

 C Compiler for a Parallel Processor

By
Ahsan Kamal and Husain Ahmad

Project report for partial fulfillment of the requirements of MCS/NUST for

award of the B.E degree in Software Engineering

Department of Computer Science
Military College of Signals

Rawalpindi

April 2002

Syndicate Members

Ahsan Kamal

NC # 143
BESE-4

Husain Ahmed

NC # 154
BESE-4

Directing Staff

Lt Col Muhammad Tufail Malik

HOD CS Department

Dr. Shoab A Khan (external)

President CET

C Compiler for a Parallel Processor 3

Abstract

In this dissertation, we present a dual-module C compiler for the Media

Engine (ME-2), being developed in Communications Enabling Technology

(CET). The first module takes the C code and converts it into the serial

assembly, referred hereon as Front-end Serial Assembly Generator (FSAG).

We have only implemented a minimal functionality prototype of FSAG,

whereas in actuality the GNU C compiler is being used as the serial code

generator. The second module is the Serial Assembly Optimizer (SAO). This

module makes use of advanced optimization techniques to generate a

parallel and optimized code.

C Compiler for a Parallel Processor 4

Declaration

 "No portion of the work presented in this dissertation has been submitted in

support of another award or qualification either at this institution or

elsewhere"

C Compiler for a Parallel Processor 5

Acknowledgements

The final year project has been a great experience for us. During the course

of its duration we have learned a lot. We have been able to apply the

knowledge and skills that we have developed during our three and a half

years of stay in MCS. However, this humble effort of ours would not have

been fruitful if it were not for the guidance and support many people. We

would like to thank those who, often despite of their own commitments,

have taken their time and effort to help us.

First of all we would like to thank Allah Almighty for his guidance, without

which we would have been lost. Then we would like to thank our Directing

Staff, Col Tufail for his help, understanding and considerations at difficult

times. We would also like to thank Dr. Shoab, Madam Durdana, Salma baji,

Mr. Tahir Awan and all the people in CET who helped us in every possible

way. Our colleagues in MCS have been really supportive, especially Omair,

Zunair, Imran Siddique, Khurram, Sarmad, Imran Ashraf and all the

inlivings. Finally, we would like to thank NUST, MCS and the CS

department, as they have made it all possible.

Ahsan Kamal

Husain Ahmed

C Compiler for a Parallel Processor 6

Table Of Contents
Abstract __ 3

Declaration __ 4

Acknowledgements ___ 5

Table Of Contents __ 6

Section one ___ 10

Introduction __ 10
I- Hand Optimization Techniques are not Scalable _______________________________ 11
II- Hand-Optimized Code is not Portable _______________________________________ 11
III- Related Work __ 12

Chapter 1 __ 13
Introduction To The Dissertation ___ 13

1.1) Purpose of Dissertation __ 13
1.2) Scope of Dissertation __ 13
1.3) Layout of the Dissertation __ 14

Chapter 2 __ 15
Project Description ___ 15

2.1) Description ___ 15
2.2) Features __ 16

2.2.1) Modular Approach __ 16
2.2.2) Front-end Serial Assembly Generator _____________________________________ 16
2.2.3) Serial Assembly Optimizer ___ 16

2.3) Life Cycle Model ___ 17
2.3.1) PHASES ___ 17
2.3.2) FSAG __ 17
2.3.3) SAO ___ 18

Section two ___ 19

Background Knowledge __ 19

Chapter 3 __ 20
ME-2 Architecture ___ 20

3.1) Introduction ___ 20
3.2) VLIW Architecture ___ 21

3.2.1) Terminology __ 23
3.2.2) Principles Behind VLIWs __ 23

3.2.2.1) Datapaths __ 23
3.2.2.2) Pipelines ___ 24
3.2.2.3) Functional units ___ 26

3.3) ME-2 Architecture __ 26
3.3.1) Central Processing Unit (CPU) __ 27
3.3.2) Internal Memory ___ 28
3.3.3) TXP/RXP Pipeline __ 28

3.4) Instruction Set Overview ___ 28
3.4.1) Instruction Types ___ 29

3.4.1.1) AGU Instructions __ 29
3.4.1.2) DataPath Instructions ___ 29

3.4.2) Registers ___ 30

C Compiler for a Parallel Processor 7

3.4.3) Addressing Modes __ 30
3.4.4) Use of data pointer registers __ 30
3.4.5) Execution Block Packet Composition _____________________________________ 31
3.4.6) VLIW Grouping Restrictions __ 32
3.4.7) Looping restrictions ___ 32
3.4.8) Conditional Execution ___ 34
3.4.9) Latencies ___ 34

Chapter 4 __ 35
Optimizations Techniques ___ 35

4.1) Parallelism in Programs __ 35
4.1.1) Coarse-grain parallelism ___ 35
4.1.2) Fine-grain of Instruction Level Parallelism _________________________________ 36

4.2) Types of Optimizations __ 36
4.2.1) Classical Optimizations __ 36
4.2.2) Superscalar Optimizations __ 37
4.2.3) Multiprocessor Optimizations ___ 38

4.3) Dependence Analysis ___ 38
4.3.1) Resource Dependencies __ 39
4.3.2) Control Dependencies ___ 39
4.3.3) Data Dependencies ___ 39
4.3.4) Dependence Graphs ___ 40

4.4) VLIW Compilers ___ 41
4.5) Optimization Techniques For a VLIW Compilers ________________________________ 43

4.5.1) Trace Scheduling ___ 43
4.5.2) Software Pipelining ___ 45
4.5.3) Loop Unrolling __ 47
4.5.4) Register Scheduling ___ 49

Section three __ 51

Project Specifications __ 51

Chapter 5 __ 52
Analysis and Design Specification ___ 52

5.1) Environmental Model ___ 52
5.1.1) Statement of Purpose __ 52
5.1.2) Context Diagram ___ 53

5.2) Data Flow Diagrams __ 54
5.3) Process Specification __ 56

5.3.1) Dependence Analysis (2.1) __ 56
5.3.2) Loop Unrolling (2.2) ___ 56
5.3.3) Software Pipelining and Scheduling (2.3) _________________________________ 56
5.3.4) Lexical Analysis (1.1.1) ___ 57
5.3.5) Syntax Analysis (1.1.2) ___ 57
5.3.6) Semantic Analysis (1.1.3) ___ 57
5.3.7) Three-address Generation (1.1.4) _______________________________________ 57
5.3.8) Analysis (1.2.1) ___ 57
5.3.9) Address Allocation (1.2.2) ___ 58
5.3.10) Low-Level Optimization (1.2.3) _______________________________________ 58
5.3.11) Code Generation (1.2.4) ___ 58

5.4) Use Case Diagram __ 59
5.4.1) Actor—Programmer __ 60
5.4.2) Use Case Description __ 60

5.4.2.1) Serial Assembly Generation __ 60
5.4.2.2) Serial Assembly Optimization __ 60

5.5) Class Relationship Collaborators ___ 61

C Compiler for a Parallel Processor 8

5.6) Class Relationship Diagram __ 65
5.7) Sequence Diagrams ___ 66

5.7.1) Serial Assembly Generation __ 66
5.7.2) Serial Assembly Optimization ___ 66

5.8) Class—Attributes, Methods ___ 67

Section four ___ 76

Results and Conclusion ___ 76
I- Results ___ 76
II- Analysis and Conclusions __ 81
III- Future Recommendations __ 81

Appendix A ___ 83

Serial Assembly Format __ 83
A-1) Register Allocation ___ 84
A-2) For Loops ___ 84
A-3) If else and Predicated Execution ___ 85
A-4) Auto Correlation ___ 85

Index __ 91

References __ 93

C Compiler for a Parallel Processor 9

List of Figures/Table

Figure 3.1 Block diagram of an ideal VLIW and its instruction word ____________________________ 22
Figure 3.2 Datapaths of a generic machine __ 25
Figure 3.3 Pipelining example __ 25
Figure 3.4 Looping Restrictions ___ 33
Table 3.1 Latencies ___ 34
Figure 4.1 Trace scheduling example. __ 44
Figure 4.3. Pseudo-assembly code. ___ 46
Table 4.1. Single loop iteration __ 47
Table 4.2. Software pipelined schedule. ___ 47
Figure 4.5 Pseudo- assembly code ___ 48
Table 4.3 Single loop iteration __ 49
Table 4.4. Software pipelined schedule __ 49
Figure 4.6. Register renaming __ 50
Figure 5.1 Context Diagram—Level 0 __ 53
Figure 5.2 DFD (1) __ 54
Figure 5.3 DFD (2) ___ 54
Figure 5.4 DFD (1.1) ___ 55
Figure 5.5 DFD (1.2) ___ 55
Figure 5.6 Use case Diagram ___ 59
Figure 5.7 Class Diagram ___ 65
Figure 5.8 Sequence Diagram—Serial Assembly Generation __________________________________ 66
Figure 5.9 Sequence Diagram—Serial Assembly Optimization. _________________________________ 66

Section one Introduction

C Compiler for a Parallel Processor 10

Section one

Introduction

In recent years the advances in process technology and chip design have led to

many high performance chips on the market, at more and more affordable prices

per computational power. At the same time, the “smart devices" model of

computation has also been gaining ground, giving rise to a large variety of

embedded systems utilizing high performance, often highly specialized chips. In

particular, many of those chips have been designed to address the needs of

signal processing application such as digital communications and digital

television, computer graphics, simulations, etc. Being intended for large

production volumes, cost has been an even more pressing issue and a lot of the

designs do not have the complicated optimization circuitry doing branch

prediction, pre-fetching and caching, associated with modern general-purpose

microprocessors. Because of the simplicity of the hardware design, which makes

parallelism very explicit to the user, most of the optimizations have been left to

the programmer. Still, providing optimal or nearly optimal solutions to the

optimization problems in the transition to high performance chips has been

interesting, challenging and difficult. This work presents an attempt at optimal or

nearly optimal utilization of computing capabilities for high-performance chips.

Any DSP algorithm written in simple non-parallel C language is first converted

into un-optimized serial assembly. Given this serial code, or for that matter an un-

optimized or partially optimized assembly code by a programmer, the software

Section one Introduction

C Compiler for a Parallel Processor 11

tries to produce optimal or nearly optimal version of the same code for a specific

DSP/VLIW chip.

The real motivation behind this methodology lies due to the following reasons.

I- Hand Optimization Techniques are not Scalable

While code parallelization of assembly code for VLIW/DSP chips has been an

active research issue for decades, in most cases even now, assembly code for

powerful DSP and other VLIW chips is handcrafted and optimized. Unfortunately,

a lot of the techniques employed by humans in this process (if any systematic

techniques are employed at all) do not scale very well. For example, the

introduction of the Texas Instruments TMS320C6000 series, capable of issuing

up to 8 instructions with variable pipeline lengths per cycle, marks a new era,

where it becomes increasingly hard to hand-optimize code with that much

parallelism, and in fact, to even write remotely optimal code. In fact, one can

argue that software such as the one presented here, extended with more high-

level optimizations, and could often produce better results than humans on long

and algorithmically complicated code. Thus, given the tendency of creation of

even more powerful chips and the use of more convoluted algorithms, scalability

becomes more and more important issue.

II- Hand-Optimized Code is not Portable

Not only techniques for hand optimization are not scalable, but also they are not

portable. Historically, each generation of DSP chips has been taking advantage

of process technology to optimize the instruction set architecture, because it is

too costly in terms of power and gates to emulate a single instruction set

architecture. Thus, with the introduction of new more powerful and different

chips, all optimizations to existing code need to be re-done, which is a long and

difficult process, involving both coding, optimization and validation.

Section one Introduction

C Compiler for a Parallel Processor 12

III- Related Work

There has been a fair amount of work in the field with many semiconductor

companies releasing powerful chips and compilers that do some optimizations as

commercial solutions. In fact some of the inspiration behind this work come from

looking of older version of assembly optimizer tools running in real time and

attempting to achieve better and more general solutions.

Solutions like these have more potential for overall improvement, but employ

heuristic solutions for code compaction. Other relevant publications include work

on various techniques ([1-10]) for code compaction. Many of those techniques

are computationally infeasible (such as solving the entire optimization problem as

a single integer linear program) or partially used in this work (linear programming

for obtaining bounds), or inapplicable, because of different computation

framework.

Chapter 1 Introduction To The Dissertation

C Compiler for a Parallel Processor 13

Chapter 1

Introduction To The Dissertation

This chapter gives a brief introduction to this document. It states the purpose and

scope of this document, explaining what this document is for as well as who

should use this document. It also gives a brief introduction to our project.

However at this point we have avoided any complex details. This chapter

prepares the readers mind for the things coming next.

1.1) Purpose of Dissertation

This dissertation is provided to fulfill the requirements of the Final Year project for

the completion of the BE Software Engineering Degree. The purpose of this

Dissertation is to provide an insight into the various phases and semantics of this

project. It describes the complete development process including the research,

analysis, and design specific documentation. It provides an insight into the

working and semantics of the ME-2 compiler, which can help both the users and

the future developers.

1.2) Scope of Dissertation

The dissertation has been created in order to meet the requirements of the

Department. It shall be providing all the necessary information about the project.

However, we have also kept in mind the users and any future developers. It will

be helpful in understanding the workings of the compiler.

Chapter 1 Introduction To The Dissertation

C Compiler for a Parallel Processor 14

1.3) Layout of the Dissertation

The dissertation has been divided into various sections. A brief section wise

description follows.

The first section starts by introducing the reader to the project by giving a brief

description to the project.

The second section contains some background material regarding the project.

This material is provided so the reader can develop a sound understanding of the

actual project. First we discuss the architecture of ME-2 processor. Then we

move to the various optimization techniques that are used for mapping of DSP

algorithms on VLIW. In the last part of this section, the various techniques

discovered and used by us are listed.

The next section contains the Software Specifications. It contains the detailed

analysis documentation including the Flow Diagrams, Process specifications,

Class diagrams etc.

The fourth and the final section contain the various results and conclusion. It also

mentions certain areas, which we were not able to implement into our product,

and gives recommendation of any future work in this field.

Chapter 2 Project Description

C Compiler for a Parallel Processor 15

Chapter 2

Project Description

This chapter lists the features of ME-2 compiler. It starts of with a brief

description of the project. Then an initial specification listing the main features of

the ME-2 compiler is given. In the end the life cycle model used is explained.

2.1) Description

Media Engine 2 (ME-2) is a fixed-point DSP processor based on Very Long

Instruction Word (VLIW) architecture. It is being developed at Communication

Enabling Technologies (CET). It has 9 functional units and support for parallel

execution of a maximum of 5 instructions. (The detailed overview of ME-2 is

given in the next chapter)

Our project was to develop a C compiler for this ME-2 processor. It has been a

strong combination of both research work and product development. During the

several phases of the project we had to go through a lot of research materials,

researching and then adopting various state of the art compiler techniques.

The project is divided into two independent modules, the Front-end Serial

Assembly Generator (FSAG), which produces the serial assembly, and the Serial

Assembly Optimizer (SAO), which optimizes the serial assembly into parallel

assembly. This modular approach later allowed CET to use the C compiler from

the GNU Compiler Collection (GCC) as the front-end code generator.

Chapter 2 Project Description

C Compiler for a Parallel Processor 16

2.2) Features

ME-2 C Compiler contains the following features.

2.2.1) Modular Approach

A modular approach is used for the developing of the compiler. It is divided

into the following main modules

1. Front-end Serial Assembly Generator

2. Serial Assembly Optimizer

These modules were developed separately, with strong emphasis on a

common interface between the two.

2.2.2) Front-end Serial Assembly Generator

The Front-end Serial Assembly Generator (FSAG) should transform all types

of C-language statements and declarations into serial assembly code. The

ME-2 assembly contains both serial and parallel instructions. The FSAG

should only generate serial assembly instructions.

2.2.3) Serial Assembly Optimizer

The Serial Assembly Optimizer (SAO) should transform the serial assembly

instruction into parallel assembly. It should perform advance optimization on

the serial code fed into it. These optimization techniques shall concentrate on

the time optimization of the code. Mechanism shall be provided so that certain

optimizations can be switched off.

Note: all of these features are requirement as specified by CET. However, as we shall see farther on, that

some of these features required a different approach and a separate team was dispatched to implement

those features. This was particularly the case regarding the FSAG.

Chapter 2 Project Description

C Compiler for a Parallel Processor 17

2.3) Life Cycle Model

As specified, a modular approach was used for developing the ME-2 Compiler.

Hence the whole development process was divided into two distinct phases or

modules; the development of the FSAG and SAO.

The development was done using the classical compiler writing techniques

merged with the software engineering models. The different phases listed below

describe the whole life cycle of the development process.

2.3.1) PHASES

 Understanding the architecture and instruction set of ME-2.

 Implementation of front-end code generator prototype.

 Research of optimization techniques for mapping DSP algorithms on VLIW

machines.

 Selection and modification of techniques.

 Hand coded testing of techniques.

 Design.

 Implementation.

 Testing in user environment.

 Integration of Serial Assembly Optimizer (SAO) with GCC serial code

generator.

2.3.2) FSAG

Initially while taking up the project we were told that the Front-end Serial

Assembly Generator FSAG should be developed using the GNU Compiler

Chapter 2 Project Description

C Compiler for a Parallel Processor 18

Collection GCC. A team of two people was already working for the development

of FSAG.

We developed a small subset of the FSAG using rapid development method.

Thus a small prototype was completed and shown to our Directing Staff.

However, we were encouraged not to build on that prototype. The use of modular

approach enabled us to develop both FSAG and SAO in parallel with each other.

2.3.3) SAO

The serial assembly optimizer required a lot of research regarding the advanced

optimization techniques for mapping of DSP algorithms on VLIW based

processors. Thus its development started with this research. The next step was

to test these techniques and short-list them to the few suiting our particular

needs. This was followed by the design and implementation of the algorithm

based on these techniques.

Section two Background Knowledge

C Compiler for a Parallel Processor 19

Section two

Background Knowledge

The full awareness of the VLIW architecture and the various compiler

optimization techniques is of utmost importance for grasping the essence of this

project. This section shall prove to be a learning experience for a layman, starting

with the very basic concepts and moving onto the most technical aspects. For the

able reader, however, this shall prove to be a mere revision of some interesting

concepts and techniques.

The first chapter in this section provides a brief, yet insightful introduction to the

VLIW architecture and then specifically to the ME-2 architecture.

The second chapter explains the various optimization techniques that are widely

used and implemented in such optimizing compilers.

Chapter 3 ME-2 Architecture

C Compiler for a Parallel Processor 20

Chapter 3

ME-2 Architecture

This chapter gives the user with the background knowledge. It starts with an

introductory detail of the ME-2 architecture. After the architectural features are

understood it moves on to the various optimization techniques. In the end we list

the techniques that were used in the implementation of SAO. We also discuss

the various constraints and limitations that set the selection criteria.

3.1) Introduction

Real-time digital signal processing applications require processing rates of

millions of instructions per second. A single digital signal processor cannot

handle such high-speed computation rates. Since digital signal processing

algorithms possess high degree of parallelism, parallel processing is used to

increase the computational capability of DSP based systems.

DSP chips with multiple FUs can exploit both fine-grain parallelism and coarse-

grain parallelism. Multiple FUs on single chip architecture is called Very Long

Instruction Word (VLIW) architecture.

The VLIW architecture employs multiple pipelined FUs, multi-ported register files,

multiple data paths and a global clock. It takes advantage of both temporal and

spatial parallelism [4]. This machine reduces the Clocks Per Instructions (CPI) by

executing several operations concurrently. Parallel operations are embedded in

horizontal instruction format. Thus one long instruction word specifies completely

the operations to be performed by each of the FUs in each cycle. RISC-like

instruction sets are used so that dependency checking becomes easier for the

Chapter 3 ME-2 Architecture

C Compiler for a Parallel Processor 21

compiler [2]. The compiler detects parallel operations in a program and embeds

them in the very long instruction words.

3.2) VLIW Architecture

The Very Long Instruction Word (VLIW) architectures form the basis for an

alternative way to organize processors. They are derived from the concept of

horizontal micro coding and multiple instruction execution. They are designed to

exploit the instruction level parallelism inherent in programs. These processors

employ multiple pipelined functional units, multi-ported register file, multiple data

paths and a global clock. As such they take advantage of both temporal and

spatial parallelism [4]. All the functional units share the use of the register file.

The operations to be concurrently executed by the functional units are

synchronized in a VLIW instruction. Figure 3.1 shows a typical VLIW processor

and its instruction format. Different fields of the long instruction word carry the

opcodes to be dispatched to different functional units. For example, I1 would be

executed by FU1, I2 executed by FU2 and so on. VLIW machines are expected to

provide ten to thirty times the performance of a more conventional machine built

of the same implementation technology [11].

In comparison, the presence of high-level regularity in user’s code is essential if a

SIMD processor is to be employed. VLIW machines can exploit even irregular

forms of parallelism for achieving speedup. Similarly, an MIMD solution imposes

synchronization and communication penalties. Whereas in a VLIW processor all

functional units run completely synchronized, directly controlled in each clock

cycle by the compacting compiler. Because the compiler handles the arbitration,

the buses are fast, simple and cheap.

Similar to superscalar architecture, the VLIW architecture can reduce the clocks

per instruction (CPI) factor by executing several operations concurrently.

However, superscalar machines need more complex hardware for run-time

resource scheduling and synchronization. Simplicity in hardware makes VLIW

processors easier to design and enhances their efficiency. These processors use

Chapter 3 ME-2 Architecture

C Compiler for a Parallel Processor 22

RISC-like instruction sets. While VLIW architectures permit static extraction of

fine grain parallelism, their major drawback lies in the considerable code memory

size requirements, due to the horizontal nature of the instruction set.

 Figure 3.1 Block diagram of an ideal VLIW and its instruction word

Multipurpose VLIW architectures are now being built for multimedia, video and

Digital Signal Processing (DSP) applications. Mapping of DSP algorithms was

chosen because efficient exploitation of concurrency available in these

algorithms is of prime importance to synthesize high throughput systems. These

algorithms are characterized by iterative sequences of operations, representing

arithmetic parallelism. Furthermore, the number of times these iterations are

executed is predictable. This makes the use of static scheduling feasible. VLIW

machines provide an effective platform as its multiple functional units can extract

temporal parallelism. Pipelining within functional units allows issuing of new

operations in each cycle exploiting the spatial parallelism. Highly concurrent

implementations can be obtained by using global optimization techniques.

Some of the early examples of VLIW processors are the Intel i860 that can issue

two operations per cycle, the IBM System 6000 with four concurrent operations,

and the Multiflow TRACE, which was designed to allow the concurrent execution

of up to twenty-eight operations per cycle. The most recent commercially

Register

 I1 I1
I

FUnFU2FU1

Memory

Chapter 3 ME-2 Architecture

C Compiler for a Parallel Processor 23

available VLIWs are TriMedia-1 by Philips and TMS320C6200 from Texas

Instruments.

3.2.1) Terminology

Let P be a program consisting of a set of operations {s1,s2,s3….sn }. These

operations require resources for their execution such as

Functional units {fu1,fu2,fu3….fun}, which can be adders, multipliers, load/store

ports etc.

Registers {r1,r2,r3….rn}, which are, used for read/write of data values. A register is

live for the duration between which data is written and its corresponding read.

A compacted program Pc represents a set of operations {s1,s2,s3….sn} with the

independent operations scheduled in the same cycle. It is equivalent to P, but

takes fewer cycles to execute.

Iteration means one pass through the loop.

Intra-iteration dependences are the precedence constraints within iteration.

Inter-iteration dependence is a dependence on the result of a previous iteration.

3.2.2) Principles Behind VLIWs

The basic building blocks behind these architectures are:

 Datapaths

 Pipelines

 Functional units

3.2.2.1) Datapaths
A large number of datapaths characterize the VLIW architecture. These

datapaths support the simultaneous access of operands by each of the functional

Chapter 3 ME-2 Architecture

C Compiler for a Parallel Processor 24

units for parallel operation. Figure 3.2 shows the datapaths for a generic VLIW

machine. A large number of registers help in fetching the operands from memory

and using them for fast access. Thus the register file must have two read ports

and one write port for each one of the functional units. One of the most critical

constraints in the implementation of the ideal VLIW model is the inability to build

a register file with very large number of ports [13]. The number of ports of the

registers usually limits multiple instruction execution, in practice, and resource

limitations simply prevent the writing of multiple results simultaneously to a single

register set. Consequently, the actual VLIW implementations often use

partitioned register files and functional units. A number of these partitions may

then be used to resolve the need for more functional units without increasing the

number of ports in the register file. In case a functional unit needs to read the

register file of another partition cross paths are used.

3.2.2.2) Pipelines
Pipelining implies the segmenting in time of a computational function into several

sub functions. Figure 3.3 shows a function partitioned in time into k different

stages. If each stage is a physically distinct piece of hardware, then they can

operate concurrently allowing up to k parallel operations after the filling of the

entire pipeline. Suppose time for each stage to operate is T, and then the first

output will appear after a delay of kT time units. However, successive outputs

can be obtained every T time units.

The main advantage of pipelining is that its hardware cost is quite low. However,

if any of the constituent stages fails to produce an output at the end of T time

units, the entire pipeline will stall. In a VLIW machine, instructions using different

functional units can proceed simultaneously through the pipeline phases. The

pipeline operation for different instructions can be categorized according to the

number of CPU cycles or delay slots. During delay slots, results from the

instruction cannot be read. To optimize a program for speed, one must

understand the sequence of the program fetch; data load requests the program

makes and how they might stall the CPU.

Chapter 3 ME-2 Architecture

C Compiler for a Parallel Processor 25

Figure 3.2 Datapaths of a generic machine

Figure 3.3 Pipelining example

Function

Stage
1

Output

Output

Input

Input

Stage
2

Stage
3

Stage
k

Chapter 3 ME-2 Architecture

C Compiler for a Parallel Processor 26

3.2.2.3) Functional units
All VLIW machines rely on the use of several functional units to achieve

speedup. Pipelined functional units are employed so that instructions can be

dispatched in each cycle. All of these functional units operate synchronously

using one global clock. Each segment of the long instruction word controls one

particular functional unit. The enhancement achieved by increasing the number

of functional units against cost is still a topic of current research. The maximum

number of concurrent instructions is at most equal to the number of functional

units. Since all VLIWs use RISC-like instruction sets, they have nondestructive

triadic register files. A large number of these registers help in fetching the

operands from memory and using them for fast access. Thus the register file

must be multiported so that several different functional units can access

operands simultaneously, and it should have enough memory bandwidth to

balance the maximum operand usage rate of the functional units.

Chapter 3 ME-2 Architecture

C Compiler for a Parallel Processor 27

3.3) ME-2 Architecture

The VZM 2000 TXP/RXP also known as ME-2 is a fixed-point digital signal

processor (DSP) core. It is a high performance, very long instruction word (VLIW)

architecture, specially suited to media-specific applications like G.729a, G.723.1.

The salient features of the architecture are:

 Four arithmetic/MAC operations in parallel with 64-bit load/stores.

 32-bit arithmetic, logical, shift and normalization operations.

 40/32-bit MACs

 Multi-cycle double precision operations

 Data Pointer Registers for intensive DSP loops

 Delay line registers for efficient FIR, convolution and correlation processing

 Data Alignment Buffers (DABs) for unaligned loads

 Advanced addressing modes (Bit reversed, circular, pre/post modify etc.)

 Zero-overhead Looping and predicated execution

 Multi-cycle fractional division

 Right pre-shifts of 1, 2, or 3 bits with register loads

 Quadruple test bits for testing of four simultaneous conditions

 Four simultaneous Add-Compare-Select (ACS) operations

3.3.1) Central Processing Unit (CPU)

The TXP/RXP CPU contains:

Chapter 3 ME-2 Architecture

C Compiler for a Parallel Processor 28

 Program Control Unit

 Instruction Dispatch Unit

 Data Path Control Logic

 Address Generation Unit

 Control Register

 Nine Data Paths (Execution Blocks)

 Debug Logic

 16 14-bit Address Register File

 16 32-bit Data Register File

3.3.2) Internal Memory

The TXP/RXP has separate data and program memories. The Data memory is

treated as 4K x 64-bit words and Program memory is treated as 2K x 128-bit

words.

3.3.3) TXP/RXP Pipeline

There are six pipeline stages.

 The pipeline can dispatch five parallel instructions every cycle.

 Parallel instructions proceed simultaneously through the same pipeline

phases.

3.4) Instruction Set Overview

The assembly instructions have been designed with a C-like syntax to provide

ease of programming. The extensive range of instruction groupings allowed

Chapter 3 ME-2 Architecture

C Compiler for a Parallel Processor 29

further aids the programmer in coding media specific applications. The CPU

allows parallel execution of 5 instructions, with certain restrictions.

3.4.1) Instruction Types

Instructions for the VZM 2000 TXP/RXP can be divided in to the following

categories.

 Load/Store instructions

 AGU arithmetic instructions

 Stack support instructions

 Program Control and Loop instructions

 Logic instructions

 Shift and Normalization instructions

 Mac unit instructions

 Arithmetic instructions

All instructions of Media Engine-2 (Engine0) can be categorized as AGU and

DATAPATH instructions.

3.4.1.1) AGU Instructions
All instruction related to the address generation unit are categorized into AGU

instruction. These include load/store, stack support, AGU arithmetic and control

flow instructions. For a brief overview, refer to [20].

3.4.1.2) DataPath Instructions
The logical instructions, shift and normalization instructions, arithmetic

instructions, and MAC instructions are included in this category. See [20] for

reference.

Chapter 3 ME-2 Architecture

C Compiler for a Parallel Processor 30

3.4.2) Registers

There are 16 x 32-bit data registers from R0 to R15, and 16 x 14-bit address

registers from A0 to A15. The data registers can be used as separate 32 x 16-bit

registers with Ri.f implying the upper 16 bits and Ri.i the lower part of the data

register Ri

3.4.3) Addressing Modes

When upper 16-bits of a data register are loaded, lower 16-bits are zero-filled.

When lower 16-bits are loaded, upper 16-bits contain sign extension. Load is

done through a pre-shifter or a data alignment buffers. The processor supports

the following addressing modes.

 Register addressing with no update, post-increment or decrement on

address register.

 Register addressing with post offset update or indexing (pre-increment by

offset register without update) on address register.

 Register addressing with post offset update or indexing (pre-increment

without update) by an immediate offset on address register)

Any register from A8-A15 with the exception of A11 (reserved for stack

operation) can be used for specifying an offset.

3.4.4) Use of data pointer registers

3. If a DPR points to a register apart from R0, R4, R8, R12 for load or store of

four 16 bit operands, data will be loaded to /stored from the start of that

group. It is true for other group and MAC operation, e.g. if DPR points to R3

and four loads are performed at that DPR, operands will be loaded to R0, R1,

R2, R3. Same is the case of load/store of two operands.

Chapter 3 ME-2 Architecture

C Compiler for a Parallel Processor 31

4. Any AGU or execution block instruction that uses dprs, is 32 bit. Four dprs, at

maximum can be updated. Most of the 16 bit instructions have a

corresponding 32-bit DPR version. Dprs are not only used in loops but are

also to provide flexibility in operand specification. For example, AND

operation requires one source and destination to be the same when its 16 bit

version (with registers only) is used. However, with dprs, all three operands

become independent.

3.4.5) Execution Block Packet Composition

The following grouping restrictions apply to execution block instructions within

one packet:

 48-bit EB0 instruction, 16-bit EB1 instruction, 16-bit EB2 instruction, 16-bit

EB3 instruction

 32-bit EB0 instruction, 32-bit EB1 instruction, 16-bit EB2 instruction, 16-bit

EB3s instruction

 32-bit EB0 instruction, 16-bit EB1 instruction, 16-bit EB2 instruction, 16-bit

EB3 instruction

 16-bit EB0 instruction, 16-bit EB1 instruction, 16-bit EB2 instruction, 16-bit

EB3 instruction

 32-bit Dual instruction at EB0, 32-bit Dual instruction at EB2

 32-bit Dual instruction at EB0, 16-bit Dual instruction at EB2

 32-bit Dual instruction at EB0, 16-bit EB2 instruction, 16-bit EB3 instruction

 16-bit Dual instruction at EB0, 16-bit Dual instruction at EB2

 16-bit Dual instruction at EB0, 16-bit EB2 instruction, 16-bit EB3 instruction

 32-bit Quad instruction at EB0

 16-bit Quad instruction at EB0

Chapter 3 ME-2 Architecture

C Compiler for a Parallel Processor 32

3.4.6) VLIW Grouping Restrictions

These restrictions define the composition of a valid VLIW packet for Engine 0.

1. An instruction word is defined as 16 bits long.

2. Maximum instructions words in a packet can be 8.

3. All atomic instructions comprise of 1 instruction word.

4. Long instruction can be 32-bit wide for AGU, and 48-bit wide for execution

blocks. In a long instruction, instruction words beyond the first one are

called extension words.

5. Prefix holds additional information about the VLIW a packet. A prefix can

be either 32 or 16 bit long.

6. There cannot be a 32-bit instruction and a dual instruction in the same

packet.

7. If there is a dual instruction in a packet, it should be the first execution

block instruction.

8. If there are two dual instructions in a packet, they cannot be any other

execution block instructions in that packet.

3.4.7) Looping restrictions

1. The minimum size for hardware loops is two VLIW packets.

2. The first packet of a loop instruction cannot contain a crossover. This

implies that to push the first packet until it has no crossovers, the

assembler places nops, each with MSBs 11 to indicate a continuing

packet of nops with a repeat instruction and any other parallel instructions.

Chapter 3 ME-2 Architecture

C Compiler for a Parallel Processor 33

Figure 3.4 Looping Restrictions

3. A loop that has a nested loop within cannot be a short loop.

4. Continue and Break instructions always have two delay slots. Non-

delayed Continue and Breaks cannot be executed.

5. Loop markers cannot be placed within the delay slots of change of flow

instructions.

6. Nested loops cannot end at the same address. This restriction arises from

the fact that two loop-end markers for different loops cannot coincide.

7. Loop markers for short loops are placed before the last instruction.

8. Loop markers for long loops are placed before the second to last

instruction. If nth instruction is the last instruction, loop marker is required

with (n-2)th instruction(assembler)

9. The last four execution packets of a loop cannot contain the REPEAT

instruction of a nested loop.

10. Outer loops should contain at least three instructions, after the end of

inner loop if continue or break instruction is used in inner loop (in order to

jump outside the inner loop without missing loop marker).

 repeat first

instruction Transformation

repeat nops nops

first instruction

packet boundary

 repeat first

instruction

Transformation
repeat nops nops

first instruction

 repeat prev inst prev inst nops nops

packet boundary

Case 1:

Case 2:

Chapter 3 ME-2 Architecture

C Compiler for a Parallel Processor 34

3.4.8) Conditional Execution

It is possible to include any mix of instructions in any combination of IFT/IFF,

Ifany, ifall, or caseT. An execution packet may have the combinations ift/ iff, ift /

ifaand iff / ifa.

There are however restrictions on the operations that can be conditionally

executed. These operations are few and are rarely required to be conditionally

executed. More important restrictions are the scheduling constraints on

predicated packets. These constraints occur because of the latency of test

instructions.

Possible constraint conditional AGU instructions can only be executed on T1.

3.4.9) Latencies

Table 3.1 Latencies

Instruction

Latency

Ri = Aj 1 cycle
pop (Ri)/(Ri, Ri+1) 3 cycles
pop (Ai)/(Ai, Ai+1) 3 cycles

Change of Flow Instructions 3 cycles
Ri=Ri/Rj 18 cycles

Chapter 4 Optimizations Techniques

C Compiler for a Parallel Processor 35

Chapter 4

Optimizations Techniques

Compiler optimizations are designed to reduce a program's execution time.

Traditionally, these optimizations are customized for a given machine model.

Classical optimizations are designed to improve the program's efficiency for a

machine model that has one thread of execution and can issue one instruction

per cycle. Superscalar optimizations are designed for a machine model with a

single thread of execution and a limited instruction issue rate. Multiprocessors

are built using either uni-processors or superscalar processors and thus there is

more than one machine model to optimize for. Therefore, it is important to

understand the interactions of these optimizations and their effect on available

parallelism and speedup.

4.1) Parallelism in Programs

First of all lets see what type of parallelism is available in programs. Parallelism

can be divided broadly into

4.1.1) Coarse-grain parallelism

This type of parallelism refers to the ability to divide a large program into smaller

modules and then to dispatch these modules in a multiprocessor environment.

This type of parallelism is exploited at the operating system level by some sort of

scheduler.

Chapter 4 Optimizations Techniques

C Compiler for a Parallel Processor 36

4.1.2) Fine-grain of Instruction Level Parallelism

Instruction Level Parallelism (ILP) refers to the parallelism available at the finest

levels in which multiple instructions are executed in a single cycle. Modern CPUs

can execute multiple instructions concurrently. Two sources of parallelism are

exploited:

 Some machines issue multiple instructions in one cycle ⇒ superscalar

machine

 Some machines overlap various execution phases of different instructions

⇒ pipelining

ILP can be improved by reordering instructions known as instruction scheduling.

During the process of instruction scheduling we select multiple instructions for

parallel execution. However this selection is constrained by certain factors.

In the following pages we shall be considering the various types of methods and

ways to enhance the optimization of the programs. We shall start with a general

description of the compiler optimization techniques. Then we move on to the

optimization techniques specific for the VLIW architecture. After discussing the

most popular and widely adopted techniques we shall move on to discuss the

optimization techniques that were used in the ME-2 C compiler.

4.2) Types of Optimizations

Compiler optimizations remove artificial constraints imposed by the programmer

and the programming language, in order to increase the program's efficiency and

expose its inherent parallelism. We have classified these optimizations into three

levels: classical, superscalar, and multiprocessor.

4.2.1) Classical Optimizations

Classical optimizations are made up of two components, local and global

optimizations. Local optimizations are applied to instructions within a basic block,

Chapter 4 Optimizations Techniques

C Compiler for a Parallel Processor 37

and use no knowledge of the program as a whole (e.g., data flow analysis) to

make optimization decisions. The local optimizations considered here are

constant propagation, copy propagation, common sub expression elimination,

redundant load/store elimination, constant folding, strength reduction, operation

folding, constant combining, and code reordering. On the other hand, global

optimizations are applied among operations within the same function.

The goal of classical optimizations is to reduce the execution time of a program

by eliminating redundant instructions and replacing a set of instructions with a

more efficient set. The effect of these optimizations on the available parallelism is

not clear.

4.2.2) Superscalar Optimizations

Superscalar optimizations combine and enlarge basic blocks to expose more

parallelism. The following superscalar optimizations are considered:

Superblock formation, loop unrolling, loop peeling, branch target expansion,

induction variable expansion, memory disambiguation, and register renaming. A

superblock is the basic scope for optimizations. Superblock formation consists of

first combining basic blocks that tend to execute in sequence into a trace, and

then performing code duplication to eliminate all side entrances from the trace.

Loop unrolling replicates the body of a superblock loop several times. Loop

peeling fully unrolls loops with small numbers of iterations. Branch target

expansion copies the target superblock of a frequently taken branch into its fall-

through path. Induction variable expansion removes the dependencies between

induction variables in unrolled copies of a loop body. Memory disambiguation

and register renaming are used to remove artificial dependencies between

instructions.

Superblock formation and optimizations add additional bookkeeping instructions

to the less frequently

Chapter 4 Optimizations Techniques

C Compiler for a Parallel Processor 38

4.2.3) Multiprocessor Optimizations

Memory renaming and data migration to high-speed memory are powerful

compiler optimizations that uncover the inherent parallelism within an application

program. Memory renaming refers to renaming all memory variables such that

they only hold one value. Since a memory variable is never written more than

once, all memory output and anti-dependencies are removed. Data migration

refers to loading frequently used memory variables into high-speed memory such

as registers. It is obvious that memory renaming will improve the parallelism

because it removes data dependencies. However, the effect of data migration on

parallelism depends on the level of data migration to high-speed memory.

This was a generalized discussion of the compiler optimization techniques. From

here on we shall focus on the optimization techniques specifically used for the

parallel mapping of DSP algorithms on VLIW architecture processors.

As mentioned before, there are two types of parallelism available. We shall be

considering only the ILP. ILP can be improved by various techniques including

loop unrolling, software pipelining, predicated execution and instruction

scheduling. The first step, however is to analyze the source code and determine

the dependencies that exist between the various instructions

4.3) Dependence Analysis

Determination of data dependences is a task typically performed with high-level

language source code in today’s optimizing and parallelizing compilers. Very little

work has been done in the field of data dependence analysis on assembly

language code, but this area will be of growing importance, e.g. for increasing

ILP. A central element of a data dependence analysis in this case is a method for

memory reference disambiguation that decides whether two-memory operations

may/must access the same memory location.

Chapter 4 Optimizations Techniques

C Compiler for a Parallel Processor 39

Let us define some notations that will be helpful towards the understanding of

different types of dependencies. If we have two instruction S1 and S2 then the

notation, S1 ◄ S2, implies that S1 precedes S2 in order of execution.

Dependence can be divided broadly into the following three categories.

 Resource Dependence

 Control Dependence

 Data Dependence

4.3.1) Resource Dependencies

It means that two instructions that use the same functional unit cannot execute at

the same time.

4.3.2) Control Dependencies

It occurs as a result of the control flow of the program. So if S1 is control

dependent on S2, we write

 S1 δ C S2

4.3.3) Data Dependencies

This can be further classified [21] into the following four categories.

4.3.3.1) Flow Dependence: Known as the read-after-write (RAW) hazard.

Two instructions are said to be Flow dependent if S1 ◄ S2 and the former sets a

value later uses. So we can say that

if S1: d = b*e

and S2: e = d+1

then since S1 sets the value of d that is being used by S2 for calculating

the value of e, so

Chapter 4 Optimizations Techniques

C Compiler for a Parallel Processor 40

 S1 δ F S2

Here we can see that if S2 was to be executed before S1 that would change that

outcome of the result.

4.3.3.2) Anti Dependence: Known as the write-after-read (WAR) hazard.

Two instructions are said to be anti-dependent if S1 ◄ S2 and S1 uses a

variable that is updated by S2. So we can say that

if S1: d = b*e

and S2: e = d+1

then since S1 is using e which is changed or set by S2, so

 S1 δ A S2

Here we can see that if S2 was to be executed before S1, that would change the

outcome of the result and d would be holding an incorrect value.

4.3.3.3) Output Dependence: Known as the write-after-write (WAW) hazard.

Two instructions are said to be output dependent if S1 ◄ S2 and S1, S2 both set

the same variable. So we can say that

if S1: d = b*e

and S2: d = e/2

then since S1 and S2 both set the variable d, so

 S1 δ A S2

Again the order of execution is of great importance.

4.3.4) Dependence Graphs

These dependencies are calculated in the analysis phase and dependence

graphs are constructed. Directed Acyclic Graph (DAG) can be used to show the

Chapter 4 Optimizations Techniques

C Compiler for a Parallel Processor 41

dependence between several operations. A node represents an operation and

the edges represent dependencies between nodes. The type of dependency

represented by an edge is unimportant, so we omit it. A dependence graph

corresponding to each basic block of instructions is produced. A basis block (BB)

is a structure holding instruction grouped together such that there is on control

path into or out of the basic block except for the first and the last instruction. Thus

the BB does not contain any jump or call instruction except for not necessarily

the last instruction of the BB.

These dependence graphs are then used as the basic unit on which various

optimizations are performed. Let us now briefly see the various optimization

techniques for exploiting the ILP.

4.4) VLIW Compilers

Compilers for VLIW processors play a pivotal role in exposing instruction-level

parallelism (ILP) for the effective utilization of hardware. Exploitation of fine-grain

parallelism is a critical part of exploiting all of the parallelism available in a given

program. The real challenge to using these architectures lies in compacting the

code such that the semantics of the program are preserved. This is unlikely to be

possible without a general solution to the “optimization” or “compaction”

problem. Parallelizing compilers have yet to become as effective as

programmers in their transformation task [8]. A compiler has to rely on user

assertions and/or source code modifications to improve the quality of the code it

generates.

The actual parallelism available in a program is limited by its dependences.

Dependence between two program statements is a conflict that prevents the

statements from executing concurrently. Dependences can be categorized into

three types: resource, data and control. Resource dependence between two

statements is usually a consequence of the limited hardware available in any

physical computer system. The data dependences exist when the current

instruction is dependent on the result of a previous instruction. Control

Chapter 4 Optimizations Techniques

C Compiler for a Parallel Processor 42

dependences represent the conditional execution such as the if-then-else

statements. Branch outcomes also fall into this category.

VLIW machines need low level programming. While developing parallel

schedules, a programmer must keep in mind all the details of hardware design.

The execution time for each instruction must be known prior to scheduling, so

that optimal instruction scheduling can be done [4]. Since each instruction

specifies multiple operations, these operations must have resources allocated

separately. This is a time-consuming exercise and is very much prone to error.

Compilation techniques are needed to relieve the programmer and make the

entire process faster and less error-prone. Thus, the success of a VLIW

processor depends heavily on the efficiency in code compaction.

Efficient compilers should be able to translate serial programs written at a

reasonably high level into good parallel schedules. The optimality criteria

generally used to judge these schedules are:

 Di/o input to output delay should be minimum.

 Tii iteration initiation interval should be minimum.

 The number of processors/functional units should be minimum.

Scientific computations spend a significant amount of time in executing loops;

therefore loops represent a critical component. Minimum value of iteration

interval guarantees highest speed of execution of a loop. This speed often places

a higher limit on the rate at which real-time processing can be done. Keeping the

number of processors/functional units to a minimum ensures the lowest possible

cost with which an optimal schedule can be achieved. Since optimal solutions are

relatively more expensive in terms of time and resources, near-optimal solutions

are used for faster and economical implementations [15].

Chapter 4 Optimizations Techniques

C Compiler for a Parallel Processor 43

4.5) Optimization Techniques For a VLIW Compilers

4.5.1) Trace Scheduling

Joseph Fisher offered Trace scheduling as a solution to the “optimization

problem” [7] when efforts to use basic blocks for compaction did not prove very

effective. This technique compacts large sections of code containing several

basic blocks obtaining an overview of the program. Scheduling is then carried

out, giving operations with longer delays a higher priority for placement.

Otherwise these delays will percolate through the program. For example, load

and branch operations are usually the most time consuming ones; these are

scheduled as early as possible.

Trace scheduling operates on traces, which may consist of many basic blocks. It

uses branch prediction and loop unrolling to statically look several basic blocks

ahead for parallelism opportunities. The trace contains operations from the most

probable path. Directed Acyclic Graphs (DAGs) are built for each path through

the trace. These are also called the trace data precedence graph. These have

been shown to contain all of the necessary restrictions on inter block motion and

only those restrictions [7]. Sequence of instructions is then ordered to minimize

the execution time of the most probable path. However, this speed up is usually

at the expense of increasing the execution time of less frequently used paths

through the program. Independent trace operations can be packed into the long

instruction words providing simultaneous issuing of multiple operations per cycle.

In case of conditional execution, compensation code is added to preserve the

program's semantics when a branch prediction turns out to be incorrect. For

example, Figure 4.1a shows sample code. A DAG is shown in Figure 4.1b and c

for the two possible paths. Figure 4.1b depicts path 1, the more likely path

through the program, while Figure 4.1c shows path 2, and the less likely taken

path. Both the paths are identical up to s4. Instructions s5 and s6 are scheduled in

the same cycle as s4 assuming the branch outcome to be true, while s7 and s8 are

scheduled in the next cycle and will be conditional on the branch outcome being

Chapter 4 Optimizations Techniques

C Compiler for a Parallel Processor 44

false. So path 2 will take 1 cycle longer to execute. If the false outcome had been

the more probable path, we could have scheduled s4, s7 and s8 in one cycle

eliminating the extra cycle.

 (a) Sample flowchart (b) Trace for path 1

 (c) Trace for path 2 (d) Path 1 compacted. (e) Path 2 compacted.

Figure 4.1 Trace scheduling example.

s1

s2 , s3

s4 , s5 , s6

s9

s1

s2 , s3

s4 , s5 , s6

s7 , s8

s9

s1

s2

s3

s4

s7

s8

s9

s1

s2

s3

s4

s5

s6

s9

s1 : i j+1

s2 : j i+h

s3 : k i+g

s4 : if k > 0

s7 : t -k s5 : t k

s8 : m -j s6 : m m+1

s9 : stop

Chapter 4 Optimizations Techniques

C Compiler for a Parallel Processor 45

4.5.2) Software Pipelining

Software pipelining techniques compute a static parallel schedule that overlaps

the operations of several iterations analogous to a hardware pipeline that

overlaps operation in a dynamic instruction stream. The schedule so computed is

suitable for execution on VLIW machines. Most signal processing applications

have static loops that are known to execute a certain number of times. These

comprise a large portion of a program’s parallelism. Software pipelining

concentrates on extracting this potential parallelism. Maximum parallelism

available in a loop is limited by its data-dependencies and the target machine’s

resource dependencies [12]. Before software pipelining is applied, a single loop

is compacted to minimize its execution time. The compaction is limited by intra-

iteration dependences. Then software pipelining is carried out to overlap

operations from successive iterations.

The time that elapses between the issues of two iterations is called the initiation

interval. The value of iteration initiation interval tii is chosen such that a new copy

of the loop schedule can be issued every tii cycles to overlap the execution of

operations from different iterations. This interval must be long enough to satisfy

inter-iteration dependencies before dependent operations from subsequent

iterations begin executing. In the worst case, dependence from the last

instruction of one iteration to the first instruction of the next iteration could limit

the execution to one iteration at a time. In this case, the entire iteration needs to

be completed before the next one can be started.

The smallest acceptable initiation interval leads to the highest number of

simultaneous operations and thus the maximum performance. An example of the

software pipelining technique is shown in Figure 4.2. The C code loop is to be

software pipelined for execution on a VLIW processor with two memory ports,

one adder and one multiplier. Figure 4.3 shows the pseudo-assembly code for

the loop. Since this loop has no inter-iteration dependences, only the available

resources limit its maximum execution time. In the next step, a schedule is

Chapter 4 Optimizations Techniques

C Compiler for a Parallel Processor 46

generated, in Table 2.1, for a single iteration that does not violate any of the

dependences within an iteration. The resources are shown along the y-axis and

the cycles along x-axis. Using the resource usage column we find that the

minimum iteration period is three.

Table 4.2 shows the software-pipelined schedule for the loop or the steady state.

The time required to reach the steady state is called the pipeline fill time. It is

represented by the cycles labeled 0-5. Inside the steady state, a new iteration is

started every three cycles. After the eighth cycle, the loop is repeated from cycle

six again. In the steady state s1, s4, and s5, are executing for the third iteration, s2

is executing for the second iteration and s3, s6, and s7, are executing for the first

iteration. Thus the result of the first iteration will be available after eight cycles but

subsequent iterations will complete every three cycles. If the number of iterations

is known at compile time, the code size of a pipelined loop is within three times

the code size for one iteration of the loop [11]. This owes to the fact that each

pipeline must have a pipeline fill time and a pipeline drain time. Either of these

can at most be equal to one iteration. Although software pipelining increases the

total code size, compared to the unpipelined loop version, the steady state is

typically much shorter than the length of the unpipelined loop. Thus it can be

concluded that the increase in code size due to software pipelining is not an

issue.

for(i=n;i>0;i--)

 Operation Latency

 { s1 : load e [i] 5
 a[i]= e[i]+6; s2 : add e [i] + 6 1
 c[i]=b[i]*d[i]; s3 : store a [i] 1
 } s4 : load b [i] 5

 s5 : load d [i] 5

 s6 : multiply b [i] * d [i] 2

 s7 : store c [i] 1

 Figure 4.2. Example loop

 Figure 4.3. Pseudo-assembly code.

Chapter 4 Optimizations Techniques

C Compiler for a Parallel Processor 47

 0 1 2 3 4 5 6 7 8 Resource
usage

Memory port 1 s1 s5 2

Memory port 2 s4 s3 s7 3

Multiplier s6 1

Adder s2 1

Table 4.1. Single loop iteration

 0 1 2 3 4 5 6 7 8

Memory port 1 s1 s5 s1* s5* s1** s5**

Memory port 2 s4 s4* s4** s3 s7

Multiplier s6

Adder s2 s2*

 Table 4.2. Software pipelined schedule.

4.5.3) Loop Unrolling

When the resources of the target machine are not fully utilized, the performance

can be improved by unrolling the loop. The unrolling process exposes more

instructions for parallel execution in a loop and hence utilizes the resources in a

more efficient way [12]. For example, if the target machine is capable of

executing four concurrent instructions but the three-cycle loop is such that only

seven instructions are executing then we are using 58% of the available

resources. But if we unroll the loop and execute 14 instructions every five cycles

then resource usage increases to 70%. Now two iterations are being completed

every five cycles instead of six. This means a 17% improvement in performance

over the previous loop.

Loop Cycles

Resource

Cycles
Resource

Chapter 4 Optimizations Techniques

C Compiler for a Parallel Processor 48

Figure 4.4 shows the previous loop unrolled. Figure 4.5 is the pseudo-assembly

code. As Table 4.3 shows, the minimum iteration interval is now five cycles.

Table 4.4 shows fourteen instructions are executing in the loop and two iterations

are being computed in each loop execution. A loop can be unrolled completely so

that the successive computations implied by the loop appear sequentially, or it

can be partially unrolled as shown in the above example. Loop unrolling has two

major advantages. First, the number of increments and tests is cut down by the

unrolling factor. Secondly, more instructions are exposed for parallel execution.

The disadvantage of loop unrolling is that it improves performance at the cost of

code expansion. For this reason, the criteria for unrolling loops should include the

size of the loop and the relative frequency of executing the loop [15]. A compiler

needs complete knowledge of the hardware resources to sensibly unroll loops.

Loops should only be unrolled by a factor that would result in a maximal usage of

the resources. For example, consider a machine that has two multipliers and two

adders. A loop that has one multiplication and one addition should not be

unrolled by a factor of more than two. This would give maximum resource usage

with minimum code expansion.

for (i = n ; i >o ; i --)

{

a[i] = e[i] +6

a[i+1] = e[i+1]+6

c[i] = b[i] * d[i]

c[i+1] = b[i+1] * d[i+1]

}

 Figure 4.4 Unrolled loop

s1 : load e[i]

s2 : load e[i+1]

s3 : add e[i] +6

s4 : store a[i]

s5 : add e[i+1]+6

s6 : store a[i+1]

s7 : load b[i]

s8 : load d[i]

s9 : load b[i+1]

s10 : load d[i+1]

s11 : mul b[i] * d[i]

s12 : mul b[i+1] * d[i+1]

s13 : store c[i]

s14 : store c[i+1]

Figure 4.5 Pseudo- assembly code

Chapter 4 Optimizations Techniques

C Compiler for a Parallel Processor 49

 0 1 2 3 4 5 6 7 8 9 Resource usage
Memory port1 s1 s7 s9 s4 s13 5

Memory port 2 s2 s8 s10 s6 s14 5

Multipliers s11 s12 2

Adder s3 s5 2

Table 4.3 Single loop iteration

 0 1 2 3 4 5 6 7 8 9

Memory port1 s1 s7 S9 s1
* s7

* s9
* s4 s13

Memory port 2 s2 s8 S10 s2
* s8

* s10
* s14

Multipliers s11 s12

Adder s3 s5

Table 4.4. Software pipelined schedule

4.5.4) Register Scheduling

Traditional instruction scheduling methods minimize the number of registers

used, which also reduces the degree of parallelism exploited. One key factor in

this optimization is to make effective use of the target machine’s registers.

Registers provide fast access to operands as compared to retrieval from

memory. The goal should, therefore, be to keep the most frequently accessed

operands in the registers.

Allocating registers is a rather difficult optimization to perform. If register

assignment is performed before scheduling, then software pipelining may

produce poor results, because the register allocator may unnecessarily reuse

registers, thus adding data dependences to the program [3]. The approach

should be to start with an arbitrary allocation and then modify the register

allocation during software pipelining.

Loop

Cycles
Resource

Cycles

Resource

Chapter 4 Optimizations Techniques

C Compiler for a Parallel Processor 50

Consider now the program fragment in Figure 4.6. In this example, operation s2 is

not available for scheduling at the start because its target register is one of the

operand registers of operation s1. However, if there is a spare register then the

dependence can be broken by renaming the destination register of s2 as in

Figure 4.6(b). Now operation s2 and s1 can be scheduled in parallel. It is

necessary to insert a register move s2’ into the program to restore the machine

state after these operations. Here, the assumption is that the advantage gained

in eliminating the dependence outweighs the cost of the extra copy.

Several different schemes are used for performing this allocation:

 A round-robin scheme can be used to allocate registers while the schedule

is being generated.

 One can assume infinite number of registers to produce a schedule first and

then allocate registers and add spill code.

 Another approach is to integrate register allocation with scheduling by

keeping track of the liveness of registers.

 (a) (b)

Figure 4.6. Register renaming

s1 : r1 r2 op r3

s2 : r2 r4 op r5

s1 : r1 r2 op r3
s2 : r6 r4 op r5

s′2 : r2 r6

Section three Project Specifications

C Compiler for a Parallel Processor 51

Section three

Project Specifications

The last section gave an overview of things that the reader must know in order to

be aware of the project semantics. It also described the complete research phase

of the project. After the research phase was over, we moved onto the next phase

that comprised of the analysis and design phase. This section describes the

project semantics and specifications. It includes the following

 Environmental Model

 Data Flow Diagrams

 Process Specifications

 Actors and Use Cases

 Class Diagram

 Sequence Diagram

 Classes—Responsibility, Collaborators (CRC) Cards

 Classes—Attributes, Operations

Chapter 5 Analysis and Design Specification

C Compiler for a Parallel Processor 52

Chapter 5

Analysis and Design Specification

5.1) Environmental Model

The environmental model gives a brief introduction to the project. It gives the

system, as it should appear in its final user environment

5.1.1) Statement of Purpose

“Implementation of a C/C++ compiler, with strong emphasis on low level

optimization, for the VLIW-Architecture based ME-2 processor ”

The compiler shall take as input the standard C/C++ source code and convert it

into fully optimized parallel assembly code. The compiler also caters for verifying

the correctness of the input Source Code and performs Error-Detection,

indicating the possible causes of the errors.

It is also required that the compiler shall be developed using modular approach

so that several teams can work on different modules simultaneously. Our part

deals mostly with the Serial Assembly Optimizer. The C/C++ source code is

converted in to serial assembly with some high level optimization. Then this serial

assembly is fed into the SAO module, which converts it into fully optimized

parallel assembly

Chapter 5 Analysis and Design Specification

C Compiler for a Parallel Processor 53

5.1.2) Context Diagram

This is the Top-level Data Flow Diagram, showing only at the top most level the

different modules of the project.

Figure 5.1 Context Diagram—Level 0

C to Serial

Generation

Serial Assembly Optimized
Code

Generator

C Code Optimized
Assembly

Chapter 5 Analysis and Design Specification

C Compiler for a Parallel Processor 54

5.2) Data Flow Diagrams

Figure 5.2 DFD (1)

Figure 5.3 DFD (2)

LEVEL 1

Dependence
Analysis

2.1

2) Optimized Assembly
Generator

Loop
Unrolling

2.2

Serial Assembly
Loops

Software
Pipelining and

Scheduling
2.3

Optimized
Assembly

Basic Blocks

Front End
1.1

Three Address Code Code
Generation
 1.2

C Code Serial Assembly

1) Serial Assembly
Generator

Chapter 5 Analysis and Design Specification

C Compiler for a Parallel Processor 55

Figure 5.4 DFD (1.1)

Figure 5.5 DFD (1.2)

LEVEL 2

Analysis
1.2.1

1.2) Code Generation

Address
Allocation

1.2.2

Three Address
 Code

Low Level
Optimization

1.2.3

Code
Generation

1.2.4
Assembly

Code

 Lexical
Analysis
 1.1.1

 Syntax
Analysis
 1.1.2

C Code

Lexemes

Semantic
 Analysis
 1.1.3

Symbol

Structures

Three
Address
Generator
 1.1.4

 Errors

1.1) Front End

Chapter 5 Analysis and Design Specification

C Compiler for a Parallel Processor 56

5.3) Process Specification

5.3.1) Dependence Analysis (2.1)

The following steps are performed during the dependence analysis of the serial

assembly code

 Flow graph construction

 Basic block construction

 DAG or other dependence graph construction

 Live variable analysis for each BB

5.3.2) Loop Unrolling (2.2)
The process of unrolling includes writing the code a repeated number of

times and reducing the loop count by the unroll factor. This optimization

helps to increase the ILP since there are more instructions available for

scheduling now.

5.3.3) Software Pipelining and Scheduling (2.3)
The instruction-scheduling phase selects the various instructions for

parallel execution. Software pipelining attempts to rearrange the sequence

of instructions inside a loop, in order to minimize dependencies between

such instructions, thus increasing the level of parallelization. The iteration

of a software pipeline loop may contain instructions from a different

iteration of the original loop.

This optimization is only applied to the innermost loops of small or

moderate size, which contain no branches or function calls within the loop.

Chapter 5 Analysis and Design Specification

C Compiler for a Parallel Processor 57

5.3.4) Lexical Analysis (1.1.1)
During this, the stream of characters making up the source program is

read from left-to-right and grouped into tokens that are sequence of

characters having collective meaning. The blanks separating the

characters of these tokens are eliminated during lexical analysis.

5.3.5) Syntax Analysis (1.1.2)
Characters of tokens are grouped hierarchically into nested collections

with collective meaning. The grammatical phrases of the source program

are represented by a parsing structure, which describes the syntactic

structure of the input.

5.3.6) Semantic Analysis (1.1.3)
Certain checks are performed during this process to ensure that the

components of a program fit together meaningfully. This process checks

the source program for semantic errors and gathers type information for

the subsequent code-generation phase. It uses the hierarchical structure

determined by the syntax-analysis phase to identify the operators and

operands of expressions and statements.

5.3.7) Three-address Generation (1.1.4)
After syntax and semantic analysis, an explicit intermediate representation

of the source program is generated. This is sort of a program

representation for an abstract machine.

5.3.8) Analysis (1.2.1)
This phase gathers up the information about the flow of the program from

the three-address code. This information divides the program into basic

blocks of code with links showing the flow between these basic blocks.

Chapter 5 Analysis and Design Specification

C Compiler for a Parallel Processor 58

5.3.9) Address Allocation (1.2.2)
During this phase the addresses are assigned to the different variables

used in the program. This includes the transient variables as well as the

temporary variables generated by the three-address code generation

phase. Mostly we try to keep all the variables in the register memory.

5.3.10) Low-Level Optimization (1.2.3)
This phase attempts to improve the intermediate code, so that faster-

running machine code will result. This optimization are most of the times

trivial but are necessary in order to remove the redundant code introduced

by automated generation of code.

5.3.11) Code Generation (1.2.4)
The final phase is the generation of the target code, consisting of

assembly code. Intermediate instructions are translated into a sequence of

machine instructions that perform the same task.

These process narratives help us define the flow of data, and what

transformations are performed on the data during this flow.

Chapter 5 Analysis and Design Specification

C Compiler for a Parallel Processor 59

5.4) Use Case Diagram

Figure 5.6 Use case Diagram

USE CASES

Serial Assembly

Generation

(FSAG)

Serial Assembly

Optimization

(SAO)

Actor

Chapter 5 Analysis and Design Specification

C Compiler for a Parallel Processor 60

5.4.1) Actor—Programmer

An actor is a user of the system in a particular role. In our system there is only

one actor that is the user of the compiler. From here on the actor is called the

programmer.

5.4.2) Use Case Description

Use cases describe the system from the user point of view. The working and

functionality of any compiler is hidden from the user. Most of the times it’s just a

text editor with a toolbar that allows the user to compile the source code. Our

system consists of the following high-level use cases

5.4.2.1) Serial Assembly Generation
The programmer writes the C code in the text editor. He has the option to

save or edit existing works. He then selects the compile command. In

reaction to this command, the FSAG compiles the source code. First it

analyzes the input code. During this analysis it performs lexical analysis,

syntax analysis and semantic analysis. Then it generates the intermediate

code. This intermediate code is used to generate the serial assembly of

ME-2.

5.4.2.2) Serial Assembly Optimization
The input is fed into the SAO. This input comes from either the GCC or

directly from the programmer. The programmer then selects the desired

optimizations from the menu. He then hits the optimization command. This

results in the analysis of the code, during which dependencies are

calculated. This dependency information is then used for the various

optimizations.

Chapter 5 Analysis and Design Specification

C Compiler for a Parallel Processor 61

5.5) Class Relationship Collaborators

Class Name: Lexical Analyzer

Class Type: Generic

Derived From:
Class Characteristics: Sequential, Transient
Responsibilities: Collaborators:

Getting Input
Generating Tokens Token
Setting Token Types Token
Setting Numerals

Class Name: Parser

Class Type: Generic

Derived From:
Class Characteristics: Sequential, Transient
Responsibilities: Collaborators:

Grouping of Tokens Token, Instruction
Checking for Errors
Syntax analysis
Semantic Analysis
Identification of variables Symbol Table

Class Name: Symbol Table

Class Type: Generic

Derived From:
Class Characteristics: Sequential
Responsibilities: Collaborators:

Maintains record if variables

Chapter 5 Analysis and Design Specification

C Compiler for a Parallel Processor 62

Class Name: Descriptor

Class Type: Generic

Derived From:
Class Characteristics: Transient
Responsibilities: Collaborators:

Maintain information about
data register allocation

Maintain information about
Address register allocation

Class Name: Token

Class Type: Generic

Derived From:
Class Characteristics: Transient
Responsibilities: Collaborators:

Keeps track of Token
lexemes

Keeps track of Token Types
Contains Numeral Values

Class Name: Instruction

Class Type: Generic

Derived From:
Class Characteristics: Sequential, Transient
Responsibilities: Collaborators:

Maintains information about
instruction type

Information about Register
used by the instruction

 Token

Chapter 5 Analysis and Design Specification

C Compiler for a Parallel Processor 63

Class Name: Basic Block

Class Type: Generic

Derived From:
Class Characteristics: Sequential, Transient
Responsibilities: Collaborators:

Contains List of Instruction Instruction
Information about the Control
Flow

Live variables

Class Name: Code Generator

Class Type: Generic

Derived From: Object
Class Characteristics: Sequential, Transient
Responsibilities: Collaborators:

Allocation of variables to
Address Registers

 Register Descriptor

Allocation of values to Data
Registers

 Register Descriptor

Translation of intermediate
instruction into Assembly
Instructions

Chapter 5 Analysis and Design Specification

C Compiler for a Parallel Processor 64

Class Name: Register

Class Type: Generic

Derived From: Token
Class Characteristics: Sequential, Transient
Responsibilities: Collaborators:

Maintains information about
availability

Maintains information about
register contents

Class Name: Optimizer

Class Type: Generic

Derived From:
Class Characteristics: Sequential, Transient
Responsibilities: Collaborators:

Performs Loop Unrolling
Software pipelining of the
inner loops

Instruction Scheduling of the
basic blocks

Performs live variable
analysis

Chapter 5 Analysis and Design Specification

C Compiler for a Parallel Processor 65

5.6) Class Relationship Diagram

Figure 5.7 Class Diagram

Chapter 5 Analysis and Design Specification

C Compiler for a Parallel Processor 66

5.7) Sequence Diagrams

5.7.1) Serial Assembly Generation

Figure 5.8 Sequence Diagram—Serial Assembly Generation

5.7.2) Serial Assembly Optimization

Figure 5.9 Sequence Diagram—Serial Assembly Optimization.

Lexan Parser Addrr SymbTab CodeGen Descp

Compile
Analyze

Generate

Update

Update
Generate

Code
Get

Memory

Get
Memory

Analyzer

Build

Dependence Optimizer Instruction

Construct Basic
Blocks

Optimize Basic
Blocks

Get Instruction
Information

Instruction info

Chapter 5 Analysis and Design Specification

C Compiler for a Parallel Processor 67

5.8) Class—Attributes, Methods

CInstruction

ATTRIBUTES
CString m_InstructionString
CLinkList <CToken> m_LLRegistersUsed
CLinkList <CToken> m_LLRegistersRead
CLinkList <CToken> m_LLRegistersWritten

METHODS
CInstruction ()
~CInstruction()
void UpdateRegistersInInstructionString()
UpdateLoopCountInRepeatInstructions()
CInstruction()
operator= (CInstruction Inst)

CLinkList

ATTRIBUTES
Derived data members only

METHODS
CLinkList()
CLinkList(CLinkList & L1)
~CLinkList()
operator += (CLinkList<T> L1)
operator = (CLinkList<T> L1)
CheckLinkList()

Chapter 5 Analysis and Design Specification

C Compiler for a Parallel Processor 68

COptimizer

ATTRIBUTES
CBasicBlock m_BasicBlock
CBasicBlock m_PrologueForUnroll
CBasicBlock m_EpilogueForUnroll
CLinkList<CFinalNodeForSP> m_PrologueForSP
CBasicBlock m_EpilogueForSP
CLinkList <CToken> m_LLOfTokens
CLinkList <CAccumulatorInstruction> m_LLOfAccumulatorInstructions
CUIntArray m_InstScheduledForRes
CLinkList<CInitialNodeForSP> m_LinkListForSP
CUIntArray m_LinkListOfAvailable
CLinkList<CFinalNodeForSP> m_LLOfFinalNodeForSP
CLinkList<COperationScheduled> m_LLOfOperationsScheduled
ResourceTable m_ResourceTable
CLinkList<CCombinedInstructions> m_LinkListOfCombinedInstructions
CCombinedInstructions* m_CombinedInstructionsForANode

METHODS

COptimizer()
~COptimizer()
DecrementDelay()
IfNoRestriction()
UpdateRestrictions()
InitializeAccumulatorInstructions()
FindAccumulatorRegisters()
FindStartRegister()
MINUS()
UNION()
INTERSECTION()
REMOVECOMMON()
MINUS()
UNION()
INTERSECTION()
REMOVECOMMON()
ArrangeInAscendingOrder ()
UnRollInnerMostLoop()
InitializeBasicBlock()
RemoveDigits()
SoftwarePipelineInnerMostLoop()
SchedulingSimpleBasicBlock()
CalculateNodeps()

Chapter 5 Analysis and Design Specification

C Compiler for a Parallel Processor 69

Available()
GetNodeFromLinkListForSP()
Depends()
CalculateLiveNX()
CopyInitialNodeForSP()
ScheduledBefore()
AddScheduledOperations()
ScheduleState()
ScheduleStateForSBB()
Schedule()
ScheduleForSBB()
UpdateOne()
GetMinimumIteration()
GetMaximumIteration()

ClexicalAnalyser

ATTRIBUTES
CString m_strInput
int strIndex
CArray<CStmt,CStmt&> stmtArray

METHODS
CLexan()
~CLexan()
GetBlockCount()
SetID()
GetBlockLeaders()
SetBasicBlockLeaders()
SetInput(CString str)
FormatInput()
GenerateTokens()
FormatInput()
NextToken()

Chapter 5 Analysis and Design Specification

C Compiler for a Parallel Processor 70

Cparser

ATTRIBUTES
CSymbolTable* SymbolTable
CLexan* lex
CString tracefilename
CString output
int aux_index
int lebel
FILE* trace
FILE* fcode
bool m_btrace_open
bool m_bcode
CCode code
CToken lookahead
CArray<CToken,CToken&> tary

METHODS
CParser()
~CParser()
Parse()
ShowTrace()
MakeTokens()
ClearAllTokens()
AddToken(
GetAt()
GetTarySize()
f_data()
f_body(
type()
var_decl(int)
match_Id_data(int)
match_Id_body()
stmtp()
assg()
boolexp()
Isboolexp()
Isboolexpp()
expr()
exprp()
term()
factor()

Chapter 5 Analysis and Design Specification

C Compiler for a Parallel Processor 71

match()
AuxToken()
CallExpr()
expr1()
term1()
factor1()
match1()
ErrorMsg()
NextToken()
NewLebel()
OpenFiles()
CloseFiles()
tmsg(CString)

CDescriptor

ATTRIBUTES
RegInfo addrReg[16]
AddressInfo addrRec[100]
int memory[2000]
int index
int memIndex

METHODS
getMem()
getAReg()
updateAddressRec()
addAddressInfo()
addAddressInfo()
getAddressInfo()
delAddressInfo()
getIDAt()
getReg(g)
getID()
addRegInfo()
delRegInfo()

Chapter 5 Analysis and Design Specification

C Compiler for a Parallel Processor 72

CSymbolTable

ATTRIBUTES
CArray<CToken,CToken&> stary

METHODS
lookup()
lookup(
Insert()
Insert()
GetLastEntry()
GetSize()
GetAt()
ClearAllTokens()
InitSymbolTable()

CCell

ATTRIBUTES
CString m_id
int m_val
int m_flag

METHODS
CCell()
CCell(CString,int=1)
CCell(int,int)
GetStr()
GetFlag()
GetString()
GetVal()
operator=()

Chapter 5 Analysis and Design Specification

C Compiler for a Parallel Processor 73

Resource Table

ATTRIBUTES
CUIntArray m_Agu
CUIntArray m_Mac
CUIntArray m_Shift

METHODS
ResourceTable()
InitializeResourceTable()
IsResourceFree(int type)

CToken

ATTRIBUTES
UINT ID
int m_nValue
CString m_strTitle

METHODS
CToken()
CToken()
CToken(
~CToken()
IsConstant()
GetID()
GetValue()
GetTitle()
SetValue()
SetID()
SetTitle()

Chapter 5 Analysis and Design Specification

C Compiler for a Parallel Processor 74

CThreeAddress

ATTRIBUTES
CCell m_arg1
CCell m_arg2
int m_op

METHODS
CThreeAddress()
CThreeAddress(int,CCell&,CCell&)
~CThreeAddress()
GetStr()

CBasicBlock

ATTRIBUTES
CLinkList<CInstruction> m_LLInstruction
CLinkList<CToken> m_LLLiveVariables
int m_nNextBlock//
int m_nBno

METHODS
CBasicBlock()
 ~CBasicBlock()
CBasicBlock(CBasicBlock &bb)
operator =()
SetBlockNum()
GetBlockNum()
SetNextBlockNum(int num)
GetNextBlockNum()

Chapter 5 Analysis and Design Specification

C Compiler for a Parallel Processor 75

CCodeGenerator

ATTRIBUTES
CLexan* pLexan
CAddressDescp* pAddD
CRegisterDescp* pRegD
VarInfo varLive[100
CArray<CBasicBlock,CBasicBlock&> bbArray
CStringArray strFinal

METHODS
CCodeGenerator()
~CCodeGenerator()
SetStmtTypes()
CodeGeneration()
GenerateCode()
SetBasicBlocks()
LoopCode()
AssgtCode()
RelOpCode()
ConditionalCode()
BinOpCode()
LabelCode()
JumpCode()
UpdateVarInfo()
VarDeclaration()

Section four Results and Conclusion

C Compiler for a Parallel Processor 76

Section four

Results and Conclusion

Here we list the results we were able to achieve due to the various optimizations.

The results are confined only to the SAO since the FSAG was only a prototype

and no results were expected out of it. This section provides recommendation for

anyone who is interested in any such future work.

I- Results

The following results show how much optimization was achieved when different

optimization levels were selected.

Section four Results and Conclusion

C Compiler for a Parallel Processor 77

/////////////////////////Input Code///////////////////////////

repeat(40)
{
 r0 = *(a1)++;
 r1 = *(a2)++;
 r2 += r0 * r1;
}

///////////////////////Output////////////////////////////////
 r0=*(a1)++ ;

 repeat(39)

 {
 r1=*(a2)++ ;

r2+=r0*r1 ||
r0=*(a1)++ ;

 }
 r1=*(a2)++
 r2+=r0*r1

 Simple Serial Code
Total Cycle Count: 40 * 3 = 120

 Software Pipelined Code
Total Cycle Count: 39 * 2 = 78

Section four Results and Conclusion

C Compiler for a Parallel Processor 78

/////////////////////////Input Code///////////////////////////

repeat(40)
{
 r0 = *(a1)++;
 r1 = *(a2)++;
 r2 += r0 * r1;
}

------------------------Output----------------------
 repeat(10)
 {
 r4=*(a1)++
 r8=*(a2)++
 r2+=r4*r8

 r5=*(a1)++
 r9=*(a2)++
 r2+=r5*r9

 r6=*(a1)++
 r10=*(a2)++
 r2+=r6*r10

 r7=*(a1)++
 r11=*(a2)++
 r2+=r7*r11
 }

 Simple Serial Code
Total Cycle Count: 40 * 3 = 120

 Unrolled Code
Here the code is not parallelized.

It is only shown here to show the result of
this particular algorithm.

Section four Results and Conclusion

C Compiler for a Parallel Processor 79

 r4=*(a1)++ ||
 r5=*(a1)++ ||
 r6=*(a1)++ ||
 r7=*(a1)++ ;

 repeat(9)
 {
 r8=*(a2)++ ||
 r9=*(a2)++ ||
 r10=*(a2)++ ||
 r11=*(a2)++ ;
 r2+=r4*r8 ;
 r2+=r5*r9 ;
 r2+=r6*r10 ;
 r2+=r7*r11 ||
 r4=*(a1)++ ||
 r5=*(a1)++ ||
 r6=*(a1)++ ||
 r7=*(a1)++ ;
 }
 r8=*(a2)++
 r2+=r4*r8
 r9=*(a2)++
 r2+=r5*r9
 r10=*(a2)++
 r2+=r6*r10
 r11=*(a2)++
 r2+=r7*r11

 Software Pipelined and Unrolled Code
 Total Cycle Count: 9 * 5 = 45

Section four Results and Conclusion

C Compiler for a Parallel Processor 80

 r4=r2
 r5=0
 r6=0
 r7=0
 r8=*(a1)++ ||
 r9=*(a1)++ ||
 r10=*(a1)++ ||
 r11=*(a1)++ ;
 repeat(9)
 {
 r0=*(a2)++ ||
 r1=*(a2)++ ||
 r2=*(a2)++ ||
 r3=*(a2)++ ;
 r4+=r8*r0 ||
 r5+=r9*r1 ||
 r6+=r10*r2 ||
 r7+=r11*r3 ||
 r8=*(a1)++ ||
 r9=*(a1)++ ||
 r10=*(a1)++ ||
 r11=*(a1)++ ;
 }
 r0=*(a2)++
 r4+=r8*r0
 r1=*(a2)++
 r5+=r9*r1
 r2=*(a2)++
 r6+=r10*r2
 r3=*(a2)++
 r7+=r11*r3
 r4=r4+r6
 r5=r5+r7
 r4=r4+r5; r2=r4

Software Pipelined, Unrolled and
 Accumulator Expanded Code

Total Cycle Count: 9 * 2 = 18

Section four Results and Conclusion

C Compiler for a Parallel Processor 81

II- Analysis and Conclusions

From the above shown results it is quite obvious that the targeted time

optimization levels have been achieved. However, if the user is constrained by

any memory limitations, then the optimizations can be turned off which would

result in space optimized code. It is important to note that we have aimed only for

time optimizations, code size was not a limiting factor. The increase in code size

is usually by a known factor; hence it can be estimated at run-time if the code

size would reach unwanted limits.

We were able to achieve most of our goals. While setting these goals, we kept in

our mind the time limitations. There are some optimization features that can still

be incorporated in the SAO. These are mentioned in the recommendations.

III- Future Recommendations

Compiler optimization is an ever-progressing field. Researchers all over the world

are in the process of discovering and developing new techniques. These

different optimization techniques work miraculously on different VLIW

processors. There are some advanced features provided in ME-2 that would

make time optimizations even more efficient. However, we have tried to follow

suit of some already implemented standard optimization techniques.

Following are some of the interesting advancement that can be made into the

ME-2 compiler

 The GNU c compiler used as the front-end serial code generator contains a

lot of built in optimization. However, due to poor documentation and help

material its very difficult to use them efficiently. Some work can be done to

extract and use the built-in optimizations from the GNU C Compiler.

 ME-2 has some advanced architectural features like the delay line and the

data pointer registers. These have so far not been incorporated into the

SAO. Though there is no standard technique for implementation of these

Section four Results and Conclusion

C Compiler for a Parallel Processor 82

techniques, however, if time and resources are given, new techniques can

be and should be developed.

This brings us to the end of this dissertation. We have tried our best to present it

in the truest form what our whole project was all about.

Appendix A Serial Assembly Format

C Compiler for a Parallel Processor 83

Appendix A

Serial Assembly Format

The Serial Assembly Optimizer (SAO) is the low-level optimizing module of the

ME 2 C compiler. It converts the input serial assembly into Optimized Parallel

Assembly. Since ME-2 is a VLIW processor designed to run DSP algorithms,

thus SAO strongly consider the architectural features of ME 2 and implements

optimization techniques used for efficient mapping of DSP Algorithms on VLIW

processors.

The input to the SAO may come from:

 The front-end C compiler converting C/C++ code into serial assembly

 Hand coded Serial Code from a Programmer

In both the cases the compiler or the programmer do not have to concern with

the various issues regarding

 Parallel execution of the various instructions

 Instruction Latencies

However, a standard format of the Serial Assembly must be established. There is

the issue of whether the intermediate form is appropriate for the kinds and

degree of optimization to be performed. Some optimizations may be hard to do at

all on a given intermediate representations (IR), and some may take much longer

to do than they would on another representation. In the present case IR is

actually the serial assembly, which uses the same instruction set as the final

optimized parallel assembly. The problem arises due to the fact that there are too

many ways of doing the same thing and everyone was born with a unique mind.

The instruction set has ample instructions to confuse the best amongst us. So it

is quite natural that the two programmers, hand coding the same C code, may

Appendix A Serial Assembly Format

C Compiler for a Parallel Processor 84

translate it into completely different Serial Assembly code, thus justifying the

need for this document.

The following pages contain several examples showing the C code as well as the

expected input serial assembly. This format is optimal for the implementation of

the architecture specific optimization techniques. The following discussion also

includes why, in some cases, the specified format is desired.

Note: this document at present does not cover the various issues regarding the specific use of registers. It
has been assumed that no registers are being used for special purposes. However, it is expected that these
issues shall be covered

A-1) Register Allocation

Registers should be used with as little re-use of register as possible. Some high

level optimization may try to reuse register by saving the contents of a register in

memory. This should be avoided and the registers may only be reused when

there is no empty register available.

It may not be necessary to declare certain variables in the memory. Instead, the

variables can be assigned to registers directly and used/modified without any

load store from the memory. If a variable is declared and used within the same

function or block, then there is no need for its declaration in the assembly code.

We can directly use a register. How ever, if the variable is a pointer, or an array

or a reference, than it needs to be stored at the end of the block or procedure.

A-2) For Loops

For loops should be replaced with repeat statements of the serial assembly. The

loop count can be a constant value, or a value in a register. The value in a

register can be loaded from a memory location or it can be decided at run-time.

Appendix A Serial Assembly Format

C Compiler for a Parallel Processor 85

A-3) If-else and Predicated Execution

While dealing with if-else statements, it is desirous to have as much use of IFT,

IFF and IFA constructs as possible. However in certain unavoidable

circumstances, conditional jumps may also be used. But the top priority should

go to predicated execution of such statements. There is a dependency that if any

AGU instruction is dependent on a ‘t’ bit, then there should be at least a

difference of two cycles between the setting of ‘t’ bit and the use of that AGU

instruction. So if most of the AGU instructions in the code are dependent on ‘t’

bit, then instead of ‘t’, ‘b’ bits should be used. But if we have only the MAC

instructions that depend upon the ‘t’ bit, then ift, ifj and ifa should be used.

Here are some code samples

A-4) Auto Correlation

The C code below might seem quite frightening and the Serial Assembly

surprisingly simpler. The arrays should be handled with the following shown

procedures. The address registers are assigned to specific locations (other

address registers) in the outer loop and the loop counter

for (i = 1; i <= m; i++)
{

sum = 0;
 for(j=0; j<L_WINDOW-i; j++)
 sum = L_mac(sum, y[j], y[j+i]);

 sum = L_shl(sum, norm);
 r_32[i] = sum;
}
//
here sum = L_mac(sum, y[i], y[i+j]) means
 sum += y[i] * y[i+j]
///

short y[240];
int r[12];

A0=&y;
A5=&r;
R12=L_WINDOW

Appendix A Serial Assembly Format

C Compiler for a Parallel Processor 86

A3 = A0;

REPEAT (#20)
{
 A1 = A3++;
 A2 = A0;
 R0 = #0;
 R12 --;

 REPEAT (R12)
 {
 R1 = *(A2) ++;
 R2 = *(A1) ++;
 R0 += R1*R2;
 }
 R0 = norm(R0);
 *(A5)++ = R0;
}

Appendix A Serial Assembly Format

C Compiler for a Parallel Processor 87

C Code Assembly
Loading of Short and Integer Values
short a;
int main()
{
 a = 3;
 return 0;
}

//A0->a

main()
{
 int a;
 A0 = &a;
 R0 = #3
 *A0 = R0.i

/* Use a new register even if R0 is
free for use now*/
 R1 = #0
 return R1
}

Addition of Short Values

short a,b,c;
int main()
{
 a = 3;
 b=13;
 c=a+b;
 return 0;
}

// A2->c

main()
{
 int c;
 A2 = &c
 R0 = #3
 R1 = #13
 R2 = R0 + R1
 *A2 = R2.i
 R3 = #0
 return R3
}

Multiple Expressions

short a,b,c,d;

int main()
{
 a = 3;
 b=13;

 d=a+b+c;
 return 0;
}

//A0->c , A2->d

main()
{
 int c,d;
 A0 = &c
 A2 = &d
 R0 = #3
 R1 = #13
 R2.i= *A0
 R0 = R0 + R1
 R3 = R0 + R2
 *A2 = R3.i
 R4 = #0
 return R4
}

Appendix A Serial Assembly Format

C Compiler for a Parallel Processor 88

C Code Assembly
If else

short a,b,c,d;

int main()
{
 a = 3;
 b=13;

 if (a>b)
 b=5;
 else
 a=5;
 return 0;
}

main()
{
 int a ;
 int b ;
 A0 = &a
 A1 = &b
 R0 = 3
 R1 = 13
 T1 = R0>R1

 IFT1 R1 = 5;
 IFF1 R0 = 5;

 R0 = *A0
 R1 = *A1

 RETURN 0;
}

Nested If

short a,b,c,d;

int main()
{
 a = 3;
 b=13;

 if (a>=b)
 {
 b=5;
 if (a==b)
 a=4;

 else
 a=5;
 }
 return 0;
}

main()
{
 int a ;
 int b ;
 A0 = &a
 A1 = &b
 R0 = #3
 R1 = #13

 B=R0>=R1
 If !(b) jump L1

 R1 = #5
 T1 = R0=R1

 IFT1 R1 = #4;
 IFF1 R1 = #5;

 R1 = *A0
L1:
 RETURN 0
}

Appendix A Serial Assembly Format

C Compiler for a Parallel Processor 89

C Code Assembly
Use of t bits.

Int Iclmp [1024];
Int *Icl;
Int a;

Icl = Iclmp + 512;

For(a= - 512; a < 512 ; a++)
{
 if (a<-256)
 Icl [a] = -256;
 Else if (a > 256)
 Icl [a] = 255;
 Else
 Icl [a] = a;
}

//Explanation

//In the array of 1024 elements,
//First 256 elements are set to –256.
//Last 256 elements are set to 255.
//Remaining is set to the index ‘a’.

The best which a user can give

A0 = & Iclmp
A1 = & Icl

R0 = 0
Repeat(1024)
{
 R1 = R0 //Icl[a] = a
 t1 = R0< 256
 ift1 R1 = -256 //Icl[a]=-256

 t2 = R0> 868
 ift2 R1 = 255 //Icl[a]=255
 *(A0)++ = R1
 R0++
}

//Note here that
* Since we can do all the work by
simply using a single ‘t’ bit. But
if the code is written like

A0 = & Iclmp
A1 = & Icl

R0 = 0
Repeat(1024)
{
 R1 = R0 //Icl[a] = a
 t1 = R0< 256
 ift1 R1 = -256 //Icl[a]=-256

 t1 = R0> 868
 ift1 R1 = 255 //Icl[a]=255
 *(A0)++ = R1
 R0++
}

then extra dependencies arise.
So use a new ‘t’ bit even if the
previous one is free for use.

Appendix A Serial Assembly Format

C Compiler for a Parallel Processor 90

C Code Assembly
For Loop
short a,b,c,d;

int main()
{
 a = 3;
 b=0;

 for (a=0;a<10;a++)
 b=b+a;
 return 0;
}

main()
{
 int b;
 A0 = &b

 //R0 = #3 // redundant
 R0 = #0;
 R1 = #0
 repeat(#10)
 {
 R1 = R1 + R0;
 R0++
 }
 R1 = *(A0)
 Return 0;
}

 Index

C Compiler for a Parallel Processor 91

Index

A

Actors · 50
Addressing Modes · 29
AGU · 28, 29, 31, 33, 84
Anti Dependence · 39
architecture · 10, 13, 14, 16, 18, 19, 20, 22, 26, 35, 37,

83

B

basis block · 40
BB · See basic block

C

CET · 14
Class Diagram · 50
Class Relationship Collaborators · 60
Classical Optimizations · 35
Code Generation · 57
Communication Enabling Technologies · 14
compiler · 2, 12, 14, 15, 16, 18, 20, 35, 37, 40, 47, 51,

59, 80, 82
Conditional Execution · 33
Control Dependence · 38
Control Dependencies · 38
CRC · 50

D

DAG · See Directed Acyclic Graph
Data Alignment Buffers · 26
Data Dependence · 38
Data Flow Diagrams · 50, 53
data pointer registers · 29, 80
DataPath · See Datapaths
Datapaths · 22, 25
Dependence · 37, 38, 40, 55
Dependence Graphs · 39
Directed Acyclic Graph · 39
DPR · See data pointer registers
DSP · 9, 10, 13, 14, 16, 17, 19, 21, 26, 37, 82, 92

E

Environmental Model · 50, 51

F

Flow Dependence · 38
Front-end Serial Assembly Generator · See FSAG
FSAG · 2, 14, 15, 16, 17, 59, 75

I

ILP · See Instruction Level Parallelism.
Instruction Level Parallelism · 35
Instruction Set · 92
Instruction Types · 28

L

Lexical Analysis · 56
life cycle model · 14
Life Cycle Model · 16
Loop Unrolling · 46, 55, 63
Looping restrictions · 32

M

MAC · 26, 28, 29, 84
MACs · See MAC
ME-2 · 2, 12, 13, 14, 15, 16, 18, 19, 26, 35, 51, 59, 80
ME-2 compiler · 12, 14, 80
Media Engine 2 · See ME-2
Media Engine-2 · See ME-2
MIMD · 20

O

Optimization Techniques · 10, 42
Output Dependence · 39

P

parallelism · 9, 10, 19, 20, 21, 34, 35, 36, 37, 40, 42,
44, 48

PHASES · 16
Pipelines · 22, 23
Process Specifications · 50

R

RAW · 38
Registers · 22, 26, 29, 48, 62, 83
Resource Dependence · 38

C Compiler for a Parallel Processor 92

Resource Dependencies · 38
Restrictions · 31

S

SAO · 2, 14, 15, 16, 17, 19, 51, 59, 75, 80, 82
Semantic Analysis · 56, 60
Sequence Diagram · 50
Sequence Diagrams · 65
Serial · 2, 14, 15, 16, 51, 59, 65, 82, 84
Serial Assembly Generation · 59, 65
Serial Assembly Optimization · 59, 65
Serial Assembly Optimizer · See SAO.
SIMD · 20
Software Pipelining · 44, 55
Superblock · 36
Superscalar Optimizations · 36
Syntax Analysis · 56

T

TMS320C6000 · 10

TMS320C6200 · 22
Trace Scheduling · 42

U

Use Cases · 50

V

Very Long Instruction Word

· See VLIW.
VLIW · 10, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24,

26, 31, 32, 35, 37, 40, 41, 42, 44, 51, 80, 82, 92

W

WAR · 39
WAW · 39

 References

C Compiler for a Parallel Processor 93

References

[1] “Code Compaction and Parallelization for VLIW/DSP Chip Architectures”
Tsvetomir P. Petrov—MS Thesis 1999 (Massachusetts Institute of Technology)

[2] “Optimal Scheduling and Mapping of Digital Signal Processing Algorithms on
TMS320c6x DSP”
M. Sohail Sadiq and Shoab Ahmad Khan--NUST

[3] “VLIW Compilation Techniques in a Superscalar Environment”
K. Ebcioglu, R. Groves, K.C. Kim, G. Silbermam, I. Ziv; ACM SIGPLAN Notices, vol. 29, no. 6,
pp. 36-48, June 1994 (PLDI'94).

[4] “CALiBeR: A Software Pipelining Algorithm for Clustered Embedded VLIW
Processors”
Cagdas Akturan and J. Jacome

[5] “A VLIW Architecture for a Trace Scheduling Compiler”
E. Colwell and Rodman

[6] “An Efficient Resource-Constrained Global Scheduling Technique for Superscalar and
VLIW Processors”
S.M. Moon, K. Ebcioglu; in Proceeding of MICRO-25, pp. 55-71, IEEE Press, December 1992.

[7] “Parallel Mapping of DSP Algorithms on a VLIW processor”
Durdana Habib and Shoab A. Khan—IEEE Conference proceedings NOV 1998

[8] “ Software Pipelining: An effective scheduling Technique for VLIW machine”
Dr. Monica S. Lam—1988

[9] “ Modulo Scheduling “
Eric Stotzer and Lesis

[10] “A Global Resource-constrained Parallelization Technique”
K. Ebcioglu, A. Nicolau; in Proceedings Third International Conference on Supercomputing, pp.
154-163, Crete, June 1989.

[11] “Life time Sensitive Modulo Scheduling”
R.A. Huff

[12] “A Software Pipelined based VLIW Architecture and Optimizing Compiler”
Su, Wang, Tang, Zhao, Wu

[13] “Compilation Techniques for VLIW Architecture”
F. Gasperoni—1989

[14] TMS320C6000 CPU and Instruction Set Reference Guide
Texas Instruments; literature number: SPRU189D,

 References

C Compiler for a Parallel Processor 94

http://www-s.ti.com/sc/psheets/spru189d/spru189d.pdf, February 1999

[15] TMS320C62X / C67X Programmer's Guide
Texas Instruments; literature number: SPRU198B,
http://www-s.ti.com/sc/psheets/spru198b/spru198b.pdf, 1998

[16] TMS320C6000 Assembly Language Tools User's Guide
Texas Instruments; literature number: SPRU186E,
http://www-s.ti.com/sc/psheets/spru186e/spru186e.pdf, February 1999

[17] TMS320C6000 Optimizing C Compiler User's Guide
Texas Instruments; literature number: SPRU187E,
http://www-s.ti.com/sc/psheets/spru187e/spru187e.pdf, February 1999

[18] “Resource Constrained Software Pipelining”
Aiken, Nicolau, Novack

[19] ” Efficient Pipelining of Nested Loops: Unroll-and-Squash”
Darin S. Petkov—MS thesis 2001, MIT

[20] ME-2 Programmer’s Manual
Communications Enabling Technologies, 2002

[21] “Data Dependence Analysis of Assembly Code”
Wolfram Amme, Peter Braun, Eberhard Zehendner, Francois Thomasset

