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Abstract 

Design of parallel manipulators for desired accuracy and workspace is an important functional 

design requirement. Accuracy of parallel manipulators can be categorized into kinematic and 

dynamic accuracy. Kinematic accuracy is attributed to active joint input errors, and dynamic 

accuracy is attributed to finite stiffness of the manipulator structure. In this study, a bi-level 

cascaded design approach is proposed that yields manipulators possessing maximum dynamic 

accuracy, desired kinematic accuracy along each DOF, and desired reachable workspace. The 

proposed approach is validated through accuracy centric design of a 3-RSS Delta parallel 

manipulator. In Level 1 design, a multi-objective optimization problem, that minimizes the 

stiffness index and condition number of the stiffness matrix is resolved through Genetic 

Algorithms. In Level 2 design, the Brent-Drekker numerical solver is employed to compute 

maximum allowable error in active joint inputs that lead to desired positioning error along each 

DOF of the Level 1 optimized parallel manipulator. A geometric error model is derived to 

evaluate exact maximum positioning errors along each DOF due to errors in active joint inputs. 

The bi-level cascaded approach yields a finite set of pareto-optimal design solutions that meet 

design requirements of accuracy and workspace. It is found that the proposed approach is 

significantly less computationally expensive than interval analysis and set inversion-based 

approaches. 

 

Key Words: Parallel, Manipulator, Optimal, Design, Accuracy, Stiffness, Workspace 
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CHAPTER 1: INTRODUCTION 

 

The research, presented in this dissertation, covers two broad areas of design and analysis of 

parallel manipulators. Thus, the dissertation is divided into two parts. 

In the first part, an in-depth accuracy analysis of a 3-RSS (Revolute-Spherical-Spherical) 

Delta parallel manipulator is carried out. This step covers the various accuracy analysis and 

error modelling techniques that have been presented over the years by a number of 

researchers. At the culmination of this part, the most accurate error model for a 3-RSS Delta 

parallel manipulator is selected. 

In the second part, a novel bi-level cascaded design approach, for requirement driven design 

of the Delta parallel manipulator, is presented. The design approach is aimed at deriving a 

single optimal design solution that possess maximum stiffness over a desired workspace, 

along with desired kinematic accuracy along each DoF. 

In the following section, the author presents a detailed discussion on the background, scope 

and motivation of this study. 

 

1.1 Background, Scope and Motivation 

Spatial parallel manipulators are being increasingly employed in demanding industrial 

applications owing to their intrinsically high positioning accuracy and task space 

accelerations [1]. In most of these applications, positioning accuracy is one of the significant 

performance measure. Positioning accuracy of a manipulator can be as output errors; that is 

the difference between actual and desired end-effector position and orientation in the 

Cartesian space. Output errors arise due to uncertainties in active joint inputs, tolerances in 

geometric parameters and joint clearances, and time variant deflections of links due to inertial 

and thermal loading. Positioning accuracy can be classified as 1) kinematic accuracy that is 

attributable to uncertainties in active joint inputs and geometric parameters, 2) dynamic 

accuracy (defined in terms of output errors that causes due to the finite stiffness of links). 

It is essential to manifest positioning accuracy in the overall design of parallel manipulators. 

Accuracy based design of parallel manipulators has been widely studied in the recent years. 

As a consequence, the following g two areas of focus have emerged: 
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 positioning accuracy analysis via error modelling. 

 optimal design for maximum positioning accuracy. 

For the sake brevity, the term “positioning accuracy” has been substituted with the term 

“accuracy”, throughout the remaining text. 

A deeper review of accuracy-based design reveals two important facts. First, the choice of a 

particular error model can drastically affect the results of the overall accuracy analysis.  

Secondly, most design approaches yield optimal solutions that maximise positioning 

accuracy. Although, extremely useful, such design solutions cannot guarantee that desired 

accuracy would be achieved along each DoF.  

In light of the fore stated facts, it is imperative to derive an accuracy-based approach that: 

 evaluates the most accurate error model for a specific parallel manipulator. 

 yields a single optimal design solution that achieves desired kinematic accuracy along 

each DoF while satisfying functional constraints / requirements. 

The rationale of this study cannot be explained any further, without presenting a detailed 

review of parallel manipulators as well as existing research on accuracy analysis and design 

of parallel manipulators. 

 

1.2 Parallel Manipulators: An Overview 

Stewart platform is considered the most famous parallel manipulator of all. Stewart (1956) 

created this manipulator as a flight simulator [2], are there are certain versions of this 

manipulator that are still being used as a flight simulator. Since its creation, the Stewart 

platform is being used for many. 

The Stewart platform has been studied extensively (Hunt, 1983; Fichter, 1986; Griffis and 

Duffy, 1989; Innocenti and Parenti-Castelli, 1993; and Nanua et al., 1990) [3]. The 

aforementioned platform has six limbs and all these links are connected to the fixed and the 

movable platform. Changing lengths of the links is the way in which this manipulator is 

actuated. Although these manipulators are rigid and their inverse kinematics is easy, they 

have some disadvantages. 

1. As far as the direct kinematics is concerned, solving it is tedious. 

2. As the moving and fixed platforms are connected, the movement of these platforms is 

also coupled. 
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3. Spherical joints that are perfect in shape are not easy to manufacture considering the 

cost and the manufacturing techniques. 

 

1.2.1 Serial vs Parallel Manipulators 

The following points highlight how parallel manipulators differ from the serial manipulators: 

1. Parallel manipulators are also called closed loop manipulators owing to the presence of  

Figure 1-1. (a) Parallel Manipulator (b) Serial Manipulator 

2. closed loops in their architectural design. As an example, consider the 3-DoF parallel 

robot. It has three closed loops joined together to create the manipulator and has no free 

ends/links apart from the end effector that does not play any role in the manipulator’s 

structural and kinematic design. Serial manipulators on the other hand have open loops 

and hence are called open loop manipulators [4]. These manipulators have free ends or 

links and the movement of one link does not affect the localized movement of any other 

link. Hence all the links are independently joined together. A good depiction of open loop 

manipulators a serial robotic arm, an imitation of a human arm. This manipulator looks 

just like a human arm and as a human arm it too has a free end. 

3. End effectors in parallel manipulators are movable platforms. As explained earlier, 

parallel manipulators have closed loops that join together to create the manipulator. 

Hence these robots’ end effectors are not connected to any link but is connected to a 

movable platform created by the combination of all the closed loops. Any kind of an end 

effector can be used to be connected at the movable platform. Whereas in the serial 

manipulators the end effectors are gripper/application based tool with n-DOF. As the last 
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link of a serial robot is a free end, an end effector can be connected directly to this. 

4. The position of the end effector for a parallel manipulator is in the Cartesian space hence 

the natural description is in the Cartesian space. A major part of the manipulator design is 

the kinematic synthesis that involves the transformation of robot coordinates from one 

coordinate system to another. In a parallel the position of the end effector is given in 

Cartesian coordinates, hence the natural description of the manipulator is in this space [5]. 

For serial manipulators the natural description is in the joint space as it is more 

convenient. 

5. For parallel manipulators the location of the actuators is near to the immovable base that 

accounts for high load bearing capacity, less inertial forces and more stiffness. 

Considering a 3-DoF parallel robot the actuators i.e. DC motors that actuate the three 

primary links, are located on immovable base that in turn is connected to the frame of the 

robot which is fixed with respect to its surroundings and the root itself. As the weight of 

the motors is being carried by the frame, there is no extra load on the robots and hence we 

get a better load bearing capacity, less weight to carry and less deflections. In serial 

manipulators, the actuators are located in on the link joints that add to the weight of 

manipulator and hence causes more deflections and errors. The stiffness in this case is 

less and inertial forces are greater [6]. A common example is that of an industrial serial 

robot. The motors that actuate the links are connected to the joints and hence add to the 

combined weight of the links and the motors. 

6. Parallel manipulators are preferred for their stiffness because their design tends to 

decrease their deflections. Serial manipulators on the other hand are used for their 

dexterity. 

7. In the case of parallel manipulators direct kinematics is much harder and involves the 

elimination of passive joints. Inverse kinematics is easy in the case of parallel 

manipulators because of the loop closure equations that we get from the closed loops 

created by the linkages. The closure equations are easy to solve because the sum of 

vectors in a closed loop sums up to zero hence giving a set of homogeneous equations 

that can be solved from the active joint angles easily [7]. A typical example would be that 

of a 3-DoF parallel robot that includes three closed loops and hence three loop closure 

equations which lead to the three joint angles required. On the other hand, the serial 

manipulators direct kinematics in easy and inverse in difficult and lengthy as there are no 

closed loops involved. 

8. Parallel robots are used in applications where accuracy and precision is a priority. That is 
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why they find application in the fields of medical science where precision and accuracy is 

required in operations; in the field of micro-assembly where there is a need for precision 

for assembling components. Serial manipulators on the other hand are used for gross 

movements and in applications in which precision is not the primary concern. This 

included application of pick and place of comparatively large objects in a greater 

workspace. 

 

Table 1-1 shows a comparison between the parallel and serial manipulator. 
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Table ‎0-4. Comparison between Parallel and Serial Manipulators 

Trait 

Robotic 

Parallel Robot Serial Robot 

Type of Mechanism Closed loop Open loop 

End Effectors Platform Gripper 

Natural Description In Cartesian space In joint space 

Actuator Location Fixed Base Link Joints 

Inertia Forces & 

Stiffness 

Less and high 

respectively 

High and less 

respectively 

Design 

Considerations 

Structure, workspace 

considerations, 

singularities, link 

interference 

Strength and stiffness 

considerations, 

vibration analysis 

Preferred Property Stiffness Dexterity 

Use of Direct 

Kinematics 

Difficult and complex Straightforward and 

unique 

Use of Inverse 

Kinematics 

Straightforward and 

unique 

Complicated 

Singularity Static Kinematic 

Direct Force 

Transformation 

Well defined and 

unique 

Not well defined 

Preferred Application Precise positioning Gross motion 

 

1.2.2 Parallel Manipulator Architectures 

The classification of parallel manipulators is as follows: 

1. Symmetric Architecture 
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2. Planar Architecture 

3. Spherical Architecture 

4. Spatial Architecture 

 

Symmetrical Parallel Manipulators 

A symmetrical parallel manipulator fulfills the following conditions: 

1. DoF of the robot is that same as that of the number of limbs combined to make the 

robot. 

2. In each limb, the combination of the joints and links is the same. 

3. In each limb, the location of the actuators and number of actuated joints is the same. 

 

Planar Parallel Manipulators 

In a planar mechanism there are 3 degrees of freedom hence λ=3 and the degrees pf freedom 

of this manipulator in question is also three, hence, m = F = 3. Putting λ=3 and F = 3 into the 

mobility equation: 

1 2 3 4 3 9C C C F    
 

On reducing the equation above, 

3  3kC 
 

This means that the connectivity of all separate limbs is the same i.e. 3. Hence all the limbs 

have three degrees of freedom. 

Spherical Parallel Manipulators 

The number of degree so freedom for a spherical robotic environment is three. There for 

spherical and planar parallel manipulators have the same requirements when it comes to 

connectivity analysis. In spherical manipulators only revolute joints can be used and the axis 

passing through all the joints must pass through the same point call the spherical center. 

Therefore, RRR is the only configuration of joints that can be used. Although a spherical 

joint can also be used instead of three revolute, but there is no way a spherical joint can be 

actuated hence it cannot be used [8]. 

Spatial Parallel Manipulators 

Spatial parallel manipulators can be classified, as shown in Table 1-2, in accordance with the 

degrees of freedom they have [5]. 
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As long as the we have the desired connectivity associated with each limb i.e. the addition of 

degrees of freedom of all the joints is according to the desired value, any number of links can 

be employed. Naturally, lesser the number of degrees of freedom, greater the number of 

limbs used [9]. 

Table ‎0-5. Connectivity Analysis of Spatial Architecture of Parallel Manipulators  

Degrees of 

Freedom 

F 

Number of 

Loops 

L 

Sum of all joints 

freedom 

E 

Connectivity Listing 

Ck, K=1, 2, 3,… 

2 1 8 

4,4 

5,3 

6,2 

3 2 15 

5,5,5 

6,5,4 

6,6,3 

4 3 22 
6,6,5,5 

6,6,6,4 

5 4 29 6,6,6,5 

6 5 36 6,6,6,6,6,6 

 

1.2.3 Applications of Parallel Manipulators 

Parallel manipulators are used in a wide variety of fields: 

Space Applications 

 To attain a better orientation in space, parallel manipulators are employed by certain 

satellite trackers. 

 Parallel robots that are being employed in various space programs have reduced the 

construction, initiation and operating costs of such programs. 

Medical Science 

 Parallel manipulators are being used in medical practice due to low forces by and on 

actuators and lesser singular positions. 

 Hexapod robot is being used is different kinds of surgical instruments. 

 Translational parallel manipulators are used in CPR. 
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1.3 Accuracy Analysis 

The accuracy analysis of the manipulator is one of the principal concern in designing the 

robot. The purpose of kinematic accuracy analysis is to analyse the positioning errors over 

the set of all points reachable by a robotic manipulator. However, it is quiet challenging to 

obtain the accurate and viable results in the design phase. Several methods have been used in 

the literature for the accuracy analysis of the manipulators including spatial and planer 

manipulators, such as Jacobian error models, which include condition number based [10] and 

linear first order approximate evaluation of errors [11]. 

1.3.1 Jacobian Based Models 

The condition number based error model used to compute the condition number of the 

Jacobian matrix of the manipulator. According to the definition [12], the condition number 

amplify the inputs of a system on its output given there are no truncation errors in the final 

solution. In case of parallel manipulators, the condition number serves as a performance 

index that can be used to access the accuracy or dexterity of the robotic manipulator at 

particular configuration. Moreover, the condition number also provides the information about 

the singular configuration. For manipulators with mixed translational and rotational degree of 

freedoms (DOFs) the Jacobian matrix has to be homogenized by dividing it with a 

characteristic length [13]. Several studies [14-20]  have used the condition number for 

optimal design of parallel robotic manipulators. As an extension of the condition number 

based approach, an error amplification index based on the condition number of the Error 

Transformation Matrix (ETM) was defined and used in [21] to determine and maximize the 

accuracy of a 3-PUS (prismatic-universal-spherical) parallel manipulator. Xu. et al. [22] 

presented a composite error index based on the minimum eigenvalue and condition number 

of the ETM, which was used to determine and evaluat the accuracy of a spatial parallel 

manipulator. 

1.3.2 Geometric Error Model 

Recently, Liu et al. [23] has employed a geometric error model to perform the accuracy 

analysis of two parallel kinematic tool heads. Beside the Jacobian based condition number 

approach, the geometric error model approach uses inverse and forward kinematic 

formulations to calculate the exact positioning error about a nominal position for a known 

error in active joint inputs. 
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1.4 Dynamic Accuracy 

Stiffness analysis is performed to compute the stiffness of a parallel manipulator over its 

reachable workspace. The computed stiffness can then be used as an index for qualitatively or 

quantitively define the dynamic accuracy of a parallel manipulator. 

Various approaches have been developed for the stiffness analysis of robotic manipulators. 

These include:  

 Matrix Structural Analysis (MSA) 

 Finite Element Analysis (FEA) 

 Stiffness Index 

A detailed discussion of the three approaches, with particular emphasis on Stiffness Index, 

will be presented in the second part of this study. 

 

1.5 Literature Review 

Optimal design of parallel manipulators for maximum and desired accuracy has been widely 

studied in the recent years. J. Kotlarski [24] proposed to a model to reduce the  kinematic 

accuracy of a 3-DOF redundantly actuated planar parallel manipulator, through maximization 

of the condition number of the Jacobian matrix. The condition number based approach has 

been used to several authors [14-20] for maximizing accuracy of robotic manipulators. 

Depending upon the condition number of the Error Transformation Matrix (ETM), an error 

amplification index was defined and used by Ryu and Cha [21] to quantify and improves the 

accuracy of the 3-PUS (Prismatic-Universal-Spherical) parallel manipulator. Q. Xu [22] 

presented a composite error index, depending upon the minimum eigenvalue and condition 

number of the ETM, and employed it to improve the kinematic accuracy of spatial parallel 

manipulators. However, [25] showed that the condition number of the Jacobian matrix does 

not provide the exact value and directionality of output errors. Other error models are, 

therefore, required to evaluate the values of output errors along each DoF [26]. A Jacobian 

based approximate error model was employed by [16] to synthesize a set of 3-DOF Steward 

platforms for desired accuracy over a pre-defined workspace. Unlike cost function based 

optimization that computes a single or multiple Pareto-optimal design solutions, interval 

analysis was used to generate a bounded set of infinite design solutions. Any design solution 
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from within this bounded set is guaranteed to possess desired kinematic accuracy along each 

DOF. F. Hao [27] employed interval analysis to obtain a set of design solutions of a spatial 

parallel manipulators, which satisfied requirements of desired workspace and accuracy. M. 

Nefzi [28] proposed a multi-criteria interval analysis-based design approach to generate a 

finite number of design solutions that satisfied lower bounds on requirements of kinematic 

accuracy, workspace size, and task space velocities. Interval analysis, while being 

computationally expensive, serves as an important technique for mapping from known output 

errors to permissible actuation errors and geometric tolerances. Performances atlases were 

used by [29, 30] for optimal design of parallel manipulators. Use of performance atlases 

simplifies the overall design process by graphically expressing the relationship between 

different performance indices and design variables. X. J. Liu [31] employed performance 

atlases to design a 3-DOF parallel kinematic tool head for minimum orientation and 

positioning errors due to errors in active joint inputs. Badescu [32] aimed to reduce the 

kinematic inaccuracy of parallel manipulators by graphically analyzing the relationships 

between various design variables and the maximum global conditioning number, workspace 

volume, and inverse of condition number. [33] defined three different stiffness indices and 

used them for maximizing the dynamic accuracy of a Delta parallel robot. 

 

1.6 Proposed Design Approach 

As stated earlier this study is broadly organised into two parts: 

 Part I: Accuracy Analysis of 3-RSS Delta Parallel Manipulator  

 Part II: Design of 3-RSS Delta Parallel Manipulator for Desired Accuracy and 

Workspace 

Collectively, Part I and II constitute a complete accuracy-based design approach for parallel 

manipulators. The approach can be extended to manipulator architectures other than the 3-

RSS Delta manipulator. 

A description of the two parts of this study, are presented in the following discussion. 

i. 1.6.1 Part I: Accuracy Analysis 

In this section, the kinematic accuracy of a 3-RSS Delta parallel manipulator is analyzed 

using both Jacobian and geometric error based models. Additionally, the errors in active joint 

inputs are the essential source of kinematic uncertainties [34]. Therefore, bounded errors in 
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active joint inputs are considered. The purpose of our study is to investigate and analyze the 

correlation between the condition number and exact values of positioning errors at the end-

effector. Moreover, an overall positioning error at a nominal position and individual 

positioning errors along with the translation in each joint were evaluated. As it will be 

presented later, the geometric error shows a highly directional aspect of kinematic accuracy 

of a Delta parallel manipulator. However, the results obtained from the condition number-

based model are governed by choice of matrix norm. 

ii. 1.6.2 Part II: Design for Desired Accuracy and Workspace 

The first part focuses on modelling the kinematic accuracy of the robotic manipulator. 

However, deflections in links under dynamic loading due to finite stiffness leads to increased 

output errors. Therefore, any accuracy centric design approach should address the issue of 

both kinematic and dynamic accuracies. In this part, a bi-level design approach is presented 

for synthesis of parallel manipulators that possess maximum dynamic accuracy, desired 

kinematic accuracy along each DOF, and a desired reachable workspace.  

The proposed design approach is a cascading of multi-objective evolutionary optimisation, 

and the Brent-Dekker numerical solver. The multi-objective optimisation problem is resolved 

as part of Level 1 design to yield a set of pareto-optimal design solutions that maximise 

dynamic accuracy and satisfy the constraint of a pre-defined workspace. In Level 2 design, 

the Brent-Dekker numerical solver is used compute the maximum allowable uncertainties in 

active joint inputs of the Level 1 optimal design solution such that desired kinematic 

accuracy is obtained along each DOF. To the best author’s knowledge, the proposed design 

approach is the first instance of the use of a geometric error model for optimal and functional 

design of parallel manipulators. Moreover, as is explained later in the study, the bi-level 

cascaded design approach is computationally inexpensive and yields a finite set of optimal 

design solutions. 

The rest of dissertation is organized as follows: Chapter 2 covers architecture and kinematics 

of the DELTA parallel manipulator. Stiffness analysis and kinematic error modelling are 

presented in Chapter 3 and Chapter 4, respectively. Chapter 5 discusses the two levels of our 

proposed accuracy centric design approach. The proposed design approach is validated 

through a case study in Chapter 6. It is prudent to mention that Chapter 1 – 4 constitute Part I, 

and Chapters 5 – 6 constitute Part II of our study. 
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CHAPTER 2: DELTA PARALLEL MANIPULATOR 

 

The DELTA parallel manipulator is a spatial parallel manipulator. There are three orthogonal 

Degrees of Freedoms (DOFs), that are all translational DOFs, however an optional fourth 

rotational DOF can be added at the end-effector.  

Based on joints, the DELTA parallel manipulator can have several different types of 

architectures, each of which possess three orthogonal and translational DOFs.  Four possible 

architectures are: 

1. RRRRR DELTA Parallel Manipulator: The RRRRR parallel manipulator has three 

limbs. Each limb has twelve revolute (R) joints. 

2. UPS DELTA Parallel Manipulator: The UPS parallel manipulator has three limbs. 

Each limb has one universal (U), one prismatic (P), and one spherical (S) joints. 

3. PSS DELTA Parallel Manipulator: The PSS parallel manipulator has three limbs. 

Each limb has one prismatic (P), and two spherical (S) joints. 

4. RSS DELTA Parallel Manipulator: This is the most commonly used architecture for 

DELTA parallel manipulator. It has three limbs, with each limb having one revolute 

(R), and four spherical joints.  

Performance wise, the four possible architectures have varying characteristics. The 

characteristics have been tabulated in Table 2-1. 

Table 2-1. Possible DELTA Parallel Architectures 

Architecture RSS / RRRRR UPS PSS 

Speed High Low Medium 

Accuracy Medium High Medium 

Force Transmission Low High High 

 



  Anx-B 
 

24 
 

The 3-RSS DELTA parallel manipulator, where 3 implies the number of limbs, is the most 

widely used architecture for DELTA parallel manipulators. 3-D model of the 3-RSS DELTA 

parallel manipulator is shown in Figure 2-1 below.  

 

Figure 2-2. DELTA Parallel Manipulator. 

The architecture was conceived, and later patented by Dr. Reymond Clavel in 1985. 

Following the expiration of the patent, various robotics manufacturers developed and 

marketed the 3-RSS DELTA parallel manipulator for applications ranging from high speed 

pick and place to spinal cord surgery.  

 

2.1 3-RSS Architecture 

The 3-RSS DELTA parallel manipulator consists of two platforms: a moving platform that 

serves as the end-effector, and a stationary base platform that houses the actuation sub-

system. The base and moving platforms are connected via three identical kinematic chains. 

Each kinematic chain has a proximal link and two distal links. The distal links form a 

parallelogram constrains redundant degrees of freedom, thus resulting in pure translation of 

the end-effector. Moreover, the active revolute joint connects each proximal link to the base 
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frame.  Additionally, four passive spherical joints (S) form the four corners of each 

parallelogram.  

    kinematic chain of the Delta parallel manipulator is illustrated in Figure 2-2. Geometric 

centres of the base and moving platforms are denoted by  O and P, respectively.  Two 

coordinate axes have been adopted for complete kinematic description of the manipulator. 

      coordinate system is attached at the geometric center of the base platform, with the 

 -axis being positive towards the end-effector. The           coordinate axes is attached at 

the center    of the revolute joint               The   -axis is aligned with vector     and 

is perpendicular to the center of the revolute joint.    is the angle from  -axis to   -axis. It 

represents constant orientation of all three limbs with respect to O. Angles 

                are used to describe the configuration of the manipulator about a nominal 

position.     is measured from    axis to     .     is measured from      to the vector 

defined by intersection of the parallelogram plane and      plane of the     limb. Lastly, 

    denotes the angle measured between axis of spherical joint    and     . 

 

Figure 2-2. Description of     kinematic chain. 

               
  is the vector of actuated joint inputs and vector            defines the 

position of point P in the task space with reference to the       frame of reference.   
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2.2 Mobility and Kinematic Analysis 

Mobility and kinematic analysis are essential for synthesis and analysis of a parallel 

manipulator. While kinematic analysis allows us to create mappings between task and joint 

space variables, it is mobility analysis that yields the number of DOFs in task space for a 

specific manipulator architecture. In the next sub-section, mobility analysis is performed to 

verify that the DELTA parallel manipulator has three translational DOFs. 

 

2.2.1 Mobility Analysis 

The required number of degrees of freedom for our manipulator is 3 i.e. translation in the  ,   

and   directions. The manipulator in our case is a special kind of DELTA robot where, as 

shown in the Figure 2-2, the passive links are connected directly with the active links, 

through spherical joints. Hence considering the general case, in our manipulator, d = e = 0. 

Where d and e are defined as the distance between the active and passive links, on the fixed 

base side and the movable platform side respectively. 

Considering the manipulator mobility, we need to determine the number of degrees of each 

kinematic chain independently and then, considering that the limbs join together at the two 

platforms, we need to determine the overall mobility of the robot that should turn out to be 3. 

Let   be the degrees of freedom,   the number of links,   the number of joints,    is the 

degrees of freedom associated with the     joint, and   = 6, where   is the total number of 

degrees of freedom allowed called the motion parameter. In such a case the mobility equation 

is modified to the following form: 

           ∑  
 

 

For the manipulator shown the Figure 2-1,     ,     , and      for              . 

Applying mobility equation to the manipulator produces:  

F = 6(17 - 21 - 1) + 21 = 9 

Solution to the above equation tells us that each of the limbs has 9 DOFs. As the number of 

DOFs is greater than the desired three DOFs, we have an over constrained system of 
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linkages. However due to the redundancy of many of links and joints, we are left with only 

three translational DOFs. 

 

2.2.2 Inverse Kinematics 

The inverse kinematics involves the determination of the input joint angles for the position of 

the end effector in the cartesian frame. Our 3 DOF parallel manipulator has 3 actuated joints. 

Since all the actuated joints are revolute joints and the end effecter is constrained to 3 

translational DOFs, the inverse kinematic problem involves the evaluation of the three 

actuated joint angles in the joint required to obtain a desired position of the end effecter in the 

Cartesian space. 

The solution to the inverse kinematic problem yields important results which are 

subsequently used in the later stages of the study including: 

iii. Formulation of the Jacobian of the inverse kinematic problem: 

iv. Development of a geometric error model. 

 

The solution to the inverse kinematic problem is a three-step process: 

i. The formulation of mathematical relations involving joint space variables (actuated 

angles) and Cartesian space variables (end effecter position). 

ii. Solution of the mathematical relations resulting in multiple solution sets of the 

actuated joint angles. 

iii. Selection of the appropriate solution set. 

 

The fore-stated process can be carried out by using any of the two methods 

a) Denarit Hartenberg method 

b) Loop closure method 

 

The DH method is relatively more general method for the formulation of inverse kinematic 

relation but become quite complex when applied to closed loop mechanism having multiple 

loops.The loop closure method, on the other hand is a geometric method proposed by. Our 

formulation and solution of the inverse kinematic problem is based on the loop closure 
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method due to its simple and intuitive approach. The loop closure formulation is explained in 

the following text. 

For any limb  , we place another co-ordinate axis (   ) with origin at    such that   axis is 

parallel to the axis of joint   . We define   with respect to     co-ordinate axis. Since the 

    co-ordinate is at angle i   with respect to  -axis and at a distance   from     coordinate 

therefore following transformation expresses the position of   in the     coordinate frame 

attached at point   for leg  :    

   

   

0

0 0

0 0 1 0

ui i i x

vi i i y

wi z

p cos sin p r

p sin cos p

p p

 

 

      
      

        
      
      

     (2.1) 

Expressions for uip s , vip  and wip are given by: 

     1 3 2 cos   sin   cos ui i i ip c ba           (2.2) 

 3     cos vi ip b           (2.3)

     1 3 2 sin   sin  sin wi i i ip a b   
       (2.4) 

Here uip s , vip  and wip are the three components of P in     coordiante system. 

Two solutions are immediately found for     from Eq. (2.3): 

1

3 cos vi
i

p

b
   

   
 

          (2.5) 

Once we find out    , an equation with     as the only unknown is generated by isolating the 

    terms in Eqs. (2.2) and (2.4) and then summing the squares of those two equations so that 

    is removed with the use of the Pythagoras Theorem: 

     2 2 2 2 2

1 1 3(     ) 2  cos  2  sin   sin ( )ui wi ui i wi i ip c p a a p c ap b        
   (2.6) 

With the presence of squares of 3sin ( )i in the Eq. (2.6) hence we get two solutions for θ3i 

that have a resulting same pose. To convert Eq. (2.6) into a polynomial equation, we have: 

1
1  tan 

2

i
it

 
  

 
         (2.7) 

Which gives: 

  1
1 2

1

2
 sin 

1

i
i

i

t

t
 


  and      

2

1
1 2

1

1
 cos 

1

i
i

i

t

t






     (2.8) 

The half‐angle substitution is applied to Eq. (2.6), and simplified to produce: 
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2

2 1 1 1 0 0i i i i il t l t l            (2.9) 

where: 

2 2 2 2 2 2

0 3  2 2 2  sin ( )i wi ui ui ui il p p cp ap a c ac b        
 

1     4i wil ap
 

 2 2 2 2 2 2

2 3 3  2 2  sin ( ) 2  sin  2 .i wi ui ui ui i il p p cp ap a c b bd ac         
 

Equation (2.9) once solved for    , gives two possible solutions for     for the solution found 

for    . With     and     known,     is found by back-substitution into Eqs. (2.2) and (2.4).  

1
2

3

( )
( )

( )

ui i
i

i

p c acos
cos

bsin






 
         (2.10) 

1
2

3

( )
( )

( )

wi i
i

i

p asin
sin

bsin







         (2.11) 

The above calculation and solution shows that for each location of end effector there are two 

sets of angles that produce the same results and posture. The choice of the posture can be 

performed by imposing some constraints which are explained below. 

There are three aspects of solving the inverse kinematic relations: 

1. Solution Methodology: 

Inverse kinematic relation given above requires a four step process. 

i. Assigning the value to all geometry elements of the manipulator i.e. link lengths 

ii. Solving the Eq Error! Reference source not found. to obtain 2 values of 3i   

iii. For both values of 3i ,we get two values of 1it . 

iv. For each value of 1it  we get a set of 1i and 2i . 

 

2. Generation of Solution Sets 

 

3. Selection of Appropriate Solution Sets: 

As stated previously four solution sets are obtained from the inverse kinematic relation 

each of which results in the same end effector positions however each solution set will 

generate unique limb posture consequently some of the solution sets will generate 

physically unrealistic postures therefore a set of selection criteria is established to allow 

selection of optimum limb posture. This criterion is stated below. 

i. The solution set having the smallest value of joint angle is actually selected. This 

reduces the actuation effort required. 
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ii. Solution sets which generate an outward posture are given priority over inward 

posture generating sets. 

iii. Solution set which contain values that do not conform to the following conditions 

10 180i   and 20 180i   at 390 90i   . 

 

 

2.2.3 Forward Kinematics 

The forward kinematic is opposite to inverse kinematics and involves the determination of 

position of end effector in Cartesian space for given input angles in joint space [10-AR]. In 

the solution of the forward kinematics problem    ,    , and     are used as inputs and the 

corresponding values of the coordinates in the     coordinate system of the end effector with 

the help of the vector p are calculated. The forward kinematics of parallel manipulators is 

tedious. 

The position of point   with respect to the     coordinate system can be written in 

coordinate form of    ,     and     as follows: 

1 3 2  ( ) ( ) ( )ui i i ip acos c bsin cos           (2.12) 

3( )vi ip bcos           (2.13) 

1 3 2   ( ) ( ) ( )wi i i ip asin bsin sin           (2.14) 

Eqs. (2.12), (2.13), and (2.14) on substitution into Eq. (2.15), give the following 

transformation between the     and     coordinate system: 

   

   

0

0 0

0 0 1 0

ui i i x

vi i i y

wi z

p cos sin p r

p sin cos p

p p

 

 

      
      

        
      
      

    (2.15) 

This results in a system of 9 equations in 9 unknowns (  ,   ,   ,    ,    ,    ,    ,    , and 

   ): 

1 3 2( ) ( ) ( ) ( ) 0( )x y i i i ip cos i p sin acos r c bsin cos            (2.16) 

3( ) ( ) 0( )y i x i ip cos p sin bcos           (2.17) 

1 3 2( ) ) 0( ( )z i i ip asin bsin sin           (2.18) 

where   has the values 1, 2, and 3. On solving this set of equations, the solution of the inverse 

kinematics can be generated.  
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Equation without     is created by separating the    values in Eqs. (2.16) and (2.18), and then 

adding the squares of those two equations with the square of Eq. (2.17) so that     is removed 

by using Pythagorean theorem: 

 2 2 2

1

2 2 2

1 1

[ ( ) ( ) ( )]2  

(2 2    0) ( ) ( ) ( )

x y z i x i y i

i z i

p p p c r acos p cos p sin

asin p a r c a c r cos b

  

 

     

       
    (2.19) 

Where   has the values 1, 2, and 3. Hence we are left with these three unknowns,   ,   , and 

  . Each of these three equations make a sphere with a radius  , and with a center displaced 

from the joint    by a distance of    , the size difference of the platforms. On solving these 

three equations we not only get the intersection of these three spheres but also the solutio to 

the forward kinematics problem. 

The plane that contains the circle of intersection created by the spheres of leg 1 and leg  , 

where   = 2 and 3, is found by subtracting Eq.(2.19) for   = 1 from Eq. (2.19) for    : 

1 2 3 4  0j x j y j z jl p l p l p l            (2.20) 

Where: 

1 1 1 11( )[ ( ) ] ( )[2 2 ( ) ]j j jl cos acos r c cos acos r c        
 

2 1 1 11( )[ ( ) ] ( )[2 2 ( ) ]j j jl sin acos r c sin acos r c        
   (2.21) 

3 1 112 ) ( )2(j jl asin asin  
 

2 2 2 2 2 2

4 11 11 1 1[ ( ) ] ( ) [ ( ) ] ( )j j jl acos r c a sin acos r c a sin          
  

  

Equation (2.21) for   = 2 and 3 provides a system of equations that is linearly independent. 

This system of equations defines a line in 3   that must contain point  . The intersection of 

this line with any of the spheres described by Eq. (2.19) solves the forward kinematics 

problem. In this case, solving Eq. (2.20), where   = 2 and 3, for py and pz in terms of px and 

then substituting the resulting expressions into Eq. Error! Reference source not found. for i 

= 1, yields: 

2

104 105 106 0x xk p k p k           (2.22) 

where the constants are defined in Appendix B. The values for     and    that correspond to 

   are found by back substitution into Eq. (2.20). 

Both inverse and forward kinematics can be resolved by using MATLAB, as has been done 

in this study. In the next section, formulation of the Jacobian matrix for the DELTA parallel 

manipulator is presented. 
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2.3 Jacobian and Workspace Analysis 

In the following sub sections, Jacobian and workspace analyses of the DELTA parallel 

manipulator are presented. 

 

2.3.1 Jacobian Analysis 

This section deals with the formulation of the Jacobian matrix for the delta robot. The 

Jacobian matrix is basically a transformation matrix that is used for mapping of the velocities 

from the Cartesian space to the joint in case of the delta robot. 

• •
q = J x            (2.23) 

where 

•
q  represents a set of actuated joint rates,  

•
x  represents output velocity vector of the end-effector 

J is the Jacobian matrix.  

 

For DELTA robot that has only 3 translational degrees of freedom, the Jacobian matrix is a 

square matrix since the three actuated joint velocities are mapped to the end effector 

velocities in x,y and z directions. At the end of this chapter, singularity analysis is performed 

using the Jacobian matrix to determine the possible singularity postures for the manipulator 

inside the workspace. Jacobian matrix obtained in this section will be also be used in chapter 

6 where a optimization study is performed for kinematic accuracy. 

As stated above Jacobian matrix serves as a mathematical tool for mapping from one set of 

coordinates to other set of another. However Jacobian matrix provides important insight into 

the following problem as well. 

Trajectory Generation 

The Jacobian matrix is habitually employed for path creation resolves since for a given 

wanted end-effector velocity, it is likely to plot that velocity back to the joint space. 

Optimization of Manipulator 
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Jacobian matrix determinants and norms are translated into several different performance 

indices e.g. error amplification factor, stiffness index, and force transmission index. These 

indices have been later used as optimization variable. 

Evaluation of Singularity Postures 

Singularity postures are defined by end effectors positions at which the manipulator either 

gains or losses one or more degrees of freedom. Avoiding these singularity postures during 

operation ensures accurate and controlled of motion.  

Open Loop Speed Control Implementation 

Jacobian matrix allows the evaluation of end effectors velocity In Cartesian co-ordinates 

when actuated joint velocities in the joint space are known and vice versa. This serves as the 

basis of open loop speed control implementation.  

 

2.3.1.1 Derivation of Jacobian Matrix 

Let  be the vector made up of actuated joint variables and p  be the position vector of the 

moving platform. Then 

11

1 12

13

,

x

i y

z

p

p p

p



  



   
   

  
   
      

       

 (2.24) 

To determine the Jacobian Matrix, a loop closure equation will be differentiated, and the 

resulting equation will be rearranged to: 

3 

11

12

13

x x

p y y

z z

p v

J J p v

p v









   
   

    
     

                     (2.25)  

where vx, vy, and vz are the x, y, and z components of the velocity of the point P on the 

moving platform in the xyz frame.  

In order to arrive at the above form of the equation, we look at the loop OAJ B. QP. The 

corresponding closure equation in the xyz frame is 

  i i i i i iOP PC OA A B BC   
        (2.26) 

In the matrix form we can write it as 
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1 3 2

3

1 3 2

cos sin cos sin cos

sin cos 0 0 0 cos

0 0 sin sin sin

x i y i i i i

x i y i i

z i i i

p p c r

p p a b

p

    

  

  

         
         
     
         
                  

   (2.27) 

Taking the time derivative. The loop closure equation (2.27) can be re-written as  

( ) i ip c r a b   
          (2.28) 

Differentiating this equation with respect to time and using the fact that R
r
 is a vector 

characterizing the fixed platform 

c( ) i i

p

p a b
 



  

 

In this expression, every point on the moving platform has exactly the same velocity. 

Therefore 

i ip v a b
 

             (2.29) 

The linear velocities on the right-hand side of Eq. (3.28) can be readily converted into the 

angular velocities by using the well-known identities, thus, 

i ia i b iv a b              (2.30) 

The presence of 
ib introduces an awkward dependence upon the variables 2i



 and 3i


However, there is a way out. It can be got rid of by taking a scalar product of expression 

(3.29) with the unit vector bi 

^

.
i i

i a i b ib v a b     
   

As the triple product with two identical vectors is zero, what is left is merely 

^ ^

i
i i a ib v b a             (2.31) 

In the component form, the left-hand side of this equation can be written as 

^

3 2

3 3 2

sin cos cos sin

         cos  sin cos sin sin

[ ][ ]

[ ] [ ]

       = 

i i i x i y i

i x i y i i i z

ix x iy y iz z

b v v

v

J v J v

v

v

v

J

v

   

    

  

  

 

      (2.32) 

where 
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3 2 3

3 2 3

3 2

sin cos cos cos sin

sin cos sin cos cos

sin sin

ix i i i i i

iy i i i i i

iz i i

J

J

J

    

    

 

 

  



       (2.33) 

On the right-hand side of Eq. (3.32) , the movement of the joint a is in the xi-zi plane. Thus, it 

only has a component of velocity in this plane. This is the angular velocity about the y axis. 

Thus 

1

0

0
i

ia 


 
 
  
 
 
 

           (2.34) 

The negative sign is just a matter of convention. Therefore 

^ ^ ^

1 1 13 1

1 2 3

0 0 ˆˆ
i

i i ia i i i

i i i

i j k

a a i a k

a a a

   
  

     

 

 

The right-hand side can now be written in its simplified form as 

^
12 3.( ) sin sin

i
ii a i i ib a a   



  
       (2.35) 

The equations Error! Reference source not found. and 

Error! Reference source not found. can be equated for every value of i 

•

111 1 1 21 31 sin  sin x x y y z ZJ J J av v      
 

•

122 2 2 22 32 sin  sin x x y y z ZJ J J av v      
 

•

133 3 3 23 33 sin  sin x x y y z ZJ J J av v      
 

which readily implies 

pJ v J 


            (2.36) 

Where 

1 1 1

2 2 2

3 3 3

x y z

p x y z

x y z

J

J J J

J J J

J J J

 
 

  
 
 

         (2.37) 

And 
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21 11 31

22 12 32

23 13 33

sin( )sin 0 0

0 sin( )sin 0

0 0 sin( )sin

J a

  

  

  

 
 

  
 
      (2.38) 

 

2.3.2 Workspace Analysis 

Workspace of the Delta parallel manipulator can be described as a region formed by the 

intersection of three tori; where each torus is formed by independent motion of a kinematic 

chain in the task space. This workspace is defined by a set   such that the following 

condition is satisfied for every     [35]: 

         (                             

                   
          )

 

                               

                         

                                                                     (2.39) 

Eq. (3.38) implies that for inverse kinematics to be resolvable at a point, either of the 

following must be true: 

1. If                        then   lies inside the boundary of the workspace 

2. If                                                             then   

lies on the boundary of the workspace 

  can be computed by defining a cuboid  , of width and height    , and evaluating Eq. 

(xx) at every    . Note that the sum of lengths of proximal and distal links represents the 

theoretically maximum limit of independent motion of a kinematic chain. The workspace of a 

DELTA parallel manipulator is illustrated in Fig. 2-3.  
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Figure 2-3. Workspace of Delta parallel manipulator with                 . 

The aim is to ensure that the manipulator, possessing a desired accuracy, should also have a 

pre-specified workspace prescribed within its workspace  . In this study, a parallelepiped 

regular workspace, defined by the set of points   , is prescribed within the workspace of the 

manipulator  , as:  

                  (2.40) 

Fig. 2-4. illustrates a parallelepiped workspace that is prescribed within the workspace of the 

Delta parallel manipulator. 
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Figure 2-4. Prescribed parallelepiped workspace. 

Kinematic performance of parallel manipulators is severely degraded at the workspace 

boundary. Therefore, it is desirable that the boundary of prescribed workspace does not 

coincide with the boundary of actual workspace. Based on this practical consideration, the 

constraint function for desired workspace can be formulated, as: 

                                              (2.41) 

Where, { } is an array of eight corner points of the parallelepiped workspace. Eq. (2.41) 

implies that if     , then all corner points of the parallelepiped workspace should be 

inside the boundary of  .  

 

2.4 Design Variables 

Performance of parallel manipulators is dependent on the values of various geometric 

parameters. For kinematic design of a Delta parallel manipulator, the design vector   

           is defined by the following four design variables: 
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1. Length  of  proximal  link; denoted by  . 

2. Length  of  distal  link;  denoted by  . 

3. Distance  from  centre  of  base  platform  to the  centre of revolute joint; represented 

by    

4. Distance  from  centre  of  moving  platform to the  mid-point of the  line         ; 

denoted by  . 

The afore mentioned design variables are illustrated in Fig. 2-5.  

 

Figure 2-5. Design variables of DELTA parallel manipulator. 

In the next chapter, stiffness analysis of the DELTA parallel  manipulator is performed via 

Finite Element Analysis and Jacobian based approach. 
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CHAPTER 3: STIFFNESS ANALYSIS 

 

The aim of Level 1 Design is to obtain a bounded set of optimal design solutions that possess 

maximum dynamic accuracy and desired workspace. As discussed previously, the desired 

workspace is assumed to be a parallelepiped workspace that is prescribed within the 

workspace of the DELTA parallel manipulator. 

Before we can state the Level 1 Design problem, it is essential to evaluate the dynamic 

accuracy of the manipulator by analysing its stiffness across the workspace. In the following 

sections various stiffness models and indices, for estimating the stiffness of the DELTA 

parallel manipulator at any given configuration, are discussed. 

Stiffness analysis can is essential for both qualitatively and quantatively defining the dynamic 

accuracy of a manipulator. Several techniques have been used for the stiffness analysis of 

parallel manipulators. It is prudent to mention that stiffness analysis, regardless of the 

technique it has been done through, ultimately involves computing the stiffness matrix of the 

manipulator at various configurations in the task or joint space. 

The three techniques for stiffness analysis of parallel manipulators are: 

1. Finite Element Analysis 

2. Matrix Structural Analysis 

3. Virtual Joint (or Jacobian) Method 

Finite Element Analysis is the most accurate technique for stiffness analysis. However, it is 

marred by high computational expenses. Therefore, FEA is generally done as part of shape / 

topology optimization in the final stages of design. However, as part of this study, finite 

element analysis of the DELTA parallel manipulator was performed to gain additional insight 

into the problem of flexible multi body dynamics. 

Matrix Structural Analysis reduces some of the complexity and computational costs 

associated with FEA, by reducing the number of elements and nodes in a structure. In case of 

stiffness analysis of parallel manipulators, Matrix Structural Analysis models links as 

elements and joints as nodes of the manipulator structure. In most cases, this method can 

yield an analytical stiffness matrix formulation. However, Matrix Structural Analysis is 

characterized by high dimensional matrix operations which can be prohibitive for parametric 

stiffness analysis. 
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The Virtual Joint Method, also known as Lumped Modelling, is based on the principle of 

Kinematic-Statics Duality. It leverages the fact that the Jacobian matrix can be used to 

estimate the stiffness matrix of a manipulator at any given pose. Although not as accurate as 

FEA or MSA, the virtual joint method can quickly yield an analytical form of the stiffness 

matrix that can be readily used for stiffness analysis. 

In the following section, flexible multi-body dynamics based FEA is performed to evaluate 

the stiffness of the 3-RSS DELTA parallel manipulator. 

 

3.1 Flexible Body Dynamics 

Finite element analysis and multibody system simulation have been used as two isolated tools 

in the field of computer aided engineering. Both of the techniques have their own fields of 

application. The FEA is used to the simulate the elastic/plastic behaviour of a structure at 

component level under certain boundary and loading conditions. Typical results include 

stress/strain distributions, deflections or normal modes of vibration.  Approximations like 

linear models, small delfections within elastic range are assumed during the simulation. Such 

simulations become very time consuming and computationally extensive in case of non-linear 

transient analyses and large number of degrees of freedom. On the other hand, multibody 

system simulation focuses on the dynamic response of entire mechanical systems of ridig 

bodies interconnected by various joints. Non-linear system of equations is solved to 

determine include the dynamic loadings (torques and forces) acting on joints, bodies and 

actuators. In most applications bodies are assumed to be rigid that simplify the problem but 

can’t reflect the true dynamic response of the system during the operation. So to consider the 

flexiblilty effects of the componets, there is a the need for coupling Multibody Simulations 

(MBS) with Finite Element Methods (FEM). 

In recent years, new methodologies have been developed that combine aspects of both worlds 

and have been intergrated in commercial sotawre. MSC ADAMS is a multi-body simulation 

system having the capability of coupling Multibody Simulations (MBS) with Finite Element 

Methods (FEM). It utilizes sub-structuring techniques and component mode synthesis for the 

representation of the elastic properties of a body within a multibody system. 
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ADAMS Flex-FEM Solver 

FEA cannot be directly coupled with MBS due to very large number of degrees of freedom. 

In this section, a brief introduction is presented to the theory of ADAMS Flex-FEM solver 

that uses modal superposition for coupling of multi-body system MBS and finite element 

analysis (FEA) to determine the deflections of flexible bodies. 

Its working can be divided into two parts; Flex-MBS and Flex-FEA. 

3.1.1.1 Flex Body MBS 

To understand the flex-MBS, consider a component i using a body fixed coordinate system 

BCS as shown in Figure 3-. Two states of the body are shown in figure 7-2; deformed and 

undeformed state. Undeformed state remains fixed with respect to the body coordinate 

system. 

 

Figure 3-1: Location and Orientation of points on a flex body. 

The global position 
  

 
→ of a Point P on the body i in global coordinate at a time instant t can 

be taken as the vector sum of the position of P in BCS and position of body in global 

coordinate system. 

        (3.1) 

Here the matrix Ai transforms the position from the BCS to GCS.  
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As for a rigid body, the position of two points inside the body does not change so from the 

Fig. 3-1 it can be seen that  is a constant vector with respect to BCS. But in case of a 

flexible body, this vector u P i  depends on the actual deformation of the body: 

        (3.2) 

Now the position of point P inside body is taken as the vector sum of position of point P in 

un-deformed state and the deformation vector . 

Similarly taking the time derivatives of Eq. (3.2) will give the velocity and acceleration 

representations. These expressions are used to represent the MBS representation of the 

system. 

3.1.1.2 Flex Body FEA 

A flexible body can be taken as assembly of nodes of nodes and will have large number of 

finite degree of freedom. During mesh generation .mnf files are generated that contain 

information about the nodal masses and element stiffness matrices. The deflections of the 

nodes can be described according to the force-stiffness relationship as 

         (3.3) 

Unfortunately, this type of system cannot be implemented into multibody system equations of 

motion due to very large number of degrees of freedom. To solve this issue, MSC ADAMS 

Flex uses modal superposition approach to reduce number of degrees of freedom and 

represents the body deformation  as a weighted sum of smaller number of shape functions 

or mode shapes  that are pre-computed during the finite element analysis and give 

information about the deformation of all nodes. 

        (3.4) 

Following illustration can be considered to understand how ADAMS determines the 

component deflections. As a simple example of how a complex shape is built as a linear 

combination of simple shapes, observe the following illustration:  
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Figure 3-2: Deflection behaviour as a linear combination of Mode Shapes. 

Here we can see that deformation of the body depends on two things; mode shapes  and 

modal contribution factors .Mode shapes constant vectors for a particular component so 

we can say that time-dependent deformations of the structure depend on modal contribution 

factors. 

One thing needs to be considered here that these mode shapes represent the approximated 

deformation behaviour of the structure since a limited number of degrees of freedom are 

selected to reduce the DOF. Therefore the accuracy of the model depends on the selection of 

mode shapes. There are two types of mode shapes; 

1. Normal modes of the constraint body 

2. Static correction modes 

 

ADAMS flex uses CRAIG and BAMPTON approach for the selection of mode shapes. 

For the purpose of this study, the parametric solid model of the parts were created using 

SolidWorks so that cross-sectional dimensions can be changed for design iterations. The parts 

were then assembled by defining joint constraints between the links. The complete 

manipulator assembly along with connections was then exported to MSC ADAMS, where 

end effector deflections were analysed for a sample trajectory. 

The flex body dynamic analysis was performed in the coupled MBS-FEA environment by 

applying proper boundary and loading conditions to calculate angular velocities and 

accelerations, accelerations of centers of mass, joint forces and external driving torques along 

with stress/strain distributions, deflections or normal modes of vibration. The deflections can 

be calculated by taking the difference of the paths of rigid-body and flex body simulations. 
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1 Convergence Study 

Considering the deflections of the end point, a convergence study was performed to make the 

simulation results independent of mesh size and time step size. First time step independence, 

simulations were performed for a same path and acceleration profile by reducing the time 

step size till the time there was no change on the results. Fig. 3-3 shows the results for end-

point deflections for four different time step sizes. It can be seen that after step size of 0.005s, 

the deflection curve is overlapping that shows the convergence. 

 

Figure 3-3: Time Step Convergence. 

Then using this time step size, mesh independence study was performed for the maximum 

deflection occurring at the end point of manipulator. Simulation were performed each time 

using a finer mesh until the result became independent of the mesh size. The results for the 

mesh independence study are shown inError! Reference source not found.. It can be seen 

hat the value of the maximum deflection has converged till 1
st
 decimal place at iteration no 4 

with number of nodes equal to 5627. 

 

Table 3-6. Mesh Independence Study 

Iterations 
Mesh Size 

(No of Nodes) 

Maximum Deflection 

At End Point 
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01 1461 2.3952 mm 

02 2375 3.4354 mm 

03 4051 3.7263 mm 

04 5627 4.2631 mm 

05 6021 3.2981  

 

3.2 Jacobian Based Stiffness Analysis 

By virtue of the duality of kinematics and statics, it can be stated that the forces and moments 

applied at the end effector  , under the static equilibrium, are related to the actuating forces 

or moments   that are required for maintaining equilibrium by: 

                        (3.5) 

Where   is the Jacobian matrix. Assuming that the actuators are modeled as linear springs 

with stiffness  , the stiffness matrix of a parallel manipulator is thus given as:  

                         (3.6) 

For the Delta parallel manipulator, the stiffness of all three actuators is same and therefore 

  = 1 is assumed. This unit actuator stiffness only scales the stiffness matrix without altering 

the shape or size of the stiffness hyper ellipsoid. Therefore, the stiffness matrix of the Delta 

parallel manipulator can be defined by the product of the      Jacobian matrix and its 

transpose: 

                       (3.7) 

Eq. 3.7 highlights the dependence of manipulator stiffness on both the position inside the 

workspace   and its kinematic design parameters  . The stiffness at a given point in the 

workspace can be quantified through different indices, as discussed below.  

 

3.2.1  Stiffness Index 

The stiffness at a given point in the workspace can be quantified by the stiffness index   , 

which is defined as the inverse of the minimum eigenvalue      of  . The larger the value of 

stiffness index about a point, lesser is the stiffness. 

The stiffness index about a nominal position    can be computed as: 



  Anx-B 
 

47 
 

     
    

⁄          (3.8) 

The values of stiffness index across a plane with in the workspace of the Delta parallel 

manipulator is illustrated in Fig. 3-4. 

 

Figure 3-4. Stiffness index values of Delta parallel manipulator at        . 

The eigenvalues of   underline the stiffness of the manipulator along the three principal 

directions or degrees of freedom. Geometrically, the minimum eigenvalue signifies the length 

of the smallest semi axis of the stiffness hyper ellipsoid, whereas practically, this leads to the 

evaluation of the direction along which the stiffness is minimum. Therefore, by maximizing 

      or minimizing     the minimum stiffness about a nominal position can be maximized. 

Based on above, a maximum stiffness index   
  can be defined to quantify the minimum 

value of stiffness across the workspace   as: 

  
                            (3-9) 

Eq. 3-9 defines the maximum stiffness index   
  as the maximum value of stiffness index 

across the whole workspace. Essentially, this means that the minimizing the maximum 
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stiffness index will in turn maximize the stiffness at the position of least stiffness inside the 

workspace. 

Eq. 3-9 defines the maximum stiffness index   
  as the maximum value of stiffness index 

across the whole workspace. Minimizing the maximum stiffness index will in turn maximize 

the stiffness at the position of least stiffness inside the workspace.  

 

3.2.2  Condition Number of Stiffness Matrix 

In conjunction with the stiffness index, condition number of the stiffness matrix can be used 

to evaluate the eccentricity of the stiffness hyper ellipsoid. It is prudent to mention that each 

of the three eigenvalues of the stiffness matrix represent the length of an axis of the stiffness 

hyper ellipsoid as shown in Fig. 3-5.  

 

Figure 3-5. Stiffness hyper ellipsoid 

The smaller the eccentricity, the more uniform is the stiffness at a point inside the workspace. 

Mathematically, the condition number of the stiffness matrix is defined as the ratio of the 

smallest to the largest eigenvalue, as:  

    
    

    
⁄                      (3.10) 

As in the case of stiffness index, the minimum condition index across the overall 

workspace   is the smallest value of condition index at a point   inside the workspace. Eq. 

10 defines the minimum condition index   
  as: 

   
                         (3.11) 

 

Maximum dynamic accuracy is achieved by minimizing both the maximum stiffness index 

and the minimum condition index. This minimization can be achieved by resolving a multi-

objective optimization problem that will yield multiple pareto-optimal design solutions.  
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In the next chapter, kinematic accuracy analysis of the DELTA parallel manipulator is 

presented. 

CHAPTER 4: ACCURACY ANALYSIS 

 

In this chapter, accuracy  analysis of the DELTA  parallel  manipulator is performed through 

two different error models: 

1. Jacobian  based  error  model 

2. Geometric  error  model 

Error modeling is carried out to investigate and evaluate the kinematic positioning  errors at 

the  end effector. Kinematic positioning errors are attributed  to uncertainties/ errors in active 

joint inputs and  geometric  tolerances in  joints and  links. Various models have been 

developed and investigated to study the kinematic accuracy of manipulators across  its  

workspace. These error  models can be broadly categorized into two distinct types: 

1. Jacobian  based  error model 

2. Geometric  error  model 

 

Jacobian based error model gives a qualitative value to the kinematic accuracy in terms of the 

condition number of the Jacobian matrix. Contrary to this, the geometric error model allows 

for computing the exact value of positioning error at a point. In what follows, both Jacobian 

and geometric error models are developed for the Delta parallel manipulator. 

The aim of this chapter is two folds. Firstly, a study will  be carried out to investigate and 

compare two error model that will illustrate the most accurate error for the DELTA parallel 

manipulator. Secondly, the chapter will serve as a basis for Level 2 Design phase of our 

proposed design approach. 
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4.1 Jacobian Error Model 

  

Condition  number of the Delta  parallel  manipulator at a nominal  position can be found by 

analysing: 

                                    ̇      ̇        (4.1) 

Given an error in active joint velocities   ̇̇, there must be an error    ̇ in the positioning 

velocities. The two errors can be related as: 

                                   ̇        ̇       (4.2) 

Eq. (4.2) can be obtained by adding the positioning and input errors to their respective 

nominal values, and subtracting the resulting equation from Eq. (4.1). The condition number 

can now be defined by considering the norm: 

                             
‖   ̇ ‖

‖ ̇‖
 ‖ ‖ ‖   ‖

‖  ̇‖

‖ ̇‖
         (4.3) 
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4.2 Geometric Error Model 

The geometric  error  model derived in the  following discussion maps the error    in the 

three  active joint inputs          
     

     
   to positioning  errors    

            about a nominal  position              
 . The error  in active  joint inputs    

is result of the  finite resolution of the three  encoders that  provide position and velocity 

feedback to the robot controller. Due to this error or uncertainty, the three active joint inputs 

can lie in the intervals      [               ]              . Consequently, the 

position of the end-effector can lie anywhere in the intervals                     

                  and                    . Geometrically, the  three  active  joint 

inputs are  bounded by a  cuboid   which has the following eight corner points :  

1.    [    
        

        
   ]

 
 

2.         
        

        
      

3.         
        

        
      

4.    [    
        

        
   ]

 
 

5.         
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6.         
        

        
      

7.         
        

        
      

8.         
        

        
      

The cuboid   is termed as the input bounding region. Fig. 4-1 illustrates the input bounding 

region of a Delta parallel manipulator with design parameters                 , about a 

nominal position              for               . 

 

Figure 4-1. Input bounding region  . 

  

Corresponding to  the input  bounding  region  there  is an output bounding  region    The 

output  bounding  region is  generated by  sweeping the  active joint inputs in the  intervals 

     [               ]                and  computing  positions  at  these  active  joint 

inputs. Distances  between  the  resulting  points that lie  on the  boundary and  inside of the 

output  bounding  region  and the  nominal  position     are  called local  positioning  errors 

about  the nominal  position.  

Briot et al. [36] presented the maximum local positioning  error            occurs with the 

one of the corner  points  of the input  bounding  region  used as active joint inputs :  

1. The end-effector  is not at a Type 1 or Type 2  singularity.  
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2. The input bounding  region is  significantly  small in comparison to the  reachable 

workspace. 

Since  the Delta  parallel manipulator  is typically  employed in industrial  environments, 

their controllers  are designed  to explicitly  avoid  singular  configurations. Therefore,  the 

maximum local  positioning error  is simply  equal to the  largest value of  local positioning 

error computed  with the  eight corner  points of  the input  bounding  region as active  joint 

inputs.  

Let                      be the  maximum  local positioning  error about  the nominal 

position    for the Delta parallel manipulator having design parameters   and error of    in 

active joint inputs. The mapping      is obtained by first resolving the inverse kinematics to 

compute    for a known   . In the second step, forward kinematics is solved for each of the 

eight corner points of   by considering               
  for           . This creates an 

array of positions { }. The maximum distance between the nominal position and the 

positions { } is the maximum overall local positioning error about   . Algorithmic 

formulation of      is presented below in Algorithm 1. 

Algorithm 1: Maximum local output error at    

___________________________________________________________________________ 

Inputs: 

 Vector of design variables,              

 Uncertainty in active joint inputs    

 Nominal position,              
  

Find: 

 Maximum local output error about   ,            

1. function            

2.                            

3. { }                       

4. for         

5. {    }                             
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6. {         } =           

7. end 

8.                         

9. return            

10. end function 

_____________________________________________________________________ 

  

The local positioning errors are computed as: 

                    √                             (4.4) 

The function                    returns an array 

{ }  {        }                        It should be noted that      returns the resultant 

of positioning error along each DOF. This mapping can be modified to return individual 

positioning errors                      and            in translation along     and  -axes 

respectively about a nominal position. Furthermore, unlike the Jacobian based error models, 

the mapping      computes the exact positioning error about a nominal position under known 

uncertainties in active joint inputs. 

In the following section, the fore stated error models are used to evaluate the kinematic 

accuracy of a Delta parallel manipulator across its reachable workspace. 

 

4.3 Accuracy Analysis: Jacobian And Geometric Models 

Accuracy analysis is carried out by visualizing    ,           ,                      and 

           across a plane inside the reachable workspace of the Delta parallel manipulator. 

The two condition indices       one based on 2-norm and another one based on Euclidean 

norm, are computed via the Jacobian based error model, whereas the maximum overall local 

positioning error             maximum local positioning error along  -axis           , 

maximum local positioning error along  -axis            and maximum local positioning 

error along  -axis            are computed using the geometric error model. For both error 

models, a pre-specified plane inside the workspace is discretized into 50,000 points and the 

condition indices and local positioning errors computed at each point. For our analysis, a 
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Delta parallel manipulator is considered with design vector                  and known 

uncertainty of                 in the active joint inputs.  

The value of condition index, based on the 2-norm, across a plane defined at      for the 

test case Delta parallel manipulator is illustrated Fig. 4-2.  

 

Figure 4-2. 2-norm condition index     evaluated at     . 

The condition index, computed using the Euclidean norm, at      is illustrated in Fig. 4-3.  
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Figure 4-3. Euclidean condition index     evaluated at     . 

It is evident from an analysis of Fig. 4-2, and Fig. 4-3 that both the value and distribution of 

the 2-norm and Euclidean norm based condition indices are not the same. This result presents 

a very close relationship with the observations obtained by Merlet [22-C] who suggested that 

the choice of a particular norm may alter the observed distribution of dexterity across the 

workspace of a planar parallel manipulator. However, it is also noticed that the kinematic 

accuracy will be reduced when the robot tries to reach distant points from the workspace 

center. In other words, we can say that  parallel Delta robot may encounter the singularity as 

the end-effector approaches the workspace boundary.  

The maximum overall local positioning error            across the workspace is illustrated in 

Fig. 4-4. The error is computed by executing Algorithm 1. at each of the 50,000 discretized 

points. 
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Figure 4-4. Maximum local positioning errors            evaluated at     . 

Fig. 4-4 reveals the highly directional nature of kinematic accuracy across the workspace. It 

is evident from the figure that iso-contours of errors are orientated in the same way as the 

three active joints around the point    Further understanding of the directional nature of 

accuracy is made by visualizing the individual positioning errors along each DOF. 

The maximum local positioning error along  -axis           , is plotted in Fig. 4-5 below. 
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Figure 4-5. Maximum local positioning errors along  -axis,           . 

Kinematic accuracy, along the   direction translational DOF, is highly uniform along the 

negative   axis. This points to an interesting correlation between the kinematic accuracy 

along  -axis and the condition index. The condition index is skewed towards the negative   

axis whereas the positioning errors along   direction become more uniformly distributed in 

the negative   axis. This fact can be leveraged in practice by installing the Delta parallel 

manipulator such that the most end-effector movements are carried out along the 

negative   axis. 

Kinematic accuracy or errors           in translation in the   direction are illustrated in Fig. 

4-6. The errors are found to be symmetric about the   axis and are increasingly uniform 

parallel and perpendicular to the positive   axis. 
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Figure 4-6. Maximum local positioning errors along  -axis,           . 

The relative uniformity of errors in translation along the  -axis DOF is evident from a visual 

analysis of maximum local positioning errors along  -axis           that are illustrated in 

Fig. 4-7. 
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Figure 4-7. Maximum local positioning errors along  -axis,           . 
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CHAPTER 5: BI-LEVEL CASCADED DESIGN APPROACH 

 

In this chapter, a two-level cascaded design approach is presented for optimal design of the 

DELTA parallel manipulator. The proposed design approach will yield a single optimal 

design solution that possesses: 

3. Maximum dynamic accuracy 

4. Desired kinematic accuracy 

The proposed design approach is made up of two distinct levels. In Level 1 design, a pareto 

dominant set of design solutions is obtained by resolving a multi-objective optimization 

problem. All elements of this set are optimal solutions that maximize dynamic accuracy. 

Following Level 1 design, the optimal design solutions are passed on as inputs to the Level 2 

design phase. In Level 2 design, a numerical solver is employed to find the maximum 

allowable uncertainties in active joint inputs, that will yield desired output errors along each 

DOF of the optimal design solutions. 

 

5.1 Level 1 Design: Optimal Design for Maximum Stiffness 

The main aim of L is to derive optimal design solution(s), from within a bounded design 

space, that minimize both the minimum condition number and the maximum stiffness index 

while satisfying constraint of a pre-specified workspace. This is achieved by resolving the 

below constrained non-linear multi-objective problem: 

Find:   A design vector,                  

That:  Minimizes:    
    

      

Subject to:       { }                            

                 {

       

       

       

       

 

     { }                 represents the constraint on our desired workspace, and is 

discussed in detail in the next section. Side constraints represent explicit upper and lower 

bounds on the values of design variables, which further restricts the feasible design space. 
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The multi-objective optimization problem stated above has two objective functions 1) 

minimum condition index   
  and 2) minimum stiffness index   

  over the prescribed 

workspace   . Maximum dynamic accuracy is achieved by finding pareto dominant 

solutions that minimize one objective function without causing the other to increase.  

Definition 1. (Pareto dominance) 

Let    and    be two feasible solution vectors from the search space. Solution 

   dominates    if and only if: 

(i)                             

(ii)    {        }                   

That is, a feasible solution    is Pareto dominant if no feasible solution    can decrease some 

criterion without causing a simultaneous decrease in at least one other criterion. The set of 

Pareto dominant solutions represents the minimal solution of a multi-objective optimization 

problem, such as the one formulated in our study. 

The fore mentioned optimization problem can be resolved through multiple techniques with 

varying levels of accuracy (in terms of results), implementation complexity and 

computational time. A whole class of heuristics, based on the process of natural selection and 

genetics, have been developed to resolve non-linear optimization problems. These meta-

heuristics, also known as evolutionary algorithms, include genetic algorithm (GA), 

evolutionary strategies (ES) and evolutionary programming (EP). Amongst these, GA is the 

most well-known in the areas of design optimization [37]. Unlike conventional gradient 

based methods such as the Nelder-Mead simplex method, direct search method and 

sequential quadratic programming, genetic algorithms are capable of quickly finding a higher 

quality design solution without falling into local optima. 

Quality of a design solution is measured as the difference between solution returned by an 

optimization algorithm, and a known actual value of the design solution. Two important tests 

for ascertaining the effectiveness and computational efficiency of an optimization technique 

are based on measuring the quality of design solution and the time taken for arriving at the 

design solution. R. Hassan et al. [38] performed a systematic evaluation of effectiveness and 

computational efficiency of both genetic algorithms and particle swarm optimization (PSO) 

for engineering design problems of varying nature. It was shown that while both PSO and 

GA yielded high quality (>99%) design solutions, mean of the quality was higher for PSO 

than GA. However, it was shown in [23] that for optimal design of parallel manipulators, 
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PSO takes 2.6 times more computational time than GA to search for the highest quality 

design solution. 

The ability of GA to search for high quality design solutions at a significant pace can be 

attributed to the use of genetic operators such as crossover and mutation. Crossover attempts 

to retain and pass on the desirable traits of a candidate design solution to the next generation 

of candidate solutions. Also, by restricting the regeneration of “weak” candidate solutions, 

GA eliminates both weak solutions and their future generations. This enables the algorithm to 

quickly converge to a high-quality design solution with higher probability, within few 

generations [39].  

Owing to lower computational time, high effectiveness and simpler implementation through 

an array of dedicated libraries, GA can be efficiently applied for accuracy based optimal 

design of parallel manipulators. Therefore, GA is used for resolving the multi-objective 

optimization problem in Level 1 design.  

 

5.2 Level 2 Design: Design for Desired Accuracy 

In Level 2 design, an inverse mapping from vector of desired accuracy 

           
       

       
   to a design domain of allowable uncertainty in active 

joint inputs     is resolved for the optimal design solution   , where    is a pareto optimal 

design solution which belongs to the set of pareto dominant solutions. This can be posed as a 

set inversion problem and resolved via set inversion with interval analysis (SIVIA) [40, 41]. 

However, unlike SIVIA, the proposed goal attainment approach does not employ interval 

arithmetic. Consequently, this eliminates the complexity and numerical errors associated with 

interval evaluation of non-linear functions.  

Let                        and            where             and       are 

maximum output errors along,      and   axes, As the optimal design vector has already been 

derived at Level 1, the output errors are solely dependent on the uncertainty in active joint 

inputs. Based on this, consider the following system of non-linear equations in a single 

variable: 

                      
      

                     
     (5.1) 
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The objective is to find the value of uncertainty in active joint inputs or maximum allowable 

actuation error    , such that: 

                                      (5.2) 

It should be noted that   has been dropped from further discussion for the sake of brevity. 

The problem of finding    can be modeled as a goal attainment problem, as:  

Find:  Maximum allowable uncertainty in active joint inputs,    

Such that:                                 

Subject to:      [   ] 

The search space for this problem is specified by the interval  [   ]. The given goal 

attainment problem can be resolved numerically by solving for the roots of             

     . The smallest root represents the maximum uncertainty in active joint inputs (   . In 

this study, the Brent-Drekker method [42] is used for solving the three non-linear equations 

                 . The Brent-Dekker method uses a combination of bisection, secant, and 

inverse quadratic interpolation methods. It is prudent to mention that iterative numerical 

techniques like the one employed in this study compute the solution of a non-linear equation 

up to a certain accuracy          . 

 

In the next chapter, the proposed design approach is validated through accuracy centric 

design of a 3-RSS Delta parallel manipulator.  
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CHAPTER 6: CASE STUDY: DESIGN OF DELTA PARALLEL 

MANIPULATOR 

 

The aim of this chapter is to synthesize a 3-DOF Delta parallel manipulator that possesses 

desired kinematic accuracy and prescribed workspace. Desired kinematic accuracies along 

each DOF are tabulated in Table 6-1. 

Table 6-1. Kinematic Accuracy Requirements 

      
, cm       

, cm       
, cm 

0.175 0.175 0.200 

 

The Delta parallel manipulator should possess the pre-specified parallelepiped workspace    

tabulated in Table 6-2. 

Table 6-2. Requirement of Pre-Specified Workspace 

  axis, cm   axis, cm   axis, cm 

40 40 30 

  

As a practical consideration, centroid of the desired parallelepiped workspace is located in 

the task space place of the end-effector when all actuators are in zero position, that is 

                    The location and dimensions of desired parallelepiped workspace are 

illustrated in Fig 6-1. 
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Figure 6-1. Desired parallelepiped workspace for case study design. 

 

6.1 Level 1 Design: Case Study 

In Level 1 design, an optimal design vector of    is derived that maximizes dynamic 

accuracy by minimizing condition number    
    and stiffness index    

   while satisfying 

constraint of a pre-specified workspace.  

The multi-objective optimization problem is formulated as: 

Find:   A design vector,                  

That:  Minimizes:    
    

      

Subject to:       { }                            

                 {

      
       
       
      

 

The workspace is discretized into 256,000 points, based on the convergence of   
  and   

 . 

Multi-objective GA for minimization, used in this study, is available as part of the 

MATLAB® Optimization Toolbox. Parameter settings used for Multi-objective GA are 

tabulated in Table 3.   
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Table 6-3. Parameter Settings for Multi-Objective GA 

                

Maximum Generation     

Population Size    

Crossover Ratio     

Mutation Ratio      

Function Tolerance        

Non-Linear Constraint Tolerance        

 

The constraint functions                        are passed on as a vectorized non-

linear constraint function to the MATLAB
®
 Optimization Toolbox. The optimal design 

vector    obtained in Level 1 design, is passed on to the Level 2 design phase.  

 

6.2 Level 2 Design: Case Study 

In Level 2 design the maximum allowable uncertainty   , in the active joint inputs, that leads 

to desired accuracy along each DOF is computed by resolving the following goal attainment 

problem: 

Find:  Maximum allowable uncertainty in active joint inputs,    

Such that:                                 

Subject to:                    

Note that    represents the maximum allowable uncertainty in the active joint inputs of a 

Delta parallel manipulator having the design vector   .  

The goal attainment problem presented above is resolved via the Brent-Drekker numerical 

method implemented in MATLAB
®
. Results of the cascaded design approach are discussed 

in following section. 
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6.3 Results and Discussion 

Following Level 1 design, a set of pareto-dominant solutions is obtained. The pareto-front, 

shown in Fig. 6-2, is generated by plotting the points (𝜼𝒔
𝑾 𝜿𝒔

𝑾  for each pareto-dominant 

solution   . 

 

Figure 6-2. Pareto-front of the Level 1 multi-objective optimization problem. 

It should be noted that all pareto-dominant design solutions are optimal design solutions that 

maximize the dynamic accuracy of the Delta parallel manipulator. The pareto-dominant 

design solutions minimize condition index and stiffness index of the stiffness matrix without 

maximizing either one of them. 

The pareto-dominant design solutions obtained after resolving the Level 1 design multi-

objective optimization problem are tabulated in Table 6-4. 
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Table 6-4.  Pareto-Dominant Design Solutions 

Design Solution 

                  

Condition Index 

𝜼 
  

Stiffness Index 

  
  

                                         0.5367 

                                  0.0102 0.1285 

                                         0.0130 0.1076 

                                         0.0030 0.3329 

                                         0.0023 0.4156 

                                         0.0031 0.3168 

                                         0.0036 0.2744 

                                         0.0028 0.3569 

 

Since all pareto-dominant design solutions are optimal, let us select a pareto-dominant design 

solution     𝟑𝟗 𝟗𝟖𝟔𝟑 𝟕𝟗 𝟗𝟐𝟑𝟓 𝟏   𝟏𝟔𝟔 𝟗 𝟗𝟖𝟑𝟒  . Workspace of the selected pareto-

dominant design solution is shown in Fig. 6-3.   
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Figure 6-3. Workspace of Optimal Delta Parallel Manipulator. 

 

It is evident from visual analysis that our pre-specified parallelepiped workspace    is 

prescribed within the workspace   of the optimally designed manipulator.  

The pareto-dominant design solution selected above is passed on to Level 2 design. At Level 

2, maximum allowable uncertainty     that leads to       
                

 

         and       
         , is found to be         . It should be noted that    is 

the smallest of the three roots of                  
,                  

 and 

                 
. Fig. 6-4 illustrates the relationship between      ,      ,      and 

  for the case study design. 
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Figure 6-4. Relationship between Uncertainty in Active Joint Inputs     and       for 

       . 

It is evident from Fig. 6-4 that the maximum allowable value of uncertainty    in the active 

joint inputs that leads to desired accuracy along each DOF is the smallest value of   for 

which        .  

Following Level 2 design, our proposed design approach yields an optimally designed Delta 

parallel manipulator having design parameters    

                                  and maximum allowable uncertainty in active joint 

inputs             , that possess maximum dynamic accuracy, a pre-specified workspace 

and desired kinematic accuracies along each DOF.  

 

6.4 Validation 

The proposed design approach is compared with an interval analysis-based approach that has 

been investigated by several researchers as discussed in Chapter 1. Readers should refer to 

[16-J] and [17-J] for an in-depth overview of the application of interval analysis and Jacobian 

based approximate error model for design of parallel manipulators for guaranteed accuracy 

and workspace.  
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Our proposed bi-level cascaded design approach yields a finite set of optimal design solutions 

that maximize dynamic accuracy, possess pre-specified workspace and desired kinematic 

accuracy along each DOF. The bi-level cascading, which involves a multi-objective 

optimization problem and numerical solution of three non-linear equations, is executed in 240 

seconds on a 2.30 𝑮𝑯𝒛 Quad-Core Core i5 processor with 12 𝑮𝑩 of RAM.  

The interval analysis-based approach yields a set of infinite design solutions that satisfy 

design requirements of kinematic accuracy and workspace. As highlighted in [16-J, 17-J], the 

computational time is in the order of hours with sequential implementation of interval 

analysis. 

It is prudent to mention that all Pareto-dominant solutions, that lie on the Pareto front, are the 

optimal solutions of our multi-objective optimization problems. However, the selection of a 

single solution out of the Pareto-dominant set can be driven by other design considerations 

that are not explicitly part of the proposed design approach. 

6.5  Conclusion 

In this study, an accuracy centric design approach was presented for optimal design of 

parallel manipulators. The design approach was aimed at resolving the key issue of attaining 

desired accuracy and workspace of parallel manipulators to satisfy functional requirements, 

at low computational cost. The design approach was applied to a 3-RSS Delta parallel 

manipulator with 3-DOFs.‎  The proposed approach was centered around two accuracy 

models: a dynamic accuracy model based on the maximum stiffness index and minimum 

condition index of the stiffness index, and a kinematic accuracy model that evaluated the 

exact value of positioning errors at the end-effector due to error in the active joint inputs. The 

dynamic accuracy model was used to evaluate the minimum stiffness and the eccentricity of 

the stiffness hyper ellipsoid. The kinematic accuracy model was a geometric error model 

derived from the inverse and forward kinematics of the Delta parallel manipulator.  

The proposed approach was executed as a cascading of two design levels: Level 1 and Level 

2. In Level 1 design, a multi-objective optimization problem was resolved via Genetic 

Algorithm to yield a pareto-dominant set of design solutions. Each member of the pareto-

dominant solution set possessed maximum uniform stiffness across a pre-specified 

workspace. The pre-specified workspace was modelled as constraint function for the multi-

objective optimization problem.  In Level 2 design, the maximum allowable error 
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(uncertainty) in the active joint inputs of a single pareto-dominant design solution were 

computed via the Brent-Drekker numerical solver. It was found that if the error in actuation 

of active joints does not exceed the maximum allowable error, then the output error along 

each DOF remained less than a desired value.  

It was found that the proposed design approach was computationally efficient in comparison 

to interval analysis based functional design techniques. Moreover, the proposed approach 

yielded a finite set of optimal design solutions that satisfy requirements of pre-specified 

workspace and desired workspace while maximizing dynamic accuracy. The next logical step 

would be to incorporate the effect of geometrical tolerances in the kinematic accuracy model. 

Furthermore, the stiffness and condition index-based model can be replaced with Matrix 

Structural Analysis (MSA) to fully capture the dynamic accuracy of parallel manipulators. 
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APPENDIX A: MATLAB CODES 

Stiffness Analysis: Stiffness Index 

clear 
clc   
format 
% dOD = input('Enter Input Error: '); 
% dO = dOD*pi/180; 
upper_arm = input ('Enter Upper Limb Length: '); 
lower_arm = input ('Enter Lower Limb Length: '); 
fixed_platform = input ('Enter Fixed Platform Length: '); 
moving_platform = input ('Enter Moving Platform Length: '); 
plane = sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001; 
cube_height = input ('Enter Cube Height: '); 
cube_initial_point = input ('Enter Negative Co-ordinate of Cube Edge: '); 
pxl1 = -(cube_initial_point); 
pyl1 = pxl1; 
pxl2 = -1*pxl1;  
pyl2 = pxl2; 
max_Errors = []; 
% ErrorX =[]; 
% ErrorY = []; 
% ErrorZ = []; 
%[px py] = meshgrid(pxl1:0.125:pxl2); 
    z_slice1 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-

0.5*cube_height); 
    z_slice2 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-

0.475*cube_height); 
    z_slice3 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-

0.45*cube_height); 
    z_slice4 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-

0.425*cube_height); 
    z_slice5 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-

0.40*cube_height); 
    z_slice6 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-

0.375*cube_height); 
    z_slice7 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-

0.35*cube_height); 
    z_slice8 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-

0.325*cube_height); 
    z_slice9 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-

0.30*cube_height); 
    z_slice10 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-

0.275*cube_height); 
    z_slice11 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-

0.25*cube_height); 
    z_slice12 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-

0.225*cube_height); 
    z_slice13 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-

0.20*cube_height); 
    z_slice14 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-

0.175*cube_height); 
    z_slice15 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-

0.15*cube_height); 
    z_slice16 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-

0.125*cube_height); 
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    z_slice17 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-

0.10*cube_height); 
    z_slice18 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-

0.075*cube_height); 
    z_slice19 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-

0.05*cube_height); 
    z_slice20 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-

0.025*cube_height); 
    z_slice21 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)); 
    z_slice22 = ((sqrt((lower_arm)^2-

(upper_arm^2))+0.000000000001)+0.025*cube_height); 
    z_slice23 = ((sqrt((lower_arm)^2-

(upper_arm^2))+0.000000000001)+0.05*cube_height); 
    z_slice24 = ((sqrt((lower_arm)^2-

(upper_arm^2))+0.000000000001)+0.075*cube_height); 
    z_slice25 = ((sqrt((lower_arm)^2-

(upper_arm^2))+0.000000000001)+0.10*cube_height); 
    z_slice26 = ((sqrt((lower_arm)^2-

(upper_arm^2))+0.000000000001)+0.125*cube_height); 
    z_slice27 = ((sqrt((lower_arm)^2-

(upper_arm^2))+0.000000000001)+0.15*cube_height); 
    z_slice28 = ((sqrt((lower_arm)^2-

(upper_arm^2))+0.000000000001)+0.175*cube_height); 
    z_slice29 = ((sqrt((lower_arm)^2-

(upper_arm^2))+0.000000000001)+0.20*cube_height); 
    z_slice30 = ((sqrt((lower_arm)^2-

(upper_arm^2))+0.000000000001)+0.225*cube_height); 
    z_slice31 = ((sqrt((lower_arm)^2-

(upper_arm^2))+0.000000000001)+0.25*cube_height); 
    z_slice32 = ((sqrt((lower_arm)^2-

(upper_arm^2))+0.000000000001)+0.275*cube_height); 
    z_slice33 = ((sqrt((lower_arm)^2-

(upper_arm^2))+0.000000000001)+0.30*cube_height); 
    z_slice34 = ((sqrt((lower_arm)^2-

(upper_arm^2))+0.000000000001)+0.325*cube_height); 
    z_slice35 = ((sqrt((lower_arm)^2-

(upper_arm^2))+0.000000000001)+0.35*cube_height); 
    z_slice36 = ((sqrt((lower_arm)^2-

(upper_arm^2))+0.000000000001)+0.375*cube_height); 
    z_slice37 = ((sqrt((lower_arm)^2-

(upper_arm^2))+0.000000000001)+0.40*cube_height); 
    z_slice38 = ((sqrt((lower_arm)^2-

(upper_arm^2))+0.000000000001)+0.425*cube_height); 
    z_slice39 = ((sqrt((lower_arm)^2-

(upper_arm^2))+0.000000000001)+0.475*cube_height); 
    z_slice40 = ((sqrt((lower_arm)^2-

(upper_arm^2))+0.000000000001)+0.5*cube_height); 

     
    plane_array = [z_slice1, z_slice2, z_slice3, z_slice4, z_slice5, 

z_slice6, z_slice7, z_slice8, z_slice9, z_slice10, z_slice11, z_slice12, 

z_slice13, z_slice14, z_slice15, z_slice16, z_slice17, z_slice18, 

z_slice19, z_slice20, z_slice21, z_slice22, z_slice23, z_slice24, 

z_slice25, z_slice26, z_slice27, z_slice28, z_slice29, z_slice30, 

z_slice31, z_slice32, z_slice33, z_slice34, z_slice35, z_slice36, 

z_slice37, z_slice38, z_slice39, z_slice40]; 
zi = 1; 
for i = 1:1:40 
    plane = plane_array(i); 
   xi = 1;  
for px = pxl1:0.25:pxl2 
    yi = 1; 
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    for py = pyl1:0.25:pyl2 

      
     Stiffness_Index = Single_Point_Stiffness_Index(px, py, plane, 

upper_arm, lower_arm, fixed_platform, moving_platform); 

      
     Stiffness_Index_Overall(xi, yi, zi) = Stiffness_Index; 

      
    yi = yi + 1; 
    end 
    xi = xi + 1; 
end 
zi = zi + 1 
end 

  
%max_Global_Stiffness_Index = max(Stiffness_Index_Overall(:)) 
min_Global_Stiffness_Index = min(Stiffness_Index_Overall(:)) 

  
% max_x = max(ErrorX(:)) 
%  
% max_y = max(ErrorY(:)) 
%  
% max_z = max(ErrorZ(:)) 

 
function Stiffness_Index = Single_Point_Stiffness_Index(px, py, plane, 

upper_arm, lower_arm, fixed_platform, moving_platform) 

  

  

  
%Inverse Kinematics Code 
a = upper_arm; 
%b = input('Enter Lower Arm Length:'); 
b = lower_arm; 
%r = input('Enter Fixed Frame Position:'); 
r = fixed_platform; 
%c = input('Enter Moving Frame Position:'); 
c = moving_platform; 
ks = [1 0 0 ; 0 1 0 ; 0 0 1] ; 
pz = plane; 
%disp( 'ALL SOLUTION SET ANGLES ARE IN RADIANS' ) 
O1 = 0*pi/180; 
pu1 = px*cos(O1) + py*sin(O1) - r; 
pv1 = -px*sin(O1) + py*cos(O1); 
pw1 = pz; 
k1 = pv1/b; 
O31 = acos(k1); 
if O31 >= 0 && O31<= 180*pi/180 
    l01 = pu1^2+pw1^2+2*c*pu1-2*a*pu1+a^2+c^2-(b^2)*(sin(O31))^2-2*a*c; 
    l11 = -4*a*pw1; 
    l21 = pw1^2+pu1^2+2*pu1*c+2*a*pu1+a^2+c^2-(b^2)*(sin(O31))^2+2*a*c; 
    t11 = (-l11+sqrt(l11*l11-4*l21*l01))/(2*l21); 
    t12 = (-l11-sqrt(l11*l11-4*l21*l01))/(2*l21); 
    if isreal(t11) 
        O11a = 2*atan(t11); 
        O21a = asin((pw1-a*sin(O11a))/b*sin(O31)); 
        %disp(['Actuated Joint Angle for Limb 1 is :'  num2str(O11a*180/pi) 

'degrees' ]); 
    else disp('Posture Not Valid') 
    end 
    if isreal(t12) 
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        O11b = 2*atan(t12); 
        O21b = asin((pw1-a*sin(O11b))/b*sin(O31)); 
        %disp(['Alternate Actuated Joint Angle for Limb 1 is :' 

num2str(O11b*180/pi) 'degrees' ]); 
        else disp('Posture Not Valid') 
    end 
end        
O2 = 120*pi/180; 
pu2 = px*cos(O2) + py*sin(O2) - r; 
pv2 = -px*sin(O2) + py*cos(O2); 
pw2 = pz; 
k2 = pv2/b; 
O32 = acos(k2); 
if O32 >= 0 && O32<= 180*pi/180 
    l02 = pu2^2+pw2^2+2*c*pu2-2*a*pu2+a^2+c^2-(b^2)*(sin(O32))^2-2*a*c; 
    l12 = -4*a*pw2; 
    l22 = pw2^2+pu2^2+2*pu2*c+2*a*pu2+a^2+c^2-(b^2)*(sin(O32))^2+2*a*c; 
    t21 = (-l12+sqrt(l12*l12-4*l22*l02))/(2*l22); 
    t22 = (-l12-sqrt(l12*l12-4*l22*l02))/(2*l22); 
    if isreal(t21) 
        O12a = 2*atan(t21); 
        O22a = asin((pw2-a*sin(O12a))/b*sin(O32)); 
        %disp(['Actuated Joint Angle for Limb 2 is :'  num2str(O12a*180/pi) 

'degrees' ]); 
        else disp('Posture Not Valid') 
    end 
    if isreal(t22) 
        O12b = 2*atan(t22); 
        O22b = asin((pw2-a*sin(O12b))/b*sin(O32)); 
        %disp(['Alternate Actuated Joint Angle for Limb 2 is :'  

num2str(O12b*180/pi) 'degrees' ]); 
        else disp('Posture Not Valid') 
    end 
end  
O3 = 240*pi/180; 
pu3 = px*cos(O3) + py*sin(O3) - r; 
pv3 = -px*sin(O3) + py*cos(O3); 
pw3 = pz; 
k3 = pv3/b; 
O33 = acos(k3); 
if O33 >= 0 && O33<= 180*pi/180 
    l03 = pu3^2+pw3^2+2*c*pu3-2*a*pu3+a^2+c^2-(b^2)*(sin(O33))^2-2*a*c; 
    l13 = -4*a*pw3; 
    l23 = pw3^2+pu3^2+2*pu3*c+2*a*pu3+a^2+c^2-(b^2)*(sin(O33))^2+2*a*c; 
    t31 = (-l13+sqrt(l13*l13-4*l23*l03))/(2*l23); 
    t32 = (-l13-sqrt(l13*l13-4*l23*l03))/(2*l23); 
    if isreal(t31) 
        O13a = 2*atan(t31); 
        O23a = asin((pw3-a*sin(O13a))/b*sin(O33)); 
        %disp(['Actuated Joint Angle for Limb 3 is :'  num2str(O13a*180/pi) 

'degrees' ]); 
    else disp('Posture Not Valid') 
    end 
    if isreal(t32) 
        O13b = 2*atan(t32); 
        O23b = asin((pw3-a*sin(O13b))/b*sin(O33)); 
        %disp(['Alternate Actuated Joint Angle for Limb 3 is :'  

num2str(O13b*180/pi) 'degrees' ]); 
    else disp('Posture Not Valid') 
    end 
end 
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    %disp( 'ALL SOLUTION SET ANGLES ARE IN RADIANS' ) 
    %disp('Solution Set A for limb 1 is :') 
    A1 = [O11a O21a O31]; 
    %disp(A1) 
    %disp('Solution Set B for limb 1 is :') 
    B1 = [O11b O21b O31]; 
    %disp(B1) 
    %disp('Solution Set A for limb 2 is :') 
    A2 = [O12a O22a O32]; 
    %disp(A2) 
    %disp('Solution Set B for limb 2 is :') 
    B2 = [O12b O22b O32]; 
    %disp(B2) 
    %disp('Solution Set A for limb 3 is :') 
    A3 = [O13a O23a O33]; 
    %disp(A3) 
    %disp('Solution Set B for limb 3 is :') 
    B3 = [O13b O23b O33]; 
    %disp(B3) 

     
    %Angle Selection Module 
if abs(O11a) <= abs(O11b) 
    O11 = O11a; O21 = O21a;  
     J1x = cos(O11+O21)*sin(O31)*cos(O1)-cos(O31)*sin(O1); 
     J1y = cos(O11+O21)*sin(O31)*sin(O1)+cos(O31)*cos(O1); 
     J1z = sin(O11+O21)*sin(O31); 
    JI1 = a*sin(O31)*sin(O21); 
else if abs(O11a) > abs(O11b) 
    O11 = O11b; O21 = O21b;  
     J1x = cos(O11+O21)*sin(O31)*cos(O1)-cos(O31)*sin(O1); 
     J1y = cos(O11+O21)*sin(O31)*sin(O1)+cos(O31)*cos(O1); 
     J1z = sin(O11+O21)*sin(O31);   
    JI1 = a*sin(O31)*sin(O21); 
    end 
end 

  
if abs(O12a) <= abs(O12b) 
    O12 = O12a; O22 = O22a;  
     J2x = cos(O12+O22)*sin(O32)*cos(O2)-cos(O32)*sin(O2); 
     J2y = cos(O12+O22)*sin(O32)*sin(O2)+cos(O32)*cos(O2); 
     J2z = sin(O12+O22)*sin(O32); 
    JI2 = a*sin(O32)*sin(O22); 
else if abs(O12a) > abs(O12b) 
    O12 = O12b; O22 = O22b;  
     J2x = cos(O12+O22)*sin(O32)*cos(O2)-cos(O32)*sin(O2); 
     J2y = cos(O12+O22)*sin(O32)*sin(O2)+cos(O32)*cos(O2); 
     J2z = sin(O12+O22)*sin(O32); 
    JI2 = a*sin(O32)*sin(O22); 
    end 
end 

  
if abs(O13a) <= abs(O13b) 
    O13 = O13a; O23 = O23a;  
     J3x = cos(O13+O23)*sin(O33)*cos(O3)-cos(O33)*sin(O3); 
     J3y = cos(O13+O23)*sin(O33)*sin(O3)+cos(O33)*cos(O3); 
     J3z = sin(O13+O23)*sin(O33); 
    JI3 = a*sin(O33)*sin(O23); 
else if abs(O13a) > abs(O13b) 
    O13 = O13b; O23 = O23b;  
     J3x = cos(O13+O23)*sin(O33)*cos(O3)-cos(O33)*sin(O3); 
     J3y = cos(O13+O23)*sin(O33)*sin(O3)+cos(O33)*cos(O3); 
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     J3z = sin(O13+O23)*sin(O33); 
    JI3 = a*sin(O33)*sin(O23);  
    end 
end 

       
JF = [ J1x J1y J1z; J2x J2y J2z; J3x J3y J3z ]; 
JI = [ JI1 0 0; 0 JI2 0; 0 0 JI3 ]; 
% disp( ' Forward Jacobian Matrix : ') 
% disp (JF) 
% disp( ' Inverse Jacobian Matrix : ') 
% disp (JI) 
J = (inv(JF))*JI; 
% disp( ' Jacobian Matrix : ') 
% disp(J) 

  
%Error Evaluation Module 

  

  
Kp = ks*inv(J*(J')); 

  
Eigen_Vector = eig(Kp); 

  
Stiffness_Index = min(Eigen_Vector); 

  
end 

 

Stiffness Analysis: Condition Number 

clear 
clc   
format 
% dOD = input('Enter Input Error: '); 
% dO = dOD*pi/180; 
upper_arm = input ('Enter Upper Limb Length: '); 
lower_arm = input ('Enter Lower Limb Length: '); 
fixed_platform = input ('Enter Fixed Platform Length: '); 
moving_platform = input ('Enter Moving Platform Length: '); 
plane = sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001; 
cube_height = input ('Enter Cube Height: '); 
cube_initial_point = input ('Enter Negative Co-ordinate of Cube Edge: '); 
pxl1 = -(cube_initial_point); 
pyl1 = pxl1; 
pxl2 = -1*pxl1;  
pyl2 = pxl2; 
max_Errors = []; 
% ErrorX =[]; 
% ErrorY = []; 
% ErrorZ = []; 
%[px py] = meshgrid(pxl1:0.125:pxl2); 
    z_slice1 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-

0.5*cube_height); 
    z_slice2 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-

0.475*cube_height); 
    z_slice3 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-

0.45*cube_height); 
    z_slice4 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-

0.425*cube_height); 
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    z_slice5 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-

0.40*cube_height); 
    z_slice6 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-

0.375*cube_height); 
    z_slice7 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-

0.35*cube_height); 
    z_slice8 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-

0.325*cube_height); 
    z_slice9 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-

0.30*cube_height); 
    z_slice10 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-

0.275*cube_height); 
    z_slice11 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-

0.25*cube_height); 
    z_slice12 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-

0.225*cube_height); 
    z_slice13 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-

0.20*cube_height); 
    z_slice14 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-

0.175*cube_height); 
    z_slice15 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-

0.15*cube_height); 
    z_slice16 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-

0.125*cube_height); 
    z_slice17 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-

0.10*cube_height); 
    z_slice18 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-

0.075*cube_height); 
    z_slice19 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-

0.05*cube_height); 
    z_slice20 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-

0.025*cube_height); 
    z_slice21 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)); 
    z_slice22 = ((sqrt((lower_arm)^2-

(upper_arm^2))+0.000000000001)+0.025*cube_height); 
    z_slice23 = ((sqrt((lower_arm)^2-

(upper_arm^2))+0.000000000001)+0.05*cube_height); 
    z_slice24 = ((sqrt((lower_arm)^2-

(upper_arm^2))+0.000000000001)+0.075*cube_height); 
    z_slice25 = ((sqrt((lower_arm)^2-

(upper_arm^2))+0.000000000001)+0.10*cube_height); 
    z_slice26 = ((sqrt((lower_arm)^2-

(upper_arm^2))+0.000000000001)+0.125*cube_height); 
    z_slice27 = ((sqrt((lower_arm)^2-

(upper_arm^2))+0.000000000001)+0.15*cube_height); 
    z_slice28 = ((sqrt((lower_arm)^2-

(upper_arm^2))+0.000000000001)+0.175*cube_height); 
    z_slice29 = ((sqrt((lower_arm)^2-

(upper_arm^2))+0.000000000001)+0.20*cube_height); 
    z_slice30 = ((sqrt((lower_arm)^2-

(upper_arm^2))+0.000000000001)+0.225*cube_height); 
    z_slice31 = ((sqrt((lower_arm)^2-

(upper_arm^2))+0.000000000001)+0.25*cube_height); 
    z_slice32 = ((sqrt((lower_arm)^2-

(upper_arm^2))+0.000000000001)+0.275*cube_height); 
    z_slice33 = ((sqrt((lower_arm)^2-

(upper_arm^2))+0.000000000001)+0.30*cube_height); 
    z_slice34 = ((sqrt((lower_arm)^2-

(upper_arm^2))+0.000000000001)+0.325*cube_height); 
    z_slice35 = ((sqrt((lower_arm)^2-

(upper_arm^2))+0.000000000001)+0.35*cube_height); 
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    z_slice36 = ((sqrt((lower_arm)^2-

(upper_arm^2))+0.000000000001)+0.375*cube_height); 
    z_slice37 = ((sqrt((lower_arm)^2-

(upper_arm^2))+0.000000000001)+0.40*cube_height); 
    z_slice38 = ((sqrt((lower_arm)^2-

(upper_arm^2))+0.000000000001)+0.425*cube_height); 
    z_slice39 = ((sqrt((lower_arm)^2-

(upper_arm^2))+0.000000000001)+0.475*cube_height); 
    z_slice40 = ((sqrt((lower_arm)^2-

(upper_arm^2))+0.000000000001)+0.5*cube_height); 

     
    plane_array = [z_slice1, z_slice2, z_slice3, z_slice4, z_slice5, 

z_slice6, z_slice7, z_slice8, z_slice9, z_slice10, z_slice11, z_slice12, 

z_slice13, z_slice14, z_slice15, z_slice16, z_slice17, z_slice18, 

z_slice19, z_slice20, z_slice21, z_slice22, z_slice23, z_slice24, 

z_slice25, z_slice26, z_slice27, z_slice28, z_slice29, z_slice30, 

z_slice31, z_slice32, z_slice33, z_slice34, z_slice35, z_slice36, 

z_slice37, z_slice38, z_slice39, z_slice40]; 
zi = 1; 
for i = 1:1:40 
    plane = plane_array(i); 
   xi = 1;  
for px = pxl1:0.25:pxl2 
    yi = 1; 
    for py = pyl1:0.25:pyl2 

      
     inv_Condition_Number = Single_Point_Condition_Number(px, py, plane, 

upper_arm, lower_arm, fixed_platform, moving_platform); 

      
     inv_Condition_Number_Overall(xi, yi, zi) = inv_Condition_Number; 

      
    yi = yi + 1; 
    end 
    xi = xi + 1; 
end 
zi = zi + 1 
end 

  
max_Global_inv_Condition_Number = max(inv_Condition_Number_Overall(:)) 
%min_inv_Condition_Number = min(inv_Condition_Number_Overall(:)) 

  
% max_x = max(ErrorX(:)) 
%  
% max_y = max(ErrorY(:)) 
%  
% max_z = max(ErrorZ(:)) 

 
function inv_Condition_Number = Single_Point_Condition_Number(px, py, 

plane, upper_arm, lower_arm, fixed_platform, moving_platform) 

  

  

  
%Inverse Kinematics Code 
a = upper_arm; 
%b = input('Enter Lower Arm Length:'); 
b = lower_arm; 
%r = input('Enter Fixed Frame Position:'); 
r = fixed_platform; 
%c = input('Enter Moving Frame Position:'); 
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c = moving_platform; 
ks = [1 0 0 ; 0 1 0 ; 0 0 1] ; 
pz = plane; 
%disp( 'ALL SOLUTION SET ANGLES ARE IN RADIANS' ) 
O1 = 0*pi/180; 
pu1 = px*cos(O1) + py*sin(O1) - r; 
pv1 = -px*sin(O1) + py*cos(O1); 
pw1 = pz; 
k1 = pv1/b; 
O31 = acos(k1); 
if O31 >= 0 && O31<= 180*pi/180 
    l01 = pu1^2+pw1^2+2*c*pu1-2*a*pu1+a^2+c^2-(b^2)*(sin(O31))^2-2*a*c; 
    l11 = -4*a*pw1; 
    l21 = pw1^2+pu1^2+2*pu1*c+2*a*pu1+a^2+c^2-(b^2)*(sin(O31))^2+2*a*c; 
    t11 = (-l11+sqrt(l11*l11-4*l21*l01))/(2*l21); 
    t12 = (-l11-sqrt(l11*l11-4*l21*l01))/(2*l21); 
    if isreal(t11) 
        O11a = 2*atan(t11); 
        O21a = asin((pw1-a*sin(O11a))/b*sin(O31)); 
        %disp(['Actuated Joint Angle for Limb 1 is :'  num2str(O11a*180/pi) 

'degrees' ]); 
    else disp('Posture Not Valid') 
    end 
    if isreal(t12) 
        O11b = 2*atan(t12); 
        O21b = asin((pw1-a*sin(O11b))/b*sin(O31)); 
        %disp(['Alternate Actuated Joint Angle for Limb 1 is :' 

num2str(O11b*180/pi) 'degrees' ]); 
        else disp('Posture Not Valid') 
    end 
end        
O2 = 120*pi/180; 
pu2 = px*cos(O2) + py*sin(O2) - r; 
pv2 = -px*sin(O2) + py*cos(O2); 
pw2 = pz; 
k2 = pv2/b; 
O32 = acos(k2); 
if O32 >= 0 && O32<= 180*pi/180 
    l02 = pu2^2+pw2^2+2*c*pu2-2*a*pu2+a^2+c^2-(b^2)*(sin(O32))^2-2*a*c; 
    l12 = -4*a*pw2; 
    l22 = pw2^2+pu2^2+2*pu2*c+2*a*pu2+a^2+c^2-(b^2)*(sin(O32))^2+2*a*c; 
    t21 = (-l12+sqrt(l12*l12-4*l22*l02))/(2*l22); 
    t22 = (-l12-sqrt(l12*l12-4*l22*l02))/(2*l22); 
    if isreal(t21) 
        O12a = 2*atan(t21); 
        O22a = asin((pw2-a*sin(O12a))/b*sin(O32)); 
        %disp(['Actuated Joint Angle for Limb 2 is :'  num2str(O12a*180/pi) 

'degrees' ]); 
        else disp('Posture Not Valid') 
    end 
    if isreal(t22) 
        O12b = 2*atan(t22); 
        O22b = asin((pw2-a*sin(O12b))/b*sin(O32)); 
        %disp(['Alternate Actuated Joint Angle for Limb 2 is :'  

num2str(O12b*180/pi) 'degrees' ]); 
        else disp('Posture Not Valid') 
    end 
end  
O3 = 240*pi/180; 
pu3 = px*cos(O3) + py*sin(O3) - r; 
pv3 = -px*sin(O3) + py*cos(O3); 
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pw3 = pz; 
k3 = pv3/b; 
O33 = acos(k3); 
if O33 >= 0 && O33<= 180*pi/180 
    l03 = pu3^2+pw3^2+2*c*pu3-2*a*pu3+a^2+c^2-(b^2)*(sin(O33))^2-2*a*c; 
    l13 = -4*a*pw3; 
    l23 = pw3^2+pu3^2+2*pu3*c+2*a*pu3+a^2+c^2-(b^2)*(sin(O33))^2+2*a*c; 
    t31 = (-l13+sqrt(l13*l13-4*l23*l03))/(2*l23); 
    t32 = (-l13-sqrt(l13*l13-4*l23*l03))/(2*l23); 
    if isreal(t31) 
        O13a = 2*atan(t31); 
        O23a = asin((pw3-a*sin(O13a))/b*sin(O33)); 
        %disp(['Actuated Joint Angle for Limb 3 is :'  num2str(O13a*180/pi) 

'degrees' ]); 
    else disp('Posture Not Valid') 
    end 
    if isreal(t32) 
        O13b = 2*atan(t32); 
        O23b = asin((pw3-a*sin(O13b))/b*sin(O33)); 
        %disp(['Alternate Actuated Joint Angle for Limb 3 is :'  

num2str(O13b*180/pi) 'degrees' ]); 
    else disp('Posture Not Valid') 
    end 
end 
    %disp( 'ALL SOLUTION SET ANGLES ARE IN RADIANS' ) 
    %disp('Solution Set A for limb 1 is :') 
    A1 = [O11a O21a O31]; 
    %disp(A1) 
    %disp('Solution Set B for limb 1 is :') 
    B1 = [O11b O21b O31]; 
    %disp(B1) 
    %disp('Solution Set A for limb 2 is :') 
    A2 = [O12a O22a O32]; 
    %disp(A2) 
    %disp('Solution Set B for limb 2 is :') 
    B2 = [O12b O22b O32]; 
    %disp(B2) 
    %disp('Solution Set A for limb 3 is :') 
    A3 = [O13a O23a O33]; 
    %disp(A3) 
    %disp('Solution Set B for limb 3 is :') 
    B3 = [O13b O23b O33]; 
    %disp(B3) 

     
    %Angle Selection Module 
if abs(O11a) <= abs(O11b) 
    O11 = O11a; O21 = O21a;  
     J1x = cos(O11+O21)*sin(O31)*cos(O1)-cos(O31)*sin(O1); 
     J1y = cos(O11+O21)*sin(O31)*sin(O1)+cos(O31)*cos(O1); 
     J1z = sin(O11+O21)*sin(O31); 
    JI1 = a*sin(O31)*sin(O21); 
else if abs(O11a) > abs(O11b) 
    O11 = O11b; O21 = O21b;  
     J1x = cos(O11+O21)*sin(O31)*cos(O1)-cos(O31)*sin(O1); 
     J1y = cos(O11+O21)*sin(O31)*sin(O1)+cos(O31)*cos(O1); 
     J1z = sin(O11+O21)*sin(O31);   
    JI1 = a*sin(O31)*sin(O21); 
    end 
end 

  
if abs(O12a) <= abs(O12b) 
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    O12 = O12a; O22 = O22a;  
     J2x = cos(O12+O22)*sin(O32)*cos(O2)-cos(O32)*sin(O2); 
     J2y = cos(O12+O22)*sin(O32)*sin(O2)+cos(O32)*cos(O2); 
     J2z = sin(O12+O22)*sin(O32); 
    JI2 = a*sin(O32)*sin(O22); 
else if abs(O12a) > abs(O12b) 
    O12 = O12b; O22 = O22b;  
     J2x = cos(O12+O22)*sin(O32)*cos(O2)-cos(O32)*sin(O2); 
     J2y = cos(O12+O22)*sin(O32)*sin(O2)+cos(O32)*cos(O2); 
     J2z = sin(O12+O22)*sin(O32); 
    JI2 = a*sin(O32)*sin(O22); 
    end 
end 

  
if abs(O13a) <= abs(O13b) 
    O13 = O13a; O23 = O23a;  
     J3x = cos(O13+O23)*sin(O33)*cos(O3)-cos(O33)*sin(O3); 
     J3y = cos(O13+O23)*sin(O33)*sin(O3)+cos(O33)*cos(O3); 
     J3z = sin(O13+O23)*sin(O33); 
    JI3 = a*sin(O33)*sin(O23); 
else if abs(O13a) > abs(O13b) 
    O13 = O13b; O23 = O23b;  
     J3x = cos(O13+O23)*sin(O33)*cos(O3)-cos(O33)*sin(O3); 
     J3y = cos(O13+O23)*sin(O33)*sin(O3)+cos(O33)*cos(O3); 
     J3z = sin(O13+O23)*sin(O33); 
    JI3 = a*sin(O33)*sin(O23);  
    end 
end 

       
JF = [ J1x J1y J1z; J2x J2y J2z; J3x J3y J3z ]; 
JI = [ JI1 0 0; 0 JI2 0; 0 0 JI3 ]; 
% disp( ' Forward Jacobian Matrix : ') 
% disp (JF) 
% disp( ' Inverse Jacobian Matrix : ') 
% disp (JI) 
J = (inv(JF))*JI; 
% disp( ' Jacobian Matrix : ') 
% disp(J) 

  
%Error Evaluation Module 

  

  
Kp = ks*inv(J*(J')); 

  
Eigen_Vector = eig(Kp); 

  
Condition_Number = (min(Eigen_Vector) / max(Eigen_Vector)); 
inv_Condition_Number = 1 / Condition_Number; 

  

  
end 

 

Level 1 Design: Genetic Algorithm 

FitnessFunction = @Fitness_Function; 
numberOfVariables = 4; 
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lb = [20, 60, 10, 5]; 
ub = [40, 80, 20, 10]; 

  
[x fval] = gamultiobj(FitnessFunction,numberOfVariables,[],[],[],[],lb,ub) 
 

 
function fitness = Fitness_Function(x0) 

  
    iteration = 1; 
    fitness(1) = Single_Point_Stiffness_Index(x0); 
    fitness(2) = Single_Point_Condition_Number(x0); 
    iteration = iteration + 1 

  
end 

 

 
function inv_Condition_Number = Single_Point_Condition_Number(x0) 

  
%dOD = input('Enter Input Error: '); 
%dO = dOD*pi/180; 
%a = input('Enter Upper Arm Length:'); 
a = x0(1); 
%b = input('Enter Lower Arm Length:'); 
b = x0(2); 
%r = input('Enter Fixed Frame Position:'); 
r = x0(3); 
%c = input('Enter Moving Frame Position:'); 
c = x0(4); 
upper_arm = a; 
lower_arm = b; 
fixed_platform = r; 
moving_platform = c; 
px = 10; 
py = 10; 
pz = sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001+5; 
a = upper_arm; 
rf = a; 
b = lower_arm; 
re = b; 
f = fixed_platform; 
e = moving_platform; 
r = (f/2)*tan(30*pi/180); 
c = (e/2)*tan(30*pi/180); 

  
Kp = []; 
K = []; 
T = [1 0 0; 0 1 0; 0 0 1]; 
ks = 1; 

  
%disp( 'ALL SOLUTION SET ANGLES ARE IN RADIANS' ) 
O1 = 0*pi/180; 
pu1 = px*cos(O1) + py*sin(O1) - r; 
pv1 = -px*sin(O1) + py*cos(O1); 
pw1 = pz; 
k1 = pv1/b; 
O31 = acos(k1); 
if O31 >= 0 && O31<= 180*pi/180 
    l01 = pu1^2+pw1^2+2*c*pu1-2*a*pu1+a^2+c^2-(b^2)*(sin(O31))^2-2*a*c; 
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    l11 = -4*a*pw1; 
    l21 = pw1^2+pu1^2+2*pu1*c+2*a*pu1+a^2+c^2-(b^2)*(sin(O31))^2+2*a*c; 
    t11 = (-l11+sqrt(l11*l11-4*l21*l01))/(2*l21); 
    t12 = (-l11-sqrt(l11*l11-4*l21*l01))/(2*l21); 
    if isreal(t11) 
        O11a = 2*atan(t11); 
        O21a = asin((pw1-a*sin(O11a))/b*sin(O31)); 
        %disp(['Actuated Joint Angle for Limb 1 is :'  num2str(O11a*180/pi) 

'degrees' ]); 
    else disp('Posture Not Valid') 
    end 
    if isreal(t12) 
        O11b = 2*atan(t12); 
        O21b = asin((pw1-a*sin(O11b))/b*sin(O31)); 
        %disp(['Alternate Actuated Joint Angle for Limb 1 is :' 

num2str(O11b*180/pi) 'degrees' ]); 
        else disp('Posture Not Valid') 
    end 
end        
O2 = 120*pi/180; 
pu2 = px*cos(O2) + py*sin(O2) - r; 
pv2 = -px*sin(O2) + py*cos(O2); 
pw2 = pz; 
k2 = pv2/b; 
O32 = acos(k2); 
if O32 >= 0 && O32<= 180*pi/180 
    l02 = pu2^2+pw2^2+2*c*pu2-2*a*pu2+a^2+c^2-(b^2)*(sin(O32))^2-2*a*c; 
    l12 = -4*a*pw2; 
    l22 = pw2^2+pu2^2+2*pu2*c+2*a*pu2+a^2+c^2-(b^2)*(sin(O32))^2+2*a*c; 
    t21 = (-l12+sqrt(l12*l12-4*l22*l02))/(2*l22); 
    t22 = (-l12-sqrt(l12*l12-4*l22*l02))/(2*l22); 
    if isreal(t21) 
        O12a = 2*atan(t21); 
        O22a = asin((pw2-a*sin(O12a))/b*sin(O32)); 
        %disp(['Actuated Joint Angle for Limb 2 is :'  num2str(O12a*180/pi) 

'degrees' ]); 
        else disp('Posture Not Valid') 
    end 
    if isreal(t22) 
        O12b = 2*atan(t22); 
        O22b = asin((pw2-a*sin(O12b))/b*sin(O32)); 
        %disp(['Alternate Actuated Joint Angle for Limb 2 is :'  

num2str(O12b*180/pi) 'degrees' ]); 
        else disp('Posture Not Valid') 
    end 
end  
O3 = 240*pi/180; 
pu3 = px*cos(O3) + py*sin(O3) - r; 
pv3 = -px*sin(O3) + py*cos(O3); 
pw3 = pz; 
k3 = pv3/b; 
O33 = acos(k3); 
if O33 >= 0 && O33<= 180*pi/180 
    l03 = pu3^2+pw3^2+2*c*pu3-2*a*pu3+a^2+c^2-(b^2)*(sin(O33))^2-2*a*c; 
    l13 = -4*a*pw3; 
    l23 = pw3^2+pu3^2+2*pu3*c+2*a*pu3+a^2+c^2-(b^2)*(sin(O33))^2+2*a*c; 
    t31 = (-l13+sqrt(l13*l13-4*l23*l03))/(2*l23); 
    t32 = (-l13-sqrt(l13*l13-4*l23*l03))/(2*l23); 
    if isreal(t31) 
        O13a = 2*atan(t31); 
        O23a = asin((pw3-a*sin(O13a))/b*sin(O33)); 
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        %disp(['Actuated Joint Angle for Limb 3 is :'  num2str(O13a*180/pi) 

'degrees' ]); 
    else disp('Posture Not Valid') 
    end 
    if isreal(t32) 
        O13b = 2*atan(t32); 
        O23b = asin((pw3-a*sin(O13b))/b*sin(O33)); 
        %disp(['Alternate Actuated Joint Angle for Limb 3 is :'  

num2str(O13b*180/pi) 'degrees' ]); 
    else disp('Posture Not Valid') 
    end 
end 
    %disp( 'ALL SOLUTION SET ANGLES ARE IN RADIANS' ) 
    %disp('Solution Set A for limb 1 is :') 
    A1 = [O11a O21a O31]; 
    %disp(A1) 
    %disp('Solution Set B for limb 1 is :') 
    B1 = [O11b O21b O31]; 
    %disp(B1) 
    %disp('Solution Set A for limb 2 is :') 
    A2 = [O12a O22a O32]; 
    %disp(A2) 
    %disp('Solution Set B for limb 2 is :') 
    B2 = [O12b O22b O32]; 
    %disp(B2) 
    %disp('Solution Set A for limb 3 is :') 
    A3 = [O13a O23a O33]; 
    %disp(A3) 
    %disp('Solution Set B for limb 3 is :') 
    B3 = [O13b O23b O33]; 
    %disp(B3) 

     
    %Angle Selection Module 
if abs(O11a) <= abs(O11b) 
    O11 = O11a; O21 = O21a;  
    J1x = cos(O11+O21)*sin(O31)*cos(O1)-cos(O31)*sin(O1); 
    J1y = cos(O11+O21)*sin(O31)*sin(O1)+cos(O31)*cos(O1); 
    J1z = sin(O11+O21)*sin(O31); 
    JI1 = a*sin(O31)*sin(O21); 
else if abs(O11a) > abs(O11b) 
    O11 = O11b; O21 = O21b;  
    J1x = cos(O11+O21)*sin(O31)*cos(O1)-cos(O31)*sin(O1); 
    J1y = cos(O11+O21)*sin(O31)*sin(O1)+cos(O31)*cos(O1); 
    J1z = sin(O11+O21)*sin(O31);   
    JI1 = a*sin(O31)*sin(O21); 
    end 
end 

  
if abs(O12a) <= abs(O12b) 
    O12 = O12a; O22 = O22a;  
    J2x = cos(O12+O22)*sin(O32)*cos(O2)-cos(O32)*sin(O2); 
    J2y = cos(O12+O22)*sin(O32)*sin(O2)+cos(O32)*cos(O2); 
    J2z = sin(O12+O22)*sin(O32); 
    JI2 = a*sin(O32)*sin(O22); 
else if abs(O12a) > abs(O12b) 
    O12 = O12b; O22 = O22b;  
    J2x = cos(O12+O22)*sin(O32)*cos(O2)-cos(O32)*sin(O2); 
    J2y = cos(O12+O22)*sin(O32)*sin(O2)+cos(O32)*cos(O2); 
    J2z = sin(O12+O22)*sin(O32); 
    JI2 = a*sin(O32)*sin(O22); 
    end 
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end 

  
if abs(O13a) <= abs(O13b) 
    O13 = O13a; O23 = O23a;  
    J3x = cos(O13+O23)*sin(O33)*cos(O3)-cos(O33)*sin(O3); 
    J3y = cos(O13+O23)*sin(O33)*sin(O3)+cos(O33)*cos(O3); 
    J3z = sin(O13+O23)*sin(O33); 
    JI3 = a*sin(O33)*sin(O23); 
else if abs(O13a) > abs(O13b) 
    O13 = O13b; O23 = O23b;  
    J3x = cos(O13+O23)*sin(O33)*cos(O3)-cos(O33)*sin(O3); 
    J3y = cos(O13+O23)*sin(O33)*sin(O3)+cos(O33)*cos(O3); 
    J3z = sin(O13+O23)*sin(O33); 
    JI3 = a*sin(O33)*sin(O23);  
    end 
end 

       
JF = [ J1x J1y J1z; J2x J2y J2z; J3x J3y J3z ]; 
JI = [ JI1 0 0; 0 JI2 0; 0 0 JI3 ]; 
% disp( ' Forward Jacobian Matrix : ') 
% disp (JF) 
% disp( ' Inverse Jacobian Matrix : ') 
% disp (JI) 
Jinv = inv(JI)*JF; 
J = inv(JF)*JI; 
% disp( ' Jacobian Matrix : ') 
% disp(J) 

  
%Error Evaluation Module 
%disp ('Condition Number Evaluation Module') 

  
Kp = ks*inv(J*(J')); 

  
Eigen_Vector = eig(Kp); 

  
Condition_Number = (min(Eigen_Vector) / max(Eigen_Vector)); 
inv_Condition_Number = 1 / Condition_Number; 

  
end 
 
function inv_Stiffness_Index = Single_Point_Stiffness_Index(x0) 

  
    %a = input('Enter Upper Arm Length:'); 
    a = x0(1); 
    %b = input('Enter Lower Arm Length:'); 
    b = x0(2); 
    %r = input('Enter Fixed Frame Position:'); 
    r = x0(3); 
    %c = input('Enter Moving Frame Position:'); 
    c = x0(4); 
    % dOD = input('Enter Input Joint Error:'); 
    % dO = dOD*pi/180; 
    upper_arm = a; 
    lower_arm = b; 
    fixed_platform = r; 
    moving_platform = c; 
    px = 10; 
    py = 10; 
    pz = sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001+5; 
    a = upper_arm; 
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    rf = a; 
    b = lower_arm; 
    re = b; 
    f = fixed_platform; 
    e = moving_platform; 
    r = (f/2)*tan(30*pi/180); 
    c = (e/2)*tan(30*pi/180); 

  
    Kp = []; 
    K = []; 
    T = [1 0 0; 0 1 0; 0 0 1]; 
    ks = 1; 

  
    tic 
    %disp( 'ALL SOLUTION SET ANGLES ARE IN RADIANS' ) 
    O1 = 0*pi/180; 
    pu1 = px*cos(O1) + py*sin(O1) - r; 
    pv1 = -px*sin(O1) + py*cos(O1); 
    pw1 = pz; 
    k1 = pv1/b; 
    O31 = acos(k1); 
    if O31 >= 0 && O31<= 180*pi/180 
        l01 = pu1^2+pw1^2+2*c*pu1-2*a*pu1+a^2+c^2-(b^2)*(sin(O31))^2-2*a*c; 
        l11 = -4*a*pw1; 
        l21 = pw1^2+pu1^2+2*pu1*c+2*a*pu1+a^2+c^2-(b^2)*(sin(O31))^2+2*a*c; 
        t11 = (-l11+sqrt(l11*l11-4*l21*l01))/(2*l21); 
        t12 = (-l11-sqrt(l11*l11-4*l21*l01))/(2*l21); 
        if isreal(t11) 
            O11a = 2*atan(t11); 
            O21a = asin((pw1-a*sin(O11a))/b*sin(O31)); 
            %disp(['Actuated Joint Angle for Limb 1 is :'  

num2str(O11a*180/pi) 'degrees' ]); 
        else disp('Posture Not Valid') 
        end 
        if isreal(t12) 
            O11b = 2*atan(t12); 
            O21b = asin((pw1-a*sin(O11b))/b*sin(O31)); 
            %disp(['Alternate Actuated Joint Angle for Limb 1 is :' 

num2str(O11b*180/pi) 'degrees' ]); 
            else disp('Posture Not Valid') 
        end 
    end        
    O2 = 120*pi/180; 
    pu2 = px*cos(O2) + py*sin(O2) - r; 
    pv2 = -px*sin(O2) + py*cos(O2); 
    pw2 = pz; 
    k2 = pv2/b; 
    O32 = acos(k2); 
    if O32 >= 0 && O32<= 180*pi/180 
        l02 = pu2^2+pw2^2+2*c*pu2-2*a*pu2+a^2+c^2-(b^2)*(sin(O32))^2-2*a*c; 
        l12 = -4*a*pw2; 
        l22 = pw2^2+pu2^2+2*pu2*c+2*a*pu2+a^2+c^2-(b^2)*(sin(O32))^2+2*a*c; 
        t21 = (-l12+sqrt(l12*l12-4*l22*l02))/(2*l22); 
        t22 = (-l12-sqrt(l12*l12-4*l22*l02))/(2*l22); 
        if isreal(t21) 
            O12a = 2*atan(t21); 
            O22a = asin((pw2-a*sin(O12a))/b*sin(O32)); 
            %disp(['Actuated Joint Angle for Limb 2 is :'  

num2str(O12a*180/pi) 'degrees' ]); 
            else disp('Posture Not Valid') 
        end 
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        if isreal(t22) 
            O12b = 2*atan(t22); 
            O22b = asin((pw2-a*sin(O12b))/b*sin(O32)); 
            %disp(['Alternate Actuated Joint Angle for Limb 2 is :'  

num2str(O12b*180/pi) 'degrees' ]); 
            else disp('Posture Not Valid') 
        end 
    end  
    O3 = 240*pi/180; 
    pu3 = px*cos(O3) + py*sin(O3) - r; 
    pv3 = -px*sin(O3) + py*cos(O3); 
    pw3 = pz; 
    k3 = pv3/b; 
    O33 = acos(k3); 
    if O33 >= 0 && O33<= 180*pi/180 
        l03 = pu3^2+pw3^2+2*c*pu3-2*a*pu3+a^2+c^2-(b^2)*(sin(O33))^2-2*a*c; 
        l13 = -4*a*pw3; 
        l23 = pw3^2+pu3^2+2*pu3*c+2*a*pu3+a^2+c^2-(b^2)*(sin(O33))^2+2*a*c; 
        t31 = (-l13+sqrt(l13*l13-4*l23*l03))/(2*l23); 
        t32 = (-l13-sqrt(l13*l13-4*l23*l03))/(2*l23); 
        if isreal(t31) 
            O13a = 2*atan(t31); 
            O23a = asin((pw3-a*sin(O13a))/b*sin(O33)); 
            %disp(['Actuated Joint Angle for Limb 3 is :'  

num2str(O13a*180/pi) 'degrees' ]); 
        else disp('Posture Not Valid') 
        end 
        if isreal(t32) 
            O13b = 2*atan(t32); 
            O23b = asin((pw3-a*sin(O13b))/b*sin(O33)); 
            %disp(['Alternate Actuated Joint Angle for Limb 3 is :'  

num2str(O13b*180/pi) 'degrees' ]); 
        else disp('Posture Not Valid') 
        end 
    end 
        %disp( 'ALL SOLUTION SET ANGLES ARE IN RADIANS' ) 
        %disp('Solution Set A for limb 1 is :') 
        A1 = [O11a O21a O31]; 
        %disp(A1) 
        %disp('Solution Set B for limb 1 is :') 
        B1 = [O11b O21b O31]; 
        %disp(B1) 
        %disp('Solution Set A for limb 2 is :') 
        A2 = [O12a O22a O32]; 
        %disp(A2) 
        %disp('Solution Set B for limb 2 is :') 
        B2 = [O12b O22b O32]; 
        %disp(B2) 
        %disp('Solution Set A for limb 3 is :') 
        A3 = [O13a O23a O33]; 
        %disp(A3) 
        %disp('Solution Set B for limb 3 is :') 
        B3 = [O13b O23b O33]; 
        %disp(B3) 

  
        %Angle Selection Module 
    if abs(O11a) <= abs(O11b) 
        O11 = O11a; O21 = O21a;  
        J1x = cos(O11+O21)*sin(O31)*cos(O1)-cos(O31)*sin(O1); 
        J1y = cos(O11+O21)*sin(O31)*sin(O1)+cos(O31)*cos(O1); 
        J1z = sin(O11+O21)*sin(O31); 
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        JI1 = a*sin(O31)*sin(O21); 
    else if abs(O11a) > abs(O11b) 
        O11 = O11b; O21 = O21b;  
        J1x = cos(O11+O21)*sin(O31)*cos(O1)-cos(O31)*sin(O1); 
        J1y = cos(O11+O21)*sin(O31)*sin(O1)+cos(O31)*cos(O1); 
        J1z = sin(O11+O21)*sin(O31);   
        JI1 = a*sin(O31)*sin(O21); 
        end 
    end 

  
    if abs(O12a) <= abs(O12b) 
        O12 = O12a; O22 = O22a;  
        J2x = cos(O12+O22)*sin(O32)*cos(O2)-cos(O32)*sin(O2); 
        J2y = cos(O12+O22)*sin(O32)*sin(O2)+cos(O32)*cos(O2); 
        J2z = sin(O12+O22)*sin(O32); 
        JI2 = a*sin(O32)*sin(O22); 
    else if abs(O12a) > abs(O12b) 
        O12 = O12b; O22 = O22b;  
        J2x = cos(O12+O22)*sin(O32)*cos(O2)-cos(O32)*sin(O2); 
        J2y = cos(O12+O22)*sin(O32)*sin(O2)+cos(O32)*cos(O2); 
        J2z = sin(O12+O22)*sin(O32); 
        JI2 = a*sin(O32)*sin(O22); 
        end 
    end 

  
    if abs(O13a) <= abs(O13b) 
        O13 = O13a; O23 = O23a;  
        J3x = cos(O13+O23)*sin(O33)*cos(O3)-cos(O33)*sin(O3); 
        J3y = cos(O13+O23)*sin(O33)*sin(O3)+cos(O33)*cos(O3); 
        J3z = sin(O13+O23)*sin(O33); 
        JI3 = a*sin(O33)*sin(O23); 
    else if abs(O13a) > abs(O13b) 
        O13 = O13b; O23 = O23b;  
        J3x = cos(O13+O23)*sin(O33)*cos(O3)-cos(O33)*sin(O3); 
        J3y = cos(O13+O23)*sin(O33)*sin(O3)+cos(O33)*cos(O3); 
        J3z = sin(O13+O23)*sin(O33); 
        JI3 = a*sin(O33)*sin(O23);  
        end 
    end 

  
    JF = [ J1x J1y J1z; J2x J2y J2z; J3x J3y J3z ]; 
    JI = [ JI1 0 0; 0 JI2 0; 0 0 JI3 ]; 
    % disp( ' Forward Jacobian Matrix : ') 
    % disp (JF) 
    % disp( ' Inverse Jacobian Matrix : ') 
    % disp (JI) 
    Jinv = inv(JI)*JF; 
    J = inv(JF)*JI; 
    % disp( ' Jacobian Matrix : ') 
    % disp(J) 

  
    %Error Evaluation Module 
    %disp ('Stiffness Index Evaluation Module') 

  
    Kp = ks*inv(J*(J')); 

  
    Eigen_Vector = eig(Kp); 

  
    Stiffness_Index = min(Eigen_Vector); 
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    inv_Stiffness_Index = 1 / Stiffness_Index; 

  
end 

Jacobian Error Model 

clc 
clear 
format 
%Data Input Module 
disp('DATA INPUT MODULE') 
a = input('Enter Upper Arm Length:'); 
b = input('Enter Lower Arm Length:'); 
r = input('Enter Fixed Frame Position:'); 
c = input('Enter Moving Frame Position:'); 
pz = sqrt((b)^2-(a^2))+0.000000000001+5; 
pxl1 = input('Value of -ve x-axis Limit:'); 
pxl2 = input('Value of +ve x-axis Limit:'); 
pyl1 = pxl1; 
pyl2 = pxl2; 
x=1; 
y=1; 
i=1; 
pxmat=[]; 
pymat=[]; 
ks = 1; 
%Jacobian Evaluation Module 
[px py] = meshgrid(pxl1:0.25:pxl2); 
for px = pxl1:0.25:pxl2 
    y=1; 
    for py= pxl1:0.25:pxl2 
O1 = 0*pi/180; 
pu1 = px*cos(O1) + py*sin(O1) - r; 
pv1 = -px*sin(O1) + py*cos(O1); 
pw1 = pz; 
k1 = pv1/b; 
O31 = acos(k1); 
if O31 >= 0 && O31<= 180*pi/180 
    l01 = pu1^2+pw1^2+2*c*pu1-2*a*pu1+a^2+c^2-(b^2)*(sin(O31))^2-2*a*c; 
    l11 = -4*a*pw1; 
    l21 = pw1^2+pu1^2+2*pu1*c+2*a*pu1+a^2+c^2-(b^2)*(sin(O31))^2+2*a*c; 
    t11 = (-l11+sqrt(l11*l11-4*l21*l01))/(2*l21); 
    t12 = (-l11-sqrt(l11*l11-4*l21*l01))/(2*l21); 
    if isreal(t11) 
        O11a = 2*atan(t11); 
        O21a = asin((pw1-a*sin(O11a))/b*sin(O31)); 

         

   
    end 
    if isreal(t12) 
        O11b = 2*atan(t12); 
        O21b = asin((pw1-a*sin(O11b))/b*sin(O31)); 

         
    end 
end        
O2 = 120*pi/180; 
pu2 = px*cos(O2) + py*sin(O2) - r; 
pv2 = -px*sin(O2) + py*cos(O2); 
pw2 = pz; 
k2 = pv2/b; 
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O32 = acos(k2); 
if O32 >= 0 && O32<= 180*pi/180 
    l02 = pu2^2+pw2^2+2*c*pu2-2*a*pu2+a^2+c^2-(b^2)*(sin(O32))^2-2*a*c; 
    l12 = -4*a*pw2; 
    l22 = pw2^2+pu2^2+2*pu2*c+2*a*pu2+a^2+c^2-(b^2)*(sin(O32))^2+2*a*c; 
    t21 = (-l12+sqrt(l12*l12-4*l22*l02))/(2*l22); 
    t22 = (-l12-sqrt(l12*l12-4*l22*l02))/(2*l22); 
    if isreal(t21) 
        O12a = 2*atan(t21); 
        O22a = asin((pw2-a*sin(O12a))/b*sin(O32)); 

        
    end 
    if isreal(t22) 
        O12b = 2*atan(t22); 
        O22b = asin((pw2-a*sin(O12b))/b*sin(O32)); 

         
    end 
end  
O3 = 240*pi/180; 
pu3 = px*cos(O3) + py*sin(O3) - r; 
pv3 = -px*sin(O3) + py*cos(O3); 
pw3 = pz; 
k3 = pv3/b; 
O33 = acos(k3); 
if O33 >= 0 && O33<= 180*pi/180 
    l03 = pu3^2+pw3^2+2*c*pu3-2*a*pu3+a^2+c^2-(b^2)*(sin(O33))^2-2*a*c; 
    l13 = -4*a*pw3; 
    l23 = pw3^2+pu3^2+2*pu3*c+2*a*pu3+a^2+c^2-(b^2)*(sin(O33))^2+2*a*c; 
    t31 = (-l13+sqrt(l13*l13-4*l23*l03))/(2*l23); 
    t32 = (-l13-sqrt(l13*l13-4*l23*l03))/(2*l23); 
    if isreal(t31) 
        O13a = 2*atan(t31); 
        O23a = asin((pw3-a*sin(O13a))/b*sin(O33)); 

        
    end 
    if isreal(t32) 
        O13b = 2*atan(t32); 
        O23b = asin((pw3-a*sin(O13b))/b*sin(O33)); 

         
    end 
end 

     
    A1 = [O11a O21a O31]; 

  

    
    B1 = [O11b O21b O31]; 

  

     
    A2 = [O12a O22a O32]; 

  

     
    B2 = [O12b O22b O32]; 

  

    
    A3 = [O13a O23a O33]; 

     

    
    B3 = [O13b O23b O33]; 
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%Angle Selection Module 
if abs(O11a) <= abs(O11b) 
    O11 = O11a; O21 = O21a;  
    J1x = cos(O11+O21)*sin(O31)*cos(O1)-cos(O31)*sin(O1); 
    J1y = cos(O11+O21)*sin(O31)*sin(O1)+cos(O31)*cos(O1); 
    J1z = sin(O11+O21)*sin(O31); 
    JI1 = a*sin(O31)*sin(O21); 
else if abs(O11a) > abs(O11b) 
    O11 = O11b; O21 = O21b;  
    J1x = cos(O11+O21)*sin(O31)*cos(O1)-cos(O31)*sin(O1); 
    J1y = cos(O11+O21)*sin(O31)*sin(O1)+cos(O31)*cos(O1); 
    J1z = sin(O11+O21)*sin(O31);   
    JI1 = a*sin(O31)*sin(O21); 
    end 
end 

  
if abs(O12a) <= abs(O12b) 
    O12 = O12a; O22 = O22a;  
    J2x = cos(O12+O22)*sin(O32)*cos(O2)-cos(O32)*sin(O2); 
    J2y = cos(O12+O22)*sin(O32)*sin(O2)+cos(O32)*cos(O2); 
    J2z = sin(O12+O22)*sin(O32); 
    JI2 = a*sin(O32)*sin(O22); 
else if abs(O12a) > abs(O12b) 
    O12 = O12b; O22 = O22b;  
    J2x = cos(O12+O22)*sin(O32)*cos(O2)-cos(O32)*sin(O2); 
    J2y = cos(O12+O22)*sin(O32)*sin(O2)+cos(O32)*cos(O2); 
    J2z = sin(O12+O22)*sin(O32); 
    JI2 = a*sin(O32)*sin(O22); 
    end 
end 

  
if abs(O13a) <= abs(O13b) 
    O13 = O13a; O23 = O23a;  
    J3x = cos(O13+O23)*sin(O33)*cos(O3)-cos(O33)*sin(O3); 
    J3y = cos(O13+O23)*sin(O33)*sin(O3)+cos(O33)*cos(O3); 
    J3z = sin(O13+O23)*sin(O33); 
    JI3 = a*sin(O33)*sin(O23); 
else if abs(O13a) > abs(O13b) 
    O13 = O13b; O23 = O23b;  
    J3x = cos(O13+O23)*sin(O33)*cos(O3)-cos(O33)*sin(O3); 
    J3y = cos(O13+O23)*sin(O33)*sin(O3)+cos(O33)*cos(O3); 
    J3z = sin(O13+O23)*sin(O33); 
    JI3 = a*sin(O33)*sin(O23);  
    end 
end 
JF = [ J1x J1y J1z; J2x J2y J2z; J3x J3y J3z ]; 
JI = [ JI1 0 0; 0 JI2 0; 0 0 JI3 ]; 

  
% disp( ' Forward Jacobian Matrix : ') 
% disp (JF) 
% disp( ' Inverse Jacobian Matrix : ') 
% disp (JI) 
Jinv = inv(JI)*JF; 
% J = inv(JF)*JI; 
% disp( ' Jacobian Matrix : ') 
% disp(J) 

  
Eigen_Vector = eig(Jinv); 
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Singularity_Index = min(Eigen_Vector); 
Singularity_Index_Matrix(x,y)=Singularity_Index; 
pxmat(x,y)=px; 
pymat(x,y)=py; 
y=y+1; 
    end 
    x=x+1; 

  
end 

  
contour(pxmat,pymat,Singularity_Index_Matrix, 12, 'ShowText', 'on', 

'LineWidth', 2) 
  

Geometric Error Model 

 

clear 

clc   

format 

dOD = input('Enter Input Error: '); 

dO = dOD*pi/180; 

upper_arm = input ('Enter Upper Limb Length: '); 

lower_arm = input ('Enter Lower Limb Length: '); 

fixed_platform = input ('Enter Fixed Platform Length: '); 

moving_platform = input ('Enter Moving Platform Length: '); 

plane = sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001; 

cube_height = input ('Enter Cube Height: '); 

cube_initial_point = input ('Enter Negative Co-ordinate of Cube Edge: '); 

pxl1 = -(cube_initial_point); 

pyl1 = pxl1; 

pxl2 = -1*pxl1;  

pyl2 = pxl2; 

max_Errors = []; 

% ErrorX =[]; 

% ErrorY = []; 

% ErrorZ = []; 

%[px py] = meshgrid(pxl1:0.125:pxl2); 

    z_slice1 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-0.5*cube_height); 

    z_slice2 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-0.475*cube_height); 

    z_slice3 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-0.45*cube_height); 

    z_slice4 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-0.425*cube_height); 

    z_slice5 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-0.40*cube_height); 

    z_slice6 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-0.375*cube_height); 

    z_slice7 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-0.35*cube_height); 

    z_slice8 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-0.325*cube_height); 

    z_slice9 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-0.30*cube_height); 

    z_slice10 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-0.275*cube_height); 

    z_slice11 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-0.25*cube_height); 

    z_slice12 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-0.225*cube_height); 

    z_slice13 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-0.20*cube_height); 

    z_slice14 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-0.175*cube_height); 

    z_slice15 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-0.15*cube_height); 

    z_slice16 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-0.125*cube_height); 

    z_slice17 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-0.10*cube_height); 

    z_slice18 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-0.075*cube_height); 

    z_slice19 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-0.05*cube_height); 

    z_slice20 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)-0.025*cube_height); 

    z_slice21 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)); 

    z_slice22 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)+0.025*cube_height); 
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    z_slice23 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)+0.05*cube_height); 

    z_slice24 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)+0.075*cube_height); 

    z_slice25 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)+0.10*cube_height); 

    z_slice26 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)+0.125*cube_height); 

    z_slice27 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)+0.15*cube_height); 

    z_slice28 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)+0.175*cube_height); 

    z_slice29 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)+0.20*cube_height); 

    z_slice30 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)+0.225*cube_height); 

    z_slice31 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)+0.25*cube_height); 

    z_slice32 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)+0.275*cube_height); 

    z_slice33 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)+0.30*cube_height); 

    z_slice34 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)+0.325*cube_height); 

    z_slice35 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)+0.35*cube_height); 

    z_slice36 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)+0.375*cube_height); 

    z_slice37 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)+0.40*cube_height); 

    z_slice38 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)+0.425*cube_height); 

    z_slice39 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)+0.475*cube_height); 

    z_slice40 = ((sqrt((lower_arm)^2-(upper_arm^2))+0.000000000001)+0.5*cube_height); 

     

    plane_array = [z_slice1, z_slice2, z_slice3, z_slice4, z_slice5, z_slice6, z_slice7, z_slice8, z_slice9, 

z_slice10, z_slice11, z_slice12, z_slice13, z_slice14, z_slice15, z_slice16, z_slice17, z_slice18, z_slice19, 

z_slice20, z_slice21, z_slice22, z_slice23, z_slice24, z_slice25, z_slice26, z_slice27, z_slice28, z_slice29, 

z_slice30, z_slice31, z_slice32, z_slice33, z_slice34, z_slice35, z_slice36, z_slice37, z_slice38, z_slice39, 

z_slice40]; 

zi = 1; 

for i = 1:1:40 

    plane = plane_array(i); 

   xi = 1;  

for px = pxl1:0.25:pxl2 

    yi = 1; 

    for py = pyl1:0.25:pyl2 

     max_Errors = Error_Analysis_Single_Point_Combination(px, py, plane, upper_arm, lower_arm, dO, 

fixed_platform, moving_platform); 

     max_overall = max_Errors(1); 

     Error(xi, yi, zi) = max_overall; 

     ErrorX(xi, yi, zi) = max_Errors(2); 

     ErrorY(xi, yi, zi) = max_Errors(3); 

     ErrorZ(xi, yi, zi) = max_Errors(4); 

      

    yi = yi + 1; 

    end 

    xi = xi + 1; 

end 

zi = zi + 1 

end 

 

max_max_overall = max(Error(:)) 

 

max_x = max(ErrorX(:)) 

%  

max_y = max(ErrorY(:)) 

%  

max_z = max(ErrorZ(:)) 

 

 

function  Xe = Error_Combination(O11, O12, O13, dO, f, e, rf, re, Error_CM_Vector) 

      

     sqrt3 = 3^(1/2); 

     pi = 3.141592653;    

     sin120 = sqrt3/2.0;    
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     cos120 = -0.5;         

     tan60 = sqrt3; 

     sin30 = 0.5; 

     tan30 = 1/sqrt3;      

      

     theta1e = O11 + Error_CM_Vector(1,1)*dO; 

     theta2e = O12 + Error_CM_Vector(1,2)*dO; 

     theta3e = O13 + Error_CM_Vector(1,3)*dO; 

       

     f_e = f; 

     e_e = e; 

      

     rf_e = rf; 

     re_e = re; 

      

      

     t = (f_e-e_e)*tan30/2; 

 

     y1 = -(t + rf_e*cos(theta1e)); 

     z1 = -rf_e*sin(theta1e); 

  

     y2 = (t + rf_e*cos(theta2e))*sin30; 

     x2 = y2*tan60; 

     z2 = -rf_e*sin(theta2e); 

  

     y3 = (t + rf_e*cos(theta3e))*sin30; 

     x3 = -y3*tan60; 

     z3 = -rf_e*sin(theta3e); 

  

     dnm = (y2-y1)*x3-(y3-y1)*x2; 

  

     w1 = y1*y1 + z1*z1; 

     w2 = x2*x2 + y2*y2 + z2*z2; 

     w3 = x3*x3 + y3*y3 + z3*z3; 

      

     

     a1 = (z2-z1)*(y3-y1)-(z3-z1)*(y2-y1); 

     b1 = -((w2-w1)*(y3-y1)-(w3-w1)*(y2-y1))/2.0; 

  

     

     a2 = -(z2-z1)*x3+(z3-z1)*x2; 

     b2 = ((w2-w1)*x3 - (w3-w1)*x2)/2.0; 

  

     

     a = a1*a1 + a2*a2 + dnm*dnm; 

     b = 2*(a1*b1 + a2*(b2-y1*dnm) - z1*dnm*dnm); 

     c = (b2-y1*dnm)*(b2-y1*dnm) + b1*b1 + dnm*dnm*(z1*z1 - re_e*re_e); 

   

     

     d = b*b - 4.0*a*c; 

     if (d < 0) 

         disp('Cant Find Solution'); 

     end 

     

     ze = 0.5*(b+sqrt(d))/a; 

     xe = (a2*ze + b2)/dnm; 

     ye = -(a1*ze + b1)/dnm; 

      

     Xe = [xe ye ze];    
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end 

Level 2 Design: Brent-Drekker Numerical Solution 

clc 
clear 
Function_1 = @Obj_Fun_1; 
Function_2 = @Obj_Fun_2; 
Function_3 = @Obj_Fun_3; 
x0 = [0.001 0.5]; 
tic 
options = optimset('TolFun', 1.0e-10, 'TolX', 1.e-10);  
dO_a = fzero(Function_1, x0, options) 
dO_b = fzero(Function_2, x0, options) 
dO_c = fzero(Function_3, x0, options) 
toc 
 
clc 
clear 

  
Error_X_d = 0.125; 
Error_Y_d = 0.125; 
Error_Z_d = 0.125; 
dO = 0.001:0.001:0.5; 
[r,c] = size(dO); 
for j = 1:1:c 
    value_x(j) = Error_X_Function(dO(j)) - Error_X_d; 
    value_y(j) = Error_Y_Function(dO(j)) - Error_Y_d; 
    value_z(j) = Error_Z_Function(dO(j)) - Error_Z_d; 
end 

  
plot(dO, value_x, dO, value_y, dO, value_z) 
grid on 

  

     

function value = Obj_Fun_1(x) 

 

Error_X_d = 0.125; 

% Error_Y_d = 0.125; 

% Error_Z_d = 0.125; 

 

value = (Error_X_Function(x) - Error_X_d); 

% value(2) = abs(Error_Y_Function(x) - Error_Y_d); 

% value(3) = abs(Error_Z_Function(x) - Error_Z_d); 

 

end 

 

function value = Obj_Fun_2(x) 

 

% Error_X_d = 0.125; 

Error_Y_d = 0.125; 

% Error_Z_d = 0.125; 

 

% value = abs(Error_X_Function(x) - Error_X_d); 

  value = (Error_Y_Function(x) - Error_Y_d); 

% value(3) = abs(Error_Z_Function(x) - Error_Z_d); 

 

end 

 



  Anx-B 
 

100 
 

function value = Obj_Fun_3(x) 

 

% Error_X_d = 0.125; 

% Error_Y_d = 0.125; 

Error_Z_d = 0.125; 

 

% value = abs(Error_X_Function(x) - Error_X_d); 

% value = abs(Error_Y_Function(x) - Error_Y_d); 

value = (Error_Z_Function(x) - Error_Z_d); 

 

end 

 
function Error_X = Error_X_Function(x) 
dOD = x(1); 
% d_b = 0; 
% d_f = 0; 
% d_e = 0; 
% d_a = 0; 
dO = dOD*pi/180; 
upper_arm = 39.998; 
lower_arm = 80.000; 
fixed_platform = 10.0030; 
moving_platform = 9.9990; 
px = -10; 
py = 10; 
pz = 88; 
a = upper_arm; 
rf = a; 
b = lower_arm; 
re = b; 
f = fixed_platform; 
e = moving_platform; 

  
ErrorX = []; 
ErrorY = []; 
ErrorZ = []; 
Xe  = []; 
dX = [];  
max_Errors = []; 

  
r = (f/2)*tan(30*pi/180); 
c = (e/2)*tan(30*pi/180); 
%disp( 'ALL SOLUTION SET ANGLES ARE IN RADIANS' ) 
O1 = 0*pi/180; 
pu1 = px*cos(O1) + py*sin(O1) - r; 
pv1 = -px*sin(O1) + py*cos(O1); 
pw1 = pz; 
k1 = pv1/b; 
O31 = acos(k1); 
if O31 >= 0 && O31<= 180*pi/180 
    l01 = pu1^2+pw1^2+2*c*pu1-2*a*pu1+a^2+c^2-(b^2)*(sin(O31))^2-2*a*c; 
    l11 = -4*a*pw1; 
    l21 = pw1^2+pu1^2+2*pu1*c+2*a*pu1+a^2+c^2-(b^2)*(sin(O31))^2+2*a*c; 
    t11 = (-l11+sqrt(l11*l11-4*l21*l01))/(2*l21); 
    t12 = (-l11-sqrt(l11*l11-4*l21*l01))/(2*l21); 
    if isreal(t11) 
        O11a = 2*atan(t11); 
        O21a = asin((pw1-a*sin(O11a))/b*sin(O31)); 
        %disp(['Actuated Joint Angle for Limb 1 is :'  num2str(O11a*180/pi) 

'degrees' ]); 
    else disp('Posture Not Valid') 
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    end 
    if isreal(t12) 
        O11b = 2*atan(t12); 
        O21b = asin((pw1-a*sin(O11b))/b*sin(O31)); 
        %disp(['Alternate Actuated Joint Angle for Limb 1 is :' 

num2str(O11b*180/pi) 'degrees' ]); 
        else disp('Posture Not Valid') 
    end 
end        
O2 = 120*pi/180; 
pu2 = px*cos(O2) + py*sin(O2) - r; 
pv2 = -px*sin(O2) + py*cos(O2); 
pw2 = pz; 
k2 = pv2/b; 
O32 = acos(k2); 
if O32 >= 0 && O32<= 180*pi/180 
    l02 = pu2^2+pw2^2+2*c*pu2-2*a*pu2+a^2+c^2-(b^2)*(sin(O32))^2-2*a*c; 
    l12 = -4*a*pw2; 
    l22 = pw2^2+pu2^2+2*pu2*c+2*a*pu2+a^2+c^2-(b^2)*(sin(O32))^2+2*a*c; 
    t21 = (-l12+sqrt(l12*l12-4*l22*l02))/(2*l22); 
    t22 = (-l12-sqrt(l12*l12-4*l22*l02))/(2*l22); 
    if isreal(t21) 
        O12a = 2*atan(t21); 
        O22a = asin((pw2-a*sin(O12a))/b*sin(O32)); 
        %disp(['Actuated Joint Angle for Limb 2 is :'  num2str(O12a*180/pi) 

'degrees' ]); 
        else disp('Posture Not Valid') 
    end 
    if isreal(t22) 
        O12b = 2*atan(t22); 
        O22b = asin((pw2-a*sin(O12b))/b*sin(O32)); 
        %disp(['Alternate Actuated Joint Angle for Limb 2 is :'  

num2str(O12b*180/pi) 'degrees' ]); 
        else disp('Posture Not Valid') 
    end 
end  
O3 = 240*pi/180; 
pu3 = px*cos(O3) + py*sin(O3) - r; 
pv3 = -px*sin(O3) + py*cos(O3); 
pw3 = pz; 
k3 = pv3/b; 
O33 = acos(k3); 
if O33 >= 0 && O33<= 180*pi/180 
    l03 = pu3^2+pw3^2+2*c*pu3-2*a*pu3+a^2+c^2-(b^2)*(sin(O33))^2-2*a*c; 
    l13 = -4*a*pw3; 
    l23 = pw3^2+pu3^2+2*pu3*c+2*a*pu3+a^2+c^2-(b^2)*(sin(O33))^2+2*a*c; 
    t31 = (-l13+sqrt(l13*l13-4*l23*l03))/(2*l23); 
    t32 = (-l13-sqrt(l13*l13-4*l23*l03))/(2*l23); 
    if isreal(t31) 
        O13a = 2*atan(t31); 
        O23a = asin((pw3-a*sin(O13a))/b*sin(O33)); 
        %disp(['Actuated Joint Angle for Limb 3 is :'  num2str(O13a*180/pi) 

'degrees' ]); 
    else disp('Posture Not Valid') 
    end 
    if isreal(t32) 
        O13b = 2*atan(t32); 
        O23b = asin((pw3-a*sin(O13b))/b*sin(O33)); 
        %disp(['Alternate Actuated Joint Angle for Limb 3 is :'  

num2str(O13b*180/pi) 'degrees' ]); 
    else disp('Posture Not Valid') 
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    end 
end 

  
    if abs(O11a) <= abs(O11b) 
    O11 = O11a; O21 = O21a;  
    else if abs(O11a) > abs(O11b) 
    O11 = O11b; O21 = O21b;  
        end 
    end 

     
    if abs(O12a) <= abs(O12b) 
    O12 = O12a; O22 = O22a; 
    else if abs(O12a) > abs(O12b) 
    O12 = O12b; O22 = O22b;  
        end 
    end 

     
    if abs(O13a) <= abs(O13b) 
    O13 = O13a; O23 = O23a; 
    else if abs(O13a) > abs(O13b) 
    O13 = O13b; O23 = O23b;  
        end 
    end 

   
     X = [px py pz]; 

      

      
     %----Error Computation Module-------% 

      
   % Error_Vector = [1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1]; 

      
   % k = 7; 
   % nk = nchoosek(Error_Vector,k); 
   % Error_CM=zeros(0,k); 
   % for i=1:size(nk,1) 
   %     pi = perms(nk(i,:)); 
   %     Error_CM = unique([Error_CM; pi],'rows'); 
   % end 

      

    
   Error_CM = [1 1 1 
       1 1 -1 
       1 -1 1 
       -1 1 1 
       1 -1 -1 
       -1 1 -1 
       -1 -1 1 
       -1 -1 -1 
       ]; 

  

     
    for i = 1:8 

         
        Error_CM_Vector = Error_CM(i,:); 

         
        Xe = Error_Combination(O11, O12, O13, dO, f, e, rf, re, 

Error_CM_Vector); 
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        dX = abs(X - Xe); 

         
        dX_Overall = sqrt(dX(1).^2 + dX(2).^2 + dX(3).^2); 

         
        ErrorX(i,1) = dX(1); 
        ErrorY(i,1) = dX(2); 
        ErrorZ(i,1) = dX(3); 

     
        dX_S(i,1) = dX_Overall; 

        
    end 

     
    dX_S; 

     

     
    %max_dX_Overall = max(dX_S); 
    Error_X = max(ErrorX); 
    %max_dX_y = max(ErrorY) 
    %max_dX_z = max(ErrorZ) 

     
end 
  

Workspace Plot    

clc; 

clear all; 

close all 

  

theta_1j = deg2rad(0); 

theta_2j = deg2rad(120); 

theta_3j = deg2rad(240); 

  

r = 0; 

L_1 = 30; 

L_2 = 70; 

k = 1; 

  

for Z = 0:1:100 

for X = -50:1:50 

         

for  Y = -50:1:50 

             

 A_1j = ((X * cos(theta_1j)+ Y * sin(theta_1j)-r).^2 + (X * sin(theta_1j)- Y *cos(theta_1j)).^2 + (Z)^2 + 

(L_2)^2 - (L_1)^2).^2 ... 

    - 4*((L_2)^2) *((X * cos(theta_1j)+ Y * sin(theta_1j)-r).^2 + Z^2); 

 A_2j = ((X * cos(theta_2j)+ Y * sin(theta_2j)-r).^2 + (X * sin(theta_2j)- Y *cos(theta_2j)).^2 + (Z)^2 + 

(L_2)^2 - (L_1)^2).^2 ... 

     - 4*((L_2)^2) *((X * cos(theta_2j)+ Y * sin(theta_2j)-r).^2 + Z^2); 

  

 A_3j = ((X * cos(theta_3j)+ Y * sin(theta_3j)-r).^2 + (X * sin(theta_3j)- Y *cos(theta_3j)).^2 + (Z)^2 + 

(L_2)^2 - (L_1)^2).^2 ... 

    - 4*((L_2)^2) *((X * cos(theta_3j)+ Y * sin(theta_3j)-r).^2 + Z^2); 

  

% if ((A_1j == 0 || A_2j == 0 || A_3j == 0)) %&&(A_1j <= 0 && A_2j <=0 && A_3j<=0)) 

 if (A_1j > 0 || A_2j > 0 || A_3j > 0) 

     

%  Outside = 1; 
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%   

 else 

     P(k,1) = X; 

     P(k,2) = Y; 

     P(k,3) = Z; 

  

     k = k + 1; 

      

 end 

end 

end 

end 

figure 

TRI = delaunay(P(:,1),P(:,2),P(:,3)) 

trimesh(TRI,P(:,1),P(:,2),P(:,3)) 

set(gca,'zdir','reverse') 

 

      
      

 

 

 

 

 

 

 

 

 

      

      
     s     
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