
piClone

By

Mian Basit Mahmood

Haider Mushtaq

Hussain Ali

Supervisor

 Dr Naima Iltaf

Submitted to the Faculty of Computer Science

National University of Science and Technology, Rawalpindi

For the partial requirement of Bachelors of Engineering in Computer Software Engineering

July 2016

1 | P a g e

Version 2.0.0.0

2 | P a g e

ABSTRACT

piClone

This Application is aimed to provide a platform for the end user to edit images on
an Android device.

It takes in two pictures from the user. One picture can be selected as the base
picture or as the background. By identifying and recognizing objects, via manual
cropping, the desired object can be extracted from the image and then be stitched
on top of Background image of the user’s choosing.

The contours would be recognized by the help of some of the following different
well proven techniques, such as Edge and Corner Detection, The Canny Edge
Detector, The Sobel operator, Harris Corner Detection and others like Hough
transformations. To improve the primary or the secondary images, our system will
provide the user the ability to apply different filters to the images, including basic
filters such as Mean Blur, Gaussian Blur, Median Blur, Sharpener, Dilation,
Erosion and different Threshold filters such as Binary Threshold and Threshold to
Zero filters. To make the editing and cloning of a selection region seamless we
will make use of Poisson partial differential equation with Dirichlet boundary
conditions which specifies the Laplacian of an unknown function over the domain
of interest, along with the unknown function values over the boundary of the
domain. The extent of the changes ranges from slight distortions to complete
replacement by novel content.

The purpose of this app is to give the end user easy access to various image editing
and image extraction techniques with the help of an easy to use graphic user
interface and minimal learning effort. Using this app the end user can create
amazing breathtaking pictures which can then be saved to local storage or can then
be shared among friends using the social media.

3 | P a g e

CERTIFICATE FOR CORRECTNESS AND APPROVAL

Certified that work contained in the thesis – piClone carried out by MianBasitMahmood,
HaiderMushtaq and Hussain Aliunder supervision of Dr. NaimaIltaf for partial fulfilment of
Degree of Bachelor of Software Engineering is correct and approved.

 Approved by

 Dr. NaimaIltaf

 CSE DEPARTMENT MCS

DATED:

4 | P a g e

DECLARATION

No portion of the work presented in this dissertation has been submitted in support
of another award or qualification either at this institution or elsewhere.

5 | P a g e

DEDICATION

In the name of Allah, the Most Merciful, the Most Beneficent

To our parents, without whose unflinching support and unstinting cooperation,

a work of this magnitude would not have been possible

To our supervisor Dr. NaimaIltaf who has given us great support

and valuable suggestions throughout the implementation process.

And finally to our Friends and siblings for their encouragement.

6 | P a g e

ACKNOWLEDGEMENTS

There is no success without the will of ALLAH Almighty. We are grateful to
ALLAH, who has given us guidance, strength and enabled us to accomplish this
task. Whatever we have achieved, we owe it to Him, in totality. We are also grateful
to our parents and family and well-wishers for their admirable support and their
critical reviews. We would like to thank our supervisor. Dr. NaimaIltaf, for her
continuous guidance and motivation throughout the course of our project. Without
their help we would have not been able to accomplish anything.

7 | P a g e

Table of Contents

Chapter 1: Introduction.. 10

1.1 Overview ... 10

1.2 Problem Statement ... 10

1.3 Approach ... 10

1.4 Scope ... 11

1.5 Objectives ... 11

1.6 Deliverables .. 11

1.7 Overview of the document ... 12

1.8 Purpose of the document: .. 12

Chapter 2: Literature Review ... 13

Chapter 3: Software Requirement Specification ... 16

3.1Introduction ... 16

3.2 Overall Description ... 16

3.2.1 Product Perspective ... 16

3.2.2 Product Functions .. 17

3.2.3 User Classes and Characteristics .. 17

Researchers ... 17

Tester .. 17

Project Evaluator/Supervisor .. 17

3.2.4 Operating Environment ... 17

Software requirements: .. 17

3.2.5 Design and Implementation Constraints ... 18

3.2.6 User Documentation .. 18

3.2.7 Assumptions and Dependencies .. 18

3.3 External Interface Requirements .. 19

3.3.1 User Interfaces ... 19

3.3.2 Software Interfaces .. 20

3.4 System Features .. 20

3.5 Other Nonfunctional Requirements ... 25

3.5.1 Performance Requirements ... 25

3.5.2 Safety Requirements .. 25

8 | P a g e

3.5.3 Security Requirements ... 25

3.5.4 Software Quality Attributes ... 25

Chapter 4: Design and Development ... 27

4.1 Introduction .. 27

4.2 Scope of the Development Project ... 28

4.3 System Architecture Description .. 28

4.3.1 OVERVIEW OF MODULES/COMPONENTS .. 28

4.3.2 Structure and Relationships ... 30

Use Case Diagram .. 31

Sequence Diagrams .. 41

Class Diagram .. 44

Logical View (State Transition Diagram) ... 48

Dynamic view (Activity Diagram) .. 49

Android Activity Lifecycle .. 50

Android Fragment Lifecycle .. 51

Structure Chart ... 52

Work Breakdown Structure .. 53

User Interface .. 54

4.3.3 Detailed Description of Components ... 61

Graphical User Interface ... 61

Image Processing .. 63

Image Cropping ... 63

Edge Detection .. 65

Image Filters .. 67

Image Merging .. 68

Image Blending ... 70

4.4 Reuse and Relationship to other products ... 71

4.5 Design and Tradeoffs .. 72

Chapter 5: Testing and Evaluation ... 73

5.1 Introduction .. 73

5.2 Test Items .. 74

5.3 Features tested ... 74

5.4 Approach ... 75

5.5 Item Pass/Fail Criteria ... 76

9 | P a g e

5.6 Suspension Criteria and Resumption Requirements .. 76

5.7 Test Deliverables ... 77

5.8 Environmental Needs.. 88

Hardware .. 88

Software .. 88

5.9 Responsibilities, Staffing and Training Needs ... 88

Responsibilities ... 88

Skills ... 88

5.10 Risks and contingencies .. 88

Chapter 6: Future Work ... 89

Chapter 7: Conclusion .. 90

Bibliography ... 91

Appendix .. 92

Pseudo code for components ... 93

HomeActivity.java ... 93

MainActivity.java .. 99

10 | P a g e

Chapter 1: Introduction

1.1 Overview

The Application takes in two pictures from the user. One picture can be selected as the base
picture or as the background. By identifying and recognizing objects, via manual cropping, the
desired object can be extracted from the image and then be stitched on top of Background image
of the user’s choosing.

The contours would be recognized by the help of some of the following different well proven
techniques, such as Edge and Corner Detection, The Canny Edge Detector, The Sobel operator,
Harris Corner Detection and others like Hough transformations. To improve the primary or the
secondary images, our system will provide the user the ability to apply different filters to the
images, including basic filters such as Mean Blur, Gaussian Blur, Median Blur, Sharpener,
Dilation, Erosion and different Threshold filters such as Binary Threshold and Threshold to Zero
filters. To make the editing and cloning of a selection region seamless we will make use of
Poisson partial differential equation with Dirichlet boundary conditions which specifies the
Laplacian of an unknown function over the domain of interest, along with the unknown function
values over the boundary of the domain. The extent of the changes ranges from slight distortions
to complete replacement by novel content.

1.2 Problem Statement

This Application is aimed to provide a platform for the end user to edit images on an Android
device. The purpose of this app is to give the end user easy access to various image extraction
and image merging techniques with the help of an easy to use graphic user interface and minimal
learning effort. Using this app the end user can create amazing breathtaking pictures which can
then be saved to local storage or can then be shared among friends using the social media.

1.3 Approach

 We are working with Image Extraction from a selected Image and Merging of the extracted
piece of selected image on the base Image. It will be our algorithm that will be able to merge
(clone) these 2 images seamless and effective manner .We aim to develop an algorithm that can
merge 2 images in such a way that the output image is as realistic as possible.

11 | P a g e

1.4 Scope

The project aims at exploring, tinkering and modifying the image editing capabilities and
implementing the Poisson Equations.

The scope of work is limited to extracting an object from the input image and merging it to a
background image meanwhile providing a variety of image enhancing functionalities.

1.5 Objectives

The Objectives of this project are following:

 Develop an effective solution for modifying images using existing system.

 Detect the desired object from selected image and extract it.

 Provide a layer by layer canvas platform for image modification.

 Upload the app on Android Market using Google Play Store.

 Create Facebook page for application support and feedback.

 Make it easy for the user to upload the created images on Social Media.

 Create a large fan following of the application.

1.6 Deliverables

Table 1

Sr. Tasks Deliverables
1 Literature Review Literature Survey
2 Requirements Gathering SRS Document
3 Application Design Design Document (SDS)
4 Implementation Implementation on computer with a live test to

show the accuracy and ability of the project
5 Testing Evaluation plan and test document
6 Deployment Complete application along with

necessary documentation

12 | P a g e

1.7 Overview of the document

This document shows the working of our application piClone. It starts of with the system
architecture which highlights the modules of the software and represents the system in the form
of component diagram, Use Case Diagram, Sequence Diagram and general design of the system.
Then we move on to discuss the detailed Description of all the components involved. Further we
discuss the dependencies of the system and its relationship with other products and the capacity
of it to be reused. Then towards the end we shall discuss the Design Tradeoffs and the
Pseudocode.

1.8 Purpose of the document:

This document aims to elaborate the idea and design of the project that is piClone. This
document will highlight all the specifications of our project i.e. how it will be used, what will be
the scenario in which the project will be useful. This project is basically a baseline work for
further research that is ultimately perfecting Image Cloning.

13 | P a g e

Chapter 2: Literature Review

There were a few projects that were based on the idea of Image Cloning following is a detailed
description of projects previously carried out in this context.

Gradient Domain Cloning Research

The human visual system is quite sensitive to gradients: it tends to ignore small gradients and
pick up large gradients. As discussed, researchers have developed a dual representation of
images called the gradient domain which is just the gradient or x and y derivatives of the input
image (in each color channel). One can modify gradients however one wishes, apply boundary
conditions, and then "integrate" using a linear solver to go back to color domain. This allows for
many applications such as the artistic depiction in Gradient Shop.

http://grail.cs.washington.edu/projects/gradientshop/

14 | P a g e

Using generic interpolation machinery based on solving Poisson equations, a variety of novel
tools are introduced for seamless editing of image regions. The first set of tools permits the
seamless importation of both opaque and transparent source image regions into a destination
region. The second set is based on similar mathematical ideas and allows the user to modify the
appearance of the image seamlessly, within a selected region. These changes can be arranged to
affect the texture, the illumination, and the color of objects lying in the region, or to make tile
able a rectangular selection.

Image editing tasks concern either global changes (color/intensity corrections, filters,
deformations) or local changes confined to a selection. Here we are interested in achieving local
changes, ones that are restricted to a region manually selected, in a seamless and effortless
manner. The extent of the changes ranges from slight distortions to complete replacement by
novel content. Classic tools to achieve that include image filters confined to a selection, for slight
changes, and interactive cut-and-paste with cloning tools for complete replacements. With these
classic tools, changes in the selected regions result in visible seams, which can be only partly
hidden, subsequently, by feathering along the border of the selected region. We propose here a
generic machinery from which different tools for seamless editing and cloning of a selection
region can be derived. The mathematical tool at the heart of the approach is the Poisson partial

15 | P a g e

differential equation with Dirichlet boundary conditions which specifies the Laplacian of an
unknown function over the domain of interest, along with the unknown function values over the
boundary of the domain. The motivation is twofold.

So, given methods for crafting the Laplacian of an unknown function over some domain, and its
boundary conditions, the Poisson equation can be solved numerically to achieve seamless filling
of that domain. This can be replicated independently in each of the channels of a color image.
Solving the Poisson equation also has an alternative interpretation as a minimization problem: it
computes the function whose gradient is the closest, in the L2-norm, to some prescribed vector
field — the guidance vector field — under given boundary conditions. In that way, the
reconstructed function interpolates the boundary conditions inwards, while following the spatial
variations of the guidance field as closely as possible.

A number of possible choices for the guidance vector field. We show in particular that this
interpolation machinery leverages classic cloning tools, both in terms of ease of use and
capabilities. The resulting cloning allows the user to remove and add objects seamlessly. By
mixing suitably the gradient of the source image with that of the destination image, it also
becomes possible to add transparent objects convincingly. Furthermore, objects with complex
outlines including holes can be added automatically without the need for painstaking cutting out.

Conclusion
Using the generic framework of guided interpolation, we have introduced a variety of tools to
edit in a seamless and effortless manner the contents of an image selection. The extent of
possible changes ranges from replacement by, or mixing with, another source image region, to
alterations of some aspects of the original image inside the selection, such as texture,
illumination, or color. An important common characteristic of all these tools is that there is no
need for precise object delineation, in contrast with the classic tools that address similar tasks.
This is a valuable feature, whether one is interested in small touch-up operations or in complex
photomontages. It is clear that the cloning facilities described can be combined with the editing
ones. It is for instance possible to insert an object while flattening its texture to make it match the
style of a texture-free destination. Finally, it is worth noting that the range of editing facilities
derived in this paper from the same generic framework could probably be extended further.
Appearance changes could for instance also deal with the sharpness of objects of interest, thus
allowing the user to make apparent changes of focus.

16 | P a g e

Chapter 3: Software Requirement Specification

3.1Introduction

The purpose of this part is to describe the project titled “piClone”. This part contains the
functional and non-functional requirements of the project. It contains the guidelines for
developers and examiners of the project.

The purpose of this application is to make it simple and easy for the end user to modify images
in cool and exciting ways. The system would give the capability to choose any object from the
image and would be able to extract it. This extracted object can then be merged on top of a base
image that would be used as its background. The scope of this project is limited to the desired
object extraction from selected image and merging it on top of desired background image.

3.2 Overall Description

3.2.1 Product Perspective

This product is aimed to provide a platform for the end user to edit images on an Android device.

It takes in two pictures from the user. One picture can be selected as the base picture or as the
background. From the other picture, the desired object will be cloned on to the base picture.
Gradients can be modified, boundary conditions can be applied, and then everything would be
"integrated" using a linear solver to go back to color domain of the base image.

The plan to carry out this project consists of three main tasks:

1. Develop an algorithm for user to extract the desired object from the input image.

2. Develop an algorithm to merge the extracted object to a desired background image.

3. Interfacing Android App.

17 | P a g e

3.2.2 Product Functions

 Following functions will be performed by piClone:

1. Capture image from Camera

2. Select image from gallery

3. Extract / modify image

4. Merge two or more images

3.2.3 User Classes and Characteristics

Following are the user classes and their brief description.

Researchers
 Researchers will use this Project as a guide to understand the “Image Cloning”. They will use this as a base
for upgrading and adding new features. They can also use this for developing a new project by using this a
reference material.

Tester
Tester will also use this project to check for bug finding. They will also use this to check it is in accordance to
the srs document.

Project Evaluator/Supervisor
Project supervisor/Evaluator will also use the product to evaluate. They will use this product to find the
accuracy and error in the output.

3.2.4 Operating Environment

The operating environment required for this project is:

Android Studio

Software requirements:

OS: Android Operating System

18 | P a g e

3.2.5 Design and Implementation Constraints

Following are the constraints of design and implementation in our project

• Accuracy depends on the way user crops the desired Object from Selected Image.

• Overall performance of this project will depend on the quality of input Images.

• It will also depend on the position where the extracted object will be placed on the base

image for merging it.

3.2.6 User Documentation

For the user documentation, a Guide Feature will be included in the system. It will include the
details of the system’s working. Help documents will also be a part of the system. The project
report will also be available for the users which will highlight the system features, working and
procedures.

3.2.7 Assumptions and Dependencies

1. Overall performance of this project will depend on the quality of input Images.

2. Accuracy depends on the way user crops the desired Object from Selected Image.

3. It will also depend on the position where the extracted object will be placed on the base
image for merging it.

19 | P a g e

3.3 External Interface Requirements
3.3.1 User Interfaces

The System comprises of an android based application, using java and XML, which shall provide
a graphical user interface for user friendly environment. The user would be asked to input images
that need to be processed. Then different image transformation and processing would take place,
ending in a new image as desired by the user.

The user interface for the android application of the System, shall be compatible to all android
devise but for best user experience the following versions are preferable

 Jelly beans 4.1.2

 ICS 4.1.1

User Interface:

Figure 3.3.1 Interfaces

20 | P a g e

3.3.2 Software Interfaces

To visualize the brainwaves on the monitor Brainwave Visualizer software will be used.

 Android App will be installed on android device with android version ICS or
later.

 The android app would be built using Android Studio.

 For this system, following API and external libraries will be used:

- Google APIs

- Android APIs

3.4 System Features

SF-1 Get Image from Camera

Description The app will be able to access the device’s camera using Android
camera Api.

Priority Medium

Pre-Conditions Mobile should have a working camera.

Stimulus/Response Capture image.

Post-Conditions Saving images in png format to the gallery.

Risk Medium

 Functional Requirements:

 REQ-1 The application must be properly installed in android mobile phone.

 REQ-2 The android mobile phone should have a working camera.

 REQ-3 The image taken should be saved in png format.

21 | P a g e

SF-2 Select image from Gallery

Description Any image can be selected by the user from the phone’s storage
through its gallery. This can be used both as its primary image or its
base image.

Priority Medium

Pre-Conditions Images should be present in phone memory.

Stimulus/Response A new copy of the same image would be made and worked on so
that the original image would not be damaged.

Post-Conditions Images are available for further processing.

Risk Low

 Functional Requirements:

 REQ-4 Mobile phone should contain image.

SF-3 Detection of desired object

Description Image processing is applied to detect desired object. OpenCV
library will be used for this purpose.

Priority High

Pre-Conditions The given image should be of png format.

Stimulus/Response object in the given image will be detected.

Post-Conditions The coordinates of the boundary of the object are obtained.

Risk High

 Functional Requirements:

 REQ-5 The input image should have minimum 1 object.

 REQ-6 The human figure should be clearly visible so that the coordinates of the object
that will be obtained should be accurate.

 REQ-7 If the application is not able to detect object from the input image, it will generate
an error to the user.

22 | P a g e

SF-4 Extraction of Object

Description The bitmap of the detected Object is extracted as a new image.

Priority High

Pre-Conditions Image with a detected Object.

Stimulus/Response New png Image would be made.

Post-Conditions The extracted human form is obtained as an image in png format.

Risk HIGH

 Functional Requirements:

 REQ-8 The application should create a new image of the detected Object.

 REQ-9 The new image of Object should be stored in phone’s memory/SD card in png
format.

SF-5 Layer by Layer image Canvas

Description Images can be put on top of each other as layers. This is similar to
cutting out or cropping a picture and then pasting on another
complete picture.

Priority Medium

Pre-Conditions Multiple images should be available.

Stimulus/Response User feedback can help make the image better.

Post-Conditions Ready the images for merging

Risk High

 Functional Requirements:

 REQ-10 The application will put the detected human form on the base image, which is
a background image.

SF-6 Merging and Modifying images.

Description After the images are set up on the canvas and ready, then all of
them will be combined to form a single new Image.

Priority High

23 | P a g e

Pre-Condition Images set up on canvas.

Stimulus/Response A new image would be made.

Post-Conditions The image would be saved to gallery.

Risk Medium

 Functional Requirements:

 REQ-11 The images, that are to be merged and modified, are set up on canvas.

 REQ-12 Image processing algorithms will be used to merge those images.

SF-7 Creating new Image.

Description In order not to damage any of the existing images used in our
production, new image is made.

Priority High

Pre-Condition Image is set up and merged properly.

Stimulus/Response New image with the desired output would be made.

Post-Conditions Image saved to gallery

Risk Low

 Functional Requirements:

 REQ-13 App shall create a new image with desired output and save it to gallery.

SF-8 Sharing images on Social media.

Description The user would be allowed to share the image processed by the
program on Social media by using Android API’s

Priority Low

Pre-Condition Image ready and stored on Device.

Normal Course The user would select the image and press the share button which
would open a prompt asking the user which social media site he
wants to share the image on.

24 | P a g e

Post-Condition A message would be displayed that the image has been uploaded
and published.

Alternate Course The user can also upload the image from his gallery as the image
would be made available there. This would be just like uploading
any regular photo to the internet.

Post-Condition The user would get informed if the image has been uploaded
successfully.

Risk Low

 Functional Requirements:

 REQ-14 Android phone must be connected with the internet.

SF-9 How to/ Help guide.

Description In order to help the user get familiar with the app, a small help
guide would be added to the app as an activity which the user can
view to find out about the different features of the application.

Priority Low

Pre-Condition All the features should be well documented. This feature can only
be added after at least a working prototype has been made.

Stimulus/Response

Post-Condition

Risk Low

 REQ-15 Application features must be well documented in order to create Help guide.

25 | P a g e

3.5 Other Nonfunctional Requirements

3.5.1 Performance Requirements

piClone performance will be based upon the quality of the image produced by merging the
human form and the base image. The real the produced image will look, the higher will be the
performance of piClone. The output image shall take no more than 1 minute to be produced.

3.5.2 Safety Requirements

The use of piClone has no harm whatsoever. If the application crashes during any phase, the
input images will stay safe in phone’s memory/SD card.

3.5.3 Security Requirements

The security is not much of an issue for piClone as the input images and the output image will be
saved in phone’s memory/SD card. As long as the phone’s memory/SD card does not get
corrupt, security will be no problem.

3.5.4 Software Quality Attributes

Usability

The application will be easy to operate for any user. The graphical user interface will be
designed, organized and presented in a manner that is both visually appealing and easy to use.

Accuracy

To ensure accuracy and correctness of the output image, the image processing algorithms will be
written with no tolerance for error.

Availability

The application will available to the user until the phone is in working state and the application is
installed and configured properly.

Flexibility

The design and architecture of the application will be flexible enough for catering any new
requirements, if any at some later stage or for the application enhancement.

26 | P a g e

Data Integrity

If the application crashes during any phase, the input images will stay safe in phone’s
memory/SD card.

Figure 3.5

27 | P a g e

Chapter 4: Design and Development

4.1 Introduction

How can computers understand the visual world of humans? In this document and in the

creation of this application, we will treat vision as a process of inference from noisy and

uncertain data and emphasizes probabilistic, statistical, data-driven approaches to observe and

identify contours in images.

By identifying and recognizing objects, via manual cropping, the desired object can be extracted

from the image and then be stitched on top of another image of the user’s choosing.

 The contours would be recognized by the help of some of the following different well proven

techniques, such as Edge and Corner Detection, The Canny Edge Detector, The Sobel operator,

Harris Corner Detection and others like Hough transformations. To improve the primary or the

secondary images, our system will provide the user the ability to apply different filters to the

images, including basic filters such as Mean Blur, Gaussian Blur, Median Blur, Sharpener,

Dilation, Erosion and different Threshold filters such as Binary Threshold and Threshold to Zero

filters. To make the editing and cloning of a selection region seamless we will make use of

Poisson partial differential equation with Dirichlet boundary conditions which specifies the

Laplacian of an unknown function over the domain of interest, along with the unknown function

values over the boundary of the domain.

Theextentofthechangesrangesfromslightdistortions to complete replacement by novel content.

By mixing suitably the gradient of the source image with that of the destination image, it also

becomes possible to add transparent objects convincingly. Furthermore, objects with complex

outlines including holes can be added automatically without the need for painstaking cutting out.

The purpose of this app is to give the end user easy access to various image editing and image

extraction techniques with the help of an easy to use graphic user interface and minimal learning

effort.

28 | P a g e

4.2 Scope of the Development Project

The project aims at exploring, tinkering and modifying the image editing and our

implementation of the Poisson Equations.

The scope of work is limited to extracting an object from the input image and merging it

to a background image meanwhile providing a variety of image enhancing functionalities.

4.3SystemArchitectureDescription

This Section overview of application, its higher and lower levels details and user interfaces.

4.3.1OVERVIEW OF MODULES/COMPONENTS

piClone comprises of following components:

1. Graphical User Interface

a. Activity

b. Fragment

2. Image Processing

a. Cropping Image

b. Edge Detection

i. Difference of Gaussian

ii. The Canny Edge Detection

iii. The Sobel

c. Image Filters

i. Mean Blur

ii. Median

iii. Gaussian

29 | P a g e

iv. Threshold

v. Erode

vi. Sharpen

d. Image Merging

e. Image Blending

Fig. 4.3.1: Component diagram for piClone

Graphical User Interface is part of presentation layer in the system architecture.

Graphical User Interface directly interacts with the user. He/she provides an input for the

required action (through this component) and it displays its output respectively.

Image Processing has 5 sub components.

Image Cropping is to get the input from the user that would help choose which portion or object

of the image, the user is interested in so that it can be extracted.

30 | P a g e

Edge Detection, The function of this sub-component is process the Image using various Edge

Detection Algorithms and to display the output in an image view.

Image Filter, The function of this sub-component is processing the Image using various Image

Filters and to display the output in an image view.

Image Merging, The function of this sub-component is to merge both the primary image

containing the desired object and the background Image together to form a new Image.

Image Blending, The function of this sub-component is to blend both the primary image

containing the desired object and the background Image together in the new Image.

4.3.2 Structure and Relationships

This section covers the overall technical description of piClone. It shows the working of

application in perspective of different point-of-views and also shows relationships between

different components.

31 | P a g e

Use Case Diagram

Fig. 4.3.2.1: Use Case

32 | P a g e

Actors

Primary Actor(s): Application User, Secondary Actor(s): Gallery, Camera

Use Cases

1. Select Image

2. Capture Image

3. From Gallery

4. Apply Filter

5. Detect Edges

6. Select Object

7. Extract Object

8. Add Background

9. Merge Object with Background

10. Blend Object with Background

11. Gaussian Blur

12. Mean Blur

13. Median Blur

14. Bla Bla Blur

15. Threshold

16. Dilute

17. Sharpen

18. The Canny

19. Difference of Gaussian

20. The Sobel

33 | P a g e

Use Case Description

Use Case 1

Use Case 2

Use Case Name Select Image

Primary Actor Application User

Secondary Actor Gallery, Camera

Normal Course • Application User selects an Image from Gallery

• Application User takes an Image using Mobile Camera

• Application User clicks the next button to enter the

application

Alternate Course If the Application User does not select an image to be

edited, the application will generate an error and will ask

user to choose an image.

Pre-Condition The application should be able to access android mobile

phone gallery and camera.

Post Condition The Application User can now choose what to do with the

selected image.

Extends Apply Filter, Detect Edges, Select Object

Include Capture Image, From Gallery

Assumptions The Application User Selects an image from mobile Gallery

or takes an image from mobile camera and move forward in

application.

Use Case Name Apply Filter

Primary Actor Application User

Secondary Actor N/A

34 | P a g e

Use Case 3

Normal Course Application User chooses any one of the 7 given Filters to

apply on the Selected image.

Alternate Course If the Application User does not want to choose any Filter,

which is to be applied on the selected image, the application

user will have choice of moving back to the pervious

interface.

Pre-Condition All Filters must be available to be applied on any selected

image as chosen by the application user. Filters should be

working properly.

Post Condition An image with the desired Filter applied on it will be

displayed for the Application User and will be saved in

Galley.

Extends N/A

Include Gaussian Blur, Median Blur, Mean Blur, Erode, Threshold,

Dilute, Sharpen

Assumptions The Application User Selects the Filter which he/she wants

to apply on the selected image. The Output image which is

the Filtered image is displayed on the screen and saved in

Gallery.

Use Case Name Detect Edges

Primary Actor Application User

Secondary Actor N/A

Normal Course Application User chooses any one of the 3 given Edge

Detection Methods to apply on the Selected image.

35 | P a g e

Use Case 4

Alternate Course If the Application User does not want to choose any Edge

Detection Method, which is to be applied on the selected

image, the application user will have choice of moving back

to the pervious interface.

Pre-Condition All Edge Detection Method must be available to be applied

on any selected image as chosen by the application user.

Edge Detection Method should be working properly.

Post Condition An image with the desired Edge Detection Method applied

on it will be displayed for the Application User and will be

saved in Galley.

Extends N/A

Include The Canny, Difference of Gaussian, The Sobel

Assumptions The Application User Selects the Edge Detection Method

which he/she wants to apply on the selected image. The

Output image will be displayed on the screen and saved in

Gallery.

Use Case Name Select Object

Primary Actor Application User

Secondary Actor N/A

Normal Course Application User chooses any object he/she wants to choose

from the Selected image, by making a bounding box around

that object. Application user can choose as many objects as

he/she wants one at a time.

Alternate Course If the Application User does not want to choose any object

from the selected image, he/she will have choice of moving

back to the pervious interface.

36 | P a g e

Use Case 5

Pre-Condition All

Post Condition A bounding box around the object to be selected is made

and the object is ready to be extracted.

Extends N/A

Include Extract Object

Assumptions The Application User Selects the Object which he/she wants

to Extract from the selected image, by creating a bounding

box around that object.

Use Case Name Extract Object

Primary Actor Application User

Secondary Actor N/A

Normal Course Application User extracts the selected object (The Object

around which a bounding box is made) from the Input

Image, by pressing the button “Extract Object”.

Alternate Course If the Application User does not want to Extract the selected

Object, he/she will have choice of moving back to the

pervious interface.

Pre-Condition The Object that needs to be Extracted must first be Selected

by making a bounding box around it.

Post Condition The Selected Object is Extracted from the input image and

saved in android mobile phone’s Gallery.

Extends Add Background

Include N/A

Assumptions The Application User Extracts the Object which he/she has

Selected from the Input image.

37 | P a g e

Use Case 6

Use Case 7

Use Case Name Add Background

Primary Actor Application User

Secondary Actor N/A

Normal Course Application User selects an image from Gallery or Take an

image using mobile camera. This image is used as

Background for the Extracted objects from other Images.

Alternate Course If the Application User does not want to use the Selected

image as Background image for the extracted objects,

he/she can save the selected image in mobile’s Gallery and

move back to previous interface.

Pre-Condition The application should be able to access android mobile

phone gallery and camera.

Post Condition The Application User can now choose what to do with the

selected image.

Extends Merge Object with Background

Include Capture Image, From Gallery

Assumptions The Application User Selects an image from mobile Gallery

or takes an image from mobile camera and chooses what to

do with that image.

Use Case Name Merge Object with Background

Primary Actor Application User

Secondary Actor N/A

38 | P a g e

Use Case 8

Normal Course Application User selects an Object from Gallery that he/she

wants to merge with the Background Image. The Selected

object is placed on the desired location of the Background

Image and merged with it.

Alternate Course N/A

Pre-Condition The Object and the Background image must be saved in

Gallery. Application User must be able to choose the Object

and the Background Image.

Post Condition The Object is merged on the Background Image at the

desired location.

Extends N/A

Include Blend Object with Background

Assumptions Application User selects an Object from Gallery that he/she

wants to merge with the Background Image. The Selected

object is placed on the desired location of the Background

Image and merged with it.

Use Case Name Blend Object with Background

Primary Actor Application User

Secondary Actor N/A

Normal Course Application User blend the object with the Background

Image, using OpenCV core libraries, by pressing the button

“Blend Object”.

Alternate Course If Application user does not want to Blend the Object with

the Background Image, he/she can save the image, with the

object merged, in the Gallery.

39 | P a g e

Use Case 9

Pre-Condition The Object must be merged on the Background image.

Post Condition The image, which is result of Object being blended with the

Background Image, is displayed and saved in mobile

phone’s Gallery.

Extends N/A

Include N/A

Assumptions Application User blend the object with the Background

Image, using OpenCV core libraries, by pressing the button

“Blend Object”.

Use Case Name Capture Image

Primary Actor Application User

Secondary Actor Camera

Normal Course Application User uses the application to access the mobile

phone’s camera and captures image, which is displayed and

saved in Gallery.

Alternate Course N/A

Pre-Condition Android mobile phone must have a working camera.

Post Condition The new image is saved in android mobile phone’s Gallery

and is available to application user to use.

Extends N/A

Include N/A

Assumptions Application User uses the application to access the mobile

40 | P a g e

Use Case 10

phone’s camera and captures image, which is displayed and

saved in Gallery.

Use Case Name From Gallery

Primary Actor Application User

Secondary Actor Gallery

Normal Course Application User uses the application to access the android

mobile phone’s Gallery.

Alternate Course N/A

Pre-Condition Android mobile phone must have an Image in Gallery.

Post Condition The image is available to application user to use.

Extends N/A

Include N/A

Assumptions Application User uses the application to access the android

mobile phone’s Gallery.

41 | P a g e

Sequence Diagrams

Fig. 4.3.2.2: Select Image from Gallery

Fig. 4.3.2.3: Capture Image from Camera

42 | P a g e

Fig. 4.3.2.4: Apply Filter to Image

Fig. 4.3.2.5: Detect Edges

43 | P a g e

Fig. 4.3.2.6: Clone Image

44 | P a g e

Class Diagram

+onCreate()
+onResume()
+onPause()
+onStop()

Activity

+onCreate()
-Delay : int

Splash

+onCreate()

-SelectImage : Button
-Guide : Button
-AboutUs : Button

Main

+onCreate()

-Clone : Button
-ApplyFilter : Button
-DetectEdges : Button
-Image : SelectedImage

Home

+ApplyFilter(in FilterCode : int)
+onCreate()

-MedianBlur : int
-Gaussian : int
-MeanBlur : int
-Erode : int
-Threshold : int
-Sharpen : int
-Dilute : int
-Image : SelectedImage

Filters

+TheCannyEdgeDetector()
+DifferenceOfGaussian()
+TheSobel()
+ApplyFilter(in Code : int)
+onCreate()

-DOG : int
-TS : int
-CED : int
-Image : SelectedImage

EdgeDetector

+onCreate()
+cropImg()
+getBackground()
+mergeImg()
+blendImg()

-Image : SelectedImage
Clone

+getInstance()
+SelectImage()
+getImage()
+getMat()
+getBitmap()

-Image : SelectedImage
-ImageMat : Mat
-ImageBitmap : Bitmap

SelectedImage

«extends»

+onCreate()

Fragments

«extends»

«uses»

*

*

*

*

«uses»

*

*

*

*

* **
*

ImplementsImplements

Fig. 4.3.2.7: Class diagram for piClone

45 | P a g e

Classes Description

Activity This is the main Activity Class, all Activities extends this

Activity Class.

Splash This class extends Activity class. It is responsible to display the

Splash screen. The Splash screen features a logo of the

application, and 3 other logos, the one on the left is of Military

College of Signals (MCS), the one on the right is of National

University of Science and Technology (NUST). The one in the

center is the logo of Bull Incarnadine which is the Parent

Company. Underneath is the name of the Application, followed

by the names of the creators.

Home This class also extends Activity. Here the user can choose from

3 different options. He can start using the core features of the

app by clicking on the Select Picture. Can access help by

clicking on the Guide button and can get info about the app and

its founders or give feedback by getting access to the contacts of

the founders by clicking on the About Us button. By Clicking

on the Select Picture, the user would be asked to choose picture

either by selecting it from the phone Gallery or by capturing a

picture using the phone Camera.

Main This class extends Activity. After the picture is selected, the

Main Screen Activity would be displayed which would show the

selected picture on an Image View. Here the user is further

prompted as to what he/she wants to do with the picture. Either

Apply Filters or Detect Edges or the user can select the core

feature, Clone Option to start the cloning process.

Filter The user can apply various filters to the image if he selects the

Apply Filter option. If the user does select this option, a screen

46 | P a g e

similar to Fig 2.2.8.4 would appear where there are two Image

Views, one that displays the original picture and the other that

displays the picture after a Filter is applied to it. The name of the

Filter would be displayed to identify the Filter. This Image View

would be placed in a Fragment that can be swiped left and right

to change different filters to see a more dynamic and easy flow

between changing of filters

EdgeDetector The user can select the Detect Edges option from the Main

Screen Activity which leads to the user been given choices to

apply various algorithms. The Detect Edges Activity and

Fragments is similar to that of Apply Filter Activity. Fig shows

the Detect Edges Activity screen where The Canny Edge

Detector has been applied to the Image.

Clone The user can select the Clone option from the Main Screen

Activity which takes the user to the Crop Screen Activity. Fig

shows the user being able to choose the object that is desired by

trapping it in a bounding box. To confirm his selection he can

press the Save button, or if he decides to cancel, the user can

press Cancel.

When the desired region containing the desired object is

selected, a new cropped Image is made. This then leads to the

Add Background Image Screen, where the user is prompted to

select a base Image from either the phone Gallery or the Phone

Camera. After which the user can place the cropped image to

which ever location on top of the base image, and select confirm.

After which the two images would then be merged. Fig shows

an example cropped Image, which is then placed on top of the

base image as shown in Fig and then Merged.

After the two Images have been merged together, blending

47 | P a g e

would take place to make the image look more natural and real

as shown in Fig. This completes the cloning procedure after

which the user can save or discard image. Then the user would

be taken to the Main Screen Activity (Fig) with the new Blended

Image as the selected Image.

SelectedImage This is a singleton method. Here the selected image’s URI would

be stored. The image’s Bitmap and Mat would be saved here and

be easily accessible using simple get methods.

Fragments In the Activities that implements fragments, pager adapter can

be used to create a beautiful flow between different fragments.

When different filters or edge detection would be applied to

different images, they could be easily shown on different

Fragments.

48 | P a g e

Logical View (State Transition Diagram)

The State Transitions occurring in the application are shown in Fig. 4.3.2.8 below:

Fig. 4.3.2.8: State diagram for piClone

49 | P a g e

Dynamic view (Activity Diagram)

Fig. 4.3.2.9: Activity diagram for piClone

50 | P a g e

In activity diagram, the dynamic view of the system is shown. All the activities are shown

concurrently with their respective start and end states.

Android Activity Lifecycle

Fig. 4.3.2.10:Activity Life Cycle diagram used inpiClone

51 | P a g e

Android Fragment Lifecycle

Fig. 4.3.2.11: Fragment Lifecycle diagram used inpiClone

52 | P a g e

Structure Chart

Fig. 4.3.2.12: Structure Chart diagram used inpiClone

piClone

Graphical User
Interface (GUI)

Activity

Show Screen Get touch
input

Fragment
Adapter

Fragment

Show Screen Get touch
input

Image
Processing

Image Filters Edge Detection Image Merging Image Blending

53 | P a g e

Work Breakdown Structure

Fig. 4.3.2.13:Fragment Lifecycle diagram used inpiClone

piClone
1.1

Initiation
(Requirements

Gathering)

1.1.1
Research

work

1.1.2
Scope

Defination

1.1.3
Submiting
Proposal

1.1.3.1
Approval

1.2
Propagation

(Design)

1.2.1
flow

diagram

1.2.2
Use case
diagram

1.2.3
Class

Diagram

1.2.4
activity
diagram

1.2.5
sequence
Diagram

1.3
Software Development

1.3.1
Android

Programming

1.3.1.1
Graphic

User
Interface

(XML)

1.3.1.2
Backend

Java Code

1.3.1.3
SQL lite 3
Database

1.3.3
OpenCV

Programming

1.3.3.1
Image

Transformations
and Modification

1.3.3.2
Human

form
Detection

1.4
Testing

1.4.1
BlackBox
Testing

1.4.2
White Box

Testing

1.4.3
Risk Managment

1.5
Deployment

1.5.1
Google

Playstore

1.5.2
User

Feedback

1.5.3
Project

Updates

54 | P a g e

User Interface

The Splash screen features a logo of the application, and 3 other logos, the one on the left is of

Military College of Signals (MCS), the one on the right is of National University of Science and

Technology (NUST). The one in the center is the logo of Bull Incarnadine which is the Parent

Company. Underneath is the name of the Application, followed by the names of the creators.

Fig. 4.3.2.14: Splash Screen

The splash screen will appear for a limited time of 1000 mille seconds, after which the Home

Screen Activity would be displayed to the user. Here the user can choose from 3 different

options. He can start using the core features of the app by clicking on the Select Picture. Can

access help by clicking on the Guide button and can get info about the app and its founders or

give feedback by getting access to the contacts of the founders by clicking on the About Us

button.

55 | P a g e

Fig. 4.3.2.15: Home Screen

By Clicking on the Select Picture, the user would be asked to choose picture either by selecting it

from the phone Gallery or by capturing a picture using the phone Camera. After the picture is

selected, the Main Screen Activity would be displayed which would show the selected picture on

an Image View. Here the user is further prompted as to what he/she wants to do with the picture.

Either Apply Filters or Detect Edges or the user can select the core feature, Clone Option to

start the cloning process.

56 | P a g e

Fig. 4.3.2.16: Main Screen

The user can apply various filters to the image if he selects the Apply Filter option. If the user

does select this option, a screen similar to fig would appear where there are two Image Views,

one that displays the original picture and the other that displays the picture after a Filter is

applied to it. The name of the Filter would be displayed to identify the Filter. This Image View

would be placed in a Fragment that can be swiped left and right to change different filters to see

a more dynamic and easy flow between changing of filters.

57 | P a g e

Fig. 4.3.2.17: The bottom image has been applied with Binary Threshold Filter

Fig. 4.3.2.18: The salt and pepper noise is removed in the bottom image by Median Filter

58 | P a g e

The user can select the Detect Edges option from the Main Screen Activity which leads to the

user been given choices to apply various algorithms. The Detect Edges Activity and Fragments

is similar to that of Apply Filter Activity. Fig shows the Detect Edges Activity screen where

The Canny Edge Detector has been applied to the Image.

Fig. 4.3.2.19: The Canny Edge Detector Algorithm Applied to the Selected Image

The user can select the Clone option from the Main Screen Activity which takes the user to the

Crop Screen Activity.The user being able to choose the object that is desired by trapping it in a

bounding box. To confirm his selection he can press the Save button, or if he decides to cancel,

the user can press Cancel.

59 | P a g e

Fig. 4.3.2.20: Cropping Image

When the desired region containing the desired object is selected, a new cropped Image is made.

This then leads to the Add Background Image Screen, where the user is prompted to select a base

Image from either the phone Gallery or the Phone Camera. After which the user can place the

cropped image to which ever location on top of the base image, and select confirm. After which

the two images would then be merged. Shows an example cropped Image, which is then placed

on top of the base image as shown and then Merged.

Fig. 4.3.2.21: Cropped Image

60 | P a g e

Fig. 4.3.2.22: Merged Image

After the two Images have been merged together, blending would take place to make the image

look more natural and real as shown. This completes the cloning procedure after which the user

can save or discard image. Then the user would be taken to the Main Screen Activity with the

new Blended Image as the selected Image.

Fig. 4.3.2.23: Blended Image (cloning completed)

61 | P a g e

4.3.3 Detailed Description of Components

Graphical User Interface
Identification Name: Graphical User Interface

Location: Presentation layer of the system architecture

Type UI component

Purpose The user directly interacts with this component. He/she provides an

input for the required action (through this component) and it

displays its output respectively.

This component fulfills following functional requirements (as

specified in SRS Document) related to user interaction in the

application:

REQ-1: Application should allow the user to select the desired

image either by choosing from gallery or by capturing from

camera.

REQ-2: The user can then choose how to modify or edit the

selected image.

REQ-3: The application should display the selected Image.

REQ-4: The application should display the result Image after

going though different Image Processing.

REQ-5: The application should allow the user to save progress

when changes are made.

REQ-6: The application should help guide the user to use the

application.

REQ-7: The application should be able to transition from and to

Activities when required.

62 | P a g e

REQ-8: The application should make the use of fragments where

necessary.

Function This component has two major functions; take input from the user

and display all application activities and fragments.

It takes input from user in form of touch events, and provides a

graphical output accordingly.

Subordinates This component has two subordinates; one is responsible for input,

the other for output.

The input subordinate satisfies all functional requirements

(mentioned in the SRS Document) that require user input: REQ-2,

REQ-3 and REQ-7.

The output subordinate satisfies all functional requirements

(mentioned in the SRS Document) that provide output: REQ-1,

REQ-2, REQ-3, REQ-4, REQ-5, REQ-6, REQ-7, REQ-8.

Dependencies It interacts with Image Processing (refer Section 3.3), whenever a

user interacts with the application.

This component is dependent on the Graphical User Interface

whereas no component depends upon it.

Interfaces All user interfaces defined in section 2.3 are part of it. The user

input and output on screens will be shown using these interfaces.

It will provide external interface to Process Data in form of inputs

taken from the user.

It will display guide Toasts like:

63 | P a g e

1. Image Selected

2. Filter applied

3. Edges detected

4. Image cropped

5. Image merged

6. Image cloned successfully

7. Image Saved

8. Unable to Save (Gallery related)

9. Unable to Retrieve (Gallery related)

Resources Hardware: Touch screen enable user to interact with the

application. It will require a screen to display the application.

The screens will be run by using internal memory i.e.; RAM,

Processor of the Android Mobile Device or Tablet.

Software: Android Studio to design interface for display on

screen.

Processing Takes user input in form of touch screen and shapes the output

according to user intent. (Refer Section 6.1)

Data Image processing etc…

Image Processing
This component has 5 sub-components:

Image Cropping
Identification Name: Image Cropping

Location: Application Logic layer of the system architecture

Type Sub-component

Purpose Following functional requirements mentioned in SRS are

fulfilled by this sub-component:

64 | P a g e

REQ-9: The application should be able to select the desired

object by allowing the user to place a bounding box around it as

desired.

REQ-10: The application should extract the desired segment of

the Image enclosed by the bounding box.

Function The function of this sub-component is to get the input from the

user that would help choose which portion or object of the

image, the user is interested in so that it can be extracted.

For selecting the Image region, it takes input from touch screen

component (refer Section 3.5) and shows output on the

Graphical User Interface component (refer Section 3.1).

The cropped Image would then be showed to the user as output

on the Graphical User Interface component.

Subordinates It has two subordinates, Create new bitmap and copying the

desired region from the image to the bitmap.

Dependencies This dependent is dependent on Graphical User Interface (refer

Section 3.5)

Some of the functions of this component are:

‘Imgproc.rectangle(contoursFrame, new Point(rect.x, rect.y),

new Point(rect.x+rect.width, rect.y +rect.height), new

Scalar(255,0,0) , 1,8,0)’ etc.

Interfaces It provides internal and external interface to component 3.1

65 | P a g e

‘Graphical User Interface’ in form of input which it gets from the

user and then displays the output image after processing

Resources Hardware: RAM and Processor of the system will be utilized.

Software: OpenCV core Libraries.

Processing The component handles the cropping of the Image in the

application. It takes input in form of key touch events from other

components (refer fig 2.1.1), aids the user using bounding box

and generates a cropped Image according to the user intent.

(Refer section 6.5).

Data Bitmap, Image Mat and Vector points.

Edge Detection
Identification Name: Edge Detection

Location: Application Logic layer of the system architecture

Type Sub-Component

Purpose Following functional requirements are fulfilled by this sub-

component:

REQ-11: The application should allow the user to choose from

various Edge Detection Algorithms.

REQ-12: The application should display the output image after

applying the selected Edge Detection Algorithm.

Function The function of this sub-component is process the Image using

various Edge Detection Algorithms and to display the output in

an image view.

Edge Detection Algorithms are stated as follows:

a. Difference of Gaussian

66 | P a g e

b. The Canny Edge Detection

c. The Sobel

It takes the Edge Detection options input from the component

3.1 ‘Graphical User Interface’ and then opens up the

corresponding Activity screen to show the result.

Subordinates It has two subordinates, GUI interaction and Image Processing.

GUI interaction will ask the user to select Edge Detection

Algorithm of his choice and it will fulfill Req-16 of functional

requirements mentioned above.

Dependencies This subcomponent provides service to the component 3.1

‘GUI’

Some of the Functions of this component are:

 Mat DifferenceOfGaussian(Mat originalMat), Mat Soble(Mat

originalMat).

Interfaces It provides internal and external interface to component 3.1

‘Graphical User Interface’ in form of input which it gets from

the user and then displays the output image after processing.

Resources Hardware: RAM and Processor of the system will be utilized.

Software: OpenCV core libraries

Processing The component handles the Detection of Edges of the Image in

the application. It takes input in form of key touch events from

other components (refer fig 2.1.1), displays the output in an

Image view according to the user intent. (Refer section 6.5).

Data Bitmap, Image Mat and Vector points.

67 | P a g e

Image Filters

Identification Name: Image Filters

Location: Application Logic layer of the system architecture

Type Sub-Component

Purpose Following functional requirements are fulfilled by this sub-

component:

REQ-13: The application should allow the user to choose from

various Image Filters.

REQ-14: The application should display the output image after

applying the selected Image Filters.

Function The function of this sub-component is processing the Image

using various Image Filters and to display the output in an

image view.

These Filters include the following:

d. Mean Blur

e. Median

f. Gaussian

g. Threshold

h. Erode

i. Sharpen

It takes the Filter Image options input from the component 3.1

‘Graphical User Interface’ and then opens up the corresponding

Activity screen to show the result.

Subordinates It has two subordinates, GUI interaction and Image Processing.

68 | P a g e

GUI interaction will ask the user to select Image Filter of his

choice and it will fulfill Req-16 of functional requirements

mentioned above.

Dependencies This subcomponent provides service to the component 3.1

‘GUI’.

Some of the function of these components are:

 Mat DifferenceOfGaussian(Mat originalMat), Mat Soble(Mat

originalMat).

Interfaces It provides internal and external interface to component 3.1

‘Graphical User Interface’ in form of input which it gets from

the user and then displays the output image after processing.

Resources Hardware: RAM and Processor of the system will be utilized.

Software: OpenCV core libraries

Processing The component handles the Detection of Edges of the Image in

the application. It takes input in form of key touch events from

other components (refer fig 2.1.1), displays the output in an

Image view according to the user intent. (Refer section 6.5).

Data Bitmap, Image Mat and Vector points.

Image Merging

Identification Name: Image Merging

Location: Application Logic layer of the system architecture

Type Sub-Component

Purpose Following functional requirements are fulfilled by this sub-

component:

69 | P a g e

REQ-15: The application should allow the user to select a

background Image from either the phone Gallery or capture it

using the phone camera, using Android APIs.

REQ-16: The application should allow the user to place his

primary cropped image to the desired location of the

background Image using Drag and Drop feature.

REQ-17: The application should combine the two images,

primary and the background to make a new Image after getting

the go ahead from the user.

Function The function of this sub-component is to merge both the

primary image containing the desired object and the background

Image together to form a new Image.

It takes the Merge Image options input from the component 3.1

‘Graphical User Interface’ and then opens up the corresponding

Activity screen to show the result.

Control of the application is transferred to component 3.2.5

‘Image blending’.

Subordinates It has two subordinates, GUI interaction and Image Processing.

GUI interaction will ask the user to select Background Image of

his choice and place the primary Image to the desired vector

location in relation to the background image and it will fulfill

Req-19 of functional requirements mentioned above.

Dependencies This subcomponent provides service to the component 3.1

‘GUI’.

Some of the function of these components are:

 Mat DifferenceOfGaussian(Mat originalMat), Mat Soble(Mat

originalMat).

70 | P a g e

Interfaces It provides internal and external interface to component 3.1

‘Graphical User Interface’ in form of input which it gets from

the user and then displays the output image after processing.

Control of the application is transferred to component 3.2.5

‘Image blending’.

Resources Hardware: RAM and Processor of the system will be utilized.

Software: OpenCV core libraries, Android APIs

Processing The component handles the Merging of the Image in the

application. It takes input in form of key touch events from

other components (refer fig 2.1.1), displays the output in an

Image view according to the user intent. (Refer section 6.5).

Data Bitmap, Image Mat and Vector points.

Image Blending

Identification Name: Image Blending

Location: Application Logic layer of the system architecture

Type Sub-Component

Purpose Following functional requirements are fulfilled by this sub-

component:

REQ-18: The application should after the images have been

merged to form a new image, be able to make them blend into

one another in order to look more natural and realistic.

Function The function of this sub-component is to blend both the primary

image containing the desired object and the background Image

together in the new Image.

71 | P a g e

Subordinates It has one subordinate, Image Processing.

Dependencies This subcomponent provides service to the component 3.1

‘GUI’.

Some of the function of these components are:

 Mat PissonBlending(Mat originalMat), Mat SimpleBlend(Mat

originalMat).

Interfaces It provides external interface to component 3.1 ‘Graphical User

Interface’ displaying the output image after processing.

Resources Hardware: RAM and Processor of the system will be utilized.

Software: OpenCV core libraries,

Processing The component handles the Blending of the Images in the

application. It displays the output in an Image view according to

the user intent. (Refer section 6.5).

Data Bitmap, Image Mat and Vector points.

4.4 Reuse and Relationship to other products

piClone project can be extended to make a complete image editor application to Photoshop an

image. All the code will be available on GitHub for anyone to learn and use in their projects.

More functionalities can be introduced like: edit or render text, vector graphics (especially

through clipping path), 3D graphics and video

72 | P a g e

4.5 Design and Tradeoffs

The piClone is an interactive application that uses a simple, easy to use user interface. There are

a few activity classes but more might be added depending on the addition of more features. The

Singleton Selected Image Class will help pass the resources of an image with relative ease. The

application is designed as 2-layered with the Activity Classes forming the upper layer for user

interface and the lower layer providing the algorithms and functionalities of image processing

using only internal libraries in Android like the OpenCV itself. The design does not support the

usage of any external library so in case of requiring to use any external functionalities the design

might go under tremendous changes.

Interface of the system is distinct from the application logic. Layered architecture is used to

isolate application logic from the user interface. It can be modeled using Multitier Layered

Architecture consisting of three layers i.e.; presentation, application logic and Device Storage.

Presentation layer corresponds to elements of the user interface such as text, checkbox item etc.,

and application logic layer controls the communication of data between the presentation and the

Storage layer, and is the part where the main logic, user actions and working of the system is

defined. In general, it controls the complete behavior of the system, while the Storage layer is

responsible for handling, fetching and storage.

As per the interface and business logic goes, piClone applications follow Model View View

Model (MVVM) design pattern [9], which is largely based on model-view-controller (MVC)

pattern. It is a specific implementation targeted at UI development platforms which support

event-driven programming on the Android platforms using XML and Java.

73 | P a g e

Chapter 5: Testing and Evaluation

5.1 Introduction

This test plan chapter describes the appropriate strategies, process and methodologies used to
plan, execute and manage testing of the piClone Android application project. The test plan will
ensure that piClone meets the customer requirements at an accredited level.

Manual Testing will be followed which includes testing a software manually, i.e., without using
any automated tool or any script. In this type, the tester takes over the role of an end-user and
tests the software to identify any unexpected behavior or bug. Each Unit will be tested separately
and then will be integrated with other units, therefore Unit Testing and Integration testing will be
followed. For each unit Black box Testing is done and for combined units Acceptance Testing is
done.

The test scope includes the Testing of all functional, application performance and use cases
requirements listed in the requirement document

Software testing, depending on the testing method employed, can be implemented at any time in
the development process. However, most of the test effort occurs after the requirements have
been defined and the coding process has been completed.

This document includes the plan, scope, approach and procedure of piClone test. The pass/fail
criteria of the test items are also defined. The Test Plan document documents and tracks the
necessary information required to effectively define the approach to be used in the testing of the
product.

74 | P a g e

5.2 Test Items

Based on the piClone requirements and design description, application modules of mobile
Android application and non-functional scenario will be tested. The Requirements Defined in
Software Requirements Specification and the Design entities as explained in Software Design
Document will be tested.

5.3 Features tested

Following Features are tested:

a) Ability to Select Desired Image from Gallery.
b) Ability to take a new image using camera.
c) Ability to crop the desired object from the selected image.
d) Ability to set background by selecting the desired background image.
e) Ability to put the desired object on the Background Image.
f) Ability to move the desired object on the Background image at the desired coordinates.
g) Ability to Merge and Blend the Desired Object on the Background Image.
h) Ability to Apply Filter on the selected image with accuracy.
i) Ability to detect edges of the desired image accurately.

75 | P a g e

5.4 Approach

Acceptance test will be executed based on this acceptance test plan. And after all test cases are
executed, a test report will be summarized to show the quality of piClone. Following test
approaches will be used in test execution:

• Unit test. Developers are responsible for unit test as white-box testing. The
implementation of each module and individual component will be verified separately.

• Integration test. After the unit test is passed above the defined quality threshold,
testers will execute the integration test cases. After all the modules are integrated, it’s
crucial to test the product as a black-box. End-to-end scenarios will be tested to
ensure the communication functionality.

• Regression test.After developers fix the bug in one feature, regression test will be
executed by testers to ensure that the other functions are not affected.

• Field test. Firstly, untrained end users recreate one or more existing (but narrow)
mass observation events in the piClone Android Application. A number of observers
will be invited to help with evaluation. After that, post event questionnaires will be
used to collect quantitative usage data as well as qualitative data and further
improvement will be taken into consideration.

• Positive and negative testing design technique. This approach will be combined
with unit test and integration test. Test cases are designed in obvious scenarios, which
ensure that all functional requirements are satisfied. What’s more, different test cases
will also be covered to show how the system reacts with invalid operations.

76 | P a g e

5.5 Item Pass/Fail Criteria

Details of the test cases are specified in section Test Deliverables. Following the principles
outlined below, a test item would be judged as pass or fail.

• Preconditions are met
• Inputs are carried out as specified
• The result works as what specified in output => Pass
• The system doesn't work or not the same as output specification => Fail

5.6 Suspension Criteria and Resumption Requirements

Any bugs found can be fixed by developers quickly and no need to start the testing process from
the beginning. However, when major bugs will block the some test cases as they are
interdependent and the testing has to be paused. The test will restart from the very beginning
until the major error is solved.

77 | P a g e

5.7 Test Deliverables

Following are the Test Cases:

Test Case Name Feature Choice Menu
Test Case No 1
Description Testing Feature Choice Menu
Testing Technique
Used

Unit Testing

Preconditions Application should be installed in Android Operating System
Input Values piClone application
Valid Inputs Open the piClone application
Steps Select the piClone android application installed in Android

Operating System
Expected Output piClone android application opens displaying Feature Choice

Menu to the user
Actual Output piClone android application opens displaying Feature Choice

Menu to the user

Test Case Name Clone Feature
Test Case No 2
Description Testing the Clone Feature
Testing Technique
Used

Unit Testing and Acceptance Testing

Preconditions The Application must be opened displaying Feature Choice Menu
Input Values Clone , Apply Filter, Edge detection
Valid Inputs Choose Clone Feature by clicking on the clone button
Steps First select the piClone android application installed in Android

Operating System, then choose the Clone Feature which is
displayed on Feature Choice Menu

Expected Output The Choose Image Choice menu should open displaying two
choices for selecting image

Actual Output The Choose Image Choice menu opens displaying two choices
for selecting image

78 | P a g e

Test Case Name Select Image from Gallery (Clone Feature)
Test Case No 3
Description Testing Select Image from Gallery Feature for Clone Feature
Testing Technique
Used

Unit Testing

Preconditions The user must have selected Clone Feature from Feature Choice
Menu

Input Values Choose from Gallery, Take Image using Camera
Valid Inputs Choose Select Image form Gallery option by clicking on the

Choose from Gallery button
Steps First select the piClone android application installed in Android

Operating System then choose the Clone Feature which is
displayed on Feature Choice Menu then choose Select Image
from Gallery displaying on Choose Image Menu

Expected Output The Gallery of the android mobile phone should be accessed by
piClone and should enable user to select desired image from
Gallery

Actual Output The Gallery of the android mobile phone is accessed by piClone
enabling user to select desired image from Gallery

Test Case Name Take Picture using Camera (Clone Feature)
Test Case No 4
Description Testing Take Picture using Camera Feature for Clone Feature
Testing Technique
Used

Unit Testing

Preconditions The user must have selected Clone Feature from Feature Choice
Menu

Input Values Choose from Gallery, Take Image using Camera
Valid Inputs Choose Take Image using Camera option by clicking on the Take

Image using Camera button
Steps First select the piClone android application installed in Android

Operating System then choose the Clone Feature which is
displayed on Feature Choice Menu then choose Take Image using
Camera displaying on Choose Image Menu

Expected Output The Camera of the android mobile phone should be accessed by
piClone and should enable user to Take an Image

Actual Output The Camera of the android mobile phone is accessed by piClone
enabling user to Take an Image

79 | P a g e

Test Case Name Choose the desired object (Select Image from Gallery)
Test Case No 5
Description Testing Choose the desired object for Select Image from Gallery

Feature in Cloning process
Testing Technique
Used

Integration Testing

Preconditions The user must have selected Select Image from Gallery Feature
from Choose Image Menu

Input Values
Valid Inputs Crop the desired object from the Image which is selected from

Gallery
Steps First select the piClone android application installed in Android

Operating System then choose the Clone Feature which is
displayed on Feature Choice Menu then choose Select Image
from Gallery Feature displaying on Choose Image Menu then
choose the desired object by cropping that object from the
selected image

Expected Output The cropped object should be saved in Gallery
Actual Output The cropped object is saved in Gallery

Test Case Name Choose the desired object(Take Image using Camera)
Test Case No 6
Description Testing Choose the desired object for Take Image using Camera

Feature in Cloning process
Testing Technique
Used

Integration Testing

Preconditions The user must have selected Take an Image using Camera Feature
from Choose Image Menu

Input Values
Valid Inputs Crop the desired object from the Image which is taken using

camera
Steps First select the piClone android application installed in Android

Operating System then choose the Clone Feature which is
displayed on Feature Choice Menu then choose Take Image using
Camera Feature displaying on Choose Image Menu then choose
the desired object by cropping that object from the Image which
is taken

Expected Output The cropped object should be saved in Gallery
Actual Output The cropped object is saved in Gallery

80 | P a g e

Test Case Name Set the Background (Select Image from Gallery)
Test Case No 7
Description Testing Set the Background Feature for Select Image from

Gallery Feature in Cloning process
Testing Technique
Used

Regression Testing

Preconditions The user must have cropped the desired object which he needs to
merge on the Background

Input Values
Valid Inputs Select an image that needs to be Background Image for the

desired object to be placed on
Steps First select the piClone android application installed in Android

Operating System then choose the Clone Feature which is
displayed on Feature Choice Menu then choose Select Image
from Gallery Feature displaying on Choose Image Menu then
choose the desired object by cropping that object from the Image
which is selected from Gallery then Choose the Background
Image which is the image on which you want to place the desired
object

Expected Output The selected background image should be displayed and the
desired object which was the result of cropping the object from
Selected image should be placed on the Background Image and
should be able to move as desired by the user

Actual Output The selected background image is displayed and the desired
object which was the result of cropping the object from Selected
image is placed on the Background Image and is able to be
moved as desired by the user

Test Case Name Set the Background (Take Image using Camera)
Test Case No 8
Description Testing Set the Background Feature for Take Image using

Camera Feature in Cloning process
Testing Technique
Used

Regression Testing

Preconditions The user must have cropped the desired object which he needs to
merge on the Background

Input Values
Valid Inputs Select an image that needs to be Background Image for the

desired object to be placed on

81 | P a g e

Steps First select the piClone android application installed in Android
Operating System then choose the Clone Feature which is
displayed on Feature Choice Menu then choose Take Image using
Camera Feature displaying on Choose Image Menu then choose
the desired object by cropping that object from the Image which
is taken from Camera then Choose the Background Image which
is the image on which you want to place the desired object

Expected Output The selected background image should be displayed and the
desired object which was the result of cropping the object from
Selected image should be placed on the Background Image and
should be able to move as desired by the user

Actual Output The selected background image is displayed and the desired
object which was the result of cropping the object from Selected
image is placed on the Background Image and is able to be
moved as desired by the user

Test Case Name Image Blending (Select Image from Gallery)
Test Case No 9
Description Testing Image Blending Feature for Select Image from Gallery

Feature in Cloning process
Testing Technique
Used

Unit Testing, Integration Testing and Regression Testing

Preconditions The Desired Cropped Object must be placed on the selected
background image at the desired coordinates

Input Values
Valid Inputs Select the Image Blending Button
Steps First select the piClone android application installed in Android

Operating System then choose the Clone Feature which is
displayed on Feature Choice Menu then choose Select Image
from Gallery Feature displaying on Choose Image Menu then
choose the desired object by cropping that object from the Image
which was selected from Gallery then Choose the Background
Image which is the image on which you want to place the desired
object then Click on the Image Blending Button to Complete the
Cloning process

Expected Output A Cloned Image should be the Output which should be displayed
and stored in Gallery.

Actual Output A Cloned Image is the Output which is displayed and stored in
Gallery.

82 | P a g e

Test Case Name Image Blending (Take Image using Camera)
Test Case No 10
Description Testing Image Blending Feature for Take Image using Camera

Feature in Cloning process
Testing Technique
Used

Unit Testing, Integration Testing and Regression Testing

Preconditions The Desired Cropped Object must be placed on the selected
background image at the desired coordinates

Input Values
Valid Inputs Select the Image Blending Button
Steps First select the piClone android application installed in Android

Operating System then choose the Clone Feature which is
displayed on Feature Choice Menu then choose Take Image using
Camera Feature displaying on Choose Image Menu then choose
the desired object by cropping that object from the Image which
was taken using camera then Choose the Background Image
which is the image on which you want to place the desired object
then Click on the Image Blending Button to Complete the
Cloning process

Expected Output A Cloned Image should be the Output which should be displayed
and stored in Gallery.

Actual Output A Cloned Image is the Output which is displayed and stored in
Gallery.

Test Case Name Apply Filters Feature
Test Case No 11
Description Testing the Apply Filters Feature
Testing Technique
Used

Unit Testing

Preconditions The Application must be opened displaying Feature Choice Menu
Input Values Clone , Apply Filter, Edge detection
Valid Inputs Choose Apply Filters Feature by clicking on the Apply Filters

button
Steps First select the piClone android application installed in Android

Operating System, then choose the Apply Filters Feature which is
displayed on Feature Choice Menu

Expected Output The Filters Choice menu should open displaying choices for

83 | P a g e

selecting the Desired Filter to apply
Actual Output The Filters Choice menu is opened displaying choices for

selecting the Desired Filter to apply

Test Case Name Choosing Filters Feature
Test Case No 12
Description Testing the Choosing Filters Feature
Testing Technique
Used

Unit Testing, Integration Testing

Preconditions The Application must be opened displaying Filters Choice Menu
Input Values Any number of Filters
Valid Inputs Choose any Filter Feature by clicking on that Filter button
Steps First select the piClone android application installed in Android

Operating System, then choose the Apply Filters Feature which is
displayed on Feature Choice Menu then choose the Filter you
want to use

Expected Output The Image Choose Menu is opened, displaying options to Select
image from Galley or Take new image using camera

Actual Output The Image Choose Menu is opened, displaying options to Select
image from Galley or Take new image using camera

Test Case Name Select Image from Gallery (Apply Filter Feature)
Test Case No 13
Description Testing Select Image from Gallery Feature for Apply Filter

Feature
Testing Technique
Used

Preconditions The user must have selected Apply Filter Feature from Feature
Choice Menu

Input Values Choose from Gallery, Take Image using Camera
Valid Inputs Choose Select Image form Gallery option by clicking on the

Choose from Gallery button
Steps First select the piClone android application installed in Android

Operating System then choose the Apply Filter Feature which is
displayed on Feature Choice Menu then choose Select Image

84 | P a g e

from Gallery displaying on Choose Image Menu
Expected Output The Gallery of the android mobile phone should be accessed by

piClone and should enable user to select desired image from
Gallery

Actual Output The Gallery of the android mobile phone is accessed by piClone
enabling user to select desired image from Gallery

Status Three

Test Case Name Take Picture using Camera (Apply Filter Feature)
Test Case No 14
Description Testing Take Picture using Camera Feature for Apply Filter

Feature
Testing Technique
Used

Unit Testing

Preconditions The user must have selected Apply Filter Feature from Feature
Choice Menu

Input Values Choose from Gallery, Take Image using Camera
Valid Inputs Choose Take Image using Camera option by clicking on the Take

Image using Camera button
Steps First select the piClone android application installed in Android

Operating System then choose the Apply Filter Feature which is
displayed on Feature Choice Menu then choose Take Image using
Camera displaying on Choose Image Menu

Expected Output The Camera of the android mobile phone should be accessed by
piClone and should enable user to Take an Image

Actual Output The Camera of the android mobile phone is accessed by piClone
enabling user to Take an Image

Test Case Name Filter
Test Case No 15
Description Testing Filtered Feature for the Selected Image
Testing Technique
Used

Unit Testing, Integration Testing

Preconditions The user must have selected the image to which the user wants to
apply Filter

Input Values Filter
Valid Inputs Choose Filter option by clicking on the Filter Button

85 | P a g e

Steps First select the piClone android application installed in Android
Operating System then choose the Apply Filter Feature which is
displayed on Feature Choice Menu then Select the image you
want to apply Filter on then Select the Filter Button to apply the
selected Filer on the choosen Image

Expected Output The new Filtered Image appears on the new interface and should
be saved in Gallery of Android Mobile phone

Actual Output The new Filtered Image appears on the new interface and is saved
in Gallery of Android Mobile phone

Test Case Name Edge Detection Feature
Test Case No 16
Description Testing the Detect Edge Feature
Testing Technique
Used

Unit Testing, Integration Testing

Preconditions The Application must be opened displaying Feature Choice Menu
Input Values Clone , Apply Filter, Edge detection
Valid Inputs Choose Edge detection Feature by clicking on the Apply Filters

button
Steps First select the piClone android application installed in Android

Operating System, then choose the Edge Detection Feature which
is displayed on Feature Choice Menu

Expected Output The Edge Detection Choice menu should open displaying choices
for selecting the Desired Edge Detection Method to use

Actual Output The Edge Detection Choice menu is opened displaying choices
for selecting the Desired Edge Detection Method to use

Test Case Name Choosing Edge Detection Method Feature
Test Case No 17
Description Testing the Choosing Edge Detection Method Feature
Testing Technique
Used

Unit Testing

Preconditions The Application must be opened displaying Edge Detection
Methods Choice Menu

Input Values Any number of Edge Detection Methods
Valid Inputs Choose any Edge Detection Method by clicking on that method

button
Steps First select the piClone android application installed in Android

86 | P a g e

Operating System, then choose the Edge Detection Feature which
is displayed on Feature Choice Menu then choose the Edge
Detection Method you want to use

Expected Output The Image Choose Menu is opened, displaying options to Select
image from Galley or Take new image using camera

Actual Output The Image Choose Menu is opened, displaying options to Select
image from Galley or Take new image using camera

Test Case Name Select Image from Gallery (Edge Detection Feature)
Test Case No 18
Description Testing Select Image from Gallery Feature for Edge Detection

Method Feature
Testing Technique
Used

Unit Testing

Preconditions The user must have selected Edge Detection Method from
Feature Choice Menu

Input Values Choose from Gallery, Take Image using Camera
Valid Inputs Choose Select Image form Gallery option by clicking on the

Choose from Gallery button
Steps First select the piClone android application installed in Android

Operating System then choose the Edge Detection Feature which
is displayed on Feature Choice Menu then choose Edge Detection
Method displaying on Choose Image Menu

Expected Output The Gallery of the android mobile phone should be accessed by
piClone and should enable user to select desired image from
Gallery

Actual Output The Gallery of the android mobile phone is accessed by piClone
enabling user to select desired image from Gallery

Test Case Name Take Picture using Camera (Feature)
Test Case No 19
Description Testing Take Picture using Camera Feature for Edge Detection

Feature
Testing Technique
Used

Unit Testing

Preconditions The user must have selected Edge Detection Method from
Feature Choice Menu

Input Values Choose from Gallery, Take Image using Camera

87 | P a g e

Valid Inputs Choose Take Image using Camera option by clicking on the Take
Image using Camera button

Steps First select the piClone android application installed in Android
Operating System then choose the Edge Detection Feature which
is displayed on Feature Choice Menu then choose Take Image
using Camera displaying on Choose Image Menu

Expected Output The Camera of the android mobile phone should be accessed by
piClone and should enable user to Take an Image

Actual Output The Camera of the android mobile phone is accessed by piClone
enabling user to Take an Image

Test Case Name Detect Edges
Test Case No 20
Description Testing Detect Edges Feature for the Selected Image
Testing Technique
Used

Unit Testing, Integration Testing and Regression Testing

Preconditions The user must have selected the image for which user wants to
Detect Edges

Input Values Detect Edges
Valid Inputs Choose Detect Edges option by clicking on the Detect Edges

Button
Steps First select the piClone android application installed in Android

Operating System then choose the Edge Detection Feature which
is displayed on Feature Choice Menu then Select the image you
want to Detect Edges for then Select the Detect Edges Button to
apply the selected Edge Detection Method on the choosen Image

Expected Output The new Image appears on the new interface and should be saved
in Gallery of Android Mobile phone

Actual Output The new Image appears on the new interface and is saved in
Gallery of Android Mobile phone

88 | P a g e

5.8 Environmental Needs

Hardware

• Mobile with Android platform

Software
• Mobile Platform: Android 3.0/3.1 or later (Eclair Based on Linux Kernel 2.6.29 or

later
• Eclipse 3.4 (Ganymede) or 3.5 (Galileo) with ADT Plugin

5.9 Responsibilities, Staffing and Training Needs

Responsibilities

• HaiderMushtaq is responsible for Acceptance Testing
• MianBasitMahmood is responsible for Integration Testing
• Hussain Ali is responsible for testing each separate unit that is Unit Testing.

Skills
• Skills needed to test piClone using QACenter

5.10Risks and contingencies

We have tried to test on various android platforms as much as possible, but it’s impossible to test
for all android platforms. What’s more, mobile Android application is tested on Android devices
and is tested on limited mobiles, thus we cannot predict the system behavior on the other mobile
platforms (eg. iPhone, Blackberry, Symbian platform etc.). Further investigation is required to
verify and improve piClone.

89 | P a g e

Chapter 6: Future Work

Researchers can use this Project as a guide to understand the “Image Cloning”.
They can use this as a base for upgrading and adding new features. They can also
use this for developing a new project by using this a reference material.The project
developed could then be used as a basis for further work in the field of Image
Processing.

It can be evolved into a bigger and more complex system with more features and
functionality. The application can be enhanced to further include more features
using which Images could be edited and modified in a more seamless and effective
manner.

Anything dealing with Image Processing is highly unpredictable and tedious
because there are infinite possibilities of the Images that are to be dealt with. As
Image Cloning is part of Image Processing therefore there can be infinite number
of scenarios where cloning using our system may not be as effective and as
seamless as hoped. Therefore, Future work can include Perfecting Cloning for a
wide range of possibilities.

90 | P a g e

Chapter 7: Conclusion

We workedto find a solution to Image Cloning, which includes Image Extraction
from a selected Image and Merging of the extracted piece of selected image on the
base Image, which can be implemented for an android application. It will be our
algorithm that will be able to merge (clone) these 2 images seamless and effective
manner .We developed an algorithm that can merge 2 images in such a way that
the output image is as realistic as possible. An android application, using which the
user could easily perform cloning and edit and modify images in a seamless and
effective manner, was the final product.

Using the generic framework of guided interpolation, we have introduced a variety
of tools to edit in a seamless and effortless manner the contents of an image
selection. The extent of possible changes ranges from replacement by, or mixing
with, another source image region, to alterations of some aspects of the
originalimage inside the selection, such as texture, illumination, or color. An
important common characteristic of all these tools is that there
isnoneedforpreciseobjectdelineation, incontrastwiththeclassic tools that address
similar tasks. This is a valuable feature, whether one is interested in small touch-up
operations or in complex photomontages. It is for instance possible to insert an
object while flattening its texture to make it match the style of a texture-free
destination. Finally, it is worth noting that the range of editing facilities derived in
this paper from the same generic framework could probably be extended further.
Appearance changes could for instance
alsodealwiththesharpnessofobjectsofinterest, thusallowingthe user to make
apparent changes of focus.

The purpose of this app is to give the end user easy access to various image editing
and image extraction techniques with the help of an easy to use graphic user
interface and minimal learning effort. Using this app the end user can create
amazing breathtaking pictures which can then be saved to local storage or can then
be shared among friends using the social media

91 | P a g e

Bibliography

http://www.cs.huji.ac.il/~danix/mvclone/files/mvc-final-opt.pdf

http://www.connellybarnes.com/work/class/2013/cs6501/proj2/

http://www.developer.android.com/reference/android/app/Activity.html

http://www.embedded.com/design/programming-languages-and-
tools/4406164/Developing-OpenCV-computer-vision-apps-for-the-Android-
platform

http://www.eavise.be/mastertheses/BilliauwsBonjean.pdf

http://www.cs.huji.ac.il/~danix/mvclone/files/mvc-final-opt.pdf
http://www.connellybarnes.com/work/class/2013/cs6501/proj2/
http://www.developer.android.com/reference/android/app/Activity.html
http://www.embedded.com/design/programming-languages-and-tools/4406164/Developing-OpenCV-computer-vision-apps-for-the-Android-platform
http://www.embedded.com/design/programming-languages-and-tools/4406164/Developing-OpenCV-computer-vision-apps-for-the-Android-platform
http://www.embedded.com/design/programming-languages-and-tools/4406164/Developing-OpenCV-computer-vision-apps-for-the-Android-platform
http://www.eavise.be/mastertheses/BilliauwsBonjean.pdf

92 | P a g e

Appendix

Description:
An android application that takes in two pictures from the user. One picture can be
selected as the base picture or as the background. From the other picture, the
selected object will be cloned on to the base picture. Gradients can be modified,
boundary conditions can be applied, and then everything would be "integrated"
using a linear solver to go back to color domain of the base image.

ScopeofWork:
This is an image processing application for the android phone that can be used to
take pictures of Objects and then strip away the background, replacing it with a
new one. An additional feature will be to modify images by applying filters and
edge detection techniques.

AcademicObjective:
Understand the image cloning process. Working with images on Android and then
developing a complete android based application

End Goal Objective:
Develop a simple, easy to use Android application that would require minimum
user input to produce beautiful image mergers.

93 | P a g e

Pseudo code for components

HomeActivity.java

public class HomeActivity extends Activity {

public static final int MEAN_BLUR = 1;

public static final int GAUSSIAN_BLUR = 2;

public static final int MEDIAN_BLUR =3 , SHARPEN =4 ,DILATE = 5, ERODE = 6, THRESHOLD =7 ,

 ADAPTIVE_THRESHOLD =8, DIFFERENCE_OF_GAUSSIAN = 9 ,CANNY = 10,

 SOBEL = 11, HARRIS = 12, HOUGHL = 13 , HOUGHC = 14, CONTOURS = 15;

 Button bMean, gBlur, meBlur, shr, dil, ero, ada, DoG, TCED, Sobel, Harris, HoughL, HoughC, Contours,
Threashold;

 @Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_home);

bMean = (Button)findViewById(R.id.bMean);

gBlur = (Button)findViewById(R.id.gBlur);

meBlur = (Button)findViewById(R.id.meBlur);

shr = (Button)findViewById(R.id.shr);

dil = (Button)findViewById(R.id.dil);

ero = (Button)findViewById(R.id.ero);

ada = (Button)findViewById(R.id.ada);

DoG = (Button)findViewById(R.id.DoG);

 TCED = (Button)findViewById(R.id.TCED);

Sobel = (Button)findViewById(R.id.Sobel);

 Harris = (Button)findViewById(R.id.Harris);

HoughL = (Button)findViewById(R.id.HoughL);

94 | P a g e

HoughC = (Button)findViewById(R.id.HoughC);

 Contours = (Button)findViewById(R.id.Contours);

Threashold = (Button) findViewById(R.id.Threashold);

Threashold.setOnClickListener(new View.OnClickListener() {

 @Override

public void onClick(View v) {

 Intent i = new Intent(getApplicationContext(),

MainActivity.class);

i.putExtra("ACTION_MODE", THRESHOLD);

startActivity(i);

 }

 });

Contours.setOnClickListener(new View.OnClickListener() {

 @Override

public void onClick(View v) {

 Intent i = new Intent(getApplicationContext(),

MainActivity.class);

i.putExtra("ACTION_MODE", CONTOURS);

startActivity(i);

 }

 });

HoughC.setOnClickListener(new View.OnClickListener() {

 @Override

public void onClick(View v) {

 Intent i = new Intent(getApplicationContext(),

MainActivity.class);

i.putExtra("ACTION_MODE", HOUGHC);

startActivity(i);

 }

95 | P a g e

 });

HoughL.setOnClickListener(new View.OnClickListener() {

 @Override

public void onClick(View v) {

 Intent i = new Intent(getApplicationContext(),

MainActivity.class);

i.putExtra("ACTION_MODE", HOUGHL);

startActivity(i);

 }

 });

Harris.setOnClickListener(new View.OnClickListener() {

 @Override

public void onClick(View v) {

 Intent i = new Intent(getApplicationContext(),

MainActivity.class);

i.putExtra("ACTION_MODE", HARRIS);

startActivity(i);

 }

 });

Sobel.setOnClickListener(new View.OnClickListener() {

 @Override

public void onClick(View v) {

 Intent i = new Intent(getApplicationContext(),

MainActivity.class);

i.putExtra("ACTION_MODE", SOBEL);

startActivity(i);

 }

 });

96 | P a g e

TCED.setOnClickListener(new View.OnClickListener() {

 @Override

public void onClick(View v) {

 Intent i = new Intent(getApplicationContext(),

MainActivity.class);

i.putExtra("ACTION_MODE", CANNY);

startActivity(i);

 }

 });

DoG.setOnClickListener(new View.OnClickListener() {

 @Override

public void onClick(View v) {

 Intent i = new Intent(getApplicationContext(),

MainActivity.class);

i.putExtra("ACTION_MODE", DIFFERENCE_OF_GAUSSIAN);

startActivity(i);

 }

 });

ada.setOnClickListener(new View.OnClickListener() {

 @Override

public void onClick(View v) {

 Intent i = new Intent(getApplicationContext(),

MainActivity.class);

i.putExtra("ACTION_MODE", ADAPTIVE_THRESHOLD);

startActivity(i);

 }

 });

ero.setOnClickListener(new View.OnClickListener() {

 @Override

97 | P a g e

public void onClick(View v) {

 Intent i = new Intent(getApplicationContext(),

MainActivity.class);

i.putExtra("ACTION_MODE", ERODE);

startActivity(i);

 }

 });

shr.setOnClickListener(new View.OnClickListener() {

 @Override

public void onClick(View v) {

 Intent i = new Intent(getApplicationContext(),

MainActivity.class);

i.putExtra("ACTION_MODE", SHARPEN);

startActivity(i);

 }

 });

dil.setOnClickListener(new View.OnClickListener() {

 @Override

public void onClick(View v) {

 Intent i = new Intent(getApplicationContext(),

MainActivity.class);

i.putExtra("ACTION_MODE", DILATE);

startActivity(i);

 }

 });

bMean.setOnClickListener(new View.OnClickListener() {

 @Override

public void onClick(View v) {

 Intent i = new Intent(getApplicationContext(),

98 | P a g e

MainActivity.class);

i.putExtra("ACTION_MODE", MEAN_BLUR);

startActivity(i);

 }

 });

gBlur.setOnClickListener(new View.OnClickListener() {

 @Override

public void onClick(View v) {

 Intent i = new Intent(getApplicationContext(),

MainActivity.class);

i.putExtra("ACTION_MODE", GAUSSIAN_BLUR);

startActivity(i);

 }

 });

meBlur.setOnClickListener(new View.OnClickListener() {

 @Override

public void onClick(View v) {

 Intent i = new Intent(getApplicationContext(),

MainActivity.class);

i.putExtra("ACTION_MODE", MEDIAN_BLUR);

startActivity(i);

 }

 });

 }

}

99 | P a g e

MainActivity.java

public class MainActivity extends Activity {

private final int SELECT_PHOTO = 1;

privateImageViewivImage, ivImageProcessed;

 Mat src;

staticint ACTION_MODE = 0;

 @Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_main);

ivImage = (ImageView)findViewById(R.id.ivImage);

ivImageProcessed =

 (ImageView)findViewById(R.id.ivImageProcessed);

 Intent intent = getIntent();

if(intent.hasExtra("ACTION_MODE")) {

 ACTION_MODE = intent.getIntExtra("ACTION_MODE", 0);

 }

 }

 @Override

publicbooleanonCreateOptionsMenu(Menu menu) {

getMenuInflater().inflate(R.menu.menu_main, menu);

return true;

 }

100 | P a g e

 @Override

publicbooleanonOptionsItemSelected(MenuItem item) {

int id = item.getItemId();

if (id == R.id.action_load_image) {

 Intent photoPickerIntent = new

Intent(Intent.ACTION_PICK);

photoPickerIntent.setType("image/*");

startActivityForResult(photoPickerIntent, SELECT_PHOTO);

Log.d("Haider", "Activity: Started ");

return true;

 }

returnsuper.onOptionsItemSelected(item);

 }

public void onActivityResult(intrequestCode, intresultCode, Intent imageReturnedIntent){

super.onActivityResult(requestCode, resultCode, imageReturnedIntent);

Log.d("Haider", "OnActivityResult: Started ");

switch(requestCode) {

case SELECT_PHOTO:

if(resultCode == RESULT_OK){

try {

//Code to load image into a Bitmap and convert it to a Mat for processing.

final Uri imageUri = imageReturnedIntent.getData();

finalInputStreamimageStream =

getContentResolver().openInputStream(imageUri);

final Bitmap selectedImage =

BitmapFactory.decodeStream(imageStream);

src = new Mat(selectedImage.getHeight(),

selectedImage.getWidth(), CvType.CV_8UC4);

Utils.bitmapToMat(selectedImage, src);

switch (ACTION_MODE){

101 | P a g e

//Add different cases here depending on the required operation

caseHomeActivity.MEAN_BLUR:

Imgproc.blur(src, src, new Size(3, 3));

break;

caseHomeActivity.GAUSSIAN_BLUR:

Imgproc.GaussianBlur(src, src, new Size(3, 3), 0);

break;

caseHomeActivity.MEDIAN_BLUR:

Imgproc.medianBlur(src, src, 3);

break;

caseHomeActivity.SHARPEN:

 Mat kernel = new Mat(3,3,CvType.CV_16SC1);

kernel.put(0, 0, 0, -1, 0, -1, 5, -1, 0, -1, 0);

Imgproc.filter2D(src, src, src.depth(), kernel);

break;

caseHomeActivity.DILATE:

 Mat kernelDilate = Imgproc.getStructuringElement(

Imgproc.MORPH_RECT, new Size(3, 3));

Imgproc.dilate(src, src, kernelDilate);

break;

caseHomeActivity.ERODE:

 Mat kernelErode = Imgproc.getStructuringElement(Imgproc.MORPH_ELLIPSE, new Size(5,
5));

Imgproc.erode(src, src, kernelErode);

break;

caseHomeActivity.THRESHOLD:

Imgproc.threshold(src, src, 100, 255, Imgproc.THRESH_BINARY);

break;

caseHomeActivity.ADAPTIVE_THRESHOLD:

Imgproc.cvtColor(src, src, Imgproc.COLOR_BGR2GRAY);

Imgproc.adaptiveThreshold(src, src, 255, Imgproc.ADAPTIVE_THRESH_GAUSSIAN_C,
Imgproc.THRESH_BINARY, 3, 0);

break;

102 | P a g e

caseHomeActivity.DIFFERENCE_OF_GAUSSIAN:

src = DifferenceOfGaussian(src);

break;

caseHomeActivity.CANNY:

Imgproc.cvtColor(src,src,Imgproc.COLOR_BGR2GRAY);

Imgproc.Canny(src, src, 10, 100);

break;

caseHomeActivity.SOBEL:

src = Sobel(src);

break;

caseHomeActivity.HARRIS:

src = HarrisCorner(src);

break;

caseHomeActivity.HOUGHL:

src = HoughLines(src);

break;

caseHomeActivity.HOUGHC:

src = HoughCircles(src);

break;

caseHomeActivity.CONTOURS:

src = Contours(src);

break;

 }

//Code to convert Mat to Bitmap to load in an ImageView. Also load original image in imageView

 Bitmap processedImage = Bitmap.createBitmap(src.cols(),

src.rows(), Bitmap.Config.ARGB_8888);

Utils.matToBitmap(src, processedImage);

ivImage.setImageBitmap(selectedImage);

ivImageProcessed.setImageBitmap(processedImage);

 } catch (FileNotFoundException e) {

103 | P a g e

e.printStackTrace();

 }

 }

break;

 }

 }

privateBaseLoaderCallbackmOpenCVCallBack = new

BaseLoaderCallback(this) {

 @Override

public void onManagerConnected(int status) {

switch (status) {

caseLoaderCallbackInterface.SUCCESS:

//DO YOUR WORK/STUFF HERE

break;

default:

super.onManagerConnected(status);

break;

 }

 }

 };

 @Override

protected void onResume() {

super.onResume();

OpenCVLoader.initAsync(OpenCVLoader.OPENCV_VERSION_3_0_0,

this,

mOpenCVCallBack);

 }

public Mat DifferenceOfGaussian(Mat originalMat)

 {

104 | P a g e

 Mat grayMat = new Mat();

 Mat blur1 = new Mat();

 Mat blur2 = new Mat();

//Converting the image to grayscale

Imgproc.cvtColor(originalMat

 , grayMat, Imgproc.COLOR_BGR2GRAY);

//Bluring the images using two different blurring radius

Imgproc.GaussianBlur(grayMat, blur1, new Size(15, 15), 5);

Imgproc.GaussianBlur(grayMat, blur2, new Size(21, 21), 5);

//Subtracting the two blurred images

 Mat DoG = new Mat();

Core.absdiff(blur1, blur2, DoG);

//Inverse Binary Thresholding

Core.multiply(DoG, new Scalar(100), DoG);

Imgproc.threshold(DoG, DoG, 50, 255

 , Imgproc.THRESH_BINARY_INV);

//Converting Mat back to Bitmap

returnDoG;

 }

public Mat Sobel(Mat originalMat)

 {

 Mat grayMat = new Mat();

 Mat sobel = new Mat(); //Mat to store the result

//Mat to store gradient and absolute gradient respectively

 Mat grad_x = new Mat();

 Mat abs_grad_x = new Mat();

 Mat grad_y = new Mat();

 Mat abs_grad_y = new Mat();

 List<MatOfPoint> contours = new ArrayList<MatOfPoint>();

//Converting the image to grayscale

Imgproc.cvtColor(originalMat, grayMat, Imgproc.COLOR_BGR2GRAY);

105 | P a g e

//Calculating gradient in horizontal direction

Imgproc.Sobel(grayMat, grad_x, CvType.CV_16S, 1, 0, 3, 1, 0);

//Calculating gradient in vertical direction

Imgproc.Sobel(grayMat, grad_y, CvType.CV_16S, 0, 1, 3, 1, 0);

//Calculating absolute value of gradients in both the direction

Core.convertScaleAbs(grad_x, abs_grad_x);

Core.convertScaleAbs(grad_y, abs_grad_y);

//Calculating the resultant gradient

Core.addWeighted(abs_grad_x, 0.5, abs_grad_y, 0.5, 1, sobel);

//Find contours :

Imgproc.threshold(sobel, sobel, 200, 255, Imgproc.THRESH_BINARY);

 Mat copy = sobel.clone();

Imgproc.findContours(copy, contours, new Mat(), Imgproc.RETR_LIST, Imgproc.CHAIN_APPROX_SIMPLE);

// Approximate contours to polygons + get bounding rects

 MatOfPoint2f approxCurve = new MatOfPoint2f();

for (int i=0; i<contours.size(); i++)

 {

 //Convert contours(i) from MatOfPoint to MatOfPoint2f

 MatOfPoint2f contour2f = new MatOfPoint2f(contours.get(i).toArray());

 //Processing on mMOP2f1 which is in type MatOfPoint2f

doubleapproxDistance = Imgproc.arcLength(contour2f, true)*0.02;

Imgproc.approxPolyDP(contour2f, approxCurve, approxDistance, true);

 //Convert back to MatOfPoint

MatOfPoint points = new MatOfPoint(approxCurve.toArray());

106 | P a g e

 // Get bounding rect of contour

Rectrect = Imgproc.boundingRect(points);

 // draw enclosing rectangle (all same color, but you could use variable i to make them unique)

Imgproc.rectangle(sobel, new Point(rect.x,rect.y), new Point(rect.x+rect.width,rect.y+rect.height), new
Scalar(255, 0, 0),1, 8,0);

 }

 Toast toast = Toast.makeText(this, "Total Contours: " + contours.size(), Toast.LENGTH_LONG);

toast.show();

returnsobel;

 }

public Mat HarrisCorner(Mat originalMat) {

 Mat grayMat = new Mat();

 Mat corners = new Mat();

//Converting the image to grayscale

Imgproc.cvtColor(originalMat, grayMat, Imgproc.COLOR_BGR2GRAY);

 Mat tempDst = new Mat();

//finding corners

Imgproc.cornerHarris(grayMat, tempDst, 2, 3, 0.04);

//Normalizing harris corner's output

 Mat tempDstNorm = new Mat();

Core.normalize(tempDst, tempDstNorm, 0, 255, Core.NORM_MINMAX);

Core.convertScaleAbs(tempDstNorm, corners);

//Drawing corners on a new image

 Random r = new Random();

for (int i = 0; i <tempDstNorm.cols(); i++) {

for (int j = 0; j <tempDstNorm.rows(); j++) {

double[] value = tempDstNorm.get(j, i);

107 | P a g e

if (value[0] > 150)

Imgproc.circle(corners, new Point(i, j), 5, new Scalar(r.nextInt(255)), 2);

 }

 }

//Converting Mat back to Bitmap

return corners;

 }

public Mat HoughLines(Mat originalMat)

 {

 Mat grayMat = new Mat();

 Mat cannyEdges = new Mat();

 Mat lines = new Mat();

//Converting the image to grayscale

Imgproc.cvtColor(originalMat, grayMat,Imgproc.COLOR_BGR2GRAY);

Imgproc.Canny(grayMat, cannyEdges,10, 100);

Imgproc.HoughLinesP(cannyEdges, lines, 1, Math.PI / 180, 50, 20, 20);

 Mat houghLines = new Mat();

houghLines.create(cannyEdges.rows(), cannyEdges.cols(), CvType.CV_8UC1);

 //Drawing lines on the image

for(int i = 0 ; i <lines.cols() ; i++)

 {

double[] points = lines.get(0,i);

double x1, y1, x2, y2;

x1 = points[0];

 y1 = points[1];

x2 = points[2];

 y2 = points[3];

 Point pt1 = new Point(x1, y1);

 Point pt2 = new Point(x2, y2);

//Drawing lines on an image

Imgproc.line(houghLines, pt1, pt2, new Scalar(255, 0, 0), 1);

108 | P a g e

 }

//Converting Mat back to Bitmap

returnhoughLines;

 }

public Mat HoughCircles(Mat originalMat)

 {

 Mat grayMat = new Mat();

 Mat cannyEdges = new Mat();

 Mat circles = new Mat();

//Converting the image to grayscale

Imgproc.cvtColor(originalMat, grayMat,Imgproc.COLOR_BGR2GRAY);

Imgproc.Canny(grayMat, cannyEdges,10, 100);

Imgproc.HoughCircles(cannyEdges, circles,

Imgproc.CV_HOUGH_GRADIENT, 1, cannyEdges.rows() / 15);

//, grayMat.rows() / 8);

 Mat houghCircles = new Mat();

houghCircles.create(cannyEdges.rows(),cannyEdges.cols(), CvType.CV_8UC1);

//Drawing lines on the image

for(int i = 0 ; i <circles.cols() ; i++)

 {

double[] parameters = circles.get(0,i);

double x, y;

int r;

 x = parameters[0];

 y = parameters[1];

 r = (int)parameters[2];

 Point center = new Point(x, y);

//Drawing circles on an image

Imgproc.circle(houghCircles, center, r,

new Scalar(255, 0, 0), 1);

 }

109 | P a g e

//Converting Mat back to Bitmap

returnhoughCircles;

 }

public Mat Contours(Mat originalMat)

 {

 Mat grayMat = new Mat();

 Mat cannyEdges = new Mat();

 Mat hierarchy = new Mat();

 List<MatOfPoint>contourList = new ArrayList<MatOfPoint>();

//A list to store all the contours

 //Converting the image to grayscale

Imgproc.cvtColor(originalMat,grayMat,Imgproc.COLOR_BGR2GRAY);

Imgproc.Canny(grayMat, cannyEdges,10, 100);

//finding contours

Imgproc.findContours(cannyEdges,contourList, hierarchy,Imgproc.RETR_LIST,
Imgproc.CHAIN_APPROX_SIMPLE);

//Drawing contours on a new image

 Mat contours = new Mat();

contours.create(cannyEdges.rows(), cannyEdges.cols(),CvType.CV_8UC3);

 Random r = new Random();

for(int i = 0; i <contourList.size(); i++)

 {

Imgproc.drawContours(contours, contourList, i, new Scalar(r.nextInt(255), r.nextInt(255),r.nextInt(255)), -1);

 }

//Converting Mat back to Bitmap

return contours;

 } }

	Chapter 1: Introduction
	1.1 Overview
	1.2 Problem Statement
	1.3 Approach
	1.4 Scope
	1.5 Objectives
	1.6 Deliverables
	1.7 Overview of the document
	1.8 Purpose of the document:

	Chapter 2: Literature Review
	Chapter 3: Software Requirement Specification
	3.1Introduction
	3.2 Overall Description
	3.2.1 Product Perspective
	3.2.2 Product Functions
	3.2.3 User Classes and Characteristics
	Researchers
	Tester
	Project Evaluator/Supervisor

	3.2.4 Operating Environment
	Software requirements:

	3.2.5 Design and Implementation Constraints
	3.2.6 User Documentation
	3.2.7 Assumptions and Dependencies

	3.3 External Interface Requirements
	3.3.1 User Interfaces
	3.3.2 Software Interfaces

	3.4 System Features
	3.5 Other Nonfunctional Requirements
	3.5.1 Performance Requirements
	3.5.2 Safety Requirements
	3.5.3 Security Requirements
	3.5.4 Software Quality Attributes

	Chapter 4: Design and Development
	4.1 Introduction
	4.2 Scope of the Development Project
	4.3SystemArchitectureDescription
	4.3.1OVERVIEW OF MODULES/COMPONENTS
	4.3.2 Structure and Relationships
	Use Case Diagram
	Sequence Diagrams
	Class Diagram
	Logical View (State Transition Diagram)
	Dynamic view (Activity Diagram)
	Android Activity Lifecycle
	Android Fragment Lifecycle
	Structure Chart
	Work Breakdown Structure
	User Interface
	4.3.3 Detailed Description of Components
	Graphical User Interface
	Image Processing
	Image Cropping
	Edge Detection
	Image Filters
	Image Merging
	Image Blending

	4.4 Reuse and Relationship to other products
	4.5 Design and Tradeoffs
	Chapter 5: Testing and Evaluation
	5.1 Introduction
	5.2 Test Items
	5.3 Features tested
	5.4 Approach
	5.5 Item Pass/Fail Criteria
	5.6 Suspension Criteria and Resumption Requirements
	5.7 Test Deliverables
	5.8 Environmental Needs
	Hardware
	Software

	5.9 Responsibilities, Staffing and Training Needs
	Responsibilities
	Skills

	5.10Risks and contingencies
	Chapter 6: Future Work
	Chapter 7: Conclusion
	Bibliography
	Appendix
	Pseudo code for components
	HomeActivity.java
	MainActivity.java

