Simulation Of Disk Scheduling Algorithms

By

Major Wagar Ahmed

Simulation of Disk Scheduling Algorithms

ABSTRACT

Speed, accuracy and bulk storage are the essence of a computer system. One of
the tasks of the operating system is the optimum utilization of available hardware.
Operating System designers have always strived for achieving highest standards of
speed, accuracy and efficient handling of secondary storage devices. Disk drives are the
major secondary storage Input / Output device on all computers. Requests for disk input /
output are generated by the file system and by the virtual memory system. Each request

specifies the address on the disk to be referenced, in the form of a logical block number.

In multiprogramming environment more processes need to access the disk for reading
and writing of data at the same time. Therefore a queue of requests to be serviced, is
always pending. It requires disk drives to have a fast access time and more bandwidth.
We can improve both the access time and the bandwidth by scheduling the servicing of

disk input / output requests in a better order.

Different scheduling algorithms available for this purpose are First Come First
Serve (FCFS), Shortest Seek Time First (SSTF), LOOK, C- LOOK, SCAN and C-
SCAN Scheduling.

This work is to design and develop a simulator for disk scheduling utilizing
SCAN (both up ward and down ward direction), C-SCAN algorithms and provide
performance results. Simulation results will be compared with the previous [1]
experimental results (obtained through FCFS, SSTF, LOOK and C-LOOK) to
ascertain its efficacy and usefulness.

ACKNOWLEDGEMENTS

Simulation of Disk Scheduling Algorithms

All praises belong to Allah, His grace and mercy granted me the opportunity,
strength and ability for acquiring knowledge, for my own I had nothing, as life,
faculties, capabilities, means, relations, friends are all his gifts.

I would like to express my deepest gratitude to my thesis adviser Dr. Muhammad
Riaz and Co-adviser Lt Col Dr Muhammad Younus Javed for their whole hearted
guidance, wisdom, valuable time and motivation throughout my thesis research, despite
their busy routine and commitments.

I am also thankful to Lab staff of Computer Engineering Department, College of
EME for assisting me in completion of thesis work.

I am thankful to my Family for their encouragement, and cooperation throughout

my research work.

Simulation of Disk Scheduling Algorithms

Table of Contents
N o111 = Tod SRR I.
ACKNOWIEAGEMENTS ...ttt e et esreeaeeneennnenee s ii
TabIE OF CONTENTS.....oviiiiiicicie et ne s iii
LISE OF FIQUIE....eeeee ettt ettt bbb nne e ns vi
IS 0 B 1= o] 2SR viii
LISE OF GrapiS ... IX
1. (@4 0 F=T 0] (-] SO ORSRSTSS 1
1.1 INEFOAUCTION ... e 1
1.1.1 The operating system as a user/computer interface.................... 1
1.2 TYPES OF IMEIMOIYoiiiiiiiiiiciieieeee e 3
1.3 MAgNEiC DiSK...ccueiieiieieieie et nae s 5
1.3.1 Secondary Storage Management...........ccceceevveveeriesieseeriesieennens 5
1.3.2 File Allocation Methodsccooveviiiininneiie e 5
14 Free Space Management.........covvviieeiieieiie e 8
141 Bit TADIES ..o 8
1.4.2 Chained Free POrtioNS........cccouviiieiiieiisiseeiese e 8
143 INUEXING c.eviivieieiieeieeie ettt nne s 9
1.5 HArd DISK EITOFSviivieiiiie ettt nne e 9
1.6 Improving the performance of disk Systems..........cccccevvvieviveiesieninennnns 11
1.6.1 BIOCKING ...ttt 11
1.6.2 DiSK CaChiNg.....ccueiiiiiiiiiieiese e 12
1.6.3 RAM DISK ..cvieieiiieee e 13
1.6.4 File Re-Organization...........cccccceiiveresiieseeiesieese e e e eee e 14
2 Chapter 2 (Disk SCheduling)ccoveiiieieiiese e 16
2.1 INEFOTUCTION ...t 16
2.2 DIiSK /O OPEIatiONSccueiueiiiiiieiieieieiie sttt 16
2.2.1 Disk Performance Parameters..........c.ccovvveveeieieneneneseseseeeans 16
2.2.2 SEEK TIME c.viiiitiiiesiieiie ettt bbb 17
2.2.3 Rotational Delay ... 17
2.2.4 Transter TIME.....cciieeeeeie e 17

Simulation of Disk Scheduling Algorithms

2.2.5 TimiNg COMPAIISONoiveiiieiiiie ittt 18
2.3 Disk Scheduling AIgOrithms..........ccooiiiiiiiiiiiee s 19
2.3.1 FCFS SChedulingcccvcveiiee e 19
2.3.2 SSTF SChedulingc.ccoveiiiieieee e 20
2.3.3 SCan SChedUIING.......cooiiiiriee s 22
2.3.4 C-Scan SCheduling........ccccooiiiiiiiiiseece 23
2.3.5 L0OK SChedulingccceoiueiieieiie s 24
Chapter 3 (Software Development) ... 26
3L GBNEIAL...ceiiiee e 26
3.2 MaaJOr MOGUIES ... 26
3.2. 1 PrOCEOUIE ..ottt 27
3.2.2 SNOW FIlE ..ot 27
3.2.3 Comparat File.......c.coooiiiiii e 28
3.2.4 Graph File ..o 28
3.2.5 SUMMANY .ottt e e 28
Chapter 4 (Results and Evaluation of Disk Scheduling Algorithms............. 29
A1 GENEIAL....iieiee s 29
4.2 Performance Parameters of an Algorithm.............ccoceveiiiininiiinne 29
4.2.1 Initial Head POSITIONccooviviieiieciee e 29
4.2.2 Direction of Head MOVEMENLccccoviiiniiiiiee e 29
4.2.3 Patter of the Requested QUEUE.........cccccvvevveieciie i 30
4.3 TESESAMPIES ... 30
431 SAMPIE = L oo 31
4.3.2 SAMPIE = 2 oo 38
4.3.3 SAMPIE = 3o 48
434 SAMPIE =4 oo 52
4.35 SAMPIE = 5. 59
Chapter 5 (Discussion and Comparison of Results)ccccccovceviveiiiiieinennnns 62
51 INEFOAUCTION ... e 62
5.2 SCAN UPWAITottt ae s 62
5.3 SCAN DOWNWAITciiiiiiieiiiie e eie et see et snee e e neesneesseenee s 65

Simulation of Disk Scheduling Algorithms

5.4 Circular SCaN UPWAIT........cooouiiiiiiiiiiiie et 68
55 Circular SCan DOWNWAIG..........coiverieiieiieie e eie e e see e see e sreeee s 72
56 Comparison of AIgOrithmscccocoviiieiiii e 75
5.7 ANAIYSIS . e ae s 79
Chapter 6 (CONCIUSIONS)cc.eoiiiieiie i 81
B.1 GENEIAL......eoiieee et 81
6.2 ODJECHIVES ..oveeieceie ettt e e reenae e nne s 82
6.3 ACKIBVEMENTS. ..ottt 82
6.4 Evaluation and Comparison of ReSUILS...........cccocviiiiiiiiii s 79
6.5 WHO Can USE It....coiiicieiieiiee et 83
6.6 Recommendation for FUture WOorkcccccovoeiininninienesese e 83
References 84

Simulation of Disk Scheduling Algorithms

List of Figures

10 0 O SRS 2

FHOUIE 1.2 ettt s ettt e bt b e e bt s e st e et e an e e be et e nneenns 4

1000 0 SR 6

FIgure 1.4 RAM DISK ..ottt 14
Figure 2.1 FCFS Disk SChedUliNgcccveiiiiiiieie e 20
Figure 2.2 SSTF Disk SChedulingcccoiiiiii s 21
Figure 2.3 Scan Disk SChedulingccccoiiiiiiieiiece e 22
Figure 2.4 SCAN/U and SCAN/D Schedulingccccooiiieiininnieee e 23
Figure 2.5 LOOK Disk SChedulingcccoiveiiiieiiee e 25
Figure 2.6 C-L0o0oK Disk SChedulingcccooiiiiiiii e 25
Figure 4.1 Total Head MOVEMENL.........ccceiieiicieieece et 31
Figure 4.2 Total Head MOVEMENL.........coouiiiiiiiieiieie e 32
Figure 4.3 Total Head MOVEMENLccveiiiiieie e 32
Figure 4.4 Total Head MOVEMENL.........ccouiiiiieiieiieie et 33
Figure 4.5 Total Head MOVEMENLcceiiiiieii e 33
Figure 4.6 Total Head MOVEMENL.........ccoiiiiiiiieiieieee e 34
Figure 4.7 Total Head MOVEMENLccueiiiiieii ettt 34
Figure 4.8 Total Head MOVEMENL.........ccouiiiiiiiiesieie e 35
Figure 4.9 Total Head MOVEMENLccueiiiiieie et 35
Figure 4.10 Total Head MOVEMENT.........ccooiiiiiieieie e 36
Figure 4.11 Total Head MOVEMENT...........cov it 36
Figure 4.12 Total Head MOVEMENT.........ccooiiiiiieieiie et 37
Figure 4.13 Total Head MOVEMENT.........c.coviiiiieie et 38
Figure 4.14 Total Head MOVEMENT.........ccooiiiiiieieeie et 39
Figure 4.15 Total Head MOVEMENT.........c.coviiiiieie e 39
Figure 4.16 Total Head MOVEMENT..........ccooiiiiiieieiie e 40
Figure 4.17 Total Head MOVEMENT.........ccoviiiiiee et 40
Figure 4.18 Total Head MOVEMENT..........ocoiiiiiieiesie e 41
Figure 4.19 Total Head MOVEMENT.........c.coviiiiieie et 41
Figure 4.20 Total Head MOVEMENT..........ccooiiiiiieiesie et 42
Figure 4.21 Total Head MOVEMENT.........c.coiiieiieie e 42
Figure 4.22 Total Head MOVEMENT..........ccooiiiiiieiesie et 43
Figure 4.23 Total Head MOVEMENT.........ccoiiiiiieie e 43
Figure 4.24 Total Head MOVEMENT..........cooiiiiiieeiie e 44
Figure 4.25 Total Head MOVEMENT.........ccoiiiiiieie e 48
Figure 4.26 Total Head MOVEMENT..........cooiiiiiieiiie e 48
Figure 4.27 Total Head MOVEMENT.........ccoviiiiieie et 49
Figure 4.28 Total Head MOVEMENT..........ccooiiiiiieiiie e 49
Figure 4.29 Total Head MOVEMENT.........c.coiiiiiieie e 50
Figure 4.30 Total Head MOVEMENT..........ccoiiiiiieeiie e 50
Figure 4.31 Total Head MOVEMENT.........c.coviiiiieie et 51
Figure 4.32 Total Head MOVEMENL...........coviiiiieii et 51
Figure 4.33 Total Head MOVEMENT.......ccoiiiiiiiiiieieee e 52
Figure 4.34 Total Head MOVEMENL...........coviiiiicie et 52

Simulation of Disk Scheduling Algorithms

Figure 4.35 Total Head MOVEMENT..........ccooiiiiiiiiesie e 53
Figure 4.36 Total Head MOVEMENT...........coviieiiee e 53
Figure 4.37 Total Head MOVEMENT...........ooiiiiiieesie e 54
Figure 4.38 Total Head MOVEMENT.........ccoviieiieie et 54
Figure 4.39 Total Head MOVEMENT..........ccooiiiiiieieie e 55
Figure 4.40 Total Head MOVEMENT.........c.coviiiiieie et 55
Figure 4.41 Total Head MOVEMENT.........ccooiiiiiieieiie e 59
Figure 4.42 Total Head MOVEMENT.........cccoviieiieii e 59
Figure 4.43 Total Head MOVEMENT..........cooiiiiiiiiiie et 60
Figure 4.44 Total Head MOVEMENT.........cccoviieiieee et 60
Figure 5.1 Sample — 1 Scan Upward Disk Scheduling..........ccccoociiiiiniiiiiiiiieee, 63
Figure 5.2 Sample — 2 Scan Upward Disk Scheduling..........ccccoocveivvivivivciciiene e, 63
Figure 5.3 Sample — 3 Scan Upward Disk Scheduling..........ccccoooviniiniiiniiieee, 64
Figure 5.4 Sample — 4 Scan Upward Disk Scheduling..........ccccocveivviiiiiviiciicnecc e, 65
Figure 5.5 Sample — 1 Scan Downward Disk Schedulingcccoovviiiiiiiincncncnn 66
Figure 5.6 Sample — 2 Scan Downward Disk Scheduling...........cccccvvvvvveviiiennciccee, 67
Figure 5.7 Sample — 3 Scan Downward Disk Scheduling...........cccccoooiiiiiiiininiiie, 67
Figure 5.8 Sample — 4 Scan Downward Disk Scheduling...........cccccovovvviviiiiieniciecee, 68
Figure 5.9 Sample — 1 C-Scan / Upward Disk Schedulingcccooviiniininninicnee, 69
Figure 5.10 C-Scan / Upward Disk Scheduling...........cccovvveveiieiiennic e 70
Figure 5.11 C-Scan Upward Disk Scheduling..........cccocevieiiiiniiiiecee e 71
Figure 5.12 C-Scan Upward Disk SCheduling..........cccccvivereiiieiicc e 72
Figure 5.13 Sample — 1 C-Scan/Downward Disk Schedulingcccooeviiiiiinicinnn. 73
Figure 5.14 Sample — 2 C-Scan / Downward Disk Scheduling..........cccccceevvivvvieernnnenne. 74
Figure 5.15 Sample — 3 C-Scan Downward Disk Schedulingccccooevviiininncinnne. 74
Figure 5.16 C-Scan Downward Disk Scheduling.........cccccevviieiiiiiie e 75

Simulation of Disk Scheduling Algorithms

List of Tables
Table 4.1 Results of SAMPIE — 1 ..o 37
Table 4.2 Results 0f SAMPIe — 2 ... s 44
Table 4.3 SUMMAry 0f RESUILScc.ociiiieicc e 44
Table 4.4 Results of SAMPIe — 3 ..o 51
Table 4.5 ReSults OF SAMPIE - 4 ... s 55
Table 4.6 SUMMArY OF RESUIS.......coviiiiiieee s 56
Table 4.7 Results of SAMPIE =5 ..o.vooiiiieece e 61
Table 5.1 Head Movement COMPATISONccveiueiieiieiieiieseesreeeesee e seesreesreenesseesaeas 77
Table 5.2 Head Movement OVErheadccooiiiiiiieiieiiee e 79
Table 5.3 Head Movement OVErNEAdcviieieeieiie e 79

Simulation of Disk Scheduling Algorithms

10

List of Graphs
Graph 4.1 Comparison 0f RESUIES ... 45
Graph 4.2 Comparison 0f RESUIES ... 46
Graph 4.3 Comparison 0f RESUIES ... 56
Graph 4.4 Comparison 0f RESUIES ... 57
Graph 4.5 Comparison 0f RESUIES ... 61

Simulation of Disk Scheduling Algorithms

11

Chapter 1

Introduction
1.1 What Is An Operating System?

An operating system is a program that controls the execution of application
programs and acts as an interface between the user of a computer and the computer

hardware. Operating system should have [2] three basic functions:-

. Convenience An operating system makes a computer more convenient to
use.
. Efficiency An operating system allows the computer system resources to

be used in an efficient manner.
. Ability to evolve An operating system should be constructed in such a way
as to permit the effective development, testing, and introduction of new

system functions without interfering with services.

1.1.1 The Operating System as a User/Computer Interface

The hardware and software are used for providing applications to a user, which
can be viewed in a layered, or hierarchical, fashion as depicted in Figure 1.1. The end
user is generally not concerned with the computer's architecture. The operating system
masks the details of the hardware from the user and provides the user with a convenient
interface for using the system. It acts as mediator, making it easier for the user and for
application programs to access and use facilities and services. Briefly, the operating

system provides [4] following services:

. Program Creation The operating system provides a variety of facilities
and services, such as editors and debuggers, to assist the programmer in
creating programs. These services are in the form of utility programs that
are not actually part of the operating system but are accessible through the

operating system.

Simulation of Disk Scheduling Algorithms

12

Fnd llser
Programme
A 4
Application
Program
Utilities Operating

System Design

Operating System

Computer Hardware

Figure 1.1 An Overview Of Computer System

Program Execution Operating System has to perform number of tasks to
execute a program. Such as loading of instructions and data into main
memory, controlling of 1/0 devices, memory management, initialization /

space management of files and management / control of other resources.

Access To 1/0O Devices Each 1/0O device requires its own peculiar set of
instructions, or control signals, for operation. The operating system takes
care of these details so that the programmer can think in terms of simple

read and write operations.

Controlled Access To Files Each Operating System has its own file
format for data storage on media. The embedded file system provides file

level security.

Simulation of Disk Scheduling Algorithms

13

System Access In case of a shared or public system, the operating system
controls access to the system as a whole and to specific system resources.
The access function provides protection of resources and data from

unauthorized users and resolves conflicts in the contention for resources.

Error Detection And Response A variety of errors can occur while a
computer system is running. These include internal and external hardware
errors, such as a memory error, device failure or malfunction; and various
software errors, such as arithmetic overflow, attempt to access forbidden
memory location, and inability of the operating system to grant the request
of an application. In each case, the operating system must make the
response that clears the error condition with the least impact on running
applications.

Accounting: A good operating system collects usage statistics for various
resources and monitors performance parameters such as response time. On
any system, this information is useful in anticipating the need for future

enhancements and in tuning the system to improve performance.

Types of Memory

Computer memory can be divided into two main types i.e. primary storage or

semiconductor main memory and secondary storage. The main purpose of a computer

system is to execute programs. These programs together with the data they access must

be in main memory during execution. Ideally, we would want the programs and data to

reside in main memory permanently, but it is not possible for two reasons. Firstly the

main memory is usually too small to store all needed programs and data permanently.

Secondly main memory is a volatile storage device that loses its contents when power is

turned off or lost.

Simulation of Disk Scheduling Algorithms

14

The wide variety of storage media in a computer can be organized in a hierarchy
according to either speed or their cost (as shown in Figure 1.2). The higher levels are
expensive, but fast. As we move down the hierarchy, the cost per bit decreases, whereas
the access time increases, and the amount of storage at each level increases. The higher
levels are fast, but expensive and lower levels of memory hierarchy are cheaper but

slower.

CPU
Register

Cache

Level 2

Temporary
— Storage
Areas

Physical RAM Virtual Memory

Storage Device Types

S Permanent

etwork,/

Removable e Storage
Drives Storage Areas

Input Sources

Scanner/

Removable Camera/ Remote Other
Modia Mic/ Source Sources
Video

Keyboard

Figure 1.2 Hierarchy Of Memory

Simulation of Disk Scheduling Algorithms

15

1.3 Magnetic Disk

Disks provide the bulk of secondary storage for modern computer systems. Disk
is physically simple (Figurel.3). It is a circular platter constructed of metal or of plastic
coated with a magnetizable material. Data is recorded and retrieved from the disk via a
conducting coil, named as head. The write mechanism is based on the magnetic field
produced by electricity flowing through a coil. Pulses are sent to the head, and magnetic
patterns are recorded on the surface below, with different patterns for positive and
negative currents. The read mechanism is based on the electric current in a coil produced
by a magnetic field moving relative to the coil. When the surface of the disk passes under

the head, it generates a current of the same polarity as the one already recorded.

1.3.1 Secondary Storage Management

In secondary storage, a file consists of a collection of blocks. In operating system
the file-management system is responsible for allocating blocks to files. This raises two
management issues. First, space on secondary storage must be allocated to files, and
second, it is necessary to keep track of the space available for allocation[4]. Both of these
tasks are interrelated; the approach taken for allocation of files may influence the

approach taken for management of free space.

1.3.2 File Allocation Methods

There are three methods of file allocation

a. Contiguous Allocation. A single contiguous set of blocks is allocated to a
file at the time of file creation. This is a pre allocation strategy that uses
portions of variable size. The file allocation table needs just a single entry
for each file, showing the starting block and the length of the file.
Contiguous allocation is the best for the individual sequential file.
Multiple blocks can be brought in one at a time to improve 1/O
performance for sequential processing. Moreover it is also easy to retrieve

Simulation of Disk Scheduling Algorithms

16

Cover Mounting Holes
(Cover not shown)

Base Casting
Spindle
Slider (and Head)

Actuator Arm

Actuator Axis
Case

Mounting

Actuator Holes

Platters

Ribhon Cable
(attaches heads

SCSI Interface to Logic Board)

Connector
Jumper Pins

Jumper Power Tape Seal

Connector

Figure 1.3 Overview of Hard Disk

Simulation of Disk Scheduling Algorithms

17

a single block. Problem with contiguous allocation is of external
fragmentation, making it difficult to find contiguous blocks of space of
sufficient length. From time to time, it will be necessary to perform a
compaction algorithm to free up additional space on the disk, with pre
allocation, it is necessary to declare the size of the file at the time of
creation.

Chained Allocation. This allocation is on the basis of an individual
block. Each block contains a pointer to the next block in the chain. File
allocation table needs just a single entry for each file to show the starting
block and the length of the file. Although pre allocation is possible, but it
is more common to simply allocate blocks as needed. The selection of
blocks is a simple matter; any free block can be added to the chain. There
IS no external fragmentation because only one block at a time is needed.
This type of physical organization is best suited to sequential files that are
to be processed sequentially. To select an individual block of a file
requires tracing through the chain to the desired block. One consequence
of chaining, is that it does not accommodate the principle of locality.
Indexed Allocation. This type of allocation addresses many of the
problems of contiguous and chained allocation. In this case, the file
allocation table contains a separate one-level index for each file; the index
has one entry for each portion allocated to the file. Typically, the file
indexes are not physically stored as part of the file allocation table. Rather,
the file index for a file is kept in a separate block, and the entry for the file
in the file allocation table points to that block. Allocation may be on the
basis of either fixed size blocks or variable-size portions. Allocation by
blocks eliminates external fragmentation, whereas allocation by variable-
size portions improves locality. In either case, files may be consolidated
from time to time. Consolidation reduces the size of the index in the case
of variable-size portions but not in the case of block allocation. Indexed
allocation supports both sequential and direct access to the file, and thus it
is the most popular form of file allocation.

Simulation of Disk Scheduling Algorithms

18

14 Free Space Management

As the space allocated to files must be managed, similarly the space that is not
currently allocated to any file needs to be managed. To perform any of the file allocation
techniques that have been described, it is necessary to know what blocks on the disk are
available for allocation. Thus, we need a disk allocation table in addition to a file
allocation table. Three techniques are in common use [4] bit tables, chained free portions,

and indexing.

1.4.1 Bit Tables

The method of bit tables uses a vector containing 1 bit for each block on the disk.
Each entry of a 0 corresponds to a free block, and each 1 corresponds to a block in use.
For example, for the disk layout of say 35 blocks, a vector of length 35 is needed, and

would have the following value

001110000111110000111111121111011000
A bit table has the advantage that it is relatively easy to find one or a contiguous
group of free blocks. A bit table works well with any of the file allocation methods we
have discussed. Another advantage is that it is as small as possible and can be kept in
main memory. This avoids the need to read the disk allocation table into memory every

time an allocation is performed.

1.4.2 Chained Free Portions

Using a pointer and length value in each free portion may chain the free portions
together. This method has negligible space overhead because there is no need for a disk
allocation table, merely for a pointer to the beginning of the chain and the length of the
first portion. This method is suited to all the file allocation methods. If allocation is made

on the basis of a block at a time, simply choose the free block at the head of the chain and

Simulation of Disk Scheduling Algorithms

19

adjust the first pointer or length value. If allocation is made by variable-length portion, a
first-fit algorithm may be used: The headers from the portions are fetched one at a time to
determine the next suitable free portion in the chain. Again, pointer and length values are

adjusted.

1.4.3 Indexing

The indexing approach treats free space as a file and uses an index table as has
been described in the subsection, 1.3.2 "File Allocation Methods." For efficiency, the
index should be on the basis of variable-size portions rather than blocks. Thus, there is
one entry in the table for every free portion on the disk. This approach provides efficient

support for all the file allocation methods.

1.5 Hard Disk Errors

Some of the common hard disk errors are:-

a. Programming error (e.g request for nonexistent sector).

b. Transient checksum error (e.g caused by dust on the head).

C. Permanent checksum error (e.g disk block physically damaged).
d. Seek error (e.g the arm sent to cylinder 6 but it went to 7).

e. Controller error (e.g controller refuses to accept commands).

Programming errors occur when the driver tells the controller to seek to a
nonexistent cylinder, read from a nonexistent sector, use a nonexistent head, or transfer to
or from nonexistent memory. Most controllers check the parameters given to them and

complain if they are invalid.

Transient checksum errors are caused by dust in the air that get between the head
and the disk surface. Most of the time just repeating the operation a few times can

Simulation of Disk Scheduling Algorithms

20

eliminate them. If the error persists, the block has to be marked as a bad block and

avoided next time.

One way to avoid bad blocks is to write a very special program that takes a list of
bad blocks as input and carefully put all these bad blocks in a file. Once this file has been
made, the disk allocator will think these blocks are occupied and never allocate them. As

long as no one ever tries to read the bad block file, no problem will occur.

Not reading the bad block file is easier said than done. Many disks are backed up
by copying their contents a track at a time to a backup tape or disk drive. If this procedure
is followed, the bad blocks will cause trouble. Backing up the disk one file at a time will-
solve the problem, provided that the backup program knows the name of the bad block

file and refrains from copying it.

Seek errors are caused by mechanical problems in the arm. The controller keeps
track of the arm position internally. To perform a seek; it issues a series of pulses to the
arm motor, one pulse per cylinder, to move the arm to the new cylinder. When the arm
gets to its destination, the controller reads the actual cylinder number (written when the

drive was formatted). If the arm is in the wrong place, a seek error has occurred.

Most hard disk controllers correct seek errors automatically, but many floppy
controllers just set an error bit and leave the rest to the driver. The driver handles this
error by issuing a Recalibrate command, to move the arm as far as it will go and reset the
controller's internal idea of the current cylinder to 0. Usually this solves the problem, if it

does not, the drive must be repaired.

The controller is a specialized little computer, complete with software, variables,
buffers, and occasionally, bugs. Sometimes an unusual sequence of events such as an
interrupt on one drive occurring simultaneously with a Recalibrate command for another
drive will trigger a bug and cause the controller to go into a loop or lose track of what it
was doing. Controller designers usually plan for the worst and provide a pin on the chip

Simulation of Disk Scheduling Algorithms

21

which, when asserted, forces the controller to forget what it was doing and reset itself. If
all else fails, the disk driver can set a bit to invoke this signal and reset the controller. If

that does not help, all the driver can do is print a message and give up [3].

1.6 Improving The Performance Of Disk Systems

The performance of the disk system on a computer is often the most significant
factor in determining the overall speed of an application. Disks are the slowest main
computer component, thus they are the major bottleneck in system performance and
reliability. In addition, a disk crash is one of the most catastrophic computer hardware
failures. Which not only require the disk be replaced, but restoration of the disk's data is
also required. This may take hours, as backup copies of data on tape are transferred to the
disk. Under normal circumstances, these restored data are not a precise image of the disk
when it crashed. Backups are usually performed daily or weekly, meaning that any
changes to the data since the last backup are lost if a disk crashes. Improving disk speed
and reliability is therefore an important topic in the current research [I]. A number of

techniques, which are applied to this end, are described here. To summaries, these are:-

o Blocking
o Disk Cashing
. RAM disks

) File re-organization.

1.6.1 Blocking

In general, the actual mechanics of transferring data to and from a disk system are
‘transparent’ (invisible) to the application program; request is made to the operating
system for, say, 100 bytes or for one record. (i.e one block).

In reality, data will always be transferred to and from a disk in units of the
physical block or sector size of the disk-typically 512 bytes. To service a request for the

first 100 bytes of a file, the operating system must read the whole of the first block into a

Simulation of Disk Scheduling Algorithms

22

buffer in memory, and consequently extract the 100 bytes as requested. Requests for
further data, e.g. the next 100 bytes, are met from the stored block. Further data transfer
from the disk will only occur when a different block is requested. A similar process
occurs on writing. If a series of sequential bytes are written from an application program,
they are assembled in the buffer until a full block is available, which is then transferred to
disk.

These processes of blocking (assembling a block for output) and deblocking
(unpacking a block for output) minimize the actual number of disk transfers, at the
expense of memory space and some processing complexity. The greatest benefit occurs
when large amounts of sequential data are being processed; if data access is primarily
random, then the blocking system will actually slow down the theoretical transfer rate.
However, the block transfer is an integral part of the way disks operate and is therefore
unavoidable [2].

1.6.2 Disk Caching

Disk caching is an extension of the buffering concept and is particularly
applicable in multiprogramming machines or in disk file servers. A set (cache) of buffers
is allocated to hold a number of disk blocks which have been recently accessed. If the
data in a cache buffer is modified, only the local copy is updated. Thus, processing of the
data takes place using the cached data avoiding the need to frequently access the disk
itself. Caching is used in many systems.

Ultimately, the stored block must be transferred to disk to maintain the integrity
of the file data. This will certainly happen when the file is closed, but could occur earlier
for a number of reasons.

First, the cache buffer may be required for another block for which a read
command was received by the system. The caching mechanism makes the assumption

that the most recently accessed blocks are likely to be accessed again fairly soon. Thus, if

Simulation of Disk Scheduling Algorithms

23

a new block is required to be shifted to the cache buffer, one buffer will be selected for
'flushing' to disk on the basis of being least recently used.

It should be noted that system using disk caching are risking loss of updated
information in the event of machine failures such as loss of power. For this reason, the
system may periodically flush the cache buffers in order to minimize the amount of data
loss [2].

1.6.3 RAM Disk

A RAM disk (Figure 1.4) is a simulation of a conventional disk service using
semiconductor random access memory. A RAM disk is simpler. It has the advantage of
having instant access (no seek or rotational delay). There are two alternative
implementations of this idea. One system simply uses a large semiconductor store as
peripheral device providing a facility similar to a magnetic disk system but with very
much faster disk times. The device controller would appear to the computer exactly like a
conventional disk system. The merit of such a system is the faster speed, but it is
correspondingly more expensive. Consequently, it would be of interest primarily in
special applications where speed is of the essence. It is possible that such a device would
provide only a small portion of the total disk capacity of the computer, holding the most-
time critical data. Since most forms of RAM storage are volatile, the RAM disk generally

requires an independent power supply [4].

The other form of RAM disk employs software to simulate a disk in the main
memory of the computer. This is achieved by installing a device driver which responds to
the operating system and to the user exactly like a disk device, to the extent that the RAM
disk appears to have sectors and cylinders. In MS-DOS, the RAM disk would be assigned

Simulation of Disk Scheduling Algorithms

24

Main Memory [RAMI

User
Programs

RAM
disk

e
=

Operatiny
System

Figure 1.4 RAM disk.

to a volume driver letter such as D. All operations valid for disk will work equally well

with the RAM disk, for both interactive and programmed access.

The advantage of the RAM disk idea is that it can be applied to any file (or even
more than one file) with little programming involvement, so that it can be utilized easily

in circumstances where the user requires extra speed in an application.

1.6.4 File Re-Organisation

There is a considerable merit from the performance point of view in having the
allocated parts of a file stored as close together as possible, i.e. in contiguous sector. This
would minimize the access delay caused by radical movement of the read/write heads.
However the dynamic allocation schemes will soon result in scattering parts of the file
across a wide extent of the disk. A number of software packages are available which can
rectify this problem by re-organizing the disk, making each file contiguous. It is,

however, not a trivial task, and will probably result in movement of very large proportion

Simulation of Disk Scheduling Algorithms

25

of the disk blocks. However, for applications where time is of the essence, this procedure
may be deemed appropriate [2].

Simulation of Disk Scheduling Algorithms

26

Chapter 2
Disk Scheduling and Algorithms

2.1 Introduction

Since most jobs depend heavily on the disk for loading and input and output file,
it is important that disk service be as fast as possible. The operating system can improve

the disk service time by scheduling the requests for disk access.

2.2 Disk I/O Operations

Over the past 30 years, the increase in the speed of processors and main memory
has far outstripped that of disk speed, This gap is expected to continue into the
foreseeable future. Thus, the performance of disk storage subsystems is of vital concern,
and much research has gone into schemes for improving the performance. In this section,
some of the key issues will be highlight and the most important approaches will be

discussed.
2.2.1 Disk Performance Parameters

The actual details of disk 1/O operation depend on the computer system, the
operating system, and the nature of the 1/O channel and disk controller hardware. When
the disk drive is operating, the disk is rotating at constant speed. To read or write, the
head must be positioned at the desired cylinder/track and at the beginning of the desired
sector on that track. Track selection involves moving the head in a movable-head system
or electronically selecting one head on a fixed-head system. On a movable-head system,
the time it takes to position the head at the track is known as seek time. In either case,
once the track is selected, the disk controller waits until the appropriate sector rotates to
line up with the head. The time it takes for the beginning of the sector to reach the head is
known as rotational delay, or rotational latency. The sum of the seek time (if any) and the
rotational delay is equal to the access time, the time it takes to get into position to read or

Simulation of Disk Scheduling Algorithms

27

write. Once the head is in position, the Read or Write operation is then performed as the
sector moves under the head.

2.2.2 Seek Time

Seek time is the time required to move the disk arm to the required track[4]. It
turns out that this is a difficult quantity to pin down. The Seek time consists of two key
components the initial startup time and the time taken to traverse the cylinders that have
to be crossed once the access arm is up to speed. The traversal time is, not a linear
function of the number of tracks. We can approximate Seek time with the linear formula:

Ts=mXxn+s

where

Ts = estimated seek time

n = number of tracks traversed

m = constant that depends on the disk drive

s = startup time

For example, an inexpensive Winchester disk on a personal computer might be
approximated by m = 0.3 msec and s = 20 msec, whereas a larger, more expensive disk

drive might have m = 0.1 msec and s = 3 msec.

2.2.3 Rotational Delay

Disks, other than floppy disks, typically rotate at 3600 rpm, which is one
revolution per 16.7 msec. Thus, on the average, the rotational delay will be 8.3 mses.
Floppy disks rotate much more slowly, typically between 300 and 600 rpm. Thus the

average delay will be between 100 and 200 msec.

2.2.4 Transfer Time

The transfer time to or from the disk depends on the rotation speed of the disk in
the following fashion:
T =Db/rN

Simulation of Disk Scheduling Algorithms

28

Where

T = transfer time

B = number of bytes to be transferred

N = number of bytes on a track

r = rotation speed in revolutions per second

thus the total average access time can be expressed as T, = Ts+ 1/2r + b/rN

Where T; is the average seek time.

2.2.,5 Timing Comparison

Having defined the determining parameters, let us look at two /O operations that
illustrate the danger of relying on average values. Consider a typical disk [4] with an
advertised average Seek time of 20 msec, a transfer rate of | MB/s, and 512-byte sectors
with 32 sectors per track. Suppose that we wish to read a file consisting of 256 sectors for
a total of 128KB. We would like to estimate the total time for the transfer. First, let us
assume that the file is stored as compactly as possible on the disk. The file occupies all
the sectors on eight adjacent tracks (8 tracks x 32 sectors/ track = 256 sectors). This is

known as sequential organization. Now, the time to read the first track is as follows:

Average seek 20 msec

Rotational delay 8.3 msec

Read 32 sectors 16.7 msec
45 msec

Suppose that the remaining tracks can now be read with essentially no Seek time.
That is, the 1/O operation can keep up with the flow from the disk. Then, at most, we need
to deal with rotational delay for each succeeding track. Thus, each successive track is
read in 8.3 + 16.7 = 25 msec. To read the entire file:
Total time = 45 + 7 x 25 = 220 msec = 0.22 sec

Now let us calculate the time required to read the same data by using random
access rather than sequential access; that is, access to the sectors is distributed randomly
over the disk. For each sector, we have:

Average seek 20 msec

Simulation of Disk Scheduling Algorithms

29

Rotational delay 8.3 msec
Read 32 sectors 0.5 msec
28.8 msec

Total time = 256 x 28.8 = 7373 msec = 7.37 sec.
It is clear that the order in which sectors are read from the disk has a tremendous
effect on 1/0 performance.

2.3 Disk Scheduling Algorithms

On examining the example in the previous section, we see that the reason for the
difference in performance can be pinned down to Seek time. If sector access requests
involve selection of tracks at random, then the performance of the disk 1/0 system will be
as poor as possible. To improve performance, we need to reduce the average time spent
on Seeks. Consider the typical situation in a multiprogramming environment, in which
the operating system maintains a queue of requests for each 1/0 device. Different
algorithms are used for selecting request for servicing from the queue of requests.

Following are the main types of algorithms used for this purpose:-

. FCFS Scheduling

o SSTF Scheduling

. SCAN Scheduling

) Circular-SCAN Scheduling
) Look Scheduling

. Circular-Look Scheduling

2.3.1 FCFS Scheduling

The simplest form of disk scheduling is, of course, first-come, first-served (FCFS)
scheduling. This algorithm is easy to program and is intrinsically fair. However, it may
not provide the best (average) service. Consider for example (Figure 2.1), [4] an ordered

disk queue with requests involving tracks[2]:-

Simulation of Disk Scheduling Algorithms

30

98, 183, 37,122, 4,124, 65 and 67

Listed first (98) to last (67). If the read-write head is initially at track 53, it will first move
from 53 to 98, then to 183, 37, 122,14,124,65, and finally to 67 for a total head
movement of 640 tracks.
98,37, 122,14,124,65,67,14
Head starts at 53.

HI 3?| S'_: 65 :f:? ‘z':?l 122 114

; 183
i = ,'_I

Figure 2.1 FCFS Disk Scheduling

The problem with this algorithm is illustrated by the wild swing from 122 to 14
and then back to 124. If the requests for tracks 37 and 14 could be serviced together,
before or after the requests at 122 and 124, the total head movement can be decreased
substantially and the average time to service each request would decrease, improving disk
throughput [2].

2.3.2 SSTF Scheduling

It seems reasonable to service together all requests close to the current head
position, before moving the head far away to service another request. This assumption is
the basis for the shortest-seek time first (SSTF) disk-scheduling algorithm. The SSTF
algorithm selects the request with the minimum seek time from the current head position.

Since the seek time is generally proportional to the track difference between the requests,

Simulation of Disk Scheduling Algorithms

31

we implement this approach by moving the head to the closest track in the request queue
[1].

For our example [2] request queue (Figure 2.2), the closest queue to the initial
head position (53) is at track 65. Once we are at track 65, the next closet request is at
track 67. At this point, the distance to track 37 is 30, whereas the distance to track 98 is
31. Therefore, the request at track

65, 67, 37, 14, 98, 122, 124, 183

Head starts at 53.

= 183

Figure 2.2 SSTF Disk Scheduling

37 is closer and is served next. Continuing, we service the request at track 14, then 98,
122,124 and finally at 183. This scheduling method results in a total head movement of
only 236 tracks, little more than one-third of the distance-needed for FCFS scheduling.

This algorithm would result in a substantial improvement in average disk service.

SSTF has the drawback that it may cause starvation of some requests. It is worth
noting that, in a real system, requests may arrive at any time. Consider for example, we
have two requests in the queue, for tracks 14 & 186. If a request near 14 arrives while we
are servicing that request, it will be serviced next making the request at 186 wait. While
this request is being serviced, another request close to 14 could arrive. In theory, a
continual stream of requests near one another could arrive, causing the request for 186 to

wait indefinitely.

Simulation of Disk Scheduling Algorithms

32

The SSTF algorithm, although a substantial improvement over the FCFS
algorithm, is not optimal. For example, if we move the head from 53 to 37, even though
the latter is not closest, and then to 14, before turning around to service 65, 67, 98, 122,

124 and 183, we can reduce the total head movement to 98 tracks.
2.3.3 SCAN Scheduling

Recognition of the dynamic nature of the request queue leads to the SCAN
algorithm [4]. The read-write head starts [2] at one end of the disk, and moves toward the
other end, servicing requests as it reaches each track, until it gets to the other end of the
disk. At the other end of the disk, the direction of the head movement is reversed and
servicing continues. The head continuously scans the disk from end to end. We again use

our example. Before applying SCAN algorithm to scheduling,
98, 183, 37, 122, 14, 124, 65, and 67

We need to know the direction of head movement, in addition to the head’s last
position. If the head was moving away from track O (and initial head position is 53), the
head movement would first service (Figure 2.3a) track 65, then 67, 98,122,124, 183 then
it would move to the other end. At the other end of the disk the head does not go toward
the beginning of the disk and will first service request 37. After servicing track 37, it

would then service track 14. For Scan/D it would first service track 53(Figure 2.3b).

0 14 ar 23 G5 &Y 95 122 124 183 300

I N N
g S T S

Figure 2.3a Scan/U Disk Scheduling

Simulation of Disk Scheduling Algorithms

33

0 14 v a3 B3 &7 93 122 124 133 300

- & & & [| [| |
‘"\“»
—p—p— 8 »

Figure 2.3b Scan/D Disk Scheduling

The SCAN algorithm is sometimes called elevator algorithm, since it is similar to
the behavior of elevators as it service requests to move from floor to floor in a building.
Another analogy is that of shoveling snow from a sidewalk during a snowstorm. Starting
from one end, it removes snow and moves toward the other end. As it moves, new snow
falls behind. At the far end, it reverses direction and removes the newly fallen snow
behind [1].

2.3.4 C-SCAN Scheduling

A variant of SCAN scheduling that is designed to provide a more uniform wait
time is C-SCAN (circular SCAN) scheduling [2]. As SCAN scheduling moves the head
from one end of the disk to the other, servicing requests as it goes. When it reaches to the
other end, it immediately returns to the beginning of the disk, without servicing any
requests on the return trip. C-SCAN scheduling essentially treats the disk as circular, with
the last track adjacent to the first one. The reordered queue for C-Scan/U (Figure 2.4 a)
will be 65, 67, 98, 122, 124, 183, 300, 0, 37 ,14 and for Scan/D (Figure 2.4 b)will be 37,
14,0, 65, 67, 98, 122, 124 and 183

u} 14 a7 a3 535 =T =151 122 124 1835 300

Figure 2.4a C-Scan/U Disk Scheduling

Simulation of Disk Scheduling Algorithms

34

0 14 v 23 G5 BY 95 122 124 183 300

Figure 2.4b SCAN/U Disk Scheduling

2.3.5 Look Scheduling

Notice that, as we have described them, both SCAN and C-SCAN scheduling
always move the head from one end of the disk to the other. In practice, neither algorithm
is implemented in this way. In practical systems the head is moved as far as the last
request in each direction. As soon as there are no requests in the current direction, the
head movement is reversed. These variations [2] of SCAN and C-SCAN scheduling are
called Look and C-look scheduling respectively (Figures 2.5 & 2.6).

14 37 53 BO B HE 122124 183 300

<.

T

\\;

Figure 2.5 Look Disk Scheduling

Simulation of Disk Scheduling Algorithms

35

14 37 &3 BS B B3 12214 183 300

Ta
A

'y
T

Figure 2.6 C-Look Disk Scheduling

Simulation of Disk Scheduling Algorithms

36

Chapter 3

Conceptual Model of Software Development

3.1 General

A system for disk scheduling algorithms has been implemented in C language for
scheduling the algorithms like Scan Upward (SCAN/U), Scan Downward (SCAN /D),
Circular Scan Upward (C-SCAN/U) and Circular Scan Downward (C-SCAN/D). It
consists of four modules namely SCAN/U, SCAN/D, C-SCAN/U, C-SCAN/D. When an
algorithm is selected, it calls that module for execution. There are certain supporting
functions/header files for different purposes. Header file comparat includes all functions,
which are used for reordering the original list as per the condition of SCAN/U, SCAN/D,
C-SCAN/U and C-SCAN/D algorithms. Header file graph includes all functions and
programs for the display of different graphs. Header file display is used for the display of
gueue and related graphics. Header file show is used for the display of all other graphics
in the program. The ‘total Head movement’ can judge the performance of each algorithm

in a particular case.
3.2 Major Modules
When this program is executed, it presents the four options to the user, namely:

1- SCAN UPWARD

2- SCAN DOWNWARD
3- C-SCAN UPWARD

4- C-SCAN DOWNWARD
5- EXIT

Up/down arrow keys can select any algorithm for implementation. Selection of an

algorithm calls another function which shows choices namely as

Simulation of Disk Scheduling Algorithms

37

1-Run Default

2- Enter New values
3-Go to Main Menu
4-Exit

3.2.1 Procedure

When the program is executed, Selection of an algorithm for execution gives
option of running default set of values (already fed set of requests), or option of entering

new values. Selection of running default set & values which is as under:-

98, 183, 37, 122, 14, 124, 65 and 67

The default set of values is re-arranged according to selected algorithm for
calculation of head movements. The re-arranged queue will be displayed and calculation
is carried out. After calculation the number of head movements involved to process the
queue is displayed. Graphical representation of the head movements is also shown. If the
option of Entering new vales is selected the data can be written to the file by calling
function wfile. Now the newly entered values are re-arranged according to selected
algorithm for calculation of head movements. After calculation the number of head
movements involved to process the queue is displayed. Graphical representation of the
head movements is also shown. Selection of choice three takes you back to main menu

screen.

3.2.2 Show File

This is header file which is used for drawing queue and other related graphics.
This header file contains functions show queue, removel, remove2, remove3, remove4,
removeb, removeb6 etc. All these functions are used for drawing queue. There are also

certain other functions in this header file like showmain, clearmain, showchoices,

Simulation of Disk Scheduling Algorithms

38

clearchoices etc. The showmain function is used for the graphical display of the options
available in the simulator. Calling function clearmain clears the screen from these
options. Show choices is used to display options available in fcfs, sstf, scan or c-scan

algorithms while clear choices is called to clear the screen from these options.

3.2.3 Comparat File

This is also a developer’s defined header file which consists of the functions
compare 1, compare 2, compare 3. Function compare | in is used in SCAN to find the
upward and downward tracks in the requests received. Functions compare 2 and compare
3 are used to rearranging the upward and downward requests respectively in case of
SCAN/U, SCAN/D. Function compare 4 is used to find the upward and downward tracks
in the requests received. Function compare5 is used to rearrange downward request in C-
SCAN algorithm.

3.2.4 Graph File

This header file is used for drawing individuals as well as comparative graphs for
all algorithms.

3.2.5 Summary

In this chapter we have briefly discussed the main modules and important header
files of the developed software. It was noted that the major modules are scan/upward,
scan/downward, c-scan/upward and c-scan/downward newname, and wfile. The header

files discussed here are print, show, comparat and graph.

Simulation of Disk Scheduling Algorithms

39

Chapter 4
Results and Evaluation Of Disk Scheduling Algorithms

4.1 General

Disk drives are the major secondary storage 1/0 devices. Request for disks 1/O are
generated by the file system and by the virtual memory system[2]. Each request specifies
the address on the disk to be referenced in the form of logical block number. Disk-
scheduling algorithms can improve the effective bandwidth, the average response time
and the variance in response time. Algorithms such as SSTF, SACN, C-SCAN, LOOK
and C-LOOK make the improvements by reordering the disk queue to decrease the total
seek time.

4.2 Performance Parameters of an Algorithm

Time taken by the head movement over the number of tracks is roughly the linear
function of time i.e., if the head swings over more number of tracks the time taken will be
more. So the data collected relating to head swings can be genuinely interpreted as the

time taken in the head movement. Performance of an algorithm depends on following

parameters:-
. Initial Head Position
o Direction of Head Movement
. Pattern of the Requested Queue

4.2.1 Initial Head Position

The Initial Head position will normally be the last request track of the preceding
serviced queue. It is possible to control the position of head by positioning it to a preset
position after servicing the last request queue. The preset initial head position will have it
merits and demerits in case of patterns of different nature. The preset initial head position

will give better performance in case of uniformly scattered request queue.

4.2.2 Direction of Head Movement
Direction of Head Movement is not applicable in all algorithms. It is applicable in
case of LOOK, C-LOOK, SCAN and C-SCAN algorithms. The direction may be upward

Simulation of Disk Scheduling Algorithms

40

or it may be towards downward direction. Selection of head movement direction has
tremendously affect on the performance of algorithm but it is more influenced by the

pattern of request queue.

4.2.3 Pattern of the Requested Queue

Pattern of the requested queue for disk service is greatly influenced by the file-
allocation method [4]. A program reading a contiguously allocated file will generate
several requests that are close together on the disk, resulting in limited head movement. A
linked or indexed file, on the other hand, may include blocks that are widely scattered on

the disk, resulting in better disk-space utilization at the expense of head movement.

The location of directories and index blocks is also important. As every file is to
be opened before use, which requires searching the directory structure. For instance, if a
directory entry is in the first sector and file's data in the last sector, then the disk head
needs to move the entire width of the disk. If the directory entry is more toward the

middle, the head will have to move at most one-half the width

In uniformly scattered request queue each request is likely to get fair deal and
over all performance will be improved. Pattern of the request queue is unpredictable, but
it can be made more uniform by selecting best file allocation method or by periodically

de-fragmenting the disk by any de-fragmentation utility

As a result of these considerations, it is clear that the disk-scheduling algorithm
should be written as a separate module of the operating system, allowing it to be replaced

with a different algorithm if required.

4.3 Test Samples

Few test samples have been selected in such manner that each sample consists of
different type of pattern, number of tracks and initial head positions (IHP). Values of
each sample are fed in through the option of ‘Enter New Values’ in the form of a separate

Simulation of Disk Scheduling Algorithms

41

file. Each sample will run on the developed simulator to obtain ‘total head movement’ for
each algorithm.

4.3.1 Sample-1 A uniformly scattered pattern of 24 tracks request have been tested

for 100, 150, and 200 IHP.

67,283, 37, 122, 224, 15, 167, 98, 212, 133, 254, 275, 5, 33, 66, 225, 56, 237, 288, 258,

128, 156, 144, 162

Scan/Up

Reordered Queue For IHP=100

122,124, 128, 133, 144, 156, 162, 167, 212, 225, 237, 254, 258, 275, 283, 288, 300, 98,

67, 66, 56, 37, 33, 15, 3

Head Movement Pattern for IHP=100

I T T TN O O O O O L N Y T O T O Y v 11

Figure 4.1 Total Head Movement=497

Reordered Queue For IHP=150
156, 162, 167, 212, 225, 237, 254, 258, 275, 283, 288, 300, 144, 133, 128, 124, 122, 98,

67, 66, 56, 37, 33, 15, 3

Simulation of Disk Scheduling Algorithms

42

Head Movement Pattern for IHP=150

IO I O AN O O . O O oy T v T S T L O

Figure 4.2 Total Head Movement=447

Reordered Queue For IHP=200
212, 225, 237, 254, 258, 275, 283, 288, 300,167, 162, 156,144, 133, 128, 124, 122, 98,
67, 66, 56, 37, 33, 15, 3

Head Movement Pattern for IHP=200

301 33 3 % 688 67 93 122 124 128 133 144 136 162 167 M2 225 T 2 X8 S I3 8 300

Figure 4.3 Total Head Movement=397
Scan/Down
Reordered Queue For IHP=100
98, 67, 66, 56, 37, 33, 15, 3, 0, 122, 124, 128, 133, 144, 156, 162, 167, 212, 225, 237,

254, 258, 275, 283, 288

Simulation of Disk Scheduling Algorithms

43

Head Movement Pattern for IHP=100

0 3 15 3% 37 % 66 BT B 12 1M 12 130 144 155 B2 BT M2 28 2 %4 2 75 M3 W

Figure 4.4 Total Head Movement=397

Reordered Queue For IHP=150
144,133, 128, 124, 122, 98, 67, 66, 56, 37, 33, 15, 3,0, 156, 162, 167, 212, 225, 237, 254,

258, 275, 283, 288

Head Movement Pattern for IHP=150

Figure 45 Total Head Movement=438

Simulation of Disk Scheduling Algorithms

44

Reordered Queue For IHP=200
167, 162, 156,144, 133, 128, 124, 122, 98, 67, 66, 56, 37, 33, 15, 3, 0, 212, 225, 237, 254,

258, 275, 283, 288

Head Movement Pattern for IHP=200

0 3 158 35 & 5 66 6 8 12 14 18 13 144 155 982 167 M2 15 L 1M % 1R X3 26

Figure 4.6 Total Head Movement=488

C-Scan/Up
Reordered Queue For IHP=100
122,124,128, 133, 144, 156, 162, 167, 212, 225, 237, 254,

258, 275, 283, 288, 300, 0, 3, 15, 33, 37, 56, 66, 67, 98

Head Movement Pattern for IHP=100

0 3 15 33 ¥ S B8 67 G5 122 124 128 133 044 1% 162 16T M2 25 I B4 M8 W5 M3 M

Figure 4.7 Total Head Movement=598

Simulation of Disk Scheduling Algorithms

45

Reordered Queue For IHP=150
156, 162, 167, 212, 225, 237, 254, 258, 275, 283, 288, 300, 0, 3, 15, 33, 37, 56, 66, 67,

98, 122, 124, 128, 133, 144

Head Movement Pattern for IHP=150

03 15 3 9 % 6 6 W 12 14 18 13 4 5 I8 167 A2 25 3 B % 75 OE M

Figure 4.8 Total Head Movement=438

Reordered Queue For IHP=200
212, 225, 237, 254, 258, 275, 283, 288, 300, 0, 3, 15, 33, 37, 56, 66, 67, 98, 122, 124,

128, 133, 144, 156, 162, 167

Head Movement Pattern for IHP=200

0 3 15 33 37 5 86 67 45 122 124 128 133 144 156 G2 BT 22 225 237 54 25 7R OGS 26 00

LN—N—N—N—N—N—N—N—N—N—N—N—N—N—H

Figure 4.9 Total Head Movement=567

Simulation of Disk Scheduling Algorithms

46

C-Scan/Down

Reordered Queue For IHP=100
98, 67, 66, 56, 37, 33, 15, 3, 0, 300, 288, 283, 275, 258, 254,237, 225, 212, 167, 162,
156, 144, 133, 128, 124, 122

Head Movement Pattern for IHP=100

0 3 15 33 37 55 66 67 85 122 124 126 133 144 136 62 67 22 205 29T 254 2% M5 163 288 300

Figure 4.10 Total Head Movement=578

Reordered Queue For IHP=150
144,133, 128, 124, 122, 98, 67, 66, 56, 37, 33, 15, 3, 0, 300, 288, 283, 275, 258, 254,237,

225,212,167, 162, 156

Head Movement Pattern for IHP=150

0 3 15 33 37 5 BS BT 95 122 124 125 133 144 156 162 167 M2 225 23T 254 258 275 283 285 500

Figure 4.11 Total Head Movement=604

Simulation of Disk Scheduling Algorithms

47

Reordered Queue For IHP=200
167, 162, 156, 144, 133, 128, 124, 122, 98, 67, 66, 56, 37, 33, 15, 3, 0, 300, 288, 283,
275, 258, 254,237, 225, 212

Head Movement Pattern for IHP=200

0 5 15 3 & S 66 67 W 12 14 18 13 14 15 18 167 M2 25 1 B M U5 M M6 3

e PP PP
t«—«—n—«—u—u—u—u—u—u—u—u—u—u—u—o
A

Figure 4.12 Total Head Movement=604

Summary of Results

Algorithm IHP100 | IHP150 | IHP200
SCAN/U 497 447 397
SCAN/D 388 438 488

C-SCAN/U 598 594 567

C-SCAN/D 578 604 588

Table 4.1 Results of Sample-1

Simulation of Disk Scheduling Algorithms

48

4.3.2 Sample-2 A uniformly scattered pattern of 24 tracks request will be for 100,
150, and 200 IHP.

211, 219, 222, 224, 242, 267, 288, 299, 88, 76, 111,

132, 145, 165, 160, 167, 188 198, 66, 56, 44,14, 36, 2

Scan/Up
Reordered Queue For IHP=100
111, 132, 145, 160, 165, 167, 188, 198, 211, 219, 222, 224, 242, 267, 288, 299, 300, 88,
76, 66, 56, 44, 36, 14, 2
Head Movement Pattern for IHP=100

2014 3 44 35 66 T6 88 111 132 145 160 163 167 188 195 X1 219 24 224 242 267 285 299 300

Figure 4.13 Total Head movement=500

Reordered Queue For IHP=150

160, 165, 167, 188, 198, 211, 219, 222, 224, 242, 267, 288, 299, 300, 145, 132, 111, 88,

76, 66, 56, 44, 36, 14, 2

Simulation of Disk Scheduling Algorithms

49

Head Movement Pattern for IHP=150

2 1436 44 56 66 7B 68 111 132 143 160 165 167 185 198 211 M9 222 2M 242 267 285 299 300

Figure 4.14 Total Head movement=448
Reordered Queue For IHP=200

211, 219, 222, 224, 242, 267, 288, 299, 300, 198, 188, 167, 165, 160, 145, 132, 111, 88,
76, 66, 56, 44, 36, 14, 2

Head Movement Pattern for IHP=200

2 14 36 44 56 B8 76 88 111 132 143 1680 1683 167 183 193 211 A9 227 214 M7 267 283 293 300

Figure 4.15 Total Head movement=398

Scan/Down

Reordered Queue For IHP=100
88, 76, 66, 56, 44, 36, 14, 2, 0, 111, 132, 145, 160, 165, 167, 188, 198, 211, 219, 222,

224,242, 267, 288, 299

Simulation of Disk Scheduling Algorithms

50

Head Movement Pattern for IHP=100

0 2 14 35 44 55 BG TH 83 111 13% 143 160 163 167 186G 199 201 219 222 224 242 267 209 299

Figure 4.16 Total Head movement=399

Reordered Queue For IHP=150

145, 132, 111, 88, 76, 66, 56, 44, 36, 14, 2, 0,160, 165, 167, 188, 198, 211, 219, 222,

224,242, 267, 288, 299

Head Movement Pattern for IHP=150

0 2 14 35 44 56 65 76 @3 111 132 143 180 163 167 188 199 211 219 222 224 242 267 285 239 300

Figure 4.17 Total Head movement=449

Simulation of Disk Scheduling Algorithms

51

Reordered Queue For IHP=200

198, 188, 167, 165, 160, 145, 132, 111, 88, 76, 66, 56, 44,36, 14, 2, 0,211, 219, 222, 224,
242, 267, 288, 299

Head Movement Pattern for IHP=200

0 2 14 36 44 36 66 76 85 111 132 143 160 165 167 166 199 211 219 222 224 242 267 263 299

Figure 4.18 Total Head movement=499

C-Scan/Up
Reordered Queue For IHP=100

111, 132, 145, 160, 165, 167, 188, 198, 211, 219, 222, 224, 242, 267, 288, 299, 300, 0,

88, 76, 66, 56, 44, 36, 14, 2

Head Movement Pattern for IHP=100

o 2 14 36 44 56 B8 V6 &5 111 132 143 160 165 167 185 1953 211 219 222 224 242 267 268 299 300

Figure 419 Total Head movement=588

Simulation of Disk Scheduling Algorithms

52

Reordered Queue For IHP=150

160, 165, 167, 188, 198, 211, 219, 222, 224, 242, 267, 288, 299, 300, 0, 145, 132, 111, ,
88, 76, 66, 56, 44, 36, 14, 2

Head Movement Pattern for IHP=150

o 2 14 36 44 56 BE Y6 855 111 132 145 160 165 167 188 195 211 219 222 224 242 267 288 289 300

O—N—N—D—M—M—»—N—M—M—h—h—bﬁ
ﬁ—h—h—»—»—h—h—b—h—b—b

Figure 4.20 Total Head movement=595
Reordered Queue For IHP=200

211, 219, 222, 224, 242, 267, 288, 299, 300, 0,198, 188, 167, 165, 160, 145, 132, 111, 88,

76, 66, 56, 44, 36, 14, 2

Head Movement Pattern for IHP=200

0 2 14 3 44 56 B8 TH 88 111 132 143 160 163 167 183 188 211 219 22 224 242 267 285 299 500

O—N—h—h—N—N—N—lj
f—i—»—»—n—»—»—n—»—»—»—n—»—»—»—»—»

Figure 4.21 Total Head movement=612

Simulation of Disk Scheduling Algorithms

53

C-Scan/Down
Reordered Queue For IHP=100
88, 76, 66, 56, 44, 36, 14, 2, 0, 300, 111, 132, 145, 160, 165, 167, 188, 198, 211, 219,

222,224, 242, 267, 288, 299

Head Movement Pattern for IHP=100

o 2 14 36 44 56 B8 V6 &5 111 132 143 160 165 167 185 1953 211 219 222 224 242 267 268 299 300

Figure 4.22 Total Head movement=589
Reordered Queue For IHP=150

145, 132, 111, 88, 76, 66, 56, 44, 36, 14, 2, 0, 300, 160, 165, 167, 188, 198, 211, 219,
222,224, 242, 267, 288, 299

Head Movement Pattern for IHP=150

02 14 36 44 356 66 TE 88 111 132 145 160 165 167 188 198 211 219 222 224 242 267 288 299 300

A I A s O B
tn—«—u—«—«—«—n—«—«—«—o
<—n—u—«—«—«—n—«—«—u—~l—«—;—'!

Figure 4.23 Total Head movement=599

Simulation of Disk Scheduling Algorithms

54

Reordered Queue For IHP=200
198, 188, 167, 165, 160, 145, 132, 111, 88, 76, 66, 56, 44,36, 14, 2, 0, 300, 211, 219, 222,

224,242, 267, 288, 299

Head Movement Pattern for IHP=200

0 2 14 36 44 56 B8 V6 85 111 132 143 160 163 167 183 198 211 219 222 224 242 267 288 289 300

AN
 Babaubeleiobuboiubebuieioboly
PP

Figure 4.24 Total Head movement=623

Summary of Results Sample-2

Algorithm IHP100 | IHP150 | IHP200
SCAN/U 500 448 398
SCAN/D 399 499 499

C-SCAN/U 588 595 612

C-SCAN/D 589 599 623

Table 4.2 Results of Sample-2

Summary of Results Sample-1 and Sample-2

Algorithm Sample-1 Sample-2
IHP100 | IHP150 | IHP200 | IHP100 | IHP150 | IHP200
SCAN/U 497 447 397 500 448 398
SCAN/D 388 438 488 399 499 499
C-SCAN/U 598 594 567 588 595 612
C-SCAN/D 578 604 588 589 599 623

Table 4.3 Results Sample-1 and Sample-2

Simulation of Disk Scheduling Algorithms

55

HEAD MOVEMENTS

COMPARISON OF ALGORITHMS

700

600 -

500 —

400 - B IHP100
W IHP150
300 | O1HP200

200 -

100 -

S S M\
X X X X
& & & &

< <

ALGORITHMS

Graph 4.1 Sample-1

Simulation of Disk Scheduling Algorithms

56

HEAD MOVEMENTS

COMPARISON OF ALGORITHMS

700

600 -

500 ’ —

400 - @ IHP100

M IHP150
O1HP200

300 —

200 -

100 —

0 | |

SCAN/U SCAN/D C- C-
SCAN/U SCAN/D

ALGORITHMS

Graph 4.2 Sample-2

Simulation of Disk Scheduling Algorithms

57

Sample-1 and sapmle-2 are uniformly scattered request patterns, which have been
tested for three different Initial Head Positions. The first IHP 100 is slightly towards
lower side of the Disk, IHP 200 is slightly upper side of the disk and IHP 150 is centrally
placed on the entire rang of track.

In case of IHP 150 the results shown in Table 4.1 and Graph 4.1 are 447 and 448
for SCAN/U, 438 and 499 for SCAN/D, 594 and 595 for C-SCAN/U, 604a and 599 for
C-SCAN/D respectively for sample-1 and sample-2. Both the test samples irrespective of
the direction of head movement have produced almost similar results for all the four

algorithms.

With IHP 100 the results are 497 and 500 for SCAN/U, 338 and 399 for SCAN/D,
598 and 588 for C-SCAN/U, 578 and 589 for C-SCAN/D. It is clear that there is a
remarkable decrease from 438 to 338 and from 499 to 399 in head movements for

SCAN/D algorithm as IHP is more towards lower side of the hard disk.

It can be stated conclusively that SCAN has performed better then C-SCAN
irrespective of the position of head movement and direction of head movement as C-
SCAN has a additional head movement swing from last track to first track or from first to

last track.

Simulation of Disk Scheduling Algorithms

58

4.3.3 Sample-3 The sample is consisting of 12 tracks request with is uniformly
scattered. The sample will be tested for two IHPs, which are 60 and 260.

23, 35, 75, 88, 112, 135, 187, 212, 235,267, 288, 295

Scan/Up
Reordered Queue For IHP=60

75, 88, 112, 135, 187, 212, 235,267, 288, 295, 300, 35, 23

Head Movement Pattern for IHP=60

23 35 75 BB M2 135 187 M2 235 Ze7 288 295 500

I
4— ;

Figure 4.25 Total Head Movements=517

Reordered Queue For IHP=260

267, 288, 295, 300, 235, 212, 187, 135, 112, 88, 75, 35, 23

Head Movement Pattern for IHP=260

230355 75 BB M2 135 187 M2 Z35 267 28E 295 300

H—H—H—H—H—H—H—H._”_.._:

Figure 4.26 Total Head Movements=317

Simulation of Disk Scheduling Algorithms

59

Scan/Down
Reordered Queue For IHP=60

35, 23,0, 75, 88, 112, 135, 187, 212, 235,267, 288, 295

Head Movement Pattern for IHP=60

0 23 35 75 83 12 1356 187 212 235 267 288 295

"t::!!:::!——*1F—ﬁPl~—4Ih—ﬁPl_—1‘*—%P-—iik—1-l—ill——i*

Figure 4.27 Total Head Movements=355

Reordered Queue For IHP=260

235, 212, 187, 135, 112, 88, 75, 35, 23, 0, 267, 288, 295

Head Movement Pattern for IHP=260

0O 23 35 75 B3 N2 135 187 212 235 267 2898 X295

Figure 4.28 Total Head Movements=555

C-Scan/Up
Reordered Queue For IHP=60

75, 88, 112, 135, 187, 212, 235,267, 288, 295, 300, 0, 23, 35

Simulation of Disk Scheduling Algorithms

60

Head Movement Pattern for IHP=60

0 23 35 75 B3 M2 135 187 212 235 267 X85 295 300

IF——Pl——1l—ﬂbi——il——hl——i.——ill—ill——ll——1=
A

Figure 4.29 Total Head Movements=575
Reordered Queue For IHP=260

267, 288, 295, 300, 0, 235, 212, 187, 135, 112, 88, 75, 35, 23

Head Movement Pattern for IHP=260

23 035 75 B3 M2 135 187 M2 Z35 267 ZGb 295 500

H—I—H—-—H—H—H—H._”_.._‘

Figure 4.30 Total Head Movements=575

C-Scan/Down

Reordered Queue For IHP=60

35, 23,0, 300, 75, 88, 112, 135, 187, 212, 235,267, 288, 295

Simulation of Disk Scheduling Algorithms

61

Head Movement Pattern for IHP=60

0 23 35 75 83 12 135 187 212 235 267 285 X295 300

*4——~ll———II——ﬂlI——~Il——~ll———ll——~ll———ll——~ll——5!

Figure 431 Total Head Movements=575
Reordered Queue For IHP=260
235, 212, 187, 135, 112, 88, 75, 35, 23, 0, 300, 267, 288, 295

Head Movement Pattern for IHP=260

0 23 35 75 83 12 135 187 212 235 267 285 X945 300

f—ﬂ—d—.—ﬂ—.—ﬂ—-—ﬂ—o

PP

Figure 4.32 Total Head Movements=593

Summary of results

Algorithm IHP60 | IHP260
SCAN/U 517 317
SCAN/D 355 555

C-SCAN/U 575 575

C-SCAN/D 575 593

Table 4.4 Results of Sample-3

Simulation of Disk Scheduling Algorithms

62

4.3.4 Sample-4 The sample is consisting of 12 tracks request with is uniformly
scattered. The sample will be tested for two IHPs, which are 60 and 260.

12, 46, 66, 78, 108, 128, 167, 208, 224,254, 282, 290

Scan/Up
Reordered Queue For IHP=60

66, 78, 108, 128, 167, 208, 224,254, 282, 290,300, 46, 12

Head Movement Pattern for IHP=60

12 4R GE 78 108 128 167 208 224 254 282 290 300

Figure 4.33 Total Head Movements=528
Reordered Queue For IHP=260

282, 290,300, 254, 224, 208, 167, 128, 108, 78, 66, 46, 12

Head Movement Pattern for IHP=260

12 465 BB 78 108 128 167 200 224 254 252 290 300

H—ﬂ—.—ﬂ—ﬂ—.—ﬂ—‘—ﬂﬂ

Figure 4.34 Total Head Movements=328

Simulation of Disk Scheduling Algorithms

63

Scan/Down
Reordered Queue For IHP=60

46, 12, 0, 66, 78, 108, 128, 167, 208, 224,254, 282, 290
Head Movement Pattern for IHP=60

0O 12 46 s 78 408 128 167 2058 224 254 252 290

m’—”—”—”—”—”—”—”—”—?

Figure 435 Total Head Movements=350

Reordered Queue For IHP=260

254, 224, 208, 167, 128, 108, 78, 66, 46, 12, 0, 282, 290

Head Movement Pattern for IHP=260

0 12 465 B 78 1058 128 167 2058 224 254 252 230

Figure 436 Total Head Movements=550

C-Scan/Up
Reordered Queue For IHP=60

66, 78, 108, 128, 167, 208, 224,254, 282, 290,300, 0, 12, 46

Simulation of Disk Scheduling Algorithms

64
Head Movement Pattern for IHP=60

0 12 4B B6 75 108 128 167 206 Z24 254 232 290 300

.——il——il——il——il——il——il——il——il——i-h—i=
e s

Figure 4.37 Total Head Movements=586

Reordered Queue For IHP=260

282, 290,300, 0, 12, 46, 66, 78, 108, 128, 167, 208, 224,254

Head Movement Pattern for IHP=260

O 12 45 BE 78 108 128 167 208 224 254 M52 2590 300

Figure 4.38 Total Head Movements=594

C-Scan/Down

Reordered Queue For IHP=60

46, 12, 0, 300, 66, 78, 108, 128, 167, 208, 224,254, 282, 290

Simulation of Disk Scheduling Algorithms

65

Head Movement Pattern for IHP=60

0 12 4k B 75 108 425 167 208 224 254 232 240 300

-lF—~II——~I1——*II——~II——~IH--I1——*Il——~ll——~li——5;

Figure 439 Total Head Movements=594

Reordered Queue For IHP=260

254,224, 208, 167, 128, 108, 78, 66, 46, 12, 0, 300, 290, 282

Head Movement Pattern for IHP=260

O 12 45 BE 78 108 128 167 205 224 284 M52 290 300

Figure 4.40 Total Head Movements=597

Different algorithms have been run using different values of IHP and their results
have been obtained. For the sake of quick comparison they are summarized in table 4.5
for sample 4.
Summary of Results

Algorithm IHP60 | IHP260
SCAN/U 528 328
SCAN/D 350 550

C-SCAN/U 586 594

C-SCAN/D 594 597

Table 4.5 Results of Sample-4

Simulation of Disk Scheduling Algorithms

66

Summary of Results Sample-3 and Sample-4

Algorithm Sample-3 Sample-4
IHP60 | IHP260 | IHP60 | IHP260
SCAN/U 517 317 528 328
SCAN/D 355 555 350 550
C-SCAN/U 575 575 586 594
C-SCAN/D 575 593 594 597

Table 4.6 Results of Sample-3&4

HEAD MOVEMENTS

COMPARISON OF ALGORITHMS

700

600 -

500 {1 }

4 i
00 OIHP60

W IHP260

300 -

200 A

100 -

0

S I S
o8 o8 o8 <8
& & & &
9% 9

ALGORITHMS

Graph 4.3 Sample-3

Simulation of Disk Scheduling Algorithms

67

Sample-3 and sample-4 are uniformly scattered request sample, both have been
tested for IHP 60 and IHP260.

COMPARISON OF ALGORITHMS

700

600 -

500 A

400 @ IHP60

W IHP260

300 -

HEAD MOVEMENTS

200 A

100 |

S I
<8 <8 <8 <8
S S S S

C)l OI

ALGORITHMS

Graph 4.4 Sample-4

In case of IHP 60 the results shown in Table 4.5 and Graph 4.3 & 4.4 are 517 and
528 for SCAN/U, 355 and 350 for SCAN/D, 575 and 586 for C-SCAN/U, 575 and 593
for C-SCANY/D respectively for sample-3 and sample-4. In case of sample-3 when the 10
out of 12 requested tracks are laying above the IHP but are spread over wider range of
tracks such as from 75 to 295. The SCAN/U has resulted in 517 head movements as
compared to 355 for SCAN/D because of a wild swing from 300 to 35(Figure 4.25 &
Figure 4.27).

Simulation of Disk Scheduling Algorithms

68

Similarly in case of sample-3 when the 10 out of 12 requested tracks are laying
below the IHP 260 but are spread over wider range of tracks such as from 235 to 23. The
SCANY/D has resulted in 555 head movements as compared to 317 for SCAN/U because
of a wild swing from 0 to 267(Figure 4.26 & Figure 4.28).

The SCAN algorithm starts its head movement IHP goes to the end track
according to preferred head movement direction and finishes its movement till the last
requested track, therefore symmetry of requests before the end track (preferred end) and
after the end track or number of requests before and after the end track determines the
efficiency of the algorithm. If concentration of requested tracks is more after the end
track (Figure 4.26 and Figure 4.27), the queue will be served with lesser number of head
movements as compared to (Figure 4.25 and Figure 4.28), where concentration of

requested tracks is more before the end track.

Both with IHP 60 and 260 the performance of SCAN/U, and SCAN/D, remained
almost similar as C-SCAN deals the disk as circular and it does not serve any request

during its wild swing from one end to the opposite end.

Simulation of Disk Scheduling Algorithms

69

435 Sample-5 This sample has well scattered requests but only for lower half of
the entire range of tracks. It will be tested for IHP 150.

5,12,19, 28, 37, 49, 61, 67, 69, 80,90,113,128, 137,145
Scan/Up
Reordered Queue For IHP=150

300, 145, 137, 128, 113, 90, 80, 69, 67, 61, 49, 37, 28, 12, 5

Head Movement Pattern for IHP=150

po 1219 %/ &7 4 B &7 B3 B0 90 113 128 157 145 130 300

Figure 4.41 Total Head Movements=442

Scan/Down
Reordered Queue For IHP=150

145, 137, 128, 113, 90, 80, 69, 67, 61, 49, 37, 28, 12, 5,0
Head Movement Pattern for IHP=150

0 5 12 1% & 37 43 B & B3 &0 40 13 128 137 143

Figure 4.42 Total Head Movements=150

Simulation of Disk Scheduling Algorithms

70

C-Scan/Up
Reordered Queue For IHP=150

300, 145, 137, 128, 113, 90, 80, 69, 67, 61, 49, 37, 28, 12, 5,0

Head Movement Pattern for IHP=150

05 1218 2@ 3 4 6 & 6 80 0 M3 128 157 145 150 30

Figure 4.43 Total Head Movements=450

C-Scan/Down

Reordered Queue For IHP=150

145, 137, 128, 113, 90, 80, 69, 67, 61, 49, 37, 28, 12, 5, 0, 300

Head Movement Pattern for IHP=150

03 1219 B® ¥ 4 6 & 63 & 0 13 128 137 15 130 30

Figure 4.44 Total Head Movements=450

Simulation of Disk Scheduling Algorithms

71

Summary of Results

Algorithm IHP150
SCAN/U 442
SCAN/D 150

C-SCAN/U 450

C-SCAN/D 450

Table 4.7 Results of Sample-5

COMPARISON OF RESULTS

500

450 — —

400 +

350 -

300 -

250 A

200 ~

HEAD MOVEMENTS

150 +—

100 -

50 -

0 T T
SCAN/U SCAN/D C-SCAN/U C-SCAN/D

ALGORITHMS

Graph4.5 Sample 5

Sample-5 has all the requests in the lower half of the disk and it has been tested
for IHP 150 Table 4.7 and Graph 4.5 shows that SCAN/D has given the best results
where as C-SCAN/U and C-SACN/D have resulted in equal number of head
movements. It is clear that if the entire request is below the IHP then SCAN/D performs
the best.

Simulation of Disk Scheduling Algorithms

72

Chapter 5

Discussion and Comparison of Results

5.1 Introduction

In this chapter, we will compare Scan/Upward, Scan/Downward, C-Scan/Upward
and C-Scan/Downward with FCFS (First Come First serve), SSTF (Shortest Seek Time
First), Look/Upward, Look/Downward C-Look/Upward and C-Look/Downward
algorithms. The simulated results of four test samples of FCFS, SSTF, Look/Upward,
Look/Downward and C-look Obtained by [1] have been compared with the currently
simulated results of Scan/Upward, Scan/Downward, C-Scan/Upward and C-
Scan/Downward. Initially each algorithm is discussed in the light of results obtained from

the four examples with the results of [1] and then a comparison of all algorithms is made.
52 Scan Upward

Scan Upward algorithm operates like SSTF except that it chooses the requests that
results in the shortest seek distance in a upward direction. The read-write head starts
movement in the upward direction, and moves till the last track of the disk servicing
requests as it reaches each track., After reaching at the last track the direction of head
movement is reversed and servicing continues till the availability of requests in this

direction. The head continuously scans the disk from end to end.

Sample-1
Let us start with example-1, which consists of the following 8 tracks:

98, 183, 37, 122, 14, 124, 65, 67
Where track 98 is the first and track 67 is the last request received. If the initial
head position is at track 53 and the head movement is upward then the reordered queue

on the basis of Scan Upward algorithm becomes

Simulation of Disk Scheduling Algorithms

73

65, 67, 98, 122, 124, 183, 300, 37, 14

Where track 65 will be first serviced and then track 67, 98, 122, 124, 183, 37 and

finally track 14 will be serviced for a total head movement of 333 tracks. (Figure 5.1).

a 14 37 a3 63 &7 93 122 124 133 300

I R I
e e

Figure 5.1 Sample-1 Scan Upward disk scheduling.
Sample-2

Let us consider example 2 which consists of the following 11 tracks:-
31,3523, 26, 2,5,7, 10, 17, 15, 19

Where track 31 is the first and track 19 is the last request received. If the initial
head position is at track 53 and the head movement is upward then the reordered queue
on the basis of SCAN UPWARD algorithm becomes

35, 31, 26, 23, 19, 17, 15, 10, 7,5, 2
Where track 65 will be first serviced and then track 67, 98, 122, 124, 183, 37 and

finally track 14 will be serviced for a total head movement of 300 tracks. (Figure 5.2)

o 2 5 7 10 15 17 19 23 26 31 35

S |

40000 00—t O—9g¢+——— 0

Figure 5.2 Sample-2 Scan Upward disk scheduling.

Simulation of Disk Scheduling Algorithms

74

Sample-3
Let us consider third example which consists of the following 24 tracks:-

47, 35, 180, 132, 156, 23, 34, 5, 210, 83, 96, 103,
88, 76, 113, 128, 73, 120, 169, 123, 111, 179, 1, 6, 40

Where 47 is the first request and 40 is the last request. Before applying scan
downward to this example we need to know the direction of head movement, in addition
to the head's last position. So if the head was moving upward from the initial head
position 53 then the reordered queue becomes

73, 76, 83, 88, 96, 103, 111, 113, 120, 123, 128,
132, 136,156, 169, 179, 180, 210, 47, 40, 35,34, 23,5

Where track 73 will be serviced first and track 5 will be serviced last, thus

resulting in a total head movement of 542 tracks. (Figure 5.3)

0 5233435404 7376 83 88 9613111 113120123 126 132 137 156 169179160 210 300

Figure 5.3 Sample-3 Scan Upward disk scheduling.

Sample-4
Now let us apply algorithm to third example which consists of the following 24
tracks:-
77,1, 132, 149, 31, 211, 250, 285,
48, 19, 38, 37, 34, 175, 25, 20, 42,17, 15, 11 6,5,2, 125

Simulation of Disk Scheduling Algorithms

75

Where track 77 is the first and track 125 is the last request received. If the initial
head position is at track 53 and the head movement is upward then the reordered queue
on the basis of Scan Upward algorithm becomes

77,125,132, 149, 175, 211, 250, 285, 300,
48, 42, 38, 37, 34, 31, 25, 20, 19,17, 15,11 6,5,2, 1,

Where track 77 will be serviced first and finally track 1 will be serviced for a total
head movement of 546 tracks (Figure 5.4)

0 1 258 BB 1T WAXBN0RHAFTHL2ETIBM7M KB 0

—p—p

Figure 5.4 Sample-4 Scan Upward disk scheduling

5.3 Scan Downward

Scan Downward algorithm also operates like SSTF except that it chooses the
requests that results in the shortest seek distance in a downward direction. The read-write
head starts movement in the downward direction, and moves till the last track of the disk
servicing requests as it reaches each track., After reaching at the last track the direction of
head movement is reversed and servicing continues till the availability of requests in this

direction. The head continuously scans the disk from end to end.

Sample-1

Let us start with example, which consists of the following 8 tracks:

98, 183, 37, 122, 14, 124, 65, 67

Simulation of Disk Scheduling Algorithms

76

where track 98 is the first and track 67 is the last request received. If the initial
head position is at track 53 and the head movement is upward then the reordered queue

on the basis of Scan Downward algorithm becomes
37, 14,0, 65, 67, 98, 122, 124, 183
Where track 37 will be first serviced and finally track 183 will be serviced for a

total head movement of 236 tracks. (Figure 5.5)

0 14 37 a3 G5 B7 95 122 124 183 300

. rrr | |
‘"\“”
8 »

Figure 5.5 Sample-1 Scan Downward disk scheduling

Sample-2

Now we consider second example, which consists of the following 11 tacks:

2,5,7, 10, 15, 17, 19,23,26,29,31,35

Where track 2 is the first and track 35 is the last request. Here all requests are

located below the initial head position 53. By applying Scan Down algorithm to this

example the reordered queue becomes:

35,31, 29, 26, 23,19, 17, 15,10, 7, 5, 2

Where track 35 will be serviced first then 31, 29, 26, 23, 19, 17, 15, 10, 7. 5 and

finally track 2 will be serviced in a total head movement of 51 tracks (Figure 5.6).

Simulation of Disk Scheduling Algorithms

Figure 5.6 Sample-2 Scan Downward disk scheduling.
Sample-3

Now we consider second example, which consists of the following 24 tacks.

47, 35, 180, 132, 156, 23, 34, 5, 210, 83, 96, 103,
88, 76, 113, 128, 73, 120, 169, 123, 111, 179, 1, 6, 40

If the head was moving downward from the initial head position 53 then the

reordered queue becomes

47,40, 35, 34, 23,5, 0, 73, 76, 83, 88, 96, 103, 111,
113, 120, 123, 128, 132, 136, 156, 169, 179, 180,210,

Where the head will first move to track 47 and finally to track 210 (Figure 5.7),
thus resulting in a total head movement of 263 tracks.

0 5233 3B 404 737683 88 1033120123128 132 137 156 169 179180 210

J

Figure 5.7 Sample-3 Scan Downward disk scheduling.

Sample-4

Let us consider fourth example, which consists of the following 24 tracks:

Simulation of Disk Scheduling Algorithms

78

77,5,11, 175, 25, 38, 1, 90, 250, 17, 211, 15,
37, 285, 149, 42, 19, 132, 2, 31, 6, 34, 48, 125

Where track 77 is the first request and track 125 is the last request. If the initial
head position is 53 and the head movement is downward, then the reordered queue on the

basis of Scan algorithm becomes

48, 42, 38, 37, 34, 31, 25, 20, 19, 17, 15, 11, 6,
5,2,1,0,77, 125,132, 149, 175, 211, 250, 285

Where track 48 will be serviced first then 42, 38, 37, 34, 31, 25, 20, 19, 17, 15,
11,6,5,2,1,0, 77, 125, 132, 149, 175, 211, 250, and finally track 285 will be serviced

(Figure 5.8) thus resulting in a total head movement of 337 tracks.

0 T2 8 BT 157 1920 25 30 32 34 37 30 4248 77125 149 175211 A0 25 300

)
Figure 5.8 Sample-4 Scan Downward disk Scheduling.
5.4 Circular-Scan/Upward
In this type of scheduling, the head is moved upward servicing requests as it goes
to the end track. After reaching the last track the head direction is reversed and it then

returns to the opposite end track of the disk, without servicing any requests on the return

trip. Now from this end it again starts servicing the requests and goes till last request.

Simulation of Disk Scheduling Algorithms

79

Sample-1

Let us start with example, which consists of the following 8 tracks:-

98, 183,37, 122, 14, 124,65,67,

Where track 98 is the first and track 67 is the last request received. If the initial
head position is at track 53 then the reordered queue on the basis of C-Scan / Upward
algorithm becomes:

65, 67, 98, 122, 194, 183, 14, 37

Where track 65 will be serviced first then it will service 67, 98, 122, 124 and 183.
After servicing 183, the head will move to the end track of the disk (which is 300 in this
case) from there it will reverse the direction will not service request 37 on the return trip
rather it goes straight to track o then to track 14 which is the pending request nearest to
start of the disk and then to 37. So the path will be

65, 67, 98, 122, 194, 183, 300, 0, 14,37,

The total head movement for this example is 322 tracks (Figure 5.9).

a 14 37 a3 65 GY 35 122 124 183 300

I S N N
R

Figure 5.9 Sample-1 C-Scan/Upward disk scheduling.
Sample-2

Let us consider second example, which consists of the following 11 track

requests:

2,35,10,7,6,17,19,31,15,9,5

Simulation of Disk Scheduling Algorithms

80

Where track 2 is the first request and track 35 is the last request received. If the
initial head position is at track 53, then after application of C-Scan / Upward algorithm

the reordered queue becomes
35, 31, 26, 23, 19, 17, 15, 10, 7,5, 2

Where track 35 will be serviced first and track 2 will be serviced last. It is
pertinent to note here that the head first moves from 53 to track 35, then to 31, 26, 23, 19,
17, 15, 10, 7, 5 and finally to track 2 for a total head movement of 51 tracks (Figure
5.10).

0 2 5 7 0 15 17 10 22 2R 21 25 AR

4000t 40— 0—0—0t— 0 gt——o

Figure 5.10 C-Scan/Upward disk Scheduling.
Sample-3

Let us consider third example, which consists of the following 24 tracks requests:

47, 35, 180, 132, 156, 23, 34, 5, 210, 83, 96, 103,
88, 76, 113, 198, 73, 120, 169, 193, 111, 179, 136,40,

Where track 47 is the first request and track 40 is the last request as received. If
the initial head position is at track 53, then after application of C-Scan / Upward the

reordered queue becomes as:-

73, 76, 83, 88, 96, 103, 111, 113, 123, 128,
132, 136, 156, 169, 179, 180,210, 300, 0, 5,23,34,35,40,47,

Simulation of Disk Scheduling Algorithms

81

Where track 73 will be served first and track 47 will be served last for a total head
movement of 404 tracks (Figure 5.11).

0 56 23 34 35 40 47 73 76 B3 809 S6 103111 M3120123 128 132 136 186 169179180 210 300

Figure 5.11 C-Scan/Upward disk Scheduling.

Sample-4

Considering fourth example which consists of the following 24 tracks:

77,5,11, 175, 25, 38, 1, 20, 250, 17, 211,
15, 37, 285, 149, 42, 19, 132,2,31,6,34,48, 125,

Where track 77 is the first and track 125 is the last request as received. If the
initial head position is at track 53, then the reordered queue after the application of C-

Scan/Upward becomes

77,125,132, 149, 175, 211, 250, 285, 300, 0,
1,2,5,6,11, 15, 17, 19, 20, 25,31,34,37,38,42,48,

Where track 77 will be serviced first and finally track 48 will be serviced, for a
total head movement of 563 tracks (Figure 5.12).

Simulation of Disk Scheduling Algorithms

82

0 12 5 B 1 15 17 19 20 25 30 32 34 37 38 42 48 77 125 149 175 211 250 285 300

Figure 5.12 C-Scan/Upward disk Scheduling.

5.5 Circular-Scan/Downward

In this type of scheduling, the head is moved downward servicing requests as it
goes to the end track. After reaching the last track the head direction is reversed and it
then returns to the opposite end track of the disk, without servicing any requests on the
return trip. Now from this end it again starts servicing the requests and goes till last
request.

Sample-1

Let us start with example 1 which consists of the following 8 tracks:
98, 183,37, 122, 14, 124,65,67,
Where track 98 is the first and track 67 is the last request received. If the initial
head position is at track 53 then the reordered queue on the basis of C-Scan/Downward
algorithm becomes:

37,14, 0, 300, 183, 124, 122, 300, 0, 98, 67, 65

Where track 37 will be serviced first then it will service 14, 0, 300, 183, 124, 122,

98, 67, and then 65. After servicing 14, as there is no request pending on this side so the

Simulation of Disk Scheduling Algorithms

83

head will go to track o reverse its movement and will not service request 65 on the return
trip rather it goes straight to end track on the opposite direction (300 to track). It again
reverses it movement direction and starts servicing requests 183,124,122, 98, 67 and

finally 65 will be served with total head movements of 322 tracks (Figure 5.13).

a 14 v a3 63 &7 93 122 124 133 300

Figure 5.13 Sample-1 C-Scan/Downward disk Scheduling

Sample-2

Let us consider second example, which consists of the following 12 track

requests:

2,5,7, 10, 15, 17, 19,'3,'6 '9.35,

Where track 2 is the first request and track 35 is the last request received. If the
initial head position is supposed at track 53, then after application of C-Scan/Downward

algorithm the reordered queue becomes:

35,31, 26, 23,19, 17, 15,10, 7, 5, 2

Where track 35 will be serviced first and track 2 will be serviced last. It is
pertinent to note here that the head first moves from 53 to track 35, then to 31, 26, 23, 19,
17, 15, 10, 7, 5 and finally to track 2 for a total head movement of 51 tracks (Figure
5.14).

Simulation of Disk Scheduling Algorithms

84

02 5 7 10 15 17 19 23 26 31 35 53
||
|

Figure 5.14 Sample-2 C-Scan/Downward disk Scheduling.

Sample-3
Let us consider third example, which consists of the following 24 tracks requests:

47, 35, 180, 132, 156, 23, 34, 5, 210, 83, 96, 103,
88, 76, 113, 198, 73, 120, 169, 193, 111, 179, 136,40,

Where track 47 is the first request and track 40 is the last request as received. If
the initial head position is at track 53, then after application of C-Scan /Downward the

reordered queue becomes as:

47, 40, 35, 34, 23, 5, 0, 300, 210, 180, 179, 169, 156,
136, 132, 128, 123, 120,113,111, 1083, 96, 88, 83, 76, 73

Where the head will first move to track 47 and finally to track 210 (Figure 5.15),
thus resulting in a total head movement of 263 tracks.

0 5 23 34 35 40 47 73 7B 83 88 961053111 M3120123 128 132 136 156 169179180 210 300

Figure 5.15 Sample-3 C-Scan/Downward disk Scheduling.

Simulation of Disk Scheduling Algorithms

85

Sample-4
Considering fourth example which consists of the following 24 tracks:

77,5,11,175, 25, 38, 1, 20, 250, 17, 211,
15, 37, 285, 149, 42, 19, 132,2,31,6,34,48, 125,

Where track 77 is the first and track 125 is the last request as received. If the
initial head position is at track 53, then the reordered queue after the application of C-

Scan/Downward becomes

48, 42, 38, 37, 34, 31, 25, 20, 19, 17, 15, 11, 6,
5,2,1,0,300, 285, 250, 211, 175, 149, 132, 125, 77

Where track 48 will be serviced first then 42, 38, 37, 34, 31, 25, 20, 19, 17, 15,
11, 6, 5, 2, 1, 0, 300, 285, 250, 211, 175, 149, 132, 125 and finally track 77 will be

serviced (Figure 5.16) thus resulting in a total head movement of 337 tracks.

0 12 5 B 11 15 17 19 20 25 30 32 34 37 38 42 43 77 125 149 175 211 250 285 300

Figure 5.16 C-Scan/Downward disk Scheduling.

5.6 Comparison of algorithms

The four test samples for which we already have results [1] of FCFS, SSTF, Look

and C-Look algorithms will be compared with results of Scan/upward, Scan/downward,

C- Scan/Upward and C-Scan /Downward.

Simulation of Disk Scheduling Algorithms

86

When we look at table 5.1, it transpires that FCFS algorithm has the largest head
movement for all four examples. FCFS can be termed as the least efficient algorithm.
However, this algorithm is easy to program and is intrinsically fair as it does not change

the position of a request in the queue.

SSTF algorithm can be termed as the best algorithm as for as the criteria of total
head movement is concerned. Let us consider sample 1 for which head movement in
SSTF is 236 tracks while for LOOK /UP is 299 and LOOK/DOWN is 208 tracks
SCAN/UP is 433, SCAN /DOWN is 236, C-SCAN/UP is 584 and for C-SCAN/ DOWN
is 588(Table 5.1). Now if we compare results of three algorithms with least head
movements which are SSTF, LOOK and SACN/Down it becomes clear that result in
LOOK /DOWN is better than that of SSTF and SACN/DOWN. But we must bear in
mind the fact that total head movement in LOOK and SCAN algorithm depends on the
preferred head movement direction and if the actual head movement is different than the

supposed one then it will change the result.

The drawback of SSTF algorithm is that, in a real system, SSTF algorithm may
cause starvation of some requests. To clear this point further let us assume that we have
two requests in the queue, for 14 and 186. If a request near 14 arrives while we are
servicing that request, it will be serviced next, making the request at 186 to wait. While
this request is being serviced, another request close to 14 could arrive. In theory, a
continual stream of requests near one another could arrive causing the request for track

186 to wait indefinitely. Such a situation is called starvation.

From table 5.1 we note that for all examples the total head movement in case of
LOOK is lesser than FCFS and C-LOOK SCAN and C-SCAN algorithms. However
when we compare LOOK with SSTF, it transpires that in some cases LOOK and SCAN
results in lesser head movement than SSTF while in some cases the results of both are
same. Like in example I - the head movement for LOOK/DOWN is 208 tracks which is
lesser than 236 tracks for SSTF algorithm but the head movement in LOOK/UP is 299
tracks which is more than the total head movement for SSTF (236).

Simulation of Disk Scheduling Algorithms

87

S/No | Total | Algorithms | Initial Head Head Movement Total Head
Tracks Position Direction Movement (In
Tracks)

1. 8 FCES 53 N.A 640
2. 8 SSTF 53 N A 236
3. 8 LOOK 53 U/WARD 299
4. 8 LOOK 53 D/WARD 208
5. 8 C-LOOK 53 N.A 322
6. 8 SCAN 53 U/WARD 433
7. 8 SCAN 53 D/WARD 236
8. 8 C-SCAN 53 U/WARD 584
9. 8 C-SCAN 53 D/WARD 588
100 12 FCES 53 N.A 84

11 12 SSTF 53 N A 51

120 12 LOOK 53 D/WARD 51

13 12 C-LOOK 53 N.A 84

14 12 SCAN 53 U/WARD 298
15 12 SCAN 53 D/WARD 53

16| 12 C-SCAN 53 U/WARD 300
17) 12 C-SCAN 53 D/WARD 353
18] 24 FCFS 53 N.A 1255
19 24 SSTF 53 NA 253
200 24 LOOK 53 U/WARD 362
21 24 LOOK 53 D/WARD 253
22 24 C-LOOK 53 N.A 404
23] 24 SCAN 53 U/WARD 542
24 24 SCAN 53 D/WARD 263
25 24 C-SCAN 53 U/WARD 679
260 24 C-SCAN 53 D/WARD 570
27 24 FCES 53 N.A 2290
28] 24 SSTF 53 N A 336
29 24 LOOK 53 U/WARD 516
300 24 LOOK 53 D/WARD 336
31 24 C-LOOK 53 N.A 563
32 24 SCAN 53 U/WARD 546
33 24 SCAN 53 D/WARD 337
34 24 C-SCAN 53 U/WARD 595
35 24 C-SCAN 53 D/WARD 637

Table 5.1 Head Movement Comparison of Different Algorithms

Simulation of Disk Scheduling Algorithms

88

If we consider example 3 we note that for SSTF the total head movement is 253
tracks whereas for LOOK (U/WARD) the total head movement is 362 tracks and for
LOOK (D/WARD) the total head movement is 253 tracks which is similar to SSTF.

Now considering example 4, it comes to light that the total head movement for
SSTF and LOOK/DOWN is 336 tracks whereas for LOOK /UP is 516 tracks which is
more than SSTF.

From the above discussion we came to the conclusion that at times LOOK
behaves like or better than SSTF algorithm but the drawback of LOOK is that, result
depends on the direction of head movement and nature of the pattern. Furthermore, if a
request arrives in the queue just in front of the head, it will be serviced almost
immediately, whereas a request arriving just behind the head will have to wait until the
head moves to the end of the disk, reverses direction, and returns, before being serviced.

Now let us consider C-LOOK algorithm. From table 5.1 we note that total head
movement in C-LOOK is lesser than FCFS and more than SSTF algorithm. For example
1 the total head movement in C-LOOK is 322 tracks which is more than total head
movement for LOOK/UP that is 299 tracks and LOOK/UP that is 208 tracks. The
difference in total head movement of LOOK and C-LOOK is substantial in case of
LOOK/DOWN but in case of LOOK/UP this difference is little. Almost similar reasoning
holds for the results obtained for examples 2, 3, and 4 .

From table 5.2 it is clear that SCAN/UP and SCAN/DOWN algorithms have an
overhead of going to end track irrespective of presence of a request. This peculiar nature
of SCAN algorithm makes it inefficient as compared to SSTF(Shortest Seek Time First),
Look/Upward, Look/Downward algorithm. The table 5.2 shows the overhead as
compared to Look for all the four samples considered. In a real-time system, if a request
arrives just in front of the head, it will be serviced almost immediately, whereas a request
arriving just behind the head will have to wait until the head moves to the end of the disk,

reverses direction and returns to service the leftover requests.

Simulation of Disk Scheduling Algorithms

89

Scan/Up Scan/Down
Sample-1 134 26
Sample-2 247 2
Sample-3 180 10
Sample-4 30 1

Table 5.2 Head Movement Overheads

From table 5.3 it is clear that C-SCAN algorithm has an overhead of going to end
track irrespective of presence of a request plus the total number of tracks as it does not
serve any request in its way back, but it goes to opposite end track and then starts
servicing the requests. This peculiar nature of C-SCAN algorithm makes it inefficient in
terms of total head movement as compared to SCAN/UP and SACN/DOWN algorithms.
C-Scan algorithm focuses on equalizing the waiting time for each request among the
queue. The table 5.2 shows the overhead of head movements as compared to look for all

the four samples considered.

C-Scan/Up C-Scan/Down
Sample-1 151 252
Sample-2 2 300*
Sample-3 137 307
Sample-4 49 300

Table 5.3 Head Movement Overheads
5.7 Analysis
In this chapter we have discussed the results of four test samples obtained for
FCFS, SSTF, LOOK/DOWN, LOOK/UP, SCAN/UP, SCAN/ DOWN, C-SCAN/UP and
C-SCAN/DOWN algorithms. FCFS is found to be the least efficient and SSTF is the
most efficient in terms of head movement. All the eight algorithms have been studied and
analyzed. They can be prioritized for their performance in following order.

Simulation of Disk Scheduling Algorithms

90

SSTF (Shortest Seek Time First) algorithm has performed the best for all kinds

of the request queue patterns, but may causes starvation for some of the request.

LOOK algorithm has produced results, which are comparable with SSTF, but
performance of LOOK algorithm is dependent on the head movement and nature of the

request pattern.

C-LOOK algorithm has an overhead of large swing (serving the last request on
one end and then turning to the first request on the other end) as compared with LOOK.

Therefore its performance is degraded as compared to LOOK.

SCAN algorithm has an overhead (touching the last track after serving the last
request on one end and then reversing to the immediate request) as compared to C-

LOOK, which makes its less efficient.

C-SCAN has additional overhead (after touching the last track returning to
opposite end of the disk) as compared to SCAN. Therefore it becomes less efficient than
SCAN.

FCFS (First Come First Serve) is last in the order of performance as practically

it processes the requests as they are received.

Simulation of Disk Scheduling Algorithms

91

Chapter 6

Conclusions
6.1 General

Multiprogramming systems task the storage media with multiple requests as
number of processes need to access the disk for reading and writing of data at same time.
Therefore a queue of request is always pending to be served. It requires disk drives to
have a fast access time and more bandwidth. We can improve both the access time and

the bandwidth by scheduling the servicing of disk input / output requests in a good order.

6.2 Objectives

a. Study of data storage / retrieval techniques from Hard Disk.
b. Study of Disk Scheduling Algorithms.
C. Development of Algorithms in C language for simulating

Scan/Down Ward, Scan/Upward, C-Scan/Upward and C-
Scan/Downward.

d. Testing of different request samples with different head positions for
simulated algorithms.

e. Comparison of results for SSTF, FCFS, Look and C-Look [1] with
Scan/Downward, Scan/Upward, C-Scan/Upward and C-
Scan/Downward.

f. Prioritizing the algorithms on bases of their performance for future

reference.

6.3 Achievements

a. Detailed study /discussion on data storage /retrieval techniques has been

carried out and is presented in chapter-1 and 2.

Simulation of Disk Scheduling Algorithms

6.4

92

b. A simulator for Scan/Upward, Scan/Downward, C-Scan/Upward and C-
Scan/Downward has been developed in C language.

C. Study of Scan/Upward, Scan/Downward, C-Scan/Upward and C-
Scan/Downward on the bases of results of ten samples is presented in
Chapter —4.

g. Study and comparison of SSTF, FCFS, Look and C-Look [1] with
Scan/Downward, Scan/Upward, C-Scan/Upward and C-
Scan/Downward. on the bases of four samples is presented in
Chapter-5.

d. On the bases of performance results the algorithms have been prioritized.

Evaluation and Comparison of Results

a. SSTF (Shortest Seek Time First) algorithm has performed the best for all

kinds of the request queue patterns.

b. LOOK algorithm has produced results, which are comparable with SSTF,

but performance of LOOK algorithm is dependent on the head movement.

C. C -LOOK algorithm has an overhead of large swing (serving the last
request on one end and then turning to the first request on the other end) as
compared with LOOK. Therefore its performance is degraded as
compared to LOOK.

d. SCAN algorithm has an overhead (touching the last track after serving the
last request on one end and then reversing to the immediate request) as

compared to C-LOOK, which makes its less efficient.

e. C-SCAN has additional overhead (after touching the last track returning to
opposite end of the disk) as compared to SCAN. Therefore it becomes less
efficient then SCAN algorithm.

Simulation of Disk Scheduling Algorithms

93

f. FCFS (First Come First Serve) is last in the order of performance as
practically it follows no algorithm, but processes the requests as they are

received.
6.5 Who Can Use It?

This simulator can be used by those students of BSc or MSc Computer
Engineering who are taking a course in Operating System. It will help to clear most of
their concepts regarding the working of disk scheduling algorithms. | hope that it will
also be beneficial for the teachers of Operating Systems as well as those researchers who

intend to work further in this field.
6.6 Recommendation for Future Work

Study of the entire system reveals that pattern of request queue has unpredictable
nature moreover analysis of the results clearly indicates that every algorithm has it
peculiar nature. It may work efficiently in one type of pattern but may behave differently
in other type of pattern There is no algorithm which can be declared best in all type of

requested queues. Therefore future work is recommended on following lines:-

a. Development of new algorithm, which can cater for all possible

eventualities of request queue.

b. Development of system which can find out the nature of request queue and
activate the algorithm respectively.

C. Development of system, which can use combination of different
algorithms depending on the nature of the queue.

d. Implement priority algorithm for comparison with currently obtained
results of FCFS, SSTF, LOOK/U, LOOK/D, C-LOOK/U, C-LOOK/D,
SCAN/U, SACN/D, C-SCAN/U AND C-SCAN/D.

Simulation of Disk Scheduling Algorithms

94

REFERENCES

[1] Dr. Muhammad Younus Javed “Simulation of Disk Scheduling Algorithms”

TENCON International Conference 2000, Kualalumpur, Malaysia, September
2000.

[2] Abraham Silberschatz, James L Peterson & Peter B Galvin “Operating System
Concepts (3" Edition)”

[3] Colin Ritchi “Operating System (2" Edition)”

[4] William Stallings “ operating Systems (Second Edition)”

[5] Harvey M. Deitel “An Introduction to Operating System (2™ Edition)”

[6] Robert Lafore “Programming for the PC and Turbo C++”

[7] Yashwant Kanetkhar “Pointer in C”

[8] M. Morris Mano “Computer System Architecture (3™ Edition)”

Simulation of Disk Scheduling Algorithms

