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ABSTRACT 

 
Accurate load forecasting is very beneficial for the efficient and economical operation of 

a power supply utility. The power system load forecast can be categorized into long-term 

forecast and short-term forecast. Long term forecast usually covers a time span of one 

year to ten years and is needed for decision making regarding capacity expansion and 

long term capital investment return studies. Short term forecast on the other hand 

provides information about system load characteristics from one hour to twenty four 

hours or upto a few days into the future. Short term forecast is necessary for the efficient 

and reliable operation of an electric utility. It is needed for economic dispatch, unit 

commitment, energy sale/purchase decision and load management. 

 

Keeping in view the importance of accurately forecasting the system load an improved 

algorithm has been developed for short term load forecasting of an electric utility. In this 

perspective the approach adopted is based upon time series analysis. Emphasis is on 

modeling the interconnected power system in state space form. Stochastic Approximation 

algorithm and Kalman Predictor are applied for load forecasting upto one hour. A 

software package is developed with the proposed implementation method for electric 

supply utilities. The application of this software package to real load data obtained from 

WAPDA (Water and Power Development Authority) has shown good results. The salient 

feature of this software package is that it can provide a breakup of load demand at each 

grid station, which is not currently available with WAPDA. This breakup can result in 

reduced transmission losses with corresponding economic benefits. 
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Chapter 1 

 

Introduction 

 

 

Identifying the characteristics of a system and its modeling is essential for 

controlling that system. Control applications in many diverse fields like 

chemical processes, biomedical systems, transportation, hydrology, socio-

economic systems, aeronautics and electrical power systems require 

identification and modeling of the system. In all these cases, a model 

consists of a set of mathematical equations that can be used for an 

understanding of system’s behavior for prediction and control.  

 

There are two basic types of modeling problems and both are studied by 

means of mathematical (differential or difference) equations. In the first type 

a number of measurable inputs (causes) can be associated to a number of 

measurable outputs (effects). The mathematical model is determined by 

relating the outputs and inputs through mathematical equations. Some 

typical examples are modeling of a stirred-tank chemical reactor, a multi 
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machine electrical power system and a nuclear power plant. In these 

examples one can straightaway identify certain input and output quantities 

and develop mathematical model relating them. 

 

In the other type one can identify a quantity as a measurable output however 

the causes (inputs) corresponding to the changes in output are not well 

defined. The examples of this type include the daily variations in the share 

value of a certain company enlisted in the stock market, annual flow in a 

river and fluctuations in values of different currencies in the money market. 

In these cases a sequence of outputs is available but the inputs are numerous 

and often unobservable. The sequence of outputs is called a time series and 

the models formulated in such cases, because of their probabilistic nature, 

are called stochastic models. 

 

The first of the above mentioned two types of modeling problems is referred 

to as the problem of system identification and the second one as problem of 

stochastic modeling. However, both of them are closely related and in both 

cases one must be able to select the optimum model from the available set of 

models, that is, the model which represents the system of interest in the best 

possible way.  
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Thus in system identification the system models are determined using 

records of system operation. The problem can be represented 

diagrammatically as follows: 

 

w(t)

n(t)

        u(t) z(t) y(t)

  system(unknown)  

Fig 1.1 System identification problem 

Where: 

u(t) is the known input vector  

z(t) is the output vector 

w(t) is the input disturbance vector 

n(t) is the observation noise vector 

y(t) is the measured output vector 

Thus the problem of system identification is the determination of the system 

model from records of u(t) and y(t). 

 

What distinguishes a system from a model is that system basically is an 

ordered collection of objects which in some sense is goal oriented. What 
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constitutes a system depends upon the view point of the system designer. For 

example an amplifier may itself be considered a system for a certain 

application. This amplifier can form a part of the system forming a feed back 

control for a plant. Furthermore, this feedback control may be a part of a 

chemical process comprising of many such loops. 

 

A model may be defined as the representation of important aspects of a 

system, which presents knowledge of that system in a usable manner. A 

model should not be so complicated that it cannot be understood and thus 

unsuitable for predicting the behavior of the system under a certain set of 

conditions. Here it would be pertinent to mention the famous “Butterfly 

effect” which states that when a butterfly in Tokyo moves its wings the 

disturbance caused by them affects the weather in Newyork. Thus an exact 

model for forecasting Newyork’s weather should account for this effect but 

this is virtually impossible. On the other hand a model should not be so 

superficial that important aspects of the system are not taken care of and 

thereby generating results about the system behavior which are grossly 

inaccurate. 

 

A basic problem  in system   identification is choice of nature  of the  model.  
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Practically most systems are nonlinear with distributed parameters, however, 

such systems are approximated by linear models because of simplicity. In 

most of the cases incremental linear models can very well explain behavior 

of the system they are modeling. While using such models the user must be 

aware of the limits within which the models yield valid results. Following 

are some of the problems in system identification: 

a) Determining order of the linear model 

b) Selection of a suitable criterion for determining accuracy of the model 

c) Designing an input signal that will maximize the accuracy of 

estimates of model parameters. 

 

Most of the systems are continuous-time type, however, the application of 

digital computers for identification requires use of discrete-time models. 

Since this research requires implementation on digital computer, discrete-

time models will be used. The determination of parameters of discrete-time 

models is much easier. Provided that the sampling interval fulfils certain 

conditions, the determination of continuous-time models from discrete-time 

models is quite straightforward. 

 

Large number of applications require an on-line identification of the system  
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rather than off-line identification. In case of off-line identification a large 

amount of input and output data about the system is collected. This data may 

be stored in a computer or recorded in some manner, which is then 

processed in a batch to estimate model parameters. The accuracy of 

estimates for off-line identification can be made fairly high because there is 

a greater flexibility in selecting computational methods without any 

restriction on computing time. Also, in off-line identification one may often 

select the type of input most suitable. 

 

In a number of control applications, especially adaptive control, the system 

has to be identified in a fairly short time and on-line identification methods 

are used in such cases. For an identification scheme to qualify to be on-line 

type it should fulfill following conditions: 

a) It does not require a special input 

b) All the data need not be stored 

c) A recursive algorithm is used for adjusting the estimates of the 

parameter after each sampling instant 

d) The amount of computation required for model adjustment is a 

fraction of the sampling period. 
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Therefore it is understood that mostly on-line methods will not lead to as 

accurate models as possible with off-line models, which can use a much 

larger amount of data as compared to on-line models. However, in many 

practical situations one cannot afford to wait for the time required to collect 

all the data. 

 

A large variety of system identification methods both off-line and on-line 

have been applied. The methods can be classified in many ways and one 

classification scheme is as follows: 

1. Classical Methods 

a) Frequency Response Identification 

b) Impulse Response Identification  

c) Step Response Identification 

d) Identification from correlation functions 

2. Equation-error Approach 

a) Least-squares 

b) Generalized least squares 

c) Maximum likelihood 

d) Minimum variance 

3. Gradient Methods 
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a) Model Adjustment Techniques 

b) Least-squares (recursive) 

c) Generalized least squares (recursive) 

d) Instrumental variables 

e) Bootstrap 

f) Maximum likelihood (recursive) 

g) Correlation (recursive) 

h) Stochastic approximation 

 

Some of the above mentioned techniques will be used in this research to 

address the system identification problem for performing the load 

forecasting for dynamic economic dispatch of the WAPDA (Water And 

Power Development Authority) system. 
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Chapter 2 

 

Literature Survey 

 

 

Short term load forecasting (STFL) is necessary for the efficient and 

economical operation of a power supply utility. The one-hour to 168-hour 

load forecast is needed for dispatch, unit commitment, energy sale/purchase 

decision and load management. The less than one-hour forecasts are needed 

for the system stability and dynamic economic dispatch A variety of 

techniques exist for short term load forecasting and a survey of the literature 

available on this topic will be mentioned in this chapter. The volume of 

literature on the subject is so much that to achieve a comprehensive and 

complete survey is beyond the scope of this research. However, an attempt 

has been made to, at least briefly, give an introduction to the literature 

published on the subject. 

 

K. Y. Lee et al [1] have developed a composite load model for 1-24 hours 

ahead prediction of hourly electric load. The load model is composed of 
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three components: the nominal load, the type load and the residual load. 

Nominal load is modeled such that the Kalman filter can be used and the 

parameters of the model are adopted by the exponentially weighted recursive 

least squares method. Type load component is extracted for weekend load 

prediction and updated by an exponential smoothing method. Residual load 

is predicted by an auto-regressive model and parameters of the model are 

estimated using the recursive least squares method. 

 

Alex D. Papalexopoulos and Timothy C. Hesterberg [2] have described a 

linear regression based model for calculation of short term system load 

forecasts. The model’s distinguishing characters are; innovative model 

building, including accurate holiday modeling by using binary variables, 

temperature modeling by using heating and cooling degree functions, robust 

parameter estimation and parameter estimation using heteroskedasticity by 

using weighted least squares linear regression techniques, the use of reverse 

errors-in-variables techniques to mitigate the effects on load forecasts of 

potential errors in the explanatory variables and distinction between time-

independent daily peak load forecasts and the maximum of the hourly load 

forecasts in order to prevent peak load forecasts from being negatively 
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biased. The impact of these issues on the accuracy of a model’s results has 

been established through testing of an existing load forecasting algorithm. 

  

I. Komprej and P. Zunko [3] have applied the exponential smoothing method 

in conjunction with the Box-Jenkins approach to time series analysis 

methods for STLF. The application of both methods to load forecasting has 

been shown to produce good results for a public electric utility in Slovenia. 

 

Takeshi Haida and Shoichi Muto [4] have presented a regression based daily 

peak load forecasting method with a transformation technique. In order to 

forecast the load precisely through an year, one should consider seasonal 

load change, annual load growth and the latest daily load change. To deal 

with these characteristics in the load forecasting, a transformation technique 

has been presented. This technique consists of a transformation function 

with translation and reflection methods. The transformation function is 

estimated with the previous year’s data points, in order that the function 

converts the data points into a set of new data points with preservation of the 

shape of temperature-load relationships in the previous year. Then, function 

is slightly translated so that transformed data points will fit the shape of 

temperature-load relationships in the year. Finally, multivariate regression 
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analysis, with the latest daily loads and weather observations, estimates the 

forecasting model. Large forecasting errors caused by the weather-load 

nonlinear characteristic have been reduced using this technique. 

 

I. Erkmen and T. Adanir [5] have also suggested an STLF algorithm for 

dynamic economic dispatch. The algorithm is based on using a finite auto-

regressive (AR) time series process in conjunction with a Kalman filter. It 

predicts load value with five-minute intervals up to one hour into the future, 

with sufficient accuracy to be used for targeting dynamic economic dispatch. 

 

J. D. McDonald and J.Y. Fan [6] have presented a practical real-time 

implementation of weather adaptive STLF for distribution power utilities. 

The implementation has been accomplished by utilizing a comprehensive 

load forecasting model consisting of time series, nonlinear load-weather 

functions and a residual load function represented by an auto-regressive 

moving average (ARMA) model. Model parameters have been estimated 

and updated online using the weighted recursive least squares (WRLS) 

algorithm. A variable-forgetting factor (VFF) technique has been 

incorporated in the WRLS algorithm for improved model tracking and 

numerical performance in real-time operation. 
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G.A.N. Mbamalu and M.E. El-Hawary [7] have proposed sub-optimal least 

squares or iteratively reweighted least-squares (IRWLS) procedures for 

estimating the parameters of a seasonal multiplicative auto-regressive (AR) 

model encountered during power system load forecasting. The method 

involves using an interactive computer environment to estimate the 

parameters of a seasonal multiplicative AR process. The method comprises 

five major computational steps. The first determines order of the seasonal 

multiplicative AR process, and the second uses least squares or IRWLS to 

estimate the optimal non-seasonal AR model parameters. In the third step 

one obtains the intermediate series by back forecast, which is followed by 

using least squares or IRWLS to estimate the optimal seasonal AR 

parameters. The final step uses estimated parameters to forecast future load. 

 

Artificial neural networks (ANN) have recently received considerable 

attention regarding STLF and a number of publications concerning ANN-

based STLF methods have been added to the literature available on the 

subject. D. Srinivasan, A. C. Liew and J. S. P. Chen [8] have demonstrated 

how an ANN can be used for this purpose. The network used is based on 

non-statistical neural paradigm back propagation, which is found to be 

effective for accurate load forecasting. The advantage of this technique is 
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that the network produces immediate decision with minimal computation for 

given input data. Performance of the proposed network has been compared 

to that by some traditional methods. 

 

Hsu Yuan-Yih and Yang Chien-Chuen [9] have proposed a new approach 

using ANN for STLF. To forecast the hourly loads of a day, the hourly load 

pattern and the peak and valley loads of the day must be determined. First, a 

neural network based on self-organizing feature, which maps to identify 

those days with similar hourly load patterns, is developed. These days with 

similar load patterns are said to be of the same day type. The load pattern of 

the day under study is obtained by averaging the load patterns of several 

days in the past, which are of the same day type as the given day. The short 

term load forecasting of the Taiwan Power Company has demonstrated the 

effectiveness of the proposed neural network.  

 

A. H. Noureddine, A. T. Alouani and A. Chanderasekaran [10], 

T.Matsumoto et al [11], A. D. Papalexopoulos, S. Hao and T. M. Peng [12], 

Y. Shimakura et al [13], K. Y. Lee et al [14], Y. Mizukami and T. Nishimori 

[15] and D. Park et al [16] have proposed various approaches for solving the 

problem of short term load forecasting using Artificial Neural Networks. 
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Time series approaches, as conventional algorithms in the short-term load 

forecasting of electric power systems yield considerably high accuracy under 

circumstances of no abrupt disturbances such as sharp changes of weather 

and special holiday, or, if the results of these algorithms are manually 

adjusted by experienced operators. Thus expert systems used in conjunction 

with conventional time series method can yield good results. Chen Dong, 

Chen Bingxin and Li Tonghao [17] have proposed an expert system for 

STLF. The time series approach is combined with heuristic inference and a 

composition method is developed to forecast the hourly load up to 48 hours 

in advance. The influence factors such as weather, holidays, season and 

dispatch control are considered. The structure of expert system, programmed 

in PROLOG language, has also been described. This expert system is tested 

by actual power system load data of 210 days. 

 

A. U. Asar, J. R. McDonald and M. I. Khan [18] and W. Rattray, J. R. 

McDonald and A. U. Asar [19] have discussed the prospects for applying a 

combined solution using artificial neural networks and expert systems to the 

STLF problem. The proposed method called as the expert network may 

provide a better solution to the forecasting problem than either system alone 

can provide. 
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G. Shrestha and T. T. Lie [20] have presented a hybrid forecasting technique 

that utilizes the attractive features of both the statistical and expert system 

based methods. The priority vector based load forecasting technique uses 

pair wise comparisons to extract relationships from pre-sorted historical 

hourly load and weather records for up to two years. The pre-sorting is done 

to identify seasonal boundaries and to categorize the day types (weekdays, 

weekends, holidays, etc.). The technique is adaptive in the sense that it 

internally generates the coefficients for relative influence of relevant 

variables (i.e., weather parameters) on the load. As these relationships 

change over time, such coefficients are automatically updated. The 

technique is extended by investigating qualitative use of continuous variable 

(e.g. temperature) as a means to overcome some of the difficulties 

confronted during the implementation when record high or record low 

values of these variables are encountered. This technique has been applied to 

forecast the hourly loads for a week, in summer when record high 

temperatures were observed, using 168-hour lead-time. Results obtained by 

implementing the technique by using temperature as both continuous 

variable and qualitative variable, using the same set of historical data from a 

utility company are presented. Most forecast errors are below 5% and many 
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of the large errors are reduced by qualitative treatment of the variable 

temperature. 

 

2.1 Conclusion  

Load forecasting is being done using auto-regressive modeling, time series 

analysis and in some cases utilizing Kalman filter algorithm. In this 

perspective, the approach being adopted in this research is also based upon 

time series analysis. The emphasis is on modeling the interconnected power 

system in state space form, applying estimation theory algorithms such as 

Least Squares and Kalman filtering for short term forecasting. 
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Chapter 3 

 

Off-Line System Identification Methods 

 

 

3.1 Introduction 

In real world the processes are not deterministic but, because of their 

probabilistic nature, are stochastic. This means that outcome of a specific 

instance of a process cannot be predicted because of lack of sufficient apriori 

knowledge of the process. However, statistics of a phenomenon can be 

determined and they do not change while the actual process may change. 

Thus probable outcome of a process can be predicted. This is done by 

identifying the system and then applying estimation theory algorithms to 

predict system output. The estimation theory algorithms may be off-line or 

on-line (as explained in chapter 1). In this chapter we’ll mention some off-

line methods of system identification. 

 

One off-line system identification method is known as Least Squares which 

was proposed by Karl Friedrich Gauss at the end of eighteenth century. This 
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method to determine the orbits of planets and asteroids. Gauss stated that the 

unknown parameters of the system should be estimated in such a way that 

the sum of squares of the differences between the actually observed values 

and the computed values is a minimum [21]. 

 

Let there is a time function y(t) such that 

y(t) = θ1 x1(t) + θ2x2(t) +...θnxn(t)                                                                      (3.1) 

If measurements are taken at discrete intervals t=1,2,3…m the following 

equations are obtained 

y(1) = θ1 x1(1) + θ2x2(1) +…θnxn(1) 

y(2) = θ1 x1(2) + θ2x2(2) +…θnxn(2) 

. 

. 

. 

y(m) = θ1 x1(m) + θ2x2(m) +…θnxn(m) 

 

The above equations can be written in the matrix form as follows 

Y = Xθ 

Where 
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And  

θ = [ ]Tnθθθ ...21  

If n = m 

θ =X-1Y          (3.2) 

However, the equation can be applied only if ‘X’ is a non-singular, square 

matrix. Actually m > n and hence X is not a square matrix. 

 

3.2 Ordinary least squares theory 

In order to find the best solution for θ ,in equation (3.2), if m > n least 

squares method is used which is explained as follows 

Define e ∆   [e (1)  e (2) ……….e (m)]T  

where e is known as the equation error 
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Let e = Y - Xθ         (3.3) 

In least squares theory θ̂  (estimate of θ) is chosen such that a criterion ‘J ’is 

minimized. J is the square of error and is given by 

J = ∑
=

m

i 0
e

2 
( i ) 

  = eT e 

  = (Y - X θ)T (Y - X θ) 

  = (Y T- θTXT) ( Y - X θ) 

  = YT Y - YT Xθ - θT XTY +θT XT Xθ       (3.4) 

 J is minimized if 

∂J / ∂θ = 0 

Taking partial derivatives of both sides 

 ∂J / ∂θ = 0 - Y
T X - X

T 
Y +2X

T 
Xθ = 0 

Thus following normal equation is obtained 

X
T 

Y = X
T 

Xθ 

θ = (X
T 

X)
-1

 X
T 

 Y
  

The term (X
T 

X)
-1

 X
T 
is called pseudo inverse of the matrix X. Thus inverse of a 

rectangular matrix is taken by its pseudo inverse. This method of getting the 

estimated value of θ is called Ordinary Least Squares (OLS). Results of an 

ordinary least squares algorithm applied on random data sequences having 
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different number of data points are shown in Fig 3.1 to Fig 3.4. It can be 

seen that as number of data points increases the forecasted value converges 

to actual value, thus least squares is a consistent estimator. 

 

3.3 Generalized least squares 

This method is more powerful than ordinary least squares in that it can 

provide more accurate estimates when random disturbances present in the 

system. Application of the ordinary least squares method in such conditions 

would yield biased estimates. This is because of the fact that a least squares 

estimator weighs all errors equally which corresponds to the assumption that 

all measurements have the same precision. Different weighting of the errors 

can be accounted for by using a weight matrix which is a diagonal matrix 

with weights in the diagonal. 

 

In ordinary least squares method the loss function J was given by: 

J = eT e 

In weighted least squares 

Jw  = eTW e where W is the weight matrix 

     = (Y - Xθ)T W(Y - Xθ) 

it can be shown that  



  

 32

θ̂ W = (XT WX)-1 XT WY        (3.5) 

 

3.4 Statistical properties of generalized least squares 

3.4.1 Unbiasedness 

θ̂  is said to be unbiased if 

E{ θ̂ } = θ  

Where E stands for expectation.Thus estimate is said to be unbiased if the 

expectation of the estimated value is equal to the true value. 

From equation (3.5)  

θ̂ W  = (XT WX)-1 XT WY  

Taking expectation of both sides 

E {θ̂ W } = E {(XT WX)-1 XT WY} 

Assume Y = X θ +e  where e is the measurement noise and is assumed to be 

White Gaussian Noise (WGN). 

E {θ̂ W  }= E {(XT WX)-1 XT WXθ + (XT WX)-1 XT W e} 

 But (XT WX)-1 XT WX = I where ‘I’ denotes the identity matrix, thus 

E {θ̂ W  }= E {θ} + E{ (XT WX)-1 XT W e} 

E {θ̂ W  }= θ +  (XT WX)-1 XT W E{e} 
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Thus least squares theory will give unbiased result if the noise is actually 

measurement noise and is not due to our improper modeling. 

 

3.4.2 Variance  

The variance of the estimator in effect measures the width of the probability 

density. A small value of variance suggests that the probability density is 

concentrated around its mean value, which, if the estimator is also unbiased, 

will be the true value of the parameter. 

When E {θ̂ W  } = θ 

Define the covariance ψw  as follows: 

ψw ∆E{(θ̂ W  - θ) (θ̂ W  - θ)T 

But  θ̂ W = (XT WX)-1 XT WY = (XT WX)-1 XT W (Xθ +e) 

    = (XT WX)-1 XT WXθ + (XT WX)-1 XT W e 

    = θ + (XT WX)-1 XT W e 

Thus 

 ( θ̂ W - θ) = (XT WX)-1 XT W e 

Because  ψw ∆  E {( θ̂ W - θ) ( θ̂ W - θ)T} 

ψw  =  E{(XT WX)-1 XT W e . eT WX (XT WX)-1} 

If ‘X’ is deterministic  
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ψw  = (XT WX)-1 XT W  E{ e . eT  } WX (XT WX)-1 

Thus the covariance depends only on expected covariance of error. 

Say R = E { e . eT  } 

If somehow W=R-1  

ψw    = (XT R-1 X)-1 XT R-1 E{ e . eT  } R-1X (XT R-1 X)-1 

      = (XT R-1 X)-1 = ψMV 
       

Then  θMV  is the minimum variance estimator and is also called best linear 

unbiased estimator (BLUE). 

 

3.4.3 Consistency 

Estimator is said to be consistent if the estimated value converges to the true 

value as the number of observations increases towards infinity. 

Let R = I2σ   

Ψ = (XT 
I2

1
σ  X)-1 

Ψ = 2σ  (XT   X)-1  

Dividing and multiplying by ‘m’ where ‘m’ is the number of rows in matrix 

‘X’ 

Ψ = 
m

σ2

 

11 −

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
   XX

m
T   
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As m → ∝ , 
m
1

 XT   X = Γ 

Or  Ψ = 
m

2σ
 ( Γ )-1→θ  

 ˆLimit 
m

θ
→∝

= θ  

Or estimator is no more a random variable but a constant. Thus when there 

are infinite data points the variable acquires a constant value and is known as 

a consistent estimator. 
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Fig 3.1 Graph of actual sequence having 25 data points and its forecast 
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Fig 3.2 Graph of actual sequence having 50 data points and its forecast 
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Fig 3.3 Graph of actual sequence having 100 data points and its forecast 
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Fig 3.4 Graph of actual sequence having 200 data points and its forecast 
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Chapter 4 

 

On-Line System Identification Methods 

 

 

The least squares method of system identification discussed in chapter 3 is 

an off-line method and requires a lot of computational effort because it 

involves matrix inversion. The parameter estimation in this case requires 

storage of all the previous data. Although the results so generated are quite 

accurate, but its off-line nature renders this method unsuitable for real time 

applications. In this chapter derivation of a recursive algorithm for least 

squares estimation, that requires no matrix inversion, has been carried out. 

This method is known as Recursive least squares or On-line least squares. 

Another name used for this method is sequential least squares. Later in the 

chapter, another on-line system identification method known as Stochastic 

approximation has been mentioned. 

 

4.1     Recursive least squares  

Denoting Ym  and Xm for a vector and matrix involving ‘m’ equations. Thus 
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least square estimator θ  is given by 

[ ] m
T
m

T
m Y X XXmθ 1)(ˆ −

=  

Which is derived from the following equation 

Ym = Xm θ  

Suppose the present state is obtained by another equation 

)(mx...θ)(mxθ)(mxθ)y (m nn 1111 2211 +++++=+ - 

Or 

θ)  (mx)y (m T 11 +=+  

Where 

[ ])(m)...x(m)   x(mx)(mx n
T 1111 21 +++=+  

and 

[ ]n

T

θ...θθθ
21=  

Thus 

[ ] 11
1

111ˆ
++

−

++=+ m
T
mm

T
m YXXX)(mθ  

Where 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+
== ++

)y(m

Y

Y
)(mx

.............
X

X ................
m

m
T

m

m

11
11   and   

Hence one new line has been added to ‘X’ matrix and ‘Y’ vector because now 

one more equation has been taken at point m + 1. 
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Denote [ ] 1−
= m

T
m XXP(m)  

And [ ] 1
111 −

++=+ m
T
m  XX ) P(m  

{ }
1

1
11

−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

+
+=+⇒

)(mx

X
 )(mxX)P(m

T

m
T
m LM  

[ ] (4.1)                                                          111
1−

+++=+ )(mx) (mx XX)P(m T
m

T
m  

If A,C and [A+BCD] are non singular, square matrices then applying the 

matrix inversion lemma it can be proved that the following identity holds 

[ ] [ ]  DABDACBAABCDA 1111111 −−−−−−− +−=+  

Putting 

m
T
m XXA =  

)(mxB 1+=  

→= I C (i.e. identity matrix) 

and )(mxD T 1+= in equation (4.1) we get LHS of the equation for matrix 

inversion lemma. Therefore 

[ ] [ ] ( )[ ] [ ] 11111 11111 −−−−−
+++++−=+ mXX)(mx)(mxXX)(mxI)(mxXXXX)P(m T

m
T

m
T
m

T
m

T
mm

T
m

 

[ ] )()1()1()()1()1()()()1(
1

mPmxmxmPmxImxmPmPmp TT +++++−=+
−  

Since )(mx)P(m)(mx T 11 ++  is a scalar quantity we  replace ‘I ’ by 1. Also  we  
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know that 
A

A 11 =−  

[ ] (4.2) 
111

111                                                          
)(mx)P(m)(mx

)P(m)(mx)(mxP(m)P(m))P(m T

T

+++
++

−=+  

Now 

[ ] 1111
11ˆ

++++
−=+ m

T
mm

T
m YXXX)(mθ  

1111ˆ +++=+ m
T
m Y) XP(m)(mθ  

[ ]
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+
++=+

)y(m

Y
)(mxX) P(m)(mθ

m
T
m

1
111ˆ LM  

{ })) y(m(mxYX) P(m)(mθ m
T
m 1111ˆ ++++=+  

)) y(m(mx)  P(m Y) XP(m)(mθ m
T
m 11111ˆ +++++=+  

Substituting the value of P(m+1) from equation (4.2) 

)(mx)P(m) (mx
mymx) P(m)(mx)(mxP(m) mymxmP

)(mx)P(m) (mx
 Y) P(m)X(mx)(mxP(m)   YP(m) X)(mθ

T

T

T
m

T
m

T

m
T
m

111
)1()1(11)1()1()(                

               
111

111ˆ

+++
++++

−++

+
+++

++
−=+

 

But  )ˆ m
T
m YP(m) X(mθ =  

So 

⎥
⎦

⎤
⎢
⎣

⎡

+++
++

−++

+
+++

++
−=+

)(mx)P(m) (mx
mx) P(m)(mxmymxmP

)(mx)P(m) (mx
(mθ) (mx)(mxP(m)  (mθ)(mθ

T

T

T

T

111
)1(11)1()1()(                

               
111

)ˆ 11)ˆ 1ˆ
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Order of )y(m 1+  can be changed because it is a scalar. 

[ ])(mx)P(m) (mx)(mx)P(m) (mx
)(mx)P(m) (mx

mymxmP

)(mx)P(m) (mx
(mθ) (mx)(mxP(m)  (mθ)(mθ

TT
T

T

T

11111
111

)1()1()(                
               

111
)ˆ 11)ˆ 1ˆ

++−+++
+++

++

+
+++

++
−=+

 

[ ]
                

                    )ˆ 1)1(
111

)1()()ˆ 1ˆ    (4.3)(mθ) (mxmy
)(mx)P(m) (mx

mxmP(mθ)(mθ T
T +−+

+++
+

+=+⇒

 

Thus, the new estimate of the parameter vector is given by its previous 

estimate plus an error term. Equation (4.3) has a strong intuitive appeal. The 

new estimate )(mθ 1ˆ +  is obtained by adding a correction term to the previous 

estimate. The correction term is proportional to )ˆ 1)1( (mθ) (mxmy T +−+ , 

where the term )ˆ 1 (mθ) (mxT +  can be interpreted as the value of ‘y’ at time 

m+1 predicted by the model of equation (4.3). The correction term is 

therefore, proportional to the difference between the measured value of the 

output y(m+1) and the prediction of y(m+1) based on the previous parameter 

estimate. 

 

Equations (4.2) and (4.3) together form the recursive least squares method of 

parameter estimation. Thus, matrix inversion requirement of the ordinary 

least squares method has been eliminated. Although, one matrix inversion is 
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necessary to compute P(m) at start. However, for practical purposes this 

inversion can be avoided by putting P(m) equal to the identity matrix 

multiplied by a large constant. 

 

To summarize 

[ ] 1−
= m

T
m XXP(m)  

 

[ ])(mx)P(m)(mx
)P(m)(mx)(mxP(m)P(m))P(m T

T

111
111
+++

++
−=+  

[ ] (m)θ) (mx)-y(m
)(mx)P(m) (mx

)(mxP(m)  (m)θ)(mθ T
T

ˆ11
111

1ˆ1ˆ ++
+++

+
+=+  

 

Results of a recursive least squares algorithm applied on random data 

sequences are shown in Fig 4.2 to Fig 4.4. These figures show the 

normalized value of forecasting error against each data point for different 

values of mean and standard deviation of the sequence and also the mean 

and standard deviation of the noise. Different values of P(m) have been taken 

to see the effect. 
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Fig 4.1 Normalized error curve for multiplying constant equal to 50 
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Fig 4.2 Normalized error curve for multiplying constant equal to 500 
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Fig 4.3 Normalized error curve for multiplying constant equal to 5000 
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Fig 4.4 Normalized error curve for data having noise with mean =0.01 
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Fig 4.5 Normalized error curve for data having noise with mean=1 
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4.1.1 Observations 

Fig 4.1, Fig 4.2 and Fig 4.3 show the normalized error curve for a data 

sequence having 100 data points, mean equal to zero and standard deviation 

equal to 1. However, for the first figure P(m) was formed by multiplying the 

identity matrix by 50, the second figure by 500 and the third one by 5000. It 

can be seen that for the first case, the normalized error (usually called as 

error norm ) converged to zero after about thirtieth data point. In the second 

case although the curve touched zero at about thirty sixth data point, 

complete convergence was achieved beyond sixtieth data point. For the third 

case, it can be seen that the curve will converge even after the hundredth 

data point. We have already mentioned that instead of taking the inverse of 

matrix P(m), we can put it equal to identity matrix multiplied by a large 

constant but Fig 4.1 to Fig 4.3 show that for a very large constant the rate of 

convergence will be slowed down. 

 

 Fig 4.4 shows that convergence can also be achieved using recursive least 

squares when the data is contaminated with noise. However from Fig 4.5 it 

can be seen that the normalized error has converged to zero even after the 

fiftieth data point when the noise has a high value of mean. 
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4.2 Stochastic Approximation 

This method of parameter estimation is an on-line one and can be applied to 

any problem which can be formulated as some form of regression in which 

repeated observations are made. Its main characteristic is the enormous 

simplicity of its implementation. It may be defined as a scheme for 

successive approximation of a sought quantity when observations involve 

random errors due to stochastic nature of the problem. 

 

Robbins and Monro [22], Kiefer and Wolfowitz [23] and Dvoretzky [24] 

have made important contributions to the area of  stochastic approximations. 

Robins and Monro first introduced the method. They developed an algorithm 

which is the statistical equivalent of gradient method for finding unique 

roots of equation:  

h(x) = 0 

which is  

 h(x)Kxx iii −=+1    

where K
i 
is a sequence of random numbers satisfying certain conditions to 

ensure convergence and the conditions are: 

0lim       1) =
∞→

i     K
i
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∑
∞

=
∞=

1
     2)

i
  K i  

∑
∞

=
∞<

1
2      3)

i
  K i  

 

Kiefer and Wolfowitz extended the method proposed by Robbins and Monro 

to include finding the extremum of an unknown unimodel regression 

function θ(u). Dvoretzky presented a generalized algorithm which is as 

follows: 

}x)r,........,,rf (r{γxx nnnnn −+= +++ 12111   

Where 

xn = n th estimate of x 

γn+1 =  gain sequence 

rn  =  n th observation 

f (r1, r2, ……..,rn+1) = scalar functional of observations r1, r2, ……..,rn+1 

Another algorithm proposed by Kwatny is as follows: 

( )
2

11
1 ˆ

ˆ

1
ˆˆ

k

T
kkk

T
k

kk
h

h yθh
k
γθθ ++

+

−
+

−=  

Where 

=kθ̂ kth estimate of θ  
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γ = a positive constant 

h   =information vector 

y   =observed output 

The algorithm used by Kwatny has been used in this research for parameter 

estimation. 
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Chapter 5 

 

Kalman Filter 

 

 

5.1 Introduction 

In previous chapters we have been talking about single input, single output 

systems. Actually we may have systems having multiple inputs and outputs. 

Such systems are known as multivariable systems. The models used for 

multivariable systems are different from those used for single variable 

systems. Following are the models commonly used for multivariable 

systems: 

1) The State-Space model 

2) The Transfer Function Matrix representation 

3) The Impulse Response Matrix representation 

4) The Input Output Difference Equation model 

 

Out of the above mentioned, most commonly used form is the State-Space 

form in which a dynamical system is described by a set of variables called 
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states. The state contains all necessary information about behavior of the 

system such that, given the present and future values of input, we can find 

future state and output of the system. Kalman Filter is one of the methods 

that can be used to find estimates of states given the system in state-space 

form. The application of Kalman Filter theory provides a set of difference 

equations, the solution of which can be found recursively. The updated 

estimate is computed from previous estimate and new input data, as such, 

only the previous estimate is needed to be stored instead of entire past data. 

Thus Kalman Filter is ideally suited for implementation on a digital 

computer. 

 

Suppose a multivariable system is modeled by the following stochastic state-

space equations: 

                                                                                  )()()()1( (5.1)1 nvnBunAxnx ++=+  

(5.2)                                                                                                   )()()( 2 nvnCxny +=  

Where 

→)(1 nv  is the process noise 

→)(2 nv  is the observation noise 

→)(nx  is the n dimensional state vector 

→C and  , BA are constant matrices  
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)(1 nv  and )(2 nv  are assumed to be zero mean, stationary, white noise 

processes. These processes have changed the above system from 

deterministic to stochastic. Covariance is given by: 

[ ] )()()(
)(
)(

21
2

1 kn
RS
SQ

kvkv
nv
nv

E T
TT −⎥

⎦

⎤
⎢
⎣

⎡
=

⎭
⎬
⎫

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
δ  

)( kn −δ is known as Kronecker Delta and it exists when kn = and is zero 

otherwise i. e. 

1)( =− knδ    when kn =  

0)( =− knδ    when kn ≠  

 

5.2 Kalman Filter Theorem 

Consider the stochastic signal model given by equations (5.1) and (5.2) and 

assume that the initial noise and state sequences are jointly Gaussian.  

Let )/1(ˆ nnx + or simply written as )1(ˆ +nx denote best estimate of )(nx , based 

on{ })(),......,1(),0( nyyy observations, called as conditional mean of )1( +nx . 

Then )1(ˆ +nx  satisfies the following recursion (the Kalman Filter): 

[ ] )()(ˆ)()()(ˆ)1(ˆ nBunxCnynKnxAnx +−+=+  

Where )(nK is the filter gain given by 

[ ][ ] 1 )(  )( )( −
+ΣΣ= RCnCCnAnK TT  

)(nΣ →is the state error covariance vector given by 
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)(nΣ [ ][ ]{ }TnxnxnxnxE )()(ˆ)()(ˆ −−∆  

)(nΣ satisfies the following Riccati Difference Equation(RDE): 

[ ] TTT nKRCnCnKQAnAn )()()()()1( +Σ−+Σ=+Σ  

where 0)0( Σ=Σ   

In case of Kalman Filter it is assumed that C, A, S and R are known. 

 

5.3  Properties of Kalman Filter 

Following are the main properties of  Kalman Filter:  

1) In the case of Gaussian noise, )(ˆ nx  is the conditional mean 

of )(nx ,that is,  

[ ])1/y()()(ˆ −= nnxEnx  

     Where 

      [ ])(),........2( ),1()1y( 0nynynyn −−=−   

2) A consequence of property (1) is that  

     [ ] 0)1y( /)()(ˆ =−− nnxnxE     and 

    [ ][ ]{ } F
TnxnxnxnxEn Σ≤−−∆Σ )()(ˆ)()(ˆ  )(  

    Where FΣ is the error covariance given by any other  filter. 

    Therefore, for Gaussian noise, Kalman Filter is the best estimator. 

3) It can be seen that the Kalman gain )(nK  and the conditional error  
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Covariance )(nΣ  are independent of )1y( −n  provided that 

SQRCA   ,,, and  are all independent of )1y( −n . In this case 

)( )(  and nnK Σ  are pre-computable )(nΣ  is also the unconditional 

error covariance. 

4) If the Gaussian assumption is removed, Kalman Filter becomes the  

          Linear Minimum Variance estimator of )(nx . 

 

In this research it has been assumed that both the process noise and 

observation noise are Gaussian. Therefore, Kalman Filter forms the best 

estimator in this case and that’s why it has been used for state estimation. 
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Chapter 6 

 

Load Forecasting  

 

 

6.1 Introduction 

Load forecasting is a necessary part of a power system utility. Long term 

load forecasts of five years to twenty years into the future are needed for 

construction of new power generation plants, framing of regulatory policies 

and decision-making regarding power purchase agreements. Intermediate 

term forecasts from a few months to five years are used for maintenance 

scheduling and negotiations for setting up power purchase prices. Short term 

load forecasts of 24 hours to 168 hours are required for economic generation 

plans, unit commitment decisions and short term maintenance scheduling. 

Very short term load forecasts of up to one hour into the future are important 

for the real time control and reliable operation of the power system and for 

dynamic economic dispatch. 

 

Various methods that have been  used in the past for short term prediction of  
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load. The methods include multiple regression analysis, exponential 

smoothing, spectral decomposition, time series analysis using Box-Jenkins 

method and the combined parameter identification and state estimation. The 

combined parameter and state estimation method has received a lot of 

attention in the past [25-26]. Initially, the problem was solved using the 

extended Kalman filter. However the extended Kalman filter requires 

excessive computations and is prone to divergence. Hence, several 

approaches have been adopted in the past to avoid these problems [25-26]. 

 

El-Sherief proposed a computationally simple algorithm to solve the 

problem of combined state estimation and parameter identification of linear 

multivariable stochastic systems [25]. The algorithm starts by transforming 

the state space equations of the system into a canonical innovations 

representation. A pseudo parameter measurement equation is derived which 

contains the inputs, outputs and states of the system. Then assuming an 

initial estimate of the states a normalized stochastic approximation algorithm 

is used to find estimates of the parameters of pseudo parameter measurement 

equation. These parameters are estimated in ‘m’ separate steps from ‘m’ 

pseudo parameter measurement equations where ‘m’ is the number of 

outputs. Afterwards the system matrices and the Kalman gain matrix are 
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determined directly and these are then used for state estimation of the system 

by a linear Kalman filter. The procedure is continued in a bootstrap manner. 

This algorithm uses a normalized stochastic approximation criterion and 

hence works well in noisy environments and avoids any complicated 

operations. 

  

6.2 Combined parameter and state estimation [27] 

Assume there is a linear, time-invariant, discrete time, multivariable 

stochastic system given by the following state-space equations: 

)(*)(*)(**)1(* kwDkuBkxAkx ++=+  

)()(**)( kvkxCky +=  

Where 

nkx →)(* dimensional state vector 

pku →    )( dimensional input vector 

rkw →   )( dimensional state noise vector 

mkv →    )( dimensional output noise vector 

mky →    )( dimensional measured output 

Applying innovations theory and assuming the system is completely 

observable and controllable it can be transformed to the following system: 

)( )( )( )1( keKkuBkxAkx ++=+  
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(6.1)                                                                                                   )()( )( kekxCky +=  

where the matrices A and C are in the following canonical form 
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ijn ’s are the structural parameters of the system. 
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⎥
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Where jjj akb  and , represent the j th row of the system matrices AKB  and , . 

Hence the j th subsystem of system (6.1) can be represented by the 

following equations: 

)()1()( jjjjjjj nkenkhnky ++−+=+ θ   )(                                     ,.......,2 ,1 6.2mj =  

)(                     )]1().........1( ( )1()....( )(ˆ[)1( 3.6−++−+=−+ jjjj nkekek)enkukukxnkh  

)(                                    ] 
....

....
....

 
 ....

...
.....

 [ 6.41   1   1  11   1   1 1 +−+++++−++++
= jnnjnnjnnjnnj

j kkbbaθ  

The following stochastic approximation algorithm can be used for 

recursively estimating parameters of equation (6.2): 

)(                                                                   
)1(

)1()()(
)(ˆ)1(ˆ 6.52

−+

−+
+=+

jj

jj

jj

nkh

nkhkk
kk

ον
θθ  

Where 

)(ˆ)1()1()( knkhnkyk jjjjj θο −+−−+= mj ,........,2,1 =    

and )( kν is a sequence satisfying Dvoretzsky’s [24] conditions and the 

innovation will be estimated by : 

)1(ˆ)1(ˆ)()(ˆ +−+−+=+ knkhnkynke jjjjjj θ  

First we assume an estimate of the state, then the system parameters are 
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 estimated using the stochastic approximation algorithm (6.5). Hence an 

estimate of the system matrices )(ˆ )(ˆ),(ˆ  and kKkBkA can be obtained. After 

having this estimate the expression for )( ˆ kx in equation (6.3) can be replaced 

by )/(ˆ kkx to get a new estimate of the parameter vector jθ . The procedure is 

repeated between the two stages in a bootstrap manner. 

 

6.3 Load forecasting [27] 

For load forecasting we consider an interconnected power system having 

‘ n ’loading nodes. Let 

)(),...,(),( 21 kxkxkx n     ,...2,1,0=k  

denote loads at various nodes at instant k . We assume that the load at any 

loading node at the time instant 1+k depends upon loads at all other loading 

nodes at the instant k . Thus the mathematical model for this system will be 

an AUTO-REGRESSIVE one of the following form: 

∑
=

+=+
n

j
jiji kxkkakx

1
)( )/1()1(  

Then the entire interconnected power system can be represented by the 

following stochastic state- space model: 

)()()1(

)()( )/1()1(

kvkxCky

kwkxkkAkx

+=+

++=+
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Where 

→           )(kx n dimensional state vector representing loads at individual  

stations 

→+ )/1( kkA model matrix 

→           )(ky m dimensional vector representing data from a few major  

loading nodes 

→          )(kw n dimensional model noise vector 

→           )(kv n dimensional measurement noise vector 

 

Both noise sequences are assumed Gaussian, zero mean and uncorrelated 

with each other. We know that when two Gaussian, zero mean, uncorrelated 

sequences are added they result in another Gaussian sequence with zero 

mean. From this and applying the innovation approach the above state-space 

model with two noise sequences can be represented by equivalent single 

white noise source )(ke as shown below: 

 

)()1/(ˆ )/1()/1(ˆ kKekkxkkAkkx +−+=+  

)(                                                                                            )()1/(ˆ)( 6.6kekkxCky +−=  

Where 
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→− )1/(ˆ kkx best estimate of )(kx based on { })1(),...,1(),0( −kyyy  observations 

→              K optimum steady state filter gain of the system 

→          )(ke innovations sequence of system 

 

From equation (6.6)                         

)(                                             )1()( )1/(ˆ )/1()1( 6.7+++−+=+ kekCKekkxkkCAky  

If measurements from all nodes are available then nm =  and ii uc = where 

ic denotes i th row of matrixC  and iu denotes i th unit row vector. We can 

write the i th row of equation (6.7) as follows: 

)(                                                   )1()( )1/(ˆ )/1()1( 6.8+++−+=+ kekekkkxkkaky i
ii

i
 

Where ia and ik are i th rows of matrices A and K respectively. Augmenting 

the two vectors )/1( kkai +  and ik into a new vector )1( +kiθ  equation (6.8) 

can be written as: 

  )1()( )()1( ++=+ kekθkhky ii
T
ii

 

Where

[ ] )(                                                                                    )()1/(ˆ  ∆ )( 6.9kekkxkh TTT
i −  

and [ ]iiT
i kkk )/1(a  +∆θ  
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Define T
iθ as the estimate of unknown parameter vector of equation (6.5). It 

is shown in [28] that the parameter vector can be estimated by normalized 

stochastic approximation algorithm of equation (6.5).  

 

It is clear from equations (6.8) and (6.9) that the residual error is not 

correlated with the forcing function ),(khi and it can be proved that the 

estimate )(ˆ kiθ is unbiased and will converge to the true value in the mean 

square sense with probability one. 

  

The unknown states of vector )(khi equation (6.9) are estimated in a bootstrap 

manner. Initial states are assumed and the parameter vector estimated. The 

estimated parameter vector )(ˆ kiθ gives estimated model matrix )(ˆ kA and the 

estimated optimum filter gain matrix ).(ˆ kK  

Using Kalman filtering and prediction theory we get the following 

equations: 

)/1(ˆ )/1(ˆ kkxCkky +=+          

)/(ˆ )(ˆ)/1(ˆ kkxkAkkx =+  

Where )/1(ˆ kky + is the predicted load at the instant 1+k based on the 

observations )(y(2),..., ),1( ),0( kyyy  
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the vector )/(ˆ kkx is a minimum variance filtered estimate of )(kx  which can 

be obtained as follows: 

1)]-(k/kx̂C-[y(k) )(ˆ)1/(ˆ)/(ˆ kKkkxkkx +−=  

Having obtained the estimate of state, next estimate of parameter vector iθ is 

estimated and this continues in a bootstrap manner.  

 

6.4 Application and evaluation of the proposed algorithm for a real 

problem 

The short term load forecasting algorithm explained in section 6.3 was 

applied to real data of hourly electricity generation, during the first week of 

May 2000, at WAPDA’s power houses of Tarbella, Mangla and Warsak. 

The algorithm was applied with initial condition 0.1 for the parameter vector 

and initial states were assumed equal to the initial data. Results are shown in 

Fig (6.1) to Fig (6.4). 

 

Fig 6.1 shows the actual and forecasted demand for the Tarbella power 

station. It can be seen that after vibrating to and fro about the actual demand, 

forecast began to track the demand after about thirty-fifth data point. From 

then onwards the forecast provided by the proposed algorithm is satisfactory. 
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However, the forecast curve seems to lag behind the actual curve at peak 

hours.  

 

Fig 6.2 shows the actual demand and forecast for Mangla power station. 

Again it is clear from the figure that the forecast curve began to track the 

actual data curve successfully after about thirty-fifth data point. The forecast 

is fairly accurate except around data point 111 where the actual data curve 

has dipped below the forecast curve. However, this is not a forecasting error 

because corresponding to the same data point the actual data curve in figure 

for Tarbella power station has risen above forecast curve. Therefore the 

cause of this difference may be shut down of one or more units at Mangla 

power station, may be due to some fault or some kind of urgent maintenance 

needed. 

 

Fig 6.3 shows the actual data curve and the forecast curve for Warsak Power 

station. The forecast curve does not seem to track the actual data curve very 

well. At some points it gives values higher than the actual data and at others 

the values are less than the actual data. This is because of the fact that 

Warsak is a very old hydel power station. The water storage reservoir has 

been completely filled with silt and as such, it is just run of the river plant 
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having no storage capacity for water. Therefore, a little flexibility is 

available in varying the amount of generation. This fact is also clear from 

actual data curve which is a smooth almost straight curve with very less 

fluctuations. 

 

Finally Fig. 6.4 provides a comparison of the total actual data of the three 

power houses and the overall forecast. The forecast has been able to track 

the actual demand very well. However, at peak loads, the forecast seems to 

lag a little behind the actual data curve. This may be attributed to the 

following factors: 

1) All the three power stations, whose data was used for load forecasting, 

are hydel power plants. Although because of silting Warsak is practically 

a run of the river plant, the other two power stations are basically used 

for providing irrigation water and electricity is only the by-product. The 

water reservoirs of these power plants are governed by IRSA (Indus 

River System Authority). It informs WAPDA, on daily basis, the amount 

of water that can be released. Accordingly WAPDA prepares its 

generation plan. In water shortage months, like May, IRSA allows only 

minimal water discharges. Therefore maximum amount of water is 

released at peak hours and at other times plants are normally run at 
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minimum load. Therefore, our forecast curve has lagged behind the 

actual curve at peak loads.  

 

2) In a power system, electricity is generated at power houses which is 

then step up using step up transformers. On reaching the load centers 

this electricity is then step down in grid stations with the help of step 

down transformers and distributed. Therefore, the actual demand is 

given by the data of grid stations, which was not available. In Pakistan 

electric power is supplied by WAPDA through the National Grid (a 

network of transmission lines) and all power houses and grid stations 

are inter connected through this. It is clear that the load of power 

houses is a reflection of the total loads at grid stations. Therefore, data 

of power houses was used which may be the cause of forecast being 

slightly different than actual demand. 
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Fig 6.1 Actual and forecasted load of Tarbella power station 
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Fig 6.2 Actual and forecasted load of Mangla power station 
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Fig 6.3 Actual and forecasted load of Warsak power station 
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Fig 6.4 Sum of actual and forecasted loads of Tarbella, Mangla and 

Warsak 
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Chapter 7 

 

Conclusions and Recommendations 

 

 

7.1 Conclusions 

The existing load forecasting system being followed in WAPDA is not very 

sophisticated because of unavailability of sufficient data. Hourly load 

forecast of the next twenty four hours is prepared by taking a weighted 

average of three quantities i.e. hourly load of last day, last week same day 

and last year same day. This forecast is then given as input to a computer 

program, which provides the economic generation plan. However, the 

persons responsible for controlling the entire plan at the NPCC (National 

Power Control Center) WAPDA rely mostly upon their own intuition and 

experience instead of the power plan provided by the computer program, 

because it is not very accurate. The other problem is that people controlling 

the power system at NPCC only know total load of the whole system. They 

do not have any grid station wise break up of this total load which can be 

very useful for reducing transmission losses. For example, let the load 



  

 78

requirement is at Peshawar and surplus power is available both at Tarbella 

and Mangla power stations. If the person in charge at NPCC knows that 

power is required at Peshawar he would prefer to increase the generation at 

Tarbella, provided incremental cost of additional generation is same at both 

the power houses. This will reduce transmission losses substantially. 

 

Presently, WAPDA’s transmission losses are of the order of about 

10%(actually they are reported to be around 8%-9% but for simplicity we 

have taken them to be 10%). The algorithm developed has been tested using 

real data and it has generated good results. If applied to hourly load data of 

grid stations, accurate forecast of individual grid stations’ load after an hour 

can be generated. On the basis of this forecast, it will be possible to 

formulate most economic load dispatch plan for the next hour which can 

reduce transmission losses resulting in substantial savings. 

 

Suppose average (daily) load demand               = 7000 Mw 

Then total generation for twenty four hours      = 7000*24 Mwh 

                   = 168,000 Mwh 

If we add 10% transmission losses                    = 186,666 Mwh 

So the average transmission losses per day are = 18,666 Mwh 
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If by using the proposed algorithm we can  

decrease losses to 9% then savings              = 1866 Mwh per day 

                      = 1,860,000 Kwh per day. 

If the average cost of one unit                     = 2 Rs 

Savings in term of rupees       = 2*1,860,000 Rs 

          = 3,720,000 Rs per day 

Even if the losses can be restricted to 9.9% 

savings are         = 372,000 Rs per day. 

 

If the proposed system is adopted, it will require the installation of telemetry 

equipment at main grid stations of WAPDA. The same equipment can be 

used for providing not only the present load, but the data regarding weather 

such as, ambient temperature, as well (which is the most important 

information required for longer term load forecasts). The hourly data 

provided by this equipment will currently be used for reducing transmission 

losses. However, this data can be stored, using a database management 

system. Such that after an year or two WAPDA will have complete data 

available with it, on the basis of which, accurate load forecasts of 24 hours 

to 168 hours into the future can be made. These forecasts can be used for 
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reducing unit commitment costs, that WAPDA has to pay to the Independent 

Power Producers (IPP’s) like HUBCO, KAPCO etc. 

 

Another benefit that WAPDA will have by installation of telemetry 

equipment is a lot of savings in labour man-hours. Presently, every hour’s 

load of the grid station is written manually in a log sheet. It will no longer be 

needed. This will not only save man-hours but will also result in reducing 

stationary and storage costs plus the data will be available in a more useful 

form. 

 

7.2 Recommendations for future research 

The proposed algorithm may be improved to provide longer term load 

forecasts that is, 24 hours to 168 hours, which can be useful for reducing 

unit commitment costs and short term maintenance scheduling of power 

plants.  
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