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1.1   WHAT IS VOICE OVER IP (VoIP)? 

Before we start to discuss Voice over IP (VoIP) related topics, it is probably 
best to give a brief explanation of what it is. This way, the essence of what is 
discussed here will be clear throughout the document and the details can be 
worked out at the appropriate time.  

Voice over IP is an extensive subject, but at the core it comes down to trying 
to transport speech signals in an acceptable way from sender to destination 
over an IP network. An Internet Protocol (IP) network is a computer network 
which uses the IP protocol to transmit information. We will give a more 
detailed explanation of this protocol in the next chapter, but for now it might 
be helpful to know that this is the basic protocol used on the Internet.  

The definition of `acceptable' depends on the particular situation we are 
dealing with. If, for example, voice is being transported as part of a real-time 
communication between two persons, it will mean that the real-time aspects 
of this conversation must be respected: the overall delay between sending 
and receiving should be low to avoid irritably long gaps of silence. If, 
however, voice is being transmitted as part of a one-way process - e.g. an 
on-line radio show or a lecture - the delay constraints are less strict since the 
interactive aspect is no longer present.  

 

1.2 PROJECT SUBJECT 

Here, we will give the exact formulation of my project subject. This way 
there will be some clarity about what you may or may not expect to find in 
this document. The subject I have chosen is this one:  

A conventional way to communicate with each other using IP-networks is 
through the use of textual chat facilities. The purpose of this thesis proposal 
is to take this one step further by using voice communication instead of these 
textual facilities. The goal of this proposal is to perform research and 
development in order to let persons which are in the same virtual 
environment talk to each other as they would do in reality. Their positions 
and orientations can be used to vary the intensity of the words: persons close 
to each other will hear each other clearly; persons who are moving away 
from each other will understand each other less and less as their distance 
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increases. The proposal encloses technical components (like grabbing, 
compression, buffering, transmission, decompression and regeneration of the 
signal) and also a study of what is happening in the Voice over IP world 
today. Also, a number of experiments will have to be conducted to justify 
the chosen techniques.''  

 

1.3   USES OF VOICE OVER IP 
 
Currently, when you look at what literature can found about VoIP, you will 
find that most of it is about VoIP as a telephone alternative. 
 
 

1.3.1 Telephone alternative 

The first kind of use is the `telephone alternative'. This means that you 
would use some kind of VoIP system to make a voice call to another person. 
This can be done in several ways.  

First of all, if a PC that can be connected to some kind of network is 
available, it can be used to make a call to somebody else who is also 
connected to that network. This PC would then be equipped with speakers 
and a microphone and some VoIP application would be used to make the 
call. The PC could have a direct connection to a computer network, like in 
figure 1.1, but a connection through a dial-up link is also possible.  

 

 
 

Figure 1.1: PC to LAN configuration  
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The second case is a slight variation of the first one. In this case, a telephone 
is connected to the PC and used in a similar way as you would when making 
a normal call. The PC does all the necessary work to set up the call and to 
transmit the speech signals. This also means that the PC has to be switched 
on before the call can be made. This type of configuration might be easier to 
use for people who do not work with computers often. As with the previous 
case, the connection to the network can be either direct, like in figure 1.2, or 
through a dial-up link.  

 

 
 

Figure 1.2: Telephone to PC to LAN configuration  

Finally, the use of a PC and the requirement of a network could be omitted 
by the use of a VoIP gateway. This is a special device that connects the 
public telephone network with a computer network and performs the 
necessary actions and conversations to make the call possible. To make a 
call to somebody, you would call the gateway and specify the destination for 
the call. The call will then be set up and if the other end is available, the 
conversation can start. This configuration would be best for persons who do 
not have a PC. It is probably also the easiest to use, since most people are 
familiar with using a telephone and there does not have to be a PC around. 
This configuration is illustrated in figure 1.3.  

 

Figure 1.3: Telephone to gateway configuration 
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There are probably a lot of variations to these configurations, but we believe 
that these three give a good idea of the possibilities. Combinations of these 
cases can also be worked out.  

Now, you may ask yourself: why use VoIP as a telephone alternative while 
the telephone itself is quite handy? Well, there are several arguments that 
can be made in favor of VoIP.  

Suppose that somewhere - in a company or university for example - a 
computer network is needed. In that case, there are certain benefits by using 
Voice over IP instead of installing extra facilities to use telephones. The only 
requirement is that the IP protocol must be used, but nowadays this is almost 
always the case.  

First of all, there is less cabling and equipment required. All the internal 
calls can be made using VoIP utilities. For outgoing and incoming calls, 
however, there still has to be some connection to the telephone network. 
This can be solved by installing a gateway that is connected to the computer 
network and the telephone network. This gateway will then perform the 
necessary signaling and conversations to make these calls possible.  

Second, the capacity of the computer network will be better utilized. The 
available bandwidth of a network within an organization is usually quite 
large and rarely fully used. By using VoIP, more of the network's capacity 
will be used.  

At home, there is also an advantage in favor of VoIP. If Voice over IP could 
be used over a large distance, it would be much cheaper than making that 
same long distance call using the telephone network. For example, you could 
try to make the call by using the Internet.  

When using VoIP over a Local Area Network (LAN), there is usually plenty 
of bandwidth available and the delay between sending and receiving is 
usually very low. Here, VoIP can often be used without problems. But when 
a Wide Area Network (WAN) is used - the Internet for example - problems 
can arise. One problem is the delay: while the delay on a LAN is usually 
very low, on a WAN this is not necessarily true. If the delay gets too large, 
the conversation will not be very pleasant. Another problem is the quality of 
the speech signals. When certain routes get too heavily loaded, packets on 
the WAN will be lost. These lost packets cause interruptions in the speech 
signal. In turn, these interruptions, when large enough, can also disturb the 
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conversation. To alleviate the load, a lot of VoIP programs use compression 
techniques. However, compression often causes a certain degradation of the 
signal. This may or may not be disturbing to the listener, but with heavy 
compression, telephone quality will rarely be achieved.  

Using VoIP this way is a rather new concept. This also means that currently, 
there is very little specific literature about it. However, it is obvious that a lot 
of the things that we have said in the previous section, also apply to VoIP in 
virtual environments.  

 

1.3.2 Other 

VoIP techniques can be used for a wide variety of other applications which 
require voice or sound in general to be transmitted over a computer network 
and where timing and synchronization are important issues. The same 
techniques also work when it is not sound, but video information which has 
to be transmitted.  

Several other applications can be thought of. One is the use of VoIP 
techniques to create an on-line radio station, or perhaps even an on-line 
jukebox, where you can select the song you want to hear, which is then 
played almost immediately. If enough bandwidth is available, it would even 
be possible to add video data to all this. This way, television broadcasts and 
video on demand over IP networks could be made possible. In a similar way, 
we could extend a VoIP telephone conversation with video information 
about the persons involved in the call, creating a videophone application.  

Another kind of application would be fax over IP. This is a bit different 
since we are no longer transmitting speech data, but a digitized image. Like 
with VoIP, this service could be made possible by connecting a computer 
network to the telephone network using a gateway. For fax over IP, this 
gateway would perform similar functions as with voice over IP.  

Note that the list of applications presented here is certainly not complete. A 
wide range of applications using VoIP related techniques are conceivable, 
but many of them will resemble the ones discussed above.  
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2.1 OVER VIEW OF VOIP 
 
 
This chapter introduces the Internet Protocol (IP), voice over IP (VoIP), 
packetized voice, and internet telephony. The chapter includes several 
sections. The first section explains why VoIP is of such keen interest to the 
industry .The next section explains the prevalent configurations for VoIP. 
The third section provides a brief introduction to the basic terms and 
concepts associated with IP-based packet networks, such as the Internet and 
internets. Following this overview, several key factors for the support of 
packetized voice in an internet are evaluated.   
 
 

2.2 INTERNET TELEPHONY AND PACKETIZED VOICE  

Voice over IP (VoIP) means the transmission of voice traffic in packets. 
Several terms are used to describe this process. Unless otherwise noted, I 
will use these terms synonymously: Internet telephony, IP telephony, packet-
voice, packetized voice, and voice over IP (VoIP). 
 
 
 
2.3 WHY INTERNET TELEPHONY?  

IP telephony is viewed by some people to be an effective technology and by 
others as nothing more than an irritant. The irritating aspect stems from 
those people who have used the public Internet to make telephone calls. In 
most cases, they are not happy with the quality of the speech and the overall 
ability of the Internet to support voice traffic.  
 
Why then is VoIP of such keen interest to the communications industry, in 
view of its relatively poor performance in the support of voice traffic?  
There are four major reasons for this interest, and for the deployment of IP 
telephony. The next part of this chapter discusses these reasons in this order:  

1. The business case  
(a) Integration of voice and data 
(b) Bandwidth consolidation 
(c) Tariff arbitrage  

2. Universal presence of lP 
3. Maturation of technologies 
4. The shift to data networks  
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2.3.1 The Business Case  
The first reason is a compelling business case for the deployment of the IP 
protocol suite and associated equipment to support telephony services. This 
case can be summarized with three suppositions.  

 

2.3.1.1 Integration of Voice and Data.  

First, clearly the integration of voice and data traffic will be demanded by 
multi application software resulting in the inevitable evolution to Web 
servers capable of interacting with the customer with data, voice, and video 
images. Text-only images with still life photos will be a thing-of-the-past.  

 

2.3.1.2 Bandwidth Consolidation.  

The next two suppositions stem from the first. The second supposition is that 
the integration of voice and data allows for bandwidth consolidation, which 
effectively fills up the data communications channels more efficiently. The 
telephony legacy of channelized voice slots, with the expensive associated 
equipment (channel banks, and data service units (DSUs) are inefficient 
tools for the support of data applications.  

 
The commonsense idea is to migrate away from the rigid telephony- based 
time division multiplexing. (TDM) scheme wherein a telephony user is 
given bandwidth continuously, even when the user is not talking. Since 
voice conversations entail a lot of silence (pauses in thinking out an idea, 
taking turns talking during the conversation, etc.), using the data 
communications scheme of statistical TDM (STDM) yields a much more 
efficacious use of precious bandwidth. STDM simply uses the bandwidth 
when it needs it; otherwise, the bandwidth is made available to other talkers 
who need it at that instant.  
 
To give you an idea of how wasteful the telephony TDM approach is, 
consider that about 50 percent of a normal speech pattern is silence (at least 
in most conversations). Voice networks that are built on TDM use 
bandwidth to carry those silent periods. Data networks do not. Further- 
more, another 20 percent of speech consists of repetitive patterns that can be 
eliminated through compression algorithms. The conventional TDM 
operations do not exploit this situation.  
 
Moreover, by using modern analog-to-digital operations, a high- quality 
speech channel can operate at about 4.8 to 8 kbit/s, in contrast to current 
TDM telephony channels that operate at 64 kbit/s. In the future, it is 
expected that the packet voice rate will be reduced further. Let's assume a 6 
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kbitls rate for purposes of comparison. The bandwidth consumption ratio is 
8: 1 in favor of the packet-based method.  
 

2.3.1.3 Tariff Arbitrage and Beyond.  

The third supposition regarding the business case is based on the concept 
called "tariff arbitrage." This term means bypassing the public switched 
telephone networks' toll services and utilizing an internet backbone. This 
approach avoids the costly long distance charges incurred in the tariffed 
telephone network in contrast to lower costs of the untarrifed Internet.  

 
2.3.2 Universal Presence of IP  
 
The second major reason for IP telephony is the universal presence of IP and 
associated protocols in user and network equipment. Of key importance is 
the fact that IP resides in the end-user workstation (in contrast to potentially 
competitive technologies such as ATM and Frame Relay that operate as user 
network interfaces (UNI). Figure 2.1 shows where these technologies are 
placed.  
 
Make no mistake; the existence of IP in user personal computers and 
workstations gives IP a decided advantage over other existing technologies 
that are not resident in the user  
 
 
 

 
      Figure 2.1 
 
appliance. This "location" of IP makes it a very convenient platform from 
which to launch voice traffic.  
 
Many people already use the PC to assist them in making telephone calls. 
Before long, computer-based telephony will be common, and will be a 
natural extension to the telephony system. Moreover, IP operates in both 
wide area and local area networks (LANs), whereas Frame Relay operates 
only in wide area networks.  
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2.3.3 Maturation of Technologies  
 
The third major reason for the deployment of internet telephony is the 
maturation of technologies that now make IP telephony feasible.  
 
 
2.3.4 The Shift to Data Networks  
 
Finally, the fourth major reason for the assured success of VoIP and other 
data networks is the fact that the world is experiencing a shift away from 
circuit-based networks to packet-based networks (data net- works). Some 
market forecasts place the ratio of data networks-to-circuit networks at 80 to 
20 percent by 2005.  
 
 
2.4 CONFIGURATION OPTIONS 
 
We have discussed the issues surrounding VoIP .Let us now look at some 
VoIP configurations and topologies. Several configuration options are 
available to support VoIP operations.  
 
2.4.1 Telephone connection with N-1 gateway 
 
 In Figure 2.2, conventional telephones are employed as well as the 
telephone network (you may have noticed that the term telco is used in this 
documentation as a shorthand notation for the telephone network). The VoIP 
gateway provides the translation functions for the voice/data conversions. 
On the transmit side, the gateway uses a low-bit rate voice coder and other 
special hardware and software to code, compress, and encapsulate the voice 
traffic into data packets (IP datagrams). It accepts conventional telco traffic 
(usually encoded by the telco central office into digital 64 kbit/s telco 
signals), and uses the voice coder to convert these signals into highly 
compressed samples of the telco signal, usually about 6-8 kbit/s.  
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     Figure 2.2 
 
 
At the receiving VoIP gateway, the process is reversed. The gateway 
converts the low-bit rate speech back to the telco signals. These signals are 
converted to conventional analog signals before they are passed to the user's 
telephone.  
This gateway is an n:1 machine, because it accepts n telephone connections 
and multiplexes them into IP datagrams onto one link to the Internet or an 
intranet. 
 
 
 
2.4.2 PC Connection with Router 
 
 
 

 
 
     Figure 2.3 
 
 
Figure 2.3 shows the use of personal computers (PC) and the employment of 
a router. With this operation, the encoding, compression, and encapsulation 
operations are performed at the personal computers. The router's job is to 
examine the destination IP address in the datagram and route the traffic 
accordingly. The router treats the traffic just like any other datagram, and is 
not aware that the bits in the datagram are voice traffic.  
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2.4.3 Telephone to PC Connection 
 
The VolP layout depicted in Figure 2.4 eliminates background noise 
problems found in Figure 2.3 by using a telephone instead of an open 
microphone. 
 
 

 
     Figure 2.4 
 
 
 
2.4.4 PC to phone Calls 
 
This configuration is one that is gaining considerable attention in the 
industry, because the local LANs (such as Ethernet) can be used for both 
voice and data traffic. Also, for simple telephone calls, there is no expensive 
key system or private branch exchange (PBX) in the system.  
 

 
Figure 2.5 
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2.4.5 Problems with the Configurations  
 
The configurations shown in above figures represent low-function systems. 
These are bare-bones operations when compared to the services taken for 
granted by most telco users. The configurations shown in above figures do 
not include the equipment to support call forwarding, call holding, caller id, 
or other telco services voice users expect. These services are provided by 
machines (such as key sets, PBX, centrex, etc.) absent from the above 
figures configurations.  
Additionally, configurations In Figures utilize the public Internet, which is 
not set up to deliver toll-quality voice traffic.  
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Over view of IP 

Before we can really talk about Voice over IP, it is necessary to explain what 
IP is? The abbreviation IP stands for Internet Protocol. Version four is 
currently most in use and it is common to use the term `IPv4' to indicate this 
version of the protocol. When no version number is mentioned, usually the 
discussion is about version four.  

The Internet Protocol is covered in this chapter. It begins with a discussion 
about network software architecture, followed by a description of the 
workings of IP. We will also see some characteristics of IP networks and I 
will describe the most used protocols which run on top of IP. Afterwards, 
some reasons will be given for the use of IP for voice communication. 
Finally, the chapter contains an overview of IPv6, the new version of the 
Internet Protocol.  

 

3.1  NETWORK SOFTWARE ARCHITECTURE 

Nowadays, network software is usually very structured. This section is about 
the way this software is organized. It also contains a discussion about the 
OSI reference model, which is a good example of this structured design, and 
about the TCP/IP reference model, in which as the name suggests IP plays a 
very important role.  

 

3.1.1 Layered design 

To facilitate the design of network software, usually the approach of a 
`layered design' is used. In this approach, each layer provides a certain 
functionality, which can be used by the layer directly above. There are 
several advantages to this approach.  

First of all, the software is much easier to design. Trying to implement the 
desired functionality all at once will be very difficult and will probably 
result in many flaws in the program. Furthermore, these flaws will be 
difficult to track. By dividing the software in layers, you only have to worry 
about implementing some functionality for each layer. This does not mean 
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that is will be an easy task, but by using a structured approach you will be 
able to tackle it more efficiently.  

Another advantage is the adaptability. If you want to make some changes to 
the software, for example to correct a flaw or to improve an algorithm, you 
will only have to change the relevant layers if the interface with the layer 
above stays the same.  

Closely related to this is portability. If the layers are well designed, only a 
few of them will have to be changed to be able to use the software with other 
networking hardware or on another operating system.  

Finally, since many layers will probably be implemented as part of the 
operating system itself, the end-user applications do not have to contain 
those layers. This way, the size of those applications can be reduced.  

To make communication between two hosts possible, they have to be 
connected to some kind of physical medium. All data will be sent over this 
medium, but only the lowest layer will have direct access to it. Conceptually, 
however, two layers on different machines but at the same level can be 
thought to communicate directly. The rules and conventions that are used in 
this communication are contained in the protocol for that level. The whole 
set of protocols is often referred to as the protocol stack. Figure 3.1 
illustrates all this.  
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Figure3.1: Example of layered design   

 

When a layer wants to transmit some data to its corresponding layer at 
another host, it uses the functionality of the layer below to do this. That layer 
adds some control information, usually in the form of a header, to the data 
and uses the layer below to transmit the data. The whole process keeps 
repeating itself until the data is finally sent over the physical medium. When 
the data reaches the receiver, the first layer processes the control information 
and passes the data to the layer above. At each layer, this process then 
repeats itself.  
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3.1.2 OSI Reference model 

The Open Systems Interconnection (OSI) reference model is a model with 
seven layers which was developed by the International Standards 
Organization (ISO). The model only specifies what each layer should do, 
without going into any detail about, for example, the protocols that should 
be used.  

In actual implementations it turns out that some of the layers are almost 
empty and others are too elaborate. However, conceptually the model is 
quite nice and it is a good example of layered design. This is why we will 
describe it briefly.  

 

 
 

Figure 3.2: OSI seven layer model  

3.1.2.1 The physical layer 

The physical layer is the lowest layer in the model and this is the only one 
which has immediate access to the communication medium. It is responsible 
for the transfer of bits from the source to a destination which is connected to 
the same medium.  
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3.1.2.2 The data link layer 

The data link layer uses the facilities of the physical layer to create a more 
reliable communication channel. This layer makes it possible to send blocks 
of data, called frames, reliably from one host to an adjacent one.  

 

3.1.2.3 The network layer 

So far, the layers have only been concerned with transporting information 
between hosts connected to the same medium. The network layer's function 
is to make it possible to send packets to a host that does have a connection to 
the sender, but is not connected to the same physical medium.  

This means that between the different physical media, there have to be 
devices which transfer data from one medium to another. These devices are 
usually called routers or gateways. The use of such devices makes some 
extra work for the network layer necessary.  

First of all, it is possible that between a certain source and destination there 
exist several possible routes. The network layer then has to determine which 
one to choose. These routes can be determined in advance but it is also 
possible that the network layer dynamically adjusts the routing information 
to achieve better performance.  

Second, since the flow between adjacent networks can get very large, it is 
possible that a router cannot cope with all that traffic. The router then 
becomes a bottleneck for the data flow. The network layer tries to control 
such congestions.  

3.1.2.4 The transport layer 

The previous layer made it possible to actually send data from source to 
destination. In that layer communication is done by exchanging packets. The 
transport layer makes it possible to consider the data as a stream of bytes, 
and not in terms of packets. The layer itself will divide the data in smaller 
units and hand it over to the network layer. If some packets get lost, the layer 
handles this and the receiver will still receive the correct stream of bytes. To 
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be able to keep track of which data has already been sent and which not, the 
transport layer uses a connection-oriented approach.  

The transport layer will also have flow control mechanisms, to prevent the 
flooding of a slow receiver, and congestion prevention mechanisms. Note 
that the network layer also has congestion control functionality. However, 
the best way to handle congestions is to prevent them from happening in the 
first place. This is what the transport layer does.  

This layer is the first true end-to-end layer. The physical and data link layers 
were only able to communicate with an immediate neighbor. The network 
layer actively had to transport the packets step by step from source to 
destination. In this layer however, the underlying topology is transparent to 
its user.  

 

3.1.2.5 The session layer 

The session layer makes it possible to establish sessions between two hosts. 
A session extends the capabilities of the transport layer with some extra 
services.  

An example of such an extra service is synchronization. During a transfer 
there would be certain synchronization points. If the data transfer would be 
interrupted due to an error, the transfer could be restarted from the last 
synchronization point rather than starting the transfer all over again.  

 

3.1.2.6 The presentation layer 

The presentation layer takes the type of information which is being 
transferred into consideration. This layer could, for example, make the 
necessary transformations if one computer is sending ASCII characters and 
the other one is sending Unicode characters.  
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3.1.2.7 The application layer 

Finally, the highest layer in the model is the application layer. This is the 
layer in which most end-user networking applications reside. To 
communicate, such programs mostly use their own protocols. Examples of 
such applications are applications for file transfer and applications which 
represent a virtual terminal.  

 

 

3.1.3 TCP/IP reference model 

The Internet Protocol is a protocol which is used in the TCP/IP model. The 
TCP/IP model was originally designed for use on the ARPANET, a military 
network in the late 1960s. It is, in fact, this network which grew out to 
become the Internet as we know it today.  

Because of its military background, there were two major requirements for 
the model. The first was robustness. The US Department of Defence (DoD) 
wanted to make sure that communication was still possible even if some 
routers or lines went down. The second requirement was interoperability. 
Since there were different types of hardware involved, for example copper 
wires and satellites, the DoD wanted a set of protocols which could not only 
handle these types of hardware separately, but which would also make it 
possible to connect them.  

Compared to the OSI model there is a big difference in the way that the 
model came to existence. The OSI model was first carefully designed, and 
later protocols were designed to fit the model. This makes the OSI model a 
very general one. The TCP/IP model, however, originated in the opposite 
way. First the protocols were designed to meet the requirements of the DoD. 
Later, these protocols were described and it is this description which is the 
reference model. This means that the TCP/IP model does not really fit 
anything else but TCP/IP networks. Another point about TCP/IP is that the 
layered design is not followed very strictly. There are some violations to this 
principle in the model.  

Despite of these arguments, the TCP/IP model has become very popular and 
very widely used. In contrast to the OSI model which has seven layers, the 
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TCP/IP model only has four, as figure 3.3 shows. Here is a description of 
these layers.  

 

 
 

Figure 3.3: TCP/IP four layer model  

 

3.1.3.1 The host-to-network layer 

The host-to-network layer is the lowest layer of the model. Sometimes it is 
also called the link layer or the network interface layer. There is in fact little 
to be said about this layer. The only requirement which is given by the 
model is that this layer should be able to transmit and receive the IP 
datagrams of the layer above over the network. The layer has somewhat the 
same function as the physical and data link layers in the OSI model. This 
means that this layer usually is only able to send data to hosts which are 
connected to the same medium.  

3.1.3.2 The internet layer 

The internet layer corresponds to the network layer in the OSI reference 
model. Its job is to bring packets from source to destination, across different 
types of networks if necessary. There are, however, no guarantees that the 
packets will arrive or that their order will be preserved. The service that this 
layer offers is therefore called a best-effort service. There is no notion of a 
connection in this layer. The packets which are exchanged are called Internet 
Protocol datagram or IP datagrams and the protocol which is used is called 
the Internet Protocol or IP. The datagrams consist of a header and the actual 
data. The header will be described later on.  
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Like in the OSI network layer, intermediate devices called routers, are 
needed to make transmission of data across different types of networks 
possible. The IP datagrams can then be sent from source to destination, on a 
hop-by-hop basis. Again, like in the OSI network layer, this also means that 
routing algorithms and congestion control are important aspects of the 
internet layer.  

 

3.1.3.3 The transport layer 

To make sure that multiple applications can use the network facilities at 
once, some extra naming mechanism is needed. The internet layer does 
contain a naming mechanism to identify different hosts, but there still has to 
be some way to differentiate between the processes which are using the 
network. This is done in the transport layer by the use of a port number. This 
layer has somewhat the same functionality as the transport layer in the OSI 
model. Here also, the transport layer is the first real end-to-end layer.  

The TCP/IP model has two major transport layer protocols. One of them is 
the Transmission Control Protocol (TCP). This protocol transforms the 
connectionless unreliable packet based service of the internet layer into a 
connection-oriented reliable byte stream. It is a very important protocol 
since it makes reliable communication possible. This is why its name is also 
in the name of the reference model.  

The other protocol is the User Datagram Protocol (UDP). This is a protocol 
for applications which do not need the service offered by TCP or wants to 
use a protocol of their own. The User Datagram Protocol is merely a small 
extension to IP. It is also an unreliable packet based connectionless protocol 
and the only real extensions to IP itself are the presence of a port number 
and an optional checksum of the data.  

 

3.1.3.4 The application layer 

Like in the OSI model, the application layer contains the protocols of 
networking applications. Among these are virtual terminal applications 
(TELNET protocol), file transfer utilities (FTP protocol) and electronic mail 
(SMTP protocol).  
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3.2 HOW IP WORKS ? 

Let us now take a closer look at the Internet protocol itself and how it makes 
communication between two hosts possible. First I will give a description of 
the IP packet format. Next, the addressing mechanism used by IP is 
discussed. We will then take a closer look at how packets are routed from 
source to destination. Finally, an explanation is given of multicasting, a 
technique which allows us to save bandwidth when the same data has to be 
sent to multiple destinations. This is, of course, a very interesting feature 
when using VoIP in virtual environments, since there will typically be many 
receivers for each talking participant.  

3.2.1 Packet format 

Any packet sent by the IP layer consists of an IP header, followed by the 
actual data. The format of the IP header is shown in figure 3.4. The most 
significant bit is the one at the left, numbered zero. The least significant bit 
is the one at the right, numbered thirty-one. Transmission is done in network 
byte order, also called big endian format. This means that in each 32-bit 
word the most significant byte is sent first and the least significant byte is 
sent last.  

 

 
  

Figure 3.4: IP header format 
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The version field should contain the value `four' for the current version of 
the Internet Protocol. This field can be used to let different versions coexist, 
something which will make the transition to a new version much easier.  

The IHL field contains the `Internet Header Length'. This specifies the 
length of the header in 32-bit words. Since it is a 4-bit value, the maximum 
length of the header will be sixty bytes. Also, since the mandatory part of the 
header consists of five words, the smallest legal value is five. The 
specification in 32-bit words also has as a consequence that the header must 
end on a 32-bit boundary, so it is possible that some padding is required if 
options are present.  

The next field is the Type of service (TOS) field. This field was meant to 
supply a quality of service (QoS) mechanism, but in practice it is rarely 
used. However, since voice data has real-time aspects, it may be necessary to 
pay attention to it if we want to keep the end-to-end delay in the 
communication low.  

An overview of the TOS field is depicted in figure 3.5. That contains a 
three-bit precedence field which specifies the priority of the packet. A value 
of zero indicates a normal priority and a value of seven indicates the highest 
priority. Following the precedence field, there are three bits which stand for 
delay, throughput and reliability. Only one of the bits can be set to one. The 
last two bits in the field are currently unused and should be zero.  

 

 
 

Figure 3.5: The TOS field   
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The size of the IP datagram is specified in the Total length field. It is a 16-
bit field, so the maximum size is 65535 bytes. Most networks cannot handle 
this size so usually it is much less. All hosts are, however, required to be 
able to send and receive datagrams with a length of 576 bytes or less.  

During the transmission of a packet it is possible that it has to traverse 
different kinds of networks. Each network has its own Maximum Transfer 
Unit (MTU) which specifies the maximum frame size it can handle, 
including the link layer header and trailer (if present). This means that there 
is always a possibility that the datagram, as it passes over the different 
networks, cannot be transmitted over a certain network. It then has to be 
fragmented and each piece has to be sent separately.  

The identification field is an aid in reconstructing fragmented datagrams. 
Each datagram fragment will have the same value in this field. When 
sending IP datagrams, a host typically increments this field for each 
datagram sent.  

Next, there are three flag bits, of which the first one is reserved and should 
be zero. The next one stands for `don't fragment' (DF) and the last one stands 
for `more fragments' (MF). If a datagram cannot be transmitted across a 
network because it is too large and the DF bit is set, an error will be sent 
back to the sender3. All but the last the fragment of the original datagram 
will have the MF bit set.  

Using the fragment offset field, the internet layer can reassemble 
fragmented datagrams. This 13-bit value specifies the offset of the fragment 
in the original datagram. The offset is given in units of 64-bit words.  

The time to live (TTL) field is used to limit the lifetime of a datagram. In 
theory the value specifies the number of seconds the datagram is allowed to 
exist. There is also the requirement that each router must decrement the 
value by at least one. If the packets stays a long time in the queue of the 
router, the TTL value should be decreased with the number of seconds the 
datagram spent in queue. When the counter is zero, the datagram must be 
discarded. In practice, the value is just decremented at each router, which 
makes the field a hop counter.  

The protocol field is used to specify to which protocol the data in the 
datagram belongs. This can be a transport layer protocol, but it can also be 
one of the control protocols of the internet layer.  
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The header checksum is used to check the validity of the datagram. Note 
that the checksum is only for the header, so higher level protocols will have 
to use their own checksums if they want to make sure their data is valid.  

Finally, the minimal header contains the source IP address and the 
destination IP address. These addresses must be included in each datagram 
since the internet layer operates in a connectionless way. Each datagram is 
sent separately and therefore each datagram must contain not only its 
destination but also its source, in case an error has to be reported. The format 
of the addresses is described further on.  

The options section can be used to record the route a datagram follows, 
possibly with timestamps. Another option is source routing, where you can 
specify the route a datagram should follow.  

 

3.2.2  Addressing 

Every host on an interconnection of networks - or internet - which uses IP, 
should have a unique IP address. An IP address is a 32-bit value and the 
complete address space is divided into five classes, named class A to class E. 
The way these classes are represented is shown figure 3.6.  

 

 
 

Figure 3.6: Classes of IP addresses   

 

The way an address is usually written, is in its dotted decimal form. To 
obtain this the 32-bit value is split in four 8-bit values. These four values are 
then written in decimal form, separated by dots.  
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The first three classes contain the addresses which can be assigned to hosts. 
Not all possibilities are allowed though; there are some reserved addresses. 
First of all, a host ID with value zero does not specify a host, but the 
network on which hosts with the specified network ID are located.  

If the host ID is the highest possible value for its class (all one bits in binary 
format), the address is a broadcast address for a certain network. This means 
that if you send IP datagrams to that address, they are delivered to all hosts 
on that network.  

When the network ID of an address is zero, it specifies the local network. 
This type of address is only used in initializations procedures, when the local 
network ID is not known.  

Other reserved addresses are 0.0.0.0 and 255.255.255.255. The first of these 
specifies the local host on the local network. It is also only used in 
initialization procedures. The second address is the so-called limited 
broadcast address. This specifies a broadcast to all hosts on the local 
network.  

Of the remaining two classes, only class D is actually used. Class E was 
meant for future use. Class D specifies a multicast address. Multicasting 
allows data to be sent to a group of hosts. This means that when you send an 
IP datagram to a multicast address, the datagram is sent to all hosts in the 
corresponding multicast group. Multicasting is explained in more detail 
later.  

 

3.2.3 Routing 

The internet layer uses the link layer to actually transmit its data. The link 
layer, however, can only deliver this data to hosts which are connected to the 
same medium. To be able to send this data across several networks, routers 
are used. These devices connect to several networks and make sure that 
incoming IP datagrams are forwarded to the appropriate network. We will 
now take a closer look at how this process works. Note that only the basic 
mechanisms of routing are explained here.  

When the internet layer of the sending host has to transmit a datagram to a 
certain destination, it first examines the destination IP address. This is 
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necessary because the internet layer has to tell the link layer to which 
machine the data has to be sent. If the destination IP address is on the same 
network, the machine which will receive the datagram will simply be the 
destination for the transmission.  

If the address does not specify a host on the local network, the internet layer 
examines its routing table. The entries of such a routing table can be seen as 
pairs of a destination address and a router address. The destination address 
can be an address of a host or of a network.  

The internet layer then starts looking for a router to send the datagram to. To 
do this, it compares the destination address of the datagram with the 
destination addresses in the routing table. If no complete match can be 
found, it checks if a matching network entry can be found. If not, it uses a 
default entry. If an entry was found, the internet layer takes the 
corresponding router address and tells the link layer to send the datagram to 
that address.  

For example, consider a host with IP address 199.198.1.10 who wants to 
send a packet to 199.198.2.100. This destination host is not on the same 
network, so the internet layer of the sender will consult its routing table. 
Suppose that the table looks like this:  

Destination Gateway  

199.198.5.10 199.198.1.251 

199.198.2.0  199.198.1.252 

default  199.198.1.253 

The internet layer first looks in the table for a complete match for address 
199.198.2.100. It finds no such match, so it will check for a matching 
network address. This time, it does find a matching entry: the second one 
describes the network on which the destination host is present. The internet 
layer then takes the corresponding gateway entry - address 199.198.1.252 - 
and sends the packet to that router (gateway).  

When the datagram reaches the router, it is passed on from the link layer to 
the internet layer. The internet layer then follows almost the same procedure 
to search for a destination machine to forward the datagram to. The only 
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difference is that the router will usually be connected to several networks 
and this means that the appropriate interface to transmit the data also has to 
be chosen. The whole procedure is repeated until the datagram reaches its 
final destination.  

To make sure good routes are chosen, many routers communicate with each 
other. They exchange their routing information and based upon this 
information each router updates its routing table to contain the best known 
route for each destination. The type of information and the way it is 
exchanged are determined by the routing protocol which is used. Examples 
of routing protocols are the Open Shortest Path First (OSPF) protocol and 
the Border Gateway Protocol (BGP).  

 

3.2.4 Multicasting 

Basically, there are three transmission modes that can be used when sending 
an IP datagram. They are called unicast, multicast and broadcast. Unicasting 
simply means sending a datagram from a source to one destination. The term 
broadcasting is used when you want to send a datagram to all hosts on a 
specific network. When you want to send a datagram to an arbitrary set of 
hosts, it is called multicasting.  

A simple way to implement multicasting would be to unicast a copy of the 
datagram to each destination. This method obviously wastes a lot of 
resources. A better way would be to transmit one datagram which is copied 
only at points where it needs to follow different routes to reach its 
destinations. This is the way it is done on IP networks.  

To be able to receive datagrams directed to a certain multicast address, a 
host must first join the multicast group associated with that address. 
Similarly, when it no longer wants to receive those datagrams, it leaves the 
multicast group. This group management is done according to the Internet 
Group Management Protocol (IGMP), which is formally specified in.  

In general, the protocol works as follows. Each host maintains a list of 
multicast groups from which it wants to receive datagrams. Multicast routers 
periodically broadcast IGMP queries on the networks to which they are 
connected. The hosts then send IGMP replies, containing the groups in 
which they are interested.  
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Once these replies have been gathered using IGMP, multicast routers 
exchange this data with each other and use all this information to build their 
routing tables. When they receive a multicast datagram, they can then 
determine to which hosts and multicast routers the datagram should be sent.  

 

3.3 CHARACTERISTICS OF IP NETWORKS 

When datagrams have to travel across several networks, they will also need 
to pass through a number of routers. Each router has to examine all 
incoming packets and this will introduce a certain delay in the 
communication. Studies even show that the time it takes for a packet to 
reach its destination is much more affected by the number of hops the packet 
makes than the actual geographical distance covered.  

When a router gets too heavily loaded, some packets will have to be 
discarded. This packet loss is usually bursty. This means that for a short 
period of time several consecutive packets will be lost.  

Routers communicate with each other to dynamically adapt their routing 
tables to the current state of the network. This means that datagrams going to 
the same destination can sometimes follow different routes. Although it 
turns out that routes do not change very often during a transmission, it does 
happen. Such a change can cause datagrams to arrive out of order.  

Besides packet loss and out-of-order arrival of packets, it can also happen 
that a datagram gets duplicated during its transmission. This will cause two 
or more identical datagrams to arrive at the destination, possibly with some 
delay between them.  

Finally, another important feature of IP networks is the fact that when a 
source sends datagrams to a certain destination, the amount of time to reach 
the destination will differ for each datagram. This is usually called inter 
arrival delay, inter arrival jitter or simply jitter.  
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3.4 HIGHER LEVEL PROTOCOLS 

The two most common transport level protocols in the TCP/IP architecture 
are the Transmission Control Protocol (TCP) and the User Datagram 
Protocol (UDP). Each of these protocols offers a specific kind of service 
which applications can use to communicate across networks.  

 

3.4.1 TCP 

Currently, TCP is undoubtedly the most used protocol of the two. This 
protocol transforms the unreliable packet-based service of the internet layer 
into a reliable byte stream. The protocol is designed for communication 
between two hosts, so it only supports Unicasting.  

To offer this kind of service, the TCP module has to do a lot of work. First 
of all, a connection has to be set up, and this has to be done in such a way 
that it is more or less safe: the module must make sure that connections 
cannot be established accidentally - for example because of duplicate 
packets.  

The incoming stream of bytes then has to be split up at the side of the sender 
and the stream has to be reconstructed at the side of the receiver. Care must 
be taken to discard duplicate datagrams and to correct their arrival order if 
necessary. There must also be some kind of mechanism to cope with lost 
packets.  

All this is handled quite effectively. To establish a connection the TCP 
module uses a handshake mechanism, called a three-way handshake. 
Duplicate and out-of-order datagrams are handled by using sequence 
numbers. Finally, lost packets are handled by an acknowledgement 
mechanism: all bytes of the stream have to be acknowledged by the 
destination. If the source did not receive an acknowledgement after a certain 
amount of time, it sends the necessary data again. The protocol also specifies 
flow control mechanisms, which prevent the swamping of a slower receiver, 
and congestion control mechanisms, which try to avoid congestions.  

Note that the exact way in which the TCP module works is a lot more 
complicated than this explanation makes it seem. For a complete 
specification of TCP.  
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3.4.2 UDP 

Applications which do not require the functionality that TCP provides can 
use UDP. To transmit data, the UDP module simply passes a UDP header 
followed by that data to the internet layer which then sends the datagram on 
its way. This means that just like IP itself, UDP is a best-effort service. No 
guarantees about delivery are given, datagrams can get reordered and 
datagrams can be duplicated. The UDP header is shown in figure 3.7. The 
header contains the source and destination ports, which identify the sending 
and receiving applications. Next, it contains the number of data bytes which 
must be sent and finally the header contains space for an optional checksum.  

 

 
 

Figure 3.7: UDP header  
 

Since the service which UDP offers is almost identical to the service of IP 
itself, it is possible for applications to send UDP datagrams to a multicast 
address and to receive UDP datagrams from a multicast group.  

 

3.5 WHY USE IP? 

Delivering speech information in packets has some advantages to the 
classical telephone system. When you make a `normal' telephone call, a path 
is set up between you and the destination of the call. You will then have a 
fixed amount of bandwidth you can use during the whole call.  

The major advantage of that approach is that you will have some guarantees 
about the QoS, since you are certain to have a specific amount of bandwidth 
available. But this way, a lot of bandwidth is also wasted, because during a 
conversation there are a lot of silent intervals for each person.  
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Using VoIP, those silent intervals can be detected. The VoIP application can 
examine each packet and detect whether it contains speech information or 
only silence. If the latter is the case, the packet can simply be discarded.  

Another advantage is the possibility of compression. With the compression 
methods available today, it is possible to reduce the requirement of 64 kbps5 
for uncompressed telephone-quality voice communication to amounts which 
are far lower. However, a high compression ratio often means that the voice 
signal will be of lesser quality. So packetized voice has certain advantages to 
the classical telephone system. But IP is not the only packet-based protocol. 
Why exactly should IP be used? This protocol was designed mostly for data 
transport, and it has only limited QoS support. The main reason IP is so 
important is because of its omnipresence. The TCP/IP architecture has 
proved to be very popular and nowadays it is very widely used. This fact 
gives IP a great advantage over other protocols.  

Alternatives for packetized voice include Voice over Frame Relay (VoFR) 
and Voice over ATM (VoATM). Both allow better support for real-time 
traffic than an average IP network. However, these technologies are not used 
as widely as IP.  

 

3.6 IPV6 

With the growth of the Internet - on which IP is used - it has become clear 
that the current version of the Internet Protocol has some shortcomings. For 
this reason a new version of the protocol has been devised, now called IP 
version six, or just IPv6.  

 

3.6.1 Reasons 

Because of the enormous growth of the Internet, there will soon be a 
shortage of IP addresses. The current version uses 32-bit values, which can 
provide enough IP addresses in theory. However, because of the subdivision 
in classes and the way addresses are allocated within those classes, in 
practice there are far less addresses available. This lack of addresses was one 
of the most important reasons for the development of a new version.  
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Other reasons were the need for better QoS support and better support for 
security. Also, it turned out that some features of IPv4 were hardly ever used 
and bandwidth and processing time could be saved by redesigning the 
protocol. Finally, because the routing tables in routers kept growing, the 
reduction of their sizes was also an important reason for the design of an 
improved protocol version.  

 

3.6.2 Description 
 
Let us now take a closer look at this new protocol. First I will describe the 
format of the IPv6 header. Next, we will see what exactly changed compared 
to IPv4.  

3.6.2.1 Header 

The IPv6 header is shown in figure 3.8. In this version, the header has the 
fixed size of forty bytes.  

 

Figure 3.8: IPv6 header   
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The version field contains the value six. This way, the version of the 
protocol can be detected and IPv4 and IPv6 can coexist. This will make the 
transition to the new version easier.  

The traffic class has somewhat the same function as the TOS field in the 
IPv4 header. Using this field, one could specify the type of traffic this 
datagram belongs to. This could then allow appropriate handling of the 
datagram.  

A flow is defined as a sequence of datagrams which are sent from a certain 
host to a receiver or - in case multicasting is used - to a group of receivers, 
and for which the sender desires special handling by the routers along the 
way. The flow label field can then be used as an identifier for such flows.  

The number of data bytes following the header is specified by the payload 
length field. This is a 16-bit wide field, so the maximum number of data 
bytes in a datagram is 65535. However, it is possible to create larger 
datagrams than this field allows. How this can be done is explained further 
on.  

The next header field specifies of what type the header following the IPv6 
header is. In the simplest case, this is a header from a higher level protocol. 
But it can also be one of the extension headers which IPv6 defines. It is 
because of these extension headers the IPv6 header is somewhat simpler 
than the header of IPv4. Some fields in the IPv4 header and the different 
options are now used through extension headers.  

Several extension headers are defined. Fragmentation, security, 
authentication, source routing and many more are all made possible through 
these extension headers.  

Earlier, I mentioned that the payload length of 65535 can be exceeded. Well, 
this can be done using an so-called `hop-by-hop' extension header. This 
header has an option called `Jumbo Payload' and allows lengths greater than 
65535 to be specified. Such datagrams are often called `jumbograms'.  

The hop limit field is a replacement for the TTL field in the IPv4 header. 
This field limits the lifetime of a datagram by requiring that the value in the 
hop limit field must be decremented by one by each node that forwards the 
packet.  
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Finally, the header contains the source address and the destination address 
for the datagram, which are 128-bit values.  

 

3.6.2.2 Important changes from IPv4 

First of all, there is the larger address space. The 128-bit values should be 
enough to continue for quite some time. On the entire planet, these addresses 
would allow for 7 x 1023 addresses per square meter.  

Furthermore, because of the way multicast addresses are represented, the 
scalability of multicast routing should be improved. Also, a new type of 
transmission, called `anycasting', is available. This type of transmission is 
used to send a datagram to anyone of a group of receivers.  

The header format is simpler than it was the case with IPv4. The IPv6 header 
has only eight fields, whereas the IPv4 header had at least twelve fields. This 
allows for faster processing of datagrams. The extension headers give the 
protocol great flexibility, certainly compared to the limited IPv4 options 
field.  

The concept of a flow is also new to this version. This makes it possible for 
a certain stream of data to receive special treatment. This feature could prove 
to be useful for real-time services for example.  

Finally, the added support for authentication and security are definitely an 
important improvement over version four.  
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4.1  PROGRAMMING LANGUAGE JAVA 

The main goal of java is reducing complexity for the programmer. It goes on 
to wrap all the complex tasks that have become important, such as multi-
threading and net work programming. It tackles some really big complexity 
problems, across platform programs, dynamic code changes and even 
security. 

One of the places we see the greatest impact for this is on the web. The net 
work programming has always been hard, and java makes it easy (and java 
language designers are working on making it even easier). Net work 
programming is how we talk to each other more effectively and cheaper than 
we ever have with telephones (e-mail alone has revolutionized many 
businesses).  

Furthermore java increases the communication bandwidth between the 
people. 

Java is truly the tool of future communication revolution. 

 

4.2 JAVA ENVIRONMENT 

We can run Java programs on a wide variety of computers using a range of 
operating systems.  

Java programs will run just as well on a PC running Windows 95/98/NT as it 
will on a Sun Solaris workstation. This Is possible because a Java program 
does not execute directly on your computer. It runs on a standardized 
hypothetical computer called the Java virtual machine which is emulated 
inside your computer by a program. The Java source code that you write is 
converted by a Java compiler to a binary program consisting of byte codes. 
Byte codes are machine instructions for the Java virtual machine. When we 
execute a Java program, a program called the Java interpreter inspects and 
deciphers the byte codes for it, checks it out to ensure that it h(1.s not been 
tampered with and is safe to execute, and then executes the actions that the 
byte codes specify within the Java virtual machine. A Java interpreter can 
run stand-alone, or it can be part of a Web browser such as Netscape 
Navigator or Microsoft Internet Explorer where it can be invoked 
automatically to run applets in a Web page.  
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Because a Java program consists of byte codes rather than native machine 
instructions, it is completely insulated from the particular hardware on which 
it is run. Any computer that has the Java environment implemented will 
work as well as any other, and because the Java interpreter sits between your 
program and the physical machine, it can prevent unauthorized actions in: 
the program from being executed.  

In the past there has been a penalty for all this flexibility and protection, and 
that is in the speed of execution. An interpreted Java program would 
typically run at only one tenth of the speed of an equivalent program using 
native machine instructions. In programs that are not computation intensive -
which is usually the case with the sort of program you would want to include 
in a Web page, for example, you really wouldn't notice this. .If you happen 
to have a Java environment which supports’ Just-In-Time' compilation of  
programs, we will not suffer the penalty in any event. On-the-fJy compilers 
convert your Java programs to native machine instructions as they are 
loaded. Your programs will take a little longer to load, but once loaded they 
execute at maximum speed.  
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5.1 TIME-BASED MEDIA 
 
Any data that changes meaningfully with respect to time can be 
characterized as time-based media. Audio clips, MIDI sequences, movie 
clips, and animations are common forms of time-based media. Such media 
data can be obtained from a variety of sources, such as local or network 
files, cameras, microphones, and live broadcasts. 
 
This chapter describes the key characteristics of time-based media and 
describes the use of time-based media in terms of a fundamental data 
processing model: 
 

 
 

 Figure 5.1 
 
                                    
 
5.1.1 Streaming Media 
 
A key characteristic of time-based media is that it requires timely delivery 
and processing. Once the flow of media data begins, there are strict timing 
deadlines that must be met, both in terms of receiving and presenting the 
data. For this reason, time-based media is often referred to as streaming 
media. It is delivered in a steady stream that must be received and processed 
within a particular timeframe to produce acceptable results. 
 
For example, when a movie is played, if the media data cannot be delivered 
quickly enough, there might be odd pauses and delays in playback. On the 
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other hand, if the data cannot be received and processed quickly enough, the 
movie might appear jumpy as data is lost or frames are intentionally dropped 
in an attempt to maintain the proper playback rate. 
 
 
5.1.2 Content Type 
 
The format in which the media data is stored is referred to as its content 
type. QuickTime, MPEG, and WAV are all examples of content types. 
Content type is essentially synonymous with file type. Content type is used 
because media data is often acquired from sources other than local files. 
 
 
5.1.3 Media Streams 
 
A media stream is the media data obtained from a local file, acquired over 
the network, or captured from a camera or microphone. Media streams often 
contain multiple channels of data called tracks. For example, a Quicktime 
file might contain both an audio track and a video track. Media streams that 
contain multiple tracks are often referred to as multiplexed or complex 
media streams. Demultiplexing is the process of extracting individual tracks 
from a complex media stream. A track’s type identifies the kind of data it 
contains, such as audio or video. The format of a track defines how the data 
for the track is structured. A media stream can be identified by its location 
and the protocol used to access it. For example, a URL might be used to 
describe the location of a QuickTime file on a local or remote system. If the 
file is local, it can be accessed through the FILE protocol. On the other hand, 
if it’s on a web server, the file can be accessed through the HTTP protocol. 
A media locator provides a way to identify the location of a media stream 
when a URL can’t be used. Media streams can be categorized according to 
how the data is delivered: 
 

• Pull-data transfer is initiated and controlled from the client side. For     
example, Hypertext Transfer Protocol (HTTP) and FILE are pull       
protocols. 

• Push-the server initiates data transfer and controls the flow of data. or 
example, Real-time Transport Protocol (RTP) is a push protocol used 
for  streaming media. Similarly, the SGI MediaBase protocol is a      
Push protocol used for video-on-demand (VOD). 
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5.1.4 Common Media Formats 
 
The following tables identify some of the characteristics of common media 
formats. When selecting a format, it’s important to take into account the 
characteristics of the format, the target environment, and the expectations of 
the intended audience. 
 
The CPU Requirements column characterizes the processing power 
necessary for optimal presentation of the specified format. The Bandwidth 
Requirements column characterizes the transmission speeds necessary to 
send or receive data quickly enough for optimal presentation. 
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Table 5.1 
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5.1.5 Media Presentation 
 
Most time-based media is audio or video data that can be presented through 
output devices such as speakers and monitors. Such devices are the most 
common destination for media data output. Media streams can also be sent 
to other destinations, for example, saved to a fie or transmitted across the 
network. An output destination for media data is some times referred to as a 
data sink. 
 
5.1.5.1 Presentation Controls 
 
While a media stream is being presented, VCR-style presentation controls 
are often provided to enable the user to control playback. For example, a 
control panel for a movie player might offer buttons for stopping, starting, 
fast-forwarding, and rewinding the movie. 
 
5.1.5.2 Latency 
 
In many cases, particularly when presenting a media stream that resides on 
the network, the presentation of the media stream cannot begin immediately. 
The time it takes before presentation can begin is referred to as the start 
latency. Users might experience this as a delay between the time that they 
click the start button and the time when playback actually starts. 
 
Multimedia presentations often combine several types of time-based media 
into a synchronized presentation. For example, background music might be 
played during an image slide-show, or animated text might be synchronized 
with an audio or video clip. When the presentation of multiple media 
streams is synchronized, it is essential to take into account the start latency 
of each stream, otherwise the playback of the different streams might 
actually begin at different times. 
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5.1.5.3 Presentation Quality 
 
The quality of the presentation of a media stream depends on several factors, 
including: 
 

•  The compression scheme used 
•  The processing capability of the playback system 
•  The bandwidth available (for media streams acquired over the 

network) 
 
Traditionally, the higher the quality, the larger the file size and the greater 
the processing power and bandwidth required. Bandwidth is usually 
represented as the number of bits that are transmitted in a certain period of 
time, the bit rate.  
 
To achieve high-quality video presentations, the number of frames displayed 
in each period of time (the frame rate) should be as high as possible. Usually 
movies at a frame rate of 30 frames-per-second are considered 
indistinguishable from regular TV broadcasts or video tapes. 
 
 
5.1.6 Media Processing 
 
In most instances, the data in a media stream is manipulated before it is 
presented to the user. Generally, a series of processing operations occur 
before presentation: 
 

• If the stream is multiplexed, the individual tracks are extracted. 
• If the individual tracks are compressed, they are decoded. 
• If necessary, the tracks are converted to a different format. 
• Effect filters are applied to the decoded tracks (if desired). 
 

The tracks are then delivered to the appropriate output device. If the media 
stream is to be stored instead of rendered to an output device, the processing 
stages might differ slightly. For example, if you wanted to capture audio and 
video from a video camera, process the data, and save it to a file: 
 

• The audio and video tracks would be captured. 
• Effect filters would be applied to the raw tracks (if desired). 
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• The individual tracks would be encoded. 
• The compressed tracks would be multiplexed into a single media 

stream. 
• The multiplexed media stream would then be saved to a file. 

 
5.1.6.1 Demultiplexers and Multiplexers 
 
A demultiplexer extracts individual tracks of media data from a multiplexed 
media stream. A mutliplexer performs the opposite function, it takes 
individual tracks of media data and merges them into a single multiplexed 
media stream. 
 
5.1.6.2 Codecs 
 
A codec performs media-data compression and decompression. When a 
track is encoded, it is converted to a compressed format suitable for storage 
or transmission; when it is decoded it is converted to a non-compressed 
(raw) format suitable for presentation. 
 
Each codec has certain input formats that it can handle and certain output 
formats that it can generate. In some situations, a series of codecs might be 
used to convert from one format to another. 
 
 
5.1.6.3 Effect Filters 
 
An effect filter modifies the track data in some way, often to create special 
effects such as blur or echo. Effect filters are classified as either pre-
processing effects or post-processing effects, depending on whether they are 
applied before or after the codec processes the track. Typically, effect filters 
are applied to uncompressed (raw) data. 
 
5.1.6.4  Renderers 
 
A renderer is an abstraction of a presentation device. For audio, the 
presentation device is typically the computer’s hardware audio card that 
outputs sound to the speakers. For video, the presentation device is typically 
the computer monitor. 
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5.1.6.4.1 Compositing 
 
Certain specialized devices support compositing. Compositing time-based 
media is the process of combining multiple tracks of data onto a single 
presentation medium. For example, overlaying text on a video presentation 
is one common form of compositing. Compositing can be done in either 
hardware or software. A device that performs compositing can be abstracted 
as a renderer that can receive multiple tracks of input data. 
 
 
5.2  Working with Real Time Media Stream 
 
 
To send or receive a live media broadcast or conduct a video conference 
over the Internet or Intranet, you need to be able to receive and transmit 
media streams in real-time. This chapter introduces streaming media 
concepts and describes the Real-time Transport Protocol JMF uses for 
receiving and transmitting media streams across the network.  

5.2.1 Streaming Media  

When media content is streamed to a client in real-time, the client can begin 
to play the stream without having to wait for the complete stream to 
download. In fact, the stream might not even have a predefined duration 
downloading the entire stream before playing it would be impossible. The 
term streaming media is often used to refer to both this technique of 
delivering content over the network in real-time and the real-time media 
content that's delivered.  

Streaming media is everywhere you look on the web-live radio and 
television broadcasts and web cast concerts and events are being offered by 
a rapidly growing number of web portals, and it’s now possible to conduct 
audio and video conferences over the Internet. By enabling the delivery of 
dynamic, interactive media content across the network, streaming media is 
changing the way people communicate and access information.  

5.2.1.1 Protocols for Streaming Media  

Transmitting media data across the net in real-time requires high network 
throughput. It’s easier to compensate for lost data than to compensate for 
large delays in receiving the data. This is very different from accessing static 
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data such as a file, where the most important thing is that all of the data 
arrive at its destination. Consequently, the protocols used for static data don't 
work well for streaming media.  
The HTTP and FTP protocols are based on the Transmission Control 
Protocol (TCP). TCP is a transport-layer protocol designed for reliable data 
communications on low-bandwidth, high-error-rate networks. When a 
packet is lost or corrupted, it's retransmitted. The overhead of guaranteeing 
reliable data transfer slows the overall transmission rate.  
For this reason, underlying protocols other than TCP are typically used for 
streaming media. One that's commonly used is the User Datagram Protocol 
(UDP). UDP is an unreliable protocol; it does not guarantee that each packet 
will reach its destination: There's also no guarantee that the packets will 
arrive in the order that they were sent. The receiver has to be able to 
compensate for lost data, duplicate packets, and packets that arrive out of 
order.  
Like TCP, UDP is a general transport-layer protocol-a lower-level 
networking protocol on top of which more application-specific protocols are 
built. The Internet standard for transporting real-time data such as audio and 
video is the Real- Time Transport Protocol (RTP).  
RTP is defined in IETF RFC 1889, a product of the AVT working group of 
the Internet engineering Task Force (IETF).  

5.2.2 Real Time Transport Protocol 
RTP provides end-to-end network delivery services for the transmission of 
real-time data.. RTP is network and transport-protocol independent, though 
it is often used over UDP.  
 
 
 
 

 
 

Figure 5.1: RTP architecture. 
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RIP can be used over both unicast and multicast network services. Over a 
unicast network service, separate copies of the data are sent from the source 
to each destination. Over a multicast network service, the data is sent from  
the source only once and the network is responsible for transmitting the data 
to multiple locations. Multicasting is more efficient for many multimedia 
applications, such as video conferences. The standard Internet Protocol (IP) 
supports multicasting.  
 
5.2.2.1 RTP Services  
 
RTP enables you to identify the type of data being transmitted, determine 
what order the packets of data should be presented in, and synchronize 
media streams from different sources.  
 
RTP data packets are not guaranteed to arrive in the order that they were 
sent-in fact, they're not guaranteed to arrive at all. It's up to the receiver to 
reconstruct the sender's packet sequence and detect lost packets using the 
information provided in the packet header.  
While RTP does not provide any mechanism to ensure timely delivery or 
provide other quality of service guarantees, it is augmented by a control 
protocol (RTCP) that enables you to monitor the quality of the data 
distribution. RTCP also provides control and identification mechanisms for 
RTP transmissions.  
 
If quality of service is essential for a particular application, RTP can be used 
over a resource reservation protocol that provides connection-oriented 
services.  
 
 
5.3 Transmitting RTP Media Streams 
 
To transmit an RTP stream, you use a Processor to produce an RTP-encoded  
DataSource and construct either a SessionManager to control the 
transmission. 
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Figure 5.2 Transmitting RTP Stream 

  
 
The input to the Processor can be either stored or live captured data. For 
stored data, you can use a MediaLocator to identify the file when you 
create the Processor. For captured data, a capture DataSource is used as the 
input to the Processor. 
 
There are two ways to transmit RTP streams: 
 

•  Use a MediaLocator that has the parameters of the RTP session to 
con- 

 struct an RTP DataSink by calling Manager.createDataSink. 
•  Use a session manager to create send streams for the content and 

control the transmission. 
 
 To transmit multiple RTP streams in a session or need to monitor session 
statistics, you need to use the SessionManager directly. 
Regardless of how you choose to transmit the RTP stream, you need to: 
 

• Create a Processor with a DataSource that represents the data you 
want 

 to transmit. 
• Configure the Processor to output RTP-encoded data. 
• Get the output from the Processor as a DataSource. 

 

5.3.1 Media Capture 
 
Time-based media can be captured from a live source for processing and 
playback. For example, audio can be captured from a microphone or a video 
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capture card can be used to obtain video from a camera. Capturing can be 
thought of as the input phase of the standard media processing model. 
 
A capture device might deliver multiple media streams. For example, a 
video camera might deliver both audio and video. These streams might be 
captured and manipulated separately or combined into a single, multiplexed 
stream that contains both an audio track and a video track. 
 
 
5.3.1.1 Capture Devices 
 
To capture time-based media you need specialized hardware, for example, to 
capture audio from a live source, you need a microphone and an appropriate 
audio card. Similarly, capturing a TV broadcast requires a TV tuner and an 
appropriate video capture card. Most systems provide a query mechanism to 
find out what capture devices are available. 
 
Capture devices can be characterized as either push or pull sources. For 
example, a still camera is a pull source, the user controls when to capture an 
image. A microphone is a push source, the live source continuously provides 
a stream of audio. The format of a captured media stream depends on the 
processing performed by the capture device. Some devices do very little 
processing and deliver raw, uncompressed data. Other capture devices might 
deliver the data in a compressed format. 
 
 
5.3.1.2 Capture Controls 
 
Controls are sometimes provided to enable the user to manage the capture 
process. For example, a capture control panel might enable the user to 
specify the data rate and encoding type for the captured stream and start and 
stop the capture process. 
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5.3.2   PROCESSOR 

Processors can also be used to present media data. A Processor is just a 
specialized type of Player that provides control over what processing is 
performed on the input media stream. A Processor supports all of the same 
presentation controls as a Player. 
 
 

 
 
 

Figure 5.3: JMF processor model 
 
 

In addition to rendering media data to presentation devices, a Processor can 
output media data through a DataSource so that it can be presented by 
another Player or Processor, further manipulated by another Processor, or 
delivered to some other destination, such as a file. 
 
 
5.3.2.1 Presentation Controls 
 
In addition to the standard presentation controls defined by Controller, a 
Player or Processor might also provide a way to adjust the playback volume. 
If so, you can retrieve its GainControl by calling getGainControl. A 
GainControl object posts a GainChangeEvent whenever the gain is 
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modified. By implementing the GainChangeListener interface, you can 
respond to gain changes. For example, you might want to update a custom 
gain control Component. Additional custom Control types might be 
supported by a particular Player or Processor implementation to provide 
other control behaviors and expose custom user interface components. You 
access these controls through the getControls method. For example, the 
CachingControl interface extends Control to provide a mechanism for 
displaying a download progress bar. If a Player can report its download 
progress, it implements this interface. To find out if a Player supports 
CachingControl, you can call getControl (CachingControl) or use 
getControls to get a list of all the supported Controls.  
 
A Processor generally provides two standard user interface components, a 
visual component and a control-panel component.You can access these 
Components directly through the getVisualComponent and 
getControlPanelComponent methods. 
 
 
5.3.2.2 Processing 
 
A Processor is a Player that takes a DataSource as input, performs some 
user-defined processing on the media data, and then outputs the processed 
media data. 
 
 

 
 

 
Figure 5.4 JMF processors 
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A Processor can send the output data to a presentation device or to a 
DataSource. If the data is sent to a DataSource, that DataSource can be used 
as the input to another Player or Processor. 
 
While the processing performed by a Player is predefined by the 
implementor, a Processor allows the application developer to define the type 
of processing that is applied to the media data. This enables the application 
of effects, mixing, and compositing in real-time. 
 
The processing of the media data is split into several stages: 
 

 
 
 

Figure 5.5 Processor stages. 
 

• Demultiplexing is the process of parsing the input stream. If the 
stream contains multiple tracks, they are extracted and output 
separately. For example, a QuickTime file might be demultiplexed 
into separate audio and video tracks. Demultiplexing is performed 
automatically whenever the input stream contains multiplexed data. 

 
• Pre-Processing is the process of applying effect algorithms to the 

tracks extracted from the input stream. 
 

• Transcoding is the process of converting each track of media data 
from one input format to another. When a data stream is converted 
from a compressed type to an uncompressed type, it is generally 
referred to as decoding. Conversely, converting from an 
uncompressed type to a compressed type is referred to as encoding. 
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• Post-Processing is the process of applying effect algorithms to 

decoded tracks. 
 

• Multiplexing is the process of interleaving the transcoded media 
tracks into a single output stream. For example, separate audio and 
video tracks might be multiplexed into a single MPEG-1 data stream. 
You can specify the data type of the output stream with the Processor 
setOutputContentDescriptor method. 

 
• Rendering is the process of presenting the media to the user. 
  
  The processing at each stage is performed by a separate processing 
component. These processing components are JMF plug-ins. If the 
Processor supports TrackControls, you can select which plug-ins you 
want to use to process a particular track. There are types of JMF plug-ins: 

 
• Demultiplexer parses media streams such as WAV, MPEG or 

QuickTime. If the stream is multiplexed, the separate tracks are 
extracted. 

• Effect performs special effects processing on a track of media data. 
• Codec performs data encoding and decoding. 
• Multiplexer combines multiple tracks of input data into a single 

interleaved output stream and delivers the resulting stream as an 
output dataSource. 

• Renderer processes the media data in a track and delivers it to a 
destination such as a screen or speaker. 

 
 

5.3.2.3 Processor States 
 
A Processor has two additional standby states, Configuring and Configured, 
which occur before the Processor enters the Realizing state. 
 

• A Processor enters the Configuring state when configure is called. 
While the Processor is in the Configuring state, it connects to the 
DataSource, demultiplexes the input stream, and accesses information 
about the format of the input data. 



 54

• The Processor moves into the Configured state when it is connected to 
the DataSource and data format has been determined. When the 
Processor reaches the Configured state, a ConfigureCompleteEvent 
is posted. 

 
• When Realize is called, the Processor is transitioned to the Realized 

state. Once the Processor is Realized it is fully constructed. 
 
 While a Processor is in the Configured state, getTrackControls can be 
called to get the TrackControl objects for the individual tracks in the 
media stream. These TrackControl objects enable you specify the media 
processing operations that you want the Processor to perform. 
 
Calling realize directly on an Unrealized Processor automatically 
transitions it through the Configuring and Configured states to the 
Realized state. When you do this, you cannot configure the processing 
options through the TrackControls, the default Processor settings are 
used. 
 
Calls to the TrackControl methods once the Processor is in the Realized 
state will typically fail, though some Processor implementations might 
support them. 

 
Since a Processor is a type of Player, the restrictions on when methods can 
be called on a Player also apply to Processors. Some of the Processor-
specific methods also are restricted to particular states.   
 
5.3.2.4 Configuring the Processor 
 
To configure the Processor to generate RTP-encoded data, you set RTP 
specific formats for each track and specify the output content descriptor you 
want. The track formats are set by getting the TrackControl for each track 
and calling setFormat to specify an RTP-specific format. An RTP specific 
format is selected by setting the encoding string of the format to an RTP 
specific string such as “AudioFormat.GSM_RTP”. The Processor attempts 
to load a plug-in that supports this format. If no appropriate plug-in is 
installed, that particular RTP format cannot be supported and an UnSup-
portedFormatException is thrown. 
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The output format is set with the setOutputContentDescriptor method.If 
no special multiplexing is required, the output content descriptor can be set 
to “ContentDescriptor.RAW”. Audio and video streams should not be 
interleaved. If the Processor's tracks are of different media types, each media 
stream is transmitted in a separate RTP session. 
 
 
5.3.2.5 Retrieving the Processor Output 
 
Once the format of a Processor's track has been set and the Processor has 
been realized, the output DataSource of the Processor can be retrieved. You 
retrieve the output of the Processor as a DataSource by calling get-
DataOutput. The returned DataSource can be either a PushBufferData-
Source or a PullBufferDataSource, depending on the source of the data. 
The output DataSource is connected to the SessionManager using the 
createSendStream method. The session manager must be initialized before 
you can create the send stream. If the DataSource contains multiple 
SourceStreams, each SourceStream is sent out as a separate RTP stream, 
either in the same session or a different session. If the DataSource contains 
both audio and video streams, separate RTP sessions must be created for 
audio and video. You can also clone the DataSource and send the clones out 
as different RTP streams in either the same session or different sessions.  
 
 
5.3.3 Controlling the Packet Delay 
 
The packet delay, also known as the packetization interval, is the time 
represented by each RTP packet as it is transmitted over the network. The 
packetization interval determines the minimum end-to-end delay; longer 
packets introduce less header overhead but higher delay and make packet 
loss more noticeable. For non-interactive applications such as lectures, or for 
links with severe bandwidth constraints, a higher packetization delay might 
be appropriate. A receiver should accept packets representing between 0 and 
200 ms of audio data. (For framed audio encodings, a receiver should accept 
packets with 200 ms divided by the frame duration, rounded up.) This 
restriction allows reasonable buffer sizing for the receiver. Each packetizer 
codec has a default packetization interval appropriate for its encoding. If the 
codec allows modification of this interval, it exports a corresponding 
PacketSizeControl. The packetization interval can be changed or set by 
through the setPacketSize method. 
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5.3.4 Transmitting RTP Data with the Session Manager 
 
The basic process for transmitting RTP data with the session manager is: 
 

• Create a JMF Processor and set each track format to an RTP-specific 
format. 

• Retrieve the output DataSource from the Processor. 
• Call createSendStream on a previously created and initialized 

SessionManager, passing in the DataSource and a stream index. The 
session 

 manager creates a SendStream for the specified SourceStream. 
• Start the session manager by calling SessionManager startSession. 
• Control the transmission through the SendStream methods. A 

SendStreamListener can be registered to listen to events on the 
SendStream. 

 
 
5.3.4.1 Creating a Send Stream 
 
Before the session manager can transmit data, it needs to know where to get 
the data to transmit. When you construct a new SendStream, you hand the 
SessionManager the DataSource from which it will acquire the data. Since 
a DataSource can contain multiple streams, you also need to specify the 
index of the stream to be sent in this session. You can create multiple send 
streams by passing different DataSources to createSendStream or by 
specifying different stream indexes. The session manager queries the format 
of the SourceStream to determine if it has a registered payload type for this 
format. If the format of the data is not an RTP format or a payload type 
cannot be located for the RTP format, an UnSupportedFormatException is 
thrown with the appropriate message. Dynamic payloads can be associated 
with an RTP format using the SessionManager addFormat method. 
 
 
 5.3.4.1.1 Using Cloneable Data Sources.  
 
Many RTP usage scenarios involve sending a stream over multiple RTP 
sessions or encoding a stream into multiple formats and sending them over 
multiple RTP sessions. When a stream encoded in a single format has to be 
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sent over multiple RTP sessions, you need to clone the DataSource output 
from the Processor from which data is being captured. This is done by 
creating a cloneable DataSource through the Manager and calling getClone 
on the cloneable DataSource. A new Processor can be created from each 
cloned DataSource, its tracks encoded in the desired format, and the stream 
sent out over an RTP session.  
 
 
5.3.4.2 Controlling a Send Stream 
 
You use the RTPStream start and stop methods to control a SendStream. 
Starting a SendStream begins data transfer over the network and stopping a 
SendStream indicates halts the data transmission. To begin an RTP 
transmission, each SendStream needs to be started. Starting or stopping a 
send stream triggers the corresponding action on its DataSource. However, if 
the DataSource is started independently while the SendStream is stopped, 
data will be dropped (PushBufferDataSource) or not pulled 
(PullBufferDataSource) by the session manager. During this time, no data 
will be transmitted over the network. 
 
 
5.4 RECEIVING AND PRESENTING RTP MEDIA 

STREAMS 
 
JMF Players and Processors provide the presentation, capture, and data 
conversion mechanisms for RTP streams. 
 
 

 
Figure 5.6 RTP reception data flow. 
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A separate player is used for each stream received by the session manager. 
You construct a Player for an RTP stream through the standard 
ManagercreatePlayer mechanism. You can either: 
 

• Use a MediaLocator that has the parameters of the RTP session and 
construct a Player by calling Manager.createPlayer(MediaLocator). 

 
• Construct a Player for a particular ReceiveStream by retrieving the 

DataSource from the stream and passing it to 
Manager.createPlayer(DataSource). 

 
If you use a MediaLocator to construct a Player, you can only present the 
first RTP stream that’s detected in the session. If you want to play back 
multiple RTP streams in a session, you need to use the SessionManager 
directly and construct a Player for each ReceiveStream. 
 

5.4.1 Player 

To play a media stream, you need to construct a Player for the stream, 
configure the Player and prepare it to run, and then start the Player to begin 
playback. 
 

 
Figure 5.7 Player Model 

 
 

5.4.1.1 Creating a Player 
 
You create a Player indirectly through the media Manager. To display the 
Player, you get the Player object’s components and add them to your 
applet’s presentation space or application window. When you need to create 



 59

a new Player, you request it from the Manager by calling createPlayer. The 
Manager uses the media URL or MediaLocator that you specify to create 
an appropriate Player. A URL can only be successfully constructed if the 
appropriate corresponding URL StreamHandler is installed. MediaLocator 
doesn’t have this restriction.  
 
 
5.4.1.1.1 Blocking Until a Player is Realized 
 
 Many of the methods that can be called on a Player require the Player to be 
in the Realized state. One way to guarantee that a Player is Realized when 
you call these methods is to use the Manager createRealizedPlayer method 
to construct the Player. This method provides a convenient way to create and 
realize a Player in a single step. When this method is called, it blocks until 
the Player is Realized. Manager provides an equivalent 
createRealizeProcessor method for constructing a Realized Processor. 
 
 
Note: Be aware that blocking until a Player or Processor is Realized can 
produce unsatisfactory results. For example, if createRealizedPlayer is 
called in an applet, Applet.start and Applet.stop will not be able to 
interrupt the construction process. 
 
A Player processes an input stream of media data and renders it at a precise 
time. A DataSource is used to deliver the input media-stream to the 
Player.The rendering destination depends on the type of media being 
presented. 
 
A Player does not provide any control over the processing that it performs or 
how it renders the media data. Player supports standardized user control and 
relaxes some of the operational restrictions imposed by Clock and 
Controller. 
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Figure 5.8 JMF players. 

 
 
 

5.4.1.2 Player States 
 
A Player can be in one of six states. The Clock interface defines the two 
primary states: Stopped and Started. To facilitate resource management, 
Controller breaks the Stopped state down into five standby states: 
Unrealized, Realizing, Realized, Prefetching, and Prefetched. 
 

 
 

Figure 5.9 Player States 
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In normal operation, a Player steps through each state until it reaches the 
Started state: 
 

• A Player in the Unrealized state has been instantiated, but does not yet 
know anything about its media. When a media Player is first created, 
it is Unrealized. 

 
• When realize is called, a Player moves from the Unrealized state into 

the Realizing state. A Realizing Player is in the process of 
determining its resource requirements. During realization, a Player 
acquires the resources that it only needs to acquire once. These might 
include rendering resources other than exclusive-use resources. 
(Exclusive use resources are limited resources such as particular 
hardware devices that can only be used by one Player at a time; such 
resources are acquired during Prefetching.) A Realizing Player often 
downloads assets over the network. 

 
 
• When a Player finishes Realizing, it moves into the Realized state. A 

Realized Player knows what resources it needs and information about 
the type of media it is to present. Because a Realized Player knows 
how to render its data, it can provide visual components and controls. 
Its connections to other objects in the system are in place, but it does 
not own any resources that would prevent another Player from 
starting. 

 
• When prefetch is called, a Player moves from the Realized state into 

the Prefetching state. A Prefetching Player is preparing to present its 
media. During this phase, the Player preloads its media data, obtains 
exclusive-use resources, and does whatever else it needs to do to 
prepare itself to play. Prefetching might have to recur if a Player 
object’s media presentation is repositioned, or if a change in the 
Player object’s rate requires that additional buffers be acquired or 
alternate processing take place. 
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• When a Player finishes Prefetching, it moves into the Prefetched state. 
A Prefetched Player is ready to be started. 

 
• Calling start puts a Player into the Started state. A Started Player 

object’s time-base time and media time are mapped and its clock is 
running, though the Player might be waiting for a particular time to 
begin presenting its media data. 

 
 

A Player posts TransitionEvents as it moves from one state to another. The 
ControllerListener interface provides a way for your program to determine 
what state a Player is in and to respond appropriately. For example, when 
your program calls an asynchronous method on a Player. It needs to listen 
for the appropriate event to determine when the operation is complete. 
 
Using this event reporting mechanism, you can manage a Player object’s 
start latency by controlling when it begins Realizing and Prefetching. It also 
enables you to determine whether or not the Player is in an appropriate state 
before calling methods on the Player. 
 
 
5.4.2 Creating a Player for an RTP Session 
 
When you use a MediaLocator to construct a Player for an RTP session, the 
Manager creates a Player for the first stream detected in the session. This 
Player posts a RealizeCompleteEvent once data has been detected in the 
session. 
 
By listening for the RealizeCompleteEvent, you can determine whether or 
not any data has arrived and if the Player is capable of presenting any data. 
Once the Player posts this event, you can retrieve its visual and control 
components. 
 
 
Note: Because a Player for an RTP media stream doesn’t finish realizing 
until data is detected in the session, you shouldn’t try to use 
Manager.createRealizedPlayer to construct a Player for an RTP media 
stream. No Player would be returned until data arrives and if no data is 
detected, attempting to create a Realized Player would block indefinitely. 
 



 63

5.4.2.1 Creating an RTP Player for Each New Receive Stream 
 
To play all of the ReceiveStreams in a session, you need to create a separate 
Player for each stream. When a new stream is created, the session manager 
posts a NewReceiveStreamEvent. Generally, you register as a 
ReceiveStreamListener and construct a Player for each new 
ReceiveStream. To construct the Player, you retrieve the DataSource from 
the ReceiveStream and pass it to Manager.createPlayer. 
 
To create a Player for each new receive stream in a session: 
 

• Set up the RTP session 
 (a)Create a SessionManager. For example, construct an instance of 
 com.sun.media.rtp.RTPSessionMgr. (RTPSessionMgr is an 
implementation of  SessionManager provided with the JMF reference 
implementation)  
 
 (b)Call RTPSessionMgr addReceiveStreamListener to register as a 
listener. 
 

 (c)Initialize the RTP session by calling RTPSessionMgr initSession. 
 
 (d)Start the RTP session by calling RTPSessionMgr startSession. 
 

• In your ReceiveStreamListener update method, watch for 
NewReceiveStreamEvent, which indicates that a new data stream 
has been detected. 

 
• When a NewReceiveStreamEvent is detected, retrieve the 

ReceiveStream from the  NewReceiveStreamEvent by calling 
getReceiveStream. 

 
 
• Retrieve the RTP DataSource from the ReceiveStream by calling 

getDataSource. This is a PushBufferDataSource with an RTP 
specific Format. For example, the encoding for a DVI audio player 
will be DVI_RTP. 
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• Pass the DataSource to Manager.createPlayer to construct a Player. 
For the Player to be successfully constructed, the necessary plug-ins 
for decoding and depacketizing the RTP-formatted data must be 
available. 

 
 
5.4.3 Controlling Buffering of Incoming RTP Streams 
 
You can control the RTP receiver buffer through the BufferControl 
exported by the SessionManager. This control enables you to set two 
parameters, buffer length and threshold. 
 
The buffer length is the size of the buffer maintained by the receiver. The 
threshold is the minimum amount of data that is to be buffered by the control 
before pushing data out or allowing data to be pulled out (jitter buffer). Data 
will only be available from this object when this minimum threshold has 
been reached. If the amount of data buffered falls below this threshold, data 
will again be buffered until the threshold is reached. 
 
 The buffer length and threshold values are specified in milliseconds. The 
number of audio packets or video frames buffered depends on the format of 
the incoming stream. Each receive stream maintains its own default and 
maximum values for both the buffer length and minimum threshold. (The 
default and maximum buffer lengths are implementation dependent.) 
 
To get the BufferControl for a session, you call getControl on the 
SessionManager. You can retrieve a GUI Component for the 
BufferControl by calling getControlComponent. 
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6.1  DIFFICULTIES 

The main difficulties in this project have been to familiarize oneself with the 
JMF API and to set up the working environment properly.  

Regarding JMF the big problem has been understanding how to use it, 
dissect the class relationships of the framework, and realize what classes that 
constitute the frame of the framework. JMF consists of classes that are kind 
of core classes (e.g. the static Manager class) that one almost never can do 
without, and the relationship between these classes follow some kind of 
pattern. It requires hard work from each student to dissolve the JMF API and 
understand it to the grade that it can be used successfully. Therefore (to gain 
valuable time) we think that it would have been appropriate to have some 
introduction lecture in the course that handles JMF (just a suggestion). Such 
a lecture would ease much of the burden for the students.  

 

6.2 FUTURE WORK 

Future Work will be on incremental refinement of the design and the 
application program. The first step will be on creating a video conferencing 
program and there after put things together to get an working audio/video 
conferencing tool. The future product will be based on a (hopefully) good 
design and above other things support the user with an graphical user 
interface (GUI) by which the user can controll the program and session(s). 
The futureproduct will also handle packet loss in some way, and fix lacks 
that is mentioned elsewhere in the report.  
 

6.3 CONCLUSION 

A real-time audio conference application must be able to capture sound, 
digitizing it (a process known as digital signal processing), packetise it in 
appropriate network packets, stream the data on to the network, receive data 
from the network, process it, and finally present it to the receiver on an 
appropriate output device. Moreover the network must be able to transmitt 
the packets to the destination(s) which is not in the application's scope of 
concern. However the application should be able to detect packet loss when 
the network used is not relable (such as an IP network) and in some way 
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repair the loss. To get real-time functionality the application also must be 
able to do much of this in parallell. Finally the program should provide the 
user with a GUI by which the program can be controlled.  

Many of the things just listed above is supported by our audio conferencing 
program. The program lacks some functionality that will be implemented in 
the future product (a real-time audio/video conferencing tool).  

The project has been very fun and interesting. Learning JMF has been 
especially rewarding. As so many time before the time has however been 
sparse. 


