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Preface

If, in some cataclysm, all of scientific knowledge were to be destroyed, and only one sentence passed on
to the next generations of creatures, what statement would contain the most information in the fewest
words? I believe it is the atomic hypothesis (or the atomic fact, or whatever you wish to call it) that
all things are made of atoms-little particles that move around in perpetual motion, attracting each other
when they are a little distance apart, but repelling upon being squeezed into one another. In that one
sentence, you will see, there is an enormous amount of information about the world, if just a little
imagination and thinking are applied.
Richard P. Feynman

This course is intended mainly for graduate students or advanced undergraduates in chemical engineering. It is
also appropriate for students with backgrounds in physics, chemistry or other fields that can make use of statistical
mechanics, molecular theory and simulations. The emphasis of the course will be theapplicationof the principles
of statistical mechanics to the solution of problems of interest in engineering and the sciences. Necessarily, there is a
significant amount of mathematics and theory involved, and the first half of the class is devoted to the development
of the basic machinery of statistical mechanics. By no means is the treatment given here complete, however, so
when appropriate additional references are given where the interested student may seek out additional details. The
second half of the course deals with solving statistical mechanical models numerically through use ofmolecular
simulations. A number of practical issues associated with molecular simulations are touched on, and examples
from the some of my research (and other’s) are used to illustrate some of the more important points. Again, a
comprehensive treatment is not intended or possible, but the course and notes should give you enough information
to pursue the topics introduced here in greater detail.

Regarding these notes: the notes you are reading are NOT intended to serve as a textbook. These are simply a
collection of notes that I have prepared over the last two years that provide a basis for our class discussions. Thus
the writing may not appear coherent in some sections, and you may find lots of typos along the way. I will try to
point out mistakes as I encounter them - if you find errors, please bring them to my attention!

I suggest you purchase the textbook by Richard RowleyStatistical Mechanics for Thermophysical Property
Calculations. This book is very easy to read and may help you grasp the material better than these notes or my
lectures alone. In addition, a number of books have been placed on reserve in the Engineering Library in Fitzpatrick
Hall. You should make use of these books in your studies to help clarify issues and reach a deeper understanding of
topics which interest you.

I am indebted to a number of people who introduced me to this field. Much of the material in these notes can
be traced back to old course notes of mine. In particular, I would like to acknowledge the work of Prof. Doros
Theodorou and Prof. Arup Chakraborty, who co-taught a class at Berkeley in 1991 entitled “Molecular Theory for
Chemical Engineers”. I also benefitted greatly from statistical mechanics courses taught by Prof. David Shirley in
1991 and Prof. David Chandler in 1992.

v
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Chapter 1

Outline and Scope

1.1 Definitions

The course will be broken down into two parts. In the first part, we will develop the essential components of
statistical mechanical theoryto handle the second part of the class,molecular simulation. We will use the following
definitions when discussing these topics.

Statistical Mechanics is the formalism that provides the link between the microscopic states of matter and
observed macroscopic properties. To actually compute macroscopic properties, we have two basic choices. First,
we can developStatistical Mechanical Theories. These are rigorous theories that provide an exact relationship
between the properties of interest and the microscopic details of the system. Typically, an exact analytical solution
is impossible for all but the simplest models. Thus, weapproximate realityby constructing simple models which can
be solved with pencil and paper (or minimal amounts of computation). On the other hand, we can useMolecular
Simulations to attack the problem. Molecular simulations are a numerical solution of thefull statistical mechanics.
These simulations areexactwithin the numerical accuracy of the computer that is used. Unfortunately, Nature is
so complex that formulating the problem with all the required details makes for calculations that are prohibitively
long. Molecular simulations takelots of computer time! To get around this, we often make approximations to the
statistical mechanical models, although these approximations are usually much less severe than are those made in
solving purely theoretical formulations. In practice, we use both of these tools interchangeably, and there is no clear
division. The advent of fast, inexpensive computers has invigorated the area of molecular simulation, such that these
simulations are being carried out in a number of corporate as well as academic research groups.

1.2 Synopsis

In a nutshell, the following major topics will be covered:

1. Equilibrium statistical mechanics: systems in thermodynamic equilibrium

There areO1023 microscopic variables (degrees of freedom) in a macroscopic system, but a thermodynamic
description involves only a handful of degrees of freedom. This remarkable reduction is a consequence of
statistical laws that govern the behavior of many–body systems. We will discuss these laws in the initial part
of the class.

2. Nonequilibrium statistical mechanics: systems kept off equilibrium

This isn’t often treated in statistical mechanics classes, but it turns out to be very useful when conducting
simulations. Thus, we will formulate the statistical mechanics of systems where a perturbing field drives
the system away from equilibrium. The formalism relies upon “irreversible thermodynamics”, and is the
molecular foundation for transport phenomena and chemical kinetics.

1



2 CHAPTER 1. OUTLINE AND SCOPE

3. Statistical mechanical theories

Having discussed the fundamentals, we will touch on various theoretical approaches that are used to un-
derstand the behavior of systems. These theories provide a rigorous formalism for predicting macroscopic
behavior. An exact analytical solution is impossible for all but the simplest molecular models so approxi-
mations are employed involvingsimplified models(i.e. molecular shape, spatial arrangement, interactions,
etc.) and simplifiedmathematical formulation(i.e. Gaussian statistics, etc.). Oftentimes, we do both! Given
these approximations, closed–form solution can be solved either analytically or numerically. Typically, good
approximations yield good results and modest computational effort.

4. Molecular simulations

The last topic to be discussed involves the solution of thefull statistical mechanics. When done properly,exact
solution of the molecular model is obtained. People often refer to this approach as “computer experiments”
that track organization and mode of motion of molecules. The macroscopic manifestation of molecular phe-
nomena are monitored during a simulation. My view is that simulations are just another tool, such as a new
spectroscopy, that can be useful in the proper situation. Its main value is its flexibility and that it becomes
more powerful with each passing year, as computational speed continues to double every 18 months. The main
advantages of molecular simulations are that one can makeproperty predictionsby constructing a model that
faithfully mimics reality. No less importantly, one can also rigorously test molecular theory. That is, anexact
numerical solution of a model can be obtained to test if the analytic solution obtained from your theory is
correct. The main disadvantage of the technique is that it is computationally intensive. Consequently, you are
typically limited to short simulation times and length scales. However, one can minimize computational re-
quirements by utilizing various “tricks”, using parallel computing techniques, or by invoking approximations
which are generally less severe than those required in statistical mechanical theories.

Purpose of the course: To provideexposureto some fundamental and applied aspects of statistical mechanics
useful in chemical engineering research and practice. This is relevant as Chemical Engineering has been moving
toward a more molecular–level approach to problem solving for several years in response to tighter environmental
controls (conversion, waste, use), growth of specialty markets and increased competition in commodity markets.

A rough outline of the topics to be covered is given below. Note that this may change according to the interests
of the class. In Part 1 of the class, we will develop the basis of statistical mechanics, emphasizing only the essential
features necessary to understand how many modern problems are being addressed with these techniques. The
following items will be covered:

1.3 Outline of Statistical Mechanics Section

1. From Hamiltonian Dynamics to Statistical Mechanics

� classical mechanics

� phase space

� Liouville equation

� ergodicity and mixing in phase space

2. Introduction to Equilibrium Statistical Mechanics

� ensembles: microcanonical, canonical, grand canonical

� connection with thermodynamics

3. Elementary Statistical Mechanics of Fluids
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� Ideal Gas

� Mean Field Approximations

� Applications (e.g. isotherms)

4. Distribution Functions in Monatomic Fluids

� Pair Distribution Functions

5. Integral Equation Theories

In the second half of the class, we will introduce molecular simulations and cover both theoretical and practical
topics associated with their use. The outline below will be more or less followed:

1.4 Outline of Molecular Simulation Section

1. Why use molecular simulations?

� Difficulty in applying statistical mechanics to “real” problems

� Relationship between molecular simulation, experiment, and continuum theories

2. Construction of a molecular model

� molecular representation

� potentials

� model system

3. Monte Carlo methods

� Importance sampling

� Markov chains

� Metropolis algorithm

� Monte Carlo in different ensembles

4. Molecular Dynamics

� Equations of motion

� Integration algorithms

� Molecular systems

� Constraint dynamics

� Extended ensembles

� Structure from MD

� Transport properties (Green-Kubo relations, linear response theory)

� Nonequilibrium statistical mechanics, nonequilibrium MD

5. Brownian Dynamics

� Brownian motion

� Langevin equation, Fokker-Planck

6. Transition–State Theory
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Chapter 2

Introduction

A theory is the more impressive the greater the simplicity of its premises, the more different kinds of
things it relates, and the more extended its area of applicability. Therefore the deep impression that
classical thermodynamics made upon me. It is the only physical theory of universal content which I am
convinced will never be overthrown, within the framework of applicability of its basic concepts.
Albert Einstein

2.1 Historical Perspective

Before embarking on the details of a topic, it is often useful to spend just a little time seeing where the subject came
from. The seeds of statistical mechanics were sown in the early nineteenth century, when classical thermodynamics
was developed. Through the “laws” of thermodynamics, scientists and engineers had a conceptual tool that enabled
them to design and analyze the processes that sparked the industrial revolution. The efficiency of devices such as
steam engines and power plants could be described and predicted using this formalism. Later, thermodynamics was
extended to a host of other situations, including the description of chemical and phase equilibrium. Interestingly,
classical thermodynamics makes no assumption about the nature of matter, and yet it still works fine!

It was only about 100 years ago that people really started to question what makes up the substances around us.
The atomistic view of matter was not widely accepted, although people like van der Waals and Boltzmann made
convincing arguments for the existence of atoms. In his Ph.D. thesis of 1873 entitled “On the Continuity of the
Gaseous and Liquid States”, van der Waals writes

We have therefore to explain why it is that particles attracting one another and only separated by empty
space do not fall together: and to do this we must look around for other causes. These we find in the
motion of the molecules themselves, which must be of such a nature that it opposes a diminution of
volume and causes the gas to act as if there were repulsive forces between its particles.

van der Waals then goes on to propose the first cubic equation of state, which is still taught in every thermodynamics
class. He correctly identified the two key concepts that are essential in understanding fluid behavior: (1) matter is
made of molecules that are always moving about, and (2) the molecules have both attractive and repulsive forces
between them, which governs the fluid behavior. Although we now know all this fairly well, it was a remarkable
conceptual breakthrough at the time.

People realized then that, if fluid behavior was determined by the way in which particles move about and interact,
then there must be some link between the behavior of these particles and classical thermodynamics. What was the
link? In other words, if the microscopic interactions of molecules governs macroscopic properties, how do we go
about calculating what those properties are? To the deterministic thinkers of that day, the task looked impossible.
How do you track the movement of1023 particles? Even with today’s supercomputers, calculating the interactions
between that many particles would take roughly as much time as the universe has been in existence. We simply

5
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can’t do it. Ironically, because there areso manymolecules in a macroscopic fluid element, we actually don’t have
to track all the particles. Just as actuaries and pollsters rely on small samples of huge populations to accurately
predict death rates and election outcomes, so too are we able to say something about theaverageproperties of
materials by studying small samples. Following all the particles with classical mechanics isn’t necessary. Instead,
all we need to do is figure out thestatisticalbehavior of the system, and we can determine macroscopic properties.
Hence the namestatistical mechanics. It was Ludwig Boltzmann who provided this important link between classical
thermodynamics and statistical mechanics when he reinterpreting the Second Law in terms of molecular probability.
Boltzmann was the one who stated that entropy was proportional to the logarithm of the number of quantum states
available to the system (we’ll get into this later). That constant of proportionality is now called Boltzmann’s constant,
and we now recognize him as the father of statistical mechanics. Unfortunately for Boltzmann, he died before ever
seeing his ideas accepted, but his famous equation is inscribed on his tombstone forever reminding us that he was
right.

2.2 Link Between Microscopic and Macroscopic

The methods used to go from a statistical description of molecules to macroscopic properties are complex, and
computational difficulties have limited the use of statistical mechanics in engineering applications. Historically,
statistical mechanical treatments have only been possible of idealized systems, but much progress has been made
in the last ten to twenty years, so that now fairly complex (and thus interesting) systems can be studied with these
methods. Conceptually, however, the connection is quite simple, as shown in Figure 2.1. What we will do in this
class is show practical ways in which we can make this link.

Microscopic
Behavior:
molecular motion,
intermolecular forces

Macroscopic
Properties:
thermodynamic
and transport properties
optical properties, etc.

Figure 2.1: Statistical mechanics provides the conceptual link between the microscopic behavior of molecules and
the macroscopically observable properties of a material.

2.3 Practical Problems

The next issue we need to address before getting into details iswhenwould one like to perform calculations of
this type or do this kind of modeling? In other words, what are we interested in calculating and why? Aside from
the fact that the field is fun and intellectually pleasing (reason enough for academics!), there are several practical
problems that people are trying to address with statistical mechanics/simulations. We will talk briefly about two
such problems: rational material design and thermophysical property estimation. Part of this class will be devoted
to helping you find applications relevant to your interests or thesis research.

2.3.1 Material Design

Statistical mechanics plays a central role within the hierarchy of approaches for first principle design of engineer-
ing materials. An alternative design process, utilizing a “shotgun” approach, is calledcombinatorial chemistryof
combinatorial synthesis. The tools discussed in this class are also applicable to this process, as some guidance on



2.3. PRACTICAL PROBLEMS 7

the molecular level can greatly reduce the number of “trials” one makes and thus can help focus the search for new
materials in the combinatorial approach.

The following figure depicts a rational design “hierarchy” strategy. We see thatquantum mechanicsis the most

quantum mechanics

statistical mechanical theory

and computer simulation

continuum engineering 

science

product performance

& constitutive laws

material properties

molecular geometry

& interaction energy

chemical constitution

processing

conditions

morphology
material

molecular details

and mechanisms

(After D. N. Theodorou)

Figure 2.2: Hierarchy of approaches for the rational design of materials (after D. N. Theodorou)

fundamental step in the process, taking information on the chemical constitution of matter and yielding the following
type of information

� potential energy of interactions between atoms and molecules as a function of spatial configuration

� molecular geometry resulting from interactions

Given these inputs from quantum mechanics,statistical mechanicsprovides a framework for predicting proper-
ties. Note, however, that we may obtain these inputs from other sources, such as experiment. The kind of properties
we can get from statistical mechanics include:

� Thermodynamic properties, such as

– phase diagrams

– volumetric behavior

– heat capacity
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– solubility

– sorption isotherms

– surface and interfacial tension

� Mechanical properties, such as

– elastic moduli

– toughness

– strength

� Transport and rheological properties, such as

– viscosities

– diffusion coefficients

– thermal conductivities

– relaxation times

� Chemical properties, such as

– reaction rate constants

– equilibrium constants

� Constitutive laws governing materials (i.e. polymer rheology)

� Molecular organization and motion

– mechanisms underlying macroscopic behavior

– insight for “what if” questions

All of these properties are useful in and of themselves. We can compare the results of our calculations with
experimental measurements to assess how well our model does in capturing physical reality. If the models are
good, we can then use the calculations in apredictive modeto help us determine properties for systems where
experiments are difficult, expensive, or impossible. Once the properties of interest are determined, we then use
continuum engineering scienceto move to longer length scales and longer time scales. This enables us to carry out
calculations necessary for actual materials and/or process design. These areas include fields traditionally studied by
engineers and chemists, including

� thermodynamics

� transport phenomena

� continuum mechanics

� rheology

� chemical and catalytic kinetics

A rational design strategy whereby the input to continuum models is derivedcompletelyfrom quantum and statistical
mechanics does not exist – and probably never will completely exist for many areas!However, parts of this strategy
are being developed and used in industry. Recent advances have helped make this possible in:

� molecular–based drug design



2.4. REVIEW OF SOME MATHEMATICS AND STATISTICS 9

� coatings

� catalysis

Many parts of this strategy have been established qualitatively. We typically call this “experience” or “insight”.
The techniques discussed in this class will help formalize how we obtain this type of molecular insight. In addition
to the usefulness in the design process, traditional experimental investigations are complemented, enhanced, and
interpreted through use of theory and simulations. My main point here is that,even for someone who considers
themselves to be purely an experimentalist, statistical mechanical methods are important and should be considered
in your work!

2.3.2 Thermophysical Property Estimation

Another area where statistical mechanical theory and simulation is making a big impact is in the estimation of ther-
mophysical properties. This is really a subset of the rational design process mentioned above, but it is so important
that I want to emphasize its use in a separate section. To carry out design calculations, the engineer needs ther-
mophysical properties. That is, we need to know heats of formation, viscosities, densities, phase diagrams and a
whole host of other properties. Many of these properties have been measured and tabulated for pure substances. We
have much less information regarding mixtures. In addition, there are huge gaps in the data outside relatively mild
laboratory conditions. That is, we often have no information regarding thermophysical properties under extreme
conditions, because experiments in this regime are often too difficult. We are often left no choice but to estimate
thermophysical properties when performing preliminary calculations. (We still must measure many of these proper-
ties before a final design is carried out, but the ratio of final designs to preliminary designs is a small number. Thus,
there is a big incentive for us to be able to estimate properties with reasonable accuracy in a way much cheaper than
experiment). The traditional approach is to develop models to help us predict properties (or worse, we extrapolate
existing data - a dangerous thing to do!). Examples of these models include the large number of activity coefficient
models or equations of state which help us predict vapor-liquid equilibrium behavior. As you know, these models
don’t always work, and typically require some experimental data as input.

To make models more predictive, people have developedgroup contributionmethods. A good example is the
UNIFAC method for predicting activity coefficients. While this method sometimes work, sometimes it doesn’t. Is
there another alternative?

People have been working on methods wherebymolecular simulationscould be used to help predict thermo-
physical properties of materials. We will discuss exactly how this is done later, but the vision is that an engineer
could access a corporate database and ask for a thermophysical property (i.e. the viscosity of a hydrocarbon mix-
ture). If experimental data were available, it would be given to the person. If no data exists, a simulation could be
conducted on the company computer using either first-principles or empirical forcefields, and an estimate would be
generated. Obviously, if your job is to figure out how to do the simulations to get the estimate then you need to
know the content of this course. However, even if you are accessing such information, you should know how it gets
generated so that you can have a better idea of its accuracy and the shortcomings of the methods.

2.4 Review of Some Mathematics and Statistics

We will make use of a number of concepts from statistics. This section serves as a review and a way of introducing
nomenclature. For additional details, see McQuarrie,Statistical Mechanics. Much of what follows comes from
McQuarrie, as well as Rowley andIntroductory Statistical Mechanicsby Bowley and Sanchez.

2.4.1 Probability

The everyday meaning of the word “probability” has to deal with the odds of a particular outcome. For example,
we speak of probability as meaning “What are the odds the Packers will win this Sunday or that a given horse will
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win a race?” This is not the interpretation of probability we will be using.
We will think of probability in two ways. The first is theclassical notion of probabilityin which we assign, a

priori, equal probabilities to all possible outcomes of an event. The second notion isstatistical probability, which is
a measure of the relative frequency of an event.

Classical Probability

The rule for setting the classical probability is simple: count all the points in a given sample space and assign them
equal probabilities. If there areW points in the sample space, then the probability of each point is1=W . Thus,

pi =
1

W
(2.1)

For example, if we toss a coin, there are two possible outcomes: heads or tails. The probability of getting a
heads is just1=2, sinceW = 2. If we tossed the coinN times, there would be2N possible outcomes (we count
each outcome separately, remember, even though we may not be able to distinguish one “head” from another). The
probability of any one event for this situation is thus

pi =
1

2N
(2.2)

What we have done in this case is to enumerate all possiblesimple eventsand assign equal probabilities to each.
A simple event is simply the outcome of a trial that doesn’t depend on any other event. The flipping of a coin is
about as close as we can come to a simple event. Does the concept of a classical probability always work? Let’s
apply it to the prediction of the sex of a baby. There are two possible outcomes for a baby’s sex: boy or girl. Using
classical probability, we would anticipate thatpboys = 0:5, since in the absence of any other information we assume
that both possible outcomes are equally likely. If we look at the records, however, we find thatpboys � 0:51 for
most countries. More boys are born than girls. What’s wrong with our approach? An even more extreme case can
be found if you use classical probability to predict the weather. Let us predict the probability that it will rain in San
Diego on any given day. Since there are two possibilities, that it rains or that it doesn’t, we might naively assume
thatprain = 0:5. If you’ve ever been to San Diego, you know this is clearly wrong, for it rains only a few days out
of the year. The source of difficulty here is that whether it rains or a boy is born depends on a number of events
acting together. These are not simple events, but are insteadcompoundevents. Compound events are made up of a
collection of simple events. Clearly, we should test experimentally our a priori assignment of probabilities.

Statistical Probability

Statistical probability is concerned with the experimental method of assigning probabilities to events by measuring
the relative frequency of occurrence. Using a modification of our baby analogy, let’s say we want to know what the
probability is that a baby born in the U.S. will have blue eyes, brown eyes, or green eyes. One way of determining
this is to go out and count babies. Let’s say a roving group of graduate students goes to a number of hospitals around
the U.S.1 The graduate students come back after having examined 1000 babies and they report that 601 of the babies
had brown eyes, 251 of the babies had blue eyes, and 148 had brown eyes. We could then assign probabilities in the
following way:

pbrown = 0:601; pblue = 0:251; and pgreen = 0:148

The advisor of these students isn’t satisfied, however, and tells them to go out and count more babies. They
cheerfully agree and count 9000 more babies. Now their sample size is 10,000. They obtain the following:

nbrown = 6; 205; nblue = 2; 688; ngreen = 1; 107

1Let’s forget about local variations in the population, and assume that the U.S. is completely homogeneous for the time being. Of course
this is a terrible assumption, but this example is only for illustrative purposes!
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Their revised probabilities are :

pbrown = 0:6205; pblue = 0:2688; and pgreen = 0:1107

Mathematically, the relative frequencies are written as(ni=N), whereni is the number of occurrences andN
are the total number of samples or trials. If the relative frequencies tend toward a constant asN goes to infinity,
then this limit is defined as thestatistical probability, pi, given as

pi = lim
N!1

�
ni
N

�
(2.3)

In practice,(ni=N) will fluctuate, but should converge to a well-defined limit asN gets very large. For random
events, the fluctuations in the statistical probability diminish asN�1=2; thus the largerN becomes, the more ac-
curately we knowpi. We see that the graduate students probably jumped the gun by assigning probabilities too
soon after only 1000 babies. Hopefully, after many more trials they would see values converge and would assign a
probability according to eqn 2.3.

For many simple systems such as dice and cards, it is an axiom that the observation of well defined events tends
to a limit and that a definite probability can be assigned. Las Vegas has thrived using this axiom. Of course, this is
an act of faith, because we can never take an infinite number of trials, but apparently a large number is close enough
to make a fortune!

Now, here is a key point: statistical probabilities are only accurate when the same event occurs many times, so
that the ratio(ni=N) can converge. This is why speaking of the “probability” of the Packers beating the Vikings in
football doesn’t have the same meaning as our stricter definition of probability. The Packers/Vikings contest will
only occur once. The next time the teams play, it may be on a different field, with different weather and different
players. Another key point: statistical probabilities only have meaning when the ratio(ni=N) tends to a limit. You
may ask what is the statistical probability the Dow Jones Industrial Average will close at 7800 tonight. The market
moves up and down, but is not apparently converging on a particular value. Even though it is the same market, it is
drifting (we hope up), and not converging. Therefore statistical probabilities have no meaning in this context.

Axioms of Probability Theory

There are three axioms we must identify in probability theory. First, suppose we have a set of probabilitiespi. In the
case of classical probability, we haveW simple events each with a probabilitypi = 1=W . In the case of statistical
probability,pi = ni=N , withN going to infinity. In both cases,the probabilities are positive numbers, or zero. This
is the first axiom: all probabilities are either zero or positive numbers.

The second axiom is thatthe probabilities are less than or equal to one.
The third axiom concerns compound events. Let us say thatpi is the probability that eventi occurs, andpj

is the probability that eventj occurs. If both events cannot occur in a single trial, then the events are said to be
mutually exclusive. The third axiom is that for mutually exclusive events, the probability of either eventi occurring
or j occurring is

pi+j = pi + pj (2.4)

where the notationpi+j refers to the probability that either eventi or j occur. For example, let’s say we draw a card
from a pack of cards. The card can’t be the ace of spadesand the jack of hearts. These are exclusive events. The
probability of gettingeither the ace of spades or the jack of hearts in a single draw is just

pAS+JH = pAS + pJH (2.5)

In general, a set(1; 2; : : : ; r) of mutually exclusive events has a set of individual probabilities(p1; p2; : : : ; pr). The
third axiom states that the probability that one of these events occurs during a single trial is

p = p1 + p2 + � � �+ pr (2.6)
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Question: Consider an ideal die with 6 sides. What is the statistical probability of rolling an even number?
What is the statistical probability of rolling a number less than 4? What is the chance that either or both occur? Are
these events mutually exclusive?

Independent Events

The probability that two independent events will occur is the product of their individual probabilities. That is, if the
probability of eventi is pi and the probability ofindependenteventj is pj, then the probability that both event occur
must be

pi;j = pipj (2.7)

As an example, the probability of rolling a 6 on a single die is

p6 =
1

6

Let’s say you have just rolled a 6. What is the probability of rolling another 6? For this particular trial, it is again

p6 =
1

6

However, if you ask what is the probability of rolling two consecutive 6s, where now we consider the two rolls as a
single “trial”, then the probability is

p6;6 = p6p6 =
1

36

Generalizing this, we can haver independent events, each with individual probabilityp1; p2; : : : ; pr. The probability
that they all occur in a single trial is

p = p1p2 � � � pr (2.8)

2.4.2 Counting

In statistical mechanics, we have to know how to “count” the number of ways things can be arranged, combined, or
permuted. Here are some basic formulas we will use.

Arrangements

The number of ways of arrangingn dissimilar objects in a line isn! = n� (n�1)� (n�2) � � ��2�1. If there are
n objects,p of which are identical, then the number of different ways these can be arranged aren!=p!. For example,
we can arrange the letters A,B,C,D in 24 different ways (4!). However, we can only arrange the letters A,A,B,C in
12 different ways. We can generalize this to the case when we haven objects we wish to arrange in a line, where
we havep objects of one kind,q objects of another kind,r of another and so on. The number of arrangements in
this case isn!=p!q!r! � � �.

Permutations

Let us now say we wish to know how many ways can we arranger objects out of a total ofn objects. We call this
thepermutationof r objects out ofn. It is given by the following formula

nPr =
n!

(n� r)!
(2.9)
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As an example of how this works, say we have 5 letters A,B,C,D,E and we wish to know the number of ways of
choosing 2 of the 5 letters. The first choice can be any 1 of 5 (i.e. “B”) but the second choice can be only 1 of 4 (i.e.
“C”). This selection then forms a single permutation of the 5 letters, and has the “value” BC. Assuming that the two
choices are independent of each other, the number of permutations can be explicitly worked out. The result for this
particular case follows from eqn 2.9

5P2 =
5!

(5� 2)!
= 20

Combinations

In many situations, we don’t care about the order with which the selections are made. For example, if we have
our letters A-E as above, we might wish to consider BC as being equivalent to CB. We must therefore divide out
the degenerate cases from eqn 2.9. We call this the number ofcombinationsof r objects out ofn, and the general
formula for this is

nCr =
n!

r!(n� r)!
(2.10)

The number of combinations of two-letter pairs from five total is now 10, whereas the number of permutations is
20.

Molecules of the same kind are indistinguishable, so we will use combinations to count the number of unique,
distinguishable arrangements. We can generalize the result in eqn 2.10 to account for different states. For example,
let us say we have 10 total letters. We wish to place three of them in box one, five in box two and the remaining two
in box three. How many ways can this be done? Let’s try to derive a general formula using this specific case.

The first three letters can be chosen with

10C3 =
10!

3!(10 � 3)!

number of ways; the second five can be chosen in

7C5 =
7!

5!2!

ways; the final two are chosen in

2C2 =
2!

2!0!

number of ways. Recalling that0! = 1, and recognizing that each of these events isindependent, we arrive at the
total number of ways of making the choices as

W = 10C3 7C5 2C2 =
10!

3!5!2!

We see that, in general, the number of arrangements forN items withni in each statei is

W =
N !

n1!� n2!� n3!� � � � (2.11)

where the denominator implies a division by allni!. We will use eqn 2.11 to work out the total number of ways
energy can be arranged between different quantum states.
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2.4.3 Distributions

Let’s suppose that our team of graduate students now wants to determine how tall the average American adult male
is. To do this, they go out and start measuring adult males. They measure 100 men, and arrive at an average height
using the following formula

hhi = 1

N

NX
i=1

hi (2.12)

wherehhi is the average height,N is the total number of men (samples) measured, andhi is the result of measure-
menti. They obtain a value ofhhi = 67:4 inches. The raw data are plotted in Figure 2.4.3
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Figure 2.3: Distribution of heights with 100 samples.

What the students don’t tell you is that the resolution of their ruler is only about 1/2 an inch, so the heights were
actuallybinnedas shown in the histogram of Figure 2.4.3. Thus, theactual formula used to get the mean was

hhi =
Pnbins

i=1 nihi
N

(2.13)

whereN =
Pnbins

i=1 ni, the sum over all the bins of the number of men having a height within some discrete bin
width. Notice that, in the limit ofN !1, eqn 2.13 goes to the following

hhi =
nbinsX
i=1

pihi (2.14)

wherepi is thestatistical probabilitythat a man is of heighthi.
The graduate students are so excited by their results, that they take additional samples withN = 1000 and

N = 100; 000; the results are shown in Figures 2.4 - 2.5.
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Figure 2.4: Distribution of heights with 1000 samples.
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Figure 2.5: Distribution of heights with 100,000 samples.

These results show that as the number of samples increases, the distribution becomes smoother and smoother.
Said another way, as the number of samples in each bin gets larger, the statistical probabilities associated with each
bin become more and more certain. If our ruler has very fine resolutiondh (instead of 1/2 inch), we could replace
pi, the probability of being in bini by p(h)dh, wheredh is the differential “bin width” or resolution of our ruler,
andp(h) is a smooth function ofh. The continuous curvep(h) is called aprobability density distribution. The sum
over the bins becomes an integral, such that

nbinsX
i=1

pi = 1 (2.15)

becomes Z +1

�1
p(h)dh = 1 (2.16)

We write the above equation in the general case; for the example we were talking about, the lower limit would
obviously be zero. Note thatp(h) must be a probabilitydensitydistribution with units of(h)�1.

The distribution which fits the data in Figure 2.5 is the most important probability distribution in statistical
mechanics, and one you are familiar with. We call it aGaussianor normaldistribution, and it is defined by

p(h) =
1p
2��

exp

"
�1

2

�
h� < h >

�

�2#
(2.17)
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Only two parameters are needed to define this distribution: the mean value,< h >, and the standard deviation,�.
Let us now set out to more formally define the concepts of discrete and continuous distributions.

Discrete Probability Distributions

Let F (x) be the value of a discrete function atx. If there areM possible values ofF (F (x1); F (x2); : : : F (xM ))
with corresponding probabilitiesP (P (x1); P (x2); : : : P (xM )) then

hF (x)i =
PM

j=1 P (xj)F (xj)PM
j=1 P (xj)

(2.18)

P (x) is a discrete distributionandF (x) is a discrete random variable. SinceP is a probability, we know it is
normalized.

MX
j=1

P (xj) = 1 (2.19)

hF (x)i =
MX
j=1

P (xj)F (xj) (2.20)

Continuous Distributions

dx

X

f

Figure 2.6: An example of a continuous distribution

Let f represent acontinuous distribution functionof events that depend onx. Let � dx be the probability of an
event occurring in the infinitesimal regiondx.

� dx =
f dxR +1

�1 f dx
(2.21)

� is theprobability density. Again, we have normalizedprobabilities
R+1
�1 � dx = 1. Averages with continuous

distributions are calculated as follows:

hF i =
R
F f(x) dxR
f(x) dx

(2.22)

Moments

If F (x) = xM , thenhF (x)i is theM th moment of the distributionP (x). We normally work withcentral moments,
however. IfF (x) = (x� hxi)M , thenhF (x)i is theM th central moment ofP (x). Using Rowley’s nomenclature,
we define the Mth central moment as

�M � h(x� < x >)M i (2.23)
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We see that�0 = 1, �1 = 0, and�2 = �2, thevariance. The square root of the variance is called thestandard
deviation, and measures thespreadof the distribution. Thecoefficient of skewness, �3, is related to the third central
moment and is typically normalized with respect to the standard deviation:�3 = �3=�

3. Thecoefficient of kurtosis
is defined as�4 = �4=�

4. These coefficients measure the shape of the distribution. A positive�3 means the
distribution is skewed to the right; a negative�3 means the distribution is skewed to the left. A large�4 corresponds
to a high, narrow peak.

Gaussian distribution

We have already encountered a Gaussian distribution. Using the symbols for this section, the Gaussian distribution
has the form

P (x) =
1

(2��2)1=2
exp

"
�(x� hxi)2

2�2

#
(2.24)

Question: What are the first four central moments of the Gaussian distribution?

Binomial and Multinomial Distributions

When we introduced the concept of counting, we discussedcombinations. The number of combinations ofr ob-
jects out of a total onn was given by eqn 2.10. This equation is the equation for the coefficients of abinomial
distribution2. Similarly, the number of orderings for groupings of more than two particles are the coefficients of a
multinomial distribution. That is, the distribution density ofN things takenn1; n2; : : : nr at a time is

N !

n1!n2! � � �nr! =
N !Qr
j=1 nj!

(2.25)

where the term in eqn 2.25 is known as amultinomial coefficient. Note thatn1 + n2 � � �nr = N . An important
feature of multinomial distributions is that the variance goes to zero asN becomes large. In fact, the variance
narrows so rapidly that the peak narrows to a single value. In the limit of an infiniteN , the distribution collapses to
a single spike. In this limit, then, the entire distributionmay be replaced by the maximum term. We will make use
of this property extensively later on.

2.4.4 Stirling’s Approximation

From the above discussion, it is clear that we will encounter factorials of very large numbers quite often.Question:
What isN ! if N = 1023? It is awkward to calculate factorials of very large numbers directly, but we can develop an
asymptotic approximation valid for largeN .

N ! is a product, butlnN ! is a sum.

lnN ! =
NX

m=1

lnm

If we plot x vs lnx as a continuous curve, and also plotlnx as a series of rectangles, we see thatlnx forms an
envelope for the rectangles.lnx! is the sum of the area of all rectangles (see Figure 2.7).

For smallx, lnx is a poor approximation of the area of the rectangles. However, asx becomes large, the
envelope becomes a very good approximation for the area of the rectangles. For very largeN , we may write

lnN ! =
NX

m=1

lnm �
Z N

1
lnx dx = N lnN �N (2.26)

where eqn 2.26 is valid only for largeN . Eqn 2.26 is calledStirling’s equation, and will be quite useful later on.
2See McQuarrie for a brief discussion of binomial and multinomial expansions.



18 CHAPTER 2. INTRODUCTION

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

4

x

ln
 x

Derivation of Stirling‘s Approximation

Figure 2.7: Graphical depiction of Stirling’s approximation (after McQuarrie)

2.4.5 Lagrange Multipliers

Finally, we need to know how to maximize equations subject to constraints (in particular, we will do this for eqn
2.25). Considerf(x1; x2; : : : ; xr), where the variables are connected by other equations, such asg1(x1; x2; : : : ; xr) =
0, g2(x1; x2; : : : ; xr) = 0, etc. Theg1, g2, etc. are a series ofconstraints. Were it not for the constraints, the ex-
tremum off would be found by

df =
rX

j=1

 
@f

@xj

!
0

dxj = 0 (2.27)

The zero subscript reminds us that eqn 2.27 is zero only when ther partial derivatives are evaluated at the extremum
of f . The value of eachxj at the extremum isx0j .

With no constraints, eachdxj could be varied independently and fordf to be zero,@f=@xj = 0 for all
j. The result would ber equations, from which the value of ther x0j could be obtained. With one constraint
(g(x1; x2; : : : ; xr) = 0), we wish to find the conditional extremum, atx0j subject to the imposed constraint. We have
an additional equation relating thex’s (which are now not all independent)

dg =
rX

j=1

 
@g

@xj

!
0

dxj = 0 (2.28)

This equation serves as a constraint that thedxj must follow, making one of them depend on the otherr � 1. This
equation must also be satisfied at the conditional extremum, sinceg is a constant. There are a few ways to proceed;
in the Lagrange method, one multiplies eqn 2.28 by a parameter� and adds the result to eqn 2.27

rX
j=1

 
@f

@xj
� �

@g

@xj

!
dxj = 0 (2.29)

Thedxj arestill not independent, but eqn 2.28 is an equation giving one of thedxj in terms of the otherr � 1
independent ones. Let the dependentdxj be given bydx�.

Define� such that the coefficient ofdx� in eqn 2.29 vanishes:

(@f=@x�)0
(@g=@x�)0

= � (2.30)

where the subscript indicates that the partial derivatives are evaluated at values ofxj such thatf is at an extremum
under the constraint of eqn 2.28.

The result is a sum of(r � 1) terms in eqn 2.29 involving the independentdxj ’s, which can be varied indepen-
dently such that  

@f

@xj

!
0

� �

 
@g

@xj

!
0

= 0 (2.31)
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for j = 1; 2; : : : ; �� 1; �+ 1; : : : ; r
Combine theser � 1 equations with our choice for�, and we arrive at 

@f

@xj

!
0

� �

 
@g

@xj

!
0

= 0 (2.32)

for all j.
This givesr equations andr unknowns (the values ofxj at the extremum). Since the solution depends on�, we

actually obtain as rootsxj(�). That is,(@f=@x�)0 and(@g=@x�)0 are evaluated at values ofxj that maximizes (or
minimizes)f ; these derivatives are known in terms of� using eqn 2.32.

What is�?
� is typically determined from physical arguments (see later), and can be found by using the constraintg(xj(�)) =

0.
If there is more than one constraint, the process is similar. We obtain a Lagrange multiplier for each constraint,

and proceed as above to get
@f

@xj
� �1

@g1
@xj

� �2
@g2
@xj

� � � � = 0 (2.33)
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Chapter 3

Elementary Concepts in Mechanics and Phase
Space

3.1 Generalized Coordinates

Consider a system with a large number of degrees of freedom: i.e.N molecules of a monatomic fluid in a 3-D
volume. In thequantum mechanicaldescription, the state of the system is described by the wave function,	,
which represents the displacement of a wave as it fluctuates with position and time:	 = 	(q; t). 	 is a function
of the configuration of all constituent nuclei and electrons, represented byq. Note that bold face type will be
used throughout to represent vectorial quantities. In principle, we can solve for this wave function through the
Schrödinger equation, subject to the appropriate boundary conditions. Solving for	 then gives expectation values
for any mechanical property. This is the subject of a course on quantum mechanics, and so will not discussed in
detail here. However, we will refer to quantum mechanics from time to time, as it is somewhat easier to derive
statistical mechanical formalisms by invoking concepts from quantum mechanics.

In classical mechanics, the state of the system is described by the set of generalized coordinates,qN , which
represents the position of all the atoms, and the set of generalized momenta of the atoms,pN . We know from
the uncertainty principle that we cannot know both the position and momentum of a species exactly, but for most
systems we are interested in, we can ignore this effect. (Note: there are some systems for which quantum effectsare
important in determining macroscopic behavior. A good example is the diffusion of hydrogen, especially at lower
temperatures.) By way of example, a system could be described using Cartesian position vectors,

qN = rN (3.1)

whererN represents the3N Cartesian components of position and

pN = mvN (3.2)

wherevN is the3N Cartesian components of molecular velocity. Variables other than Cartesian coordinates can
also be used. For example, in Figure 3.1 a commonly-used set of generalized coordinates re used to describe the
conformation of a linear molecule made up of four “beads”. This can be thought of as a crude representation of
n-butane.

Using generalized coordinates, we locate the position of the first atom at Cartesian positionr1. Rather than
specifyr2 for atom 2, however, we can equivalently place it by defining twoEulerian angles, 	1 and	2, and a
bond length,̀ 1. 	1 can range between0 and2�, while the limits on	2 are between0 and�. Similarly, atom
3 could be located with a Cartesian vectorr3, but we can also locate it by specifying: a third Eulerian angle,	3,
which defines the rotation about the axis of the bond between atoms 1 and 2; a bond length`2; and abond angle,
�1. Atom 4 is placed by defining atorsion (or dihedral) angle, �1, bond length̀ 3 and bond angle�2. Subsequent

21
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Figure 3.1: Schematic showing one type of generalized coordinate system

atomsi can be defined with�i�3, �i�2 and`i�1. The complete set of generalized coordinates is specified by the
vectorqN

qN = (q1;q2; : : : ;qN ) (3.3)

whereq1 = r1, q2 = 	1, 	2; `1, etc. We will denote the coordinates of the atoms in the most general sense asqN .
Before going on, you may rightly ask why we would go to all this trouble to define a generalized coordinate

system, when it is easier to think in Cartesian space? The answer is simple: we know things like bond lengths and
bond angles from spectroscopy measurements. When we later develop models for the molecular geometry of these
systems, we want to be able to refer to these generalized coordinates. These are the natural degrees of freedom of
interest to us; knowing the relative Cartesian coordinates of adjacent atoms in a molecule isn’t as useful as knowing
the bond lengths, angles, etc.

Thetotal configurational degrees of freedomof a classical system are made up of configuration space, given by

qN = (q1;q2; : : : ;qN ) (3.4)

and momentum space
pN = (p1;p2; : : : ;pN ) (3.5)

As mentioned above, simultaneous specification of position and momentum is permitted in the classical limit
(i.e. uncertainty principle limits are unimportant compared to magnitude ofpN andqN ).

We now define thestate vectoror system pointor representative pointas

xN � (qN ;pN ) = (q1;q2 : : : ;qN ;p1;p2 : : : ;pN ) (3.6)

The 6N–dimensional set from whichxN takes a value is called thephase spaceof the system. The phase space is
an important concept, and is given the special symbol�. A point on� represents a microstate of the entire system.
A KEY POINT to understand is the following: ifxN is known at one time,it is completely determined for any
other time (past and present)through the classical equations of motion. We can illustrate this, as in Figure 3.2.
As time goes by, the state vector moves in 6N–dimensional phase space, tracing a trajectory on it. The trajectory
is a 1–dimensional line, with each point corresponding to an instant in time. We can describe this using classical
mechanics.

3.2 Review of Classical Mechanics

3.2.1 Newtonian Mechanics

Newton’s equations of motion are commonly written as

dp

dt
� _p = F (3.7)
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Figure 3.2: The above figure shows a schematic representation of the movement of the system pointxN (t) in a
6N–dimensional phase space from timet1 to later timet2. Only 4 of the 6N axes spanning phase space are shown.
(After Reichl, L. E.A Modern Course in Statistical Physics)

where the dot above the momentum vector refers to a time derivative, and whereF is the force vector. This simply
states that the rate of change of momentum equals the applied force. If mass is independent of time, then we obtain

dp

dt
= m

dv

dt
= m�r = ma (3.8)

where the two dots now represent the second derivative with respect to time and the acceleration vector has been
defined.

If F = F(x; y; z), eqn 3.7 is a set of 2nd order differential equations in (x,y,z) whose solution, given initial
conditions, gives (x,y,z) as a function of time. Eqn 3.7 is anequation of motion. Recall that you used Newton’s
classical equations of motion to solve elementary physics problems, like computing ballistic trajectories, etc. If
we think of a system with many interacting particles, the equations become much more difficult to solve, but in
principle they can be solved by direct application of the equations of motion.

In the Newtonian formulation, the total energy of the system is made up of thepotential energy, V, andkinetic
energy, K. For conservative systems (i.e. non-dissipative), the kinetic energy depends only on particle velocities
and mass, though the following equation

K =
NX
i=1

miv
2
i

2
(3.9)

while the potential energy is assumed to depend only on particleposition: V = V(q). Thus the total energy, which
is given the symbolH, for reasons that will become apparent momentarily, is found from

H(q;v) = K + V (3.10)

The force between pairs of particles in a conservative system is given by

F = �rqV (3.11)

The standard Newtonian equations are fine in Cartesian coordinates, but become unwieldy in other coordinate
systems. This is important, as we have said we would like to use generalized coordinate systems to describe
molecules. An example of the problem with the Newtonian formulation is given in Rowley’s book, and is sketched
out in the following example.
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Example: Computing Planetary Orbits
The gravitational potential and force between two objects of massM andm is given by

V = �MmG

r
(3.12)

F = �rrV = �MmGr

r3
(3.13)

wherer is the vector between the massesM andm. We can then write eqn 3.8 for the little mass as

m�r+�MmGr

r3
= 0 (3.14)

In Cartesian coordinates, thex andy components of the position vectorr in the above equation are

�x+
MGx

r3
= 0; �y +

MGy

r3
= 0

with r2 = x2 + y2. It is easiest to solve this problem by changing coordinate systems. We use polar coordinates,
where

x = r cos(�) y = r sin(�)

After some manipulation, we arrive at the final form of the equations in polar coordinates

m�r = m _�r � MmG

r2
(3.15)

We see that in polar coordinates, a second force term arises that we call the centrifugal force. This is annoying,
however, because the form of the equations of motion depends on what coordinate system we use! That is, the
equations of motion in polar coordinates do not look like the equations of motion in Cartesian coordinates. There
must be a better way!

We’d like to write the equations of motion in a form that isindependentof the choice of coordinate system. That
is, we wish to write

m�� = F� (3.16)

where� is some generalized coordinate system. We’d like to avoid coordinate transformations if possible. It turns
out that there are two popular formulations of the equations of motion thatare independent of coordinate system.
We refer to these formulations asLagrangianmechanics andHamiltonianmechanics.

3.2.2 Lagrangian Mechanics

Let’s consider a single particle; generalizing to multiple particles simply involves the use of vectors instead of
scalars. LetK be the kinetic energy of the system. In Cartesian coordinates

K( _x; _y; _z) =
m

2
[ _x2 + _y2 + _z2] (3.17)

Let V be the potential energy of the system, which is assumed to only be a function of position; i.e.V = V(x; y; z).
For a conservative system

Fx = �@V
@x

(3.18)

so that

m�x = �@V
@x

(3.19)
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or generally
m�r = �rrV (3.20)

Now let’s introduce a functionL called theLagrangian

L(x; y; z; _x; _y; _z) � K( _x; _y; _z)� V(x; y; z) (3.21)

We then can write
@L

@ _x
=
@K

@ _x
= m _x (3.22)

@L

@x
= �@V

@x
= Fx (3.23)

Newton’s equations of motion then become
d

dt

�
@L

@ _x

�
=
@L

@x
(3.24)

Similar expressions hold for the other Cartesian directions so that in general

d

dt
(r _rL) = rrL (3.25)

The advantage of the Lagrangian formulation is that it is independent of coordinate system, so that if (x,y,z) are
transformed to(q1; q2; q3)

d

dt

 
@L

@ _qj

!
=
@L

@qj
; j = 1; 2; 3 (3.26)

That is, eqn 3.26 is of the form of eqn 3.16, which satisfies our goal of arriving at equations of motion that are
independent of coordinate system.

Notice that eqn 3.26 comprises 3 second order differential equations. To solve them, we must specify initial
velocities as

( _q1(0); _q2(0); _q3(0))

and initial positions as
(q1(0); q2(0); q3(0))

Given these initial conditions and eqn 3.26, all future and past trajectories can be determined. Note that for N
particles, there are 3N Lagrange equations and 6N initial conditions.

3.2.3 Hamiltonian Mechanics

Now that we have achieved our goal of writing a set of equations of motion that are independent of coordinate
system, why go on? It turns out that theHamiltonianequations of motion are more convenient to use in some cases
than the Lagrangian formulation. We will therefore proceed to derive the Hamiltonian form of the equations of
motion. Starting with eqn 3.22, we can write the generalized momentum as

pj =
@L

@ _qj
; j = 1; 2; 3; : : : ; N (3.27)

We say that the generalized momentum isconjugateto the generalized positionqj. We now define the Hamiltonian
of a 1–particle system as

H(p1; p2; p3; q1; q2; q3) =
3X

j=1

pj _qj � L (3.28)
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Notice thatH is a function of generalizedmomentaand generalized coordinates, whereasL is a function of
generalized coordinates andvelocities. Assuming thatK is quadratic in generalized velocities we can write

K =
NX
j=1

aj(q1; q2; q3) _q
2
j (3.29)

If we again assume thatV is only a function of generalized positions, then

pj =
@L

@ _qj
=
@K

@ _qj
= 2aj _qj (3.30)

Recall, however, thatH =
PN

j=1 pj _qj � L, so

H =
NX
j=1

2aj _q
2
j � L = 2K �K + U (3.31)

H = K + U (3.32)

You can easily show by partial differentiation of eqn 3.32 that

@H

@pj
= _qj (3.33)

@H

@qj
= � _pj (3.34)

Eqns 3.33 and 3.34 are Hamilton’s equations of motion. They constitute 6N 1st order differential equations, and
require 3N initial positions (q(0)) and 3N initial momenta (p(0)) to solve. It can be shown that ifL 6= L(t) then
dH
dt = 0. SinceH = K + U , this means the system isconservative(i.e. energy is conserved).

Why do we use a Hamiltonian? There are two main reasons. First, just like in Lagrangian mechanics,Hamil-
tonian mechanics are independent of coordinate system. This means if we change coordinates from the set
(q1; q2 � � �) to (q01; q

0
2; � � �), and also change the conjugate momenta from(p1; p2 � � �) to (p01; p

0
2; � � �), wherep0 is

defined in terms ofq0 by p0i =
@K
@ _qi

, the element of volume in(q; p) space is equal to the element of volume in(q0; p0)
space

dq1dq2 � � � dp1dp2 � � � = dq01dq
0
2 � � � dp01dp02 � � �

That is, the Jacobian of the transformation(q; p) ! (q0; p0) is unity. In addition,H is total energy, a quantity of
great interest in quantum and statistical mechanics.

To emphasize again, givenH(xN ) = H(pN ;qN ), knowledge ofxN (t1) enablesxN (t2) to be uniquely deter-
mined for allt2 (t2 < t1 andt2 > t1). Hamiltonian dynamics are completely time reversible(see Goldstein, H.;
Classical Mechanics).

3.3 Phase Space and Ergodicity

We have now shown that the Hamiltonian of a conservative system equals the total energy, which is a constant. This
means thatH(xN ) = H(pN ;qN ) = E, E being a constant, is a 6N-1 dimensional hypersurface in phase space,
on which the system must lie if its energy is constant and equal to E. (One degree of freedom is removed by the
constraint that energy must be constant). This allows us to make two interesting observations regarding Hamiltonian
trajectories in phase space:
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1. Distinct trajectories on a constant energy hypersurface will never cross.

Let xNA (t1) andxNB (t1) be state points of two systems characterized by the same Hamiltonian in phase space
at timet1, such thatxNA (t1) 6= xNB (t1). Then,the trajectories traced by systems A and B in phase space
will never cross at all future (and past) times.

Proof: If the two systems crossed att2, then by integrating Hamilton’s equations of motion backward in time
to t1, the systems would have to be at the same state point. That is,xNA (t1) = xNB (t1), which violates our
initial proposition. Thus, the trajectories traced by A and B may never cross.

2. The trajectory traced by a conservative system on a constant energy hypersurface as time evolves can never
intersect itself. Itcan form a closed loop, however. Pictorially, we can represent these ideas as follows:

q

p p

q

impossible possible

x(t1)=x(t2)

Figure 3.3: Phase space trajectory that crosses itself (left, unallowed) and a trajectory that forms a loop (right,
allowed)

Proof: Assume the trajectory crosses, so thatxN (t1) = xN (t2) for t2 > t1 (see Figure 3.4). If a closed loop
is not formed, we can always locate a pointxN (t0), t0 < t1 and(t1 � t0) < (t2 � t1). (i.e. xN (t0) does not
lie on the loop).

But this is impossible!

� Start atxN (t1) and integrate backward in time for(t1 � t0). We reachxN (t0).

� Start atxN (t2) and integrate backward in time for(t1 � t0). We reach a point betweenxN (t1) and
xN (t2) that isnecessarilydistinct fromxN (t0). Trajectory may not cross itself, unless it forms a single
loop.
Do you see why a single loop is allowed?

3.4 Probability Density and the Liouville Equation

As stated earlier, measured macroscopic quantities such as pressure, temperature and density arise from molecular
interaction and motion. We can’tdetectthe relationship between molecular motion and macroscopic properties. In
addition, we can’t detect differences between systems existing in different microstates (distinct state vectors) but
satisfying the same macroscopic conditions, such as volume and energy. That is to say, a system under certain
macroscopic conditions is not a single state, but rather is aninfinite number of stateson the same energy hyper-
surface. In other words, when we have a material under certain conditions, it consists of acollectionof systems,
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q

p

x(t0)

Figure 3.4: Schematic showing why trajectories on a constant energy hypersurface may never cross themselves as
time evolves.

identical in composition and macroscopic conditions, but existing in different microstates. Such a collection of
systems was termed anensembleby J. W. Gibbs. We’ll say more about ensembles later, but for now all we’ll say is
that an ensemble corresponds to a large number of state pointsxN = xN (pN ;qN ) in phase space.

3.4.1 Probability Density

At any given time, we can describe an ensemble by a probability density�(xN ; t) of phase space. By definition:

�(xN ; t) dxN � �(pN ;qN ) dpNdqN (3.35)

where
�(xN ; t) = �(p1; � � � ;pN ;q1; � � � ;qN )dp1; � � � ; dpNdq1; � � � ; dqN (3.36)

Physically, eqn 3.35 defines the probability that state pointxN lies within volume elementxN toxN + dxN at time
t. Note that an ensemble iscompletely specifiedby �(xN ; t)!

Some characteristics of ensemble probability densities:

1. Probability densities are normalizedZ
�
�(xN ; t)dxN =

Z
�
�(pN ;qN )dpNdqN = 1 (3.37)

where the integral takes place over all of phase space,�.

2. The probability of finding the state point in a small regionR of �–space at timet is:

P (R; t) =

Z
R
�(pN ;qN ; t)dpN ; dqN (3.38)

That is, to findP (R; t), we simply integrate the probability density overR.

Now, we wish to see how the probability density evolves. The result will be an important equation called the
Liouville equation. This equation is simply a conservation equation for probability. As such, I will show a derivation
that is probably most familiar to engineers, who have derived general conservation equations in the study of fluid
mechanics. Many alternative derivations are possible!
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3.4.2 Evolution of Probability Density – Engineering Approach

As time evolves, the state points constituting the ensemble move along trajectories. We can think of the state
points as particles or fluid elements moving in 3–dimensional space. The question we wish to answer is: How does
the probability density evolve with time? To answer this, we simply need to derive the “continuity” equation for
�(xN ; t) using a fluid mechanics approach.

LetV be an arbitrary 6N–dimensional closed domain in phase space,S be a (6N-1)–dimensional “surface”,_xN

be the 6N–dimensional vector( _pN ; _qN ), and letn(pN ;qN ) be the vector locally normal toS at (pN ;qN ) (see
Figure 3.5).

q

p

1

1

volume, V

surface, S

Figure 3.5: Flow of state points through a regionV with surfaceS.

Continuity requires that state points are neither created nor destroyed, so the net number of state points leaving
S per unit time equals the rate of decrease of state points in volumeV .I

S
n � _xN�(xN ; t)dS = � @

@t

Z
V
�(xN ; t)dxN (3.39)

We can use the divergence theorem to convert the surface integral into a volume integral. Define the operator

rxN �
�

@

@p1
; � � � ; @

@pN
;
@

@q1
; � � � ; @

@qN

�

Then continuity becomes Z
V

�
rxN � (�(xN ; t) _xN ) +

@

@t
�(xN ; t)

�
dxN = 0 (3.40)

From eqn 3.40 and the use of Hamilton’s equations, you can show that

rxN � _xN = 0 (3.41)

Eqn 3.41 is entirely analogous to the incompressibility condition in fluid mechanics,r � v = 0. It shows that
the collection of state points in an ensemble flow as anincompressible fluidas a result of Hamilton’s equations of
motion.

From eqn 3.41, we get that

_xN � rxN�+
@�

@t
= 0 (3.42)

Again, this is analogous to the continuity equation for fluid mechanics

v � r�+ @�

@t
= 0
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It is common to use the substantial or total time derivative

D

Dt
� @

@t
+ _xN � rxN

so that continuity becomes
D�

Dt
= 0 (3.43)

Let’s pause for a moment and look at the physical interpretations of the equations we just derived. Eqn 3.42
states that at a fixed point in phase space, the time rate of change of the ensemble probability density will be related
to the density gradient through a continuity equation. Eqn 3.43 says that, moving along a representative point in
�–space, the density of state points in the immediate vicinity will be constant.

Given this, we can use Hamilton’s equations in eqn 3.42 to obtain

@�

@t
+

NX
i=1

�
@H

@pi
� @

@qi
� @H

@qi
� @

@pi

�
� = 0 (3.44)

Eqn 3.44 is theLiouville equation, and is arguably the most fundamental equation in statistical mechanics. That
is because, given an ensemble with a specified Hamiltonian, the Liouville equation completely specifies the evolu-
tion of the probability density of the ensemble in phase space. The Liouville equation is often expressed in other
equivalent forms, such as

@�

@t
+ Ĥ� = 0 (3.45)

or

i
@�

@t
= L̂� (3.46)

where

Ĥ =
NX
i=1

�
@H

@pi
� @

@qi
� @H

@qi
� @

@pi

�
(3.47)

and
L̂ = �iĤ (3.48)

Ĥ is the Poisson bracket operator andL̂ = �iĤ is the Liouville operator, a Hermitian operator.
The Liouville equation provides a time reversible description of the evolution of a classical dynamical system.

If the direction of time is reversed, the Liouville operator changes sign and the equation retains its form.Question:
How does a system decay irreversibly to an equilibrium probability distribution if it follows the Liouville equation
and such an equation is time reversible? The problem of obtaining an irreversible decay from the Liouville equation
is one of the central problems of statistical physics.

3.5 Ergodicity and Mixing in Phase Space

Having reviewed classical mechanics and derived the evolution equation for the probability density of an equilibrium
system, we now turn our attention to a the question posed at the end of the last section. In particular, we will concern
ourselves with the topic ofergodicity.

Let us restrict our attention to conservative systems evolving under the constraint of constant energy. We know
that the state vectors of such a system form aconstant energy hypersurfacecorresponding to energyE. The “area”
of such a hypersurface can be written as

�(E) =

Z
�
Æ(H(xN )�E) dxN (3.49)
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whereÆ(H(xN )�E) is a Dirac delta function that selects points on theE–hypersurface. Thus the 6N–dimensional
integral is converted to a (6N-1)–dimensional integral over the hypersurface.

A fundamental assumption of equilibrium thermodynamics (an assumption, I should add, that is well supported
by our experience) is that isolated systems prepared under arbitrary initial conditions evolve to a state of equilib-
rium. At equilibrium, macroscopic properties are time–independent. Thus, we expect that for an ensemble of such
systems, the probability density,�(xN ; t) will decay to theequilibrium probability density, �eq(xN ).

Now, we just derived an expression for the evolution of the probability density, so we expect that the evolution
of �(xN ; t) will be described by this equation (the Liouville equation, eqn 3.44). Moreover,�eq(xN ) will be a
stationary (time–independent) solution of the Liouville equation. That is,�eq(xN ) will characterize anequilibrium
ensembleunder the given external constraints.

As an example, consider the case where a number of gas molecules are injected into an initially empty, rigid
container (see Figure 3.6. Collisions with the container walls are elastic, but the gas molecules interactwith each
other. If the walls are insulated, the system can be consideredisolated. An ensemble of such systems would be
characterized by�(xN ; 0), theinitial probability distributionof the system. This probability density is highly local-
ized in a small region of phase space. As time evolves, we expect that collisions will make the system explore the

time

initial state final state

perfectly reflecting
walls

Figure 3.6: An isolated system ofN interacting particles in a container decays to equilibrium

entire volume,andthat the molecules will assume a velocity distribution. Our experience suggests that�(xN ; t) will
decay to�eq(xN ), so that the molecules will become uniformly smeared over the (6N-1)–dimensional hypersurface.
However, there is nothing in the Liouville equation (eqn 3.44) which suggests such an irreversible decay! Using
Hamiltonian mechanics, we could start with the phase point on the right of Figure 3.6 and integrate the equations
of motion backward in time (with infinite accuracy), only to arrive at the highly ordered point on the left. Our
experience tells us, however, that this will “never”1 happen. We expect an “irreversible” decay to equilibrium.

This can only mean thatthe origins of decay to equilibrium do not come from Newtonian (i.e. classical) me-
chanics, but from the nature of the interactions encountered in physical systems. The study of the conditions under
which irreversible decay is observed is an intriguing problem in statistical mechanics and mathematics, but will only
be touched on here. This is more in the realm of chaos theory and nonlinear mathematics. The key concepts which
we will address in the context of this class are the following:

� ergodic flow

� mixing flow

3.5.1 Ergodic Flow

The flow of state points on the energy hypersurface is defined to beergodicif almost all pointsxN (pN ;qN ) on the
surface move such that they pass through every small finite neighborhood on the energy surface. That is, each state

1OK, almost never!
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point, excluding a set of points of measure zero, follow a trajectory that will pass arbitrarily close to any other point
on the energy hypersurface.

Below we sketch out theErgodic Theorem (Birkhoff, 1931).
Consider an integrable functionf(xN ) of the state pointxN on a hypersurface with fixed energyE. Thephase

averageof the functionf(xN ) is

hfiNV E =
1

�(E)

Z
�
Æ(H(xN )�E)f(xN ) dxN (3.50)

hfiNV E =

R
� Æ(H(xN )�E)f(xN ) dxNR

� Æ(H(xN )�E) dxN
(3.51)

where the subscriptNV E refers to constantnumber of particles,volume of the system, andenergy. This defines
the microcanonical ensemble, as we will discuss shortly. The important point is to recognize that the phase average
is taken by averaging over all state points on the constant energy hypersurface.

We can also define atime averageof f

hfit = lim
t!1

1

t

Z t0+t

t0
f(xN (t)) dt (3.52)

where now the average is taken over a series of “snapshots” as the system evolves with timeat equilibrium.
We say that a system is ergodic if for all phase functionsf(xN ), the following statements are true:

1. The time average of eqn 3.52 exists for almost allxN (all but a set of measure zero).

2. When the time average exists, it is equal to the phase average; that ishfit = hfiNV E

In physical terms, the ergodic theorem says that two things are true. First, the phase space trajectory of almost
any representative point on theE–hypersurface passes arbitrarily close to almost any other point on the hypersurface.
That is, given sufficient time, the trajectory will cover all of theE–hypersurface. Second, to compute an average of
f , we can do two things:

1. Ride on a single trajectory and experience all regions of phase space (hfit).
2. Take a snapshot of theE–hypersurface at a given time and tally all representative points in it (hfiNV E).

The ergodic hypothesis states that either way of averaging is equivalent.
In Figure 3.7, a schematic diagram of a two-dimensional constant energy hypersurface is shown. The lines

trace out paths on the generalized position, generalized momentum surface. We see that some of the lines meander
along the surface (but never crossing!), while others form closed loops. Recall that we have already shown that
trajectories on a constantE–hypersurface of phase space can appear as either non–crossing lines or closed loops.
Does this diagram represent an ergodic system? No! The system shown in Figure 3.7 is clearly non–ergodic. If the
system were ergodic, practically all the lines shown would be sections of a single long trajectory. That trajectory,
which would span the entireE–hypersurface, would have to be a loop. Imagine if a trajectory started on a point
within a closed loop. In such a case, it would be impossible for that trajectory to explore all (or nearly all) of the
phase space. Instead, it would get “trapped” in a localized region of the energy hypersurface. Clearly, a time average
of such a trajectory wouldnot represent the phase average.

The time required to traverse an “ergodic loop” is the Poincar´e recurrence time or the Poincar´e cycle. For a
system ofN particles, the Poincar´e cycle is of the ordereN . For macroscopic systems, (N � 1023), this is an
enormously long time. By way of reference, the age of the universe is� 1010 years. From my standpoint, this is an
infinite amount of time!

It is easy to come up with Newtonian trajectories that are non–ergodic. For example, in Figure 3.8, a single
particle with momentump traveling between two perfectly reflecting walls in a three–dimensional box displays
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q

p

Figure 3.7: Schematic of trajectories on a two–dimensional constant energy hypersurface. If this were an ergodic
system, all trajectories would be sections of the same loop. (After Allen and Tildesley).

p

perfectly
reflecting

Figure 3.8: An example of a non–ergodic flow in phase space.

non–ergodic behavior. Note that for this example, only a single particle that does not interact with the walls is
chosen. What will happen for this particular case? The energy of the particle is constant (E = p2

2m ) at all times. The
particle will travel on the line between the two walls forever. The configuration spaceavailableconsists of the entire
box volume and the momentum spaceavailableconsists of all orientations ofp consistent with the constant energy
constraint. The probability density of an ensemble of such particles set initially to travel along the same direction
with the same momentump would be a periodic function of time, and would never reach a stationary equilibrium
limit. (Question: what would happen if we placed two particles in the box that could interact with each other over
finite distances? Or, what if we allowed the particle to interact with an atomistic wall?)

3.5.2 Mixing Flow

It turns out that ergodic flow is not a sufficient requirement for an arbitrary ensemble probability density�(xN ; t)
to decay to a stationary equilibrium probability density�eq(xN ). Why? There is no guarantee that the swarm
of particles in an ergodic system defining�(xN ; t) will disperse itself on theE–hypersurface as time goes by; it
may retain its integrity and wander around as a whole such that the whole swarm visits the entire hypersurface. A
stronger requirement than ergodicity is required to guarantee the decay to equilibrium. This is the requirement that
the flow of state points through phase space bemixing.

One can show that if�(xN ; t) is a nonstationary probability density for a mixing system andf(xN ) any dynam-
ical function, then in the limit of long time,

hf(t)i �
Z
�
f(xN )�(xN ; t)Æ(H(xN )�E) dxN (3.53)

t!1! 1

�(E)

Z
�
f(xN )Æ(H(xN )�E) dxN
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In other words, the time–dependent probability densityspreads outwith time and ultimately evolves into the
stationary equilibrium ensemble distribution. IfH(xN ) = E, then�NV E(x

N ) = 1
�(E) ; otherwise,�NV E(x

N ) = 0.
Mixing flow is ergodic, but ergodic flows are not always mixing. Mixing flow ischaotic and causes any initial
probability distribution to spread through phase space. State points which are initially close to one another spread
out exponentially with time, and soon arrive at entirely different parts of the energy hypersurface.

Ergodicity and mixing behavior have been proved for some simple systems (such as hard spheres). For most
systems in nature, interparticle interactions are sufficiently many and complex that Hamiltonian dynamics leads to
ergodic and mixing behavior. Thus, ergodicity is an excellent working hypothesis in statistical mechanics. We must
be careful, however. There are some systems (such as glasses) that by their very nature are prevented from sampling
their equilibrium states. We must be aware of these special cases.



Chapter 4

Equilibrium Ensembles

What we wish to do in this chapter is set up a statistical mechanical framework. From this framework, we hope to
derive the laws of macroscopic thermodynamics from a fundamental set of postulates governing the microscopic
state of the system. Most important to us for this class is the form of the expressions for thermodynamic quantities,
such as equations of state, heat capacities, etc. We want to show how these observable quantities are obtained
from nothing more than molecular interactions. Besides these macroscopic quantities, we can also obtain important
microscopic details such as molecular organization, motion, and structure.

A central concept is theequilibrium ensemble. We have already been introduced (briefly) to the constant energy
(microcanonical) ensemble, and the name has cropped up in our earlier discussions. We now define the word
ensemble formally:An equilibrium ensemble describes the equilibrium probability density distribution in phase
space of a system subject to given external constraints. Different ensembles correspond to systems having different
constraints. Depending on the system, one of several different ensembles may lend itself to the types of properties
to be calculated.All ensemblesyield the same thermodynamic behavior.

4.1 Basic Postulates

Before introducing the various ensembles, we state two postulates which we will use.
Postulate 1: Ergodic Hypothesis: Given enough time, a system will sample all microstates consistent with the

constraints imposed. That is, time averages are equivalent to ensemble averages. (We have already addressed this
concept). Mathematically, we have

hxi =
P

i xi�iP
i �i

= lim
t!1

1

t

X
i

xi�ti (4.1)

where�i is the probability density of statei. Postulate 2: Equal a Priori Probabilities: All microstates having
the same energy are equally probable. (We use this postulate to construct distribution functions based solely on
energetics). Mathematically,

�i = �i(Ei) (4.2)

4.2 Microcanonical Ensemble

Given these two postulates, we now proceed to describe describe theMicrocanonical (NVE) Ensemble. The
microcanonical ensemble is an equilibrium ensemble with constraints of constant number of particle, volume, and
energy (NVE). It is anisolatedsystem. Microstates are discrete in a quantum mechanical description, and so is
the probability distribution of the microstates. That is, we have microstate probabilities, not probability densities of
phase space.

35
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constant N,V,E
Microstate 1

Microstate 2

Microstate 3

Microstate 4

Imagine a system comprised ofN molecules in a volumeV with total energyE. Referring to Figure 4.2 we
can think of this microstate as being like microstate 1, in which all the molecules are arranged in a certain way.
Now imagine that we rearrange the molecules in a different way (in reality, take the molecules to another point
in phase space so that they have different positions and/or momenta), but keep the external constraints of constant
volume, number of molecules and energy fixed. Perhaps microstates 2,3 and 4 are such states. Anensembleis
simply a collection of a large number of such states that satisfy the external constraints. Because each state is in
the microcanonical ensemble, the “walls” surrounding each microstate would be impermeable to energy transfer,
impermeable to the addition or deletion of molecules, and they would be rigid to maintain a constant volume.
We say that such a system isisolated. Under this condition, we could imagine the molecules in each microstate
“box” would happily move about on a constant energy hypersurface, exploring a different region of phase space.
As the molecules change their positions and/or momenta, they probe a different microstate. One way of tracking
these molecules would be to integrate the Hamiltonian (or Newtonian) equations of motion, since we know these
equations conserve energy. We can imagine that if we change any of the external constraints, we would get a
completely different set of microstates (or configurational “snapshots”).

To formalize these concepts, letW (N;V;E) be the number of microstates with energy betweenE andE� ÆE,
whereÆE is characteristic of the limits of our ability to specify the exact energy level. Equal a priori probabilities
means that for a given microstate�

PNV E
� =

�
1

W (N;V;E) ; if E � ÆE < E� < E;
0; otherwise.

(4.3)

wherePNVE
� is the probability of a microstate, not an energy level. The probability of an energy level,E� , is found

by multiplyingPNV E
� by the degeneracy of that level.

Classically, microstates form a continuum in phase space. We have an equilibrium probabilitydensity, �NVE(pN ;qN ),
given by

�NV E(pN ;qN ) =

�
1

�(N;V;E) ; if E � ÆE < H(pN ;qN ) < E;
0; otherwise.

(4.4)

where

�(N;V;E) =

Z
�0
dpNdqN (4.5)

The shorthand notation�0 refers to the region of phase space whereE � ÆE < H(pN ;qN ) < E. Note that the
dimensions of�NV E are(pq)�3N , which is consistent.
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In the classical formulation, we define a dimensionless quantity that corresponds to the number of microstates
in the quantum mechanical formulation:

W (N;V;E) =
1

h3NN !
�(N;V;E) =

1

h3NN !

Z
�0
dpNdqN (4.6)

The prefactor1=(h3NN !) simply ensures consistency between classical and quantum mechanical pictures. Theh3N

tells us there is a lower limit to the resolution with which we can define state points, and makesW dimensionless.
TheN ! arises from the indistinguishability of molecules (correct “Boltzmann counting”).

Now, it turns out that the microcanonical ensemble, while perhaps easiest to understand, isn’t the most useful
ensemble. The reason is that we rarely perform experiments in the lab in which the density and energy are kept
constant. However, because the standard equations of motion are at constant energy, the NVE ensemble is the most
natural ensemble for conducting molecular dynamics simulations (more on this later). We will shortly develop
the canonical ensemble (constant volume, number of particles andtemperature), and show the link between this
ensemble and the others. For now, though, we can make a few links between the statistical mechanical statement of
the microcanonical ensemble and classical thermodynamics.

4.2.1 Connection With Thermodynamics

We make the connection between statistical mechanics and classical thermodynamics through the entropy. Let us
assume that there areW (N;V;E) possible microstates (or more properly, quantum states) available to our system.
We now invoke Boltzmann’s hypothesis, thatthe entropy of a system is related to the probability of its being in
a quantum state. The probability of each state isp = 1=W , if there areW quantum states. We can express
Boltzmann’s hypothesis as

S = �(W ) (4.7)

where�(W ) is some unknown function ofW .
To determine�(W ), we use an approach due to Einstein. Consider two systemsA andB which are not inter-

acting so they are independent of each other. Their entropies are

SA = �(WA) (4.8)

and
SB = �(WB) (4.9)

Instead of considering the two systems separately, we could just as well think of them as a single system with
entropySAB and probabilitypAB = 1=WAB . The total entropy is then the sum of the entropies of the two systems

SAB = SA + SB = �(WAB) (4.10)

We can say this because the sum of the independent systems is the sum of their individual entropies. This just means
that entropy is anextensivevariable. Because the two systems are independent, the total number of states available
isWAB =WAWB , so that

�(WAB) = �(WAWB) = �(WA) + �(WB) (4.11)

The solution to eqn 4.11 is�(W ) = kB ln(W ), wherekB is a universal constant. Thus we see that Boltzmann’s
hypothesis leads to a mathematical expression for the entropy involving a universal constantkB called theBoltzmann
constant

S(N;V;E) � kB lnW (N;V;E) (4.12)

This is an extremely important equation, from which we can derive all thermodynamics.
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To illustrate the power of this equation and the way in which statistical mechanics can be used, consider the
following simple derivation1 We will think of a dilute gas as consisting ofN non-interacting molecules moving in
a volumeV . Imagine that we specify the position of each molecule by sub-dividing the total space into cells, each
of volume�V . The number of ways of placing one particular molecule in the volume isW = V=�V . Since each
molecule is non-interacting, the number of ways of arrangingN molecules is(V=�V )N . Hence, according to eqn
4.12, the entropy is

S = kB ln(V=�V )N = NkB ln(V=�V ) (4.13)

We see from this expression that the entropy depends on our choice of the cell volume,�V . However, this is
arbitrary, because remember that we are most concerned withdifferencesin entropy. Thus, as we change the volume
of the system,V , but kept the cell volumes constant, the difference in entropy between the initial and final state
would be

�S = Sf � Si = NkB ln(Vf=Vi) (4.14)

which we see is independent of�V .
From classical thermodynamics, we know that the pressure of a system is given by

P = T

�
@S

@V

�
U

(4.15)

Using this equation with our expression for the entropy of our dilute gas, we obtain

P =
NkBT

V
(4.16)

One can use the same arguments to derive an expression for the osmotic pressure of molecules in solution. The
van’t Hoff equation, which has the same form as eqn 4.16, results.

While eqn 4.16 is not exactly revolutionary, we do see how the connection with thermodynamics can be made.
In addition, we have obtained an expression for the Boltzmann constant, namelykB = R=NA, whereR is the gas
constant andNA is Avagadro’s number. Of course, the van’t Hoff equation and the ideal gas law were known before
Einstein’s time, so one could argue that the above derivation is no big deal. However, as should be apparent, we
can relax our assumption of non-interacting molecules and try to account for the finite size of the molecules and
intermolecular interactions. The results of such efforts are increasingly sophisticatedequations of statethat attempt
to capture the P-V-T behavior of fluids. This represents an active area of research to this very day.

In addition to the ideal gas law, we can define a temperature. Recall that�
@S

@E

�
N;V

= 1=T (4.17)

where we are loosely usingE andU equivalently. Thus, we see that

� � (kBT )
�1 =

�
@ lnW

@E

�
N;V

(4.18)

The thermodynamic condition that temperature is positive requires thatW (N;V;E) be a monotonic increasing
function ofE.

4.2.2 Second Law of Thermodynamics

We can make other connections with thermodynamics. In this section, we will briefly show how the Second Law
can be obtained from eqn 4.12. For additional details, see Chandler,Introduction to Modern Statistical Mechanics.

We start from a variational statement of the Second Law: The entropy of an isolated system at equilibrium is at
a maximum with respect to the imposition of any internal constraint on the system. Internal constraints couple to
extensive variables, but do not change the value of those extensive variables.
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system A

N

V

E

system B

N

V

E

BA

A

A B

B

Total System: N, V, E

internal constraint

Figure 4.1: System with an internal constraint

To illustrate this concept, consider a system at equilibrium, with fixed N, V, E (fig 4.1). An internal constraint
is imposed so as to divide the system into two subsystems, A and B. The total number of molecules, volume and
energy are given by:NA +NB = N , VA + VB = V andEA + EB = E. The set of microstates accessible to the
partitioned system is necessarily less than the system could assume without the constraint. Thus,

W (N;V;E) > W (N;V;E; constraint) (4.19)

and

S(N;V;E) > S(N;V;E; constraint) (4.20)

Eqn 4.20 is the variational statement of the second law. The equilibrium state is the state at whichS(N;V;E; constraint)
has its global maximum.

Question: Consider a system with energyE partitioned withEinitial
1 andEinitial

2 in subsystems 1 and 2 (See
Figure 4.2). What is the final partitioning of energy? That is, at equilibrium, what must be true about the valuesE1

andE2?

system isolated

from surroundings

1)

E E21

2)

Heat conducting wall divides

subsystems 1) and 2)

Figure 4.2: Example of partitioned system which will maximize entropy

1This derivation was originally put forth by Einstein in his “miracle year”, 1905.
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4.2.3 Third Law of Thermodynamics

The Boltzmann equation (eqn 4.12) establishes an absolute scale for entropy. At absolute zero, a perfect crystalline
substance localizes in the lowest–energy quantum microstate (the “ground state”). Excitations into higher energy
states are impossible. Thus,

W (N;V;E) = 1 (4.21)

S = kB lnW (N;V;E) = 0 (4.22)

Equation 4.22 is the third law.

4.3 Canonical Ensemble

When we introduced the microcanonical ensemble, we thought of individual systems having a fixed number of
particles, volume and energy. Now imagine a collection of systems (ensemble) with the same number of particles
and volume,but the energy is allowed to fluctuate. Energy can be passed from one system to its neighbors, so that
the energy of each system fluctuates. Each system is in thermal contact with the remainder, which acts as a heat
bath for the system. This can be represented by Figure 4.3. The ensemble is made up of a collection of cells, each

Figure 4.3: Depiction of the canonical ensemble. Each cell has a constant volume and occupation, and the temper-
ature is fixed. However, the energy of each cell can fluctuate.

with rigid, impermeable walls (hence constant N and V) that can exchange heat with one another (constant T). The
entire collection is brought to a fixed energy and then made adiabatic. Thus, theentire systemcan be treated as an
NVE system, but each cell is at constant NVT. Remember: T is constant for each replicate (cell), but the energy of
each cell fluctuates. This ensemble is called thecanonical ensemble. The name comes from the fact that a system
in contact with a heat bath is said to be in its canonical state. The word “canonical” is derived from the word canon,
which means a rule or law. Canonical therefore means conforming to a general rule or standard. In our context then,
canonical means a standard. Most experimental systems are in contact with heat baths, so this is a more natural
ensemble than the microcanonical ensemble. In fact, the canonical (NVT) ensemble is the workhorse of statistical
mechanics.

Our goal is to obtain the probability distribution and partition function for this ensemble. We start by assuming
that we haveN members of a canonical ensemble. Each member represents the whole macroscopic system ofN
molecules in a particular microscopic state. LetNi represent the number of ensemble members in statei having
energyEi. Then we know that the sum over all members in each statei will give the total number of members:

N =
X
i

Ni (4.23)
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In addition, the total energy is
E =

X
i

NiEi (4.24)

We seek to determine the number of possible states (ensemble members) among the various microscopic states.
For anyof these distributions, we know the probability of findingNj ensemble members in thejth state is:

�j =
Nj

N (4.25)

This doesn’t help much, since this is just the probability of any distributionj. We need to replaceNj with the
expectation valuehNji determined from all combinations of theN ensemble members.

We assume equala priori probabilities (that is, equal probabilities for energetically degenerate states). To get
the distribution function, we determine the number of ways of distributingN things,Nj at a time.

f =
N !Q
iNi!

(4.26)

This is the multinomial distribution function (eqn 2.25). This distribution function can be used to gethNji and the
probability ofNj systems in microstatesj.

It turns out that the degeneracy of microstates leading to the same thermodynamic state is huge. As we saw
before, this enables us to replace the actual distribution functionf with its maximum term,f�, without loss of
accuracy. Therefore, we can write

�j =
hNji
N =

1

N

P
N N �

j f
�P

N f
(4.27)

�j =
1

N
N �
j f

�

f�
=
N �
j

N (4.28)

Eqn 4.28 tells us that the probability of statej can be found by finding the maximum of the distribution,f�.
The maximum ofln f will also givef�, so we maximizeln f using Lagrange’s method of undetermined multipliers.
Our constraints are given by eqns 4.23 and 4.24.

F = ln f + �(N �
X
i

Ni) + �(E �
X
i

NiEi) (4.29)

F = lnN !�
X
i

lnNi! + �(N �
X
i

Ni) + �(E �
X
i

NiEi) (4.30)

� and� are the undetermined multipliers.
Next, we use Stirling’s approximation and differentiateF 

@F

@Nj

!
Nk 6=j

= � lnNj � �� �Ej = 0 (4.31)

Resulting in
N �
j = e��e��Ej (4.32)

How do we determine� and�? We must use our constraint relations. First, sinceN =
P

jNj applies toall
distributions, it most certainly can be applied tothe most probabledistribution. Thus

N =
X
j

N �
j =

X
j

e��e��Ej (4.33)

or

e�� =
NP

j e
��Ej

(4.34)



42 CHAPTER 4. EQUILIBRIUM ENSEMBLES

Substituting eqns 4.32 and 4.34 into eqn 4.28 yields

�k =
e��EkP
j e

��Ej
(4.35)

This is the probability distribution we want! It can be used to find the expectation value of any mechanical property
that depends upon the microscopic state of the system. All we need do now is figure out what� is.

First, we note that the denominator of eqn 4.35 is the normalization term for the distribution of all states. It is
an important quantity which will appear in all canonical ensemble averages, and so is given a name.

Q(N;V; �) =
X
k

e��Ek (4.36)

Q is thecanonical ensemble partition function, so called because it is a sum over all the states partitioned by energy
level.

If we knew what� was, we could form ensemble averages. How? For mechanical quantityJ

hJi =
X
k

�kJk =
X
k

Jke
��Ek

Q
(4.37)

We will make a physical connection with thermodynamics, and use this to identify�. For example, the thermo-
dynamic internal energy is found by calculating the expectation value of the energy

U = hEi =
X
j

Ej�j =
X
j

Eje
��Ej

Q
(4.38)

Similarly for pressure

P = hP i =
X
j

Pj�j =
X
j

Pje
��Ej

Q
(4.39)

We postulate thathP i corresponds to the thermodynamic pressure and thathEi corresponds to the thermody-
namic energy. Eqn 4.38 givesE in terms of�, which could in principle be solved for� in terms ofE. In practice,
it is more desirable to haveE as a function of�, rather than the other way around, however.

We will now evaluate�. First, we recognize that when a system is in statej, dEj = �PjdV is the work done
on the system when its volume is increased bydV , keepingN constant.Pj is the pressure associated with statej.
Thus we can write

Pj = �
�
@Ej

@V

�
N

(4.40)

We can use this in eqn 4.39 to write

hP i =
X
j

Pj�j = �
X
j

�
@Ej
@V

�
e��Ej

Q
(4.41)

Next, we differentiate eqn 4.38 with respect toV , keeping� andN constant.

�
@U

@V

�
N;�

=
X
j

�
@Ej
@V

�
�;N

e��Ej

Q
� �

X
j

Ej

�
@Ej
@V

�
�;N

e�Ej

Q
+ (4.42)

�
X
j

X
k

Eje
��Ej

�
@Ek
@V

�
�;N

e��Ek

Q2
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This simplifies to �
@U

@V

�
�;N

= �hP i+ �hE � P i � �hEihP i (4.43)

Similarly, we differentiate eqn 4.39 with respect to�. The result is

�
@P

@�

�
N;V

= hP ihEi � hP �Ei (4.44)

Combining eqns 4.43 and 4.44, we get that

�
@E

@V

�
N;�

+ �

�
@P

@�

�
N;V

= �P (4.45)

Note:E (or more exactly,hEi), is a function ofN;V; �. This refers to the population of energy levels.Ej , on the
other hand,is the energy level itself, and depends only onN andV .

Let’s compare eqn 4.45 with another equation which we know from thermodynamics

�
@U

@V

�
T;N

= T

�
@P

@T

�
V;N

= �P (4.46)

Rewrite this in terms of1=T instead ofT and changing notation (U = E)

�
@E

@V

�
N;1=T

+
1

T

�
@P

@(1=T )

�
N;V

= �P (4.47)

Comparing eqns 4.47 and 4.45, we identify� = c=T , c being a constant. The value ofc is taken askB, Boltzmann’s
constant, by applying the result obtained here to an ideal gas. We will come back to this later. Thus we have the
important relation

� =
1

kBT
(4.48)

It is conventional to let� = 1=kBT , so we will use this symbol throughout this course.

4.3.1 Relationship Between the Canonical Ensemble and Thermodynamics

We now can write down some thermodynamics. Eqn 4.38 can alternately be expressed as

U = �
�
@ lnQ

@�

�
V;N

= kBT
2
�
@ lnQ

@T

�
V;N

(4.49)

and the expression forP can be written as

P = kBT

�
@ lnQ

@V

�
N;T

(4.50)

The two equations above are nice; they tell us that we can obtain pressure and energy from knowledge of the partition
function. If an expression for entropy can be found, we will be able to determine all the thermodynamics of the
canonical ensemble.

We knowS is related toU andPV (for fixedN ) by

dS =
(dU + PdV )

T
(4.51)
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But we know that
U =

X
j

�NV T
j Ej (4.52)

where we have been explicit in stating that the probability density of the canonical ensemble is used. Thus

dU =
X
j

h
�NV T
j dEj +Ejd�

NV T
j

i
(4.53)

=
X
j

�
�NV T
j

�
@Ej

@V

�
N
dV +Ejd�

NV T
j

�

= �PdV +
X
j

Ejd�
NV T
j

Combining these last two equations, we obtain

dS =
(�PdV +

P
j Ejd�

NV T
j + PdV )

T
(4.54)

dS =

P
j Ejd�

NV T
j

T
(4.55)

Recall that�j = e��EjP
k
e��Ek

, which we can solve forEj in terms of�j, and use this in eqn 4.55. The result is

dS = �
P

j(ln�
NV T
j d�NV T

j + lnQd�NV T
j )

�T
(4.56)

Since
P

j �
NV T
j = 1, the second term in the numerator is zero. We thus obtain what we sought

dS = �kB
X
j

ln�NV T
j d�NV T

j (4.57)

Eqn 4.57 is an important equation, in that it establishes the link between entropy and the microscopic state of a
system. It can be integrated (the integration constant set so asS(T = 0) = 0 for a perfect crystal) and the resulting
equivalent equations obtained

S =
U

T
+ kB lnQ = kBT

�
@ lnQ

@T

�
N;V

+ kB lnQ (4.58)

S = �kB
X
j

�NV T
j ln�NV T

j (4.59)

S = �kBhln�NV T
j i (4.60)

All of the above equations tells us that, if we knowQ, we know everything about the thermodynamics of the
system. As we will see, this means that a primary challenge of ours is to evaluateQ. (Is this possible? That
means we have to obtain theEj ’s of anN–body system! It turns out that we will approximate the problem by only
considering one- ,two- , and perhaps three–body problems as an approximation of the actual systems).

To continue, we now wish to derive an expression for the Helmholtz free energy,A, in terms ofQ. A is the
natural thermodynamic potential of the canonical ensemble. We know that

A = U � TS (4.61)
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so

A = kBT
2
�
@ lnQ

@T

�
N;V

� kBT
2
�
@ lnQ

@T

�
N;V

� kBT lnQ (4.62)

or
A = �kBT lnQ (4.63)

We can derive all other thermodynamic quantities easily from eqn 4.63 using standard thermodynamic manipula-
tions.

In the above development, we have implicitly considered a single component system. In a multicomponent
system, the formulation proceeds identically to that here (starting at eqn 4.26), except that we use the sum of
particlesN1 +N2 + � � � in place ofN , and the productN1!N2! � � � in place ofN !.

4.3.2 Using the Canonical Ensemble

Equipartition of Energy

Many physical systems have Hamiltonians of the form

H =
X
i

Aiq
2
i +

X
i

Bip
2
i (4.64)

whereqi andpi are generalized coordinates and momentum. In an ideal gas of spherical particles, for example,
Bi = 1=2m, with pi a component of momentum in each of three coordinate directions.Ai = 0. In general, iff
of the constantsAi andBi are non-vanishing, then it is easy to show that within the classical limit of the canonical
ensemble

U = hHi = 1=2fkBT (4.65)

This says that each independent harmonic term in the Hamiltonian contributes1=2kBT to the total energy of the
system. This is thetheorem of equipartition of energy. This theorem only holds for degrees of freedom which can
be treated classically; it breaks down when quantum effects are important.

Fluctuations

What is the magnitude of energy fluctuations in the canonical ensemble? The variance of energy is

h(ÆE)2i � h(E � hEi)2i = hE2 � 2EhEi + hEi2i = hE2i � hEi2 (4.66)

What is each term here?

hE2i =
P

j E
2
j e
��Ej

Q
= � 1

Q

@

@�

X
j

Eje
��Ej

But this can be simplified

hE2i = � 1

Q

@

@�
(hEiQ)

hE2i = �@hEi
@�

� hEi@ lnQ
@�

Finally, we get with a little more algebra

hE2i = kBT
2@hEi
@T

+ hEi2

Thus, eqn 4.66 becomes

h(ÆE)2i = kBT
2
�
@hEi
@T

�
N;V

= kBT
2
�
@U

@T

�
N;V

(4.67)
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Our usual thermodynamic definition of heat capacity is

Cv =

�
@U

@T

�
N;V

(4.68)

Thus we see that
h(ÆE)2i = kBT

2Cv (4.69)

Look at what eqn 4.69 says: the size of spontaneous fluctuations in energy at equilibrium is related to the rate at
which the energy of the system will change with changes in temperature. Eqn 4.69 serves as the basis for estimating
the heat capacity through simulations carried out at a single temperature in the canonical ensemble.

To appreciate the order of magnitude of energy fluctuations in a macroscopic system, let’s compare the standard
deviation of energy to its average value

h(ÆE)2i1=2
hEi =

(kBT
2Cv)

1=2

hEi
For an ideal gas,hEi is of order(NkBT ) andCv is of order(NkB). Thus,

h(ÆE)2i1=2
hEi � (N�1=2)

If N is on the order of1020 or so, this is an extremely small number. Note that this argument can be applied in the
“thermodynamic limit”, far from critical points. (Fluctuations become large near critical points...)

This tells us that the probability distribution for energy is a sharp Gaussian, that for all practical purposes is a
delta function. Also, it says thatCv � 0 always. This result, which falls naturally out of the statistical mechanical
formulation, constitutes a criterion for thermodynamic stability.

4.4 Elementary Statistical Mechanics of Fluids

We will eventually introduce other ensembles, but at this point it is worthwhile to stop for a moment and see how
we can use what we have learned. Since the canonical ensemble is the most commonly used ensemble, now is a
good time to digress and show some elementary statistical mechanical calculations as applied to fluids.

As we saw with the heat capacity, the canonical ensemble provides a powerful framework for calculating ther-
modynamic properties of gases and liquids from molecular–level information. Consider a fluid ofN particles in
volumeV at temperatureT . To specify a microstate in configuration space, we must determine the position, orien-
tation and shape of all molecules. For a molecule ofs atoms, this means there are 3s degrees of freedom. Recall
that either Cartesian or generalized coordinates can be used. As we touched on earlier, there is an advantage to
specifying a molecular configuration with the more conceptually difficult generalized coordinates than with simple
Cartesian coordinates. Let us again show how generalized coordinates are used in an example.

Consider a linear molecule, such as the one shown in Figure 4.4. This could be a representation of chlorine, for
example. To uniquely determine the conformation of this molecule in space, we could specify the three Cartesian
coordinates of both atoms, which would give a total of six degrees of freedom for this molecule. Alternatively, we
could specify the three Cartesian coordinates of the molecular center of mass, two “Eulerian” angles (	1 and	2)
which give the overall orientation (we will refer to these as “rotational” degrees of freedom), and 3s-5 internal bond
lengths and/or angles (“vibrational” degrees of freedom),`. For this particular molecule,s = 2 so there is one bond
length which must be specified,`1. Thus we must specify six generalized coordinates to describe the configuration
of this molecule - the same number as the Cartesian coordinate specification.

We could also have a nonlinear, flexible molecule, such as the one shown in Figure 4.5. We could again specify
Cartesian coordinates for each atom, or we could define the configuration in terms of generalized coordinates. For
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r

Ψ 1

Ψ 2

bond length, l

Figure 4.4: Degrees of freedom for a linear molecule (such as N2).

φ

Ψ1

Ψ2

Ψ3

dihedral

r

(after Theodorou)

Figure 4.5: Degrees of freedom for a flexible, non–linear molecule (such as 1,2-dichloroethane).

this case, three translational and three rotational degrees of freedom (	 are required to specify the position of the
center of mass and the overall orientation. If the molecule can isomerize conformationally, it also hasb torsional
(dihedral) degrees of freedom. In addition, there are 3s - b - 6 vibrational degrees of freedom for a nonlinear
molecule. In the representation of 1,2-dichloroethane shown in Figure 4.5, there is one torsional and 17 vibrational
degrees of freedom (7 bond lengths and 10 bond angles).

We now wish to classify the different degrees of freedom. This can be done on a number of ways:

1. Internal/external degrees of freedom

� “Internal” degrees of freedom: vibrational and torsional.

� “External” degrees of freedom: translational and rotational

2. Hard/soft degrees of freedom

� “Hard” degrees of freedom: vibrational

� “Soft” degrees of freedom: all others

3. inter–/intra–molecular degrees of freedom

� Intramolecularcontributions: nuclear, electronic, vibrational, and torsional
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� Intermolecularcontributions: potential energy of interaction between molecules. This is a function of
position and orientation of constituent parts of different molecules.

4. internal/external degrees of freedom

� “internal” part: nuclear, electronic, vibrational, and rotational degrees of freedom.

Note that these degrees of freedom arenotaffected by other molecules.

� “external” part: all other degrees of freedom.

Based on the separation of energy into aninternalpart and anexternalpart, we make the following assumptions:
1) Fast, vibrational degrees of freedom of a polyatomic molecule are not greatly affected by the environment of the
molecule. Thus we can lump vibrational energy into the internal part; 2) The kinetic energy associated with the
tumbling of molecules in a fluid is also independent of fluid configuration. We therefore add this to the internal part
of the potential. This is acceptable if the molecules have no internal torsional degrees of freedom that can cause
changes in their shape; 3) The kinetic energy associated withtranslationis always included in the “external” part of
the energy, since this will depend on the environment.

With this separation of energy, we can factor the partition function in the following way

Q(N;V; T ) =
X

microstates

e��E

=
X

microstates

exp[��
NX
i

Eint
i � �Eext]

=

 X
internal

exp[��
NX
i

Eint
i ]

! X
external

exp[��Eext]

!

=
NY
i=1

 X
internal

exp[��Eint
i ]

! X
external

exp[��Eext]

!

where the sums over “internal” and “external” refer to all possible combinations of internal and external degrees of
freedom, respectively.

Finally we get
Q(N;V; T ) = [qint(T )]NQext(N;V; T ) (4.70)

The Hamiltonian forQext consists of contributions from all kinetic energy modesnot included inqint, and from
the potential energy of the system,V, which depends on the system configuration. That is

V = V(q)
A comment on notation: we will use the vectorq to represent all the generalized coordinates of a molecule of
collection of molecules under discussion.

As a simple case, consider a system of inflexible molecules, in which the total potential energy can be expressed
solely as a function of the center of mass coordinates. That is

V = V(r1)
wherer1 is the vector of Cartesian coordinates describing the position of the molecules.

Such a representation is a good approximation for molecules that “look” like spheres (such as xenon or methane).
Long, flexible molecules, such as polymers, are poorly approximated in this way. Likewise, molecules with strong
orientationally–dependent dipolar interactions (such as water) are not well–represented in this way. In these cases,
we need to treat the potential as a function of the full configuration space (V = V(q)).
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However, under the condition thatV = V(r1), we can deriveQext from the following Hamiltonian

Hext(r
N ;pN ) = K(pN ) + V(rN ) =

NX
i=1

p2i
2m

+ V(r1; � � � ; rN ) (4.71)

Notice in eqn 4.71 that the potential energy is anintermolecularpotential energy. The kinetic energy depends
exclusively on momenta, while the potential energy term depends exclusively on position. Thus, in forming the
partition function for this Hamiltonian, we mayseparatethe two contributions

Qext(N;V; T ) =
1

h3NN !

Z
exp

"
��

NX
i=1

p2i
2m

#
dpN �

Z
exp[��V(r1; � � � ; rN )] drN (4.72)

Recall that the factor 1
h3NN !

arises when going from a discrete representation to the classical (continuous) rep-
resentation ofQ. (We can also do a separation of this type for more complicated molecules, as long as all the
configurational degrees of freedom can be treated classically. More on this later.)

The integral in momentum space is easy to evaluate; it is a product of3N independent Gaussian integrals. Recall
that Z +1

0
e��

2k2 dk =

p
�

2�

so we have 3N independent Gaussian integrals of the form

Z +1

�1
exp

 
�� p

2

2m

!
dpi = (2�mkBT )

1=2 (4.73)

This indicates that the center-of-mass momentum vectors obey a Maxwell–Boltzmann distribution of the form

�MB(p) =
1

(2�mkBT )3=2
exp

"
�p2

2�mkBT

#
(4.74)

We can then combine eqns 4.70, 4.72, and 4.74 to get thesemi–classical partition function

Qcl(N;V; T ) = [qint]N
1

N !

�
2�mkBT

h2

� 3N
2 � (4.75)

Z
exp[��V(r1; � � � ; rN )] dr1; � � � ; drN

or

Q(N;V; T ) =
[qint(T )]N

N !�3N

Z
exp[��V(r1; � � � ; rN )] dr1; � � � ; drN (4.76)

where� is the “thermal wavelength” of the molecules

� = �(T ) =

 
h2

2�mkBT

!1=2

(4.77)

� is of the order of the de Broglie wavelength for a molecule of massm and thermal energykBT . Physical sig-
nificance: when intermolecular separations become commensurate with�, a classical treatment of the translational
motion is no longer satisfactory. (Can you think of why this is the case?).

Notice in eqn 4.76 that we have dropped the explicit reference to a classical partition function, although only for
convenience. We should always keep the distinction clear between the classical and quantum mechanical definitions
of Q.
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Eqn 4.76 is often written as

Q(N;V; T ) =
[qint(T )]N

N ![�(T )]3N
Z(N;V; T ) (4.78)

where

Z(N;V; T ) �
Z

exp[��V(r1; � � � ; rN)] drN (4.79)

Z(N;V; T ) is a very important quantity, and is referred to as theconfigurational integral. The reasonZ is so
important is that all the dependence of the partition function (hence, thermodynamics) on spatial extent (density) of
the system is incorporated inZ. For example, pressure is independent of internal modes.

Recall, for example, that a pressure–explicit equation of state was derived as

P = �
�
@A

@V

�
N;T

=
1

�

�
@ lnQ

@V

�
N;�

So that now

P =
1

�

�
@ lnQ

@V

�
N;T

= kBT

�
@ lnZ

@V

�
N;T

(4.80)

Look what this means: If we can separate a system into internal and external degrees of freedom, and if those exter-
nal degrees of freedom can be treated classically, then the equation of state can be obtained from theconfigurational
part of the partition function only! This is whyZ is so important!

More on separation of energy

The total energyis a function of the degrees of freedom (generalized coordinates,q) and generalized momentum
conjugate to these degrees of freedom (p). In addition, nuclear and electronic degrees of freedom can be excited in
some systems at ordinary temperatures, and thus need to be considered in the total energy. If�Ei, the successive
energy level separation associated with a degree of freedom, is large compared to the thermal energy, we must treat
the contribution quantum mechanically.For Example:kBT = 4:1 � 10�21J=dof at room temperature. Nuclear
spin separations are typically10�11J=dof , electronic contributions (10�17J=dof ) and vibrational (10�20J=dof )
must be treated quantum mechanically. A classical treatment is acceptable for most cases of rotational, internal
torsional, and translational contributions.

A complete and rigorous calculation ofqint is complicated by the coupling of various internal modes. We
simplify the problem in a reasonable way by assuming an independence between various modes. The main approx-
imations are the following:

� Born–Oppenheimer Approximation: electron movement is rapid relative to the motion of massive nuclei.
Consequence: the electronic partition function isindependentof other internal modes.

� Other time scale arguments can be made to separate the other modes.

� Poorest assumption: independence of coupling between rotational and vibrational modes (“rigid rotator”).
Turns out to be a good approximation for many systems. Couplingcanbe treated rigorously.

The result of the separation is that internal partition function can be factored

qint = qrqvqeqn
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4.4.1 Thermophysical Properties of Ideal Gases

For a simple application of the principles we’ve discussed, consider an ideal gas of molecules. Before you grumble
about looking at an ideal gas, stop for a minute. The ideal gas plays a central role as areference substancein
statistical thermodynamic formulations. Thus, it is important that we can handle at least this simplest of all systems.
We will tackle more complex systems in due time!

For an ideal gas ofatomic species, there are no interactions between molecules, thus we can write

V(q) = 0 (4.81)

This would not be the case is we had a molecular species with internal energetics; we ignore this case for now. We
can see immediately that the configurational integral, eqn 4.79 reduces to

Zig(N;V; T ) =

Z
drN = V N (4.82)

The canonical partition function can be written

Qig(N;V; T ) =
[qint]N

N !

�
V

�3

�N
(4.83)

We can calculate a number of properties from eqn 4.83.

� Pressure:

Using the equation of state derived earlier (eqn 4.80):

P ig = kBT

�
@ lnQ

@V

�
N;T

= kBT

 
@V N

@V

!
N;T

(4.84)

P ig =
NkBT

V

or

P igV = NkBT = nRT

We have once again derived the ideal gas law!

� Helmholtz free energy:

Aig(N;V; T ) = � 1

�
ln

2
4 1

N !

 
qintV

�3

!N35

= � 1

�

"
�(N lnN �N) +N ln

 
qintV

�3

!#

NkBT

"
�1 + ln

 
N�3

V qint

!#
= NKBT

"
�1 + ln

 
��3

qint

!#

where� = N=V is themolecular density.
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� chemical potential:

You can easily show that

�ig(�; T ) = �kBT
�
@ lnQ

@N

�
= kBT ln

 
��3

qint

!
(4.85)

where we have used Stirling’s approximation. For a monatomic ideal gas, this simplifies to

�ig(�; T ) = kBT ln(��3) (4.86)

This equation defines an absolute scale for chemical potential.

� heat capacity

Cig
v =

�
@U

@T

�
V

=
@

@T

"
3

2
NkBT +NkBT

2@ ln[q
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#

Simplifying,

Cig
v =
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2
NkBT + 2NkBT

@ ln[qint]N
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+NkBT
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2 ln[qint]N

@T 2
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@ ln[qint]

@T
+ T 2@
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@T 2

#

For an ideal, monatomic gas (such as argon), we see the familiar equation

Cig
v = 3=2R

The temperature–dependency of the heat capacity arises from molecular structure. Rotational, vibrational
(and even electronic and nuclear) degrees of freedom get incorporated inqint(T ). It is easy to see now why
correlations for heat capacity have the form

Cp = Cv +R = a+ bT + cT 2 + � � �

� entropy:

Finally, we can compute the entropy of an ideal gas

Sig =
U ig �Aig

T

=
NkBT

h
3
2 + T @ ln[qint]N

@T

i
�NkBT

h
�1 + ln ��3

[qint]N

i
T

Sig = NkB

"
5

2
� ln(��3) + ln[qint]N + T

@ ln([qint]N )

@T

#

Sig = R

"
5

2
� ln(��3) + ln[qint]N + T

@ ln([qint]N )

@T

#

We see for an ideal, monatomic gas

Sig = R

�
5

2
� ln(��3)

�
This last equation is a form of the Sakur-Tetrode equation. The assumption of an ideal, monatomic gas enables
rapid and fairly accurate evaluation of absolute entropies (see Table 4.1).
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Gas exp. (e.u.) calc. (e.u.)
He 30.13 30.11
Ne 34.95 34.94
Ar 36.98 36.97
Kr 39.19 39.18
Xe 40.53 40.52
C 37.76 37.76
Na 36.72 36.70
Al 39.30 39.36
Ag 41.32 41.31
Hg 41.8 41.78

Table 4.1: Calculated and measured entropies at 1 atm and 298o K. Calculated values were obtained from the
Sakur–Tetrode equation, assuming an ideal, monatomic gas. From McQuarrie,Statistical Mechanics.

4.4.2 Thermodynamic Properties from Ensemble Averages

So far, we have seen that we can calculate thermodynamic properties, if we know the configurational integral (or the
partition function). Our goal is to formulate the statistical mechanical problem in such a way that we can calculate
properties from molecular simulations. One might be tempted to think that molecular simulations are simply a way
of calculatingZ. As we shall see, however, computingZ for non-trivial systems is extremely difficult (but not
impossible). As a result, rarely do we compute configurational integrals directly from molecular simulations, but it
turns out that this is unnecessary for obtaining many properties of interest!

Simulations are generally designed to computeensemble averages(or, equivalently, time averages). What we
would like to do now then is to derive expressions for thermodynamic properties written asensemble averages. We
will begin by deriving an expression for the pressure of a system.

Virial Theorem: Pressure as an Ensemble Average

There are many ways to derive the virial theorem. We will follow a mechanical derivation, much along the lines of
Clausius’ original derivation. The form given here is after that given by D. N. Theodorou.

Consider an isotropic fluid ofN molecules in a volumeV at temperatureT (see Fig. 4.6). For simplicity, we
consider a fluid of structureless molecules, subject to central forces. This derivation can be extended to molecular
fluids by considering molecules as collections of atoms, some of which interact through bond forces. Newton’s
second law, applied to moleculei yields

mi
d2xi
dt2

= Fxi (4.87)

Analogous formulae apply fory andz. Fi is the total force experienced by moleculei at a given time. Multiplying
eqn 4.87 byxi yields

xiFxi = mixi
d2xi
dt2

=
d

dt

�
mixi

dxx
dt

�
�mi

�
dxi
dt

�2
(4.88)

Summing over all molecules and taking time averages under equilibrium conditions

h
NX
i=1

xiFxiit = h
NX
i=1

d

dt
(xipi;x)it � h

NX
i=1

p2i;x
mi

it (4.89)

Recall the definition of a time average:

hAit = lim
�!1

Z �

0
A dt
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N molecules, volume V, temperature T

Figure 4.6: Schematic of the construct used in deriving the virial theorem. The grey sphere represents the position
of moleculei in a fluid ofN particles at temperatureT in volumeV . Fi is the total force on the molecule.

In eqn 4.89, we have used the fact thatpi = mi
dri
dt .

Let us examine the first term after the equal sign in eqn 4.89. By definition,

h
NX
i=1

d

dt
(xipi;x)it = lim

�!1

1

�

Z �

0

"
NX
i=1

d

dt
(xipi;x)

#
dt

= lim
�!1

1

�

Z �

0

d

dt

"
NX
i=1

(xipi;x)

#
dt

= lim
�!1

1

�

 "
NX
i=1

xipi;x

#
�

�
"
NX
i=1

xipi;x

#
0

!
(4.90)

The momentum must be bounded (that is,pi;x cannot be infinite). Also, the positionxi is bounded, because
moleculei cannot leave the box. As a consequence, the limit on the right hand side of eqn 4.90 must be zero.
Therefore, we have

h
NX
i=1

d

dt
(xipi;x)it = 0 (4.91)

Consider the second term in eqn 4.89. Motion in the system is isotropic, so

h
NX
i=1

p2i;x
mi

it = 1

3
h
NX
i=1

p2i
mi
it = 2

3
hKit (4.92)

whereK is the kinetic energy.
We now invoke the ergodic hypothesis. As we have seen, the kinetic energy is related to the temperature and the

number of degrees of freedom through the equipartition theorem. Thus

h
NX
i=1

p2i;x
mi

it =
�
2

3

��
3N

2

�
kBT = NkBT (4.93)

Combining eqns 4.89, 4.91, and 4.93

h
NX
i=1

xiFxiit = �NkBT (4.94)
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Similar relationships exist fory andz, thus

1

3
h
NX
i=1

ri � Fii = �NkBT (4.95)

We have dropped the subscriptt in eqn 4.95 to denote averaging in any ensemble. The quantity
PN

i=1 ri �Fi is called
the(total) virial.

Consider the nature of the force on atomi, Fi. There are two sources

1. Forces arising due to interactions with the box walls. We give these forces the symbolFw
i .

2. Forces due to interactions with other fluid molecules. We give this component the symbolFint
i .

Thus,
Fi = Fint

i + Fw
i (4.96)

Eqn 4.95 can equivalently be written as

1

3

 
h
NX
i=1

ri � Fw
i i+ h

NX
i=1

ri � Fint
i i
!
= �NkBT (4.97)

The quantities(1=3)
PN

i=1 ri � Fw
i and (1=3)

PN
i=1 ri � Fint

i are referred to as the wall virialand internal virial,
respectively.

Focus on the wall virial term in eqn 4.97, and consider thex component. For most physical systems, “wall”
forces are short ranged. Molecules will only experience wall forces if they are within a few molecular diameters of
the wall. As a consequence, all the molecule–wall contributions that contribute to the virial term will havexi � Lx
or xi � 0. Thus

h
NX
i=1

xiF
w
xii = Lxh

NX
i=1

Fw
xiix=Lx (4.98)

wherehPN
i=1 F

w
xiix=Lx is the average force exerted from the wall atLx on the gas. It is minus the average force

exerted by the gas on the wall. Thus, it isrelated to the pressure

h
NX
i=1

Fw
xiix=Lx = �PLyLz (4.99)

Combining eqns 4.98–4.99

h
NX
i=1

xiF
w
xii = �PV (4.100)

We then see immediately from eqn 4.97 that

PV = NkBT +
1

3
h
NX
i=1

ri � Fint
i i = NkBT + hWinti (4.101)

wherehWinti is called theinternal virial.
Eqn 4.101 is thevirial theoremand expresses pressure directly in terms of density, temperature, and intermolec-

ular forces. It is perfectly general, and valid for any intermolecular potential. Clearly, it gives the proper behavior
for ideal gases and shows where the source of non-ideality comes from. This equation is in a form amenable for
use in molecular simulations, since the pressure can be calculated from an ensemble average. We have succeeded in
deriving our first general expression for a thermodynamic quantity in terms of an ensemble average! We don’t need
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to compute the complete configurational integral to get the pressure - we must “only” compute the internal virial.
How do we do this?

If the intermolecular forces can be represented in apairwisefashion (i.e.Fint
i =

P
j 6=iFij,Fij = �Fji, where

Fij symbolizes the force oni due toj), then eqn 4.101 assumes the form

PV = NkBT +
1

3
h
NX
i=1

NX
j=i+1

(ri � rj) � Fiji (4.102)

Eqn 4.102 will be very useful in conducting simulations of the PVT behavior of fluids.

Chemical Potential as an Ensemble Average

In general, “statistical” properties such as entropy, chemical potential, and free energies are more difficult to cal-
culate from a simulation in the canonical, microcanonical, or isothermal–isobaric ensembles than “mechanical”
thermodynamic properties such as pressure and internal energy. Because of this, we often would prefer to work in
a different ensemble than the canonical ensemble when trying to get these quantities. For example, we could utilize
a direct approach by conducting the simulations in the grand canonical ensemble, where�, or a related quantity, is
specified directly. This has its own difficulties, as we shall see, but there are times when an ensemble other than the
canonical ensemble is useful. We will discuss other ensembles shortly, but for now, let’s restrict ourselves to the
canonical ensemble.

The most common way of computing chemical potentials in the canonical ensemble is to utilize Widom’s “test
particle” method. This elegant technique was proposed by B. Widom [Widom, B.J. Chem. Phys., 39, 2808, (1963);
86, 869, (1982)]. This method is also referred to as “ghost particle” insertion. The derivation goes as follows.
Consider a fluid ofN molecules in a volumeV at temperatureT (see Fig. 4.7). We know that the free energy is
found from eqn 4.63

A(N;V; T ) = � 1

�
lnQ(N;V; T )

If we consider the same fluid in the same volume and at the same temperature, but at a density corresponding to
N + 1 molecules, then

A(N + 1; V; T ) = � 1

�
lnQ(N + 1; V; T )

Subtracting the two yields

A(N + 1; V; T ) �A(N;V; T ) = � 1

�
ln
Q(N + 1; V; T )

Q(N;V; T )
(4.103)

But if we then use the definition of the classical partition function (eqn 4.78) we get

A(N + 1; V; T )�A(N;V; T ) = � 1

�
ln

 
[qint]N+1

(N + 1)!�3(N+1)

N !�3N

(qint)N
Z(N + 1; V; T )

Z(N;V; T )

!
=

kBT ln

 
[N + 1]�3

V qint

!
� 1

�
ln

�
Z(N + 1; V; T )

V Z(N;V; T )

�
(4.104)

Focusing on the ratio of configurational integrals, and using the definition ofZ

Z(N + 1; V; T )

V Z(N;V; T )
=

R
exp[��VN+1(r1; � � � rN+1)]dr1 � � � rN+1

V
R
exp[��VN (r1; � � � rN )]dr1 � � � rN (4.105)

where
VN+1(r1; � � � ; rN+1) = VN (r1; � � � ; rN ) + Vtest(rN+1; r1; � � � ; rN )
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Vtest(rN+1; r1; � � � ; rN ) is the total potential energyfelt by a molecule atr due to theN molecules of the fluid at
(r1; � � � ; rN ). We can therefore write eqn 4.105 as

Z(N + 1; V; T )

V Z(N;V; T )
=

R
drN+1

R
dr1; � � � ; drN exp[��VN (r1; � � � ; rN )] exp[��Vtest(rN+1; r1; � � � ; rN )]R

drN+1
R
dr1; � � � ; drN exp[��VN (r1; � � � ; rN )] (4.106)

Look at the form of eqn 4.106. The right hand side is an ensemble average over all configurations of theN
molecules, and is also an average over all possible positions of the “ghost” particle.

N particles, volume V, 
temperature T

"ghost" particle

Figure 4.7: Representation of “ghost particle” insertion in Widom’s technique for computing chemical potentials.

The Widom insertion procedure goes as follows. First, take a random configuration ofN interacting molecules
in volumeV and temperatureT , weighted according to the canonical ensemble. To this configuration, add a test
particle (N + 1) at a random point. This test particle “feels” allN particles, but it is not felt by the other particles.
Thus, it does not perturb the system. Next, average the Boltzmann factor of the test energy,Vtest over all configura-
tions of the “real”N molecules and over all positions of the test molecule. This involves sampling many different
canonical conformations and many different “ghost particle” positions/conformations. (It turns out that generating
enough of these conformations to get reliable averages is tricky and difficult, which is why it is sometimes desirable
to use other methods. Nonetheless, the procedure is relatively straightforward). The result of such a process is that

Z(N + 1; V; T )

V Z(N;V; T )
= hexp(��Vtest)i (4.107)

where the brackets denote a canonical ensemble average over allN–molecule configurations and spatial averaging
over all ghost molecule positions.

Now, consider eqn 4.104. In the thermodynamic limit,N !1, V !1,N=V = � = a constant.In this limit
we therefore have �

A(N + 1; V; T )�A(N;V; T )

(N + 1)�N

�
=

�
@A

@N

�
= �(�; T ) (4.108)

where�(�; T ) is the chemical potential at the prevailing molecular density and temperature.
The first term on the right hand side of eqn 4.104 is,

kBT ln

"
(N + 1)�3

V qint

#
= kBT ln

 
��3

qint

!
(4.109)
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where again everything is in the thermodynamic limit. But this is just the definition of the ideal gas chemical
potential, given the same density and temperature (i.e. all intermolecular interactions turned off)!

kBT ln

 
��3

qint

!
= �ig(�; T )

Thus, in the thermodynamic limit

�(�; T )� �ig(�; T ) � �ex(�; T ) = �kBT ln [hexp(��Vtest)i] (4.110)

The difference���ig, taken at the same temperature anddensity, is referred to as theexcess chemical potential.
This isnot the same as the residual molar Gibbs energy, which is a difference taken under the same temperature and
pressure! The ensemble average on the right refers to a molecule in a fluid at density� and temperatureT . Widom’s
method can also be implemented in the microcanonical and isothermal–isobaric ensembles, but we won’t give the
formulas here.

4.5 Other Ensembles

Having given some examples of the use of the canonical ensemble, we now turn to other important ensembles.

4.5.1 Grand Canonical Ensemble

Recall that the canonical ensemble was envisioned in which each system was enclosed in a container with heat
conducting walls that are impermeable to the passage of molecules. Thus, each system was specified byN , V , T .
In the grand canonical ensemble, each system is enclosed in a container whose walls are both heat conductingand
permeable to the passage of molecules. Thus thermal of chemical potential gradients between systems results in
heat/mass transfer between systems. We can envision this as in Figure 4.8.

Figure 4.8: Representation of the grand canonical ensemble, with constant�; V; T .

In this figure, all boxes have the same volume, chemical potential, and temperature at equilibrium. Thus, the
energy and number of particles within a box fluctuates. The number of molecules in each system, therefore, can
range over all possible values.

We construct a grand canonical ensemble by placing a collection of such systems in a large heat bath at tem-
peratureT and a large reservoir of molecules. After equilibrium is reached, the entire system is isolated from the
surroundings. Since the entire ensemble is at equilibrium with respect to the transport of heat and molecules, each
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system is specified byV , T , �. (If there is more than one component, the chemical potential of each component is
the same from system to system).

In deriving an expression of the(�; V; T ) ensemble, we will follow the basic method as that used for the canon-
ical ensemble. However, we must specify a system not only by quantum state (energy level), but also by the number
of molecules in that system. For each value ofN , there is a set of energy statesfENj(V )g. We will use a bit
different nomenclature from our previous discussion: LetaNj be the number of systems in the ensemble that con-
tainN molecules in quantum statej. Note that each value ofN has a particular set of levels associated with it, so
we specifyN thenj. The set of occupation numbers,faNjg forms a distribution. Each possible distribution must
satisfy the following conditions:

1. X
N

X
j

aNj = A (4.111)

2. X
N

X
j

aNjENj = E (4.112)

3. X
N

X
j

aNjN = N (4.113)

In the above equations,A is the number of systems in the ensemble,E is the total energy of the ensemble
(remember: the ensemble is isolated!), andN is the total number of molecules in the ensemble.

For any possible distribution, the number of states is given by a multinomial distribution

W (faNjg) = A!Q
N

Q
j aNj!

(4.114)

As in the treatment of the canonical ensemble, the distribution that maximizesW subject to the constraints of
eqns 4.111-4.113 completely dominates all the others. You can show that when we maximize eqn 4.114, you obtain

a�Nj = e��e��ENj(V )e�N (4.115)

Notice that we have 3 undetermined multipliers, as we should since we have 3 constraints. We determine� in terms
of the two other multipliers. If we sum both sides of eqn 4.115 and use eqn 4.111, we obtain

e�� =
AP

N

P
j e

��ENj(V )e�N
(4.116)

The probability that a randomly chosen system containsN molecules and is in thejth energy state with energy
ENj(V ) is

PNj(V; �; ) =
e��ENj(V )e�NP

N

P
j e

��ENj(V )e�N
=
e��ENj(V )e�N

�
(4.117)

We use the probability in eqn 4.117 to form averages.

� Energy:

hE(V; �; )i = 1

�

X
N

X
j

ENj(V )e
��ENj(V )e�N (4.118)

or

hE(V; �; )i = �
�
@ ln�

@�

�
(4.119)
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� Pressure:

Recall thatP = �
�
@E
@V

�
. Let’s keep nomenclature straight:P here represents pressure, whilePNj is a

probability. So we can write for the average pressure

hP (V; �; )i = 1

�

X
N

X
j

�
�@ENj

@V

�
�;

e��ENj(V )e�N (4.120)

or

hP (V; �; )i = 1

�

�
@ ln�

@V

�
�;

(4.121)

� Number of molecules (density sinceV is fixed)

hN(V; �; )i = 1

�

X
N

X
j

Ne��ENj(V )e�N (4.122)

or

hN(V; �; )i = �
�
@ ln�

@

�
V;�

(4.123)

Now, the question remains: what is� and? Remember what we did to get the multipliers for the canonical
ensemble: we derived equations that relate

�
@<E>
@V

�
N;�

to
�
@<P>
@�

�
N;V

and compared this with the corresponding

thermodynamic quantities
�
@E
@V

�
N;T

and
�
@P
@T

�
N;V

. We saw that� / 1=T

We follow a slightly different approach here. It is straightforward to show that� here has the same value as
in the canonical ensemble. That is,� = 1=kbT . The mathematical derivation follows that used for the canonical
ensemble.Physically, you can see why from the following (hand waving) argument.

A grand canonical ensemble can be considered to be a collection of canonical ensembles in thermal equilibrium
with each other, but with all possible values ofN . Now imagine that each cell is instantly made impermeable, but
heat can still flow between cells. This would give acollectionof canonical ensembles with(N;V; T ) fixed. If we
use the same analysis on this system as we did with the canonical system, we get that� = 1=(kBT ). The result is
that each system must have the same value of�, regardless ofN .

If you accept this, then the question still remains: What about? To see how we can assign meaning to, let’s
consider a function

f(�; ; fENj(V )g) = ln� = ln
X
N

X
j

e��ENj(V )e�N (4.124)

Taking the total derivative off

df =

�
@f

@�

�
;fENJg

d� +

�
@f

@

�
�;fENJg

d +
X
N

X
j

 
@f

@ENj

!
�;;ENi6=j

dENj (4.125)

But we have already shown that
@f

@�
= �hEi

@f

@
= �hNi

Differentiating eqn 4.124 yields
@f

@ENj
= �� e��ENje�NP

N

P
j e

��ENje�N
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So
df = � < E > d�� < N > d � �

X
N

X
j

PNjdENj (4.126)

The last term in eqn 4.126 represents the differential change in energy for moving between states. As we have
already stated, this is the reversible work doneby the systems. It is assumed that this is only P-V work, so that

df = � < E > d�� < N > d + � < P > dV (4.127)

Now, we addd(� < E >) + d( < N >) to both sides of eqn 4.127. The result

d(f + � < E > + < N >) = �d < E > +d < N > +� < P > dV (4.128)

We can compare this to the thermodynamic relation

TdS = dE + pdV � �dN

and use the fact that� = 1=kBT to get that

 =
��
kBT

(4.129)

This provides the meaning for the last undetermined multiplier.

S =
< E >

T
� < N > �

T
+ kB ln� (4.130)

In eqn 4.130, the integration constant has been set to zero for consistency with the 3rd law.
Now that we have brought in the statistical quantity (entropy) along with the mechanical quantitiesE, P and

N , we may calculate all of the thermodynamics of a system in the grand canonical ensemble. The relevant quantity
here is�(�; V; T ), which is called the grand (canonical ensemble) partition function. As we saw, it is defined as

�(�; V; T ) =
X
N

X
j

e��ENj(V )e��N (4.131)

Here’s an important point to get clear:The canonical ensemble partition function,Q, provides the connection
between thermodynamics and statistical mechanics for a closed, isothermal (N ,V ,T constant) system. The grand
canonical ensemble partition function,�, provides the link for an open, isothermal system (�, V , T ) constant.

Summing overj for fixedN in eqn 4.131 allows us to express a relationship betweenQ and�

�(�; V; T ) =
X
N

Q(N;V; T )e��N (4.132)

The terme�� is often denoted�. Thus, we see that� = kBT ln�, and we associate� with an absolute activity,
since the difference in chemical potentials between two states is given by

�� = kBT ln(a2=a1)

The number of systems in an ensemble is arbitrarily large, soN is arbitrarily large, and hence we can take the
number of particles to approach infinity.

�(�; V; T ) =
1X

N=0

Q(N;V; T )�N (4.133)

The summation to infinity enables us to eliminate the fixedN in the summation, which has certain mathematical
advantages. Finally, let us show thatpV is the thermodynamic characteristic function ofln�. Compare eqn 4.130

S =
< E >

T
� < N > �

T
+ kB ln�
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with the thermodynamic equation
G = �N = E + pV � TS

We see immediately that
pV = kBT ln�(V; T; �) (4.134)

This completes our initial discussion of the grand canonical ensemble.

4.5.2 Isothermal–Isobaric (NPT) Ensemble

The isothermal–isobaric ensemble describes the equilibrium distribution in phase space under the constraint of
constantnumber of particles, temperature, andpressure. Thus, thevolume will fluctuate. Therefore, volume must
join the list of microscopic quantities that comprise phase space. That is, a point in phase space is given by specifying
V , qN , andpN . The probability density is derived in the manner used for the canonical ensemble. The result is

�NPT (qN ;pN ; V ) =
exp

�
��[H(qN ;pN ;V ) + PV ]

�
QNPT (N;P; T )

(4.135)

whereQNPT is the isothermal–isobaric partition function in the semi-classical form

QNPT =
1

N !h3NV0

Z
dV

Z
dqNdpN exp

�
��[H(qN ;pN ;V ) + PV ]

�
(4.136)

The factorV0 is some basic unit of volume chosen to renderQNPT dimensionless. This choice is not fundamentally
important.2

Notice that

QNPT =
1

V0

Z
dV exp(��PV )QNV T (q

N ;pN ;V ) (4.137)

whereQNV T is the canonical ensemble partition function of the system at volumeV .
The connection with thermodynamics is via the Gibbs function

G(N;P; T ) = � 1

�
lnQNPT (N;P; T ) (4.138)

If we are to generate state points in theNPT ensemble, we must clearly provide for changes in the sample
volume as well as energy.

As before, it is possible to separate configurational properties from kinetic properties. Thus, we can obtain
thermodynamic properties from the configurational integral, which has the form

ZNPT =

Z
dV exp(��PV )

Z
dqN exp(��V(q) (4.139)

(Some definitions ofZNPT include the terms1=N ! and1=V0 as normalizing factors).

4.6 Equivalence of Ensembles - Preliminaries

Ensembles are artificial constructs; they should produce average properties that are consistent with one another.
What we would like to show next is that, regardless of which ensemble you choose, the results obtained should be
the same. Therefore, the choice of which ensemble to work in boils down to a matter of convenience.

In the thermodynamic limit, (i.e. infinite system size) and as long as we avoid the neighborhood of phase transi-
tions, all commonly–used ensembles do indeed give the same average properties. The equivalence of ensembles can

2W. W. Wood, inPhysics of Simple Liquids, Temperley, H.; Rowlinson, J.; Rushbrooke, G. (eds.), North Holland, Amsterdam, 1968
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be shown formally (See Allen and Tildesley). Here, we will show the equivalence for a particular case, and simply
state that one can show the same for other cases. To do this, we must once again considerfluctuations. We saw that
fluctuations about mean values are so small that they can be ignored under most conditions (i.e. away from critical
points). Recall that the energy in theNV T ensemble varied like

�E
< E >

� N�1=2

We need to determine the fluctuations inN in an open system represented by the grand canonical ensemble.
Recall that

�(�; V; T ) =
X
N

X
j

e
��ENj e�N� =

X
N

Q(N;V; T )e�N� (4.140)

We start with the equality
hNi

X
N

Q(N;V; T )e�N� =
X
N

NQ(N;V; T )e�N� (4.141)

Differentiate eqn 4.141 with respect to�, and divide both sides by�

1

�

@

@�

"
hNi

X
N

Q(N;V; T )e�N�

#
=

1

�

@

@�

"X
N

NQ(N;V; T )e�N�

#
(4.142)

This leads to
1

�

"
@ < N >

@�

X
N

Qe�N�+ < N >
X
N

�NQe�N�

#

=
1

�

X
N

�N2Qe�N�

Simplifying this expression,

@ < N >

@�
+
< N > �

�

X
N

NQe�N� =
�

�

X
N

N2Qe�N�

@ < N >

@�
+ � < N >2= � < N2 >

or finally

< N2 > � < N >2= kBT

�
@ < N >

@�

�
V;T

(4.143)

Typically, � is of the same order askBT . Thus,�2N �< N > and

�N
< N >

�< N >�1=2 (4.144)

We see from eqn 4.144 that the relative fluctuation in the number of particles goes as1=
p
< N >, (a very small

number). This is the standard result for statistical mechanical fluctuations. Therefore, even an open system contains
essentially the same number of molecules< N > for fixed �; V; T . This is an important result, that will help us
show why ensembles are equivalent. Eqn 4.143 can be put into a form that has more physical meaning. Starting
with the familiar thermodynamic equality

d� = vdP

whereT is assumed constant, we obtain �
@�

@�

�
T

= v

�
@P

@�

�
T
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wherev = V=N and� = N=V . Then �
@�

@N

�
V;T

V = �V
3

N2

�
@P

@V

�
N;T

Combining this last equation with eqn 4.143 we find�
�N

< N >

�2
=
kBT�

V
(4.145)

where�, the isothermal compressibility, is defined by

� = � 1

V

�
@V

@P

�
N;T

For an ideal gas, we know that� = 1=� andkBT�=V = 1= < N >, consistent with our earlier analysis.
When are fluctuations not negligible? Consider eqn 4.145. At a critical point, or when two phases exist together

in the same system,(@P=@V )N;T is essentially zero, and so� is infinite. Thus, fluctuations arelarge in these
regions. As an example, in a two–phase system having number densities�1 and�2, � in the expression

< (�� < � >)2 >

can range from�1 to �2, rather than being narrowly centered on< � >. Thus,< (�� < � >)2 is now on the order
of (< � >)2 itself. For a constant volume system,�N= < N > is thus on the order of 1, rather that(< N >)�1=2.
The standard deviation is on the same order as the mean value. Fluctuations in density at the critical point are
responsible for critical opalescence phenomenon, in which a pure substance becomes turbid at its critical point.

4.6.1 Equivalence of Ensembles - An Example

Consider the grand canonical ensemble. The partition function for a 1–component system is

� =
X
N

QNV T (N;V; T )e
�N�

As we have seen, the only values ofN which would be observed are those that only deviate negligibly from< N >.
We can therefore replaceln� with the log of the largest term. Let

bN (V; T; �) = Q(N;V; T )e�N�

Then �
@ ln bN
@N

�
V;T;�

= 0

=

�
@ lnQ

@N

�
V;T

+ ��

LetN� be the value ofN satisfying the last equation, andbN� be the maximum term in�. Then

ln� =
PV

kBT
= ln bN� = lnQ(N�; V; T ) +

N��

kBT
or

N��� PV = A(N�; V; T ) = �kBT lnQ(N�; V; T ) (4.146)

Look at what eqn 4.146 says. It specifiesN� (which equals< N >) as a function ofV; T; �. But we could
also look at it as specifying� as a function of the independent variablesN�; V; T . In other words, application of the
maximum term procedure, which is legitimate because of the small fluctuations inN , causes the grand canonical
ensemble to degenerate into the canonical ensemble. Everything we know indicates that this is a general statement
between all valid ensembles: they all give the same thermodynamic results. Thus,for practical thermodynamic
purposes, there is no distinction between a canonical and grand canonical ensemble. We choose between them
simply on the basis of mathematical convenience.



Chapter 5

Application of Ensemble Theory: Mean Field
Theories

5.1 Introduction and Motivation

Equilibrium ensembles provide us with a powerful, general formalism for deriving thermodynamic properties from
molecular–level information. In practice, however,exact, analyticalsolution of this formalism is impossible for all
but the simplest microscopic models. We therefore must invoke approximations to arrive at closed–form solutions.
Soon we will show how to do this for a simple case of a low density gas. The approach follows closely from our
derivation of the virial for computing pressure. In fact, what we will show is how to derive thevirial equation of
statefor low density gases. It turns out that the virial expansion does not converge for higher density gases and
liquids, so that more clever techniques are required.

As an alternative, we could think about taking our equilibrium ensembles and solving for the properties of inter-
estnumerically. This would enable us to use a more detailed model without resorting to simplifying assumptions.
The second part of the course will focus on these methods. Before we do this, however, we should first ask the
question: Can we make much progress on calculating liquid state thermodynamics with analytical theories? The
answer is most definitely yes, but there is a major difficulty. We need to sum over a very large number of system
microstates (configurations). That is, we need to know what the configurational integral is

ZNV T =
X

all configs

exp[��V(config)]

This chapter will focus on various ways we can do this through judicious approximations.

5.2 Mean Field Approximations

One of the most common assumptions used in analytic theories is themean fieldapproximation. The basic idea is
to neglect correlations between different parts of the system at some level, and thus avoid the need to consider a
multitude of configurations. There are two common strategies.

1. Define a parameter (“order parameter”) that provides a collective description of the configuration (e.g. density,
magnetization, concentration). Derive an approximate expression for the Helmholtz or Gibbs energy in terms
of the order parameter. Then minimize this free energy to impose equilibrium.

2. Approximate the system of interacting particles by a system of noninteracting particles, subject to an external
field. The field represents the effects of other particles on a given particle (hence the term, “mean field”).
Derive the thermodynamics by imposing self–consistency. That is, the response that the mean field elicits
from a particle must be consistent with the average state of surrounding particles that shape its value.

65
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We will give a couple of examples, but first a word of caution. The term “mean field” is used very loosely to
describe a wide range of methods. This can result in tremendous confusion, and so you should use the term with
care. It is better to avoid use of the term altogether, and instead refer to the approximation by its name (Bragg–
Williams, Debye–H¨uckel, etc.) Having said this, you will notice that I have used the term for this section! I do this
mainly because other people will use the term, so you might as well know what it entails.

We will provide a few examples which demonstrate the use of “mean field” approximations. The approach in the
first of these methods is based on modeling the structure of the fluid as a lattice; we assume structural similarity with
crystalline solids. Although liquid molecules exhibit random motion, experimentally it is known that the molecules
generally spend most of their time trapped in cages created by the proximity of the other molecules. This suggests
that such a model, where molecules move locally about a particular site, is not as bad an approximation as it seems
at first glance.

5.3 Regular Solution Theory

We wish to construct a simple model which will help us understand, describe, and predict thermodynamic properties
of materials. We will use the statistical mechanical formalism derived earlier to link the models with thermodynam-
ics. TheRegular Solution model (J. Hildebrand) was developed to examine the phase behavior of binary metallic
alloys. It can also be applied to liquids!

Lattice Model:

1. Atoms are distributed on the sites of a lattice with coordination numberz (nearest neighbors).

2. Sites can be occupied by atoms of substanceA orB.

3. No multiple occupancy of sites, and no vacancies allowed.

4. Energy of the mixture made up only of pairwise, nearest neighbor interactions. These interaction energies are
designateduAA; uBB ; uAB for AA;BB; andAB interactions, respectively.

Nearest neighbors, z
in first coordination shell

Figure 5.1: Physical picture of a lattice used in Regular Solution Theory

Consider a binary mixture havingNA atoms ofA andNB atoms ofB (see Figure 5.1).

NA +NB = N

Mole fractions
XA = NA=N ; XB = NB=N
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NAA; NBB ; NAB; are the number of pairsAA;BB;AB associated with atoms that are nearest neighbors to one
another. Our objective is to derive the thermodynamics of mixing. For example, we would like to know what is
the phase diagram and activity coefficients. That is, we want to know what isgE(XA; T ), the excess molar Gibbs
energy.

Note that our lattice model isincompressible. We allow no volume change upon mixing.

�Vmix = 0

Thus, the thermodynamics will be pressure independent at givenXA andT :

aE � gE

The molar excess Helmholtz energy will equal the molar Gibbs energy.
We start by definingcounting relations. Each atomA generatesz pairs of theAA orAB type. Sum over allA

and we getzNA pairs distributed over 2NAA and 1NAB pairs:

zNA = 2NAA +NAB (5.1)

The factor 2 forNAA arises from the fact that each pairNAA is counted twice in the summation, once for eachA.
Similarly,

zNB = 2NBB +NAB (5.2)

As a check, add eqns 5.1 and 5.2:

1

2
z(NA +NB) = NAA +NBB +NAB (5.3)

Thus, the total number of pairs (1
2zN) is equal to the sum of all pairs. The potential energy of a given configu-

ration is given by
E = NAAuAA +NBBuBB +NABuAB (5.4)

ReplaceNAA andNBB with the expressions in eqns 5.1 and 5.2

E =

�
zNA �NAB

2

�
uAA +

�
zNB �NAB

2

�
uBB +NABuAB

E =
zNA

2
uAA +

zNB

2
uBB +NAB

�
uAB � 1

2
(uAA + uBB)

�
(5.5)

or

E = EA +EB +
1

z
NAB! (5.6)

Note thatEA � zNA

2 uAA is the total potential energy of a lattice of pureA atoms, andEB � zNB

2 uBB is the total
potential energy of a lattice of pureB atoms.

We have defined aninterchange energyas

! = z[uAB � 1=2(uAA + uBB)] (5.7)

The total energy change per exchanged atom is

! =
2zuAB � zuAA � zuBB

2
(5.8)
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+ +

Figure 5.2: Representation of the exchange of two unlike atoms, representing the interchange energy

Negative deviations from ideality mean! < 0. That is, unlike interactions aremore favorablethan like in-
teractions. On the other hand, positive deviations from ideality mean! > o. That is, unlike interactions areless
favorablethan like interactions.

Typically for systems acting through van der Waals forces, cross–terms are approximated by the Lorentz–
Berthelot combining rule

juAB j � (juAAjjuBB j)1=2

So,
! =

z

2
(juAAj1=2 � juBB j1=2)2

= v�
��

z

2v�
juAAj1=2 � z

2v�
juBB j1=2

��

= v�
"� jEAj

NAv�

�1=2
�
� jEB j
NBv�

�1=2#

= v�
"� jEAj

VA

�1=2
�
� jEB j
VB

�1=2#

or
! = v�(ÆA � ÆB)

2

wherev� is the volume associated with an atom;VA andVB are the volumes occupied by atomsA andB, respec-
tively, jEj=V is the cohesive energy density, andÆ is the Hildebrand solubility parameter.

We can write the partition function as

Q(NA; NB ; T ) =
X

all configs

exp[��Econfig] (5.9)

Q(NA; NB ; T ) =
X

all configs

exp[��(EA +EB +
NAB

z
!)]

Q =
X
NAB

g(NA; NB ; NAB) exp[��(EA +EB +
NAB

z
!)] (5.10)

whereg(NA; NB ; NAB) is the number of configurations containingNAB unlike pairs.
At this point, our formulation is exact. To proceed, we need to evaluate the partition function. We could attempt

to sum over the very many configurationsnumerically. That is, we could computationally do a simulation of the
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lattice model. We will discuss this method later. For now, we make a somewhat drastic assumption that will enable
us to develop an analytical solution. The approximation is an example of amean field approximation. We assume
that, at equilibrium and far from critical points,NAB for a macroscopic system will be strongly peaked about
< NAB >, the average value.

QMF =
X
NAB

g(NA; NB ; NAB) exp[��(EA +EB +
< NAB >

z
!)] (5.11)

Note that this assumptioneliminates fluctuationsin NAB. Now,
P

NAB
g(NA; NB ; NAB) equals the total number

of lattice configurations ofNA A molecules andNB B molecules on a lattice ofN sites

X
NAB

g(NA; NB ; NAB) =
N !

NA!NB !

thus

QMF =
N !

NA!NB !
exp[��(EA +EB +

< NAB >

z
!)] (5.12)

The question we must answer is: What is< NAB >???
To proceed, we invoke the Bragg–Williams approximation ofrandom mixing. This is another mean field ap-

proximation. “There is no short–ranged order apart from that which follows long–ranged order.” This gives

< NAB >= N�
AB � NAz

�
NB

N

�
(5.13)

Eqn 5.13 says that the average number ofAB nearest neighbor interaction pairs (indicative of short–ranged order)
equals that from a random mixture (denoted by the�). This equals the number ofA molecules times the number of
lattice sites around anAmolecule times the fraction of lattice sites occupied byB (indicative of long–ranged order).

The Bragg–Williams approximation ignores local composition effects.
In reality, for! < 0; < NAB >> N�

AB. For! > 0; < NAB >< N�
AB . Now we have

QMF =
N !

NA!NB !
exp[��(EA +EB +

NANB

N
!)] (5.14)

We can now derive the thermodynamics of the system from eqn 5.14.

A(NA; NB ; T ) = � 1

�
lnQMF

= �kBT [N lnN �N �NA lnNA +NA �NB lnNB +NB ]

+(EA +EB +
NANB

N
!)

Helmholtz free energy of mixing is given by

�Amix(NA; NB ; T ) =

A(NA; NB ; T )�AA(NA; T )�AB(NB ; T )

or
�Amix(NA; NB ; T ) = A(NA; NB ; T )�EA �EB

where the last two terms arise becauseA andB molecules are indistinguishable, so there are no entropic terms in
the pure materials. Divide byN to get the molar Helmholtz energy of mixing,�amix:

�amix(XA; T ) = RT (XA lnXA +XB lnXB) +Nav!XAXB
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T

XA0 1

one phase

two

phases

T c
= ω/

2k

Figure 5.3: regular Solution Theory phase diagram

= �aidmix + !0XAXB

Defining the excess free energy, we finally obtain

aE(XA; T ) = gE(XA; T ) = !0XAXB (5.15)

Let’s emphasize a few points. First, the excess Gibbs energy is purely enthalpic. That is,

hE(XA; T ) =
@(gE=T )

@(1=T )
= !0XAXB

thus

sE =
hE � gE

T
= 0

Physically, this means there is no deviation from a random organization of molecules allowed, which follows from
the assumptions of the model. Second, the solution is regular(hence the name of the theory):sE = 0, vE = 0. The
activity coefficients can be represented by the two–suffix Margules model

lnA =
!

kBT
X2
B

lnB =
!

kBT
X2
A

Thus the phase diagram for the case when (! > 0 will look qualitatively like that shown in Figure 5.3 The phase
diagram is symmetric with UCST at!=(kBT ) = 2

The activity coefficients at infinite dilution are given by

ln1B =
!

kBT�
@ lnB
@xB

�
XB!0

= � 2!

kBT

or for this model we have �
@ lnB
@xB

�
XB!0

= �2 ln1B = �BB

where�BB is the self–interaction coefficient. It is a measure of how the increase in the concentration ofB effects the
activity coefficient ofB. We can test the model by seeing how well this last expression holds up for real alloys (see
Lupis,Chemical Thermodynamics of Materials). The results are surprisingly good.
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5.4 Quasi–Chemical Approximation

Can we do better than the regular solution model? The Quasi–Chemical Approximation was introduced by Guggen-
heim 1 to provide a more realistic representation of the degeneracy factor,g. The random distribution of atoms in
the Regular Solution theory is termed thezeroth approximationby Guggenheim. Guggenheim termed his new esti-
mate ofg thefirst approximation. The method is commonly known as the Quasi–Chemical Approximation (QCA)
because it implies an equation which corresponds to a chemical reaction. The goal is totake into account local
composition effects.

5.4.1 QCA Assumptions

1. Again, atoms are assumed to reside on a lattice. As we mentioned before, this is questionable for liquids,
although far from critical points, the short–range order of liquids supports this assumption to some extent.

2. In calculating energy, only the chemical contribution is taken into account. Thus, the only source of excess
entropy is of a configurational nature. Since this represents a deviation from complete randomness, the sign
of excess entropy must always be negative. (This is contrary to experiment).

3. Only the influence of nearest neighbors is taken into account, and pairwise interactions are assumed.

4. AtomsA andB are of similar size and occupy the same kind of sites.

5.4.2 Outline of QCA Derivation

In the following, we sketch out an outline of the QCA approach. The goal is to develop a better expression forg
that doesn’t assume a random mixture ofA andB. Using the expression forg, we would then like to determine the
maximal value of the term

g exp[��(EA +EB +
NAB

z
!)]

and the corresponding value ofNAB Having done this, we can substitute the maximum term for the partition
function; again, this is the maximum term approximation, valid in the thermodynamic limit far from critical points.

To begin, we start with the exact partition function from Regular Solution theory:

Q =
X
NAB

g exp[��(EA +EB +
NAB

z
!)]

We now seek a better approximation for g. Instead of assuming a random distribution of atoms, we now assume a
random distribution ofpairsAA, AB, BA, andBB. This cuts off correlations at a higher level than the Regular
Solution model.

g1 =
(NAA +NBB +NAB)!

NAA! +NBB ! +
�
NAB

2

�
!
�
NAB

2

�
!

=
(1=2)z(NA +NB)!

NAA!NBB ![(NAB=2)!]2
(5.16)

The numerator in eqn 5.16 is the total number of pairs, while the denominator is the different types of pairs.
[(NAB=2)!]

2 results fromNAB ; NBA pairs, and the2 comes from need to avoid double counting. A completely
random distribution ofAA, AB, BA, andBB pairsoverestimatesthe degeneracy factor, because different pairs
cannot truly be distributed at random (see Figure 5.4). To account for this overestimation, we write

g = h(NA; NB)g1 (5.17)

1Guggenheim, E.;Mixtures, Oxford, 1952
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A B

BB

i i+1

i+2
i+3

(i,i+1) = AB     (i+1,i+2) = BB
(i+2,i+3) = BB     (i,i+3) is necessarily AB

Figure 5.4: Schematic of why pairs cannot be truly placed randomly on the lattice for the Quasi-Chemical Approx-
imation

whereh is a correction factor for the over counting. We assumeh is independent ofNAA, NAB , andNBB , but
dependent onNA andNB . The question now is: How do we findh? We knowg in the case of a random distribution

g� =
(NA +NB)!

NA!NB !
(5.18)

where the� signifies a random distribution of atoms. Eqn 5.17 should still hold in the case of a random distribution
of atoms, so we write

g� = h
(1=2)z(NA +NB)!

N�
AA!N

�
BB ![(N

�
AB=2)!]

2
(5.19)

We then immediately solve forh:

h =
(NA +NB)!

NA!NB !

N�
AA!N

�
BB ![(N

�
AB=2)!]

2

(1=2)z(NA +NB)!
(5.20)

But recall that

N�
AB

zNANB

N

and that
zNA = 2NAA +NAB

N�
AA = (1=2)zNA � (1=2)N�

AB

Similarly,
N�
BB = (1=2)zNB � (1=2)N�

AB

Thus we get the full expression forg from

g =
(NA +NB)!

NA!NB !

(1=2zNA � 1=2N�
AB)!(1=2zNB � 1=2N�

AB)![(N
�
AB=2)!]

2

(1=2zNA � 1=2NAB)!(1=2zNB � 1=2NAB)![(NAB=2)!]2
(5.21)

Note thatg is now expressed solely in terms of constants andNAB. To proceed, we search for the value
< NAB > that maximizes the partition function term

g exp[��(EA +EB +
NAB

z
!)]
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and for the associated values of< NAA > and< NBB >. The result, after some mathematical manipulation, is

(1=2 < NAB >)2

< NAA >< NBB >
= exp

�
�2�!

z

�
(5.22)

Look at the form of eqn 5.22: It can be viewed as the condition for chemical equilibrium for the reaction

AA+BB *) AB +BA

K = e��G
o=RT

where “�Go” is given by

�Go = NAvo(2! � uAA � uBB) =
2

z
!NAvo

This is the origin of the name “Quasi–Chemical” Approximation.
One can derive an expression for the mixture thermodynamics

GE =

�
N�
AB!

z

�
+

RT

 
N�
AA ln

< NAA >

N�
AA

+N�
BB ln

< NBB >

N�
BB

+N�
AB ln

< NAB >

N�
AB

!
(5.23)

where the first term is the Regular Solution Theory result, and the second term is a “correction” factor that accounts
for local composition effects. It turns out that a closed, analytical form forGE in terms ofXB is not obtainable.
However, we can write a series expansion to get an approximate expression forGE andlnA in terms ofXB

2.

GE=RT =
1

2
zXB ln(1 + �)� 1

2
z�X2

B+

1

2
z�2X3

B � z�2(
1

4
+

5

3
�)X4

B +O(X5
B) (5.24)

lnA =
1

2
z�X2

B � z�2X3
B +

3

4
z�2(1 +

20

3
�)X4

B +O(X5
B) (5.25)

where
� = e2�!=z � 1

How well does the model work? For a nearly ideal solution, QCA and RST give identical results. In the RST,
z and! are grouped to form a single parameter that is typically adjusted to fit experimental data.z ranges for most
liquids from 8 to 12. In the QCA, the parametersz and! are specified separately; the additional parameter helps fit a
wider range of data! (This is not surprising: if you want a better model, one way to do it is to add more parameters!)

5.5 van der Waals Equation of State

We will now demonstrate another “mean field” theory that most of you are familiar with: the van der Waals equation
of state. We will follow closely the original derivation given by van der Waals3.

We start with the thermodynamic relation

P = �
�
@A

@V

�
T;N

= kBT

�
@ lnZ

@V

�
T;N

(5.26)

2See Lupis and Elliot,Acta Met., 14, 1019(1966)
3Johannes Diderik van der Waals; PhD thesis, Leiden, 1873. Nobel Prize, 1910.
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where
Z(N;V; T ) =

Z
exp[��V(r1; � � � ; rN )]dr1 � � � rN (5.27)

Now, make the pairwise additivity approximation for potentials

V(r1; � � � ; rN ) =
NX
i=1

NX
j=i+1

Vpair(jri � rj j) �
X
i<j

Vpair(rij) (5.28)

At this point, van der Waals assumed something about intermolecular interactions that turned out to be extremely
insightful. Namely, he assumed that pair potentials consist of a harshly repulsive and a smooth attractive part
(see Figure 5.5). He then assumed thatfluid structure governed mainly by harsh repulsive forces. This is a good
approximation! The form of the potential considered for the derivation of van der Waals equation of state has the

σ

V

r

V

V

rep

att

Figure 5.5: Representation of the type of potential envisioned by van der Waals

following form

Vpair =
(
Vreppair(r) =1; if r � �
Vattpair(r); r > �.

(5.29)

which is shown schematically in Figure 5.5. A physical picture of how molecules interact in this way is shown in
Figure 5.6. The “excluded volume” is shown as the dashed line; it represents the region inaccessible to the centers
of other molecules, and is a sphere of radius� centered on the center of each molecule.

We now write for the configurational integral

Z(N;V; T ) =

Z
exp[��Vrep(r1; � � � ; rN )] exp[��Vatt(r1; � � � ; rN )]dr1 � � � rN (5.30)

where we have used shorthand notation forVrep andVatt; these are still given by pairwise sums as in eqn 5.28.
We need to eliminate the need to sum over all pairs and all configurations in eqn 5.30. Here, we make an approxi-
mation that can again be termed amean field approximation. We substitute for the configurational dependent term
Vatt(r1; � � � ; rN ) an average term

Vatt(r1; � � � ; rN ) = VattMF =
1

2

NX
i=1

VattMF;i (5.31)

where the1=2 corrects for double counting of pairwise attractive interactions, andVattMF;i is the attractive mean
potential energy felt by moleculei due to its interactions with all other molecules in the system.
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σ

σ

hard sphere (collision)

diameter

"excluded volume":

Figure 5.6: Schematic of a hard sphere with excluded volume

σ

i

ρ = density of

molecular centers

Figure 5.7: Representation of a mean field used in the van der Waals equation. The fluctuating environment is
“smeared out”, as represented by the gray background

How does one go about calculatingVattMF;i? We consider centers of all other molecules as constituting a
“smeared” background of uniform density� at all distances� � r < 1. This ignoresany two body correla-
tions at distancesr � �. Physically, we can envision the system as looking something like Figure 5.7.

Using this approximation, we can now write

VattMF;i =

Z 1

�
4�r2 dr�Vattpair(r) (5.32)

where4�r2 dr� is the number of molecules in a spherical shell betweenr anddr from the center of moleculei.
From this, we can write a mean field expression for the configurational integral

Z(N;V; T ) = exp[��N
2

Z 1

�
4�r2dr�Vattpair(r)]

Z
exp[��Vrep(r1; � � � ; rN )]dr1 � � � rN (5.33)

or
Z(N;V; T ) = Zatt(N;V; T ) + Zrep(N;V ) (5.34)

where

Zatt(N;V; T ) = exp

"
��N

2

V
2�

Z 1

�
Vattpair(r)r

2dr

#
(5.35)
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σ

σ σ

σ

1

2 3

4

V

Figure 5.8: Shaded region is the volume accessible for atom 5 to be placed in the volume V

and

Zrtep(N;V ) =

Z
exp[��Vrep(r1; � � � ; rN )]dr1 � � � rN (5.36)

But notice in eqn 5.36 that the integrand will always be either zero (for overlapping configurations) or 1 (for non–
overlapping configurations. Thus we may write

Zrep(N;V ) =

Z
non�overlap

dr1 � � � drN (5.37)

where the integral over non-overlap means we integrate over all non-overlapping configurations ofN hard spheres
in volumeV . There is no temperature dependence of this integral.

We are now left with a major problem. How do we evaluate the integral in eqn 5.37? We can make an approxi-
mation forZrep(N;V ). We assume thatZrep can be written as a product of free volumes, available for the addition
of the 1st, 2nd, ..., Nth particle:

Zrep(N;V ) =

Z
dr1

R
NO dr1dr2R

dr1

R
NO dr1dr2dr3R
NO dr1dr2

� � �
� � �

R
NO dr1dr2 � � � drNR

NO dr1dr2 � � � drN�1
(5.38)

where the integrals
R
NO represent integrations in which there is no overlap of molecules. Eqn 5.38 can be more

compactly written as

Zrep(N;V ) = V
(1)
f � V

(2)
f � V

(3)
f � � � � V (N)

f =
NY
i=1

V
(i)
f (5.39)

whereV (i)
f is the volume available for adding the center of theith hard sphere into a non–overlapping configuration

of (i � 1) hard spheres in a total volumeV so that a non–overlapping configuration ofi hard spheres is created,
averaged over all possible non–overlapping configurations of(i� 1) hard spheres.

To demonstrate this idea, consider Figure 5.8.V
(5)
f is the volume of the shaded region (insideV , outside all

excluded volumes) averaged over all non–overlapping configurations of 1,2,3,4.

Now, let Ve = 4
3��

3 be the excluded volume of one sphere. We can determine the exact values ofV
(1)
f and

V
(2)
f :

V
(1)
f = V

V
(2)
f = V � Ve
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van der Waals made the following approximation:

V
(i)
f = V � (i� 1)Ve (5.40)

The approximation in eqn 5.40 obviously underestimatesV
(i)
f ; it fails to recognize that the excluded volume of

spheres 1,2,...,i-1 may actuallyoverlap. This can be easily seen in Figure 5.9, where for this example the volume

V

σ

1

σ

2

Figure 5.9: Representation of why the van der Waals estimate of accessible volume for atom i is too small. Atoms
can have overlap of excluded volume regions if densities are high enough

available to the third particle is greater thanV � 2Ve. This approximation also ignores three–body and higher
correlations between particles. Despite the limitations, the approximation is a good one at low to moderate densities,
where there are few overlaps. This condition can be quantified as

NVe � V (5.41)

or equivalently,
�Ve � 1

Assuming that the condition in eqn 5.41 is met in our analysis, we then proceed by combining eqns 5.39 and
5.41 to get

Zrep(N;V ) =
NY
i=1

[V � (i� 1)Ve] = V N
NY
i=1

[1� (i� 1)
Ve
V
] (5.42)

or
Zrep(N;V )

V N
= [1� Ve

V
][1� 2

Ve
V
] � � � [1� (N � 1)

Ve
V
] (5.43)

Using our approximation in eqn 5.41, we can expand the product in the last equation and retain only the first
order term inVe=V :

Zrep(N;V )

V N
� 1� [

Ve
V

+ 2
Ve
V

+ � � �+ (N � 1)
Ve
V
]

= 1� Ve
V
[1 + 2 + � � �+ (N � 1)] = 1� Ve

V

(N � 1)N

2

� 1� Ve
V

N2

2
= 1� NVe

2V
N �

�
1� NVe

2V

�N
(5.44)

The last substitution is again justified by eqn 5.41.
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Our final result forZrep an now be written

Zrep(N;V ) = V N
�
1� NVe

2V

�N
= V N

�
1� N

V

2

3
��3

�N
(5.45)

Let us now introduce the following notation.

a = �2�N2
Avo

Z 1

�
Vattpair(r)r

2dr (5.46)

b = NAvo
2

3
��3 = NAvo4VHS = NAvo

Ve
2

(5.47)

whereVHS is the molecular hard sphere volume,NAvo is Avagadro’s number andVe is the molecular excluded
volume. Finally, we can write for the configurational integral

Z(N;V; T ) = exp

 
+�a

N2

V N2
Avo

!
V N

�
1� Nb

V Navo

�N
(5.48)

or

lnZ(N;V; T ) =
1

kBT
a

N2

V Navo
+N lnV +N ln

�
1� Nb

V NAvo

�
(5.49)

Recall that when we started the derivation, we related the pressure tolnZ:

P = kBT

�
@ lnZ

@V

�
T;N

so

P = kBT

 
N

V
+

N2b

V 2NAvo

1

(1� Nb
V NAvo

)
� 1

kBT
a

N2

V 2N2
Avo

!
(5.50)

Recognizing that the molar volume of the fluid is justv = V NAvo

N , we obtain from our last expression

P = RT

 
1

v
+

b

v2
1

(1� b
v )

!
� a

v2

=
RT

v
� 1

(1� b
v )
� a

v2
=

RT

v � b
� a

v2

or finally

(P +
1

v2
) (v � b) = RT (5.51)

This is the result we sought: equation 5.51 is the van der Waals equation of state!
A few comments:

� The van der Waals equation of state is inexact, and we’ve seen which approximations have made it inexact.
Nevertheless, the van der Waals equation unified all experimental knowledge of fluid behavior at the time of
its development by

– accounting for deviations from the ideal gas law

– predicting gas–liquid equilibrium and the existence of a critical point

– providing support for the molecular hypothesis
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� A major contribution of van der Waals was introducing the concepts ofshort–range repulsiveandlong–range
attractiveforces between molecules. Also, the idea that thestructureof a fluid is determined to a large extent
by the repulsive forces was very important. In a sense, van der Waals introduced the first perturbation theory,
using the hard sphere fluid as a reference fluid.

� Much more accurate equations of state exist today for hard sphere fluids than the one obtained from van der
Waals’s equation (i.e.a = 0). However, this equation forms the basis of most subsequent cubic equations of
state. Clearly, van der Waals wrote a very nice PhD thesis!

5.6 Solids: Einstein Model

We can apply lattice models to solids as well as liquids. In theEinstein modelof a solid, a crystal is considered
to consist of a lattice of regularly spaced sites. Each atom in the crystal is confined to a “cage” centered on the
lattice site. This confinement is due to repulsive forces between neighbors, which are also kept at their lattice sites.
Physically, the crystal can be envisioned as consisting of an array of atoms, all connected to nearest neighbors with
stiff springs. We can envision this as is shown in Figure 5.10.

Figure 5.10: Schematic of the Einstein model for a solid. Atoms are fixed about lattice points with harmonic
potentials.

Other assumptions of the model include:

1. Vibrations of atoms about their lattice points are independent of neighboring atoms.

2. Potential field for an atom is found by fixing all other atoms to their lattice sites. Thus, each atom feels a
mean fieldpotential rather than a fluctuating potential. (This is also a “mean field” model!)

3. Vibrations are small.

The mean field potential looks like that shown in Figure 5.11
The resulting partition function can be determined analytically, and is (see Rowley for derivation details):

Q =
e�

N�U0
2 e�

3N�
2T

(1� e�
�

T )3N
(5.52)

whereU0 is the potential between neighboring atoms and� is a characteristic vibrational temperature,� = h�
kB

.
We already know that, givenQ, we can calculate all the thermodynamic quantities we wish (A, U , S). Importantly,
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U(r)

Lattice

site

Figure 5.11: Example of what the potential energy of an atom looks like as a function of lateral position in the
Einstein model. Neighboring atoms are fixed about their respective lattice sites.

knowledge of the partition function allows us to estimateCv

Cv = 3NkB

�
�

T

�2 e�=T�
e�=T � 1

�2 (5.53)

Eqn 5.53 gives good results in the limit of highT , but Cv approaches zero too quickly in the limit ofT ! 0.
The weakness of the Einstein model stems from the mean field treatment we have assumed. In reality, we need to
treat coupling of the modes of the solid. There are other more complicated models which attempt to take this into
account, but we will not go into the details of these models.

5.7 Adsorption: Lattice Gas Models

Adsorption of gas molecules onto fixed sites on a surface can also be modeled using a lattice approach. The process
of adsorption can be envisioned as shown in Figure 5.12. In this section, we will derive the BET adsorption isotherm

Gas

Solid Surface

Figure 5.12: Schematic of an atom adsorbing from the gas phase onto well–defined surface sites.

using the methods we’ve developed. We will then show how the Langmuir isotherm is a special case of this model.
The BET isotherm is named after the authors of a paper describing the isotherm. See: Brunauer, S.; Emmett, P.
H.; Teller, E.J. Am. Chem. Soc., 60, 309, (1938). The Teller that forms the “T” in BET is the very same Edward
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Teller who advocated the development of the hydrogen bomb. We will run across his name again when discussing
Metropolis Monte Carlo...

The system we are interested in consists of gas molecules adsorbing on a surface. We want to account for the
fact thatmultiple layerscan be formed. By definition, an isotherm is simply an expression for the adsorbed amount
as a function of ambient gas pressure at a given temperature. Before going it to the derivation, we should point out
the usefulness of the BET isotherm model. All practically important adsorbents and heterogeneous catalysts are
porous solids. A key parameter in characterizing them is thespecific surface area. The surface areas of practical
materials are huge (several hundredm2=g is common). How does one measure this?

If the physical adsorption capacity of a material were limited to a closed–packed monolayer, determination
of the saturation limit from an experimental isotherm with a molecule of known size would provide a simple,
straightforward way of estimating the specific surface area. The problem is that chemisorption sites are widely
spaced in most materials, so the saturation limit bears little relation to the surface area. Also, physical adsorption
generally involvesmultilayer adsorption. The formation of the second and subsequent layers begins at pressures
well below that required for a complete monolayer; it is not obvious how one extracts surface area from an isotherm.

Brunauer, Emmett, and Teller developed a simple model for multilayer adsorption that can be used to extract
monolayer capacity and hence surface areas. Thus, we see one of the important roles of theory: it helps us interpret
and make sense of experimental data.

The BET isotherm has the following form

c

cm
=

b
�
P
Ps

�
�
1� P

Ps

��
1� P

Ps
+ b PPs

� (5.54)

for P < PS . The symbols have the following meanings:

� c: adsorbed amount per unit mass sorbent, mol/g.

� cm: adsorbed amount that would correspond to full coverage of the surface by amonolayer.

� P : gas phase pressure.

� Ps: vapor pressure of saturated liquid sorbate at the prevailing temperature.

In general, the isotherm looks like that shown in Figure 5.13. Isotherms are assigned to different “types” accord-

PsP

C

Form of BET isotherm

Figure 5.13: Typical shape (type II) of the BET isotherm.

ing to their shape. The BET isotherm is a type II in the Brunauer classification. Measurements are typically per-
formed using a nonpolar gas (N2, Ar) at liquid nitrogen temperatures, over a range of pressures 0.005< P

Ps
< 0.35.
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Experimental results are plotted in the form P
c(Ps�P )

vs P
Ps

. According to the BET isotherm, the plot should be
linear.

P

c(Ps � P )
=

1

cmb

�
(b� 1)

�
P

Ps

�
+ 1

�

We obtaincm andb from the slope and intercept. By knowing the size of the adsorbate (i.e. surface area occupied
by it), we can translatecm (mol sorbate / g sorbent) into a specific surface area (cm2 internal + external surface / g
sorbent). Absolute specific surface areas can be determined to within 20% by this method. The BET method is a
rather standard analytical technique these days.

What assumption go into the model?

1. The surface consists of an array ofB identical adsorption sites.

2. Gas molecules can adsorb directly on the surface to form the first layer. Gas molecules can also adsorb on top
of already adsorbed molecules, to form layers 2,� � �, n. For now, we assume up ton layers can be formed.

3. There are no lateral interaction between molecules in layer 1, apart from the requirement that no two molecules
can occupy the same sorption site. In the statistical mechanical formulation, all molecules in the first layer
can be modeled as independent entities, each with its own partition functionq1.

4. Molecules in layers 2,: : :,n form a phase which is similar to a saturated liquid at temperatureT . They also can
be treated in the formulation as independent entities, each with its own partition functionqL. The quantityqL
is the same for all layers 2,� � �,n.

5. The pressure is sufficiently low that the gas phase can be treated as ideal. If the sorbate molecules have
internal structure, they are characterized by an internal partition functionqintG .

Physically, our adsorbing fluid looks like that shown in Figure 5.14.

Gas (µ,Τ)

n

5

4

3

2

1

L
ay

er

Solid (B sites)

Figure 5.14: Representation of fluid layers in the BET model.

To derive the isotherm, we start from the grand canonical ensemble. It turns out that this ensemble is most
convenient for sorption applications, because it naturally allows the number of molecules in a system to fluctuate
but fixes chemical potential. This is analogous to a sorption experiment, where pressure is fixed (i.e. chemical
potential) and the resulting number of molecules (i.e. loading) is recorded. Let the gas chemical potential be�.
Given this, for a gas that can have internal structure, we can write

� = kBT ln

 
�G�

3

qintG

!
= kBT ln

 
P�3

kBTqintG

!
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The inclusion ofP comes from the ideal gas law, and allows us to connect the chemical potential with the gas
pressure. By virtue of phase equilibrium, the chemical potential must be� throughout theadsorbedphase.

Let us now focus on the section of the surface containingB sites. The adsorbed phase is characterized by a
given spatial extent (B;n), chemical potential,�, and temperatureT . We can write a partition function for the first
adsorbed layer, which we callq1. Three contributions go intoq1:

1. Potential energy of adsorptive (surface-molecule) interaction.

2. For molecules with internal structure, contributions from vibrational motion of bonds and bond angles, plus
torsional and rotational motion. Note that these same basic modes will be active in the gas phase and go
into qintG . However,qintG 6= q1, since the values of these contributions will in general be quite different in the
adsorbed and gas phases.

3. Contributions from center of mass vibration around equilibrium positions of sorption; that is, uninhibited
translation along the surface is no longer possible.

For simplicity, let’s consider in the following a spherical (i.e. structureless) molecule kept to a site by a solid–
molecule potential,Vs(r), as shown in Figure 5.15. The equilibrium position of the sorbate is(x0; y0; z0); the

vibrations 

about equil.

position

Equilibrium position

(xo,yo,zo) at minimum

potential, ϑ s

Figure 5.15: Molecules are assumed to be localized around a sorption site (x0; y0; z0), with small local vibrations.

sorption potential about this point is well approximated by

Vs = Vs;0 +
�
@Vs
@r

�
r0

� (r� r0) +
1

2

 
@2Vs
@x2

!
r0

(x� x0)
2+

1

2

 
@2Vs
@y2

!
r0

(y � y0)
2 +

1

2

 
@2Vs
@z2

!
r0

(z � z0)
2

The second term on the right is zero (potential is a minimum atr0). Given this, we can write a Hamiltonian that
consists of a potential energyVs;0 < 0, plus three independent harmonic oscillator Hamiltonians.

Recall from quantum mechanics that the energy levels of a one–dimensional harmonic oscillator are non–
degenerate and given by

�n = (n+
1

2
)h�; n = 0; 1; 2; : : :

where� is the classical frequency. Then

qho =
1X
n=0

e
� �n
kBT = e

� h�
2kBT

1X
n=0

(e
� h�
kBT )n
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=
e
� h�
2kBT

1� e
� h�
kBT

=
e

h�
2kBT

e
� h�
kBT � 1

=
e�

�

2T

1� e�
�

T

For this problem, the three frequencies of the independent harmonic oscillators can be written in a slightly different
form as

!x =

s
1

m

�
@2Vs
@x2

�
r0

!y =

s
1

m

�
@2Vs
@y2

�
r0

!z =

s
1

m

�
@2Vs
@z2

�
r0

Thus, we may write the partition function of a molecule sorbed on layer 1 as

q1 = exp(��Vs;0) exp(���h!x=2)
1� exp(���h!x) �

exp(���h!y=2)
1� exp(���h!y) �

exp(���h!z=2)
1� exp(���h!z) (5.55)

Note that if vibrations are small enough compared to(kBT=�h), then in the classical limit

q1 = exp(��Vs;0) �
�
kBT

�h

�3
� 1

!x!y!z

Similarly, we can write a partition function,qL, that reflects the local environment in one of the adsorbed layers
sorbed on top of the first layer.

To proceed, we now consider the grand partition function. We must define some counting relations:

� Let there beN1,N2, � � �,Nn molecules on the 1st, 2nd,� � �, nth layers.

� The number of molecules on a layer willfluctuatein response to a fixed chemical potential,�.

� A molecule must sit on either a surface site,B, or another molecule. Thus

0 � Nn � Nn�1 � � � � � N2 � N1 � B

We now write the grand partition function

�(�;B; n; T ) =
BX

N1=0

N1X
N2=0

� � �
Nn�1X
Nn=0�

B!

(B �N1)!N1!

N1!

(N1 �N2)!N2!
� � � Nn�1!

(Nn�1 �Nn)!Nn!

�
�

�
qN1

1 (qL)
N2+���+Nn exp[(N1 +N2 + � � �+Nn)�]

�
(5.56)

In eqn 5.56, the first term represents the number of ways of arrangingN1 non–interacting molecules on a lattice of
B sites, times the number of ways of arrangingN2 non–interacting molecules on top ofN1 molecules, etc. The
second term is made up ofN1 individual partition functions for molecules in the first layer (q1) times the individual
partition functions for the molecules in subsequent layers 2 throughn times the chemical potential term.
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Despite the complicated appearance,�(�;B; n; T ) can be calculated analytically! DefineqL exp(��) = x,
q1
qL

= �. Then

�(�;B;m; T ) =
BX

N1=0

N1X
N2 0

� � �
Nn�1X
Nn=0

�
B!

(B �N1)!N1!

N1!

(N1 �N2)!N2!
� � � Nn�1

(Nn�1 �N)!Nn!

�
�[(�x)N1(x)N2+���+Nn ]

(5.57)
Do the inner summation first

Nn�1X
Nn=0

Nn�1!

(Nn�1 �Nn)!Nn!
xNn = (1 + x)Nn�1

where the last expression is just the binomial theorem.
Similarly, we can do summations over theNn�1 term all the way throughN2. Having done this, we are left with

the final summation

�(�;B; n; T ) =
BX

N1=0

B!

(B �N1)!N1!
(�x)N1(1 + x+ x2 + � � �+ xn�1)N1

We do this last sum to find

�(�;B; n; T ) =
h
1 + �x(1 + x+ � � �+ xn�1)

iB
or

�(�;B; n; T ) =

�
1 + �x

�
1� xn

1� x

��B
(5.58)

Eqn 5.58 enables us to compute the form of the BET isotherm in terms ofn, x, and�. In particular, we can
compute the average number of adsorbed molecules at equilibrium

< N >�< N1 +N2 + � � �+Nn >= kBT

�
@ ln�

@�

�
B;n;T

< N >=
1

�

 
@ ln�
1
�
@x
x

!
B;n;T

= x

�
@ ln�

@x

�
B;n;T

or

< N >= xB

�
1 + �x

�
1� xn

1� x

���1
�

�
nxn+1 � (n+ 1)xn + 1

(1� x)2

Which can be simplified to yield

< N >

B
=

�x
�
1� (n+ 1)xn + nxn+1

�
(1� x) [1� x+ �x� �xn+1]

(5.59)

Eqn 5.59 is the equation for an adsorption isotherm! We must now use some physical insight to identify the
parameters in this equation. By definition,

< N >

B
=

c

cm

In other words,< N > =B is equal to the amount adsorbed divided by the amount equivalent to a monolayer. What
doesx = qL exp(��) represent physically?
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Consider the average number of molecules in layer 1 (< N1 >). We can calculate this quantity from the form
of �

< N1 >= � � 1
�

�
@ ln�

@�

�
x;B

Now if we use eqn 5.58, we get
< N1 >

B
=

�x(1� xn)

1� x+ �x� �xn+1

Combining this equation with eqn 5.59, we see that

< N >

< N1 >
=

1� (n+ 1)xn + nxn+1

(1� x)(1 � xn)

Now, consider what happens to our model system as the gas phase pressure approaches the saturation pressure
(P ! Ps). In this limit, all n layers will be filled with saturated liquid. Thus

lim
P!Ps

< N >

< N1 >
= n

From the previous expression, we can write this as

1� (n+ 1)xn + nxn+1

(1� x)(1� xn)
= n

valid forP ! Ps. Expanding

1� (n+ 1)xn + nxn+1 = n(1� x� xn + xn+1)

1� xn = n(1� x)! (1 � x)[1 + x+ � � �+ xn�1 � n] = 0

The only real solution to this last equation isx = 1. We must therefore conclude that asP ! Ps, x! 1.

Now, recall thatx = qL exp(��) and� = kBT ln

�
P�3

kBTqintG

�
Thus,

x = qL
P�3

kBTqintG

(5.60)

In the limit of P ! Ps, we see

1 = qL
Ps�

3

kBTqintG

(5.61)

or that

qL =
kBTq

int
G

Ps�3
(5.62)

Eqn 5.62 has given us a concrete meaning for the partition functionqL. We now combine eqn 5.60 with the limiting
form, eqn 5.62, to get

x =
P

Ps
< 1 (5.63)

Now we use eqn 5.63, along with the fact that<N>
B = c

cm
to re-write the form of our isotherm

c

cm
=
�
�
P
Ps

� �
1� (n+ 1)

�
P
Ps

�n
+ n

�
P
Ps

�n+1
�

�
1� P

Ps

� �
1� P

Ps
+ � P

Ps
� �

�
P
Ps

�n+1
� (5.64)
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where we have made use of the fact that

� =
q1Ps�

3

kBTq
int
G

Eqn 5.64 is the general form of the BET isotherm for a limited number of adsorbed layers,n. If we letn!1,
we obtain the simpler equation

c

cm

b(P=Ps)

[1� (P=Ps)][1� (P=Ps) + b(P=Ps)]
(5.65)

where

b � � =
q1Ps�

3

kBTqintG

Eqn 5.65 is the BET isotherm equation we gave at the start of this section!!! Besides deriving the form of the
equation, we have found a molecular–level interpretation for the parameterb is the BET isotherm. Recall that

q1 = exp(��Vs;0) �
�
kBT

�h

�3
� 1

!x!y!z

We see immediately that we expectb to depend on temperature. Furthermore, for structureless (spherical) sorbates
that have no internal modes,b is governed by the surface–sorbate energetics and by the mass of the sorbate. For
sorbates with internal degrees of freedom, perturbations in these degrees of freedom will affectb as well.

Let us see what happens to eqn 5.64 in the limit ofn = 1; that is, let’s only allow a single layer to adsorb on the
surface. Then, �

c

cm

�
n=1

=
b(P=Ps)

1 + b(P=Ps)
(5.66)

Eqn 5.66 is the Langmuir isotherm for monolayer adsorption! Thus, the Langmuir isotherm is merely a specific
case of the more general BET isotherm.

The Langmuir and BET isotherms can also be derived (and usually are derived) using kinetic arguments. How-
ever, we now see how we can assign molecular–level meaning to the parameters, and understand the behavior and
trends of the isotherms. We can also attempt to calculate the isotherms from first principles (if we know something
about molecular-surface interactions).

In reality, variations are commonly seen from the BET and Langmuir isotherms, mostly due to the fact that
adsorption sites are not all equivalent, and sorbatesdo interact. Various other isotherm models attempt to account
for this. For example, the Tempkin isotherm has three constants

c

cm
= �1 ln(�2KPA)

where the constants�1 and�2 correspond to allowing the enthalpy of adsorption to vary linearly with pressure, and
PA is the partial pressure of speciesA. Similarly, the Freundlich isotherm corresponds to a logarithmic change in
adsorption enthalpy with pressure

c

cm
= �1P

1=�2
A

5.8 Polymer Chains

Polymer physics is a rich field for statistical mechanics and molecular simulation. The literature is very large;
excellent introductory texts are:Statistical Mechanics of Chain Molecules, P. J. Flory;Scaling Concepts in Polymer
Physics, P.-G. de Dennes;The Theory of Polymer Dynamics, M. Doi and S. F. Edwards. We won’t have time to
cover many topics in the statistical physics of polymeric systems. This is a very rich and rapidly evolving field. The
best we can do here is to introduce a simple model to give a flavor of what can be done.
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The type of information that one can obtain from simple theories is somewhat limited; polymer chains are
complicated and the interactions between chains (and within chains) can be strong. Theconnectivityof the chains
means that correlations between parts of a chain are important. (This is also what gives polymers their useful
properties!).

Molecular simulations of polymers is a rapidly expanding field, because analytic theories are somewhat lacking.
Despite the shortcomings, we can learn something about the behavior of chain molecules from some very simple
models.

One thing that would be interesting for us to examine is the length of a polymer chain as a function of the
number of mers (where a “mer” is a bead or “monomer” unit). We will introduce a mean field treatment to try to
answer this question.

5.8.1 Mean Field Polymer Formulation

Consider an idealized polymer chain havingM monomer units. TheM mers are linked to form a single chain.
For example, we could have a very simple chain representative of polyethylene that looked like that shown in
Figure 5.16. Notice that the chain is in an all–transconformation. This is the most extended conformation available

(M-1)Θ/2)L (max) = d sin(

θ = 109

d=1.52

Figure 5.16: Schematic of an all–trans polymer chain. The end–to–end vector is at a maximum length.

to a chain (and it is not linear). We will designate the longest possible chain length (with fixed bond angles and
lengths) asLmax. Chains can rotate about dihedral angles, so conformations will in general be shorter thanLmax,
as shown in Figure 5.17. We wish to address the fundamental question: GivenM for a polymer, what is< L >?

L

Figure 5.17: An actual chain will in general have a shorter end–to–end length vector.
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The possible lengths of the chain are
0 � L � Lmax

Our model of the chain will befreely jointed; that is, dihedral angles may take on any value, and all conformations
are equally likely, since we do not allow segments to interact with one another. This is a commonly used (and highly
unrealistic!) model of a polymer; despite the limitations of the model, we will be able to understand some of the
behavior actually observed.

Notice that our assumption allows us to treat the segments of the chain as independent subunits, in line with
our earlier models4. We also assume that the chain is long (i.e.M is big enough that we can treat the system in
a statistical thermodynamic fashion). Given these assumptions, the polymer length,L, is simply the sum of the
bond length vectorsprojected ontothe end–to–end vector of the chain (designated asL. The method for projecting
these lengths is illustrated in Figure 5.18 In this figure, we see a 2-dimensional projection of a chain with uniform

L

d

ddd

d

dd

Figure 5.18: Method of projecting segments of the chain onto the end–to–end vector to arrive at the total end–to–end
length.

segment lengths being projected onto the end–to–end vectorL. The projected segmenti has a length̀ i, so that the
total end-to-end length is

L =
MX
i=1

`i

Now we attempt to add some realism to our model. In reality, individual mers exert intramolecular forces,
which give rise to “steric” constraints. Basically, a real chain is not free to take on any shape it desires. The steric
interactions serve to extend the chain into a longer length than would arise with a completely freely jointed chain.
We model these interactions in a “mean field” sense, by considering a single end–to–end force,� , which pulls the
chain along the end–to–end vector.� mimics the very many intramolecular interactions present in a real chain, and
“stretches” or freely jointed chain. Given the external field� , we may define the following partition function

Qmf (�;N; T ) =
X
`

Qfj(L;M; T )e��` (5.67)

whereQmf is our mean field partition function, andQfj is the partition function for the freely–jointed chain. We
see that the Gibbs free energy may be written

dG = �SdT � Ld� + �dM

G = �kBT lnQmf (�;M; T )

4We are going to have another “mean field” model. See the danger of just saying “mean field”?
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(Compare these expressions for those obtained in the(N;P; T ) ensemble).
We now ask the question, what isQfj for a given chain lengthL? Each segment can exist ini = 1; 2; � � � ; n

orientations. Since each segment is independent, there is a partition functionji associated with each orientation.
Also, we know that each segment orientation has a length`i. Qfj is just the number of ways we can arrange the
segments of our freely jointed chain times the individual partition function for each segment

Qfj(L;M; T ) =
X
Mi

M !
nY
i=1

jMi
i

Mi!
(5.68)

Substituting eqn 5.68 into eqn 5.67, we obtain an expression for our mean field partition function

Qmf (�;M; T ) =
X
Mi

M !
nY
i=1

(jie
��`i)Mi

Mi!
(5.69)

As we have seen before, this partition function can be determined by summing the expression using the multinomial
theorem. When this is done, the result is

Qmf (�;M; T ) =

 
nX
i=1

jie
��`i

!M
= qMmf (5.70)

whereqmf is the partition function of an individual segment of the chain. Let us examine the physical meaning of
these terms. Clearly,ji is proportional to the probability of a length̀i being observed when there is no force on the
chain(� = 0). When there is a force,jie��`i is proportional to this probability.

We now set out to determine average properties from our partition function. The average end–to–end length is
by definition

< L >=

P
L LQmf (�;M; T )P
LQmf (�;M; T )

=M

P
i `ijie

��`iP
i jie

��`i
(5.71)

or it can be found from the identity

< L >= �
�
@G

@�

�
M;T

= kBT

�
@ lnQmf

@�

�
M;T

or more simply

< L >=MkBT

�
@ ln qmf

@�

�
T

(5.72)

We are now left with determining whatqmf is and solving for< L >. This can be done for a general three–
dimensional freely jointed chain, but for simplicity we consider here only the simple case of aone–dimensional
polymer chain. In such a chain, each segment can orient in either the+x or�x direction. In this case, each segment
contributes either+d or�d to the end–to–end chain length. Such a chain resembles a folding ruler. In random walk
language, this is a random walk along a line with each step of length+d or�d.

Question: For� = 0, what is< L >??? What about for finite�?
There are only two possible states for our one–dimensional polymer (+ or�), and each state has equal proba-

bility. Therefore, the individual partition functions are

j1 = j2 = j

The lengths associated with the states are
`1 = +d

`2 = �d
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When we sum over these two states,qmf becomes

qmf = je��d + je���d (5.73)

Substituting in eqn 5.71, we get that
< L >=Md tanh(��d) (5.74)

We can compute the fractional extension from

< L >

< Lmax >
= tanh(��d)

where we recall thatMd isLmax for a freely jointed chain.
Plotting these results leads to interesting conclusions, as shown in Figure 5.19. We see that for a fixed force(� =

1 � 10�12N), L=Lmax is 1 at very low temperatures, and then falls to nearly zero at extremely high temperatures.
At a fixed temperature, (300 K), the chain is very short for a small� (as expected,< L >= 0 at � = 0, but
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Figure 5.19: Mean field scaling for end–to–end length vs temperature for fixed field strength.

quickly rises to a maximum extension for large values of� (see Figure 5.20). What is the physical explanation for
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Figure 5.20: Scaling for end–to–end length at 300 K for variable field strength.

this behavior? At low temperature and finite� , the system maximizes its free energy by adopting a fully extended
state. Entropic penalties are small, since the temperature is low. However, at highT , the thermal energy of the
system “randomizes” the conformations, and we see that the average chain length again goes back to the near zero.
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Basically, kBT swamps out� . For fixedT , we see that in the limit of� ! 0, < L >! 0, and for� ! 1,
< L >!< Lmax >. This qualitativebehavior is seen with real polymers, so our very simple model is successful
in capturing at least this gross behavior. It is interesting to note that this simple model can also be used to look at
the behavior of chain molecules in confining media (such as microporous materials) that exert a “field” that extends
the chains.



Chapter 6

Intermolecular Interactions

6.1 Introduction

In previous chapters, we saw that the thermodynamics of an ideal or very dilute gas can be computed quite accurately
with the statistical mechanical formalism we have developed. In addition, we have seen that by making judicious
approximations, we can calculate properties (or at least trends in properties) of liquids, solids, adsorbed gases, and
polymers. However, we were not able to obtain the same degree of accuracy as with ideal gases. The approximations
we used all relied upon amean field treatmentin which we could decouple individual parts of the system. In
general, nonideal fluids and solids exhibit significant intermolecular forces between molecules which do in fact
couple separate particles. These forces affect both thermodynamic and transport properties. What we’d like to do in
this chapter is see how we can begin to incorporate these forces into our analysis.

Nothing we have developed so far prevents us from accounting for intermolecular interactions in a more or less
rigorous way. To obtain thermodynamic properties, we simply must be able to evaluate the configurational integral

Z =

Z
dqN exp[��V(q1; � � � ;qN )] (6.1)

The word “simply” is perhaps misleading. To evaluateZ we must take a two-step approach. First, we need to know
the form of the potential energy,V(qN ). That is, we need to know howV varies withq. Second, we need to be able
to evaluate this potential energyfor all possible configurationsif we are to directly computeZ. This is a non-trivial
problem, but let’s see if we can make some progress.

We start by examining ways of representing the potential energy. After we do this, we will go on to look at
techniques which will enable us to either approximateZ or evaluate it directly. A good treatment of potential
energy functions and their theory can be found in the classic book by Reed and Gubbins1. Here, we will sketch out
just enough of the basics to enable us to perform some calculations, while sweeping many of the details under the
rug!

The total potential energyV is typically set at zero when all molecules of the assemblage are separated com-
pletely from one another. We now imagine bringing all the molecules into contact to form our system at some
density,� and temperature,T . Repulsion and attraction between molecules give rise to mutual interaction energies.
The value of the potential is determined from three basic characteristics. First, there arevarious typesof interac-
tions characteristic of the molecules involved. We need to be able to distinguish between the ways different species
are expected to interact. Second, thedistance between molecules and their relative orientationare important in
determining how the species interact. We have already implicitly used this to state that interactions are zero when
molecules are very far away from each other. Finally, we must account for thenumber of molecules interacting with
one another.

1Reed, T. M.; Gubbins, K. E.Applied Statistical Mechanics, 1973

93
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Now lets once again consider our collection of molecules at a specified temperature and density. We will refer
to a set of molecular positions and orientations that specify how the molecules of such a system are positioned as a
configuration. To calculateV for a given configuration, we will typically make the following assumptions:

1. Intermolecular pair potential energies are those for an isolated pair of molecules.

2. The configurational energy of a system of many molecules is the sum of all possible isolated pair energies.
This is known as thepairwise additivity assumption.

3. The pair potential depends only on the distance between molecular centers of mass.

4. We can approximate the potential energy with an analytic equation containing one or more molecular con-
stants characteristic of the type of molecule.

The first two assumptions may cause errors at high density, but these errors are usually not all that serious. As-
sumption three is only valid for monatomic molecules. Polyatomic molecules must be treated differently. (We will
discuss this later). The fourth assumption depends on how good the analytic function is; in practice there is a trade
off between realism and computational tractability. Such analytic potential energy functions are often referred to as
forcefields.

Our knowledge of intermolecular forces comes from two main sources. First, we have quantum theory, which
addresses the problem of molecular interactions head on. That is, with quantum theory we can compute, with varying
levels of accuracy, what the potential energy is of a given configuration as a function of orientation, separation,
etc. Quantum calculations enable us to determine molecular geometry and in theory we can also handle reactions.
What can we do with this information? Besides being of use in its own right, such information can enable us to fit
empirical potential energy functions to the results, and thereby have a means of evaluating energetics for a theoretical
or numerical treatment. There are a number of ways of performing quantum calculations, each with strengths and
weaknesses. The major methods include Hartree–Fock methods, density functional theory, and semi–empirical
approaches. Recently, people have been trying to develop what are known asab initio molecular simulations, where
quantum and classical calculations are “mixed” so that energetics are calculated “on the fly” during a simulation.
Such techniques would eliminate the need to have a forcefield at all. The biggest weakness of quantum calculations
is that they are prohibitive in terms of computational requirements for all but the simplest systems, although every
year people are able to study bigger systems in more detail due to computational and methodological advances.

The second way of determining intermolecular forcefields is through the use of experiment. For example,
dilute gas properties such as second virial coefficients, viscosities, etc. can be measured. As we will show shortly,
these properties give us information on molecular interactions which can be put into a forcefield and used topredict
properties under conditions other than what the experiments were conducted under. We can also get vital information
from spectroscopy and molecular beam experiments. The least elegant (but arguably most effective) method is to
postulate a reasonable form of a forcefield, adjust the parameters for a simple system until a good fit with existing
experiments are obtained, and thentransferthis forcefield to other systems for use at other conditions.

6.2 Configurational Energy

Let’s discuss some practical issues related to forcefields. We wish to calculateV(qN ). We separateV into a sum of
terms involving 1) all possible pairsij; 2) all possible tripletsijk; 3) all possible quadrupletsijkl; � � �; and the final
term is the simultaneous interaction of allN molecules. Mathematically, we represent this as

V =
X
i<j

�ij +
X

i<j<k

��ijk +
X

i<j<k<l

��ijkl + � � �+��123:::N (6.2)

Each term in eqn 6.2 has the following meaning.�ij is the mutual potential energy of the pair located ati andj
isolatedfrom the influence of all other molecules.��ijk is theadditional mutual potential energy of the trio ati,
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j, andk that arises from the changes in the electron charge distributions of the isolated pair ati andj when a third
member is near at positionk. The same hold true for the third and higher terms. Finally,��123:::N is the potential
energy increment characteristic of the whole system that is not included in the previous terms.

As an example, the total potential energy of a system of 4 molecules 1, 2, 3, and 4 is

V1234 = �12 + �23 + �34 + �13 + �14 + �24+

��123 +��234 +��134 +��124 +��1234

It is usually assumed (although not proven in general) that the terms inV decrease in magnitude. That is:

�ij > ��ijk > ��ijkl > � � � > ��123:::N

A potential energyV of a system of molecules is said to beadditivewhen all the terms in the summation except
the first sum over pairs are zero. This is the pairwise additivity assumption. The pairwise additivity assumption
is perfectly valid for dilute gases, where the probability of three molecules coming into close enough contact to
interact is diminishingly small compared to the probability of a two–body encounter. However, pairwise additivity
causes some error at higher densities. How important are these errors? It is hard to know, as discrepancies between
experiment can be due to neglect of three–body and higher terms, or poor representations of pairwise interactions.
Calculations have indicated that the non–additive contribution to the internal energy of liquid argon at the triple
point is on the order of 5 to 10%2.

6.3 Types of Intermolecular Interaction

Figure 6.1 shows the general form of the pair–potential energy for a neutral molecule. When discussing potentials,

φ

−ε

σ

rr 0
0

Figure 6.1: Schematic of a pair potential energy function

will use the following definitions. 1) The potential energy is zero at infinite separation (i.e.� = 0 at r = 1).
2) The separation at which the curve crosses� = 0 is called�. 3) The separation at which the potential is at a
minimum (� = ��) is calledr0. � andr0 are variously referred to as the “diameter” of the molecule represented
by such a function. More on this latter. As can be seen from Figure 6.1, the potential energy� is the sum of
positive contributions representing repulsive forces and negative contributions representing attractive forces. The
main contributions to� are

1. Short range(r � �): Valence or chemical energies, for which chemically saturated molecules contribute a
positive term corresponding to a force of repulsion.

2J. S. Rowlinson,Liquids and Liquid Mixtures, 2nd ed. Butterworth, 1969
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2. Short and intermediate range(� < r � r0): Residual valence interactions, of which hydrogen bonding is a
common example. The magnitudes of “residual chemical” energies are so low compared to usual chemical
bonds that they are on the same order as physical interaction energies.

3. Long–range(r � r0)

� Fluctuation or dispersion energies: The word dispersion is used to designate these energies because
they arise from quantum effects that are also associated with the dispersion of light by matter.

� Polarization: Distortion of an electric charge distribution in an electric field.

� Direct electrostatic energies: Classical coulombic energies associated with dipole moments, quadrupole
moments, etc.

For non–polar molecules, the centers of negative and positive charges are coincident. Examples include Ar,
Cl2 and CH4. For polar molecules, centers of negative and positive charge are not coincident. These two centers
constitute a dipole and dipole moment. Examples include CH3COCH3 (acetone), CH3Cl, and chlorobenzene. We
can also have associating molecules. These are molecules that can form “complexes”, such as HF, H2O, NH3 and
CH3OH. For all of these types of molecules, the form of the pair potential is not known for the intermediate region.
Expressions for the short–ranged and long–ranges interactions are added together, and the intermediate region is
derived empirically as a smooth joining of these two extreme regions. Next, we will briefly review how one obtains
expressions for these two extreme regions.

6.4 Short–Range Repulsion Interaction

Figure 6.2 shows a schematic of the mutual potential energy for a pair of argon atoms in their lowest energy states
as a function of the inter–nuclear separation in the short range region3. This curve was determined using quantum
calculations, and the essential features have been more or less confirmed with experiment. Note that the (normalized)
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Figure 6.2: Schematic of mutual potential energy for a pair of argon atoms in the lowest energy state as a function
of separation in the short–range region. Curve determined from quantum calculations of Abrahamson.

energy scale is logarithmic, and that beyond very small separations,ln� vs r is essentially linear. The very short–
range region, where the curve deviates from linear behavior, is a very high energy region; only thermal energies
corresponding to millions of degrees Kelvin can enable molecules to reach this separation. Thus, for practical
purposes, the repulsive pair potential can adequately be expressed by

�rep = Be�br (6.3)

3A. A. Abrahamson,Phys. Rev., 130, 693, (1963)
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whereB andb are constants characteristic of the molecules.
The exponential form of eqn 6.3 has been used to correlate the scattering data of molecules and ions in high–

velocity molecular beam experiments. Notice, however, that eqn 6.3 yields a large but finite repulsive energy ofB
for a separation ofr = 0. This defect can be remedied in one of two ways. First, we could add a rigid core to our
potential for very short ranges. Alternatively, for a small interval inr, we could let

(d ln�rep)=(d ln r) = �br

and thenbr � constant= s. Integrate
(d ln�rep)=(d ln r) = �s

to obtain
ln�rep = �s ln r + lnK

or
�rep = Kr�s (6.4)

Notice that unlike eqn 6.3, this equation shows the proper behavior as separation goes to zero. The main point is
that any empirical repulsive potential should have the form of either eqn 6.3, eqn 6.4, or an approximate form of
these two that exhibits a steeply increasing potential as intermolecular distance gets smaller. Recall that this was
one of the things that van der Waals assumed about the way species interact. The second was that molecules attract
one another at larger separations. We need to look at this interaction next.

6.5 Dispersion Interactions

The mutual attraction energy forr > r0 arises from fluctuations or dispersion energies. There are a number of
expressions for these energies, and many quantum calculations have been performed to examine these energies for
rare gas atoms. The most common way of obtaining dispersion energies is through the London formulas. The basic
idea here goes as follows.

� The time–averaged charge distribution of an atom or non–polar molecule is such that the negative and positive
centers are coincident.

� However, there are rapid fluctuations in the electronic charge distributions, so thatat any instant, the charge
centers are not coincident.

� Forr > r0, one can perform a multi–pole expansion for the charge distribution and add this to the Hamiltonian
operator in the Schr¨odinger wave equation for two molecules. The wave equation can then be solved to yield
the time averaged value of the pair.

� Theexcessof this energy over that forr = 1 is thedispersionenergy,�disij of pair ij. The result is a series
in ascending powers ofr�1:

�disij = �C6;ij

r6
� C8;ij

r8
� C10;ij

r10
� � � � (6.5)

� By modeling the electronic quantum states as harmonic oscillators, the coefficients are given by the London–
Margenau formulas

C6;ij =
3

2

�i�jh�i�j
�i + �j

(6.6)
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C8;ij =
45h2�i�j
32�2m

 
�i

2�i + �j
+

�j
2�j + �i

!
(6.7)

C10;ij =
315h3

256�4m2

�i�j
�i + �j

(6.8)

whereh is Planck’s constant,m is electronic mass, and� is polarizability. The frequency� corresponds to a
classical frequency of oscillation for electrons in the molecule (�Elevel = h�).

�E is approximately the first ionization potential,I, for the molecule, so we can estimateC6 by replacingh�
with I to give

C6;ij =
3

2

�i�jIiIj
Ii + Ij

If i andj are the same species,
C6;ii = (3=4)�2i Ii

and the ratio ofC8 andC10 toC6 can be obtained. Using numerical values forh, �, andm we get�
C8

C6

�
ii
=

38:10

Ii�
C10

C6

�
ii
=

762:1

Ii

whereI units are in eV and the overall units of the ratios areÅ2 andÅ4, respectively. The dispersion interaction
can be written in the form

�disij = �C6;ij

r6

"
1 +

�
C8

C6

�
ij

1

r2
+

�
C10

C6

�
ij

1

r4
+ � � �

#
(6.9)

The fractional contribution of theC8 andC10 terms are about 20% of the total dispersion energy for argon. Given
the distance dependence, this means from a pragmatic point of view we should focus our attention most immediately
on theC6 term.

It turns out that an alternative dispersion formula forC6 was obtained by Slater and Kirkwood. The form is

C6;ij =
3a

(1=2)
0 e2�i�j

2[(�i=ni)1=2 + (�j=nj)1=2]
(6.10)

There are three–body term expressions that have also been derived. These depend on polarizabilities, ionization
potentials, and the relativeorientationof the three species. The basic point here is that we do have some theoretical
justification for the form of the dispersion-type energetic contribution to a forcefield, and the leading term has a
(r6)�1 dependence.

6.6 Composite Potential Energy Functions for Non–Polar Molecules

A reasonable form for a composite pair potential function for two atomsi andj is obtained by adding the repulsive
and attractive terms

�Bij = Be�br �Ar�6 (6.11)

where the notation has been simplified andA is represented by

A = C6

�
1 +

C8

C6

1

r2
+
C10

C6

1

r4
+ � � �

�
= C6Y (r) (6.12)
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The parametersA, B, andb are typically adjusted to fit available experimental data, and then used at a variety of
other conditions. However, we see that theform of this empirical function is not arbitrary. There are a variety of
other potential models, however. For example, the Buckingham potential has the form

�Bij =
�

1� 6=s0

�
6

s0
exp

�
s0

�
1� r

r0

��
�
�
r0
r

��
(6.13)

In this model,� andr0 have the same meaning as before.s0 is defined to be equal tobr0; it is the value of the
repulsion exponents in the approximate reciprocal–r expression at the point wherer = r0.

The Miem, n potential is a composite function obtained by adding an attractive term�Ar�m to the repulsive
termBr�n.

�Mij = Br�n �Ar�m (6.14)

The most commonly used potential of the form in eqn 6.14 is theLennard–Jones 6–12 potential, in which
n = 12 andm = 6

�LJij = Br�12Ar�6 (6.15)

which can also be written as

�LJij = 4�

"�
�

r

�12
�
�
�

r

�6#
(6.16)

where
� = r0(1=2)

1=6

A crude model that is still quite effective is theSutherlandmodel. This model is often used in obtaining
parameters for the van der Waals equation of state.

�S = ��
�
�

r

�6

; r > �

�S =1; r � �
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Figure 6.3: Schematic of the Sutherland potential function.

There are a whole host of other potential models, including the Kihara rigid–core, the square well and the hard
sphere models. There are also models for structured molecules, which we will not go into at the present time. We
will come back to these models when we begin our discussion on simulating fluids.

Up to this point, we have focused on the interactions between two moleculesof the same type. This enables
us to study pure component systems, but we would like to examine mixtures. The question is, then, how does one
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handleunlike pair interactions? Typically, we try to relate the unlike pair potential parameters (i.e.�,�,m, andn)
to the parameters for the twolike species. Note that since we are usually only concerned with pair interactions, we
can do this even for multi–component mixtures. The formulas describing the way we do this are called “combining
rules” or “mixing rules”. It turns out that if one makes reasonable assumptions, both the attractive and repulsive
interaction terms for unlike species are approximately equal to the geometric mean of the respective terms for the
two like pairs at the same separation. For example, for the Lennard–Jones 6–12 potential, we usually write

�ab = (�aa�bb)
1=2 (6.17)

We could write a similar expression for�ab, but since differences in the diameters of different species are usually
small, it is common to use an arithmetic mean

�ab = (�aa + �bb)=2 (6.18)

This last expression is exact for hard spheres. Eqns 6.17 and 6.18 are often referred to as Lorentz-Berthelot com-
bining rules.

In addition to repulsion–dispersion potentials, we also need to account for electrostatic interactions for charged
species, as well as dipole moments and quadrupole moments. Often, this just involves attaching a coulombic
potential term onto the dispersion–attraction potential function. Other models, which we will discuss later, seek
to address orientational effects (such as hydrogen bonding) and “partial” charges. These models can become quite
sophisticated, and the evaluation of the long–ranged potentials (which go as1=r) is difficult. Special techniques are
required to handle these systems.



Chapter 7

Distribution Functions in Classical Monatomic
Liquids

7.1 Introduction and Physical Interpretations

So far, we have discussed some basic statistical mechanics and shown how we can compute properties using “mean
field” theories. These theories all discount any type of structure that the material may have, or they assume “perfect”
structure. By making this assumption, we can “smear out” molecular interactions and come up with the resulting
thermodynamics of the system. We know, however, that real materials do have order and structure, particularly
on short length scales. What we would like to do now is show how we can account for this structure to compute
properties of a relatively simple fluid: a classic, monatomic liquid.

The basic idea behind this chapter is that, elucidation of the structure of fluids is important to understanding fluid
behavior. Although liquids often exist at densities comparable to solids, the liquid state lacks the well–defined long–
range order of crystalline solids. Dense fluids do not exhibit the dynamic chaos of dilute gases, but the movement
of a molecule in a dense fluid iscorrelatedwith the location of its neighbors. Such correlations lead tolocal and
short–ranged order. This order is responsible for many of a fluids properties.

Consider Figure 7.1, which represents a snapshot of a collection of spherical molecules, with an arbitrary particle
picked as a reference. At a distancer from the reference particle, the density of other particles,�(r), will depend

ρ( r )

Figure 7.1: Typical arrangement of a fluid of spherical particles. The density at a given radiusr with respect to a
reference particle is shown.

on time. However, on average the density will be a quantity dependentonly upon distance,r.
We can immediately recognize several qualitative features from Figure 7.1. First,�(r) must tend toward zero

101
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asr goes to zero, since additional particles cannot occupy the same location as the reference particle. Second, at
larger, the influence of the reference particle is zero, and�(r) must approach�, the macroscopic density. Third,
at intermediate separations,�(r) may be less than or exceed�, depending on whether the distancer corresponds to
distances of repulsion or attraction between particles. This means that physically, we expect�(r) to look like that
shown in Figure 7.2, where the horizontal line labeled� is the average bulk density.

ρ( r)

distance, r

ρ

Figure 7.2: Schematic of the function�(r) for a fluid.

Now, we define a functiong(r) = �(r)=�. The behavior ofg(r) is such that

g(r)! 1 as r !1

g(r)! 0 as r ! 0

g(r) is called theradial distribution function. We will develop an expression forg(r) formally, but the above
physical picture should always be kept in mind during the development.

It is g(r) that one refers to when we speak of the “structure” of a liquid.g(r) depends not only onr, but also on
� andT . We will shortly see how macroscopic properties of a fluid can be described in terms ofg(r) in conjunction
with a pairwise intermolecular potential function,V(r). For example, we will show how the internal energy of a
monatomic fluid can be written as

U =
3

2
NkBT +

N�

2

Z 1

0
V(r)g(r)4�r2dr

By inspection, we can see where the terms in the proceeding equation come from. The first term is the kinetic
energy contribution normally attributed to a monatomic gas. The second term represents a configurational energy;
the integrand is simply the intrinsic intermolecular energy at separationr multiplied by the density of particles at
that separation. It turns out that many other properties can also be derived in terms ofV andg(r). Evaluation of
these expressions is often done usingintegral equation theories, which we will discuss a bit later.

7.2 Development of Equations Describing Distribution Functions

We will now derive then–particle density andn–particle distribution function in the canonical ensemble. We take
as our system a fluid ofN molecules in a system volume =V at system temperature =T . Theprobability densityin
configuration space is

�(r1; � � � ; rN ) = exp [��V(r1; � � � ; rN )]R
dr1 � � � drN exp [��V(r1; � � � ; rN )] (7.1)
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or

�(r1; � � � ; rN ) = exp [��V(r1; � � � ; rN )]
Z(N;V; T )

(7.2)

Theprobability of finding particle 1 at positionr1 to r1 + dr1, particle 2 at positionr2 to r2 + dr2, � � �, particleN
at positionrN to rN + drN is

P(r1; � � � ; rN ) = �(r1; � � � ; rN )dr1 � � � rN (7.3)

Now we define a function

�1���n(r1; � � � ; rn) =
Z
�(r1; � � � ; rN )drn+1drn+2 � � � drN (7.4)

Such that the probability of finding particle 1 at positionr1 to r1 + dr1, particle 2 at positionr2 to r2 + dr2, � � �
particlen at positionrn to rn + drn is

�1���n(r1; � � � ; rn)dr1 � � � drn (7.5)

Note that the above definitions all keep track of theidentity of the particles. In practice, we are more interested in
the probability of findingany particle atr1 to r1 + dr1, any particle atr2 to r2 + dr2, � � �, any particle atrn to
rn + drn irrespective of their identities. The probability density for this is

(N � 1) � � � (N � n+ 1)�1���n(r1; � � � ; rN ) = N !

(N � n)!
�1���n(r1; � � � ; rn) (7.6)

whereN is the number of ways of choosing the location of the first particle,N�1 ways for particle 2, etc.,N�n+1
ways of choosing particlen. �1���nr1; � � � ; rn is again the probability density of a particular set ofn particles atr1
to r1 + dr1, � � �, rn to rn + drn.

Having defined all these terms, we can now formally define then–particle density by

�
(n)
N (r1; � � � ; rn) = N !

(N � n)!

R
drn+1 � � � drN exp[��V(r1; � � � ; rN )]

Z(N;V; T )
(7.7)

Notice that�(n)N is a function ofn positions in space. Theprobability of finding a configuration with a particle atr1
to r1 + dr1, � � �, and a particle atrn to rn + drn is thus

P(n)
N (r1; � � � ; rn) = �

(n)
N (r1; � � � ; rn)dr1 � � � rn (7.8)

The normalization condition is Z
�
(n)
N (r1; � � � ; rn)dr1 � � � rn =

N !

(N � n)!
(7.9)

To fix concepts, let’s consider the special case of an ideal gas. Here, we know thatV(r1; � � � ; rN ) = 0 and
Z(N;V; T ) = V N . So

�
(n);ig
N (r1; � � � ; rN ) = N !

(N � n)!
� 1

V N
(7.10)

�n
N !

Nn(N � n)!
= �n

�
1�O( n

N
)

�
(7.11)

We now define then–particle distribution function

g
(n)
N =

�
(n)
N (r1; � � � ; rn)

�n
(7.12)

Physically,g(n)N measures the extent to which the fluid deviates from complete randomness (i.e. from above we see

thatg(n);igN � 1).
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7.3 The Pair Distribution Function

We now consider a special distribution function, thepair distribution function. In theNV T ensemble, we define it
as

g
(2)
N (r1; r2) =

�
(2)
N (r1; r2)

�2

=
N(N � 1)

�2

R
exp[��V(r1; � � � ; rN )]dr3 � � � drN

Z(N;V; T )
(7.13)

The normalization condition isZ
�
(2)
N (r1; r2)dr1dr2 = �2

Z
g
(2)
N (r1; r2)dr1dr2 = N(N � 1) (7.14)

What happens tog(2)N in the limit of large separations? We expect that structural correlations disappear; the
structure becomes indistinguishable from an ideal gasat the same density. That is,

lim
jr1�r2j!1

g
(2)
N (r1; r2) =

�
ig(2)
N (r1; r2)

�2

=
�2N(N�1)

N2

�2
= 1� 1

N
(7.15)

As expected, this approaches 1 for a large system.

Now in a homogeneoussystem, the structure is the same around any point.g
(2)
N (r1; r2) only depends on the

relative positionvectorr2 � r1 Thus

g(2)(r1; r2) = g(2)(r1; r1 + r2 � r1)

� g(2)(r2 � r1) � g(2)(r12) (7.16)

Eqn 7.16 is validonly for a homogeneous environment.
In a homogeneous and isotropicsystem, the structure only depends on the magnitude of the intermolecular

separation; the direction is unimportant. Thus

g
(2)
N (r1; r2) � g(jr2 � r1j)

= g(r12) = g(r) (7.17)

where eqn 7.17 is again only valid if the medium is homogeneousand isotropic.

7.3.1 Physical Interpretation ofg(r)

Let’s provide some physical meaning to the equations we have developed. Let us define the probability of finding a
molecule atr1 to r1 + dr1 anda molecule atr2 to r2 + dr2 as:

�2g
(2)
N (r1; r2)dr1dr2

If we wish to know the probability of finding aparticular molecule atr1 to r1+dr1 and anotherparticular molecule
at r2 to r2 + dr2, the probability is:

�2

N(N � 1)
g
(2)
N (r1; r2)dr1dr2
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Now, consider the probability of finding a particular molecule atr2 to r2+ dr2, provided that a particular molecule
has already been placedatr1 to r1 + dr1. It is just the last expression divided bydr1=

R
dr1. That is:

�2

N(N � 1)

g
(2)
N (r1; r2)dr1dr2
dr1=

R
dr1

Given this result, we can write the expected number of molecules in volume elementr2 to r2 + dr2, provided a
particular molecule has been placed atr1. This will simply be equal to the last expression (the probability of such
an event as described here) times(N � 1), the number of molecules available, given that one molecule has been
placed atr1. Thus, the number of particles is

�2(N � 1)

N(N � 1)

g
(2)
N (r1; r2)dr1dr2
dr1=

R
dr1

Now, we note three things about this.

1.
R
dr1 = V

2. N=V = �

3. For a givenr1, dr2 = d(r2 � r1) = dr12

Thus, the expected number of molecules in volume elementr12 to r12+dr12 defined relative to positionr12 provided
we have placed a molecule atr12 is

�g
(2)
N (r1; r2)dr12

or, we can say that the expecteddensityin volume elementr12 to r12 + dr12 around positionr1, where we have
placed a molecule atr1 is

�g
(2)
N (r1; r2)

In a homogeneous and isotropic medium, therefore, we may finally write

�(r) � �g(r) (7.18)

Eqn 7.18 is shown schematically in Figure 7.3 We see that�(r) is the local density of molecules within a

reference
molecule

local density
is ρ(  ) = ρr g(r)

Figure 7.3: Local density for a homogeneous, isotropic fluid.

spherical shell of radiusr to r + dr, centered at a given molecule in the fluid, and averaged over all configurations.
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We can look at this in another way. The probability of finding a given molecule atr1 to r1 + dr1 and a given
molecule atr2 to r2 + dr2 is again

�2

N(N � 1)
g
(2)
N (r1; r2)dr1dr2

Given a particular molecule atr1, the probability of finding a givenpair of molecules at a distancer to r+ dr from
one another is

�2

N(N � 1)

Z
r�jr12j�r+dr

g
(2)
N (r1; r2)dr1dr12

where we recall that, given a molecule atr1, dr12 = d(r2 � dr1) = dr2. For a homogeneous and isotropic system,
we can write Z

r�jr12j�r+dr
g
(2)
N (r1; r2)dr1dr12 =

V

Z
r�jr12j�r+dr

g
(2)
N (r1; r2)dr12

= V

Z
r�jr12j�r+dr

4�r212 g(r12)dr12

Simplifying further

= V 4�r2 g(r)dr =
N2

�2
1

V
4�r2g(r)dr

So we see then that the probability of finding a pair of molecules at a distancer to r + dr from one another is

N

N � 1

1

V
g(r)4�r2dr

We now wish to find out what is the typical behavior ofg(r). For a Lennard-Jones fluid, the potential looks like

−ε

σ

r
0

V
LJ

=collision diameter

van derWaals diameter

well depth

Figure 7.4: Schematic of a Lennard–Jones pair potential.

that shown in Figure 7.4. Recall that the Lennard-Jones potential energy function is

VLJpair = 4�

"�
�

r

�12

�
�
�

r

�6#

Let us now see howg(r) looks as a function of density for Lennard-Jonesium.
For a gas, there is very little structure, as can be seen in Figure 7.5.
For a liquid, there is short–range order (see Figure 7.6).
For a crystal, there is long–range order. For example, an fcc–crystal has peaks atr=� = 1:12, r=� = 1:58,

r � = 2:24, etc.g(r) for such a crystal would look like that shown in Figure 7.7.
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1

0

g(r)

r

excluded volume
effect

σ

Gas Structure

Figure 7.5: Typical form ofg(r) for a gas. Note the absence of any real order.

1

0

g(r)

Liquid Structure

first coordination
shell

second coordination
shell

structure 
washes out

r

32σ σ σ

Figure 7.6: Typical form ofg(r) for a liquid. We see short–range order out to at least3�.

7.4 Experimental Measurement ofg(r)

The pair distribution function can be measured experimentally using either x–ray or neutron scattering. Schemati-
cally, such an experiment looks like that shown in Figure 7.8. One measures a so–called “structure factor”,S(k),
which equals

S(k) = N
I(�)

I(0)
(7.19)

whereN is the number of scatterers,I(�) is the diffracted intensity at an angle�, andI(0) is the diffracted intensity
in the limit of �! 0.

It turns out that one can directly relateg(r) andS(k) through geometric arguments. The final result is

S(k) = 1 + �

Z
g(r)e�ik�rdr (7.20)

For an isotropic fluid,S(k) = S(k), so

S(k) = 1 + �

Z 1

0
4�r2

sin(kr)

kr
g(r)dr (7.21)

We see thatS(k)� 1 is just the Fourier transform ofg(r). So to obtaing(r) we simply measureS(k) and take
the Fourier transform

�g(r) =
1

(2�)3

Z
exp(ik � r)[S(k)� 1]dk
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1

0

g(r)

r

2σσ

Crystal Structure

at large r, many 
peaks merge to
form continuum

Figure 7.7: Typical form ofg(r) for a crystal. Very sharp peaks indicate regular order. At large distances, the very
many peaks merge to a continuum.

radiation source
wavelength, λ

collimators,
monochromators

sample
g(r)

diffraction 
angle, θ

I(  )θ

diffracted 
intensity,

detector

(x-ray, neutron)

Figure 7.8: The basic idea behind the experiment to measureg(r)

For an isotropic fluid, whereg(r) = g(r), we get

�g(r) =
1

(2�)3

Z 1

0
4�k2

sin(kr)

kr
[S(k)� 1]dk (7.22)

Typical results from liquid and solid measurements ofS(k)�1 are shown in Figure 7.9.S(k) will exhibit peaks
atk � 2�=�r, where�r is the distance between successive peaks ing(r). The small–k region ofS(k) is called the
“small angle” region. It contains information about structural features withlargecharacteristic lengths. The large–k
(“wide angle”) region ofS(k) contains information about short–range structure. To getg(r) in liquids, wide–angle
experiments must be done using x–ray, neutron, or electron diffraction experiments.

As an example, we may consider the measurements of C. J. Pings on liquid argon at -130 – -110o C.1 Such
experiments can be used to test theories, equations of state, and potential energy expressions.

7.5 Thermodynamics From the Radial Distribution Function

We mentioned earlier that if we know the structure and interaction potentials (assumed to be pairwise additive) of
a fluid, we could calculate all of its thermodynamic properties. We now proceed to derive expressions for some of

1C. J. Pings, Chem. Eng. Ed.;4, 18-23 (1970)
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Figure 7.9: Representative structure factors for Al.

these quantities. We will try to use physical arguments whenever possible; more general derivations can be found in
the reference books in the library or in standard textbooks.

7.5.1 Internal Energy

Let us start by deriving an expression for the internal energy. The excess internal energy is defined as

U ex(N;V; T ) = U(N;V; T ) � U ig(N;V; T ) (7.23)

We see that
U ex(N;V; T ) �< V(r1; � � � ; rN ) > (7.24)

Now, we assume the potential is represented by a pairwise expression,Vpair(r). g(r) gives the probability of
finding another molecule in a given volume element at a fixed distance from a particular molecule. The potential
energy between this pair isVpair(r). The differential number of moleculesdNr in an element of spherical volume
dr = 4�r2dr at a distance betweenr andr + dr from the central molecule is

dNr = �g(r)4�r2dr

This is shown schematically in Figure 7.10 The potential energy of this differential system is

Vpair(r)�g(r)4�r2dr
For all distances from the reference molecule, the total potential energy isZ 1

0
V(r)�g(r)4�r2dr
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r

dr

(r) =   g(r)ρ ρ

Figure 7.10: Depiction of the number of molecules in a differential element about a reference molecule

where we have dropped the “pair” subscript for convenience.
To obtain thetotal potential energy of the system, we would sum over all molecules, letting each one be the

reference. Each integral would be the same as the above expression. Thus, we would expect that the total internal
energy would be obtained by multiplying the above expression byN , the total number of molecules. However, this
would over count, since each pair interaction would be counted twice. Consequently,U ex is obtained from

U ex = 2�N�

Z 1

0
V(r)g(r)r2dr (7.25)

The total internal energy, including the ideal gas term and any internal contributions is

U = 3=2NkBT + U int + U ex

Eqn 7.25 is the same result we obtained from physical arguments at the start of our discussion of fluid structure.

7.5.2 Pressure

We can formally derive an expression for the pressure (an equation of state, if you will) starting from the virial
theorem, which we derived earlier. Consider the thermodynamic quantityPV . This quantity has units of energy
and is extensive; thus we can obtain an expression for the configurational part ofPV by adding contributions from
successive “shells” as we did with the internal energy.

We know that the total expression forPV is

PV = kBTV

�
@ lnQ

@V

�
T;N

= (PV )ig + (PV )ex

where(PV )ig = NkBT . The excess part,(PV )ex, is a measure of the effect of intermolecular forces. If the forces
are attractive, the product will be negative (reducesPV ), whereas repulsive forces increasePV .

The excess part must arise from the force�dV=dr acting between a particular molecule and all othersdNr in a
shell at a distancer from the reference molecule. As before the total force is

�
�
dV
dr

�
�g(r)4�r2dr

and the total pressure is the total force divided by the areas atr, 4�r2. We then multiply this total pressure by
the volume enclosed by the sphere of radiusr (4=3�r3) to get the(PV )ex contribution for the reference molecule
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interacting with all other molecules in a differential shell atr. We then integrate over allr and multiply byN=2 (to
avoid double counting) to get the total(PV )ex term:

(PV )ex =
N

2

Z 1

0
�dV
dr
�g(r)

4

3
�r3dr (7.26)

Finally we can write

PV = NkBT � 2�

3
N�

Z 1

0

dV
dr
g(r)r3dr

or

P = �kBT � 2��2

3

Z 1

0

dV
dr
g(r)r3dr (7.27)

Eqn 7.27 is the so–called “pressure equation”; we see again that a knowledge ofV andg(r) yields thePV T
properties of a fluid.

7.5.3 Compressibility Equation

Other properties can also be expressed in this way. A particularly interesting and important expression is thecom-
pressibility equation. This can be derived starting with the grand canonical ensemble and by defining a lower–order
radial distribution function for the�V T ensemble. The result for the isothermal compressibility,�T , is

�kBT�T = 1 + �

Z 1

0
4�r2[g(2)(r)� 1]dr (7.28)

It is remarkable that the compressibility equation does not presuppose pairwise additivity! In this sense, eqn 7.28 is
more fundamental than the pressure equation, eqn 7.27.

The functiong(r)�1 is often called thetotal correlation function, and is given the symbolh(r). h(r) approaches
zero asr !1, indicating no correlation of position between a pair of molecules. We will come back toh(r) later.

7.5.4 Potential of Mean Force – The Reversible Work Theorem

The radial distribution function is related to the Helmholtz free energy by a remarkable theorem:

g(r) = e��w(r) (7.29)

wherew(r) is the reversible work for a process in which two tagged particles are moved through the system from
infinite separation to a relative separationr. Clearly,

w(r) = w(r;�; �)

Since the process of bringing the particles together is done reversibly at constantNV T , w(r) is the change in the
Helmholtz free energy for the process. This theorem can be proved directly by formally calculating the average
force between the pair of particles and relating this tog(r). Rather than do this, we start out by assuming eqn 7.29
is true.

To be consistent with our earlier nomenclature, we re–write eqn 7.29 as

g
(2)
N (r1; r2) � exp[��w(2)

N (r1; r2)]

From the definition ofg(2)N (r1; r2),

g
(2)
N (r1; r2) =

N(N � 1)

�2

R
exp[��V(r1; � � � ; rN )]dr3 � � � rN

Z(N;V; T )
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we get that

w
(2)
N (r1; r2) = � 1

�
ln

"
N(N � 1)

N2

V 2

Z(N;V; T )

#
� 1

�
ln

Z
exp [��V(r1; � � � ; rN )] dr3 � � � drN (7.30)

In a homogeneous system, we can take the positionr1 as our reference point, and then we get

w
(2)
N (r12) = � 1

�
ln

"
N(N � 1)

N2

V 2

Z(N;V; T )

#
� 1

�
ln

Z
exp [��V(r12; � � � ; r1N )] dr13 � � � dr1N (7.31)

Taking the gradient with respect tor12 yields

rr12w
(2)
N = � 1

�
(��)�

R
[rr12V(r12; � � � ; r1N )] exp[��V(r12; � � � ; r1N )]dr13 � � � dr1NR

exp[��V(r12; � � � ; r1N )]dr13 � � � dr1N
Schematically, we can see that for a system having pairwise additive forces,rr12V(r12; � � � ; r1N ) = rr12V(r12)

is just the force acting on atom 1 due to the influence of atom 2. We will call this forceF12 Given this definition,

12
F

r12

1 2

Figure 7.11: Definition ofF12

we have

rr12w
(2)
N (r12) =

R
F12 exp[��V(r12; � � � ; r1N )]dr13 � � � dr1NR
exp[��V(r12; � � � ; r1N )]dr13 � � � dr1N (7.32)

We now clearly see from eqn 7.32 thatw(2)
N � �kBT ln g

(2)
N (r12). w

(2)
N can be viewed as a potential that

generates the force of interaction between two molecules at a fixed positionr12 relative to one another in the fluid,
averagedover all configurations of the remaining(N � 2) molecules. Hence the namepotential of mean forcefor

w
(2)
N (r12).

What is the behavior ofw(2)
N (r12)? Consider the simple case of a hard sphere fluid. The pair potential of a

hard sphere fluid looks like that shown in Figure 7.12.g(r) andw(2)
N (r) are shown schematically in Figure 7.13. It

is remarkable thatw(2)
n (r12) can beattractiveover some separation ranges even for a pair potential that is purely

repulsive! Why is this?w(2)
N is a free energy, as opposed to an energy. The “pounding” of the rest of the spheres

around the pair can create a net effective attraction (see Figure 7.14).

7.6 Getting Thermodynamics Fromg(r)

We have seen that the thermodynamics of a fluid can be obtained from a distribution function and an expression for
the potential energy. If we can assume pairwise additivity of potentials,g(r) is the relevant distribution function.
If we would like to develop predictive capabilities in our statistical mechanical theories, we need to find a way of
getting atg(r). Clearly,we need a theory forg(r).
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Figure 7.12: Pair potential for hard spheres
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Figure 7.13: Representative plots ofg(r) andw(2)
N (r) for a hard sphere fluid

One way to estimateg(r) focuses attention on the potential of mean force,w(r). We separatew(r) into two
parts, namely

w(r) = V(r) + �w(r) (7.33)

The pair potential,V(r), describes the reversible work to move the particles in vacuum. Thus,�w(r) is the con-
tribution tow(r) due to the surrounding particles in the system. That is,�w(r) is the change in Helmholtz free
energy of the “solvent” due to moving particles 1 and 2 fromjr1 � r2j =1 to jr1 � r2j = r.

We can think of this in another way. As the density of a fluid becomes small, the interaction between molecules
fixed at a distancer apart is not affected by the other(N � 2) particles. Thus, the potential of mean force must be
equivalent to the pair potential in this limit. That is, in the low density limit

lim
�!0

�w(r) = 0 (7.34)

As a result
g(r) = e��V(r)[1 +O(�)] (7.35)
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Figure 7.14: Physical reason why the potential of mean force can exhibit “attractive” regions even for a repulsive
potential. Neighboring molecules “pound” the pair, forcing them together

For higher densities, we must handle the deviations of�w(r) from zero. To do this, we will estimate�w(r)
in terms of�g(r) andV(r). Such an approach yields integral equations forg(r) that are essentially mean field
theories! Before tackling this subject, let’s examine the low density limit.

7.6.1 Low Density Limit of the Pair Distribution Function

We will begin by writing the second virial coefficient in terms of a pair potential. To do this, we start with the energy
equation we derived earlier (eqn 7.25). Writing it in a slightly different form we get

Uex=N = (�=2)

Z
g(r)V(r)dr = (�=2)

Z
e��V(r)V(r)[1 +O(�)] (7.36)

where we have used the low density limit forg(r), and againUex is defined asU � U ig. Notice that

Uex=N =
@(�Aex=N)

@�
(7.37)

whereAex is the excess Helmholtz free energy relative to an ideal gas. That is,

��Aex = ln(Q=Qig)

Using this, we integrate our expression with respect to� to get

��Aex=N = (�=2)

Z
[expf��V(r)g � 1] +O(�)dr (7.38)

From this expression for the free energy, we can obtain the pressureP via the identity

�2
@(�Aex=N)

@�
= �P � � (7.39)

Carrying out the differentiation yields

�P = �+ �2B2(T ) +O(�3) (7.40)

where

B2(T ) = �1

2

Z
[expf��V(r)g � 1]dr
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B2(T ) is called thesecond virial coefficient. Eqn 7.40 should look familiar; it is the first three terms of the virial
equation of state. Remarkably, we see thatB2(T ) can be determined from knowledge of the pair potential energy.
For a homogeneous and isotropic system, we can use scalars for the separation of particles 1 and 2. The result is

B2(T ) = �2�
Z 1

0
[expf��V(r)g � 1]r2dr (7.41)

We can get the same result by starting directly from the pressure equation. The pressure equation, eqn 7.27, was
shown to be

P = �kBT � 2��2

3

Z 1

0

dV
dr
g(r)r3dr

Inserting the low density form ofg(r) into this equation yields

�P

�
� 1� 2��

3
�

Z 1

0
exp[��Vpair(r)]r3@V

dr
dr (7.42)

One can then show that
�P

�
= 1� 2��

Z 1

0
[expf��V(r)g � 1]r2dr (7.43)

or
�P

�
= 1 +B2(T )� (7.44)

where

B2(T ) = �2�
Z 1

0
[expf��V(r)g � 1]r2dr (7.45)

We have truncated the virial expansion, eqn 7.44, at the second term. Eqn 7.45 is the same result we obtained earlier.
The equation for the second virial coefficient is often written as

B2(T ) = �1

2

Z
f(r)dr

where
f(r) = exp[��V(r)]� 1

is theMayer f–function. This function decays rapidly to zero with increasingr for short–ranged potentials. You can
see this if you plotf(r) versus reduced temperature,T � = kBT=�.

Second virial coefficients can be measured experimentally by noting the deviations of dilute gases from ideal
behavior. Such measurements then yield a great deal of information on the nature of intermolecular forces. For
example, let’s consider a Lennard–Jones pairwise potential. Introducing a reduced length,r� = r=�, the second
virial coefficient for a Lennard–Jones fluid is

B2(T
�) = �2��3

Z 1

0

�
exp[� 4

T �
(r��12 � r��6)]� 1

�
r�2dr� (7.46)

Eq 7.46 shows that the dimensionless quantityB�
2(T

�) = B2(T
�)=�3 is auniversal function ofT �; it is independent

of the choice of� or �. This is an example of thelaw of corresponding states. We see that the integrand in eqn 7.46
is negative forr� < 1 and positive forr� > 1. WhenT � � 1, the attractive part of the potential dominates the
integrand, with a consequent lowering of the pressure below the ideal gas result. WhenT � � 1, the repulsive part
of the integrand is dominant, which raises the pressure above the ideal gas result. It follows thatB2(T

�) is negative
when the reduced temperature is low, and positive when it is high. The temperature at whichB2(T ) passes through
zero is called the Boyle temperature.
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7.6.2 Integral Equation Approach – BGY Equation

Recall that the pair correlation function,g(r), was written as

g(r) =
N !

�2(N � 2)!

R
exp[��V]dr3 � � � drN

Z(N;V; T )

We cannot solve the integral in this equation analytically, so we must make an approximation or evaluate it numeri-
cally. By assuming pairwise additivity, expandingV, and differentiating the last equation with respect tor1, we can
obtain the following expression

kBT
@g12
@r1

+
@V12
@r1

g12 + �

Z
@V13
@r1

g(3)dr3 = 0 (7.47)

The double subscript notation is used to identify interacting particles. Thus,V12 represents the pair potential between
particles 1 and 2, andg12 is the pair correlation function based onV12. Notice that eqn 7.47 isrecursive, since it
relates the pair correlation function,g(2) to the triplet correlation function,g(3).

Recall that we derived expressions for the general correlation function

g(n) = �(n)=�3

where�3 is the triplet joint probability density function. In general, we can write the recursion formula as

kBT
@g(n)

@r1
+

nX
j=2

@V1j
@r1

g(n) + �

Z
@V1;n+1

@r1
g(n+1)drn+1 = 0 (7.48)

Clearly from eqn 7.48, we can see that lower order correlation functions are given in terms of an integral over the
next higher order correlation function. Carried to the limit, we would getN � 1 such coupled equations for an
N–component system. That is, we would have one equation forg(2); g(3); � � � g(N). These recursive formulas are
exact for pairwise additive systems, but cannot be solved because we can’t calculate the higher order terms.

To solve, we need some way of relatingg(n) andg(n+1). Such a relation is called aclosurerelation. Given a
closure relation at some level, we could then solve all of the equations forg(n) below the closure level. The simplest
closure approximation was proposed by Kirkwood in the 1930s.

g
(3)
1;2;3 = g

(2)
12 � g

(2)
13 � g

(2)
23 (7.49)

The Kirkwood closure relation can be seen to be the product of independent pair–wise “probabilities”. That is, if
1,2, and 3 were completely independent of one another, theng

(3)
123 = g

(1)
1 � g

(1)
2 � g

(1)
3 , (i.e. the product of separate

“probabilities”). The closure assumed here is that thepairs are essentially independent entities. The Kirkwood
closure is also equivalent to the assumption that the potential of mean force for a triplet of molecules is pairwise
additive. That is,

w
(3)
123 = w

(2)
12 + w

(2)
13 + w

(2)
23

When the Kirkwood closure relation is used in eqn 7.47, the result is

kBT
@g

(2)
12

@r1
+
@V12
@r1

g
(2)
12 + �

Z
@V13
@r1

g
(2)
12 g

(2)
23 g

(2)
13 dr3 = 0 (7.50)

Eqn 7.50 is called the Born, Green, Yvon (BGY) equation. It isclosedin that it involves only pair correlation
functions and a pair potential. If we have a model forVij, the pair correlation functions can be solved for, using

similar equations forg(2)23 andg(2)13 . Such solutions are done numerically, but they require far less computational
power to solve than does the direct evaluation ofZ(N;V; T ). However, the Kirkwood closure relation is not very
exact, and the calculated properties at high densities can be off significantly. Since the function to be obtained in
eqn 7.50 is under an integral sign, an equation such as this one is called anintegral equation.
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7.6.3 Another Approach – The Direct Correlation Function

In the late 1950s, a new class of integral equations was developed through use of thedirect correlation function. To
see how these work, we introduce another correlation function

h(r1; r2) = g(2)(r1; r2)� 1 (7.51)

For a homogeneous, isotropic fluid,h(r12) = g(r12) � 1. h(r12) is a measure of the total influence of molecule 1
on molecule 2 at a distancer12 (i.e. thetotal correlationbetween 1 and 2.

In 1914, Ornstein and Zernike proposed a division ofh(r12) into two parts, a direct part and an indirect part.
The direct part is given by a functionc(r12), and is called thedirect correlation function. The indirect part is
the influence propagated directly from molecule 1 to a third molecule, 3, which in turn exerts an influence on 2,
(directly or indirectly) through other particles. This effect is weighted by the density and averaged over all positions
of molecules 3. Pictorially, we can think of it as is shown in Figure 7.15. The idea is that 1 is correlated with 2

1 2

1 2

1 2

3

h

c

+

c h

Figure 7.15: Direct and total correlation function

through adirect correlation plus 1 is directly correlated to 3, which is correlated to 2 directly or indirectly through
other particles.

h(r12) = c(r12) + �

Z
c(r13)h(r32)dr3 (7.52)

Eqn 7.52 is known as the Ornstein–Zernike (OZ) equation. In essence, it is a definition of the direct correlation
function, c(r) in terms of the total correlation function,h(r). Just as was done previously, recursive use of the OZ
equation leads to

h(r12) = c(r12) + �

Z
c(r13)c(r32)dr3+

�2
Z Z

c(r13)c(r34)c(r42)dr3dr4 + � � �
Pictorially, we represent this as in Figure 7.16.

At this point, you might be asking “What is the value of introducingc(r)?” It turns out thatc(r) has the same
range as a pair potential. That is, it decays to zero fairly rapidly, but exhibits non–zero behavior from zero to
distances commensurate with the potential range.c(r) is much shorter–ranged thanh(r). For a Lennard–Jones
liquid, Figure 7.17 demonstrates schematically the behavior. We see that the undulations inh(r) are due toindirect
correlations.

The next question we need to address is: What about molecular liquids? That is, what if we don’t just have
spheres but structured molecules? In this case, both intramolecular and intermolecular correlations between sites
must be considered. An extension of the OZ equation to molecular fluids forms the basis of the Reference Interaction
Site Model (RISM) of Chandler and Andersen (1972).
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Figure 7.16: Pictorial representation of the OZ equation
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Figure 7.17:c(r) andh(r) for a Lennard–Jones fluid. The undulations inh(r) are due to indirect correlations

7.6.4 Solving the OZ Equation – The Percus–Yevick and Hyper–netted Chain Approximations

The Ornstein–Zernike equation is an integral equation in two unknown functions,h(r) andc(r)

h(r12) = c(r12) + �

Z
c(r13)h(r32)dr3

If we can come up with a smart way of relatingc(r) andh(r), we can convert the OZ equation into an integral
equation in one unknown function. By solving that equation, we can obtain the structure of the fluid (i.e. geth(r)
and thusg(r)) at a given� andT . From this, we can get the fluid’s thermodynamic properties. Such an additional
equation relatingh(r) and c(r) providesclosure to the OZ equation. Together, the closure relation and the OZ
equation constitute an integral equation theoryfor the fluid structure.

Before discussing two of the most useful closure relations, the Percus–Yevick (PY) and hyper–netted chain
(HNC) equations, we need to define an additional correlation function. We define the functiony(r) as

y(rij) � g(rij)e
�Vij

We will say more about the utility ofy(r) in a minute.
The PY and HNC equations were originally derived using different methods than those used here. The PY

equation was originally derived using field theoretic techniques. The HNC equation was derived using graphical
techniques (see Rowley for a brief introduction), and by ignoring certain terms. The term “hyper–netted” chain refers
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to the graphs retained in the final expression. The PY equation can also be obtained graphically; both methods are
involved and will not be discussed here. In the 1960s, the PY and HNC equations were derived using the theory of
functionals.2 Functional calculus can also be used to derive most other integral equations.3 Rather than use these
involved techniques, we will derive the PY equation using physical arguments, and just state the HNC equation.
The approach follows closely that of McQuarrie.4

The direct correlation function was introduced to represent the direct correlation between 2 particles in a system
containing(N � 2) other particles. It is reasonable to represent the direct correlation function by a difference

c(r) = gtotal(r)� gindirect(r)

wheregtotal(r) is just the radial distribution function itself. That is

gtotal(r) = exp[��w(r)]

wherew(r) is the potential of mean force.
gindirect(r) is therefore the radial distribution functionwithout the direct interactionVpair(r) included.

gindirect(r) = exp[��(w(r) � V)]

Thus, we make the approximation that

c(r) � exp[��w(r)]� exp[��(w(r)� V)]

or equivalently
c(r) � g(r)� exp[�V(r)]g(r) (7.53)

This is the Percus–Yevick closure approximation.
Using our definition ofy(r) = exp[�V(r)]g(r) we can write the PY closure more simply as

c(r) = [1� exp(�V(r))]g(r)

= [1� exp(�V(r))][h(r) + 1]

= [exp(��V(r))� 1]y(r)

Recalling that the Mayer–f function was defined as

f(r) = exp(��V(r))� 1

we finally can write
c(r) = f(r)y(r) (7.54)

Substituting this into the OZ equation we obtain the Percus–Yevick equation:

y(r12) = 1 + �

Z
f(r12)y(r13)h(r23)dr3 (7.55)

Eqn 7.55 only involvesg(r) andV(r). It is a nonlinear, integro–differential equation that can be solved, although
with some difficulty, numerically.5 It can be solved analytically for the hard–sphere potential.

2J. K. Percus,Phys. Rev. Lett.8, 462, (1962)
3See, l. Verlet,Physica, 30, 95, (1964)
4McQuarrie, D. A.Statistical Mechanics, (1973)
5See, Gillian, M. J.Mol. Phys., 38, 1781, (1979)
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7.6.5 The PY Solution For Hard Spheres

Hard spheres are a favorite system to examine, because results can be obtained analytically. Interestingly, many
physical systems exhibit behavior that can be explained by analyzing hard sphere behavior, so we will briefly
discuss the hard sphere fluid.

There is only one potential parameter to describe a hard sphere fluid, namelyd, the hard sphere diameter. The
structure of the fluid is determined entirely by the density,�, or equivalently by thepacking fraction, defined as the
ratio of the volume of molecules to the volume of the system:

� = �
�

6
d3

Question: What is the upper limit on the packing fraction? Right! An FCC crystal with all molecules in contact:

�max =
�
p
2

6
=

�

3
p
2
= 0:74

A hard sphere system exhibits a fluid–solid phase transition (crystallizes) around a packing fraction

�f�s = 0:49; �d3 = 0:95

There is no gas–liquid phase transition. Can you see why?
Now, let’s use the PY equation to get the structure, and hence thermodynamics, of our hard sphere system. Our

discussion follows that of Hansen and McDonald.6 Recall that the PY closure relation is

c(r) = [exp(��Vpair(r))� 1]y(r)

Thus for a HS system,
c(r) = �y(r); r < d

c(r) = 0; r > d

Remembering our definition ofy(r),
y(r) = g(r) exp[�Vpair(r)]
g(r) = y(r) exp[��Vpair(r)]

we see that
h(r) = �1; r < d

h(r) = y(r)� 1; r > d

So let’s look at the OZ equation

h(r12) = c(r12) + �

Z
c(r13)h(r32)dr3 (7.56)

Applying this to the case whenr12 > d, we can get the combinations for particles 1, 2, and 3 shown in Figure 7.18.
Substitutingc andh in terms ofy, we get the following integrals

y(r12) = 0 + �

Z
A
[�y(r13)](�1)dr3+

�

Z
C
[�y(r13)][y(r32)� 1]dr3 + 0 + 0

6J. P. Hansen, I. R. McDonald, “Theory of Simple Liquids”, Academics, 1986
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Figure 7.18: Different combinations available for hard spheres 1, 2, and 3

The last two zero terms arise from integratingc(r13) whenr13 > d.
Simplifying we get

y(r12)� 1 = �

Z
A
y(r13)dr3+

�

Z
C
y(r13)dr3 � �

Z
C
y(r13)y(r32)dr3

= �

Z
r13<d

y(r13)dr3 � �

Z
C
y(r13)y(r32)dr3

If we then definer12 = r, r13 = r0, andr32 = r� r0, the OZ equation can be written

y(r) = 1 + �

Z
r0<d

y(r0)dr0�

�

Z
r0<d;jr�r0j>d

y(r0)y(jr� r0j)dr0 (7.57)

Eqn 7.57 is an integral equation in terms of the functiony(r). It has been solved with Laplace transform methods.7

The result is

c(r) = �y(r) = ��1 � 6��2

�
r

d

�
� 1

2
��1

�
r

d

�3
; r < d

c(r) = 0; r > d

where�1 =
(1+2�)2

(1��)4 , �2 = � (1+ 1

2
�)2

(1��)4 , � = �
6�d

3, the packing fraction.
Now, how do we get the thermodynamics of our system from this? There are two ways.

1. Start with the pressure equation. You can easily show that for hard spheres, the pressure equation

P = �kBT � 2��2

3

Z 1

0

dV
dr
g(r)r3dr

7Thiele, E.J. Chem. Phys., 39, 474, 1963
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can be written as
�PHS

�
= 1 +

2

3
��d3 lim

r!d+
gHS(r) � 1 +

2

3
��d3gHS(d

+)

wheregHS(d
+) is the pair distribution function at contact.

Using the PY solution

g(d+) = y(d) = �1 + 6��2 +
1

2
��1 =

1 + 1
2�

(1� �)2

Hence we may write
�P v

�
= 1 + 4�g(d+) = 1 + 4�

(1 + 1
2�)

(1 � �)2

where the superscriptv refers to the pressure obtained from thevirial equation, another name for the pressure
equation.

Finally we may write
�v

�
=

1 + 2� + 3�2

(1� �)2
(7.58)

We see that indeed the thermodynamics are described solely in terms of the packing fraction.

2. Alternatively, one can start with the compressibility equation, eqn 7.28, and get an expression for the isother-
mal compressibility. By integrating�T from the ideal gas (zero density) state to�, one can get the pressure.
The result is

�P c

�
=

1 + � + �2

(1� �)3
(7.59)

Notice thatP c andP v are not equivalent! The differences increase with increasing density. Eqns 7.58 and 7.59
give the same values for the second and third virial coefficients, but give incorrect and different values for the higher
virial coefficients. Why? The only approximation invoked has been the PY closure relation; this closure relation has
introduced some thermodynamic inconsistency into the problem, hence two values which are thermodynamically
equivalent (P c andP v) are not equal. And so it goes with integral equations – the equations are exact but to solve
them we must make approximations which make the results inexact. Even considering this flaw, integral equation
theory is still a valuable tool for studying complex systems and has made important contributions.

By examining the virial expansion for hard spheres written in terms of the packing fraction, Carnahan and
Starling8, devised a simple and accurate equation of state for hard spheres. The virial expansion for hard spheres is

�P

�
= 1 +

1X
i=1

Bi�i (7.60)

where

Bi =
�

6

�d3

�i
Bi+1

Bi being theith virial coefficient.
The first seven terms of the expansion are

�P

�
= 1 + 4� + 10�2 + 18:365�3

+28:24�4 + 39:5�5 + 56:5�6 + � � �
Because they were good chemical engineers, Carnahan and Starling found a closed form that approximates the

infinite series by noting the following:

8N. F. Carnahan, K. E. Starling,J. Chem. Phys., 51, 653, (1969)
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� B1 andB2 are both integers.

� B3 is pretty close to 18.

� Suppose thatBi for all i is given by
Bi = a1i

2 + a2i+ a3 (7.61)

UsingB1 = 4, B2 = 10 andB3 = 18, the solution to eqn 7.61 isa1 = 1, a2 = 3 anda3 = 0.

� The formula then predictsB4 = 28, B5 = 40 andB6 = 54, which agrees well with the exact expression.

� The virial expression that results,
�P

�
= 1 +

1X
i=1

(i2 + 3i)�i

may be written as a linear combination of the first and second derivatives of the geometric series
P1

i=1 �
i. It

can therefore be summedexplicitly. The result is known as the Carnahan Starling equation of state:

�P

�
=

1 + � + �2 � �3

(1� �)3
(7.62)

“Exact” results for the equation of state of hard spheres have been obtained through computer simulations. Eqn
7.62 provides an excellent fit to these exact results over the entire fluid range. You will notice that it is essentially
an average of the results obtained from the PY equation using the pressure and virial equations:

�PCS

�
=
�

�
(
2

3
P c +

1

3
P v)

.
The Carnahan Starling equation of state is widely used in perturbation theories, which unfortunately we won’t

have time to go into detail in this class. However, we already saw one perturbation theory: the van der Waals
equation of state involved a perturbation theory using the ideal gas as a reference fluid. Most perturbation theories
use the hard sphere fluid as the reference.
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Chapter 8

Introduction to Molecular Simulation
Techniques

We have seen both the power and problems associated with applying statistical mechanical theories to real problems.
While the relations are elegant, intellectually pleasing, and fairly easy to solve, they are difficult to formulate in
such a way that the solution is tractable. Moreover, the simplifying assumptions which must be made to solve the
theoretical expressions often result in a loss of the essential physics of the problem. That is to say, despite the
fact that we have a powerful, rigorous formalism for calculating macroscopic properties given a Hamiltonian, an
analytical solution to this formalism is impossible for most material systems of practical interest.

An alternative approach is to attempt to solve the full statistical mechanicsnumerically, given a model of molec-
ular geometry and energetics. Such simulations can provide, in principle,exactresults (subject only to numerical
error). In practice, simulations usually invoke approximations. However, these approximations are usually much
less drastic than those required in solving analytical theories. There are two main problems in applying simulations
to real–life problems.

1. Our knowledge of interaction potentials is limited. Quantum mechanics and empirical fitting to experiment
are the ways to overcome this problem.

2. The techniques are extremely demanding of computer time. Fast workstations and supercomputers, coupled
with smart algorithms, must be used.

Molecular simulations can be thought of as computer experiments that bridge the gap between theory and
experiment. As seen in Figure 8.1, molecular simulations require as input a molecular model consisting of the
system geometry and potentials, and a set of thermodynamic constraints that define an ensemble. Results include
macroscopic properties (thermodynamics, transport, etc.) and microscopic structure and dynamics (what do the
molecules do?). The connection between theory, simulation, and experiment is shown in Figure 8.2.

8.1 Construction of a Molecular Model

Before going into details, we need to discuss some preliminaries. Recall that we’ve already spent some time dis-
cussing molecular potential function or “forcefields”. As a reminder, we often assume pairwise additivity, such
that

V(r1; r2; � � � ; rn) =
X
i<j

Veff2 (r1; rj)

whereVeff2 is an effective two–body potential that attempts to include the effects of three–body and higher terms.
We claim that molecules with no pronounced separation of charge can be represented as a set of sites, interacting
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Figure 8.1: Input and output of molecular simulations

via a dispersion energy model (i.e. each site is a Lennard–Jones site). Consider the alkane chain shown Figure 8.3.
Such an explicit representation treats each atom as an individual LJ site, and requires interaction parameters for all
these interactions.

As an alternative, a simpler “united atom” representation is often used in which each CH3 and CH2 group of
an alkane is treated as a single interaction site, as shown in Figure 8.4 The advantage of this simpler model is that
fewer parameters are required than the model shown in Figure 8.3. This has computational advantages as we shall
see, but may not allow as high an accuracy, particularly at high densities.

For molecular fluids, we must also account for bond potentials. Typically, bond length potentials are modeled
as a harmonic

Vb(`) = 1=2kb(`� `0)
2 (8.1)

wherekb is a force constant and̀0 is the equilibrium bond length. It is usually satisfactory to make the bonds be
infinitely stiff (kb !1) unless vibrational spectra are desired.

Bond angles are also typically treated as a harmonic

V�(�) = 1=2k�(� � �0)
2 (8.2)

where�0 is the equilibrium bond angle. It is a little riskier to letk� ! 1, since bond angle variation is thought to
play a role in the dynamics of flexible molecules.

It is very important to model torsion (dihedral) angles properly, as these type of conformational motions are very
important in determining the properties of a molecular liquid. Recall that we defined a dihedral angle according to
Figure 8.5. The potential governing dihedral angle motion is frequently represented as an expansion in the dihedral
angle. For example, Ryckaert and Bellemans give the following expression for alkanes1

V� =
N�2X
i=2

5X
j=0

cj (cos �i)
j (8.3)

Such a potential function must capture the fact thattrans/gaucheinter-conversions can take place at room tempera-
ture. Schematically, a typical torsion potential looks like that shown in Figure 8.6.

Sometimes, coarser-grained models are used in molecular representations. For example, “freely jointed” chains
which resemble pearl necklaces with individual beads connected with a “finite extensible, nonlinear elastic” or
FENE potential are often used in polymer simulations. Simple “dumbbell” models can also be used. In these and
other models, intermolecular potentials can be represented with Lennard-Jones or other types of potentials.

1Ryckaert, J.P.; Bellemans, A.Faraday Discuss. Chem. Soc.1978, 66, 95–106
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Figure 8.2: Connection between theory, experiment, and molecular simulation. All three approaches are useful in
engineering design. (Figure after Allen and Tildesley)

There are various sources of Lennard–Jones parameters that may be used as an initial guess for constructing a
model. For example, the Slater-Kirkwood formula (eqn 6.10) can be used with readily available material properties
to obtain pure-component parameters. Lorentz–Berthelot combining rules can be used to get interactions between
unlike species

�ij = 1=2(�ii + �jj)

�ij = (�ii�jj)
1=2

Typically, potential parameters are refined by comparing results with whatever experimental data is available.
For example, second virial coefficients,B2(T ), heats of vaporization, solubility parameter, and critical points have
all been used to help refine parameters.

Molecules that have an expressed separation of charge (i.e. polar molecules) are typically described in terms of
a combination of LJ parameters andpartial charges. These partial charges can be obtained in a number of ways

� experimentally measured dipole moments (� =
P
qixi) or quadrupole moments (Q =

P
qix

2
i ).

� electronic density distributions, available from ab initio quantum calculations

Partial charges interact via Coulomb forces

Vzz(rij) = zizj
4��0rij

An example of a partial charge model is the so–called “TIPS” (transferable intermolecular potentials) model of
water.2 In the TIPS representation (see Figure 8.7), H2O is represented as a single LJ atom (oxygen) and three

2W. L. Jorgensen,J. Chem. Phys., 77, 4156, (1982)
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Figure 8.3: All–atom representation of butane. To parameterize the potential, we must include carbon and hydrogen
interactions.
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Figure 8.4: United atom representation of butane. This model requires fewer parameters than the one shown in fig
8.3, but is less accurate at high densities

partial charges. The model has a dipole moment of 2.25 D, while experimentally we know water has a dipole
moment of 1.85 D. Most of these fixed charge models have dipole moments that are higher than the actual dipole
moment because they don’t account for thepolarizability of the molecule. That is, the “charge” on each atomic
center will change depending on the environment it is placed in. Thus the fixed dipole moment of the TIPS model is
greater than 1.85D to account for polarizability. Newer models account for polarization in a more natural way, but
at the expense of greater complexity. This is often the case. More accurate forcefields necessarily introduce added
complexity. For example, the Matsuoka–Clementi–Yoshimine water model3 contains 10 potential parameters!

The total potential energy is the sum of all the various contributions (i.e.Vb, V�, V�, Vpair, etc.) Note that we
immediately have a problem: the pair potential requires a sum out to an infinite distance! What do we do? Because
the LJ potential is short ranged, we can try to get around this problem by truncating the potential at a certain radius,
rc (see Figure 8.8). Typically,rc � 2:5�. This causes problems, in that the discontinuity inV at rc will cause the
total energy of the system to change as pairs of molecules crossrc. In addition, this places a discontinuity in the
force atrc. There are ways of getting around this problem4 by shifting the potential so as to avoid discontinuities.

What about the portion of the potential energy that was “cut off”? The contribution toV from the truncated
“tails” of the pair potential function (the so–called “long range correction”) is calculated by direct integration, using
the energy equation

Vfull = Vc + Vlrc

= Vc + 2�N�

Z 1

rc
r2V(r)g(r)dr

3J. Chem. Phys., 64, 1351, (1976)
4Allen and Tildesley,Computer Simulation of Liquids, ch 5
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Figure 8.5: Schematic showing how the dihedral (torsion) angle of a chain is defined
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Figure 8.6: Schematic showing the energy distribution for various dihedral angle values. Notice that the
trans/gauchebarrier can be overcome at room temperature, although the all–transconformation would be preferred

In isotropic media, we can carry out this integral by assuming in this regiong(r) � 1. it is important to verify that
g(r) � 1 at the cutoff distance. If not, things like the pressure will be incorrect.

Note that potential truncation is apoorapproximation for long–range potentials, such as Coulombic interactions.
Special techniques (Ewald summations) must be used in this case.

8.2 Model System Size and Periodic Boundary Conditions

Typically, a molecular simulation is carried out with anywhere from 10 to 100,000 molecules. Larger systems are
generally prohibited due to memory requirements, and (more importantly) speed considerations. Force calculations
go asO(N2). There have been recent “million particle” simulations using massively parallel computers. For the
applications we are interested in, however, there is no need to go to this big of a simulation.

However, because we are using a very small number of particles and trying to determine macroscopic properties,
one must bevery carefulthat the results aresystem size–independent. It turns out that for low–molecular weight
liquids, simulation averages are only weakly dependent on system size forN � 100.

Unless the actual system being studied is very small (a droplet, microstructure, etc.) a simulation box with
ca. 1000 molecules will have a disproportionate number (nearly half) of molecules at the “surface”. This would
completely skew the behavior of the system. To get around this problem, we employ a trick calledperiodic boundary
conditions. The primary simulation box can be envisioned as being surrounded by images of itself; for a “cube”,
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Figure 8.7: “TIPS” model for water (after Jorgensen)
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Figure 8.8: Typical potential function, showing the effect of a truncated potential

there would be 26 images around the central box. The central box is the “unit cell”. Whenever, during the course of
a simulation, a particle exits the box, an identical particle enters through an opposite face, as shown in Figure 8.95.
Periodic boundary conditionscut off long wavelength fluctuations. Density waves longer than the box length,L are
not accounted for. What are the implications of this?

To see how we handle potential calculations using periodic boundary conditions, refer to Figure 8.10. Consider
atoms 1 and 2 in the primary (central) box. In three dimensions, there are 27 images of atom 2 in the primary box
and the images that can interact with atom 1. IfL=2 � rc, the potential cutoff radius, thenat mostone of the images
of 2 can interact with 1. The image of 2 lying closest to 1 is called theminimum image. WhenL=2 � rc, the
simulation obeys theminimum image convention.

5A good interactive demonstration of this has been developed by Prof. Hammes-Schiffer in the Chemistry department. See it at
http://www.nd.edu/chem647/project6/project6.html.
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Chapter 9

Monte Carlo Methods

9.1 Historical Background

Monte Carlo simulations are used by scientists in many fields. A number of excellent books have been written on
the subject, and the interested student should consult these references.1

The nameMonte Carlowas coined by Metropolis in 1947 to describe a class of numerical techniques developed
by von Neuman, Ulam, and Metropolis at Los Alamos near the end of World War II. These techniques were used
to simulate the diffusion of neutrons in fissionable material. The name arose because the methods employ random
numbers in the calculations, and thus resemble games of chance. (Perhaps today the technique would be called “Las
Vegas”...)

Long before this, statisticians used sampling methods to investigate problems. As an example, W. S. Gossett,
known as “student”, estimated the correlation coefficient in his ’t” distribution with the help of a sampling exper-
iment. Joel Hildebrand had his graduate students generate random samplings of spheres in a box to investigate
liquid phase properties. The novel contribution of von Neumann and Ulam at Los Alamos was the realization that
determinate, mathematical problems could be treated by finding a probabilistic analogue which is then solved by
stochastic (i.e. random) sampling.

The sampling experiments involve the generation of random numbers, followed by simple operations. This pro-
cedure is ideally suited for computers, and the arrival of the MANIAC computer at Los Alamos enabled Metropolis
and co–workers to develop the Metropolis Monte Carlo method in 1953. This method is the subject of this section.
At about the same time, Alder and Wainright developed a molecular dynamics procedure, which will be discussed
later.

Prior to the arrival of the computer, people attempted to perform such stochastic experiments physically. These
techniques are “hit or miss” Monte Carlo. An entertaining example from history: G. Comte de Buffon, a French
naturalist, discovered a theorem in mathematical probability in 1777. He found that if a needle of length` is thrown
randomly onto a set of equally spaced parallel lines,d apart (d > `), the probability that the needle will cross a line
is 2`

�d (see Figure 9.1). Thus, a simple experiment could be done to estimate�, although no one tried it until 1901.
In that year, an Italian mathematician named Lazzerini performed a stochastic experiment by spinning around and
dropping a needle 3407 times. He estimated that� = 3:1415929. You could imagine how much easier this would
be on a computer today. This is a remarkably good estimate of�. Do you think Lazzerini was honest or “very
lucky”?

One could envision estimating� with another hit or miss experiment. Imagine placing a circular pan inside a
square pan, such that the circular pan is inscribed in the square pan. Then, put the pan out in the rain. Of the total
number of drops hitting the pans (we will call itNtrials), some fraction will land inside the circular pan (Nhits).
(See Figure 9.2). Thus,

1Allen and Tildesley, ’Computer Simulation of Liquids”; Binder, K “Application of the Monte Carlo Method in Statistical Physics”;
Binder has written a number of other good books as well.
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Figure 9.1: Schematic of Buffon’s theorem and Lazzarini’s experiment
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Figure 9.2: Schematic of another hit-or-miss Monte Carlo method for estimating�. The number of raindrops falling
in the circular pan relative to the total number falling in the square and circular pans is directly related to�

� = 4
Nhits

Ntrials

Today, Monte Carlo simulations are perhaps the most powerful and commonly used technique for analyzing
complex problems. In this chapter, we will give an introduction to the method and describe some of the uses.

9.2 Monte Carlo as an Integration Method

To introduce Monte Carlo techniques, let’s first consider a way in which stochastic methods can be used to evaluate
integrals. The so–called “sample mean method” is a better way of determining integrals from stochastic “experi-
ments”. The basic problem is that we wish to evaluate the following integral

I =

Z x2

x1
f(x)dx (9.1)

wheref(x) is some arbitrary function, as shown in Figure 9.3. We can re–write the integral as

I =

Z x2

x1

�
f(x)

�(x)

�
�(x)dx (9.2)
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x x1 2

f

x

Figure 9.3: A generic 1–dimensional definite integral.

where�(x) is an arbitrary probability density function. Then, we perform a number of trials,Ntrials in which we
choose a random number� from the distribution�(x) in the range(x1; x2) and evaluatef at each step. Then,

I =

�
f(�)

�(�)

�
�(x)

where the brackets indicate that we have taken an average over theNtrials evaluations, and that we used�(x) as our
(normalized) distribution. Pictorially, this would look like Figure 9.4.

x x1 2

f

x

random "shots"

Figure 9.4: Way in which MC integration can be used to estimate an integral.

The simplest application would be to let�(x) be a uniform distribution (Figure 9.5)

�(x) =
1

(x2 � x1)
; x1 � x � x2

Then, the integral could be estimated from

I � (x2 � x1)

Ntrials

NtrialsX
i=1

f(�i) (9.3)

The justification for eqn 9.3 comes from the Mean Value theorem.
To actually do this, one would carry out the following steps.
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Figure 9.5: Uniform density distribution on the limits of the integral to be evaluated
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Figure 9.6: Distribution of the random number�

1. Generate a random number,�, uniformly on the range (0,1), as shown in Figure 9.6.

2. Get a random value in the range(x1; x2) by computing� = x1 + �(x2 � x1).

3. Calculatef(�).

4. Accumulate the sumS =
P

i f(�i).

5. AfterNtrials such attempts,I is computed from eqn 9.3. Notice that our estimate ofI gets better asNtrials

increases.

This approach can be used to estimate� by considering the equation for a circle in the first quadrant

f(x) = (1� x2)�1=2

with x betweenx1 = 0 andx1 = 1. If one uses the procedure outlined above, the estimate of� after107 trials is
3.14169.

For simple functions (i.e. one– or two–dimensional) Monte Carlo integration cannot compete with straightfor-
ward methods such as Simpson’s rule. For example, Simpson’s rule obtains� = 3:141593 after only104 function
evaluations. However, for themultidimensional integralsencountered in statistical mechanical applications, the
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sample mean method (with suitable choice of�(x)) is far superior to standard techniques. Why is this? Consider
the evaluation of the configurational integral for a system containing 10 particles, such as shown in Figure 9.7.

Z =

Z
drN exp[��V(rN )]

L

N 

L

L

Figure 9.7: A single configuration of 10 particles in a box. This system has 30 configurational degrees of freedom.

Here we can think of
f(rN) � f(r1; � � � ; rN ) = exp[��V(rN )]

ForN molecules in volumeV = L3 at temperatureT , we have a 3N–dimensional integral. ForN = O(10), we
estimateZ using MC integration as

Z � V N

Ntrials

NtrialsX
i=1

exp[��V(r(i)1 ; � � � ; r(i)N )] (9.4)

where(r(i)1 ; � � � ; r(i)N ) is a randomly selected point in the 3N–dimensional configuration space. That is, it isN
triplets of random numbers on(0; L).

A Simpson technique would require evaluatingf(rN ) at all nodes of a regular grid throughout the configuration
space. If 10 points (nodes) per coordinate are used, this would entail103N function evaluations, clearly an unrea-
sonable number even for this small–dimensional system. With Monte Carlo integration, on the other hand, one can
obtain a reasonable estimate forNtrials much less than this. Of course, our estimate gets better asNtrials gets larger,
but we will converge fairly rapidly to the actual value.

For higher–dimensional systems, e.g.N = O(100), even standard Monte Carlo integration of the type described
here becomes infeasible. To see why, consider performing a MC integration evaluation of eqn 9.4 for a hard sphere
fluid. The procedure would go something like this:

1. Pick 300 random numbers on(0; L). Taken in triplets, these numbers specify the coordinates of all 100 hard
spheres.

2. Calculate the potential energy, and thus the Boltzmann factor, for this configuration. For hard spheres, the
Boltzmann factor will only be 1 ifno two hard spheres overlap. If two of our randomly chosen molecules
overlap, the potential energy will be infinite and the Boltzmann factor for that trial will be zero.

3. As the density increases, the likelihood that we get overlap increases, until almost every random configuration
we generate contributes nothing to the integral.
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This problem is also seen if we try to get ensemble averages from MC integration. For example, if we try to
estimateA from

< A >NV T=

R
drA exp[��V]R
dr exp[��V]

�
PNtrials

i=1 Ai exp[��Vi]PNtrials
i=1 exp[��Vi]

by estimating the numerator and denominator separately using the uniform sample mean method, we still run into
difficulties at high densities.

The obvious solution is to choose our random coordinates from a non–uniform distribution in hopes of increasing
our odds of a successful function evaluation. This is referred to as “importance sampling”.

9.3 Importance Sampling

The basic idea here is that we choose random numbers from a density distribution�(x) which allows the function
evaluation to be concentrated in the region of space that makes the biggest contribution to the integral. This is most
desirable for calculating ensemble averages. We have seen that thermodynamic properties can be obtained from
ensemble averages of the form

< f >ens=

R
drNf(rN )�ens(rN )R

drN�ens(rN )
(9.5)

For example, with�ens(rN ) = �NV T (rN ) = exp[��V(rN )], we showed that

� Forf = V, we get< f >NV T= U ex, the excess internal energy.

� Forf = 1
3

P
i riF

int
i , we get< f >NV T= PV �NkBT (the virial theorem).

� For f = exp[��Vtest], we get< f >NV T= �ex, the excess chemical potential via the Widom insertion
method.

As mentioned, is we try to sample configurations at random, very few of our choices make a contribution to the
integral. Instead, we should sample our configuration spacenonuniformly, so that the more probable states (i.e. low
energy conformations) are sampled more frequently than the less probable (i.e. high energy) states. It turns out that
it is most advantageous to sample states so that the frequency of sampling a state if proportional to�ens of that state.
If we can sample states according to�ens, then calculating the ensemble average< f > amounts to taking a simple
arithmetic averageover the sampled microstates.

< f >ens=
1

Ntrials

NtrialsX
i=1

f(i)

An ingenious algorithm for sampling a multidimensional space according to a nonuniform probability distribu-
tion, and for calculating averages with respect to that distribution, was introduced by Metropolis and co–workers.2

To understand the method, we must digress and talk about Markov chains.

9.3.1 Markov Chains

A Markov chain is a sequence of trials (stochastic processes) that satisfies two conditions:

1. The outcome of each trial belongs to a finite set of outcomes, called thestate space. We describe the state
space byf�1;�2; � � � ;�m;�n; � � �g.

2Metropolis, N; Rosenbluth, A. W.; Rosenbluth, M. N.; Teller, A. H.; and Teller, E.,J. Chem. Phys., 21, 1087-1092, (1953)
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2. The outcome of each trial depends only on the outcome of theimmediately preceding trial. That is, the
memory of the system only goes one step back.

A central concept is thetransition probabilitywhich links two states�m and�n. We define�mn as theprobability
that a trial produces staten, given that the previous trial resulted in statem. �mn depends on the values ofm and
n, but is independent ofwherewithin the sequence the considered trial lies. That is,�mn is independent of “time”
or the number of trials.

By collecting values of�mn for all possiblem andn, we can form atransition probability matrix. This matrix
contains all information on the “dynamics” governing the evolution of the Markov chain. The concepts are best
illustrated by an example (after Allen and Tildesley).

Let us assume that the reliability of your computer follows a certain pattern.

� If it is up and running one day, there is a 60% chance that it will be up the next day.

� If it is down one day, there is a 70% chance it will be down the next day.

In this example, our state space has only two components, “up” (U) and “down” (D). The transition probability
matrix is

� =

 
0:6 0:4
0:3 0:7

!

The individual elements of the above matrix are

�uu = 0:6; �ud = 0:4

�du = 0:3; �dd = 0:7

Note that
P

m�mn = 1; the rows of the transition probability matrix sum to 1; the system must be in some state at
the end of a trial. This property makes� astochastic matrix.

Now let’s assume that on day 1, the computer is equally likely to be up and down. That is

�
(1) = (�U �D) = (0:5 0:5) (9.6)

What are the probabilities the computer will be up/down the next day? Applying our probability matrix, we see that

�
(2) = �

(1)� = (0:45; 0:55) (9.7)

Thus, there is a 45% chance your computer will be up on day 2, but a 55% chance it will be down.
Repeating the process, we can compute the probabilities for day 3:

�
(3) = �

(2)� = �
(1)�� = (0:435; 0:565) (9.8)

We now only have a 43.5% chance of getting any work done. We can carry this out for many more days to get our
chances in the long run. We find that:

�
(5) = (0:4287; 0:5713)

�
(6) = (0:4286; 0:5714)

�
(20) = (0:4286; 0:5714)

Clearly, there is a limiting distribution which we reached, given by the formula

� = lim
�!1

�
(1)�� (9.9)
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We see from eqn 9.9 that the limiting distribution,�, must satisfy the eigenvalue equation

�� = �X
m

�m�mn = �n

Thus,� is an eigenvector of the stochastic matrix� corresponding to an eigenvalue of 1.
Notice that� is completely determinedby �, and is not at all influenced by the initial condition (�(1)). (Try

this: start out with a different initial condition and see what you converge to). All memory of the initial state has
been lost. Markov chains in which one can ultimately go from any state to any other state are calledergodicor
irreducible. Such chainsalwayshave a limiting probability distribution.

If the transition probability matrix is full, the chain is ergodic, while if the transition probability matrix is
block diagonal, the chain is non–ergodic. In the case of statistical mechanical systems, we will have a much larger
transition matrix. It must be stochastic and ergodic. In this case, we donot know the elements of the matrix. We do
know, however, the limiting distribution...(what is it?)

9.3.2 The Metropolis Monte Carlo Algorithm

The problem facing us is that we know the probability distribution in our multi–dimensional space, but we don’t
know what the elements of the transition matrix are. For example in the NVT ensemble, the limiting distribution of
our Markov chain is the vector with elements�m = �NV T (�M ) for each point�m in phase space. Note: the multi–
dimensional space may be discrete (�m is a probability in this case) or it may be continuous, (�m = �(�m)d�,
where�(�m) is a probability density andd� is an elementary volume in the multi–dimensional space centered at
�m).

Our goal is to develop an efficient numerical procedure for sampling the multidimensional space, according to
the probability distributionf�mg. What do we mean by “sampling”? This just means that we wish to pick a finite
set of points (states)

m1;m2; � � � ;mt; � � � ;mNtrials

such that the probability of finding each statemt in the sequence is practically equal to�mt . Note that a given state
may appear more than once in our sequence. If we can sample states in this fashion, we can calculate the average of
any functionf defined on the state space as

< f >� 1

Ntrials

NtrialsX
t=1

f(mi)

The solution to the problem of how to do this is known as Metropolis (orMR2T 2) Monte Carlo.3 The idea goes
as follows. Generate the representative set of points as a sequence, each from the previous one, according to certain
stochastic rules. We will create a Markov chain of states,

m1 ! m2 ! � � � ! mt ! � � � ! mNtrials

We select the transition matrix of the Markov chain (for moving fromm to n) as:

�mn =

�
cmn; if �n � �m; n 6=m;
cmn

�n
�m
; if �n < �m; n 6=m (9.10)

It is also possible to stay in the same state

�mm = 1�
X
m6=n

�mn (9.11)

3Metropolis, N.; Rosenbluth, A. W.; Rosenbluth, M. N.; Teller, A. H.; Teller, E.;J. Chem. Phys., 21, 1087-1092, (1953)
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c is a symmetric (i.e.cmn = cnm) and a stochastic (i.e.
P

n cmn = 1) matrix. cmn is the probability ofattempting
a movefrom statem to staten.

Usually, moves are attempted only between close–lying states in the multi–dimensional space. That is, most of
the elements ofc are zero; only a few which correspond to pairs of closely lying states are non-zero. Typically,cmn

is uniform in a small region of the space around statem – meaning that an attempted move to any of thenearby
statesn is done with equal probability.

The probability ofacceptinga move fromm to n, the so–called “Metropolis selection criterion” is

min(1;
�n
�m

) (9.12)

where “min” refers to the Fortran function which selects the minimum of the two values and we have implicitly let
c be symmetric4. In words, the selection criterion states that

� If new staten is more probable that the statem from which we started, then accept the new staten as the next
state in the Markov chain.

� If the new staten is less probable than the old statem, accept the new staten with probability �n
�m

< 1.

� If the new staten is not accepted, statem is retained as the next state in the chain and its characteristics are
entered again in the averaging procedure.

Here are the properties of the transition matrix,�:

� � is stochastic:
P

n�mn = 1

� � satisfies the condition of microscopic reversibility.

�m�mn = �n�nm

That is, the probability of occurrence of the movem! n is equal to the probability of the occurrence of the
moven! m

� � is the limiting distribution corresponding to the transition matrix�. This can easily be proved by showing
that, as asserted earlier,� is an eigenvector of the stochastic matrix� with corresponding eigenvalue of 1.
That is,

�� = � (9.13)

The Metropolis algorithm ensures that all of the above criteria are satisfied. Eqn 9.13 guarantees that, regardless
of the starting point of the Markov chain, a chain long enough will asymptotically sample the probability distribution
of interest, defined by�.

As the transition matrix� is defined in eqn 9.10, we see that we only need to know� up to a multiplicative
constant; only probabilityratios appear in the Metropolis scheme. This makes the method very useful in statistical
mechanical applications.

We should mention that there are other algorithms that satisfy the transition matrix criteria listed above. So–
called Barker sampling yields

�mn = cmn�n=(�n + �m); m 6= n (9.14)

�mn = 1�
X
n6=m

�mn (9.15)

4If c is not symmetric, we must include it in the acceptance rules. There are times when we may prefer to have an asymmetric attempt
matrix. Such methods are referred to asbiased Monte Carlo. We won’t discuss this, but note that the formulas given here are a special case
of a more general set of acceptance rules.
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Eqns 9.14 - 9.15 also satisfy microscopic reversibility, but in general are not as efficient as the Metropolis algorithm.
We should re–emphasize that the Metropolis technique depends on the ergodicity of the Markov chain. That is,

there must be a non–zero multi–step transition probability of moving between any two allowed states of the system.
If allowed states are not connected, a MC simulation will converge to a result that may be a poor estimate of a
canonical average.

When the path between two allowed regions of phase space is difficult to find, we say that there is a bottleneck
in the system. We always worry about bottlenecks when performing MC simulations. Bottlenecks are particularly
troublesome when simulating two–phase coexistence, phase transitions, and dense systems. They are also a problem
when simulating systems like polymers that have many degrees of freedom. For example, Figure 9.8 shows a
schematic of the degrees of freedom of a glassy polymer. Note that in a polymeric system, the state space is really

U

Degrees of freedom, arbitrarily projected

local

global
minimum

minima

Figure 9.8: Schematic of the energy of various conformations of a polymer. The very many degrees of freedom
of the system are shown “projected” onto the x–axis. In reality, the potential energy hypersurface would have very
many dimensions. We see that a system with high barriers between states may not be ergodic, or may be difficult to
sample.

multi–dimensional, but it is shown here projected onto the x-axis for clarity.
If the thermal energy is much lower thankBT and a move consists of small local perturbations such that a

Markov chain connecting local minima must pass over high energy states, a configuration will only explore the
local region of the state space near its initial configuration. The average obtained from such a simulation would
be dependent on the starting configuration, and would clearly not be an ensemble average. Special techniques for
attacking these problems must be developed. We won’t go into these methods in great detail.

Next, let’s consider the basic procedure one follows in conducting Metropolis Monte Carlo. The steps are
outlined in Figure 9.9 and are described in the next section.

9.3.3 Flow of Calculations in Metropolis Monte Carlo

Figure 9.9 shows the general calculation scheme used in a Metropolis Monte Carlo simulation. An algorithm would
go as follows.

1. Starting from an initial statem, an elementary move is attempted.

2. A move is attempted to neighboring staten.

3. The probabilities of statesm andn are compared.

4. Using the Metropolis selection criterion:

� If staten is more probable, the move is immediately accepted.
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Initial state m

move to neighboring state n with probability 

states near m.

Attempt elementary move:

cmn.  n is typically selected randomly from

Compare a priori probabilities, 

ρ    ρmn

ρn > ρ m-
: state n is 

taken as the next state 
in the Markov chain.  n
becomes the current state

ρ n
ρ< m: generate

with ratio ρ n / ρ m

state n taken 
as the next state 
in chain with 
probability 

ρ ρ

state m retained
as next state in
chain with
probability 
1 - 

n / m
ρn / ρ m

Has desired number of states been sampled?

current state used in computing averages

yes

finished!

no

random number, compare

move accepted move rejected

Metropolis Monte Carlo

Figure 9.9: Basic flowsheet for the Metropolis method

� If staten is less probable, a random number� on (0; 1) is generated. If�n=�m � � accept the move and
the new state isn. If �n=�m < �, reject the move.

� The “new” state (n for accepted moves,m for rejected moves) is taken as the current state, and used in
computing averages.

5. We iterate many times (ca.106) and compute averages. Stop when convergence is reached.

9.3.4 Example: Canonical Ensemble MC of a Simple Liquid

Let’s give an example of a simple application of the Metropolis method. Assume we have a system comprised of a
simple liquid (i.e. Ar). We assume we have pairwise LJ interactions. Our objective is to generate a sequence ofN
molecules in volumeV that asymptotically samples the probability density of the canonical(NV T ) ensemble.

Our multi-dimensional configuration space is given by(r1; � � � ; rM ). Individual “states” are simply different
configurations or atomic arrangements. The probability distribution is the canonical ensemble, namely

�m = �NV T (r
(m)
1 ; � � � ; r(m)

N )drN (9.16)

wheredrN is an elementary volume element in configuration space. The ratio of two probabilities is

�n=�m ! �NV T (r
(m)
1 ; � � � ; r(m)

N )

�NV T (r
(n)
1 ; � � � ; r(n)N )

=
�NV T
n

�NV T
m

(9.17)

where we note that
�NV T (r

(m)
1 ; � � � ; r(m)

N ) � �NV T
m =
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exp[��V(r1; � � � ; rN )]
Z(NV T )

� exp[��Vm]
Z

Thus,
�NV T
n

�NV T
m

=
exp[��Vn]
exp[��Vm] = exp[��(Vn � Vm)] = exp[���Vm!n] (9.18)

Given this, we write the Metropolis acceptance probability as

min

 
1;
�NV T
n

�NV T
m

!
=

�
1; if Vn � Vm;
exp[���Vm!n]; if Vn > Vm (9.19)

Notice that the Metropolis selection criteriononly involves potential energy- we do not need to know the configu-
rational integral. Using eqn 9.19, we could carry out a Metropolis Monte Carlo simulation of our atomic liquid. To
see exactly how, we need to go into a few more details.

9.3.5 Metropolis Method: Implementation Specifics

δ r (max)

R

i

Figure 9.10: An example of a move in Metropolis Monte Carlo. The underlying stochastic matrixc allows particles
to move to neighboring positions, defined here as residing inside the shaded box.

The first detail to decide upon is the form ofc, the underlying stochastic matrix. In the typical implementation,
we attempt to take the system from statem to neighboring staten with equal probability, so thatcmn = cnm.
Figure 9.10 shows a system with six atoms arranged inside a box. Such a configuration represents statem. To move
to another state,n, we perform the following steps:

1. Choose an atom at random. Here, we pick atomi at positionr(m)
i

2. Define a “local” or “neighboring” environment by a square (cube or sphere in three dimensions) centered on
i. The edge length (or radius) of the local region isÆrmax. We give the local cube the symbolR. Note that if
we use a cube (as done below), the sides are2Ærmax long.

3. On the computer, there is a large but finite set of new configurations,NR within the cubeR. If each one is of
equal probability, we have

cmn = 1=NR; r
(n)
i 2 R

cmn = 0; r
(n)
i =2 R
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Such a scheme is easily implemented. An atom is chosen at random and given a uniform, random displacement along
each of the Cartesian axes. An adjustable parameter,Ærmax, controls the “boldness” of the attempted move: small
displacements result in high acceptance rates but slow evolution; large displacements yield large configurational
changes, but get rejected more often.Ærmax is typically adjusted so that about 50% of the attempted moves are
successful.

A piece of FORTRAN code to implement the displacements might look like:

rxnew = rx(i) + (2.0 * rranf(iseed) - 1.0) * drmax
rynew = ry(i) + (2.0 * rranf(iseed) - 1.0) * drmax
rznew = rz(i) + (2.0 * rranf(iseed) - 1.0) * drmax

After a displacement is made, the energy of the new state is compared to the energy of the old state. The
Metropolis selection rule is used to decide whether or not this new state is accepted. To see that the Metropolis
method does indeed work, we refer to Figure 9.11. If a move fromm to n is downhill, ÆVnm � 0 and the move is

1

always 
accept

accept

reject
X

X

ζ

ζ

δV Vδnm

2

1

exp(- βδ   )V

0

Figure 9.11: The Metropolis selection criterion does indeed sample from the proper distribution, shown here as a
curve. See text for an explanation

always accepted. (That is, the transition probability for this move is

�mn = cmn

For “uphill” moves, a random number� is generated uniformly on (0,1). If� < exp[��Vnm], (�1 in the figure),
the move is accepted. Otherwise, (�2), the move is rejected. Over the course of the simulation, the net result is that
energy changes such asÆVnm are accepted with probabilityexp[��ÆVnm].

9.3.6 Other Technical Considerations

For molecular systems, the elementary moves must change all the configurational degrees of freedom. That is, it
isn’t enough to simply translate molecules. Instead, we must perform rigid translationsas well asrigid rotations,
and conformational moves (i.e. rotations about bonds). One way is to randomly change one particular generalized
coordinate and accept or reject this “move” with the standard Metropolis weighting. This is formally correct, but
can you see any potential problems with this? How might you do this in a more efficient way?

The development of new and more efficient Monte Carlo moves is the subject of active research. Recent ad-
vances utilize “configurational bias” methods and various other tricks to efficiently sample these internal degrees of
freedom.

Another question we have to ask is: what is the starting configuration? We know that the final result should be
independent of the starting configuration, but from a practical standpoint, we have to start someplace. How do you
do this? There are a few guidelines you can use. First, it is desirable to start in a high probability (low energy) state.
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This will minimize the amount of time it takes for your system to “equilibrate”. Since you are generally interested
in equilibrium properties, you should not take any averages while the system approaches equilibrium. Thus, all
the time it takes to go from the initial configuration to the “equilibrated” configuration is wasted. Starting close to
equilibrium minimizes this wasted time. A traditional approach is to start all the molecules from an fcc lattice. As
moves progress, the lattice “melts” and a liquid is obtained. This method ensures none of the molecules are initially
overlapping, but it can often take a long time for the crystalline order to be lost. An alternative is to randomly shoot
molecules into a box and then perform energy minimization to relax overlaps. This helps speed equilibration, but
getting all the molecules into the box initially can be difficult at higher densities. Once a configuration has been
generated and a simulation run, you can always use a “snapshot” from this simulation as a starting point for a new
configuration, as long as the conditions are similar.

The next question is: once an initial configuration is generated, how do you equilibrate the system? Initially, we
are in a particular state. The Markov chain will asymptotically sample the ensemble of interest. The initial period
of the simulation is an equilibration period, and must be discarded when calculating ensemble averages. At the end
of the equilibration period,all memory of the starting configuration should be lost.

To check whether the system has in fact reached equilibrium, we do the following. We monitor the potential
energy and pressure. Run the equilibration until there is no systematic drift in either quantity, only fluctuations about
a mean. If you started from a lattice, make sure all indications of initial order have vanished. (Translational and
orientational order parameters show no order in fluid). Finally, for fluid simulations, the mean–square displacement
should grow linearly with time, indicating diffusive behavior. The rule of thumb is: low–molecular weight systems
require 500N – 1000N steps to equilibrate, whereN is the number of molecules. (1N steps is frequently called a
“cycle” in the Monte Carlo community).

9.4 Application of Metropolis Monte Carlo: Ising Lattice

It is common to study phase transformations with a simplified lattice model. AnIsing lattice is such a model.
Consider a system ofN spins on a lattice. In the presence of an external magnetic field,H, the energy of a
particular state� is

E� = �
NX
i=1

H�si � J
X
ij

sisj (9.20)

The first term is the energy due to the individual spins coupling with the external field, and the second term is the
energy due to interactionsbetweenspins. We assume that only nearest neighbors interact, so the sum is over nearest
neighbor pairs. A spin system with this interaction energy is called an Ising model.J is called a coupling constant,
and describes the interaction energy between pairs. WhenJ > 0, it is energetically favorable for neighboring pairs
to be aligned. (Recall that we already examined a system with non–interacting spins in the presence of an external
field when we discussed polymeric systems).

If J is large enough (or temperature low enough), the tendency for neighboring spins to align will cause a
cooperative phenomena calledspontaneous magnetization. Physically, this is caused by interactions among nearest
neighbors propagating throughout the system; a given magnetic moment can influence the alignment of spins that
are separated from one another by a large distance. Such long range correlations between spins are associated with
a long range order in which the lattice can have a net magnetizationeven in the absence of an external magnetic
field. The magnetization is defined as

< M >=
NX
i=1

�si

A non–zero< M > whenH = 0 is calledspontaneous magnetization.
The temperature at which a system exhibits spontaneous magnetization is called theCurie temperature(or

critical temperature),Tc. Tc is therefore the highest temperature for which there can be a non–zero magnetization
in the absence of an external magnetic field.
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ForTc > 0, an Ising model will undergo anorder–disorder transition. This phenomenon is similar to a phase
transition in a fluid system. Since lattice order–disorder transitions are simpler than fluid phase transitions, we study
these and try to understand the basic physical processes involved in fluid phase transitions.

Ising lattices do not show an order–disorder transition in one dimension, but they do in two and higher dimen-
sions. (To understand why, think about the energetics involved in creating an “interface” separating two regions
with different spin states).

The partition function for a one–dimensional lattice can easily be solved for. In two–dimensions, the problem is
more difficult; Lars Onsager showed in the 1940s that forH = 0, the partition function for a two–dimensional Ising
Lattice is5

Q(N; �; 0) = [2 cosh(�J)eI ]N (9.21)

where

I = (2�)�1
Z �

0
d� ln(

1

2
[1 + (1� �2 sin2 �)1=2])

with
� = 2 sinh(2�J)=cosh2(2�J)

This result was one of the major achievements of modern statistical mechanics.6

It can be shown thatTc = 2:269J=kB . Furthermore, forT < Tc, the magnetization scales as

M

N
� �(Tc � T )�

The three–dimensional Ising model has yet to be solved analytically; numerical simulations have shown that the
critical temperature in three dimensions is roughly twice the value for two dimensions.

Physically, the Ising lattice shows many of the same characteristics as a fluid phase. In particular, the magnetic
susceptibility, defined as

� = (< M2 > � < M >2)=kBT

should diverge at the critical point. That is, local magnetization fluctuations become very large near the critical
point, just as density fluctuations become large near the critical point of a fluid. Small variations inkBT=J can lead
to spontaneous phase changes.

We also see in Ising lattices that thecorrelation length, the distance over which local fluctuations are correlated,
must become unbounded at the transition. Physically, such a transition can be shown schematically as in Figure 9.12
The correlation length can be thought of as the “size” of the liquid droplets that form as a gas condenses; when the
droplets get large enough, gravitational forces cause them to separate from the vapor, and a liquid forms.

9.5 Grand Canonical Monte Carlo Simulations

It is often convenient to conduct Monte Carlo simulations in ensembles other than the canonical ensemble. To do
this, one must construct a Markov chain with a limiting distribution equal to that of the probability distribution of
the chosen ensemble. We describe here two such simulation techniques: grand canonical ensemble Monte Carlo
(GCMC) is described in this section, and a relatively new technique, Gibbs–ensemble Monte Carlo, will be described
in the next section.

Recall that in the grand canonical ensemble, the chemical potential,�, volume,V , and temperature,T are held
constant. The probability density corresponding to the grand canonical ensemble is

�(rN ;N) =
1

N !

exp(N��)

�3N
exp[��V(r1; � � � ; r1)] 1

�
(9.22)

5I will provide you with a Metropolis code which will allow you to further investigate the properties of the 2–D Ising lattice.
6Onsager was trained as a chemical engineer, and goes down as one of the greatest statistical mechanicians of all time.
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As T approaches T   , correlation length increasesc

Figure 9.12: Representation of a 2-D Ising lattice. The critical temperature is being approached as we move from
left to right. As this occurs, the correlation length of like regions (i.e. black and white squares) increases. AtTc, we
get an order–disorder transition, analogous to condensation

For convenience, we usually work withscaledcoordinates:

(s1; � � � ; sN )

where
s�;i = V �1=3r�;i; 0 � s�;i � 1

Thus we write
�(rN ;N)drN = �(sN ;N)dsN

where
�(sN ;N) = V N�(rN ;N)

Now we can write

�(sN ;N) =
exp[��(V(s)�N�)� lnN !� 3N ln� +N ln]

�

We see the advantage of this; the dimensions of�(rN ;N) depend onN , whereas�(sN ;N) is dimensionless.
Now, let’s consider two statesm andn. If we take the ratio of the two�(sN ;N) associated with each state, we

get
�n
�m

=
exp[��(Vn �Nn�)� lnNn!� 3Nn ln� +Nn lnV ]

exp[��(Vm �Nm�)� lnNm!� 3Nm ln� +Nm lnV ]

= exp[��(Vn � Vm) + ��(Nn �Nm)� ln
Nn!

Nm!
�

3(Nn �Nm) ln� + (Nn �Nm) lnV ]

Now, let’s imagine we create a particle in our system; this corresponds to moving from statemwithNm particles
to staten with Nn particles, whereNn �Nm = 1. In this case,

�n
�m

= exp[��(Vn � Vm) + ��� ln(Nm + 1)� 3 ln� + lnV ]

= exp

�
��(Vn � Vm) + ln

�
zV

Nm + 1

��
(9.23)
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wherez = exp[��]=�3 is a constant of the simulation.
For the destruction of a molecule, we haveNn �Nm = �1

�n
�m

= exp[��(Vn � Vm)� ��+ lnNm + 3 ln�� lnV ] =

exp

�
��(Vn � Vm) + ln

�
Nm

zV

��
(9.24)

We can sample from the proper distribution by conducting three elementary moves.7

1. A molecule is displaced

2. A molecule is destroyed, and no record of its position is kept

3. A molecule is created at a random position in the system

Pictorially, we can think of this process as is depicted in Figure 9.13 The acceptance probabilities for the three

translation

creation

destruction

equal
probabilityN molecules

Figure 9.13: Schematic of the types of moves in GCMC: displacement, creation, and destruction

moves, given a symmetric attempt matrix, are

1. Translation:min(1; exp(���V))

2. Creation:min
�
1; exp

�
���V + ln

�
zV
N+1

���

3. Destruction:min
�
1; exp

�
���V + ln

�
N
zV

���
The idea then is to pick a chemical potential, temperature, and volume and conduct a simulation following the

above acceptance rules. The system will naturally evolve to the proper density consistent with those thermodynamic
constraints.

The major advantage of GCMC simulations is that the free energy can be calculated directly once the average
pressure and number of particles are collected. That is,

A=N = �� < P >�V T V

< N >�V T
(9.25)

From eqn 9.25, all the thermodynamic properties may be computed. The drawback of this approach is that random
insertions and conformational changes are often accepted with very low probabilities in high density systems. This

7Such an algorithm was originally proposed by Norman, G. E. and Filinov, V. S.High Temp.(USSR), 7, 216-222, (1969)
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can cause difficulties in convergence for standard GCMC methods. Generally speaking, the various moves must be
accepted with at least 0.5% for convergence to be confidently determined. There are a number of variations on the
basic scheme. In particular, we just mention Adams’ method8 which is very useful for computing sorption equilibria
for surfaces and pores.

9.6 Gibbs Ensemble Monte Carlo

A particularly powerful technique for studying phase equilibria was developed by Panagiotopoulos in 1987.9 To
demonstrate how it works, we will follow a slightly different derivation than the one used in the original paper.

Consider a large region, represented by the box in Figure 9.14. The box is at constantN , V , T . There are two
“sub–regions” labeledI andII that have volumesV I andV II , particle numbersN I andN II , and energiesEI and
EII . Thetotal volume isV = V I + V II , total number of particles isN = N I +N II .

I II

E
N
V

E
N
VI II

II

III

I

Total system:

V = V  + V
N = N  + N
T = constant

I

II

II

I

Figure 9.14: Schematic showing the system considered in the Gibbs ensemble.

We think of the individual regions as large macroscopic volumes of coexisting phases; the “surface” separating
the two regions is devoid of any physical significance and doesnot represent an actual interface. We want to avoid
interfaces in this method. Thus, the particles located inside the sub–regions are considered to be located deep inside
the phases represented by the conditions of sub–systemsI andII. The two sub–system boxes taken together form a
system which is representative of the canonical ensemble at constantNV T . We now describe the three moves used
in the technique.

1. Particle Displacements:

Each sub–system box is independent in this step. Since the arguments for particle movement apply to both
sub–systems, we will only consider the movement of particles in boxI.

The box is represented by the canonicalN IV IT ensemble. States in this ensemble occur with a probability
proportional toexp[��VI ], whereVI is the configurational energy of the system in phaseI. These states are
generated using a normal Metropolis algorithm:

8Adams, D. J.Mol. Phys., 29, 307-311, (1975)
9A. Z. Panagiotopoulos,Mol. Phys., 61, 813-826, (1987)
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(a) A particle in boxI is chosen at random.

(b) The particle is given a random displacement to a new trial position in boxI.

(c) The trial move is accepted with probability min(1;PI
move), wherePI

move is the ratio of the probabilities
of the new and old state. That is

PI
move =

exp(��VInew)
exp(��VIold)

or
PI
move = exp(���VI) (9.26)

where�VI is the energy change for the trial move. If a move is rejected, the old state is recounted in
the Markov chain of states. As mentioned, an identical procedure is applied to boxII. These moves
thermally equilibrate the particles in the two boxes.

2. Volume Changes:

We begin this step by considering boxI as part of the isothermal–isobaric ensemble (constantN IPT ). Since
we will see that the move for boxI is perfectly correlated with the move for boxII, we also note that boxII
is considered part of the constant(N IIPT ) ensemble.

A trial move consists of

(a) Choosing a random volume change�V for box I.

(b) For boxI, the ratio of the probabilities of the new and old states is

PI
vol =

exp[��P (V I +�V )� �VInew +N I ln(V I +�V )]

exp[��PV I � �VIold +N I ln(V I)]

PI
vol = exp[��P�V � ��VI +N I ln(V I +�V )�N I ln(V I)] (9.27)

(c) Note that since the total volume of the two boxes is conserved, a volume change for boxI means that
a simultaneous volume change of��V must be performed for boxII. Such a move generates states
from the isothermal–isobaric(N IIPT ) ensemble.

(d) We assume that the pressureP in phasesI andII are equal; this is one of the criteria for coexistence of
the two phases.

(e) The probability of the volume change for boxII is, using similar arguments as above:

PII
vol = exp[�P�V � ��VII +N II ln(V II ��V )�N II ln(V II)] (9.28)

(f) Theoverall ratio of the probabilities for the combined volume changes is

Pvol = PI
vol �PII

vol

Pvol =

exp

 
��

"
�VI +�VII �N IkBT ln

V I +�V

V I
�N IIkBT ln

V II ��V

V II

#!
(9.29)

(g) The volume change move is accepted with probability min(1;Pvol)
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(h) If the trial move is rejected, the old state is recounted in the Markov chain. By multiplying the prob-
abilities in eqn 9.29, we make the assumption that the Markov chains sampled by each region are not
affected by the fact that the two volume changes are perfectly correlated. It is thought that this is a good
approximation away from the critical point.

3. Particle Interchanges:

We again consider boxI, which represents the(�V IT ) ensemble. We attempt to create a particle in boxI.

(a) A position in boxI is chosen at random.

(b) We attempt to place a particle in the randomly chosen spot.

(c) Such a move creates a “new” configuration for boxI. The ratio of the probabilities of the new and old
states is

PI
ex =

exp[��VInew + �(N I + 1)�� ln(N I + 1)!� 3(N I + 1) ln�+ (N I + 1) lnV I ]

exp[��VIold + �N I�� lnN I !� 3N I ln�+N I lnV I ]

PI
ex = exp[���VI + ln

 
zV I

N I + 1

!
] (9.30)

where the activity coefficient,z is defined as

z = exp(��)=�3

� is the de Broglie wavelength of the particles and� is the chemical potential.

(d) Because the total number of particles must be conserved, creation of a particle in boxI must be accom-
panied by the simultaneous destruction of a particle in boxII. Box II is a representative sample of the
grand canonical ensemble at constant�V IIT . �must be the same in each box, since the two systems are
in coexistence. To complete the exchange move, an atom in boxII is chosen at random and destroyed.

(e) The ratio of the probabilities of the new and old states for boxII is

PII
ex =

exp[��VIInew + �(N II � 1)�� ln(N II � 1)!� 3(N II � 1) ln�+ (N II � 1) lnV II ]

exp[��VIIold + �N II�� ln(N II)!� 3N II ln�+N II lnV II ]

= exp[���VII � ��+ lnN II + 3 ln�� lnV II ]

or
PII
ex = exp[���VII + ln(N II=zV II)] (9.31)

(f) The probability of the overall step is thus

Pex = PI
ex �PII

ex

Pex = exp

 
��

"
�VI +�VII + kbT ln

V II(N I + 1)

V IN II

#!
(9.32)

(g) A trial exchange is then accepted with a probability ofmin(1;Pex). Rejected moves are recounted in
the Markov chain.
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(h) To satisfy microscopic reversibility, creations and destructions in the two boxes must be attempted with
equal probability. This is easily achieved by choosing boxI or II for the creation attempt with equal
probability during a simulation.

(i) If box II is chosen for the creation, superscriptsI andII are exchanged in eqn 9.32.

Nothing in the theoretical development dictates the relative number of the three moves; one chooses the ratio of
moves to most rapidly equilibrate the system. Typically, one performs severalNV T–moves, a single attempted
volume change, and several exchange moves per cycle. One must include long–range corrections in the evaluation
of the energies in the volume change and exchange steps, since both moves involve a change in density of the system
10.

Since neither the pressure or chemical potential are specified before the start of the simulation, these must be
calculated using the virial theorem and Widom insertions. Since both boxes should have the same pressure and
chemical potential, this is a useful check of the simulation.

9.6.1 Generalization of the Gibbs Technique

The Gibbs method can be used for atomic or molecular systems. The above derivation has focused on atomic
systems. For molecular systems,NV T–type moves will also include orientational and conformational changes.
�V T–type moves will also involve giving the inserted molecules random orientations. If the molecules are large
compared to the void spaces, special biasing techniques will have to be used to efficiently insert the molecules (as
are required in GCMC simulations). Likewise, in a dense medium, simple displacement/reptation moves may not be
adequate to properly thermally equilibrate the systems. Special techniques like configurational bias and concerted
rotation moves may be required.

We can also easily extend the Gibbs method to mixtures. All the moves are the same as in the single–component
case, except the particle interchange. In eqn 9.32,N I andN II are now the number of moleculesof the species
being exchanged. For example, with a mixture ofA andB we would haveN I

A, N II
A , N I

B, N II
B with N = N I

A +
N II
A +N I

B +N II
B . To ensure microscopic reversibility, the following steps must be taken in the exchange moves

1. Choose either boxI or II for the trial creation with equal probability.

2. Select with a fixed but otherwise arbitrary probability which species is to be exchanged. That is, we could
selectA 20% of the time andB 80% of the time. Alternatively, we could select each half the time. Wecannot
simply choose a particle at random from one of the boxes for interchange, since microscopic reversibility
must apply to the creation and destruction of eachspeciesseparately.

3. Once a species is chosen, we randomly pick a location for creation and randomly pick one of those species
for destruction.

Note that it is possible to “empty” one box of a species completely. This would happen frequently in a multi–
component simulation in which one of the species was present in small amounts (low concentrations). It is stated that
when a box is emptied, “the calculation should continue in the normal fashion”. This can be justified by considering
the limiting case of an infinite dilution distribution coefficient calculation. In this limit, a single particle could be
used for that species in the total system.

The method can be generalized to include a constant pressure ensemble for mixtures. This would be useful for
specifying the coexistence pressure in advance of the simulation. In such a simulation, the total system volume
would no longer be constant, and volume changes of the two boxes would occur independently of one another. The
acceptance rules are the same as for anNPT simulation of two independent regions. Note that a constant pressure
Gibbs ensemble only has meaning in the case of mixtures, since for pure components the number ofintensive
variables that can be independently specified, in addition to the condition of two–phase equilibrium, is one – the

10See Allen and Tildesley, pp 64-65
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temperature. (Recall that the Gibbs phase rule isF = C � P + 2. Thus, for a pure system,F = 1� 2 + 2 = 1. A
two–component, two–phase mixture, however, would allowT andP to be specified).

A membrane system could also be simulated using an extension of the Gibbs technique. For a semi–permeable
membrane, only the chemical potentials of the membrane–permeable species would be equal in the two coexisting
phases. The other species would have no constraint on chemical potentials. Both regions can be maintained at
constant volume. Particle exchanges would take place for the membrane–permeating species only. The pressure
of the two phases is therefore not constrained, and a pressure difference consistent with the equality of chemical
potentials of the permeating components exists. The osmotic pressure could therefore be computed.

One could alsoimposea pressure difference across the membrane (i.e. set the osmotic pressure). In this case,
only the permeable species gets exchanged. In addition, the volume rearrangement step should take into account the
osmotic pressure� = P I � P II . Volume rearrangements are accepted with a probability given bymin(1;Pvol),
where

Pvol =

exp

 
��

"
�EI +�EII �N IkBT ln

V I +�V

V I
�N IIkBT ln

V II ��V

V II
+��V

#!
(9.33)

9.6.2 Additional Computational Details for Monte Carlo Simulations

As mentioned before, a simple way of starting the simulation is to start with a face–centered lattice configuration,
with the desired number of particles for each region placed randomly on the lattice.

Simulation cycles consist of sequential displacements (i.e.NV T moves) of all particles, a single volume fluctu-
ation, and a number of exchanges. Displacements are selected randomly from a uniform distribution. The maximum
displacement is adjusted in both regions to give an average acceptance ratio of 50%. After all the particles have had
displacements attempted, a single trial volume change is performed. The attempted volume change is again selected
at random from a uniform distribution, and maximum displacements are adjusted to give a 50% acceptance ratio.
Note that energy and pressure calculations must be performed after a volume change. Long range corrections to the
potential need to be used. This is done by integrating the potential from one–half the box edge length (the potential
cutoff) to infinity and settingg(r) = 1:0. Finally, a number of exchange attempts are made. To do this, it is decided
at random and with equal probability which box will receive a particle (and consequently, which box will donate a
particle). A point is then chosen at random in the recipient box, and a particle is chosen for destruction at random
in the donor box. For multi–component exchanges, the donor/recipient boxes are again chosen at random and with
equal probability, then theidentity of the exchange particle is determined at random, using a fixed probability for
each species. The probability is best set so that approximately the same number of successful exchanges takes place
for all species.

The chemical potential can be easily and efficiently computed during the course of the simulation and used to
provide internal consistency checks on the simulation. To do this, the interaction energies calculated during the
particle exchange steps are equivalent to the “ghost” particle energy of the Widom insertion method. That is, the
potential energy of a potential exchange step of particlei, Vi;ex can be used in the following formula

��i;r = � lnhexp(��Vi;ex)i (9.34)

where�i;r is the residual chemical potential of speciesi. Vi;ex is the interaction potential of speciesi with the rest
of the fluid in the recipient box,including long range corrections. The chemical potential can therefore be evaluated
in both regions with no additional computational cost. This can serve as a check for equilibration. It should be
noted that eqn 9.34 is strictly only valid in theNV T ensemble; it needs to be modified for application in theNPT
ensemble. However, since the volume fluctuations in the Gibbs method are small away from the critical point, eqn
9.34 gives essentially identical results to the other expressions. Thus, one can use eqn 9.34 as an approximate means
of checking for internal consistency.
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For mixtures, constant–pressure calculations appear to be the best suited over constant total volume. Constant
pressure simulations give lower uncertainties for the compositions of the coexisting phases, and no uncertainty for
the coexistence pressure. However, constant pressure simulations give somewhat higher uncertainties for densities.
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Chapter 10

Molecular Dynamics Methods

10.1 Introduction

Up to this point, we have been interested in computing thermodynamic information for our model system. The
Monte Carlo methods mentioned in the last section are very powerful tools for addressing these issues. There is
another technique that is commonly used to simulate both equilibrium andnonequilibriumproperties of fluids and
materials; the technique is referred to asmolecular dynamics.

The objective of molecular dynamics methods is to simulate the evolution of an atomistic model in time. To do
this, we “simply” solve the classical equations of motion for a given atomistic model. During such a simulation,
we wish to accumulate estimates of structural, thermodynamic, transport, and dynamic properties. We do this by
taking time averages. Remember that one of our major assumptions was thattime averageswere equivalent to
ensemble averages. Thus we should obtain the same thermodynamic information from a molecular dynamics (MD)
simulation as we do from a Monte Carlo (MC) simulationusing the same model. In addition, MD simulations can
give us dynamic information that MC simulations cannot. Of course, there are tradeoffs, which we will discuss in
detail later. However, one of the biggest tradeoffs is that MD simulations tend to be more complex to program and
conduct, and efficient sampling can be more difficult.

10.2 Formulation of the Molecular Dynamics Method

We wish to solve the classical equations of motion for a system ofN particles interacting via a potentialV. The
most fundamental way of writing these equations is to use the Lagrangian form (see eqn 3.26):

d

dt

�
@L
@ _qk

�
=
@L
@qk

(10.1)

where the Lagrangian functionL(q; _q; t) is defined in terms of the kinetic and potential energies as

L(q; _q; t) = K(q; _q; t)� V((q; t)
In general,L is a function of the generalized coordinatesqk, their time derivatives_qk, and timet.

Now consider a system of atoms described by Cartesian coordinatesri. Recall that for this case,

K =
NX
i=1

p2i
2mi

V =
NX
i=1

v1(ri) +
X
j>i

v2(ri; rj) + � � �
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Eqn 10.1 can therefore be written as
mi�ri = fi (10.2)

mi is the mass of atomi and the force on atomi is

fi = rriL = �rriV

This set of equations are often called Newton’s equations of motion.
These equations apply to the center of mass of the molecule;fi is the total force acting on the center of mass

of moleculei due to all the interactions in the system. (Note that similar equations for molecular systems that can
exhibit rotational motion, etc. can also be written using eqn 10.1; we will address this topic shortly).

Now, we can also write the equations in terms of the Hamiltonian. Recall that the definition of momentum
conjugate to the generalized coordinateqk was:

pk =
@L(q; _q; t)

@ _qk

Recall also that the Hamiltonian was defined in terms of the Lagrangian formulation as

H(q; _q; t) =
X
k

_qkpk �L(q; _q; t)

We have already seen that if the generalized coordinate definitions do not depend explicitly on time and if the forces
are derivable from a conservative potentialV(q) then the Hamiltonian isa constant of the motion. In such an
instance, the Hamiltonian is equal to the energy of the system:

H(q; _q; t) = E = constant

and Hamilton’s equations are

_qk =
@H
@pk

_pk = �@H
@qk

If the Hamiltonian does not depend explicitly on time (depends on time only through the time dependence ofp

andq), then it is a constant of the motion and the system isconservative. Given a conservative system, we can write
the Cartesian equations of motion from Hamilton’s equations as

_ri =
_pi
mi

(10.3)

_pi = �rriV = fi (10.4)

We can therefore compute center of mass trajectories by either solving a set of 3N second order differential equa-
tions (eqn 10.2) or 6N first order differential equations (eqns 10.3-10.4).

As we will see shortly, we often imposeconstraintson our system (for efficiency reasons). In this case, the
Newtonian equations of motion would still be

mi�ri = fi

but
fi = �rriV + gi

wheregi is a constraint force. Notice that with constraints, not allri are independent.
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10.3 Some General Features of the Equations of Motion

In an isolated systemof interacting molecules, in the absence of any external fields, the following quantities are
conserved

� H, the total energy

� P =
P

i pi, the total linear momentum

� L =
P

i ri � pi, the total angular momentum

Energy conservation applies whether or not we have an external field. The only requirement is that there be no time–
or velocity–dependent forces acting on the system. These last two conditions can be rationalized by the following
argument: For any set of particles, we can can always choose six generalized coordinates such that changes in these
coordinates correspond to translations of the center of mass and rotations about the center of mass of the system
as a whole. Changes in the other 3N -6 coordinates would then only involve motion of the particlesrelative to one
another. IfV only depends on the magnitude of separation of these particles, and again there is no external field,
thenV, L, andK must beindependent of these six generalized coordinates. If we then take the center of mass of
our system as the origin, we see that the total angular and linear momentummustbe conserved. However,rarely do
we encounter a completely isolated system with no external fields!

For a system of molecules confined to a box with periodic boundary conditions that evolves in time subject
only to interparticle interactions, you can show thatH andP are conserved,but total linear momentum, L, is not
conserved. This is because we do not have spherical symmetry in a periodic cube. (Can you imagine a way of
creating a spherically symmetric periodic system in Euclidean space?) In general, then, total angular momentum is
usuallynot conserved in MD simulations.H andP usually are conserved. Thus a typical MD simulation is carried
out under conditions of constantN , V , E, andP. It samples from the microcanonical ensemble, with the added
constraint of constant total momentum.

Another important fact is that, formally, the equations of motion are completely reversible in time. As we will
see in the next section, we must integrate the equations numerically, which introduces imprecision in our solution
so that our trajectories are only approximately reversible in time.

Another thing to be aware of before we proceed: we use spatial derivatives of the potential, so some care must
be used in handling non–continuous potential functions. As we will see shortly, use of a finite–time step algorithm
for numerically integrating the equations of motion can lead to problems with sharply varying potentials (such as
hard sphere potentials).

10.4 Difference Methods for the Integration of Dynamical Equations

MD can be thought of as a numerical solution to an initial value problem. For a molecular system with no constraints,
the initial value problem can be written as

�ri =
fi(ri; � � � ; rN )

mi
(10.5)

with ri(0) and _ri(0) specified. Exactly how these get specified will be discussed later...but let’s assume for now we
can do this. A variety offinite differencemethods can be used to solve such equations1 having the form

dyi(x)

dt
= f(y1; � � � ; yN ; t) (10.6)

The basic idea is that one steps along the independent variable (time) in small, finite stepsÆt. This step size can be
either constant or changed adaptively during the simulation.

1SeeNumerical Recipes, Press et al.
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The most common method for solution of such problems is probably Runge–Kutta. R–K methods propagate a
solution over an interval by combining the information from several Euler–type steps

yn+1 = yn + Ætf 0(tn; yn)

This advances the solution fromtn to tn+1 � tn + Æt. Each step involves one evaluation of thef ’s, and this
information is then used to obtain a match of a Taylor series up to some high order. The most common R–K method
(and practically useful) is probablyfourth–orderRunge–Kutta:

yn+1 = yn +
k1
6

+
k2
3

+
k3
3

+
k4
6

+O(Æt5) (10.7)

where eachk involves a function evaluation. We see that this method then takes 4 function evaluations to move ahead
one time stepÆt. This makes Runge–Kutta a particularlybadmethod for use in MD, since function evaluations (i.e.
force calculations) make up the bulk of the computational load.2

An alternative method that is better is apredictor–correctortype algorithm. These methods minimize the num-
ber of function evaluations. We will describe these methods in a moment, but first we consider some general features
of MD simulations.

10.4.1 Algorithmic Considerations in MD

There are a number of practical issues that must be addressed when developing an MD algorithm. First and foremost,
one should reduce the total number of force evaluations in a simulation. The most time–consuming part of the
simulation is the evaluation of forces. Thus,the speed of the integration algorithm is immaterial compared to the
force calculations. We seek to minimize the ratio of the number of force evaluations over the total simulation time.
This is why R–K techniques are not generally used. A second important factor is that the integration algorithm
should employ a long integration time stepÆt. This enables us to simulate a longer time for a given number of
integration time steps. Third, the algorithm must be accurate; a small error should result in the numerical evaluation
for a largeÆt. Fourth, the algorithm must bestable. The error in the integration must not blow up with increasingÆt.
ODE’s where stability is a problem are referred to as “stiff” equations. Generally speaking, this means the problem
has two or more widely disparate time scales. MD problems typically fit this classification. This can be solved
through the use ofimplicit algorithms

yn+1 = yn +
Æt

2
[f(yn; tn) + f(yn+1; tn+1)] (10.8)

rather than explicit algorithms
yn+1 = yn + Ætf(yn; tn) (10.9)

Implicit algorithms are generally not used, however, because they involve more (costly) function evaluations than
explicit algorithms. Fifth, the algorithm should not require a lot of memory, if very large systems are to be simulated.
This is becoming less of a concern as computer memory becomes more readily available. Other important factors:
The conservation laws for energy and momentum, as well as time reversibility, should be satisfied; it would be nice
if the algorithm were simple and easy to program; and the algorithm should duplicate the “exact” trajectory as close
as possible.

It turns out that MD problems arehighly nonlinear: there is a tremendous sensitivity to the initial conditions.
That is, any two classical trajectories that are initially close will diverge exponentially with time. This means it is
practically impossible to trace out the “real” trajectory of the system. This is not a problem! As long as the trajectory
stays reasonably close to the “real” trajectory over the correlation times of interest and energy is conserved, then the
trajectory provides correct sampling of the NVE ensemble.

2Press at al. are even blunter: “Runge–Kutta is what you use when you don’t know any better, ... or you have a trivial problem where
computational efficiency is of no concern.”
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10.4.2 Gear Predictor–Corrector Methods

We wish to use a finite difference approach to solve the differential equations of MD. That is, given molecular
positions, velocities, (and other dynamic information) at timet, we seek a method for obtaining the positions,
velocities, etc. at some later timet + Æt to a sufficient degree of accuracy. To do this, we solve the equations on
a step–by–step basis.Æt will depend somewhat on the method we choose, but it will need to be smaller than the
fastest mode of motion.

One particularly good method is apredictor–correctoralgorithm, of which the form given by Gear3 is most
commonly used. In the particular method we will discuss here (the so–called Nordsieck representation), molecular
positions and several time derivatives, all evaluated at the same time, are stored. Remember: we can only apply
such methods tocontinuouspotentials. The method goes as follows:

1. Given the positions, velocities, etc. at timet, estimate the new positions, velocities, etc. at timet + dt by a
Taylor expansion about timet

rp(t+ Æt) = r(t) + Ætv(t) +
1

2
Æt2a(t) +

1

6
Æt3b(t) + � � �

vp(t+ Æt) = v(t) + Æta(t) +
1

2
Æt2b(t) + � � �

ap(t+ Æt) = a(t) + Ætb(t) + � � �
bp(t+ Æt) = b(t) + � � �

Note that the superscripts denote “predicted” values. We will “correct” these in a minute. The vectorsr andv
stand for the full position and velocity vectors.a is the accelerations andb is the third time derivative. Since
we store four values, this is an example of a four–value predictor–corrector; in principle, we can go to higher
orders, although this doesn’t necessarily imply higher accuracy.

We have now advanced our positions and velocities to the next time step. However, repeated use of these equa-
tions will not generate the proper trajectories; we have not yet used the equations of motion! The equations
of motion enter through the corrector step.

2. Calculate, using the predicted positions,rp, the forces at timet+ Æt. This will give the correct accelerations
at this time (ac(t+ Æt) ).

3. Compare the corrected accelerations with the predicted accelerations

�a(t+ Æt) = ac(t+ Æt)� ap(t+ Æt)

4. This error, along with the predicted quantities, are fed into the corrector routine, which typically has the form

rc(t+ Æt) = rp(t+ Æt) + c0�a(t+ Æt)

vc(t+ Æt) = vp(t+ Æt) + c1�a(t+ Æt)

ac(t+ Æt) = ap(t+ Æt) + c2�a(t+ Æt)

bc(t+ Æt) = bp(t+ Æt) + c3�a(t+ Æt)

What are these coefficients,c0, etc? The values depend upon the order of the equation being integrated.
Coefficients for first and second order equations are given in Allen and Tildesley.

3Gear, C. W.;Numerical Initial Value Problems in Ordinary Differential Equations, Prentice-Hall, 1971
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5. After the corrector step, the valuesrc(t+ Æt), etc. should now be closer to the “true” values. We may iterate
on the corrector step; “new” corrected accelerations can be computed using the corrected positionsrc(t+ Æt),
and the process repeated to refine the quantities. Convergence should be quite quick. In principle, then, the
“predicted” positions don’t have to be very good – convergence will be rapid even for a bad initial guess.
However, since force evaluations are the most expensive part of a MD simulation, we only want to “correct”
our values once (or at most, twice). Thus, an accurate predictor step (such as the Taylor series used here) is
important.

6. We thus have the guts of an MD simulation:

(a) Predict positions, velocities, etc. at timet+ Æt

(b) evaluate forces (accelerations) from the new positions

(c) correct positions, velocities, etc. using the new accelerations

(d) Collect averages, if desired, then go back to the predictor step

The Gear predictor–corrector algorithm is not the only integration method, nor is it the most widely used. The
Verlet algorithm, described next, holds this honor.

10.4.3 The Verlet Algorithm

The Verlet algorithm4, of which there are many flavors, is the most commonly used integration scheme for MD. It
is a direct solution of the second order MD equations, eqn 10.2. The basic equation for advancing the positions is

r(t+ Æt) = 2r(t)� r(t� Æt) + Æt2a(t) (10.10)

We see that the method requires positions from the previous step,r(t � Æt), and the accelerations at the current
step. Interestingly, velocities do not appear explicitly in eqn 10.10. Where did they go? Eqn 10.10 is obtained by
performing Taylor expansions aboutr(t):

r(t+ Æt) = r(t) + Æv(t) + (1=2)Æt2a(t) + (1=6)Æt3b(t) + � � �

r(t� Æt) = r(t)� Æv(t) + (1=2)Æt2a(t)� (1=6)Æt3b(t) + � � �
Adding these two equations gives eqn 10.10, which we see eliminates velocities.

We do not really need velocities unless we wish to compute the temperature or total energy of the system. For
these cases, we can estimate the velocities (and hence the kinetic energy) from

v(t) =
r(t+ Æt)� r(t� Æt)

2Æt

The Verlet algorithm (eqn 10.10) is accurate up to orders ofÆt4, is time–reversible, and has excellent energy
conservation properties. In addition, positions get advanced in one step, rather than two (as is the case in predictor–
corrector methods). It is also easy to code (an example FORTRAN program is given in Allen and Tildesley). One
problem is that a small value (OÆt2) term is added to the difference of two relatively large (OÆt) terms; this can
cause numerical imprecision.

To get around this last problem (and the awkward handling of velocities), Hockney introduced a modified form
called the “leap–frog” Verlet.5

4Verlet, L.Phys. Rev., 159, 98-103, (1967)
5Hockney, R. W.Methods Comput. Phys., 9, 136-211, (1970)
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10.4.4 The Leap–Frog Verlet Algorithm

The term “leap–frog” is evident from the form of the equations

r(t+ Æt) = r(t) + Ætv(t +
1

2
Æt) (10.11)

v(t+
1

2
Æt) = v(t� 1

2
Æt) + Æta(t) (10.12)

To implement the method, we first advance velocities a half time step using eqn 10.11. The velocities ’leap over”
the positions to give mid–step values (see the accompanying figure and eqn 10.12). During this step, the current
velocities may be calculated from

v(t) =
1

2
(v(t+

1

2
Æt) + v(t� 1

2
Æt)) (10.13)

The half–step velocities are then used to propel the positions ahead tot+ Æt, using eqn 10.11. Accelerations at
this step are evaluated and used to get the next half–step velocities, and the process is repeated.

r

v

a

r

v

a

t-dt t t+dt t-dt t-dt

t-dt

t tt+dt t+dt

t+dtt+dtt t-dt t t-dt t t+dt t-dt t t+dt

Verlet Algorithm

Leap - Frog Verlet

Figure 10.1: Pictorial representation of the flow of calculations involved in advancing positions in the Verlet tech-
nique (top) and the leap–frog method (bottom)

The standard Verlet method and the leap–frog method are compared in Figure 10.1 The leap–frog algorithm is
algebraically equivalent to the Verlet algorithm. However, it does not involve taking the difference between large
numbers to estimate a small quantity. Again, however, velocities are handled rather clumsily with eqn 10.13.

Perhaps the best Verlet algorithm proposed to date is the “velocity Verlet” algorithm of Swope, Andersen,
Berens, and Wilson.6 This algorithm has the form

r(t+ Æt) = r(t) + Ætv(t) +
1

2
Æt2a(t)v(t + Æt) = v(t) +

1

2
Æt[a(t) + a(t+ Æt)] (10.14)

To implement, the following steps are taken

6see J. Chem. Phys., 76, 637-649 (1982)
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1. Get the new positions at timet+ Æt using

r(t+ Æt) = r(t) + Ætv(t) +
1

2
Æt2a(t)

2. Compute the velocities at mid–step:

v(t+
1

2
Æt) = v(t) +

1

2
Æta(t)

3. Compute the forces and accelerations at timet+ Æt

4. Get the velocity att+ Æt

v(t+ Æt) = v(t+
1

2
Æt) +

1

2
Æta(t+ Æt)

5. Repeat the process...

The method is in some ways similar to predictor–corrector methods, since two steps are required to move the
positions ahead one time step.

10.5 Molecular Dynamics of Rigid Non-Linear Polyatomic Molecules

We have so far focused on MD of simple molecules that can be represented as spheres. How does one go about
conducting MD with polyatomic molecules? If we have potential expressions for all bonded forces, then the system
can just be treated as a collection of atoms all interacting with each other. There are a number of problems with
this. First, an extremely small time step is needed to track the fast vibrational modes. Recall that we want to
use a large time step to enable us to simulate long time phenomena. If we have to simulate these fast modes, we
“waste” a lot of time watching relatively uninteresting vibrational modes (unless, of course, that is what we are most
interested in studying!). A second problem is that it is really somewhat questionable to allow such vibrations to
occur “classically” anyway.

One solution to this problem is to “fix” the hard degrees of freedom and only track the slower, soft degrees of
freedom. For things like bond lengths, this is a pretty reasonable thing to do. For bond angles, it is less reasonable
and for torsion angles, it is probably unacceptable. Another approach, which we will discuss in class if we have
time but which won’t be covered in these notes, is to usemultiple time stepalgorithms to solve the equations of
motion. This method was proposed by Berne and co-workers7, and involves a “breaking up” of the Liouvillian
operator into hard and soft degrees of freedom. The hard degrees of freedom are integrated with a small time step
and the soft degrees of freedom are integrated with a long time step. Intermolecular force calculations, which take
the bulk of computational time, are integrated with the long time step, so the method enables long time trajectories
to be generated while still handling fluctuations in the hard degrees of freedom “exactly”. (Our group has found
that this method, called r-RESPA for reversible reference system propagator algorithm, can significantly speed up
MD calculations. It is about as fast as constraint methods, but easier to program and it does allow hard degrees
of freedom to fluctuate. From my standpoint, I can see no reason why constraint dynamics are used anymore.
Nevertheless, they are still used, so we will discuss them here).

Fixing bond lengths and/or angles amounts to introducing constraints among the Cartesian coordinates of atoms.
That is, all coordinates are no longer independent. (e.g. If the bond between atoms 1 and 2 is fixed, then there is a
constraint such thatr1� r2j = d) For now, let’s consider rigid, non-linear polyatomic molecules. The orientation of
a rigid body specifies the relation between an axis system fixed in space and one fixed with respect to the body. We
may specify any unit vectorv in terms of components in body–fixed or space–fixed frames. We will use the notation

7J. Chem. Phys., 94, 6811, (1991).
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vb andvs to refer to the body-fixed and space-fixed representations of this vector. The relationship between the two
frames of reference are given by a rotation matrix,A

vb = A � vs

There are nine components in the rotation matrix, which completely define the orientation of the molecule.
There are onlythree independentquantities (generalized coordinates) necessary to specifyA, however. Following
Goldstein,8 we define the generalized coordinates as the Euler angles�; �;  (see Figure 10.2). We see that the

ψ

z

x

y

φ

θ

z

y

y

z

z

y

x

x‘

y‘z‘

Figure 10.2: Definitions of the Eulerian angles (after Goldstein)

primed coordinates in the figure represent the body-fixed frame, while the unprimed coordinates are the fixed-space
frame. The transformation matrix has the form

A =0
B@ cos� cos � sin� cos � sin sin� cos + cos� cos � sin sin � sin 
� cos� sin � sin� cos � cos � sin� sin + cos� cos � cos sin � cos 
sin� sin � cos� sin � cos �

1
CA

A is orthogonal:A�1 = AT

We can categorize motion as

1. Center-of-mass translation

Here we consider the total force acting on the center of mass,Fi. The relevant equation is

m�ri = Fi

This gives us a linear velocity for the center of mass,_rcm

2. Rotational motion is governed by the torque�i about the center of massri. If the force acting on site� isF�,
then the torque is simply

�i =
X
�

(ri� � ri)� Fi� =
X
�

r0� � F�

This gives us an angular velocity,!.

8Goldstein, H.Classical Mechanics, 1980
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Before writing down the equations of motion, let us define some quantities

� Angular momentum

L =
X
�

m�r
0
� � _r0�

From this, one can show

L = I � !
whereI is the moment of inertia tensor

I =
X
�

m�((r
0
�)

21� r0�r
0
�)

One can finally write the full set of dynamical equations of rotational motion in the generalized coordinates
�; �;  as

� Torque:

� s =
X
�

(rs� � rscm)� F�

(Recall that� b = A � � s)

� Rate of change of angular velocity (the so–called Euler equations)

_!bx =
� bx
Ixx

+

�
Iyy � Izz
Ixx

�
!by!

b
z

_!by =
� by
Iyy

+

 
Izz � Ixx
Iyy

!
!bz!

b
x

_!bz =
� bz
Izz

+

�
Ixx � Iyy

Izz

�
!bx!

b
y

whereIxx; Iyy; Izz are the three principle moments of inertia.

� Euler angles change with time as

_� = �!sx
sin� cos �

sin �
+ !sy

cos� cos �

sin �
+ !sz

_� = !sx cos�+ !sy sin�

_ = !sx
sin�

sin �
� !sy

cos�

sin �

The above equations apply to each molecule and can be solved in a stepwise fashion just as we have done with
translational motion. There is a problem. Thesin � term in the denominators causes numerical problems when� is
close to 0 or� (at these points,� and become degenerate).9

9There are special techniques that can handle this problem See Evans, D. J.Mol. Phys., 34, 317-325 (1977)
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pseudo-bond

rigid water, 3 length
constraints; 6 degrees
of freedom

6 degrees of freedom
Rigid methane: 9 length constraints;

Figure 10.3: Pseudo-bonds showing how constraints would be imposed on a 3-atom “bent” molecule and a tetrahe-
drally oriented molecule (like methane)

10.5.1 Constraint Dynamics

For molecules with torsional degrees of freedom, formulating the dynamical equations of motion in generalized
coordinates is very laborious. An alternative, and simpler, approach is to formulate and carry out the MD simulation
in Cartesian coordinates and the RESPA method to handle the disparate time scales. We could also constrain the hard
degrees of freedom to positions at or near their equilibrium values. So–called “constraint dynamics” enables one to
do this fairly easily. We seek to integrate the equations of motion for a system of particles subject to constraints.
The advantages:

� No laborious transformations required between fixed and internal coordinates.

� Algorithm ensures that constraints are satisfied (i.e. molecular shape is preserved)

� Applicable to any arbitrarily selected degrees of freedom; others allowed to remain flexible.

How does one impose constraints? To impose bond length constraints is relatively simple. We try to fix bonded
atomic distances about the equilibrium value. For bond angles, we can use “pseudo–bonds” to triangulate the
molecule, as in Figure 10.3 Each length constraint will result in a force acting along the bond or pseudo-bond.
These constraint forces must therefore appear in the Newtonian equations of motion for the molecule.

As an example, consider the equations for water with fixed bond lengths (but flexible bond angles), as shown in
Figure 10.4. In this figure,g1 is the constraint force on atom 1 due to bond 12;�g1 is the constraint force on atom
2 due to bond 12;g3 is the constraint force on atom 3 due to bond 23; and�g3 is the constraint force on atom 2 due
to bond 23. The dynamical equations can therefore be written as:

1. 9 differential equations
m1�r1 = F1 + g1

m3�r3 = F3 + g3

m2�r2 = F2 � g1 � g3

2. 6 equations in terms of the undetermined multipliers,�

g1 = �12(r1 � r2)

g3 = �23(r3 � r2)
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Figure 10.4: Constraint forces along the bonds of a water molecule having fixed bond lengths

3. 2 constraint equations
�12 = (r1 � r2)

2 � d212 = 0

�23 = (r3 � r2)
2 � d223 = 0

Note that one could also formally start with the Lagrangian formulation, where the magnitudes of constraint forces
appear as undetermined (Lagrange) multipliers. In this case, one would write the Lagrangian as

L = K � V +
1

2
�12�12 +

1

2
�23�23 (10.15)

and the equations of motion would just come from

d

dt
(r _riL)�

@L
@ri

= 0; i = 1; 2; 3 (10.16)

Algorithms For Implementing Constraint Dynamics

The constraint equations we developed are exact. However, if we try to solve them using finite difference techniques
(which only solve the equations of motion approximately), our “constrained” degrees of freedom will eventually
distort (i.e “constrained” bond lengths will fly apart). A straightforward way of circumventing this problem is as
follows:

1. Advance the positions 1 step using a Verlet algorithm. Ignore the constraint forces.

r0i(t+ Æt) = 2r(t)� r(t� Æt) +
Æt2

mi
Fi(t)

This gives us “distorted” molecules at positionsr0 at t+ Æt.

2. Theactualpositions of the atoms, if we took into account constraint forces, would be

ri(t+ Æt;�ij) = r0i(t+ Æt) +
Æt2

mi
gi(t;�ij)

= r0i(t+ Æt) � Æt2

mi

X
j

�ijrij(t)

where the�ij are not yet determined.
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3. Substitute the above expression forri(t+ Æt;�ij) into the constraint equations. The result

[ri(t+ Æt;�ij)� rj(t+ Æt;�ij)]
2 � d2ij = 0

This is a set of quadratic algebraic equations in�ij . The solution must be obtained iteratively, usually by
successive substitutions. Thus, the solution of a set ofnc � nc linear equations is required at each iteration,
wherenc is the number of constraints in a given molecule. Finally, substitute the determined�ij into the
expressions forri(t + Æt;�ij) and get the actual atomic positions att + Æt. This completes one integration
step.

Inversion of a matrix of dimensionnc � nc becomes very time consuming for large, polyatomic molecules. We
would like to use another approach for more complex molecules.

Other Constraint Dynamics Techniques

As an alternative, we could go through the constraints one–by–one, cyclically adjusting the coordinates so as to
satisfy each in turn. The procedure could be iterated until all the constraints are satisfied within a given tolerance.
Such a procedure was outlined by Ryckaert et al.10 and was given the name SHAKE. The SHAKE algorithm is very
popular and is used extensively in polymeric and biological simulations. It is easy to code and works well. It can be
inefficient, especially in the presence of bond angle constraints. It is easiest to apply to Verlet integration schemes.

Andersen11 extended the SHAKE algorithm for use with the velocity Verlet integration algorithm. This algo-
rithm is known as RATTLE.

To improve the efficiency of the constraint methods, Edberg et al. (J. Chem. Phys., 84, 6933, (1986)) proposed
the following technique (which doesn’t have a cute name, but which is extremely useful).

1. In place of the quadratic equations for the constraint forcesf�ijg, use alinear system of equations inf�ijg
2. Instead of the constraint equations, use their second time derivatives. That is

(ri � rj)
2 � d2ij = r2ij � d2ij = 0

is instead written as
rij � �rij + (_rij)

2 = 0

3. The idea is to then solve the following system of differential and algebraic equations simultaneously

mi�ri = Fi +
X
j

�ijrij

rij � �rij + (_rij)
2 = 0

4. Notice that the velocities enter the formulation explicitly. Determination of the setf�ijg requires the solution
of a linear matrix equation, which can be done quite rapidly on a computer with canned packages. The
standard predictor–corrector or velocity Verlet algorithm may be used with this technique.

5. Molecular shape will gradually distort as numerical error accumulates. (The bond lengthsdij do not appear
in the dynamical equations!) We must periodically restore the correct molecular geometry by minimizing the
following penalty functions

Bond:
10J. Comput. Phys., 23, 327, (1977)
11J. Comput. Phys., 52, 24-34, (1983)
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� =
X
ij

(r2ij � d2ij)
2

Velocity:

	 =
X
ij

(rij � _rij)2

10.5.2 General Comments on the Choice of Algorithms

Here are some rule-of-thumb recommendations.

� For simple fluids (monatomic), use the velocity Verlet algorithm.

� For rigid polyatomics, there are two choices that are comparable:

1. MD in generalized coordinates, with the “fix” forsin � diverging (we didn’t talk about this)

or

2. Constraint methods that set a rigid core of “primary” atoms.

� For flexible, polyatomics, constraint methods such as EEM, or RATTLE are OK, but the newer r-RESPA
technique is preferable.

� It is better to constrain bonds only and not bond angles if you can at all help it. This more accurately reflects
the dynamics of the system.

10.6 Molecular Dynamics In Other Ensembles

A problem with standard MD is that it occurs in themicrocanonicalensemble. That is, the temperature of the
simulation fluctuates, while the energy stays constant. Recall that the temperature in an NVE simulation is

T =< T >

where< T > is an ensemble average temperature, estimated as a time average at equilibrium. The instantaneous
temperature is

T =
2K

(3N �Nc)kB
=

1

(3N �Nc)kb

NX
i=1

jpij2
mi

(10.17)

whereN is the number of atoms in the system, each with massmi and momentumpi. Nc is the total number of
constraints. This includesinternal constraints, such as fixed bond lengths,and global constraintssuch as fixed total
momentum. In anNV EP simulation withP = 0,Nc = 3

Also recall that from the virial theorem that

P =< P >

where the instantaneous pressure,P is given by

P = �kBT +
1

3V

X
i

X
j>i

(ri � rj) � Fij (10.18)

whereFij is the force oni due toj.
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We saw how to relate fluctuations in the potential energy (or kinetic energy) to the heat capacity:

< ÆV2 >=< ÆK2 >=
3

2
Nk2BT

2
�
1� 3NkB

2Cv

�
(10.19)

The problem withNV E MD is that if one wants to conduct a simulation at a given temperature, you can only
get “close” to this value. That is, you are not free to set the temperature at the beginning of a simulation. Instead, the
temperature will fluctuate about some value which you take as the “average” temperature of the system. It would be
desirable to adapt MD so that the simulations could be conducted in thecanonical ensemble. There are a number of
ways of doing this.

10.6.1 Stochastic Methods

We can think of the canonical ensemble as corresponding to a system of molecules that have a weak interaction
with a heat bath at a given temperature. Using this picture, we can construct an MD simulation that can be shown
to sample from the canonical ensemble. The idea is as follows.

At certain intervals, we pick a molecule. We then assume that this molecule has “thermalized” with a heat
bath; we re-assign it’s velocity from a Maxwell–Boltzmann distribution corresponding to the desired temperature.
(This attempts to simulate the collision of the molecule with an imaginary heat bath particle). The system moves
through phase space on a constant energy hypersurface until the velocity of one molecule is changed. At this point,
the system jumps onto another energy surface, and the Hamiltonian motion proceeds. The system samples all the
regions of phase space about the mean temperature. One can show that such a method does indeed sample from the
canonical ensemble.

The choice of “collision frequency” is somewhat arbitrary. Infrequent collisions translate to slow energy fluc-
tuations but relatively large kinetic energy fluctuations. Frequent collisions cause the dynamics to be dominated by
the heat bath, rather than by the systematic forces present in the system. To mimic a real fluid, it is suggested that
the collision rate be given by

r / �T

�
1

3N
2

3

(10.20)

where�T is the thermal conductivity. Too high a collision rate leads to an exponential decay in the correlation
functions (to be discussed later) which is not observed experimentally.

We can also alter the velocities ofall the molecules at the same time, less frequently, at equally spaced intervals.
These rescaling events correspond to “massive stochastic collisions”. In between such rescaling events, normal
statistics (i.e correlation functions) may be computed. Such a method also provides averages consistent with the
canonical ensemble. However, such a method is very crude in that the dynamics of the system are greatly perturbed.

10.6.2 Extended System Methods

A somewhat better method of coupling the molecules to a heat bath is to use so–called “extended system” methods.
In this approach, an extra degree of freedom, representing a thermal reservoir, is added to the simulation. Other
constraints can be imposed by adding additional degrees of freedom, representing other “reservoirs”. Each new
degree of freedom has associated with it a “coordinate”, a “velocity” (i.e. rate of change), and a “mass” (i.e.
inertia).

A common method is the one introduced by Nos´e.12 In this method, the extra degree of freedom is given the the
symbols. The conjugate momentum is denotedps, and the velocities of the real molecules are related to the time
derivatives of the positions by

v = s _r = p=ms (10.21)

In essence,s is a scaling factor for time. A real time step equals a simulation time step divided bys.

12Nosé, S.Mol. Phys., 52, 255, (1984)
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There is an extra potential energy associated withs

Vs = (3N �Nc + 1)kBT ln s (10.22)

where the desired temperature is given byT . A kinetic energy term also can be written as

Ks =
1

2
Q _s2 = p2s=2Q (10.23)

whereQ is a “thermal inertia” parameter.Q has units of (energy)�(time)2 , and controls the rate of temperature
fluctuations. In can be shown that the proper equations of motion for this system are

�ri =
Fi

mis2
� 2 _s _ri

s
(10.24)

Q�s =
X
i

m _r2i s�
(3N �Nc + 1)kBT

s
(10.25)

These equations can be integrated using a standard integration algorithm.
The extended Hamiltonian of the system is conserved (rather than the “real” Hamiltonian):

Hs = K +Ks + V + Vs (10.26)

Nosé proved that the partition function corresponding to this Hamiltonian yields a canonical distribution in the
variablesp0 andr, where

p0 =
p

s

Thus, the simulation time in Nos´e’s algorithm is not the “real” time; equal simulation time steps may be unequal
in real time. The averaged real time duration of a simulation is obtained by multiplying the simulation time by
< s�1 >.

Just as in the case of stochastic methods, the choice of the inertia parameter,Q, will affect the results. We
can examine a few limiting cases. WhenQ ! 1, there is a large inertia which resists change in temperature.
In this case,NV E MD is recovered. WhenQ ! 0, there is an “instantaneous” thermalization which perturbs
the dynamics severely. This is the same as re-scaling the velocities of all the molecules at every time step. For
“reasonable” choices ofQ, it is thought that the dynamical properties determined with this method agree with
NV E MD. “Reasonable” values ofQ can be obtained by looking at fluctuations ins. The period ins–oscillations
is

t0 = 2�

 
Q < s2 >

2(3N �Nc)kB < T >

!1=2

(10.27)

Nosé recommendst0 of 1 ps.

10.6.3 Constraint Methods

A simple means for fixing the temperature during an MD simulation is to rescale the velocities at each time step by
(T=T )1=2. This so-called “velocity rescaling” approach is a good method for equilibrating an MD simulation, and
has been used as a crude means for performingNV T MD. However, simple velocity rescaling is not the best way
of constraining the kinetic energy, however. A better method was proposed by Hoover13 and elaborated on by Evans
and Morriss.14 In this approach, the equations of motion for constant kinetic energy simulations are

_ri = pi=mi (10.28)

13A. Rev. Phys. Chem., 34, 103-127, (1983)
14Comput. Phys. Rep., 1, 297-344 (1984).
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_pi = Fi � �(r;p)p (10.29)

where�(r;p) is a “friction coefficient” that serves to constrain the instantaneous temperature,T , to a constant value.
One can show that

� =

P
i piFiP
i jpij2

(10.30)

These equations of motion generate a trajectory in the constantNV T ensemble, which can be shown to have
the same configurational properties as the canonical ensemble. Allen and Tildesley provide a leap–frog algorithm
that uses this method.

There are other constant–temperature MD algorithms and there are also extended system and constraint methods
for carrying out constantpressuremolecular dynamics.

10.7 Structural Information From MD (and MC)

When an MD simulation is carried out, the information we get is the molecular positions, velocities, and energies
as a function of time. Normally, we write this information out to a file periodically. The question is, what do we do
with this information? A more immediate question is: how frequently should I write this information to file?

You might think that we should write every single configuration to file. There are two problems with this. First,
writes or reads from disk (called “I/O” for input/output) are very slow. Excessive I/O will significantly slow down
any simulation. We’d like to minimize these operations. Another more mundane reason that you don’t want to do
this is that you only have a finite amount of disk space to work with. A simple back of the envelop calculation
shows that the three Cartesian positions and velocities for a molecule, along with the time, consumes7 � 8 = 56
bytes of space for each “write” to disk. For a system with 1000 atoms, this means that approximately 50 Kbytes
are required for each write. A typical MD simulation may require 1-100 million time steps to complete. Clearly,
disk space becomes a concern for these simulations! On the other hand, configuration “dumps” should be done
frequently enough so that good statistics are obtained and the modes you are interested in can be analyzed.

You may ask: why write anything to disk at all? Why not calculate all the properties of interest during the course
of the simulation? This can be done, but there are risks involved. First of all, when performing long simulations (as
these tend to be) you must protect yourself from “crashes”. Although computer systems are pretty stable, jobs can
“crash” for a variety of reasons, including power failure, etc. Writing results to disk enables you to restart crashed
jobs, and thus save potentially “wasted” simulation time. More importantly, however, this type of “tape” file can
be analyzed at your leisure after a simulation to obtain structural and dynamic information. The advantage of this
approach is that you don’t have to remember to do everything during the simulation. If interesting phenomena are
uncovered, detailed probing (“mining”) of the results can be easily accomplished.

We will being by considering the way on which static, structural quantities are computed from a set of MD
configurations. In this discussion, there is no difference between the way in which this is done from an MD or MC
simulation. That is, in an MC simulation, we also want to write out position “snapshots” (there are no velocities!)
as a function of MC cycle. After this, we will then on to consider ways in which dynamical properties are computed
from an MD trajectory.

10.7.1 Pair Distribution Functions

Recall that in an isotropic material, the pair distribution function is defined as

g(r) =
�(r)

�

where�(r) is the local density of particles within a spherical shell of radiusr to r+ dr, centered at a given particle
in the fluid, and averaged over all configurations (refer to Figure 10.5) and� is the mean (macroscopic) density.
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r

dr

(r)ρ

Figure 10.5: A schematic showing a differential “ring” about a molecule where a local density can be defined and
used to compute a pair distribution function

We wish to answer: How do you computeg(r) from a tape file? To do this, you analyze the stored configurations
to determine distances between the minimum image pairs.g(r) is equal to the number of particles at distancer to
r + dr from a central particle, divided by the number of particles at distancer to r + dr from a central particle in
an ideal gas systemof the same density. To compute the numerator ofg(r), you first discretize ther-axis from 0 to
rmax into bins of widthdr. (Below, we letb be the index of a bin betweenr andr + dr. Then, loop over all stored
configurations and perform the following steps:

1. Within this loop, loop over all pairs(i; j) in a given configuration.

2. Calculate the minimum image distance(rij)min.

3. Sort this distance; that is, determine which binb the distance falls in.

4. Add 2 to the contents of this bin. (1 for each molecule).

nhis(b) = nhis(b) + 2

After this, go back to the next stored configuration until you’ve looped over them all. The numerator for each bin of
g(r) is then

n(b) =
nhis(b)

N�run

whereN is the total number of particles and�run is the total number of configurations analyzed.
For the denominator (distribution of molecules in ideal gas phase at the same density) we simply have for each

bin

nid(b) =
4��

3

h
(r + dr)3 � r3

i
where the term in brackets yields the volume of a spherical shell betweenr andr + dr. � is the average density.
Note that this expression is only valid forrmax � L=2, To computeg(r), use the histogram of information:

g(r +
1

2
dr) =

n(b)

nid(b)

For molecular fluids, we may compute site-site distribution functionsg��(r) in the same way. As we showed earlier,
g(r) is extremely important for computing thermodynamic properties, and for making comparisons with experiment.
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Figure 10.6: The angle between two vectors, defining some molecular order or structure, can be examined as a
means of determining the structure of a fluid.

10.7.2 Molecular Orientation

Often, we are interested in quantifying the molecular structure. One way of doing this is through the use oforder
parameters. Consider Figure 10.6. Letui be a unit vector attached to a molecule (i.e. a bond vector, end–to–end
vector, etc.). The angle formed by two such vectors is�. A useful order parameter for studying the decorrelation of
molecular structure is to form the 2nd Legendre polynomial of the first kind of the cosine of�. That is

P2(cos �) =
1

2
[3(ui � uj)2 � 1] (10.31)

This provides information on the orientation ofi andj.
A useful order parameter to track might be

< P2(cos �) >jri�rj j=r=
1

2
[3 < ui � uj >2

jri�rj j=r
�1] (10.32)

as a function ofr. This order parameter equals 1 for parallel orientations, -1/2 for perpendicular, and 0 for random
orientations.15

10.8 Dynamical Information From Equilibrium MD

Dynamical information usually refers totime correlation functions.16 Consider a system at equilibrium under some
given external constraint. The probability distribution of the system in phase space will conform to an equilibrium
ensemble with probability density�eq(pN ;qN ).

Let us consider two quantitiesA andB which are functions of the phase–space representative point. That is,
A(pN ;qN ) andB(pN ;qN )

As the microscopic state changes with time, so does the value ofA andB. We will use the notation

A(t) � A(pN ;qN )

B(t) � B(pN ;qN )
15Recall that for two randomly oriented vectors having an angle� between them,< cos � >= 1=3
16see McQuarrie for good information of the statistical mechanics of time correlation functions
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In addition, we will denote the deviations between the instantaneous values ofA andB along a dynamical trajectory
and the corresponding ensemble averaged values as

ÆA(t) � A(t)� < A(t) >= A(t)� < A >

ÆB(t) � B(t)� < B(t) >= B(t)� < B >
where we have used the fact that ensemble averages are invariant with time. Next, wedefinethe non–normalized
time correlation function betweenA andB by

CAB(t) �< ÆA(t1)ÆB(t1 + t) >= h[A(t1)� < A >][B(t1 + t)� < B >]i (10.33)

There are two key points about this last equation:

1. For a system at equilibrium, the ensemble average on the right–hand side of the last equation willnot depend
on the time origint1, but only on the time separationt.

2. By the ergodic hypothesis,the ensemble averages in the last equation can be substituted by time averages
over all time originst1.

Therefore, we may write

CAB(t) = CAB(�t) = hÆA(0)ÆB(t)i = hÆA(t)ÆB(0)i (10.34)

You should convince yourself that this expression is true.
If we restrict our attention to the special case whereA andB are the same quantity, we have

CAA(t) = hÆA(t1)ÆA(t1 + t)i = hÆA(0)ÆA(t)i (10.35)

We will call CAA(t) the non–normalized (time) autocorrelation function ofA.
We define the normalized autocorrelation function ofA as

cAA(t) =
CAA(t)

CAA(0)
=
hÆA(t)ÆA(0)i
h(ÆA)2i (10.36)

(Notice that the termh(ÆA)2i is a measure of the fluctuation ofA and has its own thermodynamic meaning.)
Physically, what doescAA(t) represent? We see that fort = 0, cAA(t) = 1. WhencAA = 1, there is a perfect

correlation of the quantityA with it’s value at the time origin. Fort > 0, cAA typically decays from 1, eventually
reaching zero ast!1. cAA measures how the propertyA loses memory of its initial valueas a result of molecular
motion in the system. The characteristic time over which memory persists is called the correlation time, and is
defined by

�A =

Z 1

0
cAA(t)dt (10.37)

For many (but certainly not all) systems,cAA(t) is found to decay exponentially with time at long times, as is shown
in Figure 10.7.

Why do we care about autocorrelation functions? There are three primary reasons. First, they give a picture
of molecular motion in a system. Second, the time integrals�A are often directly related to macroscopic transport
coefficients (more on this later). Finally, the Fourier transform ofcAA(t) = ĉAA(!) are often related to experimental
spectra.

Consider as an example thevelocity autocorrelation functionfor a fluid. Here, our quantityA is the velocity.

Cv�v�(t) = hvi�(t)vi�(0)i (10.38)
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Figure 10.7: By plotting the logarithm of an exponentially–decaying time correlation function, one may obtain an
estimate of the decorrelation time by determining the slope
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Figure 10.8: The velocity autocorrelation function for argon near the triple point. The negative region indicates a
“backscattering” motion in which molecules collide with neighbors. The long–time decay to zero indicates complete
decorrelation

whereÆvi� � vi�, sincehvi�i = 0. In a simulation, we can average over all equivalent species to increase the
sample size and improve statistics

Cv�v�(t) =
1

N
h
NX
i=1

vi�(t)vi�(0)i (10.39)

The overall velocity autocorrelation function is the sum of the three components

Cvv(t) = hvi(t) � vi(0)i = Cvxvx(t) + Cvyvy(t) + Cvzvz (t) (10.40)

Normalizing

cvv(t) =
Cvv(t)

Cvv(0)
=
Cvv(t)

hv2i

=
Cvv(t)
3kBT
m

=
m

3kBT
hvi(t) � vi(0)i (10.41)

This is the function we are interested in. What does it look like? Figure 10.8 shows a schematic ofcvv(t) for liquid
argon near the triple point. We can take the Fourier transform of this to get frequency information
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Figure 10.9: The Fourier transform of the velocity autocorrelation function for argon near the triple point

Ĉvv(!) =

Z +1

�1
Cvv(t)e

�i!td (10.42)

For an even function, we have

Ĉvv(!) = 2

Z +1

0
Cvv(t) cos!tdt

The Fourier transform of Figure 10.8 is shown in Figure 10.9. You should think about what would the velocity
autocorrelation function look like for a gas and a solid.

10.9 Transport Coefficients From Correlation Functions

Transport coefficients (diffusion coefficients, viscosities, thermal conductivities) describe the response (“flux) elicited
in a system by the imposition of a perturbation (“driving force”) that causes the system to depart from equilibrium.
Autocorrelation functions describe the rate at whichspontaneous fluctuationscreated within a systemat equilibrium
die out with time.Linear response theorydescribes the relationship between autocorrelation functions and transport
coefficients in a system not too far from equilibrium. Autocorrelation functions of the time derivatives of quantities,
having the form

h _A(t) _A(0)i
will play a major role in our analysis of this relationship. Again, recall that

Æ _A(t) = _A(t); < _A >= 0

It turns out that transport coefficients are linked to autocorrelation functions (via linear response theory) through
so–called Green–Kubo relations, which have the form

 =

Z 1

0
dt h _A(t) _A(0)i =

Z 1

0
dt C _A _A(t) (10.43)

where is a transport coefficient (within a multiplicative constant).
As an example, let’s consider the self–diffusivity. The self–diffusivity along the x–direction would be

Ds;xx =

Z 1

0
dt < _xi(t) _xi(0) >=

Z 1

0
dt < vi;x(t)vi;x(0) >

and the overall self–diffusivity would be

Ds =
1

3

Z 1

0
dt < vi(t) � vi(0) >=
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Figure 10.10: A tagged particle moves in a stochastic (“diffusive”) manner in a sea of identical untagged particles.
The magnitude of the mean square displacement is proportional to the self–diffusivity.

1

3
(Ds;xx +Ds;yy +Ds;zz) =

1

3
Tr(Ds) (10.44)

Eqn 10.44 is the Green–Kubo relation for the orientationally–averaged self–diffusivity.
One can show that an equivalent expression for eqn 10.43 is the following “Einstein relation”

2t = h[A(t)�A(0)]2i (10.45)

Eqn 10.45 is valid only for long times (i.e.t� t _A). Applied to the diffusivity, we get

Ds;xx = lim
t!1

�
h[xi(t)� xi(0)]

2i=2t
�

and the orientationally averaged diffusivity can be written as

Ds = lim
t!1

h[ri(t)� ri(0)]
2i

6t
(10.46)

Eqn 10.46 is referred to as the Einstein equation for self–diffusivity. This is more usefulDs from simula-
tions than the equivalent Green–Kubo expression, due to the difficulty of integrating the long–time tail of the GK
expression.

10.9.1 Transport Coefficients From MD

Several transport coefficients can be directly obtained through application of linear response theory.

1. Self–Diffusivity,Ds

The self–diffusivity is related to the mobility of a single “tagged” particle in a sea of identical “untagged”
particles, as can be seen schematically in Figure 10.10. The greater the mean square displacement as a
function of time, the greater is the self–diffusivity. From the Green–Kubo expression we have

Ds =
1

3

Z 1

0
dt hvi(t) � vi(0)i

=
1

3

Z 1

0
dt h 1

N

NX
i=1

vi(t) � vi(0)i
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Figure 10.11: In a binary system, the interdiffusion coefficient, representative of the rate at which different species
“mix”, can also be determined from equilibrium MD simulations

The equivalent Einstein relation yields

Ds = lim
t!1

h[ri(t)� ri(0)]
2i

6t

= lim
t!1

h 1N
PN

i=1[ri(t)� ri(0)]
2i

6t

=
1

6
lim
t!1

d

dt
h 1
N

NX
i=1

[ri(t)� ri(0)]
2i

In general, the “6” in the numerator is2d, d being the dimensionality of the system.

The self–diffusivity is one of the easiest properties to compute, because of the possibility of averaging over all
equivalent particles. The Einstein relation is practically more useful than the Green–Kubo formula, since the
integration requires an accurate knowledge of the function at long times. The “slope” expression is used more
than the ratio expression; linearity of the mean–square displacement with time is an indication that diffusive
motion is taking place.

2. Interdiffusion Coefficient,D, for a Binary System

The appropriate Green–Kubo relation is

D =
1

3

 
@2(�G=N)

@x2i

!
P;T

Z 1

0
hjc(t) � jc(0)i dt (10.47)

whereG is the total Gibbs energy,N is the number of molecules,xi is the mole fraction of speciesi, i = 1; 2,
xi =

Ni

N andjc(t) is the microscopic interdiffusion current, defined as

jc(t) = x2j
1(t)� x1j

2(t)

Each component flux is defined by the number of molecules of speciesi times the velocity of the center of
mass of speciesi:

ji(t) =
NiX
k=1

uk(t)
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3. Shear Viscosity,�

The Green–Kubo expression is

� =
V

kBT

Z 1

0
dt < P��(t)P��(0) >; � 6= � (10.48)

whereP�� is a non–diagonal component of the instantaneous pressure tensor

P�� =
1

V

 X
i

pi�pi�
mi

+
X
i

ri�fi�

!

(Compare this expression with the virial theorem).

The equivalent Einstein relation is

2t� =
V

kBT
h(Q��(t)�Q��(0))

2i (10.49)

whereQ�� = 1
V

P
i ri�pi�. Note that in the expression for viscosity,p is momentum.

4. Thermal Conductivity,�T

Green–Kubo:

�T =
V

kBT 2

Z 1

0
dthj��(t)j��(0)i (10.50)

where the “energy current” along axis� is

j�� =
d

dt

"
1

V

X
i

ri�(�i� < �i >)

#

and the energy per molecule is

�i =
p2i
2mi

+
1

2

X
j 6=i

V(rij)

The Einstein relation

2t�T =
V

kBT 2
h(Æ��(t)� Æ��(0))

2i

whereÆ�� = 1
V

P
i ri�(�i� < �i >)

Notice that, as opposed toDs, the propertiesD, �, and�T arecollective properties of the system, and are not
properties of individual particles. Consequently, we cannot average over many particles. Their accurate estimation
requires a much longer simulation.

Specialnonequilibrium molecular dynamics(NEMD) techniques may be used effectively in computing these
quantities. If we have time, we will discuss these methods in greater detail in class.

10.9.2 Computing Correlation Functions From MD Runs

Computing time correlation functions is pretty straightforward. However, there are a few tricks that are used to
improve the statistics that are not obvious.

� Let there be� writes (position, velocity, etc.) to our “tape” file.

� Let Æt be thetime intervalbetween configurations stored on tape.



182 CHAPTER 10. MOLECULAR DYNAMICS METHODS

τ τ τ τ τ

τ τ τ τ τ

0 0 0 00
1 2 3 4 5

.......

Figure 10.12: Schematic showing the way in which block averaging is used to improve the statistics of a correlation
function. Multiple time origins (�0) are used and the results over correlation time� are computed.

� Thent = Æt�

� We substitute an ensemble average by a time average

CAA(�) = hA(�)A(0)i = 1

�max

�maxX
�0=1

A(�0)A(�0 + �)

Here, we averageA(�0)A(�0 + �) over�max time origins.

� Note that�max � �run � � , where�run is the total number of “tape” file writes. This means that short–time
correlations are available with greater precision; there is a very small sample size at large� .

� To safely estimate the entireCAA(t), the length of the simulation must be such that�corr � �run.

� A typical loop structure goes like:

do t0 = 1, trun, tskip ! Loop over origins of time
do t = 0,min(tcor,trun-t0) ! Loop over time intervals

sum(t) = sum(t) + (A(t0)*A(t0+t) ! compute corr fun
N(t) = N(t) + 1.0

enddo
enddo
c(t) = sum(t) / N(t)

10.9.3 General Considerations For Writing an MD Code

The goal: make the code afastas possible so that long times can be accessed.

� Since long runs are inevitable, design the code so that a minimal amount of information is lost in the event of
a crash. Make it so that it can be restarted following a crash with minimal difficulty.

� Minimize the amount of I/O (for speed)

� Write V, H, P, T at frequent intervals, accumulate averages, and write these averages out at the end of the
run.
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� Store configurations and average accumulators periodically in crash file for restart purposes.

� Write positions, velocities, accelerations to tape file; typically every 10-15 steps, although long–time infor-
mation can be obtained with less frequent writes.

10.9.4 Structuring the Program

1. Always read and then write information about run to a log file for future reference.

2. Precalculate auxiliary values, initialize everything.

3. Calculate/print forces, positions, velocities, etc. for initial step.

4. Main body of the code

(a) move atoms

(b) update running averages

(c) print out instantaneous properties and current averages (if required)

(d) print out detailed info to tape (if required)

(e) save current configuration to crash file (if required)

5. Accumulate final averages, fluctuations, statistics of run

6. close files and exit...


