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Abstract 
 

 

 

In this dissertation, we present a dual-module C compiler for the Media 

Engine (ME-2), being developed in Communications Enabling Technology 

(CET). The first module takes the C code and converts it into the serial 

assembly, referred hereon as Front-end Serial Assembly Generator (FSAG). 

We have only implemented a minimal functionality prototype of FSAG, 

whereas in actuality the GNU C compiler is being used as the serial code 

generator. The second module is the Serial Assembly Optimizer (SAO). This 

module makes use of advanced optimization techniques to generate a 

parallel and optimized code. 
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Section one 

Introduction 

 

 

 

 

 

In recent years the advances in process technology and chip design have led to 

many high performance chips on the market, at more and more affordable prices 

per computational power. At the same time, the “smart devices" model of 

computation has also been gaining ground, giving rise to a large variety of 

embedded systems utilizing high performance, often highly specialized chips. In 

particular, many of those chips have been designed to address the needs of 

signal processing application such as digital communications and digital 

television, computer graphics, simulations, etc. Being intended for large 

production volumes, cost has been an even more pressing issue and a lot of the 

designs do not have the complicated optimization circuitry doing branch 

prediction, pre-fetching and caching, associated with modern general-purpose 

microprocessors. Because of the simplicity of the hardware design, which makes 

parallelism very explicit to the user, most of the optimizations have been left to 

the programmer. Still, providing optimal or nearly optimal solutions to the 

optimization problems in the transition to high performance chips has been 

interesting, challenging and difficult. This work presents an attempt at optimal or 

nearly optimal utilization of computing capabilities for high-performance chips. 

Any DSP algorithm written in simple non-parallel C language is first converted 

into un-optimized serial assembly. Given this serial code, or for that matter an un-

optimized or partially optimized assembly code by a programmer, the software 
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tries to produce optimal or nearly optimal version of the same code for a specific 

DSP/VLIW chip.  

The real motivation behind this methodology lies due to the following reasons. 

  

I-  Hand Optimization Techniques are not Scalable 

While code parallelization of assembly code for VLIW/DSP chips has been an 

active research issue for decades, in most cases even now, assembly code for 

powerful DSP and other VLIW chips is handcrafted and optimized. Unfortunately, 

a lot of the techniques employed by humans in this process (if any systematic 

techniques are employed at all) do not scale very well. For example, the 

introduction of the Texas Instruments TMS320C6000 series, capable of issuing 

up to 8 instructions with variable pipeline lengths per cycle, marks a new era, 

where it becomes increasingly hard to hand-optimize code with that much 

parallelism, and in fact, to even write remotely optimal code. In fact, one can 

argue that software such as the one presented here, extended with more high-

level optimizations, and could often produce better results than humans on long 

and algorithmically complicated code. Thus, given the tendency of creation of 

even more powerful chips and the use of more convoluted algorithms, scalability 

becomes more and more important issue.  

II- Hand-Optimized Code is not Portable 

Not only techniques for hand optimization are not scalable, but also they are not 

portable. Historically, each generation of DSP chips has been taking advantage 

of process technology to optimize the instruction set architecture, because it is 

too costly in terms of power and gates to emulate a single instruction set 

architecture. Thus, with the introduction of new more powerful and different 

chips, all optimizations to existing code need to be re-done, which is a long and 

difficult process, involving both coding, optimization and validation.  
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III-  Related Work 

There has been a fair amount of work in the field with many semiconductor 

companies releasing powerful chips and compilers that do some optimizations as 

commercial solutions. In fact some of the inspiration behind this work come from 

looking of older version of assembly optimizer tools running in real time and 

attempting to achieve better and more general solutions. 

Solutions like these have more potential for overall improvement, but employ 

heuristic solutions for code compaction. Other relevant publications include work 

on various techniques ([1-10]) for code compaction. Many of those techniques 

are computationally infeasible (such as solving the entire optimization problem as 

a single integer linear program) or partially used in this work (linear programming 

for obtaining bounds), or inapplicable, because of different computation 

framework. 
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Chapter 1 

Introduction To The Dissertation 

 

 

 

This chapter gives a brief introduction to this document. It states the purpose and 

scope of this document, explaining what this document is for as well as who 

should use this document. It also gives a brief introduction to our project. 

However at this point we have avoided any complex details. This chapter 

prepares the readers mind for the things coming next. 

1.1) Purpose of Dissertation 

This dissertation is provided to fulfill the requirements of the Final Year project for 

the completion of the BE Software Engineering Degree. The purpose of this 

Dissertation is to provide an insight into the various phases and semantics of this 

project. It describes the complete development process including the research, 

analysis, and design specific documentation.  It provides an insight into the 

working and semantics of the ME-2 compiler, which can help both the users and 

the future developers. 

1.2) Scope of Dissertation 

The dissertation has been created in order to meet the requirements of the 

Department. It shall be providing all the necessary information about the project. 

However, we have also kept in mind the users and any future developers. It will 

be helpful in understanding the workings of the compiler.  
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1.3) Layout of the Dissertation 

The dissertation has been divided into various sections. A brief section wise 

description follows. 

The first section starts by introducing the reader to the project by giving a brief 

description to the project.  

The second section contains some background material regarding the project. 

This material is provided so the reader can develop a sound understanding of the 

actual project. First we discuss the architecture of ME-2 processor. Then we 

move to the various optimization techniques that are used for mapping of DSP 

algorithms on VLIW. In the last part of this section, the various techniques 

discovered and used by us are listed. 

The next section contains the Software Specifications. It contains the detailed 

analysis documentation including the Flow Diagrams, Process specifications, 

Class diagrams etc. 

The fourth and the final section contain the various results and conclusion. It also 

mentions certain areas, which we were not able to implement into our product, 

and gives recommendation of any future work in this field. 
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Chapter 2 

Project Description 

 

 

 

This chapter lists the features of ME-2 compiler. It starts of with a brief 

description of the project. Then an initial specification listing the main features of 

the ME-2 compiler is given. In the end the life cycle model used is explained. 

2.1) Description 

Media Engine 2 (ME-2) is a fixed-point DSP processor based on Very Long 

Instruction Word (VLIW) architecture. It is being developed at Communication 

Enabling Technologies (CET). It has 9 functional units and support for parallel 

execution of a maximum of 5 instructions. (The detailed overview of ME-2 is 

given in the next chapter) 

Our project was to develop a C compiler for this ME-2 processor. It has been a 

strong combination of both research work and product development. During the 

several phases of the project we had to go through a lot of research materials, 

researching and then adopting various state of the art compiler techniques.  

The project is divided into two independent modules, the Front-end Serial 

Assembly Generator (FSAG), which produces the serial assembly, and the Serial 

Assembly Optimizer (SAO), which optimizes the serial assembly into parallel 

assembly. This modular approach later allowed CET to use the C compiler from 

the GNU Compiler Collection (GCC) as the front-end code generator. 
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2.2) Features 

ME-2 C Compiler contains the following features. 

2.2.1) Modular Approach 

A modular approach is used for the developing of the compiler. It is divided 

into the following main modules 

1. Front-end Serial Assembly Generator 

2. Serial Assembly Optimizer 

These modules were developed separately, with strong emphasis on a 

common interface between the two. 

2.2.2) Front-end Serial Assembly Generator 

The Front-end Serial Assembly Generator (FSAG) should transform all types 

of C-language statements and declarations into serial assembly code. The 

ME-2 assembly contains both serial and parallel instructions. The FSAG 

should only generate serial assembly instructions. 

2.2.3) Serial Assembly Optimizer 

The Serial Assembly Optimizer (SAO) should transform the serial assembly 

instruction into parallel assembly. It should perform advance optimization on 

the serial code fed into it. These optimization techniques shall concentrate on 

the time optimization of the code. Mechanism shall be provided so that certain 

optimizations can be switched off. 

 

Note: all of these features are requirement as specified by CET. However, as we shall see farther on, that 

some of these features required a different approach and a separate team was dispatched to implement 

those features. This was particularly the case regarding the FSAG. 
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2.3) Life Cycle Model 

As specified, a modular approach was used for developing the ME-2 Compiler. 

Hence the whole development process was divided into two distinct phases or 

modules; the development of the FSAG and SAO.  

The development was done using the classical compiler writing techniques 

merged with the software engineering models. The different phases listed below 

describe the whole life cycle of the development process. 

2.3.1) PHASES 

 Understanding the architecture and instruction set of ME-2. 

 Implementation of front-end code generator prototype. 

 Research of optimization techniques for mapping DSP algorithms on VLIW 

machines. 

 Selection and modification of techniques. 

 Hand coded testing of techniques. 

 Design. 

 Implementation. 

 Testing in user environment. 

 Integration of Serial Assembly Optimizer (SAO) with GCC serial code 

generator. 

2.3.2) FSAG 

Initially while taking up the project we were told that the Front-end Serial 

Assembly Generator FSAG should be developed using the GNU Compiler 
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Collection GCC. A team of two people was already working for the development 

of FSAG. 

We developed a small subset of the FSAG using rapid development method. 

Thus a small prototype was completed and shown to our Directing Staff. 

However, we were encouraged not to build on that prototype. The use of modular 

approach enabled us to develop both FSAG and SAO in parallel with each other.  

2.3.3) SAO 

The serial assembly optimizer required a lot of research regarding the advanced 

optimization techniques for mapping of DSP algorithms on VLIW based 

processors. Thus its development started with this research. The next step was 

to test these techniques and short-list them to the few suiting our particular 

needs. This was followed by the design and implementation of the algorithm 

based on these techniques. 
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Section two 

Background Knowledge 
 

 

 

 

 

The full awareness of the VLIW architecture and the various compiler 

optimization techniques is of utmost importance for grasping the essence of this 

project. This section shall prove to be a learning experience for a layman, starting 

with the very basic concepts and moving onto the most technical aspects. For the 

able reader, however, this shall prove to be a mere revision of some interesting 

concepts and techniques. 

The first chapter in this section provides a brief, yet insightful introduction to the 

VLIW architecture and then specifically to the ME-2 architecture. 

The second chapter explains the various optimization techniques that are widely 

used and implemented in such optimizing compilers. 
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Chapter 3 

ME-2 Architecture 

 

 

 

This chapter gives the user with the background knowledge. It starts with an 

introductory detail of the ME-2 architecture. After the architectural features are 

understood it moves on to the various optimization techniques. In the end we list 

the techniques that were used in the implementation of SAO. We also discuss 

the various constraints and limitations that set the selection criteria. 

3.1) Introduction 

Real-time digital signal processing applications require processing rates of 

millions of instructions per second. A single digital signal processor cannot 

handle such high-speed computation rates. Since digital signal processing 

algorithms possess high degree of parallelism, parallel processing is used to 

increase the computational capability of DSP based systems. 

DSP chips with multiple FUs can exploit both fine-grain parallelism and coarse-

grain parallelism. Multiple FUs on single chip architecture is called Very Long 

Instruction Word (VLIW) architecture. 

The VLIW architecture employs multiple pipelined FUs, multi-ported register files, 

multiple data paths and a global clock. It takes advantage of both temporal and 

spatial parallelism [4]. This machine reduces the Clocks Per Instructions (CPI) by 

executing several operations concurrently. Parallel operations are embedded in 

horizontal instruction format. Thus one long instruction word specifies completely 

the operations to be performed by each of the FUs in each cycle. RISC-like 

instruction sets are used so that dependency checking becomes easier for the 
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compiler [2]. The compiler detects parallel operations in a program and embeds 

them in the very long instruction words. 

3.2) VLIW Architecture 

The Very Long Instruction Word (VLIW) architectures form the basis for an 

alternative way to organize processors. They are derived from the concept of 

horizontal micro coding and multiple instruction execution. They are designed to 

exploit the instruction level parallelism inherent in programs. These processors 

employ multiple pipelined functional units, multi-ported register file, multiple data 

paths and a global clock. As such they take advantage of both temporal and    

spatial parallelism [4]. All the functional units share the use of the register file. 

The operations to be concurrently executed by the functional units are 

synchronized in a VLIW instruction. Figure 3.1 shows a typical VLIW processor 

and its instruction format. Different fields of the long instruction word carry the 

opcodes to be   dispatched to different functional units. For example, I1 would be 

executed by FU1, I2 executed by FU2 and so on. VLIW machines are expected to 

provide ten to thirty times the performance of a more conventional machine built 

of the same implementation technology [11]. 

In comparison, the presence of high-level regularity in user’s code is essential if a 

SIMD processor is to be employed. VLIW machines can exploit even irregular 

forms of parallelism for achieving speedup. Similarly, an MIMD solution imposes 

synchronization and communication penalties. Whereas in a VLIW processor all 

functional units run completely synchronized, directly controlled in each clock 

cycle   by the compacting compiler. Because the compiler handles the arbitration, 

the buses are fast, simple and cheap.  

Similar to superscalar architecture, the VLIW architecture can reduce the clocks 

per instruction (CPI) factor by executing several operations concurrently. 

However, superscalar machines need more complex hardware for run-time 

resource scheduling and synchronization. Simplicity in hardware makes VLIW 

processors easier to design and enhances their efficiency. These processors use 
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RISC-like instruction sets. While VLIW architectures permit static extraction of 

fine grain parallelism, their major drawback lies in the considerable code memory 

size requirements, due to the horizontal nature of the instruction set. 

 

 

 

 

 

 

 

 

 

 

 Figure 3.1 Block diagram of an ideal VLIW and its instruction word 

 

Multipurpose VLIW architectures are now being built for multimedia, video and 

Digital Signal Processing (DSP) applications. Mapping of DSP algorithms was 

chosen because efficient exploitation of concurrency available in these 

algorithms is of prime importance to synthesize high throughput systems. These 

algorithms are characterized by iterative sequences of operations, representing 

arithmetic parallelism. Furthermore, the number of times these iterations are 

executed is predictable. This makes the use of static scheduling feasible. VLIW 

machines provide an effective platform as its multiple functional units can extract 

temporal parallelism. Pipelining within functional units allows issuing of new 

operations in each cycle exploiting the spatial parallelism. Highly concurrent 

implementations can be obtained by using global optimization techniques. 

Some of the early examples of VLIW processors are the Intel i860 that can issue 

two operations per cycle, the IBM System 6000 with four concurrent operations, 

and the Multiflow TRACE, which was designed to allow the concurrent execution 

of up to twenty-eight operations per cycle. The most recent commercially 

Register 
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FUnFU2FU1

Memory 
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available VLIWs are TriMedia-1 by Philips and TMS320C6200 from Texas 

Instruments.  

3.2.1) Terminology 

Let P be a program consisting of a set of operations {s1,s2,s3….sn }. These 

operations require resources for their execution such as 

Functional units {fu1,fu2,fu3….fun}, which can be adders, multipliers, load/store 

ports etc. 

Registers {r1,r2,r3….rn}, which are, used for read/write of data values. A register is 

live for the duration between which data is written and its corresponding read. 

A compacted program Pc represents a set of operations {s1,s2,s3….sn} with the 

independent operations scheduled in the same cycle. It is equivalent to P, but 

takes fewer cycles to execute. 

Iteration means one pass through the loop. 

Intra-iteration dependences are the precedence constraints within iteration. 

Inter-iteration dependence is a dependence on the result of a previous iteration. 

3.2.2) Principles Behind VLIWs  

The basic building blocks behind these architectures are: 

 Datapaths 

 Pipelines 

 Functional units 

3.2.2.1) Datapaths  
A large number of datapaths characterize the VLIW architecture. These 

datapaths support the simultaneous access of operands by each of the functional 
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units for parallel operation. Figure 3.2 shows the datapaths for a generic VLIW 

machine. A large number of registers help in fetching the operands from memory 

and using them for fast access. Thus the register file must have two read ports 

and one write port for each one of the functional units. One of the most critical 

constraints in the implementation of the ideal VLIW model is the inability to build 

a register file with very large number of ports [13]. The number of ports of the 

registers usually limits multiple instruction execution, in practice, and resource 

limitations simply prevent the writing of multiple results simultaneously to a single 

register set. Consequently, the actual VLIW implementations often use 

partitioned register files and functional units. A number of these partitions may 

then be used to resolve the need for more functional units without increasing the 

number of ports in the register file. In case a functional unit needs to read the 

register file of another partition cross paths are used.  

3.2.2.2) Pipelines 
Pipelining implies the segmenting in time of a computational function into several 

sub functions. Figure 3.3 shows a function partitioned in time into k different 

stages. If each stage is a physically distinct piece of hardware, then they can 

operate concurrently allowing up to k parallel operations after the filling of the 

entire pipeline. Suppose time for each stage to operate is T, and then the first 

output will appear after a delay of kT time units. However, successive outputs 

can be obtained every T time units.  

The main advantage of pipelining is that its hardware cost is quite low. However, 

if any of the constituent stages fails to produce an output at the end of T time 

units, the entire pipeline will stall. In a VLIW machine, instructions using different 

functional units can proceed simultaneously through the pipeline phases. The 

pipeline operation for different instructions can be categorized according to the 

number of CPU cycles or delay slots. During delay slots, results from the 

instruction cannot be read. To optimize a program for speed, one must 

understand the sequence of the program fetch; data load requests the program 

makes and how they might stall the CPU.  
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Figure 3.2 Datapaths of a generic machine 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 Pipelining example
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3.2.2.3) Functional units 
All VLIW machines rely on the use of several functional units to achieve 

speedup. Pipelined functional units are employed so that instructions can be 

dispatched in each cycle. All of these functional units operate synchronously 

using one global clock. Each segment of the long instruction word controls one 

particular functional unit. The enhancement achieved by increasing the number 

of functional units against cost is still a topic of current research.  The maximum 

number of concurrent instructions is at most equal to the number of functional 

units. Since all VLIWs use RISC-like instruction sets, they have nondestructive 

triadic register files. A large number of these registers help in fetching the 

operands from memory and using them for fast access. Thus the register file 

must be multiported so that several different functional units can access 

operands simultaneously, and it should have enough memory bandwidth to 

balance the maximum operand usage rate of the functional units. 
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3.3) ME-2 Architecture 

The VZM 2000 TXP/RXP also known as ME-2 is a fixed-point digital signal 

processor (DSP) core. It is a high performance, very long instruction word (VLIW) 

architecture, specially suited to media-specific applications like G.729a, G.723.1.  

The salient features of the architecture are: 

 Four arithmetic/MAC operations in parallel with 64-bit load/stores. 

 32-bit arithmetic, logical, shift and normalization operations. 

 40/32-bit MACs 

 Multi-cycle double precision operations 

 Data Pointer Registers for intensive DSP loops 

 Delay line registers for efficient FIR, convolution and correlation processing 

 Data Alignment Buffers (DABs) for unaligned loads 

 Advanced addressing modes (Bit reversed, circular, pre/post modify etc.) 

 Zero-overhead Looping and predicated execution 

 Multi-cycle fractional division 

 Right pre-shifts of 1, 2, or 3 bits with register loads 

 Quadruple test bits for testing of four simultaneous conditions 

 Four simultaneous Add-Compare-Select (ACS) operations 

3.3.1) Central Processing Unit (CPU) 

The TXP/RXP CPU contains: 
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 Program Control Unit 

 Instruction Dispatch Unit 

 Data Path Control Logic  

 Address Generation Unit 

 Control Register 

 Nine Data Paths (Execution Blocks) 

 Debug Logic 

 16 14-bit Address Register File 

 16 32-bit Data Register File 

3.3.2) Internal Memory 

The TXP/RXP has separate data and program memories. The Data memory is 

treated as 4K x 64-bit words and Program memory is treated as 2K x 128-bit 

words. 

3.3.3) TXP/RXP Pipeline 

There are six pipeline stages. 

 The pipeline can dispatch five parallel instructions every cycle. 

 Parallel instructions proceed simultaneously through the same pipeline 

phases. 

3.4) Instruction Set Overview 

The assembly instructions have been designed with a C-like syntax to provide 

ease of programming. The extensive range of instruction groupings allowed 
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further aids the programmer in coding media specific applications. The CPU 

allows parallel execution of 5 instructions, with certain restrictions.  

3.4.1) Instruction Types  

Instructions for the VZM 2000 TXP/RXP can be divided in to the following 

categories. 

 Load/Store instructions 

 AGU arithmetic instructions 

 Stack support instructions 

 Program Control and Loop instructions 

 Logic instructions 

 Shift and Normalization instructions 

 Mac unit instructions 

 Arithmetic instructions 

 

All instructions of Media Engine-2 (Engine0) can be categorized as AGU and 

DATAPATH instructions. 

3.4.1.1) AGU Instructions 
All instruction related to the address generation unit are categorized into AGU 

instruction. These include load/store, stack support, AGU arithmetic and control 

flow instructions. For a brief overview, refer to [20]. 

3.4.1.2) DataPath Instructions 
The logical instructions, shift and normalization instructions, arithmetic 

instructions, and MAC instructions are included in this category. See [20] for 

reference. 
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3.4.2) Registers 

There are 16 x 32-bit data registers from R0 to R15, and 16 x 14-bit address 

registers from A0 to A15. The data registers can be used as separate 32 x 16-bit 

registers with Ri.f implying the upper 16 bits and Ri.i the lower part of the data 

register Ri 

3.4.3) Addressing Modes 

When upper 16-bits of a data register are loaded, lower 16-bits are zero-filled. 

When lower 16-bits are loaded, upper 16-bits contain sign extension. Load is 

done through a pre-shifter or a data alignment buffers. The processor supports 

the following addressing modes. 

 Register addressing with no update, post-increment or decrement on 

address register. 

 Register addressing with post offset update or indexing (pre-increment by 

offset register without update) on address register. 

 Register addressing with post offset update or indexing (pre-increment 

without update) by an immediate offset on address register) 

Any register from A8-A15 with the exception of A11 (reserved for stack 

operation) can be used for specifying an offset. 

3.4.4) Use of data pointer registers 

 

3. If a DPR points to a register apart from R0, R4, R8, R12 for load or store of 

four 16 bit operands, data will be loaded to /stored from the start of that 

group. It is true for other group and MAC operation, e.g. if DPR points to R3 

and four loads are performed at that DPR, operands will be loaded to R0, R1, 

R2, R3. Same is the case of load/store of two operands. 
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4. Any AGU or execution block instruction that uses dprs, is 32 bit. Four dprs, at 

maximum can be updated. Most of the 16 bit instructions have a 

corresponding 32-bit DPR version. Dprs are not only used in loops but are 

also to provide flexibility in operand specification. For example, AND 

operation requires one source and destination to be the same when its 16 bit 

version (with registers only) is used. However, with dprs, all three operands 

become independent.  

3.4.5) Execution Block Packet Composition 

The following grouping restrictions apply to execution block instructions within 

one packet: 

 48-bit EB0 instruction, 16-bit EB1 instruction, 16-bit EB2 instruction, 16-bit 

EB3 instruction 

 32-bit EB0 instruction, 32-bit EB1 instruction, 16-bit EB2 instruction, 16-bit 

EB3s instruction 

 32-bit EB0 instruction, 16-bit EB1 instruction, 16-bit EB2 instruction, 16-bit 

EB3 instruction 

 16-bit EB0 instruction, 16-bit EB1 instruction, 16-bit EB2 instruction, 16-bit 

EB3 instruction 

 32-bit Dual instruction at EB0, 32-bit Dual instruction at EB2 

 32-bit Dual instruction at EB0, 16-bit Dual instruction at EB2 

 32-bit Dual instruction at EB0, 16-bit EB2 instruction, 16-bit EB3 instruction 

 16-bit Dual instruction at EB0, 16-bit Dual instruction at EB2 

 16-bit Dual instruction at EB0, 16-bit EB2 instruction, 16-bit EB3 instruction 

 32-bit Quad instruction at EB0 

 16-bit Quad instruction at EB0 
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3.4.6) VLIW Grouping Restrictions 

These restrictions define the composition of a valid VLIW packet for Engine 0. 

1. An instruction word is defined as 16 bits long. 

2. Maximum instructions words in a packet can be 8. 

3. All atomic instructions comprise of 1 instruction word. 

4. Long instruction can be 32-bit wide for AGU, and 48-bit wide for execution 

blocks. In a long instruction, instruction words beyond the first one are 

called extension words. 

5. Prefix holds additional information about the VLIW a packet. A prefix can 

be either 32 or 16 bit long. 

6. There cannot be a 32-bit instruction and a dual instruction in the same 

packet. 

7. If there is a dual instruction in a packet, it should be the first execution 

block instruction. 

8. If there are two dual instructions in a packet, they cannot be any other 

execution block instructions in that packet. 

3.4.7) Looping restrictions 

 

1. The minimum size for hardware loops is two VLIW packets. 

2. The first packet of a loop instruction cannot contain a crossover. This 

implies that to push the first packet until it has no crossovers, the 

assembler places nops, each with MSBs 11 to indicate a continuing 

packet of nops with a repeat instruction and any other parallel instructions. 
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Figure 3.4 Looping Restrictions 

 

3. A loop that has a nested loop within cannot be a short loop. 

4. Continue and Break instructions always have two delay slots. Non-

delayed Continue and Breaks cannot be executed. 

5. Loop markers cannot be placed within the delay slots of change of flow 

instructions. 

6. Nested loops cannot end at the same address. This restriction arises from 

the fact that two loop-end markers for different loops cannot coincide. 

7. Loop markers for short loops are placed before the last instruction. 

8. Loop markers for long loops are placed before the second to last 

instruction. If nth instruction is the last instruction, loop marker is required 

with (n-2)th instruction(assembler) 

9. The last four execution packets of a loop cannot contain the REPEAT 

instruction of a nested loop. 

10. Outer loops should contain at least three instructions, after the end of 

inner loop if continue or break instruction is used in inner loop (in order to 

jump outside the inner loop without missing loop marker). 

 repeat first 

instruction Transformation 

repeat   nops  nops 

first instruction 

packet boundary 

 repeat first  

instruction 
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repeat   nops  nops 
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 repeat prev inst prev inst  nops  nops 

packet boundary 
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3.4.8) Conditional Execution 

It is possible to include any mix of instructions in any combination of IFT/IFF, 

Ifany, ifall, or caseT. An execution packet may have the combinations ift/  iff, ift / 

ifaand iff / ifa.   

There are however restrictions on the operations that can be conditionally 

executed. These operations are few and are rarely required to be conditionally 

executed. More important restrictions are the scheduling constraints on 

predicated packets. These constraints occur because of the latency of test 

instructions. 

Possible constraint conditional AGU instructions can only be executed on T1. 

 

3.4.9) Latencies 

 

 

 

 

 

 

Table 3.1 Latencies 

 

 

 

 

 

 
Instruction 

 

 
Latency 

Ri = Aj 1 cycle 
pop  (Ri)/(Ri, Ri+1) 3 cycles 
pop  (Ai)/(Ai, Ai+1) 3 cycles 

Change of Flow Instructions 3 cycles 
Ri=Ri/Rj 18 cycles 
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Chapter 4 

Optimizations Techniques 

 

 

 

Compiler optimizations are designed to reduce a program's execution time. 

Traditionally, these optimizations are customized for a given machine model. 

Classical optimizations are designed to improve the program's efficiency for a 

machine model that has one thread of execution and can issue one instruction 

per cycle. Superscalar optimizations are designed for a machine model with a 

single thread of execution and a limited instruction issue rate. Multiprocessors 

are built using either uni-processors or superscalar processors and thus there is 

more than one machine model to optimize for. Therefore, it is important to 

understand the interactions of these optimizations and their effect on available 

parallelism and speedup. 

4.1) Parallelism in Programs 

First of all lets see what type of parallelism is available in programs. Parallelism 

can be divided broadly into  

4.1.1) Coarse-grain parallelism 

This type of parallelism refers to the ability to divide a large program into smaller 

modules and then to dispatch these modules in a multiprocessor environment. 

This type of parallelism is exploited at the operating system level by some sort of 

scheduler. 
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4.1.2) Fine-grain of Instruction Level Parallelism 

Instruction Level Parallelism (ILP) refers to the parallelism available at the finest 

levels in which multiple instructions are executed in a single cycle. Modern CPUs 

can execute multiple instructions concurrently. Two sources of parallelism are 

exploited: 

 Some machines issue multiple instructions in one cycle ⇒ superscalar 

machine 

 Some machines overlap various execution phases of different instructions 

⇒ pipelining 

ILP can be improved by reordering instructions known as instruction scheduling.  

During the process of instruction scheduling we select multiple instructions for 

parallel execution. However this selection is constrained by certain factors. 

In the following pages we shall be considering the various types of methods and 

ways to enhance the optimization of the programs. We shall start with a general 

description of the compiler optimization techniques. Then we move on to the 

optimization techniques specific for the VLIW architecture. After discussing the 

most popular and widely adopted techniques we shall move on to discuss the 

optimization techniques that were used in the ME-2 C compiler. 

4.2) Types of Optimizations 

Compiler optimizations remove artificial constraints imposed by the programmer 

and the programming language, in order to increase the program's efficiency and 

expose its inherent parallelism. We have classified these optimizations into three 

levels: classical, superscalar, and multiprocessor.  

4.2.1) Classical Optimizations 

Classical optimizations are made up of two components, local and global 

optimizations. Local optimizations are applied to instructions within a basic block, 
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and use no knowledge of the program as a whole (e.g., data flow analysis) to 

make optimization decisions. The local optimizations considered here are 

constant propagation, copy propagation, common sub expression elimination, 

redundant load/store elimination, constant folding, strength reduction, operation 

folding, constant combining, and code reordering. On the other hand, global 

optimizations are applied among operations within the same function.  

The goal of classical optimizations is to reduce the execution time of a program 

by eliminating redundant instructions and replacing a set of instructions with a 

more efficient set. The effect of these optimizations on the available parallelism is 

not clear. 

4.2.2) Superscalar Optimizations 

Superscalar optimizations combine and enlarge basic blocks to expose more 

parallelism. The following superscalar optimizations are considered: 

Superblock formation, loop unrolling, loop peeling, branch target expansion, 

induction variable expansion, memory disambiguation, and register renaming. A 

superblock is the basic scope for optimizations. Superblock formation consists of 

first combining basic blocks that tend to execute in sequence into a trace, and 

then performing code duplication to eliminate all side entrances from the trace. 

Loop unrolling replicates the body of a superblock loop several times. Loop 

peeling fully unrolls loops with small numbers of iterations. Branch target 

expansion copies the target superblock of a frequently taken branch into its fall- 

through path. Induction variable expansion removes the dependencies between 

induction variables in unrolled copies of a loop body. Memory disambiguation 

and register renaming are used to remove artificial dependencies between 

instructions. 

Superblock formation and optimizations add additional bookkeeping instructions 

to the less frequently 
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4.2.3) Multiprocessor Optimizations 

Memory renaming and data migration to high-speed memory are powerful 

compiler optimizations that uncover the inherent parallelism within an application 

program. Memory renaming refers to renaming all memory variables such that 

they only hold one value. Since a memory variable is never written more than 

once, all memory output and anti-dependencies are removed. Data migration 

refers to loading frequently used memory variables into high-speed memory such 

as registers. It is obvious that memory renaming will improve the parallelism 

because it removes data dependencies. However, the effect of data migration on 

parallelism depends on the level of data migration to high-speed memory.  

This was a generalized discussion of the compiler optimization techniques. From 

here on we shall focus on the optimization techniques specifically used for the 

parallel mapping of DSP algorithms on VLIW architecture processors. 

As mentioned before, there are two types of parallelism available. We shall be 

considering only the ILP. ILP can be improved by various techniques including 

loop unrolling, software pipelining, predicated execution and instruction 

scheduling. The first step, however is to analyze the source code and determine 

the dependencies that exist between the various instructions 

4.3) Dependence Analysis 

Determination of data dependences is a task typically performed with high-level 

language source code in today’s optimizing and parallelizing compilers. Very little 

work has been done in the field of data dependence analysis on assembly 

language code, but this area will be of growing importance, e.g. for increasing 

ILP. A central element of a data dependence analysis in this case is a method for 

memory reference disambiguation that decides whether two-memory operations 

may/must access the same memory location.  
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Let us define some notations that will be helpful towards the understanding of 

different types of dependencies. If we have two instruction S1 and S2 then the 

notation, S1 ◄ S2, implies that S1 precedes S2 in order of execution. 

Dependence can be divided broadly into the following three categories. 

 Resource Dependence 

 Control Dependence 

 Data Dependence 

4.3.1) Resource Dependencies 

It means that two instructions that use the same functional unit cannot execute at 

the same time. 

4.3.2) Control Dependencies 

It occurs as a result of the control flow of the program. So if S1 is control 

dependent on S2, we write 

 S1 δ C S2 

4.3.3) Data Dependencies 

This can be further classified [21] into the following four categories. 

4.3.3.1) Flow Dependence: Known as the read-after-write (RAW) hazard. 

Two instructions are said to be Flow dependent if S1 ◄ S2 and the former sets a 

value later uses. So we can say that 

if  S1: d = b*e 

and S2: e = d+1 

then since S1 sets the value of d that is being used by S2 for calculating 

the value of e, so  
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 S1 δ F S2 

Here we can see that if S2 was to be executed before S1 that would change that 

outcome of the result. 

4.3.3.2) Anti Dependence:  Known as the write-after-read (WAR) hazard. 

Two instructions are said to be anti-dependent if S1 ◄ S2 and S1 uses a 

variable that is updated by S2. So we can say that 

if  S1: d = b*e 

and S2: e = d+1 

then since S1 is using e which is changed or set by S2, so  

 S1 δ A S2 

Here we can see that if S2 was to be executed before S1, that would change the 

outcome of the result and d would be holding an incorrect value. 

4.3.3.3) Output Dependence: Known as the write-after-write (WAW) hazard. 

Two instructions are said to be output dependent if S1 ◄ S2 and S1, S2 both set 

the same variable. So we can say that 

if  S1: d = b*e 

and S2: d = e/2 

then since S1 and S2 both set the variable d, so  

 S1 δ A S2 

Again the order of execution is of great importance. 

4.3.4) Dependence Graphs 

These dependencies are calculated in the analysis phase and dependence 

graphs are constructed. Directed Acyclic Graph (DAG) can be used to show the 
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dependence between several operations. A node represents an operation and 

the edges represent dependencies between nodes. The type of dependency 

represented by an edge is unimportant, so we omit it. A dependence graph 

corresponding to each basic block of instructions is produced. A basis block (BB) 

is a structure holding instruction grouped together such that there is on control 

path into or out of the basic block except for the first and the last instruction. Thus 

the BB does not contain any jump or call instruction except for not necessarily 

the last instruction of the BB. 

These dependence graphs are then used as the basic unit on which various 

optimizations are performed. Let us now briefly see the various optimization 

techniques for exploiting the ILP. 

4.4) VLIW Compilers 

Compilers for VLIW processors play a pivotal role in exposing instruction-level 

parallelism (ILP) for the effective utilization of hardware. Exploitation of fine-grain 

parallelism is a critical part of exploiting all of the parallelism available in a given 

program. The real challenge to using these architectures lies in compacting the 

code such that the semantics of the program are preserved. This is unlikely to be 

possible without a general solution to the “optimization” or  “compaction” 

problem. Parallelizing compilers have yet to become as effective as 

programmers in their transformation task [8]. A compiler has to rely    on user 

assertions and/or source code modifications to improve the quality of the code it 

generates. 

The actual parallelism available in a program is limited by its dependences. 

Dependence between two program statements is a conflict that prevents the 

statements from executing concurrently. Dependences can be categorized into 

three types: resource, data and control. Resource dependence between two 

statements is usually a consequence of the limited hardware available in any 

physical computer system. The data dependences exist when the current 

instruction is dependent on the result of a previous instruction. Control 
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dependences represent the conditional execution such as the if-then-else 

statements. Branch outcomes also fall into this category. 

VLIW machines need low level programming. While developing parallel 

schedules, a programmer must keep in mind all the details of hardware design. 

The execution time for each instruction must be known prior to scheduling, so 

that optimal instruction scheduling can be done [4]. Since each instruction 

specifies multiple operations, these operations must have resources allocated 

separately. This is a time-consuming exercise and is very much prone to error. 

Compilation techniques are needed to relieve the programmer and make the 

entire process faster and less error-prone. Thus, the success of a VLIW 

processor depends heavily on the efficiency in code compaction.  

Efficient compilers should be able to translate serial programs written at a 

reasonably high level into good parallel schedules. The optimality criteria 

generally used to judge these schedules are: 

 Di/o input to output delay should be minimum. 

 Tii iteration initiation interval should be minimum. 

 The number of processors/functional units should be minimum. 

Scientific computations spend a significant amount of time in executing loops; 

therefore loops represent a critical component. Minimum value of iteration 

interval guarantees highest speed of execution of a loop. This speed often places 

a higher limit on the rate at which real-time processing can be done. Keeping the 

number of processors/functional units to a minimum ensures the lowest possible 

cost with which an optimal schedule can be achieved. Since optimal solutions are 

relatively more expensive in terms of time and resources, near-optimal solutions 

are used for faster and economical implementations [15].   
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4.5) Optimization Techniques For a VLIW Compilers 

4.5.1) Trace Scheduling 

Joseph Fisher offered Trace scheduling as a solution to the “optimization 

problem” [7] when efforts to use basic blocks for compaction did not prove very 

effective. This technique compacts large sections of code containing several 

basic blocks obtaining an overview of the program. Scheduling is then carried 

out, giving operations with longer delays a higher priority for placement. 

Otherwise these delays will percolate through the program. For example, load 

and branch operations are usually the most time consuming ones; these are 

scheduled as early as possible. 

Trace scheduling operates on traces, which may consist of many basic blocks. It 

uses branch prediction and loop unrolling to statically look several basic blocks 

ahead for parallelism opportunities. The trace contains operations from the most 

probable path. Directed Acyclic Graphs (DAGs) are built for each path through 

the trace. These are also called the trace data precedence graph. These have 

been shown to contain all of the necessary restrictions on inter block motion and 

only those restrictions [7]. Sequence of instructions is then ordered to minimize 

the execution time of the most probable path. However, this speed up is usually 

at the expense of increasing the execution time of less frequently used paths 

through the program. Independent trace operations can be packed into the long 

instruction words providing simultaneous issuing of multiple operations per cycle. 

In case of conditional execution, compensation code is added to preserve the 

program's semantics when a branch prediction turns out to be incorrect. For 

example, Figure 4.1a shows sample code. A DAG is shown in Figure 4.1b and c 

for the two possible paths. Figure 4.1b depicts path 1, the more likely path 

through the program, while Figure 4.1c shows path 2, and the less likely taken 

path. Both the paths are identical up to s4. Instructions s5 and s6 are scheduled in 

the same cycle as s4 assuming the branch outcome to be true, while s7 and s8 are 

scheduled in the next cycle and will be conditional on the branch outcome being 
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false. So path 2 will take 1 cycle longer to execute. If the false outcome had been 

the more probable path, we could have scheduled s4, s7 and s8 in one cycle 

eliminating the extra cycle.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 (a) Sample flowchart  (b) Trace for path 1   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  (c) Trace for path 2  (d) Path 1 compacted. (e) Path 2 compacted. 

Figure 4.1 Trace scheduling example. 
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4.5.2) Software Pipelining 

Software pipelining techniques compute a static parallel schedule that overlaps 

the operations of several iterations analogous to a hardware pipeline that 

overlaps operation in a dynamic instruction stream. The schedule so computed is 

suitable for execution on VLIW machines. Most signal processing applications 

have static loops that are known to execute a certain number of times. These 

comprise a large portion of a program’s parallelism. Software pipelining 

concentrates on extracting this potential parallelism. Maximum parallelism 

available in a loop is limited by its data-dependencies and the target machine’s 

resource dependencies [12]. Before software pipelining is applied, a single loop 

is compacted to minimize its execution time. The compaction is limited by intra-

iteration dependences. Then software pipelining is carried out to overlap 

operations from successive iterations. 

The time that elapses between the issues of two iterations is called the initiation 

interval. The value of iteration initiation interval tii is chosen such that a new copy 

of the loop schedule can be issued every tii cycles to overlap the execution of 

operations from different iterations. This interval must be long enough to satisfy 

inter-iteration dependencies before dependent operations from subsequent 

iterations begin executing. In the worst case, dependence from the last 

instruction of one iteration to the first instruction of the next iteration could limit 

the execution to one iteration at a time. In this case, the entire iteration needs to 

be completed before the next one can be started. 

The smallest acceptable initiation interval leads to the highest number of 

simultaneous operations and thus the maximum performance. An example of the 

software pipelining technique is shown in Figure 4.2. The C code loop is to be 

software pipelined for execution on a VLIW processor with two memory ports, 

one adder and one multiplier. Figure 4.3 shows the pseudo-assembly code for 

the loop. Since this loop has no inter-iteration dependences, only the available 

resources limit its maximum execution time. In the next step, a schedule is 
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generated, in Table 2.1, for a single iteration that does not violate any of the 

dependences within an iteration. The resources are shown along the y-axis and 

the cycles along x-axis.  Using the resource usage column we find that the 

minimum iteration period is three.  

Table 4.2 shows the software-pipelined schedule for the loop or the steady state. 

The time required to reach the steady state is called the pipeline fill time. It is 

represented by the cycles labeled 0-5. Inside the steady state, a new iteration is 

started every three cycles. After the eighth cycle, the loop is repeated from cycle 

six again. In the steady state s1, s4, and s5, are executing for the third iteration, s2 

is executing for the second iteration and s3, s6, and s7, are executing for the first 

iteration. Thus the result of the first iteration will be available after eight cycles but 

subsequent iterations will complete every three cycles. If the number of iterations 

is known at compile time, the code size of a pipelined loop is within three times 

the code size for one iteration of the loop [11]. This owes to the fact that each 

pipeline must have a pipeline fill time and a pipeline drain time. Either of these 

can at most be equal to one iteration. Although software pipelining increases the 

total code size, compared to the unpipelined loop version, the steady state is 

typically much shorter than the length of the unpipelined loop. Thus it can be 

concluded that the increase in code size due to software pipelining is not an 

issue.     

 
for(i=n;i>0;i--) 

 

                     Operation                    Latency  

  { s1      :           load  e [ i ]                       5 
     a[i]= e[i]+6; s2      :           add   e [ i ] + 6                 1 
     c[i]=b[i]*d[i];  s3      :           store  a [ i ]                      1   
  } s4      :           load  b [ i ]                       5 

 s5      :           load  d [ i ]                       5 

 s6      :           multiply b [ i ] * d [i ]     2  

 s7      :           store   c [i ]                      1    

 

          Figure 4.2. Example loop 

 

           Figure 4.3. Pseudo-assembly code. 
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 0 1 2 3 4 5 6 7 8 Resource 
usage 

Memory port 1 s1 s5        2 

Memory port 2 s4       s3 s7 3 

Multiplier       s6   1 

Adder      s2    1 

 

Table 4.1. Single loop iteration 

 

 

 

  0 1 2 3 4 5 6 7 8 

Memory port 1 s1 s5  s1* s5*  s1** s5**  

Memory port 2 s4   s4*   s4** s3 s7 

Multiplier       s6   

Adder      s2   s2* 

 

 Table 4.2. Software pipelined schedule. 

 

 

4.5.3) Loop Unrolling 

When the resources of the target machine are not fully utilized, the performance 

can be improved by unrolling the loop. The unrolling process exposes more 

instructions for parallel execution in a loop and hence utilizes the resources in a 

more efficient way [12]. For example, if the target machine is capable of 

executing four concurrent instructions but the three-cycle loop is such that only 

seven instructions are executing then we are using 58% of the available 

resources. But if we unroll the loop and execute 14 instructions every five cycles 

then resource usage increases to 70%. Now two iterations are being completed 

every five cycles instead of six. This means a 17% improvement in performance 

over the previous loop. 

Loop Cycles 

Resource 

Cycles 
Resource 
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Figure 4.4 shows the previous loop unrolled. Figure 4.5 is the pseudo-assembly 

code. As Table 4.3 shows, the minimum iteration interval is now five cycles. 

Table 4.4 shows fourteen instructions are executing in the loop and two iterations 

are being computed in each loop execution. A loop can be unrolled completely so 

that the successive computations implied by the loop appear sequentially, or it 

can be partially unrolled as shown in the above example. Loop unrolling has two 

major advantages. First, the number of increments and tests is cut down by the 

unrolling factor. Secondly, more instructions are exposed for parallel execution. 

The disadvantage of loop unrolling is that it improves performance at the cost of 

code expansion. For this reason, the criteria for unrolling loops should include the 

size of the loop and the relative frequency of executing the loop [15]. A compiler 

needs complete knowledge of the hardware resources to sensibly unroll loops. 

Loops should only be unrolled by a factor that would result in a maximal usage of 

the resources. For example, consider a machine that has two multipliers and two 

adders. A loop that has one multiplication and one addition should not be 

unrolled by a factor of more than two. This would give maximum resource usage 

with minimum code expansion.  

 

for ( i = n ;  i >o ;  i --) 

{ 

a[i] = e[i] +6 

a[i+1] = e[i+1]+6 

c[i] = b[i] * d[i] 

c[i+1] = b[i+1] * d[i+1] 

} 

 

 

 

 

 

 

 

      Figure 4.4 Unrolled loop 

 

s1  :  load e[i] 

s2  :  load e[i+1] 

s3  :  add e[i] +6 

s4  :  store a[i] 

s5  :  add e[i+1]+6 

s6  :  store a[i+1] 

s7  :  load b[i] 

s8  :  load d[i] 

s9  :  load b[i+1] 

s10 :  load d[i+1]  

s11 :  mul b[i] * d[i] 

s12 :  mul b[i+1] * d[i+1] 

s13 :  store c[i] 

s14 :  store c[i+1] 

Figure 4.5  Pseudo- assembly code 
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 0 1 2 3 4 5 6 7 8 9 Resource         usage 
Memory port1 s1 s7 s9      s4 s13     5 

Memory port 2 s2 s8 s10      s6 s14     5 

Multipliers       s11 s12       2 

Adder      s3 s5        2 

Table 4.3 Single loop iteration 

 

 

         

 0 1 2 3 4 5 6 7 8 9 

Memory port1 s1 s7 S9   s1
* s7

* s9
* s4 s13 

Memory port 2 s2 s8 S10   s2
* s8

* s10
*  s14 

Multipliers        s11 s12  

Adder       s3 s5   

 

Table 4.4. Software pipelined schedule 

 

4.5.4) Register Scheduling 

Traditional instruction scheduling methods minimize the number of registers 

used, which also reduces the degree of parallelism exploited. One key factor in 

this optimization is to make effective use of the target machine’s registers. 

Registers provide fast access to operands as compared to retrieval from 

memory. The goal should, therefore, be to keep the most frequently accessed 

operands in the registers. 

Allocating registers is a rather difficult optimization to perform. If register 

assignment is performed before scheduling, then software pipelining may 

produce poor results, because the register allocator may unnecessarily reuse 

registers, thus adding data dependences to the program [3]. The approach 

should be to start with an arbitrary allocation and then modify the register 

allocation during software pipelining. 

Loop

Cycles 
Resource 

Cycles 

Resource 
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Consider now the program fragment in Figure 4.6. In this example, operation s2 is 

not available for scheduling at the start because its target register is one of the 

operand registers of operation s1. However, if there is a spare register then the 

dependence can be broken by renaming the destination register of s2 as in 

Figure 4.6(b). Now operation s2 and s1 can be scheduled in parallel. It is 

necessary to insert a register move s2’ into the program to restore the machine 

state after these operations. Here, the assumption is that the advantage gained 

in eliminating the dependence outweighs the cost of the extra copy.   

Several different schemes are used for performing this allocation: 

 A round-robin scheme can be used to allocate registers while the schedule 

is being generated. 

 One can assume infinite number of registers to produce a schedule first and 

then allocate registers and add spill code. 

 Another approach is to integrate register allocation with scheduling by 

keeping track of the liveness of registers.  

 

 

 

 

 

 

 

                 

             (a)                                     (b) 

 
Figure 4.6.  Register renaming 

s1 : r1        r2 op r3 

s2 : r2        r4 op r5 

s1 : r1        r2 op r3 
s2 : r6        r4 op r5 

s′2 : r2        r6 
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Section three 

Project Specifications 
 

 

 

 

 

The last section gave an overview of things that the reader must know in order to 

be aware of the project semantics. It also described the complete research phase 

of the project. After the research phase was over, we moved onto the next phase 

that comprised of the analysis and design phase. This section describes the 

project semantics and specifications. It includes the following 

 Environmental Model 

 Data Flow Diagrams 

 Process Specifications 

 Actors and Use Cases 

 Class Diagram 

 Sequence Diagram 

 Classes—Responsibility, Collaborators (CRC) Cards 

 Classes—Attributes, Operations 
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Chapter 5 

Analysis and Design Specification 

 

 

 

5.1) Environmental Model 

The environmental model gives a brief introduction to the project. It gives the 

system, as it should appear in its final user environment 

5.1.1) Statement of Purpose 

“Implementation of a C/C++ compiler, with strong emphasis on low level 

optimization, for the VLIW-Architecture based ME-2 processor ” 

The compiler shall take as input the standard C/C++ source code and convert it 

into fully optimized parallel assembly code. The compiler also caters for verifying 

the correctness of the input Source Code and performs Error-Detection, 

indicating the possible causes of the errors. 

It is also required that the compiler shall be developed using modular approach 

so that several teams can work on different modules simultaneously. Our part 

deals mostly with the Serial Assembly Optimizer. The C/C++ source code is 

converted in to serial assembly with some high level optimization. Then this serial 

assembly is fed into the SAO module, which converts it into fully optimized 

parallel assembly 
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5.1.2) Context Diagram  

This is the Top-level Data Flow Diagram, showing only at the top most level the 

different modules of the project.  

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.1 Context Diagram—Level 0 

C to Serial 

Generation 

Serial Assembly Optimized 
Code 

Generator 

C Code Optimized 
Assembly 



Chapter 5   Analysis and Design Specification 

 
C Compiler for a Parallel Processor 54  

5.2) Data Flow Diagrams 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.2  DFD (1) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.3 DFD (2) 
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Figure 5.4 DFD (1.1) 

 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 

Figure 5.5 DFD (1.2) 
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5.3) Process Specification 

5.3.1) Dependence Analysis (2.1) 
 

The following steps are performed during the dependence analysis of the serial 

assembly code 

 Flow graph construction 

 Basic block construction 

 DAG or other dependence graph construction 

 Live variable analysis for each BB 

5.3.2) Loop Unrolling (2.2) 
The process of unrolling includes writing the code a repeated number of 

times and reducing the loop count by the unroll factor. This optimization 

helps to increase the ILP since there are more instructions available for 

scheduling now. 

5.3.3) Software Pipelining and Scheduling (2.3) 
The instruction-scheduling phase selects the various instructions for 

parallel execution. Software pipelining attempts to rearrange the sequence 

of instructions inside a loop, in order to minimize dependencies between 

such instructions, thus increasing the level of parallelization. The iteration 

of a software pipeline loop may contain instructions from a different 

iteration of the original loop. 

This optimization is only applied to the innermost loops of small or 

moderate size, which contain no branches or function calls within the loop. 
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5.3.4) Lexical Analysis (1.1.1) 
During this, the stream of characters making up the source program is 

read from left-to-right and grouped into tokens that are sequence of 

characters having collective meaning. The blanks separating the 

characters of these tokens are eliminated during lexical analysis. 

5.3.5) Syntax Analysis (1.1.2) 
Characters of tokens are grouped hierarchically into nested collections 

with collective meaning. The grammatical phrases of the source program 

are represented by a parsing structure, which describes the syntactic 

structure of the input. 

5.3.6) Semantic Analysis (1.1.3) 
Certain checks are performed during this process to ensure that the 

components of a program fit together meaningfully. This process checks 

the source program for semantic errors and gathers type information for 

the subsequent code-generation phase. It uses the hierarchical structure 

determined by the syntax-analysis phase to identify the operators and 

operands of expressions and statements. 

5.3.7) Three-address Generation (1.1.4) 
After syntax and semantic analysis, an explicit intermediate representation 

of the source program is generated. This is sort of a program 

representation for an abstract machine. 

5.3.8) Analysis (1.2.1) 
This phase gathers up the information about the flow of the program from 

the three-address code. This information divides the program into basic 

blocks of code with links showing the flow between these basic blocks. 
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5.3.9) Address Allocation (1.2.2) 
During this phase the addresses are assigned to the different variables 

used in the program. This includes the transient variables as well as the 

temporary variables generated by the three-address code generation 

phase. Mostly we try to keep all the variables in the register memory. 

5.3.10) Low-Level Optimization (1.2.3) 
This phase attempts to improve the intermediate code, so that faster-

running machine code will result. This optimization are most of the times 

trivial but are necessary in order to remove the redundant code introduced 

by automated generation of code. 

5.3.11) Code Generation (1.2.4) 
The final phase is the generation of the target code, consisting of 

assembly code. Intermediate instructions are translated into a sequence of 

machine instructions that perform the same task.  

 

These process narratives help us define the flow of data, and what 

transformations are performed on the data during this flow. 
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5.4) Use Case Diagram 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6 Use case Diagram 
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5.4.1) Actor—Programmer 

An actor is a user of the system in a particular role. In our system there is only 

one actor that is the user of the compiler. From here on the actor is called the 

programmer. 

5.4.2) Use Case Description 

Use cases describe the system from the user point of view. The working and 

functionality of any compiler is hidden from the user. Most of the times it’s just a 

text editor with a toolbar that allows the user to compile the source code. Our 

system consists of the following high-level use cases 

5.4.2.1) Serial Assembly Generation 
The programmer writes the C code in the text editor. He has the option to 

save or edit existing works. He then selects the compile command. In 

reaction to this command, the FSAG compiles the source code. First it 

analyzes the input code. During this analysis it performs lexical analysis, 

syntax analysis and semantic analysis. Then it generates the intermediate 

code. This intermediate code is used to generate the serial assembly of 

ME-2. 

5.4.2.2) Serial Assembly Optimization 
The input is fed into the SAO. This input comes from either the GCC or 

directly from the programmer. The programmer then selects the desired 

optimizations from the menu. He then hits the optimization command. This 

results in the analysis of the code, during which dependencies are 

calculated. This dependency information is then used for the various 

optimizations. 
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5.5) Class Relationship Collaborators 
 

Class Name:                              Lexical Analyzer 

Class Type:                                Generic 

Derived From:                            
Class Characteristics:               Sequential, Transient 
Responsibilities:  Collaborators: 

Getting Input  
Generating Tokens  Token 
Setting Token Types  Token 
Setting Numerals  

 
 
 

Class Name:                                Parser 

Class Type:                                 Generic 

Derived From:                             
Class Characteristics:                Sequential, Transient 
Responsibilities:  Collaborators: 

Grouping of Tokens Token, Instruction 
Checking for Errors  
Syntax analysis  
Semantic Analysis  
Identification of variables  Symbol Table 

 
 
 

Class Name:                                Symbol Table 

Class Type:                                  Generic 

Derived From:                              
Class Characteristics:                 Sequential 
Responsibilities:  Collaborators: 

Maintains record if variables  
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Class Name:                                Descriptor 

Class Type:                                 Generic 

Derived From:                             
Class Characteristics:                Transient 
Responsibilities:  Collaborators: 

Maintain information about 
data register allocation 

 

Maintain information about 
Address register allocation 

 

 
 
 

Class Name:                                Token 

Class Type:                                 Generic 

Derived From:                             
Class Characteristics:                Transient 
Responsibilities:  Collaborators: 

Keeps track of Token 
lexemes 

 

Keeps track of Token Types  
Contains Numeral Values  

 
 

Class Name:                                Instruction 

Class Type:                                 Generic 

Derived From:                             
Class Characteristics:                Sequential, Transient 
Responsibilities:  Collaborators: 

Maintains information about 
instruction type 

 

Information about Register 
used by the instruction 

 Token 
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Class Name:                               Basic Block 

Class Type:                                 Generic 

Derived From:                             
Class Characteristics:                Sequential, Transient 
Responsibilities:  Collaborators: 

Contains List of Instruction  Instruction 
Information about the Control 
Flow 

 

Live variables  
 
 
 
 
 
 

Class Name:                                Code Generator 

Class Type:                                 Generic 

Derived From:                            Object 
Class Characteristics:                Sequential, Transient 
Responsibilities:  Collaborators: 

Allocation of variables to 
Address Registers 

 Register Descriptor 

Allocation of values to Data 
Registers 

 Register Descriptor 

Translation of intermediate 
instruction into Assembly 
Instructions 
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Class Name:                               Register 

Class Type:                                 Generic 

Derived From:                            Token 
Class Characteristics:                Sequential, Transient 
Responsibilities:  Collaborators: 

Maintains information about 
availability 

 

Maintains information about 
register contents 

 

 
 
 
 
 
 

 
Class Name:                                Optimizer 

Class Type:                                 Generic 

Derived From:                             
Class Characteristics:                Sequential, Transient 
Responsibilities: Collaborators: 

Performs Loop Unrolling  
Software pipelining of the 
inner loops 

 

Instruction Scheduling of the 
basic blocks 

 

Performs live variable 
analysis 
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5.6) Class Relationship Diagram 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7 Class Diagram 
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5.7) Sequence Diagrams 

5.7.1) Serial Assembly Generation 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8 Sequence Diagram—Serial Assembly Generation 

 

5.7.2) Serial Assembly Optimization 

 

 

 

 

 

 

 

Figure 5.9 Sequence Diagram—Serial Assembly Optimization. 
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5.8) Class—Attributes, Methods 
 
 
 

CInstruction 

ATTRIBUTES 
CString m_InstructionString 
CLinkList <CToken> m_LLRegistersUsed 
CLinkList <CToken> m_LLRegistersRead 
CLinkList <CToken> m_LLRegistersWritten 

METHODS 
CInstruction () 
~CInstruction() 
void UpdateRegistersInInstructionString( ) 
UpdateLoopCountInRepeatInstructions() 
CInstruction() 
operator= (CInstruction Inst) 
 

 
 
 
 

CLinkList 

ATTRIBUTES 
Derived data members only 

METHODS 
CLinkList( ) 
CLinkList(CLinkList & L1) 
~CLinkList( ) 
operator += (CLinkList<T> L1) 
operator  = (CLinkList<T> L1) 
CheckLinkList( ) 
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COptimizer 

ATTRIBUTES 
CBasicBlock m_BasicBlock 
CBasicBlock m_PrologueForUnroll 
CBasicBlock m_EpilogueForUnroll 
CLinkList<CFinalNodeForSP> m_PrologueForSP 
CBasicBlock m_EpilogueForSP 
CLinkList <CToken> m_LLOfTokens 
CLinkList <CAccumulatorInstruction>  m_LLOfAccumulatorInstructions 
CUIntArray m_InstScheduledForRes 
CLinkList<CInitialNodeForSP> m_LinkListForSP 
CUIntArray m_LinkListOfAvailable 
CLinkList<CFinalNodeForSP> m_LLOfFinalNodeForSP 
CLinkList<COperationScheduled> m_LLOfOperationsScheduled 
ResourceTable m_ResourceTable 
CLinkList<CCombinedInstructions> m_LinkListOfCombinedInstructions 
CCombinedInstructions* m_CombinedInstructionsForANode

METHODS 
 
COptimizer( ) 
~COptimizer( ) 
DecrementDelay( ) 
IfNoRestriction( ) 
UpdateRestrictions( ) 
InitializeAccumulatorInstructions( ) 
FindAccumulatorRegisters( ) 
FindStartRegister( ) 
MINUS( ) 
UNION( ) 
INTERSECTION( ) 
REMOVECOMMON( ) 
MINUS( ) 
UNION( ) 
INTERSECTION( ) 
REMOVECOMMON( ) 
ArrangeInAscendingOrder ( ) 
UnRollInnerMostLoop( ) 
InitializeBasicBlock( ) 
RemoveDigits( ) 
SoftwarePipelineInnerMostLoop( ) 
SchedulingSimpleBasicBlock( ) 
CalculateNodeps( ) 
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Available( ) 
GetNodeFromLinkListForSP( ) 
Depends( ) 
CalculateLiveNX( ) 
CopyInitialNodeForSP( ) 
ScheduledBefore( ) 
AddScheduledOperations( ) 
ScheduleState( ) 
ScheduleStateForSBB( ) 
Schedule( ) 
ScheduleForSBB( ) 
UpdateOne( ) 
GetMinimumIteration( ) 
GetMaximumIteration( )  
 

 
 
 
 

ClexicalAnalyser 

ATTRIBUTES 
CString m_strInput 
int strIndex 
CArray<CStmt,CStmt&> stmtArray 

METHODS 
CLexan() 
~CLexan() 
GetBlockCount() 
SetID() 
GetBlockLeaders() 
SetBasicBlockLeaders() 
SetInput(CString str) 
FormatInput() 
GenerateTokens() 
FormatInput() 
NextToken() 
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Cparser 

ATTRIBUTES 
CSymbolTable* SymbolTable 
CLexan* lex 
CString tracefilename 
CString output 
int aux_index 
int lebel 
FILE* trace 
FILE* fcode 
bool m_btrace_open 
bool m_bcode 
CCode code 
CToken lookahead 
CArray<CToken,CToken&> tary 

 

METHODS 
CParser() 
~CParser() 
Parse() 
ShowTrace() 
MakeTokens() 
ClearAllTokens() 
AddToken( 
GetAt() 
GetTarySize() 
f_data() 
f_body( 
type() 
var_decl(int) 
match_Id_data(int) 
match_Id_body() 
stmtp() 
assg() 
boolexp() 
Isboolexp() 
Isboolexpp() 
expr() 
exprp() 
term() 
factor() 
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match() 
AuxToken() 
CallExpr() 
expr1() 
term1() 
factor1() 
match1() 
ErrorMsg() 
NextToken() 
NewLebel() 
OpenFiles() 
CloseFiles() 
tmsg(CString) 
 

 
 
 
 
 

CDescriptor 

ATTRIBUTES 
RegInfo  addrReg[16] 
AddressInfo  addrRec[100] 
int  memory[2000] 
int  index 
int  memIndex 

METHODS 
getMem() 
getAReg() 
updateAddressRec() 
addAddressInfo() 
addAddressInfo() 
getAddressInfo() 
delAddressInfo() 
getIDAt() 
getReg(g) 
getID() 
addRegInfo() 
delRegInfo() 
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CSymbolTable 

ATTRIBUTES 
CArray<CToken,CToken&> stary 

METHODS 
lookup() 
lookup( 
Insert() 
Insert() 
GetLastEntry() 
GetSize() 
GetAt() 
ClearAllTokens() 
InitSymbolTable() 

 
 
 
 
 

CCell 

ATTRIBUTES 
CString m_id 
int  m_val 
int  m_flag 

METHODS 
CCell() 
CCell(CString,int=1) 
CCell(int,int) 
GetStr() 
GetFlag() 
GetString() 
GetVal() 
operator=() 
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Resource Table 

ATTRIBUTES 
CUIntArray m_Agu 
CUIntArray m_Mac 
CUIntArray m_Shift 

METHODS 
ResourceTable( ) 
InitializeResourceTable( ) 
IsResourceFree(int type) 

   

 
 
 
 
 

CToken 

ATTRIBUTES 
UINT  ID 
int   m_nValue 
CString   m_strTitle 

METHODS 
CToken() 
CToken() 
CToken( 
~CToken() 
IsConstant() 
GetID() 
GetValue() 
GetTitle() 
SetValue() 
SetID() 
SetTitle() 
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CThreeAddress 

ATTRIBUTES 
CCell  m_arg1 
CCell m_arg2 
int m_op 

METHODS 
CThreeAddress() 
CThreeAddress(int,CCell&,CCell&) 
~CThreeAddress() 
GetStr() 

 
 
 
 
 
 
 

CBasicBlock 

ATTRIBUTES 
CLinkList<CInstruction> m_LLInstruction  
CLinkList<CToken>    m_LLLiveVariables 
int  m_nNextBlock// 
int   m_nBno 

METHODS 
CBasicBlock() 
 ~CBasicBlock() 
CBasicBlock(CBasicBlock &bb) 
operator =() 
SetBlockNum() 
GetBlockNum() 
SetNextBlockNum(int num) 
GetNextBlockNum() 
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CCodeGenerator 

ATTRIBUTES 
CLexan* pLexan 
CAddressDescp*  pAddD 
CRegisterDescp*  pRegD 
VarInfo  varLive[100  
CArray<CBasicBlock,CBasicBlock&>  bbArray 
CStringArray  strFinal 

METHODS 
CCodeGenerator() 
~CCodeGenerator() 
SetStmtTypes() 
CodeGeneration() 
GenerateCode() 
SetBasicBlocks() 
LoopCode() 
AssgtCode() 
RelOpCode() 
ConditionalCode() 
BinOpCode() 
LabelCode() 
JumpCode() 
UpdateVarInfo() 
VarDeclaration() 
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Section four 

Results and Conclusion 
 

 

 

 

 

Here we list the results we were able to achieve due to the various optimizations. 

The results are confined only to the SAO since the FSAG was only a prototype 

and no results were expected out of it. This section provides recommendation for 

anyone who is interested in any such future work. 

I- Results 

The following results show how much optimization was achieved when different 

optimization levels were selected. 
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/////////////////////////Input Code/////////////////////////// 

repeat(40) 
{ 
 r0 = *(a1)++; 
 r1 = *(a2)++; 
 r2 += r0 * r1; 
} 

 
 
///////////////////////Output//////////////////////////////// 
 r0=*(a1)++    ; 

 repeat(39)  

 { 
 r1=*(a2)++   ; 

r2+=r0*r1     ||  
r0=*(a1)++   ; 

  } 
 r1=*(a2)++ 
 r2+=r0*r1 
 
 
 

   Simple Serial Code 
Total Cycle Count:  40 * 3 = 120 

   Software Pipelined Code 
Total Cycle Count:  39 * 2 =  78 
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/////////////////////////Input Code/////////////////////////// 

repeat(40) 
{ 
 r0 = *(a1)++; 
 r1 = *(a2)++; 
 r2 += r0 * r1; 
} 

------------------------Output---------------------- 
 repeat(10) 
 { 
  r4=*(a1)++ 
  r8=*(a2)++ 
  r2+=r4*r8 
 
  r5=*(a1)++ 
  r9=*(a2)++ 
  r2+=r5*r9 
 
  r6=*(a1)++ 
  r10=*(a2)++ 
  r2+=r6*r10 
 
  r7=*(a1)++ 
  r11=*(a2)++ 
  r2+=r7*r11 
 } 
 
 
 
 
 
 

   Simple Serial Code 
Total Cycle Count:  40 * 3 = 120 

   Unrolled Code 
Here the code is not parallelized. 
 
It is only shown here to show the result of 
this particular algorithm. 
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 r4=*(a1)++  ||  
 r5=*(a1)++  ||  
 r6=*(a1)++  ||  
 r7=*(a1)++   ; 
 
 repeat(9)    
 {    
  r8=*(a2)++  ||  
  r9=*(a2)++  ||  
  r10=*(a2)++  ||  
  r11=*(a2)++   ; 
  r2+=r4*r8     ; 
  r2+=r5*r9     ; 
  r2+=r6*r10   ; 
  r2+=r7*r11  ||  
  r4=*(a1)++  ||  
  r5=*(a1)++  ||  
  r6=*(a1)++  ||  
  r7=*(a1)++   ; 
 } 
 r8=*(a2)++ 
 r2+=r4*r8 
 r9=*(a2)++ 
 r2+=r5*r9 
 r10=*(a2)++ 
 r2+=r6*r10 
 r11=*(a2)++ 
 r2+=r7*r11 
 
 
 

   Software Pipelined and Unrolled Code 
 Total Cycle Count:  9 * 5 = 45 
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  r4=r2 
 r5=0 
 r6=0 
 r7=0 
 r8=*(a1)++  ||  
 r9=*(a1)++  ||  
 r10=*(a1)++  ||  
 r11=*(a1)++   ; 
 repeat(9)    
 {    
  r0=*(a2)++  ||  
  r1=*(a2)++  ||  
  r2=*(a2)++  ||  
  r3=*(a2)++   ; 
  r4+=r8*r0    ||  
  r5+=r9*r1    ||  
  r6+=r10*r2  ||  
  r7+=r11*r3  ||  
  r8=*(a1)++  ||  
  r9=*(a1)++  ||  
  r10=*(a1)++  ||  
  r11=*(a1)++   ; 
 } 
 r0=*(a2)++ 
 r4+=r8*r0 
 r1=*(a2)++ 
 r5+=r9*r1 
 r2=*(a2)++ 
 r6+=r10*r2 
 r3=*(a2)++ 
 r7+=r11*r3 
 r4=r4+r6  
 r5=r5+r7  
 r4=r4+r5;   r2=r4 
 

Software Pipelined, Unrolled and   
   Accumulator Expanded Code 
 
Total Cycle Count:  9 * 2 = 18 
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II- Analysis and Conclusions 

From the above shown results it is quite obvious that the targeted time 

optimization levels have been achieved. However, if the user is constrained by 

any memory limitations, then the optimizations can be turned off which would 

result in space optimized code. It is important to note that we have aimed only for 

time optimizations, code size was not a limiting factor. The increase in code size 

is usually by a known factor; hence it can be estimated at run-time if the code 

size would reach unwanted limits. 

We were able to achieve most of our goals. While setting these goals, we kept in 

our mind the time limitations. There are some optimization features that can still 

be incorporated in the SAO. These are mentioned in the recommendations. 

III- Future Recommendations 

Compiler optimization is an ever-progressing field. Researchers all over the world 

are in the process of discovering and developing new  techniques. These 

different optimization techniques work miraculously on different VLIW 

processors. There are some advanced features provided in ME-2 that would 

make time optimizations even more efficient. However, we have tried to follow 

suit of some already implemented standard optimization techniques.  

Following are some of the interesting advancement that can be made into the 

ME-2 compiler 

 The GNU c compiler used as the front-end serial code generator contains a 

lot of built in optimization. However, due to poor documentation and help 

material its very difficult to use them efficiently. Some work can be done to 

extract and use the built-in optimizations from the GNU C Compiler. 

 ME-2 has some advanced architectural features like the delay line and the 

data pointer registers. These have so far not been incorporated into the 

SAO. Though there is no standard technique for implementation of these 
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techniques, however, if time and resources are given, new techniques can 

be and should be developed. 

 

This brings us to the end of this dissertation. We have tried our best to present it 

in the truest form what our whole project was all about.  
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Appendix A 

Serial Assembly Format 

The Serial Assembly Optimizer (SAO) is the low-level optimizing module of the 

ME 2 C compiler. It converts the input serial assembly into Optimized Parallel 

Assembly. Since ME-2 is a VLIW processor designed to run DSP algorithms, 

thus SAO strongly consider the architectural features of ME 2 and implements 

optimization techniques used for efficient mapping of DSP Algorithms on VLIW 

processors. 

The input to the SAO may come from: 

 The front-end C compiler converting C/C++ code into serial assembly 

 Hand coded Serial Code from a Programmer 

In both the cases the compiler or the programmer do not have to concern with 

the various issues regarding  

 Parallel execution of the various instructions 

 Instruction Latencies 

However, a standard format of the Serial Assembly must be established. There is 

the issue of whether the intermediate form is appropriate for the kinds and 

degree of optimization to be performed. Some optimizations may be hard to do at 

all on a given intermediate representations (IR), and some may take much longer 

to do than they would on another representation. In the present case IR is 

actually the serial assembly, which uses the same instruction set as the final 

optimized parallel assembly. The problem arises due to the fact that there are too 

many ways of doing the same thing and everyone was born with a unique mind. 

The instruction set has ample instructions to confuse the best amongst us. So it 

is quite natural that the two programmers, hand coding the same C code, may 
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translate it into completely different Serial Assembly code, thus justifying the 

need for this document.  

The following pages contain several examples showing the C code as well as the 

expected input serial assembly. This format is optimal for the implementation of 

the architecture specific optimization techniques. The following discussion also 

includes why, in some cases, the specified format is desired. 

Note: this document at present does not cover the various issues regarding the specific use of registers. It 
has been assumed that no registers are being used for special purposes. However, it is expected that these 
issues shall be covered 
 

A-1) Register Allocation 

Registers should be used with as little re-use of register as possible. Some high 

level optimization may try to reuse register by saving the contents of a register in 

memory. This should be avoided and the registers may only be reused when 

there is no empty register available.  

It may not be necessary to declare certain variables in the memory. Instead, the 

variables can be assigned to registers directly and used/modified without any 

load store from the memory. If a variable is declared and used within the same 

function or block, then there is no need for its declaration in the assembly code. 

We can directly use a register. How ever, if the variable is a pointer, or an array 

or a reference, than it needs to be stored at the end of the block or procedure. 

A-2) For Loops 

For loops should be replaced with repeat statements of the serial assembly. The 

loop count can be a constant value, or a value in a register. The value in a 

register can be loaded from a memory location or it can be decided at run-time. 
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A-3) If-else and Predicated Execution 

While dealing with if-else statements, it is desirous to have as much use of IFT, 

IFF and IFA constructs as possible. However in certain unavoidable 

circumstances, conditional jumps may also be used. But the top priority should 

go to predicated execution of such statements. There is a dependency that if any 

AGU instruction is dependent on a ‘t’ bit, then there should be at least a 

difference of two cycles between the setting of ‘t’ bit and the use of that AGU 

instruction. So if most of the AGU instructions in the code are  dependent on ‘t’ 

bit, then  instead of ‘t’, ‘b’ bits should be used. But if we have only the MAC 

instructions that depend upon the ‘t’ bit, then ift, ifj and ifa should be used. 

Here are some code samples 

A-4) Auto Correlation 

The C code below might seem quite frightening and the Serial Assembly 

surprisingly simpler. The arrays should be handled with the following shown 

procedures. The address registers are assigned to specific locations ( other 

address registers) in the outer loop and the loop counter 

for (i = 1; i <= m; i++) 
{ 

sum = 0; 
     for(j=0; j<L_WINDOW-i; j++) 
      sum = L_mac(sum, y[j], y[j+i]); 
 
     sum = L_shl(sum, norm); 
     r_32[i] = sum; 
}  
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 
here   sum = L_mac(sum, y[i], y[i+j] ) means 
 sum += y[i] * y[i+j] 
///////////////////////////////////////////////////////////////// 
 
short y[240]; 
int r[12]; 
  
A0=&y; 
A5=&r; 
R12=L_WINDOW 
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A3  = A0; 
 
REPEAT (#20) 
{ 
 A1  = A3++; 
 A2  = A0; 
 R0  = #0; 
 R12 --; 
 
 REPEAT (R12) 
 { 
  R1  =  *(A2) ++; 
  R2  =  *(A1) ++; 
  R0  +=  R1*R2; 
 } 
 R0  = norm(R0); 
 *(A5)++ = R0; 
} 
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C Code Assembly 
Loading of Short and Integer Values 
short a; 
int main() 
{ 
 a = 3;       
 return 0; 
}  

//A0->a 
 
main() 
{ 
  int a; 
  A0   = &a; 
  R0   =  #3 
  *A0  =  R0.i 
 
/* Use a new register even if R0 is 
free for use now*/ 
  R1   =  #0   
  return  R1 
}   
 
 

Addition of Short Values 
 
short a,b,c; 
int main() 
{ 
 a = 3;       
 b=13; 
 c=a+b; 
 return 0; 
} 

// A2->c 
 
main() 
{  
  int c; 
  A2  = &c  
  R0  = #3 
  R1  = #13 
  R2  = R0 + R1 
  *A2 = R2.i  
  R3  =  #0 
  return  R3 
}   
 
 

Multiple Expressions 
 
short a,b,c,d; 
 
int main() 
{ 
 a = 3;       
 b=13; 
  
 d=a+b+c; 
 return 0; 
} 

 
//A0->c , A2->d 
 
main() 
{  
  int c,d; 
  A0  = &c 
  A2  = &d  
  R0  = #3 
  R1  = #13 
  R2.i= *A0 
  R0  = R0 + R1 
  R3  = R0 + R2 
  *A2 = R3.i 
  R4  = #0 
  return R4  
}   
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C Code Assembly 
If else 
 
short a,b,c,d; 
 
int main() 
{ 
 a = 3;       
 b=13; 
  
 if (a>b) 
  b=5; 
 else 
  a=5; 
 return 0; 
} 

 
 
main() 
{  
  int a ; 
  int b ; 
  A0  = &a 
  A1  = &b 
  R0  = 3 
  R1  = 13 
  T1  = R0>R1 
   
  IFT1 R1 = 5; 
  IFF1 R0 = 5; 
   
  R0  = *A0 
  R1  = *A1 
   
  RETURN 0; 
}   
 
 

Nested If 
 
short a,b,c,d; 
 
 
int main() 
{ 
 a = 3;       
 b=13; 
  
 if (a>=b) 
 { 
  b=5; 
  if (a==b) 
   a=4; 
 
  else 
   a=5; 
 } 
 return 0; 
} 

 
 
main() 
{ 
  int a ; 
  int b ; 
  A0  = &a 
  A1  = &b 
  R0  = #3 
  R1  = #13 
   
  B=R0>=R1 
  If !(b) jump L1 
   
  R1 = #5  
  T1 =  R0=R1 
   
  IFT1 R1 = #4; 
  IFF1 R1 = #5; 
 
  R1  = *A0 
L1: 
 RETURN 0 
}   
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C Code Assembly 
Use of t bits. 
 
Int Iclmp [1024]; 
Int *Icl; 
Int a; 
 
Icl = Iclmp + 512; 
 
For( a= - 512; a < 512 ; a++) 
{ 
    if (a<-256) 
           Icl [a] = -256; 
    Else if (a > 256) 
           Icl [a] = 255; 
    Else 
           Icl [a] = a; 
} 
 
 
 
//Explanation 
 
//In the array of 1024 elements,  
//First 256 elements are set to –256. 
//Last 256 elements are set to 255. 
//Remaining is set to the index ‘a’. 
 

 
The best which a user can give 
 
A0 = & Iclmp 
A1 = & Icl 
 
R0 = 0 
Repeat(1024) 
{ 
     R1 = R0        //Icl[a] = a 
     t1   = R0< 256  
     ift1   R1 = -256 //Icl[a]=-256 
     
     t2   = R0> 868 
     ift2   R1 = 255  //Icl[a]=255 
     *(A0)++ = R1 
     R0++ 
} 
 
 
 
 
//Note here that 
* Since we can do all the work by 
simply using a single ‘t’ bit. But 
if the code is written like 
 
A0 = & Iclmp 
A1 = & Icl 
 
R0 = 0 
Repeat(1024) 
{ 
     R1 = R0        //Icl[a] = a 
     t1   = R0< 256  
     ift1   R1 = -256 //Icl[a]=-256 
     
     t1   = R0> 868 
     ift1   R1 = 255  //Icl[a]=255 
     *(A0)++ = R1 
     R0++ 
} 
 
then extra dependencies arise. 
So use a new ‘t’ bit even if the 
previous one is free for use. 
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C Code Assembly 
For Loop 
short a,b,c,d; 
 
 
int main() 
{ 
 a = 3;       
 b=0; 
  
 for (a=0;a<10;a++) 
  b=b+a; 
 return 0; 
} 

 
main() 
{ 
  int b; 
  A0  = &b 
   
  //R0  = #3 // redundant 
  R0  = #0;   
  R1  = #0 
  repeat( #10) 
  { 
    R1 = R1 + R0; 
    R0++ 
  } 
  R1  = *(A0)   
  Return 0; 
}   
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