

 i

A Novel User Authentication and
Logging System for IIS Web Sites

By

Major Farooque Azam

 ii

Dedications

 iii

Index

 iv

 List Of Tables
1. Table 2.1-Sequence of initial request 10

2. Table 2.2-Sequence of server response 11

3. Table 3.1 Phases in filter processing 24

4. Table 3.2-The four filter priorities 25

5. Table 3.3-pvNotification: Events and Data Types 26

6. Table 3.4-Return Codes from the HttpFilterProc () 27

7. Table 4.1 - Database tables for authentication filter 37

8. Table 4.2 - Database tables for logging filter 38

9. Table 4.3 - Process in HttpFilterProc () when request comes in 45

10. Table 5.1 - Implementation details of CIAMDlg class 51

11. Table 5.2 - Implementation details of CAddEditURL class 53

12. Table 5.3 - Implementation details of CAddIPAddDlg class 54

13. Table 5.4 - Implementation details of CDirectoryMainDlg class 55

14. Table 5.5 - Implementation details of CDirEditDlg class 56

15. Table 5.6 - Implementation details of CEditIPDlg class 57

16. Table 5.7 - Implementation details of CExistingGroupDlg class 58

17. Table 5.8 - Implementation details of CExistingUserDlg class 59

18. Table 5.9 - Implementation details of CGroupAddEditDlg class 60

19. Table 5.10 - Implementation details of CIdbEditUserGp class 61

20. Table 5.11 - Implementation details of CLogMainDlg class 62

21. Table 5.12 - Implementation details of CMapToNTDlg class 63

22. Table 5.13 - Implementation details of CUserEditAddDlg class 64

23. Table 5.14 - Implementation details of system-defined functions of the filter 66

24. Table 5.15 - Implementation details of ValidateDir function 67

25. Table 5.16 - Implementation details of CheckDirectory function 68

26. Table 5.17 - Implementation details of ValidateUser function 69

27. Table 5.18 - Implementation details of LookupUserInIDb function 70

28. Table 5.19 - Implementation details of AddToLog function 71

29. Table 5.20 - Implementation details of InitializeCache function 73

30. Table 5.21 - Implementation details of LookupUserInCache function 74

 v

31. Table 5.22 - Implementation details of AddUserToCache function 75

32. Table 5.23 - Implementation details of TerminateCache function 75

33. Table 6.1- Steps for adding a filter to a Web server or Web site 78

34. Table A.1 - List of abbreviations (Appendix A) 98

35. Table A.2 - The HTTP status codes (Appendix A) 99

 vi

List Of Figures
1. Fig 2.1 -Process of information from client to server in IIS 15

2. Fig 3.1-ISAPI vs. CGI model 21

3. Fig 3.2- ISAPI filter architecture 23

4. Fig 3.3-Declaring HttpFilterProc () 26

5. Fig 4.1-Conceptual Model 34

6. Fig 4.2 - Database Design for authentication filter 36

7. Fig 4.3 - Database design for logging filter 38

8. Fig 4.4 - Flow of a request in IIS with filters 44

9. Fig 5.1- Workspace view of the software 49

10. Fig 5.2 - Implementation model of the software 50

11. Fig 5.3-Cache structure 72

12. Fig 6.1- Internet Account Manger - Main Dialog 79

13. Fig 6.2-About IAM Dialog 80

14. Fig 6.3-Existing Users Dialog 81

15. Fig 6.4-Add User Dialog 81

16. Fig 6.5-Edit User Dialog 82

17. Fig 6.6-Existing Group Dialog 83

18. Fig 6.7-(Edit mode) Group Dialog 83

19. Fig 6.8-(Add mode) Group Dialog 58

20. Fig 6.9-Protected Directories Dialog 58

21. Fig 6.10-Browse For Folder Dialog 59

22. Fig 6.11-Edit Directory Dialog 59

23. Fig 6.12-Add IP Address Dialog 60

24. Fig 6.13-Edit IP Address Dialog 61

25. Fig 6.14-Add Delete permitted URL Dialog 88

26. Fig 6.15-Edit Group Directory Dialog 89

27. Fig 6.16-Edit User Directory Dialog 90

28. Fig 6.17-MapTo NT User Dialog 90

29. Fig 6.18 -Logging Record Dialog 90

 vii

Abstract

Today many sites on the World Wide Web require identification of a user and

have many reasons for such identifications.. Subscription oriented sites need to verify

identity of the user or often corporate intranet sites need to secure access to propriety

information, also many Web sites sometime wish to tailor services to the preferences of

the individual users. Microsoft provides standard verification mechanism in their product

Internet Information Server (IIS), which uses Windows NT security system to manage

rights and identification scheme by utilizing familiar tools such as NT User Manager and

File Manager. However, IIS is unsuitable for Internet use when large no of Internet users

are required to be identified and provided the permissions individually. In the existing

scenario the main objective of the project under consideration is to develop the

authentication software that works independent of the IIS and NT interface and access

control functions, but still be able to provide directory and file level security. In Army,

keeping in view the requirements of handling the information safely, so that no

unauthorized person should be able to access in confidential information, such system

will provide a sound footing for developing any extra ordinary system as per the specific

requirement of in department.

 8

Chapter1
1 Introduction

In this chapter first of all the limitations of Windows NT and Internet Information server

(IIS) in relation to the authentication of secure Web sites are discussed. Based on these

limitation objectives of the proposed Novel Authentication Design are outlined. Then the

benefits that are achieved by the objectives will be highlighted. Finally, the outline of the

thesis is described.

1.1 Problem Definition

Authentication is the process of obtaining and verifying the identity of user and a key

to building access control system for a Web site. Microsoft [1] has implemented its standard

authentication mechanism in the Internet Information Server (IIS). The standard

implementation of this mechanism in IIS uses the Windows NT security system to manage

users, rights and identifications. This allows the administrators of IIS based systems to

manage their server by using familiar tools such as the NT User Manager and File Manager.

Unfortunately, using these familiar tools is not always the ideal solution, because of the

reasons described in this section: -.

1.1.1 Adds To The Work Of System Manager

IIS uses the file base security of NT. Therefore, it adds to the work of system

manager. Since a manager not only has to manage the local accounts of the users on a local

Intranet but also uses the same User Manager to manage the accounts of users who access

the server over the Internet. Therefore, system manager ambiguously differentiates between

local and Internet users, as a result, the process of allocation of user rights becomes prone to

many errors and most of the time security loop holes are detected in the Web server, which

invite many hackers to experiment with that Web site.

1.1.2 Number Of Users

The number of users who access the server on Internet is generally very large, which

puts extra burden on the NT database and effects the general performance of the operating

 9

system. The IIS security system works well for small part of a Web site, accessed by few

users, but incase of hundreds of users the IIS security system becomes extremely difficult if

not impossible to use.

One solution in IIS to tackle such a problem is to make one account of a restricted area of

Web site and let all users share the same username and password, but in this case, ability to

revoke access from only one user without informing all others is lost. Moreover, each user

looks the same, therefore identity of individual user is lost.

1.1.3 Dependence On NTFS File Format

IIS depends on NTFS file format of NT to control access to individual directories, i.e. it

cannot protect a directory if NT’s file format is FAT. It also means that non-NTFS partitions

cannot contain directories that are part of a protected Web site.

1.1.4 Limited Ways Of Protection

IIS only protects directories by username, password and IP address, but for general Web site

usage there are many cases when there is requirement to authenticate pages in some other

way, e.g. by Referrer. That is. on the basis of the previous page that the user has visited, this

enables the removal of requirement to authenticate by Username if the next page lies in some

other directory. Another way to authenticate by Domain name. That means, a user can be

authenticated by domain name through which a user is approaching that Web site

1.1.5 NTLM Method

IIS and Internet Explorer also provide another method that is NTLM(NT Logging

Mechanism or NT Challenger/Response). This method is integrated with Internet Explorer

and does not prompt user for username and password and gets the required information from

the underlying operating system. But this method works only if there is NT or LAN Manager

Networking Domain available, which is mostly in Intranet; however, it is not useful for

Internet use.

 10

1.1.6 NT Access Rights Dependency

The system is able to protect directories only if these are protected under the Windows NT,

other wise if the directories are listed in the WWW access service, i.e. they are visible to the

Web browsers then there is no way of stopping even an anonymous user to access these.

 11

1.2 Objectives of the Project

As discussed in section 1.1 there are many problems related to the default implementation of

the authentication scheme in IIS. This makes it unsuitable for internet use when the server

has Web site accessed by a large number of users. The main objective of this project is, to

develop authentication software that works independent of the IIS and NT protection methods

and can still protect the directories on the Web site. The specific objectives of the project are

summarized in this section:-

In IIS authentication process is only dependent on NTFS. The project is aimed to make the

authentication process possible for NTFS file format as well as for FAT file format. This will

make it possible to protect directories in all partitions on the hard disk and in NTFS or FAT

file format.

Often, a facility in Web sites is required to map the Internet users to internal NT account

users so that local NT users may enjoy the same permissions even if they are logged on

through the Internet. Hence one of the objective is to map users of the external database to

the users of internal database of NT. This method will allow the web site users to access the

directories even if they are protected under NT on the criteria of external database.

IIS protects directories by username, password and IP address only An effort will be made to

authenticate the user in more than three. These protection methods may be e.g. by referrer or

by domain name etc. Also the methods will be custom developed leaving room for increasing

no of ways, the directory can be protected. This method enables the users to access

directories in a better and easy way and reduce the requirement of entering authentication

credentials many times. Once a user has entered a protected domain by supplying the

credentials the rest of authentication under such conditions is done transparently.

Database hits are normally resource extensive and take much longer if simultaneous access to

the database is made for the authentication purpose. One of the objectives is to make the

 12

authentication process fast by caching the authenticated credentials in memory and reduce

database hits

Logging of user activity as per custom requirements is also one of the most demanding

requirements. Hence another objective is to create a log according to the custom

authentication and covering those aspects of logging, which are not covered by the system

log of NT.

1.3 Benefits of Proposed Objective

The proposed project will relieve the system manager from the extra burden of the User

Manger tool of Windows NT and provide a separate interface to manage the protection

methods. Development and maintenance of username and password will be independent of

the Access Control List (ACL) of NT so the manager can easily handle and distinguish the

local and remote users. It will remove extra load on NT database by keeping authentication

credentials in a separate external database.

The project will improve the efficiency of NT operating system by keeping the Web site

security separate and independent of NT operating system.

The package will also remove unnecessary requirement to protect the directories of the Web

site on the host server. Thus remove the overhead and requirement of granting explicit access

to all the existing users in NT. However, if directory is protected under NT then explicit

permissions are required even for NT users in that local domain to access the protected

directory.

 13

1.4 Thesis Outline

First chapter has identified limitations of IIS and based on those limitations, objectives of this

project and benefits of implementing these objectives have been highlighted

Second chapter will provide .conceptual background of client and server model and based on

that, different phases of authentication process are discussed in detail. After that different

authentication schemes currently available on Internet technology are briefly outlined and

finally flow of HTTP information in IIS has been explained with a view to build the

discussion for third chapter.

 14

Chapter 2
2 Authentication Background

2.1 Introduction

In this chapter the concept of client–server model is discussed with emphasis on

application of authentication in this model.. Then HTTP (Hypertext Transfer Protocols) and

mechanism of challenge and response is described in detail. There are generally five steps

involved in the process of challenge and response and authentication design needs to

incorporate these basic steps. There are generally two types of authentication schemes

namely Basic and NTLM. Finally their merits and demerits have been presented briefly

2.2 Clients and Servers

The Web is based on a client–server model. Client–server computing distributes the

basic components, user interface, program logic and data between the client and server

computers [2]. In client–server model, the client can request data from the server or can post

data back to the server for storage. Client can also request a process to run on server and may

provide any specific kind of functional logic.

In client-server model, the server can send data to the client or may provide access to

data storage and like client may also provide functional logic.

In traditional client-server model, client and servers can be “thin” or “fat”. The terms

indicate a functional relationship rather than a physical characteristic of the computer. The

standard components of an application are a user interface, the programmer’s logic or

business rules and data storage.

Client-server computing is a division of labour that is typically needed by most

applications. The server is optimized to provide data to multiple clients and the client

application is optimized to interact with the end user. The one task that may reside on one or

both sides of the model is the functional logic.

 15

Thin clients are generally limited to a user interface. All processing and program

logic resides on a fat server. The server is called “fat” because the functional logic resides on

the server. This is the most common model on the Web today [2].

The client here is typically a Web browser such as Microsoft’s Internet Explorer. The

Web browser is simply a user interface to many kinds of data that are retrieved from the Web

server. Here ISAPI application provides the functional logic to the HTTP server and the

client displays various types of data from a specific URL.

2.3 Authentication in HTTP

Authentication is the process of obtaining and verifying the identity of a user. The

authentication process is not responsible for determining whether or not the user has access

to a particular resource, it is only responsible for establishing the user’s identity. However,

authentication is the key to building an access control system for a Web site. After the server

has authenticated a user’s identity, that identity might be used by the server to decide whether

the user has right to access a given resource.

The HTTP standard defines a mechanism for user authentication. The process defined

by the standard is simple, flexible and extensible. The protocol defines a challenge and

response process for verifying user’s identity and right to access the system.

The process is very straightforward: It comprises of following sequence of events:

• An anonymous user requests a secured or restricted resource.

• The server responds with an HTTP 401 “Access Denied” message challenging the users

right to access the resource.

• The browser displays a dialog box, prompting the user for a user name and password.

• The browser resubmits the original request to the server, this time including the

credentials derived from the Id and password.

 16

• The server both accepts the credentials and responds with the requested data or responds

with another HTTP 401 “Access Denied”.

This sequence of events is discussed in more detail in this section.

2.3.1 The Initial Request

Generally people work with Web sites as anonymous user. The user remains in an

anonymous state until a request is made to a protected resource. At this instance, the

authentication process is initiated.

HTTP specification itself does not dictate the circumstances that initiate the process.

HTTP standard only dictates how the server should indicate to the remote client that

authentication is required.

E.g. the initial request might appear as something like shown in Table 2.1: -

 17

Table 2.1-Sequence of initial request

Line No Types of Requests

01 GET /bin/secure/sample.dll? HTTP/1.0

02 Accept : image/gif, image/ jpeg, */*

03 Referrer : http//localhost/Warehouse/home.html

04 Accept-Language : en

05 UA-pixels : 800*600

06 UA-color : color8

07 UA- OS : Windows NT

08 UA-CPU : *86

09 User-Agent : Mozilla/2.0 (compatible; MSIE 3.0; Windows NT)

10 Host : localhost

11 Connection: Keep-Alive

Now if the directory secure requested in line 01 is protected than this initial request

will trigger the authentication process.

2.3.2 The Challenge

After the server has determined that authentication is required for access to the

resource requested by the user, it generates a standard HTTP 401 “Access Denied” message.

 18

This response indicates the remote browser that its request has been denied but may be

resubmitted with authenticated credentials.

A sample response from a server to browser in this case is shown in Table 2.2: -

Table 2.2-Sequence of server response

Line No Types Of Response

01 HTTP/1.0 401 Access Denied.

02 WWW-Authenticate : Basic realm = “local host”

03 Content-Length : 24

04 Content-Type : text/html

05 Error : Access is Denied

This message indicates that the request has been denied by HTTP 401 code in the

message header. This means that the browser can again request the page but with complete

credentials. It is different from HTTP 403 – state code which shows that the access is

completely forbidden.

The access- denied message on line 05 is part of HTTP message body and can be

used to indicate the reason of denial if the browser does not attempt to authenticate. The line

02 indicates the methods of authentication supported by the server.

2.3.3 Acting on the Challenge

After the browser receives the access denied message it has the option to obtain the

credentials or display the access denied message. Credentials might be obtained by

prompting the user for a user name and password or some other method. For example some

browsers obtain the security credentials from the underlying OS and the current logged on

user account on the LAN.

 19

After the browser has obtained the required credentials it responds to the challenge of

the server automatically.

2.3.4 Responding to the Challenge by Resubmitting the Request

After the browser has obtained some notion of user-id or password, it resubmits the

original request with an additional peace of information: authentication credentials. These are

supplied in request in the form of additional request header: for example the request

described in Table-2.1 will be sent again with an additional 12th line as:

12 Authorization: basic c2hrbWM6eHh4

HTTP is a stateless protocol so it needs to supply these credentials with a new request

for the resource. The server does not keep track of what resources were specified in the

original request.

2.3.5 Result

After the request is submitted to the server it is processed normally. The server finds

the authentication header in the request and attempts to use these credentials to determine the

users identity.

The credentials might be incorrect and in that case the server again responds with 401

“Access Denied” message that started the whole authentication process. The browser than

has the option to retry authentication by allowing the user to reenter user name and password

or shift to another authentication scheme. Many browsers allow only three attempts to

authenticate for a given resource before displaying the access denied message to the user. If

the credentials supplied with the new request are valid, the server returns the requested

resource to the user.

2.3.6 Impact on Future Requests

After the browser has successfully completed this authentication process for a given

server, it generally caches the credentials it used for the log on. It than silently adds these

credentials to all requests to the authenticating servers for the duration of the users current

 20

session. This behavior means that each individual request for a resource for the server after

the initial request will include the credentials accepted in the original request.

2.4 Authentication Schemes

 Authentication schemes are mechanisms, used to pass credentials from a browser to a

server.

The browser and servers can innovate new authentication schemes and still negotiate

to find a set of protocols supported by each.

The data governing the behaviour of authentication system is carried in a set of new

message headers: The WWW-authentication records. A WWW-authentication record should

consist of the following.

a. The WWW-authentication variable name.

b. The name of authentication scheme: examples are “Basic” or “NTLM”.

c. A realm specification: This consists of a string of the form realm = <realm

name>. The realm name is used to define the space on a server in which a set

of credential is valid. IIS generally sets a realm name to the host name,

defining a single authentication space spanning the site.

d. An optional list of authentication parameters: This is a comma delimited list

where each variable takes the form name = value. These values are dependent

on the authentication scheme in use

The authentication schemes allow growth and innovation in the mechanisms used to

pass credentials to the server. The HTTP protocol does define one scheme that should be

implemented by most browsers, the basic authentication scheme. Web servers are free to

implement other authentication schemes that improve upon this basic one.

 21

2.4.1 The Basic Authentication Scheme

The basic scheme transmits encoded username and password across the network. A

server indicates that it supports the basic authentication scheme by indicating a WWW-

authentication record in the response header, as: - WWW-authentication: Basic realm =

“localhost”.

A request carrying authentication credentials for the basic scheme will contain an

authorization record, as: - Authorization: Basic c2hrbWM6eHh4

The authorization record contains the scheme to be used to check the credentials and

the encoded form of the credentials themselves. In the HTTP basic scheme, this consists of

the username and password (separated by a colon), encode in the MIME base-64 format.

This format consists of a set of 65 human readable ASCII characters. Each character

of the encoded data string represents 6 bits of the data originally used to represent the input.

Its goal is not to encrypt data but to transmit it in a format that can be safely reproduced by

almost any machine.

Basic authentication is not a secure method of transmitting data, since MIME-64

encoding is only a method of encoding and not encrypting of data. This method can prevent a

casual user from reading the user name and password from a network monitor but a technical

person cans easily determine it.

There is a method to overcome this problem: combining the basic scheme with SSL

(secure socket layer). Sessions running under SSL encrypt the data in the packet in a quite

secure way. This method transforms the basic authentication into a quite secure mechanism.

IIS and most commercial browsers support SSL.

2.4.2 The NTLM Authentication Scheme

The IIS and Internet Explorer implement an additional scheme called NTLM

authentication. This scheme does not prompt the user to enter a username and password or

transmit them across the network. Instead, it obtains security credentials of the currently

logged on user from the underlying operating system.. The browser then transmits a

 22

synthesized value across the network to the server, representing the user’s security

credentials.

This authentication scheme works only if an NT or LAN Manager networking

domain is available. This makes it ideal for use in the settings where the underlying network

is based on Microsoft server of some kind. It is not useful in Internet applications.

2.5 Authentication and Windows NT Security

IIS integrates the authentication with Windows NT. In Windows NT, authentication

is basically a process of resolving incoming WWW username to NT logons. In the default IIS

authentication process, the Windows NT user pool is used to authenticate Web users. The

pool of username available for authentication in IIS is the set of users defined in the ‘NT

User Manager’ and the user’s Windows NT password are used to validate their rights to use

the identity.

A subject of some confusion is to determine that, which NT security database will be

used to authenticate a particular request when the server is member of Windows NT domain.

If the Web server is installed on a primary or backup domain controller, the domain’s

security database will be used as the default source for username and password. If the Web

server is hosted on a server that is not a domain controller, the server’s local security

database will be used by the Web service when authenticating users.

 In authentication process the server processes the information flow in seven steps, as

shown graphically in Fig 2.1: -

 23

Process incoming HTTP request headers

Process incoming HTTP request data

Authenticate user if needed

Build the HTTP headers and data to be sent to client

Map URL to physical path

Write log data to the log file

End the connection

Fig 2.1-Process of information from a client by a server

 24

2.5.1 The Anonymous User

When configuring Windows NT it is possible to allow anonymous users to access the

resources on our Web site. In such case the Windows NT assigns a password to the

anonymous user account that is used by the system to grant access to the resources allowed to

the anonymous user. [3]

By default on installation, NT creates an anonymous account by the name of IUSER_

<machine name>. The system administrator can change this username and password at any

time.

2.5.2 NT Access Rights and Authentication

Every request is resolved by using the context of some Windows NT user. For

anonymous users, this is the Windows NT user associated with the WWW user during the

authentication process. This is true for files and execution of code

The IIS security system is managed by using the standard Windows NT access rights.

A user’s right to access a resource is determined by checking the rights of the users engaged

in requesting resource. If the NT user has access to the requested resource in NT, it will

generally have access to it on the Web; if it does not, the server will not allow access.

The anonymous user is treated differently. If the anonymous user requests a protected

resource, it triggers the authentication process and the browser pops up the authentication

dialog to obtain the required credentials as explained in section 2.3.

2.6 Requirement for Custom Authentication

System on IIS

The existing IIS authentication system works efficiently as long as the number of

potential users is less but with increase in the number of users it become more and more

difficult to handle the mechanism.

 25

Taking into consideration the limitations of ‘IIS default authentication system’ it

seems appropriate to develop a custom authentication system that can remove the limitations

of the ‘IIS authentication system’ and make the life of Web site administrator easier.

By the custom authentication scheme, limitations and drawbacks of the IIS

authentication system can be removed and Web site account can be kept external to the NT

user accounts. Also a room for advancement in the methods to authenticate can always be

made as per the specific requirements of any user managing there own Web site. .

2.7 Summary

The Web is based on a client–server model. Client–server computing distributes the

basic components, user interface, program logic and data between the client and server

computers

The HTTP standard defines a mechanism for user authentication. The process defined

by the standard is simple, flexible and extensible. The protocol defines a challenge and

response process for verifying user’s identity and right to access the system. This process

comprises of a number of sequences of events, discussed in detail in this chapter.

Authentication schemes are mechanisms, used to pass credentials from a browser to a

server. Two methods have been discussed namely basic authentication and NTLM

authentication. Basic authentication has a limitation that user credentials can be hacked

easily by some experience users while on there way over communication channels and

therefore SSL (Secure Socket List) is used in conjunction with basic authentication.

However, NTLM is safe but can only work among Microsoft products.

 26

Chapter 3
3 Goal Achieving Mechanisms

3.1 Introduction

Currently three alternatives namely CGI, ASP and ISAPI are available for creating

custom designed Web applications on server side. These three technologies are briefly

discussed in this chapter. Moreover, reasons for selecting one of the methods will be outlined

and finally detailed architectural background of selected method will be explained with a

view to discuss its implementation in this project.

3.2 Methods Available for Achieving Objectives

The Windows NT provides a platform for building Web applications for the Internet

and Intranet environments.. It can be delivered as combination of Web pages that provide the

user interface to the application and ActiveX components that encapsulate business logic and

provide access to the databases where critical business information is stored. Currently three

alternatives namely Common Gateway Interface (CGI), Active Server Pages (ASP) and

Internet Server Application Programming Interface (ISAPI) are available for creating custom

designed web applications on server side. These three technologies are briefly discussed in

this section.

3.2.1 Common Gateway Interface (CGI)

CGI is a way WWW servers on most operating systems (such as UNIX and the Mac

OS) are extended to support dynamically created Web pages. CGI is less secure as well as

slower than both ISAPI applications and ASPs (Active Server Pages), but they can be easier

to develop for individuals who are already familiar with CGI programming methods. CGI

executables run in address space separate from the IIS program. CGI executables can be

written in any language that produces Windows .exe files. The Windows CGI environment

(WIN-CGI) is also very much like the UNIX CGI environment, but the execution

environment is not identical. CGI executables are often program interpreters, which means

that they read in and execute a scripting language such as Perl, TCL or BASIC. The term

 27

CGI script describes a text containing commands that are interpreted by such a CGI

executable.

3.2.2 Internet Server Application Programming Interface (ISAPI)

ISAPI applications are very much like CGI executables except for two things. ISAPI

applications can run in the same address space as IIS or in a separate memory space and can

therefore be faster than CGI executables, and they are written to a specialized interface on a

compiled programming language such as C++. ISAPI applications like CGI scripts can

perform complex operations on their own or can be interpreters for scripting languages such

as Perl and TCL. ISAPI can also be used to implement filters, which extend the functionality

of IIS and can affect how all communications streams in and out of IIS.

3.2.3 Active Server Pages (ASP)

ASPs are HTML pages that contain scripts written in VB script or J scripts, as well as

regular HTML text. ASPs utilize an ISAPI DLL (asp.dll) as a scripting host to implement the

VB script and J script scripting languages on the server side. These scripts are used to create

HTML files before the HTML is sent to the browser. ASP scripts are used to provide many

of the HTML text generation functions that you can do with CGI executables and ISAPI

applications. In fact, ASPs are implemented as ISAPI applications. Moreover ASP provides

any easy interface for programming but it loses execution speed and depth to handle many

complex situations.

3.3 ISAPI-The Selected Method

Tradition method to develop Sever side applications, [4] is the use of Common

Gateway Interface (CGI) because of its natural development environment dependency on

time tested operating of UNIX. By keeping in view the limitations of IIS, Microsoft®

developed the ISAPI model as an alternative to the CGI. The ISAPI model provides a

number of advantages over the CGI model, including low overhead, fast loading and better

scalability.

The two general types of ISAPI DLLs namely ISAPI extensions and ISAPI filters can

be developed in IIS with the help of any system language like Visual C++. ISAPI extensions

 28

can be assembled into Web applications that provide all of the functionality of an application

running on client’s desktop. ISAPI filters are created to customize the functionality of IIS.

ISAPI filters provide a slightly different processing model than extensions. A client activates

an extension upon request, whereas a filter is activated by IIS directly when a particular

request event occurs. Extensions are request-driven and filters are processing event-driven.

3.4 Comparison of ISAPI Vs Traditional CGI

The chief difference [5] between the CGI programming model and the ISAPI programming

model is that CGI creates a unique process for every request, while ISAPI does not. With

CGI, every time an HTTP server receives a request it must initiate a new process, which,

along with maintaining processes, is very resource intensive. This inherent limitation in CGI

has made it difficult to develop responsive applications on the Internet. Fig 3.1 Illustrates

differences between the CGI model and the ISAPI model: -

Fig 3.1-ISAPI vs. CGI model

 29

In the ISAPI model, each request received by an HTTP server initiates the creation of

an EXTENSION_CONTROL_BLOCK (ECB) data structure. Creating and maintaining a

data structure is much easier and faster than initiating a new process. In addition, since the

ECB and the extension are usually both running in the same process as IIS, the server can

process requests faster and accommodate a higher volume of requests.

Finally, rather than using process isolation, the ISAPI model uses threads to isolate

processing work items. Using multiple threads to synchronize work allows IIS to make more

efficient use of system resources than is possible with the CGI model, or other models based

on process isolation.

IIS 4.0 supports process isolation for ISAPI DLLs and scripts. IIS uses custom high-

speed methods to establish communication between the server process and the surrogate

process housing, ISAPI DLLs thus provide robustness with high performance

3.5 ISAPI Filter Architecture[5]

ISAPI filters are DLLs that are loaded into the IIS process when the Web service is

started, and stay in memory until the Web service shuts down. Once loaded, ISAPI filters can

be configured to receive a number of special filter event notifications that occur with each

HTTP request that IIS receives, and each response that IIS generates in return.

When an ISAPI filter is loaded, the filter passes a structure to IIS that contains, in

addition to other information, a bit field that specifies for which types of filter event

notifications the filter should be notified. Each time one of those events occurs, an event

notification is sent, and every ISAPI filter that has specified interest in that event is notified.

The Fig 3.2 depicts the ISAPI filter architecture:

 30

Fig 3.2- ISAPI filter architecture

3.5.1 Uses of Filters

ISAPI filters are very powerful and can be used to facilitate applications that perform

a number of different tasks, including:

• Custom authentication schemes.

• Compression.

• Encryption.

• Logging.

• Traffic and other such like request analysis.

The ability to examine, and if necessary modify, both incoming and outgoing streams

of data makes ISAPI filters very powerful and flexible.

 31

3.5.2 Filter Event Processing

Every filter is always contained in a separate DLL that must export two entry-point

functions, GetFilterVersion and HttpFilterProc and optionally export the TerminateFilter

exit function.

A metabase property, FilterLoadOrder, contains a list of all filters that should be

loaded by IIS when the Web service is started. Table .3.1 further highlights the phases of

filter processing: -

Table 3.1 Phases in filter processing

Phase What Happens

Registration IIS loads the filter and calls the GetFilterVersion () entry.

Event processing IIS calls the filter’s HttpFilterProc () entry as it processes

HTTP requests.

3.5.2.1 Phases of Processing [6]
This section describes the mechanism of two phases as summarized in Table 3.1 in

greater depth.

3.5.2.1.1 Phase I-The GetFilterVersion: -

When the server starts up, it checks a special registry entry to find out which DLL it

should load as filters. As each DLL is loaded, the special–purpose GetFilterVersion () entry

is called. GetFilterVersion () does the registration phase of the filter. It serves the following

purpose: -

a. It specifies the filter’s version information. Using the HTTP_ FILTER_VERSION

structure, GetFilterVersion returns a string to IIS with a version of ISAPI that the

filter conforms to and a short description of the extension. This ensures that the filter

and IIS are compatible. It also supplies descriptive information to identify a particular

filter in the Web server or operating system (OS) event logs.

 32

b. It specifies the filter’s priority. Each filter must show its priority. The priority sets the

order in which the filter is called to handle the events that apply to it. IIS may have to

call many filters, so this is how the filter assigns the processing importance of any

applicable events. Table 3.2 shows four priority levels. They are listed according to

the priority by which IIS calls them.

Table 3.2-The four filter priorities

Priority What It Means

SF_NOTIFY_ORDER_HIGH Will load the filter at a HIGH priority.

SF_NOTIFY_ORDER_MEDIUM Will load the filter at MEDIUM priority

SF_NOTIFY_ORDER_DEFAULT Will load the filter at the DEFAULT

priority. This is recommended.

SF_NOTIFY_ORDER_LOW Will load the filter at LOW priority.

c. It tells the server what events it will process. The filter has the option of processing a

defined set of events. It must tell the server which event it will process. This saves on

the overhead needed to call each filter for every request that comes in. When

GetFilterVersion () executes, IIS knows which events the filter will process and only

calls it for one of those events. Section 3.5.3.3 explains in detail the sequence of

notification events.

3.5.2.1.2 Phase II –The HttpFilterProc () Entry

Once the filter is loaded and registered, it is ready to get notifications. This is done

when the server calls the HttpFilterProc () entry in the filter. Once again, this entry must be

entered exactly as IIS expects it. This is shown in Fig 3.3.

 33

Fig 3.3-Declaring HttpFilterProc ()

The first parameter pfc, is a pointer to an HTTP_FILTER_CONTEXT structure. This

structure holds information about the HTTP request itself. Appendix A explains the

definition of this structure.

The second parameter notificationType, is a DWORD that represents one of the

notification events the filter registered with the server. Section 3.5.3.3 explains possible

values of this parameter.

The third parameter, pvNotification, is a void pointer to a server-supplied data area.

This data area is the vehicle by which IIS shares the data to be processed with the filter. It is

different for each notification type.

Table 3.3 summarizes the data type of this parameter for each notification type.

Appendix B defines the structures pvNotification points to: -

Table 3.3-pvNotification: Events and Data Types

When the Notification Type Is pvNotification Points to a Structure of

This Type

SF_NOTIFY_READ_RAW_DATA HTTP_FILTER_RAW_DATA

SF_NOTIFY_SEND_RAW_DATA HTTP_FILTER_RAW_DATA

SF_NOTIFY_PREPROC_HEADERS HTTP_FILTER_PREPROC_HEADERS

DWORD WINAPI HttpFilterProc (PHTTP_FILTER_CONTEXT pfc,

DWORD notificationType, LPVOID pvNotification);

 34

SF_NOTIFY_AUTHENTICATION HTTP_FILTER_AUTHENT

SF_NOTIFY_URL_MAP HTTP_FILTER_URL_MAP

SF_NOTIFY_LOG HTTP_FILTER_LOG

SF_NOTIFY_ACCESS_DENIED HTTP_FILTER_ACCESS_DENIED

The declaration of HttpFilterProc () specifies a return type of DWORD.

HttpFilterProc () is allowed to return a predefined set of values. IIS uses these values to

determine how to continue processing the event. Table 3.4 shows these possible values and

when they should be used.

Table 3.4-Return Codes from the HttpFilterProc ()

Type of Return Code When To Use It

SF_STATUS_REQ_FINISHED Use if the filter has handled the HTTP request. This

tells the server to disconnect the session.

SF_STATUS_REQ_FINNISHED_

KEEP_CONN

Use if the filter has handled the HTTP request and

TCP session is required to keep open if the option

was negotiated.

SF_STATUS_REQ_NEXT_NOTIF

ICATION

Use if it is desired to call next filter in the

notification chain by the server

SF_STATUS_REQ_HANDLED_N

OTIFICATION

Use this return code if the filter has handled the

notification and no other filter should be called for

notification.

SF_STATUS_REQ_ERROR Use to tell the server that an error has occurred. The

server will call GetLastError () and indicate the

error to the client.

 35

SF_STATUS_REQ_READ_NEXT Used for raw-read notification only. It is used when

the filter is an opaque stream filter and the session

parameters are being negotiated.

3.5.2.2 Details of Request Processing Sequence
The following steps outline how IIS and ISAPI filters generally interact with each

other during process of the request:

a. When IIS initially loads an ISAPI filter, IIS creates and partially populates a

HTTP_FILTER_VERSION structure. IIS then calls the filter's GetFilterVersion

function, passing a pointer to the new structure as a parameter.

b. The ISAPI filter populates the HTTP_FILTER_VERSION structure with some version

and descriptive information. More importantly, the filter also uses

HTTP_FILTER_VERSION to specify which event notifications it should receive,

and to declare the general priority level for the filter. In addition, the filter also

indicates whether it is interested in events from secure ports only, unsecured ports

only or both.

c. Each HTTP transaction between IIS and a client browser triggers several distinct

events. Each time an event occurs for which an ISAPI filter has registered (by using

HTTP_FILTER_VERSION, as described in step b), IIS calls the filter's HttpFilterProc

() entry-point function.

d. If more than one ISAPI filter has registered for a given event, then IIS will notify

filters marked as high priority first, medium priority second, and low priority last. If

more than one ISAPI filter has declared the same general priority level, IIS will use

the order in which the filters appear in the FilterLoadOrder property to resolve the tie.

e. The ISAPI filter uses the notification type information, passed by IIS as a parameter

to HttpFilterProc, to determine what particular data structure is pointed to by the

 36

other HttpFilterProc parameter, pvNotification. The ISAPI filter can then use the data

contained in that data structure, as well as in the context structure

HTTP_FILTER_CONTEXT, to perform any custom processing.

f. Once processing is complete, the filter returns one of the SF_STATUS status codes to

IIS and IIS continues processing the HTTP request or response—at least until another

event occurs for which ISAPI filters have registered.

g. When the Web service is stopped or unloaded, IIS will call TerminateFilter () in all

ISAPI filters, as part of its shutdown sequence, for any filters that have implemented

and exported the function. TerminateFilter () is typically used to perform cleanup and

de-allocation of allocated resources.

During request processing, GetFilterVersion is called exactly once, when the ISAPI

filter is initially loaded. If it is required to perform some per-connection initialization, one

has to manage it internally within the context of the HttpFilterProc function call. Moreover,

the priority setting for ISAPI filters is per filter, not per notification. For example it is not

possible to assign a low priority rating for one type of notification, and a high priority rating

for another type.

3.5.2.3 Typical Event Notification Sequence
In general, the events that occur during the processing of a typical IIS request and

response are regular and predictable. The following steps outline the most common ordering

of events:

a. SF_NOTIFY_READ_RAW_DATA: When a client sends a request, IIS will send

SF_NOTIFY_READ_RAW_DATA, initially, only once. Data will be read until the

client has sent the entire HTTP headers associated with the request. If there is more

data available from the client (such as in a POST operation), it will not be read until

step f.

b. SF_NOTIFY_PREPROC_HEADERS: A single SF_NOTIFY_PREPROC_

HEADERS notification will occur for each request. This notification indicates that

 37

the server has completed pre-processing of the headers associated with the request,

but has not yet begun to process the information contained within the headers.

c. SF_NOTIFY_URL_MAP: An SF_NOTIFY_URL_MAP notification will occur

after the server has converted the virtual URL path contained in the HTTP request

into a physical path on the server. Note that this event may occur several times for the

same request.

d. SF_NOTIFY_AUTHENTICATION: An SF_NOTIFY_AUTHENTICATION

notification occurs just before IIS attempts to authenticate the client. This notification

will occur only on the first request made in a particular session, if Keep-Alives are

actively being used by both server and client. If Keep-Alives are not in use, each

request will cause IIS to send notification of this event.

e. SF_NOTIFY_ACCESS_DENIED: This event occurs if IIS has denied the client

access to the requested resource (returning an HTTP 401 status code).

f. SF_NOTIFY_READ_RAW_DATA: As mentioned in step a, if the client has more

data to send one or more SF_NOTIFY_READ_RAW_DATA notifications will occur

here. Each read event notification will indicate that IIS has read another chunk equal

in size to either the value of the UploadReadAheadSize metabase property (in

kilobytes; usually 48 KB); or the remaining number of bytes available, if on the last

chunk. Additional raw read events are not always completely predictable, because

many factors can force IIS to adopt a different chunking scheme. Therefore, ISAPI

filter should not rely on the exact behaviour described here. At this point in the

request, IIS will begin to process the substance of the request. This may be done by

an ISAPI extension, a CGI application, a script engine (such as ASP, PERL, and so

on), or by IIS itself for static files.

g. SF_NOTIFY_SEND_RESPONSE: The SF_NOTIFY_SEND_RESPONSE event

occurs after the request is processed and before headers are sent back to the client.

h. SF_NOTIFY_SEND_RAW_DATA: As the request handler returns data to the

client, one or more SF_NOTIFY_SEND_RAW_DATA notifications will occur.

 38

i. SF_NOTIFY_END_OF_REQUEST: At the end of each request, the

SF_NOTIFY_END_OF_REQUEST notification occurs.

j. SF_NOTIFY_LOG: After the HTTP request has been completed, the

SF_NOTIFY_LOG notification occurs just before IIS writes the request to the IIS

log.

k. SF_NOTIFY_END_OF_NET_SESSION: When the connection between the client

and server is closed, the SF_NOTIFY_END_OF_NET_SESSION notification occurs.

If a Keep-Alive has been negotiated, it is possible that many HTTP requests occur

before this notification occurs.

3.5.2.4 Exceptions to the Event Sequence
The sequence in section 3.5.2.3 is accurate enough for most purposes. However there

are often such factors that can change the order of events. IIS or ISAPI filters may interrupt

or modify the sequence of event notifications.

Due to the complex and dynamic event model used by IIS, it is important not to rely

on the exact event notification sequence described in section 3.5.2.3. A well-designed ISAPI

filter must be prepared to deal with events that occur in a non-standard order, without failing

and, more importantly, without causing IIS to fail. Following are some of those situations in

which the order or context of an event notification is nonstandard:

a. If ISAPI filter returns SF_STATUS_REQ_FINISHED from an SF_NOTIFY_

PREPROC_HEADERS handler, SF_NOTIFY_URL_MAP will not be called for that

request, although some subsequent notifications, such as SF_NOTIFY_

END_OF_NET_SESSION, will still be called.

b. If access has been denied the client for the request resource, the next event after

SF_NOTIFY_ACCESS_DENIED will be SF_NOTIFY_END_OF_REQUEST.

c. The SF_NOTIFY_URL_MAP event notification can occur multiple times on a single

request, occasionally with an empty string for the pszURL member. One known cause

 39

of this is a call to ServerSupportFunction () with HSE_REQ_

MAP_URL_TO_PATH.

d. If integrated Windows authentication (also called NTLM authentication) is being

negotiated, there are typically three requests and responses between the client and

server. The SF_NOTIFY_END_OF_REQUEST notification will not occur on the

second request when IIS responds to the client with a challenge. All other

notifications occur as expected on this second request and response. For this reason,

one should not rely on this notification as a signal to free any memory allocated

elsewhere in the filter unless it is known that integrated Windows authentication is

not being used.

e. SF_REQ_DISABLE_NOTIFICATION of ServerSupportFunction can be used to

disable all further notifications, for the duration of the current request, if the filter has

completed all processing for the request.

f. Priority ratings for filters (high, medium, and low) are temporarily reversed for any

filters that participate in the SF_NOTIFY_SEND_RAW_DATA event notifications,

for the duration of the notification. This reversal allows higher priority filters, such as

encryption filters, to process the data after other raw data filters have operated on the

unprocessed data, and just before the data is sent to the client browser. The priority

ratings are unchanged for SF_NOTIFY_ READ_RAW_DATA event notifications.

3.6 Summary

Currently three alternatives namely CGI, ASP and ISAPI are available for creating

custom designed dynamic Web applications on server side. CGI executables run in address

space separate from the IIS program, contrarily, ISAPI applications can run in the same

address space as IIS or in a separate memory space. Therefore ISAPI applications are faster

than CGI executables, but they are difficult to program because these are written to a

specialized interface on a compiled programming language such as C++. ASPs are HTML

pages that contain scripts written in VBScript or JScripts, as well as regular HTML text. It is

even more critical to keep Web site secure while running ASPs.

 40

ISAPI is the selected method for achieving the objectives. Because of its importance

in the thesis work a substantial amount of discussion has been made later in this chapter on

important issues like ISAPI architecture and ISAPI event processing. Appendix B has also

been attached to consult as reference about important data structures of ISAPI filter.

 41

Chapter 4
4 Design Issues

4.1 Introduction

This project basically maintains a database that keeps all the information about users,

groups to which users can be assigned and directories those are registered as protected. All

sort of event logging information is also being maintained by this database. Figure 4.1

graphically explains the conceptual working of this project.

Fig 4.1-Conceptual Model

This chapter explains the database design that has been used as per specific need of

the project. Then, some of design parameters of Internet Account Manager are discussed.

Finally, some of the important design considerations of ISAPI filter are explained in this

chapter.

ISAPI Filter

IAM Database

Internet Account Manger

DAO Interface DAO Interface

DirectODBC Interface

 42

4.2 Database Design

For designing such a database that can be interfaced with Visual C++, factors like

choice of database management system (DBMS) and interface engine between DBMS and

Visual C++ are of prime importance.

As far as regarding choice of the database, Microsoft Access 97 has been chosen for

the reasons that it a relational database management system (RDBMS) and any RDBMS

carries the advantage [8] that basic structure of relational model is simple, making it easy to

understand on an intuitive level. Data operations are also easy to express and do not require

that users be familiar with the storage structure used. The model uses few very powerful

commands to accomplish data manipulations that range from simple to very complex. Hence

for large databases RDBMS is the ideal choice.

As far as regarding choice of the interface engine, Microsoft Jet Database Engine

(MJDE) is being used. This engine supports two basic techniques Data Access Objects

(DAO) and Open Database Connectivity (ODBC). IAM is specifically using DAO for

handling the database. MJDE will be discussed in detail in this section.

 One of the important factors of a good relational database design is to have such a

model that should have minimum redundancy in the database tables. Besides that, it is also

ensured that the design is free of certain update, insertion and deletion anomalies [8] and for

doing so process of database normalization is performed in systematic way.

4.2.1 Database Normalization

The process of transforming existing data into relational form is called normalization.

Normalization of data is based on the assumption that the data has been organized into a

tabular structure wherein the tables contain only a single entity class [9]. The objectives of

normalization of data include the following:

a. Eliminating duplicated information contained in tables

b. Accommodating future changes to the structure of tables

 43

c. Minimizing the impact of changes to database structure on the front-end applications

that process the data

4.2.2 Database Design For Authentication Filter

After carrying out the process of normalization the final database design for

authentication filter has emerged as a relation of seven tables connected with each other with

one to many relations. Database design along with different relations among the tables is

graphically shown in Fig 4.2.

Fig 4.2 - Database Design for authentication filter

 44

Purpose of each of the seven tables is described briefly in table 4.1.

 Table 4.1 - Database tables for authentication filter

Table Name Purpose

1. DirAccess Keeps record of all the directories registered as protected directories

for which user must be authenticated in order to access its resources. It

also keeps the information about the way, directory will be protected,

i.e. by internal database (not ACL), by referrer, by IP, by mapped user

of NT access control list (ACL.).

2. User Keeps all information about the created user with user password,

expiry date of the account and remarks about the user account.

3. Group Keeps all information about the group created by the administrator.

4. InternalDb This table keeps the information about all such groups or users that

have been provided access to any directory.

5. IP Keeps the information about all such client's IP addresses that have

been assigned to any particular directory and also whether the IP

address is permitted or not permitted for this directory.

6. Referrer Keeps the record of all permitted referrers for particular directories

7. MapToNT Keeps the record of all the internal users those have been creates by

User Manager of NT administrative tools and NT uses this username

and password to allow access to any particular NTFS directory.

 45

4.2.3 Database Design For Logging Filter

 For logging filter two relations are incorporated to achieve the objective namely

Logging table and Flags table. Fig 4.2 graphically represents the two tables used for logging

filter.

Fig 4.3 - Database design for logging filter

Purpose of each of the two tables is described briefly in table 4.2.

Table 4.2 - Database tables for logging filter

Table Name Purpose

8. Logging Keeps record of logging information like date/time, resource

requested, remote IP address, remote username, referring Web server,

client browser type (user agent) and status of the connection on client

request.

9. Flags Keeps all necessary flags to save the logging view environment for

later use. It also keeps the date on which log was cleared. ISAPI filter

uses the enable logging flag to enable or disable logging from this

table.

 46

4.3 Design of Internet Account Manager

Internet Account Manger (IAM) is basically a database front-end developed in Visual

C++ 6. The aim is to develop such a front-end that should be user friendly and should

provide powerful database handling environment with capabilities to manage the

requirements discussed in following sub sections: -

4.3.1 .User Accounts

a. Administrator must be able to add, delete or change any user's credentials.

b. User's credentials should include user name, user password, expiry date and

remarks for specific user account.

c. User name must be unique in a database and moreover, blank password must

not be allowed.

d. A user friendly calendar must be provided to add or change expiry date,

moreover user must not be able to set an expiry date earlier then the current

system date.

4.3.2 Group Accounts

a. Administrator must be able to add, delete or change any group accounts.

b. Administrator should be able to add user to specific group at any time, even at

the creation of the group.

c. If a protected directory is given access to a specific group then all such users

those are member of that group must have access to that directory.

4.3.3 Directory Registration

a. Administrator must be able to add, delete or change any directory that should

be kept protected. IIS will authenticate the client computer for such protection

methods that are set for that particular directory

 47

b. Protection methods that can be enabled or disabled for any directory during

authentication are by Internal Database, by IP address, by referrer Web site

and by Mapping of directory to NT user.

4.3.4 Protection Methods

Any directory that has been registered by IIS can be protected by various methods.

These methods are custom developed and can be further enhanced according to specific

needs of the user. Following are the methods those are implemented in this project.

a. By Internal Database: -A separate interface provides a method to assign

username or groups (from IAM database) authorized to access a particular

directory.

b. BY IP Address: - A separate interface provides a method to set such client's

IP addresses like (1.1.1.127) those are permitted or not permitted for a

particular directory.

c. By Referrer: - A separate interface provides a method to set such referrer

Web sites like (http://cnn.com) as permitted referrers for a particular directory.

d. By Map to NT: - The directory being protected is also protected in Windows

NT operating system under NTFS file format. Specific users of Windows NT

have access to a particular directory. These rights are provided by User

Manger utility of Administrative Tools. An Internet user that has been

registered by IAM is not internal user of NT, hence that registered user cannot

access any directory under NTFS file format. By mapping the directory to

internal user of NT makes it possible for the system to provide access of the

directory to Internet user who is not internal user of NT. Therefore, a

dedicated interface is provided to map an NTFS directory to internal user of

NT.

 48

4.3.5 Advance Logging

The administrative front end also requires a method to choose among the custom

logging options. These logging options are those, which are specifically required with custom

authentication scheme and are not covered by the default logging of NT.

4.3.5.1 Logging Options
The administrator must have the control to enable or disable logging. Custom logging

slows down the IIS process of supplying the browser with requested documents, so if logging

is not required it should be disabled. Custom logging options are namely unmapped remote

user, referrer, and user agent.

a. Unmapped Remote User: - This is to log the user who requested the

protected document. User name is the one that was provided in original

request of the client before any alteration by the authentication filter.

b. Referrer: - This is the URL of the page from which a link refers a page in the

protected directory.

c. User Agent: - The type and version of the browser used to make the request is

stored in this logging. On the information based on user agent it is possible to

program the server to launch specific scripting programs for specific

browsers.

These logging option s can be enabled or disabled. In addition to these logging

options, credentials like resource requested, date / time and remote IP are also displayed log

view.

4.3.5.2 Clearing Log
As log size grows very quickly so a mechanism is provided to clear the log. Two

methods namely automatic log clearing and manual log clearing are designed.

a. Automatic Log Clearing: - Administrator has the choice to enable log

clearing with intervals namely daily, after three day and weekly

 49

b. Manual Log Clearing: - It is also possible to clear the log manually if the

present log is not required.

4.4 Design Considerations for Developing ISAPI

Filters

The MFC library provides an object model, as well as a wizard that aids in creating

ISAPI filters. Classes such as CHttpFilter and CHttpFilterContext are provided for ease of

programming and many intricacies are hidden by these classes. There are some important

choices that should be considered while designing the structure of ISAPI filters.

4.4.1 Choice of Notifications [5]

All notifications must be handled with extreme care. Following consideration must be

given thought while making selection:

a. Do not register for a notification unless it is needed: Filters should be registered for

notification of only those events that are needs for processing. Some filter

notifications are very expensive in terms of CPU resources and I/O throughput (most

notably SEND_RAW_DATA), and can have a significant effect on the speed and

scalability of IIS.

b. Register for SF_NOTIFY_END_OF_NET_SESSION: Most of the filters should be

notified for SF_NOTIFY_END_OF_NET_SESSION, as it is a good time to perform

session-level resource maintenance, such as recycling buffers. For performance

reasons, most filters keep a pool of filter buffers and only allocate or free them when

the pool becomes empty or too large to save on the overhead of the memory

management.

c. Do not attempt to change the notification flags in the metabase: The metabase

property FilterFlags contain flags that indicate to IIS which notification types a

particular ISAPI filter can support. However, this property is populated by IIS from

the bit flags passed in the HTTP_FILTER_VERSION structure from

GetFilterVersion (). Filter Flags should be considered read-only.

 50

4.4.2 Flow of the Filter [6]

This section explains what happens when a filter is added to a Web server. A server

processes information from a client in seven steps as graphically represented in Fig 2.1. The

IIS works fine as long as one does not change the default processing of HTTP requests

through IIS. An ISAPI filter, however, allows us to change the default processing of an

HTTP request. Fig-4.4 is a graphical representation of the IIS flow with filters added.

 51

Fig 4.4-Flow of a request in IIS with filters

Process incoming

HTTP request

headers

Process incoming

HTTP request

headers

Process incoming

HTTP request

headers

Process incoming

HTTP request

headers

Process incoming

HTTP request

headers

Process incoming

HTTP request

headers

Process incoming

HTTP request

headers

ISAPI Filter(s)

Calls

ISAPI Filter(s)

ISAPI Filter(s)

ISAPI Filter(s)

ISAPI Filter(s)

ISAPI Filter(s)

 52

Fig 4.4 demonstrates that IIS makes calls to the registered filters as it is processing

each HTTP request. This allows any ISAPI filter to change the default processing. Each call

is different in that it gives the filter a chance to process a different event during the

processing of the request. Each filter can choose to process the event or to ignore it. If the

filter ignores it, IIS processes the event.

The function HttpFilterProc () processes the request in most of the filters in five steps

as shown in the Table 4.3.

Table 4.3 - Process in HttpFilterProc () when request comes in

Step

Number

What Happens

1. Determine the notification type (refer to Table 3.3)

2. Decide whether to process this occurrence.

3. If yes, process it.

4, Decide whether IIS should pass it on or not.

5. Return the proper status to IIS

4.4.3 ISAPI Filter Design Rules

While designing ISAPI filter, following design rules have been considered:

a. Must Be Registered before IIS Starts.: - Because IIS loads all ISAPI filters at

startup, it must be clearly defined that which DLL to load. In IIS 3.0 it is done

by adding an entry to the registry by using command REGEDT32.EXE.

However in IIS 4.0 filter is loaded through Microsoft Management Console

(MMC). After the filter is loaded WWW service must be stopped and then

 53

start it again. Since for this project IIS 4.0 has been used filter has been

registered through MMC in default Web site.

b. Must Be A 32-Bit DLL: -. Each ISAPI filter must be a 32-bit DLL. This is

because IIS itself is 32-bit program and it must call entry points in the filter

DLL. For this purposed Application Wizard of Visual C++ is used to create

the raw skeleton of ISAPI DLL. Application Wizard automatically creates

skeleton of 32-bit IAPI DLL.

c. Must Expose Defined Entry Points: - Each filter DLL must have the

GetFilterVersion () and HttpFilterProc () entry points defined. This is the

only way IIS can communicate with the DLL. If these entry points are not

defined, IIS won’t be able to load and use the filter DLL. For defining the

entry points a definition file has been created by the Application Wizard with

.def extension. This file defines the two functions as exported and enable IIS

to communicate with itself.

d. Must Be Thread-Safe: - IIS makes extensive use of Windows NT’s

multithreading capabilities. It can respond to many requests simultaneously.

This means that all ISAPI filters must be thread-safe. For making the filter

thread safe, firstly DAO classes for accessing the database have been avoided

in the filter and instead Direct ODBC has been used that is thread safe as well

as carries fast response to access the database. Secondly, for such part of the

filter where multithreading may cause problems, use of critical sections is

made to ensure one thread at a time.

 54

4.5 Summary

This chapter has discussed design issues of the project. Design issues have been

divided into three basic groups namely Internet Account Manager (IAM), IAM database and

Authentication and Logging Filter. Firstly, database design is explained in two parts, for

authentication filter and then for logging filters. Secondly, IAM is discussed in a scenario of

database front-end and prime design parameters are given user point of view. Thirdly, ISAPI

filter design requirements and strategies employed for that matter are elaborated.

 55

Chapter 5
5 Implementation Issues

5.1 Introduction

This project has two basic components, which interact with the IAM database. These

components are namely IAM and ISAPI filter Database keeps all the information about users,

groups (to which users can be assigned) and directories those are registered as protected. All

sort of event logging information is also being maintained by this database. Figure 4.1

graphically explains the conceptual working of this project in the form of block diagram.

Separate workspaces are developed for both of the components because filters do not

allow any mean of communication other than the browser i.e. the filters do not support view

windows and dialog boxes. View of each workspace is shown in fig 5.1

IAM communicates with the IAM database through Data Access Object (DAO)

classes of MFC. DAO classes provide more power and flexibility [5] to handle databases

through MJDE than ODBC but DAO classes are not thread-safe in a multi-user environment

when multiple users are accessing the database simultaneously. However, since IAM is

designed for the utilization of Account Manager (AM) alone there is no chance of

simultaneous access to the database through IAM.

ISAPI filter interacts with the database through DirectODBC API tool. DirectODBC

is employed firstly due to its fast response time as compare to DAO classes in accessing the

database secondly DirectODBC is thread-safe API. ISAPI filter works in multi-user

environment where a Web server may be accessed by hundreds of browsers on Internet

simultaneously.

This chapter discusses the implementation of IAM in detail and then makes extensive

discussion on the implementation of ISAPI filter. Diagrammatically, the implementation

layout of the whole system is shown in fig 5.2.

 56

Fig 5.1 (a). IAM Workspace. Fig 5.1 (b). Filter Workspace.

Fig 5.1- Workspace view of the software

 57

Filter Functions of

CProjectFilter

Class

 Tables Of The Database Important Classes

of IAM

D
ir

e
c
t
O

D
B

C
 I

n
t
e
r
f
a

c
e

D
A

O

I
n

t
e

r
f
a

c
e

 CAddEditURL

ValidateDir Referrer CEditIPDlg

 IP CAddIPAddDlg

CheckDirectory User CExistingUserDlg

 CUserEditAddDlg

LookUpUserInIdb DirAccess CDirEditDlg

 CDirectoryMainDlg

ValidateUser Group CExistingGroupDlg

 MapToNT CGroupAddEditDlg

AddToLog InternalDb CIAMDlg

LoadParameters CIdbEditUserGp

InitilalizeCache Logging CMapToNTDlg

LookUpUserInCach Flags CLogMainDlg

AddUserToCache Key

Direction of Data

Flow

TerminateCache Cache

Fig 5.2 - Implementation model of the software

 58

5.2 Implementation Of IAM

IAM is a dialog-based applications developed through Application Wizard of Visual

C++ 6. An extensive use of Microsoft Foundation Classes ((MFC) has been made because of

its user friendly interface. MFC programming is done through object oriented approach in

which, different modules are encapsulated in different classes performing a specific task.

Normally each dialog box and its visible objects are encapsulated in a separate class. Each

class may have a number of member functions and member variables to execute the logic.

IAM is developed with the combination of 23 classes and 201 functions total. This

section will discuss the classes and functions that form core of the design. Each class will be

discussed in a separate table along with its important member functions and member

variables.

Table 5.1 - Implementation details of CIAMDlg class

Class Name /Base Class: CIAMDlg / CDialog

Class Purpose

/ Description

The class is used to handle the main 'Internet Account Manager'

dialog prompted to the user at the start of the program.

Member Functions

Visibility Name Description

Protected OnBtnGpAdd () This function is used to call the dialog box that adds a

new group to the group table in IAM database.

Protected OnBtnDirectory

()

This function is used to call the dialog box that displays

the protected directories.

Protected OnBtnLogging

()

This function is used to call the dialog box that displays

the log view.

 59

Protected OnGpExisting

()

This function is used to call the dialog box that displays

already registered groups.

Protected OnUserExisting

()

This function is used to call the dialog box that displays

already registered users

Data Members

Visibility Type Name Description

Protected CExistingUserSet m_UserSet This is an object of CExistingUser

Set class. This class is derived

from CDaoRecordset class of

MFC. This object is used to access

the 'User' table of the database.

Protected CExistingGroupSet m_GroupSet Similar object of derived class

from CDaoRecordset. It is used to

access the 'group' table.

Protected CButton pButton Pointer object of CButton class,

used to disable the 'Existing user'

and 'Existing group' buttons if no

user or group is registered in the

database yet.

 60

Table 5.2 - Implementation details of CAddEditURL class

Class Name /Base Class: CAddEditURL / CDialog

Class Purpose /

Description

The class is used to add and delete the permitted referrer

for current directory.

Member Functions

Visibility Name Description

Protected FillCombo () Fills the combo box with permitted referrer URLs from

'Referrer' table.

Protected OnButtonAdd () Adds referrer URL to the combo box.

Protected OnButtonDel () Delete referrer from the combo box.

Protected OnOk () Update the Referrer table from the combo box.

Data Members

Visibility Type Name Description

Public CDaoDatabase db Used to open the database through

properties of CDaoDatabase class.

Public CString m_EditDir Keeps the value of current

directory

Public CStrings m_EditURL Value type variable of edit box.

Used to receive referrer URL

manually added by the user.

Public CDaoRecrdset rs Object-used to open Recorset of

the table Referrer.

 61

Table 5.3 - Implementation details of CAddIPAddDlg class

Class Name /Base Class: CAddIPAddDlg / CDialog

Class Purpose /

Description

The class is used to add IP address to the currently

selected directory.

Member Functions

Visibility Name Description

Protected OnRadioNot

Permit ()

Resets the flag if a radio button 'Not Permitted' is

checked.

Protected OnRadioPermit () Sets the flag if a radio button Permitted is checked.

Protected OnInitialDialog () Opens the database table 'IP' for addition.

Data Members

Visibility Type Name Description

Public CDaoDatabase dbIP Used to open the database through

properties of CDaoDatabase class.

Public CIPAddressCtrl m_CtlIPAdd Control variable of 'IP control

box'.

Public CStrings m_CurDir Keeps the value of currently

selected directory..

Public CDaoRecrdset rsIP Object-used to open Recorset of

the table IP.

 62

Table 5.4 - Implementation details of CDirectoryMainDlg class

Class Name /Base Class: CDirectoryMainDlg / CDialog

Class Purpose /

Description

The class is used to display all the currently registered

directories. It also adds new and deletes the displayed

directories.

Member Functions

Visibility Name Description

Protected FillCombo () Fills the registered directories in the combo box from

DirAcces table..

Protected OnAdd () It runs ShBrowseForFolder () function that opens a

'Directory Tree' for folder selection.

Protected OnEdit () Opens an other dialog box for editing the protection

methods for the selected directory

Data Members

Visibility Type Name Description

Public CComboBox m_ctlDirCombo Control variable to manipulate the

directory combo box.

Public CDaoDatabase db Used to open the database through

properties of CDaoDatabase class.

Public CStrings strQuery Keeps the value of database query.

Public CDaoRecrdset rs Object-used to open Recorset of

the table DirAccess.

 63

Table 5.5 - Implementation details of CDirEditDlg class

Class Name /Base Class: CDirEditDlg / CDialog

Class Purpose /

Description

The class is used to further open different dialog boxes in

order to set corresponding protection methods for the

currently selected directory.

Member Functions

Visibility Name Description

Protected OnBtnIdbEditGroup ()

OnBtnIdbEditUser ()

OnButtonIpAdd ()

ObButtonIpEdit ()

OnButtonMapEdit ()

OnButtonURLEdit ()

All these functions are activated by their

corresponding buttons and opens new dialog

boxes for setting up the protection method

Protected OnCheckDb ()

OnCheckIp ()

OnCheckMap ()

OnCheckReferer ()

All these functions are activated when

corresponding checkboxes are clicked by mouse.

These functions hide /show the corresponding

buttons if that checkbox is unchecked / checked

respectively.

 64

Table 5.6 - Implementation details of CEditIPDlg class

Class Name /Base Class: CEditIPDlg / CDialog

Class Purpose /

Description

The class is used to display all the currently registered IP

addresses in permitted or not permitted category list

boxes. Registered IP addresses can be deleted or their

category can be changed among permitted or not

permitted ones.

Member Functions

Visibility Name Description

Protected FillBothLists () Fills both the permitted or not permitted category list

boxes from the IP table of the database.

Protected UpdateIps () Updates the IP table from both the lists at closing of the

dialog box.

Protected OnBtnDelete () Deletes the selected IP address from any of the list.

Data Members

Visibility Type Name Description

Public CIPAddressCtrl m_ctlIPAdd Control variable to manipulate the

IP addresses.

Public CListBox m_ctlPermitList Control variable for filling

permitted IP addresses in the list.

Public CStrings m_EditDir Keeps the value of currently

selected directory.

 65

Table 5.7 - Implementation details of CExistingGroupDlg class

Class Name /Base Class: CExistingGroupDlg / CDialog

Class Purpose /

Description

The class is used to display all the currently registered

groups in a combo box and deletes, changes its member

users or registers new group.

Member Functions

Visibility Name Description

Protected FillCombo () Fills the group combo box from the group table.

Protected OnAddGroup () Activates by 'Add' button to open a dialog for adding a

group.

Protected OnBtnEdit () Opens a new dialog box to change the member users of

the selected group when 'Edit' button is pressed.

Data Members

Visibility Type Name Description

Public CComboBox m_ctlGroup

Combo

Control variable to manipulate the

group combo box.

Public CEistingGroupSet m_Existing

GroupSet

Object of a derived class from

CDaoRecordset class for accessing

the group table of the database.

Public CButton pButton Object of CButton class for

enabling / disabling the buttons

according to specific requirements.

 66

Table 5.8 - Implementation details of CExistingUserDlg class

Class Name /Base Class: CExistingUserDlg / CDialog

Class Purpose /

Description

The class is used to display all the currently registered

users in a combo box and deletes, or registers new users.

Member Functions

Visibility Name Description

Protected FillCombo () Fills the group combo box from the user table.

Protected OnAdd () Activates by 'Add' button to open a dialog for adding a

new user to the database.

Protected OnEdit () Opens a dialog box to change user credentials.

Protected OnDelete () Deletes the currently selected user from the database.

Data Members

Visibility Type Name Description

Public CComboBox m_ctlGroup

Combo

Control variable to manipulate the

group combo box.

Public CEistingUserSet m_Existing

UserSet

Object for accessing the user table

of the database.

Public CEistingGroupSet m_Existing

GroupSet

Object for accessing the group

table of the database.

 67

Table 5.9 - Implementation details of CGroupAddEditDlg class

Class Name /Base Class: CGroupAddEditDlg / CDialog

Class Purpose /

Description

The class is used to register a new group to the database

and also changes the user members of the selected group

by selection.

Member Functions

Visibility Name Description

Protected FillMemberCombo ()

FillNonMemCombo ()

Fills the member user and non-member user

combo boxes for further selection by the

operator.

Protected OnButtonAddMem () Adds a user from non-member list to member list.

Protected OnButtonRemMem () Adds a user from member list to non-member list.

Protected OnButtonAdd () Adds a new group to the group table.

Protected OnOK () Updates the InternalDb table.

Data Members

Visibility Type Name Description

Public BOOL m_bAddMode () Flag is set to 1 when a new group

is to be added, else remains 0.

Public CQryGpMember m_Member

UserSet

Object for accessing the group

table of the database.

Public CString strGroupName Keeps the value of selected group.

 68

Table 5.10 - Implementation details of CIdbEditUserGp class

Class Name /Base Class: CIdbEditUserGp / CDialog

Class Purpose /

Description

The class is used to allocate or de-allocate users and

groups to the selected directory.

Member Functions

Visibility Name Description

Protected FillPermitList ()

FillNotPerList ()

Fills the groups or users in the 'Member' list and

'non-Member' list from InternalDb table for the

selected directory.

Protected OnButtonAddMem () Moves selected users or groups from 'non-

Member' list to 'Member' list.

Protected OnButtonRemMem () Moves selected users or groups from 'Member'

list to 'non-Member' list.

Protected UpdateDbFromList () Updates the InternalDb table according to final

layout of the two lists.

Data Members

Visibility Type Name Description

Public CString m_EditDir Keeps the value of currently

selected directory.

Public CComboBox m_ctlPermitList

m_ctlNotPerlist

Handles the permitted & not-

permitted user or group list boxes.

Public CEistingGroupSet m_Existing

GroupSet

Object for accessing the group

table of the database.

 69

Table 5.11 - Implementation details of CLogMainDlg class

Class Name /Base Class: CLogMainDlg / CDialog

Class Purpose /

Description

The class is used to display the 'Log View' along with

various switches to set different 'Logging Options'.

Member Functions

Visibility Name Description

Protected AutoClearLog () Clears the log automatically if 'Auto Clear' is enabled.

Public LoadFlags () Loads already set flags from 'Flags' table.

Protected OnBtnClearLog() Manually clears the log. Activated by a button.

Public SetFlags () Sets the current environment in the 'Flags' table.

Protected ShowHeadings () Displays the headings of 'List Control Box' for log.

Protected ShowData () Displays the logging data, picked from logging table.

Data Members

Visibility Type Name Description

Public Integer RadioOption Keeps the value of currently

selected option for auto-log clear.

Protected CListCtrl m_ctlLogList Object to handle all functions of

the 'List Control' that displays log.

Public CButton m_ctlShowUser Control variable of 'Unmapped

Remote User' check box. Enables

or disables this view in the log.

 70

Table 5.12 - Implementation details of CMapToNTDlg class

Class Name /Base Class: CMapToNTDlg / CDialog

Class Purpose /

Description

The class is used to map internal users of NT ACL to the

selected directory so that when Internet user that does not

have access to the directory in NT, the mapped user will

be provided to IIS at the time of accessing the directory.

Member Functions

Visibility Name Description

Protected FillCombo () Fills the combo box with mapped users.

Protected OnButtonAdd () Adds an NT user name and user password to the combo

box.

Protected OnBtnDelete () Deletes the selected user name from the combo box.

Data Members

Visibility Type Name Description

Public CString m_NTUser Keeps the value of manually

entered username..

Public CListBox m_ctlNTUser Control variable for filling the user

names in the list.

Public CStrings m_NTPassword Keeps the value of manually

entered password

 71

Table 5.13 - Implementation details of CUserEditAddDlg class

Class Name /Base Class: CUserEditAddDlg / CDialog

Class Purpose / Description The class is used to register a new user to the database and

also changes the credentials for registered user.

Member Functions

Visibility Name Description

Public FillGroupCombo () Fills the list with all registered groups.

Protected CountDaysLeft () Calculates the no of days to expire the account.

Protected ShowControls () Adds a user from member list to non-member list.

Protected OnDatetimechange PickDate

(*pNMHDR, *pRESULT)

Function is invoked whenever a date is

selected from the Calendar control.

Data Members

Visibility Type Name Description

Public BOOL m_bAddMode () Flag is set to 1 when a new user is to

be added, else remains 0.

Public CString m_Confirm

Pasword

Keeps the value of the confirmed

password.

Public CDateTimeCtrl m_ctlPickDate Object to get date from the Calendar

Public COleDateTimeSpan m_DaysLeft Object-finds the difference of dates

Public CEdit m_ctlTlimit Keeps date in short format.

Public CInternalDbSett m_IntDB Object-accesses the InternalDb table.

 72

5.3 Implementation Of ISAPI Filter

The ISAPI filter DLL is loaded on IIS before it starts functioning. For developing the

ISAPI filter IDE of Visual C++ 6.0 provides Application Wizard to provide basic

functionality of the filter. The filter is designed for two basic purposes. Firstly, for

authentication of the user and secondly, for logging the events.

In addition to basic purposes, the filter has been design to achieve optimum efficiency

by reducing the authentication time for the client requesting any resource through the

browser. Authentication time has been reduced by using a 'cache' in the RAM so that

whenever a user has been provided access to specific protected directory after a resource

extensive authentication from the database, all the successful credentials are saved in the

cache for later use by IIS. The cache works extremely fast because it is created in the RAM.

The cache has been implemented as 'circular double link list' of a structure (USER_INFO).

Since ISAPI filter works in multi-user environment it is a thread-safe design. It has

been designed to work perfectly when simultaneous clients are accessing the Web server. In

all such parts of the filter those are not thread-safe, critical sections are made to avoid

parallel execution of that part.

5.3.1 Filter DLL Functions

This DLL has been created with MFC Application Wizard. A user-defined class

CProjectFilter creates the DLL. This class is derived from CHttpFilter class of MFC. All

the functions are member of CProjectFilter class. There are 18 functions in total. 8 out of

these are system-defined and rests of all are user-defined function. In this section the system-

defined functions are explained briefly in table 5.14. The code of these functions has been

modified as per the system requirements.

 73

Table 5.14 - Implementation details of system-defined functions of the filter

Class Name /Base Class: CProjectFilter / CHttpFilter

Class Purpose / Description The class is used to create an ISAPI filter DLL.

System-Defined Functions

Visibility Name Description

Public CProjectFilter () Constructor. Initializes cache by calling InitilizeCache ()

function.

Public ~CProjectFilter () Destructor. Releases cache memory by calling

TerminateCache () function when Web service stops.

Public GetFilterVersion Called by IIS when filter is initially loaded. Explained in

section 3.5.2.2.

Public HttpFilterProc An entry-point function. Explained in section 3.5.2.2.

Public OnUrlMap Called by SF_NOTIFY_URL_MAP notification

explained in section 3.5.2.3.

Public OnAuthentication Called by SF_NOTIFY_AUTHENTICATION

notification explained in section 3.5.2.3.

Protected OnLog Called by SF_NOTIFY_LOG notification explained in

section 3.5.2.3.

Protected OnEndOfNetSession Called by SF_NOTIFY_END_OF_NET_SESSION

notification explained in section 3.5.2.3..

 74

5.3.2 Database Handling Functions

Database handling functions use DirectODBC interface to access the database for two

reasons. Firstly, nothing matches the speed of DirectODBC in access time of the database.

Secondly, it is thread-safe interface. There are 4 different functions used to handle the

operation of the database. These functions are briefly explained in tables 5.15 to 5.19.

Table 5.15 - Implementation details of ValidateDir function

Name of the Function ValidateDir

Visibility Public

Return Value BOOLIAN

Arguments CHAR * pszUserName

CHAR * pszPassword

Description

This function is called by OnAuthentication () function of the filter. This function is

ignored if the remote user is an anonymous one. This function further calls under mentioned

two functions

1. CheckDirectory: - Checks whether the requested directory is registered for protection or

otherwise. This function is explained in table 5.16

2. ValidateUser: -Called only if the requested directory is found to be registered one. This

function is explained in table 5.17

 75

Table 5.16 - Implementation details of CheckDirectory function

Name of the Function CheckDirectory

Visibility Public

Return Value BOOLIAN

Arguments BOOL *mb_IP,

BOOL *mb_URL,

BOOL *mb_MapToNT,

BOOL *mb_InternalDb

Description

This function is called by ValidateDir function of the filter.

The function checks the database table 'DirAccess' to search for the requested

directory.

If directory is found, it sets TRUE in its argument values for those protection methods

that are enabled.

The function returns TRUE if the requested directory is found otherwise returns

FALSE.

 76

Table 5.17 - Implementation details of ValidateUser function

Name of the Function ValidateUser

Visibility Public

Return Value BOOLIAN

Arguments CHAR * pszUserName,

CHAR * pszPassword,

BOOL * pfValid

Description

This function is called by ValidateDir function of the filter. It finds out if the user is

allowed to access the directory and if allowed, will transform the first two argument values to

NT username and password. If all the enable protection tests are passed, it will set argument

value pfValid to TRUE. For achieving these objectives the function calls under mentioned

three functions.

1. LookupUserInCache: - Firstly, the user credentials are found in the cache by this function.

This function is explained in table 5.21

2. LookupUserInIDb: - Secondly, if credentials are not found in the cache, this function finds

them in the database. This function is explained in table 5.18.

3. AddUserToCache: - Thirdly, this function is called to add such credentials in the cache

that are successfully passed by the database. This function is only called if credentials are

not found in the cache and they are successfully found in the database. This function is

explained in table 5.22.

.

 77

Table 5.18 - Implementation details of LookupUserInIDb function

Name of the Function LookupUserInIDb

Visibility Public

Return Value BOOLIAN

Arguments CHAR * pszUserName,

BOOL * pfFound,

CHAR * pszPassword,

CHAR * pszNTUser,

CHAR * pszNTUserPassword

Description

This function is called by ValidateUser function (table 5.17). It finds out all the

enabled protection methods from the database. All the enabled protection methods are

checked sequentially and if any of the tests fail, argument value for pfFound is set to FALSE

otherwise remains TRUE. Following sequence is used:

1. Internal Database Test: -The test is performed if protection method 'by Internal

database' is enabled. It checks group of the user in InternalDb table that whether this

group is provided access of the directory or otherwise. If group is not provided access then

user is checked for direct access of the directory.

2. Referrer Test: -This test is performed, if protection method 'by referrer' is enabled.

3. IP Address Test: - This test is performed, if protection method 'by IP address' is enabled.

4. MapToNT Test: - This test is performed, if protection method by 'MapToNT' is enabled.

This test provides the NT user name and password to IIS for authentication for those

remote users that do not have local account on the server. This is only required for NTFS

directory.

 78

Table 5.19 - Implementation details of AddToLog function

Name of the Function AddToLog

Visibility Public

Return Value VOID

Arguments VOID

Description

This function is called by OnLog function (table 5.14). The function is called, only if

logging has been enabled in IAM. LoadParameter () function checks enabling of logging.

AddToLog () function provides the log to the following events.

1. Requested resource on the server e.g. home.htm document.

2. Remote username that has requested a resource through browser e.g. farooq.

3. Remote IP address of the client browser e.g. (1.1.1.127)

4. URL of a Web server that has referred a user to this IIS Web server. E.g.

http://micrrosoft.com .

5. The properties of the client browser (User Agent) that has accessed the IIS server. E.g I.E.

5.0

6. Status of the connection e.g. Access Denied, OK, Access Granted etc.

 79

5.3.3 Cache Structure

The cache has been implemented as 'circular double link list' of a structure

(USER_INFO). This structure is given in fig 5.3:

Fig 5.3-Cache structure

The structure consists of eight member variables. One of the members ListEntry is

used to establish the link list and rests of the seven are used to store the credentials usable

during authentication.:

typedef struct _USER_INFO

{

LIST_ENTRY ListEntry; // Double linked list entry

CHAR achUserName[SF_MAX_USERNAME];

CHAR achPassword[SF_MAX_PASSWORD];

CHAR achDirectory[255];

CHAR achRemoteIP[255];

CHAR achReferer[255];

CHAR achNTUserName[SF_MAX_USERNAME];

CHAR achNTUserPassword[SF_MAX_PASSWORD];

} USER_INFO, *PUSER_INFO;

 80

5.3.4 Cache Handling Functions

There are 4 different functions used to handle the operation of the cache. These

functions are briefly explained in tables 5.20 to 5.23.

Table 5.20 - Implementation details of InitializeCache function

Name of the Function InitializeCache

Visibility Public

Return Value BOOLIAN

Arguments VOID

Description

This function is use to initialize the cache. It returns TRUE if initialized successfully

and returns FALSE on failure. Initialization includes the creation of a blank 'circular double

link list'.

 81

Table 5.21 - Implementation details of LookupUserInCache function

Name of the Function LookupUserInCache

Visibility Public

Return Value BOOLIAN

Arguments CHAR * pszUserName,

BOOL * pfFound,

CHAR * pszPassword,

CHAR * pszNTUser,

CHAR * pszNTUserPassword

Description

This function is used to find the received credentials in the cache. It finds each entry

one by one and if an entry is found, then variable pfFound .is set to TRUE otherwise remains

FALSE. In case, if credentials are found and mapping of directory to the NT user is enabled,

then strings pszNTUser and pszNTUserPassword are filled up with the mapped username and

password.

When a credential is found, the credentials entry is brought in front in the list, if it's

not already near the front. Purpose of moving credentials in front of the list is to further

reduce authentication time in the cache.

 82

Table 5.22 - Implementation details of AddUserToCache function

Name of the Function AddUserToCache

Visibility Public

Return Value BOOLIAN

Arguments CHAR * pszUserName,

CHAR * pszPassword,

CHAR * pszNTUser,

CHAR * pszNTUserPassword

Description

This function is use to add the specified user to the cache. It returns TRUE if no error

occurs in the process. Firstly, it Searches the cache for the specified user to make sure there

are no duplicates and if user is found it overwrites the existing entry. If duplicate doesn't exist

then new entry is made at the front of the list.

Table 5.23 - Implementation details of TerminateCache function

Name of the Function TerminateCache

Visibility Public

Return Value VOID

Arguments VOID

Description

This function is called when the Web service (loaded with the filter) is stopped. It

releases the entire allocated memory of the cache.

 83

5.4 Summary

This project has two basic components, which interact with the IAM database. These

components are namely IAM and ISAPI filter.

A separate workspace has been developed for both of these because filters do not

allow any means of communication other than the browser i.e. the filters do not support view

windows and dialog boxes.

This chapter discussed the implementation of IAM with the help of important user-

defined classes, which form heart of the program.

Later, elaborate details on the implementation of ISAPI filter have been given with

the help of user-defined functions. Development of cache is also an important feature of

ISAPI filter that has been explained exclusively.

 84

 Chapter 6
6 User Guide

6.1 Introduction

This system has been developed as two separate projects namely IAM and ISAPI

Filter. IAM is a user interface for managing accounts for Internet users and ISAPI filter is the

interface of IIS for client browsers. This chapter will firstly explain the installation procedure

of ISAPI filter on IIS 4.0 then installation procedure of IAM will be discussed. Secondly,

working of each dialog of IAM will be elaborated.

6.2 Installation Procedures

The software uses external data source (IAM database), for managing all the

credentials. External data source is a Microsoft Access 97-database xproject. Since ISAPI

filter is using DirectODBC interface, the database is registered as 'System DSN' in 'ODBC

Data Source Administrator'. This database is located in the default directory of IAM after it

is installed. The data source name is entered as 'project' during installation.

6.2.1 ISAPI Filter

After registration of data source, the filter has to be loaded in IIS. Loading procedure

in IIS 3.0 is somewhat complex because filter entry is made in the 'Windows Registry'.

However, since IIS 4.0 is used for development of the software, loading is simple. Here

loading of the filter in IIS 4.0 is elaborated in table 6.1

Table 6.1-Steps for adding a filter to a Web server or Web site

1. In 'Internet Service Manager', select the Web server or Web site and open its

property sheets.

2. Click the ISAPI Filters tab.

3. Click the Add button.

 85

4. Type the name of the filter in the Filter Name box and either type or browse for

the DLL file in the Executable box.

5. Click OK.

6. To change the load order of a filter, use the arrows.

7. If a global filter has been added or changed, the Web server must be stopped and

restarted to load the new filters into memory. A filter that is added at the Web site

level is automatically loaded when added.

6.2.2 IAM

A user-friendly installation procedure has been developed by IAM. Installation

procedure has been developed in such a way that it prompts the user about the task for each

installation step. The program can also be executed without installation by running IAM.exe

file.

6.3 User Interface-IAM

The interface has been kept as simple as possible. This interface has been created

with Visual C++ dialog based application wizard. The entire user interaction is visual. It has

been tried that user should manually enter bare minimum values and most of the choices are

selected with the mouse click. When the program is executed the first dialog (Internet

Account Manger) that appears, is shown in fig 7.1.

 86

Fig 6.1- Internet Account Manger-Main Dialog

The Internet Account Manger of fig 7.1 is the main dialog. It displays a number of

options selectable by different buttons. Each button does to following:

a. User Existing: -Opens a dialog to display already registered users.(Fig 6.3)

b. User Add: - Opens a dialog to register a new user to the database.(Fig 6.4)

c. Group Existing: - Opens a dialog to display already registered groups.(Fig

6.6)

d. Group Add: - Opens a dialog to register a new group to the database.(Fig

6.7)

e. Customize Directory: - Opens a dialog to display already registered

directories. These may NTFS or FAT directories. (Fig 7.7)

f. Customize Logging: - Opens a dialog to display log viewing dialog (Fig 7.8)

g. OK: - Closes the dialog box.

h. Help: - Used to invoke the online help about IAM.

 87

i. About: - Displays the dialog that shows the version of the application and the

developer's name as shown in Fig 6.2

Fig 6.2-About IAM Dialog

A number of dialogs are opened for setting up different credentials. There are total of

17 dialogs developed for the entire interface. These dialogs can be distributed under

following main subjects.

a. User manipulation Dialogs

b. Group manipulation Dialogs

c. Directory manipulation Dialogs

d. Log manipulation Dialog

6.3.1 User Manipulation dialogs

Under this subject three dialogs are explained namely Existing Users, Add User and

Edit User. The operation of these dialogs will be explained in this section.

6.3.1.1 Existing Users

This dialog displays already registered users in a list. It can select and delete a user

with Delete button. It invokes an Add User dialog with Add button. It also invokes Edit User

dialog to change user credentials with Edit button. This dialog is shown in fig 6.3.

 88

Fig 6.3-Existing Users Dialog

A user account that has been expired is automatically displayed as (Expired). An

expired account cannot be used by IIS. The manger has the option to either delete the expired

account or update its expiry date.

6.3.1.2 Add User
In this dialog user name, user password and remarks about the account are added for

creating new account. Duplicate username or blank password can not be added for any

account. Fig 6.4 shows this dialog:

Fig 6.4-Add User Dialog

 89

Once an account is successful created, the expiry date is automatically set after one

month the account manager (AM) can change this expiry date from Edit User dialog.

6.3.1.3 Edit User
This dialog can change any of the added user credentials in Add User dialog (Fig

6.4). It can further change the expiry date of the account with the help of an elegant calendar

control. The expiry date is shown in two (long/short) date formats. Fig 6.5 shows the dialog.

Fig 6.5-Edit User Dialog

6.3.2 Group Manipulation Dialogs

Two dialogs fig 6.6 to fig 6.8 are discussed in this section. When Group Existing

button of main dialog (fig 6.1) is pressed a dialog for displaying the registered groups is

invoked. This dialog can delete the selected group by pressing Delete button. After pressing

the 'Delete' button, the system reconfirms the deletion process. This dialog has two more

buttons namely 'Add' and 'Edit', which invoke another dialog either to add a new group or to

change the members of selected group by selection from the lists. Dialog is shown in fig 6.6

 90

Fig 6.6-Existing Group Dialog

Dialog invoked by either Add or Edit button is the same. However, it displays either

of the two modes namely 'Add Mode' or 'Edit Mode'. In both the modes, behavior of the

dialog is entirely different. Fig 6.7 and fig 6.8 show the dialog in 'Edit' and 'Add' modes

respectively.

Fig 6.7-(Edit mode) Group Dialog

The dialog in 'Add' mode (fig 6.8) can be invoked from two buttons. Firstly from

Group Add button of main dialog of fig 6.6 and secondly from the Add button in the Edit

mode in fig 6.7

 91

Fig 6.8-(Add mode) Group Dialog

In 'Add' mode, all the buttons and list boxes are disabled and only addition of a new

group name in 'group-box' is possible. Protection has been made to avoid duplicate and blank

entries for a new group.

6.3.3 Directory Manipulation Dialogs

In IAM, any of the NTFS or FAT directories can be registered and different

protection methods can be applied on such registered directories. All such dialogs that are

related to directories and their protection methods are grouped n this section.

Fig 6.9-Protected Directories Dialog

 92

When 'Customize Directory' button on main dialog (fig 6.1) is pressed a dialog as

shown in fig 6.9 is invoked that displays all the registered directories. On this dialog, Delete

button can be used to delete any selected directory in the list. Add button invokes another

dialog as shown in fig 6.10 to add a directory (folder) in the list of protected directories.

Fig 6.10-Browse For Folder Dialog

Fig 6.11-Edit Directory Dialog

 93

The Edit button on protected directories dialog of fig 6.9 invokes another dialog to

display the active protection methods for the selected directory. This dialog is shown in fig

6.11: Possible protection methods by which, a directory can be authenticated are four as

enumerated below

a. By IP address

b. By referrer URL

c. By internal database

d. By mapping an NT user to the directory

A protection method is not active unless it is checked. The buttons for changing the

corresponding method are displayed only if a method is active. Each button of the

corresponding protection method invokes another dialog for handling the required job.

6.3.3.1 Setting Up IP Addresses
An IP address can be registered for a particular directory as permitted or not

permitted one. Fig 6.12 shows the dialog for adding a new IP address.

Fig 6.12-Add IP Address Dialog

The permission for an already entered IP address can be changed by pressing Edit IP

button of fig 6.11. For changing IP permission dialog of fig 6.13 is opened.

 94

Fig 6.13-Edit IP Address Dialog

In the dialog of fig 6.13, the 'Add' button moves an IP address from 'Not Permitted'

list to 'Permitted' list whereas the 'Remove' button does vice versa. Delete button removes

the selected IP address from either of the list.

6.3.3.2 Setting Up Referrer URLs
A URL can be added for a particular directory that is permitted to refer a client

browser from itself. A user that has been referred from registered URL is considered valid

and not authenticated by the IIS for any other protection method.

Fig 6.14-Add Delete permitted URL Dialog

 95

Add button adds the entered URL in the list of permitted URLs. Delete button deletes

the selected URL in the list. Dialog for performing the task shown in fig 6.14.

6.3.3.3 Assigning Registered Groups & Users To The Selected Directory.
Another protection method is to assign already registered groups or users to the

selected directory. Fig 6.15 shows the dialog that assigns the groups to the selected directory.

If a group is assigned to a directory then all users that are member of that group are

automatically assigned to the directory.

Fig 6.15-Edit Group Directory Dialog

Fig 6.16-Edit User Directory Dialog

 96

Similarly, users can also be assigned to any directory as permitted users. Fig 6.16

shows the dialog for changing the Internet user permissions.

6.3.3.4 Mapping A Directory To NT User
Any directory can be assigned a number of NT users created in ACL of the NT Web

server. The advantage of mapped internal user to the directory is to provide access of the NT

server to Internet user during authentication process with mapped user, when Internet user is

not registered in the internal ACL of the server. Fig 6.17 shows the dialog that maps the

directory to NT user.

Fig 6.17-MapTo NT User Dialog

6.3.4 Log Manipulation Dialog

Logging of events provides very valuable information to the account manager for

better management of the Web site. The system provided in the software gives log of such

events those have not been provided by IIS by default. Seven events can be logged. There are

four permanent events namely 'Date / time', 'Resourse', 'RemoteIP' and Status. However,

three events are selectable namely 'Unmapped remote users', 'Referrer URLs' and 'User

agent'. Fig 6.18 shows the dialog for logging events. There are different selectable options in

the dialog e.g. ' Logging Options' and ' Automatic Clear Log Options'.

 97

Fig 6.18 -Logging Record Dialog

a. Logging Options: - If Enable is checked only then the filter will log the

events. Moreover, out of three check boxes, only those events will be logged

that are checked.

b. Automatic Clear Log Options: - If Enable is checked only then log is

cleared automatically with further three options to clear daily, after three days

or after a week

Log can be cleared manually any time by pressing the 'Clear Log' button. The dialog

can be closed by pressing the 'Done' button. As the Done button is pressed a message box

appears asking whether to save the settings for the options for later us or otherwise. If 'Yes'

is pressed then all the settings for the options will be saved in the database and when the

dialog will be opened next time, the same environment will be available to the user.

 98

6.4 Summary

This chapter has provided an elaborate user guide. It provided the installation

procedure of the filter and IAM and later explained the working of each dialog of the IAM.

Discussion of IAM has been divided into four main sections according to the model of the

IAM interface. The four subsections are regarding manipulations of users, groups, directories

and logging events.

 99

Chapter 7
7 Conclusion

7.1 Introduction

This chapter firstly evaluates the software by discussing its capabilities. Secondly,

methodology adopted for software debugging and testing is explained. Thirdly, possible

future enhancements are enumerated.

7.2 System Evaluation

As the custom authentication and logging system has been developed to improve on

default working of IIS, so it must provide extra facilities to the administrator and allow him

to perform tasks that he cannot do in the IIS. The developed system provides the following

capabilities not handled by the default IIS system.

a. The custom software built does not depend on the NTFS based security and

ACL of NT but can work and protect directories both on NTFS and FAT file

formats.

b. New system does not use NTFS ACL's but instead it keeps its own

independent database that reduces the burden on the NT database. Since the

database is custom built, it can be altered according to the specific

requirements to accommodate more information when required.

c. Special emphasis has been given to make interface easy and familiar to the

administrators who have prior knowledge of the NT operating system.

d. Filters generally reduce the speed of request processing of the IIS as they

perform database hits. A caching mechanism in the form of circular double

link-list has been developed to store the 100 most recently authenticated

credentials of directories. If credentials are more than 100 in memory then

least recently used credentials will be removed from the memory, so there is

 100

no over burden on the memory. This method speeds up the verification of

request and reduces database hits.

e. In case, there is requirement to allow access of some NTFS directory to

remote users on Internet, that directory can be accessed by mapping remote

username and password to the NT Web server's ACL username and password.

f. Software is capable of blocking any IP address on the Internet, moreover, a

URL of permitted referrer Web site can be added for any directory. User being

referred from permitted Web site will be considered valid and shall be

permitted to access the protected directory without prompting the user for his

credentials.

g. Since the software is providing custom authentication for a Web site, so, to

make the process more useful it is also providing such custom logging that is

not performed by NT. This enables the administrator to manage the Web site

and improve it further as per the user's requirements.

7.3 Software Debugging

Debugging of ISAPI filter is a tricky and time-consuming job. Therefore, developers

must understand the mechanism of debugging DLLs before stepping into this area of

software development. Since in this project IIS 4.0 is used, debugging applicable to IIS 4.0 is

explained next.

There are several ways to establish an environment for debugging server components

and Internet Server extension DLLs when using IIS 4.0 or later [5]. If a debugger capable of

attaching to a Windows NT process is used, this functionality can be used to debug

component or extension. For example, if Visual C++ is used, following steps are adopted:

1. Start the iisadmin process. This can be done from the command line with the

command net start iisadmin. Services dialog box from the Control Panel can also be

used to start the IIS Admin Service, which will start iisadmin.

 101

2. Start Visual C++. Point to Start Debug on the Build menu and click Attach to

Process.

3. Select the Show System Process check box

4. Select the inetinfo process from the list and click OK.

5. Start the w3svc service. This can be done from the command line with the command

net start w3svc. Services dialog box in the Control Panel can also be used to start the

World Wide Web Publishing Service.

7.4 Software Testing

Since software is related to network communication, therefore its testing over a

network environment is very essential to ensure smooth communication. Moreover filter if

does not function properly that can crash the whole NT operating system (OS). Hence,

extreme care is required to handle the filters.

For development of the filter, a PC duly loaded with NT Server OS with 128 MB

RAM was used over Intranet environment. During development phase, Internet Explorer 4.0

was used on local host (stand alone PC) environment. This environment successfully

provided the development of around 80% logic for the ISAPI filter whereas 100%

development of IAM was possible on stand alone PC.

Final testing in debug mode of the filter was done over Intranet environment of

computer lab of computer department of MCS. Strategy included the activation of three

additional Web sites and then communication of these Web sites was tested over TCP / IP

protocols. Debugging with the help of additional Web servers made it possible to fine tune

the functioning of ISAPI filter software.

The release version of the software was tested over Intranet environment during

normal working of IIS. The OS used were NT Server, NT workstation and Windows 98. The

browsers tested were Internet Explorer 3.0, 4.0 and 5.0.

 102

7.5 Future Enhancements

Although the software has tried to cover as many aspects of custom authentication but

still advancements and improvements are possible. Possible enhancements in the software are

highlighted in the

a. Since this authentication filter uses basic authentication of NT, by default it

does not use the secure socket list (SSL) to encrypt the data. This make the

data sent venerable to be snatched at any place on the network. In order to use

SSL for outgoing data, SSL can be enabled form the key manger tool of NT,

which can be executed from the Windows NT start button or from MMC.

Presently, software does not provide a method to enable the SSL form with in

it.

b. Most of the Web sites require that the no of times users refer the Web site that

should be counted. This is done to determine the popularity of a particular

resource on the site. Although a general hit log is visible in log view, but a hit

count corresponding to each protected directory can be maintained and

displayed separately for the administrator who can determine popularity of a

particular resource.

c. The IAM provides administration of custom authentication from only the

server terminal hosting the protected directories and it is not possible to

exercise such administration remotely. ASPs can be used to provide remote

administration of the protected directories if required and can be included in

the software.

Presently the software is carrying out authentication in four different ways namely by

IP address, by IAM database, by referrer and mapping Internet user to internal NT user of

ACL. However, these methods can be further enhanced. Some of the suggested enhancements

could be:

a. Time Blocking: - Users can be given access to specific directory with in

certain time frame. This may be required on sites where user load is quite

 103

heavy, so, to prevent the degradation in IIS performance, priorities can be

assigned to users by allocating specific time to each. The user would then be

able to access the resource only during that allowed period.

b. Resource Size (Content Length): - Users can be assigned specific size limit

that is allowed to be accessed by the user. A size greater than they're allowed

can be denied.

c. Server Port: - The method can be inducted to only accept those requests that

arrive from a secure port and reject all the rest.

Similarly, the software logs six (6) types of credentials that can be further increased

according to the specific needs. Following additional information can be also be logged.

a. Content Length: - That is the number of bytes the script can except to receive

from the client.

b. Content Type: - That is the type of information supplied in the body of the

client.

c. Server Port: - that is the TCP / IP port on which, the information was

received.

 104

7.6 Summary

This small chapter has been included for the interest of those whom to excel in the

field of ISAPI filters. This chapter firstly evaluates the software by discussing its capabilities.

Secondly, methodology adopted for software testing is explained. Thirdly, possible future

enhancements are enumerated.

 105

APPENDIX A

Table A.1 - List of abbreviations

1. HTTP Hyper Text Transfer Protocol

2. ISAPI Internet Server Application Programming Interface

3. CGI Common Gateway Interface

4. ASP Active Server Pages

5. ECB EXTENSION_CONTROL_BLOCK

6. HTML Hyper Text Mark UP Language

7. DLL Dynamic Link Library

8. ODBC Open Database Connectivity

9. URL Uniform Resource Locator

10. NTLM NT challenge / Response

11. FAT File Allocation Table

12. NTFS New Technology File System

13. IAM Internet Account Manager

14. AM Account Manager

15. WWW World Wide Web

16. DAO Data Access Objects

17. IDE Integrated Development Environment

 106

Table A.2 - The HTTP status codes

Status

Code

Response Phrase Definition

200 OK The request has succeeded.

401 Unauthorized The request needs user authentication.

403 Forbidden The server understood the request but refusing

to fulfill it.

404 Not Found The server has not found anything matching the

request.

500 Internal Server Error The server encountered an unexpected

condition that prevented it from fulfilling the

request.

501 Not Implemented The server can't fulfill the request. This is the

appropriate response when the server does not

recognize the request method and can't use it for

any resource.

 107

APPENDIX B [7]

1. HTTP_FILTER_CONTEXT Structure

typedef struct _HTTP_FILTER_CONTEXT

{

DWORD cbSize;

// This is the structure revision level.

DWORD Revision;

// Private context information for the server.

PVOID ServerContext;

DWORD ulReserved;

// TRUE if this request is coming over a secure port

BOOL fIsSecurePort;

// A context that can be used by the filter

PVOID pFilterContext;

// Server callbacks

BOOL (WINAPI * GetServerVariable) (

struct _HTTP_FILTER_CONTEXT * pfc,

LPSTR lpszVariableName,

LPVOID lpvBuffer,

LPDWORD lpdwSize

);

BOOL (WINAPI * AddResponseHeaders) (

 struct _HTTP_FILTER_CONTEXT * pfc,

LPSTR lpszHeaders,

DWORD dwReserved

);

 BOOL (WINAPI * WriteClient) (

 108

struct _HTTP_FILTER_CONTEXT * pfc,

LPVOID Buffer,

LPDWORD lpdwBytes,

DWORD dwReserved

);

VOID * (WINAPI * AllocMem) (

struct _HTTP_FILTER_CONTEXT * pfc,

DWORD cbSize,

DWORD dwReserved

);

BOOL (WINAPI * ServerSupportFunction) (

struct _HTTP_FILTER_CONTEXT * pfc,

enum SF_REQ_TYPE sfReq,

PVOID pData,

DWORD ul1,

DWORD ul2

);

} HTTP_FILTER_CONTEXT, *PHTTP_FILTER_CONTEXT;

2. HTTP_FILTER_RAW_DATA Structure

typedef struct _HTTP_FILTER_RAW_DATA

{

 // This is a pointer to the data for the filter to process.

PVOID pvInData;

DWORD cbInData; // Number of valid data bytes

DWORD cbInBuffer; // Total size of buffer

DWORD dwReserved;

 109

} HTTP_FILTER_RAW_DATA, *PHTTP_FILTER_RAW_DATA;

3. HTTP_FILTER_PREPROC_HEADERS Structure

// This structure is the notification info for when the server is about to

// process the client headers

typedef struct _HTTP_FILTER_PREPROC_HEADERS

{

BOOL (WINAPI * GetHeader) (

 struct _HTTP_FILTER_CONTEXT * pfc,

LPSTR lpszName,

LPVOID lpvBuffer,

 LPDWORD lpdwSize

);

// Replaces this header value to the specified value. To delete a header,

 // specified a value of '\0'.

BOOL (WINAPI * SetHeader) (

 struct _HTTP_FILTER_CONTEXT * pfc,

LPSTR lpszName,

LPSTR lpszValue

);

// Adds the specified header and value

BOOL (WINAPI * AddHeader) (

 struct _HTTP_FILTER_CONTEXT * pfc,

 LPSTR lpszName,

 LPSTR lpszValue

);

DWORD HttpStatus; // New in 4.0, status for SEND_RESPONSE

 DWORD dwReserved; // New in 4.0

} HTTP_FILTER_PREPROC_HEADERS,

*PHTTP_FILTER_PREPROC_HEADERS;

 110

4. HTTP_FILTER_AUTHENT Structure

typedef struct _HTTP_FILTER_AUTHENT

{

// Pointer to username and password, empty strings for the anonymous user

// Client's can overwrite these buffers which are guaranteed to be at

 // least SF_MAX_USERNAME and SF_MAX_PASSWORD bytes large.

CHAR * pszUser;

 DWORD cbUserBuff;

CHAR * pszPassword;

DWORD cbPasswordBuff;

} HTTP_FILTER_AUTHENT, *PHTTP_FILTER_AUTHENT;

5. HTTP_FILTER_URL_MAP Structure

typedef struct _HTTP_FILTER_URL_MAP

{

const CHAR * pszURL;

CHAR * pszPhysicalPath;

DWORD cbPathBuff;

} HTTP_FILTER_URL_MAP, *PHTTP_FILTER_URL_MAP;

6. HTTP_FILTER_ACCESS_DENIED Structure

typedef struct _HTTP_FILTER_ACCESS_DENIED

{

const CHAR * pszURL; // Requesting URL

 const CHAR * pszPhysicalPath; // Physical path of resource

DWORD dwReason; // Bitfield of SF_DENIED flags

 111

} HTTP_FILTER_ACCESS_DENIED,

*PHTTP_FILTER_ACCESS_DENIED;

7. HTTP_FILTER_LOG Structure

typedef struct _HTTP_FILTER_LOG

{

const CHAR * pszClientHostName;

const CHAR * pszClientUserName;

const CHAR * pszServerName;

const CHAR * pszOperation;

const CHAR * pszTarget;

const CHAR * pszParameters;

DWORD dwHttpStatus;

DWORD dwWin32Status;

DWORD dwBytesSent; // IIS 4.0 and later

 DWORD dwBytesRecvd; // IIS 4.0 and later

DWORD msTimeForProcessing; // IIS 4.0 and later

} HTTP_FILTER_LOG, *PHTTP_FILTER_LOG;

 112

Bibliography

[1] Alan R. Carter, “MCSE Study Guide on Windows NT Server 4.0” , IDG

Books, 1998.

 [2] Kevin Clements, Chris Wuestefeld and Jeffrey Trent, “Inside ISAPI”

,New Riders Publications, 1997.

[3] Matthew Strebe and Charles Perkins, “ MCSE study Guide on Internet

Information Server 4", BPB publications, 1999.

[4] On line help, Microsoft NT Option Pack 4.

[5] Online help, Microsoft Developers Network(MSDN) Library, October 99

[6] Stephen Genusa, Bobby Addison Jr and Allen Clerk, “Special Edition

Using ISAPI”, QUE series, 1997.

[7] Httpfilt.h, Microsoft header file provided in Visual C++ version 6.0

[8] Catherine Ricardo, "Database Systems Principles, Design and

Implementation", Maxwell Macmillan, 1990.

[9] Roger Jennings, "Database Developer's Guide with Visual C++ 4, Second

Edition", SAMS, April 1996.

