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ABSTRACT 

 

The field of information technology has observed considerable development over 

the last century. Slowly and steadily, computer technology has worked its way into every 

field imaginable. Now, the use of computer technology can be observed everywhere; 

from personal use, to use on an enterprise level, rather, all companies rely on a computer 

in one form or another. In that regard, the computer is considered the most important 

invention of the 20th century. The integration of computer technology into work, 

specifically, made life easier. Work became more efficient, as people could easily 

accomplish things that often took days in a matter of minutes. All in all, the computer 

proved to be a safe, secure, and efficient tool for work and entertainment alike.  

This cyber cloud, however, emerged with a darker lining. Everything went into 

the cyber world, and thus, people began to think of ways to compromise that safety, and 

thus, the first malware emerged on the scene in 1986. Over the years, new ways to breach 

systems are being developed every day, the most recent being the use of file-less attack 

vectors. In response to the increasing amount of file-less malware all over the cyber 

world, demand for anti-malware systems has observed a considerable increase. Our 

project relates to said demand, providing a solution to the detection of file-less malware 

using behavioral analysis, and Machine Learning. Classification between malicious and 

benign files is conducted using API data, using SVM, Decision Trees, Naïve Bayes and 

KNN Algorithms.  

Keywords: File-less Malware, Malware Detection, Anti-Ghost, Behavioral Analysis, 

Machine Learning, KNN, SVM, Naïve Bayes, Decision Tress. 
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1. CHAPTER 1: INTRODUCTION 

The following chapter provides a very comprehensive introduction to the project 

titled “Anti-Ghost”, enumerating on the project in the form of an overview, explaining 

the need for the project, the project objectives, an overall approach to the project, the 

limitations of the project, and an overview into how this document has been organized.  

1.1. Overview: 

Most over the shelf anti-malware solutions implement the use of static analysis 

methods that are inefficient against file-less malware. Said class of malware, as their 

name indicates are a class of malware that do not save a malicious instance or a file on to 

the system hard drive. Instead, file-less malware loads the malicious program directly 

into the system’s main memory, and further targets the windows’ legitimate services, 

integrating their own functionality into said services. Instances of malware that do so 

have been known to integrate themselves into the windows registry, svchost, and 

numerous other services to establish themselves on an infected system. In that respect, a 

number of distinct cyber-attacks have occurred since 2016 inclusive of the PETYA and 

NOT-PETYA cyber-attacks, or the spread of the ETERNALBLUE malware.   

The anti-ghost project fundamentally aims at the detection of malware that 

employ the use of file-less attack vectors, namely, file-less malware. Towards that end, 

the project implements the use of behavioral analysis and Machine Learning. Along the 

scope of the project, i.e. the detection of file-less malware, the use of behavioral analysis 

is a necessity owing to the file-less nature of malware that make static analysis methods 

implemented by most over the counter anti-malware software inefficient due to the 
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unavailability of a malicious file on the system’s secondary memory. Secondly, paving 

the way to an anti-malware solution based on behavioral analysis and Machine Learning 

involves the use of an adequate dataset based on specific malicious as well as benign 

samples that will, and has been built from scratch. 

1.2. Problem Statement: 

The computer is considered the most important invention of the 20th century. The 

integration of computer technology into work, specifically, made life easier. Work 

became more efficient, as people could easily accomplish things that often took days in a 

matter of minutes. All in all, the computer proved to be a safe, secure, and efficient tool 

for work and entertainment alike. Everything went into the cyber world, and thus, people 

began to think of ways to compromise that safety, and thus, the first malware emerged on 

the scene in 1986, i.e. the “Brain” Malware, the first malware to be recognized worldwide, 

that was the brainchild of a Pakistani programmer.  

Over the years, as software platforms were made more and more secure to avert 

and prevent malicious activity, malware themselves became more and more efficient. 

New ways to breach systems are being developed every day, the most recent being the 

use of file-less attack vectors.  

In response to the increasing amount of file-less malware all over the cyber world, 

we require a system capable of the detection of file-less malware, the motivation behind 

which is the development of a malware detection system indigenous to Pakistan. 

Furthermore, as the demand for anti-malware systems has observed a considerable 

increase, the project has considerable feasibility in terms of market. Our project relates to 
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the aforementioned demand, providing a solution to the detection of file-less malware 

using behavioral analysis, and Machine Learning. 

 

1.3. Objectives: 

The use of Dynamic memory analytics alongside machine learning provides us 

with a new way to detect malware. While the use of machine learning towards the 

detection of malicious activity on a computer system is new, it has gained considerable 

application over the years accounting for the emergence of file-less malware.  

The scope of our project is fundamentally the detection of file-less malware. 

Towards that end, the project makes use of a custom dataset of malware and benign 

samples. Furthermore, the scope of the project also includes the development of a custom 

dataset owing to the unavailability of a public instance of said dataset. The project 

implements the use of behavioral analytics over the characteristics displayed by over 

2000 malware samples. These characteristics are extracted in the form of features or API 

calls made.  

Overall, the ultimate goal of our project is the development of a system that is 

capable of detection of File-less malware, particularly malware that implements the use 

of PowerShell scripts, as well as Microsoft Office VBA Macros.  

The following are a summation of the cardinal objectives of Anti-Ghost: 

• Dataset generation. 

• Research on how to tackle the emergence of newer classes of malware. 

• The development of a system of file-less malware detection. 
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• Assisting individuals and organizations to keep their systems malware-free. 

• Detection of a majority of similar malware based on behavioral heuristics. 

• Development of a light-user friendly program. 

• Minimizing costs associated with the possibility of ransomware emergence and 

infections.  

• An anti-malware system indigenous to Pakistan. 

1.4. Approach/Research Methodology 

The following section enumerates on the approach used towards the actualization 

of the project, i.e. the detection of file-less malware. The section places primary focus on 

the entire development method, from the initial dataset gathering process, to finalization 

of the entire project.  

1.4.1. Collection of Malware Samples: 

The first step along the development of Anti-Ghost involves the generation 

of a viable dataset based primarily on both malware and benign file samples. 

Towards that end, the attainment of benign file samples proved a simple task. 

However, the availability of live malware samples proved challenging. The primary 

source of malicious samples used is “Virus share”, a repository of live malicious 

samples. The site has numerous collections of malware that have individually been 

filtered to those involving the use of file-less methodologies, specifically those using 

PowerShell, and word Macros. The initial terabyte of malicious samples has been 

filtered down to 2000 live malware samples.  
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1.4.2. Collection of Benign Samples: 

A sample equal of benign samples equal to the sample set of live malware 

samples had also been procured. The sample set of benign files includes benign 

VBA and PowerShell based files.  

1.4.3. Malware Analysis: 

Once the sample sets of malicious and benign files had been gathered, the 

files were analyzed to assess features of both the live malware and the benign files. 

This has been accomplished using Cuckoo, the leading open-source, automated 

malware analysis tool available. Cuckoo allows for the analysis of malware to 

extract features such as API calls, files run, etc., essentially allowing us to monitor 

a file’s behavior. Cuckoo also cross-validates results with popular anti-malware 

solutions. Each malware sample was run on a VMWare instance run inside the 

cuckoo sandbox. Cuckoo allows the malware to run on a sandboxed, windows-

based VMWare instance, recording how the malware behaves. The behavior of the 

malware is recorded, and a report is generated based on the complete set of actions 

the malware performs. The same is also true for benign file samples.  

Cuckoo essentially allows us to monitor how a file behaves when run and generates 

a report based on: 

• System API calls. 

• Files used, run, or downloaded and deleted. 

• Network activity 

• System memory dumps 
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1.4.4. Feature Extraction: 

Once all the malware samples and benign files have been analyzed, 

features are extracted from the generated reports. This includes two CSVs 

generated each, for both malicious files and benign files. One set of CSVs includes 

two files, where one file has API data on failed malware, and one has API data on 

successful entries. The same is also true for benign samples.  

 

Figure 1: CSV for Successfully Run Malware 
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Figure 2: CSV for Malware that Failed to Run 

 

 

 

 

Figure 3: CSV For Benign Files that Failed to Run 
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Figure 4: CSV for Successfully Run Benign Samples 

 

The overall number of APIs extracted include over 250 distinct APIs.  

 

1.4.5. Machine Learning: 

Once the dataset of both malicious and benign file samples has been 

developed, the project proceeds to the use of Machine Learning towards the 

development of a model to determine what files are malicious and what files are 

benign. The generated dataset is split into two halves. One half of the dataset (now 

split into two) has been used to train the model, whereas the other half is used to 

validate the trained dataset. The process determines which files are malicious 

based on the API calls made. 

The dataset has been represented using frequencies of APIs called. This 

mode of representation has been selected based on a trial and error methodology. 

Data could be represented in several forms based on the features extracted 

however API data provided the best mode of classification. The next step along 
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the process was the use of Machine Learning to train a model to be used towards 

the detection of malware. Since the developed dataset was supervised, we decided 

to look into supervised learning algorithms and determined 4 specific algorithms 

to be used. These include:  

• Naïve Bayes (Bernoulli, Gaussian and Multinomial) 

• K-Nearest Neighbor 

• Decision Trees 

• Support Vector Machines 

 

 

1.4.6. Program Development 

Based on the developed Machine Learning model, a program is developed that 

allows for the use of the model towards the detection of live malware. 

 

1.5. Limitations: 

Anti-Ghost as a software-based solution towards the detection of malware allows for 

the detection of malware that implement the use of file-less attack vectors, i.e. malware 

that directly run in system memory and achieve persistence through injection into 

legitimate windows processes.  
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There are, however, several limitations associated with the development and use of Anti-

Ghost. These have been enumerated on in the following section.  

• Anti-Ghost has been developed for use with Microsoft Windows only.  

• The scope of the project encompasses the detection of file-less malware that invoke 

PowerShell scripts, as well as VBA macros. These are but a subset of the total types 

of file-less malware available.  

• The scope of the types of malware to be detected has been constrained owing to the 

lack of available time.  

• Detection for malware types apart from those indicated will not be guaranteed.  
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1.6. Document Organization: 

 

Chapter 1:  Provides an overview and introduction to the Anti-Ghost project. 

Chapter 2: Deals with the literature review carried out towards the development of 

Anti-Ghost, as well as its core features and functionality. 

Chapter 3: The chapter discusses the software as well as hardware requirements for 

the Anti-Ghost project. This includes technical specifications, as well as 

the development of a working environment.  

Chapter 4:  This chapter is concerned with the design development of the Anti-Ghost 

project. This includes all UML Diagrams and their explanations.  

Chapter 5: The chapter provides an in-depth enumeration of the methodology used 

by Anti-Ghost towards the development of the project.   

Chapter 6: Presents a conclusion to the thesis, as well as recommendations into future 

work into the project. 
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1.7. Document Conventions 

Headings 

Heading are prioritized in a numbered fashion, the highest priority heading having a 

single digit and subsequent headings having more numbers, per their level.  

Sub-Headings 

All second level subheadings for every sub section have the same number as their 

respective main heading. 

Figures 

All figures in this document have captions and are numbered. 
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2. CHAPTER 2: LITERATURE REVIEW 

This chapter is primarily concerned with the details behind the characteristics of 

file-less malware, past research into file-less malware, solutions to the problem at hand, 

i.e. the detection of file-les malware, and lastly, Anti-Ghost, its novelty and limitations. 

2.1. Project Domain: 

The Anti-Ghost (AG) project is essentially a software-based solution towards the 

detection of file-less malware, i.e. malware that implements the use of file-less attack 

patterns. File-less malware, as their name suggests, do not store the malicious file on to 

the system hard drive, rendering most signature-based detection useless. That is because 

signature-based detection systems typically detect malware using known file signatures 

(anti-malware systems typically update their known file signatures in the form of virus 

definitions every few days). Thus, signature-based detection systems are incapable of 

detecting file-less threats simply because there is no malicious file to trigger the detection 

system.  

In an attempt to address this new class of malware, Anti-Ghost has been designed 

to counter these threats using behavioral analysis and Machine Learning. The project is 

essentially aimed at the detection of a subset of the total sub-types of file-less malware, 

i.e. malware that implement the use of PowerShell, and VBA macros stored on Microsoft 

Office files (trojans).  

Ultimately, the purpose of Anti-Ghost is research into the detection of File-less 

malware in response to the ever-increasing threat, and the development of a system of 

detection indigenous to Pakistan.  
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2.2. Literature Review: 

Owing to the rapid increase of malicious activity over the internet, new forms of 

malware (i.e. malicious code) are developed roughly every other day. One of the 

relatively-newer types of malicious threats that exist over the internet are file-less 

malwares; that are fundamentally your typical malware, however, unlike most malware 

they do not have files stored on to the system or even require persistence (in some cases). 

Here we discuss a few of the malware of a “file-less” nature with respect to their 

functionality, method of spread/propagation, actions as well as some of the steps one can 

take to prevent said malware from infecting one’s systems alongside the detection of file-

less malware. 

The first malware was developed in 1971, known as the “creeper” virus, that 

initially infected a small number of systems amounting to a total of 10. Since then, 

computers systems have gone through numerous stages of evolution, becoming more 

complex, yet more and more accessible with every stage. However, along with system 

evolution, the malware themselves have also gone through significant evolution. More 

and more malicious code is being developed with each passing day, each more “creative” 

than the last.  

One such “evolution” is the advent of file-less malware, the recent development 

in malware. Where typical malware stores some form of malicious executable that 

spreads throughout the system, file-less malware directly executes within the memory of 

the system. This is done with two primary objectives: 

• Prevent the code for the malware from being discovered and broken. 
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• Bypass static checking by anti-viruses. 

Since no antivirus classifies code in any language as malicious, especially at 

runtime, detection of file-less malware becomes impossible with conventional techniques 

such as checking for signatures due to a lack of a file to check etc. To detect file-less 

malware, one must first understand how it works, i.e. what methods it uses to propagate, 

achieve persistence, how it affects the system etc. One proposed method for successful 

detection involves an in-depth behavioral analysis of system afflicted with such malware 

to check for malware behavior with respect to the typical behavior of such malware at the 

propagation stage [4].  

Towards that end, several studies have been conducted that have effectively 

developed methods for detection based on the use of Behavioral analysis and Machine 

Learning. In a previous study by Chen, Wang, Wen and Lai, the use of a Convolutional 

Neural Network had been implemented towards the detection of malware where the CNN 

algorithm allowed for detection ratios up to 90 percent. The study placed emphasis on 

detection of malicious code embedded into benign code which is essentially one of the 

most dominate classes of file-less malware [1]. The research proposed conversion of the 

malicious and benign datasets to a state where each element of the dataset had been 

converted image format which would then be used with a convolutional neural network 

algorithm to train a model to be used for the detection of malware. Several similar studies 

[2,3] indicate the feasibility of detection of malicious behavior by conversion to an image 

or bitwise signal format which makes for simple processing but have numerous 

drawbacks, the most notable of which being able to escape detection by simply changing 
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the malicious code or by obfuscation as well as placement of dummy-API calls within 

the malicious code as pointed out by Ma. et al, in their study. [4]  

Several studies also fall within similar parameters to the Anti-Ghost project that 

is aimed at the detection of file-less malware using API frequency data [1,5,6]. Studies 

indicate that the generation of signatures based on malicious file and their use as features 

of the dataset are a viable method towards the detection of malware, and would essentially 

improve on the computational performance however, would be prone to an increase in 

false negatives owing to polymorphic malicious code, and variable malicious 

implementations [1]. The study suggests the use of algorithms such as CNN and LSTM 

over SVM, which is regarded as a very accurate deep learning algorithm owing to the 

nature of the dataset which is prone to very consistent change in implementation 

methodology [7]. Similar results can be viewed in several notable studies [15]. However, 

the use of SVM can also be overserved to yield very accurate results as indicated in by 

Zhang et al., where the use of SVM allows for reduced computational complexity and 

increased accuracy [9]. Lastly, in a very notable study by Alazab et al. which 

implemented the use of API frequency analysis, classified given files as malicious or 

benign based on whether a particular API had been called [10].  

We further view previous studies that cover the behavior of well-known malware 

of the class to determine some of the possible characteristics of file-less malware. A study 

by Aiden et al. covered one of the most devastating malware attacks of the century which 

involved the use of the Petya Ransomware in 2016. The malware also proved to inspire 

numerous reworks the following year. The Petya ransomware attacks had been targeted 

at numerous multi-national organizations where organizational computer systems had 
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been encrypted. The study having analyzed the malware determined that the malware 

operated using file-less principles and thus was able to remain undetected across 

thousands of computer systems. Owing to the lack of a suitable counter measure at the 

time, the malware also spread across the internet, where companies like Merck, the 

National Bank of Ukraine, and several airports had also been infected by the malware. 

Research indicated that the ransomware implemented the use of a windows exploit that 

allowed the malware to infect the systems using the Service Message Block (SMBv1) 

[8]. A year post the Petya malware attacks, Sorebrect emerged, taking the world by storm. 

The malware affected several industrial facilities worldwide where countries that suffered 

the most included the US, parts of Japan and China, as well as countries like Lebanon or 

Kuwait. Unlike the Petya Ransomware, Sorebrect displays characteristics similar to the 

trojan class, however, is technically still a ransomware. A previous study [11] indicated 

that the malware fundamentally replicates itself into system memory and executes, where 

it injects itself into svchost.exe, a legitimate windows process, achieving persistence, post 

which, the malware proceeds to encrypt the user’s files. The analysis of the malware also 

proved difficult owing to a feature of the malware that forces deletion of system logs once 

executed, effectively clearing all traces of anything having been executed. The malware 

forces the use of a legitimate windows process that assumes control of remote execution 

of system commands (PsEXEC). The malware uses a PowerShell command that runs the 

malicious payload directly into system memory [11]. Another notable malicious epidemic 

that implemented the use of a Wrapper (i.e. belonging to the trojan class) was GZipDe, 

that acted as a front to the startup of a Metasploit-based backdoor into the infected system.  
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An analysis of the malware in a previous study determined that the malicious process was 

disguised as a valid Microsoft DOS-header that also housed the Meterpreter payload [12].   

Wannacry, which is one of the most devastating malicious attacks to date is often 

regarded as a prime example of why we need preventive measures against threats to 

cybersecurity. The malware spread across the globe, and infected thousands of systems. 

An in-depth analysis of the malware indicated that the malware implements the use of 

two fundamental methods towards the encryption of data on the target system. The first 

is a modified version of the original EternalBlue vulnerability that had been implemented 

by the Petya ransomware [8], and a malicious payload. Furthermore, multiple systems 

had been tested for the effects of the malware, each of which yielded distinct results, 

indicating the use of polymorphism within the execution framework. Thus, the malware 

had been incredibly difficult to detect, and was free to spread all over the world, up-until 

a patch for the Windows Service Message Block (SMB) was released. The study further 

enumerates on an adequate method of detection through the analysis of system behavioral 

logs and comparison with the logs from a secure system which also helps counter the 

polymorphic nature of the code [13]. From an analysis of the popular banking trojan, 

Dridex, a slightly different method towards the propagation of malware can be observed. 

The infection method starts off as an email document which has embedded VBA macros 

within the file’s framework that execute as soon as the document is opened. The VBA 

script runs a PowerShell script that further injects malicious code into windows software 

processes. The malicious code is placed in order to monitor the system and remains 

dormant until the user makes use of his/her financial credentials. Furthermore, the 

malware extended functionality towards the use of the target/infected systems as a 
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component to a variable bot-net network used to spread the malware [14]. An in-depth 

analysis of the DNSMessenger based malware indicates functionality based on a back-

door into the system. The malware makes use of Meterpreter payloads that are run directly 

within the system memory, leaving no traces or logs of the execution on the system, 

making it very difficult to detect. Using the Meterpreter backdoor, malicious files are run 

on the target system using a DNS protocol, and persistence is achieved through dll-

injection [16]. Lastly, we have the Kovter malware that surfaced on the internet late-2015. 

An analysis of the Kovter malware, rather, distinct variants of the malware that appear 

over time indicate that the malware has been distributed using several different methods 

inclusive of root-kits, macro-embedded documents, PowerShell scripts embedded into 

web-site URLs. The specific malware is often considered a more generic malware that 

exhibits behavior typical to numerous forms of file-less malware such as registry-

injection, dll-injection, and code injection [17].  

2.3. Characteristics of File-less Malware 

File-less malware have a number of characteristics that are different as opposed 

to typical classes of malware. File-less malware, in essence, can be considered malware 

with the typical functionality expected of malware such as encryption of user files for 

ransom, deletion of OS\User files, monitoring user systems, stealing information, etc. 

However, file-less malware accomplishes said functionality without the need of a 

malicious file stored somewhere on the target system, as opposed to typical malware, that 

store a malicious file somewhere on the user’s system. When a file-less variant of a 

malware propagates, it runs itself directly in the system’s memory, without saving a 

physical file on to the system. Since most anti-malware systems that use signature-based 
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detection methods towards the detection of malware, said malware runs without being 

detected by the system’s security. Some of these malwares are relatively less dangerous 

and will be effectively expelled from the system with a simple restart, however, many are 

still able to achieve persistence by injecting themselves into legitimate windows services 

such as svchost. On the other hand, some malware hardly have the need for persistence, 

where ransomware such as Wannacry are primary examples.  

The typical characteristics of file-less malware, and whether samples of malware 

have been used in the developed dataset have been enumerated on in the following table:  
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Num Characteristic 

Sample 

Inclusion in 

Dataset 

1 Absence of physical file on hard drive Yes 

2 Non-persistent Yes 

3 Persistent Yes 

4 Use of PowerShell Yes 

5 Use of Automated VBA Scripts Yes 

6 Use of Malicious URLs Yes 

7 Use of Code Injection Yes 

8 Downloading third-party adware Yes 

 

Table 1: Typical Characteristics of File-less Malware 

2.4. Previously Available Anti-Malware Solutions 

The following section focuses over some of currently used malware solutions 

being used all over the globe. Viewing the total number of anti-malware systems 

available, one can see thousands of solutions that claim to be able to protect a computer 

system from over 90 percent of the malware spread all over the internet. The section 

enumerates on whether or not they prove efficient detecting file-less classes of malware 

and compares them based on price point.  

Windows Defender 
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The most widely used anti-virus system in the world is windows defender. Owing 

to the placeholder nature of the system, it is essentially only effective against the most 

basic malware and does not detect the While it may not prove an efficient system for the 

prevention of defense against more specialized classes of malware, it is a basic form of 

protection that one acquires at no additional cost. Windows Defender is often considered 

an entry-level malware solution. Testing numerous malwares against it, we observed its 

inadequacy considering the detection of file-less malware.  

Drawbacks 

• Entry level solution  

• Uses signature-based detection 

• Does not protect against most file-less threats 

Avast 

Avast is considered to be one of the more widely used anti-virus systems. The 

anti-virus provides a free version that has been tested and results indicate that the system 

is in fact capable of detecting file-less malware, however, up to a certain extent. The anti-

malware does detect samples that implement the use of Microsoft Office files using 

embedded VBA macros, however, is oblivious to malicious activities post execution. The 

anti-malware does also have a paid version that is able to monitor web traffic, which may 

solve this problem, however it has not been tested.   

Drawbacks 

• Expensive annual paid subscription 

• Inadequate free version 
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• Only detects the VBA embedded office file and is oblivious to further malicious 

activity 

 

Kaspersky 

Kaspersky is considered to be one of the more high-end/premium anti-malware 

solutions. Recent improvements to the software have enabled it to detect most classes and 

sub-types of file-less malware, however, the software comes with a highly expensive 

price tag.  

Drawbacks 

• Expensive  

McAfee 

McAfee has been researching how to detect file-less malware over the years and 

is considered one of the better anti-malware systems, however, testing malware samples 

on the software indicated that the software does in fact allow some of the samples to run 

without detection. That considered alongside the price tag for a single system license 

renders it infeasible for a good majority of people.  

Drawbacks 

• Expensive 

• Allowed numerous samples to run without detection 

ClamAV 
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ClamAV is an opensource anti-malware solution designed to be both secure and 

accessible. The program is both free and is able to detect a small subset of file-less 

malware to a certain extent. The anti-malware does detect samples that implement the use 

of Microsoft Office files using embedded VBA macros, however, is oblivious to 

malicious activities post execution similar to how Avast’s free version works.  

Drawbacks 

• Inadequate 

• Only detects the VBA embedded office file and is oblivious to further malicious 

activity 

• Lack of software support owing to open-source nature. 
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3. CHAPTER 3: TECHNOLOGICAL REQUIREMENTS 

The following chapter is aimed at the enumeration of comprehensive details into 

the entire working environment set up required for the development of Anti-Ghost. This 

includes hardware requirements, software requirements, software tools, as well as 

packages and libraries installed.  

3.1. Hardware Requirements 

The Hardware that had been required and used throughout the development of Anti 

Ghost have been listed and enumerated on as follows.  

The first and foremost requirement was a computer system capable of running 

multiple instances of Windows 7 running on VMWare to speed up the malware analysis 

performed using Cuckoo, the malware analysis tool. The system was built around an AMD 

Ryzen 5 2600x, a 6-core, 12-thread processor (i.e. to make use of the high core count) to 

allow for multiple simultaneous VMWare instances. Real-time use of the processor 

allowed for 3 simultaneous instances in actual use, paired with high frequency Ram.  

The second hardware requirement to be met was storage. While the program itself 

will essentially consume a fraction of the space required, a fair amount of storage capacity 

is required to develop the dataset. The total malware samples acquired towards the purpose 

of analysis were essentially over a terabyte of data. However, post filtration to samples of 

malware that invoked PowerShell, or made use of VB Macros, the dataset essentially 

contained 2000 malware samples. In order to analyze the information, we had it 

collectively stored on to two 500 GB SSD Drives. 
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The third hardware requirement to be addressed was the dedicated graphical 

processing unit. The unit selected for this purpose was the GTX 1050ti, a suitable mid-

ranged GPU that would be capable of processing the dataset and using Machine Learning 

Algorithms.  

Lastly, two portable laptop computers have also been used to supplement the 

development of the malware dataset, particularly supplementing to the speed at which 

malware samples were analyzed.  

 

Num Hardware Component Qty 

1 Computer System (Ryzen 5 2600x/16GB) 3 

2 SSD Drives 2 x 500 GB 

3 Dedicated Graphics Card 1 

4 Portable Laptop Systems 2 

 

Table 2: Complete List of Hardware Used 
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3.2. Software Requirements 

The Software that had been required and used throughout the development of Anti 

Ghost have been listed and enumerated on as follows.  

Ubuntu 

Anti-Ghost has been developed using Ubuntu 16.04-LTS (64-bit) as an OS 

platform. While the distribution may be considerably outdated, it has been used because 

the next iterations (both 18.0x and 19.0x) do not support numerous programs, specifically 

VirtualBox 5.2.  

Python 

The project implements the use of Python 2.7. This particular version of python is 

the final fully supported version of Python in terms of the use of the Cuckoo sandbox.  

MongoDB 

The web-based interface for the cuckoo requires the use of MongoDB and it must 

be installed as a pre-requisite using:  

$ sudo apt-get install mongodb 

PostgreSQL 

Cuckoo recommends the use of PostgreSQL within the framework of the program 

and must be installed as well.  

 $ sudo apt-get install postgresql libpq-dev 
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VirtualBox 

The virtual machine used for the purpose of the real time analysis of malware using 

the cuckoo platform is VirtualBox 5.2. This is the last supported version for the Cuckoo 

sandbox and support for the version ended with ubuntu 16.04. The purpose of the virtual 

machine is to actively run malware samples and collect behavioral data over the malware 

run. Said data includes URLs accessed, APIs called etc. VirtualBox can be installed as 

follows: 

$ echo deb http://download.virtualbox.org/virtualbox/debian xenial contrib | sudo 

tee -a /etc/apt/sources.list.d/virtualbox.list 

$ wget -q https://www.virtualbox.org/download/oracle_vbox_2016.asc -O- | sudo 

apt-key add - 

$ sudo apt-get update 

$ sudo apt-get install virtualbox-5.2 

tcpdump 

The class of malware intended to be analyzed typically accessed malicious URLs 

through the internet. In order to capture and analyze the network activity of any particular 

malware, the packages sent and received must be captured. Tcpdump provides an open 

source solution towards this and is supported by Cuckoo by default. Tcpdump can be 

installed using: 

$ sudo apt-get install tcpdump apparmor-utils 
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$ sudo aa-disable /usr/sbin/tcpdump 

Tcpdump also requires the use of specific root privileges that can be set using: 

$ sudo groupadd pcap 

$ sudo usermod -a -G pcap cuckoo 

$ sudo chgrp pcap /usr/sbin/tcpdump 

$ sudo setcap cap_net_raw,cap_net_admin=eip /usr/sbin/tcpdump 

M2Crypto 

M2Crypto is a python based library used with cuckoo. It is an SSL and crypto 

toolkit and can be installed as follows: 

$ sudo apt-get install swig 

$ sudo pip install m2crypto==0.24.0 

Cuckoo 

Installing and running the Cuckoo sandbox software has numerous pre-requisites 

that have been met. However, before we can install Cuckoo, numerous software packages 

have to be installed from their respective apt repositories.  

$ sudo apt-get install python python-pip python-dev libffi-dev libssl-dev 

$ sudo apt-get install python-virtualenv python-setuptools 

$ sudo apt-get install libjpeg-dev zlib1g-dev swig 

After all prerequisites have been met, we can proceed to creation of a new user using: 
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$ sudo adduser cuckoo 

As we will be implementing the use of VirtualBox, we add the newly created user to a 

“vboxusers” group as follows: 

 $ sudo usermod -a -G vboxusers cuckoo 

The next step in the process is the installation of the Cuckoo sandbox. This can be done 

using the following: 

$ sudo pip install -U pip setuptools 

$ sudo pip install -U cuckoo 

With this, cuckoo has been installed and is running. Furthermore, a complete table of 

software used with support requirements has been provided as follows:  

  

Nu

m 
Hardware Component Version Support Constraint 

1 Ubuntu 16.04 - 

2 Python 2.7 
Cuckoo Final Full-

Support 

3 MongoDB - - 

4 PostgreSQL - - 

5 VirtualBox 5.2 
Cuckoo Final 

Supported Version 

6 tcpdump - - 

7 M2Crypto - - 

8 Cuckoo - - 
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Table 3: Complete List of Software Used for The Anti-ghost Project 

 

3.3. Operating System Associations 

The software being developed is essentially being developed for use with the 

Windows operating system by Microsoft. The operating system being used for the 

analysis of malware samples is Windows 7, running over instances of VirtualBox, using 

Ubuntu as a host system.  

3.4. Working Environment Setup 

The Cuckoo sandbox allows users to run live malware samples on a virtualized 

operating system instance using VirtualBox or KVM. This allows Cuckoo to analyze 

the methods used by a particular malware to compromise a target system and report on 

the behavior of said malware. For the purpose of our project, we have used VirtualBox.  

Before we can start analyzing malware using the Cuckoo sandbox, a working directory, 

i.e. a working environment must be set up and configured. This can be accomplished 

using: 

$ sudo mkdir /opt/cuckoo 

$ sudo chown cuckoo:cuckoo /opt/cuckoo 

$ cuckoo --cwd /opt/cuckoo 

Once the working environment has been set up, one can simply run cuckoo and analyze 

malware using a simple web-based interface.  

The web-based interface is mostly an automated, easy to use, drag and drop 

interface that allows a simple alternative to using Cuckoo on a local instance. The 
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interface also simplifies data visualization and manual analysis and monitoring of 

malware and their reports.  

 

 

Figure 5:The Django Based Cuckoo Web-Interface 
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4. CHAPTER 4: ANTI-GHOST DESIGN 

This chapter is concerned with the design development of the Anti-Ghost project. 

This includes all UML Diagrams and their explanations. 

4.1. Class Diagram: 

 

Figure 6: Anti-ghost Class Diagram 

 

Settings: Change Software Settings. 

Database: Contains Every data item (user info, password, etc.). 

Anti-Ghost: Framework. 

Login: Verify and grants access to a registered user. 

Password Reset: Resets a user’s password. 

System Scan: Start System Scan. 

Analyze: Analyze Malware after it has been detected.  
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4.2. Activity Diagram: 

 

 

Figure 7: Anti-Ghost Activity Diagram 

 

The activity diagram enumerates on how the Anti-Ghost program was designed to 

be developed. The program initiates and starts off with a login module where users input 

their credentials. Once said credentials have been verified, the program displays the main 

UI. The main UI has several tabs named appropriately (i.e. Scan, Settings, Overview, and 

Logs). Each tab allows the user to access specific functions such as scanning the system, 

make changes to settings and display logs.  
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4.3. Object Diagram: 

 

Figure 8: Anti-Ghost Object Diagram 

 

The user will be able to install the application, login to the application. The anti-

malware inherently starts up with system startup by default, however, the user will also be 

able to override this automated startup and manually start up Anti-Ghost. Anti-Ghost 

analyses system memory in real-time and control any malicious occurrences. Furthermore, 

the software stores logs of malicious occurrences.   
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4.4. Use Case Diagram: 

 

 

Figure 9: Anti-Ghost Use Case Diagram 

Log in: The user enters the credentials to use the software. 

Verify Log in: The database check for pre-registered user. 

Scan System: The user can scan the system.  

Start Scan: The user can manually start an in-depth scan. 

Stop Scan: The user can stop the scan mid-way. 

Analyze: The users can analyze any and all malicious findings.  

Call Logs: The user can view logs for each malicious activity prevented. 
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Use case Log in 

Pre-condition The user is previously added in the system. 

Post-condition The user is successfully logged into the system. 

Basic Path 1. User has to enter username and password. 

2. The entered username and password are matched from 

the entries in the database. 

Alternative path - 

Exceptional path User is not registered with the system and ‘no match found’ 

error message is generated. 

 

Table 4: Use Case: Login 

 

Use case Start Scan 

Pre-condition 1. The Software is installed onto the system.  

2. The software is active and had been given adequate 

permissions.  

Post-condition The system results of the scans, whether positive or 

negative.  
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Basic Path 1. User presses the ‘Scan Now’ button. 

Alternative path - 

Exceptional path - 

 

Table 5: Use Case: Scan 

 

Use case Start Scan 

Pre-condition The User is already in the scan section.  

Post-condition - 

Basic Path 1. User presses the ‘Start Scan’ button. 

Alternative path - 

Exceptional path - 

 

Table 6: Use Case: Manual Scan 
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Use case Stop Scan 

Pre-condition The software is scanning the system 

Post-condition The system stops the in-depth scan.  

Basic Path 1. User presses the ‘Stop Stream’ button. 

 

Alternative path - 

Exceptional path - 

 

Table 7: Use Case: Stop Scan 

 

Use case Analyze 

Pre-condition The software has recorded malicious activity.  

Post-condition - 

Basic Path 1. User presses the ‘Analyze’ button. 

Alternative path - 
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Exceptional path - 

 

 

4.5. Sequence Diagram 

 

 

Figure 10: Anti-Ghost Sequence Diagram 

The sequence diagram enumerates on the sequence of user activity. The user starts 

off by logging into the Anti-Ghost system with his/her credentials. Once said credentials 

have been verified, the program displays the main UI. The main UI has several tabs 

named appropriately (i.e. Scan, Settings, Overview, and Logs). Each tab allows the user 

to access specific functions such as scanning the system, make changes to settings, etc. 
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4.6. GUI 

In accordance with the requirements of the system, the GUI for Anti-Ghost Project 

has been developed and will be enumerated on as follows. 

4.6.1. Home Window 

 

 

Figure 11: Anti-Ghost Home Window 

The image is essentially the home window for the Anti-Ghost system. The home 

window is the first window visible to users when the software is run. The home window 

provides users with a simple interface to access system features such as accessing system 

settings, or system scan. 

Users can typically click either of the scan button on to view system scan 

functionalities, or the settings tab for the settings functionalities (to be added on further 

update.), alternatively, users can also choose to click the home button to return to the home 

window.  
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4.6.2. Scan Window  

 

 

Figure 12: Anti-Ghost Scan Window 

 

The image portrays the scan window for the Anti-Ghost system. While the home 

window is the first window visible to users when the software is run, the scan window can 

simply be accessed using the scan button on the left tab. The scan window provides users 

with a simple interface to access system features such as starting a system. 

The system scan can be run using the “Start Scan” button on below the progress 

bar. Once initiated, the progress bar fills with progress into the scan indicating to users the 

percentage of the scan completed.  
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4.6.3. Settings Window 

 

 

Figure 13: Anti-Ghost Settings Window 

The image portrays the settings window for the Anti-Ghost system. While the home 

window is the first window visible to users when the software is run, the settings window 

can simply be accessed using the settings button on the left tab. The scan window provides 

users with a simple interface to access system settings using simple checkboxes.  
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5. CHAPTER 5: DETECTION METHODOLOGY AND 

RESULTS 

The anti-ghost project fundamentally aims at the detection of malware that 

employ the use of file-less attack vectors, namely, file-less malware. Towards that end, 

the project implements the use of behavioral analysis and Machine Learning. Along the 

scope of the project, i.e. the detection of file-less malware, the use of behavioral analysis 

is a necessity owing to the file-less nature of malware that make static analysis methods 

implemented by most over the counter anti-malware software inefficient due to the 

unavailability of a malicious file on the system’s secondary memory. Secondly, paving 

the way to an anti-malware solution based on behavioral analysis and Machine Learning 

involves the use of an adequate dataset based on specific malicious as well as benign 

samples that will, and has been built from scratch. 

In an attempt to address this new class of malware, Anti-Ghost has been designed 

to counter these threats using behavioral analysis and Machine Learning. The project is 

essentially aimed at the detection of a subset of the total sub-types of file-less malware, 

i.e. malware that implement the use of PowerShell, and VBA macros stored on Microsoft 

Office files (trojans). A sample equal of benign samples equal to the sample set of live 

malware samples had also been procured. The sample set of benign files includes benign 

VBA and PowerShell based files. Once the sample sets of malicious and benign files had 

been gathered, the files were analyzed to assess features of both the live malware and the 

benign files. This has been accomplished using Cuckoo, the leading open-source, 

automated malware analysis tool available. Cuckoo allows for the analysis of malware to 

extract features such as API calls, files run, etc., essentially allowing us to monitor a 
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particular file’s behavior. Cuckoo also cross-validates results with popular anti-malware 

solutions. Each malware sample was run on a VMWare instance run inside the cuckoo 

sandbox. Cuckoo allows the malware to run on a sandboxed, windows-based VMWare 

instance, recording how the malware behaves. The behavior of the malware is recorded, 

and a report is generated based on the complete set of actions the malware performs. The 

same is also true for benign file samples. Once all the malware samples and benign files 

have been analyzed, features are extracted from the generated reports. This includes two 

CSVs generated each, for both malicious files and benign files. One set of CSVs includes 

two files, where one file has API data on failed malware, and one has API data on 

successful entries. The same is also true for benign samples.  

The dataset has been represented using frequencies of APIs called. This mode of 

representation has been selected based on a trial and error methodology. Data could be 

represented in a number of forms based on the features extracted however API data 

provided the best mode of classification. Another mode of detection considered was 

conversion of the dataset to image data which could be used to classify benign and 

malicious files. The mode of detection would drastically improve based on previous 

studies into the matter, where it method provides an ideal method of detection of 

malicious code embedded into benign code (the cardinal class of file-less malware based 

on the available literature). While the mode would be a possible solution based on the 

nature of file-less malware, the implementation of the ML algorithm would be too 

dependent on computation resources that were simply unavailable. That is because 

conversion of files to an image format would increase the resource consumption to an 

extent unsupported by our systems.  
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The next step along the process was the use of Machine Learning to train a model 

to be used towards the detection of malware. The process of Machine Learning can be 

divided into several steps, where preprocessing and transformation represent up to 90% 

of the work involved. There are 5 basic stages involved: 

Machine Learning Phases 

Intake The Dataset is loaded into memory from the developed csv. 

Transformation 

The data is cleaned and normalized for use with the algorithms. 

The objective of pre-processing is to convert the complete set of 

data to lie within a single range. Furthermore, we also split the 

data into two sets, i.e. the training data and the test data.  

Training 
This phase involves development of the training model using a 

given algorithm. 

Training The trained model is tested using the test data.  

 Deployment  The model that indicates more favorable results is selected.   

Table 8: Machine Learning Phases 

Since the developed dataset was supervised, we decided to investigate supervised 

learning algorithms and determined 4 specific algorithms to be used.  

These include:  

• Naïve Bayes (Bernoulli, Gaussian and Multinomial) 

• K-Nearest Neighbor 

• Decision Trees 

• Support Vector Machines 
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5.1. Results 

5.1.1. Naïve Bayes Algorithm  

The first algorithm used is the Naïve Bayes algorithm which allows for 

classification by comparing probabilities based on APIs use. A probability on whether a 

file is malicious or benign is determined for a given file based on APIs called by the file 

when run. If a file has a higher probability of malicious character, it is classified as 

malicious, and vice versa. The algorithm was implemented using three classifiers: the 

Bernoulli classifier, the Gaussian classifier and the Multinomial classifier. The results of 

implementation indicated a favorable level of accuracy in terms of detection of malware.  

 

Figure 14:Naive Bayes Algorithm with Bernoulli Classifier 
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Figure 15: Naive Bayes Algorithm With Multinomial Classifier 

 

 

Figure 16: Naive Bayes Algorithm with Gaussian Classifier 

There are a number of advantages towards the use of Naïve Bayes algorithm. 

These include, first and foremost a level of simplicity and implementation. Furthermore, 

the Naïve Bayes algorithm works well with because the probability of an irrelevant 

aspect/feature has a very low probability of affecting the results.  

5.1.2. K-Nearest Neighbor Algorithm (KNN) 

The second algorithm used was the K-Nearest Neighbor (KNN) algorithm. The 

algorithm works through comparison of a test file with all the trained data. The algorithm 
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further determines the closest examples from the dataset and opts for a label (malicious 

or benign) based on similarity between API calls made.  

 

Figure 17: KNN Algorithm 

The use of the KNN algorithm bears a number of advantages, the first of which is 

simplicity in terms of implementation and accuracy in terms of results. The non-

parametric nature of the algorithm is also beneficial as it does not make assumptions over 

the structure of the data, making it suitable for use. In terms of how the algorithm works 

within the scope of the Anti-Ghost project, the prediction on whether a particular file is 

malicious or benign is determined through comparison of the file being tested with the 

nearest training sample.  

5.1.3. Decision Tree Algorithm 

The third algorithm used towards the detection within the scope of the project is 

the Decision Tree algorithm. As the name of the algorithm suggests, the algorithm 

represents the data in the form of a tree. Each of the tree’s leaf nodes represents a label, 

i.e. malicious or benign, where each sub-node represents an attribute, or in this case, APIs. 

The model compares the file being tested against the tree’s nodes and checks for 
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homogeneity based on all available sub-nodes. The attribute that has the most 

homogeneous sub-nodes is selected based on the results of the analysis.  

 

Figure 18: Decision Tree Algorithm 

The use of the model bears several advantages where it allows for more rapid 

decisions and analysis. The algorithm is also very simple in terms of implementation and 

can be optimized for speed in terms of analysis.  

5.1.4. SVM Algorithm 

Lastly, the project also makes use of Support Vector Machines (SVM). The SVM 

algorithm proves an adequate solution towards the classification of files as malicious or 

benign. As for its working within the scope of our project, it should be observed that the 

SVM algorithm classifies a given file as malicious or benign based on closeness to 

malicious or features based on closeness by margin. SVM divides the training data into 

two fundamental classes (i.e. malicious or benign) and determines a hyperplane between 

the two in two-dimensional space. Based on where a given file lies on the hyperplane, the 

developed model can be used to classify whether a file is malicious or benign.   
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Figure 19: SVM Algorithm 

 

Several other algorithms had also been considered that included RNN and CNN however, 

as indicated, we lack the proper resources to run the algorithms with a large dataset.  

A summary of the results in terms of accuracy by model can be found in the following 

table: 

S.no Algorithm Accuracy 

1 Naïve Bayes (Bernoulli, Multinomial, Gaussian) (84%, 89%, 64%) 

2 K-Nearest Neighbor (KNN) 95% 

3 Decision Tree  97% 

4 Support Vector Machines 83% 

 

Table 9: Accuracy by Algorithm Used 
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6. CONCLUSION 

Over the years, as software platforms were made more and more secure to avert 

and prevent malicious activity, malware themselves became more and more efficient. 

New ways to breach systems are being developed every day, the most recent being the 

use of file-less attack vectors.  

In response to the increasing amount of file-less malware all over the cyber world, 

we require a system capable of the detection of file-less malware, the motivation behind 

which is the development of a malware detection system indigenous to Pakistan. 

Furthermore, as the demand for anti-malware systems has observed a considerable 

increase, the project has considerable feasibility in terms of market. Our project relates to 

the aforementioned demand, providing a solution to the detection of file-less malware 

using behavioral analysis, and Machine Learning. Towards that end, we have 

implemented the use of cuckoo to analyze the behavior of malware samples and extract 

features in the form of API calls. Based on the developed dataset, we have further used 

distinct supervised learning algorithms to inclusive of the Naïve Bayes algorithm, the 

Decision Tree algorithm, Support Vector Machines and the K-Nearest Neighbors 

algorithm. The use of each algorithm yielded distinct results ranging from 64% at the 

worst, and 97% at best. Several other algorithms had also been considered for use 

inclusive of RNN and CNN, however, we simply lacked the computational resources to 

implement them.  
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6.1. Future Recommendations 

The Anti-Ghost project was aimed at the development of a system of detection for 

a subset of file-less malware. Towards that end, we developed a dataset of specific 

malware which alone is a sizable contribution towards the problem owing to the lack of 

an available dataset of filtered malware. However, owing to the nature of the project, as 

well as the limited scope owing to several constraints, the project has room for massive 

improvements. Future recommendations for possible improvement to the project include: 

• Improving the dataset in terms of both quality and quantity. 

• Increasing the dataset to support more classes of malware. 

• Improving on the GUI component of the system. 

• Expansion of the scope of the project to include detection by static analysis. 

• Expanding support for the Linux platform 

• Expansion of support for the Android platform 

• Add System Logs to the software 

• Populate Settings Tab with more options provided to the user.  
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APPENDIX-A 

List of Abbreviations 

API Application Programming Interface 

VBA Visual Basic 

CSV Comma Separated Values 

NB Naïve Bayes 

KNN K-Nearest Neighbors 

SVM Support Vector Machines 

UML Unified Modelling Language 

CNN Convolutional Neural Network 

LSTM Long-Short-Term-Memory 

RNN Recurrent Neural Network 

ML Machine Learning 
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