

MODEL DRIVEN VISUAL PROGRAMMING LANGUAGE

(MDVPL)

By

NC Aisha Saeed

PC Asna Suhail Zaman

ASC Muhammad Umer

Submitted to the Faculty of Computing Software Engineering

National University of Sciences and Technology, Islamabad in partial fulfillment

For the requirement of a B.E. Degree in Computer Software Engineering

MAY 2016

ABSTRACT

MODEL DRIVEN VISUAL PROGRAMMING LANGUAGE

In computing, a visual programming language (VPL) is any programming language that lets users

create programs by manipulating program elements graphically rather than by specifying them

textually. A VPL allows programming with visual expressions, spatial arrangements of text and graphic

symbols, used either as elements of syntax or secondary notation. For example, many VPLs (known as

dataflow or diagrammatic programming) are based on the idea of "boxes and arrows", where boxes or

other screen objects are treated as entities, connected by arrows, lines or arcs which represent

relations.

http://en.wikipedia.org/wiki/Computing
http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/Computer_program
http://en.wikipedia.org/wiki/Syntax
http://en.wikipedia.org/wiki/Secondary_notation

CERTIFICATE FOR CORRECTNESS AND APPROVAL

Certified that work contained in the thesis – Model Driven Visual Programming

Language carried out by Aisha Saeed, Asna Suhail Zaman, Muhammad Umer under

supervision of Dr. Tauseef Rana for partial fulfilment of Degree of Bachelor of

Software Engineering is correct and approved.

Approved by

 Dr. Tauseef Rana

CSE

DEPTARTMENT

DATED:___________________ MCS

DECLARATION

No portion of the work presented in this dissertation has been submitted in support of

another award or qualification either at this institution or elsewhere.

DEDICATION

In the name of Allah, the Most Merciful, the Most Beneficent

To our parents, without whose unflinching support and unstinting cooperation,

a work of this magnitude would not have been possible

ACKNOWLEDGEMENTS

There is no success without the will of ALLAH Almighty. We are grateful to ALLAH,

who has given us guidance, strength and enabled us to accomplish this task.

Whatever we have achieved, we owe it to Him, in totality. We are also grateful to our

parents and family and well-wishers for their admirable support and their critical

reviews. We would like to thank our supervisor Dr. Tauseef Rana, for his continuous

guidance and motivation throughout the course of our project. Without their help we

would have not been able to accomplish anything.

Chapter 1: Introduction

1.1 Overview

This project provides an environment for students to learn the basic concepts of

programming by using the graphical elements and connecting them to create a

program.

1.2 Problem Statement

Our aim is to develop a visual programming language which will provide the students

of computer science a platform to learn the basic concepts of programming.

1.3 Approach

To create a visual programming language which is based on a model. The model

driven approach makes it extendable and new functionality can be added as needed.

1.4 Scope

The motivation behind this project is to help out anyone who doesn’t know how to

code by moving the focus of work from programming to solution modeling. It will be

done by constructing and transforming models that can be round-trip engineered into

code which will increase development productivity and quality by describing important

aspects of a solution with more human-friendly abstractions and by generating

common application fragments with templates.

The one who will be using this product will have no involvement in the background

coding being done by the developer. The user will only be able to use visual

expressions, spatial arrangements of text, graphic symbols and will drag & drop the

objects, being provided by this product but will have no access to the backend

processes and hence will be able to create programs without having any knowledge

regarding programming.

 11

1.5 Objectives

During the course of this project, all the aspects of software engineering will be

covered i.e Requirement gathering, software design, implementation and testing along

with documentation (SRS, SDS, Test Document, Final Report and User manual).

1.6 Deliverables

 12

Sr. Tasks Deliverables

1 Literature Review Literature Survey

2 Requirements Gathering SRS Document

3 Application Design Design Document (SDS)

4 Implementation Implementation on computer with a live test to show the

accuracy and ability of the project

5 Testing Evaluation plan and test document

6 Training Deployment Plan

7 Deployment Complete application along with

necessary documentation

Chapter 2: Literature Review

There were a few projects that were based on the idea of thought recognition following is a

detailed description of projects previously carried out in this context.

1) Liberherr

For adaptive OOP, a system was produced by Liberherr who used graph-based

customization. Adaptive OOP helps to view such items which are important for

an application as they do not commit themselves to a class structure of the

respective application. In order to develop a resultant system, a class structure

which is compatible can be used which can be automatically integrated.

2) VanHilst and Notkin:

Using templates of the class for programming in an unstructured manner, a

method was generated by VanHilst and Notkin. Some aspect/behavior was

expressed by each class used. When combine the class templates or behaviors

by using inheritance, an object can be created which is the result. Thus, a small

piece of code has this structure whereas the rest of the code has unstructured

pieces relatively.

 13

Chapter 3: Software Requirement Specification

3.1 Introduction

3.1 .1 Purpose

This document details the software requirements specification for the Model Driven

Visual Programming Language. It reflects all the requirements, constraints and design

activities of this project. The release number of the software is 1.0.

In designing a software product model driven approach is used which is a set of rules

that defines the basic structure and logics of the language, expressed as a model,

used in the project.

A Visual Programming Language is a programming language which enables the user

to create programs by using pre-defined graphical objects/elements instead of using

the conventional way of creating programs i.e. by writing the lines of code in any

programming language.

The main purpose of developing the Model Driven Visual Programming Language is to

provide those people with the platform to create programs who have no or very little

knowledge about software development and who do not have any level of skill in any

programming language.

3.1.2 Document Conventions

Italics: The words in italics are further explained in the glossary.

3.1.3 Intended Audience and Reading Suggestions

The Intended audience for this document is listed below:

 14

3.1.3.1 Examiners/Evaluators

The document will provide the FYP evaluators with the scope, requirements and

details of the project to be built. It will also be used as basis for the evaluation of the

implementation and final project.

3.1.3.2 Developers

The document will provide guidance to the developers to determine what the

requirements are and how they should continue with the project.

3.1.3.3 Project Supervisor

This document will be used by the project supervisor to check whether all the

requirements have been understood and in the end whether the requirements have

been implemented properly and completely.

3.1.3.4 Project Testers

Project testers can use this document as a base for their testing strategy as some

bugs are easier to find using a requirements document. It will help in building up test

cases for the testing process. This way testing becomes more methodically organized.

3.1.3.5 Up gradation Engineers

Up gradation engineers can review projects capabilities and more easily understand

where their efforts should be targeted to improve or add more features to it. It sets the

guidelines for future developments.

3.1.3.6 End Users

This document can be read by the end users if they wish to know what the project is

about and what requirements have been fulfilled in this project.

 15

3.1.4 Product Scope

This project will assist anyone who has no knowledge about coding by orienting their

focus of work from programming to solution modeling. It will be done by constructing a

model which will be engineered into code in such a way that will help to produce such

abstractions and graphical templates which will help a novice to get along with this

language very easily.

The one who will be using this product will have no involvement in the background

coding being done by the developer. The user will only be able to use visual

expressions, spatial arrangements of text, graphic symbols and will drag & drop the

objects, being provided by this product but will have no access to the backend

processes and hence will be able to create programs without having any knowledge

regarding programming.

3.2 OVERALL DESCRIPTION

3.2.1 Product Perspective

Computer programming is a skill which requires a lot of practice and time to master it.

Maintaining huge amount of data and performing big calculations can be very hectic

and time consuming. By programming in certain language we can develop such

software which can help us maintain huge data and perform big calculation in very

short time and efficiently.

But what if someone wants to develop such software but he/she do not have any

knowledge about any programming language and do not have any skills in

programming? How can such a person develop software? To solve this problem we

introduce a “VISUAL PROGRAMMING LANGUAGE” which contains set of predefined

elements which users can drag and drop into the work space and a complete working

 16

program/software can be developed using only these elements without writing any line

of code.

3.2.2 Product Function

This Visual Programming Language have the following functionalities:

 Provides graphical units/elements which users can drag and drop.

 Each unit/element performs a specific function.

 These graphical units/elements can be integrated together to create a working

program or software.

 There is no need to write any line of code.

 All the code is generated automatically at the back end.

3.2.3 User Classes and Characteristics

Following are our targeted users:

 Beginners: The students of school or colleges who have no knowledge of

programming.

 Novice: The first year students of universities who have no or very little

knowledge about programming.

 Both users and their interaction with the system is shown in

Figure A.

 17

Beginner

Novice

Create
New

Program

Edit Existing
Program

Drag/Drop objects

Save Program Delete Program

Execute Program

<<extend>> <<extend>>

<<extend>>

<<extend>>

<<include>>

<<include>>

 Figure A.

3.2.4 Operating Environment

 Microsoft Windows/Mac OS/Linux

 Eclipse IDE

 Graphical Modeling Framework

 Eclipse Modeling Framework

3.2.5 Design and Implementation Constraints

 The user can only use the predefined graphical elements to create a

program.

 The language is using a model driven approach.

 User can create programs by following the tutorials given in the user

manual.

 18

3.2.6 User Documentation

A user manual will be provided which will help new users to get started with the

Visual Programming Language. The user manual will provide the instructions on how

to work with this Visual Programming Language.

A summary will also be provided to the user which will highlight the features and

limitations of this language.

3.2.7 Dependencies

 The system requires Eclipse IDE to run the program.

 The system also requires two Eclipse modeling framework (EMF and GMF) to

run the program.

3.3 External Interface Requirements

3.3.1 User Interfaces

Figure B.

 19

3.3.2 Hardware Interfaces

 We do not require any hardware for this project.

3.3.3 Software Interfaces

 This Model Driven Visual Programming Language will be developed in Java

and we will be using the Eclipse IDE.

 Microsoft Windows OS/Mac OS/Linux will be required to run this language.

3.3.4 Communication Interfaces

 N/A - No communication interfaces are required.

3.4 System Features

3.4.1 Tool Bar

The tool bar will provide the options to save a current project or open any previous

project. The tool bar will also have the button to compile and run the program.

3.4.2 Tool Box

The tool box will contain all the graphical objects/elements which will be used for the

programming.

3.4.3 Work Space

The editor where the graphical objects will be dropped to interact with each other.

 20

In the work space the user will create his/her own logic and implement the

objects/elements according to the requirements to obtain the desired

program/software.

3.4.4 Error Detection

Whenever the user will make any syntax error or logical error or give invalid input the

error will be detected and the error will be displayed on the screen.

3.4 Non-Functional Requirements

3.5.1 Performance Requirements

3.5.1.1 Response Time

The response time of the system is very less.

 3.5.1.2 Capacity

 At a time user would be able to execute only one program.

 3.5.2 Safety Requirements

 The system editor shall not crash accidently even if a program fails to execute.

 The user program will be saved automatically after some time, so in case of

system shutdown the user will not lose the program.

3.5.3 Software Quality Attributes

3.5.3.1 Extensibility and Maintainability

As model driven architecture is inherently extensible therefore the model used in this

software can be extended and further developed.

 21

3.5.3.2 Portability

As the programming on back end is in java so with the help of JVM (Java Virtual

Machine) the program written on one platform can be ported to other platforms without

making any changes to the program.

3.5.3.3 Robustness

The system shall not terminate in case the user tries to create multiple programs

because the system does not allow the user to perform two tasks simultaneously.

3.5.3.4 Usability

The new user will be able to create program after following a quick tutorial given in the

user manual.

 22

Chapter 4: Design and Development

4.1 Introduction

This design document contains all functional requirements and displays their

relationships with each other conceptually. This document also shows our planning

towards implementation of our project. It contains diagrams which shows the design of

the language and user interaction with the language followed by their responses. This

document also consists of some tradeoffs of few aspects of the design, intended to be

included.

4.1.1 Purpose of this Document

The aim of this document is to present the detailed design description of our project. It

will explain the aim and features of the language, the interface of the IDE, which

graphical objects it provides, the model on which it will work, the constraints under

which it must operate and how the language will run the different programs. This

document is intended for both the stakeholders and the developers of the system. It

will explain that how users with no programming skills create programs by dragging

and dropping objects from predefined set of elements.

4.1.2 Scope of the Development Project

This project will assist anyone who has no knowledge about coding stuff by

orienting their focus of work from programming to solution modeling. It will be done by

constructing a model which will be engineered into code in such a way that will help to

produce such abstractions and graphical templates which will help a novice to get

along with this language very easily. The one who will be using this product will have

23

no involvement in the background coding being done by the developer. The user will

 only be able to use visual expressions, spatial arrangements of text, graphic symbols

and will drag & drop the objects, being provided by this product but will have no

access to the backend processes and hence will be able to create programs without

having any knowledge regarding programming.

4.1.3 Definitions, acronyms, and abbreviations

4.1.3.1 Visual Programming language:

In computing, a visual programming language (VPL) is any programming language

that lets users create programs by manipulating program elements graphically rather

than by specifying them textually.

4.1.3.2. Model Driven Architecture:

Model-driven architecture (MDA) is a software design approach for the development

of software systems. It provides a set of guidelines for the structuring of specifications,

which are expressed as models. Model-driven architecture is a kind of domain

engineering, and supports model-driven engineering of software systems.

4.1.4 Overview of document

The document is divided into sections and is already listed in the table of contents and

figures list. However, here is a brief description of all the sections.

4.1.4.1 System Architecture Description

Here, the overall architecture of our language is described, including the introduction

 24

 of various components. It has a system Architecture diagram which shows an

insider’s perspective of the project by describing the high level software components

that perform the major functions to make the project operational.

4.1.4.2 Structure and relationships

 In this section, the interrelationships and dependencies among various components

are discussed. It is mainly described by a UML Class diagram also helps us

understanding the system structure.

4.1.4.2.1 UML Class diagram

UML Class diagram further manifests the description of low level components of the

software that include the language editor and graphical elements, thus making the

system adequately comprehensible.

4.1.4.3 User Interface Issues

This section ponders upon the main principles of the project's user interface. Not

touching about the technical details, the section is described by an overall diagram.

Moreover, UML Activity diagrams, UML Sequence diagrams, and UI Design diagrams

also elaborate the User Interface issues in a more intelligible manner.

4.1.4.3.1 UML Activity diagrams

UML Activity Diagrams follow a workflow-based approach to describe the overall

functioning of the project. They are a very good means to see how various steps are

involved in major tasks inside our project using a flow chart pattern without getting into

the technical details.

 25

4.1.4.3.2 UML Sequence diagrams

UML Sequence diagrams show how different steps are involved in the completion of a

functionality of the project. They have a unique format that allows the reader to see

how many graphical objects are used in a sequence for the completion of a system

requirement.

4.1.4.4 UI Design

Some snapshots of graphical user interfaces are shown in this section that prototype

the way a user shall be interacting with the system.

4.1.4.5 Detailed description of components

This section contains detailed description of all the major components of the system in

a structured pattern (table), comprising of 10 x rows. The pattern (table) maintains

symmetry in the document structure; and therefore it is followed for each of the

components. Each part/row of the table is identified by a label, explaining the purpose

of each point. The description of each point vis-à-vis the component being discussed,

ponders upon the detailed account of it in the system.

4.1.4.6 Reusability and relationships to other products

This section highlights the Reusability aspects of the various components of the

system. Since the project in hand is all new and doesn’t carry out any enhancement

work in the already existing system, so Reusability is just a recommended strategy to

be employed while organizing various system components.

4.1.4.7 Design decisions and tradeoffs

This section focuses upon various design decisions and the ideas behind those. It

enables the reader to understand the important crux of the design that is being used

 26

while excavating a bit more about the motivations behind those decisions.

4.2 System Architecture Description

4.2.1 Overview of the modules

The system will be architected mainly in 2 fundamental modules “Front End Interface”

and “Core System” having other sub modules too as shown in the following abstract

diagram:

Figure 1 - Overview of the Modules

 27

4.2.1.1 Description of the modules

The “Front End Interface” will be used by the user to give input by dragging and

dropping elements. Once user has created his program, the program will be executed.

The elements are converted into Java code, and processed information will lead to

generation of final results in “Generate Results” module; where from the result will be

sent back to the “Front End Interface”.

4.2.1.2 System Architecture

Layered Architecture (2-Tiers) will be used to implement MDVPL. First layer is the

Presentation layer which comprises of our Language Editor (IDE). Second layer which

is the Business Logic layer comprises of various services provided by MDVPL.

28

Figure 2 - System Architecture

4.2.1.3 Layers Details

The details of the layers have been discussed below.

Presentation Layer

The presentation layer provides the platform for interaction of the users (Programmer)

with the system. It displays Graphical Elements to the user and accepts input from the

user. The Presentation layer can only receive input from and return responses to, an

outside agent. The Presentation layer also sends acquired input to the Business Logic

layer.

 29

Business Logic

Business Logic has been used as a service layer to expose the business functionality

of the tool. Comprising of elements of “Conversion to Java”, “Display Errors”, “Display

Output” and “Display Code”, the layer caters for the core functionality of the system.

4.2.2 Structure and Relationships

Focusing upon the internal structure of the system, this section ponders upon the

interrelationships and dependencies among various components.

4.2.2.1. Overall Structure of the system

The diagram shows the main components of the system along with their interactions

with each other. It mainly describes the system structure which is further augmented

by the explanatory text as follows:

Figure 3 - Overall Structure of the System

 30

4.2.2.1.1 Front End Interface

Front End Interface caters for the visual needs of the tool, wherein the Human-

Computer-Interaction aspects are considered to enable the user to communicate with

the system profoundly. It is connected with the Core System, and Generate Results

modules to pass on the user inputs as well as display the output feedback to the user

respectively.

4.2.2.1.2 Core System

This Core System comprises of execution of User Input by converting user program

into Java code. Errors and Generated Results are send to Front End Interface for user

to view.

4.2.2.1.3 User Input

User Input is received in the first module (Front End Interface) and then sent to

Second module (Core System).

4.2.2.1.4 Execute

In this, User Input is mapped with the model and therefore converted to the

corresponding Java code.

4.2.2.1.5 Java Compiler

The converted Java Code is compiled and executed.

4.2.2.1.6 Check Errors

Errors are checked and displayed to the user. User can edit their program.

 31

4.2.2.1.7 Results

Output is generated and sent to the “Front End Interface” module.

4.2.2.2 Use Case Diagram

Figure 4 – Use Case Diagram

 32

4.2.2.3 Class Diagram With Description

Figure 5 – Class Diagram

4.2.2.3.1 Description of Diagram

4.2.2.3.1.1 Math Diagram

This Class Provides the interface to the user and sends User input to respective

classes.

4.2.2.3.1.2 Logical Operators

This class provides the functionality of logical operators i.e., AND, OR, NOT, XOR.

33

4.2.2.3.1.3 Math Operators

This class provides the functionality of math operations i.e., +, -, *, /, %.

4.2.3 User Interface Issues

Figure 6 – User Interface Issues

4.2.3.1 Description of the diagram

4.2.3.1.1 IDE

It harnesses all the functionalities of the application, including all the interactions

involved between the user and the system. It is supported by various buttons to meet

all the requirements of the users and enable them to interact with the system.

 34

4.2.3.1.2 Tool Bar

It consists of various functionalities, such as, Creating Project, Saving Project, Open

existing Project, Deleting Project, Executing Project, Help about the tool, etc.

4.2.3.1.3 Tool Box

It contains all the Graphical Elements which User can use to create program.

4.2.3.1.4 Graphical Elements

These elements are chosen by the user as per his requirement to create program.

They are dragged and then dropped on to workspace.

4.2.3.1.5 Workspace

This is used by the user to create his program. This is where he drags and then drops

the graphical elements.

4.2.3.1.6 Output

The output generated, once the program is executed, is displayed on the output

window.

4.2.3.2 UML Activity Diagram

This section shows the activities that a user need to preform to accomplish a task.

 35

4.2.3.2.1 Execute Program

Description: This scenario describes the flow of activities necessary for the user to

execute a program.

Figure 7 – Execute Program Activity

4.2.3.2.2 Edit Program

Description: This scenario describes the flow of activities necessary for the user to edit

an existing program.

 36

Figure 8 – Edit Program Activity

4.2.3.2.3 Delete Program

Description: This scenario describes the flow of activities necessary for the user to

delete an existing program.

Figure 9 – Delete Program Activity

 37

4.2.3.3 UML Sequence Diagrams

Different Scenarios and their corresponding events are discussed in this section with

the help of sequence diagrams.

4.2.3.3.1 Execute Program

Description: This scenario describes the sequence of events that take place when

user executes a program. The alternative prospects of the events have also been

catered for in case his program contains error.

Figure 10 – Execute Program Sequence

 38

4.2.3.3.2 Edit Program

Description: This scenario describes the sequence of events that take place when

user edits an existing program. The alternative prospects of the events have also been

catered for in case his program contains error.

Figure 11 – Edit Program Sequence

4.2.3.3.3 Delete Program

Description: This scenario describes the sequence of events that take place when

user deletes an existing program.

 39

Figure 12 – Delete Program Sequence

4.2.3.4 UI Design

MDVPL is a desktop application and intended to be used by the users from diverse

background knowledge. This requires that the interface of MDVPL should have an

easy learning curve for the user. Most of the important features should be visible to the

user and no functionality should be hidden.

Please note that the interface provided is just for demonstration purposes. Actual

interface may be different.

 40

Figure 13 – MDVPL Interface

 41

4.3 Detailed Description of Components

4.3.1 Tool Bar

Identification Toolbar

Type Component

Purpose User interface to access different features of the IDE.

Function Displays a bar of different buttons and each button performs its own

function.

Subordinates An array will hold different buttons, one for each option of the Tool Bar.

Dependencies Calls instances of the button class.

Interfaces Performs an action when any button is clicked.

Resources A system with installed JDK.

Processing When the IDE will start it will appear on top of the IDE.

Data Array of button classes that will be used to hold different buttons in the

Tool Bar.

 42

4.3.2 Tool Box

Identification ToolBox

Type Component

Purpose User interface to access different graphical elements of the language.

Function Displays a list of different graphical objects which user will use to create

a program.

Subordinate A panel will hold all the graphical elements.

Dependencies Calls the method of each graphical elements.

Interfaces Selects a graphical element which is clicked.

Resources Java Swing library to design the graphical elements.

Processing When the IDE will start it will appear on the left side of IDE.

Data The graphical elements will be available in a specific panel.

43

4.3.3 Work Space

Identification Workspace

Type Component

Purpose Provide user with a space to create programs.

Function Convert the graphical objects into java code in backend and then show

output.

Subordinate A panel will hold the graphical objects of all the programs.

Dependencies Uses the model to convert the graphical elements into executable code in

the backend.

Interfaces Connects different graphical elements to create a logical program.

Resources A panel on which user will create a program from graphical elements.

Processing When the IDE starts it appears in the center of the IDE when the

interface() method is called.

Data A panel in work space will hold the graphical objects of all the programs.

 44

4.3.4 Graphical Elements

Identification Graphics

Type Class

Purpose Provide different functionalities (if, while loop, logical operators,

arithmetic operators) in the graphical form.

Function To perform different operations from graphical elements.

Subordinate A panel will hold all the text fields and drop down menus.

Dependencies Graphical Elements are the basic building block of the language. These

graphical units create all the programs and all the graphical elements are

inter connected.

Interfaces Uses user input or input from other parts of program and performs a

certain action on that input data and gives the corresponding output.

Resources An input from the user or any other part of the program is required by any

graphical element to perform its action.

Processing Each graphical element is called by its specific call method when the

user drags and drops it in the work space.

Data Each graphical element will keep the input in specific variables and pass

it to other variables in other connected graphical elements.

45

4.3.5 Output

Identification Output

Type Class

Purpose To display the output of the user program

Function Show the user with the output of the created program.

Subordinate The output will be displayed in the output dialog box.

Dependencies Depends on the program created.

Interfaces Gets the input from the graphical objects of the program and gives the

corresponding output.

Resources A dialog box will be used to create output dialog box.

Processing The output display appears when the program executes by output ()

method.

Data The output values will be stored in different variables types depending on

the type of output data.

46

4.4 Reusability and Relationships to Other Products

Our Model driven visual programming language is a new language and no

enhancement is being done in any already existing language. Therefore, no explicit

component is being reused. However, the strategic aspects of future reusability of its

model are supposed to be considered. As our language is domain specific, it can be

extended and further developed whenever required.

4.5 Design Decisions and Tradeoffs

 We are creating a visual programming language by using model driven

approach because in this way a user can only create programs by

following the given model of the language without getting into language

syntax complexities.

 It is model based so that it can become extendable and can be reused in

future. Anyone can use it by just modifying the model according to

his/her domain’s requirements.

 A simpler user interface has been incorporated, so as to extend the

usability of the language to all the novice users.

 To avoid the complexity of code, graphical elements are being provided

to the user in the tool box.

4.6 Pseudo Code for Components

 4.6.1 New Program

Begin

 Open IDE

 Click File tab

 47

 Select new Program

 Drag and drop objects

 Execute the program

 If Program is correct

 Display the Output

 Else

 Display the error

 Go back to Drag/drop phase

End

4.6.2 Existing Program

Begin

 Open IDE

 Click File tab

 Select Existing Program

 Edit Program

 Drag and drop objects

 Execute the program

 If Program is correct

 Display the Output

 Else

 Display the error

 Go back to editing phase

End

 48

4.6.3 Delete Program

Begin

 Open IDE

 Click File tab

 Select existing Program

 Delete program

End

 49

Chapter 5: Project Analysis and Evaluation

5.1 Test plan Identifier:

This test plan aims for Model Driven Visual Programming Language Project. It is

named as “MDVPL Functionality Testing”. The version for this test plan is Version 1.1.

5.2 Introduction:

The purpose of this document is to outline the test strategy and overall test

approach for the MDVPL Project. This includes test methodologies, traceability,

and resources required, and estimated schedule.

 This plan will include testing of mathematical, conditional statements,

concatenation and looping functions, contained in MDVPL.

 It will also test the model of the language. It comes under component

testing.

 The type of testing being used is incremental integration testing where

we have tested math functionalities continuously as they are added both

individually and then together.

5.3 Test Items:

 Math operators are being tested which are +,-,* /.

 Other graphical elements such as Entry, Result, Loops, Conditional

statements, Concatenation and Connectors are also tested.

 Also model of the language, e.g. number of inputs given to the

operator, is tested.

 50

5.4 Features to be tested:

 Drag and drop operations of graphical entities are being tested.

 Connections made via connectors are tested.

 Also mathematical operations being performed are checked that

whether they are operating correctly or not.

 Loops, conditional statements and concatenation functionalities are tested.

5.5 Features not to be tested:

The code generated behind the program is not tested. The complier provided by

Eclipse is not tested.

5.6 Approach:

a. General Test Strategy

 Component testing will be performed on the components as they are developed. Each

component will be individually tested by using several test cases

 b. Incremental Integration Testing

As the components will be developed from the bottom-up and top- down, the test

strategy will also align to the order of development of components.This will utilize a

mostly bottom-up integration test approach, but will also involve the sandwich

integration test approach.

 51

5.7 Item pass/fail criteria:

The result obtained from the applied tests are compared with the expected results. If the

actual result is exactly the same as expected one then test case is marked as passed

otherwise failed.

5.8 Suspension criteria and resumption requirements:

If the tests are not giving appropriate results according to the expected outputs then

further testing is stopped. The criteria for pausing of testing is given below.

 If other than numeric values given to the Entry element.

 If the connectors aren’t used in an appropriate way.

 If operators aren’t working properly.

 If an operator is directly connected to the other operator

 52

5.9 Test deliverables:

Following are the test cases that will be delivered as per this plan:

53

Test Case Name Input Data Testing

Test Case Number 1

Description In this test case, values entered in

the Entry element are tested

Testing Techniques Used Black Box Testing

Preconditions There are no values inside the Entry

entity.
Input Values Any value e.g. a,3

Valid Inputs All numeric values e.g. 3,5

Steps  Enter one input an integer

 Enter other input an alphabet

 Connect both with inputs of

the operator

Expected Output No result obtained(in case other

than numeric values used)
Actual Output No result obtained

Status Passed

 54

Test Case Name Mathematical Operator

Functionality Testing
Test Case Number 2

Description In this test case, functionalities of the

mathematical operators i.e. +,- ,*, / are

tested

Testing Techniques Used Black Box testing

Preconditions No values are given to the input of the

mathematical operators.
Input Values Any numeric value e.g. 4,3

Valid Inputs All numeric values e.g. 4,3

Steps  Enter integer values by using two

entry elements.

 Connect both with inputs of the

math operator

Expected Output The numeric values are

added/subtracted/multiplied/divided
Actual Output The numeric values are

added/subtracted/multiplied/divided
Status Passed

 55

Test Case Name Connectors Connection Testing

Test Case Number 3

Description In this test case, the way the

connectors are used, is tested.
Testing Techniques Used Black Box testing

Preconditions Values are in the Entry elements.

Input Values Input to Entry/Result connector is

used.
Valid Inputs Entry/Result to Input connector is

used
Steps  Enter integer values by using two

Entry elements.

 Connect both with inputs of

the operator using Input to

Entry/Result connector

Expected Output Does not work

Actual Output Does not work

Status Passed

56

Test Case Name Operators Connection Testing

Test Case Number 4

Description In this test case, the way the

operators are connected, is tested.
Testing Techniques Used Black Box testing

Preconditions Values are in the Entry elements.

Input Values One operator connected directly

with other operator
Valid Inputs The output from operator to be

connected with the Result entity first

and then further connected to the

other operator as input

Steps  Enter integer values by using two

Entry elements.

 Connect both with inputs of

the operator.

 Connect the output of the

operator with the input of

another operator

 Connect output of the second

operator with the Result

element

Expected Output No Output

Actual Output No Output

Status Passed

5.10 Testing task

5.11 Environmental needs:

a. Hardware:

No hardware required b.

b. Software:

Eclipse luna

 57

Testing Tasks Assi

gne

d to Component Testing Developer

Incremental Integration Testing Developer

Acceptance Testing Customer/Project Manager

Reports Verification Customer/Project Manager

UI Requirements Verification Customer

Defect Reporting Customer/Project

Manager/Developer

5.12 Responsibilities:

 58

Roles Responsibilities

Test Manager  Generates test plan & test

resources

 Reviews the requirement

analysis, system architecture

design & object design

 Generates Test Cases

 Periodically updates the

Program Director on the

progress of test execution

Test Leads  Create detailed test specifications

 Manage day-to-day progress of

subcomponents and compile and

report the metrics to the test

manager

 Ensures testers makes adequate

progress & follow strategy defined

by test manager

Component Testers  Responsible for test execution

o on daily basis

5.13 Staffing and training needs:

N/A

5.14 Schedule:

 59

  Leads the effort during most of the

integration test cycle and hand off

the testing to the System Testers

during the last states of incremental

integration testing.

System Testers  Responsible for functional testing

 Responsible for performance

testing.

Test Phase Time Owner

Test Plan Creation 1 week Test Manager

Test Specification

Creation

2 weeks Test Leads

Test Specification Team

Review

1 week Project Team

Component Testing 4 weeks Component Testers

Incremental Integration

Testing

4 weeks Component & System

Testers

5.15 Risks and contingencies:

 The plugins may not be available. Need to download them

 JDK version compatibility issues may occur

 Eclipse may hang during execution of the program

 May not get the expected output

5.16 Approvals:

It is approved by all the team members of MDVPL Project

60

Chapter 6: Future work

The project developed could then be used as a basis for further work in the field of education

for computer science students. The MDVPL is model based and therefore it can be enhanced

and additional features can be added in to it by developer.

61

 Bibliography

 Microsoft Visual Programming Language.

(https://msdn.microsoft.com/en-us/library/bb483088.aspx)

 Scratch Visual Programming Language (Offline Editor).

(https://en.wikipedia.org/wiki/Scratch_(programming_language))

 Model Driven Architecture

(https://en.wikipedia.org/wiki/Model-driven_architecture)

 Visual Programming Language

(https://en.wikipedia.org/wiki/Visual_programming_language)

(http://users.dcc.uchile.cl/~rbaeza/cursos/vp/todo.html)

(http://dictionary.reference.com/browse/visual+programming+language)

62

https://msdn.microsoft.com/en-us/library/bb483088.aspx
https://en.wikipedia.org/wiki/Scratch_(programming_language))
https://en.wikipedia.org/wiki/Model-driven_architecture
https://en.wikipedia.org/wiki/Visual_programming_language
http://users.dcc.uchile.cl/~rbaeza/cursos/vp/todo.html
http://dictionary.reference.com/browse/visual+programming+language

Annex A

Tutorial for users

WORK SPACE TO CREATE PROGRAMS

Create a Program Using Arithmetic Operators

STEP 1:

 Click on Entry element in the Palette.

 Then click anywhere in the workspace.

 Again Click on the Entry and repeat the same.

 Now select any operator and click in the workspace.

 Select Result element and drop it into the workspace.

 You should get this output. 63

STEP 2:

 Now enter any integer in both entry elements.

STEP 3:

 Select Entry/Result to Operator Input element from palette. 64

 Click on any entry element and drag the connector to anyone of the input node of

the operator.

 Again select Entry/Result to Operator Input element and click on the other entry

element and drag the connector to the other input node of the operator.

 Next select Operator Output to Result element and click on the result element

and drag the connector to the output node of the operator.

 Now you should get final result like this:

 In this way you can make any number of big calculations using different type of

multiple operators.

 And you can also use the result values as inputs for other operators.

 For example: 65

 66

Annex B

Tutorial for Developer

STEP No. 1: Setting Up the Environment

 Goto : www.eclipse.org/downloads/packages/release/Luna/SR2

 Find Eclipse Modelling Tools and select your operating system.

 After Download is complete extract the file in any drive.

 Now open the eclipse ide from the extracted folder.

 Go to File

 New  Others  Graphical Modelling Framework Graphical

Editor Project

 After selecting Graphical Editor Project, on the next screen type

project name and click finish.

 67

http://www.eclipse.org/downloads/packages/release/Luna/SR2

 In package explorer right click on your project and

GO to New  Others Eclipse Modeling Framework  Ecore

Model

 68

 Select Ecore Model and click next.

 On next window select your current project and give name to your

ecore model and click finish.

 69

 Now in you Project Explorer right click on your Ecore model

which is located in the model folder and click on “initialize

ecore_diagram digram file”.

 70

 Then select the name of your file and click finish.

 Now ecore_diagram file will be opened in a new tab.

 In this ecore_diagram file you will create the model of your

program. 71

 After creating the model again right click on your ecore file

and

Go to : New  Others Eclipse Modeling Framework 

EMF Generator Model and click next.

 Now select the name of your genmodel and click next.

 Now select Ecore model on next window and click finish.

 72

 Now open your genmodel file and right click on the name of

genmodel and select the following one by one:

1. Generate model code

2. Generate edit code.

3. Generate editor code.

 This will create two new folders edit folder and editor folder.

 Now once again go to your ecore file.

 Right click on it and go to:

New  Others  Graphical Modeling Framework Simple

Tooling Definition Model and click next.

 On tooling definition screen select your nodes and

connections and click finish.

 73

 Now open gmftool file and create two groups, one for nodes

and one for connectors.

74

 Now again go to:

 New  Others  Graphical Modeling Framework Simple

Graphical Definition Model and click next.

 On the Graphical definition screen select your

nodes,connectors and labels. Then click finish.

 Open gmfgraph file define how your nodes will appear

in the end of project to user.

 75

 Now again select your ecore file and right click on it

and Go to: New  Others  Graphical Modeling

Framework Guide Mapping Model Creation and

click next.

 Select name for your file and click finish.

 Open gmfmap file and link gmfgraph with gmftool

 76

 Click on the transform label of the dashboard.

 Abc.gmfgen file is created

 Change the properties of this file as per requirement.

 Click on the Generate diagram editor label of the dashboard.

 Now to have two inputs and one output in every operator. Following

changes in the code have to be made OperatorCreateCommand

file.

 77

 // Adds both operator inputs

 newElement.getInputs().add(MathFactory.eINSTANCE.createOperatorInput());

 newElement.getInputs().add(MathFactory.eINSTANCE.createOperatorInput());

 // Adds the operator output

 newElement.setOutput(MathFactory.eINSTANCE.createOperatorOutput());

Starting Eclipse at this point, we get somewhat this interface.

 Next we need to set shapes of our operators.

 We need to make changes in OperatorRoundedRectangle classes.

 Following code has to be written down in classes of all operators.

 78

// vertical line

 graphics.drawLine(

 new Point(r.x + r.width / 2, r.y + r.height * 0.2),

 new Point(r.x + r.width / 2, r.y + r.height * 0.8));

 // horizontal line

 graphics.drawLine(

 new Point(r.x + r.width * 0.2, r.y + r.height / 2),

 new Point(r.x + r.width * 0.8, r.y + r.height / 2));

 Now we need to add our rounded rectangles to the graphical

representations of our operators.

 To do that we need to edit

(Minus/Plus)Operator(Minus/Plus)OperatorFigureCompartmentEditPart.ja

va file and modify the ‘createFigure’ method.

 We need to do it for all Operators.

 Following code is to be added.

public IFigure createFigure() {

 ResizableCompartmentFigure result = (ResizableCompartmentFigure)

super.createFigure();

 result.setTitleVisibility(false);

 // Setup for a XYLayout

 IFigure contentPane = result.getContentPane();

 contentPane.setLayoutManager(new XYLayout());

 // Delete content pane insets

 Insets is = contentPane.getInsets(); 79

http://www.google.com/search?hl=en&q=allinurl%3Apoint+java.sun.com&btnI=I%27m%20Feeling%20Lucky
http://www.google.com/search?hl=en&q=allinurl%3Apoint+java.sun.com&btnI=I%27m%20Feeling%20Lucky
http://www.google.com/search?hl=en&q=allinurl%3Apoint+java.sun.com&btnI=I%27m%20Feeling%20Lucky
http://www.google.com/search?hl=en&q=allinurl%3Apoint+java.sun.com&btnI=I%27m%20Feeling%20Lucky
http://www.google.com/search?hl=en&q=allinurl%3Ainsets+java.sun.com&btnI=I%27m%20Feeling%20Lucky

 is.top = 0;

 is.bottom = 0;

 is.left = 0;

 is.right = 0;

 // Setup graphical elements

 MinusRoundedRectangle roundedRectangle = new MinusRoundedRectangle();

 contentPane.add(roundedRectangle);

 // Add the resize events listener

 result.addFigureListener(new

OperatorCompartmentFigureListener(this, roundedRectangle));

 return result;

 }

 Now we will cater for figure resizeability.

 For that we need to make changes in OperatorCompartmentFigureListener class.

 Starting Eclipse at this point we should get a diagram editor like this.

 80

 Now we are going to add features that will automatically compute operations.

 Following code is to be present in AutomaticComputationHelper class to get

operators work.

public static void updateOperatorResult(Operator operator) {

 Result result = operator.getOutput().getResult();

 if (result!=null) {

 // If there is a cycle...

 if (CycleDetectionHelper.cycleDetected(result)) {

 result.setValue(0);

 }

 else {

Number in1 = operator.getInputs().get(0).getNumber();

Number in2 = operator.getInputs().get(1).getNumber();

double _in1 = in1 != null ? in1.getValue() : 0;

double _in2 = in2 != null ? in2.getValue() : 0;

result.setValue(operator instanceof PlusOperator ? _in1 + _in2 : _in1 - _in2); 81

 }

http://www.google.com/search?hl=en&q=allinurl%3Anumber+java.sun.com&btnI=I%27m%20Feeling%20Lucky
http://www.google.com/search?hl=en&q=allinurl%3Anumber+java.sun.com&btnI=I%27m%20Feeling%20Lucky

 }

 }

 We need to do the same thing for all operators.

 Finally we are finished with two operators.

 We have following final output.

 82

