
 1

1.1 WHAT IS VOICE OVER IP (VoIP)?

Before we start to discuss Voice over IP (VoIP) related topics, it is probably
best to give a brief explanation of what it is. This way, the essence of what is
discussed here will be clear throughout the document and the details can be
worked out at the appropriate time.

Voice over IP is an extensive subject, but at the core it comes down to trying
to transport speech signals in an acceptable way from sender to destination
over an IP network. An Internet Protocol (IP) network is a computer network
which uses the IP protocol to transmit information. We will give a more
detailed explanation of this protocol in the next chapter, but for now it might
be helpful to know that this is the basic protocol used on the Internet.

The definition of `acceptable' depends on the particular situation we are
dealing with. If, for example, voice is being transported as part of a real-time
communication between two persons, it will mean that the real-time aspects
of this conversation must be respected: the overall delay between sending
and receiving should be low to avoid irritably long gaps of silence. If,
however, voice is being transmitted as part of a one-way process - e.g. an
on-line radio show or a lecture - the delay constraints are less strict since the
interactive aspect is no longer present.

1.2 PROJECT SUBJECT

Here, we will give the exact formulation of my project subject. This way
there will be some clarity about what you may or may not expect to find in
this document. The subject I have chosen is this one:

A conventional way to communicate with each other using IP-networks is
through the use of textual chat facilities. The purpose of this thesis proposal
is to take this one step further by using voice communication instead of these
textual facilities. The goal of this proposal is to perform research and
development in order to let persons which are in the same virtual
environment talk to each other as they would do in reality. Their positions
and orientations can be used to vary the intensity of the words: persons close
to each other will hear each other clearly; persons who are moving away
from each other will understand each other less and less as their distance

 2

increases. The proposal encloses technical components (like grabbing,
compression, buffering, transmission, decompression and regeneration of the
signal) and also a study of what is happening in the Voice over IP world
today. Also, a number of experiments will have to be conducted to justify
the chosen techniques.''

1.3 USES OF VOICE OVER IP

Currently, when you look at what literature can found about VoIP, you will
find that most of it is about VoIP as a telephone alternative.

1.3.1 Telephone alternative

The first kind of use is the `telephone alternative'. This means that you
would use some kind of VoIP system to make a voice call to another person.
This can be done in several ways.

First of all, if a PC that can be connected to some kind of network is
available, it can be used to make a call to somebody else who is also
connected to that network. This PC would then be equipped with speakers
and a microphone and some VoIP application would be used to make the
call. The PC could have a direct connection to a computer network, like in
figure 1.1, but a connection through a dial-up link is also possible.

Figure 1.1: PC to LAN configuration

 3

The second case is a slight variation of the first one. In this case, a telephone
is connected to the PC and used in a similar way as you would when making
a normal call. The PC does all the necessary work to set up the call and to
transmit the speech signals. This also means that the PC has to be switched
on before the call can be made. This type of configuration might be easier to
use for people who do not work with computers often. As with the previous
case, the connection to the network can be either direct, like in figure 1.2, or
through a dial-up link.

Figure 1.2: Telephone to PC to LAN configuration

Finally, the use of a PC and the requirement of a network could be omitted
by the use of a VoIP gateway. This is a special device that connects the
public telephone network with a computer network and performs the
necessary actions and conversations to make the call possible. To make a
call to somebody, you would call the gateway and specify the destination for
the call. The call will then be set up and if the other end is available, the
conversation can start. This configuration would be best for persons who do
not have a PC. It is probably also the easiest to use, since most people are
familiar with using a telephone and there does not have to be a PC around.
This configuration is illustrated in figure 1.3.

Figure 1.3: Telephone to gateway configuration

 4

There are probably a lot of variations to these configurations, but we believe
that these three give a good idea of the possibilities. Combinations of these
cases can also be worked out.

Now, you may ask yourself: why use VoIP as a telephone alternative while
the telephone itself is quite handy? Well, there are several arguments that
can be made in favor of VoIP.

Suppose that somewhere - in a company or university for example - a
computer network is needed. In that case, there are certain benefits by using
Voice over IP instead of installing extra facilities to use telephones. The only
requirement is that the IP protocol must be used, but nowadays this is almost
always the case.

First of all, there is less cabling and equipment required. All the internal
calls can be made using VoIP utilities. For outgoing and incoming calls,
however, there still has to be some connection to the telephone network.
This can be solved by installing a gateway that is connected to the computer
network and the telephone network. This gateway will then perform the
necessary signaling and conversations to make these calls possible.

Second, the capacity of the computer network will be better utilized. The
available bandwidth of a network within an organization is usually quite
large and rarely fully used. By using VoIP, more of the network's capacity
will be used.

At home, there is also an advantage in favor of VoIP. If Voice over IP could
be used over a large distance, it would be much cheaper than making that
same long distance call using the telephone network. For example, you could
try to make the call by using the Internet.

When using VoIP over a Local Area Network (LAN), there is usually plenty
of bandwidth available and the delay between sending and receiving is
usually very low. Here, VoIP can often be used without problems. But when
a Wide Area Network (WAN) is used - the Internet for example - problems
can arise. One problem is the delay: while the delay on a LAN is usually
very low, on a WAN this is not necessarily true. If the delay gets too large,
the conversation will not be very pleasant. Another problem is the quality of
the speech signals. When certain routes get too heavily loaded, packets on
the WAN will be lost. These lost packets cause interruptions in the speech
signal. In turn, these interruptions, when large enough, can also disturb the

 5

conversation. To alleviate the load, a lot of VoIP programs use compression
techniques. However, compression often causes a certain degradation of the
signal. This may or may not be disturbing to the listener, but with heavy
compression, telephone quality will rarely be achieved.

Using VoIP this way is a rather new concept. This also means that currently,
there is very little specific literature about it. However, it is obvious that a lot
of the things that we have said in the previous section, also apply to VoIP in
virtual environments.

1.3.2 Other

VoIP techniques can be used for a wide variety of other applications which
require voice or sound in general to be transmitted over a computer network
and where timing and synchronization are important issues. The same
techniques also work when it is not sound, but video information which has
to be transmitted.

Several other applications can be thought of. One is the use of VoIP
techniques to create an on-line radio station, or perhaps even an on-line
jukebox, where you can select the song you want to hear, which is then
played almost immediately. If enough bandwidth is available, it would even
be possible to add video data to all this. This way, television broadcasts and
video on demand over IP networks could be made possible. In a similar way,
we could extend a VoIP telephone conversation with video information
about the persons involved in the call, creating a videophone application.

Another kind of application would be fax over IP. This is a bit different
since we are no longer transmitting speech data, but a digitized image. Like
with VoIP, this service could be made possible by connecting a computer
network to the telephone network using a gateway. For fax over IP, this
gateway would perform similar functions as with voice over IP.

Note that the list of applications presented here is certainly not complete. A
wide range of applications using VoIP related techniques are conceivable,
but many of them will resemble the ones discussed above.

 6

2.1 OVER VIEW OF VOIP

This chapter introduces the Internet Protocol (IP), voice over IP (VoIP),
packetized voice, and internet telephony. The chapter includes several
sections. The first section explains why VoIP is of such keen interest to the
industry .The next section explains the prevalent configurations for VoIP.
The third section provides a brief introduction to the basic terms and
concepts associated with IP-based packet networks, such as the Internet and
internets. Following this overview, several key factors for the support of
packetized voice in an internet are evaluated.

2.2 INTERNET TELEPHONY AND PACKETIZED VOICE

Voice over IP (VoIP) means the transmission of voice traffic in packets.
Several terms are used to describe this process. Unless otherwise noted, I
will use these terms synonymously: Internet telephony, IP telephony, packet-
voice, packetized voice, and voice over IP (VoIP).

2.3 WHY INTERNET TELEPHONY?

IP telephony is viewed by some people to be an effective technology and by
others as nothing more than an irritant. The irritating aspect stems from
those people who have used the public Internet to make telephone calls. In
most cases, they are not happy with the quality of the speech and the overall
ability of the Internet to support voice traffic.

Why then is VoIP of such keen interest to the communications industry, in
view of its relatively poor performance in the support of voice traffic?
There are four major reasons for this interest, and for the deployment of IP
telephony. The next part of this chapter discusses these reasons in this order:

1. The business case
(a) Integration of voice and data
(b) Bandwidth consolidation
(c) Tariff arbitrage

2. Universal presence of lP
3. Maturation of technologies
4. The shift to data networks

 7

2.3.1 The Business Case
The first reason is a compelling business case for the deployment of the IP
protocol suite and associated equipment to support telephony services. This
case can be summarized with three suppositions.

2.3.1.1 Integration of Voice and Data.

First, clearly the integration of voice and data traffic will be demanded by
multi application software resulting in the inevitable evolution to Web
servers capable of interacting with the customer with data, voice, and video
images. Text-only images with still life photos will be a thing-of-the-past.

2.3.1.2 Bandwidth Consolidation.

The next two suppositions stem from the first. The second supposition is that
the integration of voice and data allows for bandwidth consolidation, which
effectively fills up the data communications channels more efficiently. The
telephony legacy of channelized voice slots, with the expensive associated
equipment (channel banks, and data service units (DSUs) are inefficient
tools for the support of data applications.

The commonsense idea is to migrate away from the rigid telephony- based
time division multiplexing. (TDM) scheme wherein a telephony user is
given bandwidth continuously, even when the user is not talking. Since
voice conversations entail a lot of silence (pauses in thinking out an idea,
taking turns talking during the conversation, etc.), using the data
communications scheme of statistical TDM (STDM) yields a much more
efficacious use of precious bandwidth. STDM simply uses the bandwidth
when it needs it; otherwise, the bandwidth is made available to other talkers
who need it at that instant.

To give you an idea of how wasteful the telephony TDM approach is,
consider that about 50 percent of a normal speech pattern is silence (at least
in most conversations). Voice networks that are built on TDM use
bandwidth to carry those silent periods. Data networks do not. Further-
more, another 20 percent of speech consists of repetitive patterns that can be
eliminated through compression algorithms. The conventional TDM
operations do not exploit this situation.

Moreover, by using modern analog-to-digital operations, a high- quality
speech channel can operate at about 4.8 to 8 kbit/s, in contrast to current
TDM telephony channels that operate at 64 kbit/s. In the future, it is
expected that the packet voice rate will be reduced further. Let's assume a 6

 8

kbitls rate for purposes of comparison. The bandwidth consumption ratio is
8: 1 in favor of the packet-based method.

2.3.1.3 Tariff Arbitrage and Beyond.

The third supposition regarding the business case is based on the concept
called "tariff arbitrage." This term means bypassing the public switched
telephone networks' toll services and utilizing an internet backbone. This
approach avoids the costly long distance charges incurred in the tariffed
telephone network in contrast to lower costs of the untarrifed Internet.

2.3.2 Universal Presence of IP

The second major reason for IP telephony is the universal presence of IP and
associated protocols in user and network equipment. Of key importance is
the fact that IP resides in the end-user workstation (in contrast to potentially
competitive technologies such as ATM and Frame Relay that operate as user
network interfaces (UNI). Figure 2.1 shows where these technologies are
placed.

Make no mistake; the existence of IP in user personal computers and
workstations gives IP a decided advantage over other existing technologies
that are not resident in the user

 Figure 2.1

appliance. This "location" of IP makes it a very convenient platform from
which to launch voice traffic.

Many people already use the PC to assist them in making telephone calls.
Before long, computer-based telephony will be common, and will be a
natural extension to the telephony system. Moreover, IP operates in both
wide area and local area networks (LANs), whereas Frame Relay operates
only in wide area networks.

 9

2.3.3 Maturation of Technologies

The third major reason for the deployment of internet telephony is the
maturation of technologies that now make IP telephony feasible.

2.3.4 The Shift to Data Networks

Finally, the fourth major reason for the assured success of VoIP and other
data networks is the fact that the world is experiencing a shift away from
circuit-based networks to packet-based networks (data net- works). Some
market forecasts place the ratio of data networks-to-circuit networks at 80 to
20 percent by 2005.

2.4 CONFIGURATION OPTIONS

We have discussed the issues surrounding VoIP .Let us now look at some
VoIP configurations and topologies. Several configuration options are
available to support VoIP operations.

2.4.1 Telephone connection with N-1 gateway

 In Figure 2.2, conventional telephones are employed as well as the
telephone network (you may have noticed that the term telco is used in this
documentation as a shorthand notation for the telephone network). The VoIP
gateway provides the translation functions for the voice/data conversions.
On the transmit side, the gateway uses a low-bit rate voice coder and other
special hardware and software to code, compress, and encapsulate the voice
traffic into data packets (IP datagrams). It accepts conventional telco traffic
(usually encoded by the telco central office into digital 64 kbit/s telco
signals), and uses the voice coder to convert these signals into highly
compressed samples of the telco signal, usually about 6-8 kbit/s.

 10

 Figure 2.2

At the receiving VoIP gateway, the process is reversed. The gateway
converts the low-bit rate speech back to the telco signals. These signals are
converted to conventional analog signals before they are passed to the user's
telephone.
This gateway is an n:1 machine, because it accepts n telephone connections
and multiplexes them into IP datagrams onto one link to the Internet or an
intranet.

2.4.2 PC Connection with Router

 Figure 2.3

Figure 2.3 shows the use of personal computers (PC) and the employment of
a router. With this operation, the encoding, compression, and encapsulation
operations are performed at the personal computers. The router's job is to
examine the destination IP address in the datagram and route the traffic
accordingly. The router treats the traffic just like any other datagram, and is
not aware that the bits in the datagram are voice traffic.

 11

2.4.3 Telephone to PC Connection

The VolP layout depicted in Figure 2.4 eliminates background noise
problems found in Figure 2.3 by using a telephone instead of an open
microphone.

 Figure 2.4

2.4.4 PC to phone Calls

This configuration is one that is gaining considerable attention in the
industry, because the local LANs (such as Ethernet) can be used for both
voice and data traffic. Also, for simple telephone calls, there is no expensive
key system or private branch exchange (PBX) in the system.

Figure 2.5

 12

2.4.5 Problems with the Configurations

The configurations shown in above figures represent low-function systems.
These are bare-bones operations when compared to the services taken for
granted by most telco users. The configurations shown in above figures do
not include the equipment to support call forwarding, call holding, caller id,
or other telco services voice users expect. These services are provided by
machines (such as key sets, PBX, centrex, etc.) absent from the above
figures configurations.
Additionally, configurations In Figures utilize the public Internet, which is
not set up to deliver toll-quality voice traffic.

 13

Over view of IP

Before we can really talk about Voice over IP, it is necessary to explain what
IP is? The abbreviation IP stands for Internet Protocol. Version four is
currently most in use and it is common to use the term `IPv4' to indicate this
version of the protocol. When no version number is mentioned, usually the
discussion is about version four.

The Internet Protocol is covered in this chapter. It begins with a discussion
about network software architecture, followed by a description of the
workings of IP. We will also see some characteristics of IP networks and I
will describe the most used protocols which run on top of IP. Afterwards,
some reasons will be given for the use of IP for voice communication.
Finally, the chapter contains an overview of IPv6, the new version of the
Internet Protocol.

3.1 NETWORK SOFTWARE ARCHITECTURE

Nowadays, network software is usually very structured. This section is about
the way this software is organized. It also contains a discussion about the
OSI reference model, which is a good example of this structured design, and
about the TCP/IP reference model, in which as the name suggests IP plays a
very important role.

3.1.1 Layered design

To facilitate the design of network software, usually the approach of a
`layered design' is used. In this approach, each layer provides a certain
functionality, which can be used by the layer directly above. There are
several advantages to this approach.

First of all, the software is much easier to design. Trying to implement the
desired functionality all at once will be very difficult and will probably
result in many flaws in the program. Furthermore, these flaws will be
difficult to track. By dividing the software in layers, you only have to worry
about implementing some functionality for each layer. This does not mean

 14

that is will be an easy task, but by using a structured approach you will be
able to tackle it more efficiently.

Another advantage is the adaptability. If you want to make some changes to
the software, for example to correct a flaw or to improve an algorithm, you
will only have to change the relevant layers if the interface with the layer
above stays the same.

Closely related to this is portability. If the layers are well designed, only a
few of them will have to be changed to be able to use the software with other
networking hardware or on another operating system.

Finally, since many layers will probably be implemented as part of the
operating system itself, the end-user applications do not have to contain
those layers. This way, the size of those applications can be reduced.

To make communication between two hosts possible, they have to be
connected to some kind of physical medium. All data will be sent over this
medium, but only the lowest layer will have direct access to it. Conceptually,
however, two layers on different machines but at the same level can be
thought to communicate directly. The rules and conventions that are used in
this communication are contained in the protocol for that level. The whole
set of protocols is often referred to as the protocol stack. Figure 3.1
illustrates all this.

 15

Figure3.1: Example of layered design

When a layer wants to transmit some data to its corresponding layer at
another host, it uses the functionality of the layer below to do this. That layer
adds some control information, usually in the form of a header, to the data
and uses the layer below to transmit the data. The whole process keeps
repeating itself until the data is finally sent over the physical medium. When
the data reaches the receiver, the first layer processes the control information
and passes the data to the layer above. At each layer, this process then
repeats itself.

 16

3.1.2 OSI Reference model

The Open Systems Interconnection (OSI) reference model is a model with
seven layers which was developed by the International Standards
Organization (ISO). The model only specifies what each layer should do,
without going into any detail about, for example, the protocols that should
be used.

In actual implementations it turns out that some of the layers are almost
empty and others are too elaborate. However, conceptually the model is
quite nice and it is a good example of layered design. This is why we will
describe it briefly.

Figure 3.2: OSI seven layer model

3.1.2.1 The physical layer

The physical layer is the lowest layer in the model and this is the only one
which has immediate access to the communication medium. It is responsible
for the transfer of bits from the source to a destination which is connected to
the same medium.

 17

3.1.2.2 The data link layer

The data link layer uses the facilities of the physical layer to create a more
reliable communication channel. This layer makes it possible to send blocks
of data, called frames, reliably from one host to an adjacent one.

3.1.2.3 The network layer

So far, the layers have only been concerned with transporting information
between hosts connected to the same medium. The network layer's function
is to make it possible to send packets to a host that does have a connection to
the sender, but is not connected to the same physical medium.

This means that between the different physical media, there have to be
devices which transfer data from one medium to another. These devices are
usually called routers or gateways. The use of such devices makes some
extra work for the network layer necessary.

First of all, it is possible that between a certain source and destination there
exist several possible routes. The network layer then has to determine which
one to choose. These routes can be determined in advance but it is also
possible that the network layer dynamically adjusts the routing information
to achieve better performance.

Second, since the flow between adjacent networks can get very large, it is
possible that a router cannot cope with all that traffic. The router then
becomes a bottleneck for the data flow. The network layer tries to control
such congestions.

3.1.2.4 The transport layer

The previous layer made it possible to actually send data from source to
destination. In that layer communication is done by exchanging packets. The
transport layer makes it possible to consider the data as a stream of bytes,
and not in terms of packets. The layer itself will divide the data in smaller
units and hand it over to the network layer. If some packets get lost, the layer
handles this and the receiver will still receive the correct stream of bytes. To

 18

be able to keep track of which data has already been sent and which not, the
transport layer uses a connection-oriented approach.

The transport layer will also have flow control mechanisms, to prevent the
flooding of a slow receiver, and congestion prevention mechanisms. Note
that the network layer also has congestion control functionality. However,
the best way to handle congestions is to prevent them from happening in the
first place. This is what the transport layer does.

This layer is the first true end-to-end layer. The physical and data link layers
were only able to communicate with an immediate neighbor. The network
layer actively had to transport the packets step by step from source to
destination. In this layer however, the underlying topology is transparent to
its user.

3.1.2.5 The session layer

The session layer makes it possible to establish sessions between two hosts.
A session extends the capabilities of the transport layer with some extra
services.

An example of such an extra service is synchronization. During a transfer
there would be certain synchronization points. If the data transfer would be
interrupted due to an error, the transfer could be restarted from the last
synchronization point rather than starting the transfer all over again.

3.1.2.6 The presentation layer

The presentation layer takes the type of information which is being
transferred into consideration. This layer could, for example, make the
necessary transformations if one computer is sending ASCII characters and
the other one is sending Unicode characters.

 19

3.1.2.7 The application layer

Finally, the highest layer in the model is the application layer. This is the
layer in which most end-user networking applications reside. To
communicate, such programs mostly use their own protocols. Examples of
such applications are applications for file transfer and applications which
represent a virtual terminal.

3.1.3 TCP/IP reference model

The Internet Protocol is a protocol which is used in the TCP/IP model. The
TCP/IP model was originally designed for use on the ARPANET, a military
network in the late 1960s. It is, in fact, this network which grew out to
become the Internet as we know it today.

Because of its military background, there were two major requirements for
the model. The first was robustness. The US Department of Defence (DoD)
wanted to make sure that communication was still possible even if some
routers or lines went down. The second requirement was interoperability.
Since there were different types of hardware involved, for example copper
wires and satellites, the DoD wanted a set of protocols which could not only
handle these types of hardware separately, but which would also make it
possible to connect them.

Compared to the OSI model there is a big difference in the way that the
model came to existence. The OSI model was first carefully designed, and
later protocols were designed to fit the model. This makes the OSI model a
very general one. The TCP/IP model, however, originated in the opposite
way. First the protocols were designed to meet the requirements of the DoD.
Later, these protocols were described and it is this description which is the
reference model. This means that the TCP/IP model does not really fit
anything else but TCP/IP networks. Another point about TCP/IP is that the
layered design is not followed very strictly. There are some violations to this
principle in the model.

Despite of these arguments, the TCP/IP model has become very popular and
very widely used. In contrast to the OSI model which has seven layers, the

 20

TCP/IP model only has four, as figure 3.3 shows. Here is a description of
these layers.

Figure 3.3: TCP/IP four layer model

3.1.3.1 The host-to-network layer

The host-to-network layer is the lowest layer of the model. Sometimes it is
also called the link layer or the network interface layer. There is in fact little
to be said about this layer. The only requirement which is given by the
model is that this layer should be able to transmit and receive the IP
datagrams of the layer above over the network. The layer has somewhat the
same function as the physical and data link layers in the OSI model. This
means that this layer usually is only able to send data to hosts which are
connected to the same medium.

3.1.3.2 The internet layer

The internet layer corresponds to the network layer in the OSI reference
model. Its job is to bring packets from source to destination, across different
types of networks if necessary. There are, however, no guarantees that the
packets will arrive or that their order will be preserved. The service that this
layer offers is therefore called a best-effort service. There is no notion of a
connection in this layer. The packets which are exchanged are called Internet
Protocol datagram or IP datagrams and the protocol which is used is called
the Internet Protocol or IP. The datagrams consist of a header and the actual
data. The header will be described later on.

 21

Like in the OSI network layer, intermediate devices called routers, are
needed to make transmission of data across different types of networks
possible. The IP datagrams can then be sent from source to destination, on a
hop-by-hop basis. Again, like in the OSI network layer, this also means that
routing algorithms and congestion control are important aspects of the
internet layer.

3.1.3.3 The transport layer

To make sure that multiple applications can use the network facilities at
once, some extra naming mechanism is needed. The internet layer does
contain a naming mechanism to identify different hosts, but there still has to
be some way to differentiate between the processes which are using the
network. This is done in the transport layer by the use of a port number. This
layer has somewhat the same functionality as the transport layer in the OSI
model. Here also, the transport layer is the first real end-to-end layer.

The TCP/IP model has two major transport layer protocols. One of them is
the Transmission Control Protocol (TCP). This protocol transforms the
connectionless unreliable packet based service of the internet layer into a
connection-oriented reliable byte stream. It is a very important protocol
since it makes reliable communication possible. This is why its name is also
in the name of the reference model.

The other protocol is the User Datagram Protocol (UDP). This is a protocol
for applications which do not need the service offered by TCP or wants to
use a protocol of their own. The User Datagram Protocol is merely a small
extension to IP. It is also an unreliable packet based connectionless protocol
and the only real extensions to IP itself are the presence of a port number
and an optional checksum of the data.

3.1.3.4 The application layer

Like in the OSI model, the application layer contains the protocols of
networking applications. Among these are virtual terminal applications
(TELNET protocol), file transfer utilities (FTP protocol) and electronic mail
(SMTP protocol).

 22

3.2 HOW IP WORKS ?

Let us now take a closer look at the Internet protocol itself and how it makes
communication between two hosts possible. First I will give a description of
the IP packet format. Next, the addressing mechanism used by IP is
discussed. We will then take a closer look at how packets are routed from
source to destination. Finally, an explanation is given of multicasting, a
technique which allows us to save bandwidth when the same data has to be
sent to multiple destinations. This is, of course, a very interesting feature
when using VoIP in virtual environments, since there will typically be many
receivers for each talking participant.

3.2.1 Packet format

Any packet sent by the IP layer consists of an IP header, followed by the
actual data. The format of the IP header is shown in figure 3.4. The most
significant bit is the one at the left, numbered zero. The least significant bit
is the one at the right, numbered thirty-one. Transmission is done in network
byte order, also called big endian format. This means that in each 32-bit
word the most significant byte is sent first and the least significant byte is
sent last.

Figure 3.4: IP header format

 23

The version field should contain the value `four' for the current version of
the Internet Protocol. This field can be used to let different versions coexist,
something which will make the transition to a new version much easier.

The IHL field contains the `Internet Header Length'. This specifies the
length of the header in 32-bit words. Since it is a 4-bit value, the maximum
length of the header will be sixty bytes. Also, since the mandatory part of the
header consists of five words, the smallest legal value is five. The
specification in 32-bit words also has as a consequence that the header must
end on a 32-bit boundary, so it is possible that some padding is required if
options are present.

The next field is the Type of service (TOS) field. This field was meant to
supply a quality of service (QoS) mechanism, but in practice it is rarely
used. However, since voice data has real-time aspects, it may be necessary to
pay attention to it if we want to keep the end-to-end delay in the
communication low.

An overview of the TOS field is depicted in figure 3.5. That contains a
three-bit precedence field which specifies the priority of the packet. A value
of zero indicates a normal priority and a value of seven indicates the highest
priority. Following the precedence field, there are three bits which stand for
delay, throughput and reliability. Only one of the bits can be set to one. The
last two bits in the field are currently unused and should be zero.

Figure 3.5: The TOS field

 24

The size of the IP datagram is specified in the Total length field. It is a 16-
bit field, so the maximum size is 65535 bytes. Most networks cannot handle
this size so usually it is much less. All hosts are, however, required to be
able to send and receive datagrams with a length of 576 bytes or less.

During the transmission of a packet it is possible that it has to traverse
different kinds of networks. Each network has its own Maximum Transfer
Unit (MTU) which specifies the maximum frame size it can handle,
including the link layer header and trailer (if present). This means that there
is always a possibility that the datagram, as it passes over the different
networks, cannot be transmitted over a certain network. It then has to be
fragmented and each piece has to be sent separately.

The identification field is an aid in reconstructing fragmented datagrams.
Each datagram fragment will have the same value in this field. When
sending IP datagrams, a host typically increments this field for each
datagram sent.

Next, there are three flag bits, of which the first one is reserved and should
be zero. The next one stands for `don't fragment' (DF) and the last one stands
for `more fragments' (MF). If a datagram cannot be transmitted across a
network because it is too large and the DF bit is set, an error will be sent
back to the sender3. All but the last the fragment of the original datagram
will have the MF bit set.

Using the fragment offset field, the internet layer can reassemble
fragmented datagrams. This 13-bit value specifies the offset of the fragment
in the original datagram. The offset is given in units of 64-bit words.

The time to live (TTL) field is used to limit the lifetime of a datagram. In
theory the value specifies the number of seconds the datagram is allowed to
exist. There is also the requirement that each router must decrement the
value by at least one. If the packets stays a long time in the queue of the
router, the TTL value should be decreased with the number of seconds the
datagram spent in queue. When the counter is zero, the datagram must be
discarded. In practice, the value is just decremented at each router, which
makes the field a hop counter.

The protocol field is used to specify to which protocol the data in the
datagram belongs. This can be a transport layer protocol, but it can also be
one of the control protocols of the internet layer.

 25

The header checksum is used to check the validity of the datagram. Note
that the checksum is only for the header, so higher level protocols will have
to use their own checksums if they want to make sure their data is valid.

Finally, the minimal header contains the source IP address and the
destination IP address. These addresses must be included in each datagram
since the internet layer operates in a connectionless way. Each datagram is
sent separately and therefore each datagram must contain not only its
destination but also its source, in case an error has to be reported. The format
of the addresses is described further on.

The options section can be used to record the route a datagram follows,
possibly with timestamps. Another option is source routing, where you can
specify the route a datagram should follow.

3.2.2 Addressing

Every host on an interconnection of networks - or internet - which uses IP,
should have a unique IP address. An IP address is a 32-bit value and the
complete address space is divided into five classes, named class A to class E.
The way these classes are represented is shown figure 3.6.

Figure 3.6: Classes of IP addresses

The way an address is usually written, is in its dotted decimal form. To
obtain this the 32-bit value is split in four 8-bit values. These four values are
then written in decimal form, separated by dots.

 26

The first three classes contain the addresses which can be assigned to hosts.
Not all possibilities are allowed though; there are some reserved addresses.
First of all, a host ID with value zero does not specify a host, but the
network on which hosts with the specified network ID are located.

If the host ID is the highest possible value for its class (all one bits in binary
format), the address is a broadcast address for a certain network. This means
that if you send IP datagrams to that address, they are delivered to all hosts
on that network.

When the network ID of an address is zero, it specifies the local network.
This type of address is only used in initializations procedures, when the local
network ID is not known.

Other reserved addresses are 0.0.0.0 and 255.255.255.255. The first of these
specifies the local host on the local network. It is also only used in
initialization procedures. The second address is the so-called limited
broadcast address. This specifies a broadcast to all hosts on the local
network.

Of the remaining two classes, only class D is actually used. Class E was
meant for future use. Class D specifies a multicast address. Multicasting
allows data to be sent to a group of hosts. This means that when you send an
IP datagram to a multicast address, the datagram is sent to all hosts in the
corresponding multicast group. Multicasting is explained in more detail
later.

3.2.3 Routing

The internet layer uses the link layer to actually transmit its data. The link
layer, however, can only deliver this data to hosts which are connected to the
same medium. To be able to send this data across several networks, routers
are used. These devices connect to several networks and make sure that
incoming IP datagrams are forwarded to the appropriate network. We will
now take a closer look at how this process works. Note that only the basic
mechanisms of routing are explained here.

When the internet layer of the sending host has to transmit a datagram to a
certain destination, it first examines the destination IP address. This is

 27

necessary because the internet layer has to tell the link layer to which
machine the data has to be sent. If the destination IP address is on the same
network, the machine which will receive the datagram will simply be the
destination for the transmission.

If the address does not specify a host on the local network, the internet layer
examines its routing table. The entries of such a routing table can be seen as
pairs of a destination address and a router address. The destination address
can be an address of a host or of a network.

The internet layer then starts looking for a router to send the datagram to. To
do this, it compares the destination address of the datagram with the
destination addresses in the routing table. If no complete match can be
found, it checks if a matching network entry can be found. If not, it uses a
default entry. If an entry was found, the internet layer takes the
corresponding router address and tells the link layer to send the datagram to
that address.

For example, consider a host with IP address 199.198.1.10 who wants to
send a packet to 199.198.2.100. This destination host is not on the same
network, so the internet layer of the sender will consult its routing table.
Suppose that the table looks like this:

Destination Gateway

199.198.5.10 199.198.1.251

199.198.2.0 199.198.1.252

default 199.198.1.253

The internet layer first looks in the table for a complete match for address
199.198.2.100. It finds no such match, so it will check for a matching
network address. This time, it does find a matching entry: the second one
describes the network on which the destination host is present. The internet
layer then takes the corresponding gateway entry - address 199.198.1.252 -
and sends the packet to that router (gateway).

When the datagram reaches the router, it is passed on from the link layer to
the internet layer. The internet layer then follows almost the same procedure
to search for a destination machine to forward the datagram to. The only

 28

difference is that the router will usually be connected to several networks
and this means that the appropriate interface to transmit the data also has to
be chosen. The whole procedure is repeated until the datagram reaches its
final destination.

To make sure good routes are chosen, many routers communicate with each
other. They exchange their routing information and based upon this
information each router updates its routing table to contain the best known
route for each destination. The type of information and the way it is
exchanged are determined by the routing protocol which is used. Examples
of routing protocols are the Open Shortest Path First (OSPF) protocol and
the Border Gateway Protocol (BGP).

3.2.4 Multicasting

Basically, there are three transmission modes that can be used when sending
an IP datagram. They are called unicast, multicast and broadcast. Unicasting
simply means sending a datagram from a source to one destination. The term
broadcasting is used when you want to send a datagram to all hosts on a
specific network. When you want to send a datagram to an arbitrary set of
hosts, it is called multicasting.

A simple way to implement multicasting would be to unicast a copy of the
datagram to each destination. This method obviously wastes a lot of
resources. A better way would be to transmit one datagram which is copied
only at points where it needs to follow different routes to reach its
destinations. This is the way it is done on IP networks.

To be able to receive datagrams directed to a certain multicast address, a
host must first join the multicast group associated with that address.
Similarly, when it no longer wants to receive those datagrams, it leaves the
multicast group. This group management is done according to the Internet
Group Management Protocol (IGMP), which is formally specified in.

In general, the protocol works as follows. Each host maintains a list of
multicast groups from which it wants to receive datagrams. Multicast routers
periodically broadcast IGMP queries on the networks to which they are
connected. The hosts then send IGMP replies, containing the groups in
which they are interested.

 29

Once these replies have been gathered using IGMP, multicast routers
exchange this data with each other and use all this information to build their
routing tables. When they receive a multicast datagram, they can then
determine to which hosts and multicast routers the datagram should be sent.

3.3 CHARACTERISTICS OF IP NETWORKS

When datagrams have to travel across several networks, they will also need
to pass through a number of routers. Each router has to examine all
incoming packets and this will introduce a certain delay in the
communication. Studies even show that the time it takes for a packet to
reach its destination is much more affected by the number of hops the packet
makes than the actual geographical distance covered.

When a router gets too heavily loaded, some packets will have to be
discarded. This packet loss is usually bursty. This means that for a short
period of time several consecutive packets will be lost.

Routers communicate with each other to dynamically adapt their routing
tables to the current state of the network. This means that datagrams going to
the same destination can sometimes follow different routes. Although it
turns out that routes do not change very often during a transmission, it does
happen. Such a change can cause datagrams to arrive out of order.

Besides packet loss and out-of-order arrival of packets, it can also happen
that a datagram gets duplicated during its transmission. This will cause two
or more identical datagrams to arrive at the destination, possibly with some
delay between them.

Finally, another important feature of IP networks is the fact that when a
source sends datagrams to a certain destination, the amount of time to reach
the destination will differ for each datagram. This is usually called inter
arrival delay, inter arrival jitter or simply jitter.

 30

3.4 HIGHER LEVEL PROTOCOLS

The two most common transport level protocols in the TCP/IP architecture
are the Transmission Control Protocol (TCP) and the User Datagram
Protocol (UDP). Each of these protocols offers a specific kind of service
which applications can use to communicate across networks.

3.4.1 TCP

Currently, TCP is undoubtedly the most used protocol of the two. This
protocol transforms the unreliable packet-based service of the internet layer
into a reliable byte stream. The protocol is designed for communication
between two hosts, so it only supports Unicasting.

To offer this kind of service, the TCP module has to do a lot of work. First
of all, a connection has to be set up, and this has to be done in such a way
that it is more or less safe: the module must make sure that connections
cannot be established accidentally - for example because of duplicate
packets.

The incoming stream of bytes then has to be split up at the side of the sender
and the stream has to be reconstructed at the side of the receiver. Care must
be taken to discard duplicate datagrams and to correct their arrival order if
necessary. There must also be some kind of mechanism to cope with lost
packets.

All this is handled quite effectively. To establish a connection the TCP
module uses a handshake mechanism, called a three-way handshake.
Duplicate and out-of-order datagrams are handled by using sequence
numbers. Finally, lost packets are handled by an acknowledgement
mechanism: all bytes of the stream have to be acknowledged by the
destination. If the source did not receive an acknowledgement after a certain
amount of time, it sends the necessary data again. The protocol also specifies
flow control mechanisms, which prevent the swamping of a slower receiver,
and congestion control mechanisms, which try to avoid congestions.

Note that the exact way in which the TCP module works is a lot more
complicated than this explanation makes it seem. For a complete
specification of TCP.

 31

3.4.2 UDP

Applications which do not require the functionality that TCP provides can
use UDP. To transmit data, the UDP module simply passes a UDP header
followed by that data to the internet layer which then sends the datagram on
its way. This means that just like IP itself, UDP is a best-effort service. No
guarantees about delivery are given, datagrams can get reordered and
datagrams can be duplicated. The UDP header is shown in figure 3.7. The
header contains the source and destination ports, which identify the sending
and receiving applications. Next, it contains the number of data bytes which
must be sent and finally the header contains space for an optional checksum.

Figure 3.7: UDP header

Since the service which UDP offers is almost identical to the service of IP
itself, it is possible for applications to send UDP datagrams to a multicast
address and to receive UDP datagrams from a multicast group.

3.5 WHY USE IP?

Delivering speech information in packets has some advantages to the
classical telephone system. When you make a `normal' telephone call, a path
is set up between you and the destination of the call. You will then have a
fixed amount of bandwidth you can use during the whole call.

The major advantage of that approach is that you will have some guarantees
about the QoS, since you are certain to have a specific amount of bandwidth
available. But this way, a lot of bandwidth is also wasted, because during a
conversation there are a lot of silent intervals for each person.

 32

Using VoIP, those silent intervals can be detected. The VoIP application can
examine each packet and detect whether it contains speech information or
only silence. If the latter is the case, the packet can simply be discarded.

Another advantage is the possibility of compression. With the compression
methods available today, it is possible to reduce the requirement of 64 kbps5
for uncompressed telephone-quality voice communication to amounts which
are far lower. However, a high compression ratio often means that the voice
signal will be of lesser quality. So packetized voice has certain advantages to
the classical telephone system. But IP is not the only packet-based protocol.
Why exactly should IP be used? This protocol was designed mostly for data
transport, and it has only limited QoS support. The main reason IP is so
important is because of its omnipresence. The TCP/IP architecture has
proved to be very popular and nowadays it is very widely used. This fact
gives IP a great advantage over other protocols.

Alternatives for packetized voice include Voice over Frame Relay (VoFR)
and Voice over ATM (VoATM). Both allow better support for real-time
traffic than an average IP network. However, these technologies are not used
as widely as IP.

3.6 IPV6

With the growth of the Internet - on which IP is used - it has become clear
that the current version of the Internet Protocol has some shortcomings. For
this reason a new version of the protocol has been devised, now called IP
version six, or just IPv6.

3.6.1 Reasons

Because of the enormous growth of the Internet, there will soon be a
shortage of IP addresses. The current version uses 32-bit values, which can
provide enough IP addresses in theory. However, because of the subdivision
in classes and the way addresses are allocated within those classes, in
practice there are far less addresses available. This lack of addresses was one
of the most important reasons for the development of a new version.

 33

Other reasons were the need for better QoS support and better support for
security. Also, it turned out that some features of IPv4 were hardly ever used
and bandwidth and processing time could be saved by redesigning the
protocol. Finally, because the routing tables in routers kept growing, the
reduction of their sizes was also an important reason for the design of an
improved protocol version.

3.6.2 Description

Let us now take a closer look at this new protocol. First I will describe the
format of the IPv6 header. Next, we will see what exactly changed compared
to IPv4.

3.6.2.1 Header

The IPv6 header is shown in figure 3.8. In this version, the header has the
fixed size of forty bytes.

Figure 3.8: IPv6 header

 34

The version field contains the value six. This way, the version of the
protocol can be detected and IPv4 and IPv6 can coexist. This will make the
transition to the new version easier.

The traffic class has somewhat the same function as the TOS field in the
IPv4 header. Using this field, one could specify the type of traffic this
datagram belongs to. This could then allow appropriate handling of the
datagram.

A flow is defined as a sequence of datagrams which are sent from a certain
host to a receiver or - in case multicasting is used - to a group of receivers,
and for which the sender desires special handling by the routers along the
way. The flow label field can then be used as an identifier for such flows.

The number of data bytes following the header is specified by the payload
length field. This is a 16-bit wide field, so the maximum number of data
bytes in a datagram is 65535. However, it is possible to create larger
datagrams than this field allows. How this can be done is explained further
on.

The next header field specifies of what type the header following the IPv6
header is. In the simplest case, this is a header from a higher level protocol.
But it can also be one of the extension headers which IPv6 defines. It is
because of these extension headers the IPv6 header is somewhat simpler
than the header of IPv4. Some fields in the IPv4 header and the different
options are now used through extension headers.

Several extension headers are defined. Fragmentation, security,
authentication, source routing and many more are all made possible through
these extension headers.

Earlier, I mentioned that the payload length of 65535 can be exceeded. Well,
this can be done using an so-called `hop-by-hop' extension header. This
header has an option called `Jumbo Payload' and allows lengths greater than
65535 to be specified. Such datagrams are often called `jumbograms'.

The hop limit field is a replacement for the TTL field in the IPv4 header.
This field limits the lifetime of a datagram by requiring that the value in the
hop limit field must be decremented by one by each node that forwards the
packet.

 35

Finally, the header contains the source address and the destination address
for the datagram, which are 128-bit values.

3.6.2.2 Important changes from IPv4

First of all, there is the larger address space. The 128-bit values should be
enough to continue for quite some time. On the entire planet, these addresses
would allow for 7 x 1023 addresses per square meter.

Furthermore, because of the way multicast addresses are represented, the
scalability of multicast routing should be improved. Also, a new type of
transmission, called `anycasting', is available. This type of transmission is
used to send a datagram to anyone of a group of receivers.

The header format is simpler than it was the case with IPv4. The IPv6 header
has only eight fields, whereas the IPv4 header had at least twelve fields. This
allows for faster processing of datagrams. The extension headers give the
protocol great flexibility, certainly compared to the limited IPv4 options
field.

The concept of a flow is also new to this version. This makes it possible for
a certain stream of data to receive special treatment. This feature could prove
to be useful for real-time services for example.

Finally, the added support for authentication and security are definitely an
important improvement over version four.

 36

4.1 PROGRAMMING LANGUAGE JAVA

The main goal of java is reducing complexity for the programmer. It goes on
to wrap all the complex tasks that have become important, such as multi-
threading and net work programming. It tackles some really big complexity
problems, across platform programs, dynamic code changes and even
security.

One of the places we see the greatest impact for this is on the web. The net
work programming has always been hard, and java makes it easy (and java
language designers are working on making it even easier). Net work
programming is how we talk to each other more effectively and cheaper than
we ever have with telephones (e-mail alone has revolutionized many
businesses).

Furthermore java increases the communication bandwidth between the
people.

Java is truly the tool of future communication revolution.

4.2 JAVA ENVIRONMENT

We can run Java programs on a wide variety of computers using a range of
operating systems.

Java programs will run just as well on a PC running Windows 95/98/NT as it
will on a Sun Solaris workstation. This Is possible because a Java program
does not execute directly on your computer. It runs on a standardized
hypothetical computer called the Java virtual machine which is emulated
inside your computer by a program. The Java source code that you write is
converted by a Java compiler to a binary program consisting of byte codes.
Byte codes are machine instructions for the Java virtual machine. When we
execute a Java program, a program called the Java interpreter inspects and
deciphers the byte codes for it, checks it out to ensure that it h(1.s not been
tampered with and is safe to execute, and then executes the actions that the
byte codes specify within the Java virtual machine. A Java interpreter can
run stand-alone, or it can be part of a Web browser such as Netscape
Navigator or Microsoft Internet Explorer where it can be invoked
automatically to run applets in a Web page.

 37

Because a Java program consists of byte codes rather than native machine
instructions, it is completely insulated from the particular hardware on which
it is run. Any computer that has the Java environment implemented will
work as well as any other, and because the Java interpreter sits between your
program and the physical machine, it can prevent unauthorized actions in:
the program from being executed.

In the past there has been a penalty for all this flexibility and protection, and
that is in the speed of execution. An interpreted Java program would
typically run at only one tenth of the speed of an equivalent program using
native machine instructions. In programs that are not computation intensive -
which is usually the case with the sort of program you would want to include
in a Web page, for example, you really wouldn't notice this. .If you happen
to have a Java environment which supports’ Just-In-Time' compilation of
programs, we will not suffer the penalty in any event. On-the-fJy compilers
convert your Java programs to native machine instructions as they are
loaded. Your programs will take a little longer to load, but once loaded they
execute at maximum speed.

 38

5.1 TIME-BASED MEDIA

Any data that changes meaningfully with respect to time can be
characterized as time-based media. Audio clips, MIDI sequences, movie
clips, and animations are common forms of time-based media. Such media
data can be obtained from a variety of sources, such as local or network
files, cameras, microphones, and live broadcasts.

This chapter describes the key characteristics of time-based media and
describes the use of time-based media in terms of a fundamental data
processing model:

 Figure 5.1

5.1.1 Streaming Media

A key characteristic of time-based media is that it requires timely delivery
and processing. Once the flow of media data begins, there are strict timing
deadlines that must be met, both in terms of receiving and presenting the
data. For this reason, time-based media is often referred to as streaming
media. It is delivered in a steady stream that must be received and processed
within a particular timeframe to produce acceptable results.

For example, when a movie is played, if the media data cannot be delivered
quickly enough, there might be odd pauses and delays in playback. On the

 39

other hand, if the data cannot be received and processed quickly enough, the
movie might appear jumpy as data is lost or frames are intentionally dropped
in an attempt to maintain the proper playback rate.

5.1.2 Content Type

The format in which the media data is stored is referred to as its content
type. QuickTime, MPEG, and WAV are all examples of content types.
Content type is essentially synonymous with file type. Content type is used
because media data is often acquired from sources other than local files.

5.1.3 Media Streams

A media stream is the media data obtained from a local file, acquired over
the network, or captured from a camera or microphone. Media streams often
contain multiple channels of data called tracks. For example, a Quicktime
file might contain both an audio track and a video track. Media streams that
contain multiple tracks are often referred to as multiplexed or complex
media streams. Demultiplexing is the process of extracting individual tracks
from a complex media stream. A track’s type identifies the kind of data it
contains, such as audio or video. The format of a track defines how the data
for the track is structured. A media stream can be identified by its location
and the protocol used to access it. For example, a URL might be used to
describe the location of a QuickTime file on a local or remote system. If the
file is local, it can be accessed through the FILE protocol. On the other hand,
if it’s on a web server, the file can be accessed through the HTTP protocol.
A media locator provides a way to identify the location of a media stream
when a URL can’t be used. Media streams can be categorized according to
how the data is delivered:

• Pull-data transfer is initiated and controlled from the client side. For
example, Hypertext Transfer Protocol (HTTP) and FILE are pull
protocols.

• Push-the server initiates data transfer and controls the flow of data. or
example, Real-time Transport Protocol (RTP) is a push protocol used
for streaming media. Similarly, the SGI MediaBase protocol is a
Push protocol used for video-on-demand (VOD).

 40

5.1.4 Common Media Formats

The following tables identify some of the characteristics of common media
formats. When selecting a format, it’s important to take into account the
characteristics of the format, the target environment, and the expectations of
the intended audience.

The CPU Requirements column characterizes the processing power
necessary for optimal presentation of the specified format. The Bandwidth
Requirements column characterizes the transmission speeds necessary to
send or receive data quickly enough for optimal presentation.

 41

Table 5.1

 42

5.1.5 Media Presentation

Most time-based media is audio or video data that can be presented through
output devices such as speakers and monitors. Such devices are the most
common destination for media data output. Media streams can also be sent
to other destinations, for example, saved to a fie or transmitted across the
network. An output destination for media data is some times referred to as a
data sink.

5.1.5.1 Presentation Controls

While a media stream is being presented, VCR-style presentation controls
are often provided to enable the user to control playback. For example, a
control panel for a movie player might offer buttons for stopping, starting,
fast-forwarding, and rewinding the movie.

5.1.5.2 Latency

In many cases, particularly when presenting a media stream that resides on
the network, the presentation of the media stream cannot begin immediately.
The time it takes before presentation can begin is referred to as the start
latency. Users might experience this as a delay between the time that they
click the start button and the time when playback actually starts.

Multimedia presentations often combine several types of time-based media
into a synchronized presentation. For example, background music might be
played during an image slide-show, or animated text might be synchronized
with an audio or video clip. When the presentation of multiple media
streams is synchronized, it is essential to take into account the start latency
of each stream, otherwise the playback of the different streams might
actually begin at different times.

 43

5.1.5.3 Presentation Quality

The quality of the presentation of a media stream depends on several factors,
including:

• The compression scheme used
• The processing capability of the playback system
• The bandwidth available (for media streams acquired over the

network)

Traditionally, the higher the quality, the larger the file size and the greater
the processing power and bandwidth required. Bandwidth is usually
represented as the number of bits that are transmitted in a certain period of
time, the bit rate.

To achieve high-quality video presentations, the number of frames displayed
in each period of time (the frame rate) should be as high as possible. Usually
movies at a frame rate of 30 frames-per-second are considered
indistinguishable from regular TV broadcasts or video tapes.

5.1.6 Media Processing

In most instances, the data in a media stream is manipulated before it is
presented to the user. Generally, a series of processing operations occur
before presentation:

• If the stream is multiplexed, the individual tracks are extracted.
• If the individual tracks are compressed, they are decoded.
• If necessary, the tracks are converted to a different format.
• Effect filters are applied to the decoded tracks (if desired).

The tracks are then delivered to the appropriate output device. If the media
stream is to be stored instead of rendered to an output device, the processing
stages might differ slightly. For example, if you wanted to capture audio and
video from a video camera, process the data, and save it to a file:

• The audio and video tracks would be captured.
• Effect filters would be applied to the raw tracks (if desired).

 44

• The individual tracks would be encoded.
• The compressed tracks would be multiplexed into a single media

stream.
• The multiplexed media stream would then be saved to a file.

5.1.6.1 Demultiplexers and Multiplexers

A demultiplexer extracts individual tracks of media data from a multiplexed
media stream. A mutliplexer performs the opposite function, it takes
individual tracks of media data and merges them into a single multiplexed
media stream.

5.1.6.2 Codecs

A codec performs media-data compression and decompression. When a
track is encoded, it is converted to a compressed format suitable for storage
or transmission; when it is decoded it is converted to a non-compressed
(raw) format suitable for presentation.

Each codec has certain input formats that it can handle and certain output
formats that it can generate. In some situations, a series of codecs might be
used to convert from one format to another.

5.1.6.3 Effect Filters

An effect filter modifies the track data in some way, often to create special
effects such as blur or echo. Effect filters are classified as either pre-
processing effects or post-processing effects, depending on whether they are
applied before or after the codec processes the track. Typically, effect filters
are applied to uncompressed (raw) data.

5.1.6.4 Renderers

A renderer is an abstraction of a presentation device. For audio, the
presentation device is typically the computer’s hardware audio card that
outputs sound to the speakers. For video, the presentation device is typically
the computer monitor.

 45

5.1.6.4.1 Compositing

Certain specialized devices support compositing. Compositing time-based
media is the process of combining multiple tracks of data onto a single
presentation medium. For example, overlaying text on a video presentation
is one common form of compositing. Compositing can be done in either
hardware or software. A device that performs compositing can be abstracted
as a renderer that can receive multiple tracks of input data.

5.2 Working with Real Time Media Stream

To send or receive a live media broadcast or conduct a video conference
over the Internet or Intranet, you need to be able to receive and transmit
media streams in real-time. This chapter introduces streaming media
concepts and describes the Real-time Transport Protocol JMF uses for
receiving and transmitting media streams across the network.

5.2.1 Streaming Media

When media content is streamed to a client in real-time, the client can begin
to play the stream without having to wait for the complete stream to
download. In fact, the stream might not even have a predefined duration
downloading the entire stream before playing it would be impossible. The
term streaming media is often used to refer to both this technique of
delivering content over the network in real-time and the real-time media
content that's delivered.

Streaming media is everywhere you look on the web-live radio and
television broadcasts and web cast concerts and events are being offered by
a rapidly growing number of web portals, and it’s now possible to conduct
audio and video conferences over the Internet. By enabling the delivery of
dynamic, interactive media content across the network, streaming media is
changing the way people communicate and access information.

5.2.1.1 Protocols for Streaming Media

Transmitting media data across the net in real-time requires high network
throughput. It’s easier to compensate for lost data than to compensate for
large delays in receiving the data. This is very different from accessing static

 46

data such as a file, where the most important thing is that all of the data
arrive at its destination. Consequently, the protocols used for static data don't
work well for streaming media.
The HTTP and FTP protocols are based on the Transmission Control
Protocol (TCP). TCP is a transport-layer protocol designed for reliable data
communications on low-bandwidth, high-error-rate networks. When a
packet is lost or corrupted, it's retransmitted. The overhead of guaranteeing
reliable data transfer slows the overall transmission rate.
For this reason, underlying protocols other than TCP are typically used for
streaming media. One that's commonly used is the User Datagram Protocol
(UDP). UDP is an unreliable protocol; it does not guarantee that each packet
will reach its destination: There's also no guarantee that the packets will
arrive in the order that they were sent. The receiver has to be able to
compensate for lost data, duplicate packets, and packets that arrive out of
order.
Like TCP, UDP is a general transport-layer protocol-a lower-level
networking protocol on top of which more application-specific protocols are
built. The Internet standard for transporting real-time data such as audio and
video is the Real- Time Transport Protocol (RTP).
RTP is defined in IETF RFC 1889, a product of the AVT working group of
the Internet engineering Task Force (IETF).

5.2.2 Real Time Transport Protocol
RTP provides end-to-end network delivery services for the transmission of
real-time data.. RTP is network and transport-protocol independent, though
it is often used over UDP.

Figure 5.1: RTP architecture.

 47

RIP can be used over both unicast and multicast network services. Over a
unicast network service, separate copies of the data are sent from the source
to each destination. Over a multicast network service, the data is sent from
the source only once and the network is responsible for transmitting the data
to multiple locations. Multicasting is more efficient for many multimedia
applications, such as video conferences. The standard Internet Protocol (IP)
supports multicasting.

5.2.2.1 RTP Services

RTP enables you to identify the type of data being transmitted, determine
what order the packets of data should be presented in, and synchronize
media streams from different sources.

RTP data packets are not guaranteed to arrive in the order that they were
sent-in fact, they're not guaranteed to arrive at all. It's up to the receiver to
reconstruct the sender's packet sequence and detect lost packets using the
information provided in the packet header.
While RTP does not provide any mechanism to ensure timely delivery or
provide other quality of service guarantees, it is augmented by a control
protocol (RTCP) that enables you to monitor the quality of the data
distribution. RTCP also provides control and identification mechanisms for
RTP transmissions.

If quality of service is essential for a particular application, RTP can be used
over a resource reservation protocol that provides connection-oriented
services.

5.3 Transmitting RTP Media Streams

To transmit an RTP stream, you use a Processor to produce an RTP-encoded
DataSource and construct either a SessionManager to control the
transmission.

 48

Figure 5.2 Transmitting RTP Stream

The input to the Processor can be either stored or live captured data. For
stored data, you can use a MediaLocator to identify the file when you
create the Processor. For captured data, a capture DataSource is used as the
input to the Processor.

There are two ways to transmit RTP streams:

• Use a MediaLocator that has the parameters of the RTP session to
con-

 struct an RTP DataSink by calling Manager.createDataSink.
• Use a session manager to create send streams for the content and

control the transmission.

 To transmit multiple RTP streams in a session or need to monitor session
statistics, you need to use the SessionManager directly.
Regardless of how you choose to transmit the RTP stream, you need to:

• Create a Processor with a DataSource that represents the data you
want

 to transmit.
• Configure the Processor to output RTP-encoded data.
• Get the output from the Processor as a DataSource.

5.3.1 Media Capture

Time-based media can be captured from a live source for processing and
playback. For example, audio can be captured from a microphone or a video

 49

capture card can be used to obtain video from a camera. Capturing can be
thought of as the input phase of the standard media processing model.

A capture device might deliver multiple media streams. For example, a
video camera might deliver both audio and video. These streams might be
captured and manipulated separately or combined into a single, multiplexed
stream that contains both an audio track and a video track.

5.3.1.1 Capture Devices

To capture time-based media you need specialized hardware, for example, to
capture audio from a live source, you need a microphone and an appropriate
audio card. Similarly, capturing a TV broadcast requires a TV tuner and an
appropriate video capture card. Most systems provide a query mechanism to
find out what capture devices are available.

Capture devices can be characterized as either push or pull sources. For
example, a still camera is a pull source, the user controls when to capture an
image. A microphone is a push source, the live source continuously provides
a stream of audio. The format of a captured media stream depends on the
processing performed by the capture device. Some devices do very little
processing and deliver raw, uncompressed data. Other capture devices might
deliver the data in a compressed format.

5.3.1.2 Capture Controls

Controls are sometimes provided to enable the user to manage the capture
process. For example, a capture control panel might enable the user to
specify the data rate and encoding type for the captured stream and start and
stop the capture process.

 50

5.3.2 PROCESSOR

Processors can also be used to present media data. A Processor is just a
specialized type of Player that provides control over what processing is
performed on the input media stream. A Processor supports all of the same
presentation controls as a Player.

Figure 5.3: JMF processor model

In addition to rendering media data to presentation devices, a Processor can
output media data through a DataSource so that it can be presented by
another Player or Processor, further manipulated by another Processor, or
delivered to some other destination, such as a file.

5.3.2.1 Presentation Controls

In addition to the standard presentation controls defined by Controller, a
Player or Processor might also provide a way to adjust the playback volume.
If so, you can retrieve its GainControl by calling getGainControl. A
GainControl object posts a GainChangeEvent whenever the gain is

 51

modified. By implementing the GainChangeListener interface, you can
respond to gain changes. For example, you might want to update a custom
gain control Component. Additional custom Control types might be
supported by a particular Player or Processor implementation to provide
other control behaviors and expose custom user interface components. You
access these controls through the getControls method. For example, the
CachingControl interface extends Control to provide a mechanism for
displaying a download progress bar. If a Player can report its download
progress, it implements this interface. To find out if a Player supports
CachingControl, you can call getControl (CachingControl) or use
getControls to get a list of all the supported Controls.

A Processor generally provides two standard user interface components, a
visual component and a control-panel component.You can access these
Components directly through the getVisualComponent and
getControlPanelComponent methods.

5.3.2.2 Processing

A Processor is a Player that takes a DataSource as input, performs some
user-defined processing on the media data, and then outputs the processed
media data.

Figure 5.4 JMF processors

 52

A Processor can send the output data to a presentation device or to a
DataSource. If the data is sent to a DataSource, that DataSource can be used
as the input to another Player or Processor.

While the processing performed by a Player is predefined by the
implementor, a Processor allows the application developer to define the type
of processing that is applied to the media data. This enables the application
of effects, mixing, and compositing in real-time.

The processing of the media data is split into several stages:

Figure 5.5 Processor stages.

• Demultiplexing is the process of parsing the input stream. If the
stream contains multiple tracks, they are extracted and output
separately. For example, a QuickTime file might be demultiplexed
into separate audio and video tracks. Demultiplexing is performed
automatically whenever the input stream contains multiplexed data.

• Pre-Processing is the process of applying effect algorithms to the

tracks extracted from the input stream.

• Transcoding is the process of converting each track of media data
from one input format to another. When a data stream is converted
from a compressed type to an uncompressed type, it is generally
referred to as decoding. Conversely, converting from an
uncompressed type to a compressed type is referred to as encoding.

 53

• Post-Processing is the process of applying effect algorithms to

decoded tracks.

• Multiplexing is the process of interleaving the transcoded media
tracks into a single output stream. For example, separate audio and
video tracks might be multiplexed into a single MPEG-1 data stream.
You can specify the data type of the output stream with the Processor
setOutputContentDescriptor method.

• Rendering is the process of presenting the media to the user.

 The processing at each stage is performed by a separate processing
component. These processing components are JMF plug-ins. If the
Processor supports TrackControls, you can select which plug-ins you
want to use to process a particular track. There are types of JMF plug-ins:

• Demultiplexer parses media streams such as WAV, MPEG or

QuickTime. If the stream is multiplexed, the separate tracks are
extracted.

• Effect performs special effects processing on a track of media data.
• Codec performs data encoding and decoding.
• Multiplexer combines multiple tracks of input data into a single

interleaved output stream and delivers the resulting stream as an
output dataSource.

• Renderer processes the media data in a track and delivers it to a
destination such as a screen or speaker.

5.3.2.3 Processor States

A Processor has two additional standby states, Configuring and Configured,
which occur before the Processor enters the Realizing state.

• A Processor enters the Configuring state when configure is called.
While the Processor is in the Configuring state, it connects to the
DataSource, demultiplexes the input stream, and accesses information
about the format of the input data.

 54

• The Processor moves into the Configured state when it is connected to
the DataSource and data format has been determined. When the
Processor reaches the Configured state, a ConfigureCompleteEvent
is posted.

• When Realize is called, the Processor is transitioned to the Realized

state. Once the Processor is Realized it is fully constructed.

 While a Processor is in the Configured state, getTrackControls can be
called to get the TrackControl objects for the individual tracks in the
media stream. These TrackControl objects enable you specify the media
processing operations that you want the Processor to perform.

Calling realize directly on an Unrealized Processor automatically
transitions it through the Configuring and Configured states to the
Realized state. When you do this, you cannot configure the processing
options through the TrackControls, the default Processor settings are
used.

Calls to the TrackControl methods once the Processor is in the Realized
state will typically fail, though some Processor implementations might
support them.

Since a Processor is a type of Player, the restrictions on when methods can
be called on a Player also apply to Processors. Some of the Processor-
specific methods also are restricted to particular states.

5.3.2.4 Configuring the Processor

To configure the Processor to generate RTP-encoded data, you set RTP
specific formats for each track and specify the output content descriptor you
want. The track formats are set by getting the TrackControl for each track
and calling setFormat to specify an RTP-specific format. An RTP specific
format is selected by setting the encoding string of the format to an RTP
specific string such as “AudioFormat.GSM_RTP”. The Processor attempts
to load a plug-in that supports this format. If no appropriate plug-in is
installed, that particular RTP format cannot be supported and an UnSup-
portedFormatException is thrown.

 55

The output format is set with the setOutputContentDescriptor method.If
no special multiplexing is required, the output content descriptor can be set
to “ContentDescriptor.RAW”. Audio and video streams should not be
interleaved. If the Processor's tracks are of different media types, each media
stream is transmitted in a separate RTP session.

5.3.2.5 Retrieving the Processor Output

Once the format of a Processor's track has been set and the Processor has
been realized, the output DataSource of the Processor can be retrieved. You
retrieve the output of the Processor as a DataSource by calling get-
DataOutput. The returned DataSource can be either a PushBufferData-
Source or a PullBufferDataSource, depending on the source of the data.
The output DataSource is connected to the SessionManager using the
createSendStream method. The session manager must be initialized before
you can create the send stream. If the DataSource contains multiple
SourceStreams, each SourceStream is sent out as a separate RTP stream,
either in the same session or a different session. If the DataSource contains
both audio and video streams, separate RTP sessions must be created for
audio and video. You can also clone the DataSource and send the clones out
as different RTP streams in either the same session or different sessions.

5.3.3 Controlling the Packet Delay

The packet delay, also known as the packetization interval, is the time
represented by each RTP packet as it is transmitted over the network. The
packetization interval determines the minimum end-to-end delay; longer
packets introduce less header overhead but higher delay and make packet
loss more noticeable. For non-interactive applications such as lectures, or for
links with severe bandwidth constraints, a higher packetization delay might
be appropriate. A receiver should accept packets representing between 0 and
200 ms of audio data. (For framed audio encodings, a receiver should accept
packets with 200 ms divided by the frame duration, rounded up.) This
restriction allows reasonable buffer sizing for the receiver. Each packetizer
codec has a default packetization interval appropriate for its encoding. If the
codec allows modification of this interval, it exports a corresponding
PacketSizeControl. The packetization interval can be changed or set by
through the setPacketSize method.

 56

5.3.4 Transmitting RTP Data with the Session Manager

The basic process for transmitting RTP data with the session manager is:

• Create a JMF Processor and set each track format to an RTP-specific
format.

• Retrieve the output DataSource from the Processor.
• Call createSendStream on a previously created and initialized

SessionManager, passing in the DataSource and a stream index. The
session

 manager creates a SendStream for the specified SourceStream.
• Start the session manager by calling SessionManager startSession.
• Control the transmission through the SendStream methods. A

SendStreamListener can be registered to listen to events on the
SendStream.

5.3.4.1 Creating a Send Stream

Before the session manager can transmit data, it needs to know where to get
the data to transmit. When you construct a new SendStream, you hand the
SessionManager the DataSource from which it will acquire the data. Since
a DataSource can contain multiple streams, you also need to specify the
index of the stream to be sent in this session. You can create multiple send
streams by passing different DataSources to createSendStream or by
specifying different stream indexes. The session manager queries the format
of the SourceStream to determine if it has a registered payload type for this
format. If the format of the data is not an RTP format or a payload type
cannot be located for the RTP format, an UnSupportedFormatException is
thrown with the appropriate message. Dynamic payloads can be associated
with an RTP format using the SessionManager addFormat method.

 5.3.4.1.1 Using Cloneable Data Sources.

Many RTP usage scenarios involve sending a stream over multiple RTP
sessions or encoding a stream into multiple formats and sending them over
multiple RTP sessions. When a stream encoded in a single format has to be

 57

sent over multiple RTP sessions, you need to clone the DataSource output
from the Processor from which data is being captured. This is done by
creating a cloneable DataSource through the Manager and calling getClone
on the cloneable DataSource. A new Processor can be created from each
cloned DataSource, its tracks encoded in the desired format, and the stream
sent out over an RTP session.

5.3.4.2 Controlling a Send Stream

You use the RTPStream start and stop methods to control a SendStream.
Starting a SendStream begins data transfer over the network and stopping a
SendStream indicates halts the data transmission. To begin an RTP
transmission, each SendStream needs to be started. Starting or stopping a
send stream triggers the corresponding action on its DataSource. However, if
the DataSource is started independently while the SendStream is stopped,
data will be dropped (PushBufferDataSource) or not pulled
(PullBufferDataSource) by the session manager. During this time, no data
will be transmitted over the network.

5.4 RECEIVING AND PRESENTING RTP MEDIA

STREAMS

JMF Players and Processors provide the presentation, capture, and data
conversion mechanisms for RTP streams.

Figure 5.6 RTP reception data flow.

 58

A separate player is used for each stream received by the session manager.
You construct a Player for an RTP stream through the standard
ManagercreatePlayer mechanism. You can either:

• Use a MediaLocator that has the parameters of the RTP session and
construct a Player by calling Manager.createPlayer(MediaLocator).

• Construct a Player for a particular ReceiveStream by retrieving the

DataSource from the stream and passing it to
Manager.createPlayer(DataSource).

If you use a MediaLocator to construct a Player, you can only present the
first RTP stream that’s detected in the session. If you want to play back
multiple RTP streams in a session, you need to use the SessionManager
directly and construct a Player for each ReceiveStream.

5.4.1 Player

To play a media stream, you need to construct a Player for the stream,
configure the Player and prepare it to run, and then start the Player to begin
playback.

Figure 5.7 Player Model

5.4.1.1 Creating a Player

You create a Player indirectly through the media Manager. To display the
Player, you get the Player object’s components and add them to your
applet’s presentation space or application window. When you need to create

 59

a new Player, you request it from the Manager by calling createPlayer. The
Manager uses the media URL or MediaLocator that you specify to create
an appropriate Player. A URL can only be successfully constructed if the
appropriate corresponding URL StreamHandler is installed. MediaLocator
doesn’t have this restriction.

5.4.1.1.1 Blocking Until a Player is Realized

 Many of the methods that can be called on a Player require the Player to be
in the Realized state. One way to guarantee that a Player is Realized when
you call these methods is to use the Manager createRealizedPlayer method
to construct the Player. This method provides a convenient way to create and
realize a Player in a single step. When this method is called, it blocks until
the Player is Realized. Manager provides an equivalent
createRealizeProcessor method for constructing a Realized Processor.

Note: Be aware that blocking until a Player or Processor is Realized can
produce unsatisfactory results. For example, if createRealizedPlayer is
called in an applet, Applet.start and Applet.stop will not be able to
interrupt the construction process.

A Player processes an input stream of media data and renders it at a precise
time. A DataSource is used to deliver the input media-stream to the
Player.The rendering destination depends on the type of media being
presented.

A Player does not provide any control over the processing that it performs or
how it renders the media data. Player supports standardized user control and
relaxes some of the operational restrictions imposed by Clock and
Controller.

 60

Figure 5.8 JMF players.

5.4.1.2 Player States

A Player can be in one of six states. The Clock interface defines the two
primary states: Stopped and Started. To facilitate resource management,
Controller breaks the Stopped state down into five standby states:
Unrealized, Realizing, Realized, Prefetching, and Prefetched.

Figure 5.9 Player States

 61

In normal operation, a Player steps through each state until it reaches the
Started state:

• A Player in the Unrealized state has been instantiated, but does not yet
know anything about its media. When a media Player is first created,
it is Unrealized.

• When realize is called, a Player moves from the Unrealized state into

the Realizing state. A Realizing Player is in the process of
determining its resource requirements. During realization, a Player
acquires the resources that it only needs to acquire once. These might
include rendering resources other than exclusive-use resources.
(Exclusive use resources are limited resources such as particular
hardware devices that can only be used by one Player at a time; such
resources are acquired during Prefetching.) A Realizing Player often
downloads assets over the network.

• When a Player finishes Realizing, it moves into the Realized state. A

Realized Player knows what resources it needs and information about
the type of media it is to present. Because a Realized Player knows
how to render its data, it can provide visual components and controls.
Its connections to other objects in the system are in place, but it does
not own any resources that would prevent another Player from
starting.

• When prefetch is called, a Player moves from the Realized state into

the Prefetching state. A Prefetching Player is preparing to present its
media. During this phase, the Player preloads its media data, obtains
exclusive-use resources, and does whatever else it needs to do to
prepare itself to play. Prefetching might have to recur if a Player
object’s media presentation is repositioned, or if a change in the
Player object’s rate requires that additional buffers be acquired or
alternate processing take place.

 62

• When a Player finishes Prefetching, it moves into the Prefetched state.
A Prefetched Player is ready to be started.

• Calling start puts a Player into the Started state. A Started Player

object’s time-base time and media time are mapped and its clock is
running, though the Player might be waiting for a particular time to
begin presenting its media data.

A Player posts TransitionEvents as it moves from one state to another. The
ControllerListener interface provides a way for your program to determine
what state a Player is in and to respond appropriately. For example, when
your program calls an asynchronous method on a Player. It needs to listen
for the appropriate event to determine when the operation is complete.

Using this event reporting mechanism, you can manage a Player object’s
start latency by controlling when it begins Realizing and Prefetching. It also
enables you to determine whether or not the Player is in an appropriate state
before calling methods on the Player.

5.4.2 Creating a Player for an RTP Session

When you use a MediaLocator to construct a Player for an RTP session, the
Manager creates a Player for the first stream detected in the session. This
Player posts a RealizeCompleteEvent once data has been detected in the
session.

By listening for the RealizeCompleteEvent, you can determine whether or
not any data has arrived and if the Player is capable of presenting any data.
Once the Player posts this event, you can retrieve its visual and control
components.

Note: Because a Player for an RTP media stream doesn’t finish realizing
until data is detected in the session, you shouldn’t try to use
Manager.createRealizedPlayer to construct a Player for an RTP media
stream. No Player would be returned until data arrives and if no data is
detected, attempting to create a Realized Player would block indefinitely.

 63

5.4.2.1 Creating an RTP Player for Each New Receive Stream

To play all of the ReceiveStreams in a session, you need to create a separate
Player for each stream. When a new stream is created, the session manager
posts a NewReceiveStreamEvent. Generally, you register as a
ReceiveStreamListener and construct a Player for each new
ReceiveStream. To construct the Player, you retrieve the DataSource from
the ReceiveStream and pass it to Manager.createPlayer.

To create a Player for each new receive stream in a session:

• Set up the RTP session
 (a)Create a SessionManager. For example, construct an instance of
 com.sun.media.rtp.RTPSessionMgr. (RTPSessionMgr is an
implementation of SessionManager provided with the JMF reference
implementation)

 (b)Call RTPSessionMgr addReceiveStreamListener to register as a
listener.

 (c)Initialize the RTP session by calling RTPSessionMgr initSession.

 (d)Start the RTP session by calling RTPSessionMgr startSession.

• In your ReceiveStreamListener update method, watch for
NewReceiveStreamEvent, which indicates that a new data stream
has been detected.

• When a NewReceiveStreamEvent is detected, retrieve the

ReceiveStream from the NewReceiveStreamEvent by calling
getReceiveStream.

• Retrieve the RTP DataSource from the ReceiveStream by calling

getDataSource. This is a PushBufferDataSource with an RTP
specific Format. For example, the encoding for a DVI audio player
will be DVI_RTP.

 64

• Pass the DataSource to Manager.createPlayer to construct a Player.
For the Player to be successfully constructed, the necessary plug-ins
for decoding and depacketizing the RTP-formatted data must be
available.

5.4.3 Controlling Buffering of Incoming RTP Streams

You can control the RTP receiver buffer through the BufferControl
exported by the SessionManager. This control enables you to set two
parameters, buffer length and threshold.

The buffer length is the size of the buffer maintained by the receiver. The
threshold is the minimum amount of data that is to be buffered by the control
before pushing data out or allowing data to be pulled out (jitter buffer). Data
will only be available from this object when this minimum threshold has
been reached. If the amount of data buffered falls below this threshold, data
will again be buffered until the threshold is reached.

 The buffer length and threshold values are specified in milliseconds. The
number of audio packets or video frames buffered depends on the format of
the incoming stream. Each receive stream maintains its own default and
maximum values for both the buffer length and minimum threshold. (The
default and maximum buffer lengths are implementation dependent.)

To get the BufferControl for a session, you call getControl on the
SessionManager. You can retrieve a GUI Component for the
BufferControl by calling getControlComponent.

 65

6.1 DIFFICULTIES

The main difficulties in this project have been to familiarize oneself with the
JMF API and to set up the working environment properly.

Regarding JMF the big problem has been understanding how to use it,
dissect the class relationships of the framework, and realize what classes that
constitute the frame of the framework. JMF consists of classes that are kind
of core classes (e.g. the static Manager class) that one almost never can do
without, and the relationship between these classes follow some kind of
pattern. It requires hard work from each student to dissolve the JMF API and
understand it to the grade that it can be used successfully. Therefore (to gain
valuable time) we think that it would have been appropriate to have some
introduction lecture in the course that handles JMF (just a suggestion). Such
a lecture would ease much of the burden for the students.

6.2 FUTURE WORK

Future Work will be on incremental refinement of the design and the
application program. The first step will be on creating a video conferencing
program and there after put things together to get an working audio/video
conferencing tool. The future product will be based on a (hopefully) good
design and above other things support the user with an graphical user
interface (GUI) by which the user can controll the program and session(s).
The futureproduct will also handle packet loss in some way, and fix lacks
that is mentioned elsewhere in the report.

6.3 CONCLUSION

A real-time audio conference application must be able to capture sound,
digitizing it (a process known as digital signal processing), packetise it in
appropriate network packets, stream the data on to the network, receive data
from the network, process it, and finally present it to the receiver on an
appropriate output device. Moreover the network must be able to transmitt
the packets to the destination(s) which is not in the application's scope of
concern. However the application should be able to detect packet loss when
the network used is not relable (such as an IP network) and in some way

 66

repair the loss. To get real-time functionality the application also must be
able to do much of this in parallell. Finally the program should provide the
user with a GUI by which the program can be controlled.

Many of the things just listed above is supported by our audio conferencing
program. The program lacks some functionality that will be implemented in
the future product (a real-time audio/video conferencing tool).

The project has been very fun and interesting. Learning JMF has been
especially rewarding. As so many time before the time has however been
sparse.

