

VOICE MAILING SYSTEM
(VMS)

Syndicate Members

PC OMAIR ZUBAIR CHAUDHRY

 PC ZUNAIR JAVED BUTT
 NC UMER HASNAIN

Directing Staff (DS)

LT COL AHSEN SAEED ZAIDI

A Dissertation Submitted To

National University of Sciences & Technology

In partial fulfillment of the requirements
For the degree of

Bachelors of Engineering (BE) Computer Software

Department of Computer Science

Military College of Signals
Rawalpindi

April 2002

DECLARATION

“No portion of the work presented in this dissertation has been

submitted in support of another award or qualifications either at this

institution or else where.”

ACKNOWLEDGEMENTS

We could not done this project all on our own. First of all we would

like to thank Almighty Allah for giving us courage, showing us the way and

helping us in every difficulty. We would also like to thank all our teachers

from the 1st semester to the last they all were great and they given us much

knowledge. We would also like to thank all our colleagues and friends and

everyone who wished us luck.

I would like to thank our DS for his great help and guidance. My

group members have been great thanks for sharing the workload with me.

Special thanks to my parents and my two sisters. Also Mehreen for her love

and support.

 Omair Zubair Chaudhry

My sincere gratitude for my parents, colleagues and especially Omair

and Zunair thanks for your help all the way. My special thanks are to Sadia

for her continuous support through out the work.

 Umer Hasnain

I’ll use these few lines for mentioning all those people who have

helped me in every possible way. My parents who have always been real

supportive. Omair and Umer you were a great team to work with. And to

one face that has inspired hope through all these years.

 Zunair Javed Butt

In the end we would like to thank LT COL Ahsen Saeed Zaidi for his

great help and guidance. This project would not have been possible without

him. Thank you sir.

TABLE OF CONTENTS

1. OVERVIEW .. 1

1.1 Purpose of Document ... 1
1.2 Scope of Document .. 1
1.3 Project Description ... 1

2. BACKGROUND ... 3

3. INTRODUCTION .. 4

3.1 Product Perspective(System Model) .. 4
3.2 System Functionality .. 5
3.3 General Constraints ... 5
3.4 Assumptions and Dependencies .. 6

4. SOFTWARE ARCHITECTURE .. 7
4.1 project specifications .. 7
4.2 Class Relation Diagram .. 8
4.3 Sequence Diagrams .. 9
4.4 class hierarchy .. 11
4.5 List of all Member Functions ... 13
4.6 All Classes ... 18

4.6.1 Class VmsGUI ... 19
4.6.2 Class ModTalk ... 25
4.6.3 Class MsgPlayer... 30
4.6.4 Class PortLister .. 31
4.6.5 Class PanelPaint ... 32
4.6.6 Class CheckDB .. 38
4.6.7 Class Pop3Mail .. 41
4.6.8 Class SndTest ... 42
4.6.9 Class ViaSpeak .. 43
4.6.10 Class BuildNum ... 45

5. OVERVIEW OF AT COMMAND ... 47
5.1 VOICE SUBMODES.. 47

5.1.1 Online Voice Command Mode .. 47
5.1.2 Voice Receive Mode .. 48
5.1.3 Voice Transmit Mode .. 49

5.2 VOICE CAPABILITIES .. 50
5.2.1 Call Establishment - Answer ... 50

5.2.1.2 Voice ... 50
5.2.1.3 Fax Capabilities .. 51

5.2.1.4 Data ... 51
5.2.2 Call Establishment - Answer ... 51

5.2.2.1 Voice ... 52
5.2.2.2 Fax capabilities ... 52
5.2.2.3 Data ... 52

5.2.3 Adaptive Answer (Answer with Voice/Data/Fax Discrimination) 53
5.2.3.2 Voice/Fax Discrimination ... 53
5.2.3.3Voice/Data/Fax Discrimination ... 54

5.3 Voice Data Transfer ... 54
5.4 Table Shielded Codes Sent to the DTE .. 55
5.5 Voice Playback ... 56
5.6 Voice Call Termination... 57

5.6.1 Local Disconnect ... 57
5.6.2 Remote Disconnect Detection .. 57

5.7 Mode Switching .. 57
5.7.1 Voice to Fax ... 58
5.7.1.1 Unsuccessful Fax Connection Attempt to Voice 58
5.7.2 Voice to Data ... 58
5.7.2.1 Unsuccessful Data Connection Attempt to Voice 59

5.8 Caller ID .. 59
5.9 AT Voice Command Summary .. 60

5.9.1 Global AT Command Set Extensions .. 60
5.9.2 ATA - Answering In Voice.. 60

5.10 AT#V Commands Enabled Only In Voice Mode (#CLS=8) 66
5.11 Device Types Supported by #VLS ... 67

5.11.1 ASCII Digit Device Type and Considerations .. 67
5.12 S-REGISTERS ... 68
5.13 Result Codes for Voides Operations .. 69

6. OVERVIEW OF JCOMM ... 71
6.1 javax.comm Extension Package .. 71
6.2 Serial Support with javax.comm package .. 73
6.3 Summary ... 73
6.4 Overview of suggested steps for using javax.comm ... 76
6.5 Conclusion ... 78

7. OVERVIEW OF VOICE TRAMSMISSION OVER INTERNET .. 80
7.1 Understanding JMF ... 80

7.1.1 Players .. 81
7.1.1.1 Player States ... 82

7.1.2 Processors .. 83
7.1.3 Processing ... 85

8. TEXT TO SPEECH CONVERSION (using Java) 88
8.1 Importance of Speech Technology ... 88

8.1.1 Desktop .. 89

8.1.2 Telephony Systems .. 90
8.1.3 Personal and Embeded Devices ... 90

8.2 Overview of Java Speech API .. 91
8.2.1 Java Speech Api ... 91
8.2.2 Speech-Enabled Java Applications .. 92
8.2.3 Requirements .. 92

8.3 Speech Engines (JAVAX.SPEECH) .. 94
8.3.1 Speech Engine .. 94
8.3.2 Speaking Text : ... 95
8.3.3 Speech Output Queue ... 96
8.3.4 Monitoring Speech Output .. 97
8.3.5 Synthesizer Properties .. 98

8.3.5.1 Selecting Voices .. 98
8.3.5.2 Property Changes In Jsml ... 99

8.4 Conclusion : .. 100

9. MAIL SERVER (JAVA MAIL API) .. 102
9.1 Introduction ... 102
9.2 The Structure of a Message ... 103

9.2.1 Simple Messages .. 103
9.3 Messages and JavaBeans Activation Framework ... 105

9.3.1 DataSource ... 106
9.3.2 The DataContentHandler ... 106

9.4 Message Storage and Retrieval .. 106
9.4.1 Store ... 107

9.4.1.1 Authentication ... 107
9.4.1.2 Folder Retrieval .. 107

9.4.2 Folders.. 108
9.5 Address .. 109
9.6 Events ... 110
9.7 Conclusion ... 110

CONCLUSION ... 112

FUTURE ENHANCEMENTS ... 113

BIBLIOGRAPHY ... 112

Voice Mailing System Chapter 1 - Overview

 1

1. OVERVIEW

1.1 PURPOSE OF DOCUMENT

The document is meant to provide an insight into our project. This

document contains the data of the complete development and design

background of project. The purpose is to give reader a complete insight of

what and how we have built the software.

 1.2 SCOPE OF DOCUMENT

We have developed this document keeping in view its expected

readers. We have made it as simple as possible but in doing that we have

made no compromises on the technical issues of the product. In short the

document is quite moderate and can be quite well understood.

1.3 PROJECT DESCRIPTION

Keeping in mind the importance and increasing users of emails and

also keeping in mind that all the time we don’t have a PC or a laptop with us

Chapter

1

Voice Mailing System Chapter 1 - Overview

 2

nor everyone has a WAP enabled mobile. So our group decided to build a

software that will enable a user to access his/her email using a simple touch

tone telephone from anywhere around the world.

Voice Mailing System Chapter 2 - Background

 3

2. BACKGROUND

Before starting the project we carried out feasibility study of this

project. We came across a few applications that offer similar kind of

services. But they each had certain constraints like some worked more

properly only in Canada and US. Whereas some required voice messaging

phone for their operation. But we studied and searched a lot and we were

convinced by our research that our project is quite possible.

We came to know that we might require special exchange cards for

our project, which was quite expensive around about Rs.50000/-

 Then we started visiting different exchanges and ISP’s for the

feasibility of this project and finally decided to implement the idea using a

PC having modem. So we started with a rough model and implemented the

idea.

Chapter

2

Voice Mailing System Chapter 3 - Introduction

 4

3. INTRODUCTION

 Nearly everyone these days have an email account. And nearly 2/3

businesses around the world are based on emails. This tells us the

importance of email in our life. These days it has become a necessity for

nearly everyone. But we don’t have computers all the time with us or WAP

mobile so how can we get access to our mails.

 We can use Voice Mailing System (VMS) for this purpose.

3.1 PRODUCT PERSPECTIVE(SYSTEM MODEL)

 VMS is highly interactive and simple software to use. The end user

only needs to call the server which will then establish communication

between the user and the server. Then it will ask the user for PINID. Then

server gets the verification and then gets user emails from the email server

and read the mails one by one to the user.

Chapter

3

Voice Mailing System Chapter 3 - Introduction

 5

 3.2 SYSTEM FUNCTIONALITY

 VMS is a very easy and friendly usage system. Nearly everyone in the

world knows how to operate a telephone so everyone can use our software.

Because in our software the client doesn’t has to be in front of a screen or

something like that.

 The main functions of the software are:

• User calls the server.

• The server establishes communication between itself and client.

• Welcome message along with usage instructions is played.

• User inputs PIN Id through touch-tones.

• Server detects the DTMF tones.

• Verifies the user

• Retrieve mails.

• Read each mail.

3.3 GENERAL CONSTRAINTS

 When we started this project we had a little idea about how we

are going to it. All we knew was that we have to use such a language

that supports real time processing and that can integrate with other

software’s easily.

 Keeping in view all these things we decided to implement the

project using Java because it has all the features what we needed and

Voice Mailing System Chapter 3 - Introduction

 6

we all were quite good imitate server computer must have the

following things to run VMS on it:

• Software Requirements

 JMF, JAVA COMM, JAVA MAIL APIs jar files must be in

class path. IBM via Voice and 1st class mail server must be installed.

• Hardware Requirements

 The server needs to have voice modem installed on it.

3.4 ASSUMPTIONS AND DEPENDENCIES

 The software is developed making the assumption that a caller
knows how to use a simple touch-tone telephone and the caller understands
English.

Voice Mailing System Chapter 4 – Softwae Architechture

 7

 4. SOFTWARE ARCHITECTURE

4.1 PROJECT SPECIFICATIONS

SOFTWARE REQUIREMENTS

• SOFTWARE MODULE ON THE SERVER SIDE.
• TEXT TO SPEECH CONVERTER COMPATABLE WITH JAVA

SPEECH.
• MAIL SERVER COMPATABLE WITH JAVA MAIL.
• JMF
• JCOMM

HARDWARE REQUIREMENTS

• SIMPLE TOUCH-TONE TELEPHONE

• TELEPHONE EXCHANGE CARD (FOR MULTIUSER ONLY)

• FULL DUPLEX VOICE MODEM

• TELEPHONE LINE

Chapter

4

Voice Mailing System Chapter 4 – Softwae Architechture

 8

4.2 CLASS RELATION DIAGRAM

Receiver

Build_Num

Check_DB

POP3Mail

Message_Play

Via_Speak

Via_Speak

Port_list

Control

Display

SOUND
CHECK

MOD TALK

Voice Mailing System Chapter 4 – Softwae Architechture

 9

4.3 SEQUENCE DIAGRAMS

New Call:

Build String:

VMS Mod Talk Reciever

Message: New call

Return: Link
message

Message: Input
tones

Return: Detected

Message: Send
detected tones

Return: Pin ID

Mod Talk Build Num

Voice Mailing System Chapter 4 – Softwae Architechture

 10

Check Pin Id :

Get Mail :

Message: Pin ID

Return: Valid or
Invalid

Return: Message
played

VMS ModTalk CheckDb

Message: Reterive
mails

Return: Mails string

Mod Talk POP3 MAIL

Voice Mailing System Chapter 4 – Softwae Architechture

 11

Speak :

4.4 CLASS HIERARCHY

o class java.lang.Object

o class vms.BuildNum

o class vms.CheckDB

o class java.awt.Component (implements
java.awt.image.ImageObserver, java.awt.MenuContainer,
java.io.Serializable)

o class java.awt.Container

Message: Read Strings

Return:Voice

Return: Voice Mesaage

VMS Mod Talk Via Speak

Voice Mailing System Chapter 4 – Softwae Architechture

 12

o class javax.swing.JComponent (implements
java.io.Serializable)

o class javax.swing.JPanel (implements
javax.accessibility.Accessible)

o class vms.PanelPaint

o class java.awt.Window (implements
javax.accessibility.Accessible)

o class java.awt.Frame (implements
java.awt.MenuContainer)

o class javax.swing.JFrame
(implements
javax.accessibility.Accessible,
javax.swing.RootPaneContainer,
javax.swing.WindowConstants)

o class vms.VmsGUI
(implements
java.awt.event.ActionListener,
java.lang.Runnable)

o class vms.MsgPlayer (implements
javax.media.ControllerListener)

o class vms.Pop3Mail

o class vms.PortLister

o class vms.SndTest

o class java.lang.Thread (implements java.lang.Runnable)

o class vms.ModTalk

o class vms.ModTalk.Responder

o class vms.ViaSpeak

o class vms.ViaSpeak.MyListener (implements
javax.speech.synthesis.SpeakableListener)

Voice Mailing System Chapter 4 – Softwae Architechture

 13

4.5 LIST OF ALL MEMBER FUNCTIONS

A
actionPerformed(ActionEvent) - Method in class vms.VmsGUI

addComp(Component, int, int, int, int) - Method in class vms.VmsGUI
Method used internally for adding GUI components to frame.
alloc() - Method in class vms.ViaSpeak
This method allocates the resources when it is called from the constructor.
__

B
bubs() - Method in class vms.ModTalk
Final clean up method.
buildID(char) - Method in class vms.BuildNum
The method takes as input a character and appends it to a string.
BuildNum - class vms.BuildNum.
Title: Class BuildNum Description: This class collects the character passed
to it and returns a fully built String.
BuildNum(int) - Constructor for class vms.BuildNum
The constructor takes an int as input which is the maximum length of the
string.
__

C
CheckDB - class vms.CheckDB.
Title: Class CheckDB Description: This class takes a user ID and pin code
and verifies it against a database.
CheckDB(String, String) - Constructor for class vms.CheckDB
The input to this constructor is a user id and a pin code.
checkMail() - Method in class vms.Pop3Mail
This method is called from the contructor to carry out the e-mail retrieval
operation.
cleanUp() - Method in class vms.ModTalk
This is an intermediate method to release soem of the resources of the
system.
collector(BuildNum) - Method in class vms.ModTalk

Voice Mailing System Chapter 4 – Softwae Architechture

 14

This method collects the DTMF tone digits punched by the user and returns
a complete string.
controllerUpdate(ControllerEvent) - Method in class vms.MsgPlayer
This method listens for different events of the player.
__

D
deAlloc() - Method in class vms.ViaSpeak
This method de-allocates the resources claimed.
driver() - Method in class vms.ModTalk
This method is basically the starting point of all the activities of the class.
__

G
getCountme() - Method in class vms.CheckDB

getDriver() - Method in class vms.CheckDB

getPassword() - Method in class vms.CheckDB

getRecnum() - Method in class vms.CheckDB

getResultsVector() - Method in class vms.CheckDB

getSql() - Method in class vms.CheckDB

getUrl() - Method in class vms.CheckDB

getUsername() - Method in class vms.CheckDB

__

I
initializer() - Method in class vms.ModTalk
This method initializes various objects for the system.
__

Voice Mailing System Chapter 4 – Softwae Architechture

 15

M
mailReader(String[]) - Method in class vms.ModTalk
It calls the Pop3mail class for retrieving mail of the client/user.
main(String[]) - Static method in class vms.VmsGUI
Main method for starting the VMS system.
makeCn() - Method in class vms.CheckDB
This method makes a connection with the database.
markerReached(SpeakableEvent) - Method in class
vms.ViaSpeak.MyListener

ModTalk - class vms.ModTalk.
Title: Class ModTalk Description: This class basically handles the Modem
comm.
ModTalk.Responder - class vms.ModTalk.Responder.
This internal class accomplishes the task of listening on the modem for the
response() method of class ModTalk
ModTalk.Responder(ModTalk) - Constructor for class
vms.ModTalk.Responder

ModTalk() - Constructor for class vms.ModTalk
This constructor is empty.
ModTalk(String, int) - Constructor for class vms.ModTalk
This constructor takes as input the port name at which the modem is
installed and the max number of retries.
MsgPlayer - class vms.MsgPlayer.
Title: Class MsgPlayer Description: This class is used to play pre-recorded
mesages for the sytem.
MsgPlayer(String) - Constructor for class vms.MsgPlayer
This constructor takes as input the name of the sound file to be played.
msgProvider() - Method in class vms.ModTalk
This method makes available system messages which may be used by a GUI
built for the system.
msgSetter(String) - Method in class vms.ModTalk
It sets the currently generated system message.
__

P
paintComponent(Graphics) - Method in class vms.PanelPaint
Method that actually paints the image.

Voice Mailing System Chapter 4 – Softwae Architechture

 16

PanelPaint - class vms.PanelPaint.
Title: Class PanelPaint Description: This class is simply paints the images
passed to it on a panel.
PanelPaint(ImageIcon) - Constructor for class vms.PanelPaint
The input is an ImageIcon object which is to be painted on a panel.
Pop3Mail - class vms.Pop3Mail.
Title: Class Pop3Mail Description: This class retrieves the e-mails from a
pop3 mail server.
Pop3Mail() - Constructor for class vms.Pop3Mail
This constructor is only for testing.
Pop3Mail(String, String, String) - Constructor for class vms.Pop3Mail
This constructor takes as input the username,password and address of pop3
mail server from which to e-mails are to be retrieved.
PortLister - class vms.PortLister.
Title: Class PortLister Description: This class simply enumerates the Com
ports installed on the system.
PortLister() - Constructor for class vms.PortLister

__

R
response() - Method in class vms.ModTalk
This method listens on the modem for response to the AT commands or
other events.
run() - Method in class vms.VmsGUI

run() - Method in class vms.ModTalk

run() - Method in class vms.ModTalk.Responder

runCmd(String) - Method in class vms.ModTalk
This method takes as input an AT command to run on the modem.
__

S
setDriver(String) - Method in class vms.CheckDB

setPassword(String) - Method in class vms.CheckDB

Voice Mailing System Chapter 4 – Softwae Architechture

 17

setSql(String) - Method in class vms.CheckDB

setUrl(String) - Method in class vms.CheckDB

setUsername(String) - Method in class vms.CheckDB

shutdown() - Method in class vms.ModTalk
It is usually called at shutdown of the system for completly releasing all
claimed resources.
SndTest - class vms.SndTest.
Title: Class SndTest Description: This class puts the sound played on the
modem mixer.
SndTest() - Constructor for class vms.SndTest

speakableCancelled(SpeakableEvent) - Method in class
vms.ViaSpeak.MyListener

speakableEnded(SpeakableEvent) - Method in class
vms.ViaSpeak.MyListener

speakablePaused(SpeakableEvent) - Method in class
vms.ViaSpeak.MyListener

speakableResumed(SpeakableEvent) - Method in class
vms.ViaSpeak.MyListener

speakableStarted(SpeakableEvent) - Method in class
vms.ViaSpeak.MyListener

speakMe(String) - Method in class vms.ViaSpeak
This method passes on to theTTS engine the string to be speech synthesized.
startVms() - Method in class vms.VmsGUI
This method starts the VMS system.
stopVms() - Method in class vms.VmsGUI
This method stops the VMS system.
synStop() - Method in class vms.ViaSpeak
This method stops the current speech synthesizer.
synStopAll() - Method in class vms.ViaSpeak
This method stops all the queued up speech synthesizers.

Voice Mailing System Chapter 4 – Softwae Architechture

 18

__

T
takeEntry() - Method in class vms.ModTalk
This method handles the interaction with the client/user.
topOfQueue(SpeakableEvent) - Method in class
vms.ViaSpeak.MyListener

tryAgain() - Method in class vms.ModTalk
It allows the user to re-attempt identification with the system.
__

V
ViaSpeak - class vms.ViaSpeak.
Title: Class ViaSpeak Description: This class is the implemetation of text to
speech converter.
ViaSpeak.MyListener - class vms.ViaSpeak.MyListener.
This internal class listens for different events on the TTS engine.
ViaSpeak.MyListener(ViaSpeak) - Constructor for class
vms.ViaSpeak.MyListener

ViaSpeak() - Constructor for class vms.ViaSpeak
The construcutor allocates the resources.
vms - package vms

VmsGUI - class vms.VmsGUI.
Title: Class VmsGUI Description: This class provides the GUI for the server
side handling of the VMS system.
VmsGUI() - Constructor for class vms.VmsGUI

__

W
wordStarted(SpeakableEvent) - Method in class
vms.ViaSpeak.MyListener

__

Voice Mailing System Chapter 4 – Softwae Architechture

 19

4.6 ALL CLASSES

4.6.1 Class VmsGUI

java.lang.Object
 |
 +--java.awt.Component
 |
 +--java.awt.Container
 |
 +--java.awt.Window
 |
 +--java.awt.Frame
 |
 +--javax.swing.JFrame
 |
 +--vms.VmsGUI

All Implemented Interfaces:
javax.accessibility.Accessible, java.awt.event.ActionListener,
java.util.EventListener, java.awt.image.ImageObserver,
java.awt.MenuContainer, javax.swing.RootPaneContainer,
java.lang.Runnable, java.io.Serializable, javax.swing.WindowConstants
__

public class VmsGUI
extends javax.swing.JFrame
implements java.awt.event.ActionListener, java.lang.Runnable
Title: Class VmsGUI Description: This class provides the GUI for the server
side handling of the VMS system.

See Also:
Serialized Form

Inner classes inherited from class javax.swing.JFrame

Voice Mailing System Chapter 4 – Softwae Architechture

 20

javax.swing.JFrame.AccessibleJFrame

Inner classes inherited from class java.awt.Frame

java.awt.Frame.AccessibleAWTFrame

Inner classes inherited from class java.awt.Window

java.awt.Window.AccessibleAWTWindow

Inner classes inherited from class java.awt.Container

java.awt.Container.AccessibleAWTContainer

Inner classes inherited from class java.awt.Component

java.awt.Component.AccessibleAWTComponent

Fields inherited from class javax.swing.JFrame

accessibleContext, EXIT_ON_CLOSE, rootPane,
rootPaneCheckingEnabled

Fields inherited from class java.awt.Frame

CROSSHAIR_CURSOR, DEFAULT_CURSOR,
E_RESIZE_CURSOR, HAND_CURSOR, ICONIFIED,
MOVE_CURSOR, N_RESIZE_CURSOR, NE_RESIZE_CURSOR,
NORMAL, NW_RESIZE_CURSOR, S_RESIZE_CURSOR,
SE_RESIZE_CURSOR, SW_RESIZE_CURSOR, TEXT_CURSOR,
W_RESIZE_CURSOR, WAIT_CURSOR

Fields inherited from class java.awt.Component

BOTTOM_ALIGNMENT, CENTER_ALIGNMENT,

Voice Mailing System Chapter 4 – Softwae Architechture

 21

LEFT_ALIGNMENT, RIGHT_ALIGNMENT, TOP_ALIGNMENT

Fields inherited from interface javax.swing.WindowConstants

DISPOSE_ON_CLOSE, DO_NOTHING_ON_CLOSE,
HIDE_ON_CLOSE

Fields inherited from interface java.awt.image.ImageObserver

ABORT, ALLBITS, ERROR, FRAMEBITS, HEIGHT, PROPERTIES,
SOMEBITS, WIDTH

Constructor Summary

VmsGUI()

Method Summary

 void actionPerformed(java.awt.event.ActionEvent e)

 void addComp(java.awt.Component comp, int row, int col, int w,
int h)
 Method used internally for adding GUI components to
frame.

static void main(java.lang.String[] args)
 Main method for starting the VMS system.

 void run()

 void startVms()
 This method starts the VMS system.

 void stopVms()
 This method stops the VMS system.

Voice Mailing System Chapter 4 – Softwae Architechture

 22

Methods inherited from class javax.swing.JFrame

addImpl, createRootPane, frameInit, getAccessibleContext,
getContentPane, getDefaultCloseOperation, getGlassPane,
getJMenuBar, getLayeredPane, getRootPane,
isRootPaneCheckingEnabled, paramString, processKeyEvent,
processWindowEvent, remove, setContentPane,
setDefaultCloseOperation, setGlassPane, setJMenuBar,
setLayeredPane, setLayout, setRootPane,
setRootPaneCheckingEnabled, update

Methods inherited from class java.awt.Frame

addNotify, finalize, getCursorType, getFrames, getIconImage,
getMenuBar, getState, getTitle, isResizable, remove, removeNotify,
setCursor, setIconImage, setMenuBar, setResizable, setState,
setTitle

Methods inherited from class java.awt.Window

addWindowListener, applyResourceBundle, applyResourceBundle,
dispose, getFocusOwner, getGraphicsConfiguration, getInputContext,
getListeners, getLocale, getOwnedWindows, getOwner, getToolkit,
getWarningString, hide, isShowing, pack, postEvent, processEvent,
removeWindowListener, setCursor, show, toBack, toFront

Methods inherited from class java.awt.Container

add, add, add, add, add, addContainerListener, countComponents,
deliverEvent, doLayout, findComponentAt, findComponentAt,
getAlignmentX, getAlignmentY, getComponent, getComponentAt,

Voice Mailing System Chapter 4 – Softwae Architechture

 23

getComponentAt, getComponentCount, getComponents, getInsets,
getLayout, getMaximumSize, getMinimumSize, getPreferredSize,
insets, invalidate, isAncestorOf, layout, list, list, locate, minimumSize,
paint, paintComponents, preferredSize, print, printComponents,
processContainerEvent, remove, removeAll,
removeContainerListener, setFont, validate, validateTree

Methods inherited from class java.awt.Component
action, add, addComponentListener, addFocusListener, addHierarchyBoundsListener,
addHierarchyListener, addInputMethodListener, addKeyListener, addMouseListener,
addMouseMotionListener, addPropertyChangeListener, addPropertyChangeListener, bounds,
checkImage, checkImage, coalesceEvents, contains, contains, createImage, createImage,
disable, disableEvents, dispatchEvent, enable, enable, enableEvents, enableInputMethods,
firePropertyChange, getBackground, getBounds, getBounds, getColorModel,
getComponentOrientation, getCursor, getDropTarget, getFont, getFontMetrics, getForeground,
getGraphics, getHeight, getInputMethodRequests, getLocation, getLocation,
getLocationOnScreen, getName, getParent, getPeer, getSize, getSize, getTreeLock, getWidth,
getX, getY, gotFocus, handleEvent, hasFocus, imageUpdate, inside, isDisplayable,
isDoubleBuffered, isEnabled, isFocusTraversable, isLightweight, isOpaque, isValid, isVisible,
keyDown, keyUp, list, list, list, location, lostFocus, mouseDown, mouseDrag, mouseEnter,
mouseExit, mouseMove, mouseUp, move, nextFocus, paintAll, prepareImage, prepareImage,
printAll, processComponentEvent, processFocusEvent, processHierarchyBoundsEvent,
processHierarchyEvent, processInputMethodEvent, processMouseEvent,
processMouseMotionEvent, removeComponentListener, removeFocusListener,
removeHierarchyBoundsListener, removeHierarchyListener, removeInputMethodListener,
removeKeyListener, removeMouseListener, removeMouseMotionListener,
removePropertyChangeListener, removePropertyChangeListener, repaint, repaint, repaint,
repaint, requestFocus, reshape, resize, resize, setBackground, setBounds, setBounds,
setComponentOrientation, setDropTarget, setEnabled, setForeground, setLocale, setLocation,
setLocation, setName, setSize, setSize, setVisible, show, size, toString, transferFocus

Methods inherited from class java.lang.Object

clone, equals, getClass, hashCode, notify, notifyAll, wait, wait, wait

Voice Mailing System Chapter 4 – Softwae Architechture

 24

Methods inherited from interface java.awt.MenuContainer

getFont, postEvent

Constructor Detail
VmsGUI
public VmsGUI()
Method Detail
run
public void run()

Specified by:
run in interface java.lang.Runnable
__

actionPerformed
public void actionPerformed(java.awt.event.ActionEvent e)

Specified by:
actionPerformed in interface java.awt.event.ActionListener
__
startVms
public void startVms()
This method starts the VMS system. It should not be called directly.
__
stopVms
public void stopVms()
This method stops the VMS system. It should not be called directly.
__
addComp
public void addComp(java.awt.Component comp,
 int row,
 int col,
 int w,
 int h)

Voice Mailing System Chapter 4 – Softwae Architechture

 25

Method used internally for adding GUI components to frame. It should not
be called directly.
__
main
public static void main(java.lang.String[] args)
Main method for starting the VMS system.
__

4.6.2 Class ModTalk

java.lang.Object
 |
 +--java.lang.Thread
 |
 +--vms.ModTalk

All Implemented Interfaces:

java.lang.Runnable
__

public class ModTalk
extends java.lang.Thread
Title: Class ModTalk Description: This class basically handles the Modem
comm. and coordinates the activities for all other classes. This class is the
core of the system.

Inner Class Summary

 clas
s

ModTalk.Responder
 This internal class accomplishes the task of listening on the
modem for the response() method of class ModTalk

Fields inherited from class java.lang.Thread

MAX_PRIORITY, MIN_PRIORITY, NORM_PRIORITY

Constructor Summary

Voice Mailing System Chapter 4 – Softwae Architechture

 26

ModTalk()
 This constructor is empty.

ModTalk(java.lang.String portName, int numtries)
 This constructor takes as input the port name at which the modem is
installed and the max number of retries.

Method Summary

 void bubs()
 Final clean up method.

 void cleanUp()
 This is an intermediate method to release soem of
the resources of the system.

 java.lang.String collector(BuildNum bnum)
 This method collects the DTMF tone digits
punched by the user and returns a complete string.

 void driver()
 This method is basically the starting point of all the
activities of the class.

 void initializer()
 This method initializes various objects for the
system.

 void mailReader(java.lang.String[] mailBox)
 It calls the Pop3mail class for retrieving mail of the
client/user.

 java.lang.String msgProvider()
 This method makes available system messages
which may be used by a GUI built for the system.

 void msgSetter(java.lang.String sysMsg)
 It sets the currently generated system message.

 java.lang.String response()
 This method listens on the modem for response to

Voice Mailing System Chapter 4 – Softwae Architechture

 27

the AT commands or other events.

 void run()

 void runCmd(java.lang.String atCommand)
 This method takes as input an AT command to run
on the modem.

 void shutdown()
 It is usually called at shutdown of the system for
completly releasing all claimed resources.

 void takeEntry()
 This method handles the interaction with the
client/user.

 void tryAgain()
 It allows the user to re-attempt identification with
the system.

Methods inherited from class java.lang.Thread

activeCount, checkAccess, countStackFrames, currentThread,
destroy, dumpStack, enumerate, getContextClassLoader, getName,
getPriority, getThreadGroup, interrupt, interrupted, isAlive, isDaemon,
isInterrupted, join, join, join, resume, setContextClassLoader,
setDaemon, setName, setPriority, sleep, sleep, start, stop, stop,
suspend, toString, yield

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait,
wait, wait

Constructor Detail

Voice Mailing System Chapter 4 – Softwae Architechture

 28

ModTalk
public ModTalk()

This constructor is empty. It does nothing but create a null object
which may be needed for different reasons.

__
ModTalk

public ModTalk(java.lang.String portName,
 int numtries)

This constructor takes as input the port name at which the modem is
installed and the max number of retries.

Method Detail
initializer

public void initializer()
This method initializes various objects for the system. e.g. modem,
setting up the comm. port etc. It should not be called directly.

__
bubs

public void bubs()
Final clean up method. It releases all resources claimed by the system.

__
runCmd

public void runCmd(java.lang.String atCommand)
This method takes as input an AT command to run on the modem.

__
response

public java.lang.String response()
This method listens on the modem for response to the AT commands
or other events.

__
driver

public void driver()
This method is basically the starting point of all the activities of the
class.

__
takeEntry

public void takeEntry()

Voice Mailing System Chapter 4 – Softwae Architechture

 29

This method handles the interaction with the client/user. e.g. taking
input of the user id and pin code.

__
mailReader

public void mailReader(java.lang.String[] mailBox)
It calls the Pop3mail class for retrieving mail of the client/user.

__

tryAgain
public void tryAgain()

It allows the user to re-attempt identification with the system. Also it
keeps track of the the number of retries.

__
cleanUp

public void cleanUp()
This is an intermediate method to release soem of the resources of the
system.

__
collector

public java.lang.String collector(BuildNum bnum)
This method collects the DTMF tone digits punched by the user and
returns a complete string.

__
shutdown

public void shutdown()
It is usually called at shutdown of the system for completly releasing
all claimed resources.

__
run

public void run()
Overrides:
run in class java.lang.Thread

__
msgSetter

public void msgSetter(java.lang.String sysMsg)
It sets the currently generated system message.

__

Voice Mailing System Chapter 4 – Softwae Architechture

 30

msgProvider
public java.lang.String msgProvider()

This method makes available system messages, which may be used by
a GUI built for the system.

__

4.6.3 Class MsgPlayer

java.lang.Object
 |
 +--vms.MsgPlayer

All Implemented Interfaces:

javax.media.ControllerListener

public class MsgPlayer
extends java.lang.Object
implements javax.media.ControllerListener
Title: Class MsgPlayer Description: This class is used to play pre-
recorded mesages for the sytem.

Constructor Summary
MsgPlayer(java.lang.String msgFile)
 This constructor takes as input the name of the sound file to be
played.

Method Summary
 void controllerUpdate(javax.media.ControllerEvent event)

 This method listens for different events of the player.

Methods inherited from class java.lang.Object

Voice Mailing System Chapter 4 – Softwae Architechture

 31

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString,
wait, wait, wait

Constructor Detail

MsgPlayer
public MsgPlayer(java.lang.String msgFile)

This constructor takes as input the name of the sound file to be played.
Method Detail

controllerUpdate
public void controllerUpdate(javax.media.ControllerEvent event)

This method listens for different events of the player.

Specified by:
controllerUpdate in interface javax.media.ControllerListener

__

4.6.4 Class PortLister

java.lang.Object
 |
 +--vms.PortLister

__

public class PortLister
extends java.lang.Object
Title: Class PortLister Description: This class simply enumerates the
Com ports installed on the system.

Constructor Summary
PortLister()

Voice Mailing System Chapter 4 – Softwae Architechture

 32

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString,
wait, wait, wait

Constructor Detail

PortLister
public PortLister()

4.6.5 Class PanelPaint

java.lang.Object
 |
 +--java.awt.Component
 |
 +--java.awt.Container
 |
 +--javax.swing.JComponent
 |
 +--javax.swing.JPanel
 |
 +--vms.PanelPaint

All Implemented Interfaces:

javax.accessibility.Accessible, java.awt.image.ImageObserver,
java.awt.MenuContainer, java.io.Serializable

public class PanelPaint
extends javax.swing.JPanel
Title: Class PanelPaint Description: This class is simply paints the
images passed to it on a panel. This image painted panel may be
used to display on a GUI.

Voice Mailing System Chapter 4 – Softwae Architechture

 33

See Also:

Serialized Form

Inner classes inherited from class javax.swing.JPanel

javax.swing.JPanel.AccessibleJPanel

Inner classes inherited from class javax.swing.JComponent
javax.swing.JComponent.AccessibleJComponent

Inner classes inherited from class java.awt.Container

java.awt.Container.AccessibleAWTContainer

Inner classes inherited from class java.awt.Component

java.awt.Component.AccessibleAWTComponent

Fields inherited from class javax.swing.JComponent

accessibleContext, listenerList, TOOL_TIP_TEXT_KEY, ui,
UNDEFINED_CONDITION,
WHEN_ANCESTOR_OF_FOCUSED_COMPONENT,
WHEN_FOCUSED, WHEN_IN_FOCUSED_WINDOW

Fields inherited from class java.awt.Component

BOTTOM_ALIGNMENT, CENTER_ALIGNMENT,
LEFT_ALIGNMENT, RIGHT_ALIGNMENT, TOP_ALIGNMENT

Fields inherited from interface java.awt.image.ImageObserver

Voice Mailing System Chapter 4 – Softwae Architechture

 34

ABORT, ALLBITS, ERROR, FRAMEBITS, HEIGHT, PROPERTIES,
SOMEBITS, WIDTH

Constructor Summary
PanelPaint(javax.swing.ImageIcon ic)
 The input is an ImageIcon object which is to be painted on a panel.

Method Summary
 void paintComponent(java.awt.Graphics g)

 Method that actually paints the image.

Methods inherited from class javax.swing.JPanel

getAccessibleContext, getUIClassID, paramString, updateUI

Methods inherited from class javax.swing.JComponent

addAncestorListener, addNotify, addPropertyChangeListener,
addPropertyChangeListener, addVetoableChangeListener,
computeVisibleRect, contains, createToolTip, disable, enable,
firePropertyChange, firePropertyChange, firePropertyChange,
firePropertyChange, firePropertyChange, firePropertyChange,
firePropertyChange, firePropertyChange, firePropertyChange,
fireVetoableChange, getActionForKeyStroke, getActionMap,
getAlignmentX, getAlignmentY, getAutoscrolls, getBorder, getBounds,
getClientProperty, getComponentGraphics,
getConditionForKeyStroke, getDebugGraphicsOptions, getGraphics,
getHeight, getInputMap, getInputMap, getInputVerifier, getInsets,

Voice Mailing System Chapter 4 – Softwae Architechture

 35

getInsets, getListeners, getLocation, getMaximumSize,
getMinimumSize, getNextFocusableComponent, getPreferredSize,
getRegisteredKeyStrokes, getRootPane, getSize, getToolTipLocation,
getToolTipText, getToolTipText, getTopLevelAncestor,
getVerifyInputWhenFocusTarget, getVisibleRect, getWidth, getX,
getY, grabFocus, hasFocus, hide, isDoubleBuffered,
isFocusCycleRoot, isFocusTraversable, isLightweightComponent,
isManagingFocus, isMaximumSizeSet, isMinimumSizeSet, isOpaque,
isOptimizedDrawingEnabled, isPaintingTile, isPreferredSizeSet,
isRequestFocusEnabled, isValidateRoot, paint, paintBorder,
paintChildren, paintImmediately, paintImmediately, print, printAll,
printBorder, printChildren, printComponent,
processComponentKeyEvent, processFocusEvent,
processKeyBinding, processKeyEvent, processMouseMotionEvent,
putClientProperty, registerKeyboardAction, registerKeyboardAction,
removeAncestorListener, removeNotify,
removePropertyChangeListener, removePropertyChangeListener,
removeVetoableChangeListener, repaint, repaint,
requestDefaultFocus, requestFocus, resetKeyboardActions, reshape,
revalidate, scrollRectToVisible, setActionMap, setAlignmentX,
setAlignmentY, setAutoscrolls, setBackground, setBorder,
setDebugGraphicsOptions, setDoubleBuffered, setEnabled, setFont,
setForeground, setInputMap, setInputVerifier, setMaximumSize,
setMinimumSize, setNextFocusableComponent, setOpaque,
setPreferredSize, setRequestFocusEnabled, setToolTipText, setUI,
setVerifyInputWhenFocusTarget, setVisible,

Voice Mailing System Chapter 4 – Softwae Architechture

 36

unregisterKeyboardAction, update

Methods inherited from class java.awt.Container

add, add, add, add, add, addContainerListener, addImpl,
countComponents, deliverEvent, doLayout, findComponentAt,
findComponentAt, getComponent, getComponentAt,
getComponentAt, getComponentCount, getComponents, getLayout,
insets, invalidate, isAncestorOf, layout, list, list, locate, minimumSize,
paintComponents, preferredSize, printComponents,
processContainerEvent, processEvent, remove, remove, removeAll,
removeContainerListener, setLayout, validate, validateTree

Methods inherited from class java.awt.Component

action, add, addComponentListener, addFocusListener,
addHierarchyBoundsListener, addHierarchyListener,
addInputMethodListener, addKeyListener, addMouseListener,
addMouseMotionListener, bounds, checkImage, checkImage,
coalesceEvents, contains, createImage, createImage, disableEvents,
dispatchEvent, enable, enableEvents, enableInputMethods,
getBackground, getBounds, getColorModel,
getComponentOrientation, getCursor, getDropTarget, getFont,
getFontMetrics, getForeground, getGraphicsConfiguration,
getInputContext, getInputMethodRequests, getLocale, getLocation,
getLocationOnScreen, getName, getParent, getPeer, getSize,
getToolkit, getTreeLock, gotFocus, handleEvent, imageUpdate,
inside, isDisplayable, isEnabled, isLightweight, isShowing, isValid,

Voice Mailing System Chapter 4 – Softwae Architechture

 37

isVisible, keyDown, keyUp, list, list, list, location, lostFocus,
mouseDown, mouseDrag, mouseEnter, mouseExit, mouseMove,
mouseUp, move, nextFocus, paintAll, postEvent, prepareImage,
prepareImage, processComponentEvent,
processHierarchyBoundsEvent, processHierarchyEvent,
processInputMethodEvent, processMouseEvent, remove,
removeComponentListener, removeFocusListener,
removeHierarchyBoundsListener, removeHierarchyListener,
removeInputMethodListener, removeKeyListener,
removeMouseListener, removeMouseMotionListener, repaint, repaint,
repaint, resize, resize, setBounds, setBounds,
setComponentOrientation, setCursor, setDropTarget, setLocale,
setLocation, setLocation, setName, setSize, setSize, show, show,
size, toString, transferFocus

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait,
wait, wait

Constructor Detail

PanelPaint
public PanelPaint(javax.swing.ImageIcon ic)

The input is an ImageIcon object which is to be painted on a panel.
Method Detail

paintComponent
public void paintComponent(java.awt.Graphics g)

Method that actually paints the image.
Overrides:

Voice Mailing System Chapter 4 – Softwae Architechture

 38

paintComponent in class javax.swing.JComponent
__

4.6.6 Class CheckDB

java.lang.Object
 |
 +--vms.CheckDB

__

public class CheckDB
extends java.lang.Object
Title: Class CheckDB Description: This class takes a user ID and pin
code and verifies it against a database. A user name and a password
with the name of a pop mail server is returned.

Constructor Summary
CheckDB(java.lang.String u, java.lang.String p)
 The input to this constructor is a user id and a pin code.

Method Summary

 int getCountme()

 java.lang.String getDriver()

 java.lang.String getPassword()

 int getRecnum()

 java.util.Vector getResultsVector()

Voice Mailing System Chapter 4 – Softwae Architechture

 39

 java.lang.String getSql()

 java.lang.String getUrl()

 java.lang.String getUsername()

 void makeCn()
 This method makes a connection with the database.

 void setDriver(java.lang.String newDriver)

 void setPassword(java.lang.String newPassword)

 void setSql(java.lang.String newSql)

 void setUrl(java.lang.String newUrl)

 void setUsername(java.lang.String newUsername)

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString,
wait, wait, wait

Constructor Detail

CheckDB
public CheckDB(java.lang.String u,
 java.lang.String p)

The input to this constructor is a user id and a pin code.
Method Detail

Voice Mailing System Chapter 4 – Softwae Architechture

 40

makeCn
public void makeCn()

This method makes a connection with the database.
__

setUsername
public void setUsername(java.lang.String newUsername)
__

getUsername
public java.lang.String getUsername()
__

setPassword
public void setPassword(java.lang.String newPassword)
__

getPassword
public java.lang.String getPassword()
__

setUrl
public void setUrl(java.lang.String newUrl)
__

getUrl
public java.lang.String getUrl()
__

setDriver
public void setDriver(java.lang.String newDriver)
__

getDriver
public java.lang.String getDriver()
__

setSql
public void setSql(java.lang.String newSql)
__

Voice Mailing System Chapter 4 – Softwae Architechture

 41

getSql
public java.lang.String getSql()
__

getResultsVector
public java.util.Vector getResultsVector()
__

getCountme
public int getCountme()
__

getRecnum
public int getRecnum()

4.6.7 Class Pop3Mail

java.lang.Object
 |
 +--vms.Pop3Mail

__
public class Pop3Mail
extends java.lang.Object
Title: Class Pop3Mail Description: This class retrieves the e-mails
from a pop3 mail server.

Constructor Summary
Pop3Mail()
 This constructor is only for testing.

Pop3Mail(java.lang.String luser, java.lang.String lpwd,
java.lang.String lhost)
 This constructor takes as input the username,password and address of
pop3 mail server from which to e-mails are to be retrieved.

Voice Mailing System Chapter 4 – Softwae Architechture

 42

Method Summary
 void checkMail()

 This method is called from the contructor to carry out the e-mail
retrieval operation.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString,
wait, wait, wait

Constructor Detail

Pop3Mail
public Pop3Mail()

This constructor is only for testing.
__

Pop3Mail
public Pop3Mail(java.lang.String luser,
 java.lang.String lpwd,
 java.lang.String lhost)

This constructor takes as input the username,password and address of
pop3 mail server from which to e-mails are to be retrieved.

Method Detail
checkMail

public void checkMail()
This method is called from the contructor to carry out the e-mail
retrieval operation.

__

4.6.8 Class SndTest

java.lang.Object
 |
 +--vms.SndTest

Voice Mailing System Chapter 4 – Softwae Architechture

 43

public class SndTest
extends java.lang.Object
Title: Class SndTest Description: This class puts the sound played on
the modem mixer.

Constructor Summary
SndTest()

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString,
wait, wait, wait

Constructor Detail

SndTest
public SndTest()

4.6.9 Class ViaSpeak

java.lang.Object
 |
 +--vms.ViaSpeak

public class ViaSpeak
extends java.lang.Object
Title: Class ViaSpeak Description: This class is the implemetation of
text to speech converter.

Voice Mailing System Chapter 4 – Softwae Architechture

 44

Inner Class Summary
 clas

s

ViaSpeak.MyListener
 This internal class listens for different events on the TTS
engine.

Constructor Summary
ViaSpeak()
 The construcutor allocates the resources.

Method Summary
 void alloc()

 This method allocates the resources when it is called from the
constructor.

 void deAlloc()
 This method de-allocates the resources claimed.

 void speakMe(java.lang.String txtRead)
 This method passes on to theTTS engine the string to be speech
synthesized.

 void synStop()
 This method stops the current speech synthesizer.

 void synStopAll()
 This method stops all the queued up speech synthesizers.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString,
wait, wait, wait

Constructor Detail

Voice Mailing System Chapter 4 – Softwae Architechture

 45

ViaSpeak
public ViaSpeak()

The construcutor allocates the resources.
Method Detail

alloc
public void alloc()

This method allocates the resources when it is called from the
constructor.

__
deAlloc

public void deAlloc()
This method de-allocates the resources claimed.

__
synStop

public void synStop()
This method stops the current speech synthesizer.

__
synStopAll

public void synStopAll()
This method stops all the queued up speech synthesizers.

__
speakMe

public void speakMe(java.lang.String txtRead)
This method passes on to theTTS engine the string to be speech
synthesized.

__

4.6.10 Class BuildNum

java.lang.Object
 |
 +--vms.BuildNum

public class BuildNum
extends java.lang.Object

Voice Mailing System Chapter 4 – Softwae Architechture

 46

Title: Class BuildNum Description: This class collects the character
passed to it and returns a fully built String.

Constructor Summary
BuildNum(int limit)
 The constructor takes an int as input which is the maximum length of
the string.

Method Summary
 void buildID(char ch)

 The method takes as input a character and appends it to a string.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString,
wait, wait, wait

Constructor Detail

BuildNum
public BuildNum(int limit)

The constructor takes an int as input which is the maximum length of
the string. The string must begin and end with a '*'. A '#' resets the
String to null.

Method Detail
buildID

public void buildID(char ch)
The method takes as input a character and appends it to a string

Voice Mailing System Chapter 5 – Overview of AT Command

 47

5. OVERVIEW OF AT COMMAND

The modem may be configured in response to AT voice commands to

provide enhanced Adaptive Differential Pulse Code Modulation (ADPCM)

coding and decoding for the compression and decompression of digitized

voice. ADPCM compression supports the efficient storage of voice

messages, while optional coder silence deletion and decoder silence

interpolation significantly increase compression rates. The ADPCM Voice

Mode Supports three sub modes once a voice connection is established (see

#CLS command): Online Voice Command Mode, Voice Receive Mode, and

Voice Transmit Mode.

5.1 VOICE SUBMODES

5.1.1 ONLINE VOICE COMMAND MODE

Online Voice Command Mode is the default Voice sub mode entered

when the #CLS=8 command is issued, and may also be entered from Voice

Receive Mode or Voice Transmit Mode. Entry Into Online Voice Command

Chapter

5

Voice Mailing System Chapter 5 – Overview of AT Command

 48

Mode is indicated to the DTE via the VCON message, after which AT

commands can be entered without aborting the telephone line connection.

If the modem is the answerer, it enters Online Voice Command Mode

immediately after going off-hook, and can report instances of DTMF tones

and calling tones to the DTE. If the modem is the originator, it enters Online

Voice Command Mode based on detection of the ring back cadence going

away, upon expiration at the ring back never came timer, or upon detection

of answer tone, and the modem can report DTMF tones, answer tones, busy

tone, and dial tone to the DTE.

(Note that DTMF tone reporting is supported in this mode if DTMF

reporting is enabled via the #VTD command.)

When this mode is entered as a result of going off-hook with the D or A

command, VCON is always sent to the DTE, after which the modem accepts

commands. If this mode is entered from Voice Transmit Mode, the DTE has

issued the <DLE><ETX>, and the modem responds with VCON. If this

mode is entered from the Voice Receive Mode because of a key abort, the

modem issues the <DLE><ETX> followed by VCON.

If the #VLS command has switched in a handset or other device in place of

the telephone line, Online Voice Command Mode is immediately entered,

whereas if the telephone line is selected, a physical connection with another

station must occur before entering this mode.

5.1.2 VOICE RECEIVE MODE

Voice Receive Mode is entered when the DTE issues the #VRX

command because it wants to receive voice data. This typically occurs when

Voice Mailing System Chapter 5 – Overview of AT Command

 49

either recording a greeting message, or when recording voice messages from

a remote station.

In Voice Receive Mode, voice samples from the modem analog-to-digital

converter (ADC) are sent to the ADPCM codec for compression, and can

then be read by the host. AT commands control the codec bits-per-sample

rate and select (optional) silence deletion including adjustment at the silence

detection period.

In this mode, the modem detects and reports DTMF, dial tone, busy tone

cadence, and inactivity (periods of silence) as enabled by the #VTD and

#VSS commands, respectively. The modem can exit the Voice Receive

Mode only via a DTE Key Abort, or via Dead man Timer expiration (S30).

5.1.3 VOICE TRANSMIT MODE

Voice Transmit Mode is entered when the DTE issues the #VTX

command because it wants to transmit voice data. In this mode, the modem

continues to detect and report DTMF and calling tones if enabled by the

#VTD command. This mode is typically used when playing back greeting

messages or previously received/recorded messages. In this mode, voice

decompression is provided by the codec, and decompressed data is

reconstituted into analog voice by the DAC at the original voice

compression quantization sample-per-bits rate. Optional silence interpolation

is enabled if silence deletion was selected for voice compression.

Voice Mailing System Chapter 5 – Overview of AT Command

 50

5.2 VOICE CAPABILITIES

5.2.1 CALL ESTABLISHMENT - ANSWER

 For most call originations, it is known ahead of time what type of call is

being attempted, and it is acceptable to disconnect if the remote side of the

connection does not cooperate. In this case, the modem can be configured

ahead of time with the existing +FCLASS (and +FAA) or the #CLS

command to be a data, fax, or voice modem. For Data and Fax Modes, the

modem subsequently either succeeds with the desired type of connection, or

eventually hangs up. For the Voice Mode, the DTE has the option of

hanging up if there are indications that the remote station has not answered

in voice, thus implementing a directed originate for voice. The following are

the three connection type choices:

5.2.1.2 VOICE

 The modem dials and reports call progress to the DTE, which reduces

to reporting NO DIALTONE, or BUSY. The modem allows the DTE to

program a time period, which if elapsed after any ring back is detected,

forces the modem to assume the remote has gone off-hook. A secondary

time period (safety valve) can define a maximum elapsed time after dialing

for receiving no ring back before the modem assumes that the remote has

gone off-hook. This safety valve is devised in case the remote picks up the

telephone before any ring back is generated, and no other tones are detected.

In this mode, the modem is attempting to make a voice connection only and

therefore, while waiting for ring back to disappear, it is also feasible to

disconnect upon detection something which is definitely not Voice from the

Voice Mailing System Chapter 5 – Overview of AT Command

 51

remote, such as any answer tone. The modem provides detection of "ring

back" went away or never came.

5.2.1.3 FAX CAPABILITIES

The modem dials and reports call progress to the DTE as in all modes.

A fax Class 1 or Class 2 handshake is pursued according to the current

configuration.

5.2.1.4 DATA

The modem dials and reports call progress to the DTE as in all modes.

A data handshake is pursued according to the current configuration.

Adaptive Originate (Dial with Voice/Data/Fax Discrimination). The DTE

may wish to originate a call, which adapts to the remote answerer. For

instance, the user may wish to send a voice message if a human picks up the

telephone, but a facsimile if a fax machine answers. The modem can

facilitate this type of adaptive originate by extending what it does for the

directed originate modes. Alter determining that the remote station has

picked up the line, the modem goes back to Online Voice Command Mode,

thus terminating the "connecting state." Once in this mode, the modem

reports what it receives from the answerer via specific result codes to the

DTE. The DTE can then have the option of pursuing a data, fax, or voice

connection.

5.2.2 CALL ESTABLISHMENT - ANSWER

Voice Mailing System Chapter 5 – Overview of AT Command

 52

If the DTE wants to be only one kind of answerer (i.e., voice, fax, or

data), it can configure the modem to answer exclusively in the chosen mode.

5.2.2.1 VOICE

The modem is configured to answer in Voice Mode only and assumes

the caller will cooperate. After going off-hook, the voice VCON is issued,

no answer tone is generated, and the modem is immediately placed In Online

Voice Command Mode. The DTE typically responds by sending a greeting

message of some type, and DTMF tone recognition/reporting can be

enabled. Eventually, an Incoming voice message can be recorded by the

host. (Unpredictable results occur if the caller is not prepared for a voice

call.)

5.2.2.2 FAX capabilities

The modem is configured to answer in Class 1 or Class 2 Fax Mode

only, and it assumes the caller is going to cooperate. This configuration has

the effect of disabling Voice Mode, forcing +FCLASS to either 1 or 2, and

forcing both +FAA and +FAE to 0.

5.2.2.3 DATA

The modem is configured to answer in Data Mode only and assumes

the caller is going to cooperate. This configuration has the effect of disabling

Voice Mode, forcing +FCLASS=0, and forcing both +FAA and +FAE to 0.

Voice Mailing System Chapter 5 – Overview of AT Command

 53

5.2.3 ADAPTIVE ANSWER

(Answer with Voice/Data/Fax Discrimination)

In normal operation, it is desirable for a modem supporting fax and

voice to provide the ability to discriminate between the two when answering

unsolicited or unattended calls. (It is most often the case that a fax is

received or a Voice message recorded when nobody is present.).

5.2.3.1 DATA/FAX Discrimination

If the DTE wishes to allow for a data or fax call, the +FCLASS and

+FAA or +FAE commands can be configured for adaptive answer between

data and Class 1 or Class 2 fax.

5.2.3.2 Voice/Fax Discrimination

This is the most important discrimination capability needed from the

users standpoint. The modem must be configured for Voice (#CLS=8),

causing the modem to enter Online Voice Command Mode immediately

upon going off-hook. In Voice Mode, the DTE automatically receives

indications of DTMF tones and Calling Tones. The DTE can now switch to

Voice Transmit Mode in order to play a greeting message, perhaps one,

which instructs the caller, how to enter specific DTMF sequences to switch

modes. The DTE can then react to the response, or the lack thereof, to such a

message. The modem supports switching to a Class 1 or Class 2 answer

mode by virtue of the #CLS=1 or 2 commands, and if such a switch is made

and fails, the modem reports the failure but does not hang up, allowing the

DTE further experimentation time. If the user wishes to switch to Class 1 or

Voice Mailing System Chapter 5 – Overview of AT Command

 54

2, but also wants the DTE to indeed hang up the line if the fax fails, the

+FCLASS command should be used instead of the #CLS command. The

only difference between these commands is that issuing +FCLASS cancels

the modems memory of voice, where as #CLS causes the modem to remain

off-hook, even if a fax or data handshake fails, until it receives an H

command.

5.2.3.3VOICE/DATA/FAX DISCRIMINATION

The DTE can try data modem operation after an answer by changing

the #CLS setting to 0. A data handshake attempt can be added based upon

DTMF responses or lack thereof.

5.3 VOICE DATA TRANSFER

A significant area of concern when handling the transfer of voice data

is the data transfer rate on the modem/DTE interface. Data transfer rates can

be expressed as the number of interrupts which must be serviced per time

period to keep up. This is a function of the sampling rate and compression

method (if any) used by the modem, and the DTE interface speed required to

handle the data flow on the telephone line side.

The modem can detect specific tones and other status information, and

report these to the DTE while in any of the three voice sub modes. The

modem simultaneously looks for 1300 and 1100 Hz calling tones when

answering, and for CCITT and Bell answer tones when originating. The

modem can also detect dial or busy tones in any of the three voice sub

Voice Mailing System Chapter 5 – Overview of AT Command

 55

modes. All detected tones, as well as certain other statuses addressed such as

silence and "teleset off-hook" (i.e., handset off-hook) are reported as

shielded codes. When in Online Voice Command Mode or Voice Transmit

Mode, the codes are sent to the DTE immediately upon verification by the

modem of the associated tone, status, or cadence. In this mode, the 2-

character code is not buffered, nor does the DTE have the ability to stop the

code with flow control. If the DTE has started (but not completed) sending

any AT command, the Tone Monitoring function is disabled until the

command has been received and processed. The modem can discriminate

between single and multiple DTMF tones received. If calling tone, dial tone,

busy tone, or answer tone is detected, this detection is reported repeatedly (at

reasonable intervals) if the DTE takes no action, and the tone continues to be

detected.

5.4 TABLE SHIELDED CODES SENT TO THE DTE

Code Sent to DTE MEANING

<DLE>0-<DLE>9 DTMF. Digits 0 through 9, *, #, or A

through D detected

<DLE>*,<DLE># by the modem, i.e., user has pressed a key

on a local or <DLE>A-<DLE>D

remote telephone. The modem sends only

one <DLE> code per DTMF button pushed.

Voice Mailing System Chapter 5 – Overview of AT Command

 56

<DLE>a Answer Tone (CCITT). Send to the DTE

when the V.25/T.30 2100 Hz Answer Tone

(Data or Fax) is detected. If the DTE fails to

react to the code, and the modem continues

to detect Answer tone, the code is repeated

as often as once every half second.

<DLE>b Busy. Sent in Voice Receive Mode when

the busy cadence s detected, after any

remaining data in the voice in receive buffer.

The modem sends the busy <DLE>b code

every 4 seconds if busy continues to be

detected and the DTE does not react. This

allows the DTE the flexibility of ignoring

what could be a false busy detection.

5.5 VOICE PLAYBACK

To effect playback of a message recorded via a handset or

microphone, or of a message recorded during a voice call, the DTE must

configure the modem for Voice Mode (#CLS=8) and select the proper relay

setup (#VLS) to instruct the modem whether to use the handset or speaker.

The modem responds to the #VLS command by issuing a relay activate

command to select the input device. The hardware must provide a means of

selecting a handset and/or microphone instead of the telephone line, as this

Voice Mailing System Chapter 5 – Overview of AT Command

 57

input device. When a device other that the telephones line is selected, the

modem immediately enters Online Voice Command Mode (indicated by

VCON). DTMF detection is thus enabled as soon as the DTE selects the

device, such as a handset, although the user still needs to physically pick up

the telephone before he can issue DTMF tones. Once selected, however, the

user can indeed pick up the telephone and "press buttons." Even if the DTE

has not entered Voice Receive or Transmit Modes (#VTX or #VRX), these

DTMF tones are delivered via shielded codes, identically to when a physical

telephone connection exists but the DTE has not yet commanded receive nor

transmit.

When the DTE decides to play the message, it issues the #VTX command,

and the modem immediately switches to Voice Transmit Mode. Since the

speaker or handset is already switched in, the modem immediately issues the

CONNECT message indicating that the modem is in Voice Transmit Mode

and is expecting Voice data from the DTE. A subsequent <DLE><ETX> has

to be issued to switch back to Online Voice Command Mode.

5.6 VOICE CALL TERMINATION

5.6.1 LOCAL DISCONNECT

The DTE can disconnect from a telephone call by commanding a

mode change to Online Voice Command Mode (if not already in it), and by

issuing the H command.

5.6.2 Remote Disconnect Detection

Voice Mailing System Chapter 5 – Overview of AT Command

 58

When In Voice Receive Mode, the modem sends the proper shielded

<DLE> code when loop break, dial tone, or busy tone is detected. The

modem stays in Voice Receive Mode, however, until the DTE issues a key

abort to force Online Voice Command Mode. The DTE must issue the H

command if it wishes to hang up.

5.7 MODE SWITCHING

5.7.1 VOICE TO FAX

If the modem is in Online Voice Command Mode (i.e. it has gone off-

hook with #CLS=8 in effect), the DTE can attempt a fax handshake by

setting #CLS=1 or #CLS=2 followed by the A or D command corresponding

to fax receive or send. This has the effect of beginning a fax Class 1 or Class

2 handshake (see #CLS command).

5.7.1.1 Unsuccessful Fax Connection Attempt to Voice

A fax handshake which does not succeed, attempted as the result of

the DTE modifying the #CLS setting from voice (8) to fax (1 or 2) does not

result in the modem hanging up, allowing the DTE the flexibility of

commanding a switch back to Voice Mode with #CLS=8.

5.7.2 VOICE TO DATA

Voice Mailing System Chapter 5 – Overview of AT Command

 59

If the modem is in the Online Voice Command Mode the DTE can

attempt a data

Handshake by setting #CLS=0 followed by the A or D command. This has

the effect of beginning a Data Mode handshake according to the current

Data Mode S-register and command settings.

5.7.2.1 Unsuccessful Data Connection Attempt to Voice

A data handshake which does not succeed attempted as the result of

the DTE modifying the #CLS setting from voice (8) to data (0), does not

result in the modem hanging up, allowing the DTE the flexibility of

commanding a switch back to Voice Mode with #CLS=8.

5.8 CALLER ID

The modem supports Caller ID by passing the information received in

Bell 202 FSK format to the DTE after the first RING detect. The modem

supports both formatted and unformatted reporting of Caller ID information

received in ICLID (Incoming Call Line ID) format as supported in certain

areas of the U.S. and Canada. The DTE enables this feature via the #CID

command.

Voice Mailing System Chapter 5 – Overview of AT Command

 60

5.9 AT VOICE COMMAND SUMMARY

Table provides a complete summary of the AT voice commands

described in detail in following sections

5.9.1 GLOBAL AT COMMAND SET EXTENSIONS

The AT commands in the following section are global meaning that

they can be issued in any appropriate mode (i.e., any #CLS setting). For

consistency, the command set is divided into action commands and

parameters (non-action commands). Those commands, which are action

commands, those, which cause some change in the current operating

behavior of the modem) are identified as such, and the remaining commands

are parameters.

5.9.2 ATA - ANSWERING IN VOICE

The answer action command works analogously to the way it works in

Data and Fax Modes except for the following:

1. When configured for Voice Mode (#CLS=8), the modem

enters Online Voice Command Mode immediately after going off-

hook. When the #CLS=8 command is issued, the modem can be

programmed to look for 1100 and 1300 Hz calling tones (see

Voice Mailing System Chapter 5 – Overview of AT Command

 61

#VTD), thus eliminating the need to do so as part of A command

processing. After the VCON message is issued the modem re-enters

Online Voice Command Mode while sending any incoming DTMF or

calling Tone indications to the DTE

2. After answering in Voice Mode (#CLS=8) the DTE, as part of

its call discrimination processing can decide to change the #CLS

setting to attempt receiving a fax in Class 1 or to make a data

connection. In such a case the DTE commands the modem to proceed

with the data or fax handshake via the AT command even though the

modem is already off-hook.

5.9.3 VCON

Issued in Voice Mode (#CLS=8) immediately after going off-hook

Command Function

A Answering in Voice Mode.

D Dial command in Voice Mode.

H Hang up in Voice Mode.

Z Reset from Voice Mode.

#BDR Select baud rate (turn off auto baud).

#CID Enable Caller ID detection and select reporting format.

#CLS Select data fax or voice

#MDL? Identify model.

#MFR? Identify manufacturer.

Voice Mailing System Chapter 5 – Overview of AT Command

 62

#REV? Identify revision level.

#VBQ? Query buffer size.

#VBS Bits per sample (ADPCM).

#VBT Beep tone timer.

#VCI? Identify compression method (ADPCM).

#VLS Voice line select (ADPCM).

#VRA Ring back goes away timer (originate).

#VRN Ring back never came timer (originate).

#VRX Voice Receive Mode (ADPCM).

#VSD Silence deletion tuner (voice receive ADPCM).

#VSK Buffer skid setting.

#VSP Silence detection period (voice receive ADPCM)

#VSR Sampling rate selection (ADPCM).

#VSS Silence deletion tuner (voice receive)

#VTD DTMF/tone reporting capability.

#VTX Voice Transmit Mode (ADPCM).

5.9.4 ATD

 Dial Command In Voice

The dial action command works analogously to the way it works in Data or

Fax modes. When In Voice Mode (#CLS=8):

Voice Mailing System Chapter 5 – Overview of AT Command

 63

1. The modem attempts to determine when the remote has picked

up the telephone line and once this determination has been made, the

VCON message is sent to the DTE. This determination is initially

made based upon ring back detection and disappearance. (See #VRA

and #VRN commands.)

2. Once connected in Voice Mode the modem immediately enters

the command state and switches to Online Voice Command Mode

which enables unsolicited reporting of DTMF and answer tones to the

DTE. Parameters: Same as Data and Fax modes.

5.9.5 VCON

 Issued in Voice Mode (#CLS=8) when the modem determines that the

remote modem or handset has gone off-hook, or when returning to the

Online Voice Command Mode. (See #VRA and #VRN.)

5.9.6 NO ANSWER

 Issued in Voice Mode (#CLS=8) when the modem determines that the

remote has not picked up the line before the S7 timer expires.

5.9.7 ATH

 Hang Up In Voice

Voice Mailing System Chapter 5 – Overview of AT Command

 64

This command works the same as in Data and Fax modes by hanging

up (disconnecting) the telephone line. There are, however, some specific

considerations when in Voice Mode:

1. The H command forces #CLS=0 but does not destroy any of the

voice parameter settings such as #VBS, #VSP, etc. Therefore if the

DTE wishes to issue an H command and then pursue another voice

call it must issue a subsequent #CLS=8 command, but it needn't

reestablish the voice parameter settings again unless a change in the

settings is desired.

2. The #BDR setting is forced back to 0, re-enabling auto baud.

3. If the #VLS setting is set to select a device which is not, or does

not include the telephone line (such as a local handset or microphone),

the H command deselects this device and reselects the normal default

setting (#VLS=0). Normally, the DTE should not issue the H

command while connected to a local device each as a handset,

because merely selecting this device results in VCON. The normal

sequence of terminating a session with such a device is to use the

#VLS command to select the telephone line, which by definition

makes sure it is on-hook.

5.9.8 ATZ

Reset from Voice Mode

Voice Mailing System Chapter 5 – Overview of AT Command

 65

This command works the same as in Data and Fax modes. In addition,

the Z command resets all voice related parameters to default states, forces

the #BDR=0 condition (autobaud enabled), and forces the telephone line to

be selected with the handset on-hook. No voice parameters are stored in

NVRAM so the profile loaded does not affect the voice aspects of this

command.

5.9.9 #BDR

 Select Baud Rate (Turn off Autobaud)

This command forces the modem to select a specific DTE/modem baud rate

without further speed sensing on the interface. When a valid #BDR=n

command is entered, the OK result code is sent at the current assumed speed.

After the OK has been sent, the modem switches to the speed indicated by

the #BDR=n command it has just received.

 When In Online Voice Command Mode and the #BDR setting is

nonzero (no autobaud selected), the modem supports a full duplex DTE

interface. This means that the DTE can enter commands at any time, even if

the modem is in the process of sending a shielded code indicating DTMF

detection to the DTE. When in Online Voice Command Mode and the #BDR

setting is zero (autobaud selected), shielded code reporting to the DTE is

disabled. [Note that when #BDR has been set nonzero, the modem employs

Voice Mailing System Chapter 5 – Overview of AT Command

 66

the S30 Deadman Timer, and this timer starts at the point where #BDR is set

nonzero. If this period expires (nominally 60 seconds) with no activity on

the DTE interface, the modem reverts to #BDR=0 and #CLS=0.

5.9.10 #BDR?
Returns the current setting of the #BDR command as an ASCII

decimal value in result code format.

5.10 AT#V COMMANDS ENABLED ONLY IN VOICE

MODE (#CLS=8)

The commands described in the following subsection are extensions

to the command set which the modem recognizes only when configured for

Voice Mode with the #CLS=8 command.

#VBQ? Query Buffer Size

#VBQ? Returns the size of the modem voice transmit and Voice receive

buffers.

#VBS Bite Per Sample (Compression Factor)

#VBS? Returns the current setting of the #VBS command as an ASCII

decimal value in result code format.

#VBS=? Returns "2,3,4", which are the ADPCM compression bits/sample

rates available. These bits/sample rates are correlated with the #VCI? query

command response which provides the single compression method

available.

#VBS=2 Selects 2 bits per sample.

#VBS=3 Selects 3 bits per sample.

Voice Mailing System Chapter 5 – Overview of AT Command

 67

#VBS=4 Selects 4 bits per sample.

#VBT Beep Tone Timer

5.11 DEVICE TYPES SUPPORTED BY #VLS

5.11.1 ASCII DIGIT DEVICE TYPE AND CONSIDERATIONS

0 Telephone Line with Telephone handset. This is the default

 device selected. In this configuration, the user can pick up a

 handset which is connected to the same telephone line as the

 modem, and * record both sides of a conversation with a remote

 station. The modem currently supports one telephone

 line/handset, which is in the first position of the #VLS=?

 response. (Note that the modem can interface to multiple

 telephone lines by having "0"'s in multiple positions in the

 #VLS? response.) I telephone line is selected, the modem must

 be on-hook or it hangs up. The OK message is generated.

1 Transmit/Receive Device (other than telephone line). This is a

 handset, headset, or speaker-phone powered directly by the

 modem. When such a device is selected, the modem immediately

 enters Online Voice Command Mode, DTMF monitoring is

 enable if applicable, and the VCON response is sent. The modem

 supports one such device as the second device listed in the

 #VLS=? response.

Voice Mailing System Chapter 5 – Overview of AT Command

 68

2 Transmit Only Device. Normally, this is the onboard speaker.

 When this device is selected, the modem immediately enters

 Online Voice Command Mode, and the VCON response is sent.

 The modem supports selection of the internal speaker as the third

 device listed in #VLS=? response.

3 Receive Only Device. Normally, this is a microphone. When such

 a device is selected, the modem immediately enters Online Voice

 Command Mode, DTMF monitoring is enabled if applicable, and

 the VCON response is sent. The modem supports one microphone

 as the fourth element returned in the #VLS=? response.

4 Telephone line with Speaker ON and handset. This device type

 can be used to allow the DTE to select the telephone

 line/handset (if picked up) with the modem speaker also turned

 ON. This can be used by the DTE to allow the user to monitor

 an incoming message as it is recorded.

5.12 S-REGISTERS

The following S-register is global, meaning that it can be set in any

appropriate mode (i.e., any #CLS setting).

S30 - Deadman (Inactivity) Timer

Range: n = 0 - 255

Voice Mailing System Chapter 5 – Overview of AT Command

 69

Default: 0 (OFF, which means DTE should usually set it to some value

 for Voice)

Command options:

S30=0 Dead man timer off. No matter how long it might continue, the

 modem never spontaneously hangs up the telephone line or

 switches to auto baud mode as a result of inactivity.

S30=1 to 255 This is the period of time (in seconds), which if expired

 causes the modem to hang up the telephone line if it is

 off-hook and no data has passed during the period. The timer

 is also active whenever the #BDR setting is non-zero. In order

 to avoid a state where speed sense is disabled (even though

 the PC can crash, come back up, and try to issue commands at

 what should be a supported speed), the inactivity time-out

 occurs if there is no data passed on the DTE interface within

 the S30 period, even if the modem is on-hook. DTE software must

 not select a nonzero setting for #BDR until it is ready to

 establish a telephone call or virtual connection to a speaker

 or microphone. When there is an inactivity time out with

 #CLS=8, the modem always forces #CLS=0 and #BDR=0.

5.13 RESULT CODES FOR VOICE OPERATION

VCON is sent when the modem is configured for Voice (#CLS=8), or

when after answering or originating a call, the modem enters the Online

Voice Command Mode for the first time. Typically, this is immediately after

an off-hook in answer mode, and after ringback ceases in originate mode.

Voice Mailing System Chapter 5 – Overview of AT Command

 70

VCON is also sent when the DTE requests a switch from Voice Transmit

Mode to Online Voice Command Mode by issuinq a <DLE><ETX> to the

modem, or when the DTE requests a switch from Voice Receive Mode to

Online Voice Command Mode via the key abort.

CONNECT CONNECT is sent when switching from the Online Voice

Command Mode to either Voice Receive Mode via the #VRX command, or

to Voice Transmit Mode via the #VTX command. This message is sent to

the DTE to inform it that it may begin receiving or sending ADPCM data.

Voice Mailing System Chapter 6 – Overview of JCOMM

 71

6. OVERVIEW OF JCOMM

6.1 JAVAX.COMM EXTENSION PACKAGE

There are three levels of classes in the Java communications API:

• High-level classes like CommPortIdentifier and CommPort manage

access and ownership of communication ports.

• Low-level classes like SerialPort and ParallelPort provide an

interface to physical communications ports. The current release of

the Java communications API enables access to serial (RS-232) and

parallel (IEEE 1284) ports.

• Driver-level classes provide an interface between the low-level

classes and the underlying operating system. Driver-level classes are

part of the implementation but not the Java communications API.

Application programmers should not use them.

The javax.comm package provides the following basic services:

• Enumerate the available ports on the system. The static method

CommPortIdentifier.getPortIdentifiers returns an enumeration object

Chapter

6

Voice Mailing System Chapter 6 – Overview of JCOMM

 72

that contains a CommPortIdentifier object for each available port.

This CommPortIdentifier object is the central mechanism for

controlling access to a communications port.

• Open and claim ownership of communications ports by using the high

level methods in their CommPortIdentifier objects.

• Resolve port ownership contention between multiple Java

applications. Events are propagated to notify interested applications

of ownership contention and allow the port's owner to relinquish

ownership. PortInUseException is thrown when an application fails to

open the port.

• Perform asynchronous and synchronous I/O on communications ports.

Low-level classes like SerialPort and ParallelPort have methods for

managing I/O on communications ports.

• Receive events describing communication port state changes. For

example, when a serial port has a state change for Carrier Detect,

Ring Indicator, DTR, etc. The SerialPort object propagates a

SerialPortEvent that describes the state change.

A Simple Reading Example

• SimpleRead.java opens a serial port and creates a thread for

asynchronously reading data through an event callback technique.

A Simple Writing Example

• SimpleWrite.java opens a serial port for writing data.

Voice Mailing System Chapter 6 – Overview of JCOMM

 73

6.2 SERIAL SUPPORT WITH JAVAX.COMM

PACKAGE

Sun’s JavaSoft division provides support for RS-232 and parallel

devices with standard extensions.

6.3 SUMMARY

One of the most popular interfaces on a PC is the serial port. This

interface allows computers to perform input and output with peripheral

devices. Serial interfaces exist for devices such as modems, printers,bar code

scanners, smart card readers, PDA interfaces, and so on. Sun's JavaSoft

division recently has made available the javax.comm package to add serial

support to Java. This package provides support for serial and parallel devices

using traditional Java semantics such as streams and events. In order to

communicate with a serial device using a serial port on a host computer from

a Java application or applet, and devices connected to your serial port. In

addition, the API provides a complete set of options for setting all of the

parameters associated with serial and parallel devices.This article focuses on

how to use javax.comm to communicate with a serial device based on RS-

232; discusses what the javax.comm API does and does not provide; and

offers a small example program that shows you how to communicate to the

serial port using this API. We will end with a brief discussion of how this

API will work with other device drivers, and also go over the requirements

for performing a native port of this API to a specific OS. (2,700 words)

The Java Communications (a.k.a. javax.comm) API is a proposed

standard extension that enables authors of communications applications to

Voice Mailing System Chapter 6 – Overview of JCOMM

 74

write Java software that accesses communications ports in a platform-

independent way. This API may be used to write terminal emulation

software, fax software, smart-card reader software, and so on. Developing

good software usually means having some clearly defined interfaces. The

high-level diagrams of the API interface layers are shown in this figure.

In this article we will show you how to use javax.comm to

communicate with a serial device based on RS-232. We'll also discuss what

the javax.comm. API provides and what it doesn't provide. We'll present a

small example program that shows you how to communicate to the serial

port using this API. At the end of the article we'll briefly detail how this

javax.comm. API will work with other device drivers, and we'll go over the

requirements for performing a native port of this API to a specific OS.

Unlike classical drivers, which come with their own models of

communication of asynchronous events, the javax.comm API provides an

event-style interface based on the Java event model (java.awt.event

package). Let's say we want to know if there is any new data sitting on the

input buffer. We can find that out in two ways -- by polling or listening.

With polling, the processor checks the buffer periodically to see if there is

any new data in the buffer. With listening, the processor waits for an event

to occur in the form of new data in the input buffer. As soon as new data

arrives in the buffer, it sends a notification or event to the processor.

Dialer management and modem management is additional

applications that can be written using the javax.comm API. Dialer

management typically provides an interface to the modem management's AT

command interface. Almost all modems have an AT command interface.

This interface is documented in modem manuals.Perhaps a little example

will make this concept clear. Suppose we have a modem on COM1 and we

Voice Mailing System Chapter 6 – Overview of JCOMM

 75

want to dial a phone number. A Java dialer anagement application will query

for the phone number and interrogate the modem. These commands are

carried by javax.comm, which does no interpretation. To dial the number

918003210288, for example, the dialer management probably sends an

"AT," hoping to get back an "OK," followed by ATDT918003210288. One

of the most important tasks of dialer management and modem management

is to deal with errors and timeouts.

GUI for serial port managemen Normally, serial ports have a dialog

box that configures the serial ports, allowing users to set parameters suchas

baud rate, parity, and so on. The following diagram depicts the objects

involved in reading and/or writing data to a serial port from Java. Support

for X, Y, and Z modem protocols. These protocols provide support error

detection and correction.

The programming basics

Too often, programmers dive right into a project and code

interactively with an API on the screen without giving any thought to the

problem they are trying to solve. To avoid confusion and potential problems,

gather the following information before you start a project. Remember,

programming devices usually requires that you consult a manual. Get the

manual for the device and read the section on the RS-232 interface and RS-

232 protocol.

Most devices have a protocol that must be followed. This protocol

will be carried by the javax.comm API and delivered to the device. The

device will decode the protocol, and you will have to pay close attention to

sending data back and forth. Not getting the initial set-up correct can mean

your application won't start, so take the time to test things out with a simple

Voice Mailing System Chapter 6 – Overview of JCOMM

 76

application. In other words, create an application that can simply write data

onto the serial port and then read data from the serial port using the

javax.comm. API. Try to get some code samples from the manufacturer.

Even if they are in another language, these examples can be quite

useful.Find and code the smallest example you can to verify that you can

communicate with the device. In the case of serial devices, this can be very

painful -- you send data to a device connected to the serial port and nothing

happens. This is often the result of incorrect conditioning of the line. The

number one rule of device programming (unless you are writing a device

driver) is to make sure you can communicate with the device. Do this by

finding the simplest thing you can do with your device and getting that to

work. If the protocol is very complicated, consider getting some RS-232 line

Analyzer software.

This software allows you to look at the data moving between the two

devices on the RS-232 connection without interfering with the transmission.

Using the javax.comm API successfully in an application requires you

toprovide some type of interface to the device protocol using the serial

APIas the transport mechanism. In other words, with the exception of the

simplest devices, there is usually another layer required to format thedata for

the device. Of course the simplest protocol is "vanilla" --meaning there is no

protocol. You send and receive data with no interpretation.

6.4 OVERVIEW OF SUGGESTED STEPS FOR

USING JAVAX.COMM

In addition to providing a protocol, the ISO layering model used for

TCP/IP also applies here in that we have an electrical layer, followed by a

Voice Mailing System Chapter 6 – Overview of JCOMM

 77

very simple byte transport layer. On top of this byte transport layer you

could put your transport layer. For example, your PPP stack could use the

javax.comm API to transfer bytes back and forth to the modem. The role of

the javax.comm layer is quite small when looked at in this context: Give the

javax.comm API control of some of the devices. Before you use a device,

the javax.comm API has to know about it. Open the device and condition the

line. You may have a device that requires a baud rate of 115 kilobits with no

parity. Write some data and/or read data following whatever protocol the

device you are communicating with requires. For example, if you connect to

a printer, you may have to send a special code to start the printer and/or end

the job. Some PostScript printers require you to end the job by sending

CTRL-D 0x03. Close the port.Initializing the javax.comm API registry with

serial interface ports

The javax.comm API can only manage ports that it is aware of. The

latest version of the API does not require any ports to be initialized. On start-

up, the javax.comm API scans for ports on the particular host and adds them

automatically. You can initialize the serial ports your javax.comm API can

use. For devices that do not follow the standard naming convention Writing

and reading data for javax.comm, this is no different than any other read and

writes method call to the derived output stream.

For write:

try {

output.write (outputArray, 0 , length);

Voice Mailing System Chapter 6 – Overview of JCOMM

 78

For read:

try {

int b = input.read()

Closing the port:

Closing the port with javax.comm is no different than with other

requests to close a device. This step is very important to javax.comm

because it attempts to provide exclusive access. Multiplexing multiple users

on a serial line requires a Multiplexor protocol.

try {

inout.close();

output.close();

} ...

6.5 CONCLUSION

The javax.comm API provides a modern disciplined approach to serial

communications and will move Java into new application spaces, allowing

devices like bar code scanners, printers, smart card readers, and hundreds of

other serial devices to be connected with ease. The API is easy to use, as

demonstrated by the example. It is also easy to port to new hardware

platforms. The API has not been tested for high data rate and real time

applications; therefore, developers looking to use the API in those types of

environments should perform careful instrumentation with subsequent

Voice Mailing System Chapter 6 – Overview of JCOMM

 79

analysis of the code. In determining whether the API is suitable for high data

rate or mission sensitive applications, look for the following:

• Characters lost on input

• Characters lost in output

• Frequency of flow control

• Time it takes to deliver an event

• Character processing times

• Block processing times

When we first started our series on smart cards, we were lucky if we

understood a few native method calls to send bytes to serial devices. We

end our smart card series with this article. The software APIs we have

been discussing in this series come together from a device point of view.

For example, a user developing an application for smart cards can write

to some well-defined APIs such as OpenCard Framework or

communicate directly using javax.comm -- or alternatively use

javax.smartcard, which in turn uses javax.comm. The javax.comm API

facilitates the interfacing of serial and parallel devices to Java.

Voice Mailing System Chapter 7 – Overview of VOICE

 80

7. OVERVIEW OF VOICE

 TRAMSMISSION OVER INTERNET

7.1 UNDERSTANDING JMF

 JavaTM Media Framework (JMF) provides a unified architecture and

messaging protocol for managing the acquisition, processing, and delivery

of time-based media data. JMF is designed to support most standard media

content types, such as AIFF, AU, AVI, GSM, MIDI, MPEG, QuickTime,

RMF, and WAV. By exploiting the advantages of the Java platform, JMF

delivers the promise of "Write Once, Run AnywhereTM" to developers

who want to use media such as audio and video in their Java programs.

JMF provides a common cross-platform Java API for accessing underlying

media frameworks. JMF implementations can leverage the capabilities of the

underlying operating system, while developers can easily create portable

Java programs that feature time-based media by writing to the JMF API.

 With JMF, you can easily create applets and applications that

present, capture, manipulate, and store time-based media. The framework

enables advanced developers and technology providers to perform custom

processing of raw media data and seamlessly extend JMF to support

Chapter

7

Voice Mailing System Chapter 7 – Overview of VOICE

 81

additional content types and formats, optimize handling of supported

formats, and create new presentation mechanisms.

 High-Level Architecture Devices such as tape decks and VCRs provide a

familiar model for recording, processing, and presenting time-based media.

When you play a movie using a VCR, you provide the media stream to the

VCR by inserting videotape. The VCR reads and interprets the data on the

tape and sends appropriate signals to your television and speakers.

 JMF uses this same basic model. A data source encapsulates the

media stream much like videotape and a player provides processing and

control mechanisms similar to a VCR. Playing and capturing audio and

video with JMF requires the appropriate input and output devices such as

microphones, cameras, speakers, and monitors. Data sources and players are

integral parts of JMF's high-level API for managing the capture,

presentation, and processing of time-based media. JMF also provides a

lower-level API that supports the seamless integration of custom processing

components and extensions. This layering provides Java developers with an

easy-to-use API for incorporating time-based media into Java programs

while maintaining the flexibility and extensibility required to support

advanced media applications and future media technologies.

7.1.1 PLAYERS

 A Player processes an input stream of media data and renders it at a

precise time. A DataSource is used to deliver the input media-stream to the

Player.The rendering destination depends on the type of media being

presented.

Voice Mailing System Chapter 7 – Overview of VOICE

 82

 A Player does not provide any control over the processing that it

performs or how it renders the media data. Player supports standardized

user control and relaxes some of the operational restrictions imposed by

Clock and Controller.

7.1.1.1 PLAYER STATES

 A Player can be in one of six states. The Clock interface defines the

two primary states: Stopped and started. To facilitate resource management,

Controller breaks the Stopped state down into five standby states:

Unrealized, Realizing, Realized, Prefetching, and Prefetched.

 In normal operation, a Player steps through each state until it reaches

the Started state: A Player in the Unrealized state has been instantiated, but

does not yet know anything about its media. When a media Player is first

created, it is Unrealized. When realize is called, a Player moves from the

Unrealized State into the Realizing State. A Realizing Player is in the

process of determining its resource requirements. During realization, a

Player acquires the resources that it only needs to acquire once. These might

include rendering resources other than exclusive-use resources. (Exclusive-

use resources are limited resources such as particular hardware devices that

can only be used by one Player at a time; such resources are acquired during

Prefetching.) A Realizing Player often downloads assets over the network.

When a Player finishes Realizing, it moves into the Realized state. A

Realized Player knows what resources it needs and information about the

type of media it is to present. Because a Realized Player knows how to

render its data, it can provide visual components and controls. Its

connections to oither objects in the system are in place, but it does not own

any resources that would prevent another Player from starting. When

Voice Mailing System Chapter 7 – Overview of VOICE

 83

prefetch is called, a Player moves from the Realized state into the

Prefetching state. A Prefetching Player is preparing to present its media.

During this phase, the Player preloads its media data, obtains exclusive-use

resources, and does whatever else it needs to do to prepare itself to play.

Prefetching might have to recur if a Player object's media presentation is

repositioned, or if a change in the Player object's rate requires that

additional buffers be acquired or alternate processing take place. When a

Player finishes Prefetching, it moves into the Prefetched state. A

Prefetched Player is ready to be started. Calling start puts a Player into the

Started state. A Started Player object’s time-base time and media time are

mapped and its clock is running, though the Player might be waiting for a

particular time to begin presenting its media data. A Player posts

TransitionEvents as it moves from one state to another. The

ControllerListener interface provides a way for your program to determine

what state a Player is in and to respond appropriately. For example, when

your program calls an asynchronous method on a Player or Processor, it

needs to listen for the appropriate event to determine when the operation is

complete. Using this event reporting mechanism, you can manage a Player

objects start latency by controlling when it begins Realizing and Prefetching.

It also enables you to determine whether or not the Player is in an

appropriate state before calling methods on the Player.

7.1.2 PROCESSORS

Processors can also be used to present media data. A Processor is just

a specialized type of Player that provides control over what processing is

performed on the input media stream. A Processor supports all of the same

presentation controls as a Player.

Voice Mailing System Chapter 7 – Overview of VOICE

 84

 In addition to rendering media data to presentation devices, a

Processor can output media data through a DataSource so that it can be

presented by another Player or Processor, further manipulated by another

Processor, or delivered to some other destination, such as a file. For more

information about Processors, see Processing. Presentation Controls In

addition to the standard presentation controls defined by Controller, a Player

or Processor might also provide a way to adjust the playback volume. If so,

you can retrieve its GainControl by calling getGainControl. A GainControl

object posts a GainChangeEvent whenever the gain is modified. By

implementing the GainChangeListener interface, you can respond to gain

changes. For example, you might want to update a custom gain control

Component. A particular Player or Processor implementation to provide

other control behaviors and expose custom user interface components might

support additional custom Control types. You access these controls through

the getControls method. For example, the CachingControl interface extends

Control to provide a mechanism for displaying a download progress bar. If a

Player can report its download progress, it implements this interface. To find

out if a Player supports CachingControl, you can call

getControl(CachingControl) or use getControls to get a list of all the

supported Controls. Standard User Interface Components A Player or

Processor generally provides two standard user interface components, a

visual component and a control-panel component.You can access these

Components directly through the getVisualComponent and

getControlPanelComponent methods.

Voice Mailing System Chapter 7 – Overview of VOICE

 85

7.1.3 PROCESSING

 A Processor is a Player that takes a DataSource as input, performs

some user-defined processing on the media data, and then outputs the

processed media data.

 A Processor can send the output data to a presentation device or to a

DataSource. If the data is sent to a DataSource, that DataSource can be used

as the input to another Player or Processor, or as the input to a DataSink.

While the implementor predefines the processing performed by a Player, a

Processor allows the application developer to define the type of processing

that is applied to the media data. This enables the application of effects,

mixing, and compositing in real-time. The processing of the media data is

split into several stages:

 Demultiplexing is the process of parsing the input stream. If the

stream contains multiple tracks, they are extracted and output separately. For

example, a QuickTime file might be demultiplexed into separate audio and

video tracks. Demultiplexing is performed automatically whenever the input

stream contains multiplexed data. Pre-Processing is the process of applying

effect algorithms to the tracks extracted from the input stream.

Transcoding is the process of converting each track of media data from one

input format to another. When a data stream is converted from a compressed

type to an uncompressed type, it is generally referred to as decoding.

Conversely, converting from an uncompressed type to a compressed type is

referred to as encoding. Post-Processing is the process of applying effect

algorithms to decoded tracks. Multiplexing is the process of interleaving the

transcoded media tracks into a single output stream. For example, separate

audio and video tracks might be multiplexed into a single MPEG-1 data

Voice Mailing System Chapter 7 – Overview of VOICE

 86

stream. You can specify the data type of the output stream with the

Processor setOutputContentDescriptor method. Rendering is the process of

presenting the media to the user. The processing at each stage is performed

by a separate processing component. These processing components are JMF

plug-ins. If the Processor supports TrackControls, you can select which

plug-ins you want to use to process a particular track. There are five types of

JMF plug-ins: Demultiplexer--parses media streams such as WAV, MPEG

or QuickTime. If the stream is multiplexed, the separate tracks are extracted.

Effect--performs special effects processing on a track of media data.

Codec--performs data encoding and decoding.

 Multiplexer--combines multiple tracks of input data into a single

interleaved output stream and delivers the resulting stream as an output

DataSource. Renderer--processes the media data in a track and delivers it

to a destination such as a screen or speaker. Processor States A Processor

has two additional standby states, Configuring and Configured, which occur

before the Processor enters the Realizing state..

 A Processor enters the Configuring state when configure is called.

While the Processor is in the Configuring state, it connects to the

DataSource, demultiplexes the input stream, and accesses information about

the format of the input data. The Processor moves into the Configured

state when it is connected to the DataSource and data format has been

determined. When the Processor reaches the Configured state, a

ConfigureCompleteEvent is posted. When Realize is called, the Processor

is transitioned to the Realized state. Once the Processor is realized it is

fully constructed. While a Processor is in the Configured state,

getTrackControls can be called to get the TrackControl objects for the

Voice Mailing System Chapter 7 – Overview of VOICE

 87

individual tracks in the media stream. This TrackControl objects enable

you specify the media processing operations that you want the Processor to

perform. Calling realizes directly on an Unrealized Processor automatically

transitions it through the Configuring and Configured states to the Realized

state. When you do this, you cannot configure the processing options

through the TrackControls--the default Processor settings are used. Calls to

the TrackControl methods once the Processor is in the Realized state will

typically fail, though some Processor implementations might support them.

 JMF also supports another type of MediaHandler, MediaProxy. A

MediaProxy processes content from one DataSource to create another.

Typically, a MediaProxy reads a text configuration file that contains all of

the information needed to make a connection to a server and obtain media

data. To create a Player from a MediaProxy, Manager: Constructs a

DataSource for the protocol described by the MediaLocator Uses the

content-type of the DataSource to construct a MediaProxy to read the

configuration file. Gets a new DataSource from the MediaProxy. Uses

the content-type of the new DataSource to construct a Player.

 The mechanism that Manager uses to locate and instantiate an

appropriate MediaHandler for a particular DataSource is basically the same

for all types of MediaHandlers: Using the list of installed content package-

prefixes retrieved from PackageManager, Manager generates a search list of

available MediaHandler classes. Manager steps through each class in the

search list until it finds a class named Handler that can be constructed and to

which it can attach the DataSource.

Voice Mailing System Chapter 8 – Text to Speech Conversion

 88

8. TEXT TO SPEECH CONVERSION

 (USING JAVA)

8.1 IMPORTANCE OF SPEECH TECHNOLOGY

Speech technology is becoming increasingly important in both

personal and enterprise computing as it is used to improve existing user

interfaces and to support new means of human interaction with computers.

Speech technology allows hands-free use of computers and supports access

to computing capabilities away from the desk and over the telephone.

Speech recognition and speech synthesis can improve computer accessibility

for users with disabilities and can reduce the risk of repetitive strain injury

and other problems caused by current interfaces.

The following sections describe some current and emerging uses of

speech technology. The lists of uses are far from exhaustive. New speech

products are being introduced on a weekly basis and speech technology is

rapidly entering new technical domains and new markets. The coming years

should see speech input and output truly revolutionize the way people

interact with computers and present new and unforeseen uses of speech

technology.

Chapter

8

Voice Mailing System Chapter 8 – Text to Speech Conversion

 89

8.1.1 DESKTOP

Speech technology can augment traditional graphical user interfaces.

At its simplest, it can be used to provide audible prompts with spoken

"Yes/No/OK" responses that do not distract the user's focus. But

increasingly, complex commands are enabling rapid access to features that

have traditionally been buried in sub-menus and dialogs. For example, the

command "Use 12-point, bold, Helvetica font" replaces multiple menu

selections and mouse clicks.

Drawing, CAD and other hands-busy applications can be enhanced by

using speech commands in combination with mouse and keyboard actions to

improve the speed at which users can manipulate objects. For example,

while dragging an object, a speech command could be used to change its

color and line type all without moving the pointer to the menu-bar or a tool

palette.

Natural language commands can provide improvements in efficiency

but are increasingly being used in desktop environments to enhance

usability. For many users it's easier and more natural to produce spoken

commands than to remember the location of functions in menus and dialog

boxes. Speech technology is unlikely to make existing user interfaces

redundant any time soon, but spoken commands provide an elegant

complement to existing interfaces.

Voice Mailing System Chapter 8 – Text to Speech Conversion

 90

8.1.2 TELEPHONY SYSTEMS

Speech technology is being used by many enterprises to handle

customer calls and internal requests for access to information, resources and

services. Speech recognition over the telephone provides a more natural and

substantially more efficient interface than touch-tone systems. For example,

speech recognition can "flatten out" the deep menu structures used in touch-

tone systems.

Systems are already available for telephone access to email calendars

and other computing facilities that have previously been available only on

the desktop or with special equipment. Such systems allow convenient

computer access by telephones in hotels, airports and airplanes.

8.1.3 PERSONAL AND EMBEDDED DEVICES

Speech technology is being integrated into a range of small-scale and

embedded computing devices to enhance their usability and reduce their

size. Such devices include Personal Digital Assistants (PDAs), telephone

handsets, toys and consumer product controllers.

Speech technology is particularly compelling for such devices and is

being used increasingly as the computer power of these device increases.

Speech recognition through a microphone can replace input through a much

larger keyboard. A speaker for speech synthesis output is also smaller than

most graphical displays.

Voice Mailing System Chapter 8 – Text to Speech Conversion

 91

8.2 OVERVIEW OF JAVA SPEECH API

8.2.1 JAVA SPEECH API

The Java Speech API defines a standard, easy-to-use, cross-platform

software interface to state-of-the-art speech technology. Two core speech

technologies are supported through the Java Speech API: speech recognition

and speech synthesis. Speech recognition provides computers with the

ability to listen to spoken language and to determine what has been said. In

other words, it processes audio input containing speech by converting it to

text. Speech synthesis provides the reverse process of producing synthetic

speech from text generated by an application, an applet or a user. It is often

referred to as text-to-speech technology.

Enterprises and individuals can benefit from a wide range of

applications of speech technology using the Java Speech API. For instance,

interactive voice response systems are an attractive alternative to touch-tone

interfaces over the telephone; dictation systems can be considerably faster

than typed input for many users; speech technology improves accessibility to

computers for many people with physical limitations.

Speech interfaces give Java application developers the opportunity to

implement distinct and engaging personalities for their applications and to

differentiate their products. Java application developers will have access to

state- of-the-art speech technology from leading speech companies. With a

standard API for speech, users can choose the speech products that best meet

their needs and their budget.

Voice Mailing System Chapter 8 – Text to Speech Conversion

 92

8.2.2 SPEECH-ENABLED JAVA APPLICATIONS

The existing capabilities of the Java platform make it attractive for the

development of a wide range of applications. With the addition of the Java

Speech API, Java application developers can extend and complement

existing user interfaces with speech input and output. For existing

developers of speech applications, the Java platform now offers an attractive

alternative with:

Portability: the Java programming language, APIs and virtual machine are

available for a wide variety of hardware platforms and operating systems

and are supported by major web browsers.

Powerful and compact environment: the Java platform provides

developers with a powerful, object-oriented, garbage collected language,

which enables rapid development and improved reliability.

Network aware and secure: from its inception, the Java platform has been

network aware and has included robust security.

8.2.3 REQUIREMENTS

To use the Java Speech API, a user must have certain minimum

software and hardware available. The following is a broad sample of

requirements. The individual requirements of speech synthesizers and

Voice Mailing System Chapter 8 – Text to Speech Conversion

 93

speech recognizers can vary greatly and users should check product

requirements closely.

Speech software: A JSAPI-compliant speech recognizer or synthesizer is

required.

System requirements: most desktop speech recognizers and some speech

synthesizers require relatively powerful computers to run effectively. Check

the minimum and recommended requirements for CPU, memory and disk

space when purchasing a speech product.

Audio Hardware: Speech synthesizers require audio output. Speech

recognizers require audio input. Most desktop and laptop computers now

sold have satisfactory audio support. Most dictation systems perform better

with good quality sound cards.

Microphone: Desktop speech recognition systems get audio input through a

microphone. Some recognizers, especially dictation systems, are sensitive to

the microphone and most recognition products recommend particular

microphones. Headset microphones usually provide best performance,

especially in noisy environments. Tabletop microphones can be used in

some environments for some applications.

Voice Mailing System Chapter 8 – Text to Speech Conversion

 94

8.3 SPEECH ENGINES (JAVAX.SPEECH)

8.3.1 SPEECH ENGINE

The javax.speech package of the Java Speech API defines an abstract

software representation of a speech engine. "Speech engine" is the generic

term for a system designed to deal with either speech input or speech output.

Speech synthesizers and speech recognizers are both speech engine

instances. Speaker verification systems and speaker identification systems

are also speech engines but are not currently supported through the Java

Speech API.

The javax.speech package defines classes and interfaces that define

the basic functionality of an engine. The javax.speech.synthesis package and

javax.speech.recognition package extends and augments the basic

functionality to define the specific capabilities of speech synthesizers and

speech recognizers.

The Java Speech API makes only one assumption about the

implementation of a JSAPI engine: that it provides a true implementation of

the Java classes and interfaces defined by the API. In supporting those

classes and interfaces, an engine may completely software-based or may be

a combination of software and hardware. The engine may be local to the

client computer or remotely operating on a server. The engine may be

written entirely as Java software or may be a combination of Java software

and native code.

Voice Mailing System Chapter 8 – Text to Speech Conversion

 95

The basic processes for using a speech engine in an application are as

follows.

• Identify the application's functional requirements for an engine (e.g,

language or dictation capability).

• Locate and create an engine that meets those functional requirements.

• Allocate the resources for the engine.

• Set up the engine.

• Begin operation of the engine - technically, resume it.

• Use the engine

• Deallocate the resources of the engine.

8.3.2 SPEAKING TEXT :

The Synthesizer interface provides four methods for submitting text to a

speech synthesizer to be spoken. These methods differ according to the

formatting of the provided text, and according to the type of object from

which the text is produced. All methods share one feature; they all allow a

listener to be passed that will receive notifications as output of the text

proceeds.

The simplest method - speakPlainText - takes text as a String object. This

method is illustrated in the "Hello World!" example at the beginning of this

chapter. As the method name implies, this method treats the input text as

plain text without any of the formatting described below.

The remaining three speaking methods - all named speak - treat the

input text as being specially formatted with the Java Speech Markup

Language (JSML). JSML is an application of XML (eXtensible Markup

Voice Mailing System Chapter 8 – Text to Speech Conversion

 96

Language), a data format for structured document interchange on the

internet. JSML allows application developers to annotate text with structural

and presentation information to improve the speech output quality. JSML is

defined in detail in a separate technical document, "The Java Speech Markup

Language Specification."

The three speak methods retrieve the JSML text from different Java

objects. The three methods are:

• void speak(Speakable text, SpeakableListener listener);

• void speak(URL text, SpeakableListener listener);

• void speak(String text, SpeakableListener listener);

8.3.3 SPEECH OUTPUT QUEUE

Each call to the speak and speakPlainText methods places an object onto

the synthesizer's speech output queue. The speech output queue is a FIFO

queue: first-in-first-out. This means that objects are spoken in the order in

which they are received.

The top of queue item is the head of the queue. The top of queue item

is the item currently being spoken or is the item that will be spoken next

when a paused synthesizer is resumed.

The Synthesizer interface provides a number of methods for

manipulating the output queue. The enumerateQueue method returns an

Enumeration object containing a SynthesizerQueueItem for each object on the

queue. The first object in the enumeration is the top of queue. If the queue is

empty the enumerateQueue method returns null.

Voice Mailing System Chapter 8 – Text to Speech Conversion

 97

8.3.4 MONITORING SPEECH OUTPUT

All the speak and speakPlainText methods accept a SpeakableListener as the

second input parameter. To request notification of events as the speech

object is spoken an application provides a non-null listener.

Unlike a SynthesizerListener that receives synthesizer-level events, a

SpeakableListener receives events associated with output of individual text

objects: output of Speakable objects, output of URLs, output of JSML strings,

or output of plain text strings.

The mechanism for attaching a SpeakableListener through the speak and

speakPlainText methods is slightly different from the normal attachment and

removal of listeners. There are, however, addSpeakableListener and

removeSpeakableListener methods on the Synthesizer interface. These add and

remove methods allow listeners to be provided to receive notifications of

events associated with all objects being spoken by the Synthesizer.

The SpeakableEvent class defines eight events that indicate progress of

spoken output of a text object. For each of these eight event types, there is a

matching method in the SpeakableListener interface. For convenience, a

SpeakableAdapter implementation of the SpeakableListener interface is provided

with trivial (empty) implementations of all eight methods.

Voice Mailing System Chapter 8 – Text to Speech Conversion

 98

8.3.5 SYNTHESIZER PROPERTIES

8.3.5.1 SELECTING VOICES

The SynthesizerProperties interface extends the EngineProperties interface.

The JavaBeans property mechanisms, the asynchronous application of

property changing, and the property change event notifications are all

inherited engine behavior and are described in that section.

The SynthesizerProperties object is obtained by calling the

getEngineProperties method (inherited from the Engine interface) or the

getSynthesizerProperties method. Both methods return the same object instance,

but the latter is more convenient since it is an appropriately cast object.

The SynthesizerProperties interface defines five synthesizer properties that

can be modified during operation of a synthesizer to effect speech output.

The voice property is used to control the speaking voice of the

synthesizer. The set of voices supported by a synthesizer can be obtained by

the getVoices method of the synthesizer's SynthesizerModeDesc object. Each voice

is defined by a voice name, gender, age and speaking style. Selection of

voices is described in more detail in Selecting Voices.

The remaining four properties control prosody. Prosody is a set of

features of speech including the pitch and intonation, rhythm and timing,

stress and other characteristics which affect the style of the speech. The

prosodic features controlled through the SynthesizerProperties interface are:

Volume: a float value that is set on a scale from 0.0 (silence) to 1.0

(loudest).

Voice Mailing System Chapter 8 – Text to Speech Conversion

 99

Speaking rate: a float value indicating the speech output rate in words per

minute. Higher values indicate faster speech output. Reasonable speaking

rates depend upon the synthesizer and the current voice (voices may have

different natural speeds). Also, speaking rate is also dependent upon the

language because of different conventions for what is a "word". For English,

a typical speaking rate is around 200 words per minute.

Pitch: the baseline pitch is a float value given in Hertz. Different voices

have different natural sounding ranges of pitch. Typical male voices are

between 80 and 180 Hertz. Female pitches typically vary from 150 to 300

Hertz.

Pitch range: a float value indicating a preferred range for variation in pitch

above the baseline setting. A narrow pitch range provides monotonous

output while wide range provides a more lively voice. The pitch range is

typically between 20% and 80% of the baseline pitch.

8.3.5.2 PROPERTY CHANGES IN JSML

In addition to control of speech output through the SynthesizerProperties

interface, all five-synthesizer properties can be controlled in JSML text

provided to a synthesizer. The advantage of control through JSML text is

that property changes can be finely controlled within a text document. By

contrast, control of the synthesizer properties through the SynthesizerProperties

interface is not appropriate for word-level changes but is instead useful for

setting the default configuration of the synthesizer. Control of the

Voice Mailing System Chapter 8 – Text to Speech Conversion

 100

SynthesizerProperties interface is often presented to the user as a graphical

configuration window.

Applications that generate JSML text should respect the default

settings of the user. To do this, relative settings of parameters such as pitch

and speaking rate should be used rather than absolute settings.

For example, users with vision impairments often set the speaking rate

extremely high - up to 500 words per minute - so high that most people do

not understand the synthesized speech. If a document uses an absolute

speaking rate change (to say 200 words per minute which is fast for most

users), then the user will be frustrated.

Changes made to the synthesizer properties through the

SynthesizerProperties interface are persistent: they affect all succeeding speech

output. Changes in JSML are explicitly localized (all property changes in

JSML have both start and end tags).

8.4 CONCLUSION :

The Java Speech API is a freely available specification and therefore

anyone is welcome to develop an implementation. The following

implementations are known to exist:

Fleets

IBM's "Speech for Java"

The Cloud Garden

Lernout & Hauspie's TTS for Java Speech API

Voice Mailing System Chapter 8 – Text to Speech Conversion

 101

Conversa Web 3.0

Festival

Voice Mailing System Chapter 9 – Mail Server

 102

9. MAIL SERVER (JAVA MAIL API)

9.1 INTRODUCTION

JavaMail provides a common, uniform API for managing electronic

mail. It allows service-providers to provide a standard interface to their

standards-based or proprietary messaging systems using the Java

programming language. Using thisAPI, applications access message stores,

and compose and send messages.The JavaMail API is composed of a set of

abstract classes that model the various pieces of a typical mail system. These

classes include:

Message—Abstract class that represents an electronic mail message.

Java Mail implements the RFC822 and MIME Internet messaging standards.

The MimeMessageclass extendsMessageto represent a MIME-style email

message.

Store—Abstract class that represents a database of messages maintained by

amail server and grouped by owner. A Store uses a particular access protocol

Folder—Abstract class that provides a way of hierarchically organizing

messages.

Chapter

9

Voice Mailing System Chapter 9 – Mail Server

 103

Folders can contain messages and other folders. A mail server

Provides each user with a default folder, and users can typically create and

fillSubfolders.

Transport—Abstract class that represents a specific transport protocol. A

Transport object uses a particular transport protocol to send a message.

9.2 THE STRUCTURE OF A MESSAGE

The Messageclass models an electronic mail message. It is an abstract

class that implements the Part interface.The Messageclass defines a set of

attributes and content for an electronic mailmessage. The attributes, which

are name-value pairs, specify addressing informationand define the structure

of the message’s content (its content type). Messages can contain a single

content object or, indirectly, multiple content objects. In either case,

thecontent is held by a DataHandlerobject.

9.2.1 SIMPLE MESSAGES

A simple message has a single content object, which is wrapped by a

DataHandlerobject. The following figure shows the structure of a Message

object:

Voice Mailing System Chapter 9 – Mail Server

 104

9.2.2 MULTIPART MESSAGES

In addition to the simple structure shown above, messages can also

contain multiple content objects. In this case theDataHandlerobject contains

aMultipart object, instead of merely a a single block of content

data.AMultipartobject is a container of BodyPartobjects. The structure of

aBodyPartobject is similar to the structure of a

Message object, because they both implement the

Partinterface.EachBodyPart object contains attributes and content, but the

attributes of aBodypartobject are limited to those defined by the Part

interface. An importantattribute is the content-type of this part of the

message content. The content of aBodyPartobject is aDataHandler that

contains either data or anotherMultipart object. The following figure shows

this structure:

Voice Mailing System Chapter 9 – Mail Server

 105

9.3 MESSAGES AND JAVABEANS ACTIVATION

FRAMEWORK

A DataHandler object represents the content of a message. The

DataHandler class is part of the JavaBeans Activation Framework (JAF).

The Data Handler class provides a consistent interface to data, independent

of its source and format. The data can be from message stores, local files,

URLs or objects in the Java programming language.

Voice Mailing System Chapter 9 – Mail Server

 106

9.3.1 DATASOURCE

A DataHandler object accepts data in the form of an object in the Java

programming language directly. For data from message stores, files or

URLs, however, a DataHandler depends on objects that implement the Data

Source interface to provide data access. A dataSource object provides access

to data in the form of an input stream .The Data Sourceinterface is also part

of the JAF. Java Mail provides the following Data Source objects:

javax.mail.MultipartDataSource

javax.mail.internet.MimePartDataSource

9.3.2 THE DATACONTENTHANDLER

DataHandler objects return the content of a message as an object in

the Java programming language. They use objects that implement the

DataContentHandlerinterface to translate message content between the

streams provided by DataSource objects and objects in the Java

programming language.

9.4 MESSAGE STORAGE AND RETRIEVAL

Users interact with message stores to fetch and manipulate electronic

mail messages.This chapter discusses how to implement the classes that

allow clients this access. Ifyou are creating a JavaMail service provider that

allows a client to send mail, but doesnot interface with a mail store, you do

not have to implement this functionality.

Voice Mailing System Chapter 9 – Mail Server

 107

9.4.1 STORE

The Store class models a message database and its access protocol. A

client uses it to connect to a particular message store, and to retrieve folders

(groups of messages).To provide access to a message store, you must extend

the Store class and implement its abstract methods. In addition, you must

override the default implementation of at least one method that handles

client authentication. The next sections cover how to write these methods.

They begin with authentication, since it precedes retrieval when the provider

is used.

9.4.1.1 AUTHENTICATION

JavaMail provides a framework to support both the most common

style of authentication, (username, passphrase), and other more sophisticated

styles such as a challenge-response dialogue with the user. To furnish the

(username, passphrase) style authentication in your provider, override the

protocolConnect method. Touse another style of authentication, you must

override the version of the connectmethod that takes no arguments.

9.4.1.2 FOLDER RETRIEVAL

A message store stores messages, and often allows users to further

group their messages. These groups of messages are called folders, and are

represented by the abstract class, Folder. The Store class provides abstract

methods for allowing the user to retrieve a folder:

• getDefaultFolder

Voice Mailing System Chapter 9 – Mail Server

 108

• getFolder

9.4.2 FOLDERS

The Folder class models a node in a mail storage hierarchy. Folders

can contain messages or subfolders or both. The following figure illustrates

this:

JavaMail Guide for Service Providers August 1998

Each user has a folder that has the case-insensitive name INBOX.

Providers must support this name. Folders have two states: they can be

closed (operations on a closed folder are limited) or open.

Folders

Since Folder is an abstract class, you must extend it and implement its

abstract methods. In addition, some of its methods have default

implementations that,depending on your system, you may want to override

for performance purposes. Thissection covers many of the abstract methods

Voice Mailing System Chapter 9 – Mail Server

 109

that you must implement, and the methods whose default implementations

you might want to override. It groups them in the following way:

• “Folder Naming”: getName, getFullName, getSeparator

• “Folder State”: open, close

• “Messages Within a Folder”: getMessage, getMessages, search, fetch

• “Folder Management”: getPermanentFlags, setFlags,appendMessages,

copyMessages, expunge.

9.5 ADDRESS

The Address class is an abstract class. Subclasses provide specific

implementations. Every Address subclass has a type-name, which identifies

the address-type represented by that subclass. For example, the

javax.mail.internet.InternetAddress subclass has the type-name: rfc822. The

type-name is used to map address-types to Transport protocols. These

mappings are set in the address.map registry. For example, the default

address.map in the JavaMail package contains the following entry:

rfc822=smtp The Address-type to Transport mapping is used by JavaMail to

determine the Transport object to be used to send a message. The

getTransport(Address) method on Session does this, by searching the

address.map for the transportprotocolthat corresponds to the type of the

given address object. For example,invoking the getTransport(Address)

method with an InternetAddress object,will return a Transport object that

implements the smtp protocol.An Address subclass may also provide

additional methods that are specific to that address-type. For example, one

method that the InternetAddress class adds is the getAddress method.

Voice Mailing System Chapter 9 – Mail Server

 110

9.6 EVENTS

The Store, Folder and Transport classes use events to communicate

state changes to applications. The documentation for the methods of these

classes specify whichevents to generate. A compliant provider must

broadcast these events.To broadcast an event, call the appropriate

notifyEventListeners method. Forexample, to manage MessageCountEvents

for new mail notification, your Foldersubclass should call the notify

MessageAddedListeners(msgs) method. (It is best to use the default

implementations of the NotifyEventListeners methods,because they dispatch

their events in an internal event-dispatcher thread. Using aseparate thread

like this avoids deadlocks from breakage in the locking hierarchy.) Every

event generated by the Store, Folder and Transport classes also has

associated addListener and removeListener methods. Like the

notifyEventListeners methods, these methods already have useful

implementations. A programmer using your service provider implementation

calls the appropriate addEventListener and removeEventListener methods to

control which event notifications are received.

9.7 CONCLUSION

JavaMail clients must package provider software for use. To do this:

• Choose a suitable name for your package

Voice Mailing System Chapter 9 – Mail Server

 111

The recommended way of doing this is to reverse your company

domain name, and then add a suitable suffix. For example, Sun’s

IMAP provider is named com.sun.mail.imap.

• Make sure that your key classes are public

If you provide access to a message store, your Store subclass must

be a public class. If you provide a way to send messages, your

Transport subclass must be a public class. (This allows JavaMail to

instantiate your classes.)

• Bundle your provider classes into a suitably named jar file

The name of the jar file should reflect the protocol you are

providing. For example, an NNTP provider may have a jar file

named nntp.jar. Refer to a suitable Java programming language

book for details on how to create jar files.Because your jar file

must be included in an application’s classpath so that it canbe

found by the application’s classloader, include the name of your jar

file in the documentation for your provider. Mention that the

application’s classpath should beupdated to include the location of

the jar file.

• Create a registry entry for the protocol your implementation provides

A registry entry is a set of attributes that describe your

implementation. There are five attributes that describe a protocol

implementation. Each attribute is a name-value pair whose syntax

is name=value. The attributes are separated by semicolons (;).

 112

CONCLUSION

The VMS server is the first server in Pakistan through which you can

hear to your emails from anywhere around the world just by having a simple

touch tone telephone or simple mobile. Our server is complete and in

working phase. It can be used commercially which only requires an

exchange card for multiple users, but there is no need for change in software

for that. It can be used commercially.

 113

FUTURE ENHANCEMENTS

• AUDIO ON DEMAND

We can make a server that can entertain the request of its users on

telephone and playback any desired audio.

• PHONE TO PHONE

A person can send voice mail to a person’s inbox, which can be

listened by calling to the server from any telephone no and accessing

the inbox.

• ANSWERING MACHINE

If a person is not present at his/her place then it can be enhanced as an

answering machine.

• MULTIPLE USERS
This project can be enhanced for commercial purposes. Just like

Internet service providers this can be made a service provider through

which anyone can be benefited from this project.

o Soft Exchange

o Phone To Phone

 114

BIBLIOGRAPHY

Resources:

1. http://java.sun.com/products/javacomm/

2. http://www.embedded.com/98/toc9801.htm

3. http:ridgewater.mnscu.edu/classes/dc/io/

4. The book Understanding Data Communications,

by Gilbert Held and George

5. http://www.clbooks.com/sqlnut/SP/

6. http:bbec.com/catalog/software/serialte.html

7. http://www.openbsd.org/

8. http://www.javaworld.com/javaworld/jw-12-
1997/jw-12-javadev.html

9. The January issue of JavaWorld ran the

second article in the smart card series: "Smart
cards and the OpenCard Framework"

10. http://www.javaworld.com/javaworld/jw-01-

1998/jw-01-javadev.html

11. In JavaWorld's February issue, you can
read "Get a jumpstart on the Java Card"

12. http://www.javaworld.com/javaworld/jw-02-

1998/jw-02-javadev.html

13. Also in the February issue is "Giving
currency to the Java Card API"

 115

14. http://www.javaworld.com/javaworld/jw-02-
1998/jw-02-javacard.html

15. For more on Java Card 2.0, see

"Understanding Java Card 2.0" in the March
issue of JavaWorld

16. http://www.javaworld.com/javaworld/jw-03-

1998/jw-03-javadev.html

17. How to program JAVA by Dietel and Dietel

18. JMF Guide

