computers of a data processing system. Passwords have
historically been used to differentiate between friend and foe during times of
war. Knowledge of the secret password was accepted as authenticating the
identity of friends. Unique identification was not necessary and the password
was changed for each mission. The DES uses a key, similar to a password,
which must be supplied to each group of users of the algorithm. Having the
correct key authenticates an individual to a data processing system.

In a similar manner a terminal or a computer may be authenticated as
an authorized device of a data processing system. Supplying the correct key
to a DES device when requested by the authorization system can
authenticate a terminal associated with the device. This authorization system
may be a special program or a special computer system that has been
established to control access to the resources and data of the overall system.
The authorization system must be initialized with the identities and the
authentication keys of all authorized users and devices of the system. This
system will issue a challenge for proper identification whenever a device or
individual wishes to access the system. Similar challenge/response password
systems are currently in use for computer user authentication. When
combined with data encryption technology, authorization systems can
authenticate the claimed identities of users and devices without

 14
compromising the passwords or keys by transmitting them through the
system.

3.4 When Should Data Encryption Be Used? Data encryption should be
used whenever it is the most cost effective method available to protect
the confidentiality or integrity of the data. Confidentiality refers to the
accidental or intentional disclosure of data to an unauthorized
individual. Integrity refers to data that has not been exposed to
accidental or malicious alteration or destruction. Encryption of data
prevents unauthorized recipients of the cipher from interpreting its
meaning. Encryption can also prevent unauthorized individuals from
manipulating the cipher in such a way that the original data is changed
in a predetermined manner. To be effective, encryption must cost less
than the expected loss (risk) if the protection were not provided.
Computation or estimation of costs and risks and the decision to
employ cryptographic protection are management functions of the
authority responsible for the data.

3.5 DES:
3.5.1 Overview: DES stands for Data Encryption Standard. It’s the first

standard cipher business world had and is still the most commonly
used. IBM developed the encryption algorithm for DES. Des
enciphers 64-bit blocks of data with a 56-bit key. As it is a standard,
any system using DES could talk to any other system using it (but
they always had to find a way to agree on the key to use). No one has
published a system for cracking DES, except the brute force method
of trying all keys until one works.

3.5.2 Requirements of DES: An encryption algorithm must satisfy the
following requirements in order to be acceptable as a Federal
standard:

It must provide a high level of security.

• It must be completely specified and easy to understand.
• The security provided by the algorithm must not be based upon the

secrecy of the algorithm.
• It must be available to all users and suppliers.
• It must be adaptable for use in diverse applications.
• It must be economical to implement in electronic devices and be efficient

to use.
• It must be amenable to validation.

 15
• It must be exportable.

The DES satisfies all these requirements.

3.5.3 Strength of DES:
• DES with a key of 56-bits means there are 72, 057, 594, 037, 926, 936
 combinations.
• DES was cracked in summer’ 98 in 56 hours.
• This year in January a message encrypted in DES was cracked in just

22 hours.
• A $20 million investment in Application Specific Integrated Circuits

can break a key every six minutes.
 T
3.5.4 DES enciphering algorithm:

 K1

 K2

 K16

IP-1

R15=L14⊕f(R14.k15 L15=R14

+ f

IP

Lo Ro

f

R1=Lo⊕f(Ro.k1) L1=Ro

+

f

R2=L1⊕f(R1.k2) L2=R1

+

R15=L14⊕f(R14.k15L15=R14

 16

3.5.5 Explanation of DES: A detailed analysis of enciphering and

deciphering process will be presented with a numerical example of a
sixteen round DES system. The analysis will be done under the
assumption that the 64-bit plain text

X = (x1, x2,……….x64)
 = (0 1 2 3 4 5 6 7 8 9 A B C D E F)

 in hexadecimal notation, enciphers into the 64-bit cipher text
Y = (y1, y2,……….y64)

 Under the control of 64-bit externally entered key
 K = (k1, k2,……….k64)
 = (1 3 3 4 5 7 7 9 9 B B C D F F 1)
 including 8 parity bits

3.5.5.1 Key schedule: Suppose the key is

K = (1 3 3 4 5 7 7 9 9 B B C D F F 1)
This 64-bit input key is expressed in binary notation as

K = (0001 0011 0011 0100 0101 0111 0111 1001
 1001 1011 1011 1100 1101 1111 1111 0001)

The register contents Co (left) and Do (right) are determined by
considering the key bits located at the position given in the table
PC-1.

Table-1 Permuted Choice 1(PC-1)

Using the above table the blocks C0 and D0 are immediately
obtained as shown below. The first two rows in the above table give
the bit positions for the C0 and the other two rows give the bit
positions for D0. The bit positions are obtained from the binary
representation of the key.

C0 = (1 1 1 1 0 0 0 0 1 1 0 0 1 1 0 0 1 0 1 0 1 0 1 0 1 1 1 1)
D0 = (0 1 0 1 0 1 0 1 0 1 1 0 0 1 1 0 0 1 1 1 1 0 0 0 1 1 1 1)

57 49 41 33 25 17 9 1 58 50 42 34 26 18
10 2 59 51 43 35 27 19 11 3 60 52 44 36
63 55 47 39 31 23 15 7 62 54 46 38 30 22
14 6 61 53 45 37 29 21 13 5 28 20 12 4

 17

Table-2 Shift Schedule for encipherment

Using Table-2, the blocks C1 and D1 are obtained from the

blocks C0 and D0 , respectively, by shifting one place to the left as
shown in the following.

C1 = (1 1 1 0 0 0 0 1 1 0 0 1 1 0 0 1 0 1 0 1 0 1 0 1 1 1 1 1)
D1 = (1 0 1 0 1 0 1 0 1 1 0 0 1 1 0 0 1 1 1 1 0 0 0 1 1 1 1 0)

Permuted choice 2 (PC 2) of Table-3 is the rule that defines

how the 48 bit key vectors k1, k2, ……k16 are derived from the
concatenated blocks (C1, D1), (C2, D2), ……(C16, D16) respectively.

Table-3 Permuted Choice 2 (PC-2)

The 48-bit key vector k1 is derived from (C1, D1) by taking the
 key bits located in Table-3.

K1=(000110 110000 001011 101111 111111 000111
 000001 110010)

 Since the number of left shifts is 1 at round 2, the concatenated
block (C2, D2) is created from the block (C1, D1) by shifting one place
to the left as shown below.

C2 = (1 1 0 0 0 0 1 1 0 0 1 1 0 0 1 0 1 0 1 0 1 0 1 1 1 1 1 1)
D2 = (0 1 0 1 0 1 0 1 1 0 0 1 1 0 0 1 1 1 1 0 0 0 1 1 1 1 0 1)

Round# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

No of 1 1 2 2 2 2 2 2 1 2 2 2 2 2 2 1
Shifts

14 17 11 24 1 5 3 28 15 6 21 10
23 19 12 4 26 8 16 7 27 20 13 2
41 52 31 37 47 55 30 40 51 45 33 48
44 49 39 56 34 53 46 42 50 36 29 32

 18

Using PC-2, k2 is easily obtained as

K2 = (0111 1001 1010 1110 1101 1001 1101 1011 1100 1001
1110 0101)
Since the number of left shifts is 2 at round 3, the concatenated

block (C3, D3) is created from the block (C2, D2) by shifting one place
to the left as shown below.

C3 = (0 0 0 0 1 1 0 0 1 1 0 0 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1)
D3 = (0 1 0 1 0 1 1 0 0 1 1 0 0 1 1 1 1 0 0 0 1 1 1 1 0 1 0 1)

Using PC-2, k3 is easily obtained as

K3 = (0101 0101 1111 1100 1000 1010 0100 0010 1100 1111

1001 1001)
Since the number of left shifts is 2 at round 4, the concatenated

block (C4, D4) is created from the block (C3, D3) by shifting one place
to the left as shown below.

C4 = (0 0 1 1 0 0 1 1 0 0 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 0 0)
D4 = (0 1 0 1 1 0 0 1 1 0 0 1 1 1 1 0 0 0 1 1 1 1 0 1 0 1 0 1)

Using PC-2, k4 is easily obtained as

K4 = (0111 0010 1010 1101 1101 0110 1101 1011 0011 0101

0001 1101)
Since the number of left shifts is 2 at round 5, the concatenated

block (C5, D5) is created from the block (C4, D4) by shifting one place
to the left as shown below.

C5 = (1 1 0 0 1 1 0 0 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 0 0 0 0)
D5 = (0 1 1 0 0 1 1 0 0 1 1 1 1 0 0 0 1 1 1 1 0 1 0 1 0 1 0 1)

Using PC-2, k5 is easily obtained as

K5=(0111 1100 1110 1100 0000 0111 1110 1011 0101 0011
 1010 1000)
Since the number of left shifts is 2 at round 6, the concatenated

block (C6, D6) is created from the block (C5, D5) by shifting one place
to the left as shown below.

C6 = (0 0 1 1 0 0 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1)
D6 = (1 0 0 1 1 0 0 1 1 1 1 0 0 0 1 1 1 1 0 1 0 1 0 1 0 1 0 1)

 19
Using PC-2, k6 is easily obtained as

K6 = (0110 0011 1010 0101 0011 1110 0101 0000 0111 1011

0010 1111)

Since the number of left shifts is 2 at round 7, the concatenated

block (C7, D7) is created from the block (C6, D6) by shifting one place
to the left as shown below.

C7 = (1 1 0 0 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 0 0)
D7 = (0 1 1 0 0 1 1 1 1 0 0 0 1 1 1 1 0 1 0 1 0 1 0 1 0 1 1 0)

Using PC-2, k7 is easily obtained as

K7 = (1110 1100 1000 0100 1011 0111 1111 0110 0001 1000

1011 1100)
Since the number of left shifts is 2 at round 8, the concatenated

block (C8, D8) is created from the block (C7, D7) by shifting one place
to the left as shown below.

C8 = (0 0 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 0 0 1 1)
D8 = (1 0 0 1 1 1 1 0 0 0 1 1 1 1 0 1 0 1 0 1 0 1 0 1 1 0 0 1)

Using PC-2, k 8is easily obtained as

K8 = (1111 0111 1000 1010 0011 1010 1100 0001 0011 1011

1111 1011)

Since the number of left shifts is 1 at round 9, the concatenated
block (C9, D9) is created from the block (C8, D8) by shifting one place
to the left as shown below.

C9 = (0 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 0 0 1 1 0)
D9 = (0 0 1 1 1 1 0 0 0 1 1 1 1 0 1 0 1 0 1 0 1 0 1 1 0 0 1 1)

Using PC-2, k9is easily obtained as

K9 = (1110 0000 1101 1011 1110 1011 1110 1101 1110 0111

1000 0001)

Since the number of left shifts is 2 at round 10, the
concatenated block (C10, D10) is created from the block (C9, D9) by
shifting one place to the left as shown below.

C10 = (0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 0 0 1 1 0 0 1)

 20
D10 = (1 1 1 1 0 0 0 1 1 1 1 0 1 0 1 0 1 0 1 0 1 1 0 0 1 1 0 0)

Using PC-2, k10 is easily obtained as

K10 = (1011 0001 1111 0011 0100 0111 1011 1010 0100 0110

0100 1111)

Since the number of left shifts is 2 at round 11, the
concatenated block (C11, D11) is created from the block (C10, D10) by
shifting one place to the left as shown below.

C11 = (0 1 0 1 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 0 0 1 1 0 0 1 0 1)
D11 = (1 1 0 0 0 1 1 1 1 0 1 0 1 0 1 0 1 0 1 1 0 0 1 1 0 0 1 1)

Using PC-2, k11 is easily obtained as

K11 = (0010 0001 0101 1111 1101 0011 1101 1110 1101 0011

1000 0110)

Since the number of left shifts is 2 at round 12, the
concatenated block (C12, D12) is created from the block (C11, D11) by
shifting one place to the left as shown below.

C12 = (0 1 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 0 0 1 1 0 0 1 0 1 0 1)
D12 = (0 0 0 1 1 1 1 0 1 0 1 0 1 0 1 0 1 1 0 0 1 1 0 0 1 1 1 1)

Using PC-2, k12 is easily obtained as

K12 = (0111 0101 0111 0001 1111 0101 1001 0100 0110 0111

1110 1001)

Since the number of left shifts is 2 at round 13, the
concatenated block (C13, D13) is created from the block (C12, D12) by
shifting one place to the left as shown below.

C13 = (0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 0 0 1 1 0 0 1 0 1 0 1 0 1)
D13 = (0 1 1 1 1 0 1 0 1 0 1 0 1 0 1 1 0 0 1 1 0 0 1 1 1 1 0 0)

Using PC-2, k13 is easily obtained as

K13 = (1001 0111 1100 0101 1101 0001 1111 1010 1011 1010

0100 0001)

 21
Since the number of left shifts is 2 at round 14, the

concatenated block (C14, D14) is created from the block (C13, D13) by
shifting one place to the left as shown below.

C14 = (1 1 1 1 1 1 1 0 0 0 0 1 1 0 0 1 1 0 0 1 0 1 0 1 0 1 0 1)
D14 = (1 1 1 0 1 0 1 0 1 0 1 0 1 1 0 0 1 1 0 0 1 1 1 1 0 0 0 1)

Using PC-2, k14 is easily obtained as

K14 = (0101 1111 0100 0011 1011 0111 1111 0010 1110 0111

0011 1010)
Since the number of left shifts is 2 at round 15, the

concatenated block (C15, D15) is created from the block (C14, D14) by
shifting one place to the left as shown below.

C15 = (1 1 1 1 1 0 0 0 0 1 1 0 0 1 1 0 0 1 0 1 0 1 0 1 0 1 1 1)
D15 = (1 0 1 0 1 0 1 0 1 0 1 1 0 0 1 1 0 0 1 1 1 1 0 0 0 1 1 1)

Using PC-2, k15 is easily obtained as

K15 = (1011 1111 1001 0001 1000 1101 0011 1101 0011 1111

0000 1010)

Since the number of left shifts is 1 at round 16, the
concatenated block (C16, D16) is created from the block (C15, D15) by
shifting one place to the left as shown below.

C16 = (1 1 1 1 0 0 0 0 1 1 0 0 1 1 0 0 1 0 1 0 1 0 1 0 1 1 1 1)
D16 = (0 1 0 1 0 1 0 1 0 1 1 0 0 1 1 0 0 1 1 1 1 0 0 0 1 1 1 1)

Using PC-2, k16 is easily obtained as

K16 = (1100 1011 0011 1101 1000 1011 0000 1110 0001 0111

1111 0101)

These internal keys k1, k2, ….k16 are used in round 1, 2 ….16
respectively for the purpose of encipherment. These 48-bits keys are
generated through a series of permutations and left shifts of the 56 bits
selected from the 64-bit external key.

 22

3.5.5.2 Encipherment: The numerical computation is given first, along
with a detailed explanation of how the algorithm is used for
encipherment. The 64-bit plain text to be ciphered is

 X = (x1, x2,……x64.)

= (0 1 2 3 4 5 6 7 8 9 A B C D E F) in hexadecimal notation.
= (0000 0001 0010 0011 0100 0101 0110 0111

 1000 1001 1010 1011 1100 1101 1110 1111)
This plain text X is first subjected to an initial permutation

(IP) to make it split into two blocks L0 (left) and R0 (right) where
each of them consists of X/2 = 32 bits as indicated in Table-4. where
(L0,R0) denotes a concatenation consisting of the bits of L0 followed
by R0.

Table-4 Initial Permutation (IP)

L0

 R0

 L0 = (1100 1100 0000 0000 1100 1100 1111 1111)
 R0 = (1111 0000 1010 1010 1111 0000 1010 1010)

This right half of the plain text to round 0, R0 is expanded from
32 bits to 48 bits according to Table-5.

58 50 42 34 26 18 10 2
60 52 44 36 28 20 12 4
62 54 46 38 30 22 14 6
64 56 48 40 32 24 16 8

57 49 41 33 25 17 9 1
59 51 43 35 27 19 11 3
61 53 45 37 29 21 13 5
63 55 47 39 31 23 15 7

 23

 Table-5 E Bit-Selection Table

The symbol E of E(R0) denotes a function, which takes a block

of 32 bits as its input and yields one of 48 bits as its output. Table-5
consists of eight blocks of 6 bits each, but the central portion
represents the data and the first and last columns denote appendices
for expansion. Hence, we have

E(R0) = (011110 100001 010101 010101 011110 100001

 010101 010101)
Thus, the 32-bit R0 can be spread out and scrambled into 48 bits

with the E-Table.
The key dependent function, Tj = E(R0) ⊕kj, 0 < I < 15,, 1 < j <

16 can be computed in terms of the E bit selection E(R0), 0 < I <15
and the key schedule kj, 1 < j < 16. the cipher function fj, 1 < I <16, is
defined in terms of Tj and the permutation function P(Bj)

Once E(R0) is generated, it is added bit by bit to k1 and
48-bit vector is resulted in
T1 = E(R0) ⊕k1
= (011110 100001 010101 010101 011110 100001 010101 010101)

 ⊕(000110 110000 001011 101111 111111 000111 000001 110010)
 = (011000 010001 011110 111010 100001 100110 010100 100111)

Where ⊕ denotes bit-by-bit addition modulo-2. this 48-
bit input T1 to the S-boxes is passed through a non-linear S-box
transformation to form the 32-bit output.

32 1 2 3 4 5
4 5 6 7 8 9
8 9 10 11 12 13
12 13 14 15 16 17
16 17 18 19 20 21
20 21 22 23 24 25
24 25 26 27 28 29
28 29 30 31 32 1

 24

Table-6 Primitive S –Box Functions

14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7
0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8
4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0
15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

15 1 8 14 6 11 3 4 9 7 2 13 12 0 5 10
3 13 4 7 15 2 8 14 12 0 1 10 6 9 11 5
0 14 7 11 10 4 13 1 5 8 12 6 9 3 2 15
13 8 10 1 3 15 4 2 11 6 7 12 0 5 14 13

10 0 9 14 6 3 15 5 1 13 12 7 11 4 2 8
13 7 0 9 3 4 6 10 2 8 5 14 12 11 15 1
13 6 4 9 8 15 3 0 11 1 2 12 5 10 14 7
1 10 13 0 6 9 8 7 4 15 14 3 11 5 2 12

7 13 14 3 0 6 9 10 1 2 8 5 11 12 4 15
13 8 11 5 6 15 0 3 4 7 2 12 1 10 14 9
10 6 9 0 12 11 7 13 15 1 3 14 5 2 8 4
3 15 0 6 10 1 13 8 9 4 5 11 12 7 2 14

2 12 4 1 7 10 11 6 8 5 3 15 13 0 14 9
14 11 2 12 4 7 13 1 5 0 15 10 3 9 8 6
4 2 1 11 10 13 7 8 15 9 12 5 6 3 0 14
11 8 12 7 1 14 2 13 6 15 0 9 10 4 5 3

12 1 10 15 9 2 6 8 0 13 3 4 14 7 5 11
10 15 4 2 7 12 9 5 6 1 13 14 0 11 3 8
9 14 15 5 2 8 12 3 7 0 4 10 1 13 11 6
4 3 2 12 9 5 15 10 11 14 1 7 6 0 8 13

S1

S2

S3

S4

S5

S6

 25

4 11 2 14 15 0 8 13 3 12 9 7 5 10 6 1
13 0 11 7 4 9 1 10 14 3 5 12 2 15 8 6
1 4 11 13 12 3 7 14 10 15 6 8 0 5 9 2
6 11 13 8 1 4 10 7 9 5 0 15 14 2 3 12

13 2 8 4 6 15 11 1 10 9 3 14 5 0 12 7
1 15 13 8 10 3 7 4 12 5 6 11 0 14 9 2
7 11 4 1 9 12 14 2 0 6 10 13 15 3 5 8
2 1 14 7 4 10 8 13 15 12 9 0 3 5 6 11

The elements of vector Tj , are used as arguments in the
substitution operations (S-boxes) S1 through S8. Each S-box is
described as a matrix of four rows and 16 columns as shown in Table-
6. Grouping the 48-bit T1 into sets of 6 bits , as expressed above, leads
to easy computation of the substitution operations for S1 through S8
as follows.

 T1 = (011000 010001 011110 111010 100001 100110 010100 100111)

 S00

1(1100) = S0
1(12) = 5 = 0101

 S01
2(1000) = S1

2(8) = 12 = 1100
 S00

3(1111) = S0
3(15) = 8 = 1000

S10
4(1101) = S2

4(13) = 2 = 0010
S11

5(0000) = S3
5(0) = 11 = 1011

S10
6(0011) = S2

6(3) = 5 = 0101
S00

7(1010) = S00
7(10) = 9 = 1001

S11
8(0011) = S11

8(3) = 7 = 0111

Each member in the above equation represents the 4-bit output

of an individual S-box, and concatenating all of these outputs yields
the 32 bits represented by vector B1.

B1 = (0101 1100 1000 0010 1011 0101 1001 0111)
The permutation function P(B1) yields a 32-bit output from a

32-bit input by permuting the bits of the above equation. Such a
function is defined in Table-7.

S7

S8

 26

 Table-7 Permutation Function p

 P (B1) = (0010 0011 0100 1010 1010 1001 1011 1011)

Modulo 2 addition of P(B1) with L0 may be expressed as
R1 = P(B1) ⊕L0

 = (0010 0011 0100 1010 1010 1001 1011 1011)
 ⊕(1100 1100 0000 00001100 1100 1111 1111)
 = (1110 1111 0100 1010 0110 0101 0100 0100)
This is the result representing the right half output after round

one. Since L1 = R0, the left half output after round one is immediately
obtained from the equation

 L1 = (1111 0000 1010 1010 1111 0000 1010 1010)
Thus, the computation of R1 and L1 completes the first round

encipherment.
Let us now consider the second round encipherment. Expanding

R1 with the help of table-5,we have
E(R1) = (011101 011110 101001 010100 001100 001010

 101000 001001)
 Modulo-2 addition of E(R1) with k2 yields
 T1 = E(R1) ⊕k2

 = (011101 011110 101001 010100 001100 001010 101000 001001)
 ⊕(011110 011010 111011 011001 110110 111100 100111 100101)
 = (000011 000100 010010 001101 111010 110110 001111 101100)

The substitution operations are followed by
 S01

1(0001) = S0
1(1) = 15 = 1111

 S00
2(0010) = S1

2(2) = 8 = 1000
 S00

3(1001) = S0
3(9) = 13 = 1101

S01
4 (0110) = S2

4 (6) = 0 = 0000

16 7 20 21
29 12 28 17
1 15 23 26
5 18 31 10
2 8 24 14
32 27 3 9
19 13 30 6
22 11 4 25

 27
S10

5 (1101) = S3
5 (13) = 3 = 0011

S10
6 (1011) = S2

6 (11) = 10 = 1010
S01

7 (0111) = S00
7 (7) = 10 = 1010

S10
8 (0110) = S11

8 (6) = 14 = 1110

 Concatenating all these results we get
B2 = (1111 1000 1101 0000 0011 1010 1010 1110)

 Using Table-7, the permutation P(B2) becomes
P(B2) = (00111100101010111000011110100011)

 Thus, the right-half output after round two is obtained by
modulo2 addition of P(B2)with L1 such that
R2 = P(B2) ⊕L1
 = (0011 1100 1010 1011 1000 0111 1010 0011)
 ⊕ (1111 0000 1010 1010 1111 0000 1010 1010)
R2 = (1100 1100 0000 0001 0111 0111 0000 1001)

The left-half output after round two becomes
L2 = R1

= (1110 1111 0100 1010 0110 0101 0100 0100)
Let us now consider the third round encipherment. Expanding

R2 with the aid of Table-5, we have
R2 = 1100 1100 0000 0001 0111 0111 0000 1001
E(R2) = (111001 011000 000000 000010 101110 101110 100001
010011)
Modulo-2 addition of E(R2) with K3 yields
T2 == E(R2) ⊕ K3

 = (111001 011000 000000 000010 101110 101110 100001 010011)
 ⊕ (010101 011111 110010 001010 010000 101100 111110 011001)
 = (101100 000111 110010 001000 111110 000010 011111 001010)

The substitution operations for S-boxes are fol1owed by
S10

1 (0110) = S2
1 (6) = 2 = 0010

S01
2 (0011) = S1

2 (3) = 7 = 0111
S10

3 (1001) = S2
3 (9) = 1 = 0001

S00
4 (0100) = S0

4 (4) = 0 = 0000
S10

5 (1111) = S2
5 (15) = 14 = 1110

S00
6 (0001) = S0

6 (1) = 1 = 0001

 28
S01

7 (1111) = S1
7 (15) = 6 = 0110

S00
8 (0101) = S0

8 (5) = 15 = 1111

 Concatenating all these results we get
 B3 = (0010 0111 0001 0000 1110 0001 0110 1111)

 Using Table-7, the permutation P(B3) becomes
P(B3) = (0100 1101 0001"0110 0110 1110 1011 0000)
 Thus, the right-half output after round three is obtained by
modulo-2 addition of P(B3) with L2 such that

R3 = P(B3) ⊕ L2

 = (0100 1101 0001 0110 0110 1110 1011 0000)
 ⊕ (1110 1111 0100 1010 0110 0101 0100 0100)
 R3 = (1010 0010 0101 1100 0000 1011 1111 0100)
The left-half output after round three becomes
L3 = R2
 =(1100 1100 0000 0001 0111 0111 0000 1001)

 Concatenation of R3 with L3 is called the pre output block in our
sixteen round cipher system.
 Let us now consider the fourth round encipherment.
Expanding R3 with the aid of Table-5, we have

 R3 = (1010 0010 0101 1100 0000 1011 1111 0100)
E(R3) = (010100 000100 001011 111000 000001 010111 111110

 101001)
 Modulo-2 addition of E(R3) with K4 yields

 T3 = E(R3) ⊕ K4
 = (010100 000100 001011 111000 000001 010111 111110 101001)

 ⊕ (011100 101010 110111 010110 110110 110011 010100 011101)
 = (001000 101110 111100 101110 110111 100100 101010 110100)

The substitution operations for S-boxes are followed by

 S00
1 (0100) = S0

1 (4) = 2 = 0010
 S10

2 (0111) = S2
2 (7) = 1 = 0001

 S10
3 (1110) = S2

3 (14) = 14 = 1110
 S10

4 (0111) = S2
4 (7) = 13 = 1101

 29
 S11

5 (1011) = S3
5 (11) = 9 = 1001

 S10
6 (0010) = S2

6 (2) = 15 = 1111
S10

7 (0101) = S2
7 (5) = 3 = 0011

 S10
8 (1010) = S2

8 (10) = 10 = 1010

 Concatenating all these results we get
B4 = (0010 0001 1110 1101 1001 1111 0011 1010)
 Using Table-7, the permutation P(B4) becomes
P(B4) = (1011 loll 0010 0011 0111 0111 0100 1100)
 Thus, the right-half output after round four is obtained by
modulo-2 addition of P(B4) with L3 such that
R4 = P(B4) ⊕ L3
= (1011 1011 0010 0011 0111 0111 0100 1100)
⊕ (1100 1100 0000 0001 0111 0111 0000 1001)
= (0111 0111 0010 0010 0000 0000 0100 0101)

The left-half output after round three becomes
L4 = R3

 = (1010 0010 0101 1100 0000 1011 1111 0100)
 Concatenation of R4 with L4 is called the pre output block in our
sixteen round cipher system.
 Let us now consider the fifth round encipherment. Expanding
R4 with the aid of Table-5, we have
R4 = (0111 0111 0010 0010 0000 0000 0100 0101)
E(R4) = (101110 101110 100100 000100 000000 000000 001000
 001010)
 Modulo-2 addition of E(R4) with K5 yields

T4 = E(R4) ⊕K5
=(101110 101110 100100 000100 000000 000000 001000 001010)
⊕(011111 001110 110000 000111 111010 110101 001110 101000)
=(110001 100000 010100 000011 111010 110101 000110 100010)

The substitution operations for S-boxes are followed by
S1l

l(1000) = S3
1 (8) = 5 = 0101

S10
2(0000) = S2

2 (0) = 0 = 0000
S00

3(1010) = S0
3 (10) = 12 = 1100

S01
4(0001) = S1

4 (1) = 8 = 1000
S10

5(1101) = S2
5 (13) = 3 = 0011

 30
S11

6(1010) = S3
6 (10) = 1 = 0001

S00
7(0011) = S0

7 (3) = 14 = 1110
S10

8(0001)= S2
8 (1) = 11 = 1011

Concatenating all these results we get

B5 = (0101 0000 1100 1000 0011 0001 l110 1011)
Using Table-7, the permutation P(B5) becomes
P(B5) = (0010 1000 0001 0011 1010 1101 1100 0011)

Thus, the right-half output after round five is obtained by
modulo-2 addition of P(B5) with L4 such that

R5 = P(B5) ⊕L4

 = (0010 1000 0001 0011 1010 1101 1100 0011)
 ⊕ (1010 0010 0101 1100 0000 1011 1111 0100)
 R5 = (1000 1010 0100 1111 1010 0110 0011 0111)

The left-half output after round three becomes
L5 = R4

 = (0111 0111 0010 0010 0000 0000 0100 0101)
Concatenation of R5 with L5 is called the pre output block in

our sixteen round cipher system.
Let us now consider the sixth round encipherment. Expanding

R5 with the aid of Table-5, we have
 R5=(1000 1010 0100 1111 1010 0110 0011 0111)

E(R5) = (110001 010100 001001 011111 110100 001100 000110
 101111)
Modulo-2 addition of E(R4) with K5 yields

 T5 = E(R5) ⊕K6
 =(110001 010100 001001 011111 110100 001100 000110 101111)

 ⊕(011000 111010 010100 111110 010100 000111 101100 101111)
 =(101001 101110 011101 100001 100000 001011 101010 000000)

The substitution operations for S-boxes are followed by

 S11
1 (0100)= S3

1 (4) = 4 = 0100
 S10

2 (0111)= S2
2 (7) =1 = 0001

 31
 S01

3 (1110)=S1
3(14) = 15= 1111

 S11
4 (0000)= S3

4(0) =3 = 0011
 S10

5 (0000)=S2
5(0) =4 = 0100

 S01
6 (0101)=S1

6(5) = 12 = 1100
 S10

7 (0101)=S2
7(5) =3 = 0011

 S00
8 (0000)= S0

8(0) = 13 = 1101

 Concatenating all these results we get
B6 = (1111 1000 1101 0000 0011 1010 1010 1110)

 Using Table-7, the permutation P(B6) becomes
P(B6) = (00111100101010111000011110100011)

 Thus, the right-half output after round two is obtained by
modulo2 addition of P(B6)with L5 such that
R6 = P(B6) ⊕L5
 = (0011 1100 1010 1011 1000 0111 1010 0011)
 ⊕ (1111 0000 1010 1010 1111 0000 1010 1010)
R6 = (1100 1100 0000 0001 0111 0111 0000 1001)

The left-half output after round two becomes
L6 = R5

= (1110 1111 0100 1010 0110 0101 0100 0100)
Let us now consider the third round encipherment. Expanding

R6 with the aid of Table-5, we have
R6= 1100 1100 0000 0001 0111 0111 0000 1001
E(R6) = (111001 011000 000000 000010 101110 101110 100001
 010011)
Modulo-2 addition of E(R6) with k7 yields

T6= E(R6) ⊕ K7
 = (111001 011000 000000 000010 101110 101110 100001 010011)
 ⊕ (010101 011111 110010 001010 010000 101100 111110 011001)
 = (101100 000111 110010 001000 111110 000010 011111 001010)

The substitution operations for S-boxes are fol1owed by
S10

1 (0110) = S2
1 (6) = 2 = 0010

S01
2 (0011) = S1

2 (3) = 7 = 0111
S10

3 (1001) = S2
3 (9) = 1 = 0001

 32
S00

4 (0100) = S0
4 (4) = 0 = 0000

S10
5 (1111) = S2

5 (15) = 14 = 1110
S00

6 (0001) = S0
6 (1) = 1 = 0001

S01
7 (1111) = S1

7 (15) = 6 = 0110
S00

8 (0101) = S0
8 (5) = 15 = 1111

 Concatenating all these results we get

B7 = (0001 0000 0111 0101 0100 0000 1010 1101)
Using Table-7, the permutation P(B7) becomes
P(B7) = (1000 1100 0000 0101 0001 1100 0010 0111)
 Thus, the right-half output after round seven is obtained by
modulo-2 addition of P(B7) with L6 such that
R7 = P(B7) ⊕L6
 = (1000 1100 0000 0101 0001 1100 0010 0111)
 ⊕ (1000 1010 0100 1111 1010 0110 0011 0111)
R7 = (0000 0110 0100 1010 1011 1010 0001 0000)
The left-half output after round three becomes
L7 = R6
 = (1110 1001 0110 0111 1100 1101 0110 1001)
 Concatenation of R7 with L7 is called the pre output block in our
sixteen round cipher system.
 Let us now consider the eighth round encipherment. Expanding R7
with the aid of Table-5, we have

R7 = (0000 0110 0100 1010 1011 1010 0001 0000)
E(R7)=(000000 001100 001001 010101 010111 110100 000010 100000)

Modulo-2 addition of E(R7) with K8 yields
T7 = E(R7) ⊕K8
= (000000 001100 001001 010101 010111 110100 000010 100000)
⊕ (111101 111000 101000 111010 110000 010011 101111 111011)
= (111101 110100 100001 101111 100111 100111 101101 011011)

 The substitution operations for S-boxes are followed by
 S11

1(1110)= S3
1(14) = 6 = 0110

 S10
2(1010)= S2

2(10) = 12 = 1100

 33
 S11

3(0000)= S3
3(0) = 1 = 0001

 S11
4(0111)= S3

4(7) = 8 = 1000
 S11

5(0011)= S3
5(3) = 7 = 0111

 S11
6(0011)= S3

6(3) = 12 = 1100
 S11

7(0110)= S3
7(6) = 10 = 1010

 S01
8(1101)= S1

8(13) = 14 = 1110

Concatenating all these results we get
B8 = (0101 0000 1100 1000 0011 0001 l110 1011)
Using Table-7, the permutation P(B8) becomes
P(B8) = (0010 1000 0001 0011 1010 1101 1100 0011)

Thus, the right-half output after round five is obtained by
modulo-2 addition of P(B8) with L7 such that

R7 = P(B8) ⊕L7
 = (0010 1000 0001 0011 1010 1101 1100 0011)
 ⊕ (1010 0010 0101 1100 0000 1011 1111 0100)
 R7 = (1000 1010 0100 1111 1010 0110 0011 0111)

The left-half output after round three becomes
L8 = R7
 = (0111 0111 0010 0010 0000 0000 0100 0101)

Concatenation of R8 with L8 is called the pre output block in our
sixteen round cipher system.

Let us now consider the sixth round encipherment. Expanding
R8 with the aid of Table-5, we have
 R8=(1000 1010 0100 1111 1010 0110 0011 0111)
E(R8) = (110001 010100 001001 011111 110100 001100 000110
 101111)
Modulo-2 addition of E(R8) with K9 yields
T8 = E(R8) ⊕K9
 =(110001 010100 001001 011111 110100 001100 000110 101111)
 ⊕(011000 111010 010100 111110 010100 000111 101100 101111)
 =(101001 101110 011101 100001 100000 001011 101010 000000)

 34
The substitution operations for S-boxes are followed by

 S11
1 (0100)= S3

1 (4) = 4 = 0100
 S10

2 (0111)= S2
2 (7) =1 = 0001

 S01
3 (1110)=S1

3(14) = 15 = 1111
 S11

4 (0000)= S3
4(0) =3 = 0011

 S10
5 (0000)=S2

5(0) =4 = 0100
 S01

6 (0101)=S1
6(5) = 12 = 1100

 S10
7 (0101)=S2

7(5) =3 = 0011
 S00

8 (0000)= S0
8(0) = 13 = 1101

 Concatenating all these results we get
 B9 = (0010 0111 0001 0000 1110 0001 0110 1111)

 Using Table-7, the permutation P(B9) becomes
P(B9) = (0100 1101 0001"0110 0110 1110 1011 0000)
 Thus, the right-half output after round three is obtained by
modulo-2 addition of P(B9) with L8 such that

R9 = P(B9) ⊕ L8

 = (0100 1101 0001 0110 0110 1110 1011 0000)
 ⊕ (1110 1111 0100 1010 0110 0101 0100 0100)
 R9 = (1010 0010 0101 1100 0000 1011 1111 0100)
The left-half output after round three becomes
L9 = R8
 =(1100 1100 0000 0001 0111 0111 0000 1001)
 Concatenation of R9 with L9 is called the pre output block in our
sixteen round cipher system.
 Let us now consider the fourth round encipherment.
Expanding R9 with the aid of Table-5, we have

 R9 = (1010 0010 0101 1100 0000 1011 1111 0100)
E(R9) = (010100 000100 001011 111000 000001 010111 111110

 101001)
 Modulo-2 addition of E(R9) with K10 yields

 T9 = E(R9) ⊕ K10
 = (010100 000100 001011 111000 000001 010111 111110 101001)

 ⊕ (011100 101010 110111 010110 110110 110011 010100 011101)
 = (001000 101110 111100 101110 110111 100100 101010 110100)

 35
The substitution operations for S-boxes are followed
by

 S00
1 (0100) = S0

1 (4) = 2 = 0010
 S10

2 (0111) = S2
2 (7) = 1 = 0001

 S10
3 (1110) = S2

3 (14) = 14 = 1110
 S10

4 (0111) = S2
4 (7) = 13 = 1101

 S11
5 (1011) = S3

5 (11) = 9 = 1001
 S10

6 (0010) = S2
6 (2) = 15 = 1111

S10
7 (0101) = S2

7 (5) = 3 = 0011
 S10

8 (1010) = S2
8 (10) = 10 = 1010

 Concatenating all these results we get
B10 = (0010 0001 1110 1101 1001 1111 0011 1010)
 Using Table-7, the permutation P(B10) becomes
P(B10) = (1011 loll 0010 0011 0111 0111 0100 1100)
 Thus, the right-half output after round four is obtained by
modulo-2 addition of P(B10) with L9 such that
R10 = P(B10) ⊕ L9
= (1011 1011 0010 0011 0111 0111 0100 1100)
⊕ (1100 1100 0000 0001 0111 0111 0000 1001)
= (0111 0111 0010 0010 0000 0000 0100 0101)

The left-half output after round three becomes
L10 = R9

 = (1010 0010 0101 1100 0000 1011 1111 0100)
 Concatenation of R10 with L10 is called the pre output block in
our sixteen round cipher system.
 Let us now consider the fifth round encipherment. Expanding
R10 with the aid of Table-5, we have
R10 = (0111 0111 0010 0010 0000 0000 0100 0101)
E(R10) = (101110 101110 100100 000100 000000 000000 001000
 001010)
Modulo-2 addition of E(R10) with K11 yields

 T10 = E(R10) ⊕K11
=(101110 101110 100100 000100 000000 000000 001000 001010)
⊕(011111 001110 110000 000111 111010 110101 001110 101000)
=(110001 100000 010100 000011 111010 110101 000110 100010)

 36
The substitution operations for S-boxes are followed by
S1l

l(1000) = S3
1 (8) = 5 = 0101

S10
2(0000) = S2

2 (0) = 0 = 0000
S00

3(1010) = S0
3 (10) = 12 = 1100

S01
4(0001) = S1

4 (1) = 8 = 1000
S10

5(1101) = S2
5 (13) = 3 = 0011

S11
6(1010) = S3

6 (10) = 1 = 0001
S00

7(0011) = S0
7 (3) = 14 = 1110

S10
8(0001)= S2

8 (1) = 11 = 1011

 Concatenating all these results we get
 B11 = (0010 0111 0001 0000 1110 0001 0110 1111)

 Using Table-7, the permutation P(B11) becomes
P(B11) = (0100 1101 0001"0110 0110 1110 1011 0000)
 Thus, the right-half output after round three is obtained by
modulo-2 addition of P(B11) with L10 such that
R11 = P(B11) ⊕ L10

 = (0100 1101 0001 0110 0110 1110 1011 0000)
 ⊕ (1110 1111 0100 1010 0110 0101 0100 0100)
 R11 = (1010 0010 0101 1100 0000 1011 1111 0100)
The left-half output after round three becomes
L11 = R10
 = (1100 1100 0000 0001 0111 0111 0000 1001)
 Concatenation of R11 with L11 is called the pre output block in
our sixteen round cipher system.
 Let us now consider the fourth round encipherment.
Expanding R11 with the aid of Table-5, we have

 R11 = (1010 0010 0101 1100 0000 1011 1111 0100)
E(R11) = (010100 000100 001011 111000 000001 010111 111110

 101001)

 Modulo-2 addition of E(R11) with K12 yields

 T11 = E(R11) ⊕ K12
 = (010100 000100 001011 111000 000001 010111 111110 101001)

 ⊕ (011100 101010 110111 010110 110110 110011 010100 011101)
 = (001000 101110 111100 101110 110111 100100 101010 110100)

 37

The substitution operations for S-boxes are followed by

 S00
1 (0100) = S0

1 (4) = 2 = 0010
 S10

2 (0111) = S2
2 (7) = 1 = 0001

 S10
3 (1110) = S2

3 (14) = 14 = 1110
 S10

4 (0111) = S2
4 (7) = 13 = 1101

 S11
5 (1011) = S3

5 (11) = 9 = 1001
 S10

6 (0010) = S2
6 (2) = 15 = 1111

S10
7 (0101) = S2

7 (5) = 3 = 0011
 S10

8 (1010) = S2
8 (10) = 10 = 1010

 Concatenating all these results we get
B12 = (1111 1000 1101 0000 0011 1010 1010 1110)

 Using Table-7, the permutation P(B12) becomes
P(B12) = (00111100101010111000011110100011)

 Thus, the right-half output after round two is obtained by
modulo2 addition of P(B12)with L11 such that
R12 = P(B12) ⊕L11
 = (0011 1100 1010 1011 1000 0111 1010 0011)
 ⊕ (1111 0000 1010 1010 1111 0000 1010 1010)
R12 = (1100 1100 0000 0001 0111 0111 0000 1001)

The left-half output after round two becomes
L12 = R11

= (1110 1111 0100 1010 0110 0101 0100 0100)
Let us now consider the third round encipherment. Expanding

R12 with the aid of Table-5, we have
R12= 1100 1100 0000 0001 0111 0111 0000 1001
E(R12) = (111001 011000 000000 000010 101110 101110 100001
 010011)
 Modulo-2 addition of E(R12) with k13 yields

T12= E(R12) ⊕ K13

 (111001 011000 000000 000010 101110 101110 100001 010011)

 38
 ⊕(010101 011111 110010 001010 010000 101100 111110
011001)
 = (101100 000111 110010 001000 111110 000010 011111 001010)

The substitution operations for S-boxes are fol1owed by
S10

1 (0110) = S2
1 (6) = 2 = 0010

S01
2 (0011) = S1

2 (3) = 7 = 0111
S10

3 (1001) = S2
3 (9) = 1 = 0001

S00
4 (0100) = S0

4 (4) = 0 = 0000
S10

5 (1111) = S2
5 (15) = 14 = 1110

S00
6 (0001) = S0

6 (1) = 1 = 0001
S01

7 (1111) = S1
7 (15) = 6 = 0110

 S00
8 (0101) = S0

8 (5) = 15 = 1111

Concatenating all these results we get
B13 = (0101 0000 1100 1000 0011 0001 l110 1011)
Using Table-7, the permutation P(B13) becomes
P(B13) = (0010 1000 0001 0011 1010 1101 1100 0011)
Thus, the right-half output after round five is obtained by
modulo-2 addition of P(B13) with L12 such that

R13 = P(B13) ⊕L12
 = (0010 1000 0001 0011 1010 1101 1100 0011)
 ⊕ (1010 0010 0101 1100 0000 1011 1111 0100)
 R13 =(1000 1010 0100 1111 1010 0110 0011 0111)

The left-half output after round three becomes
L13 = R7
 = (0111 0111 0010 0010 0000 0000 0100 0101)
Concatenation of R13 with L13 is called the pre output block in our
sixteen round cipher system.
Let us now consider the sixth round encipherment. Expanding R13
with the aid of Table-5, we have
 R13=(1000 1010 0100 1111 1010 0110 0011 0111)
E(R13) = (110001 010100 001001 011111 110100 001100 000110
 101111)
Modulo-2 addition of E(R13) with K14 yields

 39
T13 = E(R13) ⊕K14
 =(110001 010100 001001 011111 110100 001100 000110 101111)
 ⊕(011000 111010 010100 111110 010100 000111 101100 101111)
 =(101001 101110 011101 100001 100000 001011 101010 000000)

The substitution operations for S-boxes are followed by
 S11

1 (0100)= S3
1 (4) = 4 = 0100

 S10
2 (0111)= S2

2 (7) =1 = 0001
 S01

3 (1110)=S1
3(14) = 15 = 1111

 S11
4 (0000)= S3

4(0) =3 = 0011
 S10

5 (0000)=S2
5(0) =4 = 0100

 S01
6 (0101)=S1

6(5) = 12 = 1100
 S10

7 (0101)=S2
7(5) =3 = 0011

 S00
8 (0000)= S0

8(0) = 13 = 1101

 Concatenating all these results we get
B14 = (1111 1000 1101 0000 0011 1010 1010 1110)

 Using Table-7, the permutation P(B14) becomes
P(B14) = (00111100101010111000011110100011)

 Thus, the right-half output after round two is obtained by
modulo2 addition of P(B14)with L13 such that
R14 = P(B14) ⊕L13
 = (0011 1100 1010 1011 1000 0111 1010 0011)
 ⊕ (1111 0000 1010 1010 1111 0000 1010 1010)
R14 = (1100 1100 0000 0001 0111 0111 0000 1001)

The left-half output after round two becomes
L14 = R13

= (1110 1111 0100 1010 0110 0101 0100 0100)
Let us now consider the third round encipherment. Expanding

R14 with the aid of Table-5, we have
R14= 1100 1100 0000 0001 0111 0111 0000 1001
E(R14) = (111001 011000 000000 000010 101110 101110 100001
 010011)
Modulo-2 addition of E(R14) with k15 yields

 40
T14= E(R14) ⊕ K15

 = (111001 011000 000000 000010 101110 101110 100001 010011)
 ⊕ (010101 011111 110010 001010 010000 101100 111110 011001)
 = (101100 000111 110010 001000 111110 000010 011111 001010)

The substitution operations for S-boxes are fol1owed by
 S10

1 (0110) = S2
1 (6) = 2 = 0010

 S01
2 (0011) = S1

2 (3) = 7 = 0111
 S10

3 (1001) = S2
3 (9) = 1 = 0001

 S00
4 (0100) = S0

4 (4) = 0 = 0000
 S10

5 (1111) = S2
5 (15) = 14 = 1110

 S00
6 (0001) = S0

6 (1) = 1 = 0001
 S01

7 (1111) = S1
7 (15) = 6 = 0110

 S00
8 (0101) = S0

8 (5) = 15 = 1111

 Concatenating all these results we get
B15 = (1111 1000 1101 0000 0011 1010 1010 1110)

 Using Table-7, the permutation P(B15) becomes
P(B15) = (00111100101010111000011110100011)

 Thus, the right-half output after round two is obtained by
modulo2 addition of P(B15)with L14 such that
R15 = P(B15) ⊕L14
 = (0011 1100 1010 1011 1000 0111 1010 0011)
 ⊕ (1111 0000 1010 1010 1111 0000 1010 1010)
R15 = (1100 1100 0000 0001 0111 0111 0000 1001)

The left-half output after round two becomes
L15 = R5

= (1110 1111 0100 1010 0110 0101 0100 0100)
Let us now consider the third round encipherment. Expanding

R15 with the aid of Table-5, we have
R15= 1100 1100 0000 0001 0111 0111 0000 1001
E(R15) = (111001 011000 000000 000010 101110 101110 100001
 010011)
Modulo-2 addition of E(R15) with k16 yields

T15= E(R15) ⊕ K16
 = (111001 011000 000000 000010 101110 101110 100001 010011)

 41
 ⊕(010101 011111 110010 001010 010000 101100 111110
011001)
 = (101100 000111 110010 001000 111110 000010 011111 001010)

The substitution operations for S-boxes are fol1owed by
 S10

1 (0110) = S2
1 (6) = 2 = 0010

 S01
2 (0011) = S1

2 (3) = 7 = 0111
 S10

3 (1001) = S2
3 (9) = 1 = 0001

 S00
4 (0100) = S0

4 (4) = 0 = 0000
 S10

5 (1111) = S2
5 (15) = 14 = 1110

 S00
6 (0001) = S0

6 (1) = 1 = 0001
 S01

7 (1111) = S1
7 (15) = 6 = 0110

 S00
8 (0101) = S0

8 (5) = 15 = 1111

 Concatenating all these results we get
B16 = (1010 0111 1000 0011 0010 0100 0010 1001)
 Using Table-7, the permutation P(B16) becomes
P(B16) = (1100 1000 1100 0000 0100 1111 1001 1000)

 Thus, the right-half output after round 16 is obtained by
modulo-2 addition of P(B16) with L15 such that
R16 = P(B16) ⊕L15
 = (1100 1000 1100 0000 0100 1111 1001 1000)
 ⊕ (1100 0010 1000 1100 1001 0110 0000 1101)
R16 = (0000 1010 0100 1100 1101 1001 1001 0101)

The left-half output after round 16 becomes
L16= R15
 = (0100 0011 0100 0010 0011 0010 0011 0100)

IP ∧(-1) = (1000 0101 1110 1000 0001 0011 0101 0100
 0000 1111 0000 1010 1011 0100 0000 0101)
 Concatenation of R16 with L16 is called the pre output block in
our sixteen round cipher system.
 The permutation IP ∧(-1) applied to the pre output block is
the inverse of the initial permutation IP applied to the input

 42
(plaintext). Therefore, the pre output is then subjected to the
permutation IP ∧(-1) according to Table-8, which is given below.
 Table-8 Inverse of Initial Permutation, IP ∧(-1)

 40 8 48 16 56 24 64 32
 39 7 47 15 55 23 63 31
 38 6 46 14 54 22 62 30
 37 5 45 13 53 21 61 29
 36 .4 44 12 52 20 60 28
 35 3 43 11 51 19 59 27
 34 2 42 10 50 18 58 26
 33 1 41 9 49 17 57 25

Now Y = IP ∧(-1)
 = (y1, y2, y3,…………………… y64)
 = (1000 0101 1110 1000 0001 0011 0101 0100
 0000 1111 0000 1010 1011 0100 0000 0101)
 = (8 5 E 8 1 3 5 4 0 F 0 A B 4 0 5)
Which completes the sixteen round cipher text computation.

3.6.5.3 Decipherment: For the purpose of deciphering, it is necessary to

apply the same DES algorithm as used for encipherment, to an
enciphered data block. In each round of computation, the same key
bits Ki are used during’ decipherment. During a deciphering
operation, Kj6 must be used in round one, K15 in round two, and so
forth.

 The 64 bits of the cipher text Y to be deciphered are first
subjected to the initial permutation IP of Table-4, and so on

 43

CHAPTER 4

Image processing

4.1 Overview: Image processing can be defined as the techniques that
 require modification or interpreting of the existing pictures. In order to
apply Image processing methods, the first step is to digitize the photograph
or other picture into an image file. The digital methods can be applied to
rearrange picture parts, to enhance colors separations, or to improve the
quality of shading. These techniques are used extensively in commercial art
applications that involve the retouching and rearranging of sections of
photographs and other artwork. An example of the application of image
processing methods to enhance the quality of a picture is shown in the
figures below.

 44

 Picture quality before applying Image processing techniques

Picture quality after applying Image processing
techniques

4.1.1 Pixel: Picture definition is stored in the form of screen points. Each
screen point is referred as a pixel or pel (shortened form of picture element).
Intensity range for pixel position depends on the quality of the system on
which it is being displayed. In a simple black and white system, each screen
point is either on or off, so only one bit per pixel is needed to control the
intensity of the screen positions. Additional bits are required when color and
intensity variations can be displayed. Generally 24 bits per pixel ar4e
included in high quality systems

4.1.1.1 Graphics coordinate system: The x and y coordinate parameters

in all of the drawing methods of the Graphic class apply to the
Graphic Coordinate System. For an explanation of how the x and y

 45
coordinates of an object about to be drawn relate to
user’s display area. This thing is explain in the figure below:

 x-axis

 (0,0) (5,0) (10,0) (15,0) (20,0) (25,0)

 (0,5)

 (0,10) (10,10)
y-axis

 (0,15)

 (0,20)

 (0,25)

 46
4.2 Understanding Color: Before jumping into the specifics of

what a
color model is, it's important to understand how color is represented
on a computer in general. Although most operating systems have
some degree of platform-dependent handling of color, they all share a
common approach to the general representation of colors. Knowing
that all data in a computer is ultimately stored in a binary form, it
stands to reason that physical colors are somehow mapped to binary
values (numbers) in the computer domain. The question is, how are
colors mapped to numbers?
One way to come up with numeric representations of colors would be
to start at one end of the color spectrum and assign numbers to each
color until you reach the other end. This approach solves the problem
of representing a color as a number, but it doesn't provide any way to
handle the mixing of colors. A computer color system needs to be able
to handle mixing colors with accurate, predictable results.
The best place to look for a solution to the color problem is a color
computer monitor. A color monitor has three electron guns: red,
green, and blue. The output from these three guns converge on each
pixel of the screen, exciting phosphors to produce the appropriate
color as shown in the figure. The combined intensities of each gun
determine the resulting pixel color. The monitors use only these three
colors (red, green, and blue) to come up with every possible color that
can be represented on a computer.

 47

Knowing that monitors form unique colors by using varying
intensities of the colors red, green, and blue, you might be thinking that a
good solution to the color problem would be to provide an intensity value for
each of these primary colors. This is exactly how computers model color.
Computers represent different colors by combining the numeric intensities of
the primary colors red, green, and blue. This color system is known as RGB
(Red Green Blue) and is fully supported by Java.

4.3 Color Images in Java: Bitmapped computer images are composed of
pixels that describe the colors at each location of an image. Each pixel
in an image has a unique color that is usually described using the
RGB color system. Java provides support for working with 32-bit
images, which means that each pixel in an image is described as using
32 bits. The red, green, and blue components of a pixel's color are
stored in these 32 bits, along with an alpha component. The alpha
component of a pixel refers to the transparency or opaqueness of the
pixel.
A 32-bit Java image pixel is therefore composed of red, green, blue,
and alpha components. By default, these four components are packed
into a 32-bit pixel value, as shown in Figure . Notice that each
component is described by 8 bits, yielding possible values between 0
and 255 for each. These components are packed into the 32-bit pixel
value from high-order bits to low-order bits in the following order:
alpha, red, green, and blue. It is possible for the pixel components to
be packed differently, but this is the default pixel storage method used
in Java.

Representation of a pixel in java

A color component value of 0 means the component is absent, and a
value of 255 means it has its maximum intensity or value. If all three color
components are 0, the resulting pixel color is black. Likewise, if all three

 48
components are 255, the color is white. If the red component is 255
and the others are 0, the resulting color is pure red.

The alpha component describes the transparency of a pixel,
independent of the color components. An alpha value of 0 means a pixel is
completely transparent (invisible), and an alpha value of 255 means a pixel
is completely opaque. Values between 0 and 255 enable the background
color to show through a pixel in varying degrees.

4.4 Bitmap Images: The simplest bit image type is the bitmap image,
which is a pixel image using 2, 16, or 256 colors. Individually bitmaps may
be as large as the full screen, medium sized as in the solitaire card images, or
as small as a few dozen pixels for a check box control or radio button.
 Bitmap images can be created by any paint program and do not differ
in any respect from conventional bitmaps. This means that bitmap images
can be imported from any external sources.

 4.4.1 Device Independent Bitmaps: The device independent bitmap
(DIB) format originally appeared as an extension of OS/2 Presentation
bitmap format. This format presents, as its most important feature, an
RGB color table defining all colors used in the bitmap. Most of the
bitmap editors or paint automatically create DIB image files. Because
DIB bitmaps have become so common, the extension .DIB is rarely
used; files bearing the .bmp extension are almost always device
independent images.

4.4.1.1 DIB File Format: The DIB image file format consists of
several sections: the Bitmap Info header, the color table and the
image data. Each of these is described as under:

4.4.1.1.1 The Bitmap INFOHEADER: The bitmap
INFOHEADER provides information about the structure of the
bitmap itself. The bitmap INFOHEADER consists of the 54-byte
record shown in table as under:

BITMAPINFOHEADER Data

Field Size Sample Val Description
biSize DWORD 28000000 28h Size of Bitmap INFOHEADER
biWidth LONG 08000000 8h Bitmap pixel width
biHeight LONG 08000000 8h Bitmap pixel height

 49
biPlanes WORD 0100 1h
 Color planes (always 1)
biBitCount WORD 0400 4h Color bits per pixel (1,4,16,24)
biSizeImage DWORD 20000000 20h Bitmap size for compression

4.4.1.1.2 The Bitmap Color Table: This table consists of
 a series of RGBQUAD structures. These are read, in order, with the
first byte blue, the second byte green, the third byte red, and the
fourth byte in each QUAD set to zero. The number of RGBQUAD
structures is identified by the biBitCount field. If biCount is 8, 256
RGBQUAD values are required.
4.4.1.1.3 The Bitmap Image: The final section of the
bitmap file is image itself. The arrangement of this section mainly
depends on the number of colors, but it is also affected by two other
factors, which are constant for all bitmaps.

• Each row of the bitmap image must be even multiple of
four bytes. Each data row begins with the left most pixel
of the scan line and is right padded with zeros as
necessary.

• Unlike the original bitmap format, the today’s bitmap
format for DIBs begin with the bottom scan line in the
image, not the top.

 50

CHAPTER 5

PROJECT IMPLEMENTATION

5.1 Conceptual Model:

 Key

Plain Cipher
Text

Color
Values

in Integer

Address
Generation

Address
File

Image

Cipher
Text

Plain
Text

Receiver

 51

The sender will provide two inputs to the software. One will be the
plain text to be encrypted and the other input will be in the form of a bitmap
Image. The plain text needs to be written in the Notepad or WordPad with
the file having .txt extension. The DES module of the software will encrypt
the plain text and will give output in the form of cipher text. The image will
be digitized and will be broken into pixel form. Each pixel of the image will
further be broken into its individual color components. The intensity value
of the each color component in each pixel will be calculated. The ASCII
codes of each character of cipher text will calculated and will be matched
with the individual color value. The look ahead for match will continue till
the ASCII value of cipher text finds the equivalent color value. When the
match is found, the address of the color component within the image will be
stored in the address file that in turn will be transferred to the receiver. The
address file will be written in the form of Long data type that will be
unreadable for the intruder. This address file will be transmitted to the
receiver who will find the ASCII codes of the cipher text by making use of
address file received from the sender. Once the cipher text is obtained than
the reverse DES algorithm will be applied and the plain text will be
obtained. Thus completing the complete process of encryption and
decryption.

5.2 Front End: The front end of the project is developed in Microsoft
Visual j++. Visual j++ provides Microsoft’s GUI based method of
developing, compiling, testing, and debugging java programs. One of the
major benefits of Visual j++6.0 is that it uses the same basic development
environment that experienced visual C++ programmers have mastered, with
some minor modifications. Additionally, like other visual programming
languages, Visual j++ offers many auxiliary applications that simplify some
of the more common and/or difficult tasks associated with Java program
development. Efforts have been made to keep the front end much user
friendly. As the windows is the operating system installed on most of the
computers in the market today, so special emphasis has been given to keep it
close to the window environment. Thus anybody knowing little bit of
windows environment will feel very comfortable with the software.

 52

5.2.1 Welcome window: This is the first window that the user will find

once it runs the software.

This window performs more than one function. The first thing it
does is that it provides choice of performing the job. Three types of
radio buttons are provided to enable the user to get the appropriate
type of job from the software. The choices are:
• It allows the user to encrypt the plaintext by making use of DES

only.
• It allows the user to encrypt the data by making use of DES and

than enhancing the security level by hiding the data in the Image.
• It allows the user to hide the data in the Image without making use

of DES.
The second thing it does is that it allows the user to go through

 53
the tutorial, which might be required by the user new to the
software by clicking the Tutorial button .

The third and last thing it allows user to terminate the project
and exit immediately by clicking the Exit button.

Finally the Continue button allows the user to start performing
the selected task by moving to next part of the software.

5.2.2 Main Window: This is the next window that user will find once it has

clicked the continue button of the welcome window. The windows
looks like as under:

It allows the user to perform number of functions that are as
under mentioned:
• The first job that the user must perform is to decide for the type of

job for the software to perform. User must decide whether he
wants to perform encryption or decryption job.

• If user selects the encryption job for the software to perform than
he must give following inputs to the software:
• User must provide the text file path that he wants to encrypt.

 54
• User must provide the Image file path that he

wants to use for hiding the data.
• Once the above two inputs are provided than the user must click

the Encryption button to proceed to next part of the software.
• If user selects the encryption job for the software to perform than

he must give following inputs to the software:
• User must provide the address file path to retrieve the cipher

text from the Image.
• User must provide the Image file path that he wants to use for

retrieving the cipher text.
• Once the above two inputs are provided than the user must click

the Decryption button to proceed to next part of the software.
• User has the option to include the date time stamp in to the text
 portion in case of encryption.
• It also allows the user to switch for any help if required by just
 clicking the Help button.
• It also allows the user to switch back to Welcome window by

clicking the Menu button.
• It also allows the basic text functions to be executed like Cut,

Paste, Word wrap and Exit.
• It also allows the user to go through the tutorial of the software.
• It also allows the user to know about the developers of this

software and the supervisor who supervised this project.

5.2.3 Encryption Window: This is the next window user will find once it
has clicked the encryption button after giving all required inputs in the
main window. The window is shown on the next page.

 55

 56

In this window user will give the key required for the purpose

of encryption. The user will also give the path for saving the
encrypted file in case encryption is done without data hiding in the
image.

Once all the above requirements are fulfilled than user must
click Encrypt button. The user will get the result message displaying
all the information user has provided so far once he clicks the Encrypt
button. The result window is shown below:

The result window confirms that encryption process was

completed with success. It also reminds the parameters required for
the decryption process. The encryption part finishes with click of the
Ok button of the result window by the user.

 57

5.2.4 Decryption Window: This is the next window user will find once it
has clicked the decryption button after giving all required inputs in the
main window. The window is shown as under:

In this window user will give the key required for the purpose
of decryption. The user will also give the path for saving the
encrypted file in case decryption is done without data hiding in the
image.

Once all the above requirements are fulfilled than user must
click Decrypt button. The user will get the result message displaying
all the information user has provided so far once he clicks the Decrypt
button.

5.3 Data Hiding in Image: is done to enhance the security level of the
software. The chances of breaking of DES has increase manifold due to the
presence of faster computing machines. Thus to enhance the security of the
data while making use of DES we have made use of Image processing
techniques. The complete implementation of this module of the software can
be explained under following sections:

 58
5.3.1 Loading of Image: The first and the foremost thing for

performing Image processing techniques are to load the Image. Java
does provide a very convenient method to load an image by making
use of Picture Box’s get Image() method. The disadvantage of this
technique is that the image read from Picture Box becomes hard
coded. Thus user has to have relied on the hard coded image offered
by the Picture Box. As the Image in our project is used for the purpose
of security, so there was a requirement of using more than one Image
in the software. Secondly by using just one image the chances of
compromising of image were quite high. That is the reason we have
not used any built in classes provided either by Sun Microsystems or
Microsoft. The second reason for not using any built in classes for
loading of the image is that both the image classes o f Sun
Microsystems and Microsoft are not compatible with each other.

The solution to this problem was that to read the image as a
stream and then perform the requisite job on it. So we made use of
java IO classes to read the image as a stream. This method also
allowed the software to use any type of bitmap format image. So we
have given the choice to the user to provide any image to the software
with following exceptions:

• The image provided must be of the .bmp extension.
• The image must have all color values in the range –127to +128 in

order to cater for all 256 ASCII codes.

5.3.2 Getting Pixel Data From Image: After the image is loaded, one must
calculate the number of Pixels in the image. For this one has to find
the width and height of the image. Once the width and height is
known the total number of pixels can be easily found by just
multiplying the width by the height. The next thing we were required
to do was that to create a buffer large enough to hold the entire image
data. At this moment we have to cater for following points:

• As we have used the IO classes to read the image so the image
will be stored in the form of array of bytes instead of array of
integers, which is usually the case.

• Data will be stored in the byte array will be an exact duplicate
of the image’s disk file. As we have already stated previously
that BMP images when they are stored on the disk, have two
headers before the actual image data. Those two headers will be
stored in the first part of the byte array. The total size of both of

 59
the BMP headers is 4 bytes. So we have to
allocate the space for this byte header as well while allocating
space for the buffer.

• As we have already mentioned that this is a byte buffer and the

pixel that’s contained in the BMP image files has three bytes
per pixel describing the red, green and blue components of the
pixel. So we have to multiply the width of the image by 3 in
order to get the actual size of the image’s byte width.

• Still there is one more twist in the form of BMP files. Every
scan of a BMP file must be an even multiple of 4 bytes. Let’s
say we have a scan line of two pixels. Each pixel is of 3 bytes.
That gives us total 6 bytes for the scan line–but that’s not an
even multiple of four . the file will actually contain 8 bytes for
the scan line. The last 2 bytes will be completely ignored, but
still we need to allocate space so that the entire scan line of data
will be stored.
So we have to make all above-mentioned checks before

allocating any space for the buffer to hold the entire image data.
5.3.3 Getting ASCII Codes Of the Cipher Text/Plain Text: The next

thing that is done in this module is to calculate the ASCII codes of
each character of the Cipher text or plain text depending on the type
of the input provided to the module. The input provided is read
character by character and its equivalent ASCII codes are calculated
and stored in an array. As the color component value of the image
ranges in between –127 to +128 and the ASCII values ranges in
between 0-255, so 256 has to be subtracted from any ASCII value
which is greater than 127. this is done in order to bring the ASCII
values within the range of color component values of the image.
The form of cipher text usually received from the DES module of the
software is shown in the figure below.

 60

Ciphered Text Received From DES Module

5.3.4 Getting Color Component Value of the Image: by now we have
calculated the number of pixels in the image and have created the

 61
buffer for holding the entire image. Each pixel is formed of
three colors that are stored in the byte form. The bytes go in the order
of the blue byte, green byte and finally the red byte.

The first thing we do is that we find the offset of the pixel that
is found by keeping the x coordinate as 0 and scanning from the max
value of y coordinate. As we have already mentioned that BMP
images are scanned from bottom to top. Offset is simply the starting
address of each pixel. We found the value of individual color
component value by adding the pixel-offset value with the color-offset
value. The color-offset values are 2,1and 0 respectively for red, green
and blue component of the pixel. Finally as the values returned are in
the form of byte and ASCII values are in the form of integers, so type
casting is done to find the equivalent integer values of each color
component.

5.3.5 Getting Address File: Once we have got the integer values for both
the color components and the cipher/plain text. The next step is to find
the match between the two values. We start with the ASCII code of
each character and match it with the color component value. We keep
on scanning each pixel one at a time till we found the match. Once the
match is found the address of the matched color in the image is
calculated. That is done by making use of the pixel-offset and then
adding the color-offset in it in order to find the exact address of the
specific color in the image. The addresses are stored in an array of
long data type. This is done because to cater for the values of
addresses which goes out of the range of integer data type. Once all
the characters of the cipher/plain text have been matched than this
array is written on a file. The addresses are also written in long format
that provides extra security to the data because it is unreadable for a
person opening it without the help of this software. An address file
that goes to the destination is shown in the figure on next page.
Although it will be different for different texts but its look will be
primarily be the same.

 62

As one can see from the above figure that the contents are

unreadable till thee time one uses the same software to open it.

 63
5.3.6 Writing Of Image: Although for the normal practices, the

will not be required to be saved again on the disk but our software
provides the flexibility to resave it on the disk. Before writing the
image on the disk, we require to save it again in the same format as it
is saved on the disk. After performing all the jobs on the image, we
calculate the byte width for each scan line and store it. As we already
know that the BMP file data is stored in upside down so we simply
transform the y coordinate. We again calculate the pixel-offset and
finally we set the three colors components in the data buffer declared
previously. this process is repeated for each pixel-offset till we have
covered each pixel of the image. Finally we again write the image as a
stream object on the disk. Here again out GUI asks the user to provide
the path for file where the image has to be saved. Encryption portion
of our software finishes at this stage and user can now simply send the
address file to the destination end and if required the image as well.
But one thing user must keep in mind that he must not send the both
files simultaneously and on the same communication channel.

5.3.7 Reading of Address File: The address file is read in the same manner
as it is written. Once the file is read, it is stored in an array of long
data type. Here one thing has to be kept in mind, file should be read
with the same IO classes as it is written. If both of them are non-
compatible than the garbage values will be read. If properly read than
the address file will look something like similar as shown in the figure
below. These are the addresses of the color components.

Addresses of the Cipher/plain Text

The thing notice in the above figure is that there are addresses

 64
which appear more than once. So by repeating the addresses again
we can have the flexibility to use file of any size for hiding the data.
The size of the file may be larger than the size of the image itself.
Only thing that must be kept in mind is that image must have all 256
color values. If that is true than size of the file to be hid does not
matter.

5.3.8 Extraction Of Cipher/Plain Text: After we have read the address

file, we read the image in the same manner as we have done it for
encryption process. Then we calculate the number of pixels in the
same manner as we did in case of encryption. As there is no need of
the image after the decryption process is complete, so we need not to
create any source buffer to hold the image data. Once the image is
loaded than the next thing is to perform extract the color values from
the specified addresses. These values are stored in an integer array. As
there are some negative values as well, so values less than zero are
converted into positive by adding 255 to them. Thus making them in
the range of 0-255, which is the range of the ASCII codes. Once the
values are made positive than the equivalent characters for those
ASCII codes are found and stored in a char array. If the decryption is
done without Des than the output of this module will be the plain text
else it will be the cipher text. Whatsoever be the case the output will
be stored in a file on the disk and will be handled accordingly.

5.4 Creating a Self-Extracting Setup Distribution Project: The most
common method for distributing the application is self-extracting setup
program. Almost all software packages today contain such a program, which
must be run in order to install anew application. When the user will execute
the program, he will receive all of the necessary files for running the
application.
 The main benefits of the self-extracting setup program is that the end
user needs to know a very little about the application and its installation.
Additionally, the user can use the program’s options to ensure that the
application and its components are installed where and how you expect, thus
reducing potential maintenance headaches in the future. The need to create
self-extracting our project as self-extracting project is primarily due to the
nature of the usage of our application. Following are the steps that were
followed to create a self-extracting setup distribution project.

• The first and foremost step is to place the distribution project within
the same solution as the project itself. Here one must make sure that
he should not place the distribution project in the same directory as
the development project, because if that is done than the next

 65
programmer that modifies this application will have access to
both the projects

• Once the self-extracting setup project is added to the developed
project, the next step will be to add the output of the developed project
to the self-extracting project.

• Visual java does provide options to the developer to give the default
path for the place where the project should get installed on the
computer after the installation process get completed successfully.

• As the many of the user who will install this program will not have the
WFC libraries and Java virtual machine, which are required for proper
working of application on their PCs. So we have given the flexibility
to the user that he will get these installed on his computer along with
our application when he installs our software on his computer system.
In this way our software becomes completely platform independent as
java virtual machine will be installed on the target PC by our software
and user will not require any java compiler to run this software on his
PC.

• Various windows and their functions which user will come across
during the installation process are as under.
• User will just have to click the icon shown in the figure below to

start the installation process. This icon will be present on the CD
Rom provided with our software.

In the above figure, one can see the highlighted icon with
the name of shoes setup. Whenever the user will click this icon
the setup process will start.

• Once the icon is clicked the software will start extracting the
required file itself as shown in the figure below.

 66

In the above figure, one can see the message written of
 “Extracting WFC.CAB”.

• Once the software completes extracting the require files
from the CD Rom than the next window will be as under.
The next window will be welcome window, which will
ask the user to close down any programs already opened.

• It will also inform the user that software is about to install

the necessary files on the PC.

 67

• Once the user clicks the Continue button on the next

window than in the next window, software will prompt
from the user to provide the path where he wants to install
the software. The window is shown below.

• Finally once the path is also provided than the installation

will take place. Software has the ability to create the path,
if the path does not exist already. Once the installation will

 68
get complete, the user will be informed about
the completion of the installation.

5.5 C lasses Used: Complete list of classes used by our project

are given
as annexure A.
5.6 Complete Code: Complete code of the software develop

is given as
Annexure B.

