
 1

Acknowledgements

First of all, I would like to thank Allah Almighty for His continued kindness,

guidance and help, by virtue of which I am able to complete this project. In

addition, I would like to thank all of the following individuals:

Dr. Arshad Ali (Project Supervisor) for the support and the guidance he

provided me from the start of this project and for providing the professional look

to the contents of this project.

Dr Iosif Legrand (Project Supervisor Foreign) for the continued and directed

guidance for the implementational details of the project.

Mr. Ali Ahsan who took interest in the project and gave his precious time in

areas where I needed help.

I must mention that without my family’s support, love and understanding, this

project would have remained a virtual commodity.

 2

Abstract
On January 25, 1999, Sun launched JINITM technology with a global event in San

Francisco including a number of partner announcements. Based on this

technology, I have been assigned the task of implementing a JINI Service

Manager. This project basically has three main players i.e., a client for each

service, a service registering service, and core distributed services. These three

players are used in a distributed environment using JINI architecture. JINI

architecture requires services be registered with a lookup service (provided by

JINI). On request, for a particular service, from the remote client, lookup service

gets activated and returns a proxy object (stub) of that service. Once the client

gets the stub, it can call any of the methods of the service. These methods are

executed remotely where they are registered. The client invokes those methods

and passes input arguments (if any) to them. In return the remote client can get

the data returned by the method.

This architecture helps us start and stop services remotely, which are accessible

by the distributed clients. The nitty gritty of the networking, security and

transactional services are handled by JINI.

 3

Table of contents

1. INTRODUCTION 5
1.1 JINI 5
1.2 BACKGROUND 7
1.3 DEFINITION 7
1.4 APPLICATION 7
1.5 JINI’S GOALS 8
1.6 THE PROGRAMMING MODEL 8
1.7 INSTALLING JINI 9
1.8 CLASS HIERARCHY 10
1.9 INTERFACE HIERARCHY 15

2. COMPONENTS OF A JINI SYSTEM 20
2.1 THE LOOKUP SERVICE 21
2.2 REGGIE 21
 2.2.1 THE REGGIE LIFE CYCLE 23
 2.2.2 REGGIE COMMAND LINE ARGUMENTS 24
 2.2.3 SECURITY POLICY 25
 2.2.4 REGGIE JAR FILE 25
 2.2.5 LOOKUP CLIENT CODEBASE 26
 2.2.6 LOG DIRECTORY 27
 2.2.7 LOOKUP GROUPS 27
 2.2.8 UNDERSTANDING AND CUSTOMIZING THE REGGIE LOG 28

 LOCATION
2.3 UNICAST DISCOVERY 29
 2.3.1 LOOKUP LOCATOR 30
 2.3.2 INFORMATION FROM THE LOOKUP LOCATOR 30
 2.3.3 GET REGISTRAR 31
2.4 BROADCAST DISCOVERY 32
 2.4.1 GROUPS 33
 2.4.2 LOOKUP DISCOVERY 33
2.5 DISCOVERY LISTENER 34
2.6 DISCOVERY EVENT 35

3. ENTRY OBJECTS 38
3.1 ENTRY CLASS 38
3.2 SERVICE REGISTRATION 39
3.3 A WORD ABOUT THE SERVICE REGISTRAR 42
3.4 SERVICE ITEM 43
3.5 REGISTRATION 44
 3.5.1 SERVICE REGISTRATION 44
3.6 RUNNING THE UNICAST SERVER 45
 3.6.1 INFORMATION FROM THE SERVICE REGISTRATION 46
 3.6.2 SERVICE ID 46

4. CLIENT OPERATIONS 48
4.1 CLIENT LOOKUP 48
4.2 PROXIES 51
4.3 SUPPORT SERVICES 52

 4

4.4 THE CONCEPT OF LEASING 53
 4.4.1 CACELLATION 56
 4.4.2 EXPIRATION 56
4.5 DISCOVERY MANAGEMENT 56
4.6 JOIN MANAGER 57

5. SECURITY 59
5.1 SECURITY PROBLEM 59
5.2 RMID AND JDK 1.3 59

6. PROJECT SPECIFICATIONS 62
6.1 STATEMENT 62
6.2 DEVELOPMENT ENVIRONMENT 63
6.3 DEVELOPMENT LANGUAGES 63
6.4 PROJECT LOGIC 63
6.5 SERVICE DESCRIPTION 64
 6.5.1 MY SERVER CLASS 64
 6.5.2 DATA REPOSITORY SERVICE 66
 6.5.2.1 ESTABLISHING A CONNECTION 70
 6.5.2.2 INTERFACE CONNECTION 72
 6.5.2.3 INTERFACE STATEMENT 72
 6.5.2.4 INTERFACE RESULT SET 73
 6.5.2.5 INTERFACE RESULTSET METADATA 74
 6.5.3 MY CLIENT CLASS (FOR ACCESSING DATA REPOSITORY 74

SERVICE)
6.5.4 PRINTING SERVICE 76
6.5.5 PRINTER SERVICE (FOR ACCESSING PRINTING SERVICE) 76
6.5.6 FORMAT CLASS 77
6.5.7 PAGE CLASS 77

7. RECOMMENDATIONS AND FUTURE ENHANCEMENTS 78

8. BIBLIOGRAPHY AND REFERENCES 79

 5

Chapter 1

The Overview of JINI

 1. Introduction

1.1 JINI

JINI is the name for a distributed computing environment, which can offer

``network plug and play’’. A device or a software service can be connected to

a network and announce its presence, and clients that wish to use such a

service can then locate it and call it to perform tasks. JINI can be used for

mobile computing tasks where a service may only be connected to a network

for a short time, but it can more generally be used in any network where there

is some degree of change. There are a large number of scenarios where this

would be useful:

• A new printer can be connected to the network and announce its presence

and capabilities. A client can then use this printer without having to be

specially configured to do so.

• A digital camera can be connected to the network and present a user

interface that will not only allow pictures to be taken, but it can also be

aware of any printers so that the pictures can be printed.

• A configuration file that is copied and modified on individual machines can

be made into a network service from a single machine, reducing

maintenance costs.

• New capabilities extending existing ones can be added to a running

system without disrupting existing services, or without any need to

reconfigure clients.

 6

• Services can announce changes of state, such as when a printer runs out

of paper. Listeners, typically of an administrative nature, can watch for

these changes and flag them for attention.

JINI is not an acronym for anything, and does not have a particular meaning.

(Though it gained a post hoc it gained an interpretation of ``JINI Is Not

Initials''.) A JINI system or federation is a collection of clients and services all

communicating by the JINI protocols. Often this will consist of applications

written in Java, communicating using the Java Remote Method Invocation

mechanism. Although JINI is written in pure Java, neither clients nor services

are constrained to be in pure Java. They may include native code methods,

act as wrappers around non-Java objects, or even be written in some other

language altogether. JINI supplies a ``middleware'' layer to link services and

clients from a variety of sources.

When you download a copy of ``JINI'', you get a mixture of things. Firstly, JINI

is a specification of a set of middleware components. This includes an API

(Application Programmer's Interface) so that you as a programmer can write

services and components that make use of this middleware. Secondly, it

includes an implementation (in pure Java) of the middleware, as a set of Java

packages.

In a running JINI system, there are three main players. There is a service,

such as a printer, a toaster, a marriage agency, etc. There is a client which

would like to make use of this service. Thirdly, there is a lookup service

(service locator), which acts as a broker/trader/locator between services and

clients. There is an additional component, and that is a network connecting all

three of these, and this network will generally be running TCP/IP. (The JINI

specification is fairly independent of network protocol, but the only current

implementation is on TCP/IP.)

 7

1.2 Background

JINI grew from early work in Java to make distributed computing easier. It

intends to make ``network devices'' and ``network computing'' into

standard components of everyone's computing environment.

1.3 Definition

JINI is a network technology that makes services available on the network

transparent to the users.

1.4 Application

When you buy a new piece of office computing equipment such as a desk

lamp, or a new home computer appliance such as an alarm clock, it will

not only carry out its ``traditional'' functions but will also join into a network

of other computer devices and services. The desk lamp will turn itself off

when you leave your desk, informed by sensors in your chair; the alarm

clock will tell your coffee maker to switch on a few minutes before it wakes

you up.

Homes, offices and factories are becoming increasingly networked.

Current twisted pair wiring will remain, but will be augmented by wireless

networks and networks built on your phone lines and power cables. On

top of this will be an infrastructure to allow devices to communicate.

TCP/IP will be a part of this, but will not be enough. There will need to be

mechanisms for service discovery, for negotiation of properties, and for

event signaling (``my alarm has gone off - does anyone want to know?'').

JINI supplies this higher level of interaction.

 8

1.5 JINI’s Goals

JINI aims to satisfy a diverse constituency, enabling users to share

services and resources over the network and providing users easy access

to resources anywhere on the network, providing programmers with tools

and programming patterns for the development of robust and secure

distributed systems, and simplifying the task of building and maintaining

network devices, software and users.

1.6 The Programming Model

JINI services are objects written in the Java programming language. Each

service has an interface, which defines the operations that can be

requested by clients. An example would be a printing service or a disk

drive for storage.

When a JINI service is developed, it must announce its presence to other

services and users. Users and services, in turn, must discover other

services and communicate with them. To enable this, at the heart of JINI

are three protocols: discovery, join and lookup. The discovery and join

protocols are used when a service is plugged in, the former when a

service is looking for a lookup service to register itself and the latter when

a service has located a lookup service and wishes to join. The lookup

occurs when a service client or a user needs to locate and invoke a

service (Figure 1).

 9

Figure 1. The Discovery, Join and Lookup Protocols

When a JINI service is developed, it must announce its presence to other

services and users. Users and services, in turn, must discover other services and

communicate with them. To enable this, at the heart of JINI are three protocols:

discovery, join and lookup. The discovery and join protocols are used when a

service is plugged in. The lookup occurs when a service client or user needs to

find and invoke a service.

Here, the service provider will have to locate a lookup service by

multicasting a request on the network. If a lookup service identifies itself,

then the service object is loaded into (that is, it joins) that lookup service.

The service is now ready to be looked up and used by other services and

clients. Now a client locates a service using the lookup service. Once it is

located, the service object is loaded into the client, and finally the client

invokes the service.

1.7 Installing JINI

JINI uses some of the Remote Method Invocation (RMI) extensions (for

example, activation) available in Java Development Kit 1.2. Therefore,

before you start downloading the JINI software kit (available at

www.sun.com/JINI), make sure you have installed JDK 1.2, which is

 10

available from Sun Microsystems for both Solaris and Windows 95, 98 and

NT. Once you have JDK 1.2 installed, you can download the JINI Starter

Kit (JSK), which is made up of the JINI Technology Core Platform (JCP),

the JINI Technology Extended Platform (JXP) and the JINI Software Kit

(JKS). The JCP includes the specifications and corresponding interfaces

and classes for lookup, discovery and join, distributed events, leasing and

transactions. This constitutes the core JINI technology. The JXP provides

the extended JINI technology infrastructure software and includes the

specifications for the discovery utilities and entry utilities. The JSK

provides implementations of the lookup services and transaction manager

services specified in the JCP.

1.8 Class Hierarchy

o class java.lang.Object

o class net.jini.entry.AbstractEntry (implements

net.jini.core.entry.Entry)

o class net.jini.lookup.entry.Address

o class net.jini.lookup.entry.Comment
o class net.jini.lookup.entry.Location

o class net.jini.lookup.entry.Name

o class net.jini.lookup.entry.ServiceInfo (implements

net.jini.lookup.entry.ServiceControlled)

o class net.jini.lookup.entry.ServiceType (implements

net.jini.lookup.entry.ServiceControlled)

o class com.sun.jini.lookup.entry.BasicServiceType

o class net.jini.lookup.entry.Status (implements

net.jini.lookup.entry.ServiceControlled)

o class com.sun.jini.lease.AbstractLease (implements

net.jini.core.lease.Lease, java.io.Serializable)

o class com.sun.jini.lease.landlord.LandlordLease

 11

o class com.sun.jini.lease.AbstractLeaseMap (implements

net.jini.core.lease.LeaseMap, java.io.Serializable)

o class com.sun.jini.lease.landlord.LandlordLeaseMap

o class net.jini.lookup.entry.AddressBean (implements

net.jini.lookup.entry.EntryBean, java.io.Serializable)

o class com.sun.jini.start.ClassLoaderUtil
o class com.sun.jini.lease.landlord.CodebaseLeaseFactory

(implements com.sun.jini.lease.landlord.LandlordLeaseAccessor,

com.sun.jini.lease.landlord.LandlordLeaseFactory)

o class net.jini.lookup.entry.CommentBean (implements

net.jini.lookup.entry.EntryBean, java.io.Serializable)

o class net.jini.discovery.Constants

o class net.jini.lookup.entry.EntryBeans

o class java.util.EventObject (implements java.io.Serializable)

o class net.jini.discovery.DiscoveryEvent
o class net.jini.lease.LeaseRenewalEvent
o class com.sun.jini.lease.LeaseRenewalEvent
o class net.jini.core.event.RemoteEvent

o class net.jini.lease.ExpirationWarningEvent
o class net.jini.discovery.RemoteDiscoveryEvent
o class net.jini.lease.RenewalFailureEvent

o class

com.sun.jini.lease.BasicRenewalFailureEvent
o class net.jini.core.lookup.ServiceEvent

o class net.jini.lookup.ServiceDiscoveryEvent
o class net.jini.core.event.EventRegistration (implements

java.io.Serializable)

o class net.jini.discovery.IncomingMulticastAnnouncement
o class net.jini.discovery.IncomingMulticastRequest
o class net.jini.discovery.IncomingUnicastRequest
o class net.jini.discovery.IncomingUnicastResponse

 12

o class net.jini.lookup.JoinManager
o class com.sun.jini.lookup.JoinManager
o class com.sun.jini.lease.landlord.Landlord.RenewResults

(implements java.io.Serializable)

o class com.sun.jini.lease.landlord.LandlordLease.Factory

(implements com.sun.jini.lease.landlord.LandlordLeaseAccessor,

com.sun.jini.lease.landlord.LandlordLeaseFactory)

o class com.sun.jini.lease.landlord.LandlordUtil
o class com.sun.jini.lease.landlord.LeaseDurationPolicy

(implements com.sun.jini.lease.landlord.LeasePolicy)

o class net.jini.lease.LeaseRenewalManager
o class com.sun.jini.lease.LeaseRenewalManager
o class net.jini.lookup.entry.LocationBean (implements

net.jini.lookup.entry.EntryBean, java.io.Serializable)

o class com.sun.jini.lookup.entry.LookupAttributes

o class net.jini.discovery.LookupDiscovery (implements

net.jini.discovery.DiscoveryGroupManagement,

net.jini.discovery.DiscoveryManagement)

o class net.jini.discovery.LookupDiscoveryManager (implements

net.jini.discovery.DiscoveryGroupManagement,

net.jini.discovery.DiscoveryLocatorManagement,

net.jini.discovery.DiscoveryManagement)

o class net.jini.core.discovery.LookupLocator (implements

java.io.Serializable)

o class net.jini.discovery.LookupLocatorDiscovery (implements

net.jini.discovery.DiscoveryLocatorManagement,

net.jini.discovery.DiscoveryManagement)

o class com.sun.jini.discovery.LookupLocatorDiscovery

o class net.jini.lookup.entry.NameBean (implements

net.jini.lookup.entry.EntryBean, java.io.Serializable)

 13

o class net.jini.core.transaction.NestableTransaction.Created

(implements java.io.Serializable)

o class net.jini.discovery.OutgoingMulticastAnnouncement
o class net.jini.discovery.OutgoingMulticastRequest
o class net.jini.discovery.OutgoingUnicastRequest
o class net.jini.discovery.OutgoingUnicastResponse

o class com.sun.jini.start.ParsedArgs

o class java.security.Permission (implements java.security.Guard,

java.io.Serializable)

o class net.jini.discovery.DiscoveryPermission (implements

java.io.Serializable)

o class net.jini.core.transaction.server.ServerTransaction

(implements java.io.Serializable,

net.jini.core.transaction.Transaction)

o class

net.jini.core.transaction.server.NestableServerTransaction

(implements net.jini.core.transaction.NestableTransaction)

o class net.jini.lookup.ServiceDiscoveryManager
o class net.jini.core.lookup.ServiceID (implements

java.io.Serializable)

o class net.jini.lookup.entry.ServiceInfoBean (implements

net.jini.lookup.entry.EntryBean, java.io.Serializable)

o class net.jini.core.lookup.ServiceItem (implements

java.io.Serializable)

o class net.jini.core.lookup.ServiceMatches (implements

java.io.Serializable)

o class com.sun.jini.start.ServiceStarter
o class com.sun.jini.start.ServiceStarter.Created

o class net.jini.core.lookup.ServiceTemplate (implements

java.io.Serializable)

o class com.sun.jini.start.StartUtil

 14

o class com.sun.jini.start.StartUtil.ParsedListResult
o class net.jini.lookup.entry.StatusBean (implements

net.jini.lookup.entry.EntryBean, java.io.Serializable)

o class net.jini.lookup.entry.StatusType (implements

java.io.Serializable)

o class java.lang.Throwable (implements java.io.Serializable)

o class java.lang.Exception

o class net.jini.core.lease.LeaseException

o class

net.jini.core.lease.LeaseDeniedException

o class net.jini.core.lease.LeaseMapException

o class

net.jini.core.lease.UnknownLeaseException

o class net.jini.lease.LeaseUnmarshalException

o class net.jini.discovery.LookupUnmarshalException

o class java.lang.RuntimeException

o class net.jini.space.InternalSpaceException

o class net.jini.core.transaction.TransactionException

o class

net.jini.core.transaction.CannotAbortExceptio
n

o class

net.jini.core.transaction.CannotCommitExcep
tion

o class

net.jini.core.transaction.CannotJoinException

o class

net.jini.core.transaction.CannotNestException

o class

net.jini.core.transaction.server.CrashCountEx
ception

 15

o class

net.jini.core.transaction.TimeoutExpiredExce
ption

o class

net.jini.core.transaction.UnknownTransaction
Exception

o class net.jini.core.event.UnknownEventException

o class net.jini.core.entry.UnusableEntryException

o class net.jini.core.transaction.Transaction.Created (implements

java.io.Serializable)

o class net.jini.core.transaction.TransactionFactory

o class net.jini.core.transaction.server.TransactionManager.Created

(implements java.io.Serializable)

1. 9 Interface Hierarchy

o interface net.jini.admin.Administrable

o interface com.sun.jini.outrigger.AdminIterator
o interface com.sun.jini.admin.DestroyAdmin

o interface com.sun.jini.fiddler.FiddlerAdmin(also extends

net.jini.admin.JoinAdmin,

com.sun.jini.admin.StorageLocationAdmin)

o interface com.sun.jini.outrigger.JavaSpaceAdmin(also extends

net.jini.admin.JoinAdmin, com.sun.jini.mahout.RegistryAdmin)

o interface com.sun.jini.mercury.MailboxAdmin(also extends

net.jini.admin.JoinAdmin,

com.sun.jini.admin.StorageLocationAdmin)

o interface com.sun.jini.norm.NormAdmin(also extends

net.jini.admin.JoinAdmin)

o interface com.sun.jini.reggie.RegistrarAdmin(also extends

net.jini.lookup.DiscoveryAdmin, net.jini.admin.JoinAdmin,

com.sun.jini.admin.StorageLocationAdmin)

 16

o interface net.jini.lookup.DiscoveryAdmin

o interface com.sun.jini.reggie.RegistrarAdmin(also extends

com.sun.jini.admin.DestroyAdmin, net.jini.admin.JoinAdmin,

com.sun.jini.admin.StorageLocationAdmin)

o interface net.jini.discovery.DiscoveryGroupManagement
o interface net.jini.discovery.DiscoveryLocatorManagement
o interface net.jini.discovery.DiscoveryManagement
o interface net.jini.lookup.entry.EntryBean

o interface java.util.EventListener

o interface net.jini.discovery.DiscoveryListener
o interface net.jini.discovery.DiscoveryChangeListener

o interface net.jini.lease.LeaseListener
o interface net.jini.lease.DesiredExpirationListener

o interface com.sun.jini.lease.LeaseListener
o interface net.jini.core.event.RemoteEventListener(also extends

java.rmi.Remote)

o interface net.jini.lookup.ServiceIDListener
o interface com.sun.jini.lookup.ServiceIDListener

o interface net.jini.event.EventMailbox

o interface net.jini.space.JavaSpace

o interface net.jini.admin.JoinAdmin

o interface com.sun.jini.fiddler.FiddlerAdmin(also extends

com.sun.jini.admin.DestroyAdmin,

com.sun.jini.admin.StorageLocationAdmin)

o interface com.sun.jini.outrigger.JavaSpaceAdmin(also extends

com.sun.jini.admin.DestroyAdmin,

com.sun.jini.mahout.RegistryAdmin)

o interface com.sun.jini.mercury.MailboxAdmin(also extends

com.sun.jini.admin.DestroyAdmin,

com.sun.jini.admin.StorageLocationAdmin)

 17

o interface com.sun.jini.norm.NormAdmin(also extends

com.sun.jini.admin.DestroyAdmin)

o interface com.sun.jini.reggie.RegistrarAdmin(also extends

com.sun.jini.admin.DestroyAdmin, net.jini.lookup.DiscoveryAdmin,

com.sun.jini.admin.StorageLocationAdmin)

o interface com.sun.jini.lease.landlord.LandlordLeaseAccessor
o interface com.sun.jini.lease.landlord.LandlordLeaseFactory

o interface net.jini.core.lease.Lease

o interface com.sun.jini.lease.landlord.LeasedResource

o interface com.sun.jini.lease.landlord.LeaseManager
o interface com.sun.jini.lease.landlord.LeasePolicy

o interface net.jini.lease.LeaseRenewalService

o interface net.jini.lease.LeaseRenewalSet
o interface com.sun.jini.lease.landlord.LocalLandlord

o interface net.jini.lookup.LookupCache

o interface net.jini.discovery.LookupDiscoveryRegistration

o interface net.jini.discovery.LookupDiscoveryService

o interface net.jini.event.MailboxRegistration

o interface java.util.Map

o interface net.jini.core.lease.LeaseMap

o interface com.sun.jini.mahout.RegistryAdmin

o interface com.sun.jini.outrigger.JavaSpaceAdmin(also extends

com.sun.jini.admin.DestroyAdmin, net.jini.admin.JoinAdmin)

o interface java.rmi.Remote

o interface com.sun.jini.lease.landlord.Landlord

o interface com.sun.jini.mahout.binder.RefHolder
o interface net.jini.core.event.RemoteEventListener(also extends

java.util.EventListener)

o interface net.jini.core.transaction.server.TransactionManager(also

extends net.jini.core.transaction.server.TransactionConstants)

 18

o interface

net.jini.core.transaction.server.NestableTransactionManag
er

o interface

net.jini.core.transaction.server.TransactionParticipant(also

extends net.jini.core.transaction.server.TransactionConstants)

o interface java.io.Serializable

o interface net.jini.core.entry.Entry

o interface net.jini.lookup.entry.ServiceControlled

o interface net.jini.lookup.ServiceDiscoveryListener
o interface net.jini.lookup.ServiceItemFilter
o interface net.jini.core.lookup.ServiceRegistrar
o interface net.jini.core.lookup.ServiceRegistration

o interface com.sun.jini.admin.StorageLocationAdmin

o interface com.sun.jini.fiddler.FiddlerAdmin(also extends

com.sun.jini.admin.DestroyAdmin, net.jini.admin.JoinAdmin)

o interface com.sun.jini.mercury.MailboxAdmin(also extends

com.sun.jini.admin.DestroyAdmin, net.jini.admin.JoinAdmin)

o interface com.sun.jini.reggie.RegistrarAdmin(also extends

com.sun.jini.admin.DestroyAdmin, net.jini.lookup.DiscoveryAdmin,

net.jini.admin.JoinAdmin)

o interface net.jini.core.transaction.Transaction

o interface net.jini.core.transaction.NestableTransaction

o interface net.jini.core.transaction.server.TransactionConstants

o interface net.jini.core.transaction.server.TransactionManager(also

extends java.rmi.Remote)

o interface

net.jini.core.transaction.server.NestableTransactionManag
er

 19

o interface

net.jini.core.transaction.server.TransactionParticipant(also

extends java.rmi.Remote)

 20

 Chapter 2
Components of a JINI System

2. Components of a JINI System
In a running JINI system, there are three main players. There is a service, such

as a printer, a toaster, a marriage agency, etc. There is a client which would like

to make use of this service. Thirdly, there is a lookup service (service locator)

which acts as a broker/trader/locator between services and clients. There is an

additional component, and that is a network connecting all three of these, and

this network will generally be running TCP/IP. (The JINI specification is fairly

independent of network protocol, but the only current implementation is on

TCP/IP.), as shown in figure:

 Client Lookup Service

 Service

 TCP/IP

Figure 2.1: Components of a JINI system

 21

2.1 The Lookup Service

A client locates a service by querying a lookup service (service locator). In

order to do this, it must first locate such a service. On the other hand, a

service must register itself with the lookup service, and in order to do so it

must also first locate a service.

The initial phase of both a client and a service is thus discovering a lookup

service. Such a service (or set of services) will usually have been started

by some independent mechanism. The search for a lookup service can be

done either by unicast or by multicast. In fact, the lookup service is just

another JINI service, but it is one that is specialized to store services and

pass them on to clients looking for them.

2.2 Reggie

Sun supplies a lookup service called Reggie as part of the standard JINI

distribution. The specification of a lookup service is public, and in future

we may expect to see other implementations of lookup services. There

may be any number of these lookup services running in a network. A LAN

may run many lookup services to provide redundancy in case one of them

crashes. Anybody can start a lookup service (depending on access

permissions), but it is first of all not an easy job, and secondly it will

usually be started by an administrator, or started at boot time.

Reggie requires support services to work: an HTTP server and an RMI

daemon, rmid. If there is already an HTTP server running, this can be

used, or a new one can be started. If you don't have access to an HTTP

server (such as Apache), then there is a simple one supplied by JINI. This

server is incomplete, and is only good for downloading Java class files - it

cannot be used as a general-purpose Web server. The JINI HTTP server

is in the jar file tools.jar. This can be started by

 22

 java -jar tools.jar

This runs on a default port (8080), which means that any user can start it

as long as local network policies do not forbid it. It uses the current

directory as ``document root'' for locating class files. These can be

controlled by parameters:

java -jar tools-jarfile [-port port-number] [-dir document-root-dir] [-trees] [-verbose]

The HTTP server is needed to deliver the stub class files (of the registrar)

to clients. These class files are stored in reggie-dl.jar, so this file must be

reachable from the document root. For example, on my machine the jar

file has full path c:\jini\lib>java –jar c:\jini\lib\.jar.

The other support service needed for is an RMI daemon. This is same

machine as:

This command also has major options:

 rmid [-port num] [-log dir]

This can control the TCP port used (which defaults to 4160). rmid uses log

files to store its state, and they default to being in the sub-directory log.

This can be controlled.

 is, quite simply, the single most important and most commonly used JINI

service. So understanding how it works is crucial to a painless experience

of using JINI. Unfortunately, is also a pretty complicated beast. And also

uses a number of techniques that may be unfamiliar to many Java

programmers (activation, remote code loading, security etc).

The following couple of pages will be helpful in understanding, and

particularly solving any particular problem with the service. The sections

here cover:

• The Lifecycle

 23

• Command Line Arguments

• Understanding and Customizing the Log Location

2.2.1 The Lifecycle
The implementation of the JINI lookup service is an activatable

process. What this means is that the actual lookup service is

started by the RMI Activation Daemon (rmid) only when it is first

needed.

So if this is the case, if is started automatically by rmid, you may be

wondering what all the business is with the complicated command

line arguments you need to use to run!

As it turns out, when you run the program, this does not start the

with the activation daemon, telling it to create an instance when and

if needed, and then exits. You may have noticed that the command

line returns after a short while, rather than running indefinitely. This

is because once it has finished registering with the activation

daemon it simply terminates.

The activation daemon, when it detects someone trying to invoke a

remote method destined for the lookup service, will launch in its

own VM, if needed.

But activation is used for more than simply "lazy" launching of .

When registers itself, it passes a special flag to the activation

daemon, telling it that should be registered again automatically in

the future whenever the activation daemon is restarted. This is

quite handy! By using the restart flag, you can launch a whole array

of activatable services by simply starting up the activation daemon

when your machine boots.

 24

This also means that you typically only need to start once on a

given machine, ever. Once has been run once, it will have

registered itself with rmid, and rmid will have remembered that it

should relaunch if needed in the future. From this point on,

whenever you start rmid, will be started also. This "new" instance

of will be the same from the standpoint of other JINI services and

clients--it will recover the same service ID, registrations, and so on,

as it had from its previous run.

This is an important point! If you start a new lookup service every

time you sit down to do JINI development, you'll quickly have

dozens of them running, since the old ones do not "go away" easily!

Of course, for the activation daemon to remember this information

across restarts, it needs its own log directory in which to save such

configuration information. By default, the activation daemon saves

its configuration in a directory called "log" under the directory from

which you run rmid. So if you plan on using rmid to recover

activatable processes, you should make sure you run it from the

same directory each time.

Since is started under control of rmid, you need to understand how

to really shut it down, should you need to. One brute force solution

is to run rmid -stop, which terminates the activation daemon. Once

stopped, you can remove the activation daemon's log directory,

causing it to "forget" all of its saved state.

2.2.2 Command Line Arguments
In JINI development, is a complicated program to start with. Let's look

in detail at the command line:

 java –J-Djava.security.policy=security_policy
 java -jar lookup-server-jarfile
 lookup-client-codebase

 25

 lookup-policy-file
 output-log-dir (log_directory)
 lookup-service-group

There are six separate arguments here that you can control, so

there are six bits of information you have to understand. The first

two arguments are parameters to the JVM itself--these control the

behavior of the java launcher program, and aren't passed to . The

last four are parameters to itself. Fortunately, the settings of a

number of these parameters are pretty trivial to get right, once you

know the location of your JINI installation.

2.2.3 Security Policy File
The first argument sets the location of a security policy file. This

policy will control what the application will be allowed to do. JINI

ships with two useful policy files, in jini1_1\examples\lookup,

called policy and policy.all. These two useful policy files are also

shipped in jini1_1\policy, called policy and policy.all. In this

project, I have used policy.all file, since it eases development

headaches.

This policy is not appropriate for general-purpose deployment,

though. Check the section below on how uses its log files for some

detailed directions of how to customize and use the policy file that

comes with JINI.

One thing to note is that you should always pass in a fully-qualified

path to the security policy file; not a relative one.

2.2.4 JAR File
The lookup-server-jarfile will be .jar or some path to it. The -jar

argument specifies that the code to be executed by the java

launcher lives in an "executable" JAR file. So the next bit of

 26

information you will need is the location of the .jar file that comes

with JINI. Typically this is in the lib directory of the JINI distribution.

Path: c:\jini\lib\.jar

2.2.5 Lookup Client Codebase

Lookup-client-codebase will be the URL for the stub class files,

using the HTTP server started earlier. In my case, this is

http://myMachineName:8080/-dl.jar. Note that an absolute IP

hostname must be used - you cannot use localhost because to the

service it means myMachineName, but to the client it would be a

different machine altogether! The client would then fail to find -dl.jar

on its own machine. Even using an abbreviated address such as

myMachine would fail to be resolved if the client is external to the

local network. Setting the codebase is a little trickier than the other

arguments. The codebase is a URL that tells clients of where the

code they will need to use the service can be downloaded from.

When clients download the serialized proxy object for the service

(via the Discovery mechanisms), they will need to be able to

download the actual classfiles that implement this serialized proxy.

This is where the codebase comes in--it will be "attached" to the

serialized objects, and will tell clients where the code can be

downloaded from.

Typically this value is set to a URL that references the -dl.jar file on

a web server someplace. Many developers will run a web server

(typically the small one that comes with JINI), configured so that its

"root" directory points to the lib directory in the JINI distribution.

 27

2.2.6 Log Directory
The next parameter is the location of a directory for holding logging

information for . As runs, it will periodically save its state into this

directory, so that it can recover it later if it is restarted.

This will amply be explained in the section "Understanding and

Customizing the Log Location," below. But there is one important

thing to realize about the log directory: You need to make sure that

the directory you specify doesn't exist; if it does exist, then will

complain and not start. If the directory you name does not exist,

however, will create it for you, and will run happily.

2.2.7 Lookup Groups
The final argument names a set of "groups" that will join. These

are simply the names of communities that the lookup service will

support. You should make sure you provide at least one name

here. By convention, every network should have a lookup service

supporting the "public" JINI community. This community is named

in the APIs by the empty string, but to cause to join the public

community, you pass the string "public" here.

On my own machine, I run this:

 java -jar c:\jini/lib/.jar
 http://myMachineName:8080/-dl.jar
 c;\jini/policy\policy.all
 c:\jini\log
 public

After starting, the lookup service will promptly exit ! Don't worry

about this - it is actually kept in passive state by rmid, and will be

brought back into existence whenever necessary (this is done by

the new Activation mechanism of RMI in JDK 1.2).

 28

You only need to start once, even if your machine is switched off or

rebooted. The activation daemon rmid restarts it on an as-needed

basis, as it keeps information about in its log files.

2.2.8 Understanding and Customizing the Log Location
As noted above, will persistently save information about its state to

disk, so that if it crashes, it can recover its state later on. The

location of this persistent log is a directory, named on the command

line a shown above.

Now, if you kill and try to restart it using the same log directory, it

will complain that the log directory already exists. interprets a pre-

existing log file as indicating that another instance of was (or is)

running using that logged information. A new instance of will refuse

to start unless you give it its own fresh log directory, which it will

create for itself.

So, in general, each instance of that you start should have its own

log directory, separate from all other instances.

If you're getting into the business of running multiple instances,

that’s really a very tricker issue, but possible, though, you may

possibly have to configure all the security policy files used by .

You'll note from the command line above that uses a policy file that

controls what it is allowed to do. There are a couple of policy files

that ship with the JINI release from Sun. The

example\lookup\policy file is generally used to control the

acceses of the lookup service. It's a good idea to take a look at this

policy file if you plan to use it:

 grant codebase "file:${java.class.path}" {

 permission java.io.FilePermission "/tmp/_log", "read,write,delete";

 permission java.io.FilePermission "/tmp/_log/-", "read,write,delete";

 29

 // uncomment this one if you need lookup to accept file: codebases

 // permission java.io.FilePermission "<>", "read";

 permission java.lang.RuntimePermission "modifyThreadGroup";

 permission java.lang.RuntimePermission "modifyThread";

 permission java.net.SocketPermission "*:1024-", "connect,accept";

 // for http: codebases

 permission java.net.SocketPermission "*:80", "connect";

 permission java.net.SocketPermission "224.0.1.84", "connect,accept";

 permission java.net.SocketPermission "224.0.1.85", "connect,accept";

 permission java.util.PropertyPermission "java.rmi.server.hostname",

"read";

 permission java.util.PropertyPermission "com.sun.jini..*", "read";

 permission java.util.PropertyPermission "net.jini.discovery.*", "read";

 permission net.jini.discovery.DiscoveryPermission "*";

 };

Of course, if you use the policy.all policy file, which allows all

accesses, then you won't have to customize your policy file

(although this is a bad idea in a production environment).

2.3 Unicast discovery

Unicast discovery can be used when you already know the machine on

which the lookup service resides, so you can ask for it directly. This is

expected to be used for a lookup service that is outside of your local

network, which you know the address of anyway (your home network

while you are at work, given in some newsgroup or email message, or

maybe even advertised on TV!).

2.3.1 LookupLocator

The class LookupLocator in package net.jini.core.discovery is used

for this. There are two constructors:

 30

 LookupLocator(java.lang.String url)

 throws java.net.MalformedURLException;

 LookupLocator(java.lang.String host,int port);

For the first constructor, the URL must be of the form jini://host/ or

jini://host:port/. If no port is given, it defaults to 4160. The host

should be a valid DNS name or an IP address (such as

137.92.11.13). No unicast discovery is performed at this stage,

though, so any rubbish could be entered. Only a check for syntactic

validity of the URL is performed. This syntactic check is not even

done for the second constructor.

2.3.2 Information from the LookupLocator

A LookupLocator has methods

 String getHost();

 int getPort();

which will return information about the hostname that the locator

will use, and the port it will connect on or is already connect on.

This is just the information fed into the constructor or left to default

values, though. It doesn't give anything new for unicasting. This

information will be useful in the multicast situation, though, if you

need to find out where the lookup service is.

2.3.3 Get Registrar

Search and lookup is performed by the method getRegistrar() of the

LookupLocator which returns an object of class ServiceRegistrar.

 public ServiceRegistrar getRegistrar()

 throws java.io.IOException,

 31

 java.lang.ClassNotFoundException

The ServiceRegistrar is discussed in detail later. This performs

network lookup on the URL given in the LookupLocator constructor.

UML sequence diagrams are useful for showing the timelines of

object existence and the method calls that are made from one

object to another. The timeline reads down, and method calls and

their returns read across. A UML sequence diagram augmented

with a jagged arrow showing the network connection is shown in

figure . The UnicastRegister object makes a new() call to create a

LookupLocator and this call returns a lookup object. The method

call getRegistrar() is then made on the lookup object, and this

causes network activity. As a result of this, a ServiceRegistrar

object is created in some manner by the lookup object, and this is

returned from the method as the registrar.

Figure 2.2: UML sequence diagram for lookup

 32

The registrar object will be used in different ways for clients and

services: the services will use it to register themselves, and the

clients will use it to locate services.

2.4 Broadcast discovery

If the location of a lookup service is unknown, it is necessary to make a

broadcast search for one. UDP supports a multicast mechanism which the

current implementations of JINI use. Because multicast is expensive in

terms of network requirements, most routers block multicast packets. This

usually restricts broadcast to a local area network, although this depends

on the network configuration and the time-to-live (TTL) of the multicast

packets.

There may be any number of lookup services running on the network

accessible to broadcast search. On a small network, such as a home

network, there may be just a single lookup service, but in a large network

there may be many - perhaps one or two per department. Each one of

these may choose to reply to a broadcast request.

2.4.1 Groups

Some services may be meant for anyone to use, but some may be

more restricted in applicability. For example, the Engineering Dept

may wish to keep lists of services specific to that department. This

may include a departmental diary service, a deparmental inventory,

etc. The services themselves may be running anywhere in the

organisation, but the department would like to be able to store

information about them and to locate them from their own lookup

service. Of course, this lookup service may be running anywhere

too!

 33

So there could be lookup services specifically for a particular group

of services such as the Engineering Dept services, and others for

the Publicity Dept services. Some lookup services may cater for

more than one group - for example a company lookup service may

want to hold information about all services running for all groups.

When a lookup service is started, it can be given a list of groups to

act for as a command line parameter. A service may include such

group information by giving a list of groups that it belongs too. This

is an array of strings, such as

 String [] groups = {"Engineering dept"};

2.4.2 LookupDiscovery

The class LookupDiscovery in package net.jini.discovery is used for

broadcast discovery. There is a single constructor

 LookupDiscovery(java.lang.String[] groups)

The parameter to the LookupDiscovery constructor can take three

cases

• null, or LookupDiscovery.ALL_GROUPS, means to attempt to

discover all reachable lookup services no matter which group

they belong to. This will be the normal case.

• An empty list of strings, or LookupDiscovery.NO_GROUPS,

means that the object is created, but no search is performed. In

this case, the method setGroups() will need to be called in order

to perform a search.

 34

• A non-empty array of strings can be given. This will attempt to

discover all lookup services in that set of groups.

2.5 DiscoveryListener

A broadcast is a multicast call across the network, expecting lookup

services to reply as they receive it. Doing so may take time, and there will

generally be an unknown number of lookup services that can reply. To be

notified of lookup services as they are discovered, the application must

register a listener with the LookupDiscovery object.

 public void addDiscoveryListener(DiscoveryListener l)

The listener must implement the DiscoveryListener interface:

 package net.jini.discovery;

 public abstract interface DiscoveryListener

 {

 public void discovered(DiscoveryEvent e);

 public void discarded(DiscoveryEvent e);

 }

The discovered() method is invoked whenever a lookup service has been

discovered. The API recommends that this method should return quickly,

and not make any remote calls. However, for a service it is the natural

place to register the service, and for a client it is the natural place to ask if

there is a service available and to invoke this service. It may be better to

perform these lengthy operations in a separate thread.

There are other timing issues involved: when the DiscoveryListener

is created, the broadcast is made. After this, a listener is added to

this discovery object. What happens if replies come in very quickly,

before the listener is added? The ``JINI Discovery Utilities

Specification'' guarantees that these replies will be buffered and

 35

delivered when a listener is added. Conversely, no replies may

come in for a long time - what is the application supposed to do in

the meantime? It cannot simply exit, because then there would be

no object to reply to! it has to be made persistent enough to last till

replies come in. One way of handling this is if the application has a

GUI interface - then it will stay till the user dismisses it. Another

possibility is that the application may be prepared to wait for a while

before giving up. In that case the main could sleep for, say, ten

seconds and then exit. This will depend on what the application

should do if no lookup service is discovered.

The discarded() method is invoked whenever the application discards a

lookup service by calling discard() on the registrar object.

2.6 DiscoveryEvent

The parameter to the discovered()method of the DiscoveryListener

interface is a DiscoveryEvent object.

 package net.jini.discovery;

 public Class DiscoveryEvent {

 public net.jini.core.lookup.ServiceRegistrar[] getRegistrars();

 }

This has one public method, getRegistrars() which returns an array of

ServiceRegistrar objects. Each one of these implements the

ServiceRegistrar interface, just like the object returned from a unicast

search for a lookup service. More than one can be returned if a set of

replies have come in before the listener was registered - they are collected

in an array and returned in a single call to the listener. A UML sequence

diagram augmented with jagged arrows showing the network broadcast

and replies is shown in figure .

 36

In this figure, creation of a LookupDiscovery object starts the broadcast

search, and it returns the discover object. The MulticastRegister adds

itself as listener to the discover object. The search continues in a separate

thread, and when a new lookup service replies, the discover object

invokes the discovered() method in the MulticastRegister, passing it a

newly created DiscoveryEvent. The MulticastRegister object can then

make calls on the DiscoveryEvent such as getRegistrars(), which will

return suitable ServiceRegistrar objects.

Figure 2.3: UML sequence diagram for discovery

Again, the registrar object will be used in different ways for clients and

services: the services will use it to register themselves, and the clients will

use it to locate services.

 37

Chapter 3

Entry Objects and Service Registration

3. Entry Objects

Entries are used to pass additional information about services that clients can

use to decide if a particular service is what it wants. The primary intention of

entries is to provide extra information about services so that clients can decide

whether or not they are the services they want to use.

3.1 Entry class

The Entry class allows services to advertise their capabilities in very

flexible ways. When a service provider registers a service, it places a copy

of the service object (or a service proxy) on the lookup service. This copy

is an instance of an object, albeit in serialised form. The server can

optionally register sets of attributes along with the service object. Each set

is given by an instance of a type or class. So what is stored on each

service locator is an instance of a class along with a set of attribute

entries.

A service can announce a number of entry attributes when it registers

itself with a lookup service. It does so by preparing an array of Entry

objects and passing them into the ServiceItem used in the register()

method of the registrar. The service can include as much as it wants to in

this: in later searches by clients each entry is treated as though it was

or'ed with the other entries. In other words, the more entries that are given

by the service, the greater the chance of matching a client's requirements.

For example, we have a coffee machine on the 7th level of our building,

which is known as both ``GP South Building'' and ``General Purpose

South Building''. Information such as this, and general stuff about the

 38

coffee machine can be encapsulated in the convenience classes Location

and Comment from the net.jini.lookup.entry package. If this was on our

network as a service, it would advertise itself as :

 import net.jini.lookup.entry.Location;

 import net.jini.lookup.entry.Comment;

 Location loc1 = new Location("7", "728", "GP South Building");

Location loc2 = new Location("7", "728", “General Purpose

South Building");

 Comment comment = new Comment("DSTC coffee machine");

 Entry[] entries = new Entry[] {loc1, loc2, comment};

 ServiceItem item = new ServiceItem(..., ..., entries);

 registrar.register(item, ...);

3.2 Service Registration

A service is a logical concept such as a blender, a chat service, a disk. It

will turn out to be usually defined by a Java interface, and commonly the

service itself will be identified by this interface. Each service can be

implemented in many ways, by many different vendors. For example,

there may be Kami's dating service, Mary's dating service or many others.

What makes them the ``same'' service is that they implement the same

interface; what distinguishes one from another is that each different

implementation uses a different set of objects (or maybe just one object)

belonging to different classes.

A service is created by a service provider. A service provider plays a

number of roles:

• It creates the objects that implement the service

 39

• It registers one of these - the service object with lookup services.

The service object is the ``publically visible'' part of the service, and

will be downloaded to clients

• It stays alive in a server role, performing various tasks such as

keeping the service ``alive''.

In order for the service provider to register the service object with a lookup

service, the server must first find the lookup service. This can be done in

two ways: if the location of the lookup service is known, then the service

provider can use unicast TCP to connect directly to it. If the location is not

known, the service provider will make UDP multicast requests, and lookup

services may respond to these requests. Lookup services will be listening

on port 4160 for both the unicast and multicast requests. (4160 is the

decimal representation of hexadecimal (CAFE - BABE). Oh well, these

numbers have to come from somewhere.) When the lookup service gets a

request on this port, it sends an object back to the server. This object,

known as a registrar, acts as a proxy to the lookup service, and runs in

the service's JVM (Java Virtual Machine). Any requests that the service

provider needs to make of the lookup service are made through this proxy

registrar. Any suitable protocol may be used to do this, but in practice the

implementations that you get of the lookup service (e.g from Sun) will

probably use RMI.

What the service provider does with the registrar is to register the service

with the lookup service. This involves taking a copy of the service object,

and storing it on the lookup service as in figures below:

 40

Figure 3.1: Querying for a service locator

Figure 3.2: Registrar returned

Figure 3.3: Service uploaded

 41

3.3 A word about the ServiceRegistrar

A server for a service finds a service locator using unicast lookup with a

LookupLocator or multicast search using LookupDiscovery. In both cases,

a ServiceRegistrar object is returned to act as a proxy for the lookup

service. The server then registers the service with the service locator

using the ServiceRegistrar method register():

 package net.jini.core.lookup;

 public Class ServiceRegistrar

 {

public ServiceRegistration register(ServiceItem item,long

leaseDuration)

 throws java.rmi.RemoteException;

 }

The second parameter here is a request for the length of time (in

milliseconds) the lookup service will keep the service registered. This

request need not be honored: the lookup service may reject it completely,

or only grant a lesser time interval. This is discussed in the section on

leases. The first parameter is of type

 package net.jini.core.lookup;

 public Class ServiceItem

 {

 public ServiceID serviceID;

 public java.lang.Object service;

 public Entry[] attributeSets;

public ServiceItem(ServiceID serviceID, java.lang.Object

service,

 42

 Entry[] attrSets);

 }

3.4 ServiceItem

The service provider will create a ServiceItem object, using the constructor

and pass it into register(). The serviceID is set to null when the service is

registered for the first time. The lookup service will set a non-null value as

it registers the service. On subsequent registrations or re-registrations,

this non-null value should be used. The serviceID is used as a globally

unique identifier for the service.

The second parameter is the service object that is being registered. This

object will be serialised and sent to the service locator for storage. When a

client later requests a service, this is the object it will be given. There are

several things to note about the service object:

• The object must be serialisable. Some objects, such as Swing's

JTextArea are not serialisable at present and so cannot be used.

• The object is created in the service's JVM. However, when it runs it

will do so in the client's JVM. It may need to be a proxy for the

actual service. For example, it may be able to show a set of toaster

controls, but will have to send messages across the network to the

real toaster service, which is connected to the physical toaster.

• If the service object is an RMI proxy, then the object in the

ServiceItem is given by the programmer as the

UnicastRemoteObject for the proxy stub, not the proxy itself. The

Java runtime substitutes the proxy. This subtlety is explored in a

later chapter.

The third parameter is a set of entries giving information about the service

in addition to the service object/service proxy itself. If there is no additional

information, this can be null.

 43

3.5 Registration

The service attempts to register itself by calling register(). This may throw

an java.rmi.RemoteException which must be caught. The second

parameter is a request to the service locator for the length of time to store

the service. The time requested may or may not be honoured. The return

value is of type ServiceRegistration

3.5.1 ServiceRegistration

This registration object is created by the lookup service and is

returned to run in the service provider. The registration acts as a

proxy object to control the state maintained about the exported

service object stored on the lookup service. Actually, this can be

used to make changes to the entire ServiceItem stored on the

lookup service. The registration maintains a field serviceID which is

used to identify the ServiceItem on the lookup service. This can be

retrieved by getServiceID() for reuse by the server if it needs to do

so (which it should). These objects are shown in figure .

Figure 3.4: Objects in service registration

Other methods such as

 void addAttributes(Entry[] attrSets);

 void modifyAttributes(Entry[] attrSetTemplates, Entry[] attrSets);

 44

 void setAttributes(Entry[] attrSets);

can be used to change the entry attributes stored on the lookup

service.

The final public method for this class is getLease() which returns a

Lease object, which allows renewal or cancellation of the lease.

This is discussed in more detail in the section of leases.

The major task of the server is then over. It will have successfully

exported the service to a number of lookup services. What the

server then does depends on how long it needs to keep the service

alive or registered. If the exported service can do everything that

the service needs to do, and does not need to maintain long-term

registration, then the server can simply exit. More commonly, if the

exported service object acts as a proxy and needs to communicate

back to the service then the server can sleep so that it maintains

existence of the service. If the service needs to be re-registered

before timeout occurs then the server can also sleep in this

situation.

3.6 Running the Unicast Server

If you write a unicast server that just exports its service to the lookup

service and does nothing, then you need to compile and run your

program/server with jini-core.jar in its CLASSPATH. When run, it will

attempt to connect to the service locator, so obviously one needs to be

running on the machine specified in order for this to happen. Otherwise, it

will throw an exception and terminate.

The instance data for the service object is transferred in serialized form

across socket connections. This instance data is kept in this serialized

form by the lookup services. Later, when a client asks for the service to be

reconstituted, it will use this instance data and also will need the class

 45

files. At this point, the class files will also need to be transferred, probably

by an HTTP server. There is no need for additional RMI support services

such as rmiregistry or rmid since all registration is done by the method

register().

3.6.1 Information from the ServiceRegistration

The ServiceRegistrar object is used to register() the service, and in

doing so returns a ServiceRegistration object. This can be used to

give information about the registration itself. The relevant methods

are

 ServiceID getServiceID();

 Lease getLease();a

The service id can be stored by the application if it is going to re-

register again later. The lease object can be used to control the

lease granted by the lookup locator, and will be discussed in more

detail in the chapter on Leases.

3.6.2 Service ID

A service is unique in the world. It runs on a particular machine and

performs certain tasks. However, it will probably register itself with

many lookup services. It should have the same ``identity'' on all of

these. In addition if either the service or one of these locators

crashes or restarts, then this identity should be the same as before.

The ServiceID plays the role of unique identifier for a service. It is a

128-bit number generated in a pseudo-random manner, and is

effectively unique: the chance that the generator might duplicate

this number is vanishingly small. Services do not generate this

identifier, as the actual algorithm is not a public method of any

class. Instead, a lookup service should be used. When a service

 46

needs a new identifier, it should register with a lookup service using

a null service id. The lookup service will then return a value.

The first time a service starts, it should ask for a service id from the

first lookup service it registers with. It should reuse this for

registration with every other lookup service from then on. If it

crashes and restarts, then it should use the same service id again,

which implies it should save it in persistent storage and retrieve it

on restarting.

 47

Chapter 4

The Client Lookup and Leasing

This chapter looks at what the client has to do once it has found a service locator

(Lookup Service) and wishes to find a service.

4. Client Operations

4.1 Client Lookup

The client on the other hand, is trying to get a copy of the service into its

own JVM. It goes through the same mechanism to get a registrar from the

lookup service. It uses this to search for a service stored on that lookup

service using the lookup() method:

 public Class ServiceRegistrar

 {

 public java.lang.Object lookup(ServiceTemplate tmpl)

 throws java.rmi.RemoteException;

public ServiceMatches lookup(ServiceTemplate tmpl, int

maxMatches)

 throws java.rmi.RemoteException;

 }

The first of these methods just finds a service that matches the request.

The second finds a set (upto the maxMatches) requested. If a client

wishes to search for more than one match to a service request from a

particular lookup service, then it specifies the maximum number of

matches it would like returned by the maxMatches parameter of the

second for lookup() method. It gets back a ServiceMatches object.

 package net.jini.core.lookup;

 48

 public Class ServiceMatches

 {

 public ServiceItem[] items;

 public int totalMatches ;

 }

The number of elements in items need not be the same as totalMatches.

Suppose there are five matching services stored on the locator. Then

totalMatches will be set to five after a lookup. However, if you only

specified to search for at most two matches, then items will be set to be an

array with only two elements.

So, we were talking about that the client goes through the same

mechanism(i.e., trying to get a copy of the service into its own JVM) to get

a registrar from the lookup service, but this time it does something

different with this, which is to request the service object to be copied

across to it as shown below:

 Figure 4.1: Querying for a service locator

 49

Figure 4.2: Registrar returned

Figure 4.3: Asking for a service

Figure 4.4: Service returned

At this stage there is the original service object running back on its host.

There is a copy of the service object stored in the lookup service, and

 50

there is a copy of the service object running in the client's JVM. The client

can make requests of the service object running in its own JVM.

4.2 Proxies

Some services can be implemented by a single object, the service object.

How does this work if the service is actually a toaster, a printer, or

controlling some piece of hardware? By the time the service object runs in

the client's JVM, it may be a long way away from its hardware. It cannot

control this remote piece of hardware all by itself. In this case, the

implementation of the service must be made up of at least two objects,

one running in the client and another distinct one running in the service

provider.

The service object is really a proxy, which will communicate back to other

objects in the service provider, probably using RMI. The proxy is the part

of the service that is visible to clients, but its function will be to pass

method calls back to the rest of the objects that form the total

implementation of the service. There isn't a standard nomenclature for

these server-side implementation objects. I shall refer to them in this book

as the ``service backend'' objects.

The motivation for discussing proxies is when a service object needs to

control a remote piece of hardware that is not directly accessible to the

service object. However, it need not be hardware: there could be files

accessible to the service provider that are not available to objects running

in clients. There could be applications local to the service provider that are

useful in implementing the service. Or it could simply be easier to program

the service in ways that involve objects on the service provider, with the

service object being just a proxy. The majority of service implementations

end up with the service object being just a proxy to service backend

objects, and it is quite common to see the service object being referred to

 51

as a service proxy. It is sometimes referred to a the service proxy even if

the implementation doesn't use a proxy at all!

The proxy needs to communicate with other objects in the service

provider. It appears we have a chicken-and-egg situation: how does the

proxy find the service backend objects in its service provider? Use a JINI

lookup? No, when the proxy is created it is ``primed'' with its own service

provider's location so that when run it can find its own ``home''. This will

appear as in figure :

 Figure 4.5: A proxy service

4.3 Support Services

The three components of a JINI system are clients, services and service

locators, which may run anywhere on the network. These will be

 52

implemented using Java code running in Java Virtual Machines (JVM).

The implementation may be in pure Java but it could make use of native

code by JNI (Java Native Interface) or make external calls to other

applications. Often, each of these applications will run in its own JVM on

its own computer, though they could run on the same machine or even

share the same JVM. When they run, they will need access to Java class

files, just like any other Java application. Each component will use the

CLASSPATH environment variable or use the classpath option to the

runtime to locate the classes it needs to run.

However, JINI also relies heavily on the ability to move objects across the

network, from one JVM to another. In order to do this, particular

implementations must make use of support services such as RMI

daemons and HTTP (or other) servers. The particular support services

required depend on implementation details, and so may vary from one

JINI component to another.

4.4 The Concept of Leasing

The network is a dynamic environment. Devices are attached and

unattached frequently, and more permanent services often become

temporarily unavailable because of crashes or other problems.

JINITM technology helps clients locate and use the services that are

available at the time they are needed, but it doesn't stop there. JINI

technology also facilitates in cleaning up after devices are disconnected or

services vanish unexpectedly.

One of the central concepts in JINI technology is the concept of a lease.

Many aspects of the relationships between JINI technology clients,

services, and lookup services are lease-based. A lease in the framework

of JINI technology is something like the "lease" you get when you drop a

quarter into a parking meter. You drop in a quarter, and you get to use the

 53

parking place for 15 minutes. If you return to the parking meter 14 minutes

later, you have the option of "renewing the lease" by dropping in another

quarter.

Leasing is the mechanism used between applications to give access to

resources over a period of time in an agreed manner. Leases are

requested for a period of time. In distributed applications, there may be

partial failures of the network or of components on this network. Leasing is

a way for components to register that they are alive, but for them to be

``timed out'' if they have failed, are unreachable, etc. In JINI, one use of

leasing is for a service to request that a copy be kept on a lookup service

for a certain length of time for delivery to clients on request. The service

requests a time in the ServiceRegistrar's method register(). Two special

values of the time are :

4.4.1.1 Lease.ANY - the service lets the lookup service decide on the time

4.4.1.2 Lease.FOREVER - the request is for a lease that never expires

The lookup service acts as the granter of the lease, and decides how long

it will actually create the lease for. (The lookup service from Sun typically

sets the lease time as only five minutes.) Once it has done that, it will

attempt to ensure that the request is honoured for that period of time. The

lease is returned to the service, and is accessible through the method

getLease() of the ServiceRegistration object. These objects are shown in

figure

 54

Figure 4.6: Objects in a leased system

 ServiceRegistration reg = registrar.register();

 Lease lease = reg.getLease();

The principal methods of the Lease object are

o void cancel() throws

 UnknownLeaseException,

 java.rmi.RemoteException;

o long getExpiration();

o void renew(long duration) throws

 LeaseDeniedException,

 UnknownLeaseException,

 java.rmi.RemoteException;

The expiration value from getExpiration() is the time in milliseconds since

the beginning of the epoch (the same as in System.currentTimeMillis()).

To find the amount of time still remaining from the present, the current

time can be subtracted from this:

 long duration = lease.getExpiration() - System.currentTimeMillis();

 55

4.4.1 Cancellation

A service can cancel its lease by using cancel(). The lease

communicates back to the lease management system on the

lookup service which cancels storage of the service.

4.4.2 Expiration

When a lease expires, it does so silently. That is, the lease granter

(the lookup service) will not inform the lease holder (the service)

that it has expired. It is upto the service to call renew() before the

lease expires if it wishes the lease to continue the service in

milliseconds. Generally leases will be renewed and the manager

will function quietly. However, the lookup service may decide not to

renew a lease and will cause an exception to be thrown. The

method renewUntil() can use Lease.FOREVER with no problems.

4.7 Discovery Management

Both services and clients need to find lookup locators. Services will

register with these locators, and clients will query them for suitable

services. Finding these lookup locators involves three components:

• A list of LookupLocators for unicast discovery

• A list of groups for lookup locators using multicast discovery

• Listeners whose methods are invoked when a service locator is

found

``Discovering a Lookup Service'' considers the cases of a single unicast

lookup service, or a set of multicast lookup services. This was all that was

available in JINI 1.0. In JINI 1.1, this has been extended to handle a set of

 56

unicast lookup services and a set of multicast lookup services. JINI 1.1

Helper Utilities defines three interfaces :

• DiscoveryManagement which looks after discovery events

• DiscoveryGroupManagement which looks after groups and

multicast search

• DiscoveryLocatorManagement which looks after unicast discovery

Different classes may implement different combinations of these three

interfaces.

4.8 Join Manager

A service needs to locate lookup services and register the service with

them. Locating services can be done using the utility classes of

``Discovery Management'' as mentioned above. As each lookup service is

discovered, it then needs to be registered, and the lease maintained. The

class JoinManager performs all of these tasks. There are two

constructors:

 public class JoinManager

 {

 public JoinManager(Object obj,

 Entry[] attrSets,

 ServiceIDListener callback,

 DiscoveryManagement discoverMgr,

 LeaseRenewalManager leaseMgr)

 throws IOException;

 public JoinManager(Object obj,

 Entry[] attrSets,

 57

 ServiceID serviceID,

 DiscoveryManagement discoverMgr,

 LeaseRenewalManager leaseMgr)

 throws IOException;

 }

The first of these is when the service is new and does not have a service

id. A ServiceIDListener can be added which can note and save the id. The

second form is used when the service already has an id.

In short, A JoinManager can be used by a server to simplify many of the

aspects of locating lookup services, registering one or more services and

renewing leases for them.

 58

Chapter 5
The Security Issue

5. Security

5.1 Security Problem

Security plays an important role in distributed systems. Security for JINI is

based on the JDK 1.2 security model. This makes use of a

SecurityManager to grant or deny access to resources. A few of the

examples may work fine without a security manager. Most will require an

appropriate security manager in place or RMI will be unable to download

class files. Installing a suitable manager may be done by

 System.setSecurityManager(new RMISecurityManager());

This should be done before any network-related calls.

The security manager will need to make use of a security policy. This is

typically given in policy files which are in default locations or are specified

to the Java runtime. If policy.all is a policy file in the current directory, then

invoking the runtime by

 java -Djava.security.policy="policy.all" ...

will load the contents of the policy file.

5.2 Rmid and JDK 1.3

The security problems of the last section have been partly addressed by a

tighter security mechanism introduced in JDK 1.3. These restrict what

activatable services can do by using a security mechanism that is under

 59

the control of whoever starts rmid. This means that there has to be

cooperation between whoever starts rmid and the person who starts an

activatable service that will use rmid.

The simplest mechanism is to just turn the new security system off. This

means running rmid with an additional argument

 rmid -J-Dsun.rmi.activation.execPolicy=none

All that rmid then checks is that any activatable service that registers with

it is started on the same machine as rmid. This is the weak security

mechanism in the JDK 1.2 version of rmid, that assumes that users on the

same machine are co-operative.

The default new mechanism can also be set explicitly

 rmid -J-Dsun.rmi.activation.execPolicy=default

This requires an additional security policy file that will be used by rmid,

and the location of this policy file is also given on the command line for

rmid. For example, the following command will start rmid using the new

default mechanism with the policy file set to /jini1_1/rmid.policy

 rmid -J-Djava.security.policy=c:\jini1_1\rmid.policy

The policy file used by rmid is a standard JDK 1.2 policy file and grants

permissions to do various things. For rmid, the main permission that has

to be granted is to use the various options to the activation commands.

Granting option permissions is done using the

com.sun.rmi.rmid.ExecOptionPermission permission.

For example, is an activatable service. To run this on my system, I used

the command

 60

 java -jar c:\jini\lib\.jar

 http://myMachineName:8080\-dl.jar

 c:\\jini\policy\policy.all

 c:\jini_log

 public

To run this with the JDK 1.3 rmid I need to place the following in the

security policy file:

-Djava.security.policy=c:\jini\policy\policy.all

 61

Chapter 6

6. Project Specifications

6.1 Statement

The CMS experiment in 2005 although is based on the discovery of basic

science, but resultantly it has pushed technology to its limits. Part of the

technical support for this experiment relies heavily on the provision of

robust networks that can support a host of services. The most glaring

disadvantage of this architecture is that the failure of the network fails the

service. As an answer, the java community came up with the JINI concept.

This involves distributed services residing at different server stations,

providing usage facilities to the clients. This use is not restricted to the

geographical location of the service. Regardless of where the service

resides, it shall be represented by its proxy in the lookup service (in itself a

JINI service).

The project was to write a JINI service manager. Within the service

manager, I had to write JINI based services. The service would then be

registered with a lookup service. Its proxy will reside in the lookup service

and is going to be accessed by the mobile agent (client). The agent/client

would then access the lookup service in order to use the services offered

by this service. The service in turn fulfils the required task and gives the

result back to the agent/client.

For practical purposes, I have written a client as well. This client performs

the same functions as the mobile agent had to. This all would be

demonstrated on a LAN.

Following are the services, which I have written within the Service

Manager.

• Data Repository Service. The service accesses the database in order

to retrieve any data and gives the result back to the client.

 62

• Printing Service. This service prints the given text on the server

default printer in the given font and according to the given width and

height of the paper (PageFormat object). This service provides only

black and white text printing.

6.2 Development Environment
 The following version of Kawa was chosen as the development

 environment:

• KAWA 4.01

6.3 Development Languages

JINI is based on java, and following versions of JINI and JAVA have been

used:

• JINI 1.1

• JDK 1.3

6.4 Project Logic

The three main entities i.e., a client, a service provider, which provides

service, and a lookup service have to be there in any JINI project. They

stay as they are, but I have incorporated a slight change in the design of

the system. Instead of one service registered separately with the lookup

service, slight design modifications have been introduced which are far

more efficient and portable:

• The main, class i.e. MyServer, is the controlling class. After running

the HTTP server and rmid with due security policy, once the lookup

service () is operational in all respects, MyServer class is run. It

detects and returns a list of all available services on the network

and tries to register them with the lookup service (LUS). After

registering the services, it again returns a list of all those services

that have been registered with the lookup-service. This way, the

client can come to know which all services it can access and use.

 63

• The system has been made dynamic. By dynamic, I mean that

there is no restriction on the number of services that have to be

added. The system provides the flexibility for adding any number of

services.
The client wishing to access the printing service, accesses the LUS for

this. This printing service prints the given text on the server default printer

in the given font and according to the given width and height of the paper

(PageFormat object).

If a client wishes to make use of the Data Repository Service, it looks up

at the available list of services, chooses the desired Data Repository

Service, and sends a query to the appropriate database. The service in

return, returns the desired information.

6.5 Services Description

6.5.1 My Server class

6.5.1.1 GUI creation
This is an essential portion of the whole JINI project. This is

just to make it visible to every one the number of available

services on the network and to make an attempt to get those

services registered with the lookup service. The client can

thereafter have a clear view of all the registered services it can

make use of.
 6.5.1.2 Listing services

The method listServices() does a lot of work. First of all, it

checks to see the number of services residing at a particular

place, it registers those with the lookup service. This is the

technique that has been implemented throughout this

project. For adding more services dynamically to the

registering services, a standard, of naming the services in a

manner that their names end with “Service”, has to be

followed. Like “DataRepositoryService” and “PritingService”.

 64

When the server starts, the client/user first sees all the

services that have been found and then registered. At the

end, the result is published indicating the total number of

services that were registered with the lookup service by the

method registerService().
6.5.1.3 Registering Services
The method registerService() takes an object and a string as

input parameters. This is the main portion, which basically

registers the services with the lookup service. First of all, we

set the security manager because as it has already been

mentioned earlier that setting the security manager is the

foremost important thing. So, we set the security manager to

allow the RMI class loader to go to the codebase for classes

that are not available

Locally. We do so as:

 System.setSecurityManager (new RMISecurityManager ());
Then we create the attributes (an array of entry objects) that

gives the additional information about this server and use it

to register this server with the lookup service. It is done with

the help of JoinManager. As mentioned earlier, a service

needs to locate services and register them with it. Locating

services can be done using the utility classes of “Discovery

Management''. As each lookup service is discovered, it then

needs to be registered, and the lease maintained. The class

JoinManager performs all of these tasks.

JoinManager() finds and registers with the lookup

service.

aeAttributes = new Entry[1];

aeAttributes[0] = new Name(name);

JoinManager joinmanager;

 65

joinmanager = new JoinManager(o,aeAttributes,

(ServiceIDListener)o, new LeaseRenewalManager());

System.out.println("MyServer: JoinManager = " +

joinmanager);

Then the process of finding the JINI lookup service () is

carried out.

int iPort;

String sHost;

lookup = new LookupLocator ("jini://localhost");

sHost = lookup.getHost ();

iPort = lookup.getPort ();

The location of the host and the port can also be printed as

well, but as such there is no need for that.

Thereafter, we get the lookup service's ServiceRegistrar (the

class by which interaction with the lookup service is

possible).

ServiceID id;

ServiceRegistrar registrar;

 registrar = lookup.getRegistrar();

 id = registrar.getServiceID ();

In the main, we also set the properties using method

setProperties().

This is how a service is listed and registered.

6.5.2 Data Repository Service

The DataRepositoryService extends UnicastRemoteObject

implements DataRepositoryInterface, Serializable, ServiceIDListener.

It has a method execQuery() of class Vector that is accessed by the

client. The client performs a search on the lookup server to find the

service that has the name attribute of "MyServer". The lookup

service returns an interface object to the service. On this interface

 66

object the client accesses the method execQuery() to retrieve the

desired data from the appropriate data base. This method contains

the Java Data Base Connectivity part.

6.5.2.1 Java Data Base Connectivity Part

 Introduction

 The JDBC 2.0 API includes two packages:

• Java.sql package--the JDBC 2.0 core API

o JDBC API included in the JDKTM 1.1 release

(previously called JDBC 1.2). This API is

compatible with any driver that uses JDBC

technology.

o JDBC API included in the Java 2 SDK, Standard

Edition, version 1.2 (called the JDBC 2.0 core

API). This API includes the JDBC 1.2 API and

adds many new features.

• java.sql package--the JDBC 2.0 Optional Package API.

This package extends the functionality of the JDBC API

from a client-side API to a server-side API, and it is an

essential part of JavaTM 2 SDK, Enterprise Edition

technology.

Being an Optional Package, it is not included in the Java 2

Platform SDK, Standard Edition, version 1.2, but it is readily

available from various sources.

 SQL Package:

 The java.sql package contains API for the following:

• Making a connection with a data source

 67

o DriverManager class

o Driver interface

o DriverPropertyInfo class

o Connection interface

• Sending SQL statements to a database

o Statement interface for sending basic SQL

statements

o PreparedStatement interface for sending prepared

statements or basic SQL statements (derived from

Statement)

o CallableStatement interface for calling database

stored procedures (derived from

PreparedStatement)

• Retrieving and updating the results of a query

o ResultSet interface

• Mapping an SQL value to the standard mapping in the

Java programming language

o Array interface

o Blob interface

o Clob interface

o Date class

o Ref interface

o Struct interface

o Time class

o Timestamp class

o Types class

• Custom mapping an SQL user-defined type to a class in

the Java programming language

o SQLData interface

o SQLInput interface

o SQLOutput interface

 68

• Providing information about the database and the

columns of a ResultSet object

o DatabaseMetaData interface

o ResultSetMetaData interface

• Throwing exceptions

o SQLException thrown by most methods when

there is a problem accessing data and by some

methods for other reasons

o SQLWarning thrown to indicate a warning

o DataTruncation thrown to indicate that data may

have been truncated

o BatchUpdateException thrown to indicate that not

all commands in a batch update executed

successfully

• Providing security

o SQLPermission interface

JDBC Requirements

Your driver should include instructions for installing it. For

JDBC drivers written for specific DBMSs, installation

consists of just copying the driver onto your machine; there

is no special configuration needed. The JDBC-ODBC Bridge

driver is not quite as easy to set up. If you download either

the Solaris or Windows versions of JDK1.1, you will

automatically get the JDBC-ODBC Bridge driver, which does

not itself require any special configuration. ODBC, however,

does. If you do not already have ODBC on your machine,

you will need to see your ODBC driver vendor for information

on installation and configuration.

 69

If you do not already have a DBMS installed, you will need to

follow the vendor's instructions for installation. Most users

will have a DBMS installed and will be working with an

established database.

Establishing a Connection

The first thing you need to do is establish a connection with

the DBMS you want to use. This involves two steps: (1)

loading the driver and (2) making the connection.

Loading Drivers

Loading the driver or drivers you want to use is very simple

and involves just one line of code. If, for example, you want

to use the JDBC-ODBC Bridge driver, the following code will

load it:

 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

Your driver documentation will give you the class name to

use. For instance, if the class name is jdbc.DriverXYZ , you

would load the driver with the following line of code:

 Class.forName("jdbc.DriverXYZ");

You do not need to create an instance of a driver and

register it with the DriverManager because calling

Class.forName will do that for you automatically. If you were

to create your own instance, you would be creating an

unnecessary duplicate, but it would do no harm.

When you have loaded a driver, it is available for making a

connection with a DBMS.

 70

Making the Connection

The second step in establishing a connection is to have the

appropriate driver connect to the DBMS. The following line of

code illustrates the general idea:

 Connection con = DriverManager.getConnection(url,

 "myLogin", "myPassword");

This step is also simple, with the hardest thing being what to

supply for url . If you are using the JDBC-ODBC Bridge

driver, the JDBC URL will start with jdbc:odbc: . The rest of

the URL is generally your data source name or database

system. So, if you are using ODBC to access an ODBC data

source called " Testdb, " for example, your JDBC URL could

be jdbc:odbc:Testdb . In place of " myLogin " you put the

name you use to log in to the DBMS; in place of "

myPassword " you put your password for the DBMS. So if

you log in to your DBMS with a login name of " Fernanda "

and a password of " J8, " just these two lines of code will

establish a connection:

 String url = "jdbc:odbc: Testdb ";

Connection con = DriverManager.getConnection(url,

"Fernanda", "J8");

If you are using a JDBC driver developed by a third party,

the documentation will tell you what subprotocol to use, that

is, what to put after jdbc: in the JDBC URL. For example, if

the driver developer has registered the name acme as the

subprotocol, the first and second parts of the JDBC URL will

be jdbc:acme: . The driver documentation will also give you

guidelines for the rest of the JDBC URL. This last part of the

 71

JDBC URL supplies information for identifying the data

source.

If one of the drivers you loaded recognizes the JDBC URL

supplied to the method DriverManager.getConnection , that

driver will establish a connection to the DBMS specified in

the JDBC URL. The DriverManager class, true to its name,

manages all of the details of establishing the connection for

you behind the scenes. Unless you are writing a driver, you

will probably never use any of the methods in the interface

Driver , and the only DriverManager method you really need

to know is DriverManager.getConnection .

The connection returned by the method

DriverManager.getConnection is an open connection you

can use to create JDBC statements that pass your SQL

statements to the DBMS.

Interface Connection

A connection (session) with a specific database. Within the

context of a Connection, SQL statements are executed and

results are returned.

A Connection's database is able to provide information

describing its tables, its supported SQL grammar, its stored

procedures, the capabilities of this connection, and so on.

This information is obtained with the getMetaData method.

Interface Statement

The object used for executing a static SQL statement and

obtaining the results produced by it.

 72

Only one ResultSet object per Statement object can be open

at any point in time. Therefore, if the reading of one

ResultSet object is interleaved with the reading of another,

each must have been generated by different Statement

objects. All statement execute methods implicitly close a

statment's current ResultSet object if an open one exists

Interface ResultSet

A table of data representing a database result set, which is

usually generated by executing a statement that queries the

database.

A ResultSet object maintains a cursor pointing to its current

row of data. Initially the cursor is positioned before the first

row. The next method moves the cursor to the next row, and

because it returns false when there are no more rows in the

ResultSet object, it can be used in a while loop to iterate

through the result set.

A default ResultSet object is not updatable and has a cursor

that moves forward only. Thus, it is possible to iterate

through it only once and only from the first row to the last

row. New methods in the JDBC 2.0 API make it possible to

produce ResultSet objects that are scrollable and/or

updatable. The following code fragment, in which con is a

valid Connection object, illustrates how to make a result set

that is scrollable and insensitive to updates by others, and

that is updatable. See ResultSet fields for other options.

Statement stmt = con.createStatement(

ResultSet.TYPE_SCROLL_INSENSITIVE,

ResultSet.CONCUR_UPDATABLE);

 73

ResultSet rs = stmt.executeQuery("SELECT a, b

FROM TABLE2");

 // rs will be scrollable, will not show changes made by

others,

 // and will be updatable

Interface ResultSetMetaData

An object that can be used to get information about the types

and properties of the columns in a ResultSet object. The

following code fragment creates the ResultSet object rs,

creates the ResultSetMetaData object rsmd, and uses rsmd

to find out how many columns rs has and whether the first

column in rs can be used in a WHERE clause.

ResultSet rs = stmt.executeQuery("SELECT a, b, c FROM

TABLE2");

 ResultSetMetaData rsmd = rs.getMetaData();

 int numberOfColumns = rsmd.getColumnCount();

 boolean b = rsmd.isSearchable(1);

6.5.3 My Client class (for accessing data repository service)

The class MyClient is basically meant for the Data Reposiroty

Service. In this, we, first of all set the security manager. So, we set

the security manager to allow the RMI class loader to go to the

codebase for classes that are not available

 Locally. We do so as:

System.setSecurityManager (new RMISecurityManager ());

6.5.3.1 Finding the JINI Lookup service ()
Next, we find the JINI lookup service () and print its location.

 lookup = new LookupLocator ("jini://localhost");

 74

 sHost = lookup.getHost ();

 iPort = lookup.getPort ();

 System.out.println ();

 System.out.println ("client: LookupLocator = " + lookup);

 System.out.println ("client: LookupLocator.host = " + sHost);

 System.out.println ("client: LookupLocator.port = " + iPort);

6.5.3.2 Getting the lookup service's Service Registrar
Then, we get the lookup service's ServiceRegistrar (the

class by which interaction with the lookup service is

possible) and also print it.

 registrar = lookup.getRegistrar ();

 id = registrar.getServiceID ();

 System.out.println ("client: ServiceRegistrar = " + registrar);

 System.out.println ("client: ServiceID = " + id);

6.5.3.3 Accessing the data repository service
Therefafter, we perform a search on the lookup server to find

the service that has the name attribute of "MyServer". The

lookup service returns an interface object to the service.

 aeAttributes = new Entry[1];

 aeAttributes[0] = new Name ("DataRepositoryService");

 template = new ServiceTemplate (null,null, eAttributes);

myInterface = (DataRepositoryInterface) registrar.lookup

(template);

Here, myInterface is the Service Object. Using this, the client

accesses the method execQuery() in the

DataRepositortService. Before querying it prompts the client

to input a query. Then it informs the client that the query

entered is about to be sent to the Data Repository Service.

Thereafter, you can see the desired results.

 75

6.5.4 Printing Service

This service prints the given text on the server default printer in the

given font and according to the given width and height of the paper

(PageFormat object). This service provides only black and white

text printing.

6.5.5 Printer Service Client (for accessing printing service)

The class Printer Service Client is basically meant for the Printing

Service. In this, we, first of all set the security manager as:

System.setSecurityManager (new RMISecurityManager ());
 Next, we find the JINI lookup service () and print its location.

 lookup = new LookupLocator ("jini://localhost");

 sHost = lookup.getHost ();

 iPort = lookup.getPort ();

Then, we get the lookup service's ServiceRegistrar (the class by

which interaction with the lookup service is possible).

 registrar = lookup.getRegistrar ();

 id = registrar.getServiceID ();

Therefafter, we perform a search on the lookup server to find the

service that has the name attribute of "MyServer". The lookup

service returns an interface object to the service.

 aeAttributes = new Entry[1];

 aeAttributes[0] = new Name (name);

 template = new ServiceTemplate (null,null, aeAttributes);

proxy = (PrintingServiceInterface) registrar.lookup (template);

Now if this proxy is an instance of PrintingServiceInterface, then the

proxy is returned.

6.5.6 Format class

Format class takes text (as a String) as an input and breaks the text

into lines according to the width and FontMetrics object passed to

it. It then generates a vector of those lines. The main method of the

 76

class is process(), which has two loops to put words in a

line(vector) and to move to the next line. As a result we get a vector

containing the lines of the passed string. These lines are then get

by subsequent calls to hasNext() and next() methods. This class

can also return the subset of the object according to the specified

lines as a Format class object. The subset is used by the Page

class.

 6.5.7 Page class

Page class takes the Page Format for width and height of actual

page, Format class object for lines to be printed. It obtains x and y

coordinates of the Page Format object to start formatting the page.

After getting all the information it then reset the pointer to the start

of the data and print each line according to line spacing and height

by adding these values to y coordinate until end of data is reached.

In this way it formats the page according to our need by setting its

height and width, which is given by user.

 77

7. Recommendations and Future Enhancements
Based on this project, many enhancements are possible:

• If this technology can somehow be incorporated in a word processor to

make it JINI enabled, then it can use the print service over the network

without having information or drivers on the machine.

• And once we have this JINI enabled word processor, then other services

can be incorporated into it, like fax, scanning service etc.

• Similarly, we can have JINI enabled web browsers, media players etc to

access the remote resources over the network.

 78

8. Glossary and Bibliography
The following glossary is no way complete. However, it is an attempt to list a few

number of sources and references for further reading.

• JAVA An object oriented programming language

• JDK Java Developer Kit

• JINI Not acronym for anything, a network technology

• JSK JINI Software Kit

• JCP JINI Technology Core Platform

• JVM Java Virtual Machine

• KAWA An integrated development environment for JAVA

• LUS Lookup Service

• RMID Remote Method Invocation Daemon

• A Lookup Service supplied by SUN

• UDP User Datagram Protocol

Coming over to the bibliography side, the widest range of references on JINI

Network Technology generally is to be found on the various Internet newsgroups

that deal with this subject. They include:

• www.jini.org

• www.java.sun.com

• www.artima.com/jini (a source for JAVA and JINI developers)

• http://developer.java.sun.com/developer/products/jini

• http://www.enete.com/download/#_nuggets_

• http://www.artima.com/javaseminars/modules/Jini/CodeExamples.html

• http://www.jinivision.com/

• http://pandonia.canberra.edu.au/java/jini/tutorial/Jini.xml

• http://www.eli.sdsu.edu/courses/spring99/cs696/notes/index.html

• http://developer.jini.org/exchange/users/jmcclain/index.html

• http://sourceforge.net/projects/jini-tools

and many subsidiary newsgroups under these.

 79

Jini.org includes a frequently asked questions (FAQs) file that can be

downloaded, which includes a large number of questions relating JINI network

technology and a very long list of references including surveys, history and the

analytical work. Besides this various tutorials have also been deeply studied in

order to complete this project.

