
 1

DEDICATION 

 

Dedicated to our parents whose love and care have made us possible to reach this 

position, dedicated to our teachers whose hard work and knowledge have made us 

possible to develop a practical application and  dedicated to our sisters ,brothers and 

friends whose sincerity and friendship will provide us with shelter and security. 

 

 

 

 

 

 

 

 

 

 



 2

DECLARATION 

This is declared that this project Form Builder For Document Management System was 

solely prepared by Muhammed Junaid Arshed, Syed Muhammad Khaliq-ur-Rahman 

Raazi and Wasim Imran. All source code written by them and documentation prepared 

for Form Builder was their individual and group efforts and not a single part of the 

project was copied from any other source. The three members of group and National 

University of Sciences and Technology (NUST) have equal rights of using this software 

and source code and no one else is allowed to use the software or any part of the code 

without the permission of all members. 

Muhammed Junaid Arshed (Syndicate Leader) 

_______________________________________ 

Syed Muhammad Khaliq-ur-rahman Raazi 

__________________________ 

Wasim Imran 

________________________________________ 

 

Brig.Dr.Muhammad Akbar(Project Supervisor) 

 

____________________________________ 

 



 3

Table of Contents 

Dedication………….………………………………………………1 

Declaration………….…………………………………...................2 

Table of contents…….……………………………………………..3 

Abstract…………….………………………………………………8 

About the project…..……………………………………………….9 

Section 1 – Introduction…………………………………………...10 

1.1 Overview…………………………………………................11 

1.2 Document Scope…….……………………………................13 

1.3 Basic Functionality….……………………………................14 

1.4 Problems with existing Form Designers….............................14 

1.5 Overall Description……………………….…………………15 

1.5.1 Project Specification……………………..............15 

1.5.2 Project Description……………………………….16 

1.6 Where to use Form Builders……………..............................17 

1.7 Software Project Constraints……………………………….18 

Section 2–Project Specifications…………………......................19 

 2.1 Statement of purpose……………………......................20 

 2.2 Scope of product……………………………………20 



 4

Section 3–SRS…….……………………………………………..22 

 3.1 Introduction………………………………………...24 

  3.1.1 System statement of scope…………………24 

   3.1.1.1 Goals and objectives……………….24 

  3.1.2 System Context…………………………….25 

 3.2 General Description………………………………..25 

  3.2.1 System Functionality………………………25 

  3.2.2 User constraints……………………………26 

  3.2.3 General constraints………………………...27 

  3.2.4 Assumptions and dependencies……………27 

 3.3 Specific Requirements……………………………..29 

  3.3.1 Functional Requirements…………………..29 

  3.3.2 External Interface Requirements…………..29 

   3.3.2.1 User Interfaces……………………..29 

   3.3.2.2 Hardware Interfaces………………..33 

   3.3.2.3 Software Interfaces………………..33 



 5

  3.3.3 Non Functional Requirements…………….34 

  3.3.4 Limitations and Constraints……………….34 

 3.4 Future Extension…………………………………..36 

Section 4–Concept of XML…….………………………………37 

 4.1 Introduction………………………………………..38 

 4.2 Origin and Goals…………………………………..38 

 4.3 Structuring Data…………………………………...39 

 4.4 XML and HTML………………………………….39 

 4.5 XML as text……………………………………….40 

 4.6 Design of XML……………………………………40 

 4.7 Family of technologies……………………………40 

 4.8 Development of XML…………………………….41 

 4.9 Use of XHTML…………………………………...41 

4.10 Modular approach……………………………….42 

4.11 Basis for RDF and semantic web………………..42 

4.12 Platform independence and well supported…….42 



 6

Section 5–Concept of SVG……………………………………..44 

 5.1 Introduction……………………………………...45 

  5.1.1 About SVG………………………………45 

  5.1.2 SVG MIME type, file name extension  

and Macintosh file type…………………46 

  5.1.3 SVG Namespace, Public Identifier  

and System Identifier……………………46 

  5.1.4 Compatibility with Other  

Standards Efforts………………………...47 

 5.2. Concepts………………………………………...48 

5.2.1 Explaining the name: SVG……………....48 

5.2.2 Important SVG concepts………………....51 

5.2.3 Options for using SVG in Web pages……53 

Section 6–Concept of Flat file……….…………………………..55 

 6.1 Introduction……………………………………....56 

 6.2 Use of Flat File in Form Builder…..……………..56 



 7

 6.3. Structure of Flat File……………..……………...57 

Section 7–Use Case Analysis…………………………………..59 

Section 8–Sequence Diagrams…………………………………62 

Section9–PDOL……………………………….………………..65 

Section 10–Class list………………………….………………...68 

Section 11–CRC Cards……………………….………………...77 

Section 12–CRD…………………………….………………….91 

Section 13–State Charts…………………….…………………..93 

Section 14–Detailed Low Level Design……………………….108 

Section 15–Test Cases…………………………………………113 

Section 16–User Manual………………………………………119 

Section 17–Conclusion………………………………………..134 

Achievements……………………………….…………………137 

Future Extensions………………………….…………………..138 

Bibliography……………………………….…………………..140 

Acknowledgements……………………………………….…...141 



 8

Abstract 

Form Builder for Document Management System is a MDI application that is used to 

design forms. In Form Builder, documents are forms that are designed in this software. 

The main specialty in this project is its compatibility with printing variable data. 

Presently, Form Builder does not provide printing solution but they can be incorporated 

in future as Form Builder is totally compatible with printing. Form Builder uses Flat Files 

as database tool that gives compatibility to work in future in PPML ,a XML technology 

used to provide variable printing solution .Also its specialty is its functionality of saving 

the design in SVG format which is also a XML technology that gives platform 

independence,B2B communication and makes possible the integrity of Form Builder 

with printing solution as language used for printing is PPML which is also a XML 

technology, so two technologies of XML can be easily integrated. Also its functionality is 

its excellent and user friendly user interface which makes the software easy to use for 

any new user. 

 

 

 

 

 

 



 9

About Project Report 

 

The project report for “Form Builder for Document Management System” is comprised 

of 

 Introduction to core concepts of Form Building and XML 

 Software Requirements Specifications 

 Object Oriented Analysis of the project 

 Future extensions 

 

The report consists of various sections. Section 1 contains an overview and introduction 

to the core concepts involved in the project. Sections 2 and 3 cover Project and 

Software requirements specifications. Object Oriented Analysis is covered from section 

4 to section 11. The project report is concluded in section 12, covering the 

achievements and future extensions. 

 

 



 10

 

Section 1 

 
 

INTRODUCTION 
 

 

 

 

 

 

 



 11

1.1   Overview 

Documentation is one of the most key processes during the product development in 

industry. It is considered to be one of the vital components delivered with the product. 

When it comes to Information Technology industry, the documentation is of pivotal 

importance and software engineers are trained to produce and update the documents 

regarding software projects. Keeping the importance of documents in view, some 

software giants took the initiative to develop software products which handle a large 

amount of data very efficiently. Some of the prominent names were Xerox, Adobe, 

Corel, Elixir and Microsoft. Following the footsteps of these key organizations in 

industry, a large number of software organizations are now working in the field of data 

handling and printing and a large number of form designers and editors are being 

developed in the organizations across the globe. 

Besides documentation, there is also a need for handling and saving variable data. This 

variable data is placed on the different documents and then printed. Some examples of 

the variable data documents are National Identity Cards, Passports, Bills, Employee 

records etc. The variable data is usually in excess of Tera bytes or Pita bytes. Handling 

and printing this variable data is one of the hottest research topics in the industry and 

data companies are developing the more smarter solutions to win the race. They have 

developed their own formats and print streams. For example IBM has developed its own 

format of print stream known as AFP, Xerox has developed its print stream format 

known as VIPP, Elixir has developed its format known as elix. As far as saving of 

variable data is concerned a lot of research is going on in this area. The goal of the 

researchers is to develop a universal format for serialization of data. So that the data 

can be viewed ,edited and printed on any platform and this data should be acceptable 

by the large amount of text editors, form designers and print streams. In pursuit of the 

above mentioned goals, US Department of Defense developed a format known as 

Standard Generalized Markup Language(S.G.M.L).This format was used to save the 

data in the complex data structures so that the data can be accessed and retrieved 

more efficiently. As the name suggests, SGML is a markup language and markup with 



 12

the data is in the form of tags. These tags store the information about the type of the 

data and some of the tags also contain the information about the presentation of the 

data. 

Later, in the field of data handling, a very important breakthrough came in 1993, when 

Hyper Text Markup Language (HTML) emerged on the scene. Hyper Text Markup 

Language was based on the concepts of SGML. It was developed to display data on the 

Web. Development of HTML became the basis of the Internet revolution. In the 

beginning, only 5000 web pages were written in HTML and now in 2002, the number of 

HTML are in the excess of billions.HTML pages are viewed in special viewing software 

known as Web browser.HTML solved the problem of handling of data and porting of 

data on different platforms, to a large extent but it has some shortcomings. The 

deficiency in HTML is that it is a presentation oriented language. It takes care of 

presentation format of the data but it does not offer any solution for keeping track of 

semantics of the data. What data in conveying, how data is structured semantically, how 

the hierarchy of semantics is developing are some of the important issues. Keeping in 

view the shortcoming of HTML, Extensible Markup Language (XML) is developed. XML 

is yet a evolving language. It is a very powerful language for handling data.It contains 

technologies both for semantics and presentation of data. XML is also developed on the 

concepts of SGML. In HTML, tags are predefined and there is a standard set of tags 

which can be incorporated in the documents but in XML, the tags are defined by the 

developer. This feature of XML provides a great deal of flexibility to the developer as he 

is not limited by a predefined set of tags.  XML is now widely accepted by a large 

number of text editors, form designers and browsers so it is becoming a universal 

format. 

Keeping in view the increasing importance of variable data handling solutions, we 

decided to undertake a project by ELIXIR Technologies which is FORM DESGINER for 

Office Documentation System. The form designer can design and draw like classical 

form designers and it can perform any sort of text editing as well. The most exciting 

feature of this form designer is that it can save the data in XML format. To be more 

precise, it saves data in a new and revolutionary XML based format which is known as 



 13

Scalable Vector Graphics (SVG) format. Scalable vector graphics not only presents the 

core functionality of the XML but it also provides the high resolution rendering of the 

graphics objects. Incorporation of SVG certainly makes this product a very useful 

product. 

1.2 Document Scope 

This is the final documentation which will be delivered with the product.  It contains 

Project Specifications, Descriptions of different phenomena, Details of Interfaces, 

various kinds of UML Diagrams, References, Bibliography and Appendices. Precisely, 

the documentation will be comprised of: 

1.  Project Specification 

2.  Software Requirements Specification 

3.  Use Cases 

4.  Sequence Diagrams 

5.  PDOL 

6.  Class List 

7.  CRC 

8.  CRD 

9.  Test Cases 

10. Problems during Implementation 

11. Future Extensions 

 



 14

1.3 Basic Functionality 

Form Builder for Document Management System is a software for designing and 

printing of forms. The forms designed by the Form Builder are used to print with the 

variable data. This variable data is very large in volume. The size of the variable data 

may be in the excess of Tera bytes or Pita bytes. It usually resides on a main frame 

computer. This variable data is downloaded in a simple text file after removing the 

metadata associated with it. The text file in which the variable data is downloaded is 

called as “Flat File”. The size of the flat file may be in excess of Giga bytes or Tera 

bytes. After the creation of flat file, layout of the form is prepared. The variable data from 

the flat file is then associated with different portions of the form layout. The Form Builder 

creates two kinds of trees. One is created for the management of the form layout and 

other is created for the management of flat file. The titles from the flat file can be 

dragged and dropped onto the form layout to associate different portions of form layout 

with the variable data. After this step, the form is sent to RAM of the printer for printing. 

The printer takes the incoming data stream, associate it with the corresponding portion 

of the form layout and then print the form. 

1.4 Problems with the Existing Form Designers 

The existing form designers pose some serious and considerable problems. A major 

problem is that they are confined to a specific format i.e. the form layout can be saved 

and opened in a specific format of a particular form designer. This format usually 

belongs to particular vendor and therefore supported by a limited range of products 

offered by that vendor. This format is not supported by form designers and graphics 

rendering tools from the other vendors. 

Another problem with the existing form designers is that they are confined to a specific 

platform. Their format can be used in particular platform and it is not properly visible in 

other platforms. Moreover format doesn’t visible uniformly when viewed in different 

environments and platforms. 



 15

The solution to both of the above mentioned problems is a development of standardized 

format which could be accepted and implemented by a large number of vendors. SVG 

can be one such format. It is XML based format. Since XML is platform independent so 

SVG is platform independent as well. The Form layouts saved in SVG can be viewed 

uniformly across different platforms and since SVG is accepted by a large number of 

vendors as a standard format so it is supported by a large number of tools. 

For the above mentioned reasons, we have used SVG as a storing format of the Form 

Layouts. 

1.5 Overall Description 

1.5.1  Project Specification 

1.  The Form Builder is a Win32 application. 

2.  XML version 1.0 is supported by the Form Builder. 

3.  Form Builder is to be developed on Microsoft Visual C++ version 

6.0. 

4.  XML and SVG used in the Form Builder is parsed by the Microsoft 

XML Parser version 4.0. 

5. Integrate Form Designer and data layout. 

6. Handle huge volumes of variable data. 

7. Create customized layouts of the documents. 

8. Data definer mechanism (It is done with the help of a grid control). 



 16

1.5.2  Project Description 

The function of the Form Designer for the Office Management System is to design 

various kinds of forms used in different kinds of  applications. 

The Form Builder basically consists of following four modules : 

1. Designer 

2. Converter 

3. Translator 

4. Grid Control 

 

Designer is used to design the layout of the form. It contains a “Designer Area” where 

the user draws the layout of the form. Designer module also contains different kinds of 

design tools and basic shapes like circle, square, line, rectangle and it also facilitates 

free hand drawing. Drawing is done with the help of mouse and very elementary users 

are able to draw very sophisticated designs. 

Converter is used to save the layout of the form and then it converts the layout into 

Scalable Vector Graphics format. Converter actually generates the SVG code for the 

layout, at the backend. This code confirms to W3C standards and specifications of 

SVG.W3C is a regulatory body for the standardization of various web technologies, so 

generating SVG code according to the original specifications of W3C will make the code 

re-useable and interoperable on any graphics rendering tool which supports SVG. 

Translator is used to translate the format saved in SVG format back into the applications 

format, so that it can be editable in design area. It parses the SVG code and then 

displays the last saved layout onto the design area. 

Grid Control is a very user friendly module incorporated in the FORM BUILDER. The 

variable data is positioned onto the prepared form layout in different applications. This 



 17

variable data is downloaded from a server or Main Frame and saved in a special kind of 

text file called as “Flat File”. The  flat file is analogues to a Relational Database but flat 

file neither contains meta data nor it stores the  data in a organized and readable 

manner. Due to poor readability, it is virtually impossible for a user to sort out and 

organize the records and fields manually. Grid Control offers a very user friendly 

solution to this problem. Flat file is loaded into the grid and the data is organized in the 

columns and alternate rows of the grid. In the empty rows, a user can give the title of 

the fields and after giving the titles the user can drag these titles to a “Grid Tree” which 

maintains the proper classification of the variable data with the help of the user defined 

titles. These titles are then dragged onto the different portions of the form layout in 

design area to associate the variable data to these portions. After associating the 

variable data to different portions of the form layout, the form is now ready for the 

variable printing of a huge amount of variable data. 

The GUI of the Form designer is designed to facilitate the usage of the software to a 

great ease. Users with a very little knowledge of computer can browse through the 

different options with a minimum of efforts and subsequently use the options, drawing 

tools and grid control. 

1.6 Where to Use Form Builders 

Form Builder is a vastly used print solution. It is used in 

1. Large Enterprises, for printing different kinds of records 

2. Software Organizations, for generating complex structured documentation. 

3. Air Craft and Automobile industry, for printing complex and richly structured user 

manuals 

4. Education Institutions, for printing different kinds of application forms and 

records. 

5. Financial Institutions, for printing different kind of sophisticated and complex 

structured documents. 

6. In government institutions, for designing and Printing Identity cards. 



 18

7. In Service industry, for printing bills and vouchers. 

8. Printing utility bills. 

 

1.7 Software Project Constraints 

1. Form Builder for Document Management System supports Scalable Vector 

Graphics (SVG) format for the serialization of the data. SVG is supported in 

Internet Explorer 5.5 and above and NetScape 6.0 and above, so the designed 

forms will not be viewed, if opened in the IE versions, less than 5.5. 

2. With the help of SVG, we can implement animation support in our online form 

layouts. But this feature is not implemented due to shortage of time. 

3. The Form Builder is developed on Win32 platform , it is only tested in Windows 

environment. It is not tested on other platforms. 

4. XML version 1.0 is supported. If the designed forms are edited with XML 

version 2.0 parsers then the parsers will not able to render them correctly. 

 

 

 



 19

 

Section 2 

 

PROJECT 

SPECIFICATIONS 
 

 

 

 



 20

2.1 Statement of Purpose 

Form Builder for Office Management System is a XML based form designer. This 

software is used to design different kinds of forms. The form layouts are designed with 

the help of different kinds of design tools. These forms are then saved in SVG format. 

SVG is a cutting edge and sophisticated XML format which is platform independent and 

it is supported by a large number of Graphics Rendering tools and software vendors. 

Saving the form in SVG will certainly make the forms editable in a large number of 

Graphics tools which support SVG. Moreover, using the SVG format will make the forms 

visible uniformly across different platforms and help to enhance the product scope to 

large number of tools and platforms. 

2.2 Scope of the Product 

FORM BUILDER for Office Management System is form designer to design and print 

complex structured forms. It offers various kinds of drawing tools and a “Design Area”. 

The drawing tools include basic shapes like line, different kinds of rectangles, squares 

and circles. It also offers support for free hand drawing. Form Builder offers three kinds 

of window. The first is “Tree” window. The second is “Designer” window and the third 

one is “Grid Control” window. The Tree window has two kinds of Tree views. The first 

tree view is called as “Designer View” and the other view is called as “Grid View”. The 

second kind of window is called as “Designer” window. It offers design area to the user 

where he can design the layout of the form. The third window is “Grid Control” window. 

This window presents a grid for opening of a flat file. User designs the layout of the form 

in Designer window with the help of different kinds of drawing tools. The drawn objects 

in the designer window are maintained in the Designer Tree View in Tree window. The 

tree view of the drawn objects makes the navigation easy through the form objects. The 

“Grid View” maintains the tree view of the objects present in the grid. The switching 

between the two different views in the Tree view window is done with the help of Tabs. 



 21

The input to the Form Builder is comprised of the designed layout in the designer area 

and the variable data, which is in the form of flat file, opened in the Grid Control window. 

Titles are given to the fields of flat file in Grid Control and the Grid Tree View is then 

populated with the help of these user defined titles in the Grid Control. These populated 

titles are then dragged and dropped onto the designer area to associate different 

portions of the designed form layout with them. This layout is then saved in SVG format 

and it is ready to be printed or viewed in any graphics rendering tool which supports 

SVG format. 

 

 

 

 

 

 



 22

 

Section 3 
 

 

 

 

SOFTWARE 

REQUIREMENTS 

SPECIFICATIONS 

(SRS) 



 23

Purpose of SRS 

The SRS for the Form Builder for Document Management System is written to tell the 

users what this software is supposed to do. The Software Requirements Specification 

(SRS) is produced as part of the requirements analysis phase. It presents a complete 

description of the external behavior of the Form Builder for Document Management 

System. It is serving the following purposes: 

 Communication among  users, analysts, and designers, 

 Supports system-testing activities, and 

 Controls the evolution of the system. 

SRS Document Overview 

Introduction about the system is given in the first chapter that what is the scope of the 

product and what is the purpose of this document. 

In the second chapter, general description of the product is given which includes its 

perspectives, functionality, user characteristics, general constraints, assumptions and 

dependencies. 

In the next section of this document, requirements are specified such as functional 

requirements and external interface requirements. In addition, user, hardware, 

software interfaces along with non-functional requirements are given. 

In the end, possible product evolution is given which shows how the product can be 

evolved in the future to meet the changing requirements of the people. 

 

 



 24

3.1. INTRODUCTION 

3.1.1 System Statement of Scope 

Our purpose is to develop a form builder which will create forms with the help of 

different kinds of drawing tools. The layout of the forms and the variable data attached 

to the various fields of layout are stored in Scalable Vector Graphics format which is a 

new and revolutionary graphics format based on XML. It has following main functions: 

1. Creates the layout of a form. 

2. Supports the opening and closing of a Flat file which is the main source of 

variable data. 

3. Designs the layout of the forms with the help of different drawing tools and 

shapes such as rectangle, circle, polygon, lines and free hand drawing tool. 

4. Serializes and retrieves the form layouts in the Scalable Vector Graphics format 

which is a XML based graphics format. 

3.1.1.1 Goals and Objectives 

Form Builder for Document Management System is a software project based on a very 

rational concept of XML. This project is assigned to us by Elixir Technologies which is a 

California based company specializing in print solutions. Its major partners are IBM, 

Adobe, Oce and Xerox. Elixir provides print solutions mostly in the form of AppBuilders 

and Form Builders. This project is actually the basis for the development of Elixir’s new 

XML based Form Builder. When we planned this project we had the following goals and 

objectives at the back of our minds: 

 To create Forms which are saved and retrieved in XML format. 

 To provide a basis for the development of Elixir’s new XML based Form Builder. 

 To explore the amazing concepts of Extensible Markup Language (XML) along 

with its cutting edge technologies. 



 25

 To learn the advanced concepts of  Microsoft Visual C++ 6.0 by implementing 

the project in this language. 

 To learn Microsoft XML Parser for developing XML applications on Win32 

platform. 

3.1.2 System Context 

Form Builder for Document Management system is actually a project sponsored by 

Elixir Technologies. The project will act as a basis for the development of their new 

XML based Form Builder. This project will be further enhanced and will become the 

part of their Office Management Suite. 

3.2. GENERAL DESCRIPTION 

This section of the SRS will describe the general factors that affect the system and its 

requirements. The purpose of this chapter is not to present detailed requirements, but 

rather to present material that will make the specific requirements easier to understand. 

3.2.1 System Functionality 

The functionality of the system can be summarized in following steps: 

1. The system will be used to create form layouts. 

2. The system will be able to open a flat file in a grid control. 

3. The system will be able to assign the titles to fields of the flat file. 

4. The system will be able to map the assigned titles of the flat file to the various 

sections of the form layout. 

5. The system will be able to serialize and retrieve the designed form and form layouts 



 26

in Scalable Vector Graphics (SVG) format. 

3.2.2 User Constraints 

The users of this system are solution providers which provide print and document 

solutions to various small and medium scale enterprises. This system can be used in 

 

1. Large Enterprises, for printing different kinds of records 

2. Software Organizations, for generating complex structured documentation. 

3. Air Craft and Automobile industry, for printing complex and richly structured 

user manuals 

4. Education Institutions, for printing different kinds of application forms and 

records. 

5. Financial Institutions, for printing different kind of sophisticated and complex 

structured documents. 

6. In government institutions, for designing and Printing Identity cards. 

7. In Service industry, for printing bills and vouchers. 

8. Printing utility bills. 

The users of the system should be aware of: 

1. Concepts of XML 

The user should have at least a vague idea of XML that how data is structured into its 

tree structures 

2. Concept of Flat File 

 



 27

The user should know about the concept of Flat File. What flat file is? How it is formed 

and how it is maintained? These are the question whose answers should be known to 

users 

3. Mapping of Flat file 

The user should be aware of mapping flat file titles into the designer area. 

4. Navigation with the help of Tree structures 

As tree structures are an important part of GUI of the system so user should about the 

navigation with the help of  the tree structures. 

3.2.3 General Constraints 

1. Form Builder for Document Management System supports Scalable Vector 

Graphics (SVG) format for the serialization of the data. SVG is supported in 

Internet Explorer 5.5 and above and NetScape 6.0 and above, so the designed 

forms will not be viewed, if opened in the IE versions, less than 5.5. 

2. With the help of SVG, we can implement animation support in our online form 

layouts. But this feature will not be implemented due to shortage of time. 

3. The Form Builder is developed on Win32 platform , it is only tested in Windows 

environment. It is not tested on other platforms. 

4. XML version 1.0 is supported. If the designed forms are edited with XML version 

2.0 parsers then the parsers will not able to render them correctly. 

3.2.4 Assumptions and Dependencies 

Following assumptions are made during the preparation of the project plan: 

1. The software is developed for the Win32 platform. 



 28

2. The forms can be opened in Internet Explorer 5.5 and above and NetScape 

Navigator 6.0 and above. 

3. XML parser 1.0 is installed on the user’s system. 

4. The user has an awareness to the concept of flat files. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 29

3.3. SPECIFIC REQUIREMENTS 

This section of the SRS will contain a complete description of the external behavior of 

the software system. It will contain sufficient information and detail necessary to create 

a design for the system. 

3.3.1 Functional Requirements 

Form Builder for the Document Management System must be capable of : 

1. Designing the form layouts 

2. Supporting a grid control 

3. Supporting the flat files 

4. Serializing the forms in a custom format  i.e. fbd 

5. Serializing the forms in Scalable Vector Graphics 

6. Format (SVG) 

7. Opening the custom saved (fbd) forms 

8. Opening the SVG forms 

3.3.2 External Interface Requirements 

3.3.2.1 User Interfaces 

Form Builder for Document Management System has a very sophisticated and pleasant 

user interface. The interface is very easy to navigate even for an elementary user. 

Different kinds of graphical interface components like tree, tab controls and docking 

windows are incorporated. The user interface of the system is described as follows: 

 

 



 30

MENUS 

1. File 

New Opens a new file 

Open Opens an existing file 

Open Grid Opens an existing grid 

Save Grid Saves an existing or new grid 

Close Closes the file 

Save Saves the file 

Save As Saves in SVG or fbd format 

Print Prints the file 

Print Preview Shows the print preview of file 

Print Setup Enters into the printer setup 

Exit Exits the application 

 

2.  Edit 

 

 

 

 

 

Undo Undo the last operation 

Cut Cuts the selected segment of the object 

Copy Copies the objects 

Paste Pastes the copied objects 

Clear All Deletes all objects from designer area 



 31

 

3.  View 

Tool Bar Shows the main tool bar 

Status Bar Shows the status bar 

Shape Toolbar Shows the shape toolbar 

 

4. Tools 

Line Draws a line 

Circle Draws a circle 

Rectangle Draws a rectangle 

Pencil Draws free hand 

Filled Rectangle Draws a filled rectangle with  

selected color 

Filled Circle Draws a filled circle with selected 

color 

Transparent Rectangle Draws a transparent rectangle 

Transparent Circle Draws a transparent circle 

Eraser Erases the objects on the 

designer area 

Polygon Draws a polygon 

Gray Circle Draws a gray circle 

Light Gray Circle Draws a light gray circle 

Dark Gray Circle Draws a dark gray circle 



 32

Gray Rectangle Draws a gray rectangle 

Light Gray Rectangle Draws a light gray rectangle 

Dark Gray Rectangle Draws a dark gray rectangle 

Copy Tree Items Copies the tree items on the 

designer area 

Text Draws a text string 

 

5. Color 

Edit color Presents a color dialog box for selecting a color 

 

6. Windows 

New Window Opens the new window 

Tile Tiles the windows 

Cascade Cascades the windows 

Arrange Icons Arranges the icons 

7. Font 

Edit Font Presents a font dialog box for selecting a font 

8. Help 

About Form Builder Presents the version information and the 

copyright information 



 33

DOCKING WINDOWS 

Designer Window User designs form layouts in the 

designer window 

Tree Window Displays and maintains designer tree 

and grid tree 

Grid Window Displays and maintains the grid 

control 

 

TAB CONTROLS 

Designer Tab Activates the designer tree view in Tree docking 

window 

Grid Tab Activates the grid tree view in Tree docking 

window 

 

3.3.2.2 Hardware Interfaces 

There are no hardware interfaces involved in this system. 

3.3.2.3 Software Interfaces 

The system is designed on Win32 platform so it supports Microsoft Windows 

98,Me,2000 and XP (Whistler). However its graphics rendering capabilities are viewed 

best in Microsoft XP interface. 



 34

 

3.3.3 Non Functional Requirements 

• The system should be flexible enough to change with the change in customer 

desires. 

• The system should not crash at any time due to unavailability of reaction to any 

event. 

3.3.4 Limitations and Constraints 

Time 

The time allocated for the completion of project was 4 months. 

Knowledge 

We had a very little knowledge of XML and its related technologies. Moreover we were 

not proficient in Visual C++ 6.0. 

Information 

Information seeking is really a hard task. We had to consult some very experience 

programmers in this regard. They really provided us valuable information about the 

design of Form Builders. 

 

 

 



 35

Client Oriented Constraints 

Every client wants to have certain benefits from a new system that act like a constraint 

in developing a software system. 

 Cost Reduction. 

 Better Use Of Resources. 

 Time Saving. 

 Efficient Product. 

User Oriented Constraints 

Making it menu driven, making it comparatively same job as they are doing right now. 

Design Constraints 

 Fulfilling All Functions Desired. 

 Making System Smooth. 

 Bitmaps are not supported in SVG format so there must be a programming turn 

around to support them. 

 

 

 

 

 

 



 36

3.4. Future Extension 

Following extensions are proposed in the Form Builder: 

1. Animations can be incorporated in the form builder. A large number of hottest 

animation software ,like Flash 5.0 or 3d Studio Max, use vector graphics 

technology for the creation and management of animations. SVG supports the 

use of animation because it is a vector graphics based technology. Since Form 

Builder uses SVG for storing and retrieving the data so it is very easy to 

incorporate animations in the online forms. 

2. Form Builder can be further extended to support various other XML based 

presentation technologies. For example, support for the XSLT can be 

incorporated or Cascading Style sheets can be supported by Form Builder. 

3. Form Builder can be extended to support some very famous graphics format like 

jpeg, gif, targa, cdr , psd. Presently, Form Builder only supports bitmaps. 

4. Form Builder can be used to support Adobe’s famous Portable Document Format 

commonly known as PDF. A large amount of data on the web is available in the 

form of PDF supported pages so if Form Builder supports PDF then its 

interoperability and usefulness will be increased to a greater extent. 

5. Form Builder can be developed as a Application Builder for the famous print 

streams like IBM’s AFP or Xerox’s VIPP. Incorporating the support for these 

famous print stream formats will certainly make the Form Builder a valuable 

variable printing tool. 

____________________ 

 

 

 



 37

 

Section 4 
 

 

 

 

 

 

CONCEPT OF XML 
 

 

 

 

 



 38

4.1. Introduction 

Extensible Markup Language, abbreviated XML, describes a class of data objects called 

XML documents and partially describes the behavior of computer programs which 

process them. XML is an application profile or restricted form of SGML, the Standard 

Generalized Markup Language [ISO 8879]. By construction, XML documents are 

conforming SGML documents. 

XML documents are made up of storage units called entities, which contain either 

parsed or unparsed data. Parsed data is made up of characters, some of which form 

character data, and some of which form markup. Markup encodes a description of the 

document's storage layout and logical structure. XML provides a mechanism to impose 

constraints on the storage layout and logical structure. 

A software module called an XML processor is used to read XML documents and 

provide access to their content and structure. It is assumed that an XML processor is 

doing its work on behalf of another module, called the application. This specification 

describes the required behavior of an XML processor in terms of how it must read XML 

data and the information it must provide to the application. 

4.2. Origin and Goals 

XML was developed by an XML Working Group (originally known as the SGML Editorial 

Review Board) formed under the auspices of the World Wide Web Consortium (W3C) in 

1996. It was chaired by Jon Bosak of Sun Microsystems with the active participation of 

an XML Special Interest Group (previously known as the SGML Working Group) also 

organized by the W3C. 

The design goals for XML are: 

1. XML shall be straightforwardly usable over the Internet. 

2. XML shall support a wide variety of applications. 



 39

3. XML shall be compatible with SGML. 

4. It shall be easy to write programs which process XML documents. 

5. The number of optional features in XML is to be kept to the absolute 

minimum, ideally zero. 

6. XML documents should be human-legible and reasonably clear. 

7. The XML design should be prepared quickly. 

8. The design of XML shall be formal and concise. 

9. XML documents shall be easy to create. 

10. Terseness in XML markup is of minimal importance. 

4.3. Structuring Data 

Structured data includes things like spreadsheets, address books, configuration 

parameters, financial transactions, and technical drawings. XML is a set of rules  for 

designing text formats that let you structure your data. XML is not a programming 

language. XML makes it easy for a computer to generate data, read data, and ensure 

that the data structure is unambiguous. XML avoids common pitfalls in language design: 

it is extensible, platform-independent, and it supports internationalization and 

localization. XML is fully Unicode-compliant. 

4.4. XML and HTML 

Like HTML, XML makes use of tags (words bracketed by '<' and '>') and attributes (of 

the form name="value"). While HTML specifies what each tag and attribute means, and 

often how the text between them will look in a browser, XML uses the tags only to 

delimit pieces of data, and leaves the interpretation of the data completely to the 

application that reads it. In other words,  "<p>" in an XML file, do not assume it is a 

paragraph. Depending on the context, it may be a price, a parameter, a person, a p... 

(and who says it has to be a word with a "p"?). 



 40

4.5. XML as text 

Programs that produce spreadsheets, address books, and other structured data often 

store that data on disk, using either a binary or text format. One advantage of a text 

format is that it allows people, if necessary, to look at the data without the program that 

produced it. Text formats also allow developers to more easily debug applications. Like 

HTML, XML files are text files that people shouldn't have to read, but may when the 

need arises. Less like HTML, the rules for XML files are strict. A forgotten tag, or an 

attribute without quotes makes an XML file unusable, while in HTML such practice is 

tolerated and is often explicitly allowed. The official XML specification forbids 

applications from trying to second-guess the creator of a broken XML file; if the file is 

broken, an application has to stop right there and report an error. 

4.6. Design of XML 

Since XML is a text format and it uses tags to delimit the data, XML files are nearly 

always larger than comparable binary formats. That was a conscious decision by the 

designers of XML. The advantages of a text format are evident  and the disadvantages 

can usually be compensated at a different level. Disk space is less expensive than it 

used to be, and compression programs like zip and gzip can compress files very well 

and very fast. In addition, communication protocols such as modem protocols and 

HTTP/1.1, the core protocol of the Web, can compress data on the fly, saving 

bandwidth as effectively as a binary format. 

4.7. Family of technologies 

XML 1.0 is the specification that defines what "tags" and "attributes" are. Beyond XML 

1.0, "the XML family" is a growing set of modules that offer useful services to 

accomplish important and frequently demanded tasks. Xlink describes a standard way 

to add hyperlinks to an XML file. XPointer and XFragments are syntaxes in 

development for pointing to parts of an XML document. An XPointer is a bit like a URL, 



 41

but instead of pointing to documents on the Web, it points to pieces of data inside an 

XML file. CSS, the style sheet language, is applicable to XML as it is to HTML. XSL is 

the advanced language for expressing style sheets. It is based on XSLT, a 

transformation language used for rearranging, adding and deleting tags and attributes. 

The DOM is a standard set of function calls for manipulating XML (and HTML) files from 

a programming language. XML Schemas 1 and 2 help developers to precisely define 

the structures of their own XML-based formats. There are several more modules and 

tools available or under development. 

4.8. Development of XML 

Development of XML started in 1996 and has been a W3C Recommendation since 

February 1998, which may make anyone  suspect that this is rather immature 

technology. In fact, the technology isn't very new. Before XML there was SGML, 

developed in the early '80s, an ISO standard since 1986, and widely used for large 

documentation projects. The development of HTML started in 1990. The designers of 

XML simply took the best parts of SGML, guided by the experience with HTML, and 

produced something that is no less powerful than SGML, and vastly more regular and 

simple to use. Some evolutions, however, are hard to distinguish from revolutions... And 

it must be said that while SGML is mostly used for technical documentation and much 

less for other kinds of data, with XML it is exactly the opposite. 

4.9. USE OF XHTML 

There is an important XML application that is a document format: W3C's XHTML, the 

successor to HTML. XHTML has many of the same elements as HTML. The syntax has 

been changed slightly to conform to the rules of XML. A document that is "XML-based" 

inherits the syntax from XML and restricts it in certain ways (e.g, XHTML allows "<p>", 

but not "<r>"); it also adds meaning to that syntax (XHTML says that "<p>" stands for 

"paragraph", and not for "price", "person", or anything else). 



 42

4.10. Modular Approach 

XML allows  to define a new document format by combining and reusing other formats. 

Since two formats developed independently may have elements or attributes with the 

same name, care must be taken when combining those formats (does "<p>" mean 

"paragraph" from this format or "person" from that one?). To eliminate name confusion 

when combining formats, XML provides a namespace mechanism. XSL and RDF are 

good examples of XML-based formats that use namespaces. XML Schema is designed 

to mirror this support for modularity at the level of defining XML document structures, by 

making it easy to combine two schemas to produce a third which covers a merged 

document structure. 

4.11. Basis for RDF and the Semantic Web 

W3C's Resource Description Framework (RDF) is an XML text format that supports 

resource description and metadata applications, such as music playlists, photo 

collections, and bibliographies. For example, RDF might let you identify people in a Web 

photo album using information from a personal contact list; then your mail client could 

automatically start a message to those people stating that their photos are on the Web. 

Just as HTML integrated documents, menu systems, and forms applications to launch 

the original Web, RDF integrates applications and agents into one Semantic Web. Just 

like people need to have agreement on the meanings of the words they employ in their 

communication, computers need mechanisms for agreeing on the meanings of terms in 

order to communicate effectively. Formal descriptions of terms in a certain area 

(shopping or manufacturing, for example) are called ontologies and are a necessary 

part of the Semantic Web. RDF, ontologies, and the representation of meaning so that 

computers can help people do work are all topics of the Semantic Web Activity. 



 43

4.12. Platform-independence and well-supported 

By choosing XML as the basis for a project, you gain access to a large and growing 

community of tools (one of which may already do what you need!) and engineers 

experienced in the technology. Opting for XML is a bit like choosing SQL for databases: 

you still have to build your own database and your own programs and procedures that 

manipulate it, and there are many tools available and many people who can help you. 

And since XML is license-free, you can build your own software around it without paying 

anybody anything. The large and growing support means that you are also not tied to a 

single vendor. XML isn't always the best solution, but it is always worth considering. 



 44

 

 

Section 5 
 

 

 

 

 

 

CONCEPT OF SVG 
 

 

 

 

 



 45

5.1. Introduction 

 About SVG 

SVG is a language for describing two-dimensional graphics in XML [XML10]. SVG 

allows for three types of graphic objects: vector graphic shapes (e.g., paths consisting 

of straight lines and curves), images and text. Graphical objects can be grouped, styled, 

transformed and composited into previously rendered objects. The feature set includes 

nested transformations, clipping paths, alpha masks, filter effects and template objects. 

SVG drawings can be interactive and dynamic. Animations can be defined and triggered 

either declaratively (i.e., by embedding SVG animation elements in SVG content) or via 

scripting. 

Sophisticated applications of SVG are possible by use of a supplemental scripting 

language which accesses SVG Document Object Model (DOM), which provides 

complete access to all elements, attributes and properties. Because of its compatibility 

and leveraging of other Web standards, features like scripting can be done on XHTML 

and SVG elements simultaneously within the same Web page. 

SVG is a language for rich graphical content. For accessibility reasons, if there is an 

original source document containing higher-level structure and semantics, it is 

recommended that the higher-level information be made available somehow, either by 

making the original source document available, or making an alternative version 

available in an alternative format which conveys the higher-level information, or by using 

SVG's facilities to include the higher-level information within the SVG content. 

 

 



 46

5.1.2 SVG MIME type, file name extension and 

Macintosh       file type 

The MIME type for SVG is "image/svg+xml" . The W3C will register this MIME type around 

the time when SVG is approved as a W3C Recommendation. 

It is recommended that SVG files have the extension ".svg" (all lowercase) on all 

platforms. It is recommended that gzip-compressed SVG files have the extension ".svgz" 

(all lowercase) on all platforms. 

It is recommended that SVG files stored on Macintosh HFS file systems be given a file 

type of "svg " (all lowercase, with a space character as the fourth letter). It is 

recommended that gzip-compressed SVG files stored on Macintosh HFS file systems 

be given a file type of "svgz" (all lowercase). 

5.1.3 SVG Namespace, Public Identifier and System 

Identifier 

The following are the SVG 1.0 namespace, public identifier and system identifier: 

SVG Namespace: 

http://www.w3.org/2000/svg 

Public Identifier for SVG 1.0: 

PUBLIC "-//W3C//DTD SVG 1.0//EN" 

System Identifier for SVG 1.0: 

http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd 



 47

The following is an example document type declaration for an SVG document: 

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.0//EN" 

"http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd"> 

5.1.4 Compatibility with Other Standards Efforts 

SVG leverages and integrates with other W3C specifications and standards efforts. By 

leveraging and conforming to other standards, SVG becomes more powerful and makes 

it easier for users to learn how to incorporate SVG into their Web sites. 

The following describes some of the ways in which SVG maintains compatibility with, 

leverages and integrates with other W3C efforts: 

• SVG is an application of XML and is compatible with the "Extensible Markup 

Language (XML) 1.0". 

• SVG is compatible with the "Namespaces in XML” 

• SVG utilizes "XML Linking Language (XLink)" [XLINK] for URI referencing and 

requires support for base URI specifications defined in "XML Base" 

• SVG's syntax for referencing element IDs is a compatible subset of the ID 

referencing syntax in "XML Pointer Language (XPointer)" 

• SVG content can be styled by either CSS or XSL. 

• SVG supports relevant properties and approaches common to CSS and XSL, 

plus selected semantics and features of CSS. 

• External style sheets are referenced using the mechanism documented in 

"Associating Style Sheets with XML documents Version 1.0”. 

• SVG includes a complete Document Object Model (DOM) and conforms to the 

"Document Object Model (DOM) level 1". 

• The SVG DOM has a high level of compatibility and consistency with the HTML 

DOM . Additionally, the SVG DOM supports [DOM2], including the CSS object 

model and event handling. 



 48

• SVG incorporates some features and approaches that are part of the 

"Synchronized Multimedia Integration Language (SMIL) 1.0 Specification", 

including the 'switch' element and the system Language attribute. 

• SVG's animation features were developed in collaboration with the W3C 

Synchronized Multimedia (SYMM) Working Group, developers of the 

Synchronized Multimedia Integration Language (SMIL) 1.0 Specification . SVG's 

animation features incorporate and extend the general-purpose XML animation 

capabilities described in the "SMIL Animation" specification . 

• SVG has been designed to allow future versions of SMIL to use animated or 

static SVG content as media components. 

• SVG attempts to achieve maximum compatibility with both HTML 4 [HTML4] and 

XHTML(tm) 1.0 [XHTML]. Many of SVG's facilities are modeled directly after 

HTML, including its use of CSS [CSS2], its approach to event handling, and its 

approach to its Document Object Model [DOM2]. 

• SVG is compatible with W3C work on internationalization. 

• SVG is compatible with W3C work on Web Accessibility [WAI]. 

In environments which support [DOM2] for other XML grammars (e.g., XHTML 

[XHTML]) and which also support SVG and the SVG DOM, a single scripting approach 

can be used simultaneously for both XML documents and SVG graphics, in which case 

interactive and dynamic effects will be possible on multiple XML namespaces using the 

same set of scripts. 

5.2. Concepts 

5.2.1 Explaining the name: SVG 

SVG stands for Scalable Vector Graphics, an XML grammar for stylable graphics, 

usable as an XML namespace. 



 49

Scalable 

To be scalable means to increase or decrease uniformly. In terms of graphics, scalable 

means not being limited to a single, fixed, pixel size. On the Web, scalable means that a 

particular technology can grow to a large number of files, a large number of users, a 

wide variety of applications. SVG, being a graphics technology for the Web, is scalable 

in both senses of the word. 

SVG graphics are scalable to different display resolutions, so that for example printed 

output uses the full resolution of the printer and can be displayed at the same size on 

screens of different resolutions. The same SVG graphic can be placed at different sizes 

on the same Web page, and re-used at different sizes on different pages. SVG graphics 

can be magnified to see fine detail, or to aid those with low vision. 

SVG graphics are scalable because the same SVG content can be a stand-alone 

graphic or can be referenced or included inside other SVG graphics, thereby allowing a 

complex illustration to be built up in parts, perhaps by several people. The symbol, 

marker and font capabilities promote re-use of graphical components, maximize the 

advantages of HTTP caching and avoid the need for a centralized registry of approved 

symbols. 

Vector 

Vector graphics contain geometric objects such as lines and curves. This gives greater 

flexibility compared to raster-only formats (such as PNG and JPEG) which have to store 

information for every pixel of the graphic. Typically, vector formats can also integrate 

raster images and can combine them with vector information such as clipping paths to 

produce a complete illustration; SVG is no exception. 

Since all modern displays are raster-oriented, the difference between raster-only and 

vector graphics comes down to where they are rasterized; client side in the case of 

vector graphics, as opposed to already rasterized on the server. SVG gives control over 



 50

the rasterization process, for example to allow anti-aliased artwork without the ugly 

aliasing typical of low quality vector implementations. SVG also provides client-side 

raster filter effects, so that moving to a vector format does not mean the loss of popular 

effects such as soft drop shadows. 

Graphics 

Most existing XML grammars represent either textual information, or represent raw data 

such as financial information. They typically provide only rudimentary graphical 

capabilities, often less capable than the HTML 'img' element. SVG fills a gap in the 

market by providing a rich, structured description of vector and mixed vector/raster 

graphics; it can be used stand-alone, or as an XML namespace with other grammars. 

XML 

XML, a W3C Recommendation for structured information exchange, has become 

extremely popular and is both widely and reliably implemented. By being written in XML, 

SVG builds on this strong foundation and gains many advantages such as a sound 

basis for internationalization, powerful structuring capability, an object model, and so on. 

By building on existing, cleanly-implemented specifications, XML-based grammars are 

open to implementation without a huge reverse engineering effort. 

Namespace 

It is certainly useful to have a stand-alone, SVG-only viewer. But SVG is also intended 

to be used as one component in a multi-namespace XML application. This multiplies the 

power of each of the namespaces used, to allow innovative new content to be created. 

For example, SVG graphics may be included in a document which uses any text-

oriented XML namespace - including XHTML. A scientific document, for example, might 

also use MathML for mathematics in the document. The combination of SVG and SMIL 

leads to interesting, time based, graphically rich presentations. 



 51

SVG is a good, general-purpose component for any multi-namespace grammar that 

needs to use graphics. 

Stylable 

The advantages of style sheets in terms of presentational control, flexibility, faster 

download and improved maintenance are now generally accepted, certainly for use with 

text. SVG extends this control to the realm of graphics. 

The combination of scripting, DOM and CSS is often termed "Dynamic HTML" and is 

widely used for animation, interactivity and presentational effects. SVG allows the same 

script-based manipulation of the document tree and the style sheet. 

2.2 Important SVG concepts 

Graphical Objects 

With any XML grammar, consideration has to be given to what exactly is being 

modeled. For textual formats, modeling is typically at the level of paragraphs and 

phrases, rather than individual nouns, adverbs, or phonemes. Similarly, SVG models 

graphics at the level of graphical objects rather than individual points. 

SVG provides a general path element, which can be used to create a huge variety of 

graphical objects, and also provides common basic shapes such as rectangles and 

ellipses. These are convenient for hand coding and may be used in the same ways as 

the more general path element. SVG provides fine control over the coordinate system in 

which graphical objects are defined and the transformations that will be applied during 

rendering. 



 52

Symbols 

It would have been possible to define some standard symbols that SVG would provide.  

There would always be additional symbols for electronics, cartography, flowcharts, etc., 

that people would need that were not provided until the "next version". SVG allows 

users to create, re-use and share their own symbols without requiring a centralized 

registry. Communities of users can create and refine the symbols that they need, 

without having to ask a committee. Designers can be sure exactly of the graphical 

appearance of the symbols they use and not have to worry about unsupported symbols. 

Symbols may be used at different sizes and orientations, and can be restyled to fit in 

with the rest of the graphical composition. 

Raster Effects 

Many existing Web graphics use the filtering operations found in paint packages to 

create blurs, shadows, lighting effects and so on. With the client-side rasterization used 

with vector formats, such effects might be thought impossible. SVG allows the 

declarative specification of filters, either singly or in combination, which can be applied 

on the client side when the SVG is rendered. These are specified in such a way that the 

graphics are still scalable and displayable at different resolutions. 

Fonts 

Graphically rich material is often highly dependent on the particular font used and the 

exact spacing of the glyphs. In many cases, designers convert text to outlines to avoid 

any font substitution problems. This means that the original text is not present and thus 

searchability and accessibility suffer. In response to feedback from designers, SVG 

includes font elements so that both text and graphical appearance are preserved. 



 53

Animation 

Animation can be produced via script-based manipulation of the document, but scripts 

are difficult to edit and interchange between authoring tools is harder. Again in response 

to feedback from the design community, SVG includes declarative animation elements 

which were designed collaboratively by the SVG and SYMM Working Groups. This 

allows the animated effects common in existing Web graphics to be expressed in SVG. 

5.2.3 Options for using SVG in Web pages 

There are a variety of ways in which SVG content can be included within a Web page. 

Here are some of the options: 

• A stand-alone SVG Web page 

In this case, an SVG document (i.e., a Web resource whose MIME type is 

"image/svg+xml") is loaded directly into a user agent such as a Web browser. The 

SVG document is the Web page that is presented to the user. 

• Embedding by reference 

In this case, a parent Web page references a separately stored SVG document 

and specifies that the given SVG document should be embedded as a 

component of the parent Web page. For HTML or XHTML, here are three 

options: 

o The HTML/XHTML 'img' element is the most common method for using 

graphics in HTML pages. For faster display, the width and height of the 

image can be given as attributes. One attribute that is required is alt, used 

to give an alternate textual string for people browsing with images off, or 

who cannot see the images. The string cannot contain any markup. A 

longdesc attribute lets you point to a longer description - often in HTML - 

which can have markup and richer formatting. 

o The HTML/XHTML 'object' element can contain other elements nested 

within it, unlike 'img', which is empty. This means that several different 



 54

formats can be offered, using nested 'object' elements, with a final textual 

alternative (including markup, links, etc). The outermost element which 

can be displayed will be used. 

o The HTML/XHTML 'applet' element which can invoke a Java applet to 

view SVG content within the given Web page. These applets can do many 

things, but a common task is to use them to display images, particularly 

ones in unusual formats or which need to be presented under the control 

of a program for some other reason. 

• Embedding inline 

In this case, SVG content is embedded inline directly within the parent Web 

page. An example is an XHTML Web page with an SVG document fragment 

textually included within the XHTML. 

• External link, using the HTML 'a' element 

This allows any stand-alone SVG viewer to be used, which can (but need not) be 

a different program to that used to display HTML. This option typically is used for 

unusual image formats. 

• Referenced from a CSS2 or XSL property 

When a user agent supports CSS-styled XML content or XSL Formatting Objects 

and the user agent is a Conforming SVG Viewer, then that user agent must 

support the ability to reference SVG resources wherever CSS or XSL properties 

allow for the referencing of raster images, including the ability to tile SVG 

graphics wherever necessary and the ability to composite the SVG into the 

background if it has transparent portions. Examples include the 'background-

image' and 'list-style-image' properties that are included in both CSS and XSL. 

 

 

 



 55

 

Section 6 
 

 

 

 

CONCEPT OF 

FLAT FILE 

 

 



 56

6.1 Introduction 

Flat files are simply text files saved with an extension of *.flt. These files are the 

simplest and oldest forms of storing databases. In Form Builders, flat files are used that 

hold all the data. As Form Builders are made compatible for printing variable data, this 

compatibility can be achieved simply by using flat files. To provide printing solutions, a 

technology of XML named as PPML (Personalized Printing Markup Language) is used. 

PPML is an XML technology that uses tags in the same way as they are used in SVG. 

PPML, to provide printing solutions, use flat files as databases. When designs are 

saved in the memory of the printer then the data that has to be printed is send to the 

printer in the form of flat files and this solution is provided by using PPML as Form 

Builder had to be made compatible with printing variable data it had to use the same 

sort of database as used by PPML. PPML can easily be incorporated in Form Builder as 

Form Builder use the same sort of database as used by PPML, which is in flat file 

format. 

6.2 Use of Flat File in Form Builder 

Flat Files are of various types. Flat Files that Form Builder uses are of the simplest type 

that contains simple data in the form of text without titles. The reason for using Flat Files 

with out titles is that flat file has to be sent to the printer and the data written in flat file is 

printed according to the designed form saved into the memory of the printer. If flat files 

with titles were used, then it would cause an error in printing as printer would consider 

the titles as data and would print those titles too. In Form Builders, simple flat files were 

used and the titles were given by simply opening data in flat file into a grid, later when 

PPML has to be used with Form Builder the variables will be declared for each title 

given to the field of flat file data in Form Builder and that variable will be attached to the 

place where that data will be printed for that title and this variable declaration will be 

done using Visual C++ and PPML. The printing will be done with the help of those 

variables and data will recognize its place in the form with the help of the variable 

attached with it. 



 57

6.3. Structure of Flat File 

Broadly speaking, Flat Files can be divided into two categories, fixed and variable size. 

The difference between the two categories of flat files is the lengths of the fields. 

Lengths of the fields are fixed in case of fixed sized flat files and variable in the case of 

variable sized flat files. All the flat files contain data in the form of documents, each 

document is separated by “*” or “**” or “***” or any other delimiter can be used as 

declared by the user. Each document then contains records having unique record id 

separated by newline character. A document may contain several records having same 

id. Each record then contains different fields. Data lies in those fields. In case of fixed 

size flat files, fields are separated by their lengths while in case of variable size, they are 

separated by commas. Each field of records having same id are of same type, similarly 

types of each record and fields in all the documents are entirely identical. If record id 1 

of first document had three fields, then all the records having id 1 in the first documents 

will have three fields. Similarly, in other documents, record id 1 will have three fields and 

types of those fields in all documents will also be the same. 

Example: 

An Example of flat file having different documents and records is given below 

1,S.M. Khaliq-ur-RahmanRaazi,Male,None,50279689207,6110118015325 

2,Syed Muhammad Khalil-ur-Rahman,X517R3 

3,03/09/1979,08/08/2001,31/07/2010 

4,H#450 St.#40 I-8/2 Islamabad,A-24/N North Nazimabad Karachi 

* 

1,Waseem Imran,Male,None,91827364548,1928374656473 



 58

2,Mohammad Akram,Y110T3 

3,16/10/1979,10/08/2001,,16/09/2010 

4,H#42 Tipu Rd. Rawalpindi,H#42 Tipu Rd. Rawalpindi 

* 

1,Junaid Arshed,Male,None,19283746564,0918273645738 

2,Arshed Parvez,Z225M1 

3,26/11/1980,10/09/2001,25/12/2009 

4,B-352/D Satellite Town Rawalpindi,B-352/D Satellite Town Rawalpindi 

* 

 

 

 

 

 



 59

 

Section 7 
Object Oriented Analysis 

 

 

 

 

 

USE CASE 

ANALYSIS 
 



 60

Two use cases are involved in the form builder. These are 

1. Design Form Layout. 

2. Flat File Opener & Field Title Assignment. 

 

1. Design Form Layout 

In this use case, a user designs a form layout with the help of various drawing 

tools. To facilitate the designing, the environment of the Form Builder is very user 

friendly. Form Builder maintains a tree known as “Designer Tree”. There is an 

empty area in form builder on which user can draw different kinds of shapes and 

import bitmaps. The objects drawn on designer area are maintained in the nodes 

of designer tree. The designer tree offers the users a very easy way to navigate 

through various drawn objects. The drawn objects constitute the form layout. The 

designing of the form layout is an essential procedure in form building. Variable 

data from a flat file is mapped onto the form layout. The form is ready for 

displaying or printing after the mapping of variable data onto the form layout. 

2. Flat File Opener & Field Title Assignment 

In this use case, a user opens a flat file in a grid. Flat file is a simple text file. It is 

a very simple kind of database with virtually no metadata. Data from a large 

database residing on a main frame is acquired once and downloaded in a simple 

text file known as a flat file. The data is not stored in a very systematic way. It is 

not possible for a user to comprehend the data. The fields are separated by a 

predefined delimiter and records are differentiated by unique ids. These fields 

and records constitute a document. Each document is then separated by a 

delimiter. A flat file can consist of a very large number of documents and the size 

of a flat file is usually in Giga bytes. The flat file is the source of variable data 

which is to be printed on the form layout. Form Builder opens the flat file in a grid. 



 61

The user assigns titles to the fields of the flat file. These titles are maintained by 

a tree view known as “Grid View”. The user can navigate through the titles 

assigned to the fields in the grid with the help of the Grid View. These titles are 

then dragged and dropped onto the various segments of the form layout. Now 

the form is ready for displaying or printing. 

 

USE CASE DIAGRAM 

 

 

 
Design Form Layout 

Flat File Opener & 
Field Title Assignment 



 62

 

Section 8 
  Object Oriented Analysis 

 

 

 

 

SEQUENCE 

DIAGRAMS 

 



 63

Design Form Layout 

 

 

Designer() 

 

                       Select(Shape Option, 

                                                              Main Frame Option) 

 

 

                                           Draw(Shape,MainFrame) 

 

                                                                                                Serialize(Option) 

 

 

 

 

 

; Design ; Option 
Selector 

; Add    
  Shape 

;Serialize 



 64

Flat File Opener & Field Title Assignment 

 

Opener Assigner() 

 

 

                                                              

                                                            Display() 

                                                                Open(Filename) 

 

                                                                                            Assign(value) 

 

                                                                                                                      Map(values) 

 

 

 

 

 

 

;Flat File 
Opener 

;ShowOpe
n Dialog 

;Tree 
Mapper 

;File 
Mapper 

;Title 
Assigner 



 65

 

Section 9 
Object Oriented Analysis 

 

 

PROBLEM DOMAIN 

OBJECT LIST 
 

 

 

 



 66

Candidate List 

 

Designer Tree 

Docking Window 

Form Builder App 

Form Builder Doc 

Form Builder View 

Form Tree 

Grid Window 

Grid View 

Main Frame 

Open Dialog 

Line 

Rectangle 

Circle 

Polygon 

Pencil 

Text 

Sizing Tab Control Bar 

Shapes 

Grid 

XML Opener 

XML Serializer 

 



 67

 

Selected List 

 

Form Builder App 

Form Builder Doc 

Form Builder View 

Form Tree 

Grid Window 

Grid View 

Main Frame 

Open Dialog 

Sizing Tab Control Bar 

Shapes 

Grid 

 

 

 

 



 68

 

Section 10 
Object Oriented Design 

 

 

 

 

Class List 
 

 

 



 69

 

 

 

 

 

 

 

 

 

 

 

CDesignerTree 
 
CTreeCtrl* m_designerTree 
 
 
 
 
 
 
OnInitialUpdate() 

CDockingWindow 
 
 
 
 
 
 
 
 
 
 
Layout() 
Create() 
 
 
 



 70

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CFormBuilderApp 
 
UINT m_shape 
 
OnCircle() OnCopyTree() 
OnDarkGreyCircle() 
OnDarkGreyRect() OnEraser() 
OnFilledRect() 
OnFilledCircle() 
OnGreyCircle() 
OnGreyRect() 
OnLine() 
OnLightGreyCircle() 
OnLightGreyRect() 
OnPencil() 
OnPolygon() 
OnRect() 
OnTransparentRect() 
OnTransparentCircle() 
OnUpdateCircle() 
OnUpdateCopyTree() 
OnUpdateDarkGreyCircle() 
OnUpdateDarkGreyRect() 
OnUpdateEraser() 
OnUpdateFilledCircle() 
OnUpdateFilledRect() 
OnUpdateGreyCircle() 
OnUpdateGreyRect() 
OnUpdateLine() 
OnUpdateLightGreyCircle() 
OnUpdateLightGreyRect() 
OnUpdatePencil() 
OnUpdatePolygon() 
OnUpdateTransparentCircle() 
OnUpdateTransparentRect() 
 
 



 71

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CFormBuilderDoc 
 
CObArray m_oaShapes 
ColorRef m_color 
int stockObject 
 
 
AddShape() 
DeleteContents() 
GetNumShape() 
OnColorPallette() 
OnEditClearAll() 
OnEditUndo()  
OnFileDialog() 
OnUpdateClearAll() 
OnUpdateEdit()  
 Serialize() 
 

CFormBuilderView 
 
CPoint newPoint 
CPoint oldPoint 
 
 
 
 
 
 
OnArrow() 
OnDraw() 
 
 



 72

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CFormTree 
 
CString itemName 
CTreeCtrl m_tree 
HTreeItem ht 
 
 
 
 
 
OnDraw() 
OnInitialUpdate() 

CGridView 
 
CGrid m_pGridCtrl  
char*    cbuff   
Boolean m_Option   int x,y 
CFileException fexcept 
CString m_fieldValue,m_txt 
Ctring namePtr 
CFile myFile 
UINT un 
 
 
Create() 
OnInitialUpdate() 
OnSize() 
 



 73

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CGridWindow 
 
CGridView* m_gDialog 
 
 
 
 
 
 
 
Layout() 
Create() 



 74

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CMainFrame 
 
char* cbuff  char ch 
char* characterstoWrite 
DWORD dwStyle 
CFileException fexcept 
int  iCount 
Boolean m_boolTree 
int m_bufferSize 
CFormTree m_cDialog 
Boolean m_childVisible 
int m_colCount 
CGridView m_gDialog 
CGridWindow m_gridDialogBar  
Boolean m_gridPressure 
Boolean m_isTreePresent 
COpenDialog m_MyDialog 
CString m_NamePtr 
Int  m_noofRoots 
CGridCtrl* m_pGridCtrl 
Int m_rowCount UINT m_Shape 
CToolBar m_shapeTooldBar 
CString m_strEdit , m_txt 
CTreeCtrl m_tree 
CDockingWindow m_wndDialogBar 
CStatusBar m_wndStatusBar 
CSizingTabCtrlBar  m_stcBar 
CToolBar m_wndToolBar 
CFile myFile 
CString namePtr CString** value 
 
mapFile() mapTree() 
OnCreate()  OnDoc() 
OnMapTree() 
OnOpenGrid()  OnSaveGrid() 
OnOpenSVG()  OnSaveSVG() 
OnUpdateViewShapeToolBar() 
OnViewShapeToolBar() 



 75

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

COpenDialog 
 
CGridView m_gDialog 
CGridWindow m_gridDialogBar 
Boolean m_option 
CString m_strEdit 
Int m_strOption 
 
 
 
OnButtonBrowse() 
OnButtonGrid() 

CShapes 
 
ColorRef m_color 
CString m_fieldValue 
Int m_stockObject 
CString m_TextString 
CPoint m_x , m_y 
Int m_x1 , m_y1 , m_x2 ,  m_y2  
 
 
CShapes() 
Draw() 
Serialize() 
SaveSVG() 
 



 76

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CSizingTabCtrlBar 
 
Int m_nActiveTab 
CView* m_pActiveView 
CTabCtrl m_TabCtrl 
CList m_views 
 
 
 
 
AddView() GetView() 
OnCreat() OnSize() 
OnTabSelChange() 
RemoveView() 
SetActiveView() 
 

CGrid 
 
 
 
 
 
 
 
Create() 
 



 77

 

Section 11 
Object Oriented Design 

 

 

 

 

 

CLASS RESPONSIBILITY 

COLLABORATION CARDS 

 



 78

 

 

DESCRIPTION 

CDesignerTree is derived form CTreeView which is a Microsoft Foundation Class. 

CDesignerTree has a very important responsibility of mapping the drawn shapes, which 

are drawn on designer area, on the designer tree.During this operation, it collaborates 

with the CFormBuilderDoc class.Another important responsibility of this class is to 

change the attributes of the drawn shapes. We can change the size, length, width and 

color of the shapes in designer area and this class actually perform the operation on the 

backend. 

 

Class name :   CDesignerTree 
Base : CTreeView 
 
Derived: none 

Responsibilities 
 
1.Maps the drawn shapes on designer 
tree. 
2.Changes the attributes of the drawn 
shapes. 
 

Collaborators 
 

CFormBuilderDoc 



 79

 

 

 

 

 

DESCRIPTION 

 

CDockingWindow is derived from CctrlBar which is a MFC class.CSizingTabCtrlBar is 

derived from this class. It creates the docking window in the designer area. This class 

also changes the layout of the docking window. It consists of two methods for 

performing the operations assigned to it. 

Class name :   CDockingWndow 
Base : CCtrlBar 
 
Derived: CSizingTabCtrlBar 

Responsibilities 
 

 
1.Creates the docking window 
2.Changes the Layout of Docking 
   window 

Collaborators 
 

 
 

   
 
  



 80

 

 

DESCRIPTION 

 

CFormBuilderApp is the application class which is formed by MFC for the management 

of the developing application. This class is derived from CWinApp which is a very 

important class for creating application on Win32 platform.None of the classes are 

further derived from CFormBuilderApp.It manages the messages which are originated 

from different events and shapes in the design area. It provides message handlers for 

responding to the originated messages. It has 33 message handler functions to respond 

to different events. 

Class name :   CFormBuilderApp 
Base : CWinApp 
 
Derived: none 

Responsibilities 
 

1.Maintains the message handlers of all 
shapes. 
 

Collaborators 
 

 
 

 
 
 



 81

 

 

 

 

 

 

 

 

DESCRIPTION 

 

CFormBuilderDoc is the document class. It is derived from Cdocument which is a MFC 

class. CformBuilderDoc is actually the document portion of the Microsoft’s 

Document/View architecture. It adds shapes to designer area. It deletes the contents. It 

also takes care of the colors and it maintains the operations of edit and clearAll 

functions.It has 8 functions to perform its required operations. 

 

 

Class name :   CFormBuilderDoc 
 
 
Base : CDocument 
 
Derived: none Responsibilities 

 
1.Add Shapes 
2.Delete Contents 
3.GetShapes 
4.Maintains Colors 
5.Maintains edit and clearAll functions 
 

Collaborators 
 

CShape 

CFormBuilderView   
CFormBuilderApp 

 
 



 82

 

 

DESCRIPTION 

 

CFormBuilderView is the view class. It is derived from CTreeView which is a MFC class. 

It is the view class which is the other important class in Document/View architecture. It 

maintains the view of the designer and application environment during the mouse 

movement.It perform this operation with the help of CFormBuilderApp. It also maintains 

the form view during the drawing. It performs this operation with the help of 

CFormBuilderDoc. It has two functions to perform its required operations. 

Class name :   CFormBuilderView 
Base : CTreeView 
 
Derived: none 

Responsibilities 
 

1. Maintains the view on mouse 
movements. 

2. Maintains the form view on draw 
 

Collaborators 
 
CFormBuilderApp 
 
CFormBuilderDoc 
 

   
 
 



 83

 

 

DESCRIPTION 

 

CFormTree is derived from CTreeView which is a MFC class.None of any other classes 

are derived from CFormTree.It maintains the states of form tree during the initial update 

with the help of CGridView class. It also maintains the state of the form tree during the 

drawing operation. It performs this operation with the help of CFormBuilderView. It has 

two functions to perform its operations. 

Class name :   CFormTree 
Base : CTreeView 
 
Derived: none 

Responsibilities 
 

1. Maintains the form tree on    
    initial update 
2. Maintains the form tree on   
    draw 
 

Collaborators 
 
CGridView 
 
CFormBuilderView 
 

   
 
 



 84

 

DESCRIPTION 

 

CGridView is a very important class. It is derived from CView class which is a MFC 

class. None of any other classes are derived from CgridView. It has a one of the major 

responsibility to create the grid.It performs this operation with the help of CGrid class.It 

also maitains the grid view on initiail update with the help of CFormTree class. It 

performs the operations with the help of three functions. 

 

 

Class name :   CGridView 
Base : CView 
 
Derived: none 

Responsibilities 
 

1.Creates the grid view 
2.Maintains the grid view on     
   initial update  

Collaborators 
 
CGrid 
CFormTree 

   
 
 



 85

 

DESCRIPTION 

 

CMainFrame is derived from CMDIFrameWnd class which is a MFC class. None of any 

other classes are derived from CMainFrame class. CMainFrame has a major 

responsibility of mapping a flat file in the grid view. It performs this operation with the 

help of CGridView class. It also maps the data onto the tree with the help of 

CFormTree. It performs a very important operation of opening and saving the grid. It 

performs this operation with the of CGrid class. It also maintains the shape toolbar view. 

 

Class name :   CMainFrame 
Base : CMDIFrameWnd 
 
Derived: none 

Responsibilities 
 

1. Maps the Flat file 
2. Maps the data onto the tree 
3. Perform the tasks on opening the 

grid 
4. Performs the tasks on saving the 

grid 
5. Maintains the shape toolbar view 
6. Creates the docking window 

Collaborators 
 

CGridView 
CFormTree 
CGrid 
 
 
 
 
CDockingWindow 



 86

 

 

DESCRIPTION 

 

COpenDialog is derived from CDialog class which is a MFC class.None of any other 

classes are derived from COpenDialog.It opens the dialog box to browse through the list 

of flat files. It also opens the grid open dialog box on clicking on the open grid button. It 

performs this operation with the help of CGridView class. It has two functions to perform 

its operations. 

 

Class name :   COpenDialog 
Base : CDialog 
 
Derived: none 

Responsibilities 
 

1. Opens the dialog box on clicking 
the browse button 

2. Open the grid open dialog box on 
clicking the open grid button 

Collaborators 
 

 
 
CGridView 



 87

 

DESCRIPTION 

 

CShapes is a very important class. It is derived from CObject class which is a MFC 

class. None of any other classes are derived from CShapes class. It draws different 

shapes on the designer area. It performs this very important and pivotal task with the 

help of CFormBuilderApp, CFormBuilderDoc and CFormBuilderView class. It has two 

functions to give its desired output. 

 

 

Class name :   CShapes 
Base : CObject 
 
Derived: none 

Responsibilities 
 
1. Draws different shapes 

Collaborators 
 
CFormBuilderApp, 
CFOrmBuilderDoc, 
CFormBuilderView 



 88

 

DESCRIPTION 

 

CSizingTabCtrlBar is derived from CDockingWindow class which is a generic class. 

None of  any other class are derived from CSizingTabCtrlBar. It adds a view in the 

docking window. It performs this operation with the help of CformTree and 

CdesignerTree. It also gets the desired view and it switches between the corresponding 

views when a user clicks on different tab selections. It has 7 methods to perform its 

operations. 

 

Class name :   CSizingTabCtrlBar 
Base : CDockingWindow 
 
Derived: none 

Responsibilities 
 

1. Adds a view  
2. Gets a view 
3. Presents the corresponding view 

on clicking different tab 
selections 

Collaborators 
 

CFormTree,CDesignerTree 
 
 



 89

 

DESCRIPTION 

 

CGrid is derived from CWnd class which is a MFC class. None of any other classes are 

derived from CGrid class. It has a very important task of maintaining the grid 

characteristics. It performs this task with the help of CMainFrame. It also performs 

different kinds of functions which are associated with the grid such as determining the 

number of rows and columns in the grid to accommodate the input data. It has one 

function to perform its task. 

 

Class name :   CGrid 
Base : CWnd 
 
Derived: none 

Responsibilities 
 

1. Maintains the grid 
characteristics 

2. Perform different kinds of 
functions associated with the grid 

Collaborators 
 

CMainFrame 



 90

 

 

 

 

 

 

 

DESCRIPTION 

 

CGridWindow is derived from CCtrlBar which is a MFC class.None of any other classes 

are derived from this class. It creates the grid window with the help of CGrid and 

CGridView classes. It also forms and maitains the layout of  grid window. It has two 

methods to perform its operations. 

 

 

 

Class name :   CGridWindow 
Base : CCtrlBar 
 
Derived: none 

Responsibilities 
 

1.Creates the grid window 
2.Forms the layout of the grid     
   window 
3.Maintains the layout of the grid  
   window 

Collaborators 
 

CGrid,CGridView 
 

   
 
 



 91

 

Section 12 
Object Oriented Design 

 

Class Relationship 

Diagram 

 



 92

Class Relationship Diagram 

 

 

CDesignerTree 

CDockingWindow 

CFormBuilderApp CFormBuilderDoc CFormBuilderView 

CSizingTabCtrlBar 

COpenDialog 

CGridView 

CFormTree 

CShapes 

CGridWindow 

CGrid 

CMainFrame 



 93

 

Section 13 
Object Oriented Design 

 

 

 

 

STATE CHARTS 

 

 



 94

State Chart for the System 
 
 

 

Map Form Tree 

Open Already 
Saved Grid 

Serialize 

Initial State 

Open Grid Design Form 

Save Grid 

Map Designer Tree 

Save in SVG 

Open in SVG Open 

Select Shape 
Shape selected

Select Shape 
Shape selected

Opendialog 
Grid open 

Open SVGfile 
SVG file open

Open file 
File open 

Open SVGfile 
SVG file open Open file

File open

Save file 
File saved

Save grid 
Titles saved 

Map tiltes 
Tree mapped

Save grid 
Titles saved 

Map tiltes 
Tree mapped 

Save 
SVG 
saved 

Map shapes 
Shape tree 
mapped 

Save
SVG
saved Save file 

File saved 

Opendialog 
Grid open 



 95

    STATE CHARTS  
 
 
 
    CDesignerTree 
 
 
 
 
      Click  Grid Tree Tab 
 
 
      
       Click     Click  
    Designer             Grid Tree 
    Tree Tab    Tab 
 
        Click Designer Tree Tab 
 
 
        
         Click Map Tree   
          Button   
         
 
 
 
 
CDesignerTree is the class that creates Tree View of shapes drawn in the designer area .The 

initial state for that class is create state.When the application is started left docking window is 

created with designer tree created in it.From that state two staes can be achieved either hide by 

clicking Grid Tree tab button or we can show the tree by clicking designer tree tab.From both 

states of show or hide the user can move fom one to another .Also  from both these states the 

user can populate the tree by the shapes drawn and can achieve populate designer tree state. 

 
 
        Create 

 
 
         Show 

 
 
           Hide 

 
 
          Populate Designer Tree 



 96

 
 
 
 
    
   CDockingWindow 
 
 
 
 
 
 
      
   Cross docking       Click show   docking 
 window       docking window 
        window 
Docking window  
button 
 
 
       cross docking window 
 
 
 
 
Cdockingindow is the class that creates left docking window .so initial state is “create” 

state. From that state the user can go to hide  state by clicking on cross button. it can 

then go to show state by clicking Show docking window button. 

 
 
 
 
 
 
 
 

 
 
       Create 

 
 
        Hide 

 
 
        Show 



 97

 
   
    CFormTree 
 
 
 
 
  
    Click on designer tree tab 
 
   
       Click on        Click on 
       grid tree       
     t tab      designer  
             tree tab 
     click on  
     map tree    click on grid treetab  
               button 
        click map tree button 
 
 
 
 
 
 
 
 
CForm Tree is the tree to map titles of grid .It is created in docking window initially 

.Using grid tree tab button that tree can be shown to move to show state or to hide state 

by clicking on designer tree button.Then it can move from hide to show state or vice 

versa by clicking on grid tree tab button and designer tree tab button respectively.Then 

from both of these states the tree can be populated and state will move to populate tree 

state by clicking populate tree button.   

 
 
 

 
 
         Create 

 
 
         Show 

 
 
           Hide 

 
 
            Populate Form Tree 



 98

 
 
    CGridWindow 
 
 
 
 
 
 
 
 
 
   
    Show grid           cancel grid 

Control window   control          
 window 

             
           
             
       Show grid control 
         window   
          
 
 
 
CGridWindow is the class that is used to create docking window for opening grid into it.You can 

show grid button to show grid window and you can hide it by cancelling the grid docking 

window.Then we can move to show state by clicking on show grid window button. 

 
 
 
 
 
 

 
 
      Create 

 
 
       Show 

 
 
         Hide 



 99

 
    
 

 
COpenDialog  

 
 
 
 
 
  
     Cli click on browse button 
 
 
    Type the path of file   type the path of file 
 
          O new flatfile 

Open a new file 
button 
   

Open already saved titles  click on open new flat file  
 
 
 
 
 
 
 
 
COpenDialog is used to create dialog box that is used to give the path of flat files to 

open it in  a grid.The user can search the path of flat file to open it by using browse 

button to move to browse state or it can give the path of flat file manually  and can move 

to Give flat file to open state.From this state the user can move to open already saved 

grid or it can open new flat file state by clicking on corresponding radio buttons.Then 

user can to initial state of show dialog by opening a new dialog. 

 
ShowDialog 

 
 Browse 
File 

 
      Give file path to open 

 
    Open already saved grid 

 
     Open new flat file 



 100

 
     CShapes 
 
 
 
 
 
 
   Select shapes to draw 
 
  
 
  
    Cl click save in  
     SVG button 
 
 
 
       Click save button 
         Click save in SVG  
 

Click save button 

 
 Select shapes to draw 
 
 
 
 
 
 
 
 
Cshapes is the class to drawshapes .Initial state is Draw Shapes state which is 

achieved by selecting shapes.The user can reach to serialize or save in SVG format 

clicking save button or save in SVG button.The user can also move between the states 

of serialize and save in SVG .From these states he can move to initial state. 

 
 

  Draw 
Shapes 

 
 

 Save in 
SVG 

 
 

       
Serialize 



 101

 
    CsizingTabCtrlBar 
 
 
   Change the tab control button 
              Get tree 

 view  
for tab 

 
 
 

change the tab control button 
         Remove tab view 
 
 
 
 
 
 
 
 
 
CsizingTabCtrlBar is used to create tab controls in docking window.After creating the 

tabs initially  tab sel can be changed to achieve TabSelChange state.The user then 

moves to GetView state by the action of Get tree view of tab .and then it can remove the 

view of the tree as when one view will be created other will be removed.  

 
 
 
 
 
 
 
 
     
 

 
  
      Create 

 

  
TabSel

 
   
     GetView 

 
 
RemoveView 



 102

 
CGrid 

 
 
 
 
 
 
 
  
      cancel 
 
 
 
 
 
 
 
 
CGrid is used to create the basic layout of the grid that is opened in grid docking 

window .That grid is a MFC Grid Control.It has only two states .One it has create state 

and other state is Idle state which is attained after cancelling the grid. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
         Create 

 
 

Article II.       
Idle 



 103

 
 
 
 
    CFormBuilderApp 
 
 
 
 
   
 
 
 
     
     Select shapes 
 
 
 
 
        Select Shapes 

Click map shapes button 

 
 
 
 
 
 
 
 
CformBuilderApp in an application class that is used to pass all the ID’s of shapes.First 

you reach the state of Select shapes .That is designing face.Now you can easily map 

those shapes drawn using map shapes button.After mapping these shapes can be 

reselected that moves it to update Shapes. 

 

 
Select Shapes 
to            draw 

 
 
Update Shapes 

 
Map Shapes to 
tree 



 104

 
CFormBuilderDoc 
 

 
 
 
    Dr Draw     save 
        S shapes    shapes 
 
    drawshapes 
       

Click on color palette 
    Click on color palette  click on file dialog    
 
     Click on   click  
     File Dialog   font dialog      click 
     Click on    click  
     Color palette   file dialog      font 
drawshapes 
 
 
 
         click on font dialog 
     click on file dialog 
 
 
 
 
CFormbuilderdoc is the document class which is used to save the shapes drawn.whenever shapes 

are drawn shapes are added to the object array and state of Add Shape is achieved.After adding 

shapes their numbers can be get and state of Get number of shapes is achieved. From here 

shapescan ce saved and state of serialize is achieved.We can open the color palette and can reach 

the state of show color palette from Add shape state or serialize state.Show font dialog and show 

file dialog state can also be achieved from serialize state and from these states we can move to 

Add Shape state. 

 
   Add Shapes 

 
Get number of 
shapes 

 
   Serialize 

 
Show color    
palette 

 
Show file 
dialog 

 
Show font 
dialog 



 105

    
 

CFormBuilderView 
 
 
 
 
    No shape selected 
 
 
 
 
 
 
 
   Select shape 
 
 
 
 
 
  
CformBuilderView is the class that is used to view the desgner area.here we have only two 

states.Either any shape is selected or user has selected no shape. 

 
 
 
 
 
 
 
 
 

 
 
Draw Shapes 

 
 
Null Shapes 



 106

 
 
 
 
     

CGridView 
 
 
 
 
    Open flat file 
 
 
 
 
 
 
 
 
 
 
 
CgridView class is used to view the MFC GridControl that contains flat files.Now it has only 

two states.In the first step it is created state that create view.Insecond step window inside the grid 

containg flat files is created. 

  
 
 
 
 
 
 
 

 
 
 
     Create 

 
 
 

Show View 



 107

 
 
    CMainFrame 
 
 
 
 
     Show dialog 
             Click on 
             Save grid  
 
 
    Show dialog 

Open savedSVG form      open flat file  
   OpensavedSVG form  show dialog 
 
 
        Save in 
     SVG 
 
        Open SVG 
 
 
 
          
 
 
 
CmainFrame is the main class that handles the program when it is initiated.First state is 

the create state that creates the main layout od application like docking 

windows,toolbars and menubars.Now the user can move to two staes.Either to open 

grid state  by opening dialog box  or open SVG state by opening already saved 

document...From open grid statte user can move to two states either he can save the 

grid opened or it can map flat files opened onto tree.it can also move map flat file state 

after saving grid .Similarly after opening SVG document he can move to two states  

either he can open grid now or it can save after making changes in SVG saved 

documemnt.After saving he can then another document and can move to open SVG 

state. 

 
 
      Create 

 
 
Open Grid 

 
 

Save grid 

 
 
 

Open SVG 

 
 
 
Save SVG 

 
 
 

Map 



 108

 

SECTION 14 
Object Oriented Design 

 

 
 

DETAILED LOW 

LEVEL DESIGN 
 

 

 

 



 109

IF state=”Initial State” 

{ 

 

action=”Open Grid” 

do 

{ 

edit grid(); 

rename grid(); 

assign titles(); 

map titles(); 

} while action=”Open grid”; 

else if(action=”Open already saved grid”) 

do 

{ 

save grid(); 

edit grid(); 

title assigner(); 



 110

title mapper(); 

} while action=”Open already saved grid”; 

else if (action=”Design form”) 

do 

{ 

design form layout; 

map objects on designer tree; 

map titles on form; 

serialize form in SVG; 

serialize form in fbd; 

 

} while(action=”Design form”) 

} 

IF state=”Map designer tree” 

{ 

if(action=”Save in SVG ”) 

{ 



 111

SVG serializer(); 

} 

else if(action=”Open in SVG”) 

{ 

SVG opener(); 

} 

else if(action=”Open”) 

{ 

OpenDialog(); 

} 

else if(action=”Serialize”) 

{ 

serializer(); 

} 

} 

IF state=”Map Form Tree” 

{ 



 112

createFormTree(); 

maintainFormTree(); 

mapObjects(); 

} 

 

 

 

 

 

 

 

 

 

 

 

 

 



 113

 

Section 15 
 

 

 

 

 

 

TEST CASES 

 
 



 114

Equivalence Classes and Boundary Value Analysis 

 

1. Equivalence class for File Opening 

 

Less than one character Error 

One Character Acceptable 

Between 1 and 20 characters Acceptable 

Twenty characters Acceptable 

More than 20 Truncated to 20 characters 

 

 

2. Equivalence class for File Saving 

 

Less than one character Error 

One Character Acceptable 

Between 1 and 20 characters Acceptable 

Twenty characters Acceptable 

More than 20 Truncated to 20 characters 

 



 115

3. Equivalence class for Bitmap Opening 

 

Less than one character Error 

One Character Acceptable 

Between 1 and 20 characters Acceptable 

Twenty characters Acceptable 

More than 20 Acceptable 

 

 

 

 

4. Equivalence class for Drawing Text 

 

Less than one character Acceptable 

One Character Acceptable 

Between 1 and 20 characters Acceptable 

Twenty characters Acceptable 

More than 20 Acceptable 

 

 



 116

Functional Analysis 

1. Open the designer. 

2. Close the designer. 

3. Open the grid. 

4. Close the grid 

5. Open a flat file. 

6. Activate the tree docking window. 

7. Deactivate the tree docking window. 

8. Activate the grid docking window. 

9. Deactivate the grid docking window 

10. Assign titles to the flat file. 

11. Map titles to grid tree. 

12. Delete titles in the flat file opened in the grid control. 

13. Change titles in the flat file opened in the grid control. 

14. Activate the grid tree view in the tree docking window. 

15. Deactivate the grid tree view in the tree docking window. 

16. Activate the designer tree view in the tree docking window. 

17. Deactivate the designer tree view in the tree docking window. 

18. Activate the shape toolbar. 

19. Deactivate the shape toolbar. 

20. Dock the shape toolbar. 

21. Resize the shape toolbar. 

22. Select shapes from shape toolbar. 

23. Select line from shape toolbar. 

24. Draw line on the designer area. 

25. Select rectangle from shape toolbar. 

26. Draw rectangle on the designer area. 

27. Select transparent circle from the shape toolbar. 

28. Draw transparent circle on the designer area. 

29. Select transparent rectangle from the shape toolbar. 



 117

30. Draw transparent rectangle on the designer area. 

31. Select filled circle from the shape toolbar. 

32. Draw filled circle on the designer area. 

33. Select filled rectangle from the shape toolbar. 

34. Draw filled rectangle on the designer area. 

35. Select pencil from the shape toolbar. 

36. Draw with pencil on the designer area. 

37. Select polygon from the shape toolbar. 

38. Draw polygon on the designer area. 

39. Select gray circle from the shape toolbar. 

40. Draw gray circle on the designer area. 

41. Select light gray circle from the shape toolbar. 

42. Draw light gray circle on the designer area. 

43. Select dark gray circle from the shape toolbar. 

44. Draw dark gray circle on the designer area. 

45. Select gray rectangle from the shape toolbar. 

46. Draw gray rectangle on the designer area. 

47. Select light gray rectangle from the shape toolbar. 

48. Draw light gray rectangle on the designer area. 

49. Select dark gray rectangle from the shape toolbar. 

50. Draw dark gray rectangle on the designer area. 

51. Select color tool from the shape toolbar. 

52. Change the color of the selected shape. 

53. Change the color of the filled circle. 

54. Change the color of the filled rectangle. 

55. Change the color of the line. 

56. Change the color of the pencil tool. 

57. Select the thickness increment tool. 

58. Change the thickness of the line 

59. Select the thickness decrement tool 

60. Change the thickness of the line. 



 118

61. Copy grid tree items on the designer area. 

62. Map shapes on the designer tree. 

63. Expand grid tree. 

64. Populate grid tree. 

65. Fold the grid tree. 

66. Expand the designer tree. 

67. Populate designer tree. 

68. Fold the designer tree. 

69. Save the grid tree. 

70. Save the designer tree. 

71. Save the file in fbd format. 

72. Save the file in SVG format. 

73. Open the file in fbd format. 

74. Open the SVG file. 

75. Hide the grid. 

76. Unhide the grid. 

77. Close the tree docking window. 

78. Close the grid docking window. 

79. Resize the grid and tree docking windows. 

80. Close the application 

 

 

 

 

 

 



 119

 

Section 16 
 

 

 

 

 

 

USER MANUAL 

 

 



 120

This software is to be used by someone who wants to design a form with the help 

of a flat file or without the help of flat file. It can also be used by someone who just 

wants to assign titles to a flat file and then save it for later use. User can save the 

designed forms in  the format of this program i.e. *.fbd format and international 

standard of format i.e. SVG format so that the form can be displayed on the internet 

explorer browser using a plug-in for internet explorer, known as SVGView. Oldest 

version of the browser on which it can be seen is internet explorer 6.0 or Netscape 

6.0. 

First of all, when the application is run, a splash screen appears as shown in 

Figure 16.1 and then disappears itself after a few moments. Then the application looks 

like the one shown in Figure 16.2. 

Now in the above figure, there is a designer in the middle of the application with 

white background; there is a window on the left side containing the tab view with which 

two tree views are associated. In the right tab titled as “Grid Tree”, titles of the flat file 

are to be mapped. In the left tab titled as “Designer Tree”, shapes drawn and their 

attributes are to be mapped. 

MainFrame ToolBar 

Now if you see on the top of the application, there is a toolbar docked there. This 

is the mainframe toolbar in which different options are there. Starting from left to right 

in the mainframe toolbar, first of all we see a button with a page on it. This button is 

there to open a new document in this application to work with. 

After the first button, there is a separator which is then followed by three buttons 

which give options of opening files. The first one, on which an arrow is coming from a 

diskette into a grid shows that this button is used to open a flat file are already saved 

grid titles into a grid. If, in an application, a grid is opened, no other grid can be 

opened unless the application is run again. If you click on this button except for the 

first time, it will open the same grid which it opened after parsing the first chosen flat 



 121

file or the file containing grid titles. The changes will remain there if changed after 

opening the grid. 

 

 

 

Figure 16.1 

 



 122

 

 

 

 

 

Figure 16.2 

 



 123

The third button is to open a normally saved form designer into a new document 

having an extension *.fbd. The fourth button is there to open an already saved form in 

SVG format in a new document in the designer area. 

There is another separator after the fourth button, and then there are three 

buttons in series. First button in this series gives the option to the user to save the grid 

titles assigned to the flat file document opened in the grid. It will be saved in a file 

which can be accessed and opened in this document. Second option in this series is a 

button to save the current document in the format of this Form Builder i.e  *.fbd format. 

The third button is the option to save the current active document in the SVG format. 

After that, there is a separator and then there are two options, first one is “undo” 

option in which last drawn shape is deleted. The second one is “clear all” option in 

which the currently active form will be deleted from the designer area. Then again 

there is a separator. 

Then there are three buttons. First one is to show the window initially docked on 

the left if it has been closed. It will open the window where it was closed because it 

can also fly. Second button is an option for the user to map the titles, given to the flat 

file onto the grid, to the tree view on the tab named “Grid tree” on the tab control. Then 

there is an option to map the shapes drawn and their attributes on the tree view on the 

tab named “Designer tree”. 

Then there is another separator followed by four buttons, which are used to 

manipulate the pen width for drawing the shapes. If first button is pressed, the pen 

width will become the minimum, if the second one is pressed, the width decreases by 

one, if the third one is pressed, the width increases by one and if the fourth one is 

pressed, the width will become maximum. 

There is another separator followed by three buttons. The first button in this case 

chooses a bitmap file to be drawn onto the designer. The second option chooses the 

color with which the shapes will be drawn onto the designer area. The third button 

shows the information about the name and version of the software. 



 124

MenuBars 

All the menu bars have options also present in the toolbars except the “view” menubar. 

It contains three options as shown in Figure 16.3 

 

 

 

 

Figure 16.3 



 125

There are three menus in it named as “Toolbar”, “Status Bar” and “Shape 

toolbar”. These are all checkbox menu items. If the first one is checked, the mainframe 

toolbar is shown, otherwise it is hidden. If the second option is checked, it will show 

the status bar, otherwise it will not show the status bar. If the third option is checked, it 

will show the shape toolbar, otherwise it will not show the shape toolbar. 

Shape ToolBar 

If you see at the right of the application, we have a toolbar on which shapes are selected which 

are to be drawn. Starting from top, first one is an arrow which is null shape. If this option is 

selected, no shape is selected actually. Second one is the “line” option. If this button is selected, 

user can draw a line from the position on which he pressed the left mouse button down to the 

place where he released it. Similarly all circles and rectangles are drawn. Third option is a circle 

with white background. Fourth option is rectangle with white background. Fifth option is colored 

ellipse; the sixth one is transparent ellipse. Seventh option is colored rectangle, eighth option is 

transparent rectangle. Ninth option is rubber and tenth option is for free hand drawing. In both 

the cases of rubber and free hand drawing, whenever the mouse is moved when pressed, a line 

is drawn between the starting point of the movement and the ending point of the mouse 

movement. Line is of selected width and color in case of free hand drawing and of white color in 

case of rubber. After that, there are options to draw light gray ellipse, gray ellipse, dark gray 

ellipse, light gray rectangle, gray rectangle and dark gray rectangle respectively. They can be 

drawn just as other ellipses and rectangles with light gray, gray or dark gray backgrounds. 

There is also a polygon option to draw a line to the place where clicked, from the previous point 

to which the pervious shape was drawn. 

There are three other options. The third last option is to select a tree item from the grid tree and 

when user clicks on the designer, the selected tree item will be pasted on the designer. Next 

option is of the bitmaps. If this option is selected and a bitmap is already selected in the 

Mainframe toolbar, that bitmap will be drawn from the point where the left mouse button went 

down to the point where it is released. If the mouse is clicked on the designer, the bitmap will be 

pasted onto the designer, top left of the figure being the point where the mouse was clicked. 

The last option in this toolbar is of an edit control. This edit control is formed on the designer 

between the points where the left mouse button was pressed to the point where it was released. 



 126

Then mouse can be clicked in this area to write the text. The edit control is not shown; only the 

cursor is shown when clicked inside the edit control as shown in the figure 16.4, and when the 

mouse button will be clicked outside this area, the edit box will disappear, drawing its text on its 

starting position. 

Now coming back onto the flat files, if you choose the option of opening flat file for the first time, 

a dialog box will be shown which gives the option to either browse for a file or to enter a path 

into a text box as shown in Figure 16.5. Now you have two options over here. Either a flat file 

can be opened in the even rows or already saved grid titles can be opened in the odd rows. 

Opened flat file in the bottom of the application is shown in figure 16.6 and already saved grid 

titles which are opened are also shown in figure 16.7.  It can also be like this that a person 

opens a flat file, gives it titles and then map them onto the grid tree. Mapped titles onto the grid 

tree are shown in figure 16.8. Note that the first column of every row is made the root and the 

subsequent columns the same row are made its leaves as in the flat files, the first field of a 

record always contains the record identity. Then the grid window is closed and the form is 

designed in the designer. 

When the design of the forms is complete, the shapes drawn can be mapped onto the 

designer tree with shape number being the root and attributes of the shapes being the 

leaves. Attributes of a shape depend upon the shape which is mapped or drawn. The 

shapes and their mapping into the designer tree are shown in figure 16.9. Now from this 

point onwards, we can save our work in *.fbd format and SVG format. Both the toolbars 

i.e. Main frame tool bar and the shape toolbar are docking, the window on the left and 

the one at the bottom containing grid are docking but they can be flied at any position 

even outside the mainframe as shown in figure 16.10. 

 

 

 

 

 



 127

 

 

 

 

 

Figure 16.4 



 128

 

 

 

Figure 16.5 



 129

 

 

 

Figure 16.6 



 130

 

 

 

Figure 16.7 



 131

 

 

 

Figure 16.8 

 



 132

 

 

 

 

 

 

Figure 16.9 



 133

 

 

 

 

 

 

Figure 16.10 



 134

 

Section 17 
 

 

 

 

 

 

CONCLUSION 

 
 



 135

Problems during Implementation 

Form Builder for Document Management System is a large scale project. During the project we 

faced some problems. Some of the problems were critical while some were moderate in 

nature. Some of the problems came up during the design stage while some revealed during 

the coding stage. The problems we faced during the implementation of this project are 

following: 

1. Form Builder for Document Management System is a XML based form builder. XML is the 

essence of this project. Before starting the project, we were not aware of the XML and its 

sophisticated technologies so we had to learn XML and its technologies in detail before any 

activity concerning the project. There are not enough books available on this topic, neither 

in MCS library nor in the local market so we performed extensive browsing to collect the 

information about various topics of XML. Internet proved to be a very useful mean of 

learning XML. We downloaded so tutorials and research papers and carefully read them to 

grasp the concepts of XML and its technologies. 

2. Another problem we faced in the project was the selection of appropriate technology for 

presentation of data in XML format. XML is content oriented language. Unlike HTML, which 

deals only with the presentation of data, XML takes care of semantics of the data as well. 

So in XML, a developer has to develop two kinds of structures. One kind of structures deal 

with the semantics of data while the other kinds of structures take care of presentation of 

the data. There are so many technologies available for presentation of data in XML. Some 

of them are cascading style sheets (CSS), XSLT, FOP and SVG. Selecting the right 

technology according to nature of our project was a difficult time at the time of project 

definition. Everyone in our syndicate was not appropriately aware of these sophisticated 

XML technologies. Each of them has its own merits and demerits. For example, CSS is 

very easy to use but it is difficult to implement in the code. Similarly XSLT is a very efficient 

technology but it’s not widely accepted and there are no XSLT editors available in the 

market. FOP is easy to program but it is a Java based technology developed by 

Apache.org. The last choice for us was SVG. When we examined SVG and gathered 

information about its various features we selected this format for the presentation of data in 



 136

our project. SVG is easy to program. It is widely accepted by a large number of vendors. A 

large number of SVG editors are available in the market and it is also supported by Internet 

Explorer 5.5 and above and Netscape Navigator 6 and above. 

3. Before the start of the project, we were not proficient in Visual C++ which was supposed to 

be our main development tool. The project was assigned to us by Elixir technologies and 

we were asked to work with Visual C++ by the manager and our supervisor at Elixir. We 

were proficient in C++ and we had done a lot of object oriented programming in Java so we 

decided to accept the challenge. We consulted a large number of books and worked hard 

to learn enough VC++ to start the coding. 

4. We have used Microsoft’s Document/View architecture in the development of GUI. Before 

the start of the project, we were unaware of this very sophisticated and useful architecture 

so we had to learn the architecture. We consider the learning of this architecture as one of 

our major achievements from this project. 

5. The main source of variable data, which act as an input to form builder, is a Flat file. Data, 

in a flat file, is presented in an unorganized manner. To facilitate the users, we decided to 

use a grid control for the presentation of data in an organized way. We modified a pre 

developed grid control. It was a very tough task. The grid control is indeed one of the most 

sophisticated grid controls present in the programming world. It contains a large number of 

classes. We understood the very lengthy code of the grid control and then we were able to 

modify the grid control according to our requirements. We consider the solution of this 

problem as a major milestone of our project because we really put in a lot of effort in 

solving this problem. 

 

 

 

 



 137

Achievements 

Form Builder for Document Management System is a project with a lot of learning 

potential. During the project we achieved the following milestones and skills 

 The concept of form builders 

 Extensible Markup Language 

 Visual C++ 6 

 The concept of Flat File 

 Addition of a grid control utility for flat file opening 

 The concept of Scalable Vector Graphics (SVG) 

 The concept of SVG viewers 

After the completion of this project we are now able to take any project in the domain of 

variable print solutions. Also we have learned XML and SVG after which we are able to 

write XML pages for the use on internet. The project has really helped us in sharpening 

our existing programming skills and learning some modern and valuable concepts. 

One of the biggest achievement of this project is that it has been tested and verified as 

standard and practical project by  computer lab of PAKISTAN ATOMIC ENERGY 

COMMISSION (PAEC) and they have started using Form Builder in their labs 

For preparing their different assignments . 

 

 

 

 



 138

FUTURE EXTENSIONS 

Form Builder for Document Management was a very good experience. We really 

enjoyed our task because it was interesting. We planned and designed this project very 

carefully. We tried to cover each and every aspect but since we had to complete the 

project in a allotted time so we decided to leave some of the aspects. Leaving out some 

of the aspects does not make any effect on the core functionality of our project. 

Following extensions can be made in the Form Builder: 

1. Animations can be incorporated in the form builder. A large number of hottest 

animation software ,like Flash 5.0 or 3d Studio Max, use vector graphics 

technology for the creation and management of animations. SVG supports the 

use of animation because it is a vector graphics based technology. Since Form 

Builder uses SVG for storing and retrieving the data so it is very easy to 

incorporate animations in the online forms. 

2. Form Builder can be further extended to support various other XML based 

presentation technologies. For example, support for the XSLT can be 

incorporated or Cascading Style sheets can be supported by Form Builder. 

3. Form Builder can be extended to support some very famous graphics format like 

jpeg, gif, targa, cdr, psd. Presently, Form Builder only supports bitmaps. 

4. Form Builder can be used to support Adobe’s famous Portable Document Format 

commonly known as PDF. A large amount of data on the web is available in the 

form of PDF supported pages so if Form Builder supports PDF then its 

interoperability and usefulness will be increased to a greater extent. 

5. Form Builder can be developed as a Application Builder for the famous print 

streams like IBM’s AFP or Xerox’s VIPP. Incorporating the support for these 

famous print stream formats will certainly make the Form Builder a valuable 

variable printing tool. 

 



 139

Form Builder for Document Management System is really a good addition to the family 

of XML based software. XML is replacing HTML in many web applications so this 

project is an effort to learn and master various technologies of XML and many more 

additions can be made in this product to make it a commercial success. 

 

 

 

 

 

 

 

 

 

 

 

 



 140

Bibliography 

 

 XML,How To Program , Dietel & Dietel 

 XML Programming , Ivan Behrose 

 XML and Java, Ivan Behrose 

 Mastering Visual C++ 6.0, Micheal J Young 

 Visual C++, Ivor Horton 

 Teach Yourself Visual C++ in 21 Days, Chapman 

 Inside Visual C++ 6.0 

 C++, How to Program, Dietel & Dietel 

 Programming in C++, Robert Lafore 

 MSDN library 

 http://www.adobe.com 

 http://www.elixir.com 

 http://www.w3c.org 

 http://www.w3schools.com/xml.html 

 http://www.w3schools.com/svg.html 

 http://www.vbxml.com 

 http://www.msdn.microsoft.com 

 http://www.apache.org 

 http://www.whatis.com 

 

 

 

 

 



 141

ACKNOWLEDGMENTS 

We would like to thank Almighty Allah who gave us strength and wisdom to complete 

this project. We are indebted to Brig. Dr. Mohammad Akbar , who accepted himself as 

our project supervisor. He gave us some of his very precious time out of his very tight 

schedule and guided us. We are grateful to Mr Tauheed of Elixir Techonologies, who 

showed a great confidence in us while assigning this project. We are also grateful to Mr. 

Aswad Rehan, Mr. Babar Qaisarani, Mr. Aznan Hassan Khan, Mr Khurram Riaz and Mr. 

Adeel Abbas of Elixir Technologies for their guidance in the domain of XML and MFC 

programming. In the end, we would also like to thank our families and friends for their 

constant support and encouragement. 

 

NC S.M.Khaliq-ur-Rahman Raazi 

NC Wasim Imran 

NC Junaid Arshad 

 

 


