
AUTOMATED REMOTE DATABASE
RETRIEVAL THROUGH TELEPHONE.

BY

Athar Mohsin Zaidi

A DISSERTATION

Submitted to

Faculty of National University of Science and technology Technology
(NUST)

In partial fulfillment of the requirements

For the degree of

MASTERS OF COMPUTER SCIENCES

Department of Computer Sciences

2000

 2

ABSTRACT

AUTOMATED REMOTE DATABASE RETRIEVAL

THROUGH TELEPHONE.

By

Athar Mohsin Zaidi

Base workshops of Corp of E.M.E play an important role in

managing requisite level of vehicles / equipment availability to the

field units of Pakistan Army. These includes central, base, combined

and area workshops. Vehicle / equipment, which is beyond the repair

capability of field workshops, is back loaded to ordnance depots and

then fed to the base workshops concern for necessary overhaul.

Subsequently overhauled vehicle / equipment is returned to ordnance

depots for their subsequent issue to the units. In addition to this

channel the vehicles / equipment are entertained by the base workshops

directly from the units after obtaining necessary approval from their

respective Commander EME and EME Directorate (G.H.Q). Units who

wish to utilize expertise of base workshop faces a lengthy

correspondence before and after sending their vehicles / equipment, to

keep track of repair of their vehicles / equipment. At the same time

base workshops also gets engaged in correspondence with the units to

inform them about the progress of repair. Before sending the vehicles

to base workshops, Field units route their repair requests to GHQ

through CEME. GHQ then asks the feasibility report from Base

workshop, in response Base workshop sends a deposit date for repair.

 3

To avoid lengthy correspondence there is a need to establish a

dedicated system at base workshop that provide current information to

the units regarding availability of repair space in workshop as well as

the repair status of their vehicles / equipment, at any time they need to

know. This could be achieved if field units get the required information

from base workshop on telephone. With the provision that the in

coming calls be attended by the computer. The proposed project will

be focussed on establishing such an atomized system. The basic idea

of the project is that, a PC will be placed at Base workshops which

shall handle all in coming (Units who wishes to send or check the

status of repair), Telephone calls and reply to the units according to

their queries, after searching the data base. The PC will search for the

requested data, convert the information in voice form and sent it to the

requesting unit over the telephone line. It is appreciated that by

establishing such a system units could remotely access and retrieve the

required information about their vehicles / equipment, through a

telephone line. However this is a research oriented project basing on

the research a prototype of the project will be developed. All necessary

implementation parameters could be included for actual

implementation.

 4

Table of Contents
List of Tables…

List of Figures …

Chapter1 Introduction

1.1 Back ground

1.2 Existing Procedure

1.3 Problems Statement

1.4 Approach to solve problem

1.5 Objective and Advantages of Project

1.6 Organization of Dissertation

Chapter2 Telephony API

2.1 Introduction

22 Definitions
 2.2.1 Telephony API

 2.2.2 WOSA

 2.2.3 Modem

 2.2.4 Unimodem

2.3 TAPI Model
 2.3.1 Phone based

 2.3.2 Line based

 2.3.3 TAPI Architecture

 2.3.4 TAPI software Architecture

2.4 TAPI functions

2.5 Synchronous and Asynchronous operations

2.6 Summary

 5

Chapter 3 Database
3.1 Introduction

3.2 Definitions

 3.2.1 Jet database engine

 3.2.2 DAO Vs ODBC

 3.2.3 Dynaset

 3.2.4 Record set

 3.2.5 Snapshot

 3.2.6 Tabledef

3.3 DAO and MFC

3.4 Summary

Chapter4 Implementation Issues
4.1 Introduction

4.2 Database

 4.2.1 Tables

 4.2.2 Queries

4.3 Visual C++ Classes

4.4 Administrator's interface

4.5 User's interface

4.6 Summary

Chapter5 Project’s guide line
5.1 Introduction

5.2 Administrator's interface

5.3 Guide lines for user

Chapter6 Conclusion and contribution
6.1 Summary

6.2 Future Research

6.2 Brief Concept of SAPI and TTS

 6

6.3 Conclusion

Appendix A.

Appendix B.

Bibliography

 7

CHAPTER 1

INTRODUCTION

1.1 Background:
Corps of Electrical and Mechanical Engineers (E.M.E) is one of

the administrative services which plays its part in administration of the

Army by providing a comprehensive repair and maintenance supports

to vehicles and equipment used by the units of Pakistan Army. The

task of repair and maintenance is performed at various echelons of

repair. At field formation level this task is being performed by field

workshops. Field work shops falls under second echelon of repair and

according to the permissive repair schedule issued by General Head

Quarters (G.H.Q) field workshops are authorize to carry out limited

repair work.. The work that does not fall with in the permissive repair

schedule of field workshops is forwarded to higher echelons of repair

on deposit repair work orders. This includes Area, Medium and Base

workshops. E.M.E Base Workshops are designed to carry out base

repair and overhaul of repairable stock held by the ordnance depots.

Base workshops play an important role in managing requisite level of

vehicles / equipment availability to the field units of Pakistan Army.

501 Central workshop E.M.E is the largest Base workshop of Pakistan

Army. Basic aim of this workshop is to deal in overhauling of

Vehicles. G.H.Q assignees various overhauling projects to this

workshop in order thin out the repairable stock of Central Mechanical

Transport and Supply Depots (C.M.T&S.D) Golra. As a result of these

projects bulk volume of repairable stock is feed to 501 central

workshop. On the other hand field formations also sends their vehicles

after initiating and approval of deposit repair work orders to get them

overhauled. So there are two types of clients that deal with Base

 8

workshops i.e. G.H.Q and field units. Both these clients need to

establish a close communication link with base workshop to monitor

the progress of repair work being done at base workshop. Field units

located far from base workshop, establishes this link through

traditional mailing system or by sending liaison parties which is a time

consuming process.

1.2 Existing procedure:
Action for deposit repair will normally be initiated, when a

vehicle, has gone out of action, is beyond the capability of field

workshop. User units for sending the vehicle to the base workshops are

adopting the following procedures.

a. Units wish to send their vehicle / equipment for base

repair, they initiates the deposit repair work order for base

workshop through CEME and GHQ, EME Directorate.

b. On receipt of deposit repair work order, G.H.Q asks the

feasibility of repair from base workshop concern, to

accord sanction of repair.

c. Base workshop after carrying out necessary ground

checks keeping in view the factors such as availability of

floor space in workshop, existing workshop commitments

communicate a PSS (please send store) date to the units.

d. Once the deposit repair work order get sanctioned and

Units receives PSS date they send their vehicles to base

workshops.

e. After depositing the vehicle to the base workshops, units

start keeping track to monitor the progress and

completion of the job. This leads to a lengthy

correspondence between units and base workshops. In

case some user unit wants to check the status of their

 9

vehicle on telephone Planning and Control (P & C)

section, due to heavy repair commitments in overhauling

of depot stock, do not have the current repair situation of

all field repair works., so the units are asked to call again

after some delay.

f. For monitoring the status of overhauling projects G.H.Q

and C.M.T&S.D Golra are dependent on monthly report

and returns. If in case they want to know latest position

they have to contact to the officer in charge P&C, who

after consulting his record will reply.

1.3 Problem Statement:
As mentioned those base workshops are aimed to provide

overhauling facilities to the vehicles and equipment. The base

workshop chosen as reference workshop for the project is the largest

base workshop vis-a-vis it’s dependent units are in huge number.

Situation arises when all the units start asking about their vehicle’s

repair status and at the same time some other units start requesting for

a vacancy in order to deposit their vehicle. The officer in charge P&C-

section of base workshop handles reply to all those queries. The

existing system has a problem that before depositing the vehicles field

units has to wait a considerable long time to know the availability of

floor space in base workshop. Second after depositing the vehicle they

either check the status of repair through traditional mail system or by

engaging officer in charge P&C on telephone and depriving him from

his basic planning task by calling number of times. Existing system not

only time cumbersome for the base workshops but also irritating for

the user units.

 10

1.4 Problem solving approach:
The concept of the project is discussed with the help of

following flow chart. The flow diagram gives a bird's eye view about

the basic building blocks used in the project and the sequence of

execution. Once the user will call from a remote location he gets

connected with a PC. Before login the caller PC will first ask the user

for his password. Only valid users will be welcomed to proceed with

the query. This activity of project will be dealt through Telephony

Application Programming Interface (TAPI), by utilizing Modem and

sound card. Database is designed using Microsoft Access. The

complete code of the project is written in Microsoft Visual C++.

 11

Fig 1.1 Concept of Project

33

Yes

No

User
on
Teleph

Remote user on
Telephone

PC at Base workshop

Modem Sound
Card

Caller's
Password

BANo/Pr
oject

Check

Check

 If

Database

WAVE Files

22
11

Yes

No

Error
Message

 12

1.5 Objective and advantages:
Officer in charge of P&C is the key person in any base

workshop. He has to plan the working of base workshop in such a

fashion that all available resources, such as workshop floor capacity,

Employment of technicians and availability of required spare parts are

utilized optimally, and no work get pending for want of theses

resources. It is also the part of the planning that workshop should

remain functional through out the year. Keeping in view the quantum

of job, performed by the officer in charge P&C, it is felt that some

system must exists that not only provide timely assistance and current

situation to the user units but on the other hand give some relief to the

officer in charge P&C to plan the things smoothly. Under this scenario

the objective of this project is, ”To design a prototype of automated

data retrieval system at base workshop. That may provide current

repair status of the vehicles belonging to field units and C.M.T&S.D

Golra vis-a-vis communicate the availability or non availability of

floor space before accepting a new vehicle for overhauling". By

designing such a automated system G.H.Q, C.M.T&S.D Golra and

field units could get the required information from the computer placed

at base workshop through telephone with out engaging a person at the

base workshop’s end. Interested person will dial the number of base

workshop, that telephone line will be connected to a PC which offer

the caller to login through entering his pass word and then invites to

enter the desired query. The PC will reply to the caller an appropriate

message based on the query entered by the caller. During the entire

process PC at base workshop will be handling the telephonic calls by

searching the database. That caller need not to be in possession of PC,

instead he will be getting the required information on his telephone set.

 13

Keeping in view the existing procedure, following advantages will lead

and to enhance the efficiency of P&C as well in saving the time and

efforts of user units.

a. Field units will get timely information about availability

of repair vacancy. If the vacancy exists, the PC will

communicate a control number against that particular

vacancy. Basing on that control number the units may

start completing the required formalities of depositing

their vehicle this will cut down the delay in waiting for

reply.

b. Field units will get the current information about the

status of their deposited vehicles at any time they wish to

know about. The caller himself will retrieve that

information from the PC through telephone. This give

relief to the user units as well as to the person concern at

base workshop.

c. It would ease out the working at Base workshops by

providing relief to the officer in charge of P&C-section

by not addressing the correspondence regarding field

units queries.

d. It would facilitates the GHQ (Ordinance Directorate,

EME Directorate) and ordinance depots to coordinate

with Base workshops more efficiently, as they will

begetting the current information at any time during the

phase of their planning.

1.6 Organization of Dissertation
(This portion will be completed after finalization of written

material)

 14

CHAPTER 2

Telephony API

2.1 Introduction
When the term telephony is heard in the context of computer, it

gives a thought he think of data or FAX modems and voice grade

telephone lines. and very little else. Telephony Application

Programming Interface (TAPI) goes far beyond these simple concepts

and provides a consistent programming interface for a variety of

devices operating on voice grade lines. The devices include modems,

FAX modems, voice capable modems, computer-controlled telephone

sets, and many more. TAPI provides services for placing outgoing

calls, accepting incoming calls, and managing calls and devices. This

chapter provides a general overview of the Telephony API and how it

fits into the Windows Open Services Architecture (WOSA) (Windows

Open Services Architecture) model. Two main devices, Line devices

and Phone devices, defined within the TAPI model will be discussed in

detail.

2.2 Definitions

2.2.1 Telephony API
 The Telephony Application Programming Interface (TAPI) is

an application-programming interface that is used to communicate by

means of telephones. The TAPI is one of the most significant API sets

released by Microsoft, API is a set of routines that an application

program uses to request and carry out lower-level services performed

by a computer's operating system. It is a single set of function calls that

allows programmers to manage and manipulate any type of

communications link between the PC and the telephone line [1].

Formatted

Formatted

Formatted

Formatted

 15

Telephony services are divided into Assisted Telephony services and

the services provided by the full Telephony API. In general, the full

Telephony API is used to implement powerful telephonic applications

and Assisted Telephony is used to add minimal but useful telephonic

functionality to non-telephony applications. Telephony's services are

divided into the groups shown in the following illustration:

Fig 2.2 Grouping of TAPI services

2.2.2 Windows Open System Architecture(WOSA)
Based on the WOSA model, Windows Telephony consists of the

TAPI and TAPI32 dll, (which forward application requests to the

telephony service for processing), tapisrv.exe (which implements and

manages the TAPI functions), and one or more telephony service

providers (drivers).

 When an application calls a TAPI function, the TAPI dynamic-

link library validates and marshals the parameters of the function and

forwards it to tapisrv.exe details about DLL and it’s advantages in use

Formatted

 16

is shown at Appendices ‘A’. TAPISRV (the telephony service)

processes the call and routes a request to the appropriate service

provider. To receive requests from TAPISRV, the service provider

must implement the Telephony Service Provider Interface (TSPI). A

user can install any number of service providers on a computer as long

as the service providers do not attempt to access the same hardware

device at the same time. The user associates the hardware and the

service provider when installing. Some service providers may be

capable of accessing multiple devices. In some cases, the user may

need to install a device driver along with the service provider.

Applications use the TAPI functions to determine which services are

available on the given computer. TAPI determines what service

providers are available and provides information about their

capabilities to the applications. In this way, any number of applications

can request services from the same service provider; TAPI manages all

access to the service provider. As long as an application does not

depend on optional features, the applications can, without

modification, use any services to carry out telephony tasks, even

services made available after the application is developed. This is

because the application always accesses the many different services

through TAPI, which translates the requests the application makes into

the actual protocols and interfaces required [2].

2.2.3 Modem
At a minimum, the modem must support the Microsoft Windows

98 operating system, including TAPI and communications under the

Microsoft Win32 API. Most modems are compatible with Windows

98.A modem is a device used for data or fax transmission. If Windows

98 does not support a modem, or the modem is not directly compatible

with a supported model, the modem manufacturer must supply a driver

Formatted

 17

for the modem. This driver must supply the Service Provider Interface

(SPI) functions called by TAPI. Most commercially available modems

comply with Windows 98, because almost all comply closely with the

international standards to use the UNIMODEM service provider

included in Windows 98 [3].

2.2.3.1 Unimodem
The universal modem driver, provided with Windows, that

translates Telephony Service Provider Interface (TSPI) calls into AT

commands, and sends the commands to a virtual device driver that

talks to the modem. . A universal modem is the one that supports

standard modem AT commands, Such as PCMCIA modems.

a) Wave Files

2.3 The Telephony API Model
The telephony API model is designed to provide an abstracted

layer for access to telephone services on all Windows platforms. In

other words, the telephony API is a single set of functions that can be

used to access all aspects of telephony services within the Windows

operating system. The aim of TAPI is to allow programmers to write

applications. Applications written using TAPI to gain direct access to

telephone-line services work the same on analog or digital phone lines.

Applications that use TAPI can generate a full set of dialing tones and

flash-hook functions. The TAPI design model is divided into two

areas, each with its own set of API calls [4]. The two TAPI devices are,

Line devices, to model the physical telephony lines used to send and

receive voice and data between locations and Phone devices to model

the desktop handset used to place and receive calls.

 18

2.3.1 Line Devices
 The line device is used to model the physical telephone line. It

is important to understand that, in TAPI, the line device is not really a

physical line; it's just a model or object representing a physical line. In

TAPI applications, a program could keep track of several line devices,

each of which is connected to a physical line. That same TAPI

application could also keep track of multiple line devices that number

more than the total physical lines available to the PC. For example, a

single TAPI application could be designed to provide voice, fax, and

data links for a user. The TAPI application would identify three line

devices. One for voice calls, one for fax transmission, and one for

sending and receiving data via an attached modem. If the PC has only

one physical phone line attached, the TAPI application would share the

one line between the three defined line devices. This is called dynamic

line mapping. Each time the TAPI application starts a line device, it

requests the first available physical line that has the capabilities needed

(voice, fax, data, and so on). If a line is not available, a message to that

effect is returned to the calling program. In some cases, such as fax

transmissions, the TAPI application may "queue up" the line request

for processing at a later time. If two lines are available, the TAPI

application uses them as they are needed. If a third line device becomes

active, the TAPI application knows that there are no other available

open lines and notifies the user (or possibly queues up the outbound

call for later) [5].

2.3.2 Phone Devices
The second type of device modeled by TAPI is the phone

device. This model allows TAPI programmers to easily create "virtual

phones" within the PC workspace. For example, a standard PC with a

sound card, speakers, and microphone can emulate all the functions of

a desktop phone. These virtual phones, like their line device

Formatted

 19

counterparts, need not exist in a one-to-one relationship to physical

phones. A single PC could model several phone devices, each with

their own unique characteristics. When an actual call must be made,

the user could select one of the phone devices, enter the desired

number and then the TAPI application would attach the phone device

to an available line device [6].

2.4 Typical Configurations

The TAPI model is designed to function in several different

physical configurations, which each have advantages and drawbacks.

There are four general physical configurations [7]:

2.4.1 Phone-based
This configuration is best for voice-oriented call processing

where the standard handset (or some variation) is used most frequently.

In phone-based TAPI configurations, the standard telephone handset is

connected to the telephone switch and the PC is connected to the

telephone. This configuration is most useful when the telephone

handset is the primary device for accessing the telephone line. Since

the telephone rests between the PC and the switch, the PC may not be

able to share in all the activity on the line. A phone-based

configuration does not preclude the use of the PC to originate calls. As

long as the PC is equipped with a phone card that allows dialing, the

PC can originate a call and then allow the handset to pick up on that

call at any time

2.4.2 PC-based
This configuration is best for data-oriented call processing where

the PC is used most frequently for either voice or data processing.

Shared or unified line-This is a compromise between phone-based and

PC-based systems. It allows all devices to operate as equals along the

service line. The primary difference between this configuration and the

 20

others is that the PC acts as either a voice-server or a call switching

center that connects the outside phone lines to one or more PCs and

telephone handsets. The primary advantage of multiline configurations

is that user do not need a direct one-to-one relationship between phone

lines and end devices (phones or PCs). PC-based TAPI configurations

place the PC between the telephone switch and the standard handset.

This configuration is most useful when the PC is the primary device

for accessing the telephone line. In this configuration, the PC most

often originates phone calls. Typically, this is done via a phone card

and software on the PC that manages a list of phone numbers and

handles the dialing of the phone. Depending on the exact media mode

of the call, the PC can be used to display digital data on screen while

handling voice information, too. Users could originate a voice call

through the handset and then switch to the PC to capture and display

digital data sent over the same line. Another major advantage of the

PC-based configuration is that the PC can act as a call manager for the

handset. This is especially valuable in a mixed-mode environment

where voice, data, and fax are all coming in to the same phone address.

For example, as a call comes in to the

attached phone line, the PC can answer the call and determine the

media mode of the call. If it is a fax call, the PC can route the call

directly to an attached fax machine (or to the fax driver on the PC).

Data calls can be handled directly by the PC and voice calls can be

forwarded to the attached handset.

2.4.3 The Shared or Unified Line Configuration
The shared or unified line configuration is a bit of a compromise

between PC-based and phone-based configurations. The shared line

configuration involves a split along the line leading to the switch. Both

the PC and the phone have equal (and simultaneous) access to the line.

 21

The advantage of the shared-line configuration is that either device can

act as the originator of a call. The primary disadvantage is that both

devices have equal access to incoming calls. In other words, as a call

comes in, both devices will ring. Depending on the software operating

on the PC, it is possible that both devices would attempt to answer the

same incoming call. This situation is much like having two extension

phones along the same access line. The unified line configuration

offers the combined benefits of the PC-based configuration and the

shared-line configuration. In the unified line configuration, the access

line goes directly from the switch into a telephone card in the PC. The

PC also has handset equipment either attached to the phone card or

integrated into the PC itself.

2.4.4 Multilane Configuration
TAPI is also designed to support multiline configurations. In this

arrangement, TAPI is used to provide third-party call control. Single

lines act as the first (and only) party in a telephone call. In a multiline

environment, a device can act as a third party in a telephone call. The

most common form of third-party call control is a central switchboard

in an office. When a call comes in, the switchboard (the third party)

accepts the call, determines the final destination of the call, routes the

call to the correct extension, and then drops out of the call stream.

2.5 Architectural Overview

 22

Win32 Telephony is a full, 32-bit implementation of the original

16-bit Windows Telephony application and service provider interface.

Other than components provided for backward compatibility, all

components of Win32 Telephony, including service providers, are

implemented in 32 bits. The following figure illustrates the architecture

of Win32 Telephony on the Windows operating systems [8].

Fig 2.2 TAPI Architecture

Existing 16-bit applications link to TAPI. In Windows 3.1 and

Windows 95, TAPI is the core of Windows Telephony. Under

Windows NT/Windows 2000, TAPI is simply a thunk layer to map 16-

bit addresses to 32-bit addresses, and pass requests along to tapi32.dll.

(Thunk is a small section of code that performs a translation or

conversion during a call or indirection. For example, a thunk is used to

change the size or type of function parameters when calling between

16-bit and 32-bit code.)

Existing 32-bit applications link to tapi32.dll. In Windows 95,

tapi32.dll is a thunk layer to TAPI. In Windows 98 and Windows

NT/Windows 2000, tapi32.dll is a thin marshaling layer that transfers

function requests to tapisrv.exe and, when needed, loads and invokes

service provider user interface DLLs in the application's process,

 23

(Marshaling is defines as the packaging and sending interface method

calls across thread or process boundaries).

In the Win32 implementation, tapisrv.exe is the core of TAPI. It

runs as a separate service process, subsuming the role played in

Windows 3.1 and Windows 95 by the tapisrv.exe hidden process and

TAPI itself. All telephony service providers execute in the tapisrv.exe

process, eliminating the difficulties that arose in previous versions of

Windows telephony caused by service providers sometimes running in

the TAPIEXE context, and sometimes in the context of an individual

application. Service providers can create threads in the TAPISRV

context as needed to do their work, and be confident that none of the

resources they create will be destroyed by the exit of any individual

application.

Underneath the telephony service provider DLL, the service

provider can use any system functions or other components necessary.

These functions include CreateFile and DeviceIOControl, which work

with independent hardware vendor-designed kernel mode components

and services, as well as standard devices such as serial and parallel

ports to control external, locally attached devices. The Telephony

service provider user interface DLL is new. This DLL is loaded by

TAPI into the process of an application that invokes any of the service

provider functions that can display a dialog box (for example,

TSPI_lineConfigDialog). The service provider can also cause its

associated UI DLL to be loaded and executed in the process of an

application if the service provider needs to display UI at unexpected

times, such as to display the Talk/Hang-up dialog box displayed by the

Universal Modem Driver (UNIMODEM) when a data modem is used

to dial an interactive voice call using TSPI_lineMakeCall (not

normally considered to be a UI-generating function).

 24

2.6 TAPI Software Architecture
The heart of TAPI is the TAPI dynamic link library (DLL) that

offers TAPI services to the applications. This DLL serves as a layer

between telephony applications and TAPI service providers. One such

service provider is the UNIMODEM driver; this Universal Modem

driver is supplied with Windows 95 and provides TAPI services for

modems compatible with the Hayes AT command set [6]. This basic

TAPI architecture is shown in Fig 2.2. In addition to the TAPI DLL

and the telephony service providers (drivers), another important, albeit

invisible, component of TAPI is the executable program tapiexe.exe.

This program plays an important role when TAPI sends notifications to

the calling application via callback functions [9].

Fig 2.2 The TAPI software architecture.

2.7 Synchronous and Asynchronous Operations

Many TAPI operations are synchronous; that is, when the TAPI

function returns, the operation is either completed or failed, in which

case an error code is returned. However, some TAPI operations are

asynchronous; the TAPI function returns indicating whether the TAPI

operation has been successfully initiated, but the operation is

 25

completed in another thread, and the application is notified via a

callback function. The callback function is registered with TAPI when

the TAPI library is initialized [10]. The actual callback mechanism

deserves a closer examination, especially because it has some

consequences as to how TAPI functions operate. When a service

provider wishes to place a notification, it calls the TAPI DLL. In

effect, it requests that the DLL notify all concerned applications that a

specific event has taken place. This first call to the TAPI DLL takes

place in the execution context of the service provider. The TAPI DLL

in turn sends a message to tapiexe.exe. This executable program calls

the TAPI DLL itself, this time in its own execution context. This call

instructs the TAPI DLL to post a Windows message to the applications

that need to be modified. When the application receives and processes

the message in its message loop, the message is dispatched to the TAPI

DLL again, this time in the application's execution context. The TAPI

DLL may in turn call the application's registered TAPI callback

function to notify the application of a TAPI event. The TAPI

notification mechanism is shown in Fig 2.4

 26

.

Fig2.4 Processing of TAPI events.

This mechanism has important implications for the architecture

of TAPI applications. For one thing, the scenario described here makes

it clear that TAPI applications must have a message loop in order to

process notifications correctly. Although the use of a callback function

may imply that a message loop is unnecessary, this is not the case; the

callback function is only called after the application receives a

Windows message that the TAPI DLL processes. Another consequence

concerns the use of multiple threads. It is important to realize that in

order for TAPI to operate as expected threads that call asynchronous

TAPI functions must have a message loop. The callback function is

called in the context of the thread making the asynchronous call; this

cannot happen unless the thread processes Windows messages.

2.8 Summary
TAPI is comparatively new subject and it has an important role

in implementation of this project. Secondly this subject has not yet

touched during any of the previous courses. Keeping in view its

 27

applications and it support in developing telephony based projects, it is

discussed in detail, so that it give benefit in future research.

 28

2.9 Chapter’s Bibliography

1. Telephony API

2. WOSA

3. Modem

4. TAPI

5. Line devices

6. Phone device

7. Typical configuration

8. Architectural over view

9. Software architecture

10. Synchronous and Asynchronous Ops

 29

CHAPTER 3

Design Parameters

3.1 Introduction
Before designing the database the understanding of design and

manipulation technique is an important factor which must be catered

for. The factors considered with Visual C++ are briefly discussed here.

Visual C++ is a vast programming language so only the portion related

to databases are discussed in this chapter. It focuses on the definitions,

techniques and methodologies used to design a database. The tables for

the project are designed after considering these design parameters.

3.2 Database

3.2.1 Table
A database consists of one or more tables; if more than one table

is included in a database, the entities described in the tables must be

related by at least one attribute class (field) that is common to two of

the tables. Tables for the project are designed basing on this basic rule.

Detailed discussion about the database of the project will be found in

chapter 4. Database of the project consists of more then one table as

shown in the following figure.

 30

Fig 3.1 Project database tables

3.2.2 Query
A query is a method by which programmers can obtain access to

a subset of records from one or more tables that have attribute values

satisfying one or more criteria. There are a variety of ways to process

queries against database [11]

3.2.3 Relations
The relational database models define three types of relations:

a. One-to-one relations require that one and only one record in a

dependent table relate to a record in a primary table. One-to-one

relations are relatively uncommon in relational databases.

b. One-to-many relations let more than one dependent table relate

to a record in a primary table. The term many-to-one is also used

to describe one-to-many relations. One-to-many relations

constitute the relational database model's answer to the

repeating-groups problem. Repeating groups are converted to

individual records in the table on the "many" side of the relation.

One-to-many relations are the most common kind of relations.

 31

c. Many-to-many relations aren't true relations, because many-to-

many relations between two tables require an intervening table,

called a relation table, to hold the values of the foreign keys.

(Relational-database theory only defines relations between two

tables.)

Keeping in view these parameters the queries are created for the

project. Following figure shows the design view of one of the query

designed to handle a query based on three different tables.

Fig 3.2 Query Design

3.2.4 Normalizing Table Data
The process of transforming existing data into relational form is

called normalization. Normalization of data is based on the assumption

that the data has been organized into a tabular structure wherein the

tables contain only a single entity class [12]. The objectives of

normalization of data include the following:

a. Eliminating duplicated information contained in tables

b. Accommodating future changes to the structure of tables

 32

c. Minimizing the impact of changes to database structure on the

front-end applications that process the data

The following sections describe the five steps that constitute full

normalization of relational tables. In most cases, the process of

normalization is halt at third normal form, or model. Many developers

bypass fourth and fifth normal forms because these normalization rules

appear arcane and inapplicable to everyday database design.

3.2.4.1 First Normal Form
First normal form requires that tables be flat and contain no

repeating groups. A data cell of a flat table may contain only one

atomic (indivisible) data value. If imported data contains multiple data

items in a single field, then one or more new fields need to be added to

contain each data item and then move the multiple data items into the

new field.

3.2.4.2 Second Normal Form
Second normal form requires that all data in nonkey fields of a

table be fully dependent on the primary key and on each element

(field) of the primary key when the primary key is a composite primary

key.

3.4.2.3 Third Normal Form
Third normal form requires that all nonkey fields of a table be

dependent on the table's primary key and independent of one another.

Thus, the data in a table must be normalized to second normal form in

order to assure dependency on the primary key. The issue here is the

dependencies of nonkey fields. A field is dependent on another field if

a change in the value of one nonkey field forces a change in the value

of another nonkey field.

 33

3.4.2.4 Over-Normalizing Data and Performance Considerations
After it has been determined that data structure meets third

normal form, the most important consideration is to avoid over-

normalizing the data. Over-normalization is the result of applying too

strict an interpretation of dependency at the third normal stage.

Creating separate tables is then the solution and these tables need to be

joining these tables in a one-to-one relationship to display the data

values This will be a very slow process unless indexes are created on

the primary key of each table.

3.4.2.5 Fourth Normal Form
Fourth normal form requires that independent data entities not

be stored in the same table when many-to-many relations exist between

these entities. If many-to-many relations exist between data entities,

the entities aren't truly independent, so such tables usually fail the third

normal form test. Fourth normal form requires to create a relation table

that contains any data entities that have many-to-many relations with

other tables.

3.4.2.6 Fifth Normal Form
Fifth normal form requires that to exactly reconstruct the

original table from the new table into which the original table was

decomposed or transformed. Applying fifth normal form to resulting

table is a good test to make sure that data didn't lose in the process of

decomposition or transformation.

Under the guidance of these design parameters a stable set of

relations is created to handle and manipulate the required data.

Keeping in view all these parameters and by applying all normalization

techniques database tables are created with reduced redundancies and

inconsistencies. Following figure shows one of the tables, which is

created after considering all the design parameters.

 34

Fig 3.3 Normalized database table

3.2.5 Jet Database Engine
The Microsoft Jet Database Engine is defined as a database

management system that retrieves data from and stores data in user and

system databases. The Microsoft Jet database engine can be thought of

as a data manager component with which other data access systems,

such as Microsoft Access and Microsoft Visual Basic, are built.

Microsoft Jet provides a variety of database management services,

including data definition, data manipulation, data integrity, and

security [13]. There are six basic services that a DBMS should provide.

The six basic functions of a DBMS are discussed as under:

a. Data definition and integrity: create and modify structures for

holding data, such as tables and fields, and ensure that rules to

prevent data Corruption from invalid entries or operations are

applied to data operations.

b. . Data Storage: Stores data in the file system.

c. Data manipulation: Add new data, modify or delete existing data.

d. Data retrieval: Retrieve data from the system.

 35

e. Security: Control users’ access to database objects and data, there

by protecting the objects and data against unauthorized use.

f. Data sharing: share data in a multi-user environment.

3.2.6 Data Accesses Object(DAO) Vs Open Database
Connectivity(ODBC)

DAO enable the programmers to access and manipulate

databases through the Microsoft Jet database engine. Through this

engine, programmers can access data in Microsoft Access database

files. Visual C++ provides extensive support for building DAO

applications through its feature AppWizard. Both DAO and ODBC are

application programming interfaces (APIs) that provides the ability to

write applications that are independent of any particular database

management system (DBMS) [14]. The choice between ODBC and

DAO is often a difficult one. In general, DAO provides more

flexibility, with support for both Data Definition Language (DDL) and

Data Manipulation Language (DML). The differences between DAO

and ODBC .are highlighted in the following table

 36

Table: 3.1 ODBC Vs DAO

 DAO Classes ODBC Classes
Access MDB files Yes Yes
Data Sources Yes Yes
Available for 16 bit No Yes
Available for 32 bit Yes Yes
Database Compaction Yes No
Database Engine
Support

Microsoft Jet Engine Target Database

DDL Support Yes Only via ODBC Call
DML Support Yes Yes
Updateable Joins Yes No

3.3 Microsoft Foundation Classes (MFC)
The MFC Library is the most distinguishing component of the

Visual C++ development system. This vast collection of C++ classes

and the hierarchical representation is shown as per appendix ‘C’. MFC

encapsulates most of the Win32 API and provides a powerful

framework for typical applications. A typical MFC application is one

that is created by using the Visual C++ AppWizard [15]. The primary

goal of the MFC is to provide an encapsulation for the Windows API.

Ideally, an MFC application never has to call Windows API functions

directly; instead, it constructs an object of the appropriate type and

utilizes the object's member functions. take care of any initialization

and cleanup that is necessary. For example, an application that needs to

draw into a window can do so by constructing a CClientDC object and

calling the object's member functions. The CClientDC constructor

makes the appropriate calls to create a device context, set up the

mapping mode, and perform other initializations. When the object goes

out of scope or is destroyed using the delete operator, the destructor

 37

automatically releases the device context. This kind of encapsulation

would make writing application programs easier. The classes in MFC

are loosely organized into several major categories as depicted in

appendix c.

3.4 The Data Access Objects of Visual C++
Database objects have existed in MFC and Visual C++.

Microsoft Jet database engine, combined with database functions

incorporated in the Visual C++. DAO lets the developers to create

database objects using tables native to any of the more common

desktop and client-server RDBMSs. In addition, Visual C++ lets the

developer define and create new databases for the majority of the

supported database types, [16]. Following are the objects that are

contained in MFC and Visual C++:

a. CDatabase objects function as the linkage between the

application and the actual dataset. In C programs, the

functionality of the CDatabase object is available using the

SQL...() functions.

b. CRecordset objects represent the results, or set of records,

obtained from a dataset. The CRecordset object contains

CDatabase tables contained in the CDatabase object.

c. CRecordView objects are based on the CFormView class.

With CFormView, the application functions much like any

other dialog-based application.

 While dealing the database with Visual C++ few terms are used

very frequently these terms are described in the following paragraph.

3.4.1 Rrecordset
A recordset, is an object that contains a set of records from the

database. Some recordset types are based on single tables. More

commonly, however, recordsets are based on a query that is created by

 38

using Structured Query Language (SQL). Whereas a table-type

recordset is based on a single table, an SQL-based query can be used to

retrieve a specific subset of records, or to retrieve information from

two or more tables at once. SQL enables the user to specify which

records to retrieve and the order in which to retrieve them [17].

3.4.2 Dynaset
Dynaset-type record sets provide more flexibility than tables. A

Dynaset can refer to any table, attached table, or query. A Dynaset

provides an updateable view to the data. As the application scrolls to a

changed record, a new copy is retrieved, bringing it up to date. This

dynamic behavior is ideal for situations in which it is important to be

completely up to date. A Dynaset contains a set of keys to the

underlying tables [18]. The actual data is retrieved when the user

accesses a particular record. Because the user use a key set to refer to

the data, Dynaset reflects modifications to existing records by other

users, but does not reflect new records added by other users.

3.4.3 Snapshot.
A "snapshot" reflects the state of the data at a particular moment,

the moment the snapshot is taken. This behavior is ideal for reporting.

Because it takes time to retrieve the records for a snapshot, the moment

at which the snapshot occurs is not instantaneous [19].

3.4.4 Table.
 A table-type recordset is based directly upon the table rather

than on a query. The table-type recordset corresponds to a single table

and can be updated. The records in a table-type recordset always

reflect all changes that are made to that table, including the additions or

deletions made by other users [20].

 39

3.5 Summary
This chapter introduced the methodology of designing efficient

relational database structures, including modeling tools for Jet

databases and normalizing tables that are created from existing data

sources. Entire chapter is devoted to database design techniques, and

the MFC classes used in Visual C++ to access, manipulate and retrieve

data to and from database tables.

 40

Chapter’s Bibliography

11. Queries

12. Normalization

13. Jet database engine

14. DAO Vs ODOB

15. MFC Classes

16. DAO of Visual C++

17. Recordset

18. Dynaset

19. Snapshot

20. Table

 41

Chapter 3, Appendix ‘C’

MFC Library and Hierarchy Chart

C.1 MFC Library:
The library’s classes are presented here in the following

categories:

(1) .Root Class: CObject

(2) MFC Application Architecture Classes

a. Application and Thread Support Classes

b Command Routing Classes

c. Document Classes

d. View Classes (Architecture)

e. Frame Window Classes (Architecture)

f. Document-Template Classes

(3) Window, Dialog, and Control Classes

a. Frame Window Classes (Windows)

b. View Classes (Windows)

c. Dialog Box Classes

d. Control Classes

e. Control Bar Classes

(4) Drawing and Printing Classes

a. Output (Device Context) Classes

 42

•

b. Drawing Tool Classes

(5) Simple Data Type Classes

(6) Array, List, and Map Classes

(7) Template Classes for Arrays, Lists, and Maps

a. Ready-to-Use Array Classes

b. Ready-to-Use List Classes

c. Ready-to-Use Map Classes

d. File and Database Classes

e. File I/O Classes

(8) DAO Classes

(9) ODBC Classes

(10) Internet and Networking Classes

(11) OLE-Related Classes

(12) Debugging and Exception Classes

(13) Debugging Support Classes

(14) Exception Classes

C.2 MFC Hierarchy:
The hierarchical representation of MFC classes is reflected on

next page.

 43

Chapter 3, Appendices ’B’

B.1 What Are DAO and ODBC?

Both Data Access Objects (DAO) and Open Database

Connectivity (ODBC) are application programming interfaces (APIs)

that give you the ability to write applications that are independent of

any particular database management system (DBMS).

DAO is familiar to database programmers using Microsoft

Access Basic or Microsoft Visual Basic. DAO uses the Microsoft Jet

database engine to provide a set of data access objects: database

objects, tabledef and querydef objects, recordset objects, and others.

DAO works best with .MDB files like those created by Microsoft

Access, but you can also access ODBC data sources through DAO and

the Microsoft Jet database engine.

ODBC provides an API that different database vendors

implement via ODBC drivers specific to a particular database

management system (DBMS). Your program uses this API to call the

ODBC Driver Manager, which passes the calls to the appropriate

driver. The driver, in turn, interacts with the DBMS using Structured

Query Language (SQL).

B.2 How MFC Encapsulates DAO

The MFC DAO classes treat DAO much as the MFC classes for

programming Windows treat the Windows API: MFC encapsulates, or

"wraps," DAO functionality in a number of classes that correspond

closely to DAO objects. Class CDaoWorkspace encapsulates the DAO

workspace object, class CDaoRecordset encapsulates the DAO

recordset object, class CDaoDatabase encapsulates the DAO database

object, and so on.

MFC's encapsulation of DAO is thorough, but it is not

completely one-for-one. Most major DAO objects do correspond to an

 44

MFC class, and the classes supply generally thorough access to the

underlying DAO object's properties and methods. But some DAO

objects, including fields, indexes, parameters, and relations, do not.

Instead, the appropriate MFC class provides an interface, via member

functions, through which they can be accessed for example:

a. The fields of a recordset object

b. The indexes or fields of a table

c. The parameters of a querydef

d. The relations defined between tables in a database

 45

Chapter 2, Appendices ‘A’

A.1 DLLs: Overview

A dynamic-link library (DLL) is an executable file that acts as a

shared library of functions. Dynamic linking provides a way for a

process to call a function that is not part of its executable code. The

executable code for the function is located in a DLL, which contains

one or more functions that are compiled, linked, and stored separately

from the processes that use them. DLLs also facilitate the sharing of

data and resources. Multiple applications can simultaneously access the

contents of a single copy of a DLL in memory.

Dynamic linking differs from static linking in that it allows an

executable module (either a .DLL or .EXE file) to include only the

information needed at run time to locate the executable code for a DLL

function. Using DLLs instead of static link libraries makes the size of

the executable file smaller. If several applications use the same DLL,

this can be a big saving in disk space and memory.

The Advantages of Using DLLs

Dynamic linking has the following advantages:

a. Saves memory and reduces swapping. Many processes

can use a single DLL simultaneously, sharing a single

copy of the DLL in memory. In contrast, Windows must

load a copy of the library code into memory for each

application that is built with a static link library.

 46

b. Saves disk space. Many applications can share a single

copy of the DLL on disk. In contrast, each application

built with a static link library has the library code linked

into its executable image as a separate copy.

c. Upgrades to the DLL are easy. When the functions in a

DLL change, the applications that use them do not need to

be recompiled or relinked as long as the functions'

arguments and return values do not change. In contrast,

statically linked object code requires that the application

be relinked when the functions change.

d. Provides after-market support. For example, a display

driver DLL can be modified to support a display that was

not available when the application was shipped.

e. Supports multi-language programs. Programs written in

different programming languages can call the same DLL

function as long as the programs follow the function's

calling convention. The programs and the DLL function

must be compatible in the order in which the function

expects its arguments to be pushed onto the stack

A potential disadvantage to using DLLs is that the application is

not self-contained; it depends on the existence of a separate DLL

module.

 47

Chapter 6

Conclusion

The objective of this research was to design a prototype

communication system in order to provide a faster and easy to handle

information system to retrieve relevant information pertaining to the

repair activities. The objective has been accomplished. The prototype

is modeled to handle a database relating the activities simulated as per

the routine working of base workshop. The simulated repair activity

has been tested successfully. Apart from the set objective this project

will also provide an easier way for the P&C-section to update and

handle the data conveniently. The next section summarizes the

methodology of the designing the project and guidelines for the future

research.

6.1 Summary and contributions
(This section will be covered in due course)

6.2 Future Research
Research for the designing of this prototype project was aimed

to provide a facility to the requesting units as well as to the base

workshops to maintain a faster means of communication. TAPI was

selected with a view to design such a system. There are still many

areas, which could be incorporated in this design work in future. This

section outlines some of the issues that must be addressed in order to

include various features by future researchers.

The first issue is the continuation of this research and advancing

the work of this project. Presently the interface between computer and

the caller is through generating DTMF codes i.e. the caller has to press

the digits available on the telephone dial pad. This interface could be

 48

improved by introducing another feature known as Speech Application

Programming Interface (SAPI). SAPI provides speech recognition

features. Speech recognition-Converts audio input into printed text or

directly into computer commands. Any speech system has a process for

recognizing human speech and turning it into the computer

understandable language. In effect, the computer needs a translator.

Research into effective speech recognition algorithms and processing

models has been going on almost ever since the computer was

invented. And a great deal of mathematics and linguistics go into the

design and implementation of a speech recognition system. A detailed

discussion of speech recognition algorithms is beyond the scope of this

section, but it is important to have a brief idea of the technique for

turning human speech into computer understandable language.

The reply to the caller by the computer is managed after

recording the WAVE FILES in the memory. However this technique

has no problem if the recorded files are few but if the number of files

are more it is recommended not to over burden the memory. The

second important aspect for future research is the inclusion of Text To

Speech (TTS) method. TTS, service provides the ability to convert

written text into spoken words. There are a number of factors to be

considered when developing speech recognition engines (SR). TTS

engines use synthesis concatenation technique for turning text input

into audio output. Synthesis involves the creation of human speech

through the use of stored phonemes. This method results in audio

output that is understandable, but not very human-like. The advantage

of synthesis systems is that they do not require a great deal of storage

space to implement and that they allow for the modification of voice

quality through the adjustment of only a few parameters.

 49

6.3 Brief Concept of SAPI and TTS
There are two basic techniques: speech recognition (SR) and

speech synthesis, depending on who is doing the talking the person or

the computer. Speech synthesis is commonly called "text-to-speech" or

TTS, since the speech is usually synthesized from text data. Figure 6.1

shows the architecture of a typical text-to-speech engine.

Figure 6.1 Text-to-Speech Engine

The process begins when the application hands over a string of

text to the engine a such as, "The man walked down 56th St.". The text

analysis module converts numbers into words, identifies punctuation

such as commas, periods, and semicolons, converts abbreviations to

words, and even figures out how to pronounce acronyms.

Text analysis is quite complex because written language can be

so ambiguous. A human has no trouble pronouncing "St. John St." as

"Saint John Street," but a computer, in typically mechanical fashion,

might come up with "Street John Street" unless a clever programmer

gives it some help.

Once the text is converted to words, the engine figures out what

words making them louder or longer, should emphasize, or giving

them a higher pitch. Other words may be de-emphasized.

Next, the text-to-speech engine determines how the words are

pronounced, either by looking them up in a pronunciation dictionary,

 50

or by running an algorithm that guesses the pronunciation. Some text

strings have ambiguous pronunciations, such as "read." The engine

must use context to disambiguate the pronunciations. The result of this

analysis is the original sentence expressed as phonemes. "Th-uh M-A-

Nw-au-l-k-tD-OU-Nf-ih-f-t-eeS-IH-K-S-TH s-t-r-ee-t".

Next, the phonemes are parsed and their pronunciations retrieved

from a phoneme-to-sound database that numerically describes what the

individual phonemes sound like. If speech were simple, this table

would have only forty-four entries, one for each of the forty-four

English phonemes (or whatever language is used). In practice, each

phoneme is modified slightly by its neighbors, so the table often has as

many as 1600 or more entries. Depending on the implementation, the

table might store either a short wave recording or parameters that

describe the mouth and tongue shape. Either way the sound database

values are finally smoothed together using signal processing

techniques, and the digital audio signal is sent to an output device such

as a PC sound card and out the speakers to human’s ears.

Figure 6.2 shows a generic speech recognition engine. When the

user speaks, the sound waves are converted into digital audio by the

computer's sound card. Typically, the audio is sampled at 11KHz and

16 bits. The frequency analysis module to a more useful format first

converts the raw audio. This involves a lot of digital signal processing

that's too complicated to describe here. The basic challenge is to

extract the meaningful sound information from the raw audio data. If a

word is to be said as "foo," and then say "foo" again, and look at the

waveforms generated, they would look like similar, but there's no way

to compare them that will consistently recognize them as the same

sound, without applying some mathematical techniques using Fourier

transforms.

 51

Figure 6.2 Speech Recognition Engine

The converted audio is next broken into phonemes by a

phoneme recognition module. This module searches a sound-to-

phoneme database for the phoneme that most closely matches the

sound it heard. Each database entry contains a template that describes

what a particular phoneme sounds like. As with text-to-speech, the

table typically has several thousand entries. While the phoneme table

could in theory be the same as that used for TTS, in practice they are

different because the SR and TTS engines usually come from different

vendors.

Because comparing the audio data against several thousand

phonemes takes a long time, the speech recognition engine contains a

phoneme prediction module that reduces the number of candidates by

predicting which phonemes are likely to occur in a particular context.

For example, some phonemes rarely occur at the beginning of a word,

such as the "ft" sound at the end of the word "raft." Other phonemes

never occur in pairs. In English, an "f" sound never occurs before an

 52

"s" sound. But even with these optimizations, speech recognition still

takes too long.

A word prediction database is used to further reduce the

phoneme candidate list by eliminating phonemes that don't produce

valid words. After hearing, "y eh," the recognizer will listen for "s" and

"n" since "yes" and "yen" are valid words. It will also listen for "m" in

case if it is said "Yemen." It will not listen for "k" since "yek" is not a

valid word. (Except in baby-talk, which is not currently supported.)

The candidate list can be reduced even further if the application

stipulates that it only expects certain words. If the app only wants to

know if the user said "yes" or "no," the phoneme recognizer needn't

listen for "n" following "y eh," even though "yen" is a word. This final

stage reduces computation immensely and makes speech recognition

feasible on a 33MHz 486 or equivalent PC. Once the phonemes are

recognized, they are parsed into words, converted to text strings, and

passed to the application.

As you might imagine, both text-to-speech and speech

recognition involve quite a bit of processing, but speech recognition is

harder because it usually requires more processing for equivalent user

satisfaction. A few years ago, you needed a high-end workstation to do

speech recognition. Today, just about every new PC and even many

older PCs can handle speech. While the exact requirements vary from

one speech engine to another, Figure 3 gives you a rough idea of the

hardware needed to run various kinds of speech applications under

Windows. The faster the CPU and the more memory available, the

higher the accuracy for speech recognition and the better the text-to-

speech sounds.

Of course, you also need a sound card, microphone, and

speakers. Most speech engines will work with any sound card. Some

systems offload processing onto a DSP (digital signal processor) chip

 53

that comes on some high-end sound cards, which cuts the CPU speed

requirement in half. Better microphones and speakers will also

improve things.

As speech has become more feasible on average PCs, vendors

have been busy developing and promoting their speech engines. Many

multimedia PCs and sound cards come bundled with speech software.

Others vendors sell their engines as standalone products. Some apps

even come bundled with speech engines.

Unfortunately, as with any budding technology, the situation is a

bit chaotic. Even though they all support similar functionality, each

speech engine has its own specific features and proprietary API. If you

want to use speech in your app, you've first got to pick which engine to

use, and write your program for that engine. If a better engine comes

along, you're out of luck. You'll probably have to rewrite your program

substantially to use the other API. Proprietary APIs have stifled the

widespread adoption of speech. When faced with an irrevocable

decision about which engine to use, many developers choose not to

implement speech at all.

 54

Chapter’s Bibliography

21

 55

Chapter 4

Project Design Details

4.1 Introduction
In the previous chapters it is discussed that what all should be studied

before jumping into the design of a conceived project. Having with the

under standing of the problem area and acquiring the available solution

to handle those problems this chapter in added to discussed in detail

the design of the project.

4.2 Database Design Handling
The database is designed under the light of criteria as discussed

in chapter 2 under section2.2. This database comprises of a set of

tables (relations). Each table has its significance and provides useful

information obtain results based on the queries. The significance of

each table is discussed in the following paragraphs.

4.2.1 Base Tables.
These tables are designed with a view so that they will provide

relevant information during manipulation of data. Tables under this

category are discussed in the following section.

4.2.1.1 Table-RegBANo
Registered Broad Arrow Number (RegBANo) table is design to

act as the Master record folder that contains all the registration

numbers which are under the maintenance load of the workshop are

endorsed in this table. BA Number is a unique entity, and no two

vehicles exist with identical numbers. The design view of the table is

shown as follows.

 56

Fig 4.1 Design view of Table RegBANo

The data entered in this table provide the details pertaining to a

vehicle such as, the make, model and the unit to which that vehicle

belongs are shown in figure 4.2, against a BA number. This

information persists till a vehicle exists. The only change in the

information appear at the time when either that particular vehicle

transferred to some other unit or it is deposited with C.M.T &S.D

Golra.

 57

Fig.4.2 Data entries in RegBANo table

4.2.1.2 Project_Code
In order to repair the repairable stock available at C.M.T & S.D

Golra, G.H.Q assigns various overhauling project to base workshops.

These projects are under taken by the base workshop as a package and

each project is assigned a unique project code. For the ease in

designing this prototype these project codes are collected in one table.

Each project code provides the details that weather the over hauling

project is Engine Over hauling Project (E.O.P) or Vehicle Over hauling

Project (V.O.P). The situation arises when at a particular time more the

one projects of same category are running so for identification these

project codes are suffix with serial numbers. The design view and the

entries in the table are shown in figure 4.3 and 4.4 respectively.

 58

Fig 4.3 Design View of Table project Code

Fig 4.4 Entries in Table Project code.

 59

