DESIGN AND IMPLEMENTATION OF
WAP GATEWAY

SYNDICATE

SGT M.KASHIF IQBAL (Leader)
PC SYED ALI RASHID

PROJECT DS: LEC ARIF RAZA

Dissertation submitted for partial fulfillment of requirement of MCS/NUST for

the award of the BE. Degree in Software Engineering.

Department of Computer Science
Military College of Signals

Rawalpindi

MAY 2002

Design and Implementation of WAP Gateway -1-

Dedication

This report is dedicated to our parents who encouraged
our studies and always stood beside us and supported and

prayed for our success.

Design and Implementation of WAP Gateway -2-

Acknowledgements

All thanks are due to Almighty Allah the most gracious
who enabled us to complete this work .The author would
like to acknowledge the highly valuable technical guidance
from Lec Arif Raza who made this project possible for
earliest completion. Mr. Ali Ahsan helped technically for
the completion of this report. Technical help of project
Manager at Hagler Bailey Mr. Mohannad, Mr Shahzad
Haider from IBM Ace, Mr. Wasiq of R&DE is also highly
appreciated. In the end we would also like to acknowledge
Lt. Col. Farrukh for his efforts in giving us the concept of
Computer Networks without which this project would not

have completed.

Design and Implementation of WAP Gateway -3-

Declaration

No portion of the work presented in this dissertation has
been submitted in support of another award of

gualification either at this institution or elsewhere

Design and Implementation of WAP Gateway -4 -

Abstract

This report details the design, development and testing of
WAP Gateway. A WAP gateway is an implementation of
WAP stack which translates between protocols in the WAP
protocol suite and the TCP/IP protocol suite. This report is
the documentation of a gateway which acts as a translator
between Wireless Session Protocol (WSP) and Hypertext
Transfer Protocol (HTTP). The report contains a
description of the WAP protocol suite and method
invocation in HTTP and WSP. The WAP Gateway is also
responsible for the encoding of the WML content into
binary representation so that minimal and compact data
could be sent to the WAP Client. In the project only the
connectionless part of the WAP protocol suite has been
implemented. So in its present form the WAP Gateway

works over an IP network using the UDP packets.

Design and Implementation of WAP Gateway -5-

Table Of Contents

Design and Implementation of WAP Gateway -6-

Chapter 1: Introduction

O R O o] [=Tod 1 AV PSP UUPRTRPPPPPPPPR 12
1.2. DemMO APPLICALIONS .o e 12
G TS 411 O EPRPRPORPUPPRR 12

1.3.1. APPHIEd SKIlIS ... 13

L.3.2. INEW SKIlIS ...ttt ettt et b e sbe e sbe e s be e sbeesaeeeaeas 13
1.4, Languages USEdcooooiiiiiiiiiiiiiceec ettt a e e e e e e e e e e e e 13
1.5, SOftWare INTEITaCES ... oo 14
T =t o VAT o] oY g 1=T o) AP PP OTTOPRR 14

Chapter 2: Wireless Access Protocol

2. L. WY VWA P et e e e e e e e e e e e e e e e e e e raaaas 15
W YN e e o T (U o TP 17
2.3. The BUSINESS PEerSPECLIVEcooiii ittt e e e e e e e e e e e e aeees 19
2.4. WAP Application ArchiteCturec.cooooiii i 19
2.4. 1. WAP DBVICE: ..o iuieieetie ittt sttt ste e ste et et e s e e nte s se e teeseesseaseestesraesteeneesaeareenreas 20
2.4.2. WAP ClHBNE: ...eiiie ettt st e e e sae e e saesre e teeseenneaneenrens 20
R B U - N0 [T 3| PRSPPI 20
2. 4.4, WAP GaBWAY:eviveitieiisiesie sttt sttt sttt st sttt ettt et e et e s ese e e e eneeneeneane e 20
2.4.5. NEIWOIK OPEIALOI:veeiiitieiesieee sttt ettt sre et st saenre e e 21
2.4.6. Content /APPHCALION SEIVEL:coiiiieie ettt 21
Chapter 3: WAP Architecture & Internal Structure
3.1, ArChItECTUIE OVEIVIEBWuiiiiiiieeiiiiiiiie ettt e e e e e e eeee s 22
3.1.1. The World-Wide WeD MOUELcooieeiiee et 23
TN O 0 O O T 1 IR V< TSP PUTPRPOR 24
0 O O (0)4 YR T 24
3.2. TRHE WAP MOUCI...ciiiieiiieiee ettt et e e e e e eeeaee s 24
3.2.1. Standard naming MOdel ..o 25
3.2.2. CONEENE EYPING.c.eeiveitieite ettt e et e e et e raesnesra e beereenteereennens 26
3.2.3. Standard conNtent FOrMALScveviiiiiieise e 26
3.2.4. Standard communication ProtOCOIS...........cceiiiieiieie e 26
3.2.4.1. ProtoCOI GAIBWAYcoviiuieiiiiieie sttt 26
3.2.4.2. Content Encoders and DECOUEISccueriiieriiiieiisee st 26
T T = 0 (0 o 0] U 28
I - | = PP 28
3.5. Components of the WAP Architecture...............ccc i, 29
3.5.1. WARP ProtOCOI STACKcveivieieiiieiesiceie sttt ne e 29
3.5.2. Sample Configurations of WAP Technologyccccocviriiiiniiiniiinene e 29
3.5.3. DesCription Of WAP STACK........cccuiiiiriiiiiiniiie e 31
I CIAN o] o] I Tox= T o] o I -\ Y/ = PR 31
3.6.1. WAE ArChiteCtUure OVEIVIEW.......ccviiiiiieiiriisiisie sttt sttt 32
3.6.2. The WAE MOUEL......cooiiieieeieie sttt 32
3.6.3. Elements of the WAE MOEl ..o 33
3.6.3. 1 WAE USBI AQENTS.....oiitiiiiiiiieitee ettt ettt sttt bbb seee e 33
3.6.3.2. CONLENT GENEBIALOIS ... veeeieieieiiee ettt sttt et sbee st e sbeesree e 34
3.6.3.3. Standard Content ENCOTINGccveveiieiiiieie e 34
3.7. Wireless Telephony Applications (WTA) ... 34
T 0 O N I 1 OSSPSR 35
3.7.2. ComMPONENES OF WAE ... et 36

Design and Implementation of WAP Gateway -7-

3.7.2. 1 WAE USEI AGENTS. ...ttt sttt ettt sb e e 37

3.7.2.2. WAE Services and FOIMALSccocouiiiiniiiiiieise s 37
BT 3 WMLttt bbbttt e b e n et 38
3.7.3. 1. SUPPOIT FOF TEXE...ecueeiieiieiieieeiee ettt ene s 39
3.7.3.2. SUPPOIT FOF IMAGES. ... vttt 39
3.7.3.3. Navigation and HiStory Stackcccceviriiiiiiiiniiiiesene e 40
BT A WIMLSCRIPT ...ttt sttt sttt eb et b e e 40
3.7.5. WIreless BiNary XMLcccooiiiiiiiiie ettt sra e neene s 41
3.7.6. Wireless Telephony AppliCatioN.........c.ccceivieiiiieieiie e 41
O C TS TST =] [0 I - T 42
3.8.1. Basic Types & FUNCLIONAITYc.ooiieiiiiiieiieiescce s 43
3.9, TranNSACTION LAYET ..ceiiiiiiiiiiiiiie ettt e e et e e e e e e e eaee s 46
3.9.1. UNIeliable FEOUESTS.eeeeieeetieiieetieie ettt sttt ere e e e enee s 46
3.9.2. Reliable REQUESTS.......c.eeieiieeieeiieiese ettt sne e e 47
3.9.3. Reliable Request with One Result MESSAGEcccvreririerinienieieieeeee e 47
.10, SECUITY LAY ..uiiiiiiiiiiiiiieiittieteiee ettt eee et ee e et e e e e e e e aeeaeaeeeeaeeaeaeaeeasseassaass s nnnnnnes 47
0 I =T 1] o o] A = T PRSPPI 49
B0 o =T =T S 50
3.13. Services and APPHICALIONSovvviiiiiiiiiieeeeee e 51
Chapter 4: WAP Gateway
4.1. What iS @ WAP GAEWAY ?....cceiiiiiiiiiiiiee ettt eeee s 52
4.2. Functionality of @ WAP GateWaycccvivviiiiiiiiiiiieeeeeeeeee s 54
4.3. Implementation of WAP protocol stack layers..........ccoooeiiiiiiiiiiiiiiiiinins 55
4.4. Protocol cONVersion: WSP < HTTP ..o.oeiioeeeeeeeeeeeeeeeeeeeeeees s s 55
4.5. Comparison between HTTP and WSP ... 56
4.5.1. Hypertext Transfer ProtoCOIccccoiviieiiiicceceee e 57
TR I O {0 (U1 PRSPPSO 57
4.5.1.2. RESPONSE . .ueiiiit et esttee sttt e s tee et e e st e st e e st e e s bt esa e e sa b e e e b e e st e na e e naa e pa e nnae s 58
4.5.2. WSP Method INVOCALION.......covitiiiiiieiiiieisieieee e 59
A.5.2.1 REOUEST. ...ttt ettt b ettt et bt sae et et nr e e b e 59
A.5.2.2. REPIY .ottt 59
4.6. ENcoding Of WML CONTENT.....ccoiiiiiiiiiieei ettt 60
Chapter 5: Java as a Language
5.LWHRAL IS JAVAT ...t 61
5.2 Java as Programming LanguUageccooeeeiimmmmmniiiiiiiiiiiiiresssseeeseeseeeeeeeeeeeeeees 62
5.3 Java as Platform ... 63
5.4 What Can JAVa DO?ooeiiiiiiiiiiiiee e 64
5.5 AdVaNtages Of JAVAuuiiiiiiiiiiiiiiieece e 66
Chapter 6: Structural Analysis
6.1 ENVIRONMENTAL MODEL: ..ottt 68
6.1.1. Statement OF PUIPOSE:oiieiieiieeeie sttt neeste e nee s 69
T B @0 g (= (B D T F-To | - SRR 69
B.1.3. EVENE LIS . .eiuieiiiiieiti ettt st ta e e e e nesre e beereeneaneenne s 70
6.2. Behavioral Model: ..o 70
6.2.1. Data FIOW DIagramS:ccuoiiiiiiiiiiniisie sttt 70
B.2.1.1. LEVEI L DFD: ..ottt 71
6.2.1.2. Level 2 DFD (BUbbling 0f 6.1.1):cooviiiiiiieireisceesee e 72

Design and Implementation of WAP Gateway -8-

6.2.1.3. Level 2 DFD (BUDBBIING OF 6.1.2): w.....eueeeeeeeeeeeeeereseseseseeeeseeeeeeseesessseseeesseeseeee 73

6.2.1.4. Level 3 DFD (Bubbling 0f 1.2.3):cuooiiiiiiiiireee e 74
6.2.1.5. Level 4 DFD (Bubbling 0f 6.1.2.3.3): ..ot 75
6.2.1.6. Level 4 DFD (Bubbling 0f 6.1.2.3.4) &ooiiiiiie e 76
6.2.1.7. Level 2 DFD (Bubbling 0f 6.1.3):ccciiiiiiiiiiec e 77
6.2.1.8. Level 2 DFD (BUbbling 0f 6.1.4):cccooiiiiiiiiieie e 78
6.2.1.9. Level 2 DFD (Bubbling 0f 6.1.5):cccoiiiiiiiiiiic e 79
Chapter 7: Software Structure
7.1 ClaSS QABWAY: ...uuueeiieiieieiieiiiiiittttaaaaeaaaaaaaaaaaaaaaaeaesesessaaaaaasnsnnsssnsesssssseseennnneneeees 80
7.1.1. DaAtagramMSOCKEL:ccuieieiie ittt sttt st re et nne s 81
7. 1.2, GAIEWAY ():eeveereereetiereesieasiestesseesteeseesaeaeesbeessesbeeseesbeeseesbeenbeabeeseesbeeneesbeenbesbeentesneeneens 81
7.1.3. MaIN (STNG ArGS[]): e eveeveeerrreaiereeiesrerie e et sie e e se e s sree e steeeesreeseesreeeesreeneesseeneens 82
7.1.4. actionPerformed (ACHIONEVENT €):ccviiiiieieeiieie st 82
7.2 Class RequestHaNdIEr: ... 82
2. L TR bbbttt et ne e 82
7.2.2. TUN(). ottt bbbt bbbt bbb bbb b bbbt e e e bt et n e ne e 83
7.2.3. SBEPACKET(): .. i ettt e e re s 83
A T O =T S |1 o OSSPSR 83
7.3.1. appendTOFIeldValue(StriNg): . ..o e 83
7.3.2. String FIRlANAME(): oo et nre s 83
7.3.3. String FIEldValUB(): .o e 84
7.3.4. HTTPHEAUEI(STIING): «eeveeieiteeiesieeiesiee e see et e e e ee st tesreesee e e seesre e seereenneaneeneens 84
7.3.5. HTTPHeader(String, StrNG)i e i eieeieieeieseerie et sie st see e enee e snee e 84
7.3.6. makeCacheControlValue(SIriNg)cioeiveerieie e 85
7.3.7. MakeChallenge(StriNg):oooi it 85
7.3.8. MakeCredentialS(SIriNG): . ..o ueieiee et sre e e 85
7.3.9. makeqValueBytes(doUDIE):.........ccooi i 85
7.3.10. QVAlUEL2(AOUDIE): ...t 85
7.3.11. gValue3(douBIE):e o 85
7.3.12. SEtVAlUB(SLIING): 1oviciiiie ettt sttt e e et e nreans 86
7.3.13. SPHELISTHEAUEI(): . veveeieee sttt re et re e 86
7.3.14. SpItString(String ,CNar): ..cooiieicee e 86
7.3.05. TOWVSP(): ettt bbbttt 86
7.4. Class ThreadPOOl: ... 86
7.4.1. ThreadPool(iNt, 10NG): . .cveiiiieieiieie e nee s 87
7.4.2. dispatch(DatagramPaCKet):cccveiriiierie i see s 87
T 4.3 TUN(). ettt bbb bbbt bbbt bbb bbb e et e e n b et 87
7.5. Class HIPDECOUET: ...ooeiiiiiiiiiiiiie s 87
75,0 ClONE(): ettt 88
7.5.2. deCOUBHEAUEI(): .. veuveeieiie ettt sttt et beene e e ne s 88
7.5.3. MKPDU() ettt ettt 88
T R 1= Uo [USSR URPPRTRPRRN 88
7.5.5. HttpDecoder(INPUESIIEAM): . .oc.iiiiiieie ettt s 89
7.6. ClaSS PDU: ...ttt ettt e e e e st e e e e e e e ee e s 89
R O T =] o 5 1O PRSP 90
7.5.0.1. GEE PDU ...ttt bbb 90
7.5.1.2. QEIRESPONSE():.eeviterieeieeieste sttt sttt bbbttt b e e ene s 90
7.5.2. Class POSE_PDU:ccuiiiiiiiiiiieie ettt 90
7.5.2.1. Post_PDU(int, HtPDECOUET):cciiiriiriirierie et 91

Design and Implementation of WAP Gateway -9-

7.5.3. Class REPIY_PDU:ooiiiiiiiciesieeie et sttt 91
7.5.3.1. INStanCe VariabIes:coooi i 92
7.5.3.2. anSWETrError(int, StriNG):coocooiiiriiiiiiee e 92
7.5.3.3. QEIBYLEAITAY(): .veieeeiieiieiesie sttt 92
7.5.3.4. Reply_PDU(int , HttpURLCONNECLION):oveviiiiiiieieieie e 93
7.5.3.5. Reply_PDU(INt, iNt ,StrNG):coiiiiiiiiiiie e 93
7.5.3.6. Reply_PDU getRESPONSE(): .ouveiveereiriiiiiiieiiesteeite st e se e saeeae st a e sreenesre s 93
7.5.3. 7. INESIZE(): woveeie ittt e e be e nre e e nre 93

7.6 Class WAPTADIE: .o 94

7.6.1. Class StAtUSCOUE:.........ueiiiirieriiitiite ittt 95

7.6.2. Class HEtPParameLerS:cceeiieieeieiieeiie ettt sttt sttt e sbe e sreenee 96

7.6.3. Class CharaClerSeL:.........cuiiiiiiriieiiesie ettt 96

7.6.4. Class CONMTENTTYPE ...ttt sttt 97

7.6.5. ClasS LANQUAGE: ... ccvveeeirieie ittt sttt ettt s ra et et teeseesresreesaesraesbeensesteaneenreas 97

7.6.6. Class PDUTYPE:....ciiiicie ettt ettt ettt e e st e e e sre e e sbaentesreennens 98

7.7 Class WML COMPIIEI: oo 99

7.7.1. encode(InputStream , String, StrNQG):ccooivieiiiieiiee e 99

7.7.2. encode AttrsS(NamedNOUEMAEP): .. .ooviiiiie et 99

7.7.3. enCOUBAIIVAIUE(SIIING) .. eeiiiieiieie e e 100

7.7.4. NCOUBTTEE(NOUR): ..c.vieeeeiiee sttt ettt bbb ens 100

Chapter 8: User's Manual

8.1. REQUIREMENTS ...ttt 102

8.2. EriCSSON WAP IDE 3.1 ...ttt 102
B2, 1. BIOWSET ..ttt bbbttt b et bbb e s 103
8.2.2. APPIICALION TESIGNETiiiiiieieee e bbb 103
8.2.3. PUSH INTLIALON ... 104

8.3. Using the WapIDE DIrOWSEIcciieieiee e 104

8.3.1. Starting the DrOWSENcco i s 105

8.3.2. Setting DrowWSEer PrefereNCES.......ccveiiieee e 105

8.3.3. GALEWAY SEILINGS .. veveeveesieeriesieeiesteeie et e et e e esbeese et e ereesreaneenaeeneense e 106

8.3.4. Accessing an aPPlICATION.........oviiiieieicee e 107

8.4. CONFIGURING THE WEB SERVER........cotiiiiiiiiiei et 108
8.5. WORKING OF THE GATEWAY ..ttt 110
Chapter 9: Summary & Future Recommendations

9.1, SUMMARY .ttt ettt e ekttt e ettt e e e eab et e e e anb e e e e e ennbe e e e aneee 114
9.2. RECOMMENDATIONS ... ettt ettt e e e e e e enneeas 115
O.3. CONCLUSION. ...ttt ettt ettt e et e e e enaae e e s snrbeeeeannees 116

Chapter 10: Appendices
L0, L. AP PENAIX A it e e 102
10.2. APPENAIX B ettt e 106

Design and Implementation of WAP Gateway -10 -

Chapter 1
Introduction

Design and Implementation of WAP Gateway -11-

WAP —the wireless application protocol is a communication protocol and application
environment for the deployment of information resources, advances telephony
services and internet access from mobile devices . In recent years ,wireless
telecommunication have become a common subject of technical papers. The new
trend in technology is to provide users with the ability to have all they could possibly
need in a pocket sized device. WAP is positioned at the convergence of two rapidly

evolving network technologies, wireless data and the Internet.

1.1. Objective

The objective of our project was to design and implement a Wap gateway. The
application implements the connectionless part of the wireless session protocol in
the wap protocol stack, which mainly consists of method invocation facility. The WAP

Gateway we have implemented performs two basic functions.

e Conversion between the WSP protocol and HTTP protocol.

e Encoding of WML content into binary format.

1.2. Demo Applications

We have also written some demo applications to show different kinds of applications
you can use with your mobile phone. We have designed certain WML pages which
show the working of the Gateway and also demonstrate the structure of wireless
markup language. We have also implemented a servlet which plays an mp3 song
selected by the WAP Client when the song is selected from a list of songs displayed

to the user.

1.3. Skills

The syndicate has used a number of current technologies for the creation of the
product. Some of these included what we had studied during the course of our

studies and some skills needed to be learnt from scratch.

Design and Implementation of WAP Gateway -12 -

1.3.1. Applied Skills

The product required the skills of many of the modules studied throughout the
course. Network communication understandings have been applied to create the end
application as well as an understanding of programming language concepts. In
addition, understandings of threads in a multi-threaded environment which have
been previously studied have been applied to the successful development of the

product. Good project planning is also a skill applied to produce a working system.

1.3.2. New Skills

The product required the understanding of Protocol Specification and design.
Developing such an application has provided a new skill in application design. In
addition to that we had to understand the concepts behind the WML language which
was entirely new to us. The specifications of the HTTP protocol had also to be learnt.
The wireless world was entirely a new field to us and we had to do a great research

work to understand the concepts behind the WAP protocol.

1.4. Languages Used

In the implementation of the project we have used Java language. The reason
behind this is that Java is platform independent. Secondly network programming is
quite simple in java. Also java provides a great facility in dealing with threads. We
have used the JAXP API for the parsing of WML documents. So our work of
encoding of WML content into binary format was made quite simple by using this
API. We have also used WML language in the applications design for the
demonstration. WML is the language used by the WSP protocol to display the

content. So its understanding and implementation was a must for us.

Design and Implementation of WAP Gateway -13-

1.5. Software Interfaces

There are basically two other software interfaces to our project. One is the WAP
Client and the other is the Web Server. We have used WAP IDE 3.1 as a simulator
for the WAP Client and Web Server we have used is Lite Web Server 2.2.1 which

was also used by us during our course of Java language.

1.6. Environment

We have tested our application on Windows 98, Windows 2000, Windows XP and
also on WINNT. As the implementation language is Java so there is no problem of

platform.

Design and Implementation of WAP Gateway -14 -

Chapter 2
Wireless Access Protocol

Design and Implementation of WAP Gateway -15-

2.1. Why WAP?

Both the wireless data market and the Internet are growing very quickly and are
continuously reaching new customers. The explosive growth of the Internet has
fuelled the creation of new and exciting information services. Most of the technology
developed for the Internet has been designed for desktop and larger computers and
medium to high bandwidth, generally reliable data networks. Mass-market, hand-
held wireless devices present a more constrained computing environment compared
to desktop computers. Because of fundamental limitations of power and form-factor,

mass-market handheld devices tend to have:

e Less powerful CPUs,
e Less memory (ROM and RAM),
e Restricted power consumption,
e Smaller displays, and

o Different input devices (e.g., a phone keypad).

Similarly, wireless data networks present a more constrained communication
environment compared to wired networks. Because of fundamental limitations of
power, available spectrum, and mobility, wireless data networks

tend to have:

e Less bandwidth,
e More latency,
e Less connection stability, and

e Less predictable availability.

For example if we are going to allow Internet access from a mobile phone, we first
need to take into account these limitations of the client device .the internet protocols
are far from being suitable for use with mobile phone communication. They introduce

far too many overheads , requiring many messages between clients and server just

Design and Implementation of WAP Gateway -16 -

to set up a connection. These overheads call fro high processing power on the client
device. Similarly most of the existing content on the internet on the internet is in html
form and due to transport limitations and bandwidth constraints it becomes
inappropriate to transfer such content on a wireless device. It is due to these severe
limitations, a new set of protocols more appropriate to communication with the
wireless devices is needed. It is here the wap technology comes to the rescue. WAP,
short for Wireless Application Protocol, is a collection of languages and tools and an
infrastructure for implementing services for mobile phones. Traditionally such
services have worked via normal phone calls or short textual messages (e.g., SMS
messages in GSM networks). Neither are very efficient to use, nor very user friendly.

WAP makes it possible to implement services similar to the World Wide Web.

2.2. WAP Forum

The Wireless Application Protocol (WAP) is a result of the WAP Forum’s efforts to
promote industry-wide specifications for technology useful in developing applications
and services that operate over wireless communication networks. WAP specifies an
application framework and network protocols for wireless devices

such as mobile telephones, pagers, and personal digital assistants (PDAS). The
specifications extend and leverage mobile networking technologies (such as digital
data networking standards) and Internet technologies (such as XML, URLSs, scripting,
and various content formats). The effort is aimed at enabling operators,
manufacturers, and content developers to meet the challenges in building advanced

differentiated services and implementations in a fast and flexible manner.

The objectives of the WAP Forum are:

e To bring Internet content and advanced data services to digital cellular

phones and other wireless terminals.

e To create a global wireless protocol specification that will work across differing

wireless network technologies.

Design and Implementation of WAP Gateway -17 -

e To enable the creation of content and applications that scale across a very

wide range of bearer networks and device types.

e To embrace and extend existing standards and technology wherever

appropriate.

e The WAP Architecture Specification is intended to present the system and
protocol architectures essential to achieving the objectives of the WAP Forum.
The WAP specifications address mobile network characteristics and operator
needs by adapting existing network technology to the special requirements of
mass-market, hand-held wireless data devices and by introducing new

technology where appropriate.

Wap forum created by phone.com, Ericsson, Motorola and Nokia shared there
knowledge and the partnership soon evolved into the now all encompassing WAP
SPECIFICATIONS that include complementary application session transaction,
security and transport protocol layers. A new markup language called the Wireless
Markup Language (WML) has also been created. These protocols minimize the
problems outlined above associated with the use of internet protocols for wireless
data transfer. They do this by eliminating unnecessary data transfers and using
binary code to reduce the amount of data that has to be sent. Also wireless sessions
are designed to be easily suspended and resumed , without the connection
overheads associated with the internet protocols. Thus the protocols are well suited

to the low bandwidth associated with the wireless communication.

The standardization of methods to access the internet through the mobile phones
has brought many benefits to many different people. For the end users a breadth of
choice of devices networks and applications a has arisen in the competitive market
since the specifications are not biased towards any company. The network
operators have been able to extend there customer base as they can offer newer
services independent of the network used .for the service providers there are new

functionalities such as push technologies and WTA .

Design and Implementation of WAP Gateway -18 -

2.3. The Business Perspective

As the new standard protocol for providing content to wireless devices, wap has
been accepted on the telecommunication market with enthusiasm from all sides, as
the growth in the stock market of some of the companies involved with wap can
confirm the high penetration rates of the mobile phones across Europe and America
mean that mobile commerce has become significant .Many businesses were caught
by surprise by the rapid rise of e commerce and so have jumped quickly to supply

WAP services in an effort not to be left behind.

Application developers play an important role in the new born Wap industry .
in addition to providing Value Added Services there is a strong demand for services
that are available on the web to be ported to WAP. On of the major advantages to
the WAP is that it's markup language WML, is based on XML .this effectively means

that it should be easier to provide content in a device independent way.

As with all new technologies, the expectations of WAP were very high when it was
introduces . before the wap phones were available ,everyone was expecting to surf
the internet from there mobile phones like a normal browser but the reality is quiet
different .Wap is intended to provide a common application environment for mobile
devices and its protocols are based on the internet protocols. However this does not
mean that wap was devised with the intent of porting the entire content of the

internet to the mobile devices.

2.4. WAP Application Architecture

The wap protocols were deigned with the web protocols in mind. The goal of the wap
was to use the underlying web structure but to render communication between
content providers and mobile devices more efficient and less time consuming than if

the web protocols themselves were used.

Since the wap architecture has been designed closely to follow the web, the client

server paradigm used by the internet has been inherited by WAP. The main

Design and Implementation of WAP Gateway -19-

difference, however is the presence of the wap gateway for translating between
HTTP and WAP.

Before continuing we will take a closer look at these technical terms.

2.4.1. WAP Device:

This term indicates the physical device that you use to access WAP applications and
content. It doesn’t necessarily have to be a mobile phone-it might be a PDA or a

hand held computer. More generally it's a wap compliant device.

2.4.2. WAP Client:

In a network environment, a client is typically the logical entity that is operated by the
user and communicates with the server entity. In the wap world the client is the entity

that receives the content.

2.4.3. User Agent:

An agent is normally the software that deals with protocols and wap is no exception
to this. The wap client contains two different agents.

e The WAE user agent

e The WTA user agent.

2.4.4. WAP Gateway:

This is the element that sits logically between the wap device and the origin server. It
acts as an interpreter between the two enabling them to communicate with the

wireless operator network but you can install your own gateway.

Design and Implementation of WAP Gateway -20-

2.4.5. Network Operator:

This is the company or the organization that provides carrier services to its
subscribers. As an example, the company you are paying your telephone bills to is
your network operator .A network operator enables you to make calls to other
phones from your telephone and in addition, provides you with different services

such as voice mail.

2.4.6. Content /Application Server:

This is the element that hosts the internet content that is sent to the clients when

they make a request for it. A web server is an origin server, providing html content.

Design and Implementation of WAP Gateway -21-

Chapter 3
WAP Architecture & Internal Structure

Design and Implementation of WAP Gateway -22-

3.1. Architecture Overview

3.1.1. The World-Wide Web Model

The Internet World-Wide Web (WWW) architecture provides a very flexible and
powerful programming model. Applications and content are presented in standard
data formats, and are browsed by applications known as web browsers. The web
browser is a networked application, i.e., it sends requests for named data objects

to a network server and the network server responds with the data encoded using

the standard formats.

WAF Davica

Applcation Sarver

World-Wide Web Programming Model

The WWW standards specify many of the mechanisms necessary to build a general-

purpose application environment, including:

e Standard naming model — All servers and content on the WWW are named

with an Internet-standard Uniform Resource Locator (URL).

e Content typing — All content on the WWW is given a specific type thereby

allowing web browsers to correctly process the content based on its type.

Design and Implementation of WAP Gateway -23-

e Standard content formats — All web browsers support a set of standard
content formats. These include the Hypertext Markup Language (HTML)
[HTML4], the JavaScript scripting language [ECMAScript, JavaScript], and a

large number of other formats.

e Standard Protocols — Standard networking protocols allow any web browser
to communicate with any web server. The most commonly used protocol on
the WWW is the HyperText Transport Protocol (HTTP).

This infrastructure allows users to easily reach a large number of third-party
applications and content services. It also allows application developers to easily

create applications and content services for a large community of clients.

The WWW protocols define two classes of servers:

3.1.1.1. Origin server

The server on which a given resource (content) resides or is to be created.

3.1.1.2. Proxy

This is an intermediary program that acts as both a server and a client for the
purpose of making requests on behalf of other clients. The proxy typically resides
between clients and servers that have no means of direct communication, eg across
a firewall. Requests are either serviced by the proxy program or passed on, with
possible translation, to other servers. A proxy must implement both the client and

server requirements of the WWW specifications.

3.2. The WAP Model

The WAP programming model is similar to the WWW programming model. This
provides several benefits to the application developer community, including a familiar

programming model, a proven architecture, and the ability to leverage existing tools

Design and Implementation of WAP Gateway -24 -

(eg, Web servers, XML tools, etc.). Optimizations and extensions have been made in
order to match the characteristics of the wireless environment. Wherever possible,
existing standards have been adopted or have been used as the starting point for the
WAP technology.

(7

.7 Origin Server

Encoders
anil

WAP Programming Model (figl)

WAP content and applications are specified in a set of well-known content formats
based on the familiar WWW content formats. Content is transported using a set of
standard communication protocols based on the WWW communication protocols. A
micro browser in the wireless terminal co-ordinates the user interfaces and is

analogous to a standard web browser.

WAP defines a set of standard components that enable communication between

mobile terminals and network servers, including:
3.2.1. Standard naming model

WWW-standard URLs are used to identify WAP content on origin servers. They are

also used to identify local resources in a device, eg call control functions.

Design and Implementation of WAP Gateway -25-

3.2.2. Content typing

All WAP content is given a specific type consistent with WWW typing. This allows

WAP user agents to correctly process the content based on its type.
3.2.3. Standard content formats

WAP content formats are based on WWW technology and include display markup,
calendar information, electronic business card objects, images and scripting

language.
3.2.4. Standard communication protocols

WAP communication protocols enable the communication of browser requests from
the mobile terminal to the network web server. The WAP content types and protocols
have been optimized for mass market, hand-held wireless devices. WAP utilizes
proxy technology to connect between the wireless domain and the WWW. The WAP

proxy typically is comprised of the following functionality:

3.2.4.1. Protocol Gateway

The protocol gateway translates requests from the WAP protocol stack (WSP, WTP,
WTLS, and WDP) to the WWW protocol stack (HTTP and TCP/IP).

3.2.4.2. Content Encoders and Decoders

The content encoders translate WAP content into compact encoded formats to
reduce the size of data over the network. This infrastructure ensures that mobile
terminal users can browse a wide variety of WAP content and applications, and that
the application author is able to build content services and applications that run on a
large base of mobile terminals. The WAP proxy allows content and applications to be

hosted on standard WWW servers and to be developed using proven WWW

Design and Implementation of WAP Gateway -26-

technologies such as CGl scripting. While the nominal use of WAP will include a web
server, WAP proxy and WAP client, the WAP architecture can quite easily support
other configurations. It is possible to create an origin server that includes the WAP
proxy functionality. Such a server might be used to facilitate end-to-end security
solutions, or applications that require better access control or a guarantee of

responsiveness, eg, WTA.

Web WML
Server
HTML
HTML 2
Filter

Example Wap Network

In the example, the WAP client communicates with two servers in the wireless
network. The WAP proxy translates WAP requests to WWW requests thereby
allowing the WAP client to submit requests to the web server. The proxy also
encodes the responses from the web server into the compact binary format

understood by the client.

If the web server provides WAP content (e.g., WML), the WAP proxy retrieves it
directly from the web server. However, if the web server provides WWW content
(such as HTML), a filter is used to translate the WWW content into WAP content. For
example, the HTML filter would translate HTML into WML.

Design and Implementation of WAP Gateway -27 -

The Wireless Telephony Application (WTA) server is an example origin or gateway
server that responds to requests from the WAP client directly. The WTA server is
used to provide WAP access to features of the wireless network provider's

telecommunications infrastructure.

Before we look at the detail of how are the Wap protocols are structured let us briefly

examine the definitions of a protocol and a layer.

3.3. Protocols

As anyone who has done any international traveling knows it is quite important
when you travel to adapt your clothing and behavior to the place you are in. It is also
important to speak a common language that allows others to understand what you
are saying. The same problem arises with the telecommunication networks. There
are many different devices and networks and to allow them to communicate with
each other you must provide them with a common language. Protocols are the
answers to this problem. There are lots of different kinds from very simple ones to
elaborate ones but they all have the same property in common. They allow the

computers to communicate with each other.

A protocol defines the type and the structure of messages that two devices

have to use when they are communicating with each other

3.4. Layers

Since the protocols are functionally and logically divided into different groups of
functionality, they are also physically formed into layers each one providing a specific
service to the next layer. One layer may provide methods to send bits down the
physical layer; another may supply methods to establish a connection. The protocol

stack is the set of all layers that compose the set of protocols.

Design and Implementation of WAP Gateway -28-

3.5. Components of the WAP Architecture

3.5.1. WAP Protocol Stack

The WAP architecture provides a scaleable and extensible environment for
application development for mobile communication devices. This is achieved through
a layered design of the entire protocol stack . Each of the layers of the architecture is

accessible by the layers above, as well as by other services and applications.

Application Layer (WAE) I Dthi‘;}ﬁﬁ;ﬁ;ﬁﬁ :"d
Session Layer (WSP) I
Transaction Layer (WTP) I
Security Layer (WTLS) I

Transport Layer (WDP) I

Bearers:

| gsm ||is-136 || coma || PHs || copp || PDc-P |[iDEN || FLEX || Etc... |

WAP Architecture

3.5.2. Sample Configurations of WAP Technology

The suite is designed so that one can take any consecutive set of the WAP layers
and use them in an already existing framework. For instance, when browsing on the
Internet using a WAP client one could use the protocol stack in the f where the two

upper protocols are from the WAP suite and the lower two are from the IP suite.

Design and Implementation of WAP Gateway -29-

WML
WAP

WSP

UDP

IP

Example of a WAP stack when browsing with a WAP client

WAP technology is expected to be useful for applications and services beyond those
specified by the WAP Forum. The next figure depicts several possible protocol
stacks using WAP technology. These are for illustrative purposes only and do not

constitute a statement of conformance or interoperability.

WAE D WAP Technology
User Agents
[] Outside of waP
Applications
WSP/B over Transactions
Applications
over Datagram
WTP WTP Transport
WTLS WTLS WTLS
Mo Layer Mo Layer Mo Layer
UDP WDP UDP WDP UDP WDP
P non-IP P non-IP IP non-IP
&g, GPRS, C50, | =g, SMS, USSD, e GPRS, C5D, | &g SMS, USSD, g, GPRS, C5D, | &3, SMS, US5SD,
COPD.IiDEN GUTS, FLEX CDPD,iDEN GUTS, FLEX CDPD,IDEN GUTS, FLEX
Sample WAP Stacks
Design and Implementation of WAP Gateway -30-

The leftmost stack represents a typical example of a WAP application, i.e., WAE
user agent, running over the complete portfolio of WAP technology. The middle stack
is intended for applications and services that require transaction services with or
without security. The rightmost stack is intended for applications and services that

only require datagram transport with or without security.

3.5.3. Description of WAP Stack

The WAP stack was derived from and inherited most of the characteristics of, the
ISO OSI reference model. The main difference between the two is the no of layers.
The following sections provide a description of the various elements/ layers of the

protocol stack architecture.

3.6. Application Layer:

WAE (Wireless Application Environment) provides an application environment
intended for development and execution of portable applications and services. The
Wireless Application Environment (WAE) is a general-purpose application
environment based on a combination of World Wide Web (WWW) and Mobile
Telephony technologies. The primary objective of the WAE effort is to establish an
interoperable environment that will allow operators and service providers to build
applications and services that can reach a wide variety of different wireless platforms
in an efficient and useful manner. WAE includes a micro-browser environment

containing the following functionality:

e Wireless Markup Language (WML) — a lightweight markup language, similar

to HTML, but optimized for use in hand-held mobile terminals;

e WMLScript — a lightweight scripting language, similar to JavaScript.

Design and Implementation of WAP Gateway -31-

e Wireless Telephony Application (WTA, WTAI) — telephony services and
programming interfaces and- Content Formats — a set of well-defined data

formats, including images, phone book records and calendar information.

3.6.1. WAE Architecture Overview

The WAE architecture includes all elements of the WAP architecture related to
application specification and execution. At this point, the WAE architecture is
predominately focused on the client-side aspects of WAP’s system architecture,
namely items relating to user agents. Specifically, the WAE architecture is defined
primarily in terms of networking schemes, content formats, programming languages
and shared services. Interfaces are not standardized and are specific to a particular
implementation. This approach allows WAE to be implemented in a variety of ways
without compromising interoperability or portability. This approach has worked
particularly well with a browser (a class of user agents) model such as that used in
the World-Wide-Web (WWW). The Internet and the WWW are the inspiration and
motivation behind significant parts of the WAE specification, and consequently, a

similar approach is used within WAE.

3.6.2. The WAE Model

WAE adopts a model that closely follows the WWW model. All content is specified in
formats that are similar to the standard Internet formats. Content is transported using
standard protocols in the WWW domain and an optimized HTTP-like protocol in the
wireless domain. WAE has borrowed from WWW standards including authoring and
publishing methods wherever possible. The WAE architecture allows all content and
services to be hosted on standard Web origin servers that can be incorporate proven

technologies (eg, CGl). All content is located using WWW standard URLS.

The WAE does not specify how a user agent should display information, e.g. a WML
deck, nor does it dictate (or even assume) a man-machine interface. It's up to the

vendors of user agents to solve these issues in any way they like.

Design and Implementation of WAP Gateway -32-

An important part of the WAE is the WAP gateway. Its main objectives are:

+« Minimize data sent over the air

« Minimize the computational energy required by the client to process the data

Encoders
anud
Deviders

3.6.3. Elements of the WAE model

3.6.3.1 WAE User Agents

It is basically the client-side in-device software that provides specific functionality
(eg, display content) to the end-user. User agents (such as browsers) are integrated
into the WAP architecture. They interpret network content referenced by a URL.
WAE includes user agents for the two primary standard contents: encoded Wireless
Markup Language (WML) and compiled Wireless Markup Language Script
(WMLScript.)

Design and Implementation of WAP Gateway -33-

3.6.3.2. Content Generators

Applications (or services) on origin servers (eg, CGlI scripts) that produce standard
content formats in response to requests from user agents in the mobile terminal.
WAE does not specify any standard content generators but expects that there will be
a great variety available running on typical HTTP origin servers commonly used in
WWW today.

3.6.3.3. Standard Content Encoding

A set of well-defined content encoding, allowing a WAE user agent (eg, a browser) to
conveniently navigate web content. Standard content encoding includes compressed
encoding for WML, byte code encoding for WMLScript, standard image formats, a

multi-part container format and adopted business and calendar data formats.

3.7. Wireless Telephony Applications (WTA)

A collection of telephony specific extensions for call and feature control mechanisms
that provide authors (and ultimately end-users) advanced Mobile Network Services.
The user agent characteristics are communicated to the server via standard
capability negotiation mechanisms that allows applications on the origin server to
determine characteristics of the mobile terminal device. WAE defines a set of user
agent capabilities that will be exchanged using WSP mechanisms. These capabilities
include such global device characteristics as WML version supported, WMLScript

version supported, floating-point support, image formats supported and so on.

WAE architecture relies heavily on WWW'’s URL and HTTP semantics. WAE

assumes:

e The existence of a generalized architecture for describing gateway behavior
for different types of URLs and

e Support for connection to at least one WAP gateways.

Design and Implementation of WAP Gateway -34-

WAE is based on the architecture used for WWW proxy servers. The situation where
a user agent (eg, a browser) must connect through a proxy to reach an origin server
(i.e., the server that contains the desired content) is very similar to the case of a
wireless device accessing a server through a gateway.

Most connections between the browser and the gateway use WSP, regardless of the

protocol of the destination server.

The URL, used to distinguish the desired content, always specifies the protocol used
by the destination server regardless of the protocol used by the browser to connect
to the gateway. In other words, the URL refers only to the destination server’'s
protocol and has no bearing on what protocols may be used in intervening

connections.

In addition to performing protocol conversion by translating requests from WSP into
other protocols and the responses back into WSP, the gateway also performs
content conversion. This is analogous to HTML/HTTP proxies available on the Web
today. For example, when an HTTP proxy receives an FTP or Gopher directory list, it
converts the list into an HTML document that presents the information in a form
acceptable to the browser. This conversion is analogous to the encoding of content

destined to WAE user agents on mobile devices.

3.7.1. HTTP

The browser, in this case, communicates with the gateway using WSP. The gateway
in turn would provide protocol conversion functions to connect to an HTTP origin

server.

As an example, a user, with a WAP-compliant telephone, requests content using a
specific URL. The telephone browser connects to the operator-controlled gateway
with WSP and sends a GET request with that URL. The gateway resolves the host
address specified by the URL and creates an HTTP session to that host. The

gateway performs a request for the content specified by the URL. The HTTP server

Design and Implementation of WAP Gateway -35-

at the contacted host processes the request and sends a reply (eg, the requested

content). The gateway receives the content, encodes it, and returns it to the browser

3.7.2. Components of WAE

As illustrated in the following Figure, WAE is divided into two logical layers:

e User agents, which includes such items as browsers, phonebooks, message

editors, etc; and

e Services and Formats, which include common elements and formats
accessible to user agents such as WMLWMLScript, image formats, vCard and
vCalendar formats, etc.

WAE separates services from user agents and assumes an environment with
multiple user agents. This logical view, however, does not imply or suggest an
implementation. For example, WAE implementations may choose to combine all the
services into a single user agent. Others, on the other hand, may choose to
distribute the services among several user agents. The resulting structure of a WAE
implementation is determined by the design decisions of its implementers and should

be guided by the specific constraints and objectives of the target environment.

Design and Implementation of WAP Gateway -36-

User Agents WML User Agent Other
Apps.
Services

WAP Protocol Stack and Services

Deviee O 7 Services I

3.7.2.1. WAE User Agents

The WML user agent is a fundamental user agent of the WAE. However, WAE is not
limited to a WML user agent. WAE allows the integration of domain-specific user
agents with varying architectures and environments. In particular, a Wireless
Telephony Application (WTA) user agent has been specified as an extension to the
WAE specification for the mobile telephony environments. The WTA extensions
allow authors to access and interact with mobile telephone features (eg, call control)
as well as other applications assumed on the telephones, such as phonebooks and

calendar applications

3.7.2.2. WAE Services and Formats

The WAE Services and Formats layer includes the bulk of technical contribution of

the WAE effort. The following section provides an overview of the major components

Design and Implementation of WAP Gateway -37-

of WAE including the Wireless Markup Language (WML), the Wireless Markup
Scripting language (WMLScript), WAE applications and WAE supported content

formats.

3.7.3. WML

WML is a tag-based document language. In particular, it is an application of a
generalized mark-up language. WML shares a heritage with the WWW's
HTML[HTML4] and Handheld Device Markup Language [HDMLZ2]. WML is specified
as an XML [XML] document type. It is optimized for specifying presentation and user
interaction on limited capability devices such as telephones and other wireless
mobile terminals. WML and its supporting environment were designed with certain
small narrow-band device constraints in mind including small displays, limited user-
input facilities, narrow band network connections, limited memory resources and
limited computational resources. Given the wide and varying range of terminals
targeted by WAP, considerable effort was put into the proper distribution of

presentation responsibility between the author and the browser implementation.

WML is based on a subset of HDML version 2.0 [HDML2]. WML changes some
elements adopted from HDML and introduces new elements, some of which have
been modeled on similar elements in HTML. The resulting WML implements a card
and deck metaphor. It contains constructs allowing the application to specify
documents made up of multiple cards. An interaction with the user is described in a
set of cards, which can be grouped together into a document (commonly referred to
as a deck). Logically, a user navigates through a set of WML cards. The user
navigates to a card, reviews its contents may enter requested information, may make
choices, and then moves on to another card. Instructions imbedded within cards may
invoke services on origin servers as needed by the particular interaction. Decks are
fetched from origin servers as needed. WML decks can be stored in ‘static’ files on
an origin server, or they can be dynamically generated by a content generator
running on an origin server. Each card, in a deck, contains a specification for a

particular user interaction.

Design and Implementation of WAP Gateway -38-

WAE has been designed using the Internet and the World Wide Web as its main
template. When designing WML the designers chose to make it a subset of XML
(eXtensible Markup Language). The main reason was that the data would be easier
separated from the markup tags and it would also be easier to generate WML cards,
for instance from data extracted from a database. In an XML document a tag must
have an ending tag. Between the two tags one may introduce other tag-pairs. This
way an XML document may be considered being a tree and information is extracted
by just traversing the tree. XML specification only specifies how XML tags shall be
used but not which tags you should use. To construct a language using XML tags
one must define which tags one want to use and exactly specify which attributes the
authors may use. This is done by including a document type declaration (DTD) into
the XML document.

WML doesn't specify how implementations (e.g. cellular phones) request input from
a user. Instead it specifies the intent in an abstract way. The language is man-
machine interface independent and it's up to the vendors to make their own
interface. WML supports UNICODE characters making it possible to display

information in almost any language.

Although WML has limited capabilities when compared to HTML, it has never the
less a wide range of features.

3.7.3.1. Support for Text

When including text in a card , the programmer can use emphasis elements .One
should remember however that the features each browser implements may vary and

some do not support tables.

3.7.3.2. Support for Images

A new format has been created for displaying images called WBMP . Images

compliant with this new standard are currently black and white.

Design and Implementation of WAP Gateway -39-

3.7.3.3. Navigation and History Stack

Common navigation and history functionalities are also included.

3.7.4. WMLSCRIPT

On the World Wide Web, JavaScripts are widely used to produce web pages with
more intelligence”. For instance, a form may be checked to see if the input is
formatted correctly or one can make a small computation by clicking at a hyperlink.
WAE defines it's own scripting language called WMLScript. WMLScript is a weakly
typed scripting language and it's based entirely on JavaScript. By supplying a
scripting language WAE applications may use procedural logic in the WML decks
they produce and also let the interaction between the client and the server be based
on events. As WML, WMLScript supports UNICODE and international characters.
WMLScript provides the application programmer with a variety of interesting

capabilities:

e The ability to check the validity of user input before it is sent to the content

server.
e The ability to access device facilities and peripherals.

e The ability to interact with the user without introducing round-trips to the origin

server (eg, display an error message).

WMLScript supports several categories of operations such as assignment
operations, arithmetic operations, logical operations and comparison operations.
WNMLScript supports several categories of functions including Local script functions
(i.e., script functions defined inside the same script that the calling expression is in),
External script functions (i.e., script functions defined in another script not containing
the calling expression) and Standard library functions (i.e., functions defined in a
library that is part of the WAE specification.) WMLScript defines several standard
libraries including a language library, a string library, a browser library, a floating

point library and a dialog library.

Design and Implementation of WAP Gateway -40 -

3.7.5. Wireless Binary XML

One important task of the WAP Gateway is to reduce the amount of data sent over
the air. If an XML document is sent to a WAP client, the document is compiled into a
compact binary form of XML named Wireless Binary XML (WBXML). This
compilation is basically done by replacing the WML tags with one-byte tokens and
removing all comments from the document. A special case of an XML document is a
WML deck. The deck is compiled into a binary representation by the gateway before

being sent to the WAP client.

3.7.6. Wireless Telephony Application

WTA is a collection of telephony specific extensions for call and feature control
mechanisms that make advanced Mobile Network Services available to authors and
end-users. WTA merges the features and services of data networks with the services
of voice networks. It introduces mechanisms that ensure secure access to important
resources within mobile devices. The WTA framework allows real-time processing of
events important to the end-user while browsing. Within the WTA framework, the
client and server co-ordinate the set of rules that govern event handling via an event
table. WTA origin servers can adjust the client’s rules by pushing (or updating) a

client’s event table if required as defined in WTA.
The Wireless Telephony Application Framework has four main goals:

e Enable Network Operators to provide advanced telephony services that are

well integrated and have consistent user interfaces.

e Enable Network Operators to create customized content to increase demands

and accessibility for various services in their Networks.

Design and Implementation of WAP Gateway -41 -

e Enable Network Operators to reach a wider range of devices by leveraging
generic WAE features that allow the operator to create content independent of

device specific characteristics and environments.

e - Enable third party developers to create network-independent content that
access basic features (i.e., non-privileged). Most of the WTA functionality is
reserved for the Network Operators, as in-depth knowledge and access to the
mobile network are needed to fully take advantage of the mobile network’s

features.

Wireless Telephony Application (WTA) is an application framework for telephony
services. WTA user agents are able to make calls and edit the phone book by calling
special WMLScript functions or by accessing special URLs. This way, if one writes
WML decks containing names of people and their phone numbers you may add
them to your phone book or call them right away just by clicking the appropriate

hyperlink on the screen.

The WTA framework also includes WTA servers. A WTA server can be thought of as
a web server with the ability to interact with the mobile network and other entities
(e.g. a voice mail system). The services on a WTA server are addressed by URLSs.
For instance, one could write an URL which tells the WTA server to contact the voice
mail system and allows users to listen to their voice mail. WTA uses a WSP session,
which is called the WTA session for communication between the client and the

server. A WTA user-agent may have one or many WTA sessions simultaneously.

3.8. Session Layer

The session layer protocol of the WAP suit is called the Wireless Session Protocol
(WSP) and is defined in Wireless Session Protocol Specification. WSP also includes
some features not included in the HTTP protocol. These features are there because
of the mobile nature of the WAP clients. For example, a client, e.g. a mobile phone,

should not loose its connection to the server when it changes base stations.

Design and Implementation of WAP Gateway -42 -

WSP (Wireless session Protocol) supplies methods for the organized exchange Of
content between client /server applications. The Session layer protocol family in the
WAP architecture is called the Wireless Session Protocol, WSP. WSP provides the
upper-level application layer of WAP with a consistent interface for two session
services. The first is a connection-mode service that operates above a transaction
layer protocol WTP, and the second is a connectionless service that operates above
a secure or non-secure datagram transport service. The Wireless Session Protocols
currently offer services most suited for browsing applications (WSP/B). WSP/B
provides HTTP 1.1 functionality and incorporates new features such as long-lived
sessions, a common facility for data push, capability negotiation and session
suspend/resume. The protocols in the WSP family are optimized for low-bandwidth

bearer networks with relatively long latency.

3.8.1. Basic Types & Functionality

The core of the WSP/B design is a binary form of HTTP. Consequently the requests
sent to a server and responses going to a client may include both headers (meta-
information) and data. All the methods defined by HTTP/1.1 are supported. In
addition, capability negotiation can be used to agree on a set of extended request

methods, so that full compatibility to HTTP/1.1 applications can be retained.

WSP/B provides typed data transfer for the application layer. The HTTP/1.1 content
headers are used to define content type, character set encoding, languages, etc, in
an extensible manner. However, compact binary encodings are defined for the well-
known headers to reduce protocol overhead. WSP/B also specifies a compact
composite data format that provides content headers for each component within the
composite data object. This is a semantically equivalent binary form of the MIME

“multipart/mixed” format used by HTTP/1.1.

WSP/B itself does not interpret the header information in requests and replies. As
part of the session creation process, request and reply headers that remain constant

over the life of the session can be exchanged between service users in the client and

Design and Implementation of WAP Gateway -43 -

the server. These may include acceptable content types, character sets, languages,
device capabilities and other static parameters. WSP/B will pass through client and
server session headers as well as request and response headers without additions

or removals.

The lifecycle of a WSP/B session is not tied to the underlying transport. A session
can be suspended while the session is idle to free up network resources or save
battery. A lightweight session re-establishment protocol allows the session to be
resumed without the overhead of full-blown session establishment. A session may

be resumed over a different bearer network.

The Wireless Session Protocol enables services to exchange data between

applications in an organized way. It includes two different protocols.

1. Connection oriented session services — operates over Wireless Transaction
Protocol (WTP)

2. Connectionless Session Services- operates directly over the Wireless
Transport Layer

Session Services are those functionalities that help to set up a connection between a
client and a server. A service is delivered through the use of primitives it provides.
Primitives are defined messages a client sends to the server to request a service
facility. In WSP, for example one of the primitives is S-connect in which we can

request the creation of a connection to the server.

The connection oriented session service provides faciliies used to manage a
session and to transmit reliable data between the client and the connection oriented
session service provides facilities used to manage a session and to transmit
reliable data between a client and a server .The session created can be then
suspended and resumed later if the transmission of data becomes impossible also
when the push technology takes off unsolicited data can be pushed from the server
to the client in confirmed or unconfirmed way .In confirmed push the server is

notified upon reception of the pushed data by the client

Design and Implementation of WAP Gateway -44 -

In unconfirmed push the server is not notified of the reception of the pushed data.
Most of the facilities provided by the connection oriented session service are
confirmed , meaning that the client can send request primitives and receive confirm
primitives and the server can send Response primitive and receive Indication

primitives.

The connectionless session service provides only non confirmed services; in
particular only unreliable method invocation (asking the server to execute an
operation and return a result) and unconfirmed push are available. In this case
clients can only use the Request primitive and servers are only able to use the

indication primitive.

To start a new session the client invokes a WSP primitive that provides some
parameters, such as the server address, the client address and the headers. These
can be linked to the HTTP client headers and can for example be used by the server

to retrieve the type of user agent within the wap client.

In some respects WSP is basically a binary form of HTTP. As previously mentioned
the binary transmission of data between a server and the client is an essential

adaptation made for the narrow bandwidth mobile network.

The WAP Session Protocol/B, WSP/B, is a stateless, binary protocol patterned after
the HTTP World Wide Web protocol. It consists of a simple request-response
pairing. WSP/B contains fields that describe the contents, origin, and types of the
request or response contents. There is a one to one correspondence with a subset
of the HTTP 1.1 fields. No state information is maintained between requests. WSP
uses the WAP Datagram protocol directly for communication with WAP clients.

WSP/B is sometimes called WAP connectionless mode.

The WAP Session Protocol, WSP, is a session oriented, stateful binary protocol
used in conjunction with WTP. WSP is a superset of WSP/B and uses the same
fields of information. WSP also defines additional protocol formats to support
sessions initiation, suspension, and resumption and to maintain session state
information. A session is initiated by a WAP client and is maintained until it is

explicitly disconnected. WSP sessions can be suspended and resumed and can

Design and Implementation of WAP Gateway -45 -

even switch WDP bearers mid-stream. All WSP information is exchanged using the

WAP Transaction Protocol.

3.9. Transaction Layer

WTP (Wireless Transaction Protocol) provides different methods for performing
transaction, to a varying degree of reliability. The Wireless Transaction Protocol
(WTP) runs on top of a datagram service and provides as a light-weight transaction-
oriented protocol that is suitable for implementation in “thin” clients (mobile stations).
WTP operates efficiently over secure or non-secure wireless datagram networks and
provides the following features:
Three classes of transaction service:

e Unreliable one-way requests,

¢ Reliable one-way requests, and

¢ Reliable two-way request-reply transactions;

WTP, as all the other layers in WAP, is optimized to adapt to the small bandwidth of
the radio interface, trying to reduce the total amount of replayed transactions

between the client and the server.

In particular, three different classes of transaction services are supplied to the upper

layers:

e Unreliable requests
e Reliable requests

e Reliable requests with one result message

3.9.1. Unreliable requests

The initiator in this case a content server sends a request to the responder (the user
agent) who does not reply with an acknowledgement. The transaction has no state

and terminates once the invoked message is sent.

Design and Implementation of WAP Gateway -46 -

3.9.2. Reliable Requests

The Initiator sends a request to the responder (the user agent) who acknowledges it.
The responder stores the transaction state information for some so that it can

retransmit the acknowledgement message if the server request again.

3.9.3. Reliable Request with One Result Message

The initiator sends a request to the responder who implicitly acknowledges it with a
result message, maintaining the transaction state information for some time after the
acknowledgement has been sent, in case it fails to arrive .The transaction ends at

the responder when it receives the acknowledgement message.

WTP is designed to run on top of a datagram protocol, e.g. WDP Datagrams are
unreliable and to be able to provide a reliable service WTP uses techniques utilizing
retransmission after timeouts and acknowledgement of messages. To be able to
spot duplicate messages, WTP uses a transaction identifier (TID) in every message.
The TID is used to associate a packet with a particular transaction. The TID is
cached at the receiver and if a TID with an equal or lower number than the cached
TID is received, the message MAY be a duplicate. It may also be a re-transmitted
message which was lost earlier. The receiver is able to ask the sender if the TID is
valid or not. WTP uses a primitive error handling. If an error occurs (eg. the

connection is broken) the transaction is aborted.

3.10. Security Layer

WTLS (Wireless Transport Layer Security) is an optional layer that provides
when present ,authentication , privacy and secure connections between

applications.

WTLS is a security protocol based upon the industry-standard Transport Layer

Security (TLS) protocol, formerly known as Secure Sockets Layer (SSL). WTLS is

Design and Implementation of WAP Gateway -47 -

intended for use with the WAP transport protocols and has been optimized for use

over narrow-band communication channels. WTLS provides the following features:

Data integrity — WTLS contains facilities to ensure that data sent between the

terminal and an application server is unchanged and uncorrupted.

e Privacy — WTLS contains facilities to ensures that data transmitted between
the terminal and an application server is private and cannot be understood by

any intermediate parties that may have intercepted the datastream.

e Authentication — WTLS contains facilities to establish the authenticity of the

terminal and application server.

e Denial-of-service protection — WTLS contains facilities for detecting and
rejecting data that is replayed or not successfully verified. WTLS makes many
typical denial-of-service attacks harder to accomplish and protects the upper

protocol layers.

The WAP Transaction Layer Security, WTLS, is a session oriented, secure protocol
layer patterned after the web's Secure Session Layer (SSL) and Transaction Layer
Security (TLS) protocols. The WTLS layer is optional and is independent of the
layers above and below it. One unique feature of WTLS is the ability of both client
and server to independently recalculate encryption key information based on an
embedded sequence number. WTLS is thus optimized to minimize information
exchange between client and server. There are three levels of WTLS secure
sessions. Level one is anonymous encryption where neither client nor server is
authenticated. Level two supports server certificates where clients authenticate the
server. Level three supports client certificates where the server can authenticate the
client. WTLS supports three certificate types: x.509, WTLS, and x.968. The WTLS
certificate format is unique to WAP and is designed to minimize information transfer.
The x.509 certificate is the same format as that used on the web in SSL and TLS
transactions. And the x.968 format is currently not fully specified, but will be
supported in the future. WTLS is compatible with both WSP/B and WSP with WTP

Design and Implementation of WAP Gateway -48 -

and can is activated as an additional protocol layer between either of these higher

layers and the WDP protocol.

3.11. Transport Layer:

WDP (Wireless Datagram Protocol) is the bottom layer of the Wap stack, which
shelters the upper layers from the bearer services offered by the operator. The WAP
Datagram Protocol, WDP, is a datagram oriented, network layer protocol modeled
after the User Datagram Protocol (UDP) used on the Internet. UDP is a member of
the TCP/IP protocol suite and is a simple, "best effort" data delivery protocol. On
those networks where Internet protocols are present, WDP and UDP are identical.
On networks where UDP is not available, WAP defines a UDP equivalent. These
UDP equivalents are known as "mappings”. The currently defined mappings create
the equivalent of UDP over SMS, USSD, and other mobile data transports. WDP
makes no attempt to confirm delivery, resend lost packets, or correct errors in

transmission. This is left to the higher layer protocols.

Wireless Datagram Protocol
Bearer A Bearer B Bearer C Bearer D
Adaption Adaption Adaption Service

Bearer C
Service
Bearer B
Service
Bearer A
Service
Physical Layer Air Link

Design and Implementation of WAP Gateway -49 -

Rather than specifying a protocol, Wireless Datagram Protocol (WDP) specifies how
different existing bearer services should be used to provide a consistent service to
the upper layers. This is done by adapting the protocol to the underlying bearer as
shown. For e.g. for an IP bearer the WDP specs simply states that as WDP you

must use the UDP protocol from the IP-suite.

The varying heights of each of the bearer services shown in above figure illustrates
the difference in functions provided by the bearers and thus the difference in WDP
protocol necessary to operate over those bearers to maintain the same service
offering at the Transport Service Access Point is accomplished by a bearer

adaptation.

WDP can be mapped onto different bearers, with different characteristics. In order to
optimize the protocol with respect to memory usage and radio transmission
efficiency, the protocol performance over each bearer may vary. However, the WDP
service and service primitives will remain the same, providing a consistent interface

to the higher layers.

3.12. Bearers

The WAP protocols are designed to operate over a variety of different bearer
services, including short message, circuit-switched data, and packet data. The
bearers offer differing levels of quality of service with respect to throughput, error
rate, and delays. The WAP protocols are designed to compensate for or tolerate

these varying levels of service.

Since the WDP layer provides the convergence between the bearer service and the
rest of the WAP stack, the WDP specification [WDP] lists the bearers that are
supported and the techniques used to allow WAP protocols to run over each bearer.
The list of supported bearers will change over time with new bearers being added as

the wireless market evolves.

Design and Implementation of WAP Gateway -50 -

3.13. Services and Applications

The WAP layered architecture enables other services and applications to utilize the
features of the WAP stack through a set of well-defined interfaces. External
applications may access the session, transaction, security and transport layers
directly. The WAP layered architecture enables other services and applications to
utilize the features of the WAP stack through a set of well-defined interfaces.
External applications may access the session, transaction, security and transport
layers directly. This allows the WAP stack to be used for applications and services
not currently specified by WAP, but deemed to be valuable for the wireless market.
For example, applications, such as electronic mail, calendar, phone book, notepad,
and electronic commerce, or services, such as white and yellow pages, may be

developed to use the WAP protocols.

Design and Implementation of WAP Gateway -51-

Chapter 4
WAP Gateway

Design and Implementation of WAP Gateway -52-

4.1. What is a WAP Gateway?

A WAP Gateway forms a bridge between two distinct worlds the internet (or another
IP packet network) and the wireless phone/data network, which are fundamentally

different in their underlying technologies.

Work is currently being done into the convergence of various technologies that will
make life simpler for people who access information .Eventually we may see a day
when a single predominant technology will be used for all types of network,
supporting voice, data and video services .However until then we need solution
specific technologies, like WAP to enable information flow towards users who are

using different access mechanisms.

A wap gateway is basically software that is placed between a network that supports
wap and an IP packet network such as the Internet. It acts as a intermediary that
converts between the protocols of the packet network and the protocols of the wap
network (WSP, WTP, WTLS and WDP). When cellular packet networks, such as
GPRS that can use TCP/IP directly are prevalent, it may make more sense to use
the WAP protocols as its nature is to reduce the data transfer sizes required. In
addition WAP for the moment presumes the use of wml which is geared towards
small screens and low processing power. If on the other hand you use a GPRS
mobile connected to a laptop we can access HTTP and TCP/IP directly to access
information on the internet. Among other things the gateway converts WSP requests

from wireless devices into HTTP requests and vice versa for the HTTP responses.

A WAP gateway can be implemented as a single host or a cluster of servers for load
balancing. However regardless of the implementation it can still be considered as a
single box from a mobile user’s perspective.

The internet is based on the TCP /IP protocol stack, which is suited to wired
networks and quite unsuitable for most types of wireless networks. This is because
TCP is heavyweight transport layer that has high overhead especially during
connection establishment. This is due to the three way handshake mechanism. it

also transmits large amounts of data to handle the possibility of packets arriving in a

Design and Implementation of WAP Gateway -53-

different order to which they ere sent. This could happen if the packets take different

routes in an IP network.

By keeping the Wap communication protocol stack separate from that of the internet,
it is possible to implement WAP for a wide range of wireless bearer networks
(internet protocols are not suitable for such types of networks). This insures bearer’s
independence for all layers of the stack except WDP. Because WDP has to interface
to the upper protocol layers , so it must have a bearer specific implementation . If a
vendor develops the wap protocol stack , WDP is the only layer that must be re
written to support different bearer networks . The WTP layer implements a simple
request-response transaction oriented protocol instead of the three way handshake

connection — establishment mechanism. WTP has been inspired by TCP.

4.2. Functionality of a WAP Gateway

Many of the functions of a wap gateway are optional. Below is a summary of

functions that a gateway carries out.

¢ Implementation of wap protocol stack layers
e Access Control

e Protocol conversion

e Domain Name resolution

e HTML to WML conversion

e Encoding of WML content

e WMLScipt Compilation

e Security

e Caching

Design and Implementation of WAP Gateway -54 -

As the goal of our project was to create Gateway with minimal functionality work

on the following from above were carried out.

¢ Implementation of Wap protocol stack layers
e Protocol conversion

e Encoding of wml content

4.3. Implementation of WAP protocol stack layers

This is the most obvious function of a wap gateway and it contributes to most of the
functionality of a gateway. Depending whether the type of service is connection
oriented or connectionless secure or non-secure the following stack layers need to

be implemented:

e Non —secure Connection oriented WSP WTP WDP
e Secure connection oriented WSP WTP WTLS WDP
e Non —secure Connectionless WSP WDP
e Secure Connectionless WSP WTLS WDP

We have implemented the Non-secure Connectionless service.

4.4. Protocol conversion: WSP <& HTTP

WSP supports complete HTTP functionality. This includes request reply methods (
like GET, POST), request response and entity headers (like “Accept application
/vnd.wap.wml”) a request header that specifies the particular MIME types that a
client can handle) and content negotiation .Content negotiation is the process of
selecting the best representation suited for a client for a given response when there

are multiple representations for the same content available from the server.

Design and Implementation of WAP Gateway -55-

A request Header is a meta information that is sent along with a HTTP request (like
GET or POST requests).Similarly a response header is meta information in a http
response that is sent by the server as a response to a previous HTTP request

As part of the response the server might also send in a entity body depending on the
type of the request. The meta information sent to give more meaning to the entity

body that was sent is known as an entity header.

However, WSP headers are in compact binary tokenized format as defined in the
WSP specification. A token is a group of characters that has a specific meaning
when used together as a string. For example in the Accept header are all string

tokens. A binary token for these would be an octet representation.

Accept: text/plain, text/vnd.wap.wml, text /vnd.wap.wmlscript,

application/vnd.wap.wmlc,application /vnd.wap.wmiscriptc

The above request header indicates to the server that the client can accept content
in any of the above MIME formats, plain text, wml and wmlscipt in plain and compact
form.

Using WSP, the same header is represented as
0x80 0x83 0x88 0x94 0x95

4.5. Comparison between HTTP and WSP

The Wireless Session Protocol is a bigger protocol than the Hypertext Transfer
Protocol. Bigger in the sense that WSP supports more functionality then HTTP does,
e.g. pushing content from the server to the client and multiple simultaneous
asynchronous transactions. This chapter will describe the Hypertext Transfer

Protocol and the method invocation facility in the Wireless Session Protocol.

Design and Implementation of WAP Gateway -56 -

4.5.1. Hypertext Transfer Protocol

The Hypertext Transfer Protocol (HTTP) is a protocol used by web clients and web
servers. It's defined by the document Hypertext Transfer Protocol - HTTP/1.1 . The
protocol is a request-response protocol, which means that the client first makes a
request and then the server answers with a response. A method is supplied in the
request and one can say that the client invokes a method on the server. Each

request or response is called a message and consists of these parts:

1. Firstline
2. Headers
3. Data

The first line determines if the message is a request or a response. The headers that
follow give information about the request/response and also about the data. A
header is one line and it ends with a CRLF sequence. The data part is the
information which is to be sent between the client and server. This part may be

empty if there is no information to be sent.

4.5.1.1. Request

Method Regquest—TTRI | HTTP—versicn

Header 1

Header n

Data [if any)

In a request the first line states which method the client wishes to invoke on the

server. The methods defined in HTTP/1.1 are options, get, head, post, put, delete,

Design and Implementation of WAP Gateway -57-

trace and connect. The first line also contains the URI to a document and the HTTP
version the client is using.

The headers in a request gives the server additional information about it. They could
for instance instruct the server not to send a web page if it hasn't been modified
since a particular date or they could notify the server of which languages the client
(or the user) understands. The data part of the message may be omitted if there is
no information to be sent to the server. The only methods that actually have a data
part are POST and PUT. They are used to send information or upload files to the

server.

4.5.1.2. Response

The first line of a response states which version of HTTP the web server is using. It
also contains a status code stating either the request has been fulfilled or what type
of error the server encountered while trying to fulfill the request. The status code

comes with a small reason phrase which describes the status code.

HITF—version| Stamscode |Reasonphrass

Header 1

Header n

Data (if any)

The response also includes headers. These headers contain important information
about the data within the message, for instance a header describing how the content
should be interpreted (e.g. if the contents should be interpreted as HTML text, a GIF

image or some other data). Almost all responses contain some data intended for the

Design and Implementation of WAP Gateway -58-

client. If there is an error, most web servers send a HTML page describing this error

and most web browsers display this page to the user.

4.5.2. WSP Method Invocation

The method invocation facility in the WSP protocol is designed to give the same
functionality as the HTTP protocol, but with a shorter syntax. Headers in HTTP are
ASCII lines ending with CRLF. The WSP protocol does not have a special mark to
distinguish between headers. Instead, the specification assigns a byte number to
each header present in HTTP. The specification also assigns small byte sequences
for the values or rules to encode the values of the HTTP headers. If a HTTP header
is not to be found in the WSP specification, the header is considered to be an

application header and is sent in plain text.

4.5.2.1. Request

WSP uses a PDU with the code for Get in the type field to make a request. Following
the type, there is an integer, URILen, stating how long the URI is and after the URILen,
the URI itself. The headers in a Get consist of encoded HTTP headers and
application specific headers and reach until the end of the PDU. Figure shows a

picture of a Get PDU (omitting the transaction id at the beginning).

Get URIlen | URL Headers

4.5.2.2. Reply

When the server has gotten a request, it will answer with a reply. The reply contains
the same information as a HTTP response. Right after the type field, there is a
Status code byte, which is an encoding of the HTTP status code. The reason phrase

is not sent in a WSP reply since it is redundant. An integer, HeadersLen, states how

Design and Implementation of WAP Gateway -59-

much space (in bytes) the encoded headers will occupy in the PDU. The fist header
in the reply must be the ContentType header. This header tells the client how to
interpret the data. After the ContentType header, all other headers follow. The
headers are followed by the data begins which reaches until the end of the PDU.

Figure shows a picture of a Reply PDU (omitting the transaction id).

Reply | Status | HeadersLen |ContentType | Headers Data

4.6. Encoding of WML Content

WML content coming from the internet or another provider —is encoded into a
compact binary form at the gateway before it is sent to the wireless device. This
process is known as tokenization. During the process the gateway also performs
checks to verify that the wml content has no errors and is well formed .(Because
WML is an XML language , it has to comply with the well formedness of XML , the
rules set out to define correctly formed XML.. In this case where the verification fails

the gateway sends an error indication to the user agent on the wireless device.

Design and Implementation of WAP Gateway -60 -

Chapter 5
JAVA as a Language

Design and Implementation of WAP Gateway -61-

5.1 What Is Java?

Java can be thought of composed of two things: a programming language and a

platform.

5.2 Java as Programming Language
Java is a high-level programming language that is all of the following:

Simple Architecture-neutral
Object-oriented Portable

Distributed High-performance
Interpreted Multithreaded
Robust Dynamic

Secure

Java is also unusual in that each Java program is both compiled and interpreted.
With a compiler, you translate a Java program into an intermediate language called
Java bytecodes--the platform-independent codes interpreted by the Java interpreter.
With an interpreter, each Java bytecode instruction is parsed and run on the
computer. Compilation happens just once; interpretation occurs each time the

program is executed.

Interpreter

fa
% Il Program

Campiler

This figure illustrates how this works.

Design and Implementation of WAP Gateway -62 -

You can think of Java bytecodes as the machine code instructions for the Java
Virtual Machine (Java VM). Every Java interpreter, whether it's a Java development
tool or a Web browser that can run Java applets, is an implementation of the Java

VM. The Java VM can also be implemented in hardware.

Java bytecodes help make "write once, run anywhere" possible. You can compile
your Java program into bytecodes on any platform that has a Java compiler. The
bytecodes can then be run on any implementation of the Java VM. For example, the
same Java program can run on Windows NT,

Solaris, and Macintosh.

Interpreter Interpreter Interpreter

= EJ % |
PC-Compatible

) Power Macintosh
Windows NT Sun Ultra Solaris

System 8

5.3 Java as Platform

A platform is the hardware or software environment in which a program runs. The
Java platform differs from most other platforms in that it's a software-only platform
that runs on top of other, hardware-based platforms. Most other platforms are

described as a combination of hardware and operating system.
The Java platform has two components:
e The Java Virtual Machine (Java VM)

e The Java Application Programming Interface (Java API)

Design and Implementation of WAP Gateway -63-

JVM stands for Java virtual machine .It's the base for the Java platform and is ported
onto various hardware-based platforms.

The Java APl is a large collection of ready-made software components that provide
many useful capabilities, such as graphical user interface (GUI) widgets. The Java
API is grouped into libraries (packages) of related components. The next section,
highlights each area of functionality provided by the packages in the Java API.

The following figure depicts a Java program, such as an application or applet, that's
running on the Java platform. As the figure shows, the Java API and Virtual Machine

insulates the Java program from hardware dependencies.

Java Program

Jawa AP Java
Java virtual Machine Flatform

Hardware-Based Flatform

As a platform-independent environment, Java can be a bit slower than native code.
However, smart compilers, well-tuned interpreters, and just-in-time bytecode
compilers can bring Java's performance close to that of native code without
threatening portability.

5.4 What Can Java Do?

Probably the most well-known Java programs are Java applets. An applet is a
Java program that adheres to certain conventions that allow it to run within a
Java-enabled browser. At the beginning of this trail is an applet that displays an

animation of Java's mascot, Duke, waving at you.

Design and Implementation of WAP Gateway -64 -

However, Java is not just for writing cute, entertaining applets for the World Wide
Web ("Web"). Java is a general-purpose, high-level programming language and a
powerful software platform. Using the generous Java API, you can write many

types of programs.

The most common types of programs are probably applets and applications,
where a Java application is a standalone program that runs directly on the Java
platform. A special kind of application known as a server serves and supports
clients on a network. Examples of servers include Web servers, proxy servers,
mail servers, print servers, and boot servers. Another specialized program is a
servlet. Servlets are similar to applets in that they are runtime extensions of
applications. Instead of working in browsers, though, servlets run within Java

servers, configuring or tailoring the server.

How does the Java API support all of these kinds of programs? With packages of
software components that provide a wide range of functionality. The core API is
the API included in every full implementation of the Java platform. The core API

gives you the following features:

e The Essentials: Objects, strings, threads, numbers, input and output, data

structures, system properties, date and time, and so on.
e Applets: The set of conventions used by Java applets.
e Networking: URLs, TCP and UDP sockets, and IP addresses.

e Internationalization: Help for writing programs that can be localized for
users worldwide. Programs can automatically adapt to specific locales and

be displayed in the appropriate language.

e Security: Both low-level and high-level, including electronic signatures,

public/private key management, access control, and certificates.

Design and Implementation of WAP Gateway -65-

Software components: Known as JavaBeans, can plug into existing
component architectures such as Microsofts OLE/COM/Active-X

architecture, OpenDoc, and Netscape's Live Connect.

Object serialization: Allows lightweight persistence and communication

via Remote Method Invocation (RMI).

Java Database Connectivity (JDBC): Provides uniform access to a wide

range of relational databases.

Java not only has a core API, but also standard extensions. The standard
extensions define APIs for 3D, servers, collaboration, telephony, speech,

animation, and more.

5.5 Advantages of Java

We can't promise you fame, fortune, or even a job if you learn Java. Still, Java is

likely to make your programs better and requires less effort than other languages.

We believe that Java will help you do the following:

Get started quickly: Although Java is a powerful object-oriented
language, it's easy to learn, especially for programmers already familiar
with C or C++.

Write less code: Comparisons of program metrics (class counts, method
counts, and so on) suggest that a program written in Java can be four

times smaller than the same program in C++.

Write better code: The Java language encourages good coding practices,
and its garbage collection helps you avoid memory leaks. Java's object
orientation, its JavaBeans component architecture, and its wide-ranging,
easily extendible API let you reuse other people's tested code and

introduce fewer bugs.

e Develop programs faster: Your development time may be as much as

twice as fast versus writing the same program in C++. Why? You write

Design and Implementation of WAP Gateway - 66 -

fewer lines of code with Java and Java is a simpler programming language
than C++.

e Avoid platform dependencies with 100% Pure Java: You can keep your
program portable by following the purity tips mentioned throughout this

book and avoiding the use of libraries written in other languages.

e Write once, run anywhere: Because 100% Pure Java programs are
compiled into machine-independent bytecodes, they run consistently on

any Java platform.

e Distribute software more easily: You can upgrade applets easily from a
central server. Applets take advantage of the Java feature of allowing new

classes to be loaded "on the fly," without recompiling the entire program.

Design and Implementation of WAP Gateway -67 -

Chapter 6
Structured Analysis

Design and Implementation of WAP Gateway -68 -

6.1 ENVIRONMENTAL MODEL:

The environmental model defines the boundary between the system and the rest of

the world and consists of 3 different activities:

e A Statement of Purpose
e A Context Diagram

e An Event List

6.1.1. Statement of purpose:

A WAP Gateway is an implementation of wap stack which translates between
protocols in the WAP protocol suite and the TCP/IP protocol suite. The wap gateway

we are going to implement will perform two basic functions:
e It will act as a translator between Wireless Session Protocol (WSP) and
Hypertext Transfer Protocol (HTTP).

e The WAP gateway will also be responsible for the conversion of WML content

into binary format.

6.1.2. Context Diagram:

HTTP REQUEST

WSP REQUEST

A 4

WAP CLIENT WAP GATEWAY WASEEIERVER

A

WSP RESPONSE IN BINARY HTTP RESPONSE

Design and Implementation of WAP Gateway -69 -

6.1.3. Event List

An event list is the list of all the events that are expected out of the system. The

event list for the present system can be stated as follows:

Phone user enters a URL to a specific document.

Phone sends a WSP request to the gateway.

Gateway parses the request.

Gateway sends a HTTP request for the document specified in the URL.
HTTP server answers with a response to the gateway.

Gateway parses the response.

If the content type is WML then the gateway compiles the data into binary
WML.
Gateway sends a WSP reply to the mobile phone.

Mobile phone presents the document to the user.

6.2. Behavioral Model:

The behavioral model describes the required behavior of the insides of the system
necessary to interact successfully with the environment. The behavioral modeling

can be explained using the Data Flow Diagrams.

6.2.1. Data Flow Diagrams:

A data flow diagram (DFD) is a graphical technique that describes information flow
and the transformations that are applied as data move from input to output. Itis a
graphic tool and can be used for system analysis by focusing on the functional

aspect of the system to be developed. That is, it helps answer the two questions

Design and Implementation of WAP Gateway -70 -

"What will the functions of the system accomplish?" and "What are the interactions

between those functions?".

The multiple level DFD'’s for the system are as follows:

6.2.1.1. Level 1 DFD:

The level 1 DFD for the system is as follows:

1.2

REQUEST
HANDLIN

G

14
RESPONS
E
HANDLING

1.5
CONV
TO
BINARY

1.6
BUILD
RESPON
SE

Design and Implementation of WAP Gateway -71-

6.2.1.2. Level 2 DFD (Bubbling of 6.1.1):

The bubbling of the first bubble i.e. (1.1) gives the following result.

1.1.2
CREATE
LISTEN
SOCKET

1.11
CREATE
USER
INTERFACE

v

1.1.3
CREATE
THREAD
POOL

1.1.4
START

THREAD

POOL

A

Design and Implementation of WAP Gateway -72-

6.2.1.3. Level 2 DFD (Bubbling of 6.1.2):

The bubbling of bubble 6.1.2 gives the following DFD at level 2.

1.2.1 1.2.2
SEARCH [ASSIGN

FREE | THREAD
THREAD TO

1.2.3
CREATE PDU
FROM UDP
PACKET

A

Design and Implementation of WAP Gateway -73-

6.2.1.4. Level 3 DFD (Bubbling of 1.2.3):

The further bubbling of process 1.2.3 gives the following result:

1.2.3.2

1.2.3.1
READ . READ PDU
TID TYPE

1.2.3.3
OBTAIN
GET
INFO

1.2.3.4

OBTAIN
POST

INFO

1.2.35
DECODE
HEADER

Design and Implementation of WAP Gateway -74 -

6.2.1.5. Level 4 DFD (Bubbling of 6.1.2.3.3):

Further subdivision of the level 3 bubble i.e. 1.1.3 gives the following:

N

1.2.3.3.2
OBTAIN
URI

1.2.33.1

OBTAIN
URI

LENGTH

1.2.3.3.3
GET
HEADERS

Design and Implementation of WAP Gateway -75-

6.2.1.6. Level 4 DFD (Bubbling of 6.1.2.3.4) :

Further bubbling of level 3 process 1.2.3.4 gives:

1.2.3.4.2
GET

HEADER

LENGTH

1.2.3.4.5 1.23.4.4

GET GET
HEADERS CONTENT
TYPE

Design and Implementation of WAP Gateway -76 -

6.2.1.7. Level 2 DFD (Bubbling of 6.1.3):

The bubbling of level 2 process 1.3 gives further DFD as follows:

1.3.1 1.3.2
GET URL OPEN
CONECTIO

N

1.3.3
SEND
THE DATA

/

Design and Implementation of WAP Gateway =77 -

6.2.1.8. Level 2 DFD (Bubbling of 6.1.4):

The bubbling of the level 1 DFD gives the further DFD as follows:

m 1.4.2
GET

GET

STATUS CONTENT
TYPE

< READ < ADD

) DATA) HEADER
TO PDU

v

Design and Implementation of WAP Gateway -78-

6.2.1.9. Level 2 DFD (Bubbling of 6.1.5):

The further bubbling of level 1 process 1.5 gives the following DFD:

1.5.1 1.5.2
> CHECK IF CHECK
CONTENT CHARSET
WML

1.5.3
COMPILE
TO

BINARY
FORM

A

Design and Implementation of WAP Gateway -79-

Chapter 7
Software Design

Design and Implementation of WAP Gateway -80 -

7.1 Class gateway:

This class is the main class of the project. This class has got various responsibilities
which include the initial display of the information. Creation of the user interface.
Building the datagram socket to listen for the requests. So all the preliminaries of the

gateway are handled by this class.

Class Gateway

Button b;

Process p;

Runtime r;
DatagramSocket sock;
TextArea txa,

Gateway ();

Public static void main (String a []);
Public void send (DatagramPacket);
Public void actionPerformed
(ActionEvent);

7.1.1. DatagramSocket:
This variable is used to create a datagram socket so that the data can be received

and send on that socket.

7.1.2. Gateway ():

This method is the constructor of the class. As this class is called from the main
class of the program so as soon as the program is run, this method create the user

interface.

Design and Implementation of WAP Gateway -81-

7.1.3. main (String args[]):

This method is the main method of the whole program. The program starts from
here. It is responsible for creating DatagramSocket. It also sets up a pool of threads.
As soon as the request is received from the socket it fires up a new thread to handle

the request.

7.1.4. actionPerformed (ActionEvent e):

This method is there because the class extends the ActionListener. This method is

used for various controls on the user interface screen.

7.2 Class RequestHandler:

This class is basically there to serve a single request made by the WAP client. It
creates a PDU from the UDP packet. Sends the request to http server. Gets the

response from the http server and then sends the response back to the WAP client.

Class RequestHandler

Boolean free;
DatagramPacket p;

Public synchronized void run();
Public synchronized void
setPacket(DatagramPacket);

7.2.1. free:

This variable is there for the indication of whether the present thread is free or is
already handling a request. Once a thread is handling a request this variable is set

so as to indicate that a request is already being handled.

Design and Implementation of WAP Gateway -82-

7.2.2. run():

As the request class extends thread so the implementation of run method is a must.
This method is of fundamental importance to all the request handling because it

invokes various other methods to handle the requests.

7.2.3. setPacket():

This method sets the packet by copying the incoming packet into its own variable ‘p’

so that the request can be handled and also starts up the thread.

7.3 Class Http:

This class describes an Http Header with the field name and an array of field values.
The basic function of this class is to encode an http header into a WAP encoded

header. This class has two inner classes as well. These two classes are:

a. private class FieldValue

b. private class StrangeHTTPException

The FieldValue class is there for used by Http class to store field values and
parameters. The other class is used as an exception class, if a code is not present in
the table.

7.3.1. appendToFieldValue(String):

This method appends the extra field value to the field values.

7.3.2. String fieldName():

This method returns the HTTP field name.

Design and Implementation of WAP Gateway -83-

Class Http

private String fName;
private String fValue;

void appendToFieldValue(String);

String fieldName();

String fieldValue();

HTTPHeader(String);

HTTPHeader(String, String);

private ByteVector makeCacheControlValue(String);
private ByteVector makeChallenge(String);

private ByteVector makeCredentials(String);
private byte[] makeqValueBytes(double);

private byte[] qValuel2(double);

private byte[] gValue3(double);

void setValue(String);

private HTTPHeader][] splitListHeader();

private String[] splitString(String str,char separator);
private String[] splitValues(char separator);

private byte[] toExtensionMedia(String str);

private byte[] toQuotedString(String str);
ByteVector toWSP();

7.3.3. String fieldValue():

This method returns the field value at specified index.

7.3.4. HTTPHeader(String):

Constructs and fills in the name and values from a HTTP header. The parameter

String is the HTTP Header to be processed.

7.3.5. HTTPHeader(String, String):

Constructs a HTTP header with the given field name and field value. The first

parameter being the field name and the second being the field value.

Design and Implementation of WAP Gateway -84 -

7.3.6. makeCacheControlValue(String):

The cache control value is one of the header fields and this method is used to

encode that value from the http header.

7.3.7. makeChallenge(String):

Makes a challenge from a header field value. It is also one of the fields in the http

header. This field is used for authorization schemes.

7.3.8. makeCredentials(String):

Credentials is also one of the fields used for authorization or authentication

schemes. This method uses the given field name for making credentials.

7.3.9. makegValueBytes(double):

This method returns byte array ready to be sent. It returns null if gValue is 1.

7.3.10. gValuel2(double):

This method is to be used when encoding g-values with 0, 1 or 2 decimal digits. It

returns an array of bytes containing the codes.

7.3.11. gValue3(double):

The method is used when encoding g-values with 3 decimal digits. It returns an array

of bytes containing the codes.

Design and Implementation of WAP Gateway -85-

7.3.12. setValue(String):

This method sets the field value to the given string value.

7.3.13. splitListHeader():

This method splits a comma separated list of header field values into mutiple

headers.

7.3.14. splitString(String ,char):

Splits a string into substrings using separator to separate them.

7.3.15. toWSP():

Encodes a HTTP Header into WAP encoded header and returns a ByteVector

containing the bytes making up the header.

7.4. Class ThreadPool:

This class is used to hold a pool of threads ready to take care of the incoming
requests. The class keeps of the number of the unused threads at an appropriate
level. The class is responsible for firing of a new thread when a new request comes

in.

Design and Implementation of WAP Gateway -86 -

Class ThreadPool

private Vector threads;
private long interval,

ThreadPool(int, long);
void dispatch(DatagramPacket);
public void run();

7.4.1. ThreadPool(int, long):

Creates a new pool with initialNo of threads indicated.

7.4.2. dispatch(DatagramPacket):

This method dispatches a thread to serve the incoming Datagram packet.

7.4.3. run():

As the class extends the Thread class so the implementation of run() method is a
must. The run method is used to keep track of unused threads and also searches for

the free threads once a request comes in.

7.5. Class HttpDecoder:

This class decodes a vector containing bytes into one HTTPHeader. The request
coming from the WAP client contains a http header but it is encoded in the request.

So this class is used to decode that vector.

Design and Implementation of WAP Gateway -87-

Class HttpDecoder

private final Vector CTL=new Vector(33);

private final Vector CRLF=new Vector(2);
private final Vector CHAR=new Vector(127);
private final Vector separators = new Vector(19);

public Object clone();

HTTPHeader decodeHeader();
public PDU mkPDU();

public int read();

public HttpDecoder(InputStream in);

7.5.1. clone():

This method clones the stream in a certain sense. What it does is produce a new

stream containing all the bytes that this clone contained at the moment.

7.5.2. decodeHeader():

This method creates a HTTPHeader with the contents of the stream.

7.5.3. mKPDU():

This method pops a PDU from the Input stream.

7.5.4. read():

This method overrides read() but throws IOException if there's nothing to be read.

Design and Implementation of WAP Gateway -88-

7.5.5. HttpDecoder(InputStream):

Creates a WAP Input Stream on the InputStream. This method also initializes the
constants CTL, CRLF, CHAR and separators according to the RFC 2616

specifications.

7.6. Class PDU:

This class is responsible to hold a PDU no matter of what kind. There are basically
there types of PDU’s as can be thought of:

1. Get PDU.

2. Post_PDU.

3. Reply_PDU.

Accordingly three subclasses have been defined in the class PDU. So the PDU class

diagram can be shown as follows:

Class PDU
Class Class Class
Post PDU Get_PDU Reply PDU

Design and Implementation of WAP Gateway -89 -

7.5.1 Class Get_PDU:

This class holds a Get_PDU. The Get PDU is used for the HTTP/1.1 GET method.

Class Get_PDU

private Vector headers;
private HttpDecoder in;

GET_PDU(int tid, HttpDecoder in);
Reply_PDU getResponse();

7.5.1.1. Get_PDU:

This method is used to create a Get PDU header from the specified Tid and the
HttpDecoder object. First of all there is URI length. Then comes the URI. Then there

are headers. So in this way the Get PDU is obtained from the given HttpDecoder.

7.5.1.2. getResponse():

This method is there because the class extends the PDU abstract class which has
this abstract method. This method sends the PDU to the remote Http-server and

returns a response_PDU containing the response.

7.5.2. Class Post_ PDU:

This class holds a Post_PDU. A Post PDU is also compliant to the HTTP/1.1
specifications. This PDU is used if the method used by the WAP client is Post type.

Design and Implementation of WAP Gateway -90 -

Class Post_ PDU

private Vector headers;
private byte[] data;

Post_PDU(int tid, HttpDecoder in);
Reply_PDU getResponse();

7.5.2.1. Post_PDU(int, HttpDecoder):

The purpose of this method is exactly the same as that of Get_ PDU() in the
Get_PDU class. It creates a Post PDU. In a Post PDU first there is URI length, then
comes the headers length, then comes the URI, then there is content type and at the

end there are headers.

7.5.2.2. getResponse():

The reason for the existence of this method is due to the same reason as in the
Get_PDU class. Here also it sends the PDU to the http-server and returns a

response PDU that contains the response.

7.5.3. Class Reply PDU:

This class is there to basically handle the response PDU which is to be sent to the
WAP client. When a response comes from the http-server it cannot be sent directly
to the WAP client. First it has to be encoded and then sent. So this class creates the

reply PDU to be sent to client.

Design and Implementation of WAP Gateway -91-

7.5.3.1. Instance Variables:

The instance variables defined in this class are all there in compliance with the

HTTP/1.1 specifications. The response http packet contains all those fields.

7.5.3.2. answerError(int, String):

This method is used when the gateway discovers an error. This method constructs

an answer with the status code as in the answer packet from the http-server.

Class Reply_PDU

private ByteVector status;
private ByteVector hLen;
private ByteVector contType;
private ByteVector headers;
private ByteVector data;

private void answerError(int , String);
byte[] getByteArray();

Reply_PDU(int , HttpURLConnection);
Reply_PDU(int ,int, String);
Reply_PDU getResponse();

int size();

7.5.3.3. getByteArray/():

This method is there because it converts all the fields of the response packet into the
vector arrays. It makes use of the class ByteVector to convert the arrays into

Vectors.

Design and Implementation of WAP Gateway -92 -

7.5.3.4. Reply_PDU(int , HttpURLConnection):

This method creates a Reply PDU header from the specified TID and the
HttpUrlConnection.

7.5.3.5. Reply_PDU(int, int ,String):

It creates a Reply_PDU with the specified startuscode and a textstring. The three

parameters are as follows:
1. Transaction ID

2. HTTP status code
3.String to be displayed on the phone

7.5.3.6. Reply_PDU getResponse():

This method is there because of the reason that this class extends the abstract class
PDU.

7.5.3.7. int size():

This method returns the size of the Reply_PDU in bytes.

Design and Implementation of WAP Gateway -93-

7.6 Class WAPTable:

This class is the super class of all the WAP Tables defined in the package. The class

WAPTable defines the error code which is returned by it.

Class WAPTable

public static final byte ERROR_CODE;

There are seven subclasses of this class. These classes are:

e CharacterSet

e ContentType

e HeaderFields

e lLanguage

e PDUType

e HttpParameters
e StatusCode

Design and Implementation of WAP Gateway -94 -

Class WAPTable

Class StatusCode Class HeaderFields

Class PDUType Class Language

Class ContentType

7.6.1. Class StatusCode:

Class CharacterSet

Class HttpParameters

The status code class contains the information about all Http status codes. This

information has been taken from the WAP WSP specifications and have been

included as appendix at the end of this document.

Design and Implementation of WAP Gateway

-05-

Class StatusCode

private static final int[] HTTP_STATUS_CODE;
private static final String[] STATUS_DESCRIPTION;
private static final byte[] WAP_STATUS_CODE;

static int decode(byte);

static String describe(int status);
static String describe(int status);
static byte encode(int status);

7.6.2. Class HttpParameters:

This class contains the WSP encoding of the HTTP parameters. The information
defined in this class has been taken from the WAP WSP specifications and has also

been included at the end of this document.

Class HttpParameters

private static final byte[] PARAMETER_CODE;
private static final String[] PARAMETER_NAME;

static byte getCode(String name);
static String getName(byte code);

7.6.3. Class CharacterSet:

This class contains the WSP encoding of the IANA MIBEnum values. The
information defined in this class has been taken from the WAP WSP specifications

and has also been included at the end of this document.

Design and Implementation of WAP Gateway -96 -

Class CharacterSet

private static final String[] CARACTER_SET,;
private static final int[] MIBENUM,;

public static int getMIB(String);
public static String getSet(int)

7.6.4. Class ContentType:

This class contains the WSP encoding of the HTTP content types. The information
defined in this class has been taken from the WAP WSP specifications and has also

been included at the end of this document.

Class ContentType

private static final String[] CONTENT_TYPE;
private static final byte[] CONTENT_TYPE_CODE;

static byte getCode(String);
static String getName(byte);

7.6.5. Class Language:

This class contains the WSP encoding of the ISO 639 language assignment. The
information defined in this class has been taken from the WAP WSP specifications

and has also been included at the end of this document.

Design and Implementation of WAP Gateway -97 -

Class Language

private static final String[][] LANGUAGE;
private static final byte[] LANGUAGE_CODE;

static byte getCode(String);
static String getFullName(byte);
static String getName(byte)

7.6.6. Class PDUType:

This class contains the WSP encoding of the Protocol Data Units. The information
defined in this class has been taken from the WAP WSP specifications and has also

been included at the end of this document.

Class PDUType

private static final String[] PDU_NAME;
private static final byte[] PDU_NAME_CODE;

static byte getCode(String);
static String getName(byte)

Design and Implementation of WAP Gateway -98 -

7.7 Class WMLCompiler:

This class is basically responsible for the parsing of WML document. It reads a

WML document and compiles it into WML binary format.

Class WMLCompiler

private static final byte CHILD_BIT;
private static final byte ATTR_BIT;
private static ByteVector wmicVector;
private static String wmlICharset;
private static String wbxmlCharset;

synchronized static public byte[] encode(InputStream , String,
String);

private static ByteVector encodeAttrs(NamedNodeMap);
private static ByteVector encodeAttrValue(String);

private static void encodeTree(Node);

private static void init(String, String);

private static boolean isVarnameChar(char);

private static ByteVector makeText(String);

private static ByteVector makeVariable(String);

7.7.1. encode(InputStream , String, String):

This method encodes a wml document into its binary form. It throws
NotWMLDocumentException if the wml document is not included inside the wml-tag.
It throws WMLCParserException if the parser encounters an error. It returns an array

of bytes containing the binary encoding.

7.7.2. encodeAttrs(NamedNodeMap):

This method encodes the attributes of an element used in the WML document.

Design and Implementation of WAP Gateway -99-

7.7.3. encodeAttrValue(String):

This method encodes a ATTR_VALUE. Corresponding to each attribute there is an
attribute value defined in the WSP specifications. So this method encodes the

attribute value against the given attribute.

7.7.4. encodeTree(Node):

This method encodes a node in the DOM-tree and recursively encodes it's children.

Design and Implementation of WAP Gateway - 100 -

Chapter 8
User Manual

Design and Implementation of WAP Gateway -101 -

In this chapter a detailed discussion regarding the use of the software is given. As
we have implemented the WAP gateway using the Java language, which is platform
independent so there is no constraint regarding the use of the software on any
platform. The only constraint can be imposed by the WAP Browser or the Web
Server. We have tested our applications on Windows 98, Windows 2000, Windows
XP and WINNT. No problems have been encountered as far as the smooth running

of the software is concerned.

8.1. REQUIREMENTS

Our software needs basically two more softwares to complete the WAP environment.

As you already know that a WAP programming consists of three parts:

e WAP client.
o WAP gateway

e Web Server

In our application and demonstration we have used following softwares as WAP

client and Web Server.

WAP Client - Ericsson WAP IDE 3.1
Web Server > LWS2.2.1

8.2. Ericsson WAP IDE 3.1

WaplIDE is a Software Development Kit (SDK) that enables operators, application
developers, or any interested party to develop and test real WAP applications swiftly

and easily. The main functions in WapIDE are:

e The browser simulates a WAP device and allows you to test WAP
applications
on different Ericsson phones.

e The application designer lets you create and test your own WAP applications.

Design and Implementation of WAP Gateway -102 -

e The push initiator sends push messages to the WapIDE browser or a real

terminal.

8.2.1. Browser

The WapIDE browser allows the user to access WML decks and cards using a
Simulated WAP device. The following Ericsson devices are currently supported:

e R320s

e R380s

e R520m
The Chinese versions of these terminals are also indirectly supported since Chinese
characters can be entered from the computer keyboard. The browser can access

content from a web server via a WAP gateway or from a local disk.

R 380 - WaplDE
Flie Yiew Bookmarks Help

P24 Mokile Intermet
ERICS50N =

L|_:|g'n
Slgnllp
Announcerment

Curencies
hdebila ™kt

= NOSS)IEE

8.2.2. Application designer

The WapIDE application designer is a WML editor with which you can design and

test WAP applications. There is also a WMLScript editor for writing and compiling

Design and Implementation of WAP Gateway -103 -

WNMLScript code.
WML, WMLScript, and other files can be managed in projects.
The application designer is integrated with the WapIDE browser so you can easily

test your applications on different devices.

B waniE - uniitiad

File Edi wew Tools Help
et A& (- B@R[F b B E [0 oS dns B sz 1 AsE 4+

- untilad accesghey_01m | teat,_ 0 wmi| disiogs wmis |
E- [tewt_01 el P e
=- [accesskey 01wl eqae el
@ a cardp e sk 1] <!DOCTEPE W i T-¢ OATFOIRIMS/DTD WOL 1.2/ 020

B -5 cand)Link Tollawed]
=9 5 WepIDE SDE WML Applicat Tad ¥owr]
0 | “Emlx
EE br cacd ticles"Accesakeyp L7:
& fext CFLENT

-y anchor <n Keyarl™ =T PLindlmnlink L e
- faxd ey

---# dialnps wmls

htkp: J fwow, ompEorun,

e

< /oardy

T | e e R
f:nq:g et It morked!<hr/>
canchoes
E”_“ﬂﬂ__— CPERUr
claze </anchor>
<P
=]k)
gy B

Row. 7 col B

8.2.3. Push initiator

The WapIDE push initiator is used to create and send push messages to the
WapIDE

browser or a real terminal.

8.3. Using the WapIDE browser

The WapIDE browser is used to view WAP applications. It can be used instead of a
WAP device to access WML decks developed by you or others. It also interprets
WMLScript.

Design and Implementation of WAP Gateway -104 -

The browser can simulate different devices. It also supports applications in
languages with different character sets, such as Chinese.
There are two ways to load content to the browser; from a:

e Local WML file

e Web server via a WAP gateway.

8.3.1. Starting the browser

The browser can be started by selecting:
Programs = Ericsson WapIDE 3. (Browser
from the Windows Start menu.
The window shown on the next page is opened. Initially, the browser starts with the
R520 device and the default home page (a local WML file).
The default gateway is one that is available for external test use at the Ericsson
Developers’ Zone. To change the gateway, refer to Gateway settings.

WaplDF =] EH ||
Flle Wiew Bookmarks Helge— Meno bar

ﬁ @F . .‘—Tcmlh.'lr

e sprogram = 20Files e ®HH——— ocation har

Dhevice

1 Device display

1 Device butions

8.3.2. Setting browser preferences

Selecting Settings from the View menu opens the settings window. There are four

tabs in the window:

Design and Implementation of WAP Gateway - 105 -

Browser

Gateway
Cache

Device-dependent

E-jWaplnF - Sethingz

; ____|:l___

oo
|

i

1 ffil2: el e orme wnle

8.3.3. Gateway settings

Gateway Select the WAP gateway to use from the list. The default gateway is one that
Ericsson provides for external test use (IP address 195.58.110.201). See the Ericsson
Developers’ Zone for more information.

Design and Implementation of WAP Gateway - 106 -

E.jWaplnF - Settingz

way cache | Rs20m.

CaERESaC

fest G 7

- When you add or edit a gateway, the following information can be entered:
Title - An optional description of the gateway. If not specified, the IP address is
used.
IP address - The IP address of the gateway (required).

User ID/Password - Some gateways require a user ID and password.

- Removes the selected gateway. Note that no confirmation window is shown.

Timeout: The number of seconds that WapIDE will wait for a reply from the gateway.

Mode: Use connectionless or connection-oriented sessions.

8.3.4. Accessing an application

Design and Implementation of WAP Gateway - 107 -

Applications are accessed by an URL. To load a URL, you can do one of the
following:
e Type the address in the Location field as a normal Internet URL, e.g.:
http://mobileinternet.ericsson.com
You can also load a local WML-file by typing file://C:/path/file.wml

e Select an URL from the history list for the Location field.
e Select a bookmark.

e Select Load URL from the File menu and type a URL in the same way as

above.

Load LRI =

Load URL:
|h1't|:u:ﬂ'mnhiIeinternetericssnn.cum

il | Cancel | Browse

8.4. CONFIGURING THE WEB SERVER

After the settings for the gateway have been done, the next step is to configure the
web server. For configuring the web server you have to add the MIME types required
for the display of WML files. The MIME type for the WML file is text / vnd.wap.wml.
This information has to be entered in the configuration file of the web server. Now
the web server will be able to understand a WML page and display it.

Design and Implementation of WAP Gateway - 108 -

3 Gefion software - LiteWebSerwver 2.7.1 - Microsoft Internet... E]@@
Fil= Edit e Fawvorites Tools Help |3
@- Back - @ - | Iﬁ X ;\j Ej:l Fersonal Bar ' Search

address [hekp: fflocalhost: S0o0 ~ | Go

>

htt g Ao, gefionsoftvware. com

GEfion SOftwa re infoighgeflonsoftware. com

| LiteWebServer 2.2.1
To test the zervlet execution, cliclk here

To use the adiministration interface, click here

To run the TP demos, click here

@ ‘*3 Local inkransk

Click on the administration interface to set the MIMIE types. It will open another link
as follows:

M LiteWebSerwver 2.2.1 Administration - Main Menu - Microsof... E@@

File Edit Wi Fawarites Taaols Help

@' Back - @ e Iﬂ @ ¥ ;\J D:' Personal Bar ' Search E

address |@ http: fflocalhost: 20920/ admin 25 | o=

LiteWebServer 2.2.1
Administration - Main Menu

Select one of the following finctions:

Clonficure WMIME types
Confioure IWlapping Fules
Clonfioure Servlets
Confimure Sessions
Funtime statistics

Shutdeowmn =1

@ ‘*j Local inktranet

Click on the option Configure MIME types and then add the particular MIME type into
the web server settings.

Design and Implementation of WAP Gateway - 109 -

3 LiteWebServer 2.2.1 Administration - MIME Types - Microsoft Internet Ex... E]@

File Edit ‘Wiew Favarites Tools Help

»

@Back 7 @ = ﬂ Iﬁ ;\J EPersunalBar f.x: Search xl;(' Fawiorites {f}

Address I@ htkp: fflocalhosk: 90907 admin? $mimef=list M Go

e

LiteWebServer 2.2.1 Administration - MIME Types
MINME Type Configuration

Click Add to add a new MIME type definition, 200

Update the MIME type definition or check off Delete to delete a IWIME type. Click Update to apply the

modifications.
* Itext-"[::llain Delste: [
Z: |applicationp-compress Delete: [
it {application/postscript Delste: [
aif Iaudiubc—aiff Delete: [
aif: Iaudiu,‘&c—aiff Deelete: [~|
@ ‘:_4 Local intranet

Now you have done the settings for both the WAP simulator and the Web Server and
you are ready to test the Gateway.

8.5. WORKING OF THE GATEWAY

First of all start the web browser and also start the WAP simulator. Perform all the

settings as described above because they are of most importance.

Design and Implementation of WAP Gateway -110 -

Once the web server is loaded the window appears as follows:

23:3 <} 2882 1 i = log file =specified. Using stderr
23:35:85 2082 1 i Mo port specified. Using 280780

23:35:85 2882 1 i Ho backlog size specified. Using 188
23:35%:85 28821 i = min numhbher of threads specified. Using

23:35%:85% 280821 Ho max number of threads specified. Using

23:35%:-8% 2802 1 info: [examples] Loading adminfcom.gef ionsof twar
-serviet dninfServlet?> with init parameters:= {>
22 23:3 L PET 28821 info: [examples]l admin:= init

BLMon Apr» 22 23:-3 5 PKT 28821 info: [examples]l Loading filedcom.gefionsoftware
-server.serviets lefServlet? with init parametewrs:= {3

[Mon Apy 22 23:35:85 PKT 280621 info: [example=s]l file: init

[Mon Apy 22 23:35:85 PKT 280221 info: [examples]l Loading invoker<com.gefionzof tw
fare _server.serviets. InvokerServlet? with init parameters: {2
B [Mon Apr 22 23:35:85% PHKT 28821 info: [examples]l invoker: init

[Mon Apy 22 23:35:85 PKT 286821 info: [examples]l Loading ssinclude<com.gefionsof
tware .server.servilets _S5IS8ervlet? with init parameters:z 4

[Mon fApyr 22 23:35:85 PKT 28621 info: [examples]l ssinclude: init

[Mon fApr 22 23:35:85 PKT 286821 info: [default]l Property file context.properties
ll does not exist. Default document root and context root are used.
B (Mon Apr 22 23:35:05% PKT 286021 info: [default] Loading admin<com.gefionsoftware
.server.serviets . AdmninServlet? with init parameters: >

[Mon Aprx 22 23:35:8% PKI 28021 info: [default] admin: init

[Mon Aprxr 22 23:35%:85% PKT 28021 info: [defaultl] Loading filefcom.gefionsoftware.
B=crver._.serviets . FileServlet)> with init parameters: {3
l[(Mon Ap:» 22 23:35:85 PKT 286821 info: [defaultl file: init

[Mon Apyr 22 23:35:85 PKT 28021 info: [default]l Loading invoker<com.gefionsoftwal
e _zerver.serviets . InvokerServlet? with init parameters:z {3

[Mon Apy 22 23:35:85 PKT 280221 info: [defaultl invoker: init

[Mon Apy» 22 23:35:85 PKT 28021 i [default] Loading ssincludedcom.gefionsoft
fjvare _server.serviets _S5IServlet? wi init parameters: <13

[Mon Apyx» 22 23:35:85 PKT 286021 i [default]l ssinclude: init

[Hongggg 22 23:35:85 PKT 28821 info: LiteWebServer 2_.2.1 started on super—compu
jt-exr-=

Now you start your WAP IDE so that you can view your applications on this
simulator.
Once both have been started you can now start the WAP Gateway. A window will

appear as follows:

AR GATEWYANY

FiMAL DEGREE FROJECT
GC MIKASHIF IQBAL

Pz ALI RASHID

LEC ARIF RAZA
GATEYYAY RLUIMMIMNG O
super-computerg200

Now load the URL from the WAP Simulator and a request will be made to the
Gateway first and then to the web server. Consider the WAP Simulator accessing

the following application.

Design and Implementation of WAP Gateway -111 -

URL TO THE
DOCUMENT

HAS BEEN

R3BOs - WapIDE

Load URL

Load URL:
|hnp:rIIocalhost:BUBUIpage.wm

Ok | Cancel Browse |

£ NOsSsSIIuE

Now the request will go to the web server through the WAP Gateway and the WML

page will be displayed on the simulator window.

R380s - WapIDE

File View Bookmarks Help

&2 H =g

Ihﬂp:Irlocalhust:QDQDIpage.wml REQUESTED

WML PAGE

P4 WAP GATEWAY HAS BEEN
ACCESSED

SYMDICATE
PROJECT SUPERYISOR BY THE

CLIENT
THROUGH
THE
GATEWAY

further links on the web page can be accessed by clicking on the links e.g.

Design and Implementation of WAP Gateway -112 -

R3B0s - WapIDE

File V“iew Bookmarks Help

22 @

ACCESSING
FURTHER

Ihnp Nocalhost9080ipage wml

F A WAP GATEWAY > SYNDICATE
GC M.KASHIF IDBAL
PC ALl RASHID

£ NOS5SDIu3

SOBEY

LINKS IN
THE WML
PAGE

The gateway will continue to display the messages for each request as follows:

EEE WAP GATEWAY

WAP GATEWAY
FINAL DEGREE PROJECT

GG MIKASHIF IQBAL

PC ALl RASHID

LEC ARIF RAZA,

GATEWAY RUNMNIMNG M

super-computer:9z00

Mon Apr 22 2359030 GMT+05:00 2002 Request made from: 127.0
Mon Apr 22 235119 GMT+05:00 2002 Request made from: 127.0
Mon Apr 22 23595583 GMT+05:00 2002 Request made from: 127.0

.01
.01
.01

Tue Apr 23 00:01
Tue Apr 23 00:01
Tue Apr 23 00:02
Tue Apr 23 00:03
Tue Apr 23 00:04
Tue Apr 23 00:04
Tue Apr 23 00:04
Tue Apr 23 00:04

D127
127
127

A8 GMT+05:00 2002 Regquest made from
Aa8 GMT+05:00 2002 Regquest made from
A1 GMT+05:00 2002 Regquest made from
B GMT+05:00 2002 Regquest made from: 127.
3B GMT+05:00 2002 Regquest made from: 127.
A1 GMT+05:00 2002 Request made from: 127.
AEBE GMT+05:00 2002 Request made from: 127

0.0.1
0.0.1
0.0.1
0.0.1
0.0.1
0.0.1
0.0.1
A8 GMT+05:00 2002 Regquest made from: 127.0.0.1

for hitpflocalhost: 90900 page wiml
for hitpflocalhost: 90900 page wiml
for hitpflocalhost9090fericsson_|
for hitpJdflocalhost 90900 rstwml
for hitpJfocalhost9090/abcwml
for hitpfocalhost9090/abc wml
for hitpJdflocalhost 90900 i rstwml
for hitpfocalhost 90900 i rstwml
for hitpJfocalhost 90900 i rstwml
for hitpJdfocalhost 90900 rstwml
for httpJdfocalhost 90900 i rstwml

If you have to close the application you just click on the SHUT DOWN button and the

Gateway will

be closed.

Design and Implementation of WAP Gateway

-113 -

Chapter 9
Summary and Future Recommendations

Design and Implementation of WAP Gateway -114 -

9.1. SUMMARY

The goal of our project was to build a WAP gateway in Java. The code is to be
compliant with Java 1.1, because it is the most widespread Java platform of the
available platforms.

The WAP protocol suite is available in several versions. The one implemented in
mobile phones today is WAP 1.1 and to be able to communicate with the gateway
from a real phone we had to use version 1.1 of WAP in our gateway.

We have implemented the connectionless part of the Wireless session protocol.
We have tested our application on Windows 98, Windows 2000, Windows XP and as
such no problem has been encountered by us.

Our project was basically a simulation of the WAP Environment in which we have
used the IP network as a bearer network. The actual environment of the WAP
Gateway is using the GSM network as a bearer network and using a WAP enabled
mobile phone. As at present no mobile operator is providing the facility of WAP so
we were unable to test our application on the actual phone.

We have also created various applications for the demonstration of the gateway
working. This includes various WML pages with several cards in it so that a clear
picture of how WAP works is obtained.

Apart from that we have also built a servlet which when executes displays a list of

songs and by selecting the song you can listen to mp3 songs.

9.2. RECOMMENDATIONS

On the basis of our study and project work we recommend the following additions,

extensions and improvements to the existing WAP Gateway:

e Connection oriented part of WSP can be implemented.
e HTML to WML conversion can be added.
e Security features can be added to gateway.

e Domain name resolution (DNS) can be added.

Design and Implementation of WAP Gateway -115-

9.3. CONCLUSION

Working on this project gave us a broad perspective about how to carry out a
software project. Going through all stages of software development gave us a deep
insight about the various developmental stages of a project. Moreover WAP was an
entirely new field for us and a research in this field broaden our concepts regarding
mobile communications, mobile devices, various constraints regarding the mobile
communication, HTTP protocol and wireless markup language. It was really
interesting to work min network programming. We have learned a lot after
implementing the project and we can apply all this experience in our future practical

life.

Design and Implementation of WAP Gateway -116 -

Chapter 10
Appendices

Design and Implementation of WAP Gateway -117 -

Appendix A
WSP Specifications

We have used the WAP WSP Specifications for the implementation of the WAP

Gateway. Some of the Table that have been used by us include:

1. For the assignment of well known parameters of the http header following

table from the WSP Specifications have been used.

Table 38. Well-Known Parameter Assignments

Token Assigned Number | Expected BNF Rule for Value
() 0x00 ()-value

Charsel 0x01 Well-known-charset
Level (x02 Version-value

Type 0x03 [nteger-value

Name (x03 Text-string

Filename 0x06 Text-string
Differences 0x07 Field-name

Padding 0x08 Short-integer

Type (when used as parameter of | 0x09 Constrained-encoding
Content-Type: multipart/related)

Start (with multipart/related) (x0A Textstring

Start-info (with multipart/related) | 0x0B Tr:xl-slring

Design and Implementation of WAP Gateway -118 -

2. For the header field name assignment following table have been used.

Table 39. Header Field Name Assignments

Name Assigned Number
Accepl 0x00
Accept-Charset 0x01
Accepl-Encoding 0x02
Accepl-Language 0x03
Accepl-Ranges (x04
Age 0x05
Allow 0x06
Authorization 0x07
(Cache-Control Ox08
Connection 0x09
Content-Base Ox0A
{'.'nnmnl-}":nmdil‘lg 0x0B
(fumunl-i..im&m‘zﬁ: 0x0C
(ﬂ'unmnl-l.l;inglh 0x0D
Content-Location Ox0E
Content-MD3 OxOF
Content-Range 0x10
Content-Type Ox11
Date 0x12
Flag 0x13
Expires Ox14
From Ox15

Design and Implementation of WAP Gateway -119-

3. Following table have been used for the content type assignment of the WAP

WSP values.
Table 40. Content Type Assignments
Content-Type Assigned
Number

" 0x00
text/* 0x01
text/himl (x02
text/plain (0x03
text/x-hdml (x04
text/x-ttml 0x03
text/x-vCalendar 0x06
text/x-vCard 0x07
text/vad. wap.wml 0x08
text/vad. wap.wmlscript 0x09
text/vnd.wap.channel 0x0A
Multipart/* 0x0B
Multipart/mixed 0x0C
Multipart/form-data 0x0D
Multipart/byteranges Ox0E
multipart/alternative 0x0F
application/* 0x10
application/java-vm Ox11
application/x-www-form-urlencoded 0x12
application/x-hdmlc Ox13

Design and Implementation of WAP Gateway -120 -

. Following table have been used for the character set assignment to the

various character sets available.

Table 42. Character Set Assignment Examples

Character set Assigned Number IANA MIBEnum value

bigd 0x07EA 2026

180-10646-ucs-2 (x03EX 1000

150-8839- | (x04 4

150-8839-2 0x03 j

180-8839-3 (x06 b

150-8859-4 0x07 1

180-8859-5 (%08 §

150-8839-6 0x(9 9

180-8859-7 (x0A 1)

150-8839-8 (x0B |1

150-8859-9 0x0C 12

shift_JIS Ox11 17

S-aScil 003 3]

utf-§ (x6A 106

| gsm-default-alphabet Not yet assigned Not yel assigned

Design and Implementation of WAP Gateway -121 -

Appendix B
Abbreviations

To make it easier for the reader to find the meaning of an abbreviation this list

gathers all abbreviations used in this document.

e API — Application programming interface

e CGI - Common gateway interface

e HTML — Hyper text markup language

e HTTP — Hyper text transfer protocol

e |P — Internet protocol suite

e |SO OSI - ISO Open System Interconnection
e PDU - Protocol Datagram Unit

e PPP — point to point protocol

e SMS - short message service

e TCP — transmission control protocol

e TID — transaction identifier

e UDP — user datagram protocol

e URI - Uniform Resource Identifier

e WAE - Wireless Application Environment

e WAP - Wireless Application Protocol

e WML — wireless markup language

e WDP — wireless datagram protocol

e WBXML — wireless binary eXtensive Markup Language
e WTP — wireless transaction protocol

e WTLS — wireless transport layer security

Design and Implementation of WAP Gateway -122 -

Design and Implementation of WAP Gateway -123 -

