
Anx-B

Accuracy Based Design of DELTA Parallel

Manipulator

Author

Mansoor Ghazi

NUST201362037MSMME62113F

Supervisor

Dr. Shahid Ikramullah Butt

DEPARTMENT OF MECHANICAL ENGINEERING

SCHOOL OF MECHANICAL AND MANUFACTURING ENGINEERING

 NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY

ISLAMABAD

FEBRUARY, 2018

Anx-B

Accuracy Based Design of DELTA Parallel Manipulator

Author

Mansoor Ghazi

NUST201362037MSMME62113F

A thesis submitted in partial fulfillment of the requirements for the degree of

MS Mechanical Engineering

Thesis Supervisor:

Dr. Shahid Ikramullah Butt

Thesis Supervisor’s Signature:

DEPARTMENT OF MECHANICAL ENGINEERING

SCHOOL OF MECHANICAL AND MANUFACTURING

ENGINEERING

NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY,

ISLAMABAD

FEBRUARY, 2018

Anx-B

1

Declaration

I certify that this research work titled “Accuracy Based Design of DELTA Parallel Manipulator”

is my own work. The work has not been presented elsewhere for assessment. The material that

has been used from other sources it has been properly acknowledged / referred.

Signature of Student

Mansoor Ghazi

NUST201362037MSMME62113F

Anx-B

2

Language Correctness Certificate

This thesis has been read by an English expert and is free of typing, syntax, semantic,

grammatical and spelling mistakes. Thesis is also according to the format given by the

university.

Signature of Student

Mansoor Ghazi

NUST201362037MSMME62113F

Signature of Supervisor

Anx-B

3

Copyright Statement

 Copyright in text of this thesis rests with the student author. Copies (by any process)

either in full, or of extracts, may be made onlyin accordance with instructions given by

the author and lodged in the Library of NUST School of Mechanical and Manufacturing

Engineering. Details may be obtained by the Librarian. This page must form part of any

such copies made. Further copies (by any process) may not be made without the

permission (in writing) of the author.

 The ownership of any intellectual property rights which may be described in this thesis is

vested in NUST School of Mechanical and Manufacturing Engineering, subject to any

prior agreement to the contrary, and may not be made available for use by third parties

without the written permission of the School of Mechanical and Manufacturing

Engineering, which will prescribe the terms and conditions of any such agreement.

 Further information on the conditions under which disclosures and exploitation may take

place is available from the Library of School of Mechanical and Manufacturing

Engineering.

Anx-B

4

Acknowledgements

I am thankful to my Creator Allah Subhana-Watala to have guided me throughout this work at

every step and for every new thought which you setup in my mind to improve it. Indeed, I could

have done nothing without your priceless help and guidance. Whosoever helped me throughout

the course of my thesis, whether my parents or any other individual was your will, so indeed

none be worthy of praise but You.

I am profusely thankful to my beloved parents who raised me when I was not capable of walking

and continued to support me throughout in every department of my life.

I would also like to express special thanks to my supervisor Dr. Shahid Ikramullah Butt for his

help throughout my thesis and also for the Computer Integrated Manufacturing course which he

had taught me. I can safely say that I haven't learned any other engineering subject in such depth

than the ones which he has taught.

I would also like to pay special thanks to Dr. Aamer Ahmed Baqai for his tremendous support

and cooperation. Each time I got stuck in something, he came up with the solution. Without his

help I would not have been able to complete my thesis. I appreciate his patience and guidance

throughout the whole thesis.

I would also like to thank, Dr. Omer Gillani and Dr. Emad Ud Din for being on my thesis

guidance and evaluation committee. I am also thankful to Qasim Nazir, Naveed and Ehtisham for

their support and cooperation.

Finally, I would like to express my gratitude to all the individuals who have rendered valuable

assistance to my study.

Anx-B

5

Dedicated to my exceptional parents and adored siblings whose

tremendous support and cooperation led me to this wonderful

accomplishment

Anx-B

6

Abstract

Design of parallel manipulators for desired accuracy and workspace is an important functional

design requirement. Accuracy of parallel manipulators can be categorized into kinematic and

dynamic accuracy. Kinematic accuracy is attributed to active joint input errors, and dynamic

accuracy is attributed to finite stiffness of the manipulator structure. In this study, a bi-level

cascaded design approach is proposed that yields manipulators possessing maximum dynamic

accuracy, desired kinematic accuracy along each DOF, and desired reachable workspace. The

proposed approach is validated through accuracy centric design of a 3-RSS Delta parallel

manipulator. In Level 1 design, a multi-objective optimization problem, that minimizes the

stiffness index and condition number of the stiffness matrix is resolved through Genetic

Algorithms. In Level 2 design, the Brent-Drekker numerical solver is employed to compute

maximum allowable error in active joint inputs that lead to desired positioning error along each

DOF of the Level 1 optimized parallel manipulator. A geometric error model is derived to

evaluate exact maximum positioning errors along each DOF due to errors in active joint inputs.

The bi-level cascaded approach yields a finite set of pareto-optimal design solutions that meet

design requirements of accuracy and workspace. It is found that the proposed approach is

significantly less computationally expensive than interval analysis and set inversion-based

approaches.

Key Words: Parallel, Manipulator, Optimal, Design, Accuracy, Stiffness, Workspace

Anx-B

7

Table of Contents

Declaration ... 1

Language Correctness Certificate .. 2

Copyright Statement ... 3

Acknowledgements .. 4

Abstract ...i

Table of Contents ... 7

List of Figures .. 9

List of Tables .. 10

CHAPTER 1: INTRODUCTION... 11

1.1 Background, Scope and Motivation ... 11

1.2 Parallel Manipulators: An Overview ... 12

1.3 Accuracy Analysis ... 19

1.4 Dynamic Accuracy ... 20

1.5 Literature Review .. 20

1.6 Proposed Design Approach ... 21

i. 1.6.1 Part I: Accuracy Analysis ... 21

ii. 1.6.2 Part II: Design for Desired Accuracy and Workspace ... 22

CHAPTER 2: DELTA PARALLEL MANIPULATOR ... 23

2.1 3-RSS Architecture ... 24

2.2 Mobility and Kinematic Analysis ... 26

2.2.1 Mobility Analysis ... 26

2.2.2 Inverse Kinematics .. 27

2.2.3 Forward Kinematics .. 30

2.3 Jacobian and Workspace Analysis ... 32

2.3.1 Jacobian Analysis ... 32

2.3.2 Workspace Analysis ... 36

2.4 Design Variables .. 38

CHAPTER 3: STIFFNESS ANALYSIS .. 40

3.1 Flexible Body Dynamics .. 41

ADAMS Flex-FEM Solver .. 42

1 Convergence Study ... 45

3.2 Jacobian Based Stiffness Analysis .. 46

CHAPTER 4: ACCURACY ANALYSIS .. 49

4.1 Jacobian Error Model ... 50

4.2 Geometric Error Model .. 51

4.3 Accuracy Analysis: Jacobian And Geometric Models ... 54

Anx-B

8

CHAPTER 5: BI-LEVEL CASCADED DESIGN APPROACH ... 62

5.1 Level 1 Design: Optimal Design for Maximum Stiffness ... 62

5.2 Level 2 Design: Design for Desired Accuracy ... 64

CHAPTER 6: CASE STUDY: DESIGN OF DELTA PARALLEL MANIPULATOR....................................... 66

6.1 Level 1 Design: Case Study ... 67

6.2 Level 2 Design: Case Study ... 68

6.3 Results and Discussion .. 69

6.4 Validation ... 72

6.5 Conclusion .. 73

Anx-B

9

List of Figures

Figure 1-1. (a) Parallel Manipulator ……………………………………………………………… 13

Figure 1-1. (b) Serial Manipulator ………...……………………………………………………… 13

Figure 2-2. DELTA Parallel Manipulator ………………………………………………………… 26

Figure 2-2. Description of kinematic chain …………………………………………………….27

Figure 2-3. Workspace of Delta parallel manipulator with ………………….38

Figure 2-4. Prescribed parallelepiped workspace …………………………………………………..39

Figure 2-5. Design variables of DELTA parallel manipulator ……………………………………..40

Figure 3-1: Location and Orientation of points on a flex body …………………………………….43

Figure 3-2: Deflection behaviour as a linear combination of Mode Shapes ……………………….45

Figure 3-3: Time Step Convergence ……………………………………………………………….46

Figure 3-4. Stiffness index values of Delta parallel manipulator at ……………………48

Figure 3-5. Stiffness hyper ellipsoid ………………………………………………………………..49

Figure 4-1. Input bounding region ……………………………………………………………….54

Figure 4-2. 2-norm condition index evaluated at ……………………………………...56

Figure 4-3. Euclidean condition index evaluated at …………………………………...57

Figure 4-4. Maximum local positioning errors evaluated at …………………...58

Figure 4-5. Maximum local positioning errors along -axis, …………………………..59

Figure 4-6. Maximum local positioning errors along -axis, …………………………. 60

Figure 4-7. Maximum local positioning errors along -axis, …………………………..61

Figure 6-1. Desired parallelepiped workspace for case study design ………………………………68

Figure 6-2. Pareto-front of the Level 1 multi-objective optimization problem …………………….70

Figure 6-3. Workspace of Optimal Delta Parallel Manipulator …………………………………….72

 Figure 6-4. Relationship between Uncertainty in Active Joint Inputs and for ..73

Anx-B

10

List of Tables

Table ‎0-1. Comparison between Parallel and Serial Manipulators ……………………………………………… 18

Table ‎0-2. Connectivity Analysis of Spatial Architecture of Parallel Manipulators …………………………….. 20

Table 2-1. Possible DELTA Parallel Architectures ……………………………………………………………… 25

Table 3-3. Mesh Independence Study ……………………………………………………………………………. 46

Table 6-1. Kinematic Accuracy Requirements …………………………………………………………………... 67

Table 6-2. Requirement of Pre-Specified Workspace. …………………………………………………………… 67

Table 6-3. Parameter Settings for Multi-Objective GA…………………………………………………………... 69

Table 6-4. Pareto-Dominant Design Solutions……………………………………………………………………71

 Anx-B

11

CHAPTER 1: INTRODUCTION

The research, presented in this dissertation, covers two broad areas of design and analysis of

parallel manipulators. Thus, the dissertation is divided into two parts.

In the first part, an in-depth accuracy analysis of a 3-RSS (Revolute-Spherical-Spherical)

Delta parallel manipulator is carried out. This step covers the various accuracy analysis and

error modelling techniques that have been presented over the years by a number of

researchers. At the culmination of this part, the most accurate error model for a 3-RSS Delta

parallel manipulator is selected.

In the second part, a novel bi-level cascaded design approach, for requirement driven design

of the Delta parallel manipulator, is presented. The design approach is aimed at deriving a

single optimal design solution that possess maximum stiffness over a desired workspace,

along with desired kinematic accuracy along each DoF.

In the following section, the author presents a detailed discussion on the background, scope

and motivation of this study.

1.1 Background, Scope and Motivation

Spatial parallel manipulators are being increasingly employed in demanding industrial

applications owing to their intrinsically high positioning accuracy and task space

accelerations [1]. In most of these applications, positioning accuracy is one of the significant

performance measure. Positioning accuracy of a manipulator can be as output errors; that is

the difference between actual and desired end-effector position and orientation in the

Cartesian space. Output errors arise due to uncertainties in active joint inputs, tolerances in

geometric parameters and joint clearances, and time variant deflections of links due to inertial

and thermal loading. Positioning accuracy can be classified as 1) kinematic accuracy that is

attributable to uncertainties in active joint inputs and geometric parameters, 2) dynamic

accuracy (defined in terms of output errors that causes due to the finite stiffness of links).

It is essential to manifest positioning accuracy in the overall design of parallel manipulators.

Accuracy based design of parallel manipulators has been widely studied in the recent years.

As a consequence, the following g two areas of focus have emerged:

 Anx-B

12

 positioning accuracy analysis via error modelling.

 optimal design for maximum positioning accuracy.

For the sake brevity, the term “positioning accuracy” has been substituted with the term

“accuracy”, throughout the remaining text.

A deeper review of accuracy-based design reveals two important facts. First, the choice of a

particular error model can drastically affect the results of the overall accuracy analysis.

Secondly, most design approaches yield optimal solutions that maximise positioning

accuracy. Although, extremely useful, such design solutions cannot guarantee that desired

accuracy would be achieved along each DoF.

In light of the fore stated facts, it is imperative to derive an accuracy-based approach that:

 evaluates the most accurate error model for a specific parallel manipulator.

 yields a single optimal design solution that achieves desired kinematic accuracy along

each DoF while satisfying functional constraints / requirements.

The rationale of this study cannot be explained any further, without presenting a detailed

review of parallel manipulators as well as existing research on accuracy analysis and design

of parallel manipulators.

1.2 Parallel Manipulators: An Overview

Stewart platform is considered the most famous parallel manipulator of all. Stewart (1956)

created this manipulator as a flight simulator [2], are there are certain versions of this

manipulator that are still being used as a flight simulator. Since its creation, the Stewart

platform is being used for many.

The Stewart platform has been studied extensively (Hunt, 1983; Fichter, 1986; Griffis and

Duffy, 1989; Innocenti and Parenti-Castelli, 1993; and Nanua et al., 1990) [3]. The

aforementioned platform has six limbs and all these links are connected to the fixed and the

movable platform. Changing lengths of the links is the way in which this manipulator is

actuated. Although these manipulators are rigid and their inverse kinematics is easy, they

have some disadvantages.

1. As far as the direct kinematics is concerned, solving it is tedious.

2. As the moving and fixed platforms are connected, the movement of these platforms is

also coupled.

 Anx-B

13

3. Spherical joints that are perfect in shape are not easy to manufacture considering the

cost and the manufacturing techniques.

1.2.1 Serial vs Parallel Manipulators

The following points highlight how parallel manipulators differ from the serial manipulators:

1. Parallel manipulators are also called closed loop manipulators owing to the presence of

Figure 1-1. (a) Parallel Manipulator (b) Serial Manipulator

2. closed loops in their architectural design. As an example, consider the 3-DoF parallel

robot. It has three closed loops joined together to create the manipulator and has no free

ends/links apart from the end effector that does not play any role in the manipulator’s

structural and kinematic design. Serial manipulators on the other hand have open loops

and hence are called open loop manipulators [4]. These manipulators have free ends or

links and the movement of one link does not affect the localized movement of any other

link. Hence all the links are independently joined together. A good depiction of open loop

manipulators a serial robotic arm, an imitation of a human arm. This manipulator looks

just like a human arm and as a human arm it too has a free end.

3. End effectors in parallel manipulators are movable platforms. As explained earlier,

parallel manipulators have closed loops that join together to create the manipulator.

Hence these robots’ end effectors are not connected to any link but is connected to a

movable platform created by the combination of all the closed loops. Any kind of an end

effector can be used to be connected at the movable platform. Whereas in the serial

manipulators the end effectors are gripper/application based tool with n-DOF. As the last

 Anx-B

14

link of a serial robot is a free end, an end effector can be connected directly to this.

4. The position of the end effector for a parallel manipulator is in the Cartesian space hence

the natural description is in the Cartesian space. A major part of the manipulator design is

the kinematic synthesis that involves the transformation of robot coordinates from one

coordinate system to another. In a parallel the position of the end effector is given in

Cartesian coordinates, hence the natural description of the manipulator is in this space [5].

For serial manipulators the natural description is in the joint space as it is more

convenient.

5. For parallel manipulators the location of the actuators is near to the immovable base that

accounts for high load bearing capacity, less inertial forces and more stiffness.

Considering a 3-DoF parallel robot the actuators i.e. DC motors that actuate the three

primary links, are located on immovable base that in turn is connected to the frame of the

robot which is fixed with respect to its surroundings and the root itself. As the weight of

the motors is being carried by the frame, there is no extra load on the robots and hence we

get a better load bearing capacity, less weight to carry and less deflections. In serial

manipulators, the actuators are located in on the link joints that add to the weight of

manipulator and hence causes more deflections and errors. The stiffness in this case is

less and inertial forces are greater [6]. A common example is that of an industrial serial

robot. The motors that actuate the links are connected to the joints and hence add to the

combined weight of the links and the motors.

6. Parallel manipulators are preferred for their stiffness because their design tends to

decrease their deflections. Serial manipulators on the other hand are used for their

dexterity.

7. In the case of parallel manipulators direct kinematics is much harder and involves the

elimination of passive joints. Inverse kinematics is easy in the case of parallel

manipulators because of the loop closure equations that we get from the closed loops

created by the linkages. The closure equations are easy to solve because the sum of

vectors in a closed loop sums up to zero hence giving a set of homogeneous equations

that can be solved from the active joint angles easily [7]. A typical example would be that

of a 3-DoF parallel robot that includes three closed loops and hence three loop closure

equations which lead to the three joint angles required. On the other hand, the serial

manipulators direct kinematics in easy and inverse in difficult and lengthy as there are no

closed loops involved.

8. Parallel robots are used in applications where accuracy and precision is a priority. That is

 Anx-B

15

why they find application in the fields of medical science where precision and accuracy is

required in operations; in the field of micro-assembly where there is a need for precision

for assembling components. Serial manipulators on the other hand are used for gross

movements and in applications in which precision is not the primary concern. This

included application of pick and place of comparatively large objects in a greater

workspace.

Table 1-1 shows a comparison between the parallel and serial manipulator.

 Anx-B

16

Table ‎0-4. Comparison between Parallel and Serial Manipulators

Trait

Robotic

Parallel Robot Serial Robot

Type of Mechanism Closed loop Open loop

End Effectors Platform Gripper

Natural Description In Cartesian space In joint space

Actuator Location Fixed Base Link Joints

Inertia Forces &

Stiffness

Less and high

respectively

High and less

respectively

Design

Considerations

Structure, workspace

considerations,

singularities, link

interference

Strength and stiffness

considerations,

vibration analysis

Preferred Property Stiffness Dexterity

Use of Direct

Kinematics

Difficult and complex Straightforward and

unique

Use of Inverse

Kinematics

Straightforward and

unique

Complicated

Singularity Static Kinematic

Direct Force

Transformation

Well defined and

unique

Not well defined

Preferred Application Precise positioning Gross motion

1.2.2 Parallel Manipulator Architectures

The classification of parallel manipulators is as follows:

1. Symmetric Architecture

 Anx-B

17

2. Planar Architecture

3. Spherical Architecture

4. Spatial Architecture

Symmetrical Parallel Manipulators

A symmetrical parallel manipulator fulfills the following conditions:

1. DoF of the robot is that same as that of the number of limbs combined to make the

robot.

2. In each limb, the combination of the joints and links is the same.

3. In each limb, the location of the actuators and number of actuated joints is the same.

Planar Parallel Manipulators

In a planar mechanism there are 3 degrees of freedom hence λ=3 and the degrees pf freedom

of this manipulator in question is also three, hence, m = F = 3. Putting λ=3 and F = 3 into the

mobility equation:

1 2 3 4 3 9C C C F    

On reducing the equation above,

3 3kC 

This means that the connectivity of all separate limbs is the same i.e. 3. Hence all the limbs

have three degrees of freedom.

Spherical Parallel Manipulators

The number of degree so freedom for a spherical robotic environment is three. There for

spherical and planar parallel manipulators have the same requirements when it comes to

connectivity analysis. In spherical manipulators only revolute joints can be used and the axis

passing through all the joints must pass through the same point call the spherical center.

Therefore, RRR is the only configuration of joints that can be used. Although a spherical

joint can also be used instead of three revolute, but there is no way a spherical joint can be

actuated hence it cannot be used [8].

Spatial Parallel Manipulators

Spatial parallel manipulators can be classified, as shown in Table 1-2, in accordance with the

degrees of freedom they have [5].

 Anx-B

18

As long as the we have the desired connectivity associated with each limb i.e. the addition of

degrees of freedom of all the joints is according to the desired value, any number of links can

be employed. Naturally, lesser the number of degrees of freedom, greater the number of

limbs used [9].

Table ‎0-5. Connectivity Analysis of Spatial Architecture of Parallel Manipulators

Degrees of

Freedom

F

Number of

Loops

L

Sum of all joints

freedom

E

Connectivity Listing

Ck, K=1, 2, 3,…

2 1 8

4,4

5,3

6,2

3 2 15

5,5,5

6,5,4

6,6,3

4 3 22
6,6,5,5

6,6,6,4

5 4 29 6,6,6,5

6 5 36 6,6,6,6,6,6

1.2.3 Applications of Parallel Manipulators

Parallel manipulators are used in a wide variety of fields:

Space Applications

 To attain a better orientation in space, parallel manipulators are employed by certain

satellite trackers.

 Parallel robots that are being employed in various space programs have reduced the

construction, initiation and operating costs of such programs.

Medical Science

 Parallel manipulators are being used in medical practice due to low forces by and on

actuators and lesser singular positions.

 Hexapod robot is being used is different kinds of surgical instruments.

 Translational parallel manipulators are used in CPR.

 Anx-B

19

1.3 Accuracy Analysis

The accuracy analysis of the manipulator is one of the principal concern in designing the

robot. The purpose of kinematic accuracy analysis is to analyse the positioning errors over

the set of all points reachable by a robotic manipulator. However, it is quiet challenging to

obtain the accurate and viable results in the design phase. Several methods have been used in

the literature for the accuracy analysis of the manipulators including spatial and planer

manipulators, such as Jacobian error models, which include condition number based [10] and

linear first order approximate evaluation of errors [11].

1.3.1 Jacobian Based Models

The condition number based error model used to compute the condition number of the

Jacobian matrix of the manipulator. According to the definition [12], the condition number

amplify the inputs of a system on its output given there are no truncation errors in the final

solution. In case of parallel manipulators, the condition number serves as a performance

index that can be used to access the accuracy or dexterity of the robotic manipulator at

particular configuration. Moreover, the condition number also provides the information about

the singular configuration. For manipulators with mixed translational and rotational degree of

freedoms (DOFs) the Jacobian matrix has to be homogenized by dividing it with a

characteristic length [13]. Several studies [14-20] have used the condition number for

optimal design of parallel robotic manipulators. As an extension of the condition number

based approach, an error amplification index based on the condition number of the Error

Transformation Matrix (ETM) was defined and used in [21] to determine and maximize the

accuracy of a 3-PUS (prismatic-universal-spherical) parallel manipulator. Xu. et al. [22]

presented a composite error index based on the minimum eigenvalue and condition number

of the ETM, which was used to determine and evaluat the accuracy of a spatial parallel

manipulator.

1.3.2 Geometric Error Model

Recently, Liu et al. [23] has employed a geometric error model to perform the accuracy

analysis of two parallel kinematic tool heads. Beside the Jacobian based condition number

approach, the geometric error model approach uses inverse and forward kinematic

formulations to calculate the exact positioning error about a nominal position for a known

error in active joint inputs.

 Anx-B

20

1.4 Dynamic Accuracy

Stiffness analysis is performed to compute the stiffness of a parallel manipulator over its

reachable workspace. The computed stiffness can then be used as an index for qualitatively or

quantitively define the dynamic accuracy of a parallel manipulator.

Various approaches have been developed for the stiffness analysis of robotic manipulators.

These include:

 Matrix Structural Analysis (MSA)

 Finite Element Analysis (FEA)

 Stiffness Index

A detailed discussion of the three approaches, with particular emphasis on Stiffness Index,

will be presented in the second part of this study.

1.5 Literature Review

Optimal design of parallel manipulators for maximum and desired accuracy has been widely

studied in the recent years. J. Kotlarski [24] proposed to a model to reduce the kinematic

accuracy of a 3-DOF redundantly actuated planar parallel manipulator, through maximization

of the condition number of the Jacobian matrix. The condition number based approach has

been used to several authors [14-20] for maximizing accuracy of robotic manipulators.

Depending upon the condition number of the Error Transformation Matrix (ETM), an error

amplification index was defined and used by Ryu and Cha [21] to quantify and improves the

accuracy of the 3-PUS (Prismatic-Universal-Spherical) parallel manipulator. Q. Xu [22]

presented a composite error index, depending upon the minimum eigenvalue and condition

number of the ETM, and employed it to improve the kinematic accuracy of spatial parallel

manipulators. However, [25] showed that the condition number of the Jacobian matrix does

not provide the exact value and directionality of output errors. Other error models are,

therefore, required to evaluate the values of output errors along each DoF [26]. A Jacobian

based approximate error model was employed by [16] to synthesize a set of 3-DOF Steward

platforms for desired accuracy over a pre-defined workspace. Unlike cost function based

optimization that computes a single or multiple Pareto-optimal design solutions, interval

analysis was used to generate a bounded set of infinite design solutions. Any design solution

 Anx-B

21

from within this bounded set is guaranteed to possess desired kinematic accuracy along each

DOF. F. Hao [27] employed interval analysis to obtain a set of design solutions of a spatial

parallel manipulators, which satisfied requirements of desired workspace and accuracy. M.

Nefzi [28] proposed a multi-criteria interval analysis-based design approach to generate a

finite number of design solutions that satisfied lower bounds on requirements of kinematic

accuracy, workspace size, and task space velocities. Interval analysis, while being

computationally expensive, serves as an important technique for mapping from known output

errors to permissible actuation errors and geometric tolerances. Performances atlases were

used by [29, 30] for optimal design of parallel manipulators. Use of performance atlases

simplifies the overall design process by graphically expressing the relationship between

different performance indices and design variables. X. J. Liu [31] employed performance

atlases to design a 3-DOF parallel kinematic tool head for minimum orientation and

positioning errors due to errors in active joint inputs. Badescu [32] aimed to reduce the

kinematic inaccuracy of parallel manipulators by graphically analyzing the relationships

between various design variables and the maximum global conditioning number, workspace

volume, and inverse of condition number. [33] defined three different stiffness indices and

used them for maximizing the dynamic accuracy of a Delta parallel robot.

1.6 Proposed Design Approach

As stated earlier this study is broadly organised into two parts:

 Part I: Accuracy Analysis of 3-RSS Delta Parallel Manipulator

 Part II: Design of 3-RSS Delta Parallel Manipulator for Desired Accuracy and

Workspace

Collectively, Part I and II constitute a complete accuracy-based design approach for parallel

manipulators. The approach can be extended to manipulator architectures other than the 3-

RSS Delta manipulator.

A description of the two parts of this study, are presented in the following discussion.

i. 1.6.1 Part I: Accuracy Analysis

In this section, the kinematic accuracy of a 3-RSS Delta parallel manipulator is analyzed

using both Jacobian and geometric error based models. Additionally, the errors in active joint

inputs are the essential source of kinematic uncertainties [34]. Therefore, bounded errors in

 Anx-B

22

active joint inputs are considered. The purpose of our study is to investigate and analyze the

correlation between the condition number and exact values of positioning errors at the end-

effector. Moreover, an overall positioning error at a nominal position and individual

positioning errors along with the translation in each joint were evaluated. As it will be

presented later, the geometric error shows a highly directional aspect of kinematic accuracy

of a Delta parallel manipulator. However, the results obtained from the condition number-

based model are governed by choice of matrix norm.

ii. 1.6.2 Part II: Design for Desired Accuracy and Workspace

The first part focuses on modelling the kinematic accuracy of the robotic manipulator.

However, deflections in links under dynamic loading due to finite stiffness leads to increased

output errors. Therefore, any accuracy centric design approach should address the issue of

both kinematic and dynamic accuracies. In this part, a bi-level design approach is presented

for synthesis of parallel manipulators that possess maximum dynamic accuracy, desired

kinematic accuracy along each DOF, and a desired reachable workspace.

The proposed design approach is a cascading of multi-objective evolutionary optimisation,

and the Brent-Dekker numerical solver. The multi-objective optimisation problem is resolved

as part of Level 1 design to yield a set of pareto-optimal design solutions that maximise

dynamic accuracy and satisfy the constraint of a pre-defined workspace. In Level 2 design,

the Brent-Dekker numerical solver is used compute the maximum allowable uncertainties in

active joint inputs of the Level 1 optimal design solution such that desired kinematic

accuracy is obtained along each DOF. To the best author’s knowledge, the proposed design

approach is the first instance of the use of a geometric error model for optimal and functional

design of parallel manipulators. Moreover, as is explained later in the study, the bi-level

cascaded design approach is computationally inexpensive and yields a finite set of optimal

design solutions.

The rest of dissertation is organized as follows: Chapter 2 covers architecture and kinematics

of the DELTA parallel manipulator. Stiffness analysis and kinematic error modelling are

presented in Chapter 3 and Chapter 4, respectively. Chapter 5 discusses the two levels of our

proposed accuracy centric design approach. The proposed design approach is validated

through a case study in Chapter 6. It is prudent to mention that Chapter 1 – 4 constitute Part I,

and Chapters 5 – 6 constitute Part II of our study.

 Anx-B

23

CHAPTER 2: DELTA PARALLEL MANIPULATOR

The DELTA parallel manipulator is a spatial parallel manipulator. There are three orthogonal

Degrees of Freedoms (DOFs), that are all translational DOFs, however an optional fourth

rotational DOF can be added at the end-effector.

Based on joints, the DELTA parallel manipulator can have several different types of

architectures, each of which possess three orthogonal and translational DOFs. Four possible

architectures are:

1. RRRRR DELTA Parallel Manipulator: The RRRRR parallel manipulator has three

limbs. Each limb has twelve revolute (R) joints.

2. UPS DELTA Parallel Manipulator: The UPS parallel manipulator has three limbs.

Each limb has one universal (U), one prismatic (P), and one spherical (S) joints.

3. PSS DELTA Parallel Manipulator: The PSS parallel manipulator has three limbs.

Each limb has one prismatic (P), and two spherical (S) joints.

4. RSS DELTA Parallel Manipulator: This is the most commonly used architecture for

DELTA parallel manipulator. It has three limbs, with each limb having one revolute

(R), and four spherical joints.

Performance wise, the four possible architectures have varying characteristics. The

characteristics have been tabulated in Table 2-1.

Table 2-1. Possible DELTA Parallel Architectures

Architecture RSS / RRRRR UPS PSS

Speed High Low Medium

Accuracy Medium High Medium

Force Transmission Low High High

 Anx-B

24

The 3-RSS DELTA parallel manipulator, where 3 implies the number of limbs, is the most

widely used architecture for DELTA parallel manipulators. 3-D model of the 3-RSS DELTA

parallel manipulator is shown in Figure 2-1 below.

Figure 2-2. DELTA Parallel Manipulator.

The architecture was conceived, and later patented by Dr. Reymond Clavel in 1985.

Following the expiration of the patent, various robotics manufacturers developed and

marketed the 3-RSS DELTA parallel manipulator for applications ranging from high speed

pick and place to spinal cord surgery.

2.1 3-RSS Architecture

The 3-RSS DELTA parallel manipulator consists of two platforms: a moving platform that

serves as the end-effector, and a stationary base platform that houses the actuation sub-

system. The base and moving platforms are connected via three identical kinematic chains.

Each kinematic chain has a proximal link and two distal links. The distal links form a

parallelogram constrains redundant degrees of freedom, thus resulting in pure translation of

the end-effector. Moreover, the active revolute joint connects each proximal link to the base

 Anx-B

25

frame. Additionally, four passive spherical joints (S) form the four corners of each

parallelogram.

 kinematic chain of the Delta parallel manipulator is illustrated in Figure 2-2. Geometric

centres of the base and moving platforms are denoted by O and P, respectively. Two

coordinate axes have been adopted for complete kinematic description of the manipulator.

 coordinate system is attached at the geometric center of the base platform, with the

 -axis being positive towards the end-effector. The coordinate axes is attached at

the center of the revolute joint The -axis is aligned with vector and

is perpendicular to the center of the revolute joint. is the angle from -axis to -axis. It

represents constant orientation of all three limbs with respect to O. Angles

 are used to describe the configuration of the manipulator about a nominal

position. is measured from axis to . is measured from to the vector

defined by intersection of the parallelogram plane and plane of the limb. Lastly,

 denotes the angle measured between axis of spherical joint and .

Figure 2-2. Description of kinematic chain.

 is the vector of actuated joint inputs and vector defines the

position of point P in the task space with reference to the frame of reference.

 Anx-B

26

2.2 Mobility and Kinematic Analysis

Mobility and kinematic analysis are essential for synthesis and analysis of a parallel

manipulator. While kinematic analysis allows us to create mappings between task and joint

space variables, it is mobility analysis that yields the number of DOFs in task space for a

specific manipulator architecture. In the next sub-section, mobility analysis is performed to

verify that the DELTA parallel manipulator has three translational DOFs.

2.2.1 Mobility Analysis

The required number of degrees of freedom for our manipulator is 3 i.e. translation in the ,

and directions. The manipulator in our case is a special kind of DELTA robot where, as

shown in the Figure 2-2, the passive links are connected directly with the active links,

through spherical joints. Hence considering the general case, in our manipulator, d = e = 0.

Where d and e are defined as the distance between the active and passive links, on the fixed

base side and the movable platform side respectively.

Considering the manipulator mobility, we need to determine the number of degrees of each

kinematic chain independently and then, considering that the limbs join together at the two

platforms, we need to determine the overall mobility of the robot that should turn out to be 3.

Let be the degrees of freedom, the number of links, the number of joints, is the

degrees of freedom associated with the joint, and = 6, where is the total number of

degrees of freedom allowed called the motion parameter. In such a case the mobility equation

is modified to the following form:

 ∑

For the manipulator shown the Figure 2-1, , , and for .

Applying mobility equation to the manipulator produces:

F = 6(17 - 21 - 1) + 21 = 9

Solution to the above equation tells us that each of the limbs has 9 DOFs. As the number of

DOFs is greater than the desired three DOFs, we have an over constrained system of

 Anx-B

27

linkages. However due to the redundancy of many of links and joints, we are left with only

three translational DOFs.

2.2.2 Inverse Kinematics

The inverse kinematics involves the determination of the input joint angles for the position of

the end effector in the cartesian frame. Our 3 DOF parallel manipulator has 3 actuated joints.

Since all the actuated joints are revolute joints and the end effecter is constrained to 3

translational DOFs, the inverse kinematic problem involves the evaluation of the three

actuated joint angles in the joint required to obtain a desired position of the end effecter in the

Cartesian space.

The solution to the inverse kinematic problem yields important results which are

subsequently used in the later stages of the study including:

iii. Formulation of the Jacobian of the inverse kinematic problem:

iv. Development of a geometric error model.

The solution to the inverse kinematic problem is a three-step process:

i. The formulation of mathematical relations involving joint space variables (actuated

angles) and Cartesian space variables (end effecter position).

ii. Solution of the mathematical relations resulting in multiple solution sets of the

actuated joint angles.

iii. Selection of the appropriate solution set.

The fore-stated process can be carried out by using any of the two methods

a) Denarit Hartenberg method

b) Loop closure method

The DH method is relatively more general method for the formulation of inverse kinematic

relation but become quite complex when applied to closed loop mechanism having multiple

loops.The loop closure method, on the other hand is a geometric method proposed by. Our

formulation and solution of the inverse kinematic problem is based on the loop closure

 Anx-B

28

method due to its simple and intuitive approach. The loop closure formulation is explained in

the following text.

For any limb , we place another co-ordinate axis () with origin at such that axis is

parallel to the axis of joint . We define with respect to co-ordinate axis. Since the

 co-ordinate is at angle i with respect to -axis and at a distance from coordinate

therefore following transformation expresses the position of in the coordinate frame

attached at point for leg :

   

   

0

0 0

0 0 1 0

ui i i x

vi i i y

wi z

p cos sin p r

p sin cos p

p p

 

 

      
      

        
      
      

 (2.1)

Expressions for uip s , vip and wip are given by:

     1 3 2 cos sin cos ui i i ip c ba     (2.2)

 3 cos vi ip b  (2.3)

     1 3 2 sin sin sin wi i i ip a b   
 (2.4)

Here uip s , vip and wip are the three components of P in coordiante system.

Two solutions are immediately found for from Eq. (2.3):

1

3 cos vi
i

p

b
   

   
 

 (2.5)

Once we find out , an equation with as the only unknown is generated by isolating the

 terms in Eqs. (2.2) and (2.4) and then summing the squares of those two equations so that

 is removed with the use of the Pythagoras Theorem:

     2 2 2 2 2

1 1 3() 2 cos 2 sin sin ()ui wi ui i wi i ip c p a a p c ap b        
 (2.6)

With the presence of squares of 3sin ()i in the Eq. (2.6) hence we get two solutions for θ3i

that have a resulting same pose. To convert Eq. (2.6) into a polynomial equation, we have:

1
1 tan

2

i
it

 
  

 
 (2.7)

Which gives:

  1
1 2

1

2
 sin

1

i
i

i

t

t
 


 and  

2

1
1 2

1

1
 cos

1

i
i

i

t

t






 (2.8)

The half‐angle substitution is applied to Eq. (2.6), and simplified to produce:

 Anx-B

29

2

2 1 1 1 0 0i i i i il t l t l   (2.9)

where:

2 2 2 2 2 2

0 3 2 2 2 sin ()i wi ui ui ui il p p cp ap a c ac b        

1 4i wil ap

 2 2 2 2 2 2

2 3 3 2 2 sin () 2 sin 2 .i wi ui ui ui i il p p cp ap a c b bd ac         

Equation (2.9) once solved for , gives two possible solutions for for the solution found

for . With and known, is found by back-substitution into Eqs. (2.2) and (2.4).

1
2

3

()
()

()

ui i
i

i

p c acos
cos

bsin






 
 (2.10)

1
2

3

()
()

()

wi i
i

i

p asin
sin

bsin







 (2.11)

The above calculation and solution shows that for each location of end effector there are two

sets of angles that produce the same results and posture. The choice of the posture can be

performed by imposing some constraints which are explained below.

There are three aspects of solving the inverse kinematic relations:

1. Solution Methodology:

Inverse kinematic relation given above requires a four step process.

i. Assigning the value to all geometry elements of the manipulator i.e. link lengths

ii. Solving the Eq Error! Reference source not found. to obtain 2 values of 3i

iii. For both values of 3i ,we get two values of 1it .

iv. For each value of 1it we get a set of 1i and 2i .

2. Generation of Solution Sets

3. Selection of Appropriate Solution Sets:

As stated previously four solution sets are obtained from the inverse kinematic relation

each of which results in the same end effector positions however each solution set will

generate unique limb posture consequently some of the solution sets will generate

physically unrealistic postures therefore a set of selection criteria is established to allow

selection of optimum limb posture. This criterion is stated below.

i. The solution set having the smallest value of joint angle is actually selected. This

reduces the actuation effort required.

 Anx-B

30

ii. Solution sets which generate an outward posture are given priority over inward

posture generating sets.

iii. Solution set which contain values that do not conform to the following conditions

10 180i  and 20 180i  at 390 90i   .

2.2.3 Forward Kinematics

The forward kinematic is opposite to inverse kinematics and involves the determination of

position of end effector in Cartesian space for given input angles in joint space [10-AR]. In

the solution of the forward kinematics problem , , and are used as inputs and the

corresponding values of the coordinates in the coordinate system of the end effector with

the help of the vector p are calculated. The forward kinematics of parallel manipulators is

tedious.

The position of point with respect to the coordinate system can be written in

coordinate form of , and as follows:

1 3 2 () () ()ui i i ip acos c bsin cos     (2.12)

3()vi ip bcos  (2.13)

1 3 2 () () ()wi i i ip asin bsin sin    (2.14)

Eqs. (2.12), (2.13), and (2.14) on substitution into Eq. (2.15), give the following

transformation between the and coordinate system:

   

   

0

0 0

0 0 1 0

ui i i x

vi i i y

wi z

p cos sin p r

p sin cos p

p p

 

 

      
      

        
      
      

 (2.15)

This results in a system of 9 equations in 9 unknowns (, , , , , , , , and

):

1 3 2() () () () 0()x y i i i ip cos i p sin acos r c bsin cos          (2.16)

3() () 0()y i x i ip cos p sin bcos     (2.17)

1 3 2()) 0(()z i i ip asin bsin sin     (2.18)

where has the values 1, 2, and 3. On solving this set of equations, the solution of the inverse

kinematics can be generated.

 Anx-B

31

Equation without is created by separating the values in Eqs. (2.16) and (2.18), and then

adding the squares of those two equations with the square of Eq. (2.17) so that is removed

by using Pythagorean theorem:

 2 2 2

1

2 2 2

1 1

[() () ()]2

(2 2 0) () () ()

x y z i x i y i

i z i

p p p c r acos p cos p sin

asin p a r c a c r cos b

  

 

     

       
 (2.19)

Where has the values 1, 2, and 3. Hence we are left with these three unknowns, , , and

 . Each of these three equations make a sphere with a radius , and with a center displaced

from the joint by a distance of , the size difference of the platforms. On solving these

three equations we not only get the intersection of these three spheres but also the solutio to

the forward kinematics problem.

The plane that contains the circle of intersection created by the spheres of leg 1 and leg ,

where = 2 and 3, is found by subtracting Eq.(2.19) for = 1 from Eq. (2.19) for :

1 2 3 4 0j x j y j z jl p l p l p l    (2.20)

Where:

1 1 1 11()[()] ()[2 2 ()]j j jl cos acos r c cos acos r c        

2 1 1 11()[()] ()[2 2 ()]j j jl sin acos r c sin acos r c        
 (2.21)

3 1 112) ()2(j jl asin asin  

2 2 2 2 2 2

4 11 11 1 1[()] () [()] ()j j jl acos r c a sin acos r c a sin          

Equation (2.21) for = 2 and 3 provides a system of equations that is linearly independent.

This system of equations defines a line in 3 that must contain point . The intersection of

this line with any of the spheres described by Eq. (2.19) solves the forward kinematics

problem. In this case, solving Eq. (2.20), where = 2 and 3, for py and pz in terms of px and

then substituting the resulting expressions into Eq. Error! Reference source not found. for i

= 1, yields:

2

104 105 106 0x xk p k p k   (2.22)

where the constants are defined in Appendix B. The values for and that correspond to

 are found by back substitution into Eq. (2.20).

Both inverse and forward kinematics can be resolved by using MATLAB, as has been done

in this study. In the next section, formulation of the Jacobian matrix for the DELTA parallel

manipulator is presented.

 Anx-B

32

2.3 Jacobian and Workspace Analysis

In the following sub sections, Jacobian and workspace analyses of the DELTA parallel

manipulator are presented.

2.3.1 Jacobian Analysis

This section deals with the formulation of the Jacobian matrix for the delta robot. The

Jacobian matrix is basically a transformation matrix that is used for mapping of the velocities

from the Cartesian space to the joint in case of the delta robot.

• •
q = J x (2.23)

where

•
q represents a set of actuated joint rates,

•
x represents output velocity vector of the end-effector

J is the Jacobian matrix.

For DELTA robot that has only 3 translational degrees of freedom, the Jacobian matrix is a

square matrix since the three actuated joint velocities are mapped to the end effector

velocities in x,y and z directions. At the end of this chapter, singularity analysis is performed

using the Jacobian matrix to determine the possible singularity postures for the manipulator

inside the workspace. Jacobian matrix obtained in this section will be also be used in chapter

6 where a optimization study is performed for kinematic accuracy.

As stated above Jacobian matrix serves as a mathematical tool for mapping from one set of

coordinates to other set of another. However Jacobian matrix provides important insight into

the following problem as well.

Trajectory Generation

The Jacobian matrix is habitually employed for path creation resolves since for a given

wanted end-effector velocity, it is likely to plot that velocity back to the joint space.

Optimization of Manipulator

 Anx-B

33

Jacobian matrix determinants and norms are translated into several different performance

indices e.g. error amplification factor, stiffness index, and force transmission index. These

indices have been later used as optimization variable.

Evaluation of Singularity Postures

Singularity postures are defined by end effectors positions at which the manipulator either

gains or losses one or more degrees of freedom. Avoiding these singularity postures during

operation ensures accurate and controlled of motion.

Open Loop Speed Control Implementation

Jacobian matrix allows the evaluation of end effectors velocity In Cartesian co-ordinates

when actuated joint velocities in the joint space are known and vice versa. This serves as the

basis of open loop speed control implementation.

2.3.1.1 Derivation of Jacobian Matrix

Let  be the vector made up of actuated joint variables and p be the position vector of the

moving platform. Then

11

1 12

13

,

x

i y

z

p

p p

p



  



   
   

  
   
      

 (2.24)

To determine the Jacobian Matrix, a loop closure equation will be differentiated, and the

resulting equation will be rearranged to:

3

11

12

13

x x

p y y

z z

p v

J J p v

p v









   
   

    
     

 (2.25)

where vx, vy, and vz are the x, y, and z components of the velocity of the point P on the

moving platform in the xyz frame.

In order to arrive at the above form of the equation, we look at the loop OAJ B. QP. The

corresponding closure equation in the xyz frame is

 i i i i i iOP PC OA A B BC   
 (2.26)

In the matrix form we can write it as

 Anx-B

34

1 3 2

3

1 3 2

cos sin cos sin cos

sin cos 0 0 0 cos

0 0 sin sin sin

x i y i i i i

x i y i i

z i i i

p p c r

p p a b

p

    

  

  

         
         
     
         
                  

 (2.27)

Taking the time derivative. The loop closure equation (2.27) can be re-written as

() i ip c r a b   
 (2.28)

Differentiating this equation with respect to time and using the fact that R
r
 is a vector

characterizing the fixed platform

c() i i

p

p a b
 



  

In this expression, every point on the moving platform has exactly the same velocity.

Therefore

i ip v a b
 

   (2.29)

The linear velocities on the right-hand side of Eq. (3.28) can be readily converted into the

angular velocities by using the well-known identities, thus,

i ia i b iv a b     (2.30)

The presence of
ib introduces an awkward dependence upon the variables 2i



 and 3i


However, there is a way out. It can be got rid of by taking a scalar product of expression

(3.29) with the unit vector bi

^

.
i i

i a i b ib v a b     
 

As the triple product with two identical vectors is zero, what is left is merely

^ ^

i
i i a ib v b a    (2.31)

In the component form, the left-hand side of this equation can be written as

^

3 2

3 3 2

sin cos cos sin

 cos sin cos sin sin

[][]

[] []

 =

i i i x i y i

i x i y i i i z

ix x iy y iz z

b v v

v

J v J v

v

v

v

J

v

   

    

  

  

 

 (2.32)

where

 Anx-B

35

3 2 3

3 2 3

3 2

sin cos cos cos sin

sin cos sin cos cos

sin sin

ix i i i i i

iy i i i i i

iz i i

J

J

J

    

    

 

 

  



 (2.33)

On the right-hand side of Eq. (3.32) , the movement of the joint a is in the xi-zi plane. Thus, it

only has a component of velocity in this plane. This is the angular velocity about the y axis.

Thus

1

0

0
i

ia 


 
 
  
 
 
 

 (2.34)

The negative sign is just a matter of convention. Therefore

^ ^ ^

1 1 13 1

1 2 3

0 0 ˆˆ
i

i i ia i i i

i i i

i j k

a a i a k

a a a

   
  

     

The right-hand side can now be written in its simplified form as

^
12 3.() sin sin

i
ii a i i ib a a   



  
 (2.35)

The equations Error! Reference source not found. and

Error! Reference source not found. can be equated for every value of i

•

111 1 1 21 31 sin sin x x y y z ZJ J J av v      

•

122 2 2 22 32 sin sin x x y y z ZJ J J av v      

•

133 3 3 23 33 sin sin x x y y z ZJ J J av v      

which readily implies

pJ v J 


 (2.36)

Where

1 1 1

2 2 2

3 3 3

x y z

p x y z

x y z

J

J J J

J J J

J J J

 
 

  
 
 

 (2.37)

And

 Anx-B

36

21 11 31

22 12 32

23 13 33

sin()sin 0 0

0 sin()sin 0

0 0 sin()sin

J a

  

  

  

 
 

  
 
   (2.38)

2.3.2 Workspace Analysis

Workspace of the Delta parallel manipulator can be described as a region formed by the

intersection of three tori; where each torus is formed by independent motion of a kinematic

chain in the task space. This workspace is defined by a set such that the following

condition is satisfied for every [35]:

 (

)

 (2.39)

Eq. (3.38) implies that for inverse kinematics to be resolvable at a point, either of the

following must be true:

1. If then lies inside the boundary of the workspace

2. If then

lies on the boundary of the workspace

 can be computed by defining a cuboid , of width and height , and evaluating Eq.

(xx) at every . Note that the sum of lengths of proximal and distal links represents the

theoretically maximum limit of independent motion of a kinematic chain. The workspace of a

DELTA parallel manipulator is illustrated in Fig. 2-3.

 Anx-B

37

Figure 2-3. Workspace of Delta parallel manipulator with .

The aim is to ensure that the manipulator, possessing a desired accuracy, should also have a

pre-specified workspace prescribed within its workspace . In this study, a parallelepiped

regular workspace, defined by the set of points , is prescribed within the workspace of the

manipulator , as:

 (2.40)

Fig. 2-4. illustrates a parallelepiped workspace that is prescribed within the workspace of the

Delta parallel manipulator.

 Anx-B

38

Figure 2-4. Prescribed parallelepiped workspace.

Kinematic performance of parallel manipulators is severely degraded at the workspace

boundary. Therefore, it is desirable that the boundary of prescribed workspace does not

coincide with the boundary of actual workspace. Based on this practical consideration, the

constraint function for desired workspace can be formulated, as:

 (2.41)

Where, { } is an array of eight corner points of the parallelepiped workspace. Eq. (2.41)

implies that if , then all corner points of the parallelepiped workspace should be

inside the boundary of .

2.4 Design Variables

Performance of parallel manipulators is dependent on the values of various geometric

parameters. For kinematic design of a Delta parallel manipulator, the design vector

 is defined by the following four design variables:

 Anx-B

39

1. Length of proximal link; denoted by .

2. Length of distal link; denoted by .

3. Distance from centre of base platform to the centre of revolute joint; represented

by

4. Distance from centre of moving platform to the mid-point of the line ;

denoted by .

The afore mentioned design variables are illustrated in Fig. 2-5.

Figure 2-5. Design variables of DELTA parallel manipulator.

In the next chapter, stiffness analysis of the DELTA parallel manipulator is performed via

Finite Element Analysis and Jacobian based approach.

 Anx-B

40

CHAPTER 3: STIFFNESS ANALYSIS

The aim of Level 1 Design is to obtain a bounded set of optimal design solutions that possess

maximum dynamic accuracy and desired workspace. As discussed previously, the desired

workspace is assumed to be a parallelepiped workspace that is prescribed within the

workspace of the DELTA parallel manipulator.

Before we can state the Level 1 Design problem, it is essential to evaluate the dynamic

accuracy of the manipulator by analysing its stiffness across the workspace. In the following

sections various stiffness models and indices, for estimating the stiffness of the DELTA

parallel manipulator at any given configuration, are discussed.

Stiffness analysis can is essential for both qualitatively and quantatively defining the dynamic

accuracy of a manipulator. Several techniques have been used for the stiffness analysis of

parallel manipulators. It is prudent to mention that stiffness analysis, regardless of the

technique it has been done through, ultimately involves computing the stiffness matrix of the

manipulator at various configurations in the task or joint space.

The three techniques for stiffness analysis of parallel manipulators are:

1. Finite Element Analysis

2. Matrix Structural Analysis

3. Virtual Joint (or Jacobian) Method

Finite Element Analysis is the most accurate technique for stiffness analysis. However, it is

marred by high computational expenses. Therefore, FEA is generally done as part of shape /

topology optimization in the final stages of design. However, as part of this study, finite

element analysis of the DELTA parallel manipulator was performed to gain additional insight

into the problem of flexible multi body dynamics.

Matrix Structural Analysis reduces some of the complexity and computational costs

associated with FEA, by reducing the number of elements and nodes in a structure. In case of

stiffness analysis of parallel manipulators, Matrix Structural Analysis models links as

elements and joints as nodes of the manipulator structure. In most cases, this method can

yield an analytical stiffness matrix formulation. However, Matrix Structural Analysis is

characterized by high dimensional matrix operations which can be prohibitive for parametric

stiffness analysis.

 Anx-B

41

The Virtual Joint Method, also known as Lumped Modelling, is based on the principle of

Kinematic-Statics Duality. It leverages the fact that the Jacobian matrix can be used to

estimate the stiffness matrix of a manipulator at any given pose. Although not as accurate as

FEA or MSA, the virtual joint method can quickly yield an analytical form of the stiffness

matrix that can be readily used for stiffness analysis.

In the following section, flexible multi-body dynamics based FEA is performed to evaluate

the stiffness of the 3-RSS DELTA parallel manipulator.

3.1 Flexible Body Dynamics

Finite element analysis and multibody system simulation have been used as two isolated tools

in the field of computer aided engineering. Both of the techniques have their own fields of

application. The FEA is used to the simulate the elastic/plastic behaviour of a structure at

component level under certain boundary and loading conditions. Typical results include

stress/strain distributions, deflections or normal modes of vibration. Approximations like

linear models, small delfections within elastic range are assumed during the simulation. Such

simulations become very time consuming and computationally extensive in case of non-linear

transient analyses and large number of degrees of freedom. On the other hand, multibody

system simulation focuses on the dynamic response of entire mechanical systems of ridig

bodies interconnected by various joints. Non-linear system of equations is solved to

determine include the dynamic loadings (torques and forces) acting on joints, bodies and

actuators. In most applications bodies are assumed to be rigid that simplify the problem but

can’t reflect the true dynamic response of the system during the operation. So to consider the

flexiblilty effects of the componets, there is a the need for coupling Multibody Simulations

(MBS) with Finite Element Methods (FEM).

In recent years, new methodologies have been developed that combine aspects of both worlds

and have been intergrated in commercial sotawre. MSC ADAMS is a multi-body simulation

system having the capability of coupling Multibody Simulations (MBS) with Finite Element

Methods (FEM). It utilizes sub-structuring techniques and component mode synthesis for the

representation of the elastic properties of a body within a multibody system.

 Anx-B

42

ADAMS Flex-FEM Solver

FEA cannot be directly coupled with MBS due to very large number of degrees of freedom.

In this section, a brief introduction is presented to the theory of ADAMS Flex-FEM solver

that uses modal superposition for coupling of multi-body system MBS and finite element

analysis (FEA) to determine the deflections of flexible bodies.

Its working can be divided into two parts; Flex-MBS and Flex-FEA.

3.1.1.1 Flex Body MBS

To understand the flex-MBS, consider a component i using a body fixed coordinate system

BCS as shown in Figure 3-. Two states of the body are shown in figure 7-2; deformed and

undeformed state. Undeformed state remains fixed with respect to the body coordinate

system.

Figure 3-1: Location and Orientation of points on a flex body.

The global position

→ of a Point P on the body i in global coordinate at a time instant t can

be taken as the vector sum of the position of P in BCS and position of body in global

coordinate system.

 (3.1)

Here the matrix Ai transforms the position from the BCS to GCS.

 Anx-B

43

As for a rigid body, the position of two points inside the body does not change so from the

Fig. 3-1 it can be seen that is a constant vector with respect to BCS. But in case of a

flexible body, this vector u P i depends on the actual deformation of the body:

 (3.2)

Now the position of point P inside body is taken as the vector sum of position of point P in

un-deformed state and the deformation vector .

Similarly taking the time derivatives of Eq. (3.2) will give the velocity and acceleration

representations. These expressions are used to represent the MBS representation of the

system.

3.1.1.2 Flex Body FEA

A flexible body can be taken as assembly of nodes of nodes and will have large number of

finite degree of freedom. During mesh generation .mnf files are generated that contain

information about the nodal masses and element stiffness matrices. The deflections of the

nodes can be described according to the force-stiffness relationship as

 (3.3)

Unfortunately, this type of system cannot be implemented into multibody system equations of

motion due to very large number of degrees of freedom. To solve this issue, MSC ADAMS

Flex uses modal superposition approach to reduce number of degrees of freedom and

represents the body deformation as a weighted sum of smaller number of shape functions

or mode shapes that are pre-computed during the finite element analysis and give

information about the deformation of all nodes.

 (3.4)

Following illustration can be considered to understand how ADAMS determines the

component deflections. As a simple example of how a complex shape is built as a linear

combination of simple shapes, observe the following illustration:

 Anx-B

44

Figure 3-2: Deflection behaviour as a linear combination of Mode Shapes.

Here we can see that deformation of the body depends on two things; mode shapes and

modal contribution factors .Mode shapes constant vectors for a particular component so

we can say that time-dependent deformations of the structure depend on modal contribution

factors.

One thing needs to be considered here that these mode shapes represent the approximated

deformation behaviour of the structure since a limited number of degrees of freedom are

selected to reduce the DOF. Therefore the accuracy of the model depends on the selection of

mode shapes. There are two types of mode shapes;

1. Normal modes of the constraint body

2. Static correction modes

ADAMS flex uses CRAIG and BAMPTON approach for the selection of mode shapes.

For the purpose of this study, the parametric solid model of the parts were created using

SolidWorks so that cross-sectional dimensions can be changed for design iterations. The parts

were then assembled by defining joint constraints between the links. The complete

manipulator assembly along with connections was then exported to MSC ADAMS, where

end effector deflections were analysed for a sample trajectory.

The flex body dynamic analysis was performed in the coupled MBS-FEA environment by

applying proper boundary and loading conditions to calculate angular velocities and

accelerations, accelerations of centers of mass, joint forces and external driving torques along

with stress/strain distributions, deflections or normal modes of vibration. The deflections can

be calculated by taking the difference of the paths of rigid-body and flex body simulations.

 Anx-B

45

1 Convergence Study

Considering the deflections of the end point, a convergence study was performed to make the

simulation results independent of mesh size and time step size. First time step independence,

simulations were performed for a same path and acceleration profile by reducing the time

step size till the time there was no change on the results. Fig. 3-3 shows the results for end-

point deflections for four different time step sizes. It can be seen that after step size of 0.005s,

the deflection curve is overlapping that shows the convergence.

Figure 3-3: Time Step Convergence.

Then using this time step size, mesh independence study was performed for the maximum

deflection occurring at the end point of manipulator. Simulation were performed each time

using a finer mesh until the result became independent of the mesh size. The results for the

mesh independence study are shown inError! Reference source not found.. It can be seen

hat the value of the maximum deflection has converged till 1
st
 decimal place at iteration no 4

with number of nodes equal to 5627.

Table 3-6. Mesh Independence Study

Iterations
Mesh Size

(No of Nodes)

Maximum Deflection

At End Point

 Anx-B

46

01 1461 2.3952 mm

02 2375 3.4354 mm

03 4051 3.7263 mm

04 5627 4.2631 mm

05 6021 3.2981

3.2 Jacobian Based Stiffness Analysis

By virtue of the duality of kinematics and statics, it can be stated that the forces and moments

applied at the end effector , under the static equilibrium, are related to the actuating forces

or moments that are required for maintaining equilibrium by:

 (3.5)

Where is the Jacobian matrix. Assuming that the actuators are modeled as linear springs

with stiffness , the stiffness matrix of a parallel manipulator is thus given as:

 (3.6)

For the Delta parallel manipulator, the stiffness of all three actuators is same and therefore

 = 1 is assumed. This unit actuator stiffness only scales the stiffness matrix without altering

the shape or size of the stiffness hyper ellipsoid. Therefore, the stiffness matrix of the Delta

parallel manipulator can be defined by the product of the Jacobian matrix and its

transpose:

 (3.7)

Eq. 3.7 highlights the dependence of manipulator stiffness on both the position inside the

workspace and its kinematic design parameters . The stiffness at a given point in the

workspace can be quantified through different indices, as discussed below.

3.2.1 Stiffness Index

The stiffness at a given point in the workspace can be quantified by the stiffness index ,

which is defined as the inverse of the minimum eigenvalue of . The larger the value of

stiffness index about a point, lesser is the stiffness.

The stiffness index about a nominal position can be computed as:

 Anx-B

47

⁄ (3.8)

The values of stiffness index across a plane with in the workspace of the Delta parallel

manipulator is illustrated in Fig. 3-4.

Figure 3-4. Stiffness index values of Delta parallel manipulator at .

The eigenvalues of underline the stiffness of the manipulator along the three principal

directions or degrees of freedom. Geometrically, the minimum eigenvalue signifies the length

of the smallest semi axis of the stiffness hyper ellipsoid, whereas practically, this leads to the

evaluation of the direction along which the stiffness is minimum. Therefore, by maximizing

 or minimizing the minimum stiffness about a nominal position can be maximized.

Based on above, a maximum stiffness index
 can be defined to quantify the minimum

value of stiffness across the workspace as:

 (3-9)

Eq. 3-9 defines the maximum stiffness index
 as the maximum value of stiffness index

across the whole workspace. Essentially, this means that the minimizing the maximum

 Anx-B

48

stiffness index will in turn maximize the stiffness at the position of least stiffness inside the

workspace.

Eq. 3-9 defines the maximum stiffness index
 as the maximum value of stiffness index

across the whole workspace. Minimizing the maximum stiffness index will in turn maximize

the stiffness at the position of least stiffness inside the workspace.

3.2.2 Condition Number of Stiffness Matrix

In conjunction with the stiffness index, condition number of the stiffness matrix can be used

to evaluate the eccentricity of the stiffness hyper ellipsoid. It is prudent to mention that each

of the three eigenvalues of the stiffness matrix represent the length of an axis of the stiffness

hyper ellipsoid as shown in Fig. 3-5.

Figure 3-5. Stiffness hyper ellipsoid

The smaller the eccentricity, the more uniform is the stiffness at a point inside the workspace.

Mathematically, the condition number of the stiffness matrix is defined as the ratio of the

smallest to the largest eigenvalue, as:

⁄ (3.10)

As in the case of stiffness index, the minimum condition index across the overall

workspace is the smallest value of condition index at a point inside the workspace. Eq.

10 defines the minimum condition index
 as:

 (3.11)

Maximum dynamic accuracy is achieved by minimizing both the maximum stiffness index

and the minimum condition index. This minimization can be achieved by resolving a multi-

objective optimization problem that will yield multiple pareto-optimal design solutions.

 Anx-B

49

In the next chapter, kinematic accuracy analysis of the DELTA parallel manipulator is

presented.

CHAPTER 4: ACCURACY ANALYSIS

In this chapter, accuracy analysis of the DELTA parallel manipulator is performed through

two different error models:

1. Jacobian based error model

2. Geometric error model

Error modeling is carried out to investigate and evaluate the kinematic positioning errors at

the end effector. Kinematic positioning errors are attributed to uncertainties/ errors in active

joint inputs and geometric tolerances in joints and links. Various models have been

developed and investigated to study the kinematic accuracy of manipulators across its

workspace. These error models can be broadly categorized into two distinct types:

1. Jacobian based error model

2. Geometric error model

Jacobian based error model gives a qualitative value to the kinematic accuracy in terms of the

condition number of the Jacobian matrix. Contrary to this, the geometric error model allows

for computing the exact value of positioning error at a point. In what follows, both Jacobian

and geometric error models are developed for the Delta parallel manipulator.

The aim of this chapter is two folds. Firstly, a study will be carried out to investigate and

compare two error model that will illustrate the most accurate error for the DELTA parallel

manipulator. Secondly, the chapter will serve as a basis for Level 2 Design phase of our

proposed design approach.

 Anx-B

50

4.1 Jacobian Error Model

Condition number of the Delta parallel manipulator at a nominal position can be found by

analysing:

 ̇ ̇ (4.1)

Given an error in active joint velocities ̇̇, there must be an error ̇ in the positioning

velocities. The two errors can be related as:

 ̇ ̇ (4.2)

Eq. (4.2) can be obtained by adding the positioning and input errors to their respective

nominal values, and subtracting the resulting equation from Eq. (4.1). The condition number

can now be defined by considering the norm:

‖ ̇ ‖

‖ ̇‖
 ‖ ‖ ‖ ‖

‖ ̇‖

‖ ̇‖
 (4.3)

 Anx-B

51

4.2 Geometric Error Model

The geometric error model derived in the following discussion maps the error in the

three active joint inputs

 to positioning errors

 about a nominal position
 . The error in active joint inputs

is result of the finite resolution of the three encoders that provide position and velocity

feedback to the robot controller. Due to this error or uncertainty, the three active joint inputs

can lie in the intervals [] . Consequently, the

position of the end-effector can lie anywhere in the intervals

 and . Geometrically, the three active joint

inputs are bounded by a cuboid which has the following eight corner points :

1. [

]

2.

3.

4. [

]

5.

 Anx-B

52

6.

7.

8.

The cuboid is termed as the input bounding region. Fig. 4-1 illustrates the input bounding

region of a Delta parallel manipulator with design parameters , about a

nominal position for .

Figure 4-1. Input bounding region .

Corresponding to the input bounding region there is an output bounding region The

output bounding region is generated by sweeping the active joint inputs in the intervals

 [] and computing positions at these active joint

inputs. Distances between the resulting points that lie on the boundary and inside of the

output bounding region and the nominal position are called local positioning errors

about the nominal position.

Briot et al. [36] presented the maximum local positioning error occurs with the

one of the corner points of the input bounding region used as active joint inputs :

1. The end-effector is not at a Type 1 or Type 2 singularity.

 Anx-B

53

2. The input bounding region is significantly small in comparison to the reachable

workspace.

Since the Delta parallel manipulator is typically employed in industrial environments,

their controllers are designed to explicitly avoid singular configurations. Therefore, the

maximum local positioning error is simply equal to the largest value of local positioning

error computed with the eight corner points of the input bounding region as active joint

inputs.

Let be the maximum local positioning error about the nominal

position for the Delta parallel manipulator having design parameters and error of in

active joint inputs. The mapping is obtained by first resolving the inverse kinematics to

compute for a known . In the second step, forward kinematics is solved for each of the

eight corner points of by considering
 for . This creates an

array of positions { }. The maximum distance between the nominal position and the

positions { } is the maximum overall local positioning error about . Algorithmic

formulation of is presented below in Algorithm 1.

Algorithm 1: Maximum local output error at

Inputs:

 Vector of design variables,

 Uncertainty in active joint inputs

 Nominal position,

Find:

 Maximum local output error about ,

1. function

2.

3. { }

4. for

5. { }

 Anx-B

54

6. { } =

7. end

8.

9. return

10. end function

The local positioning errors are computed as:

 √ (4.4)

The function returns an array

{ } { } It should be noted that returns the resultant

of positioning error along each DOF. This mapping can be modified to return individual

positioning errors and in translation along and -axes

respectively about a nominal position. Furthermore, unlike the Jacobian based error models,

the mapping computes the exact positioning error about a nominal position under known

uncertainties in active joint inputs.

In the following section, the fore stated error models are used to evaluate the kinematic

accuracy of a Delta parallel manipulator across its reachable workspace.

4.3 Accuracy Analysis: Jacobian And Geometric Models

Accuracy analysis is carried out by visualizing , , and

 across a plane inside the reachable workspace of the Delta parallel manipulator.

The two condition indices one based on 2-norm and another one based on Euclidean

norm, are computed via the Jacobian based error model, whereas the maximum overall local

positioning error maximum local positioning error along -axis ,

maximum local positioning error along -axis and maximum local positioning

error along -axis are computed using the geometric error model. For both error

models, a pre-specified plane inside the workspace is discretized into 50,000 points and the

condition indices and local positioning errors computed at each point. For our analysis, a

 Anx-B

55

Delta parallel manipulator is considered with design vector and known

uncertainty of in the active joint inputs.

The value of condition index, based on the 2-norm, across a plane defined at for the

test case Delta parallel manipulator is illustrated Fig. 4-2.

Figure 4-2. 2-norm condition index evaluated at .

The condition index, computed using the Euclidean norm, at is illustrated in Fig. 4-3.

 Anx-B

56

Figure 4-3. Euclidean condition index evaluated at .

It is evident from an analysis of Fig. 4-2, and Fig. 4-3 that both the value and distribution of

the 2-norm and Euclidean norm based condition indices are not the same. This result presents

a very close relationship with the observations obtained by Merlet [22-C] who suggested that

the choice of a particular norm may alter the observed distribution of dexterity across the

workspace of a planar parallel manipulator. However, it is also noticed that the kinematic

accuracy will be reduced when the robot tries to reach distant points from the workspace

center. In other words, we can say that parallel Delta robot may encounter the singularity as

the end-effector approaches the workspace boundary.

The maximum overall local positioning error across the workspace is illustrated in

Fig. 4-4. The error is computed by executing Algorithm 1. at each of the 50,000 discretized

points.

 Anx-B

57

Figure 4-4. Maximum local positioning errors evaluated at .

Fig. 4-4 reveals the highly directional nature of kinematic accuracy across the workspace. It

is evident from the figure that iso-contours of errors are orientated in the same way as the

three active joints around the point Further understanding of the directional nature of

accuracy is made by visualizing the individual positioning errors along each DOF.

The maximum local positioning error along -axis , is plotted in Fig. 4-5 below.

 Anx-B

58

Figure 4-5. Maximum local positioning errors along -axis, .

Kinematic accuracy, along the direction translational DOF, is highly uniform along the

negative axis. This points to an interesting correlation between the kinematic accuracy

along -axis and the condition index. The condition index is skewed towards the negative

axis whereas the positioning errors along direction become more uniformly distributed in

the negative axis. This fact can be leveraged in practice by installing the Delta parallel

manipulator such that the most end-effector movements are carried out along the

negative axis.

Kinematic accuracy or errors in translation in the direction are illustrated in Fig.

4-6. The errors are found to be symmetric about the axis and are increasingly uniform

parallel and perpendicular to the positive axis.

 Anx-B

59

Figure 4-6. Maximum local positioning errors along -axis, .

The relative uniformity of errors in translation along the -axis DOF is evident from a visual

analysis of maximum local positioning errors along -axis that are illustrated in

Fig. 4-7.

 Anx-B

60

Figure 4-7. Maximum local positioning errors along -axis, .

 Anx-B

61

 Anx-B

62

CHAPTER 5: BI-LEVEL CASCADED DESIGN APPROACH

In this chapter, a two-level cascaded design approach is presented for optimal design of the

DELTA parallel manipulator. The proposed design approach will yield a single optimal

design solution that possesses:

3. Maximum dynamic accuracy

4. Desired kinematic accuracy

The proposed design approach is made up of two distinct levels. In Level 1 design, a pareto

dominant set of design solutions is obtained by resolving a multi-objective optimization

problem. All elements of this set are optimal solutions that maximize dynamic accuracy.

Following Level 1 design, the optimal design solutions are passed on as inputs to the Level 2

design phase. In Level 2 design, a numerical solver is employed to find the maximum

allowable uncertainties in active joint inputs, that will yield desired output errors along each

DOF of the optimal design solutions.

5.1 Level 1 Design: Optimal Design for Maximum Stiffness

The main aim of L is to derive optimal design solution(s), from within a bounded design

space, that minimize both the minimum condition number and the maximum stiffness index

while satisfying constraint of a pre-specified workspace. This is achieved by resolving the

below constrained non-linear multi-objective problem:

Find: A design vector,

That: Minimizes:

Subject to: { }

 {

 { } represents the constraint on our desired workspace, and is

discussed in detail in the next section. Side constraints represent explicit upper and lower

bounds on the values of design variables, which further restricts the feasible design space.

 Anx-B

63

The multi-objective optimization problem stated above has two objective functions 1)

minimum condition index
 and 2) minimum stiffness index

 over the prescribed

workspace . Maximum dynamic accuracy is achieved by finding pareto dominant

solutions that minimize one objective function without causing the other to increase.

Definition 1. (Pareto dominance)

Let and be two feasible solution vectors from the search space. Solution

 dominates if and only if:

(i)

(ii) { }

That is, a feasible solution is Pareto dominant if no feasible solution can decrease some

criterion without causing a simultaneous decrease in at least one other criterion. The set of

Pareto dominant solutions represents the minimal solution of a multi-objective optimization

problem, such as the one formulated in our study.

The fore mentioned optimization problem can be resolved through multiple techniques with

varying levels of accuracy (in terms of results), implementation complexity and

computational time. A whole class of heuristics, based on the process of natural selection and

genetics, have been developed to resolve non-linear optimization problems. These meta-

heuristics, also known as evolutionary algorithms, include genetic algorithm (GA),

evolutionary strategies (ES) and evolutionary programming (EP). Amongst these, GA is the

most well-known in the areas of design optimization [37]. Unlike conventional gradient

based methods such as the Nelder-Mead simplex method, direct search method and

sequential quadratic programming, genetic algorithms are capable of quickly finding a higher

quality design solution without falling into local optima.

Quality of a design solution is measured as the difference between solution returned by an

optimization algorithm, and a known actual value of the design solution. Two important tests

for ascertaining the effectiveness and computational efficiency of an optimization technique

are based on measuring the quality of design solution and the time taken for arriving at the

design solution. R. Hassan et al. [38] performed a systematic evaluation of effectiveness and

computational efficiency of both genetic algorithms and particle swarm optimization (PSO)

for engineering design problems of varying nature. It was shown that while both PSO and

GA yielded high quality (>99%) design solutions, mean of the quality was higher for PSO

than GA. However, it was shown in [23] that for optimal design of parallel manipulators,

 Anx-B

64

PSO takes 2.6 times more computational time than GA to search for the highest quality

design solution.

The ability of GA to search for high quality design solutions at a significant pace can be

attributed to the use of genetic operators such as crossover and mutation. Crossover attempts

to retain and pass on the desirable traits of a candidate design solution to the next generation

of candidate solutions. Also, by restricting the regeneration of “weak” candidate solutions,

GA eliminates both weak solutions and their future generations. This enables the algorithm to

quickly converge to a high-quality design solution with higher probability, within few

generations [39].

Owing to lower computational time, high effectiveness and simpler implementation through

an array of dedicated libraries, GA can be efficiently applied for accuracy based optimal

design of parallel manipulators. Therefore, GA is used for resolving the multi-objective

optimization problem in Level 1 design.

5.2 Level 2 Design: Design for Desired Accuracy

In Level 2 design, an inverse mapping from vector of desired accuracy

 to a design domain of allowable uncertainty in active

joint inputs is resolved for the optimal design solution , where is a pareto optimal

design solution which belongs to the set of pareto dominant solutions. This can be posed as a

set inversion problem and resolved via set inversion with interval analysis (SIVIA) [40, 41].

However, unlike SIVIA, the proposed goal attainment approach does not employ interval

arithmetic. Consequently, this eliminates the complexity and numerical errors associated with

interval evaluation of non-linear functions.

Let and where and are

maximum output errors along, and axes, As the optimal design vector has already been

derived at Level 1, the output errors are solely dependent on the uncertainty in active joint

inputs. Based on this, consider the following system of non-linear equations in a single

variable:

 (5.1)

 Anx-B

65

The objective is to find the value of uncertainty in active joint inputs or maximum allowable

actuation error , such that:

 (5.2)

It should be noted that has been dropped from further discussion for the sake of brevity.

The problem of finding can be modeled as a goal attainment problem, as:

Find: Maximum allowable uncertainty in active joint inputs,

Such that:

Subject to: []

The search space for this problem is specified by the interval []. The given goal

attainment problem can be resolved numerically by solving for the roots of

 . The smallest root represents the maximum uncertainty in active joint inputs (. In

this study, the Brent-Drekker method [42] is used for solving the three non-linear equations

 . The Brent-Dekker method uses a combination of bisection, secant, and

inverse quadratic interpolation methods. It is prudent to mention that iterative numerical

techniques like the one employed in this study compute the solution of a non-linear equation

up to a certain accuracy .

In the next chapter, the proposed design approach is validated through accuracy centric

design of a 3-RSS Delta parallel manipulator.

 Anx-B

66

CHAPTER 6: CASE STUDY: DESIGN OF DELTA PARALLEL

MANIPULATOR

The aim of this chapter is to synthesize a 3-DOF Delta parallel manipulator that possesses

desired kinematic accuracy and prescribed workspace. Desired kinematic accuracies along

each DOF are tabulated in Table 6-1.

Table 6-1. Kinematic Accuracy Requirements

, cm

, cm
, cm

0.175 0.175 0.200

The Delta parallel manipulator should possess the pre-specified parallelepiped workspace

tabulated in Table 6-2.

Table 6-2. Requirement of Pre-Specified Workspace

 axis, cm axis, cm axis, cm

40 40 30

As a practical consideration, centroid of the desired parallelepiped workspace is located in

the task space place of the end-effector when all actuators are in zero position, that is

 The location and dimensions of desired parallelepiped workspace are

illustrated in Fig 6-1.

 Anx-B

67

Figure 6-1. Desired parallelepiped workspace for case study design.

6.1 Level 1 Design: Case Study

In Level 1 design, an optimal design vector of is derived that maximizes dynamic

accuracy by minimizing condition number
 and stiffness index

 while satisfying

constraint of a pre-specified workspace.

The multi-objective optimization problem is formulated as:

Find: A design vector,

That: Minimizes:

Subject to: { }

 {

The workspace is discretized into 256,000 points, based on the convergence of
 and

 .

Multi-objective GA for minimization, used in this study, is available as part of the

MATLAB® Optimization Toolbox. Parameter settings used for Multi-objective GA are

tabulated in Table 3.

 Anx-B

68

Table 6-3. Parameter Settings for Multi-Objective GA

Maximum Generation

Population Size

Crossover Ratio

Mutation Ratio

Function Tolerance

Non-Linear Constraint Tolerance

The constraint functions are passed on as a vectorized non-

linear constraint function to the MATLAB
®
 Optimization Toolbox. The optimal design

vector obtained in Level 1 design, is passed on to the Level 2 design phase.

6.2 Level 2 Design: Case Study

In Level 2 design the maximum allowable uncertainty , in the active joint inputs, that leads

to desired accuracy along each DOF is computed by resolving the following goal attainment

problem:

Find: Maximum allowable uncertainty in active joint inputs,

Such that:

Subject to:

Note that represents the maximum allowable uncertainty in the active joint inputs of a

Delta parallel manipulator having the design vector .

The goal attainment problem presented above is resolved via the Brent-Drekker numerical

method implemented in MATLAB
®
. Results of the cascaded design approach are discussed

in following section.

 Anx-B

69

6.3 Results and Discussion

Following Level 1 design, a set of pareto-dominant solutions is obtained. The pareto-front,

shown in Fig. 6-2, is generated by plotting the points (𝜼𝒔
𝑾 𝜿𝒔

𝑾 for each pareto-dominant

solution .

Figure 6-2. Pareto-front of the Level 1 multi-objective optimization problem.

It should be noted that all pareto-dominant design solutions are optimal design solutions that

maximize the dynamic accuracy of the Delta parallel manipulator. The pareto-dominant

design solutions minimize condition index and stiffness index of the stiffness matrix without

maximizing either one of them.

The pareto-dominant design solutions obtained after resolving the Level 1 design multi-

objective optimization problem are tabulated in Table 6-4.

 Anx-B

70

Table 6-4. Pareto-Dominant Design Solutions

Design Solution

Condition Index

𝜼

Stiffness Index

 0.5367

 0.0102 0.1285

 0.0130 0.1076

 0.0030 0.3329

 0.0023 0.4156

 0.0031 0.3168

 0.0036 0.2744

 0.0028 0.3569

Since all pareto-dominant design solutions are optimal, let us select a pareto-dominant design

solution 𝟑𝟗 𝟗𝟖𝟔𝟑 𝟕𝟗 𝟗𝟐𝟑𝟓 𝟏 𝟏𝟔𝟔 𝟗 𝟗𝟖𝟑𝟒 . Workspace of the selected pareto-

dominant design solution is shown in Fig. 6-3.

 Anx-B

71

Figure 6-3. Workspace of Optimal Delta Parallel Manipulator.

It is evident from visual analysis that our pre-specified parallelepiped workspace is

prescribed within the workspace of the optimally designed manipulator.

The pareto-dominant design solution selected above is passed on to Level 2 design. At Level

2, maximum allowable uncertainty that leads to

 and
 , is found to be . It should be noted that is

the smallest of the three roots of
,

 and

. Fig. 6-4 illustrates the relationship between , , and

 for the case study design.

 Anx-B

72

Figure 6-4. Relationship between Uncertainty in Active Joint Inputs and for

 .

It is evident from Fig. 6-4 that the maximum allowable value of uncertainty in the active

joint inputs that leads to desired accuracy along each DOF is the smallest value of for

which .

Following Level 2 design, our proposed design approach yields an optimally designed Delta

parallel manipulator having design parameters

 and maximum allowable uncertainty in active joint

inputs , that possess maximum dynamic accuracy, a pre-specified workspace

and desired kinematic accuracies along each DOF.

6.4 Validation

The proposed design approach is compared with an interval analysis-based approach that has

been investigated by several researchers as discussed in Chapter 1. Readers should refer to

[16-J] and [17-J] for an in-depth overview of the application of interval analysis and Jacobian

based approximate error model for design of parallel manipulators for guaranteed accuracy

and workspace.

 Anx-B

73

Our proposed bi-level cascaded design approach yields a finite set of optimal design solutions

that maximize dynamic accuracy, possess pre-specified workspace and desired kinematic

accuracy along each DOF. The bi-level cascading, which involves a multi-objective

optimization problem and numerical solution of three non-linear equations, is executed in 240

seconds on a 2.30 𝑮𝑯𝒛 Quad-Core Core i5 processor with 12 𝑮𝑩 of RAM.

The interval analysis-based approach yields a set of infinite design solutions that satisfy

design requirements of kinematic accuracy and workspace. As highlighted in [16-J, 17-J], the

computational time is in the order of hours with sequential implementation of interval

analysis.

It is prudent to mention that all Pareto-dominant solutions, that lie on the Pareto front, are the

optimal solutions of our multi-objective optimization problems. However, the selection of a

single solution out of the Pareto-dominant set can be driven by other design considerations

that are not explicitly part of the proposed design approach.

6.5 Conclusion

In this study, an accuracy centric design approach was presented for optimal design of

parallel manipulators. The design approach was aimed at resolving the key issue of attaining

desired accuracy and workspace of parallel manipulators to satisfy functional requirements,

at low computational cost. The design approach was applied to a 3-RSS Delta parallel

manipulator with 3-DOFs.‎ The proposed approach was centered around two accuracy

models: a dynamic accuracy model based on the maximum stiffness index and minimum

condition index of the stiffness index, and a kinematic accuracy model that evaluated the

exact value of positioning errors at the end-effector due to error in the active joint inputs. The

dynamic accuracy model was used to evaluate the minimum stiffness and the eccentricity of

the stiffness hyper ellipsoid. The kinematic accuracy model was a geometric error model

derived from the inverse and forward kinematics of the Delta parallel manipulator.

The proposed approach was executed as a cascading of two design levels: Level 1 and Level

2. In Level 1 design, a multi-objective optimization problem was resolved via Genetic

Algorithm to yield a pareto-dominant set of design solutions. Each member of the pareto-

dominant solution set possessed maximum uniform stiffness across a pre-specified

workspace. The pre-specified workspace was modelled as constraint function for the multi-

objective optimization problem. In Level 2 design, the maximum allowable error

 Anx-B

74

(uncertainty) in the active joint inputs of a single pareto-dominant design solution were

computed via the Brent-Drekker numerical solver. It was found that if the error in actuation

of active joints does not exceed the maximum allowable error, then the output error along

each DOF remained less than a desired value.

It was found that the proposed design approach was computationally efficient in comparison

to interval analysis based functional design techniques. Moreover, the proposed approach

yielded a finite set of optimal design solutions that satisfy requirements of pre-specified

workspace and desired workspace while maximizing dynamic accuracy. The next logical step

would be to incorporate the effect of geometrical tolerances in the kinematic accuracy model.

Furthermore, the stiffness and condition index-based model can be replaced with Matrix

Structural Analysis (MSA) to fully capture the dynamic accuracy of parallel manipulators.

 Anx-B

75

APPENDIX A: MATLAB CODES

Stiffness Analysis: Stiffness Index

clear
clc
format
% dOD = input('Enter Input Error: ');
% dO = dOD*pi/180;
upper_arm = input ('Enter Upper Limb Length: ');
lower_arm = input ('Enter Lower Limb Length: ');
fixed_platform = input ('Enter Fixed Platform Length: ');
moving_platform = input ('Enter Moving Platform Length: ');
plane = sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001;
cube_height = input ('Enter Cube Height: ');
cube_initial_point = input ('Enter Negative Co-ordinate of Cube Edge: ');
pxl1 = -(cube_initial_point);
pyl1 = pxl1;
pxl2 = -1*pxl1;
pyl2 = pxl2;
max_Errors = [];
% ErrorX =[];
% ErrorY = [];
% ErrorZ = [];
%[px py] = meshgrid(pxl1:0.125:pxl2);
 z_slice1 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-

0.5*cube_height);
 z_slice2 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-

0.475*cube_height);
 z_slice3 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-

0.45*cube_height);
 z_slice4 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-

0.425*cube_height);
 z_slice5 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-

0.40*cube_height);
 z_slice6 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-

0.375*cube_height);
 z_slice7 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-

0.35*cube_height);
 z_slice8 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-

0.325*cube_height);
 z_slice9 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-

0.30*cube_height);
 z_slice10 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-

0.275*cube_height);
 z_slice11 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-

0.25*cube_height);
 z_slice12 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-

0.225*cube_height);
 z_slice13 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-

0.20*cube_height);
 z_slice14 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-

0.175*cube_height);
 z_slice15 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-

0.15*cube_height);
 z_slice16 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-

0.125*cube_height);

 Anx-B

76

 z_slice17 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-

0.10*cube_height);
 z_slice18 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-

0.075*cube_height);
 z_slice19 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-

0.05*cube_height);
 z_slice20 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-

0.025*cube_height);
 z_slice21 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001));
 z_slice22 = ((sqrt((lower_arm)^2-

(upper_arm^2))+0.000000000001)+0.025*cube_height);
 z_slice23 = ((sqrt((lower_arm)^2-

(upper_arm^2))+0.000000000001)+0.05*cube_height);
 z_slice24 = ((sqrt((lower_arm)^2-

(upper_arm^2))+0.000000000001)+0.075*cube_height);
 z_slice25 = ((sqrt((lower_arm)^2-

(upper_arm^2))+0.000000000001)+0.10*cube_height);
 z_slice26 = ((sqrt((lower_arm)^2-

(upper_arm^2))+0.000000000001)+0.125*cube_height);
 z_slice27 = ((sqrt((lower_arm)^2-

(upper_arm^2))+0.000000000001)+0.15*cube_height);
 z_slice28 = ((sqrt((lower_arm)^2-

(upper_arm^2))+0.000000000001)+0.175*cube_height);
 z_slice29 = ((sqrt((lower_arm)^2-

(upper_arm^2))+0.000000000001)+0.20*cube_height);
 z_slice30 = ((sqrt((lower_arm)^2-

(upper_arm^2))+0.000000000001)+0.225*cube_height);
 z_slice31 = ((sqrt((lower_arm)^2-

(upper_arm^2))+0.000000000001)+0.25*cube_height);
 z_slice32 = ((sqrt((lower_arm)^2-

(upper_arm^2))+0.000000000001)+0.275*cube_height);
 z_slice33 = ((sqrt((lower_arm)^2-

(upper_arm^2))+0.000000000001)+0.30*cube_height);
 z_slice34 = ((sqrt((lower_arm)^2-

(upper_arm^2))+0.000000000001)+0.325*cube_height);
 z_slice35 = ((sqrt((lower_arm)^2-

(upper_arm^2))+0.000000000001)+0.35*cube_height);
 z_slice36 = ((sqrt((lower_arm)^2-

(upper_arm^2))+0.000000000001)+0.375*cube_height);
 z_slice37 = ((sqrt((lower_arm)^2-

(upper_arm^2))+0.000000000001)+0.40*cube_height);
 z_slice38 = ((sqrt((lower_arm)^2-

(upper_arm^2))+0.000000000001)+0.425*cube_height);
 z_slice39 = ((sqrt((lower_arm)^2-

(upper_arm^2))+0.000000000001)+0.475*cube_height);
 z_slice40 = ((sqrt((lower_arm)^2-

(upper_arm^2))+0.000000000001)+0.5*cube_height);

 plane_array = [z_slice1, z_slice2, z_slice3, z_slice4, z_slice5,

z_slice6, z_slice7, z_slice8, z_slice9, z_slice10, z_slice11, z_slice12,

z_slice13, z_slice14, z_slice15, z_slice16, z_slice17, z_slice18,

z_slice19, z_slice20, z_slice21, z_slice22, z_slice23, z_slice24,

z_slice25, z_slice26, z_slice27, z_slice28, z_slice29, z_slice30,

z_slice31, z_slice32, z_slice33, z_slice34, z_slice35, z_slice36,

z_slice37, z_slice38, z_slice39, z_slice40];
zi = 1;
for i = 1:1:40
 plane = plane_array(i);
 xi = 1;
for px = pxl1:0.25:pxl2
 yi = 1;

 Anx-B

77

 for py = pyl1:0.25:pyl2

 Stiffness_Index = Single_Point_Stiffness_Index(px, py, plane,

upper_arm, lower_arm, fixed_platform, moving_platform);

 Stiffness_Index_Overall(xi, yi, zi) = Stiffness_Index;

 yi = yi + 1;
 end
 xi = xi + 1;
end
zi = zi + 1
end

%max_Global_Stiffness_Index = max(Stiffness_Index_Overall(:))
min_Global_Stiffness_Index = min(Stiffness_Index_Overall(:))

% max_x = max(ErrorX(:))
%
% max_y = max(ErrorY(:))
%
% max_z = max(ErrorZ(:))

function Stiffness_Index = Single_Point_Stiffness_Index(px, py, plane,

upper_arm, lower_arm, fixed_platform, moving_platform)

%Inverse Kinematics Code
a = upper_arm;
%b = input('Enter Lower Arm Length:');
b = lower_arm;
%r = input('Enter Fixed Frame Position:');
r = fixed_platform;
%c = input('Enter Moving Frame Position:');
c = moving_platform;
ks = [1 0 0 ; 0 1 0 ; 0 0 1] ;
pz = plane;
%disp('ALL SOLUTION SET ANGLES ARE IN RADIANS')
O1 = 0*pi/180;
pu1 = px*cos(O1) + py*sin(O1) - r;
pv1 = -px*sin(O1) + py*cos(O1);
pw1 = pz;
k1 = pv1/b;
O31 = acos(k1);
if O31 >= 0 && O31<= 180*pi/180
 l01 = pu1^2+pw1^2+2*c*pu1-2*a*pu1+a^2+c^2-(b^2)*(sin(O31))^2-2*a*c;
 l11 = -4*a*pw1;
 l21 = pw1^2+pu1^2+2*pu1*c+2*a*pu1+a^2+c^2-(b^2)*(sin(O31))^2+2*a*c;
 t11 = (-l11+sqrt(l11*l11-4*l21*l01))/(2*l21);
 t12 = (-l11-sqrt(l11*l11-4*l21*l01))/(2*l21);
 if isreal(t11)
 O11a = 2*atan(t11);
 O21a = asin((pw1-a*sin(O11a))/b*sin(O31));
 %disp(['Actuated Joint Angle for Limb 1 is :' num2str(O11a*180/pi)

'degrees']);
 else disp('Posture Not Valid')
 end
 if isreal(t12)

 Anx-B

78

 O11b = 2*atan(t12);
 O21b = asin((pw1-a*sin(O11b))/b*sin(O31));
 %disp(['Alternate Actuated Joint Angle for Limb 1 is :'

num2str(O11b*180/pi) 'degrees']);
 else disp('Posture Not Valid')
 end
end
O2 = 120*pi/180;
pu2 = px*cos(O2) + py*sin(O2) - r;
pv2 = -px*sin(O2) + py*cos(O2);
pw2 = pz;
k2 = pv2/b;
O32 = acos(k2);
if O32 >= 0 && O32<= 180*pi/180
 l02 = pu2^2+pw2^2+2*c*pu2-2*a*pu2+a^2+c^2-(b^2)*(sin(O32))^2-2*a*c;
 l12 = -4*a*pw2;
 l22 = pw2^2+pu2^2+2*pu2*c+2*a*pu2+a^2+c^2-(b^2)*(sin(O32))^2+2*a*c;
 t21 = (-l12+sqrt(l12*l12-4*l22*l02))/(2*l22);
 t22 = (-l12-sqrt(l12*l12-4*l22*l02))/(2*l22);
 if isreal(t21)
 O12a = 2*atan(t21);
 O22a = asin((pw2-a*sin(O12a))/b*sin(O32));
 %disp(['Actuated Joint Angle for Limb 2 is :' num2str(O12a*180/pi)

'degrees']);
 else disp('Posture Not Valid')
 end
 if isreal(t22)
 O12b = 2*atan(t22);
 O22b = asin((pw2-a*sin(O12b))/b*sin(O32));
 %disp(['Alternate Actuated Joint Angle for Limb 2 is :'

num2str(O12b*180/pi) 'degrees']);
 else disp('Posture Not Valid')
 end
end
O3 = 240*pi/180;
pu3 = px*cos(O3) + py*sin(O3) - r;
pv3 = -px*sin(O3) + py*cos(O3);
pw3 = pz;
k3 = pv3/b;
O33 = acos(k3);
if O33 >= 0 && O33<= 180*pi/180
 l03 = pu3^2+pw3^2+2*c*pu3-2*a*pu3+a^2+c^2-(b^2)*(sin(O33))^2-2*a*c;
 l13 = -4*a*pw3;
 l23 = pw3^2+pu3^2+2*pu3*c+2*a*pu3+a^2+c^2-(b^2)*(sin(O33))^2+2*a*c;
 t31 = (-l13+sqrt(l13*l13-4*l23*l03))/(2*l23);
 t32 = (-l13-sqrt(l13*l13-4*l23*l03))/(2*l23);
 if isreal(t31)
 O13a = 2*atan(t31);
 O23a = asin((pw3-a*sin(O13a))/b*sin(O33));
 %disp(['Actuated Joint Angle for Limb 3 is :' num2str(O13a*180/pi)

'degrees']);
 else disp('Posture Not Valid')
 end
 if isreal(t32)
 O13b = 2*atan(t32);
 O23b = asin((pw3-a*sin(O13b))/b*sin(O33));
 %disp(['Alternate Actuated Joint Angle for Limb 3 is :'

num2str(O13b*180/pi) 'degrees']);
 else disp('Posture Not Valid')
 end
end

 Anx-B

79

 %disp('ALL SOLUTION SET ANGLES ARE IN RADIANS')
 %disp('Solution Set A for limb 1 is :')
 A1 = [O11a O21a O31];
 %disp(A1)
 %disp('Solution Set B for limb 1 is :')
 B1 = [O11b O21b O31];
 %disp(B1)
 %disp('Solution Set A for limb 2 is :')
 A2 = [O12a O22a O32];
 %disp(A2)
 %disp('Solution Set B for limb 2 is :')
 B2 = [O12b O22b O32];
 %disp(B2)
 %disp('Solution Set A for limb 3 is :')
 A3 = [O13a O23a O33];
 %disp(A3)
 %disp('Solution Set B for limb 3 is :')
 B3 = [O13b O23b O33];
 %disp(B3)

 %Angle Selection Module
if abs(O11a) <= abs(O11b)
 O11 = O11a; O21 = O21a;
 J1x = cos(O11+O21)*sin(O31)*cos(O1)-cos(O31)*sin(O1);
 J1y = cos(O11+O21)*sin(O31)*sin(O1)+cos(O31)*cos(O1);
 J1z = sin(O11+O21)*sin(O31);
 JI1 = a*sin(O31)*sin(O21);
else if abs(O11a) > abs(O11b)
 O11 = O11b; O21 = O21b;
 J1x = cos(O11+O21)*sin(O31)*cos(O1)-cos(O31)*sin(O1);
 J1y = cos(O11+O21)*sin(O31)*sin(O1)+cos(O31)*cos(O1);
 J1z = sin(O11+O21)*sin(O31);
 JI1 = a*sin(O31)*sin(O21);
 end
end

if abs(O12a) <= abs(O12b)
 O12 = O12a; O22 = O22a;
 J2x = cos(O12+O22)*sin(O32)*cos(O2)-cos(O32)*sin(O2);
 J2y = cos(O12+O22)*sin(O32)*sin(O2)+cos(O32)*cos(O2);
 J2z = sin(O12+O22)*sin(O32);
 JI2 = a*sin(O32)*sin(O22);
else if abs(O12a) > abs(O12b)
 O12 = O12b; O22 = O22b;
 J2x = cos(O12+O22)*sin(O32)*cos(O2)-cos(O32)*sin(O2);
 J2y = cos(O12+O22)*sin(O32)*sin(O2)+cos(O32)*cos(O2);
 J2z = sin(O12+O22)*sin(O32);
 JI2 = a*sin(O32)*sin(O22);
 end
end

if abs(O13a) <= abs(O13b)
 O13 = O13a; O23 = O23a;
 J3x = cos(O13+O23)*sin(O33)*cos(O3)-cos(O33)*sin(O3);
 J3y = cos(O13+O23)*sin(O33)*sin(O3)+cos(O33)*cos(O3);
 J3z = sin(O13+O23)*sin(O33);
 JI3 = a*sin(O33)*sin(O23);
else if abs(O13a) > abs(O13b)
 O13 = O13b; O23 = O23b;
 J3x = cos(O13+O23)*sin(O33)*cos(O3)-cos(O33)*sin(O3);
 J3y = cos(O13+O23)*sin(O33)*sin(O3)+cos(O33)*cos(O3);

 Anx-B

80

 J3z = sin(O13+O23)*sin(O33);
 JI3 = a*sin(O33)*sin(O23);
 end
end

JF = [J1x J1y J1z; J2x J2y J2z; J3x J3y J3z];
JI = [JI1 0 0; 0 JI2 0; 0 0 JI3];
% disp(' Forward Jacobian Matrix : ')
% disp (JF)
% disp(' Inverse Jacobian Matrix : ')
% disp (JI)
J = (inv(JF))*JI;
% disp(' Jacobian Matrix : ')
% disp(J)

%Error Evaluation Module

Kp = ks*inv(J*(J'));

Eigen_Vector = eig(Kp);

Stiffness_Index = min(Eigen_Vector);

end

Stiffness Analysis: Condition Number

clear
clc
format
% dOD = input('Enter Input Error: ');
% dO = dOD*pi/180;
upper_arm = input ('Enter Upper Limb Length: ');
lower_arm = input ('Enter Lower Limb Length: ');
fixed_platform = input ('Enter Fixed Platform Length: ');
moving_platform = input ('Enter Moving Platform Length: ');
plane = sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001;
cube_height = input ('Enter Cube Height: ');
cube_initial_point = input ('Enter Negative Co-ordinate of Cube Edge: ');
pxl1 = -(cube_initial_point);
pyl1 = pxl1;
pxl2 = -1*pxl1;
pyl2 = pxl2;
max_Errors = [];
% ErrorX =[];
% ErrorY = [];
% ErrorZ = [];
%[px py] = meshgrid(pxl1:0.125:pxl2);
 z_slice1 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-

0.5*cube_height);
 z_slice2 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-

0.475*cube_height);
 z_slice3 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-

0.45*cube_height);
 z_slice4 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-

0.425*cube_height);

 Anx-B

81

 z_slice5 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-

0.40*cube_height);
 z_slice6 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-

0.375*cube_height);
 z_slice7 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-

0.35*cube_height);
 z_slice8 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-

0.325*cube_height);
 z_slice9 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-

0.30*cube_height);
 z_slice10 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-

0.275*cube_height);
 z_slice11 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-

0.25*cube_height);
 z_slice12 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-

0.225*cube_height);
 z_slice13 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-

0.20*cube_height);
 z_slice14 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-

0.175*cube_height);
 z_slice15 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-

0.15*cube_height);
 z_slice16 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-

0.125*cube_height);
 z_slice17 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-

0.10*cube_height);
 z_slice18 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-

0.075*cube_height);
 z_slice19 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-

0.05*cube_height);
 z_slice20 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-

0.025*cube_height);
 z_slice21 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001));
 z_slice22 = ((sqrt((lower_arm)^2-

(upper_arm^2))+0.000000000001)+0.025*cube_height);
 z_slice23 = ((sqrt((lower_arm)^2-

(upper_arm^2))+0.000000000001)+0.05*cube_height);
 z_slice24 = ((sqrt((lower_arm)^2-

(upper_arm^2))+0.000000000001)+0.075*cube_height);
 z_slice25 = ((sqrt((lower_arm)^2-

(upper_arm^2))+0.000000000001)+0.10*cube_height);
 z_slice26 = ((sqrt((lower_arm)^2-

(upper_arm^2))+0.000000000001)+0.125*cube_height);
 z_slice27 = ((sqrt((lower_arm)^2-

(upper_arm^2))+0.000000000001)+0.15*cube_height);
 z_slice28 = ((sqrt((lower_arm)^2-

(upper_arm^2))+0.000000000001)+0.175*cube_height);
 z_slice29 = ((sqrt((lower_arm)^2-

(upper_arm^2))+0.000000000001)+0.20*cube_height);
 z_slice30 = ((sqrt((lower_arm)^2-

(upper_arm^2))+0.000000000001)+0.225*cube_height);
 z_slice31 = ((sqrt((lower_arm)^2-

(upper_arm^2))+0.000000000001)+0.25*cube_height);
 z_slice32 = ((sqrt((lower_arm)^2-

(upper_arm^2))+0.000000000001)+0.275*cube_height);
 z_slice33 = ((sqrt((lower_arm)^2-

(upper_arm^2))+0.000000000001)+0.30*cube_height);
 z_slice34 = ((sqrt((lower_arm)^2-

(upper_arm^2))+0.000000000001)+0.325*cube_height);
 z_slice35 = ((sqrt((lower_arm)^2-

(upper_arm^2))+0.000000000001)+0.35*cube_height);

 Anx-B

82

 z_slice36 = ((sqrt((lower_arm)^2-

(upper_arm^2))+0.000000000001)+0.375*cube_height);
 z_slice37 = ((sqrt((lower_arm)^2-

(upper_arm^2))+0.000000000001)+0.40*cube_height);
 z_slice38 = ((sqrt((lower_arm)^2-

(upper_arm^2))+0.000000000001)+0.425*cube_height);
 z_slice39 = ((sqrt((lower_arm)^2-

(upper_arm^2))+0.000000000001)+0.475*cube_height);
 z_slice40 = ((sqrt((lower_arm)^2-

(upper_arm^2))+0.000000000001)+0.5*cube_height);

 plane_array = [z_slice1, z_slice2, z_slice3, z_slice4, z_slice5,

z_slice6, z_slice7, z_slice8, z_slice9, z_slice10, z_slice11, z_slice12,

z_slice13, z_slice14, z_slice15, z_slice16, z_slice17, z_slice18,

z_slice19, z_slice20, z_slice21, z_slice22, z_slice23, z_slice24,

z_slice25, z_slice26, z_slice27, z_slice28, z_slice29, z_slice30,

z_slice31, z_slice32, z_slice33, z_slice34, z_slice35, z_slice36,

z_slice37, z_slice38, z_slice39, z_slice40];
zi = 1;
for i = 1:1:40
 plane = plane_array(i);
 xi = 1;
for px = pxl1:0.25:pxl2
 yi = 1;
 for py = pyl1:0.25:pyl2

 inv_Condition_Number = Single_Point_Condition_Number(px, py, plane,

upper_arm, lower_arm, fixed_platform, moving_platform);

 inv_Condition_Number_Overall(xi, yi, zi) = inv_Condition_Number;

 yi = yi + 1;
 end
 xi = xi + 1;
end
zi = zi + 1
end

max_Global_inv_Condition_Number = max(inv_Condition_Number_Overall(:))
%min_inv_Condition_Number = min(inv_Condition_Number_Overall(:))

% max_x = max(ErrorX(:))
%
% max_y = max(ErrorY(:))
%
% max_z = max(ErrorZ(:))

function inv_Condition_Number = Single_Point_Condition_Number(px, py,

plane, upper_arm, lower_arm, fixed_platform, moving_platform)

%Inverse Kinematics Code
a = upper_arm;
%b = input('Enter Lower Arm Length:');
b = lower_arm;
%r = input('Enter Fixed Frame Position:');
r = fixed_platform;
%c = input('Enter Moving Frame Position:');

 Anx-B

83

c = moving_platform;
ks = [1 0 0 ; 0 1 0 ; 0 0 1] ;
pz = plane;
%disp('ALL SOLUTION SET ANGLES ARE IN RADIANS')
O1 = 0*pi/180;
pu1 = px*cos(O1) + py*sin(O1) - r;
pv1 = -px*sin(O1) + py*cos(O1);
pw1 = pz;
k1 = pv1/b;
O31 = acos(k1);
if O31 >= 0 && O31<= 180*pi/180
 l01 = pu1^2+pw1^2+2*c*pu1-2*a*pu1+a^2+c^2-(b^2)*(sin(O31))^2-2*a*c;
 l11 = -4*a*pw1;
 l21 = pw1^2+pu1^2+2*pu1*c+2*a*pu1+a^2+c^2-(b^2)*(sin(O31))^2+2*a*c;
 t11 = (-l11+sqrt(l11*l11-4*l21*l01))/(2*l21);
 t12 = (-l11-sqrt(l11*l11-4*l21*l01))/(2*l21);
 if isreal(t11)
 O11a = 2*atan(t11);
 O21a = asin((pw1-a*sin(O11a))/b*sin(O31));
 %disp(['Actuated Joint Angle for Limb 1 is :' num2str(O11a*180/pi)

'degrees']);
 else disp('Posture Not Valid')
 end
 if isreal(t12)
 O11b = 2*atan(t12);
 O21b = asin((pw1-a*sin(O11b))/b*sin(O31));
 %disp(['Alternate Actuated Joint Angle for Limb 1 is :'

num2str(O11b*180/pi) 'degrees']);
 else disp('Posture Not Valid')
 end
end
O2 = 120*pi/180;
pu2 = px*cos(O2) + py*sin(O2) - r;
pv2 = -px*sin(O2) + py*cos(O2);
pw2 = pz;
k2 = pv2/b;
O32 = acos(k2);
if O32 >= 0 && O32<= 180*pi/180
 l02 = pu2^2+pw2^2+2*c*pu2-2*a*pu2+a^2+c^2-(b^2)*(sin(O32))^2-2*a*c;
 l12 = -4*a*pw2;
 l22 = pw2^2+pu2^2+2*pu2*c+2*a*pu2+a^2+c^2-(b^2)*(sin(O32))^2+2*a*c;
 t21 = (-l12+sqrt(l12*l12-4*l22*l02))/(2*l22);
 t22 = (-l12-sqrt(l12*l12-4*l22*l02))/(2*l22);
 if isreal(t21)
 O12a = 2*atan(t21);
 O22a = asin((pw2-a*sin(O12a))/b*sin(O32));
 %disp(['Actuated Joint Angle for Limb 2 is :' num2str(O12a*180/pi)

'degrees']);
 else disp('Posture Not Valid')
 end
 if isreal(t22)
 O12b = 2*atan(t22);
 O22b = asin((pw2-a*sin(O12b))/b*sin(O32));
 %disp(['Alternate Actuated Joint Angle for Limb 2 is :'

num2str(O12b*180/pi) 'degrees']);
 else disp('Posture Not Valid')
 end
end
O3 = 240*pi/180;
pu3 = px*cos(O3) + py*sin(O3) - r;
pv3 = -px*sin(O3) + py*cos(O3);

 Anx-B

84

pw3 = pz;
k3 = pv3/b;
O33 = acos(k3);
if O33 >= 0 && O33<= 180*pi/180
 l03 = pu3^2+pw3^2+2*c*pu3-2*a*pu3+a^2+c^2-(b^2)*(sin(O33))^2-2*a*c;
 l13 = -4*a*pw3;
 l23 = pw3^2+pu3^2+2*pu3*c+2*a*pu3+a^2+c^2-(b^2)*(sin(O33))^2+2*a*c;
 t31 = (-l13+sqrt(l13*l13-4*l23*l03))/(2*l23);
 t32 = (-l13-sqrt(l13*l13-4*l23*l03))/(2*l23);
 if isreal(t31)
 O13a = 2*atan(t31);
 O23a = asin((pw3-a*sin(O13a))/b*sin(O33));
 %disp(['Actuated Joint Angle for Limb 3 is :' num2str(O13a*180/pi)

'degrees']);
 else disp('Posture Not Valid')
 end
 if isreal(t32)
 O13b = 2*atan(t32);
 O23b = asin((pw3-a*sin(O13b))/b*sin(O33));
 %disp(['Alternate Actuated Joint Angle for Limb 3 is :'

num2str(O13b*180/pi) 'degrees']);
 else disp('Posture Not Valid')
 end
end
 %disp('ALL SOLUTION SET ANGLES ARE IN RADIANS')
 %disp('Solution Set A for limb 1 is :')
 A1 = [O11a O21a O31];
 %disp(A1)
 %disp('Solution Set B for limb 1 is :')
 B1 = [O11b O21b O31];
 %disp(B1)
 %disp('Solution Set A for limb 2 is :')
 A2 = [O12a O22a O32];
 %disp(A2)
 %disp('Solution Set B for limb 2 is :')
 B2 = [O12b O22b O32];
 %disp(B2)
 %disp('Solution Set A for limb 3 is :')
 A3 = [O13a O23a O33];
 %disp(A3)
 %disp('Solution Set B for limb 3 is :')
 B3 = [O13b O23b O33];
 %disp(B3)

 %Angle Selection Module
if abs(O11a) <= abs(O11b)
 O11 = O11a; O21 = O21a;
 J1x = cos(O11+O21)*sin(O31)*cos(O1)-cos(O31)*sin(O1);
 J1y = cos(O11+O21)*sin(O31)*sin(O1)+cos(O31)*cos(O1);
 J1z = sin(O11+O21)*sin(O31);
 JI1 = a*sin(O31)*sin(O21);
else if abs(O11a) > abs(O11b)
 O11 = O11b; O21 = O21b;
 J1x = cos(O11+O21)*sin(O31)*cos(O1)-cos(O31)*sin(O1);
 J1y = cos(O11+O21)*sin(O31)*sin(O1)+cos(O31)*cos(O1);
 J1z = sin(O11+O21)*sin(O31);
 JI1 = a*sin(O31)*sin(O21);
 end
end

if abs(O12a) <= abs(O12b)

 Anx-B

85

 O12 = O12a; O22 = O22a;
 J2x = cos(O12+O22)*sin(O32)*cos(O2)-cos(O32)*sin(O2);
 J2y = cos(O12+O22)*sin(O32)*sin(O2)+cos(O32)*cos(O2);
 J2z = sin(O12+O22)*sin(O32);
 JI2 = a*sin(O32)*sin(O22);
else if abs(O12a) > abs(O12b)
 O12 = O12b; O22 = O22b;
 J2x = cos(O12+O22)*sin(O32)*cos(O2)-cos(O32)*sin(O2);
 J2y = cos(O12+O22)*sin(O32)*sin(O2)+cos(O32)*cos(O2);
 J2z = sin(O12+O22)*sin(O32);
 JI2 = a*sin(O32)*sin(O22);
 end
end

if abs(O13a) <= abs(O13b)
 O13 = O13a; O23 = O23a;
 J3x = cos(O13+O23)*sin(O33)*cos(O3)-cos(O33)*sin(O3);
 J3y = cos(O13+O23)*sin(O33)*sin(O3)+cos(O33)*cos(O3);
 J3z = sin(O13+O23)*sin(O33);
 JI3 = a*sin(O33)*sin(O23);
else if abs(O13a) > abs(O13b)
 O13 = O13b; O23 = O23b;
 J3x = cos(O13+O23)*sin(O33)*cos(O3)-cos(O33)*sin(O3);
 J3y = cos(O13+O23)*sin(O33)*sin(O3)+cos(O33)*cos(O3);
 J3z = sin(O13+O23)*sin(O33);
 JI3 = a*sin(O33)*sin(O23);
 end
end

JF = [J1x J1y J1z; J2x J2y J2z; J3x J3y J3z];
JI = [JI1 0 0; 0 JI2 0; 0 0 JI3];
% disp(' Forward Jacobian Matrix : ')
% disp (JF)
% disp(' Inverse Jacobian Matrix : ')
% disp (JI)
J = (inv(JF))*JI;
% disp(' Jacobian Matrix : ')
% disp(J)

%Error Evaluation Module

Kp = ks*inv(J*(J'));

Eigen_Vector = eig(Kp);

Condition_Number = (min(Eigen_Vector) / max(Eigen_Vector));
inv_Condition_Number = 1 / Condition_Number;

end

Level 1 Design: Genetic Algorithm

FitnessFunction = @Fitness_Function;
numberOfVariables = 4;

 Anx-B

86

lb = [20, 60, 10, 5];
ub = [40, 80, 20, 10];

[x fval] = gamultiobj(FitnessFunction,numberOfVariables,[],[],[],[],lb,ub)

function fitness = Fitness_Function(x0)

 iteration = 1;
 fitness(1) = Single_Point_Stiffness_Index(x0);
 fitness(2) = Single_Point_Condition_Number(x0);
 iteration = iteration + 1

end

function inv_Condition_Number = Single_Point_Condition_Number(x0)

%dOD = input('Enter Input Error: ');
%dO = dOD*pi/180;
%a = input('Enter Upper Arm Length:');
a = x0(1);
%b = input('Enter Lower Arm Length:');
b = x0(2);
%r = input('Enter Fixed Frame Position:');
r = x0(3);
%c = input('Enter Moving Frame Position:');
c = x0(4);
upper_arm = a;
lower_arm = b;
fixed_platform = r;
moving_platform = c;
px = 10;
py = 10;
pz = sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001+5;
a = upper_arm;
rf = a;
b = lower_arm;
re = b;
f = fixed_platform;
e = moving_platform;
r = (f/2)*tan(30*pi/180);
c = (e/2)*tan(30*pi/180);

Kp = [];
K = [];
T = [1 0 0; 0 1 0; 0 0 1];
ks = 1;

%disp('ALL SOLUTION SET ANGLES ARE IN RADIANS')
O1 = 0*pi/180;
pu1 = px*cos(O1) + py*sin(O1) - r;
pv1 = -px*sin(O1) + py*cos(O1);
pw1 = pz;
k1 = pv1/b;
O31 = acos(k1);
if O31 >= 0 && O31<= 180*pi/180
 l01 = pu1^2+pw1^2+2*c*pu1-2*a*pu1+a^2+c^2-(b^2)*(sin(O31))^2-2*a*c;

 Anx-B

87

 l11 = -4*a*pw1;
 l21 = pw1^2+pu1^2+2*pu1*c+2*a*pu1+a^2+c^2-(b^2)*(sin(O31))^2+2*a*c;
 t11 = (-l11+sqrt(l11*l11-4*l21*l01))/(2*l21);
 t12 = (-l11-sqrt(l11*l11-4*l21*l01))/(2*l21);
 if isreal(t11)
 O11a = 2*atan(t11);
 O21a = asin((pw1-a*sin(O11a))/b*sin(O31));
 %disp(['Actuated Joint Angle for Limb 1 is :' num2str(O11a*180/pi)

'degrees']);
 else disp('Posture Not Valid')
 end
 if isreal(t12)
 O11b = 2*atan(t12);
 O21b = asin((pw1-a*sin(O11b))/b*sin(O31));
 %disp(['Alternate Actuated Joint Angle for Limb 1 is :'

num2str(O11b*180/pi) 'degrees']);
 else disp('Posture Not Valid')
 end
end
O2 = 120*pi/180;
pu2 = px*cos(O2) + py*sin(O2) - r;
pv2 = -px*sin(O2) + py*cos(O2);
pw2 = pz;
k2 = pv2/b;
O32 = acos(k2);
if O32 >= 0 && O32<= 180*pi/180
 l02 = pu2^2+pw2^2+2*c*pu2-2*a*pu2+a^2+c^2-(b^2)*(sin(O32))^2-2*a*c;
 l12 = -4*a*pw2;
 l22 = pw2^2+pu2^2+2*pu2*c+2*a*pu2+a^2+c^2-(b^2)*(sin(O32))^2+2*a*c;
 t21 = (-l12+sqrt(l12*l12-4*l22*l02))/(2*l22);
 t22 = (-l12-sqrt(l12*l12-4*l22*l02))/(2*l22);
 if isreal(t21)
 O12a = 2*atan(t21);
 O22a = asin((pw2-a*sin(O12a))/b*sin(O32));
 %disp(['Actuated Joint Angle for Limb 2 is :' num2str(O12a*180/pi)

'degrees']);
 else disp('Posture Not Valid')
 end
 if isreal(t22)
 O12b = 2*atan(t22);
 O22b = asin((pw2-a*sin(O12b))/b*sin(O32));
 %disp(['Alternate Actuated Joint Angle for Limb 2 is :'

num2str(O12b*180/pi) 'degrees']);
 else disp('Posture Not Valid')
 end
end
O3 = 240*pi/180;
pu3 = px*cos(O3) + py*sin(O3) - r;
pv3 = -px*sin(O3) + py*cos(O3);
pw3 = pz;
k3 = pv3/b;
O33 = acos(k3);
if O33 >= 0 && O33<= 180*pi/180
 l03 = pu3^2+pw3^2+2*c*pu3-2*a*pu3+a^2+c^2-(b^2)*(sin(O33))^2-2*a*c;
 l13 = -4*a*pw3;
 l23 = pw3^2+pu3^2+2*pu3*c+2*a*pu3+a^2+c^2-(b^2)*(sin(O33))^2+2*a*c;
 t31 = (-l13+sqrt(l13*l13-4*l23*l03))/(2*l23);
 t32 = (-l13-sqrt(l13*l13-4*l23*l03))/(2*l23);
 if isreal(t31)
 O13a = 2*atan(t31);
 O23a = asin((pw3-a*sin(O13a))/b*sin(O33));

 Anx-B

88

 %disp(['Actuated Joint Angle for Limb 3 is :' num2str(O13a*180/pi)

'degrees']);
 else disp('Posture Not Valid')
 end
 if isreal(t32)
 O13b = 2*atan(t32);
 O23b = asin((pw3-a*sin(O13b))/b*sin(O33));
 %disp(['Alternate Actuated Joint Angle for Limb 3 is :'

num2str(O13b*180/pi) 'degrees']);
 else disp('Posture Not Valid')
 end
end
 %disp('ALL SOLUTION SET ANGLES ARE IN RADIANS')
 %disp('Solution Set A for limb 1 is :')
 A1 = [O11a O21a O31];
 %disp(A1)
 %disp('Solution Set B for limb 1 is :')
 B1 = [O11b O21b O31];
 %disp(B1)
 %disp('Solution Set A for limb 2 is :')
 A2 = [O12a O22a O32];
 %disp(A2)
 %disp('Solution Set B for limb 2 is :')
 B2 = [O12b O22b O32];
 %disp(B2)
 %disp('Solution Set A for limb 3 is :')
 A3 = [O13a O23a O33];
 %disp(A3)
 %disp('Solution Set B for limb 3 is :')
 B3 = [O13b O23b O33];
 %disp(B3)

 %Angle Selection Module
if abs(O11a) <= abs(O11b)
 O11 = O11a; O21 = O21a;
 J1x = cos(O11+O21)*sin(O31)*cos(O1)-cos(O31)*sin(O1);
 J1y = cos(O11+O21)*sin(O31)*sin(O1)+cos(O31)*cos(O1);
 J1z = sin(O11+O21)*sin(O31);
 JI1 = a*sin(O31)*sin(O21);
else if abs(O11a) > abs(O11b)
 O11 = O11b; O21 = O21b;
 J1x = cos(O11+O21)*sin(O31)*cos(O1)-cos(O31)*sin(O1);
 J1y = cos(O11+O21)*sin(O31)*sin(O1)+cos(O31)*cos(O1);
 J1z = sin(O11+O21)*sin(O31);
 JI1 = a*sin(O31)*sin(O21);
 end
end

if abs(O12a) <= abs(O12b)
 O12 = O12a; O22 = O22a;
 J2x = cos(O12+O22)*sin(O32)*cos(O2)-cos(O32)*sin(O2);
 J2y = cos(O12+O22)*sin(O32)*sin(O2)+cos(O32)*cos(O2);
 J2z = sin(O12+O22)*sin(O32);
 JI2 = a*sin(O32)*sin(O22);
else if abs(O12a) > abs(O12b)
 O12 = O12b; O22 = O22b;
 J2x = cos(O12+O22)*sin(O32)*cos(O2)-cos(O32)*sin(O2);
 J2y = cos(O12+O22)*sin(O32)*sin(O2)+cos(O32)*cos(O2);
 J2z = sin(O12+O22)*sin(O32);
 JI2 = a*sin(O32)*sin(O22);
 end

 Anx-B

89

end

if abs(O13a) <= abs(O13b)
 O13 = O13a; O23 = O23a;
 J3x = cos(O13+O23)*sin(O33)*cos(O3)-cos(O33)*sin(O3);
 J3y = cos(O13+O23)*sin(O33)*sin(O3)+cos(O33)*cos(O3);
 J3z = sin(O13+O23)*sin(O33);
 JI3 = a*sin(O33)*sin(O23);
else if abs(O13a) > abs(O13b)
 O13 = O13b; O23 = O23b;
 J3x = cos(O13+O23)*sin(O33)*cos(O3)-cos(O33)*sin(O3);
 J3y = cos(O13+O23)*sin(O33)*sin(O3)+cos(O33)*cos(O3);
 J3z = sin(O13+O23)*sin(O33);
 JI3 = a*sin(O33)*sin(O23);
 end
end

JF = [J1x J1y J1z; J2x J2y J2z; J3x J3y J3z];
JI = [JI1 0 0; 0 JI2 0; 0 0 JI3];
% disp(' Forward Jacobian Matrix : ')
% disp (JF)
% disp(' Inverse Jacobian Matrix : ')
% disp (JI)
Jinv = inv(JI)*JF;
J = inv(JF)*JI;
% disp(' Jacobian Matrix : ')
% disp(J)

%Error Evaluation Module
%disp ('Condition Number Evaluation Module')

Kp = ks*inv(J*(J'));

Eigen_Vector = eig(Kp);

Condition_Number = (min(Eigen_Vector) / max(Eigen_Vector));
inv_Condition_Number = 1 / Condition_Number;

end

function inv_Stiffness_Index = Single_Point_Stiffness_Index(x0)

 %a = input('Enter Upper Arm Length:');
 a = x0(1);
 %b = input('Enter Lower Arm Length:');
 b = x0(2);
 %r = input('Enter Fixed Frame Position:');
 r = x0(3);
 %c = input('Enter Moving Frame Position:');
 c = x0(4);
 % dOD = input('Enter Input Joint Error:');
 % dO = dOD*pi/180;
 upper_arm = a;
 lower_arm = b;
 fixed_platform = r;
 moving_platform = c;
 px = 10;
 py = 10;
 pz = sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001+5;
 a = upper_arm;

 Anx-B

90

 rf = a;
 b = lower_arm;
 re = b;
 f = fixed_platform;
 e = moving_platform;
 r = (f/2)*tan(30*pi/180);
 c = (e/2)*tan(30*pi/180);

 Kp = [];
 K = [];
 T = [1 0 0; 0 1 0; 0 0 1];
 ks = 1;

 tic
 %disp('ALL SOLUTION SET ANGLES ARE IN RADIANS')
 O1 = 0*pi/180;
 pu1 = px*cos(O1) + py*sin(O1) - r;
 pv1 = -px*sin(O1) + py*cos(O1);
 pw1 = pz;
 k1 = pv1/b;
 O31 = acos(k1);
 if O31 >= 0 && O31<= 180*pi/180
 l01 = pu1^2+pw1^2+2*c*pu1-2*a*pu1+a^2+c^2-(b^2)*(sin(O31))^2-2*a*c;
 l11 = -4*a*pw1;
 l21 = pw1^2+pu1^2+2*pu1*c+2*a*pu1+a^2+c^2-(b^2)*(sin(O31))^2+2*a*c;
 t11 = (-l11+sqrt(l11*l11-4*l21*l01))/(2*l21);
 t12 = (-l11-sqrt(l11*l11-4*l21*l01))/(2*l21);
 if isreal(t11)
 O11a = 2*atan(t11);
 O21a = asin((pw1-a*sin(O11a))/b*sin(O31));
 %disp(['Actuated Joint Angle for Limb 1 is :'

num2str(O11a*180/pi) 'degrees']);
 else disp('Posture Not Valid')
 end
 if isreal(t12)
 O11b = 2*atan(t12);
 O21b = asin((pw1-a*sin(O11b))/b*sin(O31));
 %disp(['Alternate Actuated Joint Angle for Limb 1 is :'

num2str(O11b*180/pi) 'degrees']);
 else disp('Posture Not Valid')
 end
 end
 O2 = 120*pi/180;
 pu2 = px*cos(O2) + py*sin(O2) - r;
 pv2 = -px*sin(O2) + py*cos(O2);
 pw2 = pz;
 k2 = pv2/b;
 O32 = acos(k2);
 if O32 >= 0 && O32<= 180*pi/180
 l02 = pu2^2+pw2^2+2*c*pu2-2*a*pu2+a^2+c^2-(b^2)*(sin(O32))^2-2*a*c;
 l12 = -4*a*pw2;
 l22 = pw2^2+pu2^2+2*pu2*c+2*a*pu2+a^2+c^2-(b^2)*(sin(O32))^2+2*a*c;
 t21 = (-l12+sqrt(l12*l12-4*l22*l02))/(2*l22);
 t22 = (-l12-sqrt(l12*l12-4*l22*l02))/(2*l22);
 if isreal(t21)
 O12a = 2*atan(t21);
 O22a = asin((pw2-a*sin(O12a))/b*sin(O32));
 %disp(['Actuated Joint Angle for Limb 2 is :'

num2str(O12a*180/pi) 'degrees']);
 else disp('Posture Not Valid')
 end

 Anx-B

91

 if isreal(t22)
 O12b = 2*atan(t22);
 O22b = asin((pw2-a*sin(O12b))/b*sin(O32));
 %disp(['Alternate Actuated Joint Angle for Limb 2 is :'

num2str(O12b*180/pi) 'degrees']);
 else disp('Posture Not Valid')
 end
 end
 O3 = 240*pi/180;
 pu3 = px*cos(O3) + py*sin(O3) - r;
 pv3 = -px*sin(O3) + py*cos(O3);
 pw3 = pz;
 k3 = pv3/b;
 O33 = acos(k3);
 if O33 >= 0 && O33<= 180*pi/180
 l03 = pu3^2+pw3^2+2*c*pu3-2*a*pu3+a^2+c^2-(b^2)*(sin(O33))^2-2*a*c;
 l13 = -4*a*pw3;
 l23 = pw3^2+pu3^2+2*pu3*c+2*a*pu3+a^2+c^2-(b^2)*(sin(O33))^2+2*a*c;
 t31 = (-l13+sqrt(l13*l13-4*l23*l03))/(2*l23);
 t32 = (-l13-sqrt(l13*l13-4*l23*l03))/(2*l23);
 if isreal(t31)
 O13a = 2*atan(t31);
 O23a = asin((pw3-a*sin(O13a))/b*sin(O33));
 %disp(['Actuated Joint Angle for Limb 3 is :'

num2str(O13a*180/pi) 'degrees']);
 else disp('Posture Not Valid')
 end
 if isreal(t32)
 O13b = 2*atan(t32);
 O23b = asin((pw3-a*sin(O13b))/b*sin(O33));
 %disp(['Alternate Actuated Joint Angle for Limb 3 is :'

num2str(O13b*180/pi) 'degrees']);
 else disp('Posture Not Valid')
 end
 end
 %disp('ALL SOLUTION SET ANGLES ARE IN RADIANS')
 %disp('Solution Set A for limb 1 is :')
 A1 = [O11a O21a O31];
 %disp(A1)
 %disp('Solution Set B for limb 1 is :')
 B1 = [O11b O21b O31];
 %disp(B1)
 %disp('Solution Set A for limb 2 is :')
 A2 = [O12a O22a O32];
 %disp(A2)
 %disp('Solution Set B for limb 2 is :')
 B2 = [O12b O22b O32];
 %disp(B2)
 %disp('Solution Set A for limb 3 is :')
 A3 = [O13a O23a O33];
 %disp(A3)
 %disp('Solution Set B for limb 3 is :')
 B3 = [O13b O23b O33];
 %disp(B3)

 %Angle Selection Module
 if abs(O11a) <= abs(O11b)
 O11 = O11a; O21 = O21a;
 J1x = cos(O11+O21)*sin(O31)*cos(O1)-cos(O31)*sin(O1);
 J1y = cos(O11+O21)*sin(O31)*sin(O1)+cos(O31)*cos(O1);
 J1z = sin(O11+O21)*sin(O31);

 Anx-B

92

 JI1 = a*sin(O31)*sin(O21);
 else if abs(O11a) > abs(O11b)
 O11 = O11b; O21 = O21b;
 J1x = cos(O11+O21)*sin(O31)*cos(O1)-cos(O31)*sin(O1);
 J1y = cos(O11+O21)*sin(O31)*sin(O1)+cos(O31)*cos(O1);
 J1z = sin(O11+O21)*sin(O31);
 JI1 = a*sin(O31)*sin(O21);
 end
 end

 if abs(O12a) <= abs(O12b)
 O12 = O12a; O22 = O22a;
 J2x = cos(O12+O22)*sin(O32)*cos(O2)-cos(O32)*sin(O2);
 J2y = cos(O12+O22)*sin(O32)*sin(O2)+cos(O32)*cos(O2);
 J2z = sin(O12+O22)*sin(O32);
 JI2 = a*sin(O32)*sin(O22);
 else if abs(O12a) > abs(O12b)
 O12 = O12b; O22 = O22b;
 J2x = cos(O12+O22)*sin(O32)*cos(O2)-cos(O32)*sin(O2);
 J2y = cos(O12+O22)*sin(O32)*sin(O2)+cos(O32)*cos(O2);
 J2z = sin(O12+O22)*sin(O32);
 JI2 = a*sin(O32)*sin(O22);
 end
 end

 if abs(O13a) <= abs(O13b)
 O13 = O13a; O23 = O23a;
 J3x = cos(O13+O23)*sin(O33)*cos(O3)-cos(O33)*sin(O3);
 J3y = cos(O13+O23)*sin(O33)*sin(O3)+cos(O33)*cos(O3);
 J3z = sin(O13+O23)*sin(O33);
 JI3 = a*sin(O33)*sin(O23);
 else if abs(O13a) > abs(O13b)
 O13 = O13b; O23 = O23b;
 J3x = cos(O13+O23)*sin(O33)*cos(O3)-cos(O33)*sin(O3);
 J3y = cos(O13+O23)*sin(O33)*sin(O3)+cos(O33)*cos(O3);
 J3z = sin(O13+O23)*sin(O33);
 JI3 = a*sin(O33)*sin(O23);
 end
 end

 JF = [J1x J1y J1z; J2x J2y J2z; J3x J3y J3z];
 JI = [JI1 0 0; 0 JI2 0; 0 0 JI3];
 % disp(' Forward Jacobian Matrix : ')
 % disp (JF)
 % disp(' Inverse Jacobian Matrix : ')
 % disp (JI)
 Jinv = inv(JI)*JF;
 J = inv(JF)*JI;
 % disp(' Jacobian Matrix : ')
 % disp(J)

 %Error Evaluation Module
 %disp ('Stiffness Index Evaluation Module')

 Kp = ks*inv(J*(J'));

 Eigen_Vector = eig(Kp);

 Stiffness_Index = min(Eigen_Vector);

 Anx-B

93

 inv_Stiffness_Index = 1 / Stiffness_Index;

end

Jacobian Error Model

clc
clear
format
%Data Input Module
disp('DATA INPUT MODULE')
a = input('Enter Upper Arm Length:');
b = input('Enter Lower Arm Length:');
r = input('Enter Fixed Frame Position:');
c = input('Enter Moving Frame Position:');
pz = sqrt((b)^2-(a^2))+0.000000000001+5;
pxl1 = input('Value of -ve x-axis Limit:');
pxl2 = input('Value of +ve x-axis Limit:');
pyl1 = pxl1;
pyl2 = pxl2;
x=1;
y=1;
i=1;
pxmat=[];
pymat=[];
ks = 1;
%Jacobian Evaluation Module
[px py] = meshgrid(pxl1:0.25:pxl2);
for px = pxl1:0.25:pxl2
 y=1;
 for py= pxl1:0.25:pxl2
O1 = 0*pi/180;
pu1 = px*cos(O1) + py*sin(O1) - r;
pv1 = -px*sin(O1) + py*cos(O1);
pw1 = pz;
k1 = pv1/b;
O31 = acos(k1);
if O31 >= 0 && O31<= 180*pi/180
 l01 = pu1^2+pw1^2+2*c*pu1-2*a*pu1+a^2+c^2-(b^2)*(sin(O31))^2-2*a*c;
 l11 = -4*a*pw1;
 l21 = pw1^2+pu1^2+2*pu1*c+2*a*pu1+a^2+c^2-(b^2)*(sin(O31))^2+2*a*c;
 t11 = (-l11+sqrt(l11*l11-4*l21*l01))/(2*l21);
 t12 = (-l11-sqrt(l11*l11-4*l21*l01))/(2*l21);
 if isreal(t11)
 O11a = 2*atan(t11);
 O21a = asin((pw1-a*sin(O11a))/b*sin(O31));

 end
 if isreal(t12)
 O11b = 2*atan(t12);
 O21b = asin((pw1-a*sin(O11b))/b*sin(O31));

 end
end
O2 = 120*pi/180;
pu2 = px*cos(O2) + py*sin(O2) - r;
pv2 = -px*sin(O2) + py*cos(O2);
pw2 = pz;
k2 = pv2/b;

 Anx-B

94

O32 = acos(k2);
if O32 >= 0 && O32<= 180*pi/180
 l02 = pu2^2+pw2^2+2*c*pu2-2*a*pu2+a^2+c^2-(b^2)*(sin(O32))^2-2*a*c;
 l12 = -4*a*pw2;
 l22 = pw2^2+pu2^2+2*pu2*c+2*a*pu2+a^2+c^2-(b^2)*(sin(O32))^2+2*a*c;
 t21 = (-l12+sqrt(l12*l12-4*l22*l02))/(2*l22);
 t22 = (-l12-sqrt(l12*l12-4*l22*l02))/(2*l22);
 if isreal(t21)
 O12a = 2*atan(t21);
 O22a = asin((pw2-a*sin(O12a))/b*sin(O32));

 end
 if isreal(t22)
 O12b = 2*atan(t22);
 O22b = asin((pw2-a*sin(O12b))/b*sin(O32));

 end
end
O3 = 240*pi/180;
pu3 = px*cos(O3) + py*sin(O3) - r;
pv3 = -px*sin(O3) + py*cos(O3);
pw3 = pz;
k3 = pv3/b;
O33 = acos(k3);
if O33 >= 0 && O33<= 180*pi/180
 l03 = pu3^2+pw3^2+2*c*pu3-2*a*pu3+a^2+c^2-(b^2)*(sin(O33))^2-2*a*c;
 l13 = -4*a*pw3;
 l23 = pw3^2+pu3^2+2*pu3*c+2*a*pu3+a^2+c^2-(b^2)*(sin(O33))^2+2*a*c;
 t31 = (-l13+sqrt(l13*l13-4*l23*l03))/(2*l23);
 t32 = (-l13-sqrt(l13*l13-4*l23*l03))/(2*l23);
 if isreal(t31)
 O13a = 2*atan(t31);
 O23a = asin((pw3-a*sin(O13a))/b*sin(O33));

 end
 if isreal(t32)
 O13b = 2*atan(t32);
 O23b = asin((pw3-a*sin(O13b))/b*sin(O33));

 end
end

 A1 = [O11a O21a O31];

 B1 = [O11b O21b O31];

 A2 = [O12a O22a O32];

 B2 = [O12b O22b O32];

 A3 = [O13a O23a O33];

 B3 = [O13b O23b O33];

 Anx-B

95

%Angle Selection Module
if abs(O11a) <= abs(O11b)
 O11 = O11a; O21 = O21a;
 J1x = cos(O11+O21)*sin(O31)*cos(O1)-cos(O31)*sin(O1);
 J1y = cos(O11+O21)*sin(O31)*sin(O1)+cos(O31)*cos(O1);
 J1z = sin(O11+O21)*sin(O31);
 JI1 = a*sin(O31)*sin(O21);
else if abs(O11a) > abs(O11b)
 O11 = O11b; O21 = O21b;
 J1x = cos(O11+O21)*sin(O31)*cos(O1)-cos(O31)*sin(O1);
 J1y = cos(O11+O21)*sin(O31)*sin(O1)+cos(O31)*cos(O1);
 J1z = sin(O11+O21)*sin(O31);
 JI1 = a*sin(O31)*sin(O21);
 end
end

if abs(O12a) <= abs(O12b)
 O12 = O12a; O22 = O22a;
 J2x = cos(O12+O22)*sin(O32)*cos(O2)-cos(O32)*sin(O2);
 J2y = cos(O12+O22)*sin(O32)*sin(O2)+cos(O32)*cos(O2);
 J2z = sin(O12+O22)*sin(O32);
 JI2 = a*sin(O32)*sin(O22);
else if abs(O12a) > abs(O12b)
 O12 = O12b; O22 = O22b;
 J2x = cos(O12+O22)*sin(O32)*cos(O2)-cos(O32)*sin(O2);
 J2y = cos(O12+O22)*sin(O32)*sin(O2)+cos(O32)*cos(O2);
 J2z = sin(O12+O22)*sin(O32);
 JI2 = a*sin(O32)*sin(O22);
 end
end

if abs(O13a) <= abs(O13b)
 O13 = O13a; O23 = O23a;
 J3x = cos(O13+O23)*sin(O33)*cos(O3)-cos(O33)*sin(O3);
 J3y = cos(O13+O23)*sin(O33)*sin(O3)+cos(O33)*cos(O3);
 J3z = sin(O13+O23)*sin(O33);
 JI3 = a*sin(O33)*sin(O23);
else if abs(O13a) > abs(O13b)
 O13 = O13b; O23 = O23b;
 J3x = cos(O13+O23)*sin(O33)*cos(O3)-cos(O33)*sin(O3);
 J3y = cos(O13+O23)*sin(O33)*sin(O3)+cos(O33)*cos(O3);
 J3z = sin(O13+O23)*sin(O33);
 JI3 = a*sin(O33)*sin(O23);
 end
end
JF = [J1x J1y J1z; J2x J2y J2z; J3x J3y J3z];
JI = [JI1 0 0; 0 JI2 0; 0 0 JI3];

% disp(' Forward Jacobian Matrix : ')
% disp (JF)
% disp(' Inverse Jacobian Matrix : ')
% disp (JI)
Jinv = inv(JI)*JF;
% J = inv(JF)*JI;
% disp(' Jacobian Matrix : ')
% disp(J)

Eigen_Vector = eig(Jinv);

 Anx-B

96

Singularity_Index = min(Eigen_Vector);
Singularity_Index_Matrix(x,y)=Singularity_Index;
pxmat(x,y)=px;
pymat(x,y)=py;
y=y+1;
 end
 x=x+1;

end

contour(pxmat,pymat,Singularity_Index_Matrix, 12, 'ShowText', 'on',

'LineWidth', 2)

Geometric Error Model

clear

clc

format

dOD = input('Enter Input Error: ');

dO = dOD*pi/180;

upper_arm = input ('Enter Upper Limb Length: ');

lower_arm = input ('Enter Lower Limb Length: ');

fixed_platform = input ('Enter Fixed Platform Length: ');

moving_platform = input ('Enter Moving Platform Length: ');

plane = sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001;

cube_height = input ('Enter Cube Height: ');

cube_initial_point = input ('Enter Negative Co-ordinate of Cube Edge: ');

pxl1 = -(cube_initial_point);

pyl1 = pxl1;

pxl2 = -1*pxl1;

pyl2 = pxl2;

max_Errors = [];

% ErrorX =[];

% ErrorY = [];

% ErrorZ = [];

%[px py] = meshgrid(pxl1:0.125:pxl2);

 z_slice1 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-0.5*cube_height);

 z_slice2 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-0.475*cube_height);

 z_slice3 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-0.45*cube_height);

 z_slice4 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-0.425*cube_height);

 z_slice5 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-0.40*cube_height);

 z_slice6 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-0.375*cube_height);

 z_slice7 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-0.35*cube_height);

 z_slice8 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-0.325*cube_height);

 z_slice9 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-0.30*cube_height);

 z_slice10 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-0.275*cube_height);

 z_slice11 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-0.25*cube_height);

 z_slice12 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-0.225*cube_height);

 z_slice13 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-0.20*cube_height);

 z_slice14 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-0.175*cube_height);

 z_slice15 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-0.15*cube_height);

 z_slice16 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-0.125*cube_height);

 z_slice17 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-0.10*cube_height);

 z_slice18 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-0.075*cube_height);

 z_slice19 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-0.05*cube_height);

 z_slice20 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-0.025*cube_height);

 z_slice21 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001));

 z_slice22 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)+0.025*cube_height);

 Anx-B

97

 z_slice23 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)+0.05*cube_height);

 z_slice24 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)+0.075*cube_height);

 z_slice25 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)+0.10*cube_height);

 z_slice26 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)+0.125*cube_height);

 z_slice27 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)+0.15*cube_height);

 z_slice28 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)+0.175*cube_height);

 z_slice29 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)+0.20*cube_height);

 z_slice30 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)+0.225*cube_height);

 z_slice31 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)+0.25*cube_height);

 z_slice32 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)+0.275*cube_height);

 z_slice33 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)+0.30*cube_height);

 z_slice34 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)+0.325*cube_height);

 z_slice35 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)+0.35*cube_height);

 z_slice36 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)+0.375*cube_height);

 z_slice37 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)+0.40*cube_height);

 z_slice38 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)+0.425*cube_height);

 z_slice39 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)+0.475*cube_height);

 z_slice40 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)+0.5*cube_height);

 plane_array = [z_slice1, z_slice2, z_slice3, z_slice4, z_slice5, z_slice6, z_slice7, z_slice8, z_slice9,

z_slice10, z_slice11, z_slice12, z_slice13, z_slice14, z_slice15, z_slice16, z_slice17, z_slice18, z_slice19,

z_slice20, z_slice21, z_slice22, z_slice23, z_slice24, z_slice25, z_slice26, z_slice27, z_slice28, z_slice29,

z_slice30, z_slice31, z_slice32, z_slice33, z_slice34, z_slice35, z_slice36, z_slice37, z_slice38, z_slice39,

z_slice40];

zi = 1;

for i = 1:1:40

 plane = plane_array(i);

 xi = 1;

for px = pxl1:0.25:pxl2

 yi = 1;

 for py = pyl1:0.25:pyl2

 max_Errors = Error_Analysis_Single_Point_Combination(px, py, plane, upper_arm, lower_arm, dO,

fixed_platform, moving_platform);

 max_overall = max_Errors(1);

 Error(xi, yi, zi) = max_overall;

 ErrorX(xi, yi, zi) = max_Errors(2);

 ErrorY(xi, yi, zi) = max_Errors(3);

 ErrorZ(xi, yi, zi) = max_Errors(4);

 yi = yi + 1;

 end

 xi = xi + 1;

end

zi = zi + 1

end

max_max_overall = max(Error(:))

max_x = max(ErrorX(:))

%

max_y = max(ErrorY(:))

%

max_z = max(ErrorZ(:))

function Xe = Error_Combination(O11, O12, O13, dO, f, e, rf, re, Error_CM_Vector)

 sqrt3 = 3^(1/2);

 pi = 3.141592653;

 sin120 = sqrt3/2.0;

 Anx-B

98

 cos120 = -0.5;

 tan60 = sqrt3;

 sin30 = 0.5;

 tan30 = 1/sqrt3;

 theta1e = O11 + Error_CM_Vector(1,1)*dO;

 theta2e = O12 + Error_CM_Vector(1,2)*dO;

 theta3e = O13 + Error_CM_Vector(1,3)*dO;

 f_e = f;

 e_e = e;

 rf_e = rf;

 re_e = re;

 t = (f_e-e_e)*tan30/2;

 y1 = -(t + rf_e*cos(theta1e));

 z1 = -rf_e*sin(theta1e);

 y2 = (t + rf_e*cos(theta2e))*sin30;

 x2 = y2*tan60;

 z2 = -rf_e*sin(theta2e);

 y3 = (t + rf_e*cos(theta3e))*sin30;

 x3 = -y3*tan60;

 z3 = -rf_e*sin(theta3e);

 dnm = (y2-y1)*x3-(y3-y1)*x2;

 w1 = y1*y1 + z1*z1;

 w2 = x2*x2 + y2*y2 + z2*z2;

 w3 = x3*x3 + y3*y3 + z3*z3;

 a1 = (z2-z1)*(y3-y1)-(z3-z1)*(y2-y1);

 b1 = -((w2-w1)*(y3-y1)-(w3-w1)*(y2-y1))/2.0;

 a2 = -(z2-z1)*x3+(z3-z1)*x2;

 b2 = ((w2-w1)*x3 - (w3-w1)*x2)/2.0;

 a = a1*a1 + a2*a2 + dnm*dnm;

 b = 2*(a1*b1 + a2*(b2-y1*dnm) - z1*dnm*dnm);

 c = (b2-y1*dnm)*(b2-y1*dnm) + b1*b1 + dnm*dnm*(z1*z1 - re_e*re_e);

 d = b*b - 4.0*a*c;

 if (d < 0)

 disp('Cant Find Solution');

 end

 ze = 0.5*(b+sqrt(d))/a;

 xe = (a2*ze + b2)/dnm;

 ye = -(a1*ze + b1)/dnm;

 Xe = [xe ye ze];

 Anx-B

99

end

Level 2 Design: Brent-Drekker Numerical Solution

clc
clear
Function_1 = @Obj_Fun_1;
Function_2 = @Obj_Fun_2;
Function_3 = @Obj_Fun_3;
x0 = [0.001 0.5];
tic
options = optimset('TolFun', 1.0e-10, 'TolX', 1.e-10);
dO_a = fzero(Function_1, x0, options)
dO_b = fzero(Function_2, x0, options)
dO_c = fzero(Function_3, x0, options)
toc

clc
clear

Error_X_d = 0.125;
Error_Y_d = 0.125;
Error_Z_d = 0.125;
dO = 0.001:0.001:0.5;
[r,c] = size(dO);
for j = 1:1:c
 value_x(j) = Error_X_Function(dO(j)) - Error_X_d;
 value_y(j) = Error_Y_Function(dO(j)) - Error_Y_d;
 value_z(j) = Error_Z_Function(dO(j)) - Error_Z_d;
end

plot(dO, value_x, dO, value_y, dO, value_z)
grid on

function value = Obj_Fun_1(x)

Error_X_d = 0.125;

% Error_Y_d = 0.125;

% Error_Z_d = 0.125;

value = (Error_X_Function(x) - Error_X_d);

% value(2) = abs(Error_Y_Function(x) - Error_Y_d);

% value(3) = abs(Error_Z_Function(x) - Error_Z_d);

end

function value = Obj_Fun_2(x)

% Error_X_d = 0.125;

Error_Y_d = 0.125;

% Error_Z_d = 0.125;

% value = abs(Error_X_Function(x) - Error_X_d);

 value = (Error_Y_Function(x) - Error_Y_d);

% value(3) = abs(Error_Z_Function(x) - Error_Z_d);

end

 Anx-B

100

function value = Obj_Fun_3(x)

% Error_X_d = 0.125;

% Error_Y_d = 0.125;

Error_Z_d = 0.125;

% value = abs(Error_X_Function(x) - Error_X_d);

% value = abs(Error_Y_Function(x) - Error_Y_d);

value = (Error_Z_Function(x) - Error_Z_d);

end

function Error_X = Error_X_Function(x)
dOD = x(1);
% d_b = 0;
% d_f = 0;
% d_e = 0;
% d_a = 0;
dO = dOD*pi/180;
upper_arm = 39.998;
lower_arm = 80.000;
fixed_platform = 10.0030;
moving_platform = 9.9990;
px = -10;
py = 10;
pz = 88;
a = upper_arm;
rf = a;
b = lower_arm;
re = b;
f = fixed_platform;
e = moving_platform;

ErrorX = [];
ErrorY = [];
ErrorZ = [];
Xe = [];
dX = [];
max_Errors = [];

r = (f/2)*tan(30*pi/180);
c = (e/2)*tan(30*pi/180);
%disp('ALL SOLUTION SET ANGLES ARE IN RADIANS')
O1 = 0*pi/180;
pu1 = px*cos(O1) + py*sin(O1) - r;
pv1 = -px*sin(O1) + py*cos(O1);
pw1 = pz;
k1 = pv1/b;
O31 = acos(k1);
if O31 >= 0 && O31<= 180*pi/180
 l01 = pu1^2+pw1^2+2*c*pu1-2*a*pu1+a^2+c^2-(b^2)*(sin(O31))^2-2*a*c;
 l11 = -4*a*pw1;
 l21 = pw1^2+pu1^2+2*pu1*c+2*a*pu1+a^2+c^2-(b^2)*(sin(O31))^2+2*a*c;
 t11 = (-l11+sqrt(l11*l11-4*l21*l01))/(2*l21);
 t12 = (-l11-sqrt(l11*l11-4*l21*l01))/(2*l21);
 if isreal(t11)
 O11a = 2*atan(t11);
 O21a = asin((pw1-a*sin(O11a))/b*sin(O31));
 %disp(['Actuated Joint Angle for Limb 1 is :' num2str(O11a*180/pi)

'degrees']);
 else disp('Posture Not Valid')

 Anx-B

101

 end
 if isreal(t12)
 O11b = 2*atan(t12);
 O21b = asin((pw1-a*sin(O11b))/b*sin(O31));
 %disp(['Alternate Actuated Joint Angle for Limb 1 is :'

num2str(O11b*180/pi) 'degrees']);
 else disp('Posture Not Valid')
 end
end
O2 = 120*pi/180;
pu2 = px*cos(O2) + py*sin(O2) - r;
pv2 = -px*sin(O2) + py*cos(O2);
pw2 = pz;
k2 = pv2/b;
O32 = acos(k2);
if O32 >= 0 && O32<= 180*pi/180
 l02 = pu2^2+pw2^2+2*c*pu2-2*a*pu2+a^2+c^2-(b^2)*(sin(O32))^2-2*a*c;
 l12 = -4*a*pw2;
 l22 = pw2^2+pu2^2+2*pu2*c+2*a*pu2+a^2+c^2-(b^2)*(sin(O32))^2+2*a*c;
 t21 = (-l12+sqrt(l12*l12-4*l22*l02))/(2*l22);
 t22 = (-l12-sqrt(l12*l12-4*l22*l02))/(2*l22);
 if isreal(t21)
 O12a = 2*atan(t21);
 O22a = asin((pw2-a*sin(O12a))/b*sin(O32));
 %disp(['Actuated Joint Angle for Limb 2 is :' num2str(O12a*180/pi)

'degrees']);
 else disp('Posture Not Valid')
 end
 if isreal(t22)
 O12b = 2*atan(t22);
 O22b = asin((pw2-a*sin(O12b))/b*sin(O32));
 %disp(['Alternate Actuated Joint Angle for Limb 2 is :'

num2str(O12b*180/pi) 'degrees']);
 else disp('Posture Not Valid')
 end
end
O3 = 240*pi/180;
pu3 = px*cos(O3) + py*sin(O3) - r;
pv3 = -px*sin(O3) + py*cos(O3);
pw3 = pz;
k3 = pv3/b;
O33 = acos(k3);
if O33 >= 0 && O33<= 180*pi/180
 l03 = pu3^2+pw3^2+2*c*pu3-2*a*pu3+a^2+c^2-(b^2)*(sin(O33))^2-2*a*c;
 l13 = -4*a*pw3;
 l23 = pw3^2+pu3^2+2*pu3*c+2*a*pu3+a^2+c^2-(b^2)*(sin(O33))^2+2*a*c;
 t31 = (-l13+sqrt(l13*l13-4*l23*l03))/(2*l23);
 t32 = (-l13-sqrt(l13*l13-4*l23*l03))/(2*l23);
 if isreal(t31)
 O13a = 2*atan(t31);
 O23a = asin((pw3-a*sin(O13a))/b*sin(O33));
 %disp(['Actuated Joint Angle for Limb 3 is :' num2str(O13a*180/pi)

'degrees']);
 else disp('Posture Not Valid')
 end
 if isreal(t32)
 O13b = 2*atan(t32);
 O23b = asin((pw3-a*sin(O13b))/b*sin(O33));
 %disp(['Alternate Actuated Joint Angle for Limb 3 is :'

num2str(O13b*180/pi) 'degrees']);
 else disp('Posture Not Valid')

 Anx-B

102

 end
end

 if abs(O11a) <= abs(O11b)
 O11 = O11a; O21 = O21a;
 else if abs(O11a) > abs(O11b)
 O11 = O11b; O21 = O21b;
 end
 end

 if abs(O12a) <= abs(O12b)
 O12 = O12a; O22 = O22a;
 else if abs(O12a) > abs(O12b)
 O12 = O12b; O22 = O22b;
 end
 end

 if abs(O13a) <= abs(O13b)
 O13 = O13a; O23 = O23a;
 else if abs(O13a) > abs(O13b)
 O13 = O13b; O23 = O23b;
 end
 end

 X = [px py pz];

 %----Error Computation Module-------%

 % Error_Vector = [1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1];

 % k = 7;
 % nk = nchoosek(Error_Vector,k);
 % Error_CM=zeros(0,k);
 % for i=1:size(nk,1)
 % pi = perms(nk(i,:));
 % Error_CM = unique([Error_CM; pi],'rows');
 % end

 Error_CM = [1 1 1
 1 1 -1
 1 -1 1
 -1 1 1
 1 -1 -1
 -1 1 -1
 -1 -1 1
 -1 -1 -1
];

 for i = 1:8

 Error_CM_Vector = Error_CM(i,:);

 Xe = Error_Combination(O11, O12, O13, dO, f, e, rf, re,

Error_CM_Vector);

 Anx-B

103

 dX = abs(X - Xe);

 dX_Overall = sqrt(dX(1).^2 + dX(2).^2 + dX(3).^2);

 ErrorX(i,1) = dX(1);
 ErrorY(i,1) = dX(2);
 ErrorZ(i,1) = dX(3);

 dX_S(i,1) = dX_Overall;

 end

 dX_S;

 %max_dX_Overall = max(dX_S);
 Error_X = max(ErrorX);
 %max_dX_y = max(ErrorY)
 %max_dX_z = max(ErrorZ)

end

Workspace Plot

clc;

clear all;

close all

theta_1j = deg2rad(0);

theta_2j = deg2rad(120);

theta_3j = deg2rad(240);

r = 0;

L_1 = 30;

L_2 = 70;

k = 1;

for Z = 0:1:100

for X = -50:1:50

for Y = -50:1:50

 A_1j = ((X * cos(theta_1j)+ Y * sin(theta_1j)-r).^2 + (X * sin(theta_1j)- Y *cos(theta_1j)).^2 + (Z)^2 +

(L_2)^2 - (L_1)^2).^2 ...

 - 4*((L_2)^2) *((X * cos(theta_1j)+ Y * sin(theta_1j)-r).^2 + Z^2);

 A_2j = ((X * cos(theta_2j)+ Y * sin(theta_2j)-r).^2 + (X * sin(theta_2j)- Y *cos(theta_2j)).^2 + (Z)^2 +

(L_2)^2 - (L_1)^2).^2 ...

 - 4*((L_2)^2) *((X * cos(theta_2j)+ Y * sin(theta_2j)-r).^2 + Z^2);

 A_3j = ((X * cos(theta_3j)+ Y * sin(theta_3j)-r).^2 + (X * sin(theta_3j)- Y *cos(theta_3j)).^2 + (Z)^2 +

(L_2)^2 - (L_1)^2).^2 ...

 - 4*((L_2)^2) *((X * cos(theta_3j)+ Y * sin(theta_3j)-r).^2 + Z^2);

% if ((A_1j == 0 || A_2j == 0 || A_3j == 0)) %&&(A_1j <= 0 && A_2j <=0 && A_3j<=0))

 if (A_1j > 0 || A_2j > 0 || A_3j > 0)

% Outside = 1;

 Anx-B

104

%

 else

 P(k,1) = X;

 P(k,2) = Y;

 P(k,3) = Z;

 k = k + 1;

 end

end

end

end

figure

TRI = delaunay(P(:,1),P(:,2),P(:,3))

trimesh(TRI,P(:,1),P(:,2),P(:,3))

set(gca,'zdir','reverse')

 s

REFERENCES

[1] F. A. Lara-Molina, J. M. Rosario and D. Dumur, “Multi-Objective design of parallel

manipulator using global indices”, The Open Mechanical Engineering Journal, Vol. 4, pp. 37-

47, (2010)

[2] Stewart, D., 1965, “A Platform with Six Degrees of Freedom,” Proc. In¬stitute of

Mechanical Engineering, Vol. 180, pp. 371-386.

[3] Hunt, K., 1983, “Structural Kinematics of In-Parallel Actuated Robot- Arms,” ASME

Journal of Mechanisms, Transmissions, and Automation in Design, Vol. 105, pp. 705-712.

[4] R. E. Stamper, L.-W. Tsai, and G. C. Walsh, “Optimization of a three DOF translational

platform for well-conditioned workspace,” in Robotics and Automation, 1997. Proceedings.,

1997 IEEE International Conference on, 1997, vol. 4, pp. 3250–3255.

[5] R. Kelaiaia, O. Company, and A. Zaatri, “Multiobjective optimization of a linear Delta

parallel robot,” Mech. Mach. Theory, vol. 50, pp. 159–178, 2012.

[6] J. K. Salisbury and J. J. Craig, “Articulated Hands Force Control and Kinematic Issues,”

Int. J. Robot. Res., vol. 1, no. 1, pp. 4–17, Mar. 1982.

 Anx-B

105

[7] Clavel, R., 1988, “Delta, A Fast Robot with Parallel Geometry,” Proceed¬ings of the 18th

International Symposium on Industrial Robots, pp. 91-100. .

[8] H. Asada, “A Geometrical Representation of Manipulator Dynamics and Its Application

to Arm Design,” J. Dyn. Syst. Meas. Control, vol. 105, no. 3, pp. 131–142, Sep. 1983.

[9] K. Youcef-Toumi and H. Asada, “The Design and Control of Manipulators with

Decoupled and Configuration-Invariant Inertia Tensors,” in American Control Conference,

1986, 1986, pp. 811–818.

[10] C.M. Gosselin, “Dexterity indices for planar and spatial robotic manipulators”, Proc.

IEEE Int. Conf. on Robotics Automat., (1990)

[11] J. P. Merlet and D. Daney, “Dimensional Synthesis of Parallel Robots with a Guaranteed

Given Accuracy over a Specific Workspace”, Proc. of IEEE Conf. Robotics Automat., pp.

942-947, (2005)

[12] A. Edelman, “Eigenvalues and condition numbers of random matrices”, SIAM J. Matrix

Anal. Appl., Vol. 9, No. 4, (1988)

[13] L. Stocco, S.E. Salcudean and F. Sassani, “Matrix normalization for optimal robot

design”, Proc. IEEE Int. Conf. on Robotics Automat., (1998)

[14] C. Gosselin and J. Angeles, “A Global Performance Index for the Kinematic

Optimization of Robotics Manipulators”, ASME Trans. J. Mech Design, Vol. 113, No. 3, pp.

220-226, (1991)

[15] R. Kurtz and V. Hayward, “Multiple Goal Kinematic Optimization of a Parallel

Spherical Mechanism with Actuator Redundancy”, IEEE Trans. Robotics Automat., Vol. 8,

No. 5, pp. 644-651, (1992)

[16] O. Ma and J. Angeles, “Optimum Architecture Design of Platform Manipulator”, Proc.

IEEE Int. Conf. on Robotics Automat., pp. 1131-1135, (1991)

[17] K. H. Pittens and R. P. Podhorodeski, “A Family of Stewart Platforms with Optimal

Dexterity”, J. Robotics Sys., 10(4):463-479, (1993)

[18] K. E. Zanganeh and J. Angeles, “Kinematic Isotropy and the Optimum Design of

Parallel Manipulators”, J. Mech. Design, Vol. 121, No. 4, pp. 533-537, (1999)

[19] Y.X. Su, B.Y. Duan and C.H. Zheng, “Genetic Design of Kinematically Optimal Fine

Tuning Stewart Platform for Large Spherical Radio Telescope”, Mechatronics, Vol. 11, pp.

821-835, (2001)

[20] R. Kelaiaia, O. Company and A. Zaatri, “Multiobjective Optimization of a Linear Delta

Parallel Robot”, Mechanism and Machine Theory, Vol. 50, pp. 159-178, (2012)

[21] J. Ryu, and J. Cha, “Volumetric Error Analysis and Architecture Optimization for

Accuracy of HexaSlide Type Parallel Manipulators”, Mechanism and Machine Theory, Vol.

38, pp. 227-240, (2003)

 Anx-B

106

[22] Q. Xu and Y. Li, “Error Analysis and Optimal Design of a Class of Translational

Parallel Kinematic Machine Using Particle Swarm Optimization”, Robotica, Vol. 27, pp. 67-

78, (2009)

[23] X. J. Liu and I. A. Bonev, “Orientation Capability, Error Analysis, and Dimensional

Optimization of Two Articulated Tool Heads With Parallel Kinematics”, ASME Trans. J.

Manu. Sci. and Eng., Vol. 130, (2008)

[24] J. Kotlarski, B. Heimann and T. Ortmaier, Improving the Pose Accuracy of Planar

Parallel Robots using Mechanisms of Variable Geometry, in Ernst Hall (Ed.), Advances in

Robot Manipulators, (InTech, 2010).

[25] J.P. Merlet, Jacobian, Manipulability, Condition Number, and Accuracy of Parallel

Robots, ASME J. Mech. Des., Vol. 128, pp. 199-206, 2006.

[26] A. Yu, I. A. Bonev and P. Z. Murray, Geometric Approach to the Accuracy Analysis of

a Class of 3-DOF Planar Parallel Manipulators, Mechanism and Machine Theory, Vol. 43,

pp. 364-375, 2008.

[27] F. Hao and J.P. Merlet, Multi-criteria Optimal Design of Parallel Manipulators Based on

Internal Analysis, Mechanism and Machine Theory, Vol. 40, pp. 157-171, 2005.

[28] M. Nefzi, M. Reidel and B. Corves, Towards Automated and Optimal Design of Parallel

Manipulators, Automation and Robotics, J. M. R. Arreguin (Ed.), ISBN: 978-3-902613-417,

InTech, 2008.

[29] J. P. Merlet, Parallel Robots, 2
nd

 ed. (Springer, 2006).

[30] X. J. Liu, Q. M. Wang and J. Wang, “Kinematics, Dynamics and Dimensional Synthesis

of a Novel 2-DOF Translational Manipulator”, J. Intel. Robotic Sys., Vol. 41, pp. 205-224,

2004.

[31] X. J. Liu and I. A. Bonev, Orientation Capability, Error Analysis, and Dimensional

Optimization of Two Articulated Tool Heads with Parallel Kinematics, ASME Trans. J.

Manu. Sci. and Eng., Vol. 130, 2008.

[32] Badescu, Mircea, Mavroidis and Constantinos, Workspace Optimization of 3-Legged

UPU and UPS Parallel Platforms with Joint Constraints, ASME Trans. J. of Mech. Des., Vol.

126, Issue 2, pp. 291-300, 2004.

[33] E. Coureille, D. Deblaise, P. Maurine, Design Optimizartion of a DELTA-Like Parallel

Robot through Global Stiffness Performance Evaluation, IEEE/RSJ Intl. Conf. on Intelligent

Robots and Systems, 2009.

[34] G. Wu, S. Bai, J.A. Kepler, S. Caro, “Error Modeling and Experimental Validation of a

Planar 3-PPR Parallel Manipulator with Joint Clearances”, ASME Trans. J. of Mechanisms

and Robotics, Vol. 4, 2012

 Anx-B

107

[35] M. A. Laribi, L. Romdhane and S. Zeghloul, Analysis and Dimensional Synthesis of the

DELTA robot for a Prescribed Workspace, Mechanism and Machine Theory, Vol. 42, pp.

859-870, 2007.

[36] S. Briot and I. A. Bonev, “Accuracy Analysis of 3-DOF Planar Parallel Robots”,

Mechanism and Machine Theory, Vol. 43, pp. 445-458, (2008)

[37] G. Mitsuo and C. Runwei, Genetic Algorithms and Engineering Design, John Willey and

Sons, 1997.

[38] R. Hassan, B. Cohanium and O. Weck, A Comparison of Particle Swarm Optimization

and The Genetic Algorithm, American Institute of Aeronautics and Astronautics, 2005.

[39] K. O. Jones, Comparison of Genetic Algorithm and Particle Swarm Optimization, Proc.

Intl. Conf. on Comp. Sys. and Tech., 2005.

[40] L. Julian and E. Walter, Set Inversion via Interval Analysis for Nonlinear Bounded-error

Estimation, Automatica, Vol. 29, Issue 4, pp. 1053-1064, 1993.

[41] M. R. Pac, M. Rakotondrabe, S. Khadraoui, D. O. Popa and P. Lutz, Guaranteed

Manipulator Precision via Interval Analysis of Inverse Kinematics, Proc. of. ASME Intl. Des.

Eng. Tech. Conf. and Comp. and Info. in Eng. Conf., pp. 1-8, January, 2013.

[42] R. P. Brent, An Algorithm with Guaranteed Convergence for Finding a Zero of a

Function, The Computer Journal, Vol. 14(4), pp. 422-25, 1971.

