
 1

Design of An Intelligent System For Booking of 
Trunk Calls In Pak Army Exchanges  

 

By 

Muhammad Aamir Ali 

 

 

 

 

A DISSERTION 

Submitted to  

Faculty of National University of Science and Technology (NUST) 

In partial fulfillment of the requirements 

For the degree of  

 

MS COMPUTER SOFTWARE ENGINEERING 

Department of Computer Science 

 
2000 

 



 2

 

 

 

 

 

Dedicated 

To 

Mujahideen-i-Islam

 



 i

Abstract 
      
Corp of Signals plays an important role in the 

establishment/management of secure and reliable communication network 

within Pak Army. With the recent break through by acquiring most 

sophisticated communication infra structure, there is a dire need to 

optimally/efficiently utilize the resources. Keeping in view this scenario, a 

system is proposed to meet such requirements, that accepts and checks the 

format of the string entered by the subscriber from telephone pad, checks the 

duplication of number booked, priority of number, and rank status of the 

subscriber. The systems saves the number booked in the database in the 

respective logical priority queues and communicate the booking number to the 

subscriber and the same information is displayed on the screen as well. The 

system is designed to scan all the logical priority queues automatically after 

every 5 seconds and the number awaiting will be flashed for the operator’s 

attention to connect the call. Two separate modules are designed to handle the 

booking of number and scanning of the database for the awaiting calls, and are 

scheduled in such a way that each module will be running in parallel and 

independent to each other.   

 The proposed work is a research oriented and learning based in which a 

prototype system design has been developed to meet the above mentioned 

requirements. The proposed project provides subscriber’s satisfaction and 

eliminates the chances of operator’s level manipulation to the minimum, the 

call’s record management and updating is dealt  by the database automatically 

for the future references. No such study or work has been carried out 

previously neither the field of Telephony API has yet been explored in any of 

the previous studies. For the development of the system Visual C++ is used as 



 ii

front-end tool, where as MS Access and Telephony API works in the 

background.  



 iii

Acknowledgement 
 

I am humbly thankful to “Almighty Allah” for his blessing and giving me 

the wisdom, knowledge and understanding, without which I would not have 

been able to complete the thesis. 

I wish to express my deepest appreciation to my thesis supervisor, Dr Dil 

Muhammad Akbar Hussain for his supervision, dedication and commitment 

with this research. He ably supervised the research and spent hours to review 

the script of this thesis. He has always been very flexible and supportive of 

new ideas and efforts. 

My very special thanks are extended to all faculty members of the 

department of computer sciences, specially Head of Department Mr Waseem 

Suleman and the kind members of my guidance committee namely Mr 

M.Akhtar Iqbal, Mr Fazal Ahmad and Mr Zarrar Javaid whose very useful 

suggestion and critical review assisted me in widening the perspective of this 

project. 

I thank all my colleagues, especially to Mr. Tariq Ismail, Mr. Farooq 

Azam, Mr. Athar Mohsin, Mr Ibrar Hussain and Mr Hashim for their moral 

support and encouragement for completion of this project. 

I am heartily indebted to my mother and mother in law for their 

continued prayers, encouragement and patience for the successful completion 

of this thesis. My special thanks to my wife for her patience, immeasurable 

faith and confidence in me which has always been a source of inspiration and 

encouragement, and my innocent kids who displayed tremendous amount of 

patience during my project. 



 iv

My sincere gratitude to the National University of Science and 

Technology and Military College of Signals for the provision of the facilities 

for this research. 

  
 



 v

 

Contents 
CHAPTER 1   Introduction .................................................................................................... 1 

1.1 Background ........................................................................................................................... 1 

1.2 Existing procedure ............................................................................................................... 2 

1.3 Problem Statement ............................................................................................................... 2 

Problem solving approach .............................................................................................................. 3 

1.5 Objectives .............................................................................................................................. 4 

1.6 Advantages ............................................................................................................................ 5 

CHAPTER 2   Modems and Communications Tools ............................................................ 7 
2.1 Introduction .......................................................................................................................... 7 

2.2 Modems and the UniModem Drivers for Win95 and WinNT .......................................... 7 

2.3 A Quick Review of How Modems Work ............................................................................ 8 

2.4 The Universal Modem Drivers and TAPI Service Providers ........................................... 8 

2.5 Basic Data Modems .............................................................................................................. 9 

2.6 Data Modems with Voice ................................................................................................... 10 

2.7 Telephony Cards ................................................................................................................. 11 

2.8 Summary ............................................................................................................................. 12 

CHAPTER 3   Telephony API .............................................................................................. 13 
3.1 Introduction ........................................................................................................................ 13 

3.2 Telephony API .................................................................................................................... 13 

3.3 TAPI Concepts .................................................................................................................... 14 

3.4 The Telephony API Model ................................................................................................. 15 
3.4.1 Line Devices ............................................................................................................................... 16 
3.4.2 Phone Devices ............................................................................................................................ 16 

3.5 Typical Configurations ...................................................................................................... 17 
3.5.1 Phone-based ............................................................................................................................... 17 
3.5.2 PC-based ..................................................................................................................................... 17 

3.6 Architectural Overview ...................................................................................................... 18 
3.6.1 Existing 16-bit applications link to TAPI. .................................................................................. 19 
3.6.2 Existing 32-bit applications link to tapi32.dll. ........................................................................... 19 

3.7 TAPI Software Architecture ............................................................................................. 19 

3.8 Synchronous and Asynchronous Operations ................................................................... 21 

Chapter 4   Database ............................................................................................................. 23 
4.1 Introduction ........................................................................................................................ 23 

4.2 DAO (Data Access Object) ................................................................................................ 23 



 vi

4.3 Services Provided by the Microsoft Jet Database Engine ............................................... 24 
4.3.1 Tables ......................................................................................................................................... 25 
4.3.2 Fields .......................................................................................................................................... 25 
4.3.3 Records ....................................................................................................................................... 25 
4.3.4 Indexes ....................................................................................................................................... 26 
4.3.5 DaoRecordset ............................................................................................................................. 26 
4.3.6 Dynaset ....................................................................................................................................... 26 
4.3.7 Snapshot ..................................................................................................................................... 27 

4.4 Microsoft Jet database engine (MJDE) ............................................................................ 27 

4.5 Programming DAO in C++ ............................................................................................... 29 

4.6 How MFC Encapsulates DAO ........................................................................................... 31 

4.7 Mapping of DAO Objects to MFC Classes ...................................................................... 31 

4.8 How MFC Accesses the Database Engine ........................................................................ 32 

Chapter 5   Implementation Issues ....................................................................................... 34 
5.1 Introduction ........................................................................................................................ 34 

5.1.1 Class CMSProjSet ...................................................................................................................... 36 
5.1.2 Class CMSProjView ................................................................................................................... 38 
5.1.3 Class CTelephoneLine................................................................................................................ 41 
5.1.4 Class CTelephoneSound ............................................................................................................. 44 
5.1.5 Class  CDLGAddNewNumber ................................................................................................... 47 
5.1.6 Class CDLGDirectoryView ........................................................................................................ 48 
5.1.7 Class CDLGExistingProperties .................................................................................................. 49 
5.1.8 Class CDLGLockUnLock .......................................................................................................... 50 
5.1.9 Class CDLGChangePassword .................................................................................................... 51 
5.1.10 Class CQueryDlg ........................................................................................................................ 52 
5.1.11 Class CDialerDlg ........................................................................................................................ 52 

Chapter 6   Conclusion ......................................................................................................... 55 
6.1 Thesis summary .................................................................................................................. 55 

6.2 Advantages .......................................................................................................................... 58 

6.3 Limitations .......................................................................................................................... 59 

6.4 Future work ........................................................................................................................ 60 

Bibliography .......................................................................................................................... 61 
 



 vii

List of Figures 

Page No 

1.1 Concept of Project  …………………………………………….3 

3.1 Grouping of TAPI services…………………………………...15 

3.2 TAPI Architecture ……………………………………………20 

3.3 The TAPI software architecture ……………………………...21 

3.4  Processing of TAPI events…………………………………...23 

4.1 Table design view in MS Access……………………………..26 

4.2 Hierarchy of DBEngine ……………………………………...29 

4.3 Working of Jet Database Engine …………………………….30 

4.4 Proprietary of Jet Database Engine…………………………...31 

5.1 Classes and Functions of MSProj in Visual C++ editor……...37 

5.2 Run time view of  class MSProjView………………………...40 

5.3 Run time view of  class CDLGAddNewNumber…………….49 

5.4 Run time view of class CDLGDirectoryView………………..50 

5.5 Run time view of class CDLGExistingProperties……………51 

5.6 Run time view of class CDLGLockUnLock…………………52 

5.7 Run time view of class CDLGChangePassword…………….52 

5.8 Run time view of class CqueryDlg…………………………...53 

5.9 Run time view of class CdialerDlg…………………………...54 

 

 

List of Tables 



 viii

 

Page No 
 

4.1 MFC Classes and Corresponding DAO Objects ………………………...32 

4.2 How MFC Manages DAO Objects Not Mapped to Classes …………….33 

5.1 Member Functions of class CMSProjSet ………………………………..38 

5.2 Member Variables of class CMSProjSet ………………………………..39 

5.3 Member Functions of class CMSProjView ……………………………..41 

5.4 Member Variables of class CMSProjView ……………………………...42 

5.5 Member Functions of class CtelephoneLine …………………………….43 

5.6 Member Variables of class CtelephoneLine …………………………….45 

5.7 Member Functions of class CtelephoneSound …………………………..46 

5.8 Member Variables of class CtelephoneSound …………………………..48 

5.9 Member Functions of class CdialerDlg ………………………….55 

 

 



CHAPTER 1 
1 

21Introduction 

2.11.1  Background: 
The computer is replacing the traditional way of working in every walk 

of life and getting popularity as well as giving reliable and faster results. These 

advanced and reliable features gives an encouragement to the software 

designers to develop applications which provide efficient and and reliable 

working environments. Telephonic communication is the most popular means 

of communication. In Pakistan Army it is one of the major task of Corps of 

signals to provide the services relating to telephonic communication. Although 

with the induction of modern equipment the services are much faster and 

reliable, but still there is room for improvement. Pakistan is economically a 

poor nation and replacing any existing system abruptly would be a great 

economical burden. However, if the existing system could be used with slight 

modification and lesser cost, with additionally faster and reliable results. 

PASCOM exchanges are inducted in Pakistan Army few years’ back. These 

exchanges have many advanced features in them. However, the trunk booking 

handling technique is quite traditional. The booking activity can be replaced in 

such a way that instead of asking the operator to book a number if the 

subscriber feed his required number through his telephone to the computer 

placed at the telephone exchange. By adopting this computerized booking 

method many ills of the system can be removed. These disadvantages are 

discussed in the following sections.     

 

 



 2

2.21.2 Existing procedure 
The working of exchanges are of a traditional type and pays an extra 

load on the working staff, there is one shift dedicated only to deal with call 

booking, the job is to entertain the subscriber for booking a call, the procedure 

for booking is quite lengthy specially when number of calls increases, 

procedurally  he asked the subscriber about  his local number, the number he 

wanted to book, his rank and name, he writes all this information on a chit 

(known to be a ticket) along with date and time of booking, then he has to 

check whether this telephone number is authorized to book a call, after that he 

hand over this ticket to the operator who  places it in a queue , Now after 

connecting the call the operator has to sign the respective ticket and write down 

the time of connection and reason for not connecting in case call cannot be 

connected and then hand it over to the exchange supervisor, at the end of the 

day the supervisor has to maintain the record of all calls in a register for future 

references, it is a time consuming  procedure . Moreover, if any complaint is 

raised then searching of a specified ticket from that junk is also very time 

consuming. 

2.31.3 Problem Statement 
As mentioned traditional way of booking is lengthy / laborious and error 

prone, some of  problems are highlighted as follows: 

a. The subscriber has to remind the booking supervisor for his call 

may be number of times. 

b. Subscriber cannot get his booking number all the time he wants to 

know about. 

c. Manipulation of calls at operator level is possible. 

d. Exchange supervisor has to monitor all calls keeping in view their 

priority. 

e. Trunk supervisor has to maintain a log of all calls booked, at the 

end of the day. 

Formatted: Bullets and Numbering



 3

f. A subscriber may enjoy unauthorized privileges by using his 

personal contacts with the exchange staff. 

g. Service regarding booking of trunk calls cannot be denied to any 

number. 

h. Duplication in booking of calls are very much possible. 

i. Every body whether authorized to use the service for trunk calls or 

not have a direct access to exchange.        

2.41.4 Problem solving approach 
The concept of the project is to design a system in which the subscriber  

dials the exchange number and he will then be connected to a computer, 

removing an intervention of any booking staff. More to say that the computer  

Figure 1.1 Concept of Project. 

Subscribe

Modem/ Sound 
Card

Number entered 
by subscriber

Check 

Database

OIC 
Exchange

Module 
Scanning 

Screen Display 



 4

will play audible sound signal and communicate the booking number. The 

concept of the project is described as per the diagram below. The flow diagram 

gives a general view about the basic building blocks used in the project and the 

sequence of execution. Once the subscriber will dial the exchange number he 

gets connected with a PC. Before login the callerAfter welcome message PC 

will first ask the user to enter his own number followed by the number he 

wants to book. After saving the number in database the booking number will be 

communicated to the subscriber where as another module keeps on scanning 

the database for awaiting calls in the queue. Only authorized caller will be 

allowed to enter the booking number. The communication between subscriber 

and PC is dealt through Telephony Application Programming Interface (TAPI), 

by utilizing Modem and sound card. Database is designed using Microsoft 

Access. The complete code of the project is written in Microsoft Visual C++.  

2.51.5 Objectives 
To keep a constant check is impracticable and humanely impossible so 

there is a dire need to develop a transparent and user-satisfying environment, 

the objectives of the project are: 

1. To develop an intelligent system of trunk calls booking, 

processing displaying, keeping in view the priority and rank status 

of the subscriber. 

2. Trunk calls record keeping in database for future reference. 

3. Reduction in the manpower employment.  

 

 

 

 

 

 



 5

2.61.6 Advantages 
 Following advantages are fore seeable: 

Subscriber’s end: 

1. It totally eliminates the interaction of subscriber with the exchange 

staff. 

2. It gives a satisfaction to the subscriber that the number he booked 

will be serviced according to his priority.  

3. Subscriber has the facility to get the information of his booking 

number at any time. 

4. Subscriber has the facility to cancel his call if need be. 

5. Almost eliminates the operator level manipulation regarding 

management of calls. 

Management’s end: 

1. It totally eliminates the tedious job of exchange supervisor and 

call booking staff, which includes the management of call booking 

tickets as well as their record keeping. 

2. Now the Operator’s job is just dialing of flashed number. He is 

relieved of tickets handling, their sequencing and endorsement of 

service time, signatures and reason of not connecting the call in 

case any call could not be connected. 

3. Duplication in call booking is not possible. 

Chief Duty Signal Officer’s (CDSO) end: 

CDSO can enjoy the following privileges, just by the click of mouse:- 

1. In case of any complaint, the CDSO can settle the issue by 

accessing the database within no time. 

2. Can control the call’s booking privilege from any number. 

3. Can change the priority and rank status of in use numbers. 

4. Can add new numbers in the database as and when required. 

5. Can delete a number from the database if no more required. 

6. All the settings are protected by a password for security purposes. 



 6

7. The manpower relieved by the developed system can be employed 

elsewhere. 



 7

CHAPTER 2 
32Modems and Communications Tools 

3.12.1 Introduction 
This chapter discussed the differences between the three primary types 

of telephony hardware for PCs such as Basic data modems, Voice-data 

modems and Telephony cards. These three types of interface cards provide a 

wide range of telephony service for desktop workstations. The advantages and 

limitations of each of the card type and their use in telephony applications are 

discussed in this chapter.  

Basic data modems can support Assisted Telephony services (outbound 

dialing) and are usually able to support only limited inbound call handling.  

Voice-data modems are a new breed of low-cost modems that provide 

additional features that come close to that of the higher-priced telephony cards. 

These modems are usually capable of supporting the Basic Telephony services 

and some of the Supplementary services. The key to success with voice-data 

modems is getting a good service provider interface.  

Finally, telephony cards offer the greatest level of service compatibility. 

Telephony cards usually support all of the Basic Telephony and all of the 

Supplemental Telephony services, including phone device control. Most 

telephony cards also offer multiple lines on a single card. This makes them 

ideal for supporting commercial-grade telephony applications.  

3.22.2  Modems and the UniModem Drivers for Win95 and WinNT 
All TAPI services are routed through some type of modem. These 

modems also depend on the Windows operating system to supply device 

drivers to communicate between programs and the device itself. While a 

detailed discussion of device drivers is beyond the scope of this chapter it is a 

good idea to have a general understanding of how Windows uses device drivers 

and how modems work. In this section we'll take a quick review of modem 



 8

theory and a short discussion of the Universal Modem Driver that ships with 

Win95 and WinNT.  

3.32.3  A Quick Review of How Modems Work 
Before getting into the details of how the three types of telephony 

hardware differ, it is important to do a quick review of how modems work.  

Sending computer data over voice-grade phone lines is a bit of a trick. All data 

stored on a PC (documents, programs, graphics, sound and video files, and so 

on) is stored as binary data. However, standard telephone lines are not capable 

of sending binary data. Which means that any information sent over the 

telephone line has to be in the form of sound waves. In order to accomplish this 

feat, hardware is used to convert digital information into sound (that is, to 

modulate it), then back again from sound into digital information (demodulate 

it). This process of modulating and demodulating has lead to its name: mo-dem 

(modulate-demodulate).  

Sending data over phone lines involves three main steps. First, a 

connection must be established between two modem devices over a telephone 

line. This is typically done by having one modem calls the other modem. If the 

second modem answers the telephone call, the two modems go through a 

process of determining if they understand each other called handshaking. If that 

is successful, then information can be passed.  

In the second step, the digital information is modulated into sound and 

then sent over the voice-grade telephone line to the second modem. In the last 

step, the modem at the other end of the call converts (demodulates) the sound 

back into digital information and presents it to the computer for processing 

(view the graphic, save the file, play the video or audio, and  

so on).  

3.42.4  The Universal Modem Drivers and TAPI Service Providers 
TAPI requires each workstation to have not just a TAPI-compliant 

application, but also a Telephony Service Provider Interface (TSPI). This 



 9

interface talks directly to the hardware to convert TAPI service requests into 

commands understood by the hardware. The hardware vendor usually supplies 

the TSPI, but Microsoft Win95 ships with a simple TSPI called the UniModem 

Driver (Universal Modem Driver). The UniModem driver is designed to 

support Assisted Telephony and some Basic Telephony. Programmer can build 

simple applications that allow users to place and receive voice and data calls 

using basic data modems and the UniModem driver that ships with Win95 and 

WinNT.  

Microsoft has released a modem driver that supports additional voice 

features including playing and recording audio files. This driver is called the 

UniModemV Driver (Universal Modem for Voice). This driver supports the 

use of voice commands along with recording and playing back voice files. It 

can also handle caller ID and some other added service features. Exactly what 

the UniModemV driver can do is also dependent on the hardware. The 

telephony hardware must recognize any advanced features and be able to 

communicate them to the driver.  

3.52.5 Basic Data Modems 
The most basic type of hardware that supports TAPI is the basic data 

modem. This type of modem is designed to use analog phone lines to send 

digital data. Any computer that can access online services (BBS, Internet, 

commercial information services, and so on) has at least this level of modem 

hardware. Programmer can get basic data modems with speeds of 9600 to 

14,400bps (bits per second) for $100 U.S. or less. Almost all basic data 

modems recognize a common set of control codes. This set of control codes is 

called the Hayes or AT command set. The makers of the Hayes modem has 

developed this set of controls. The first command in the set (AT) is the 

"attention" command. This tells the device that the application is about to send 

control codes directly to the hardware. The command set is known by the 

author's original name ("Hayes") or by the first command in the set ("AT").  



 10

Basic data modems support Assisted Telephony services without any 

problem (that is, placing outbound calls). Most basic modems are capable of 

supporting some of the Basic Telephony services, including accepting inbound 

calls. However, if programmer wants to perform any of the more advanced 

TAPI services, such as playing or recording audio files, need more advanced 

hardware. Also, if programmer wants to access advanced features available for 

voice telephones such as caller ID, call hold, park, forward, and so on, in such 

a case the requirement is more than a basic data modem.  

3.62.6 Data Modems with Voice 
There is a new type of modem available that offers all the services of a 

data modem, but also has added support for voice services. These modems are 

often called voice-data modems (or data-voice modems). This hardware has 

additional program built into the chips that can support advanced telephone 

features such as caller ID, call hold, park, forward, and so on. Just as basic data 

modems use the AT command set, the voice-data modems use an extension of 

that set called the AT+V command set (AT plus Voice).  

Voice-data modems also require a TAPI-compliant modem driver in 

order to work with TAPI services. This driver is usually supplied by the 

hardware vendor. Microsoft also supplies a modem driver that supports voice 

services-the UniModemV driver. If any modem does not ship with a TAPI-

compliant driver, one has to install the UniModemV driver to enable voice 

features.  

A word of advice when purchasing a voice-data modem. There are 

several modems in the market that offer voice, voice-mail, telephone 

answering, and other TAPI-like services for PCs but not all of them are TAPI-

compliant. Which essentially means that  programmer may be able to do many 

things to his liking but he may not be able to program it using TAPI services.  

There are a handful of voice-data modem vendors that have announced 

the release of TAPI-compliant hardware. Here is a list of some vendors 

currently offering TAPI-compliant voice-data modems:  



 11

1. Compaq Presario Systems  

2. Creative Labs Phone Blaster 

3.  Logicode 14.4 PCMCIA 

4. Diamond Telecommander 2500  

5. Cirrus Logic  

6. Aztech Systems  

Voice-data modems with supporting TAPI drivers offer a wide range of 

access to TAPI services. Programmer can use voice-data modems to perform 

both outbound and inbound call handling, play and record voice files, and (if 

the feature is available on the telephone line) support caller ID and other 

advanced services for single-line phones.  

3.72.7 Telephony Cards 
The most advanced level of hardware a programmer can get for TAPI 

services on a desktop PC is a dedicated telephony card. This is a piece of 

hardware especially made to handle telephone services. Most telephony cards 

are designed to handle more than one line at a time. If programmer is planning 

an application that must answer several phone lines or perform any line 

transfers, and so on, telephony card is the solution.  

Most telephony cards are sold as part of a kit. It can get software 

development tools, cards for the PC, cables, and documentation all for one 

price. This price usually starts at around $1000 U.S. [2.1] and can easily climb 

depending on the number of lines programmer wish to support. Even though 

the price is a bit high but its advantages are enormous.  

As with other telephony hardware, telephony cards need an 

accompanying TAPI driver in order to recognize TAPI calls from user’s 

application. While most telephony card vendors are working on TAPI drivers, 

not all of them supply one. It is important to check the specifications of the 

hardware and supporting materials before buying.  

Telephony cards (along with TAPI drivers to match) offer the greatest 

access to TAPI services. Programmer can support all the Assisted TAPI and 



 12

Basic TAPI functions along with access to Supplemental TAPI services. Also, 

if the driver supports, it may be able to use Extended TAPI services to gain 

access to vendor-specific functions unique to the installed hardware.  

3.82.8 Summary 
TAPI is a new subject and it has an important role in the implementation 

of this project. Secondly this subject has not yet touched during any of the 

previous courses. Keeping in view its applications and development 

requirements of telephony based projects, it is discussed in detail, to benefit in 

future research. In this chapter programmer learned the differences between  

three types of hardware options and how they stand in offering support for 

TAPI services on PC workstations. Basic data modems support Assisted 

Telephony services (outbound dialing) and can support only limited inbound 

call handling. Use of this type of hardware is recommended for developing 

simple outbound dialing applications. Voice-data modems are capable of 

supporting the Assisted Telephony and Basic Telephony services and many of 

the Supplementary services. Use of this type of hardware is recommended to 

provide both inbound and outbound services on a single-line phone. Telephony 

cards support all of the Basic Telephony and all of the Supplemental 

Telephony services, including phone device control. Most telephony cards also 

offer multiple lines on a single card. This makes them ideal for supporting 

commercial-grade telephony applications. This chapter  got a quick review of 

modems and modem drivers and  that Win95 and WinNT rely on the 

UniModem or UniModemV modem drivers to communicate between the 

telephony hardware and user’s applications program. It also highlights that, no 

matter what hardware programmer purchase, programmer will need a TAPI-

compliant TSPI (Telephony Service Provider Interface) that matches the 

hardware purchased. Hardware vendors may recognize the UniModem or 

UniModemV drivers, or ship their own TSPI drivers with their hardware.  

 



 13

CHAPTER 3 
43Telephony API 

4.13.1 Introduction 
The Telephony Application Programming Interface (TAPI) is one of the 

most significant API sets to be released by Microsoft. The telephony API is a 

single set of function calls that allows user’s to manage and manipulate any 

type of communications link between the PC and the telephone line(s). While 

telephony models for the PC have been around for several years, the telephony 

API establishes a uniform set of calls that can be applied to any type of 

hardware that supplies a TAPI-compliant service provider interface (SPI).  

Telephony Application Programming Interface (TAPI) provides a 

consistent programming interface for a variety of devices operating on voice 

grade lines. The devices include modems, FAX modems, voice capable 

modems, computer-controlled telephone sets, and many more. TAPI provides 

services for placing outgoing calls, accepting incoming calls, and managing 

calls and devices. This chapter describes a general overview of the Telephony 

API and how it fits into the WOSA (Windows Open Services Architecture) 

model.   

4.23.2 Telephony API 
 The Telephony Application Programming Interface (TAPI) is an 

application-programming interface that is used to communicate by means of 

telephones. API is a set of routines that an application program uses to request 

and carry out lower-level services performed by a computer's operating system.  

It is a single set of function calls that allows programmers to manage and 

manipulate any type of communications link between the PC and the telephone 

line. Telephony services are divided into Assisted Telephony services and the 

services provided by the full Telephony API. In general, the full Telephony 

API is used to implement powerful telephonic applications and Assisted 

Formatted: Bullets and Numbering



 14

Telephony is used to add minimal but useful telephonic functionality to non-

telephony applications. Telephony services are divided into the categories 

shown in the following illustration:  
 

Figure 3.1 Grouping of TAPI services. 

4.33.3 TAPI Concepts  
 TAPI provides a series of personal telephony services. Telephony, in this 

context, refers to technology in general that connects computers with the 

telephone network.  

 

 

 

 

 

TAPI services provide all aspects of usage of the telephone network. 

This includes connecting to the network, placing and accepting calls, call 

1.1  Function Categories 

Assisted       An easy mechanism for enabling general  
Telephony   applications to make voice or data phone calls 

Full TelePhony    The complete set of  Telephony function 

Basic Services  A guaranteed set of functions that  
Services             correspond to POTS. 
 
Supplementary Functions that provide advanced switch  
Services  features such as hold and transfer. 
 
Extended  Mechanisms that let application  
Services developers access service provider-

specific functions not directly defined by 
TAPI. 



 15

management features (such as transferring calls, setting up conference calls), 

use of calling number identification (Caller ID) for identifying incoming calls, 

and more.  

TAPI services are divided into basic, supplementary, and extended 

services. Basic services are generally supported by all devices, supplementary 

services may only be available on special devices. Extended services are 

provider-specific.  

For example, TAPI can place a call on all telephone lines; however, call 

management functions, such as transferring a call, may only be available on 

devices that specifically support such a feature, and thus is considered a 

supplementary service.  

TAPI is not restricted to what is whimsically referred to by the acronym 

POTS (Plain Old Telephone Service). POTS  is analog service on the local 

loop (the wire connecting the telephone set with the nearest switching office). 

POTS supports voice calls with a 3.1 kHz bandwidth, or data calls at speeds up 

to 28.8 kbps using V.34 modems.  

In contrast, ISDN (Integrated Services Digital Network) supports up to 

128 kbps with its Basic Rate Interface (BRI-ISDN); the speed on PRI-ISDN 

(Primary Rate Interface) is much higher. TAPI supports ISDN as well as other 

connection types, such as switched 56, or T1/E1. TAPI can also utilize 

CENTREX features and the features of Private Branch Exchanges (PBXs).  

4.43.4 The Telephony API Model 
The telephony API model is designed to provide an abstracted layer for 

access to telephone services on all Windows platforms. In other words, the 

telephony API is a single set of functions that can be used to access all aspects 

of telephony services within Windows operating system. The aim of TAPI is to 

allow programmers to write applications. Applications written using TAPI to 

gain direct access to telephone-line services work in the same way on analog or 

digital phone lines. Applications that use TAPI can generate a full set of dialing 

tones and flash-hook functions. The TAPI design model is divided into two 



 16

areas, each with its own set of API calls. The two TAPI devices are, Line 

devices, which models the physical telephony lines used to send and receive 

voice and data between locations, and Phone devices to model the desktop 

handset used to place and receive calls.  

3.4.1 Line Devices 
 The line device is used to model the physical telephone line. It is 

important to understand that, in TAPI, the line device is not really a physical 

line; it is just a model or object representing a physical line. In TAPI 

applications, a program can keep track of several line devices, each of which is 

connected to a physical line. The same TAPI application could also keep track 

of multiple line devices their number is more than the total physical lines 

available to the PC. For example, a single TAPI application could be designed 

to provide voice, fax, and data links for a user. The TAPI application would 

identify three line devices. One for voice calls, one for fax transmission, and 

one for sending and receiving data via an attached modem. If the PC has only 

one physical phone line attached, the TAPI application would share the one 

line between the three defined line devices. This is called dynamic line 

mapping. Each time the TAPI application starts a line device, it requests the 

first available physical line that has the capabilities needed (voice, fax, data, 

and so on). If a line is not available, a message to that effect is returned to the 

calling program. In some cases, such as fax transmissions, the TAPI 

application may "queue up" the line request for processing at a later time. If 

two lines are available, the TAPI application utilize them as they are needed. If 

a third line device becomes active, the TAPI application knows that there are 

no other available open lines and notifies the user (or possibly queues up the 

outbound call for later).  

3.4.2 Phone Devices 
The second type of device modeled by TAPI is the phone device. This 

model allows TAPI programmers to easily create "virtual phones" within the 

PC workspace. For example, a standard PC with a sound card, speakers, and 



 17

microphone can emulate all the functions of a desktop phone. These virtual 

phones, like their line device counterparts, need not exist in a one-to-one 

relationship to physical phones. A single PC could model several phone 

devices, each with its own unique characteristics. When an actual call is made, 

the user could select one of the phone devices, enter the desired number and 

then the TAPI application would attach the phone device to an available line 

device.  

4.53.5 Typical Configurations 
The TAPI model is designed to function in several different physical 

configurations, each of these schemes have advantages and drawbacks. There 

are four general physical configurations:  

4.5.13.5.1 Phone-based 
This configuration is best for voice-oriented call processing where the 

standard handset (or some variation) is used most frequently. In phone-based 

TAPI configurations, the standard telephone handset is connected to the 

telephone switch and the PC is connected to the telephone. This configuration 

is most useful when the telephone handset is the primary device for accessing 

the telephone line. Since the telephone rests between the PC and the switch, the 

PC may not be able to share all the activities on the line. A phone-based 

configuration does not preclude the use of the PC to originate calls. As long as 

the PC is equipped with a phone card that allows dialing, the PC can originate a 

call and then allow the handset to pick up that call at any time. 

4.5.23.5.2 PC-based 
PC-based configuration is best for data-oriented call processing where 

PC is used most frequently for either voice or data processing. PC-based TAPI 

configurations place the PC between the telephone switch and the standard 

handset. This configuration is most useful when the PC is primary device for 

accessing the telephone line. In this configuration, mostly PC  originates phone 

calls. Typically, this is done via a phone card and software on the PC that 



 18

manages a list of phone numbers and handles the dialing of the phone. 

Depending on the exact media mode of the call,  PC can be used to display 

digital data on screen while handling voice information at the same time. Users 

could originate a voice call through the handset and then switch to the PC to 

capture and display digital data sent over the same line. Another major 

advantage of the PC-based configuration is that the PC can act as a call 

manager for the handset. This is especially valuable in a mixed-mode 

environment where voice, data, and fax are all coming in to the same phone 

address. For example, when a call comes in to the attached phone line, the PC 

can answer the call and determine the media mode of the call. If it is a fax call, 

the PC can route the call directly to an attached fax machine (or to the fax 

driver on the PC). Data calls can be handled directly by the PC and voice calls 

can be forwarded to the attached handset.  

4.63.6 Architectural Overview 
Win32 Telephony is a full, 32-bit implementation of the original 16-bit 

Windows Telephony application and service provider interface. Other than 

components provided for backward compatibility, all components of Win32 

Telephony, including service providers, are implemented in 32 bits. The 

following figure illustrates the architecture of Win32 Telephony on the 

Windows operating systems. 

 

 

16-bit Process 

16-bit TAPI 
Application 

TAPI.DLL 
(16-bit trunk) 

TAPI32.DLL 

32-bit Process 

16-bit TAPI 
Application 

TAPI32.DLL 

32-bit TAPI Service 
Process 

TAPISRV.EXE 

UNIMODEM.TSP 

Telephony 
Control 
Panel 

Registry 

UNIMODEM.SYS 
(kernel mode driver) 



 19

Figure 3.2  TAPI Architecture 

 

4.6.13.6.1 Existing 16-bit applications link to TAPI.  
In Windows 3.1 and Windows 95, TAPI is the core of Windows 

Telephony. Under Windows NT/Windows 2000, TAPI is simply a thunk layer 

to map 16-bit addresses to 32-bit addresses, and pass requests along to 

tapi32.dll. (Thunk is a small section of code that performs a translation or 

conversion during a call or indirection. For example, a thunk is used to change 

the size or type of function parameters when calling between 16-bit and 32-bit 

code.)  

 

4.6.23.6.2 Existing 32-bit applications link to tapi32.dll.  
In Windows 95, tapi32.dll is a thunk layer to TAPI. In Windows 98 and 

Windows NT/Windows 2000,  tapi32.dll is a thin marshaling layer that 

transfers function requests to tapisrv.exe and, when needed, loads and invokes 

service provider user interface DLLs in the application's process, (Marshaling 

is defines as the packaging and sending interface method calls across thread or 

process boundaries).  

4.73.7   TAPI Software Architecture 
The heart of TAPI is the TAPI dynamic link library (DLL) that offers 

TAPI services to the applications. This DLL serves as a layer between 

telephony applications and TAPI service providers. One such service provider 

is the UNIMODEM driver; this Universal Modem driver is supplied with 

Windows 95 and provides TAPI services for modems compatible with the 

Hayes AT command set . This basic TAPI architecture is shown in Fig 3.2.  

 

 

 

 

 
Application 

 
TAPI DLL 

TAPI Service 
Provider 

TAPI Service 
Provider 

TAPI Service 
Provider 

Telephony 
Device 

Telephony 
Device 

Telephony 
Device 

TAPIEXE.EXE 



 20

 

 

 

 

 

 

 
Figure3.3 The TAPI software architecture. 



 21

In addition to the TAPI DLL and the telephony service providers (drivers), 

another important, component of TAPI is the executable program tapiexe.exe. 

This program plays an important role when TAPI sends notifications to the 

calling application via callback functions.  

4.83.8 Synchronous and Asynchronous Operations  
 Many TAPI operations are synchronous; that is, when the TAPI function 

returns, the operation is either completed or failed, in this case an error code is 

returned. However, some TAPI operations are asynchronous; the TAPI 

function returns indicating whether the TAPI operation has been successfully 

initiated, but the operation is completed in another thread, and the application 

is notified via a callback function. The callback function is registered with 

TAPI when the TAPI library is initialized. The actual callback mechanism 

deserves a closer examination, especially because it has some consequences as 

to how TAPI functions operate. When a service provider wishes to place a 

notification, it calls the TAPI DLL. In effect, it requests that the DLL notify all 

concerned applications that a specific event has taken place. This first call to 

the TAPI DLL takes place in the execution context of the service provider. The 

TAPI DLL in turn sends a message to tapiexe.exe. This executable program 

calls the TAPI DLL itself, this time in its own execution context. This call 

instructs the TAPI DLL to post a Windows message to the applications needed 

to be modified. When the application receives and processes the message in its 

message loop, the message is dispatched to the TAPI DLL again, this time in 

the application's execution context. The TAPI DLL may in turn call the 

application's registered TAPI callback function to notify the application of a 

TAPI event. The TAPI notification mechanism is shown in Fig 3.4. 



 22

 

Figure 3.4  Processing of TAPI events. 
 

This mechanism has important implications for the architecture of TAPI 

applications. The scenario described here makes it clear that TAPI applications 

must have a message loop in order to process notifications correctly. Although 

the use of a callback function may imply that a message loop is unnecessary, 

this is not the case; the callback function is only called after the application 

receives a Windows message that the TAPI DLL processes. Another 

consequence concerns the use of multiple threads. It is important to realize that 

in order for TAPI to  

operate as expected threads that call asynchronous TAPI functions must have a 

message loop. The callback function is called in the context of the thread 

making the asynchronous call; this cannot happen unless the thread processes 

Windows messages. 

 

TAPIEXE.EXE 
Telephony 
Application 

TAPI DLL TAPI DLL TAPI DLL 

Service 
Provider 

Event notification 

Message 
Message 

Call 
Back 



 23

Chapter 4 
54Database 

5.14.1 Introduction  
Data Access Objects, or DAOs, is Microsoft's latest invention in 

database access technology. This technology with the help of a set of 

specialized MFC classes is used for database access in Microsoft's Visual C++. 

Data Access Objects enable the programmers to access and manipulate 

databases through the Microsoft Jet database engine. Through this engine, 

programmers can access data in Microsoft Access database files (MDB files).  

5.24.2 DAO (Data Access Object) 
Data Access Objects enable the programmers to access and manipulate 

database through the Microsoft Jet database engine. Through this engine, 

programmers can access data in Microsoft Access database files (MDB files). 

The technology also enables the programmers to access local and remote 

databases through ODBC (Open Database Connectivity) drivers. Data Access 

Object technology is based on OLE (Object Linking and Embading). Figure 

4.1 depicts the hierarchy of Data Access Objects. This hierarchy is greatly 

simplified by the DAO classes in MFC. Many DAO functions utilize 

Structured Query Language (SQL) statements. One can use the SQL SELECT 

statement to retrieve data from a database, or the SQL UPDATE, INSERT, and 

DELETE statements to modify the contents of the database. The easiest way to 

create SQL statements to use with DAO objects is to create the query from 

within Microsoft Access, save the query in the database, and access the query 

through a QueryDef object. Visual C++ provides extensive support for building 

DAO  

Figure 4.3 DAO Object Hierarchy. applications through the AppWizard. In 

addition to ODBC, AppWizard enables the programmers to create applications 

that are based on DAO Classes.  



 24

Both Data Access Objects (DAO) and Open Database Connectivity 

(ODBC) are application programming interfaces (APIs) that provides the 

ability to write applications that are independent of any particular database 

management system (DBMS). DAO is familiar to database programmers using 

Microsoft Access or Visual C++. DAO uses the Microsoft Jet database engine 

to provide a set of data access objects, database objects, tabledef, querydef 

objects, recordset objects, and others. DAO works best with xxx.MDB files 

like those created by Microsoft Access, but the programmers can also access 

ODBC data sources through DAO and the Microsoft Jet database engine. 

5.34.3 Services Provided by the Microsoft Jet Database Engine 
The Microsoft Jet database engine can be thought of as a data manager 

component with which other data access systems, such as Microsoft Access, 

Microsoft Visual Basic and Visual C++ are built. Microsoft Jet provides a 

variety of database management services, including data definition, data 

manipulation, data integrity, and security. There are seven basic services that a 

DBMS should provide. The seven basic functions of a DBMS are:  

 a. Data definition and integrity. Create and modify 

structures for holding data, such as tables and fields, and 

ensure that rules to prevent data corruption from invalid 

entries or operations are applied to data operations. 

 b. Data storage. Store data in the file system. 

 c. Data manipulation.  Add new data, modify or delete 

existing data. 

 d. Data retrieval. Retrieve data from the system. 

 e. Security. Control users’ access to database objects and 

data, thereby protecting the objects and data against 

unauthorized use. 

 f. Data sharing. Share data in a multiuser environment. 

 g. Database maintenance. Compacts, repair, and convert 

data and database objects.  



 25

5.3.14.3.1 Tables 
The Project database has various tables to group information; for 

example,View, Directory, Password. Tables are made up of rows and columns 

of related information. In most databases, rows are referred to as “records”, and 

columns are referred to as “fields”.  

Figure 4.1  Table design view in MS Access. 

 

 

 

5.3.24.3.2 Fields 
Each field in a table contains a single piece of information. For example 

the table View looks like shown in the figure 4.2. 

5.3.34.3.3 Records 
A record contains information about a single entry in a table.  



 26

5.3.44.3.4 Indexes 
An index helps the application to find specific records and to sort 

records faster.  Typically, one can index fields in a table that are used 

repeatedly to search for data.  However, indexes slow down the editing, adding, 

and deleting of data so they should be used sparingly. 

5.3.54.3.5 DaoRecordset   
 A DaoRecordset, is an object that contains a set of records from the 

database. Some recordset types are based on single tables. More commonly, 

however, recordsets are based on a query that is created by using Structured 

Query Language (SQL). A table-type recordset is based on a single table where 

as  SQL-based query can be used to retrieve a specific subset of records, or to 

retrieve information from two or more tables at once. SQL enables the user to 

specify which records to retrieve and the order in which to retrieve them. There 

are three types of Recordset objects. The type of recordset that is created 

should be based upon what a user intend to do with the data. 

5.3.64.3.6 Dynaset 
Dynaset-type recordsets provide more flexibility than tables. A dynaset 

can refer to any table, attached table, or query. A dynaset provides an 

updateable view to the data. As the application scrolls to a changed record, a 

new copy is retrieved, bringing it up to date. This dynamic behavior is ideal for 

situations in which it is important to be completely up to date. A dynaset 

contains a set of keys to the underlying tables. The actual data is retrieved 

when the user accesses a particular record. Because a keyset is used to refer 

data, a dynaset reflects modifications to existing records modified by other 

users, but does not reflect new records added by other users. Similarly, if 

another user deletes a record after the application’s owner dynaset is fully 

populated, then dynaset will contain a pointer to the deleted record and the 

application’s owner receives a runtime error if he attempts to access a deleted 

record. A dynaset is not fully populated until move to the end of the recordset. 



 27

5.3.74.3.7 Snapshot 
A "snapshot" reflects the state of the data at a particular moment, the 

moment the snapshot is taken. This behavior is ideal for reporting. As it takes 

time to retrieve the records for a snapshot, the moment at which the snapshot 

occurs is not instantaneous. 

5.44.4 Microsoft Jet database engine (MJDE) 
 The part of the Microsoft Access database system that retrieves data 

from and stores data in user and system database. The Microsoft Jet database 

engine can be thought of as a data manager upon which database systems, such 

as Microsoft Access are built. 

 The Jet 3.0 Engine, which is used in Access, Visual C++, and other 

Microsoft applications, is an efficient tool for storing and accessing data. It 

uses a cost-based query optimizer that takes programmer’s query and SQL 

statements and finds what it thinks is the best plan for executing the query. It 

also includes many other features, such as a cache and a read-ahead cache, 

which it uses to store data  

 DAO (Data Access Objects) is a set of OLE objects that simplifies 

database programming. There's a Database object to represent what else the 

database, which contains a collection of Tabledef (table definition) objects, 

each of which in turn contains a collection of field objects. Each object has 

properties and methods that expose pertinent functionality. Figure 4.3 shows 

the object hierarchy. 

a.  



 28

Figure 4.2  Hierarchy of DBEngine. 

 

 DAO uses a set of DLLs called the Jet engine. These DLLs provide 

access not only to MDB files, but also to other database formats including 

Xbase formats such as dBase and FoxPro, the Paradox DB format, spreadsheet 

data from Microsoft Excel and Lotus 1-2-3, and common text file formats such 

as fixed-width and comma-separated text. Jet engine even provides a route to 

ODBC sources. 

 Jet includes a powerful query processor that makes complex operations 

easy. For example, programmer can query an MDB table joined to a SQL 

Server able and update the resulting view. The ability to create stored queries 

(equivalent to a SQL view) that in turn reference other queries, all of which are 

still updatable, is quite powerful. It removes much of the application 

development burden. 



 29

 

 
Figure 4.3  Working of Jet Database Engine 

 

5.54.5  Programming DAO in C++ 

 There are three ways programmer can program DAO from C++: 

 1.  Invoke the OLE automation dual interfaces directly. 

 2.  Use the MFC CDao classes.  

 3.  Use the DAO SDK classes. 

 Naturally, each of these methods has advantages and disadvantages. 

Since programming directly through automation is fairly tedious, most people 

opt for either the MFC or DAO SDK classes. The MFC classes (CDaoXxx) are 

designed to have the same look and feel as the MFC ODBC classes 

(CDatabase), with some notable improvements such as the ability to specify 

field names at run time.  

Which classes are used is up to the programmer. Programmer can even mix 

classes within a single app. It might use the MFC classes for routine forms and 

 
Visual C++ 



 30

 viewing, saving the DAO SDK classes for more specialized features like user-

defined properties. Except where DAO is required for advanced features, the 

choice is more a matter of personal taste and experience than any technical 

merit, although in general the DAO SDK classes are more efficient since they 

map directly to the underlying objects and methods; whereas a single MFC call 

might translate into many DAO interface calls. 

 
Figure 4.4  Proprietary of Jet Database Engine. 

 

The Microsoft Foundation Class Library is a C++ programming-

language framework that is primarily designed to create Microsoft Windows-

based applications. This collection of C++ classes goes beyond a standard C++ 

library by providing some of the most basic structural elements to create 

programs. This framework facilitates the handling of data and much of the user 

interface that is characteristic of this type of program. This expert point of view 

outlines the reasons for learning and using the Microsoft Foundation Class 

library.  

 

 



 31

5.64.6 How MFC Encapsulates DAO 
The MFC DAO classes treat DAO much as the MFC classes for 

programming Windows treat the Windows API. MFC encapsulates or "wraps," 

DAO functionality in a number of classes that correspond closely to DAO 

objects. Class CDaoWorkspace encapsulates the DAO workspace object, class 

CDaoRecordset encapsulates the DAO recordset object, class CDaoDatabase 

encapsulates the DAO database object, and so on. 

MFC's encapsulation of DAO is thorough, but it is not completely one-

for-one. Most major DAO objects do correspond to an MFC class and the 

classes supply generally thorough access to the underlying DAO object's 

properties and methods.  

5.74.7 Mapping of DAO Objects to MFC Classes 
The tables 4.1 and 4.2 show as to how DAO objects correspond to MFC 

classes. 
 

Table 4.1 MFC Classes and Corresponding DAO Objects. 

Class DAO object Remarks 

CdaoWorkspace Workspace 
Manages a transaction space and provides 

access to the database engine. 

CdaoDatabase Database Represents a connection to a database. 

CdaoTableDef Tabledef 
Used to examine and manipulate the structure 

of a table. 

CdaoQueryDef Querydef 

Used to store queries in a database. 

Programmer can create recordsets from a 

querydef or use it to execute action or SQL 

pass-through queries. 

CdaoRecordset Recordset 
Used to manage a result set, a set of records 

based on a table or selected by a query. 

CdaoException Error 
MFC responds to all DAO errors by throwing 

exceptions of this type. 



 32

Class DAO object Remarks 

CdaoFieldExchan

ge 
None 

Manages exchange of data between a record 

in the database and the field data members of 

a recordset. 

 
Table 4.2 How MFC Manages DAO Objects Not Mapped to Classes. 

DAO object How MFC manages it 

Field 

Objects of classes CdaoTableDef and CDaoRecordset 

encapsulate fields and supply member functions for adding them, 

deleting them, and examining them. 

Index 

Objects of classes CdaoTableDef and CdaoRecordset encapsulate 

indexes and supply member functions for managing them. 

Tabledefs can add, delete, and examine indexes. Tabledefs and 

recordsets can set or get the currently active index. 

Parameter 

Objects of class CdaoQueryDef encapsulate parameters and 

supply member functions for adding them, deleting them, 

examining them, and getting and setting their values. 

Relation 
Objects of class CdaoDatabase encapsulate relations and supply 

member functions for adding, deleting, and examining. 

 

 

 

 

 

 

 

5.84.8 How MFC Accesses the Database Engine 
DAO has a DBEngine object that represents the Microsoft Jet database 

engine. The DBEngine object provides properties and methods which 

programmer can use to configure the database engine.In MFC, there is no 



 33

DBEngine object. Access to important properties of the database engine is 

supplied via class CDaoWorkspace. To set or get these properties, call any of 

the static member function of CDaoWorkspace.  



 34

Chapter 5 
65Implementation Issues 

6.15.1 Introduction 
This project has two basic components, one which interact with the user 

and other with the database. These components are namely TAPI and 

CDaoRecordset. Database keeps all the information about user as his 

telephone number, rank, priority etc where as TAPI will communicate with the 

user through modem. All necessary information relating to each number is also 

being maintained by the database. Figure 1.1 already explained the conceptual 

working of this project in the form of block diagram. 

A separate module has been developed which works in parallel with the 

above mentioned module. It intelligently process the number booked according 

to their priority and rank status and prompts the operator to dial accordingly. 

Modules communicate with the database through Data Access Object 

(DAO) classes of MFC tool. DAO classes provide more power and flexibility 

to handle databases through MJDE (Microsoft Jet Database Engine). 

Once the user dial the number the computer answers after three bells and 

ask the caller to enter his required number, the user has to enter the string like: 

5224*8221001234567*#  For booking 

5224*8221001234567*2# For Cancellation 

“ 5224 ” Own Number(As the project is designed 
for PASCOM exchanges which donot 
support CLI function that’s why own 
Number is required). 

“ 8221 ”  City Code. 

“ 00 ”  Army to civilian Code (only required for 

civilian numbers). 

“ 1234567 ”    The required telephone number. 

After getting this string it  pass it through four levels as : 



 35

 1. First Level will check the format of the string. 

2. Second Level will see whether it is for booking or for 

cancellation. 

3. Third level will check for duplication. 

4. Forth Level will check the authorization of user. 

 After passing through these levels number will be booked and user will 

be communicated his booking number and the same information is displayed 

on the screen. 

The implementation detail of project will be discussed under following 

section. 

This project is a Dao-based application, developed through Application 

Wizard of Visual C++ 6. An extensive use of Microsoft Foundation Classes 

((MFC) has been made because of its user friendly interface for the users. MFC 

programming is done through object oriented approach in which, different 

modules are encapsulated in different classes performing a specific task. 

Normally each dialog box and its visible objects are encapsulated in a separate 

class. Each class may have a number of member functions and member 

variables to execute the logic. 

Project is developed with the combination of 19 classes and 127 user 

defined functions in all the classes shown in figure 5.1. This section will 

discuss only those classes and functions which are heart of the design. Each 

class will be discussed in a separate table along with its important member 

functions and member variables. 



 36

 

 

  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1 Classes and Functions of MSProj in Visual C++ editor. 

 

6.1.15.1.1 Class CMSProjSet 
 The class is associated with a table ‘View’ of database 

‘Trunk_Booking’. It contains all the attributes of the table as a member 

variables which can be accessed by any of the object of this class. It is derived 

from CDaoRecordSet  Class . Its member functions and member variables are 

describe in the tables 5.1 and 5.2 respectively. 

   
 

 

 

 

 

 

Table 5.1 Member Functions of class CMSProjSet 



 37

Visibility Name Description 

Public AddNewRecord It is a function, which physically add new record to the 

database. It is called from the View Class whenever new 

telephone call is receive and enter his number. 

Public IsCancelCode It is Called within the AddNewRecord function it is one 

of the levels described above to check whether call is to 

book a new number or to cancel the existing number. 

Public IsDuplication It is also called within the AddNewRecord function it is 

one of the levels described above to check whether call 

is already in the queue or not. 

Public AssignRankSt_Priority It is also called within the AddNewRecord function it is 

one of the levels described above, this function is called 

to assign the Rank Status to both the number booked and 

Local number and decides the priority of the number. 

Public DeleteRecord This function is to delete the unwanted records. It is 

invoked automatically at the 1st of each month to delete 

the records of two months back. 

Virtual GetDefaultDBName This member function is called to determine the name of 

the database for the Recordset. If a Recordset is created 

without a pointer to a CDaoDatabase, then this path is 

used by the Recordset to open the default database. By 

default, this function returns an empty string.  
Virtual GetDefaultSQL The framework calls this member function to get the 

default SQL statement on which the Recordset is based. 

This might be a table name or an SQL SELECT 

statement. 
 

 

 

 

 

 

 

Table 5.2 Member Variables of class CMSProjSet. 
Visibility Data Type Name Description 



 38

Public CString m_B_NO This variable is associated with the field 

booking number in the database  

Public CString m_NumberBooked This variable is associated with the field 

‘NumberBooked’ in the database. 

Public COleDateTime m_Date This variable is associated with the field 

‘Date of Entery’ in the database 

Public COleDateTime m_Time This variable is associated with the field 

‘Time of Entery’ in the database 

Public CString m_RankStatusLS This variable is associated with the field 

‘Rank Status of the Local Subscriber’ in 

the database 

Public CString m_RankStatusDS This variable is associated with the field 

‘Rank Status of the Distant End 

Subscriber’ in the database 

Public CString m_Priority This variable is associated with the field 

‘Priority of the Call’ in the database. 

Public CString m_Status This variable is associated with the field 

‘Status of the Call’ in the database 

 

 

 

 

 

 

 

 

 

 

6.1.25.1.2 Class CMSProjView 
It displays database records in a list. The view is a form like list which is 

directly connected to a CDaoRecordset object. The view is created from a 

dialog template resource and displays the fields of the CDaoRecordset object in 



 39

the dialog template’s controls. It is derived from the CDaoRecordView  Class 

of MFC. Its member functions and member variables are describe in the tables 

5.2 and 5.3 respectively Its view at run time is shown in figure 5.2. 

 

Figure 5.2 Run time view of  class MSProjView 



 40

Table 5.3 Member Functions of class CMSProjView. 

Visibility Name Description 

Public AddColumn It is a function which  add Column headings for the 

fields shown in the List View. It is called from the Initial 

Update member function of the dialog. 

Public FillData It is called from the message generated by ‘Show All 

Record’ Button in the main view dialog box. Calling this 

function fills the screen with the records retrieved from 

the database. 

Public ShowCurrentRecord It is called from the message generated by ‘Show 

Current Record’ Button in the main view dialog box. 

Calling this function fills the screen with only the 

current records retrieved from the database. 

Public ShowQuery It is called from the message generated by ‘Execute 

Query’ Button in the Query dialog box. Calling this 

function fills the screen with only the selected records 

retrieved from the database.  

Public ExecuteQuery This function is called to filter out the query generated, 

it intelligently work out the query to be further passed on 

to the Jet Data Base Engine 

Virtual CallAddNewRecord It is a Raper Function which is called from the Static 

callback Function of the Class CTelephoneLine, it 

further call AddNewRecord Function.  
 

Virtual OnInitialUpdate Called by the framework after the view is first attached 

to the document, but before the view is initially 

displayed. The default implementation of this function 

calls the OnUpdate member function with no hint 

information  
 

 

 

 

 

5.4  Member Variables of class CMSProjView. 



 41

Visibility Data Type Name Description 

Public CString m_B_NO This variable is associated with the field 

‘Booking Number’ in the database.  

Public CString m_NumberBooked This variable is associated with the field 

‘NumberBooked’ in the database. 

Public COleDateTime m_Date This variable is associated with the field 

‘Date of Entery’ in the database 

Public COleDateTime m_Time This variable is associated with the field 

‘Time of Entry’ in the database 

Public CString m_RankStatusLS This variable is associated with the field 

‘Rank Status of the Local Subscriber’ in 

the database 

Public CString m_RankStatusDS This variable is associated with the field 

‘Rank Status of the Distant End 

Subscriber’ in the database 

Public CString m_Priority This variable is associated with the field 

‘Priority of the Call’ in the database. 

Public CString m_Status This variable is associated with the field 

‘Status of the Call’ in the database 

 

 

 

 

 

 

 

 

 

 

6.1.35.1.3 Class CTelephoneLine 
The CTelephoneLine class is designed for the  application to establish a 

TAPI connection. The class, is defined in the TelephoneLine.h file. It is a 

generic class and not derived from any MFC based class. It directly deals with 



 42

Win32 applications. The member functions and member variables are 

described in more detail in table 5.5 and 5.6. 
 

Table 5.5 Member Functions of class CTelephoneLine. 
Visibility Name Description 

Public Create It Set the necessary properties to null. 

Public InitializeTelephoneLine The first thing an application must do before it uses 

any telephony services is to initialize TAPI. This 

means that the application must establish some way 

to communicate between itself and TAPI. TAPI uses 

a callback function to facilitate this communication. 

The application tells TAPI the address of its callback 

function when the application makes a call to 

lineInitialize.The lineInitialize function fills in two 

values passed to it: a usage handle and the number of 

line devices available to the application. If the call to 

lineInitialize is successful, a value of zero is returned. 

If an error occurs, a negative value is returned. 

Public LineNegotiateAPIVersion The lineNegotiateAPIVersion function is used to 
negotiate the API version number to use. It also 
retrieves the extension identifier supported by the line 
device, and returns zeros if no extensions are 
supported.The API version number negotiated is that 
under which TAPI can operate. If version ranges do 
not overlap, the application and API or service 
provider versions are incompatible an error is 
returned.  
. 

Public LineCallbackFunc It is static function it runs asynchronously whenever 

any message is generated.  

Public OpenTelephoneLine The lineOpen function opens the line device specified 

by its device identifier and returns a line handle for 

the corresponding opened line device. This line 

handle is used in subsequent operations on the line 

device.  

Virtual processCallState It is a function called from LineCallBackFunction it 

deals with LINECALLSTATE parameters of the line.  



 43

 

Virtual lineMonitorDigits The lineMonitorDigits function enables and disables 

the unbuffered detection of digits received on the call. 

Each time a digit of the specified digit mode is 

detected, a message is sent to the application 

indicating which digit has been detected. 

Public TelephoneLineGetCall 

Status 

The lineGetCallStatus function returns the dynamic 

status of a call. Call status information includes the 

current call state, detailed mode information related 

to the call while in this state (if any), as well as a list 

of the available API functions the application can 

invoke on the call while the call is in this state. An 

application would typically be interested in 

requesting this information when it receives 

notification about a call state change by the 

LINE_CALLSTATE message. 

Public TelephoneLineGetDev 

Caps 

The lineGetDevCaps function queries a specified line 

device to determine its telephony capabilities. The 

returned information is valid for all addresses on the 

line device.  

 TelephoneLineGetWaveID The TelephoneLineGetWaveID function returns a 

device identifier for the specified device class 

associated with the selected line, address, or call.  

Public TelephonyShutDown This function is called before the application is close 

down. 

 

 

 

 

Table 5.6 Member Variables of class CTelephoneLine 

Visibility Data Type Name Description 

Public BOOL m_bInitialize This variable is a boolean type which 

act as a flag and tell whether the line 

has been initialized properly or not. It 

is set to false if no line device is 



 44

deducted.  

Public DWORD m_dwRingCnt This variable get the number of 

telephone rings to be counted.  

Public BOOL m_bLineCallStatusAllocated This variable is used to check 

whether space is allocated for 

structure(LINECALLSTATUS) if not 

then allocate it other wise free it.  

Public BOOL m_bLineDevCapsAlloced This variable is used to check 

whether space is allocated for 

structure(LINEDEVCAPS) if not 

then allocate it other wise free it.  

Public BOOL m_bLineOpen This variable is set to true if line is 

open successfully. 

Public Int m_DeviceID This variable takes the Identification 

of a Device Selected. 

Public DWORD m_RetApiVersion This variable gets the API Version 

returned by ‘LineNegotiateAPIVersion’ 

function. 

 

6.1.45.1.4 Class CTelephoneSound 
The CTelephoneSound class is designed for the  application to display 

the WaveFiles in an audible format which will reply the user during telephonic 

communication. The class, is defined in the TelephoneSound.h file. The 

member functions and member variables are described in more detail in table 

5.7 and 5.8 respectively. It is a generic class and not derived from any MFC 

based class. It directly deals with Win32 applications. 
 

Table 5.7 Member Functions of class CTelephoneSound. 
Visibility Name Description 

Public Create It Set the necessary properties to null. 

Public playSound It is the major function defined in this class. It is called 

from the CtelephoneLine Class which takes three 

parameters ‘the deviceID’,’Path of the file tobe 



 45

displayed’ and the ‘Handle to the window’. It returns 

Handle to the WaveOut if successful. There are number 

of functions called within this function.. 

Public mmioOpen The mmioOpen function opens a file for unbuffered or 

buffered I/O. The file can be a standard file, a memory 

file, or an element of a custom storage system. The 

handle returned by mmioOpen is not a standard file 

handle.  It is only  use with multimedia file I/O 

functions. 

Public mmioDescend The mmioDescend function descends into a chunk of a 

RIFF file that was opened by using the mmioOpen 

function. It can also search for a given chunk. 

Public mmioFOURCC The mmioFOURCC macro converts four characters into 

a four-character code. 
 

Virtual mmioRead The mmioRead function reads a specified number of 

bytes from a file opened by using the mmioOpen 

function. 

  

Virtual mmioAscend The mmioAscend function ascends out of a chunk in a 

RIFF file descended into with the mmioDescend 

function or created with the mmioCreateChunk function. 

 

Public waveOutOpen The waveOutOpen function opens the given waveform-

audio output device for playback. It uses  the 

waveOutGetNumDevs function to determine the number 

of waveform-audio output devices present in the system. 

If the value specified by the uDeviceID parameter is a 

device identifier, it can vary from zero to one less than 

the number of devices present. The WAVE_MAPPER 

constant can also be used as a device identifier. 

Public waveOutPrepareHeader The waveOutPrepareHeader function prepares a 

waveform-audio data block for playback. 

The lpData, dwBufferLength, and dwFlags members of 

the WAVEHDR structure must be set before calling this 



 46

function (dwFlags must be zero). 

The dwFlags, dwBufferLength, and dwLoops members 

of the WAVEHDR structure can change between calls to 

this function and the waveOutWrite function. (The only 

flags that can change in this interval for the dwFlags 

member are WHDR_BEGINLOOP and 

WHDR_ENDLOOP.) If  the  change of  the size 

specified by dwBufferLength before the call to 

waveOutWrite, the new value must be less than the 

prepared value. 

Preparing a header that has already been prepared has no 

effect, and the function returns zero. 

 waveOutWrite The waveOutWrite function sends a data block to the 

given waveform-audio output device. 

When the buffer is finished, the WHDR_DONE bit is set 

in the dwFlags member of the WAVEHDR structure.  

The buffer must be prepared with the 

waveOutPrepareHeader function before it is passed to 

waveOutWrite. Unless the device is paused by calling 

the waveOutPause function, playback begins when the 

first data block is sent to the device.  

Public waveOutProc The waveOutProc function is the callback function used 

with the waveform-audio output device. The 

waveOutProc function is a placeholder for the 

application-defined function name. The address of this 

function is specified in the callback-address parameter 

of the waveOutOpen function when a playback is 

finished this function is called automatically to release 

the memory blocks. 

 

 

Table 5.8 Member Variables of class CTelephoneSound. 

Visibility Data Type Name Description 

Public Pointer lpWaveHdr It is a Pointer to the WAVEHDR structure. It 

gets the address of the structure returned by the 



 47

calloc function. 

Public Pointer lpWaveFormat It is a Pointer to the WAVEFORMATEX 

structure. It gets the address of the structure 

returned by the calloc function. Basically it get 

the size of the format chunk and allocate 

memory for it. 

Public Pointer lpWaveData Allocate and lock the memory for the waveform 

data. 

 

The Classes described below for this module are all derived from the 

CDialog Class of MFC they all have almost same and similar number of 

functions and variables. Therefore, are discussed in a generalized form along 

with the dialog associated with each class.  

 

 

 

 

 

 

 

 

 

6.1.55.1.5 Class  CDLGAddNewNumber 
 The class is associated with a DialogBox as shown in figure 5.3 it is used  

for the addition of new telephone number to the data base. The user will enter 

the new telephone number in the edit box and select its priority and rank status 

from  

the combo boxes and then press ‘OK’ button, the number will be added to the 

database and acknowledgement is made to the user for success. 
 



 48

 

Figure 5.3 Run time view of  class CDLGAddNewNumber. 

 

 

 

 

 

 

 

6.1.65.1.6 Class CDLGDirectoryView 



 49

 It is used to view the complete directory along with  the rank status and 

priorities. The user can also delete any number just by the click of mouse on 

the required number and then press the ‘Delete’ button. Its view is shown in 

figure 5.4. 

Figure 5.4 Run time view of class CDLGDirectoryView 

6.1.75.1.7 Class CDLGExistingProperties 
 It is used to change the priority and rank status of the existing numbers if 

required, the procedure is the same as for the AddNewNumber Its view is 

shown in figure 5.5. 



 50

Figure 5.5  Run time view of class CDLGExistingProperties 

 

6.1.85.1.8 Class CDLGLockUnLock 
 It is used to Lock or UnLock the existing telephone number so that no 

one can book a trunk call from this number. The procedure is very simple just 

type the number you want to lock in the edit box and press ‘OK” button, the 

number will be locked, and for unlock just select the number form the combo 

box which contains the list of all locked numbers and press ‘OK’ button Its 

view is shown in figure 5.6. 



 51

Figure 5.6  Run time view of class CDLGLockUnLock. 

 

6.1.95.1.9 Class CDLGChangePassword 
This dialog box is used to change the password just by entering new 

password and confirming it will change the password. Its view is shown in  

figure 5.7. 

Figure 5.7 Run time view of class CDLGChangePassword. 

 

 



 52

6.1.105.1.10 Class CQueryDlg 
 It is used to generate wizard oriented query in order to avoid the user to 

write SQL Query format. The user can have 16  combinations from the 

following four choices shown in figure 5.8. There are further  different choices 

to select, in the combo box of  Call Status and Date.  

Figure 5.8 Run time view of class CQueryDlg. 

 

The Classes and the member function used in second module are 

describe in the subsequent paragraphs. 

6.1.115.1.11 Class CDialerDlg  
 It is the only user defined class in this module which contain several 

member functions. It is called at the start of the application. The ControlList 

used in this dialog based class will flash the  selected number to the operator to 

dial. It is derived from the CDialog Class of the MFC. Its view is shown in 

figure 5.9. The detail of member functions and member variables are describe 

in the table 5.9 and 5.10 respectively. 



 53

Figure 5.9 Run time view of class CDialerDlg. 

 

After dialing the number the operator has 4 choices according to the 

situation: 

1. Connected. 

2. Busy. 

3. No Answer. 

4. Code Congestion. 

 Pressing of any button will invoke a routine, which will decide what to 

write in the database against the number along with the time of service, this 

will be automatically visible in the ‘Call Status’ field of main view of project 

shown in figure 5.2. 
 

 

 

 

 

 

 

 

 

 

 

Table 5.9 Member Functions of class CDialerDlg 



 54

Visibility Name Description 

Public Create It Set the necessary properties to null. 

Public ScanDbForWaitingCalls It is the function which is automatically keeps on 

checking the database for any waiting calls and if it 

finds any call in the queue it calls the function 

‘ActivateDialer’ to do further which is required. 

Public ActivateDailer The ActivateDailer function now checks the queue for 

each priority and picks the number at the top of 

waiting queue if any and then call the function 

‘DecideSeniority’. 

Public DecideSeniority This function will decide the seniority of the number 

picked by the ‘ActivateDialer’. 

Public PrepareToDailNumber  This function is to prepare the number to be displayed 

on the operator screen. 

Public AddColumn This function is to add the column headings to the list 

view. 

Public FillData This Function is to display the required data to the 

operator screen.  

 

 

Table 5.10 Member Variables of class CDialerDlg 
Visibility  Data Type Name Description 

Public ClistCtrl m_CtlList It is an object of the ControlList Class which is 

used to access the different member function of 

the class.  

Public CdaoDatabase db It is an object of the CDaoDatabase Class which 

can open  the database invoked. 

Public CdaoRecordset rs It is an object of the CDaoRecordset Class which 

can access the tables of the database opened. 

 

Chapter 6 



 55

76Conclusion 

7.16.1 Thesis summary 
Corp of Signals plays an important role in the 

establishment/management of secure and reliable communication network 

within Pak Army. With the recent break through by acquiring most 

sophisticated communication infra structure, there is a dire need to 

optimally/efficiently utilize the resources. Keeping in view this scenario, a 

system is designed to meet such requirements, that accepts the string entered by 

the subscriber from telephone pad, then verify its correct format, checks the 

duplication of number booked, priority of number, and rank status of the 

subscriber. The systems saves the number booked in the database in the 

respective logical priority queues and communicate the booking number to the 

subscriber and the same information is displayed on the screen as well. The 

system is designed to scan all the logical priority queues automatically after 

every 5 seconds and the number waiting will be flashed for the operator’s 

attention to connect the call. Two separate modules are designed to handle the 

booking of number and scanning of the database for the awaiting calls, and are 

scheduled in such a way that each module will be running in parallel and 

independent to each other.   

Telephonic communication is the most popular means of 

communication. In Pakistan Army it is one of the major task of Corps of 

signals to provide the services relating to telephonic communication. Although 

with the induction of modern equipment the services are much faster and 

reliable, but still there is room for improvement. Pakistan is economically a 

poor nation and replacing any existing system abruptly would be a great 

economical burden. However, if the existing system could be used with slight 

modification and lesser cost, with additionally faster and reliable results. 

PASCOM exchanges are inducted in Pakistan Army few years’ back. These 

exchanges have many advanced features in them. However, the trunk booking 



 56

handling technique is quite traditional. The booking activity can be replaced in 

such a way that instead of asking the operator to book a number if the 

subscriber feed his required number through his telephone to the computer 

placed at the telephone exchange. By adopting this computerized booking 

method many ills of the system can be removed.  

The working of exchanges are of a traditional type and pays an extra 

load on the working staff, there is one shift dedicated only to deal with call 

booking, the job is to entertain the subscriber for booking a call, the procedure 

for booking is quite lengthy specially when number of calls increases, 

procedurally  he asked the subscriber about  his local number, the number he 

wanted to book, his rank and name, he writes all this information on a chit 

(known to be a ticket) along with date and time of booking, after that he hand 

over this ticket to the operator who  places it in a queue , Now after connecting 

the call the operator has to sign the respective ticket and write down the time of 

connection and reason for not connecting in case call cannot be connected and 

then hand it over to the exchange supervisor, at the end of the day the 

supervisor has to maintain the record of all calls in a register for future 

references, it is a time consuming  procedure . Moreover, if any complaint is 

raised then searching of a specified ticket from that junk is also very time 

consuming. The concept of the project is to design a system in which the 

subscriber dials the exchange number and he will then be connected to a 

computer, removing an intervention of any booking staff. More to say that the 

computer will play audible sound signal and communicate the booking 

number. 

The major feature of the project is the communication between 

subscriber and PC, which is dealt through Telephony Application 

Programming Interface (TAPI), by utilizing Modem and sound card. Database 

is designed using Microsoft Access. 



 57

Various techniques of communication and the differences between the three 

primary types of telephony hardware for PCs such as Basic data modems, 

Voice-data modems and Telephony cards were disused in detail. 

 Telephony Application Programming Interface (TAPI) provides a 

consistent programming interface for a variety of devices operating on voice 

grade lines. The devices include modems, FAX modems, voice capable 

modems, computer-controlled telephone sets, and many more. TAPI provides 

services for placing outgoing calls, accepting incoming calls, and managing 

calls and devices.  

  Telephony cards offer the greatest level of service compatibility. 

Telephony cards usually support all of the Basic Telephony and all of the 

Supplemental Telephony services, including phone device control. Most 

telephony cards also offer multiple lines on a single card. All TAPI services are 

routed through some type of modem. Sending data over phone lines involves 

three main steps. If the second modem answers the telephone call, the two 

modems go through a process of determining if they understand each other 

called handshaking.  

 The most advanced level of hardware a programmer can get for TAPI 

services on a desktop PC is a dedicated telephony card. As with other 

telephony hardware, telephony cards need an accompanying TAPI driver in 

order to recognize TAPI calls from user’s application. Telephony cards (along 

with TAPI drivers to match) offer the greatest access to TAPI services. 

Programmer can support all the Assisted TAPI and Basic TAPI functions along 

with access to Supplemental TAPI services. Basic data modems support 

Assisted Telephony services (outbound dialing) and can support only limited 

inbound call handling.  Voice-data modems are capable of supporting the 

Assisted Telephony and Basic Telephony services and many of the 

Supplementary services. Telephony cards support all of the Basic Telephony 

and all of the Supplemental Telephony services, including phone device 

control. 



 58

Data Access Objects, or DAOs, is Microsoft's latest invention in 

database access technology. Data Access Objects enable the programmers to 

access and manipulate databases through the Microsoft Jet database engine. 

Through this engine, programmers can access data in Microsoft Access 

database files (MDB files). Data Access Objects enable the programmers 

to access and manipulate database through the Microsoft Jet database engine. 

Through this engine, programmers can access data in Microsoft Access 

database files (MDB files). Data Access Object technology is based on OLE 

(Object Linking and Embading). 

Both Data Access Objects (DAO) and Open Database Connectivity 

(ODBC) are application programming interfaces (APIs) that provides the 

ability to write applications that are independent of any particular database 

management system (DBMS). DAO is familiar to database programmers using 

Microsoft Access or Visual C++. DAO uses the Microsoft Jet database engine 

to provide a set of data access objects, database objects, tabledef, querydef 

objects, recordset objects, and others. Microsoft Jet provides a variety of 

database management services, including data definition, data manipulation, 

data integrity, and security.  

 

7.26.2 Advantages 
 Following advantages are fore seeable: 

Subscriber’s end: 

1. It totally eliminates the interaction of subscriber with the exchange 

staff. 

4. It gives a satisfaction to the subscriber that the number he booked 

will be serviced according to his priority.  

5. Subscriber has the facility to get the information of his booking 

number at any time. 

4. Subscriber has the facility to cancel his call if need be. 



 59

5. Almost eliminates the operator level manipulation regarding 

management of calls. 

Management’s end: 

1. It totally eliminates the tedious job of exchange supervisor and 

call booking staff, which includes the management of call booking 

tickets as well as their record keeping. 

2. Now the Operator’s job is just dialing of flashed number. He is 

relieved of tickets handling, their sequencing and endorsement of 

service time, signatures and reason of not connecting the call in 

case any call could not be connected. 

3. Duplication in call booking is not possible. 

 

Chief Duty Signal Officer’s (CDSO) end: 

CDSO can enjoy the following privileges, just by the click of mouse: 

1. In case of any complaint, the CDSO can settle the issue by 

accessing the database within no time. 

2. Can control the call’s booking privilege from any number. 

3. Can change the priority and rank status of in use numbers. 

6. Can add new numbers in the database as and when required. 

7. Can delete a number from the database if no more required. 

6. All the settings are protected by a password for security purposes. 

7. The manpower relieved by the developed system can be employed 

elsewhere. 

7.36.3 Limitations 
1. The database designed is for the single PC supported database. 

2. The database is being managed centrally by the Chief Duty Signal 

Officer. 

3. Fax Modem doesn’t support all features of TAPI. 

5. Single channel supported hard ware. 



 60

7.46.4 Future work 
1. Speech API . For voice recognition.  

2. TTS(Text to Speech). To generate a dynamic wave file instead 

of prerecorded files. 

3. Networking 

4. Invoking suitable hardware for multichannel facility. 

 

 



 61

Bibliography 
 

1.  Mastering Visual C++ 6, Michael J.Young, introduction, BPB 

Publication 1999 

2.  Mastering Visual C++ 6, Michael J.Young, Chapter 9, Generating 

a windows GUI program, BPB Publication 1999 

3.  Microsoft Developer’s Network (MSDN), Platform SDK, TSPI, 

Oct99. 

4.  Hipson, Peter, Data base developer’s guide with Visual C++, 

chapter 6, part 2, The Microsoft jet database engine, SAMS 1996. 

5.  Microsoft Developer’s Network (MSDN), Platform SDK, TSPI, 

Oct99. 

6.  Microsoft Developer’s Network (MSDN), Platform SDK, TSPI, 

Oct99. 

7.  Sells Charis, Window’s Telephony Programming, Chapter 1, 

Windows telephony overview, PP6, Addison Wesley. Inc. 1998. 

8.  Microsoft Developer’s Network Oct 99. 

9.  Cathren Recardo ,”Database System Principles, Design and 

Implementation”, Maxwell Macmillan,1990. 

10.  Young Michael Joe, Mastering Visual C++6.0, chapter 5 Deriving 

C++ classes. 

11.  Robert Lafore, Programming for the PC and C++, chapter 16 

Object Oriented Programming, SAMS publications. 
 
 
 

 
 
 
 



 62

 


