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Abstract 

This dissertation focuses on the development of an intelligent prone methodology for efficient 

and effective handling of scheduling problems. In industrial concerns the issues/problems related 

to resource scheduling arise from abrupt and sudden demand and want patterns due to clustered 

and unbalanced supply of resources and assets. A novel technique in this respect has been 

developed and implemented on cases from industry. This technique takes into stride the 

efficiency demonstrated by various PSO (Particle Swarm Optimization) inspired techniques, 

combined with the intelligent prone ANNs (Artificial Neural Networks). Novelty and uniqueness 

is demonstrated through amalgamation of these approaches to introduce a term: NaACO 

(Neural Augmented ACO). This formulation is done under the umbrella of introduction of yet 

another unique approach i.e i-ACO (Intelligent ACO) theme through Neu(Tau) or Neuτ.This 

thesis also focuses on how ACO takes into account and absorbs the neural aspect of supervised 

and unsupervised learning. The intention of this research is to come up with a unique, 

customized and yet efficient way to handle the problems of the industry under given limitations 

and constraints. A complete model for this approach is built and for the application of the model 

a high technology aviation maintenance industry (case study I) is selected along with a medium 

technology manufacturing setup (case study II). The usage of ACO meta-heuristic is taken as an 

ideal reference point with which every problem set can be converged towards a best fit solution. 

Subsequently ANN is used to come up with a combitorial dialog box to prompt for the inputs 

and evaluate the outputs of the given problem. The thesis contributes to current research by 

introducing NaACO, i-ACO through intelligent scheduling (hence introducing neuτ); which 

proposes many solutions of the existing problems. The discussion and conclusions part at the end 

summarizes the research and the future areas of research are also elaborated to assist and 

appreciate future researchers who are interested to endeavor in this field and related applications. 

 

Key Words: Ant Colony Optimization (ACO), Artificial Neural Networks (ANNs), Neural 

Augmented ACO ( NaACO) 
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CHAPTER 1: INTRODUCTION 

This thesis is an endeavor to propose implement and analyze the augmented capability and 

capacity of meta-heuristic algorithms once they are combined with the self-learning mechanisms. 

The environment used to study these capabilities is a scheduling environment. As such I have 

been able to comprehensively carry out a detailed diagnosis and prognosis of amalgamating a 

meta heuristic i.e. Ant Colony Optimization (ACO) with Artificial Neural Networks (ANNs) to 

evolve a novel model of NaACO (Neural Augmented Ant Colony Optimization) to tackle 

scheduling problems. 

The thesis is organized according to the following flow chart: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER NO.1 

 SCHEDULING AND SCHEDULING 

ALGORITHMS: 

 We have discussed the foundations of 

Scheduling and have elaborated upon the 

usage of various Algorithms used to 

handle scheduling problems. 

CHAPTER NO.2 

SCHEDULING OPTIMIZATION 

TECHNIQUES: 

 The use of Optimization techniques to 

handle scheduling problems has been 

deliberated upon. Various advantages and 

disadvantages of these techniques give a 

clear comparative analysis of their 

capabilities and limitations. 

CHAPTER NO.3 

ARTIFICIAL NEURAL NETWORKS 

(ANNs): 

 Neural Networks are self-learning mechanisms 

which have recently been extensively 

deliberated upon. We have discussed various 

salients of ANNs and have endeavored to 

comprehensively formulate the foundations to 

explain the rationale of their applicability for 

intelligent scheduling 

CHAPTER NO.4 

ANT COLONY OPTIMIZATION 

(ACO): 

 Ant Colony Optimization is one of the 

key meta heuristic techniques which have 

shown remarkable convergence 

capabilities and swift results. An 

elaborated overview of this technique has 

been presented with a review of the 

potency of this technique to tackle 

scheduling problems. 
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IMPORTANT NOTE: At the end of each section “CHAPTER SUMMARIES” are 

presented to summarize the chapters and also to function as a link to the following chapter 

for the purpose of fluency. 

CHAPTER NO.5 

MATHEMATICAL FORMULATION 

OF THE PROBLEM; FOUNDATION 

FOR NaACO: 

 Perhaps the essence to our research is the 

Mathematical Formulation of our problem 

and how we have been able to combine 

the two domains i.e. ACO and ANNs to 

come up with our unique and novel model 

to tackle scheduling problems. 

CHAPTER NO.6 

VALIDATION OF NaACO: 

 The formulated model in the preceding 

chapters is validated by application on 

bench mark problems. 

The results have been formulated and 

discussed to explain the applicability and 

utility of the formulated model. 

CHAPTER NO.8 

CONCLUSION AND FUTURE 

AREAS OF RESEARCH: 

 The novelty of our research and the 

salient achievements have been displayed 

in this chapter. What we have been able to 

extract and achieve both on academic 

body of knowledge front and on practical 

applied domain has been explicitly written 

down to summarize the value of our 

research. 

APPENDICES 

 At the end for all practical and applied purposes problem sets along with codes of scheduling 

problems used for validation are attached as appendix so that the results and the findings can be 

correlated with the quantitative inputs. These problem sets can be very helpful for future 

researchers to carry out their initial workings and gain significant confidence.  

 

CHAPTER NO.7 

APPLIED CASES: 

 After validation the NaACo technique has 

been applied on a case study from the 

industry. The case belongs to a Hi-Tech 

aircraft component manufacturing 

workshop floor (true job shop scheduling 

environment). The results are discussed 

and the formulation is conceived as per 

the discussions in previous chapters. 
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1.1 The need for NaACO: 

Scheduling is the art of allocating shared resources over time to mutually competing activities. In 

machine scheduling the machines are the resources and the jobs are the activities which are to be 

completed over a specified time. This situation has been able to present various search 

algorithms in order to minimize the processing times and hence gain efficiency. The job shop 

scheduling problems are most probably one of the hardest optimization problems which are NP-

complete, Garey & Johson [26]. One of the earliest attempt to tackle such problems was made by 

utilization of branch and bound algorithms Fisher [20], and afterwards some other techniques 

emerged e.g. use of dynamic programming by Pinedo [44]. These methods required a very 

efficient use of operation research techniques and tools which were adopted to suit the locally 

confined problems. Mathirajan et al [4] have proposed efficient heuristic algorithms to resolve 

any large size real-life problems with comparatively low computational effort. In addition to 

these techniques, the use of Artificial Intelligence (AI) has led to many new heuristic search 

algorithms for scheduling problems. The main strength of these heuristic algorithms is that they 

immediately tend to converge on the optimal solutions, thus significantly reducing the processing 

time, but it certainly is very difficult to justify the quality of the solution and the ultimate 

capacity of these algorithms to go for an iterative process is also an aspect which is to be 

evaluated. 

Single machine sequencing problems and their optimization through heuristic approach was the 

beginning of proposing a link between heuristic and optimized research. A more realistic and 

practical method for machine scheduling was provided by using Lagrange method. The method 

used Lagrangian multiplier to evolve an optimal solution and an up gradation loop was also 

incorporated to cater for the iterative nature of the problem.  

In general the processing complexity of the scheduling problem may be formulated and 

summarized according to the following criteria: 

1) Single stage, one processor  

2) Single stage, more than a single processor 

3) Multistage, flow shop 
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4) Multistage, job shop 

The single stage, single processor and single stage multi processors scheduling problems are 

dealt with performing single processing on single or multiple resources. The multistage flow 

shop and job shop problems have an inherent complex nature as they require multiple resources, 

multiple allocations and hence require optimization. Moreover there convergence criteria for 

these problems also vary, some most common convergence criteria are as follows; 

1) Minimum total tardiness 

2) Minimum late/delayed jobs 

3) Minimum resource utilization 

4) Optimal/balance resource loading 

5) Maximization of the production rate 

There are two types of problems, static and dynamic. Static problems are those in which number 

of jobs and their times are available. Dynamic problems are the ones in which the number of jobs 

and the related characteristics change over time. 

The artificial intelligence approach to scheduling problems suggested a better and more compact 

way of describing a “systems approach” towards “intelligent scheduling”. The basic idea of the 

systems approach is to “divide” the problem into more realistic and manageable domains, and 

then “conquer” the problem by combining the desired results for the parts, Zhang et al [79]. The 

idea of the implementation of AI approach towards the solution of scheduling problems is to 

identify “agents” which are “intelligent” and “adaptive”.  

The mentioned agents are the core ingredient and initializers of the AI techniques and present 

most appropriate solution. Such a developed “systems approach ” may not yield “perfect” 

solutions but it does ensure that the system can be formulated and developed to cater the 

adjustments without the frequent intervention and thus it is capable of self-adjusting. NaACO is 

one such technique which is being proposed in this thesis. The development of a “systems 

approach” has led the evolution of a very popular domain of solving the scheduling problems 

known as “neighborhood search methods”. Wilkerson & Irwin [6] developed one of the earliest 
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neighborhood search methods. One of the latest additions to these methods is the Ant Colony 

Optimization (ACO) technique. Like genetic algorithm (GA) and many other methods, Ant 

Colony Optimization (ACO) is basically influenced by the wild search for food (foraging) 

behavior and how they converge to a food source. The extract is in the convergence capability 

taken from “real” and how these “real” ants can be mutated into “artificial”ants which further 

can be used as “agents”. 

ACO has proved itself as a major competitor in terms of its performance when searching for an 

optimal solution. The emergence of this method is related to the evolution of theory of stigmergy 

presented by the French scientist Grasse [28]. The first design for this was proposed by Dorigo 

[36] and its initial implementation was on the Travelling Salesman Problem (TSP). Many 

variants of the basic algorithm were then introduced by Dorigo & Thomas [40] e.g. Ant System 

(AS), ATNS-OAP, MAX-MIN Ant System (MMAS), etc. The successful application of ACO on 

scheduling problems was showcased for a single machine weighted tardiness problem, similarly 

for flow shop scheduling problem the successful applications were also seen by Rajendra et al 

[59]. The constrained problems in terms of resources were done by Merkle et al [43].  

From the initial advancement and the usage of these designs, it was evident that the assorted 

approach including ACO and other limited nature search methods gave a new area for research. 

Huang & Liao [73] presented a hybrid algorithm in which they combined ACO with taboo 

search for JSP. In another research, Niknam et al [35] have proposed a new hybrid evolutionary 

algorithm named HFAPSO to solve the Distribution feeder reconfiguration (DFR), which is the 

combination of fuzzy adaptive particle swarm optimization (FAPSO) and ant colony 

optimization (ACO).  A software system towards development of an intelligent manufacturing 

system was proposed through software by Rossi & Dini [54], for solution of flexible job shop 

problem (FJSP).  

ACO has constantly been known to outperform genetic algorithms (GA) in local search and 

convergence rates. The evidence comes from development of MMAS based heuristic algorithm 

proposed by Girish & Jawahar [46]. All in all, ACO has shown to have an efficacy towards 

providing us an efficient method to resolve scheduling problems and have shown that it 

possesses the core attributes to tackle complex, and ever evolving flexible job shop formulations.  
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Neural networks were traditionally used to represent a network or circuit of biological neurons. 

The biological neural networks are primarily used to maintain the functionality of the neuron 

system.  

The Artificial Neural Networks (ANN) comprise interconnected artificial neurons, which are 

provided with a set of inputs and forget values, and they are “trained” to develop a relationship 

which then can be used to forecast or pre-empt a futuristic value, given a definite “new” input. 

This type of learning is referred as “supervised” learning of ANNs. Perhaps the simplest set of 

neural network is a feed forward neural network, in which the network information moves from 

the input nodes to the hidden nodes (if any) and finally to the output nodes. The feedback loop is 

not present in such a network. The subject loop is present in a back propagation (BP) network, 

which not only moves in the forward direction, but it also incorporates the feedback, backwards 

i.e., the inputs  get continuously configured as composed to the outputs. Neural networks can 

perform two basic functions; they can be used to remember some information about the problem, 

Rumelhart & McClelland [55]. Neural networks can also be used to perform optimization and to 

satisfy the conditions of the given constraints by Hopfield & Tank [33]. The later form of neural 

network handles the job shop scheduling problems. Numerous approaches have been formulated 

to solve the scheduling problems through neural networks, Di Caro [27].  

Two of the most popular approaches are the branch and bound methods Martin [41] and that of 

simulated annealing. The shifting bottleneck procedure proposed also gives sufficient evidence 

that neural networks can be efficiently used to solve scheduling problems. Sastri & Malave [20] 

have applied a Bayesian classifier in the calculation of expected cost per time period and thus 

determining the overall optimal control policy. Neural networks have also joined hands with 

ACO to put forth yet another dimension for the solution of scheduling problems.  

Evidence of combined strength of ANN and ACO is evident from the work of Huawang & 

Wanqing [21] in which the author has used the ANN with ACO, employing the back propagation 

(BP) algorithm for assessing the performance of residential building. Irani & Nasimi [22] have 

developed a technique to use ACO with ANN for permeability estimation of a reservoir. 

Moreover, researchers also have discovered new neuron model, a ground for Compensatory 

Neural Network Architecture (CNNA), having less number of interconnection among neurons 

which decreases the computing time of training (Sinha et al [23]). 
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In this thesis, the proposed combination of ACO with ANN for tackling scheduling problems 

poses a novel paradigm to solve combinatorial optimization problems. In particular, the strength 

of ANN can be optimally utilizing the scheduling, so that the pheromone levels are obtained and 

updated by the use of supervised learning ANN. 

In thisresearch on scheduling, optimization and meta heuristic based methods to gain efficiency 

has significantly been able to point out that the futuristic path to gain self-learned intelligent and 

optimized results is to hybridize the islands of individual automation and perfection and to 

combine seamlessly the concepts of intelligent solution finding algorithms with state-of-the-art 

exploratory and evolutionary mechanisms. The key contribution of this research is to vividly 

engage two distinct approaches to gain mutual advantage and to solve and present a flexible and 

realistic model of solution finding in scheduling.  

The main contributions of this research, although explained in the relevant sections and 

comprehensively discussed in chapter #8, but, for the interest of the reader are as follows: 

 The research has endeavored to produce a reality based solution. 

 This research has been able to formulate an intelligent solution to scheduling 

problems. 

 Formulation of an intelligent combitorial algorithm. 

 Formulation of a heuristic-neural hybrid technique to tackle FJSSP. 

 Development of a flexible and customized quantitative model. 

 This research has used ANN for post conditioning of a Meta heuristic. 

 Amalgamation of Pheromone Up gradation Variable (Tau) of ACO with ANN. 

 This research has extended further the utility of swarm intelligence meta-heuristics 

through the amalgamation of three concepts i.e. algorithms, artificial neural networks 

in the application area of scheduling. 

 Extra-ordinary results were obtained by ACO during this research for the formulation 

of NaACO. 

 Novel formulation and coining of the term NaACO to be referred by future 

researchers. 

 Novel introduction of Neu (Tau). 
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 Novel composition of i-ACO. 

 The true nature of this finding is that through the usage of the proposed model the 

viability and combinations of repetitions at process and sub process levels can also be 

predicted and forecasted hence giving ACO a forecasting capability. 

1.2 Scheduling 

Researchers are focusing on scheduling and scheduling efficiencies since last four decades. 

Scheduling techniques are very important and have multiple usages in manufacturing, and 

services sector. While applying the manufacturing techniques one machine can focus only on one 

activity at one time. A very important topic in research of scheduling is use of complex theory 

with enumerative algorithm. Researchers apply enumerative algorithm to solve NP-hard 

scheduling problems. Researchers use empirical methods to evaluate the performance of 

heuristics. Sometimes it is possible to analyze the theoretical aspect and performance of 

heuristics. In certain case where enumerative algorithms are unsolvable solutions are generated 

by heuristic methods. It is quite possible that the solution might not be optimal but these 

solutions can be very efficient and optimized. 

1.3 Scheduling Models 

If a simple machine scheduling problem is considered it may be described as follows: 

 m=machines to process n jobs. 

 Schedule sample for each machine is i (i = 1; : : : ;m) and each job is j (j = 1; : : : ; n). 

 The process involves one or more than one time interval. 

 A schedule is only feasible if there is no overlapping of time intervals in accordance to 

some job. It simply means that a job cannot be processed by two machines at one time. 

1.3.1 Machine Environment 

A machine can be operated with different configuration combinations. An operation refers  

specifically to period of processing by machine type. In a single-stage production system, each 

job is completed by one operation whereas in multi-stage systems the jobs require more than one 

operation to production.Single-stage systems involve one machine, or m machines operating in 

parallel and each machine performs the same function. It is possible that machines are operating 



9 
 

in parallel but have different speeds while they are identical. In such cases process time on a job 

depends on machine assignment. 

1.3.2 Job Characteristics 

Jobs can be classified as per ability of processing and dependency percentage of the other 

simultaneous jobs. In old scheduling techniques it is considered that the schedule planner has all 

the information relevant to the job and problems. This information contains total number of jobs 

planned in schedule, release dates of the jobs and how much time is required for the process of 

scheduling job. In classical scheduling techniques it is considered that the schedule related 

operations are irreversible. Experimentation proves that some scheduling problems are easy to 

solve while other are difficult. Computational problems can be solved step by step banking on 

hill climbing algorithms. Thus to summarize the basics of scheduling environments following 

terms are defined: 

 Routing:  The path of the operation including the work centers, time limits and the 

stations involved. 

 Bottleneck: A situation in which the resources or the capabilities fall short of the 

required outputs or results. 

 Due date: The time for the completion of an operation and a job sequence. 

 Slack: The time which is included in the due date due to delays and constraints. 

 Queue: A waiting line 

1.3.3 How to Sequence Jobs 

There are several techniques which are available to do short and long term planning to sequence 

the jobs in a scheduling environment. These techniques are based on the capacity and priorities 

set on the onset of scheduling operations. These rules are known as priority rules: 

o There are Decision rules which are governed by the decisions to give priority to a 

particular job or a work station. 

o Local Priority: These rules are applicable on the workstation level where the 

priorities are defined based on time constraints and related loading of that local 

work stations. 



10 
 

o Global Priority: These rules not only consider the local situation but they also 

consider the positions and loadings of the remaining workstations before 

assigning the priorities to the job which are arriving at a particular work station. 

Some of the commonly used priority rules are as follows: 

o FCFS: First come, first served 

o LCFS: Last come, first served 

o EDD: Earliest due date 

o SPT: Shortest processing time 

o LPT: Longest processing time 

o CR: Critical ratio 

1.3.4 Measuring Performance 

The paradigm of performance measurement and ensuring efficiency within the scheduling 

domain has gained spotlight due to the constraints and resource scarcity. It is imperative now that 

the performance is to be quantitatively measured and the improvements be implemented at the 

workshop floor levels to ensure that the machines are adequately utilized. The concept of 

optimization of resources and efforts has been built in order to gain efficiency which is realistic. 

As such there are various benchmarked performance measurement standards such as: 

 Job Flow Time: It measures the difference between the time job is completed and the 

time job was first available for processing. In essence it measures the Responsiveness of 

the scheduling process. 

 Average Jobs in System: It measures the capacity of a process to handle the number of 

total jobs within a system 

 Make span: It is used to measure the efficiency of a batch or lot of jobs. This measure is 

important to translate individual efficiency into collective results. This measures the 

efficiency of a lot or a workstation. 

 Job Lateness: The time taken after the stipulated time allocated for the job, it measures 

the lack of efficiency or the situation arising before the creation of the bottlenecks in a 

scheduling environment. 

 Job Tardiness: It measures how late the job was still completed after its due date. As such 

it is closely related to job lateness but its essence is to measure the due date performance. 
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1.4 Scheduling Algorithms 

Generally, any well clarified calculated process which takes some units as input and gives out 

some units as output is known as an algorithm. Algorithm can also be seen as an instrument for 

solving a well-defined computational problem. The requirement of the query defines the 

required input/output relation. The choice of algorithm relays on the quantity of items to be 

categorized, the stage to which the items are already categorized, the limitations of the inputs etc. 

Apart from the fact of the desired result, an incorrect algorithm can be of great help if the error 

rate of such algorithms be contained.  

1.5 Greedy Algorithms 

Algorithms may go through a series of steps for optimization problem, with a lot of calculation at 

each step. Many optimization problems are such that the use of algorithms on such problems is a 

difficult proposition. Choose what seems best at that particular moment; this is the concept of 

greedy algorithms. This means that it chooses a local optimal solution with a hope that it would 

be a step to reach a globally optimal solution. 

1.5.1 Elements of the greedy strategy: 

This algorithm makes a series of choices as to achieve the optimal solution to a given problem. 

For every decision made in the algorithm, the choice that is right at that moment is picked and 

worked by. The process to develop a greedy algorithm goes through following steps: 

 Determine the optimal substructure of the problem. 

 Develop a recursive solution. 

 Prove that at any stage of the recursion, one of the optimal choices is the greedy 

choice. Thus, it is always safe to make the greedy choice. 

 Show that all but one of the sub problems induced by having made the greedy choice 

are empty. 

 Develop a recursive algorithm that implements the greedy strategy. 

 Convert the recursive algorithm to an iterative algorithm. 
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1.5.2 Greedy-choice property 

The first and a major component is greedy-choice property: which states that a locally made 

optimal solution can lead to a global optimal solution. If widely seen, the selection criteria for a 

choice to be made is considered, the choice that looks best in the current position is opted. At this 

point comes the difference between the two; greedy algorithms and dynamic programming, in 

the later the choice is made on each step considering and basing the choice on the subdivided 

problems, secondly they solve the problem in ascending order. While in greedy algorithms the 

choice is made on the current position and then subdivided problems arise. The choice made may 

be on the current problem but future problems are neglected in them. Hence, dynamic 

programming solves the problem in an ascending order while greedy algorithm solves in a 

descending order, progressing from one greedy problem to another. 

The greedy algorithm enhances the efficiency in the choice being made in a subdivided problem. 

For example, in the activity selection problem, assuming that we had already sorted the activities 

in monotonically increasing order of finish times, we needed to examine each activity just once. 

It is frequently the case that by preprocessing the input or by using an appropriate data structure 

(often a priority queue), we can make greedy choices quickly, thus yielding an efficient 

algorithm. 

Inspired By: Introduction to Algorithms (Thomas H. Cormen, Charles E. Leiserson, Ronald, 

Stein) [24], Neural Networks (Satish Kumar) [25] 

1.6 Chapter Summary 

This chapter focuses on: 

 The introduction of "Scheduling Environments” and the basics of scheduling problems. 

Various terminologies regarding scheduling problem formulation has been explained. 

Moreover emphasis has been developed on how to link jobs with schedules. The concept 

of Job scheduling has been explained in detail.  

  The techniques concerning “Job Sequencing” have been discussed. These techniques are 

based on but not limited to the following priority rules: 
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o FCFS: First come, first served 

o LCFS: Last come, first served 

o EDD: Earliest due date 

o SPT: Shortest processing time 

o LPT: Longest processing time 

o CR: Critical ratio 

o S/RO: Slack per remaining operations 

 The essence of an Algorithm in solving a scheduling problem is its ability to converge to 

a global solution in an efficient and sequential manner. Often the complexity of an 

algorithm overshadows the efficiency characteristic of a solution. Categorization is not 

the sole purpose for the development of algorithms. This research is mostly about 

efficient scheduling algorithms and building an Intelligent Interactive Interface. One 

of the common parameter considered is of speed, i.e. how much time is taken in 

processing out the results.The concept of Greedy Algorithm is to adjust to the 

environment or solution space according to the developing situation or the shape of the 

solution. In scheduling environments the solution adapts to the changing scenarios of the 

problem environments. Hence the algorithms also are required to be adaptive and 

deceptive of the changing surroundings. 
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CHAPTER 2: SCHEDULING OPTIMIZATION TECHNIQUES 

This research is focused on the usage of Ant Colony Optimization (ACO) meta heuristic to solve 

scheduling problems. An additional aspect of forecasting is implemented within the ACO 

through the pheromone up gradation function. Within the domain of Guided Random Search 

Technique this research has converged on Evolutionary Algorithms (EA) due to their mimicry of 

natural laws of existence and survival through which the problems have been able to find 

solutions from the environments in which they arise. This chapter briefly explains the various 

optimization techniques and their drawbacks to ultimately focus on EA and then towards 

selection of ACO as a platform for the formulation of NaACO.  The real need for optimization in 

a scheduling environment is to reach the best realities under given constraints. The methods for 

optimization are distributed into three major types: 

1. Calculus based Techniques 

2. Enumerative Techniques 

3. Guided Random Search Techniques 

 

Figure 2. 1 Optimization Search Techniques 
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2.1 Calculus based Techniques 

Calculus Based Techniques are further divided into two parts: 

 . The Direct Search Methods finds the local maximum moving on a function over the 

relative local gradient directions.   

 The Indirect Methods customarily find the local ends solving a set of non-linear 

equations, and then equating the gradient from the object function to zero. They involve 

techniques like; 

o Langrage multipliers 

o Karush-Kuhn-Tucker (KKT) methods 

o Gradient based methods 

o Conjugate Direction methods 

o Simplex Methods 

2.1.1 Limitations on Calculus based Techniques 

Although the calculus based techniques have their own advantages but there are some 

fundamental limitations associated with these techniques which are enlisted as follows:  

 Provide solutions to uni-modal problems 

 Convexity checks 

 Regularity checks 

 Implicit and coupled constraints involved 

 Cannot be used for NP Hard problems 

 Inefficient search of solution space 

 Mathematical problems in defining real world problem with complete constraints 

 Unsuitable for unconstrained problems (stuck in local optima) 

2.2 Enumerative Techniques 

Enumerative techniques are the methods which involve stepwise solution building and 

subsequent checking for the best fit solution. As compared to calculus based techniques they 

generally give a feasible solution but the computation time required to reach an optimum 

solution is reasonably higher and thus cannot be used for quick solution building.  
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They are mainly divided into following categories: 

 Depth First Search(DFS) Technique 

 Breadth First Search(BFS) Technique 

 Dynamic Programming 

2.2.1 Limitations of Enumerative Techniques 

Enumerative techniques has been applied to a wide range of manufacturing problems which 

involve job shop scheduling. Within this domain e.g. dynamic programming has even provided 

the results within 1% to 2% of global optimum [21]. The point of concern is that the enumerative 

techniques work on independent resolution of the objective functions and as such the other 

associated objective functions of a large problem set are not getting the feedback from the 

previously resolved objective functions. It is inferred that this method of solution is beneficial for 

independent resolution of objective functions and is not effective for a problem having multiple 

objective functions having interdependencies towards the final resolution. All the enumerative 

techniques involve an abundance of computation and become more and more arduous to apply 

virtually in a situation involving more variables and once confronted with a huge search space. 

2.3 Guided Random Search Techniques 

Guided random search techniques can be sub divided into following main categories; 

 Tabu Search 

 Simulated Annealing 

 Hill Climbing 

 Evolutionary Algorithms 

2.3.1 Tabu Search 
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Tabu search is a metaheuristic local search algorithm which can be utilized for combinatorial 

optimization problems. Local search start from considering a solution to be optimum and 

checking its immediate neighborhood for solution finding. It is performed by having a 

recollection structure (which can be short, intermediate or long term) that describes the visited 

solution. Tabu search utilizes the exclusive recollection function to reach to final solution. The 

rudimentary algorithm of Tabu search by Pham et al [49] is described in figure 2. 

Figure 2. 2Flow Chart for Tabu Search 

2.3.1.1 Limitations of Tabu Search 

Tabu search gives initial solution to be accepted in order to evade from a local optimum and uses 

Tabu list for recollection function to counter repetition. It can be applied to both discrete and 

continuous problems. The limitation of Tabu search is that if given a considerable solution space 

the number of iterations required to reach an optimum solution increase considerably. Moreover 

Tabu search is more suited to scheduling problems in which the optimization functions and the 

constraints are linear as nonlinear objective functions tens to increase the solution space.  
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2.3.2 Simulated Annealing (SA) 

Simulated annealing is a method predicated on the heat treatment process of annealing. It is a 

method used for finding a good approximation of global optima in a sizably large search space. 

It is conventionally more solution prone than enumerative methods provided if the objective is 

to find a good approximation of optima rather than to have an exact solution. F. Busetti [21] 

has given an overview on simulated annealing.  

2.3.2.1 Limitations of SA 

SA can deal with high nonlinear models. It’s flexible and can reach to global optima.  However 

this method is totally dependent on the standard of the proposed results and the time needed to 

calculate them. The accuracy of the initial population being considered can have a 

consequential effect on the standard of the results. Both SA and GAs, by comparison, start with 

an initial population, and initially concentrate on the regions of the search space found to have 

high fitness. This is a disadvantage if the optima is in a small region which is surrounded by all 

sides by regions of low fitness. 

2.3.3 Hill Climbing 

Hill climbing is again a local search method that moves towards the solution incrementally by 

having one iteration at a time. If the current solution is closer to the objective function then an 

increment is made to the solution until no further improvement is possible. 

2.3.3.1 Limitations of Hill Climbing 

Hill climbing fails to deliver an efficient solution where time is of essence as it takes incremental 

steps to find an optimum solution and on each step the solution has to be compared with the 

previous solution for fitness. This makes hill climbing an effective technique not having the 

requisite efficiency to converge to an optimum solution quickly. 

 

  



20 
 

2.4 Evolutionary Algorithms (EA) 

EA is a class of evolutionary computation which uses mechanisms inspired by evolution: 

reproduction, mutation, amalgamation etc. The prevalent underlying concept of all these 

algorithms is the survival of the fittest. Evolutionary algorithms have two main distinguishing 

features:  

 Intensification  

 Diversification 

 

Intensification enables them to find the best while diversification compels them to find solutions 

which can define the search space itself. The real strength of all evolutionary algorithms is that 

they intimate the best in nature especially the biological systems evolved in millions of years. So 

the forces that form the substructure of these algorithms can be summarized as: 

 Variation operators that ensure the compulsory diversity 

 Survival of the fittest ensures quality 

 There have been many developments on evolutionary algorithms. Some of them are; 

o Ant Colony Optimization 

o Particle Swarm Optimization 

o Genetic Algorithms 

o Cuckoo Search 

Venter [25] reviewed optimization techniques for non-linear constrained optimization problems 

through EA. Odugva et al [69] summarized the application of evolutionary computing in 

manufacturing industry. Since 1980s, trend of utilizing evolutionary techniques in practical 

applications has been on a rise. Shahram and Iraj [38] proposed a method to solve cell formation 

problem in cellular manufacturing by ACO. Yasuhiro Yamada et al [76] used particle swarm 

optimization for solving layout problems and for optimized resource allocation for a 

manufacturing system. Since this research focuses on evolutionary techniques of optimization, 

brief detail of these techniques has been discussed in the section below. 
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2.4.1 Particle swarm optimization (PSO) 

In PSO, each particle is considered as a bird which is placed in a solution search space [27]. Each 

solution is composed of three dimensions, the current position, precedent best positions and the 

velocity. Eventually, the whole flock is liable to converge to reach the location of food i.e. global 

optimum position. Dr. Umarani et al [17] has discussed applications of PSO. 

2.4.2 Genetic algorithms (GA) 

Genetic algorithms (GA) are the most popular class of EA which are based on Darwin’s theory 

of survival of the fittest and were first developed in 1970’s by Fraser and Bernall. John Holland 

in 1970 first proposed the methodology of GA in detail and gave the initial framework for it. 

Initially a population that consists of a set of solution is considered and then evaluated on the 

substructure of some fitness value. Fitness value is assigned according to the objective function. 

A detail on elimination methods and fitness function can be found in [28]. Encoding technique 

varies with the problem itself. GA has been applied on scheduling problems by utilizing both 

phenotype and binary encoding and there are ample research papers which describe the quality of 

end solutions. The important aspect is the increased time taken by GA to converge on a global 

optima which renders this technique as an effective but inefficient met heuristic. M.K. Araffin et 

al [37] applied fuzzy logic to determine the optimum rate of crossover and mutation for the 

routing of automated guided conveyances. To understand concept of GA and crossover a simple 

example is given in Eiben and Smith [2]. Paris and Perrival [31] proposed that GA can be 

applied to deal with novel design options in manufacturing. In 2006, Omar and Baharum [39] 

proposed GA in solving constrained combinatorial quandary of job shop scheduling. In 2010, Y. 

Yang et al [74] developed a method for the dynamic facility orchestrating by utilizing GA. Apart 

from the manufacturing management problems of scheduling Nafis and Haque [47] proposed GA 

for the optimization of process for rotational components. Cylvio and Desio [36] used GA to find 

optimal velocity in a cruise control system. Kazem et al [5] used GA to optimize point to point 

trajectory for a 3-linked robotic arm. Due to the rapid magnification in this area, hybrid GAs was 

proposed to get more efficient results. Araffin et al [37] used fuzzy logics to control mutation 

and crossover rate in GA and applied it on scheduling. Likewise Kordoghli and Jmali [8] 

combined GA with Fuzzy logic to solve scheduling problems in a textile industry. Adnan Tariq 

[4] solved problem of cell formation for cellular manufacturing system utilizing hybrid GA. 
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2.4.3 Cuckoo search 

Cuckoo Search (CS) optimization is a technique developed in 2010. It has been developed on the 

breeding behavior of cuckoo. There is an abundance of potential in working on this area. Cuckoo 

search was developed in 2010 by Yang and Deb [71]. Levy flights concept has been given to 

ascertain diversification along with intensification of the solution search space. Levy flight 

optimization methods have been discussed in [67]. Cuckoo breeding mechanism can be studied 

in [71] with more detail.The bottom line is that cuckoo tries to mimic the host egg continuously 

while the host tries to find a way to detect the parasitic egg that leads to an arms race each trying 

to survive out the other (survival of the fittest) 

2.5 Conclusion 

The fundamental objective of all of the techniques is to reach optimality,Kristina [34]. The 

primary concern in utlization of any of the discussed method is that they shloud not fall in local 

minimas. Various mathematical models have been developed for scheduling process 

optimization which are based on these techniques. Nourali [58] developed a mathematical model 

for integrated process optimization in a flexible assembly system. Ismail et al [45] considered 

optimization problem for scheduling processes in multiple components flow lines involving 

parallel assembly lines. Krishna and Rao [3] have utilized ant colony approaches while a 

simulated annealig approach has been utilized by Ma et al [22]. Zhang and Nee [79] have 

utilized a simulated annealing approach for process optimization. In all of the mentioned 

techniques the approach is to find a global minma with efficeincy. However, the  missing link is 

the development of a methodology which is not only able to find optimal solution in an efficeint 

manner but is also able to forecast the future scenarios based on this initial finding. This research 

is thus focused on the development of such a technique. The main emphasis of this reseach is to 

focus on development of a rapidly convergent meta heuristic which is not only able to 

effieciently converge on an optimal solution but also should be able to predict the future 

scenarios based on the initial convergence. As such Ant Colony Optimization meta heuristic 

presents a viable platform for incorporating these features as will be discussed in the next 

chapter. 
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2.6 Chapter Summary 

 The concept of optimization in scheduling environment revolves around the core notion 

of gaining the efficiency in convergence whilst respecting the constrained environments. 

The methods for optimization are distributed into three major types: 

o Calculus based Techniques 

o Enumerative Techniques 

o Guided Random Search Techniques 

 

 Each of the above mentioned techniques have their own advantages and drawbacks. In 

scheduling environments combining various techniques has been known to produce 

efficient and effective results.  

 This research is focused on the explanation and usage of Guided Random Search 

techniques. Within this domain this research has converged on Evolutionary 

Algorithms (EA) due to their mimicry of natural laws of existence and survival 

through which the problems have been able to find solutions from the environments 

in which they arise. 

 

 Evolutionary algorithms have two main distinguishing features:  

o Intensification  

o Diversification 

 Intensification enables EAs to find the best solution while diversification compels them 

to find incipient search spaces so that it can be done efficiently and the solution does not 

limits itself in local optima. Hence the potency of all evolutionary algorithms is that they 

intimate the best in nature especially the biological systems evolved in millions of years.  

 So the forces that form the substructure of these algorithms can be summarized as: 

o Variation operators that engender the compulsory diversity 

o Cull acts as a force pushing quality 
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 There have been many techniques which have been developed within evolutionary 

algorithms. Some of them are: 

o Ant Colony Optimization 

o Particle Swarm Optimization 

o Genetic Algorithms 

o Cuckoo Search 

 

 Amongst these various techniques of EA, the Ant Colony Optimization (ACO) technique 

has proven to be the most efficient and convergent friendly. This technique is inspired by 

the foraging behavior of ants and their food search pattern recognition. This technique 

involves the use of Pheromone Trails (a substance secreted by ants on their walking paths 

once they go out for food search) to converge or to continue search based on the 

principles of Reinforcement or Evaporation. 

 

 This research is focused on the usage of ACO to efficiently gain an initial feasible 

solution and then how to combine this solution with the real time picture through the 

usage of Artificial Neural Networks (ANNs). This research is novel in a way that it not 

only addresses optimized results through ACO but it also is targeted to suggest 

interactive and futuristic scenarios by building an interface while keeping these 

techniques in the background. (The concept is continued in the next chapter) 
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CHAPTER 3: ANT COLONY OPTIMIZATION TO FORMULATE NaACO 

This research has been inspired by the efficacy of ACO to converge and hence efficiently gain a 

feasible solution in scheduling problems. This chapter discussed this inspiration and how ACO 

has been used to provide solutions in scheduling domains. 

3.1 Preamble 

This research is novel in design as it combines a formidable convergence meta heuristic i.e. ACO 

with ANN in order to bring about a framework for future predictions. The capabilities of ACO to 

converge and that of ANN to predict are combined to form NaACO. The novelty of this 

combination shall prove worthy of further experimentation for future researchers. 

Even though ants become annoying when they enter in households but by nature, ants are social 

insects; they help the environment, live in the form of group or in large nest named colonies. 

Population of ants in a colony depends on the species. A colony has three types of ants in it: 

Queen Ant, males and female workers. The queen has wings and it is the only ant that lay eggs. 

Males also have wings and their job is to mate with queens, subsequently they do not remain 

alive for long time. The other type of ants called workers does not possess wings.  The number of 

queens a colony could have depends on the species. When queen reaches adulthood, she passes 

her life in laying eggs. Ant colonies possess solider ants too. The crucial tasks played by solider 

ants are: food collection, provide protection to queen, defend colony against enemies, and for 

nesting space and food source attack from colonies of enemies. If they win the battle against 

enemies, they take the eggs from the nest of these ants. Infant ants which emerge from these eggs 

spend their life as a slave in the colony. Collection of food, construction of nest, and to keep eggs 

and babies under great care are the few jobs of the colony. Ants are intelligent creatures. They 

adopt to the environments in which they dwell. According to Tom Collett and Paul Grahamin 

their book chapter “The Visually Guided Routes of Ants”: 

“The foraging routes of ants, as displayed by columns of ants following odor trails, have long 

interested naturalists. Here we focus on the less spectacular visually guided routes of individual 

ants for what these routes can reveal about the spatial knowledge that ants have acquired of 

their local environment and the ways in which ants learn and use this information. The first 

example comes from Santschi (1913), a Swiss physician who spent most of his life practicing 
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medicine in Tunisia, but whose major avocation was the study of ants (see Wehner, 1990 for a 

biographical sketch). The diagram shows the route followed by a single desert ant (Cataglyphis 

bicolor) between its nest and feeding site, as it weaves through scrub. Although, these ants 

forage individually and do not lay chemical trails, the details of the multiple nest bound and food 

bound paths shown here are intriguingly similar from one trip to the next, suggesting the 

importance of visio-motor memories in guiding routes. The second example is taken from a 

monograph by Cornetz (1910). He was a French civil engineer working in Algeria, who also 

spent many hours recording the trails of ants in North Africa. He walked behind them, inscribing 

their paths with a stick in the dust, and afterwards transcribed the tracks onto paper. This 

particular group of tracks displays the result of a revealing experiment. The first trace is the 

homeward path of an ant after it had fed. Just before the ant reached the nest, Cornetz caught 

the ant and carried it in his hat back to the site where it had previously been given sugar. On 

release, the ant repeated its previous homeward route, presumably guided by the same visual 

landmark memories as before.” 

 

Figure 3. 1Path integration in desert ants. (Source: Book chapter “The Visually Guided 
Routes of Ants” by: Tom Collett and Paul Graham) 
 

Real ants do exhaustive search for food source, once they find food they move back to their 

colony by following the shortest path they know. On their way back to home, ants tag their path 

with pheromone. Periodically, the evaporation of pheromone trial will begin to take place when 



27 
 

other ants are not following it. Moreover, if ants find a shortcut route to the food source while 

following the trail then they will deposit their own pheromone trail on their routes. Eventually, 

the shortcut route will be picked by the follower ants. In this way, old trail’s scent will be lost by 

evaporation and the scent of preferred trail will become stronger. Through this strategy, ants 

increase their routes and search the best accurate path to the target.  By doing research, scientist 

have succeeded to copy this strategy with their own description of pheromone trail. This 

“artificial pheromone trail” gives its amazing power of intelligence to ant algorithm, essential for 

meta-heuristics. Achievement of successful path increases the probabilities, which are the 

symbol for the updation of pheromone trail. Whenever a parcel reaches a place after which there 

are many possible paths, it chooses its path by the past experience through conveyed learning 

process. Regular ants in ACO carry packets from one location (origin) to another location 

(destination) in a well-organized way. Initially,probabilistic routing table is used by ants to 

determine which trip to choose to reach the destination. 

In the path, nodes will behave like check points where ants will look at their probabilistic routing 

table. Probability of route to be taken again will be increased, only if that route is chosen by the 

follower ants more frequently and is verified as most efficient route. It stimulates all the regular 

ants to come together on prescribed path and all the packets will choose it too. The ants are 

declared to be stable when this phase is accomplished. These are the steps of the technique to 

identify the fastest path via the topology. Uniform ants are used to catch the quickest route by the 

structure and use more intelligence than the regular ants.  Uniform ants go to seed the 

“probabilistic routing tables” while traveling the network which will guide the worker ants 

through their heuristic to take the finest path.  The aim of these ants is to discover the fastest 

paths to various nodes, so the destination is not as much necessary for them. This is very crucial 

as the origin node may not be familiar with the whole layout of network.  Uniform ants are also 

unresponsive to the probabilities set through the previous route to assist regular ants. This makes 

them unresponsive to the oscillation problems in the network. Backwards reporting methods is 

used by these ants. They give information about their status to the previous node when they 

reach a destination. The router updates their “probabilistic routing table” according to this 

information. Heuristics of these ants are used to pick the next route and to ensure that at a given 

node all the uniform ants are not taking the same path. Each path has equally likely chance to be 

taken. Ants have another trait referred as time to live which confirms that these ants will not 
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forever crawl around the network. At every node variable passes by worker ants is increased by 

one. Ant dies when the value of variable hits a certain limit. The probability of an ant to choose a 

particular path is given by: 

𝑝𝑖𝑗
𝑘 =  

[𝜏𝑖𝑗]𝛼[𝜂𝑖𝑗]𝛽

∑ [𝜏𝑖𝑙]𝛼[𝜂𝑖𝑙]𝛽
𝑙 ∈𝑁𝑖

𝑘
  ; if j ∈ 𝑁𝑖

𝑘,           Equation 3.1 

In the above-mentioned equation, 𝜏𝑖𝑗and 𝜂𝑖𝑗   represent the pheromone quantity and heuristic 

information i.e.η i =  1 / d ij respectively. α& β are the two parameter which regulate the 

amount of pheromone and heuristic information . 

3.2 Why ACO? 

Foraging behavior of real ant colonies is the foundation of Ant colony optimization algorithm. 

Still much work is needed to be invested in its algorithm approaches to improve the performance. 

With the incorporation of local search, Ant Colony Optimization (ACO) became a competent 

approach to solve a variety of optimization problems. In the early days, it was proposed as an 

Ant System (AS), primarily based on the foraging (search for food) behavior of the ants. Ants in 

their colonies, operate intelligently and find food source by randomly exploring the area 

surrounding their nest. When ants discover source of food, they make to and fro repeated trips to 

carry and store food in the nest. In doing so, ants deposit a biochemical material called 

pheromone on their way back to nest. This pheromone trail is source of their indirect 

communication. The role of pheromone trail is to guide the following ants to converge on a 

shortest possible route between their home and source of food. Initially, the ants may follow 

more than one path to the food source. Over time, the shorter paths to the food source will be 

more frequently travelled by the ants and hence, the rate of pheromone growth is faster. This, in 

result will attract more ants to follow these shorter paths to the food source in their subsequent 

trips. Eventually, this positive reinforcement will result in the colony of ants to follow the 

shortest path to reach the source of food and thereby optimizing the ants’ search. Ant Colony 

Optimization is an inspired-algorithm built on the strategy of natural ants, and was introduced to 

solve a number of combinatorial optimization problems (COPs) like Quadratic Assignment 

Problem (QAP), the famous Travelling Salesman Problem (TSP), Knapsack Problem (KP), as 

well as more complicated variants of these problems. Nature of the ACO algorithm makes it 
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extremely suitable to solve the commonly combinatorial and assignment optimization problems 

termed as assignment type problems.  

In addition, ACO has also met success in the domain of Job Shop Problem (JSP), and still it has 

extensively been applied in this area of research. The transposition of the ants’ foraging behavior 

into the framework of algorithm, used to obtain solution for COPs is obtained by the correlation 

between:  

 The food paths followed by the real ants and the appropriate solutions set for the 

combinatorial problem. 

 The quantity of food held by a source and the function to be optimized. 

 The pheromone trail and memory adaption of solution. 

Ant Colony Optimization (ACO) is a community oriented, collaborative algorithm. Artificial 

pheromone trail is the heuristic information and guide for the ants. The pheromone trails are 

associated with solution components. Probability based solution are constructed, which favor 

those solution components which have significant heuristic information and high pheromone 

trail. Randomized construction heuristics implemented by ants are not similar to greedy heuristic. 

In randomized construction heuristic, components are added to partial solution based on 

probability. In general, two phases composed ACO. The first phase deals with the construction 

of solution, while the other phase deal with the updation of pheromone trail. In the second phase, 

pheromone trail is reduced by evaporation factor.  This reduction is required to circumvent the 

limitless accumulation.  Afterward, the amount of pheromone proportionate to the solutions 

quality is deposited by ants to highlight the component of their solutions. Generally, in ACO 

algorithms the most crucial fragment is to determine that how better solution for the coming 

cycles of algorithm get generated by pheromone trail. The main notion is to generate better 

solutions by merging the solution components which have been the fragment of good solutions in 

the previous cycles. The future cycles in ACO algorithm is influenced by past experience thereby 

ACO can fall under the category of adaptive sampling algorithm.  Ant system (AS) is the 

influential work of ACO, Ant system applied in the class of NP-hard problems named TSP. For 

small instances, it is capable to come up with better solution, but when applied to large instances 

the solution quality is not satisfied. Thus, lately, many extensions to induce improvement in the 

performance of basic Ants system in solving TSP have been introduced. Ant Colony System, the 

Rank-Based Version of Ant System, Ant-Q and MAX-MIN Ant System are some of these 
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extensions. In these extensions best found solutions are utilized more strongly, only difference is 

in their search control factors. In a typical manner, this is attained by performing two steps. First 

is in the pheromone trail, assign higher weights to better solutions. In the latter step, deposit extra 

pheromone trail on the global best solution arcs. Whereas, the problem of stagnation occurred 

when over exploitation of search experience causes ants to construct similar solutions.  

The efficiency of ACO algorithm can be improved significantly by integrating local search 

phase, which allow few or all ants to find better solutions with the assistance of local search 

algorithm. Henceforth, hybrid algorithms are the advanced form of ACO algorithms. In hybrid 

algorithms, construction of probabilistic solution done by ants’ colony is combined with the 

following local search phase. Hybrid algorithms construct local optimal solutions which are 

utilized to obtain positive feedback. In the context of broad range of optimization problems, 

ACO has proven itself as a competent approach to find an optimal solution. This technique is 

emerged and linked by the establishment of a theory termed as Stigmergy. French scientist 

Grasse has introduced the theory of stigmergy in 1959.  This discovery addressed the co-

ordination between “agents” and “environments”, based on the concept of an indirect and non-

centralized mechanism. The fundamental concept was that the “agents” perform actions, which 

become the precursor for the “following agent” to perform their subsequent actions by the use of 

the left traces of earlier initiators. Dorigo in 1992 proposed the first algorithm, the travelling 

salesman problem (TSP) was its preliminary application. Many variants of the basic algorithm 

were then introduced by Dorigo & Thomaslike MAX-MIN Ant System (MMAS), ATNS-OAP 

and Ant System (AS), etc. 

3.3 ACO and JSSP 

The job shop scheduling problems are most probably one of the hardest optimization problems 

which are NP-complete [1].One of the earliest attempt to tackle such problems was made by 

utilization of branch and bound algorithms [2]. Numerous other procedures were also settled, one 

of the example of these procedures is use of dynamic programming. [3]. Effective use of 

operation research and tools are necessary in these procedures to complement the localized 

nature of the problem. Mathirajan et al. [4] have proposed efficient heuristic algorithms to 

resolve any large size real-life problems with comparatively low computational effort. In 

addition, for scheduling problems number of new heuristic algorithms has been lodged by the 
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application of artificial intelligence (AI).These heuristic algorithms has strength to immediately 

converge on the optimal solutions, which significantly reduce the processing time, but it is 

certainly very difficult to justify the quality of the solution and the ultimate capacity of these 

algorithms to go for an iterative process is also an aspect which is to be evaluated. 

Single machine sequencing problems and their optimization through heuristic approach was the 

beginning of the attempts to bridge the gap of heuristic and optimization approaches. A more 

realistic and practical method for machine scheduling was provided by using Lagrange method. 

The method use Lagrangian multiplier, to evolve an optimal solution and an updation loop was 

also incorporated to cater for the iterative nature of the problem. In general the processing 

complexity of the scheduling problem may be formulated and summarized according to the 

following criteria  

 Single stage, one processor  

 Single stage, more than a single processor 

 Multistage, flow shop 

 Multistage, job shop 

The single stage, single processor and single stage multi processors scheduling problems deals 

with a single processing step which should be processed on a single or a multiple resources. The 

multistage flow shop and job shop problems are of inherited complex nature and they require 

multiple resources, multiple allocations and optimization. Moreover the convergence criteria for 

these problems also vary, some most common convergence criteria are as follows; 

 Minimum total tardiness 

 Minimum late/delayed jobs 

 Minimum resource utilization 

 Optimal/balance resource loading 

 Maximization of the production rate 
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Besides this, problems are considered to be statics, when the ready time and amount of jobs to be 

processed is available. In contrast, dynamic problems are those in which the characteristics and 

amount of jobs change periodically.   

The JSSP was the first time conferred by Colorni in 1994[24]. The proposed Ant System (AS) 

algorithm has applied longest remaining processing time (LRT) as heuristic information to 

achieve minimized makespan. The results obtained by implementing this algorithm on ORB1, 

MT10, LA21and ORB4 problems were somewhat nearer to higher side. On the other hand, the 

shortest processing time (SPT) in AS algorithm was used by Sjoerd and Carlos [25] to minimize 

the makespan of JSSP. The goal of this research was to understand the influences of various 

setting of parameters for ACO.  In another paper, Ventresca 2004 [25] has applied SPT in ACO 

algorithm to minimize the JSSP makespan, central goal was to explore the solution space 

exploration and notice the influence of pheromone update approach on it. Verification of this 

proposed algorithm was done by testing it on Lawrence series (LA01-LA20). The achieved 

outcomes were compared with Max-min Ant System (MMAS). De-Lin Lou [27] has integrated 

ACO with local search (ACOL) algorithm and used SPT for the role of heuristic information. 

This algorithm had two objectives; prime objective was to minimize the makespan and second 

objective was to equilibrate the workload 

To minimize the makespan of FJSSP, Neureddine 2007 used SPT as meta-heuristic. In this 

paper, two algorithms ACS and ACO were used in amalgamation with Tabu Search (TS) and its 

performance was then compared with other existing meta-heuristic, which revealed the proposed 

algorithm was an effective one. Xio-Lan Zhou 2007 [28] used in Ant Colony Optimization 

(ACS), length of unscheduled tasks left on machine (TLM) as meta-heuristic for minimization of 

makespan of JSSP. The combination of simple construction with the more effective pheromone 

representation was used in the proposed algorithm.  In a traditional manner pheromone laid on 

edges Ph-E, was examine with the proposed algorithm in which pheromone lay on the position of 

the machine required for an operation. On six bench mark problems, the proposed algorithm was 

tested and compared with traditional ACS. It was found that the best outcomes are yielded by 

proposed algorithm. To accomplish minimized makespan of JSSP, J.Heinonen and F. Pettersson 

2007 [29] have employed hybrid ACO. The hybrid ACO algorithm with various visibility 

functions was implemented on MT10 benchmark problem. It was deduced from the analysis that 

better result were achieved by the combination of  Length of unscheduled tasks left in job (TLJ) 
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and Length of unscheduled tasks left on machine (TLM). The comparison between GA and 

proposed algorithm shows that slightly higher results were yielded by proposed algorithm than 

GA. Nilgun Filgah 2007 [30] used SPT for minimization of makespan of JSSP in Ant System 

(AS) algorithm, to fix the basic parameters of AS, author has applied the concept of Design of 

Experience DoE. The finest solution achieved was with higher m values and lower β values. 

Andrea Rossi 2007 [54] used Precedence-ordering Average Starting Time (PAST) to minimize 

the FJSSP makespan. On various benchmark problems, the proposed algorithm was tested. And 

the results came by comparing it with other meta-heuristic found in literature, declared it 

efficient.  

For minimization of FJSSP makespan, Li Ning Xing 2009 [32] in Knowledge Based Ant Colony 

Optimization (KBACO) applied SPT. In this paper, comparison is done between the presented 

algorithm with Controlled Genetic Algorithm CGA, Temporal Decomposition, tabu search (TS) 

and Approach by Localization AL, AL+CGA, PSO+SA. Ultimately, competitive outcomes were 

attained. LiLi 2009 [33] engaged SPT in ACO to minimize the makespan, entire workload and 

acute machine work burden for FJSSP. This algorithm was implemented on the set of 4x5 

problems along 12 operations and 8 x 8 problems along 27 operations and the other 

metaheuristics were matched with the last problem.. SPT heuristic was used by Ponnambalam 

[46] to minimize the FJSSP makespan in MMAS algorithm. The presented algorithm was 

executed on 13 number of benchmark problems, out of which result of seven problems have 

shown similar results and tagged as Best Known Solution (BKS).  Among all one benchmark 

problem was to some extent better than BKS, whereas in five problems the result were slightly 

compelled to the higher side. 

To minimize the makespan, average tardiness and mean flow of JSSP, Apinanthana 2010 [35] in 

ACO algorithm has applied least work remaining in the job (LWR), JDD heuristics and SPT. 

The efficiency of the presented algorithm was checked on Lawerence series (LA-01 TO LA-

012), outcomes verify its strength.  According to the outcomes, the presented algorithm has 

tendency to discover the inspiring solutions. LiLi 2010 [36] work was on the minimization of 

makespan, entire workload and machine work burden for FJSSP. In his research, a better 

algorithm was introduced; SPT heuristics was incorporated in hybrid ACA with Particle Swarm 

Optimization (PSO). This algorithm had received the beneficial characteristics fast convergence 

and positive feedback from PSO and ACA respectively. For 8x8 problems, other meta-heuristics 
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were compared with this algorithm and the found results were slightly better.In the proposed 

algorithm by Rong-Hwa Huang 2012 [57], 2PH-ACO algorithm used SPT heuristic to reduce the 

summed tardiness and weighted earliness of FJSSP. 2PH-ACO is a strong approach used in the 

proposed algorithm, verified on various problems, and analyzed by comparing it with traditional 

ACO and Integer Programming (IP). The performance of 2PH-ACO and ACO was upgraded and 

robust than IP. Beside this, the problem solving ability of 2PH-ACO was better than ACO and it 

is applicable on problems linked to real world. 

All in all, ACO has shown to have an efficacy towards providing an efficient method to resolve 

scheduling problems and have shown that it possesses the cone attributes to tackle complex, and 

ever evolving flexible job shop formulations. 

 

Table 3. 1Application of ACO on various problem sets in scheduling domain 

 

3.4 AI and ACO 

This research is about exploring the forecasting capabilities within a rapidly converging meta 

heuristic. As discussed in the previous section ACO has a great quality of efficiently converging 

to an optimal solution. This section explores the interface of ACO with AI in order to lay down 
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the foundation for NaACO, i.e. development of an intelligent hybrid method which is equally 

capable of rapid convergence and of forecasting the future scenarios. 

The artificial intelligence approach to scheduling problems suggested a better and more compact 

way of describing a “systems approach” towards “intelligent scheduling”. The basic idea of the 

systems approach is to “divide” the problem into more realistic and manageable domains, and 

then “conquer” the problem through amalgamation of achieved results for the parts [5]. The idea 

of the implementation of AI approach towards the solution of scheduling problems is to identify 

“agents” which are “intelligent” and “adaptive”. The necessary commodities and enablers for AI 

techniques are these “agents”, due to which it come up with effective and realistic solutions. 

Such a developed “systems approach ” may not yield “perfect” solutions but it does ensure that 

the system can be formulated and developed to cater the adjustments without the frequent 

intervention and thus it is capable of self-adjusting. The development of a “systems approach” 

has led the evolution of a very popular domain of solving the scheduling problems known as 

“neighborhood search methods”. Wilkerson & Irwin [6] developed one of the earliest 

neighborhood search methods. The concept of these methods correlates to the notion of “hill 

climbing. 

Neural networks were traditionally used to represent a network or circuit of biological neurons. 

The biological neural networks are primarily used to maintain the functionality of the neuron 

system. The artificial neural networks (ANN) are composed of interconnected artificial neurons, 

which are provided with a set of inputs and forget values, and then are “trained” to develop a 

relationship which then can be used to forecast or pre-empt a futuristic value, given a definite 

“new” input. This type of learning is referred as “supervised” learning of ANNs. Perhaps the 

simplest set of neural network is a feed forward neural network, in which the network 

information moves from the input nodes to the hidden nodes (if any) and finally to the output 

nodes. The feedback loop is not present in such a network. Neural networks can perform two 

basic functions; they can be used to remember some information about the problem [18]. Neural 

networks can also be used to perform optimization and to satisfy the conditions of the given 

constraints [19, 20]. The later form of neural networks handles the job shop scheduling 

problems. Numerous approaches have been formulated to solve the scheduling problems through 

neural networks [21]. Two of the most popular approaches are the branch and bound methods 

and simulated annealing. The shifting bottleneck procedure proposed also gives sufficient 
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evidence that neural networks can be efficiently used to solve scheduling problems. Sastri & 

Malave [22] have applied a Bayesian classifier and a BEP network in the calculation of expected 

cost per time period and thus determining the overall optimal control policy. Neural networks 

have also joined hands with ACO to put forth yet another dimension for the solution of 

scheduling problems.  

Evidence of combined strength of ANN and ACO is evident from the work of Huawang & 

Wanqing [23] in which the author has used the ANN with ACO, employing the back propagation 

(BP) algorithm for assessing the performance of residential building. Irani & Nasimi [24] have 

developed a technique to use ACO with ANN for permeability estimation of a reservoir. Another 

research done in the field of medical diagnosis, in which researcher has trained a feed forward 

neural network through ant colony optimization. Moreover, researchers also have discovered 

new neuron model, a ground for Compensatory Neural Network Architecture (CNNA), having 

less number of interconnection among neurons which decreases the computing time of training 

[25]. 

The combination of ACO with ANN for tackling scheduling problems poses a novel paradigm to 

solve combinatorial optimization problems. In particular the strength of ANN can be optimally 

utilized to handle the “assigned” variables in scheduling, so that the pheromone levels are 

obtained and updated by the use of supervised learning ANN. This study is thus formulated to 

put forth such a technique, and at the same time application of this technique on various 

benchmark problems. The results are then formulated and future course of action is also 

suggested for future researchers. The following table (table 3-2) shows the extensive literature 

review carried out in order to ascertain and comprehend the capabilities of ACO during this 

research: 
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Table 3. 2A comprehensive survey done during this research regarding ACO and its 
utilization 
S/No Source problem Attribute 

1 

Attribute 

2 

Attribute 

3 

Attribute 

4 

Attribute 5 

1 Colorni  

1994 

JSSP AS  1 15 The proposed algorithm is 

applied on MT10, ORB1, ORB4 

AND LA21 problems and results 

achieved are slightly on the 

higher side [26]. 

2 Sjoerd 

and 

Carlos 

JSSP AS  1 3 In this paper author has achieved 

the goal to gain some insight of 

influences of different parameters 

setting for ACO. Author has 

applied different parameter 

setting on many benchmark 

problems and achieved 

encouraging results [27]. 

3 Ventresca 

2004 

JSSP ACO Java 1.4 1 3 The main aim of this paper was to 

see the effects of pheromone 

updating technique on solution 

space exploration. Here a new 

technique called foot steeping is 

used which helps in space 

exploration. The proposed 

algorithm is tested on Lawrence 

series (LA01 - LA20) and in nine 

problems the results achieved are 

same as BKS. The results are 

comparable with MMAS [28].   

4 De-lin 

Lou 

2008 

FJSP ACOLS  1 and 12 (3*17) The proposed algorithm 

minimizes the makespan as 

primary objective and balances 

the workload as second objective. 

The results achieved are then 

compared with ACO and 

AL+CGA. The results of ACOLS 

are better than ACO and similar 
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to that of AL+CGA for makespan 

[29]. 

5 Kuo-Ling 

Huang 

2008 

JSSP ACO C++ 1 3 The proposed algorithm has been 

tested on 101 benchmark 

problems and compared with 

other metaheuristics. ACOFT has 

yielded either equally good or 

slightly better results [30]. 

6 James 

Montgom

ry 

2006 

JSSP MMAS C 

language 

4,5 3,16 This paper has utilized a different 

concept in which each machine is 

assigned one among a number of 

available alternative dispatching 

rules for determination of 

sequence for that machine [31]. 

7 Masaya 

Yoshikaw

a 2006 

JSSP ACO + 

GT 

Mathod 

 1 3 The proposed algorithm used GT 

method to reduce the solution 

space. The proposed algorithm is 

tested on four benchmark 

problems and compared with GA. 

The results achieved are similar 

as best known for these 

benchmark problems whereas 

results of GA are slightly on the 

higher side [32]. 

8 Noureddi

ne 2007 

FJSP ACS, 

ACO 

VB 1 3 This paper has presented two 

algorithms ACS and ACO with 

TS and the performance is 

compared with the results 

obtained from other 

metaheuristics and it is found that 

the proposed algorithm is very 

effective [33]. 

9 Xiao-Lan 

Zhuo 

2007 

JSSP ACS  1 13 The proposed algorithm 

combines the simple construction 

and the more effective 

pheromone representation. 

Pheromone laid on edges Ph-E 
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which is a traditional way is 

compared with (proposed) 

pheromone laid on the position 

on the requiring machine of an 

operation. The proposed 

algorithm is then tested on six 

benchmark problem and 

compared with traditional ACS. 

The proposed algorithm yielded 

better results [34].   

10 J. 

Heinonen 

F. 

Pettersson 

2007 

JSSP Hybrid 

ACO 

 1 3,4,12,13

,(12+13) 

The proposed hybrid algorithm is 

applied on MT10 benchmark 

problem using different visibility 

function and it is found that when 

TLJ and TLM are combined (TLJ 

+ TLM) ,this weighted (70-30) 

visibility produces better results. 

The proposed algorithm is 

compared with the GA. The 

proposed algorithm produces 

slightly higher results as 

compared to GA [35]. 

11 Nilgu¨n 

Fıg˘lalı 

2009 

JSSP AS VB 1 3 The author has applied the 

concept of Design of Experience 

DoE for fixing the basic 

parameters of AS. The best 

solutions are found with higher 

values of m and t and with lowerβ 

values [36]. 

12 Andrea 

Rossi 

2007 

FJSP  ACS Visual C 1 14 The proposed algorithm is tested 

on variety of benchmark 

problems and it is compared with 

CDMT-AS, KTS-AS, BS-

MMAS, RD-GA and GT-BDDR 

metaheuristics found in the 

literature. The results achieved by 

the proposed algorithm are 
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generally better than other 

metaheuristics [37]. 

14 Li Ning 

Xing  

2009 

FJSP KBACO Matlab 1 3 The proposed algorithm is 

compared with Temporal 

Decomposition, controlled 

genetic algorithm CGA, approach 

by localization AL, AL + CGA, 

PSO + SA and tabu search. The 

results achieved are competitive 

[38]. 

15 LiLi 

2009 

FJSP ACA  1,8 and 9 3 This paper is applied on 4 x 5 

problems with 12 operations and 

8 x 8 problems with 27 

operations and the last problem is 

compared with other 

metaheuristics and the results are 

found encouraging [39]. 

16 Ponnamb

alam 

FJSP MMAS C 

language 

1 3 The proposed algorithm was 

applied on 13 benchmark 

problems. For seven out of 

thirteen, the results are same as 

best known solution (BKS). In 

one benchmark problem the 

results are slightly better than 

BKS and in five problems the 

results slightly on the higher side 

[40]. 

17 Apinanth

ana 

2011 

JSSP ACO C 

language 

1,2 and 4 3,5,16 The proposed algorithm is tested 

on Lawerence series (LA-01 to 

LA-012) to check the efficacy of 

the proposed algorithm. The 

results show that the proposed 

algorithm is able to find the 

competitive solutions [41].  

18 Zhiqiang 

Zhang 

2010 

JSSP ACO Delphi 7 1 3 The proposed algorithm is 

compared with ACS and Tabu 

Search Algorithm TSAB for a 
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number of benchmark problems 

and it is found that the proposed 

algorithm has provided better 

results than the conventional 

ACS and TSAB [42]. 

19 Li Li 

2010 

FJSP ACA+ 

PSO 

 1,8 and 9 3 The proposed algorithm has the 

advantage of fast convergence of 

PSO and positive feedback of 

ACA. The algorithm is compared 

with other metaheuristics for 8 x 

8 problems and results achieved 

are slightly better [43]. 

20 Tian Jing 

2010 

FJSP ACO  1,6 and 7 3 The proposed algorithm is 

applied on three benchmark 

problems of size 10x10 and 

compared with the two 

population genetic algorithm. The 

results are better than the results 

of genetic algorithm for 

minimization of makespan [44].  

21 Shih-

Pang 

Tseng 

2011 

JSSP HSS-

ACO 

C++ 1 1,11 The proposed algorithm is 

applied on EAS, RAS, AS and 

ACS for testing of 10 benchmark 

problems taken from the 

literature. The results achieved 

improved the solution quality of 

ACO and its variants form 1.23% 

to 4.05% on average [45]. 

22 Rong-

Hwa 

Huang 

 2013 

FJSP 2PH-

ACO 

Lingo 11 3 The proposed algorithm presents 

an effective and robust approach 

2PH-ACO. This approach is 

tested over a variety of problems 

and it is compared with Integer 

Programming (IP) and traditional 

ACO. Both 2PH-ACO and ACO 

perform better than IP. 2PH-ACO 

has better problem solving ability 
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than ACO. 2PH-ACO algorithm 

can be applied to real world 

problems [46]. 

3.5 Chapter Summary 

Ant Colony Optimization is a meta-heuristic technique which has been developed within the 

domain of Evolutionary Algorithms. This optimization technique is inspired by the colonies of 

ants which are in search of food sources. The ants depict a particular pattern through which they 

are able to converge to a food source and then the following ants are able to follow the same path 

through sensing a chemical known as Pheromone secreted by the former searching ants.Regular 

ants in ACO carry packets from one location (origin) to another location (destination) in a well-

organized way. Initially uniform ant set up probabilistic routing table is used by ants to 

determine which trip to choose to reach the destination.  In the path node will behave like check 

points where ants will look at their probabilistic routing table. Probability of route to be taken 

again will be increased, only if that route is chosen by the follower ants more frequently and is 

verified as most efficient route. The probability of an ant to choose a particular path is given by: 

𝑝𝑖𝑗
𝑘 =  

[𝜏𝑖𝑗]𝛼[𝜂𝑖𝑗]𝛽

∑ [𝜏𝑖𝑙]𝛼[𝜂𝑖𝑙]𝛽
𝑙 ∈𝑁𝑖

𝑘
  ; if j ∈ 𝑁𝑖

𝑘,                  

 In the above-mentioned equation, 𝜏𝑖𝑗and 𝜂𝑖𝑗   represent the pheromone quantity and 

heuristic information i.e.η i =  1 / d ij respectively. α& β are the two parameter which 

regulate the amount of pheromone and heuristic information . 

 The ants’ solution construction and the pheromone update are constituted by the two 

main phases of the AS algorithm.  A good heuristic practice in AS, is to set the 

initializing pheromone trails to a unit marginally greater to the quantity of pheromone 

accumulated by ants in a single redundancy. A rough estimation of this unit can be 

achieved by setting ∀(𝑖, 𝑗), 𝜏𝑖𝑗 =  𝜏𝑜 = 𝑚/𝐶𝑛𝑛, where m represents the amount of ants 

and𝐶𝑛𝑛 represents the distance of a trip formulated by the nearest-neighbor heuristic. 

 This research has enabled to establish an extensive link which supplements the 

application of ACO as a means of handling JSSP and FJSSP problems in the most 

efficient of manners. This triggering inspiration has also enabled to add an 
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additional domain of forecasting through ANNs in the proposed model which was 

not previously catered for in classical ACO applied scheduling problems. 
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CHAPTER 4: ARTIFICIAL NEURAL NETWORKS FOR NaACO 

Artificial neural networks form the forecasting domain for NaACO. This aspect of NaACO is 

discussed in this chapter as follows: 

4.1 Introduction 

NaACO is an ANN inspired formulation. In this research ACO is given forecasting capability 

through supervised ANN. This chapter addresses essential aspects of ANN and how is utilized in 

the formulation of NaACO. Essentially a typical generic ANN consists of following layers: 

 Input layer: 

The lower most neurons are called input layer which are represented by X1 to X5 in figure 4. 

 Hidden layer: 

The layers linking the input and the output layers are called hidden layers. 

 Output Layer: 

The layer that gives the output or final result is called the output layer. The output neurons 

are represented by Z1 and Z2 in figure 4. 

 

Figure 4. 1Basic Structure of Artificial Neural Network 
 

The ANN aspect of NaACO is based upon the generic construction of a typical ANN. The input 

layer for NaACO constitutes the inputs from the results of ACO, and the inputs for which the 

forecast is required. The output layer in return gives the answer to the given query in form of a 
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YES or NO.  The complete build-up of ANN for NaACO is presented in the following sections 

of this chapter. 

4.2 Continuous Domain for NaACO 

It is expected for NaACO that the input for which a forecast has to be made can have any 

number from zero to infinity, so instead of working with discrete variables, it is expedient to 

work in the continuous domain. Probabilities for discrete intervals of a feature measurement are 

then replaced by probability density functions p(x) such that the probability of obtaining a feature 

between two limits 𝑥𝑙 and 𝑥𝑢for a particular schedule, make span or a machine processing time 

is given by the area under the p(x) between these two limits: 

𝑃(𝑥𝑙 ≤ 𝑥 ≤ 𝑥𝑢) = ∫ 𝑝(𝑥)𝑑𝑥
𝑥𝑢

𝑥𝑙
       Equation 4.1 

This probability function is defined as Bayes’ Theorem which in terms of a continuous variable 

is written as; 

𝑃(𝒞𝑘|𝑥) =
𝑝(𝑥|𝒞𝑘)𝑃(𝒞𝑘)

𝑝(𝑥)
        Equation 4.2 

Where 𝑝(𝑥|𝒞𝑘) the class conditional density isfunction and 𝑝(𝑥) is the unconditional density 

function given by; 

𝑝(𝑥) = ∑ 𝑝(𝑥|𝒞𝑘)𝐶
𝑘=1 𝑃(𝒞𝑘)        Equation 4.3 

Where the summation is over all C classes. As before, the posterior probabilities must be 

summed to one for consistency. 

 

4.3 Implementing Classification Decisions for NaACO 

Bayes’ theorem is applied with neural networks to come up with the probability distribution over 

the network weights, w, given the training data. This is used to take a decision on the 

classification of a feature vector X, where X is assumed to be a vector of feature measurements 

which in this research are the machine processing times, make-spans etc. The logical and 

straightforward classification rule is one that assigns an observed feature vector X to a class 𝒞𝑘 

that has the largest posterior probability. In other words, assign X to class 𝒞𝑘 such that 

𝑃(𝒞𝑘|𝑋) = max
𝑗

{𝑃(𝒞𝑗|𝑋)}        Equation 4.4 

This essentially translates to saying: assign X to class 𝒞𝑘 such that 
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𝑝(𝑋|𝒞𝑘)𝑃(𝒞𝑘) > 𝑝(𝑋|𝒞𝑗)𝑃(𝒞𝑗)∀𝑗 ≠ 𝑘      Equation 4.5 

Where 𝑃(𝒞𝑘|𝑥) =
𝑝(𝑥|𝒞𝑘)𝑃(𝒞𝑘)

𝑝(𝑥)
 is employed in feature vector form by replacing the single feature 

variable 𝑥 by the feature vector X and where the resulting common factor 𝑝(𝑋) in the 

denominator of the posterior probability cancels out. 

4.4 Placement of a Decision Boundary for NaACO. 

The imperative aspect in the design of a pattern classifier for NaACO is the placement of a 

decision boundary which separates the classes in question. Where should decision region 

boundaries be placed such that the probability of misclassification is minimized? To answer this 

question it is instructive to quantify the probability of an error occurring in the classification 

process. Reverting to the single dimension two class case, the decision boundary partitions the 

input space into two regions 𝑅1and𝑅2. Then the probability 𝑃𝑒𝑟𝑟𝑜𝑟of a feature 𝑥 being assigned to 

the wrong class is given by this equation: 

𝑃𝑒𝑟𝑟𝑜𝑟 = 𝑃(𝑥 is in 𝑅2but is assigned to 𝒞1) + 𝑃(𝑥 is in 𝑅1but is assigned to 𝒞2)  Equation 4.6 

 

This can be quantified as follows: 

𝑃𝑒𝑟𝑟𝑜𝑟 = 𝑃(𝑥 ∈ 𝑅2, 𝒞1) + 𝑃(𝑥 ∈ 𝑅1, 𝒞2) 

= 𝑃(𝑥 ∈ 𝑅2|𝒞1)𝑃(𝒞1) + 𝑃(𝑥 ∈ 𝑅1|𝒞2)𝑃(𝒞2) 

= 𝑃(𝑥 > 𝑥𝑑|𝒞1)𝑃(𝒞1) + 𝑃(𝑥 < 𝑥𝑑|𝒞2)𝑃(𝒞2) 

= ∫ 𝑝(𝑥|𝒞2)𝑃(𝒞2)𝑑𝑥 + ∫ 𝑝(𝑥|𝒞1)𝑃(𝒞1)𝑑𝑥
∞

𝑥𝑑

𝑥𝑑

−∞
    Equation 4.7 

In order to minimize 𝑃𝑒𝑟𝑟𝑜𝑟  the decision boundary for 𝑅1 and 𝑅2 is chosen such that; 

 Point 𝑥 lies in 𝑅1 (class𝒞1) if 𝑝(𝑥|𝒞1)𝑃(𝒞1) > 𝑝(𝑥|𝒞2)𝑃(𝒞2). 

 Point 𝑥 lies in 𝑅2 (class𝒞2) if 𝑝(𝑥|𝒞1)𝑃(𝒞1) < 𝑝(𝑥|𝒞2)𝑃(𝒞2). 
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4.5 Network architectures for NaACO 

For NaACO this research has considered two types of network architectures: 

4.5.1 Single layer feed forward networks: 

The neurons are systemized in layers in this type of structure. In this basic form of a layered 

network there is one way traffic i.e. input layers from where origin node is passed on to the 

output layer. This network can also be called feed forward network as well as acyclic structure.  

 

 

 

 

 

 

 

 

 

 

The following figure explains the phenomenon discussed: 

Such network is referred to as the single layer structure in which the output nodes are called 

“single layer”. 

4.5.2 Multilayer feed forward networks: 

Another type of acyclic structure differentiates itself by having uni or multi hidden layers, whose 

calculation nodes are accordingly called neurons or units. Job of hidden neurons is interring 

venue between the extrinsic input and the structure output in a useful manner. The main function 

of the hidden layers is to take out repetitive values from the dense input given. The input vectors 

are fed forward to the hidden 

layers in between till the ending 

layer which is called the output layer, gives genuine structure replication. 

Figure 4. 2Single-layer Feed Forward Network 
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Figure 4. 3Multilayer Feed Forward Network 
    

For NaACO as the inputs can have multiple values, the Multilayer feed forward network is 

chosen so that the inputs in form of machine times, job schedules and makespan can be 

accommodated to give forecasted outputs after the network has been sufficiently trained. 

4.6 Learning of ANN for NaACO 

The major characteristic of neural network is that it learns from the given atmosphere and so can 

enhance its execution accordingly. A neural structure knows its atmosphere by continuous 

interplay way through adaption implemented to its synaptic weights and inequitableness levels. 

The structure learns more and more with its atmosphere by more interaction to it. Generally there 

are two types of learning atmospheres available: 

4.6.1 Supervised learning: 

In this method the neural structure knows about the atmosphere it is working in by the 

illustrations provided by the teacher. The following figure (4.4) explains the process:  

Figure 4. 4Block Diagram of Supervised Learning 



49 
 

Neural structure replication to inputs is in contrast to the already defined outcome or output. The 

margin between input and output value is then send back to the inputs along with the new inputs 

to get closest to the desired output. 

4.6.2 Unsupervised learning: 

In this process no external teacher is available to inspect the ongoing process .As shown in figure 

4.6 below. 

 

Figure 4. 5Block Diagram of Unsupervised Learning 
 

For the purpose of this research the supervised mode of learning is selected in which the learning 

tasks are performed through inputs and the requisite outputs for the NaACO to prepare itself for 

the forecasting process. However, it is also mentioned here that the unsupervised learning 

environment can be further developed for NaACO and is presented as a future area of research. 

4.7 Learning tasks for NaACO 

4.7.1 Pattern recognition: 

ANNs carries out basic cognitive process by initially going through a coaching lesson, 

throughout that the structure constantly gives a group of input pattern alongside the class to 

which every specific pattern belongs to. After going through with this iterative process the ANN 

is capable of classifying each input to a unique pattern and giving an adequate answer. For 

NaACO the classifying pattern is being generated by giving the inputs in form of machine 
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processing times, the value of tau and the outputs are assigned based on the achieved makespan 

through ACO. Once the input and output data sets have been generated, the ANN is made to 

learn and recognize the pattern within this domain. At the end of pattern recognition the input 

scenarios are changed to cater for inputs based on on-ground situations for the NaACO to return 

the forecasted answer. The structure of NaACO recognizes the pattern provided to it. Following 

features are obtained through supervised learning and pattern recognition through NaACO: 

4.7.2 Control 

The NaACO structure is taught to learn how to control the inputs versus the outputs. The training 

aspect of NaACO refers to the training sets in which the limits of inputs are recognized by 

repeatedly giving those training sets which are defining the solutions outside the limits of the 

problem and associating  

4.7.3 Adaptation 

The atmosphere in which the NaACO structure is trained is not constant, the stats criterion of the 

facts that are given by the structure change with time. In such cases, the common ways of 

assisted learning may not proof to be of any help as they cannot cater the statistical changes that 

will come up in the particular atmosphere. To cater this problem, the neural structures should 

vary itself according to the change in the environment. This changing of the structure according 

to the atmosphere is called adaption of the network. This working of a structure is said to be 

adaptive in nature as it treats each input as a unique one and the learning process of the structure 

runs along the tasks given to it.  

4.7.4 Generalization 

NaACO is continuously fed with multiple scenarios so that the structure designed is smoothly 

generalized. A structure is declared generalized when the input provided and the output given by 

the network is accurate or a new solution comes up which is different from the illustrations 

provided to it.  
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4.8 Limitations of NaACO as regards to the Neural Interface 

In general the limitations of NaACO with respect to the neural aspect are the same as that of the 

ANNs. These limitations also present the future opportunities for researchers to strengthen the 

neural aspect of NaACO.  

The salient limitations are briefly stated below: 

 Low Learning Rate:  

For problems requiring a sizably voluminous and complex specification or having large 

variety of training examples, the network shall require more time to get trained. 

 Imprecision:  

ANNs do not give accurate mathematical solutions they give the most nearest output state. 

 Black box approach:  

ANNs can change provided input to output but does not tell the methodology being used. 

 Limited Flexibility:  

This structure can be used for single system only. For a new system the ANN has to learn the 

patterns again in order to forecast the future scenarios. 

 

4.9 Chapter Summary 

 The advancements in Artificial Intelligence (AI) have enabled researchers to conquest and 

shatter the boundaries of discrete reasoning. Instead run time or continuous solution building 

through intelligently analyzing and learning from the environment is taken as a new 

paradigm of optimized solution building. In this respect the concept of Artificial Neural 

Networks (ANNs) has emerged. This concept is based upon the ability of natural neurons to 

learn from repeated exposure to stimuli and then use the results of these past experiences to 

come up with a logical pattern through which they can predict future scenarios. 

 

 The ANNs learn in Supervised Environment or in an Unsupervised/ Reinforced 

Environment. The former encompasses the use of Inputs and the corresponding Outputs 

through which a pattern is recognized between these variables and predictions are made; 
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whereas in Unsupervised Learning only the Inputs are used to describe a vector which 

represents the Input Environment. Based on this vector the outputs are forecasted and 

predicted. The comparative flows of these two techniques is represented as follows: 

 

 The ability of ANNs to recognize the patterns, link and build relationships amongst likely 

unrelated entities through supervised or unsupervised learnings have inspired this research to 

develop a neural interface in the Pheromone Up gradation domain of ACO (explained in next 

chapters) and then to use this interface to evolve a novel model which can not only be used in 

solving the scheduling problems but also it can be utilized to predict future scenarios/outputs. 

 

 This research used a Multilayered Feed Forward ANN to make it an integral part of the basic 

ACO technique for evolution of the proposed ACO/Neural inspired model. This model has 

been able to combine the fast convergence characteristics of ACO with the pattern learning 

capability of ANN. 
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CHAPTER 5: PROBLEM FORMULATION 

5.1 Introduction: 

In this research a novel technique has been formulated which not only focuses on fast 

convergence and hence the efficiency but also this technique can help in determining the future 

scenarios of scheduling so it is capable of forecasting. Often in industrial and scheduling 

situations the focus is on efficient use of resources which has inspired this research to the 

development of a technique which is close to the ground realities of workshop floors and 

manufacturing environments. ACO has been used to converge and ANNs in combination with 

ACO is used to build up futuristic scenarios. The complete flow of the formulation can be 

summarized as per figure 5.1 below: 

NEW 

INPUTS 

GENERATE 
OPTIMAL 
SOLUTIONS BY 
ACO 

VALIDATE THE 
RESULTS 

CALCULATE 
(TAU) 

GENERATE 
DATA SETS 

APPLY ANN 
FOR 
TRAINING 

NaACO 
SCHEDULER 

FORECA
ST 

YE

S 

NO 

UNCHANG
ED 
SOLUTION 

SCHEDULING 
PROBLEM 

= ACO DOMAIN 

 

= ANN DOMAIN 

Figure 5. 1The formulation flow of the NaACO technique 



54 
 

 

The detailed formulation is divided into two main parts i.e. the ACO and the ANN domain. 

Throughout these two parts a problem set of PC Hu [66] comprising of 100 problems (given in 

Appendix A) has been utilized to ascertain the correctness of the formulation. Before converging 

on the mathematical formulation the scheduling and optimization aspects of the research are 

discussed in section 5.2 and 5.3 below. 

5.2 Scheduling Aspect of the Problem: 

Scheduling on workshop floor involves the optimal use of resources and adhering to the 

constraints of the situation. Typically in scheduling the emphasis is laid upon the efficiency of 

the process and ways and means to eliminate the waste. In static scheduling situations the 

machines and the work centers are static and the jobs are assigned to these machines. Whereas in 

dynamic scheduling environments, job hopping in conjunction with non-idle workstation 

identification is carried out to come up with the most efficient flow of the job. In addition to 

these conditions, in flexible job shop problem (FJSSP) the job can be given to any machine from 

a selected group of machines and it is processed such that the maximum completion time for the 

job ( make span) of all the operations is reduced to minimum. 

As mentioned in chapter.no.1 jobs can be classified as per ability of processing and dependency 

percentage of the other simultaneous jobs. In scheduling techniques it is considered that the 

schedule planner has all the information relevant to the job and problems. These information 

contains total number of jobs planned in schedule, release dates of the jobs and how much time is 

required for process of scheduling job. These problems are often combined with the formation of 

bottlenecks in the process where there is a single machine or a workstation which is causing all 

the delays. Thus to summarize the basic of scheduling domain this research is focused upon: 

 Routing:  The path of the operation including the work centers, time limits and the 

stations involved. 

 Due date: The time for the completion of an operation and a job sequence. 

 Slack: The time which is included in the due date due to delays and constraints. 
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The paradigm of performance measurement and ensuring efficiency (due date, slack) within the 

domain of this research has been linked to the question that how performance be quantitatively 

measured and the improvements be implemented at the workshop floor levels to ensure that the 

machines are adequately utilized. The concept of optimization of resources and efforts have been 

built in order to gain efficiency which is realistic. As such the scheduling domain of this research 

explicitly addresses various benchmarked performance measurement standards such as: 

 Job Flow Time: It measures the difference between the time job is completed and the 

time job was first available for processing. In essence it measures the Responsiveness of 

the scheduling process. 

 Average Jobs in System: It measures the capacity of a process to handle the number of 

total jobs within a system 

 Make span: It is used to measure the efficiency of a batch or lot of jobs. This measure is 

important to translate individual efficiency into collective results. This measures the 

efficiency of a lot or a workstation. 

 Job Lateness: The time taken after the stipulated time allocated for the job, it measures 

the lack of efficiency or the situation arising before the creation of the bottlenecks in a 

scheduling environment. 

The following core issues are addressed in the typical parallel machine scheduling problem: 

o Assigning out jobs to the machines 

o Aligning jobs for each machine 

o How to schedule jobs to the machines? 

o How to assign workers to the machines? 

For NaACO when the job assignment to the machines is done, the initial convergence of the job 

to particular machine develops the basis of its minimum time span to complete the job. In this 

research an approach has been formulated in which the initial convergence is handled by the 

most efficient of algorithms and meta-heuristic technique available and then a method is 

introduced through which the system is able to predict and determine the futuristic values based 
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on the ground realities and the inputs achieved in the process of initial convergence. For the first 

part i.e. initial convergence ACO has been used and for the second part Artificial Neural 

Network has been incorporated and is interfaced with ACO to formulate NaACO (Neural 

Augmented ACO).  

Continuing the problem formulation for NaACO a typical situation is presented in which there 

are n number of workstations/machines/desks. There are m number of jobs/workers etc. which 

are to be sent to those n workstations/machines/desks. Then there are some assumptions which 

are kept to formalize the problem set. Each workstation has some in built variables. These 

variables can be time, capacity, worker skill level, machine limitation etc. In essence these 

variables are considered to be common for all the workstations/machines/desks (a typical 

framework for service lines, manufacturing setups etc.). Now the assumptions/constraints 

developed for the scheduling domain can be explained in the following manner:  

As per the scheduling formulation of the problem the research focuses on scheduling jobs to 

 parallel machines and then based on the best attainable solution through ACO switch to ANN 

training of the results achieved to formulate NaACO which is able to forecast and predict future 

situations. The general assumptions pertinent to this formulation are: 

 Each job has only one operation and once the job is assigned to any machine, it is with 

the machine till that operation is complete. It also means that the initial assignment of the 

jobs to any machine will render that machine to complete the job and then move to 

another machine. 

 The machines have a range of processing times (or other variables) for each job. These 

processing times have different values and represent the variation which each machine 

can show for a particular job. 

 No job pre-empts/ splitting is allowed and hence we are considering a situation in which 

we are not allowing any job hopping or incomplete job retrievals. 

 Any machine can process any job first. This parameter gives us the flexibility to assign 

any job on any machine once we are about to start. For this purpose we require a 

triggering heuristic function which can place the initial job at the right machine. This 
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triggering heuristic can be the machine processing times, the requirement of the process 

i.e. the precedence already set by the process limitations etc.  

 Machine setup times are negligible. Although in reality the machines do have setup times 

and these setup times cause delays in the overall operations, but for our purpose we have 

catered for these delays in the machine processing times as indicated in the above 

constraints. 

 Transportation time between the machines is negligible and the transportation time is 

taken within the operation time of the machines 

 Number of jobs and machines are fixed. 

 All m machines, n jobs are available at time zero. 

 This Overall processing time for the whole setup is the sum of individual process times. 

Now ideally speaking this time has to be minimum to cater for the requirements of 

efficiency and productivity in any setup. Realistically speaking there are many other 

variables which have direct or indirect effects on this total processing time. The effect of 

all of these variables are translated into the processing times of each workstation/machine 

desk.  

5.3 The Optimization paradigm of the Problem: 

As mentioned in chapter.No.2 the concept of optimization in scheduling environment revolves 

around the core notion of gaining the efficiency in convergence whilst respecting the constrained 

environments. This research is focused on the explanation and usage of Guided Random Search 

techniques. Within this domain the research has converged on Evolutionary Algorithms (EA) 

due to their mimicry of natural laws of existence and survival through which the problems have 

been able to find solutions from the environments in which they arise. The details regarding the 

justification of this domain for scheduling problems has already been explained in chapter.no.2. 

Amongst these various techniques of EA, the Ant Colony Optimization (ACO) technique has 

proven to be the most efficient and convergent friendly. This technique is inspired by the 

foraging behavior of ants and their food search pattern recognition. This technique involves the 

use of Pheromone Trails (a substance secreted by ants on their walking paths once they go out 
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for food search) to converge or to continue search based on the principles of Reinforcement or 

Evaporation. The optimization paradigm of this research is hence focused on usage of ACO to 

efficiently gain an initial feasible solution and then to combine this solution with the real time 

picture through the usage of Artificial Neural Networks (ANNs). This research is novel in a way 

that it not only addresses optimized results through ACO but it also is targeted to suggest 

interactive and futuristic scenarios by building an interface while keeping these techniques in the 

background. With reference to the elaborated catharsis of ACO and its application in scheduling 

in chapter.no.3, at this stage it is reiterated that this research has been able to establish an 

extensive link which supplements the application of ACO as a means of handling JSSP and 

FJSSP problems in the most efficient of manners. 

The mathematical formulation of NaACO in the context of section 5.2 and 5.3 is presented in the 

following parts of this chapter. 

5.4 Mathematical Formulation for NaACO 

The mathematical formulation is divided into two parts. The first part (part-I) concentrates on 

formulation for ACO domain and the second part (part-II) focuses on formulation for ANN 

domain (as depicted in figure 5.1). The complete formulation is depicted in the following figure 

Figure 5. 2Mathematical formulation flow for NaACO 
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5.3: 

    

As depicted in figure 5.3 the formulation revolves around formation of a minimizing objective 

function 𝜓 (𝜎)  comprising of the outputs from both the parts of NaACO i.e. the ACO 

component (𝝍𝟐) and the ANN component (𝝍𝟏). This objective function reflects the deviation 

between the realistic solution (i.e. the forecasted value attained through ANN component i.e.𝝍𝟏) 

and the ideal solution (i.e. the ideal value attained through the initial application of ACO i.e.  

𝝍𝟐). If there is no deviation then the objective function returns a zero value (𝝍𝟏 −  𝝍𝟐 = 𝟎). 

This is the minimum value of this objective function as the realistic, on ground solution cannot 

be better than the ideal solution as it will always have some inherent delays, slacks and 

impediments. 

5.4.1 Part-I: ACO Domain of Formulation (Formulation of𝝍𝟐) 

After the evidence required to ascertain the convergence capabilities of ACO and describing the 

scheduling domain of the problem, the formulation now converges on the application of ACO. 

The main concern of scheduling in the widest sense is to allocate resources to tasks over time. 

The formulation is explained as under: 

5.4.1.1Notations of the Problem 

The research focuses on scheduling jobs to  parallel machines as per the following 

constraints: 

 Each job has only one operation. 

 The machines have range of processing times (or other variables) for each job. 

 No job pre-empts/ splitting is allowed; 

 Each job has its own due date; 

 Any machine can process any job first. 
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 Machine setup times are negligible 

 No machine may process more than one job at a time 

 Transportation time between the machines is negligible. 

 Number of jobs and machines are fixed 

 All m machines, n jobs are available at time zero. 

5.4.1.2Proposed Structure of the ACO Algorithm 

The jobs are scheduled as per the application of ACO algorithm. The probability of any job (ant 

as per ACO) to go to any machine (food source as per ACO) is calculated by the following 

equation: 

𝑝𝑖𝑗
𝑘 =  

[𝜏𝑖𝑗]𝛼[𝜂𝑖𝑗]𝛽

∑ [𝜏𝑖𝑙]𝛼[𝜂𝑖𝑙]𝛽
𝑙 ∈𝑁𝑖

𝑘
  ; if j ∈ 𝑁𝑖

𝑘       Equation 5.1 

In this equation the 𝜂𝑖𝑗is the reciprocal of the heuristic function. In this formulation the heuristic 

is the processing time taken by each machine.𝜏𝑖𝑗is the pheromone updation function which is 

used for reinforcement or evaporation. Also α and β are the sensitivity factors for 𝜂𝑖𝑗 and 𝜏𝑖𝑗 

which vary with each problem set being evaluated. The sequence of generation of an algorithm 

for the above mentioned equation (5.1) is as follows: 

 Initialize heuristic parameters. Set n as the set of schedulable jobs for m machines.  

 While (termination condition is not met) do 

 For each ant in the colony do 

 Apply local search. 

 For (n=1, 2, 3… n) do 

 Identify all schedulable jobs and include them in the partial solution. 

 Apply local updating rule to the pheromone value compatible with the solution being 

constructed. 

 End for 
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 Apply global updating rule to the best solution found so far or the iteration best 

solution. 

 Apply local search algorithm to the iteration best solution and in case of 

improvement, update the best solution found so far. 

As indicated earlier to ascertain the correctness of the formulation a set of 100 problems of Pc 

Hu have been utilized. The problem itself comprises of scheduling 12 jobs on 3 machines. These 

problem sets were jointly tackled by the researcher at the start of this research to examine the 

effectiveness of ACO. Each machine has three variable times represented by A, B and E. A 

sample problem set is represented in table 5.1 below: 

 
Table 5. 1Sample problem set used during the formulation (time in secs) 

Job 

Machine 1 Machine 2 Machine 3 

Ai Bi Ei Ai Bi Ei Ai Bi Ei 

1 3 596 6 6 587 8 1 767 2 

2 2 70 9 7 221 1 1 433 9 

3 1 507 6 1 285 5 0 395 8 

4 5 570 4 8 346 7 7 778 7 

5 2 12 7 2 755 8 5 174 4 

6 5 344 1 9 97 3 5 303 1 

7 3 321 7 0 516 9 2 316 2 

8 8 220 7 0 278 8 4 225 2 

9 4 788 5 7 83 7 7 402 5 

10 1 642 2 3 148 9 7 110 4 

11 6 556 3 4 62 8 3 413 1 

12 7 334 3 1 346 4 9 772 3 

As a first step the heuristic parameters are initialized by calculating the 𝜂𝑖𝑗 values. For these 

problem sets the total processing time taken by each machine is given by A+ B/E. So for the first 

row in front of job.no.1 in table 5.1 the total processing times taken by Machine1, Machine2 and 
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Table 5. 2Reciprocal of the heuristic function for the initialization of the first step. 

Machine 3 are given as 102.3, 79.375and  384.5seconds respectively. These times are 

reciprocated to generate the triggering heuristic for initialization of ACO. The reciprocal values 

of the timings is represented in table 5.2 below. These values refer to the formation of 𝜂𝑖𝑗 

through which the probability for an ant to converge to a particular food source shall be 

calculated. 

After the calculation of 𝜂𝑖𝑗 the next step is the calculations of the respective probabilities for ants 

(jobs) to converge to a food source (machines). For example the probability for job 1 in the 

mentioned problem set to go to any of the three machines is calculated as under: 

𝑃𝑟𝑜𝑏 (𝐽𝑜𝑏1 𝑓𝑜𝑟 𝑀𝑎𝑐ℎ𝑖𝑛𝑒 1) =  
𝜂( 𝑀𝑎𝑐ℎ𝑖𝑛𝑒 1)

𝜂 (𝑀𝑎𝑐ℎ𝑖𝑛𝑒 2)+( 𝑀𝑎𝑐ℎ𝑖𝑛𝑒 3)
    Equation 5.2 

This implies;  

𝑃𝑟𝑜𝑏 (𝐽𝑜𝑏1 𝑓𝑜𝑟 𝑀𝑎𝑐ℎ𝑖𝑛𝑒 1) =  
0.00977

0,0125+0.0026
     Equation 5.3 

    = 0.64 

η η η

Ai Bi Ei A+B/E 1/T Ai Bi Ei A+B/E 1/T Ai Bi Ei A+B/E 1/T

1 3 596 6 102.3333333 0.009771987 6 587 8 79.375 0.012598425 1 767 2 384.5 0.00260078

2 2 70 9 9.777777778 0.102272727 7 221 1 228 0.004385965 1 433 9 49.11111111 0.020361991

3 1 507 6 85.5 0.011695906 1 285 5 58 0.017241379 0 395 8 49.375 0.020253165

4 5 570 4 147.5 0.006779661 8 346 7 57.428571 0.017412935 7 778 7 118.1428571 0.008464329

5 2 12 7 3.714285714 0.269230769 2 755 8 96.375 0.010376135 5 174 4 48.5 0.020618557

6 5 344 1 349 0.00286533 9 97 3 41.333333 0.024193548 5 303 1 308 0.003246753

7 3 321 7 48.85714286 0.020467836 0 516 9 57.333333 0.01744186 2 316 2 160 0.00625

8 8 220 7 39.42857143 0.025362319 0 278 8 34.75 0.028776978 4 225 2 116.5 0.008583691

9 4 788 5 161.6 0.006188119 7 83 7 18.857143 0.053030303 7 402 5 87.4 0.011441648

10 1 642 2 322 0.00310559 3 148 9 19.444444 0.051428571 7 110 4 34.5 0.028985507

11 6 556 3 191.3333333 0.005226481 4 62 8 11.75 0.085106383 3 413 1 416 0.002403846

12 7 334 3 118.3333333 0.008450704 1 346 4 87.5 0.011428571 9 772 3 266.3333333 0.003754693

Job

Machine 1 Machine 2 Machine 3
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In this way the probabilities are calculated and the job is assigned to the machine with the 

highest probability. In this formulation the values of α and β are taken as 1 and the pheromone up 

gradation function is not catered for initial convergence. The complete code is written in 

MATLAB and is attached in Appendix B. The same strategy was practiced on all 100 problem 

sets and the results are attached in Appendix C. As a sample the first five problems along with 

their detailed working are shown below. In addition a consolidated result of findings is given to 

summarize the effort.  

Problem_ no 1 

Jobs Assigned 

Machine_1 = 1     4     5     8    10    11    12 

Machine_2 = 2     3 

Machine_3 = 6     7     9 

Make-span = 70.5876 secs 

Problem no = 2 

Jobs Assigned 

Machine_1 = 1     2 

Machine_2 = 3     4     5     6     7     9    11 

Machine_3 = 8    10    12 

Make-span = 61.6470 secs 

Problem no = 3 

Jobs Assigned 

Machine_1 = 2     5     7 
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Machine_2 = 1     4     6     8     9    10    11    12 

Machine_3 = 3 

Make-span = 77.0548 secs 

Problem no = 4 

Jobs Assigned 

Machine_1 = 1     2     3     5 

Machine_2 = 8     9    10    11 

Machine_3 = 4     6     7    12 

Make-span = 101.6560 secs 

Problem no =5 

Jobs Assigned 

Machine_1 = 4    10    11 

Machine_2 = 8    12 

Machine_3 = 1     2     3     5     6     7     9 

Make-span =107.3873 secs 

The resultant make span obtained by this formulation is thus the value of 𝝍𝟐.The summary of the 

results is presented in table 5.3 while addressing the following key factors:  

 The % deviation between the result of ACO and other approaches such as SPT-A/LMC 

heuristics and GA technique with reference to the ideal solution from optimal (or 

exhaustive approach).  

 The comparison of CPU time consumption to solve this set of 100 problems by each of 

the four approaches discussed in above paragraph. 
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Table 5. 3Summary of results of using ACO with other Techniques on a set of 100 
problems 

5.4.2 Part-II: The ANN Domain of Formulation (Formulation of𝝍𝟏) 

One of the major advancements of this research is to develop an objective function which is 

capable of combining the two mechanisms i.e. the ACO and ANN technique. Thus the objective 

function should be able to cater for the convergence efficiency and should also be able to give 

ample reflection on the intelligent aspect of ANNs and future scenario building (as discussed in 

chapter.no.4). A run time or continuous solution building through intelligently analyzing and 

learning from the environment is taken as a new paradigm of optimized solution building. In this 

respect the concept of Artificial Neural Networks (ANNs) has emerged. This concept is based 

S No 
Type of 

approach 

Processor’s 

speed 

Time taken to 

solve all 100 

problems 

Average % Error from 

Exhaustive Search method/ 

Optimal Solution)  

1 

Exhaustive 

Search Method 

(all 4842288 

possible options 

are to be 

explored) 

P-IV, 2.0 GHz 

680397 seconds 

(8 days) 

- 

2 
Genetic 

Algorithm (GA) 
P1V 1.7 GHz 

7469 seconds 

(2 hrs) 

0.20% 

3 
Hu’s SPT-A/ 

LMC 
P-IV, 2.0 GHz 

300 seconds 

(5 mins) 

5.84% 

4 ACO P-IV, 1.7 GHz 0.16 seconds 3.40% 
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upon the ability of natural neurons to learn from repeated exposure to stimuli and then use the 

results of these past experiences to come up with a logical pattern through which they can predict 

future scenarios. The ability of ANNs to recognize the patterns, link and build relationships 

amongst likely unrelated entities through supervised or unsupervised learnings have inspired this 

formulation to develop a neural interface in the Pheromone Up gradation domain of ACO and 

then to use this interface to evolve a novel model which can not only be used in solving the 

scheduling problems but also it can be utilized to predict future scenarios/outputs. In this 

research a multilayered feed forward ANN is used to make it an integral part of basic ACO 

technique for evolution of ACO/Neural inspired model. This model has been able to combine the 

fast convergence characteristics of ACO with the pattern learning capability of ANNs. 

The neural augmentation of ACO through the pheromone up-gradation component has been 

formulated on the ANNs having type of acyclic structures comprising of single or multiple 

hidden layers, whose calculation nodes are accordingly called neurons or units. The detailed 

analysis of these systems has already been covered in Chapter 4. Job of hidden neurons is 

interfacing between the extrinsic input and the structure output in a useful manner. The main 

function of the hidden layers is to take out repetitive values from the dense input given. The 

input vectors are fed forward to the hidden layers in between, till the ending layer which is called 

the output layer, gives genuine structure replication. 

Thus 𝜓1 is termed as “programmer avec des imperfection” or schedule with imperfections which 

has been formulated through the use of ANNs. Including this means that we the “high priority 

ground realities of the situation” are included as   “𝐶𝑖𝑗” in terms of assigned variables. As in this 

research the assigned problem is formulated as follows: 

𝜓1 =  ∑ (𝐶𝑖𝑗⩝𝐶𝑖𝑗
). ( 𝐶𝐼𝐽

𝑏 )        Equation 5.4 

Here 𝐶𝐼𝐽
𝑏  is defined as 

𝐶𝐼𝐽
𝑏   =           1, if 𝐶𝑖𝑗 is integrated into the schedule     Equation 5.5 

           0 otherwise 

And 
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𝐶𝑖𝑗 =  𝑤1𝑇1. + 𝑤2𝑇2 + 𝑤3𝑇3+……..𝑤𝑖𝑇𝑖      Equation 5.6 

Where 𝑤𝑖 represents the weights assigned to machine processing times 𝑇𝑖 .The function 𝐶𝑖𝑗 

calculates the total ground realities or deviations as per the weighted priorities. Thus it is possible 

to control the contribution of different scheduling variables. For this research the weights are 

chosen to be equal to 1. This in itself can present a vast area of future research as the variation in 

the weighted priorities can significantly alter the results and can present intriguing 

possibilities.The emphasis on weighted inputs is because the scheduling problem can request 

many high priority variations and thus there has to be a “fairness” mechanism in order to justify 

the inclusion.  This fairness mechanism has to consider the overall “build-up” of the problem 

itself. This buildup of the problem is not possible if the idealistic solution is not catered for. In 

order to bring intelligence to 𝜓1 and to formulate a mechanism where it is capable of absorbing 

the ground realities and be realistic at the same time the research focuses on developing a neural 

aspect of this variable (as described in Chapter 4ANNs are capable of giving realistic and 

intelligent solutions while keeping in mind various different variables as inputs).  

As discussed in Part-I of the formulation the set of 100 problems have been used for validation 

and building up of the complete NaACO model. In this respect there are three variables to start 

with i.e. A, B and E representing three processing times for machines 1,2 and 3. In order to 

develop a neural environment a mechanism is developed in which the ground realities are 

accounted for and at the same time the mechanism is intelligent enough to present a realistic 

solution. A model is constructed with a simple neural mechanism and the firing state of equation 

5.6 is denoted by a single binary variable S.   

If it fires then S=1 and if it doesn’t fire then S=0. In this case the input is written as: 

  Input = 𝑤𝐴𝑆𝐴 + 𝑤𝐵𝑆𝐵 +  𝑤𝐸𝑆𝐸     Equation 5.7 

Where; 

 𝑆𝐴 is the binary variable designated for decision variable A 

 𝑆𝐵 is the binary variable designated for decision variable B and; 

 𝑆𝐶is the binary variable designated for decision variable C. 



68 
 

Here it is emphasized that these decision variables can assume different values as per the 

machines/ workstations/service centers etc. In addition to assigning neural sense to A, B and E 

the jobs which are fed into the mechanism are also considered as inputs. As such the complete 

input function for this problem can be written in form of equation 5.6 as; 

Input = 𝑤𝐴𝑆𝐴 + 𝑤𝐵𝑆𝐵 +  𝑤𝐸𝑆𝐸 + 𝑤𝐽𝑆𝐽      Equation 5.8 

The weights assigned to these binary variables can vary from 0 to 1. These weights denomination 

is referent to the importance given to any one variable in relation with the other variables. The 

equal assignment of weights enable a fair initial or starting sequence in which all the variables 

are weighed equally. This equal denomination of weights construct the basics for this research to 

develop a convergent and a realistic mathematical model to handle scheduling problem. The 

input queries for the neuron triggering is generalized as; 

𝑆𝑖 → 1:                𝑖𝑛𝑝𝑢𝑡 → 𝑖𝑛𝑝𝑢𝑡 +  𝑤𝑖      Equation 5.9 

As such the neural environment shall work on the annotations of Excitation or Inhibition. If 

input↑ the environment shifts towards Excitation and if input↓ then we shift towards Inhibition. 

As far as the output on which the neural network is to be trained is concerned, a value is assigned 

to it which is close to the best results. This situation not only makes the solution effective but 

efficient as well.  

In order to formulate the neural environment for ACO the pheromone up-gradation variable Tau 

has been focused. The reason for this selection is explained in Chapter 4. The pheromone 

upgradation mechanism in ACO has been used to reconsolidate the efforts of the ants. In this 

research the reconsolidation property of this function is further extended towards the intended 

acquisition of the forecasting property. The physical pheromone is the chemical which is 

extracted by the ants as they wander in the search of food sources.  The pheromone in physical 

ants is different than from artificial ants which make use of this mechanism to validate their 

solutions and search for global optimas. To reiterate this point, the following table shows the 

selection of inputs for Tau in various ACO variants. 
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Table 5. 4Values for pheromone updation in various ACO variants. 

S No ACO Variant 𝛼 𝛽 𝜌 M 𝜏𝑜 

1 AS 1 2 𝑡𝑜 5 0.5 N 𝑚/𝐶𝑛𝑛 

2 EAS 1 2 𝑡𝑜 5 0.5 N (𝑒 + 𝑚)/𝜌𝐶𝑛𝑛 

3 ASrank 1 2 𝑡𝑜 5 0.1 N 0.5𝑟(𝑟 − 1)/𝜌𝐶𝑛𝑛 

4 MMAS 1 2 𝑡𝑜 5 0.02 N 1/𝜌𝐶𝑛𝑛 

5 ACS - 2 𝑡𝑜 5 0.1 10 1/𝑛𝐶𝑛𝑛 

Where m denotes the number of jobs and n denotes the number of machines to be visited. The 

given values of the parameters are for the reference as these values give good solutions. By 

looking at the composition of Tau, it is deduced that it is composed of inputs pertaining to the 

entire problem for which one wants to solve through ACO. Thus if this variable and the 

associated inputs are used to train an ANN with the outputs, the ACO can be augmented to 

forecast and predict for the future scenarios. For the scheduling problem in discussion Tau is 

calculated as per table 5.5 
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In the above mentioned table (5.5) tau1 is the value of Tau calculated for machine 1 while 

keeping in view all of the jobs, and tau2 and tau3 are for machines 2 and 3 respectively.The input 

set comprising of machine times of machine 1, 2 and 3; tau values of machine 1, 2 and 3 is then 

neutrally trained against the output set of make spans achieved in part-I. The network is trained 

through the employment of a 3-layered network for this model. The training is done as per the 

following scheme: 

  

Table 5. 5Values of Tau1, Tau2, Tau3, calculated on Machine 1, 2, and 3. 

Ai Bi Ei a+b/e tau1 Ai Bi Ei a+b/e tau2 Ai Bi Ei a+b/e tau3

1 3 596 6 102.3333333 0.029315961 6 587 8 79.375 0.037795276 1 767 2 384.5 0.007802

2 2 70 9 9.777777778 0.306818182 7 221 1 228 0.013157895 1 433 9 49.11111 0.061086

3 1 507 6 85.5 0.035087719 1 285 5 58 0.051724138 0 395 8 49.375 0.060759

4 5 570 4 147.5 0.020338983 8 346 7 57.42857143 0.052238806 7 778 7 118.1429 0.025393

5 2 12 7 3.714285714 0.807692308 2 755 8 96.375 0.031128405 5 174 4 48.5 0.061856

6 5 344 1 349 0.008595989 9 97 3 41.33333333 0.072580645 5 303 1 308 0.00974

7 3 321 7 48.85714286 0.061403509 0 516 9 57.33333333 0.052325581 2 316 2 160 0.01875

8 8 220 7 39.42857143 0.076086957 0 278 8 34.75 0.086330935 4 225 2 116.5 0.025751

9 4 788 5 161.6 0.018564356 7 83 7 18.85714286 0.159090909 7 402 5 87.4 0.034325

10 1 642 2 322 0.00931677 3 148 9 19.44444444 0.154285714 7 110 4 34.5 0.086957

11 6 556 3 191.3333333 0.015679443 4 62 8 11.75 0.255319149 3 413 1 416 0.007212

12 7 334 3 118.3333333 0.025352113 1 346 4 87.5 0.034285714 9 772 3 266.3333 0.011264

Job

Machine 1 Machine 2 Machine 3
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After training the network the simulation scheme is generated as follows: 

par1 = input ('Enter Time Machine 1: '); 

par2 = input ('Enter Time Machine 2: '); 

par3 = input ('Enter Time Machine 3: '); 

par4 = input ('Enter Requested Make-span: '); 

Res = sim ([par1;par2;par3;par4]); 

If res >= 0.8 

    Display ('Yes'); 

Else 

    Display ('No'); 

End 

  

Figure 5. 3Training of data sets for NaACO 
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This simulation scheme (figure 5.5) prompts the user regarding the inputs pertaining to the 

current situation and gives a response in terms of feasibility of the combination or otherwise. If 

feasible the answer is “Yes” and if infeasible the answer is “No”. If the answer is “Yes”, the 

“make span” which has been accepted in the combination is the value of ψ1. The objective is to 

“minimize” the difference between ψ 1 and ψ 2.  Thus the objective function for this formulation 

is given as: 

Minimize     𝜓 (𝜎)= 𝜓1 − 𝜓2        Equation 5.10 

 

Thus for the five instances described in the formulation part-I earlier the values of ψ1 are 70.58, 

61.64, 77.054, 101.65 and 107.38 respectively. The suggested make span in the figure is the 

value of ψ2. Hence the value of the objective function is: 90 – 70.58 = 19.42. The value of the 

objective function is measured against the real time gap and leverage available at the scheduling 

floor and the priority set by the operators. The above model is thus referred as a continuous time 

model, as it considers a stochastic behavior of a single job. The complete formulation is termed 

as NaACO (Neural Augmented ACO).The suggested approach is capable of handling very 

Figure 5. 4Obtaining value forψ1 in NaACO 
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large data sets and is able to return the accurate results within a very short span of time. This 

makes NaACO unique as it has given forecasting and forward thinking capabilities to ACO 

while keeping the fast convergence facet of conventional ACO in hand. 

5.4.3 Complete Formulation of NaACO 

A complete mathematical formulation model for NaACO is summarized as follows: 

To schedule jobs to  parallel machines; 

For each job represented by j with the total number of jobs as n, the constraints of the problem 

are; 

∑ 𝑗𝑖
𝑛
𝑖=1  ϵ 𝑚1 𝑜𝑟 𝑚2 𝑜𝑟 𝑚3 … . . 𝑚𝑛at any time t    (1)  

Constraint (1) refers to the notion that each job has to be designated to any of the machines at 

any time. The complete designation is mandatory.  

⩝𝑗𝑖 (𝑖=1,2,,.𝑛) ∉ (𝑚1, 𝑚2), (𝑚1, 𝑚3), ( 𝑚2, 𝑚3)… ( 𝑚𝑖, 𝑚𝑗)   (2) 

Constraint (2) addresses that for all jobs considered there is no job splitting allowed i.e. the jobs 

cannot be split in between any operation once the work has already started on a particular job. 

𝑚𝑡1 +  𝑚𝑡2 +  𝑚𝑡3 + ⋯ 𝑚𝑡𝑛 ≤  𝑚𝑇𝑡      (3) 

Constraint (3) iterates that the sum of the total processing times of each machines for each job 

cannot exceed the total processing time of all machines combined. 

𝑚𝑡1, 𝑚𝑡2, 𝑚𝑡3, … 𝑚𝑡𝑛 ˃0       (4) 

Constraint (4) reflects on the constraint that the machine processing times adhere to the non-

negativity constraint. 

𝑚𝑡(𝑖)𝑠𝑒𝑡𝑢𝑝  ≈ 0        (5) 
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The setup times as depicted in constraint (5) for the machines which are to be scheduled are 

negligible. These times are catered for in the total processing times for each machine. 

𝑚𝑡(𝑖)𝑡𝑟𝑎𝑛𝑠𝑝 ≈ 0        (6) 

The transportation time between the machines is negligible as is explained in constraint (6). 

∀ 𝐽, (𝐽 = 1 … . 𝑛); ∑ 𝑃𝑖
𝑛
𝑖=1 = 𝑃.T      (7) 

Form condition (7) the total process time (P.T) is the sum of all individual process times for all 

jobs which are scheduled on all the machines. 

To further reiterate the constraints in problem formulation the first constraint is regarding the job 

allotment to machines. It explains that each job has to belong to any one machine at any given 

time moreover once the jobs are assigned to a machine they cannot be removed before their 

completion.The jobs are constrained in this fashion that they cannot belong to two or more 

machines at one time, hence the jobs cannot be split and moreover each job has to go to one 

machine. If this situation is altered this presents yet another paradigm for future research in 

which the job splitting situation greatly increase the applicability of NaACO for FJSSP. The total 

machine time cannot exceed the total time taken by the all machines involved, which means that 

each machine has to adhere to the total process time limitation. This also reflects the tolerance 

available with the scheduler to cater for the minimum and maximum time. Moreover the 

machine setup times and the machine transportation times are also two variables which can be 

earmarked for further application of NaACO in terms of the determination of allowances 

available in these two domains while predicting for the best realistic solution. 

After description of the constraints now the problem is formulated as; 

Minimize     𝜓 (𝜎)= 𝜓1 − 𝜓2 

𝑊ℎ𝑒𝑟𝑒: 

𝜎 =  ∑ 𝑃𝑖

𝑛

𝑖=1
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And  

𝜓1 =  ∑(𝐶𝑖𝑗

⩝𝐶𝑖𝑗

). ( 𝐶𝐼𝐽
𝑏 ) 

Here ψ1 is the on-ground based solution and 

𝜓2 = 𝐴𝐶𝑂 𝑖𝑛𝑠𝑝𝑖𝑟𝑒𝑑 𝐼𝑑𝑒𝑎𝑙 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 

For formulation of ψ1the ANN formulation of the problem as follows: 

𝐶𝐼𝐽
𝑏   =           1, if 𝐶𝑖𝑗 is integrated into the schedule 

          0 otherwise 

The weights for times are assigned as; 

𝐶𝑖𝑗 =  𝑤1𝑇1. + 𝑤2𝑇2 + 𝑤3𝑇3+……..𝑤𝑖𝑇𝑖 

And triggering of: 

𝑆𝑖 → 1:                𝑖𝑛𝑝𝑢𝑡 → 𝑖𝑛𝑝𝑢𝑡 +  𝑤𝑖 

The constraints of the problem are summarized as; 

∑ 𝑗𝑖
𝑛
𝑖=1  ϵ 𝑚1 𝑜𝑟 𝑚2 𝑜𝑟 𝑚3at any time t    (1)   

⩝𝑗𝑖 (𝑖=1,2,,.𝑛) ∉ (𝑚1, 𝑚2), (𝑚1, 𝑚3), ( 𝑚2, 𝑚3)…. ( 𝑚𝑖, 𝑚𝑗)  (2) 

𝑚𝑡1 +  𝑚𝑡2 +  𝑚𝑡3 + ⋯ 𝑚𝑡𝑛 ≤  𝑚𝑇𝑡     (3) 

𝑚𝑡1, 𝑚𝑡2, 𝑚𝑡3 ˃0       (4)  

𝑚𝑡(𝑖)𝑠𝑒𝑡𝑢𝑝  ≈ 0       (5) 

𝑚𝑡(𝑖)𝑡𝑟𝑎𝑛𝑠𝑝 ≈ 0       (6) 

∀ 𝐽, (𝐽 = 1 … . 𝑛); ∑ 𝑃𝑖
𝑛
𝑖=1 = 𝑃.T     (7) 
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5.5 Chapter Summary 

 

This chapter can be summarized as follows: 

 

 The concept of NaACO is mathematically modelled in this chapter. The objective 

function is generated keeping in view the ACO and the ANN domains. 

 The NaACO technique is formulated according to the steps mentioned in the chapter. 

Moreover, each step is also validated at the time of formulation by implementing it on 

a set of 100 problems found in the literature. These sets provide necessary 

formulation foundations for NaACO.  

 The results of the formulation are also matched with the results so as to make sure 

that the formulation is up to mark and is validated. 

 This research is focused on the application of ACO and then how to use a 

convergence technique to formulate a Neural Augmented ACO. As regards to this the 

initial convergence should give the ideal solution (hence 𝝍𝟐) and then based on the 

corrective factor of ACO i.e. tau which takes into account the inputs from the 

problem sets, formulation of 𝝍𝟏is accomplished. In this research the neural 

augmentation of ACO gives an approach labelled as NaACO (Neural Augmented 

ACO) to include the intelligent aspect of ACO for solving the problems in 

scheduling/ manufacturing and services environments. 
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CHAPTER 6: VALIDATION OF NaACO 

6.1 Preamble 

In this chapter the NaACO technique has been validated through its application on key 

benchmark problems. The overall validation process is explained in the validation roadmap as 

depicted in figure 6.1. As shown in this figure (6.1) the validation process comprises of firstly 

feeding the problem to the NaACO technique thorough ACO domain and attaining the ideal 

results. Then the results are used to trigger the ANN domain in order to give the realistic value. 

As already explained in Chapter 5 the ideal solution is termed as ψ2 and the realistic solution 

through ANN is termed as ψ1. The validation approach of ANN domain is unique as it is 

validated for a solution space in which the solution is already known and the ANN component is 

prompted to give a futuristic forecast so as to match the results with the already known values. 

 

       

 

 

 

 

 

 

 

 

 

ANN 

DOMAIN 

ACO 

DOMAIN 

SOLUTION THROUGH ACO 

FOR DETERMINATION OF ψ2 

::VALIDATION AND ANALYSIS 

WITH BKS 

PROBLEM SET 

FOR 

VALIDATION 

VALIDATION OF ANN 

DOMAIN WITHIN THE KNOWN 

SOLUTION SPACE TO 

ASCERTAIN THE RESULTS. DISCUSSION 

AND 

CONCLUSIONS. 

Figure 6. 1NaACO Validation Roadmap 
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The NaACO approach is validated through application of the methodology on a set of bench 

mark problems. The problems selected for this purpose are following: 

 FT06 

 FT10 

 FT20 

These problems are verified benchmark problems which have known make-spans and answers. 

Out of these problem sets, FT10 and FT20 are considered to be true NP-Hard problem sets. The 

validation approach consists of the formulation of ACO approach to find the ideal minimum 

makespan. Once done, the NaACO approach is formulated to verify the answers from a set of 

known data sets in order to validate the complete approach. The validation approach on each of 

the problem sets is discussed in the following sections of this chapter with both the domains of 

NaACO being catered for separately as per figure 6.1. 

6.2 FT06: 

A typical FT06 problem comprises of scheduling six jobs on six machines (the complete 

formulation code of NaACO in MATLAB for FT06 is given in Appendix B). The general 

assumptions of the problem are: 

 No preemption. This assumption means that the completion of a job on a particular 

machine shall qualify that machine for the next job. There is no breakdown. This 

means that from the start till end of all the operations machines do not encounter any 

malfunctions. 

 The setup time is included in the overall machine time. 

 The inclusion of any new job beyond the specified jobs is not allowed. It means that 

the set of specified timings and the number of jobs is fixed and shall remain 

unchanged throughout the problem. 



79 
 

 The priority principal right at the onset is not catered; i.e. the jobs can go to any 

machine at the start of the scheduling process. 

 The time to inspect the jobs is included in the overall times for the jobs as specified in 

the problem set. 

 The transportation time is negligible. 

 
Table 6. 1FT06 Problem Set 

 

6.2.1 ACO Domain 

The above mentioned problem set (table 6.1) is a benchmark FT06 problem set. As per the 

methodology firstly ACO is applied to attain the value of ψ2. The following relationship is used 

to setup a triggering heuristic function: 

𝑝𝑖𝑗
𝑘 =  

[𝜏𝑖𝑗]𝛼[𝜂𝑖𝑗]𝛽

∑ [𝜏𝑖𝑙]𝛼[𝜂𝑖𝑙]𝛽
𝑙 ∈𝑁𝑖

𝑘
  ; If j ∈ 𝑁𝑖

𝑘       Equation 6.1 

Job

s 

machine,ti

me 

machine,ti

me 

machine,ti

me 

machine,ti

me 

machine,ti

me 

machine,ti

me 

1 3,1 1,3 2,6 4,7 6,3 5,6 

2 2,8 3,5 5,10 6,10 1,10 4,4 

3 3,5 4,4 6,8 1,9 2,1 5,7 

4 2,5 1,5 3,5 4,3 5,8 6,9 

5 3,9 2,3 5,5 6,4 1,3 4,1 

6 2,3 4,3 6,9 1,10 5,4 3,1 
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In the above expression the value of 𝜏𝑖𝑗  is the reciprocal of the heuristic function. In this case 

the heuristic function is the shortest processing time for each job. The values of alpha and beta 

are kept as 1. Moreover the pheromone upgrade for the first iteration is not utilized. It is later on 

utilized to generate sequences of schedules. The sequences as generated by this method are 

scattered to avoid any duplication of jobs assigned to a particular machine. The sequences in this 

particular case for job splitting are demonstrated in figure 6.2 

 

Figure 6. 2Job splitting sequences of FT06 
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The makespan for the above mentioned problem is then coded with the following results: 

 
Table 6. 2Results of ACO domain 

Parameters BKS Proposed Algorithm 

Makespan (sec) 55 55 

Mean Flow Time (sec) 44.17 42.33 

Jobs Delay Time (sec) - 57 

Machines Idle Time (sec) - 50 

Total Dormancy Time (sec) - 77 

The minimum makespan is found to be 55. The percentage deviation is 1.03% in average flow 

time. These results are also looked at in response to the computational time which ACO takes to 

reach a solution which is far less than the counterpart techniques being used. The result is 

summarized as follows in table 6.3: 

  

Figure 6. 3Results achieved by coding in MATLAB. 
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Table 6. 3Results of ACO domain 

Optimization Meta-heuristic Makespan Computational Time (seconds) 

Proposed ACO 55 0.48 

GA 55 1 

PSO 55 7 

TS 55 2 

Conventional CSA 55 50 

PSMCSA 55 17 

The algorithm achieved the best values of minimum make span for seven times as shown in the 

following history of iterations: 

Figure 6. 4Iteration sequences of FT06 
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6.2.2 ANN Domain 

For this problem the value of ψ2 comes out to be 55 seconds. In order to validate the NaACO 

approach initially the data set is validated on the known values i.e. the results are stopped in 

between and the ANN segment is trained on the known values of inputs, tau and outputs. The 

sequences are then tested to ascertain that the complete NaACO formulation against the known 

results. In this manner the model is firstly validated within the known set of results. The 

following results in figure 6.5 depict this situation. 

Figure 6. 5Training sequences of FT06 for ANNs 
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The above results train the NaACO model within the frame work of known parameters. The 

model is further validated once some arbitrary values are put into consideration to check the 

response. The following snapshots depict those situations: 

 

Figure 6. 6ANN dialogue box for validation of NaACO 

    

In figure 6.6 the NaACO returns a YES for a feasible combination within the known domain of 

answers which is used to validate the training in ANN domain. 
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Figure 6. 7 ANN dialogue box for validation of NaACO. It returns a YES for validation on 
FT06. 

 

The above results validate the NaACO model within the frame work of known parameters. The 

model is further tested once some arbitrary values are put into consideration to check the 

response. The situations in figures 6.8 and 6.9 depict those scenarios: 

 

Figure 6. 8NaACO returns a NO for a likely infeasible combination. 
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Figure 6. 9NaACO returns a NO for a likely infeasible combination 
 

As depicted the sequence of assignment is changed from figure 6.7 to a new sequence in figure 

6.8, NaACO has recognized the change and has returned a NO prompt which suggests that with 

the given processing times, sequences, pheromone values this sequence is not possible to 

execute. Once the model is validated within the known value sets the next step is to determine 

the value of ψ1. This can be accomplished by putting in different processing times, in the original 

matrix of FT06 problem set and then training the new situation. 

6.2.3 Discussion on Results 

As a first validation instance for NaACO the FT06 problem has been addressed. The problem set 

has been subjected to the validation process as described in the beginning of this chapter. The 

results of this treatment show that NaACO has been able to achieve the initial convergence 

through ACO domain and has reached the BKS values. Moreover the ANN domain of NaACO 

also has validated the forecasting correctness of NaACO by producing the results within the 

known solution sets. The algorithm was able to achieve the BKS value in a very short span of 

time. Furthermore within the ANN domain it is pertinent to point out that the post optimal 

analysis of the machine sequences and of the makespan values during the training of NaACO so 

as to ascertain the limits for the trained ANNs to prompt the YES or NO responses can pose a 

vast area for future researchers of NaACO. 
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6.3 FT10: 

The next problem set picked for model validation is FT10. This problem set comes under the 

domain of true NP-Hard problems. The problem is described as scheduling of 10 jobs on 10 

machines with known processing times. The problem has a wider and more elaborated search 

space than the previously considered problem of FT06. This problem has been used to validate 

the NaACO approach as per the formulation of the validation process (the complete formulation 

code of NaACO in MATLAB for FT10 is given in Appendix B). 

 

Table 6. 4Machine matrix for FT10 
Mi/Ji M1 M2 M3 M4 M5 M6 M7 M8 M9  M10 

J1 1 2 3 4 5 6 7 8 9 10 

J2 1 3 5 10 4 2 7 6 8 9 

J3 2 1 4 3 9 6 8 7 10 5 

J4 2 3 1 5 7 9 8 4 10 6 

J5 3 1 2 6 4 5 9 8 10 7 

J6 3 2 6 4 9 10 1 7 5 8 

J7 2 1 4 3 7 6 10 9 8 5 

J8 3 1 2 6 5 7 9 10 8 4 

J9 1 2 4 6 3 10 7 8 5 9 

J10 2 1 3 7 9 10 6 4 5 8 

 

Table 6. 5Time matrix for FT10 

Ji/Mi MI M2 M3 M4 M5 M6 M7 M8 M9 M10 

J1 29 78 9 36 49 11 62 56 44 21 

J2 43 28 90 69 75 46 46 72 30 11 

J3 85 91 74 39 33 10 89 12 90 45 

J4 71 81 95 98 99 43 9 85 52 22 
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J5 6 22 14 26 69 61 53 49 21 72 

J6 47 2 84 95 6 52 65 25 48 72 

J7 37 46 13 61 55 21 32 30 89 32 

J8 86 46 31 79 32 74 88 36 19 48 

J9 76 69 85 76 26 51 40 89 74 11 

J10 13 85 61 52 90 47 7 45 64 76 

For the said problem, the methodology is to assign 10 jobs on 10 machines through ACO to 

obtain ψ1 and then to validate the NaACO through neural training of the value obtained through 

calculation of Tau. The general assumptions of this problem are the same as of FT06 except that 

now the jobs and machines have increased from 6 to 10. The validation is done within the 

preview of the calculated results to demonstrate the accuracy of ANN. The validation is 

subdivided into two parts i.e. the ACO domain of the problem and the ANN domain of the 

problem. The validation results are summarized at the end of the section. 

6.3.1 ACO Domain: 

The ACO formulation of FT10 is explained as follows: 

 The reciprocal of the heuristic function is calculated based on the greedy heuristic of 

minimum processing time. This implies that for this problem η = 1/ min.processing time. 

The values are as per table 6.6: 

Table 6. 6Values of η for FT10 

0.034483 0.012821 0.111111 0.027778 0.020408 0.090909 0.016129 0.017857 0.022727 0.047619 

0.023256 0.035714 0.011111 0.014493 0.013333 0.021739 0.021739 0.013889 0.033333 0.090909 

0.011765 0.010989 0.013514 0.025641 0.030303 0.1 0.011236 0.083333 0.011111 0.022222 

0.014085 0.012346 0.010526 0.010204 0.010101 0.023256 0.111111 0.011765 0.019231 0.045455 

0.166667 0.045455 0.071429 0.038462 0.014493 0.016393 0.018868 0.020408 0.047619 0.013889 

0.021277 0.5 0.011905 0.010526 0.166667 0.019231 0.015385 0.04 0.020833 0.013889 
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0.027027 0.021739 0.076923 0.016393 0.018182 0.047619 0.03125 0.033333 0.011236 0.03125 

0.011628 0.021739 0.032258 0.012658 0.03125 0.013514 0.011364 0.027778 0.052632 0.020833 

0.013158 0.014493 0.011765 0.013158 0.038462 0.019608 0.025 0.011236 0.013514 0.090909 

0.076923 0.011765 0.016393 0.019231 0.011111 0.021277 0.142857 0.022222 0.015625 0.013158 

 

 Based on these values, the probabilities of each job to be assigned are calculated by 

incorporating the fundamental ACO equation with no pheromone upgrade to give a 

sequence of machines and a sequence of sorted times as given in table 6.7. 

 

 

 The next step is the sequencing of machines on the basis of no overlapping and then 

spreading the machines to avoid multiprocessing. This is done by sorting the probabilities 

of ACO so as to assign the jobs to the machine having the least processing time. If there 

is a tie then the priority goes to the machine having the greater probability. The code is 

Table 6. 7Machine sorting for FT10 
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programmed in MATLAB and shows that ACO was able to achieve the minimum 

makespan of 930 and an average makespan of 1370 with an error of 14.52% (the average  

SPT value for FT10 is 1171). The discussion on this aspect is done in sub section (6.3.3). 

The summary of the results obtained for ACO domain is presented in table 6.8 below. 

 

6.3.2 ANN Domain: 

With this sequence the value for ψ1is obtained. For the validation of NaACO the model is 

trained on inputs, tau values and outputs. The training is done to verify the results within 

the known domain of answers. Firstly the system is customized to give tau values and the 

average tau value as follows: 

Table 6. 8tau values for ANN training of the problem set. 

 

Tau

J1      3     6    10     1     4     9     5     8     7     2 0.025316

J2      9     3     8     1     2     7    10     6     4     5 0.021552

J3      6     7     9     3     5     4     2     8    10     1 0.017606

J4      8     6     9    10     2     3     4     1     5     7 0.015267

J5      3     2    10     1     6     8     9     5     4     7 0.025445

J6      2     9     7     3     5    10     1     8     6     4 0.020161

J7      4     6     9    10     5     2     1     7     3     8 0.024038

J8      8     2     5    10     1     4     7     6     3     9 0.018553

J9      9     3     7    10     2     5     1     6     4     8 0.01675

J10      6     2     4    10     7     3     5     8     1     9 0.018519

Avg= 0.020321

Machines Assigned after ACO

 Parameters  BKS  Proposed Algorithm 

 Make span (sec)  930  930 

 Avg Make span (sec)  1171 (SPT)  1370 

 % Deviation ( Avg make span on 

SPT) 

  14.52 % 
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This value of tau along with the inputs of machine sequence, and make-span for each 

combination is utilized to constitute an ANN which is trained on the current system. This 

training is accomplished through supervised learning of inputs versus the outputs. At the 

termination of training the simulations are carried out to ascertain the validity of the 

model within the defined and known answers. The following figures depict a correct 

combination of machines and time and an incorrect combination of the machine sequence 

and times to show the validity of the model within the specified domains. In figure 6.10 

the machine sequence is accepted with the time given and the response of the ANN is a 

YES. 

Figure 6. 10NaACO returns a YES for a likely infeasible combination 
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Figure 6.11 represents a sequence which is not accepted and hence the NaACO returns a 

NO. 

 6.3.3Discussion on Results 

The second problem set selected for validation of NaACO is FT10. This problem set is a 

genuine NP-hard solution provider as the solution space is incredibly immense. The 

NaACO achieves the initial convergence within ACO domain to achieve BKS. However 

as noticed in the results the average deviation makespan is around 14%. This deviation is 

largely due to the fact that the solution pendulates between extreme values for the 

sequences generated through ACO. This fluctuation is the core reason for this large 

average percentage deviation in makespan. This in itself proposes a future area for 

research within the domain of NaACO in general and ACO in particular so as to monitor 

and analyse this pendulation once the convergence is achieved for larger problem sets. 

This having said, still the time taken by ACO to present the solution is a great offset as 

compared to other techniques as already discussed in Chapter 3 of this thesis. Moreover 

as pointed out for FT06 problem sets the post optimal analysis in post ANN domain 

phase also presents an area for future research. 



93 
 

6.4 FT20: 

The FT20 problem set is a NP-very hard problem set (the complete code for NaACO is in 

Appendix B). This scheduling problem involves scheduling of 20 jobs on 5 machines. 

The following matrix explains the machine assignment to jobs. There are 20 jobs which 

are to be assigned to five machines according to the following matrix: 

 
Table 6. 9 Machine matrix for FT20 

Jobs Machines 

J1 1 2 3 4 5 

J2 1 2 4 3 5 

J3 2 1 3 5 4 

J4 2 1 5 3 4 

J5 3 2 1 4 5 

J6 3 2 5 1 4 

J7 2 1 3 4 5 

J8 3 2 1 4 5 

J9 1 4 3 2 5 

J10 2 3 1 4 5 

J11 2 4 1 5 3 

J12 3 1 2 4 5 

J13 1 3 2 4 5 

J14 3 1 2 4 5 

J15 1 2 5 3 4 

J16 2 1 4 5 3 

J17 1 3 2 4 5 

J18 1 2 5 3 4 

J19 2 3 1 4 5 

J20 1 2 3 4 5 

 

  



94 
 

These machines are having separate processing times. These processing times are 

associated with each machine as in the following time matrix (table 6.11). 

  

Table 6. 10Time matrix for FT20 
J/M MI M2 M3 M4 M5 

J1 29 9 49 62 44 

J2 43 75 46 69 72 

J3 39 91 90 45 12 

J4 71 81 85 22 9 

J5 26 22 14 21 72 

J6 47 52 84 6 48 

J7 61 46 32 32 30 

J8 32 46 31 19 36 

J9 76 40 85 76 26 

J10 64 85 61 47 90 

J11 11 78 21 36 56 

J12 11 28 90 46 30 

J13 85 10 74 89 33 

J14 99 52 95 98 43 

J15 6 61 49 53 69 

J16 95 2 25 72 65 

J17 37 21 13 89 55 

J18 86 74 48 79 88 

J19 11 69 51 89 74 

J20 13 7 76 52 45 

For the said problem, the methodology is to assign 20 jobs on 5 machines through ACO to obtain 

ψ1 and then to validate the NaACO through neural training of the value obtained through 

calculation of Tau. The validation is done within the preview of the calculated results to 

demonstrate the accuracy of ANN. The complete NaACO code is given in Appendix B. 
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6.4.1 ACO Domain 

The reciprocal of the heuristic function is calculated based on the greedy heuristic of 

minimum processing time. This implies that for this problem η = 1/ min.processing time. 

The values are as shown in table 6.12. 

 
Table 6. 11Values of η for FT20 

0.034483 0.111111 0.020408 0.016129 0.022727 

0.023256 0.013333 0.021739 0.014493 0.013889 

0.025641 0.010989 0.011111 0.022222 0.083333 

0.014085 0.012346 0.011765 0.045455 0.111111 

0.038462 0.045455 0.071429 0.047619 0.013889 

0.021277 0.019231 0.011905 0.166667 0.020833 

0.016393 0.021739 0.03125 0.03125 0.033333 

0.03125 0.021739 0.032258 0.052632 0.027778 

0.013158 0.025 0.011765 0.013158 0.038462 

0.015625 0.011765 0.016393 0.021277 0.011111 

0.090909 0.012821 0.047619 0.027778 0.017857 

0.090909 0.035714 0.011111 0.021739 0.033333 

0.011765 0.1 0.013514 0.011236 0.030303 

0.010101 0.019231 0.010526 0.010204 0.023256 

0.166667 0.016393 0.020408 0.018868 0.014493 

0.010526 0.5 0.04 0.013889 0.015385 

0.027027 0.047619 0.076923 0.011236 0.018182 

0.011628 0.013514 0.020833 0.012658 0.011364 

0.090909 0.014493 0.019608 0.011236 0.013514 

0.076923 0.142857 0.013158 0.019231 0.022222 
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Based on these values the probabilities of each job to be assigned are calculated by incorporating 

the fundamental ACO equation with no pheromone upgrade to give a sequence of machines and 

a sequence of sorted times: 

 

The next step is the sequencing of machines on the basis of no overlapping and then spreading 

the machines to avoid multiprocessing. This is done by sorting the probabilities of ACO so as to 

assign the jobs to the machine having the least processing time. If there is a tie then the priority 

goes to the machine having the greater probability. The code is programmed in MATLAB and 

shows that ACO was able to achieve the minimum makespan of 1166 and an average makespan 

of 1233 (figure 6.12) with an error of 5.5%. 

Table 6. 12Machine sorting for FT20 

Sorted Machines by ACO

J1      2     1     5     3     4

J2      1     4     3     5     2

J3      4     2     5     3     1

J4      4     3     2     1     5

J5      1     4     2     3     5

J6      1     3     4     2     5

J7      5     3     4     1     2

J8      4     1     3     5     2

J9      5     4     1     2     3

J10      4     1     2     3     5

J11      2     1     5     3     4

J12      3     1     5     4     2

J13      3     5     2     1     4

J14      5     1     2     4     3

J15      1     5     3     2     4

J16      1     4     3     5     2

J17      2     3     1     5     4

J18      5     2     3     1     4

J19      2     1     3     5     4

J20      2     1     5     4     3
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Table 6.14 presents the summary of ACO inspired solution. The discussion on the 

outcomes is covered in sub section 6.4.3. 

 
Table 6. 13Summary for FT20 

Parameters BKS Proposed Algorithm 

Make span (sec) 1165 1166 

Avg Make span (sec)  1233 

% Deviation ( Avg make span)  5.5% 

 

  

Figure 6. 11Solution through ACO in MATLAB 
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6.4.2 ANN Domain 

With this sequence the value for ψ1is obtained. For the validation of NaACO the model is 

trained on inputs, tau values and outputs. The training is done to verify the results within 

the known domain of answers. Firstly the system is customized to give tau values and the 

average tau value as in table 6.15. 

   

Table 6. 14tau values for ANN training of the problem set. 

Tau 

J1      2     1     5     3     4 0.00518135 

J2      1     4     3     5     2 0.00327869 

J3      4     2     5     3     1 0.00361011 

J4      4     3     2     1     5 0.00373134 

J5      1     4     2     3     5 0.00645161 

J6      1     3     4     2     5 0.00421941 

J7      5     3     4     1     2 0.00497512 

J8      4     1     3     5     2 0.00609756 

J9      5     4     1     2     3 0.00330033 

J10      4     1     2     3     5 0.00288184 

J11      2     1     5     3     4 0.0049505 

J12      3     1     5     4     2 0.00487805 

J13      3     5     2     1     4 0.00343643 

J14      5     1     2     4     3 0.00258398 

J15      1     5     3     2     4 0.00420168 

J16      1     4     3     5     2 0.003861 

J17      2     3     1     5     4 0.00465116 

J18      5     2     3     1     4 0.00266667 

J19      2     1     3     5     4 0.00340136 

J20      2     1     5     4     3 0.00518135 

 

Avg= 0.004177 
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This value of tau along with the inputs of machine sequence, and make-span for each 

combination is utilized to constitute an ANN which is trained on the current system. This 

training is accomplished through supervised learning of inputs versus the outputs. At the 

termination of training the simulations are carried out to ascertain the validity of the 

model within the defined and known answers. 

 

After training of the ANN for NaACO the validation is ascertained through testing of 

NaACO by prompting it for a correct i.e. feasible or an incorrect i.e. potentially infeasible 

combination. Figure 6.14 depicts a correct and an incorrect combination of the machine 

sequence and times to show the validity of the model within the specified domains. 

. 

 

 

Figure 6. 12Training of ANN for NaACO 
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Figure 6.15 represents a sequence which is not accepted and hence the NaACO returns a NO. 

 

Figure 6. 14Validation of ANN domain of NaACO 

Figure 6. 13Validation of ANN domain of NaACO 
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6.4.3 Discussion on Results 

To summarize the validation process for FT20 NaACO has been able to converge toward the 

BKS though ACO and the ANN domain has also been able to forecast the situations within the 

known set of answers. The deviation average % deviation in make span for FT20 is 5.5% 

which is significantly lower than that of FT10. One of the reasons for this observation may be 

due to the larger set of work stations which are potentially available for FT10 than that of 

FT20. Even so in both the cases the algorithm has been able to achieve the BKS. This aspect 

can also be evaluated as a potential future area of research in which the comparative analysis 

of FT10 and FT20 can be done on the basis of % average deviation within the domain of 

NaACO and further offset algorithms can be developed for futuristic investigations.   

6.5 Discussion on the validation of NaACO (FT06, FT10 and FT20) 

In order to converge on the outputs of the whole validation process of NaACO following 

discussion and finer points are put forward: 

 Firstly the NaACO approach was validated on FT06 problem set. This problem set is 

a medium to low level validation problem set. When the NaACO methodology was 

implemented on this problem set, the ACO component of NaACO reached 

remarkable results by both finding the BKS and also by converging on the solution in 

the minimum of times, i.e. 0.48 seconds. This achievement reflects on the fast 

convergence capability of ACO. Moreover, when the ANN component was launched 

the NaACO has returned expected values and answers which commensurate with the 

desired results. The training of ANN component for FT06 takes less of time because 

of the fact that the combinations generated out of the 6x6 matrix are quickly learned 

by the supervised ANN. This makes a real life problem which looks similar to FT06 

problem fairly easy to handle by NaACO. In real situations as well a FJSSP with six 

work stations and six job timings can be found more frequently so it can be concluded 

with confidence that NaACO should be able to handle a 6x6 problem set with 

accuracy and with fast convergence capabilities. The forecasted domain has also 

responded with accuracy and preciseness. This shall also encourage the future 

researchers to tackle the NaACO approach by unsupervised learning methodology. 
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 The second validation problem set chosen in this research was FT10. This problem 

set comes in the np-hard category of problems. In this problem set there are 10 jobs 

which are to be scheduled on 10 machines with allocated processing times. Once this 

problem is fed to NaACO, the ACO domain finds the BKS to FT10. The point to note 

over here is that while doing so the average % deviation comes out to be around 14%. 

This deviation is generated because of the oscillating results once the algorithms is in 

the process of converging on the BKS. This aspect in itself presents an area of further 

investigation so as to investigate this behavior of ACO component of NaACO and to 

study the effects of this tendency on the convergence capabilities of ACO. The ANN 

component of NaACO handles the supervised learning and simulation processes with 

considerable efficiency. Although it must be noted here that the scenario building and 

training of ANN in FT10 takes considerable time and deliberation as compared to the 

ANN training which was done for FT06. This is due to a larger data set of 10x10 

matrix and the possible solutions which can be generated. In this aspect it is 

emphasized here that the presently employed ANN for FT10 is a 3-layered ANN. The 

layers of ANN can be further increased to see the effects of neural learning and the 

possible impact of increasing the neural layers on the outputs can be taken as future 

research. As FT10 problem set presents a fairly complex situation of FJSSP further 

investigation is required on the aspect of giving an unsupervised-neural interface to 

NaACO so as to further build on the capabilities of NaACO. The feedback 

mechanisms can greatly influence on the forecasting capabilities of NaACO once it 

tries to deal with bigger problem sets. So if a feedback mechanism can be 

incorporated in the ANN domain of NaACO so as to train the data sets on the run 

time basis, this can generate interesting and very capable variants of NaACO for 

future research. So all in all for FT10, NaACO confirms to the results but shows 

fluctuations during convergence which is one of the limitations of NaACO. 

 

 The third problem set taken was FT20. This problem set is also np-hard and 

comprises of scheduling 20 jobs on 5 machines with allocated processing times. The 

ACO domain handles the convergence with efficiency and returns the BKS results. 

Moreover the average % deviation from the BKS in this case is 5.5%. This value is 
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fairly less than as observed with FT10. This insight also suggests that as the search 

space grows in terms of number of available food sources (nests) the ACO algorithm 

demonstrate the pendulum tendency and this tendency is irrespective of the number of 

ant (jobs) available in a scheduling environment. As observed during the validation 

process even if the number of jobs are doubled i.e. from 10 jobs in FT10 the jobs are 

increased to 20 jobs in FT20 NaACO finds the optimum solution with the minimum 

of % average deviations but when the number of sources are increased or doubled i.e. 

in FT20 there are 5 machines and in FT10 there are 10 machines the fluctuation or 

pendulum tendency is observed which increases the % average deviation. This area 

can be taken up by future researchers as an interesting point of departure for having 

an insight towards further evolution of ACO algorithm. The optimization paradigm is 

confirmed by ANN domain by FT20 and future scenarios are forecasted within the 

known solution space. 

 

 Once a comparison is done on the whole validation process it can be inferred that the 

ACO formulation strengthens or weakens the overall formulation of NaACO as the 

ANN domain is directly fed by ACO domain for forecasting purposes. Moreover the 

neural interface through tau can be further strengthened by incorporating the variables 

α and β in the neural domain. These variables are used in classical ACO to give the 

boundary conditions to ACO for η and τ respectively. The neural treatment of these 

two values for further developments of variants for NaACO is another area for future 

consideration. 

 

6.6 Conclusion 

It is concluded that the application of NaACO on np hard (FT06) and np very hard problems 

(FT10 and FT20) depicts its functionality and response once presented with a huge problem 

set. The basis of NaACO is the accuracy and time taken for NaACO to forecast the feasible 

solutions in the context of complex and big problem sets. The purpose of this formulation and 

validation is to demonstrate the quick response, forecasting and future scenario building 

capability of NaACO. 
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6.7 Chapter Summary 

In this chapter the validation of NaACO has been carried out in order to comment upon the 

functionality and feasibility of this technique. It is therefore concluded by this process of 

validation that NaACO shows coherent results which were envisaged during the 

conceptualization and formulation of this technique. However it is also a fact that no research is 

by all means a complete research i.e. without its shortcomings and follies. This shall hold true for 

this research as well. Further robustness approaches for NaACO can be developed in future 

which could be more AI intensive and could be tested on larger problem sets to give interesting 

results. 
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CHAPTER 7: APPLICATION OF NaACO ON INDUSTRY 

 

In this chapter the application of NaACO is discussed as regards to the industrial setups. This 

chapter holds its own unique significance as NaACO is being tested on some industrial 

situations for the very first time. For this purpose a classical FJSSP problem is taken from the 

aviation industry and a possible application area within the domain of flowshop analysis is 

taken from the fan manufacturing industry. The second application area case study is 

presented in Appendix C. The application of NaACO is explained by the following roadmap: 

 

  

ANN 

DOMAIN 

ACO 

DOMAIN 

SOLUTION THROUGH ACO 

FOR DETERMINATION OF 

THE BEST SOLUTION 

THROUGH ψ2 

GENERATION 

OF DATA FOR 

INPUT 

TRAINING OF THE DATA 

FOR APPLICATION OF 

NaACO AND 

DETERMINATION OF 

ψ1.THE  

DISCUSSION 

AND 

CONCLUSION

S. 

Figure 7. 1 Application roadmap for NaACO 
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7.1 Case Study  (Application of NaACO Technique on Aviation   

Maintenance/ Overhaul Setup) 

7.1.1 Background 

Pakistan’s aviation maintenance industry is one of the most sophisticated and rapidly 

increasing industries of the country. Within this industry the small fixed wing aircrafts 

are most prominent as regards to the assembly, and maintenance of their various 

equipment and components. As per the context of this research one of the biggest engine 

overhauling facilities of these small fixed wing aircrafts is being selected for the 

application of NaACO. These aircrafts are mounted with four cylinder piston engines 

(IO-360-A1B6). There are various assembly lines which are in parallel for the overall 

assembly of these engines. Within these engine assembly lines the research has focused 

on the smaller components which are required in a greater number and with more 

frequency. A typical engine process flow for the disassembly and inspection is depicted 

by figure7.1. 

7.1.2 Model Initialization 

The servicing stations of Magnetos (the ignition devices) have been picked for 

workstations. The ignition is termed as MAGNETO BENDIX. These magnetos are 

required by the fixed wing aircrafts on a regular basis, so they have a very frequent turn 

around. This research has focused on 500 hours inspection of these magnetos. In 

particular the assembly line is faced with a FJSSP scenario when the cleaning of these 

devices is done after the disassembly. There are three cleaning bays on the workshop 

floor. As per the process sheets of 500 hours inspection each cleaning bay has three 

operations: Chemical cleaning with Trichlorethylene, Rubbing with 00-00 embry paper 

and compressed air cleaning at 30 psi. These three sub processes are named as TriClean, 

RubClean and AirClean for model. Each sub process has a particular time which varies 

with the experience of worker, the efficiency of the worker and various other related 

factors. Now consider that there are a number N of magnetos which are to be cleaned at 

these three cleaning bays, each having all the three sub processes.  
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As per the process sheet of the operation (figure 7.1) at each cleaning bay any one of the 

operations has to be happening and no two operations can be performed on any bay at a 

given time. This restriction is due to the hazardous materials involved and also due to the 

intricate nature of the sub processes. Therefore, there is a situation in which the sequence 

of operations can be (TriClean1, RubClean2, AirClean3) or (Air Clean3, RubClean2, 

TriClean1) etc. Each operation is independent of each other which means that there is no 

precedence of the three operations. 
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Figure 7. 2 Process Map for Magnetto 500 
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The facility itself works on a weekly schedule, i.e. the output is the number of Magnetos cleaned 

per week. We have obtained random data for the cleaning process of 10 magnetos spread along 

four to six weeks. Moreover we also have an initial workforce of 10 technicians to be assigned to 

the three bays.  The data sets thus obtained for the model initialization (figure 7.1) and model 

implementation were as follows: 

TC = TriClean; RC = RubClean; AC = AirClean 

Time: In minutes. 

 

Table 7. 1data tables for initiation of NaACO 
Week1* 

Magnetos 

BAY1 BAY2 BAY3 

TC1 RC1 AC1 TC2 RC2 AC2 TC3 RC3 AC3 

1 30 45 24 25 30 22 40 33 30 

2 25 40 22 19 24 28 27 32 45 

3 35 35 27 20 23 29 27 29 33 

4 25 30 31 33 44 33 25 29 24 

5 30 50 25 26 29 35 20 44 28 

6 30 45 28 30 50 45 33 24 40 

7 29 40 40 24 29 44 26 45 33 

8 33 29 33 38 36 43 44 26 23 

9 29 38 40 29 44 50 20 30 23 

10 30 44 45 40 33 49 25 50 40 

*rest can be seen in Appendix. 
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7.1.3 ACO Domain: 

 

NaACO starts with the application of ACO to calculate the make span times. For this purpose the 

fundamental formulation is considered in which the Magnetos are the ants and the Bays are the 

food sources. The ACO is triggered by the heuristic of minimum processing times according to 

the following equation: 

𝑝𝑖𝑗
𝑘 =  

[𝜏𝑖𝑗]𝛼[𝜂𝑖𝑗]𝛽

∑ [𝜏𝑖𝑙]𝛼[𝜂𝑖𝑙]𝛽
𝑙 ∈𝑁𝑖

𝑘
  ; if j ∈ 𝑁𝑖

𝑘       Equation 7.1 

In the above expression the value of η is the reciprocal of the heuristic function. In this case the 

heuristic function is the shortest processing time for each job. The values of alpha and beta are 

kept as 1. The initial assignments look as in figure 7.3. 

 

Figure 7. 3 Assignment of Bays through NaACO 
 

The same assignment is done for similar situations. In the following lines the results of five such 

situations (for five weeks) are presented: 
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Results: 

Situation. no =1 

Bays Assigned 

BAY_1 =   4     8    12 

BAY_2 =   1     2     3     6     7    11 

BAY_3 =   5     9    10 

Make_span = 139.115 

 

Situation no = 2 

Bays Assigned 

BAY_1 = 2     8    11 

BAY_2 = 5     7 

BAY_3 = 1     3     4     6     9    10    12 

Make_span = 183.2940 

 

Situation no =3 

Bays Assigned 

BAY_1 = 1     4     6     8    12 

BAY_2 = 10 

BAY_3 = 2     3     5     7     9    11 

Make_span = 147.2087 

 

Situation no =4 

Bays Assigned 

BAY_1 = 1     2     8 

BAY_2 = 3     6     9    10    11 

BAY_3 = 4     5     7    12 

Workforce Assigned 

Make_span = 117.1107 
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Situation no 5 

Bays Assigned 

BAY_1 = 3     4     6     7     8     9 

BAY_2 = 1     2     5    10    11    12 

BAY_3 = Empty matrix: 1-by-0 

Make_span = 173.2667 

 

In the above results the make span time is the idealistic time which is being calculated by the 

application of ACO, thus formulating𝝍𝟐. With this initial allocation and loading of bays it is to 

be decided that how many Magnetos should the workshop entertain for the seventh week? 

7.1.4 ANN Domain: 

The value of 𝝍𝟐shall also be used as one of the reference outputs once we incorporate the 

NaACO methodology to answer the above mentioned questions. The ideal value can be based 

upon by looking at the trend of 𝝍𝟐throughout the problem sets.An average value can also be 

taken as a bench mark and in addition to that upper and lower bounds can also be developed to 

check for the sensitivity of this parameter. For ease of use the average estimation of𝝍𝟐 is taken 

as approx. 150 minutes (the average of the five weeks). Never the less this value should be 

compared with the existing process sheets and work study already carried out to assume based on 

logical approximations. 

 

Figure 7. 4Comparative Behavior of  𝝍𝟐 with Data Points 
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The corrective factor τ and its associated inputs are utilized (to formulate a strategy in which the 

system is trained through inputs in this case the three cleaning times i.e. TriClean, RubClean and 

AirClean) with the ideal output 𝝍𝟐 and the corrective factor τ. As indicated in chapter 3, a good 

heuristic practice is to set the initializing pheromone trails to a unit marginally greater to the 

quantity of pheromone accumulated by ants in a single redundancy. A rough estimation of this 

unit can be achieved by setting ∀(𝒊, 𝒋), 𝝉𝒊𝒋 =  𝝉𝒐 = 𝒎/𝑪𝒏𝒏, where m represents the amount of 

ants (in our case the number of jobs) and 𝑪𝒏𝒏 represents the distance of. As a first step the values 

of 𝝉𝒐 is calculated for this problem and the upper and lower bounds are defined in comparison 

with the number of Magnetos. These values are problem specific and will vary with each 

problem set. 

 

Figure 7. 5𝜏VS Magnetos 
Now the ANN is trained with the inputs (TriClean, RubClean,AirClean, number of Magnetos, 

workers assigned) and the outputs (𝝍𝟐 and τ).  
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Figure 7. 6 Simulation of the problem through NaACO 
 

After the training of the ANN with [0,1] target values, NaACO is now in a position to check for 

the number of Magnetos which can be inducted in the seventh week. As discussed earlier; the 

approach is a combitorial approach coined as NaACO. 

 

Figure 7. 7 Comitorial Dialogue Window for NaACO 
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The expected process completion time is 𝝍𝟏 and has to be greater than 𝝍𝟐 to give a realistic 

result i.e “YES”. As a result this case now has the minimization objective function which was 

defined in chapter 5 as: 

𝝍 (𝝈)= 𝝍𝟏 − 𝝍𝟐         Equation 7.2 

 

So, in this case the value will be 𝝍(𝝈) = 𝟐𝟎𝟎 − 𝟏𝟓𝟎 = 𝟓𝟎𝒎𝒊𝒏𝒖𝒕𝒆𝒔. This process is not a 

linear approximation as the inputs and the outputs have a neural based relationship which cannot 

be clearly defined. The results confirm the initial statements that the optimality will be nested 

between the ideal and worst results. This objective function can be iteratively minimizing in 

order to further decrease the forecasted value as a combination and to gain further efficiency for 

this operation. 

7.2 Discussion and Conclusion 

In this case the concept of NaACO is applied to an industrial setup. The setup being chosen is of 

a high tech aviation maintenance workshop in which the piston engines are overhauled. Within 

this setup there is a process of magneto overhaul and cleaning. This component is part of the 

ignition system for this engine. The methodology of application of NaACO involves observing 

the on ground situation and comparing it with the process sheets. NaACO is applied in two 

phases as given in figure 7.1. The ACO phase returns the ideal value or the best fit solution. The 

ANN domain caters for the forecasting for the completion time as a combination of various 

inputs. The NaACO returns the fitness of the forecasted combination as a YES or a NO. Here it 

is emphasized that this combination is a realistic estimate and can be further reduced based on 

number of associated factors. This implementation of NaACO on a live case demonstrates the 

capability of this model to handle real time industrial situations. This model is by no means 

complete for an industrial usage as it lacks the user friendliness aspects. If these aspects are 

undertaken as a future area then at graduate levels this application area can serve as a panacea for 

M.S level research works. 
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CHAPTER 8: CONCLUSION AND RECOMMENDATIONS 

8.1 Conclusions 

The findings and contributions of this research both in academic body of knowledge and applied 

domains are summarized as follows: 

 A Reality Based Solution has been produced: 

 The importance of handling scheduling problems is self-evidently vivid in the 

manufacturing industry of countries like Pakistan. It is significantly due to the fact 

that the supply of basic infrastructure and resources including but not limited to the 

energy resource (electricity, natural gas etc.) to the industry is piece meal. Such 

nascent conditions to run the industry pronounce two basic problems. One: The 

industry will not survive due to the financial and economic implications. Two: Even 

if the industry survives (as it is doing so right now) the demand from the end user 

shall spike at various instances and the industry will fall short to coupe with that 

demand due to its internal process malfunctions; and perhaps one of the most 

significant shortfall is the phenomenon of Choking of assembly lines, process flows 

due to the lack of handling expertise. 

 

 An Intelligent Solution to Scheduling Problems has been developed: Although in 

some cases redundancy of assembly lines, process flows can be posed as a solution as 

well (as evident in our second case study), in situations where we already have a 

redundant system we still require that system to be addressed in terms of efficiency 

increase, cost reduction, manpower allocation, energy savings, and layout 

improvements. The domain of scheduling itself incorporates a sense of organizing the 

assembly lines for optimization, but when redundancy is combined with the 

scheduling domain a new form of constrained problem is evolved which has the 

essence of scheduling and the features of repetitiveness. 
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 An Intelligent Combitorial Algorithm has been formulated: Algorithms are the 

building blocks of any solution finding process. The nature of the problem itself 

determines which building blocks to use. It is quite possible that the solution of the 

problem is convergence friendly and if we use an algorithm which in itself is 

divergent prone, this combination shall never suffice to give us an efficient 

mechanism. Likewise, algorithms develop solutions in the order of priority as 

discussed in detail in chapter no.1. The solutions thus developed should be effective 

ones and the algorithm developing it should be an efficient one as well. For NP-

complete problems it is often the case that we are looking for a good solution rather 

than a correct one. In their true nature every algorithm which finds a solution is good 

enough, but we rate algorithms not only because of their accurate solution finding 

capabilities but also because of their speed of convergence and more importantly 

because of their ease of use. By ease of use we mean that what inputs are required to 

execute that algorithms and also how quickly that algorithm can adapt to change in 

the original problem. The ability of an algorithm to do these things makes it the first 

choice for anybody in the applied sciences field. In everyday life as well we see a 

dynamic environment which changes due to several inputs. Artificial environments 

are unable to grip and absorb every detail and change, but with this limitation if an 

algorithms succeeds in doing a mere percentage of reality, it stands out against its 

counterparts. 

 

 A Heuristic-Neural Hybrid Technique to Tackle FJSSP has been introduced: 

The job shop scheduling problems are one of the hardest problems to solve. As 

mentioned in chapter 2, one of the earliest attempts to solve such a problem was 

through branch and bound algorithm. The use of dynamic programming is also 

considered to be one of the initial efforts to handle such problems. As a matter of fact, 

all these techniques actually require a very extensive knowledge of operations 

research. In -fact the roots of these problems is in the development of concepts of 

linear programming, non-linear programming and the development of constraints. 

The objective function has to be defined and the best suited value of the decision 

variables is developed. So, it is also an iterative process. Often in daily life or in the 
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factory workshop floor we don’t have enough of the leverages to construct, validate 

and then use such an approach, moreover as the manufacturing industry is growing 

the machines are becoming efficient and the workshop floors are facing more 

problems to handle scheduling cases. The very nature of flexibility as deemed 

necessary to compete in the coming market, is creating an environment which grows 

with the demand of the customers. The concept of FJSSP revolves around the task 

and thus is not rigidly limiting the manufacturing environments.  

 

 Flexible and Customized Quantitative Model has been proposed: The flexibility 

of a system enables the users and the people responsible to adjust to the present 

conditions. The flexibility also has its drawbacks. The foremost is that it puts more 

emphasis on the planning and the forecasting phase. Moreover, in manufacturing the 

flow of inventory and work in process inventory has to be lean. This situation brings 

about the utility of heuristic based techniques which are essential for the early 

development and execution of a structured approach towards this unstructured setup. 

So in a way it structures flexibility. The heuristic information which one provides has 

to be self-grown or most suited for the ground realities. If we look at the essence of 

greedy algorithms we find that they are based on the need generation mechanism. 

Often in industries across the boards we have different needs and even within the 

industry we have situations in which our priorities change. If we take example of 

Pakistani industry, the basic requirement or need is power/electricity/etc. This need is 

potent enough to present and appear as a fundamental heuristic for running of any 

type of a heuristic based optimization model. The offshoot of this is the efficiency 

gain within the industry itself.  

 

 ANN for Post Conditioning of a Meta Heuristic has been used: Neural networks 

are adaptive to the changing inputs with respect to the outputs. In fact a biological 

neuron can handle around 10,000 inputs at a single time. As far as the artificial 

neurons are concerned, the adaptation depends upon their learning capabilities s and 

the type of algorithms used. If the network is well designed and if the algorithm is 

very over convergent or on the other hand takes time, then the advantage of having a 
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neural end gets diminished.  A useful method for the neural learning rate is the Bold 

Driver Algorithm. This technique takes into account the relative error values in 

response to the input and the outputs. The Bold Driver takes the value of error to the 

upper slope edge of the function and that is the point where the step size reduction 

takes place. In order to incorporate the network fully one requires a preconditioning 

methodology. The learning rate of the network greatly depends on this particular 

aspect. If the associated aspect and algorithm is not strong enough in the 

preconditioning phase the neural network will never converge in assurance towards a 

decision. ACO in this respect has proved to be an excellent pre conditioner to ANN 

both in supervised and unsupervised neural learnings. It is the convergent property of 

ACO which enables ANN to learn quickly and definitively. This aspect greatly 

improves the decision making potential of ANN assisted models. In our case as 

depicted in the mathematical formulation of the problem, once the ANN model for 

our problem is built, we preconditioned it through the introduction of Δ which was a 

direct output from the application of ACO.  

 Amalgamation of Pheromone Up gradation Variable (Tau) with ANN has been 

presented: Moreover, the concept of inclusion of τ as an input to ANN enabled us to 

make use of the parameters at hand coming directly from the ACO mathematical 

formulations. ACO is much better than other preconditioning algorithms such as 

annealing such that it follows converge than search approach, whereas annealing and 

other associated methods follow search than converge methodology. The biggest 

disadvantage of ACO one might think is that it can over converge and fall into local 

optima, but as we have seen in our case, there are situations in which we require an 

algorithm to first find something for us and then refine it rather than doing the 

opposite. We require definite and quick answers rather the accurate ones.  

 

 The utility of Swarm Intelligence meta-heuristics through the amalgamation of 

three concepts i.e. Algorithms, Artificial Neural Networks in the application area 

of scheduling have been further extended.  As discussed in chapter no.1 algorithms 

are most potently used as a technology, a technology which is even having a greater 

memory map than computers, we combine it with the Artificial Intelligence of Neural 
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Networks and we can have a potent enough mechanism of handling complex 

problems. As elaborated in chapter 2 optimization technique brings about the on 

ground aspects to the problem. Optimization has to be intelligent and convergent to 

gain efficiency of the solution and for that the aspects of learning from the nature is 

the best resource. As a result swarm intelligence emerges as a very deliberate 

technique to handle the logical part of the questions and problems. In chapter 3 we 

have converged on the development of the mathematical model for our proposed 

technique and the introduction of ANNs to make the solution finding into a smart 

process. This process is dove tailed with the most convergent friendly of the swarm 

intelligence techniques, the ACO. 

 

 Extra-Ordinary Results by ACO have been obtained: In order to ascertain the 

convergence capabilities we have demonstrated the results and the convergence times 

through the application of ACO on a set of 100 problems.These results were sure 

enough for us to conclude that ACO is the most efficient technique to handle 

convergent prone problems. With this aspect in mind we then combined this 

particular property of ACO with ANNs to generate an intelligent real time model. As 

discussed in chapter 3 we made use of the corrective factor of ACO i.e. tau (τ) to 

grasp the key parameters required for the training of ANN enabled model along with 

the ACO converged result. This technique was applied on various problem sets and in 

chapter 6 we have practically demonstrated the usage of this technique on two variant 

industries, one is a high tech industry of aviation maintenance in which the demand is 

fluctuating but whenever it comes the process lines are heavily booked. The other 

application area was the ceiling fan manufacturing industry of Pakistan. This industry 

by its nature is season dependent. Once the season is approaching the process lines 

get choked. In such a situation, it is pertinent enough to create a redundancy scenario. 

This shall ensure flow and fast track the manufacturing process.  

 

 Novel Formulation of NaACO: Although there have been various attempts to tackle 

the issue of redundant scheduling through hill climbing algorithms and by branch and 

bound algorithms e.g. by Marco Schmidt and Klaus Schilling,  in our work we have 
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proposed a model which addresses the above mentioned situation in a way that it not 

only takes into account the best possible convergence mechanism (ACO), but also 

uses its inputs to create a neural interface and hence the technique of NaACO (Neural 

Augmented ACO). 

 

 Novel Introduction of Neu (Tau): The use of intelligent form of up-gradation 

mechanism (τ) to formulate Nueτ (Neural tau), has been one of the various novelties 

of this research. This function is different than conventional tau as it incorporates the 

multi-layered forward propagated ANN to come up with intelligent solutions.  

 

 Novel Composition of i-ACO: An overall system of intelligent form of ACO known 

as i-ACO (Intelligent ACO) is thus introduced. Moreover we have first converged 

through the use of ψ through ACO and then we have maintained the essence of this 

convergence throughout our optimization process by including the key inputs in the 

development of the complete model.  

 

 Novel Creation of a Model for Redundancy Evaluation: The key findings are that 

even though static scheduling has been worked upon since so many years, but if we 

talk about a system in which the push effect is getting dominant as compared to the 

pull effect, we have to take quick decisions in order to repeat the process lines or the 

serving lines. This effect can be nullified if we have a proper intelligent system in 

place. This system can advise us on the acceptability to repeat any process or 

assembly line within the scheduling domain.  

 

 The true nature of this finding is that through the usage of the proposed model 

the viability of repetitions at process and sub process levels can be predicted: 

This viability is based on numerous factors. The factor of efficiency and effectiveness 

both are important and pertinent. If we look at our second case study, we see that a 

parallel assembly line was built using this approach in which our model hinted that 

the parameters which we were trying to handle were converging to take this decision. 

We have to be rational in our approach while commenting on the layouts and giving 
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decision about the inclusion of another repeated setup for a process. This of course 

depends upon the financial limitations, the organizational culture and the amount of 

gain which we are expected. As shown by the snap shots taken before and after the 

inclusion of a parallel process line we can comment that this strategy had other 

various positive effects. For example the local housekeeping of the workshop 

drastically improved and we saw that the overall layout of the workshop became 

orderly. The concept of lean and waste reduction is an offshoot of the effects of this 

nature.  

 

8.2 Areas of Future Research 

Although NaACO presents a host of other futuristic applications and improvements to cater for 

changing environments, the following shows the vivid list of futuristic assignments which can be 

immediately pondered upon by interested researchers. The areas of research are also indicated in 

the relevant chapter discussions for interested readers. 

 

 Weight Updating Mechanism: Although NaACO is modelled keeping in view the 

aspects of run time adjustments for its initiation and subsequent usage, the issue of giving 

weights to different inputs in response to the convergence rate is an area which can be 

researched especially in the presence of evolving variables. A weight assignment matrix 

and methodology can be constructed which will enable the model to recognize the 

importance of each variable. 

 Combination of NaACO with DSM (Design Structure Matrix): The DSM or Design 

Structure Matrix is one area of intricate scheduling at process level in scheduling. It may 

be quiet interesting to dove tail this technique of scheduling with NaACO to see the 

combined convergence of the overall algorithm in scheduling related projects/processes. 

 

 Unsupervised NaACO: The area of unsupervised neural learning amalgamated with 

ACO to formulate an unsupervised NaACO is another advancement for future research. 

In this regards SOM (Self Organizing Maps) topology can be used in applied case studies 
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where even the outputs are unknown to generate a position vector field directing towards 

a particular output. 

 

 Transferability Function: Any agent is regarded as intelligent once it is able to transfer 

the actions used in the previous encounters to the next encounters and situations. We can 

also regard this transfer as a pre cursor to reusability. The NaACO approach to 

scheduling can be further sufficed by adding a mathematical formulation of reusability 

function in it. 

 Recoverability Function: Every intelligent system should be able to identify the aspects 

which made it to come to a conclusion hence the causes of its failure and the causes for 

its success. This ability enables the users to clearly identify the agents which are causing 

disruption and enabling the system to diverge. This is also true for over convergence. 

This is known as recoverability of a system. Hence NaACO can be reinforced with the 

development of a recoverability mechanism. 
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APPENDIX A 

 

Data sets for 100 problems 

 

The selected data sets of 100 problems used in the problem formulation phase (chapter 5) are 

presented in this appendix. There are 12 jobs which are to be scheduled on three machines with 

times as A, B and E for each machine. 

 

 

 

 

  

Ai Bi Ei Ai Bi Ei Ai Bi Ei Ai Bi Ei Ai Bi Ei Ai Bi Ei Ai Bi Ei Ai Bi Ei Ai Bi Ei

1 90 188 190 80 185 186 77 190 178 1 9 263 9 0 205 5 4 164 4 1 3 596 6 6 587 8 1 767 2

2 87 192 185 87 193 188 87 188 191 2 6 76 6 1 71 4 3 691 5 2 2 70 9 7 221 1 1 433 9

3 89 190 188 88 192 190 88 189 188 3 5 471 4 3 24 8 1 470 8 3 1 507 6 1 285 5 0 395 8

4 90 185 184 87 188 185 76 188 190 4 3 135 2 1 258 8 7 603 5 4 5 570 4 8 346 7 7 778 7

5 86 183 187 82 190 189 70 190 191 5 1 742 5 0 632 7 9 742 4 5 2 12 7 2 755 8 5 174 4

6 70 187 190 92 188 195 80 188 190 6 7 78 2 5 237 7 5 264 5 6 5 344 1 9 97 3 5 303 1

7 87 193 187 87 190 185 98 191 188 7 4 355 9 6 188 9 0 434 3 7 3 321 7 0 516 9 2 316 2

8 88 190 188 91 185 183 70 185 183 8 7 218 2 5 384 4 7 64 6 8 8 220 7 0 278 8 4 225 2

9 76 188 184 88 188 190 88 188 190 9 5 698 1 8 203 5 4 507 5 9 4 788 5 7 83 7 7 402 5

10 89 189 190 70 190 184 89 185 191 10 8 600 4 0 272 4 4 328 7 10 1 642 2 3 148 9 7 110 4

11 76 190 183 60 192 190 90 188 190 11 0 218 5 1 35 7 4 768 8 11 6 556 3 4 62 8 3 413 1

12 85 192 189 78 187 188 78 190 191 12 2 538 9 6 385 2 2 91 4 12 7 334 3 1 346 4 9 772 3

Job

Machine 1 Machine 2 Machine 3

Job

Machine 1 Machine 2 Machine 3

Job

Machine 1 Machine 2 Machine 3

Ai Bi Ei Ai Bi Ei Ai Bi Ei Ai Bi Ei Ai Bi Ei Ai Bi Ei Ai Bi Ei Ai Bi Ei Ai Bi Ei

1 2 336 2 4 143 8 3 560 9 1 3 52 7 8 694 1 1 593 8 1 6 261 3 6 537 4 7 575 9

2 5 411 3 7 139 4 6 664 7 2 3 10 7 1 686 3 3 568 5 2 7 210 3 1 185 7 8 204 5

3 0 3 6 1 773 7 1 69 5 3 2 764 4 7 332 9 4 147 8 3 4 692 2 6 554 2 3 698 9

4 8 532 3 4 555 4 9 654 8 4 7 167 2 4 476 1 9 46 8 4 9 207 3 3 262 9 8 625 4

5 4 781 3 8 708 4 3 650 4 5 8 714 6 5 151 8 1 196 1 5 8 126 5 0 38 3 7 371 7

6 5 74 1 5 101 3 8 161 2 6 1 356 2 0 755 1 8 158 6 6 1 128 9 6 755 1 3 100 7

7 3 624 1 7 120 3 1 83 9 7 9 135 3 0 206 7 6 780 5 7 6 193 1 5 218 3 5 159 2

8 1 35 9 2 215 1 4 499 5 8 6 230 8 8 14 3 2 141 8 8 2 141 7 5 539 6 3 195 2

9 7 772 7 0 25 8 0 60 8 9 8 600 7 9 257 9 0 524 4 9 8 419 1 8 798 2 5 796 6

10 2 799 4 6 259 8 7 498 6 10 7 683 5 0 480 1 9 727 9 10 7 769 6 9 303 8 4 12 9

11 2 550 5 5 721 3 8 369 4 11 3 204 6 6 303 6 4 217 2 11 3 315 7 2 292 2 5 262 7

12 3 550 5 6 191 4 2 754 9 12 5 277 3 9 513 5 6 205 7 12 0 238 8 1 366 4 7 569 6

Machine 1 Machine 2

Job

Machine 1 Machine 2 Machine 3 Machine 3

Job

Machine 3

Job

Machine 1 Machine 2
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Ai Bi Ei Ai Bi Ei Ai Bi Ei Ai Bi Ei Ai Bi Ei Ai Bi Ei Ai Bi Ei Ai Bi Ei Ai Bi Ei

1 2 722 7 4 29 7 7 81 3 1 6 47 3 3 133 5 0 618 9 1 3 335 7 6 569 5 1 790 7

2 1 637 1 9 145 4 5 346 5 2 8 740 1 1 66 8 6 270 2 2 6 330 5 3 114 4 8 367 3

3 5 376 6 5 564 3 0 290 5 3 6 35 9 7 710 5 1 514 8 3 6 495 1 3 286 4 2 587 6

4 9 653 1 5 555 3 4 196 3 4 6 778 8 7 197 9 2 130 7 4 3 701 8 3 501 1 9 224 4

5 0 292 5 8 590 8 5 211 5 5 2 12 2 9 424 3 5 785 1 5 4 130 7 9 617 3 3 173 4

6 0 717 7 7 413 8 6 117 3 6 4 270 7 3 424 8 0 261 3 6 3 55 4 6 340 3 3 495 9

7 4 766 7 2 513 5 1 700 2 7 9 172 7 5 132 1 7 63 5 7 7 194 4 2 305 7 5 768 9

8 6 194 2 0 252 5 7 794 1 8 6 388 6 4 636 4 4 723 6 8 9 383 8 7 159 9 7 577 6

9 8 538 1 4 665 6 6 331 3 9 1 525 1 2 797 4 2 693 7 9 5 146 2 8 301 9 5 620 5

10 5 372 5 0 490 6 6 618 8 10 8 107 9 3 43 6 3 485 3 10 1 619 9 0 710 6 6 434 2

11 1 24 7 1 375 7 1 12 6 11 0 727 9 7 67 9 0 552 3 11 2 68 8 5 331 1 5 511 4

12 3 759 8 4 590 3 2 617 7 12 7 321 3 2 663 9 0 774 4 12 8 268 6 9 71 6 7 475 9

Machine 3

Job

Machine 1 Machine 2 Machine 3

Job

Machine 1 Machine 2 Machine 3

Job

Machine 1 Machine 2

Ai Bi Ei Ai Bi Ei Ai Bi Ei Ai Bi Ei Ai Bi Ei Ai Bi Ei Ai Bi Ei Ai Bi Ei Ai Bi Ei

1 0 466 3 5 570 8 1 208 5 1 3 783 5 8 487 1 5 737 8 1 3 237 6 7 232 4 8 591 4

2 3 0 7 7 797 8 4 624 9 2 1 258 5 8 709 5 7 302 1 2 4 182 3 8 166 1 2 584 3

3 2 504 5 2 179 6 0 283 6 3 7 703 4 0 458 1 4 454 2 3 8 268 4 9 214 8 0 676 2

4 1 424 9 9 594 2 7 533 3 4 6 709 4 6 318 1 3 610 7 4 4 600 5 5 64 7 6 535 2

5 5 116 7 7 216 5 5 250 2 5 9 414 4 8 761 9 7 451 1 5 4 784 4 3 283 9 1 302 6

6 3 234 1 3 305 1 0 450 4 6 1 481 3 4 114 2 5 746 5 6 5 645 3 9 275 5 8 520 9

7 6 49 1 7 127 7 2 346 8 7 1 477 1 8 159 3 5 558 2 7 6 771 2 7 102 6 3 653 8

8 2 442 5 3 739 7 0 316 1 8 4 251 5 7 465 6 4 179 9 8 3 13 1 5 759 6 0 646 1

9 9 299 3 0 15 4 9 381 6 9 5 597 5 9 377 6 3 698 4 9 5 775 1 1 526 9 8 42 9

10 3 771 1 2 401 5 9 213 6 10 7 505 2 8 498 9 7 145 8 10 8 578 5 4 761 9 9 476 9

11 2 179 8 1 749 8 2 792 1 11 7 493 2 2 716 7 5 542 3 11 3 656 9 3 799 9 9 262 4

12 8 636 1 6 342 4 0 781 8 12 7 146 7 6 269 8 6 288 4 12 2 710 4 8 402 9 2 287 6

Machine 3

Job

Machine 1 Machine 2 Machine 3

Job

Machine 1 Machine 2 Machine 3

Job

Machine 1 Machine 2

Ai Bi Ei Ai Bi Ei Ai Bi Ei Ai Bi Ei Ai Bi Ei Ai Bi Ei Ai Bi Ei Ai Bi Ei Ai Bi Ei

1 0 36 8 2 765 8 3 369 6 1 7 309 8 0 238 6 8 161 7 1 9 696 9 2 185 7 1 70 1

2 7 698 3 3 701 8 2 411 2 2 1 19 7 9 378 8 2 231 7 2 3 377 7 3 359 6 4 179 3

3 1 587 1 6 202 4 1 513 9 3 2 402 5 3 292 4 9 60 9 3 9 174 2 1 683 8 2 192 8

4 4 442 9 7 126 3 0 674 9 4 9 261 1 2 698 8 0 1 4 4 3 612 7 8 718 4 2 279 3

5 6 463 3 4 27 7 6 140 7 5 5 614 7 3 386 3 7 47 3 5 6 361 5 0 540 7 5 195 9

6 9 793 8 4 452 3 5 243 7 6 8 516 7 1 155 7 6 253 5 6 3 278 6 4 448 5 7 668 6

7 9 369 3 4 538 1 4 578 1 7 1 478 6 4 495 8 7 354 4 7 1 781 3 9 349 1 6 332 7

8 7 295 7 7 548 2 4 395 6 8 8 341 8 0 80 1 7 645 5 8 7 458 5 5 523 3 9 45 8

9 5 310 2 5 262 4 1 627 8 9 7 451 1 9 64 5 6 138 8 9 8 21 5 6 121 3 6 541 6

10 2 34 4 6 237 3 4 33 9 10 7 169 4 9 645 6 2 514 4 10 6 696 5 6 112 1 7 100 7

11 3 103 9 1 712 6 6 60 9 11 2 222 5 0 652 6 2 570 2 11 9 729 9 8 729 1 0 30 1

12 3 117 2 0 36 2 6 793 1 12 3 394 3 1 528 9 5 402 7 12 2 409 9 8 661 4 1 764 8

Machine 3

Job

Machine 1 Machine 2 Machine 3

Job

Machine 1 Machine 2 Machine 3

Job

Machine 1 Machine 2
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Ai Bi Ei Ai Bi Ei Ai Bi Ei Ai Bi Ei Ai Bi Ei Ai Bi Ei Ai Bi Ei Ai Bi Ei Ai Bi Ei

1 9 410 7 9 724 7 9 106 4 1 0 184 2 2 375 6 2 412 7 1 6 152 7 8 201 6 9 631 1

2 6 194 8 9 725 5 5 681 2 2 3 544 4 5 497 2 3 691 1 2 8 389 1 9 173 7 6 141 6

3 8 639 3 5 26 5 5 55 6 3 2 376 8 9 336 7 9 242 3 3 6 589 8 6 451 9 6 573 6

4 8 264 2 4 564 7 1 589 3 4 2 100 9 7 557 9 7 780 2 4 2 8 5 8 189 7 6 339 7

5 5 657 6 0 179 4 4 367 4 5 0 614 5 7 432 1 6 541 7 5 2 646 8 8 606 1 2 0 5

6 4 25 5 9 792 4 1 37 4 6 0 759 6 2 741 3 9 279 2 6 9 398 8 2 408 7 2 94 7

7 7 421 1 2 734 5 3 165 7 7 0 212 8 9 160 8 0 153 6 7 1 293 2 9 396 7 8 338 2

8 1 30 5 4 714 2 1 319 6 8 0 142 3 4 420 8 5 416 4 8 4 308 3 2 197 5 9 774 3

9 7 136 7 2 303 9 8 398 9 9 5 435 1 9 637 8 4 524 7 9 5 115 3 4 448 2 3 508 7

10 0 662 1 2 503 5 4 89 3 10 0 55 7 4 146 7 5 659 7 10 1 286 5 0 683 8 8 531 6

11 6 699 7 3 749 3 5 580 6 11 2 647 7 3 488 1 5 631 9 11 5 350 6 0 365 7 0 540 6

12 6 97 5 3 225 4 5 762 9 12 2 66 5 3 798 2 7 728 1 12 5 374 2 2 513 8 1 627 1

Machine 3

Job

Machine 1 Machine 2 Machine 3

Job

Machine 1 Machine 2 Machine 3

Job

Machine 1 Machine 2

Ai Bi Ei Ai Bi Ei Ai Bi Ei Ai Bi Ei Ai Bi Ei Ai Bi Ei Ai Bi Ei Ai Bi Ei Ai Bi Ei

1 4 282 4 8 470 8 9 274 1 1 1 283 6 5 5 3 7 127 6 1 0 762 1 5 367 5 7 591 6

2 6 412 5 2 401 5 6 72 8 2 2 211 7 4 154 4 9 573 4 2 5 557 4 0 551 2 3 318 9

3 9 87 4 2 659 5 9 198 5 3 3 282 9 8 530 3 1 718 4 3 3 102 1 4 286 6 0 271 2

4 9 414 1 1 89 6 6 14 9 4 5 54 3 5 480 3 2 188 4 4 7 223 7 1 569 9 7 164 2

5 7 333 6 7 138 3 9 529 4 5 4 533 6 9 350 4 8 211 1 5 0 138 3 0 209 7 2 176 8

6 1 224 4 0 123 9 0 640 2 6 3 462 9 3 727 2 9 788 1 6 5 310 9 3 567 1 8 216 3

7 1 157 6 8 717 6 9 290 9 7 9 731 6 9 586 7 6 467 3 7 5 189 7 1 208 6 5 16 1

8 3 287 5 3 32 5 1 141 9 8 9 100 6 2 788 8 9 752 9 8 6 516 5 5 291 2 7 400 6

9 1 658 1 4 149 1 6 736 4 9 3 410 1 1 587 7 4 77 2 9 0 197 4 2 380 5 5 448 2

10 3 415 4 1 768 4 9 57 8 10 6 182 2 9 726 9 3 711 4 10 3 721 8 8 652 3 7 656 1

11 3 279 9 4 152 8 7 528 7 11 4 513 2 6 251 2 6 733 7 11 8 596 6 2 765 4 6 730 9

12 7 436 6 3 225 2 1 159 9 12 4 129 8 5 601 7 1 47 3 12 5 177 2 0 387 2 6 360 8

Machine 3

Job

Machine 1 Machine 2 Machine 3

Job

Machine 1 Machine 2 Machine 3

Job

Machine 1 Machine 2

Ai Bi Ei Ai Bi Ei Ai Bi Ei Ai Bi Ei Ai Bi Ei Ai Bi Ei Ai Bi Ei Ai Bi Ei Ai Bi Ei

1 5 454 1 3 339 1 5 240 5 1 4 790 9 5 742 2 1 253 2 1 8 790 5 1 680 2 7 380 4

2 1 140 6 1 720 7 9 82 5 2 1 465 2 8 499 1 3 633 3 2 0 78 9 4 301 3 0 622 1

3 6 568 8 6 321 7 1 43 9 3 7 191 5 1 224 7 7 421 6 3 3 714 8 1 171 5 9 748 3

4 7 374 1 1 438 7 9 445 2 4 3 314 9 0 413 2 0 227 4 4 2 453 7 4 710 7 8 561 3

5 3 639 6 0 682 2 5 537 5 5 9 198 5 1 699 1 4 650 4 5 9 47 3 6 792 4 1 297 6

6 3 744 5 7 509 1 8 320 8 6 5 536 5 7 431 8 2 603 1 6 0 784 7 0 201 4 4 317 4

7 5 279 7 7 301 9 7 148 6 7 5 500 7 1 419 8 7 424 3 7 4 166 3 1 761 8 0 324 1

8 9 69 3 0 261 2 6 278 5 8 1 425 6 4 50 9 6 675 7 8 5 797 9 3 675 3 5 451 3

9 2 468 3 2 522 8 4 795 5 9 9 148 3 4 520 6 8 535 9 9 7 722 6 9 701 8 6 177 4

10 2 719 9 8 61 3 5 474 2 10 2 31 3 6 172 5 1 665 9 10 9 240 2 0 465 4 4 625 6

11 0 570 8 5 630 8 9 293 1 11 7 177 4 8 579 1 9 495 6 11 0 756 1 3 198 5 6 552 5

12 8 355 3 5 114 3 2 619 9 12 3 710 1 7 22 8 9 697 1 12 1 752 4 2 272 2 9 510 4

Machine 3

Job

Machine 1 Machine 2 Machine 3

Job

Machine 1 Machine 2 Machine 3

Job

Machine 1 Machine 2
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Ai Bi Ei Ai Bi Ei Ai Bi Ei Ai Bi Ei Ai Bi Ei Ai Bi Ei Ai Bi Ei Ai Bi Ei Ai Bi Ei

1 0 244 6 2 579 6 9 682 5 1 4 204 9 5 718 9 4 451 3 1 8 617 2 2 651 1 7 538 1

2 0 228 5 0 541 3 1 675 3 2 1 612 4 5 343 1 9 690 6 2 9 617 2 1 489 2 3 628 2

3 9 734 3 0 444 4 2 104 4 3 1 184 3 3 183 9 4 296 1 3 3 240 2 7 503 1 7 482 8

4 6 592 2 5 116 4 8 741 1 4 7 231 2 4 66 8 5 62 5 4 8 457 7 3 627 3 1 102 1

5 4 635 4 1 305 5 0 212 8 5 8 352 3 8 352 7 0 762 8 5 4 697 5 0 309 9 6 248 2

6 8 6 7 5 473 5 2 7 1 6 5 756 5 6 435 2 6 213 9 6 2 449 9 5 245 8 0 339 6

7 8 342 5 1 310 5 0 547 1 7 4 593 6 0 716 6 0 561 7 7 6 730 8 9 442 6 0 231 1

8 9 341 4 8 124 3 5 306 1 8 3 687 7 1 233 2 9 567 2 8 2 29 8 9 184 3 8 416 3

9 0 269 8 8 59 2 2 643 9 9 2 536 1 4 353 7 3 345 7 9 2 658 5 0 510 6 7 26 6

10 5 661 4 2 477 2 1 739 7 10 6 544 8 9 733 3 1 774 4 10 0 741 2 5 26 8 6 649 8

11 7 711 5 5 303 1 7 476 9 11 8 409 7 6 724 5 7 349 7 11 3 331 1 9 148 4 3 570 8

12 4 437 3 6 331 9 5 738 6 12 7 700 3 7 105 1 9 182 4 12 4 795 6 8 121 8 4 585 5

Machine 3

Job

Machine 1 Machine 2 Machine 3

Job

Machine 1 Machine 2 Machine 3

Job

Machine 1 Machine 2

Ai Bi Ei Ai Bi Ei Ai Bi Ei Ai Bi Ei Ai Bi Ei Ai Bi Ei Ai Bi Ei Ai Bi Ei Ai Bi Ei

1 50 188 190 47 185 186 50 190 178 1 1 535 2 4 572 4 3 294 3 1 0 735 1 2 503 7 1 521 3

2 46 192 185 46 193 188 48 188 191 2 0 620 6 1 560 1 5 25 7 2 0 296 5 4 48 1 7 774 5

3 45 190 188 50 192 190 50 189 188 3 5 758 8 0 582 2 6 500 1 3 3 704 7 8 86 9 3 160 2

4 44 185 184 49 188 185 51 188 190 4 9 321 9 3 110 9 3 422 9 4 5 157 5 1 299 9 3 321 5

5 51 183 187 55 190 189 47 190 191 5 6 649 1 1 95 9 3 364 5 5 1 322 2 5 26 7 1 628 9

6 47 187 190 44 188 195 46 188 190 6 0 159 7 0 382 4 8 565 8 6 5 199 1 3 501 1 1 487 1

7 49 193 187 50 190 185 45 191 188 7 9 300 7 5 547 4 4 30 1 7 2 400 8 7 254 9 1 319 6

8 51 190 188 51 185 183 51 185 183 8 2 221 1 4 527 2 0 176 4 8 9 652 7 6 215 3 9 548 8

9 50 188 184 46 188 190 48 188 190 9 0 771 4 1 513 6 7 667 9 9 3 283 2 2 18 3 5 435 5

10 47 189 190 48 190 184 50 185 191 10 3 527 2 2 722 6 5 359 8 10 7 286 5 9 705 4 3 603 2

11 48 190 183 49 192 190 51 188 190 11 4 391 9 5 548 8 6 341 1 11 5 234 5 7 109 5 0 760 8

12 52 192 189 50 187 188 50 185 191 12 2 550 2 8 62 1 0 366 6 12 6 365 3 7 249 6 0 258 7

Machine 3

Job

Machine 1 Machine 2 Machine 3

Job

Machine 1 Machine 2 Machine 3

Job

Machine 1 Machine 2

Ai Bi Ei Ai Bi Ei Ai Bi Ei Ai Bi Ei Ai Bi Ei Ai Bi Ei Ai Bi Ei Ai Bi Ei Ai Bi Ei

1 6 271 5 6 479 5 3 216 1 1 7 248 4 5 516 2 9 11 6 1 7 521 6 6 655 1 5 659 5

2 8 568 7 3 722 2 0 464 2 2 7 236 1 4 412 3 2 235 5 2 9 646 8 0 175 6 3 575 2

3 4 249 8 3 459 9 7 167 4 3 3 646 5 5 178 1 1 787 6 3 3 333 6 6 147 9 4 716 3

4 1 639 4 8 196 5 8 62 2 4 4 247 7 0 466 2 6 609 3 4 6 637 4 9 189 4 5 178 1

5 8 121 2 5 688 1 2 716 9 5 5 300 5 5 598 4 0 464 9 5 7 576 2 0 740 2 7 284 9

6 3 474 3 9 59 4 7 89 8 6 8 320 4 2 365 5 3 484 7 6 0 554 5 9 206 4 4 442 3

7 3 764 4 5 351 3 4 521 6 7 5 673 9 9 723 6 6 214 6 7 7 584 9 0 204 7 3 284 6

8 7 194 2 3 607 7 8 720 7 8 2 327 9 9 226 8 1 406 4 8 4 153 7 2 571 4 0 163 3

9 2 751 6 8 196 9 7 185 2 9 2 579 6 9 534 1 1 634 7 9 2 618 4 5 531 4 4 463 8

10 4 91 1 2 302 8 4 759 3 10 3 527 5 8 712 4 2 685 2 10 6 55 5 8 618 7 5 503 3

11 2 787 2 2 317 2 0 676 1 11 5 325 6 4 225 1 3 74 1 11 9 198 5 0 607 4 7 111 8

12 8 506 7 1 421 1 4 352 8 12 3 760 1 8 294 3 5 433 3 12 9 760 7 0 246 7 5 48 2

Job

Machine 1 Machine 2 Machine 3

Job

Machine 1 Machine 2 Machine 3

Job

Machine 1 Machine 2 Machine 3
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APPENDIX B 

 

This appendix gives the codes used during the formulation and validation of NaACO and also for 

the applied case study. 

 

Code for PC Hu problem sets (used during formulation of NaACO) 

 

learall 

closeall 

clc 

 

importfile('PC Hu_Min_Makespan_LV.xls'); 

Problem_No=0; 

tic 

Span_Arr=[]; 

tmp_r = 16; 

for r2 = 5:15:140 

    tmp_c = 12; 

for r = 4:11:103 

        W1 = 1;%input('W1 = '); 

        W2 = 1;%input('W2 = '); 

        W3 = 1;%input('W3 = '); 

        Problem_No=Problem_No+1 

table = data(r2:tmp_r,r:tmp_c); 

        machine1 = table(:,1:3); 

        machine2 = table(:,4:6); 

        machine3 = table(:,7:9); 

 

        TT1 = machine1(:,1) + (machine1(:,2)./(machine1(:,3)*W1)); 

        eta1 = 1./TT1; 

 

        TT2 = machine2(:,1) + (machine2(:,2)./(machine2(:,3)*W2)); 

        eta2 = 1./TT2; 
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        TT3 = machine3(:,1) + (machine3(:,2)./(machine3(:,3)*W3)); 

        eta3 = 1./TT3; 

 

        P1 = eta1./(eta2+eta3); 

        P2 = eta2./(eta1+eta3); 

        P3 = eta3./(eta1+eta2); 

 

        P = [P1 P2 P3]; 

 

        M_num=[]; 

for j = 1:12 

            M_num(end+1) = find(max(P(j,:)) == P(j,:)); 

end 

 

        M_num; 

display('Jobs Assigned'); 

        Station_1 = find(M_num==1) 

        Station_2 = find(M_num==2) 

        Station_3 = find(M_num==3) 

        FT1= sum(TT1(Station_1)); 

        FT2= sum(TT2(Station_2)); 

        FT3= sum(TT3(Station_3)); 

        SFT = FT1+FT2+FT3; 

display('Workers Assigned'); 

        M_1 = round((FT1/SFT)*10) 

        M_2 = round((FT2/SFT)*10) 

        M_3 = 10 - (M_1 + M_2) 

 

        ext_jobs_m1 = machine1(Machine_1,:); 

        [r,c] = size(ext_jobs_m1); 

flowtime = 0; 

oldflowtime=0; 

        m1_flowtime=[]; 

for p = 1:r 

flowtime = oldflowtime + ext_jobs_m1(p,1)+ 

(ext_jobs_m1(p,2)/(ext_jobs_m1(p,3)*M_1)); 
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oldflowtime = flowtime; 

            m1_flowtime(end+1) = flowtime; 

end 

        total_flowtime_machine_1 = flowtime; 

flowtime = 0; 

        ext_jobs_m2 = machine2(Machine_2,:); 

        [r,c] = size(ext_jobs_m2); 

oldflowtime=0; 

        m2_flowtime=[]; 

for p = 1:r 

flowtime = oldflowtime + ext_jobs_m2(p,1)+ 

(ext_jobs_m2(p,2)/(ext_jobs_m2(p,3)*M_2)); 

oldflowtime = flowtime; 

            m2_flowtime(end+1) = flowtime; 

end 

 

        total_flowtime_machine_2 = flowtime; 

flowtime = 0; 

 

        ext_jobs_m3 = machine3(Machine_3,:); 

        [r,c] = size(ext_jobs_m3); 

oldflowtime=0; 

        m3_flowtime=[]; 

for p = 1:r 

flowtime = oldflowtime + ext_jobs_m3(p,1)+ 

(ext_jobs_m3(p,2)/(ext_jobs_m3(p,3)*M_3)); 

oldflowtime = flowtime; 

            m3_flowtime(end+1) = flowtime; 

end 

        total_flowtime_machine_3 = flowtime; 

        Make_span = 

max(max(total_flowtime_machine_1,total_flowtime_machine_2),total_flowtime_mac

hine_3) 

        Span_Arr(end+1) = Make_span; 

        tmp_c = tmp_c+11; 

 

end 
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    tmp_r = tmp_r+15; 

end 

tmp_arr = [1:100]'; 

[tmp_arr Span_Arr']; 

toc 

 

Code for validation of FT06 (ACO Domain) 

 

clearall 

closeall 

jobs = 6; 

no_machines = 6; 

machines = [3 1 2 4 6 5; 

            2 3 5 6 1 4; 

            3 4 6 1 2 5; 

            2 1 3 4 5 6; 

            3 2 5 6 1 4;        % for 6 jobs 

            2 4 6 1 5 3] 

time = [1 3 6 7 3 6; 

        8 5 10 10 10 4; 

        5 4 8 9 1 7; 

        5 5 5 3 8 9; 

        9 3 5 4 3 1; 

        3 3 9 10 4 1] 

 

eta =1./time; 

prob = zeros(jobs,no_machines); 

avg_time = sum(sum(time))/(jobs*no_machines); 

tau = no_machines/avg_time; 

for i = 1:jobs 

for j = 1:no_machines 

        prob(i,j) = eta(i,j)/(sum(eta(i,:))-eta(i,j)); 

end 

end 

sorted_time = zeros(jobs,no_machines); 

sorted_machines = zeros(jobs,no_machines); 
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sorted_prob_mat = zeros(jobs,no_machines); 

for i = 1:jobs 

    [sorted_prob,sorted_locations] = sort(prob(i,:),'descend'); 

    sorted_machines(i,:) = machines(i,sorted_locations); 

    sorted_time(i,:) = time(i,sorted_locations); 

    sorted_prob_mat(i,:) = sorted_prob; 

end 

sorted_machines 

sorted_time 

sorted_prob_mat 

makespan_g =100; 

final_machines = zeros(jobs,makespan_g); 

final_machines_con = zeros(jobs,makespan_g,no_machines);  

for i = 1:no_machines 

    machine_col = sorted_machines(:,i); 

    machine_col_n = machine_col; 

    prob_col = sorted_prob_mat(:,i); 

    time_col = sorted_time(:,i); 

    u_machines = unique(machine_col); 

    a=1; %end location 

    loc_arr = []; 

for k = 1:length(u_machines) 

locs = find(machine_col==u_machines(k)) 

if (length(locs)==1)  % no repetition 

            t = time_col(locs); 

for p = 1:t 

                final_machines(locs,a+p-1) = machine_col(locs); 

end 

            loc_arr(end+1) = locs; 

 

% machine run 

end 

 

end 

    machine_col_n(loc_arr)=[]; 

    u_machines = unique(machine_col_n) 

for k = 1:length(u_machines) 

locs = find(machine_col==u_machines(k)) 
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if (length(locs)==2)   

            [mv,loc] = max(prob_col(locs));                       

            t = time_col(locs(loc)); 

tu=0; 

for p = 1:t 

                final_machines(locs(loc),a+p-1) = machine_col(locs(loc)); 

tu= tu+1; 

end 

            [mv,loc] = min(prob_col(locs));                       

            t = time_col(locs(loc)); 

for p = 1:t 

                final_machines(locs(loc),a+p-1+tu) = machine_col(locs(loc)); 

end 

% machine run 

 

            machine_col_n(find(machine_col_n==u_machines(k)))=[]  

end 

 

end 

 

    u_machines = unique(machine_col_n) 

for k = 1:length(u_machines) 

locs = find(machine_col==u_machines(k)) 

if (length(locs)==3)   

            [mv,loc] = max(prob_col(locs));                       

            t = time_col(locs(loc)); 

tu=0; 

            tu1=0; 

            tu2=0; 

for p = 1:t 

                final_machines(locs(loc),a+p-1) = machine_col(locs(loc)); 

tu= tu+1; 

end 

            [mv,loc_x] = sort(prob_col(locs)); 

loc = loc_x(2); 

            t = time_col(locs(loc)); 

for p = 1:t 
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                final_machines(locs(loc),a+p-1+tu) = machine_col(locs(loc)); 

                tu1= tu1+1; 

end 

            [mv,loc] = min(prob_col(locs));                       

            t = time_col(locs(loc)); 

for p = 1:t 

                final_machines(locs(loc),a+p-1+tu+tu1) = 

machine_col(locs(loc)); 

                tu2= tu2+1; 

end 

% machine run 

            machine_col_n(find(machine_col_n==u_machines(k)))=[]  

end 

 

end 

 

final_machines_con(:,:,i) = final_machines;     

end 

 

final_row=[]; 

final_mat =zeros(jobs,makespan_g); 

makespan=[]; 

for i = 1 : jobs 

for j = 1: no_machines 

row = final_machines_con(i,:,j); 

        [I,J] = find(row~=0); 

row = row(:,1:max(J)); 

        final_row = [final_row row]; 

 

end 

makespan(end+1) = length(final_row); 

    final_row = []; 

end 

 

max(makespan) 

min(makespan) 
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%seq_machines = [3 6 1 2 5 4; 

%            4 3 2 6 1 5; 

%            2 4 3 5 6 1; 

%            4 3 1 2 5 6; 

%            4 2 1 6 5 3; 

%            3 2 4 5 6 1]; 

 

Code for validation of FT10 (ACO Domain) 

 

clearall 

closeall 

jobs = 10; 

no_machines = 10; 

machines = [1 2 3 4 5 6 7 8 9 10; 

            1 3 5 10 4 2 7 6 8 9; 

            2 1 4 3 9 6 8 7 10 5; 

            2 3 1 5 7 9 8 4 10 6; 

            3 1 2 6 4 5 9 8 10 7; 

            3 2 6 4 9 10 1 7 5 8; 

            2 1 4 3 7 6 10 9 8 5; 

            3 1 2 6 5 7 9 10 8 4; 

            1 2 4 6 3 10 7 8 5 9; 

            2 1 3 7 9 10 6 4 5 8] 

time = [29 78 9 36 49 11 62 56 44 21; 

        43 28 90 69 75 46 46 72 30 11; 

        85 91 74 39 33 10 89 12 90 45; 

        71 81 95 98 99 43 9 85 52 22; 

        6 22 14 26 69 61 53 49 21 72; 

        47 2 84 95 6 52 65 25 48 72; 

        37 46 13 61 55 21 32 30 89 32; 

        86 46 31 79 32 74 88 36 19 48; 

        76 69 85 76 26 51 40 89 74 11; 

        13 85 61 52 90 47 7 45 64 76] 

 

eta =1./time; 
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prob = zeros(jobs,no_machines); 

avg_time = sum(sum(time))/(jobs*no_machines); 

tau = no_machines/avg_time; 

for i = 1:jobs 

for j = 1:no_machines 

        prob(i,j) = eta(i,j)/(sum(eta(i,:))-eta(i,j)); 

end 

end 

sorted_time = zeros(jobs,no_machines); 

sorted_machines = zeros(jobs,no_machines); 

sorted_prob_mat = zeros(jobs,no_machines); 

for i = 1:jobs 

    [sorted_prob,sorted_locations] = sort(prob(i,:),'descend'); 

    sorted_machines(i,:) = machines(i,sorted_locations); 

    sorted_time(i,:) = time(i,sorted_locations); 

    sorted_prob_mat(i,:) = sorted_prob; 

end 

sorted_machines 

sorted_time 

sorted_prob_mat 

makespan_g =1000; 

final_machines = zeros(jobs,makespan_g); 

final_machines_con = zeros(jobs,makespan_g,no_machines);  

for i = 1:no_machines 

    machine_col = sorted_machines(:,i); 

    machine_col_n = machine_col; 

    prob_col = sorted_prob_mat(:,i); 

    time_col = sorted_time(:,i); 

    u_machines = unique(machine_col); 

    a=1; %end location 

    loc_arr = []; 

for k = 1:length(u_machines) 

locs = find(machine_col==u_machines(k)) 

if (length(locs)==1)  % no repetition 

            t = time_col(locs); 

for p = 1:t 

                final_machines(locs,a+p-1) = machine_col(locs); 

end 
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            loc_arr(end+1) = locs; 

 

% machine run 

end 

 

end 

    machine_col_n(loc_arr)=[]; 

    u_machines = unique(machine_col_n) 

for k = 1:length(u_machines) 

locs = find(machine_col==u_machines(k)) 

if (length(locs)==2)   

            [mv,loc] = max(prob_col(locs));                       

            t = time_col(locs(loc)); 

tu=0; 

for p = 1:t 

                final_machines(locs(loc),a+p-1) = machine_col(locs(loc)); 

tu= tu+1; 

end 

            [mv,loc] = min(prob_col(locs));                       

            t = time_col(locs(loc)); 

for p = 1:t 

                final_machines(locs(loc),a+p-1+tu) = machine_col(locs(loc)); 

end 

% machine run 

 

            machine_col_n(find(machine_col_n==u_machines(k)))=[]  

end 

 

end 

 

    u_machines = unique(machine_col_n) 

for k = 1:length(u_machines) 

locs = find(machine_col==u_machines(k)) 

if (length(locs)==3)   

            [mv,loc] = max(prob_col(locs));                       

            t = time_col(locs(loc)); 

tu=0; 
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            tu1=0; 

            tu2=0; 

for p = 1:t 

                final_machines(locs(loc),a+p-1) = machine_col(locs(loc)); 

tu= tu+1; 

end 

            [mv,loc_x] = sort(prob_col(locs)); 

loc = loc_x(2); 

            t = time_col(locs(loc)); 

for p = 1:t 

                final_machines(locs(loc),a+p-1+tu) = machine_col(locs(loc)); 

                tu1= tu1+1; 

end 

            [mv,loc] = min(prob_col(locs));                       

            t = time_col(locs(loc)); 

for p = 1:t 

                final_machines(locs(loc),a+p-1+tu+tu1) = 

machine_col(locs(loc)); 

                tu2= tu2+1; 

end 

% machine run 

            machine_col_n(find(machine_col_n==u_machines(k)))=[]  

end 

 

end 

 

final_machines_con(:,:,i) = final_machines;     

end 

 

final_row=[]; 

final_mat =zeros(jobs,makespan_g); 

makespan=[]; 

for i = 1 : jobs 

for j = 1: no_machines 

row = final_machines_con(i,:,j); 

        [I,J] = find(row~=0); 

row = row(:,1:max(J)); 
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        final_row = [final_row row]; 

 

end 

makespan(end+1) = length(final_row); 

    final_row = []; 

end 

 

max(makespan) 

min(makespan) 

(max(makespan)+min(makespan))/2 

 

%seq_machines = [3 6 1 2 5 4; 

%            4 3 2 6 1 5; 

%            2 4 3 5 6 1; 

%            4 3 1 2 5 6; 

%            4 2 1 6 5 3; 

%            3 2 4 5 6 1]; 

 

Code for validation of FT10 (ANN Domain) 

 

clc 

clearall 

closeall 

eg1=[3;6;10;1;4;9;5;8;7;2;395] 

eg2=[9;3;8;1;2;7;10;6;4;5;464] 

eg3=[6;7;9;3;5;4;2;8;10;1;568] 

eg4=[8;6;9;10;2;3;4;1;5;7;655] 

eg5=[3;2;10;1;6;8;9;5;4;7;393] 

eg6=[2;9;7;3;5;10;1;8;6;4;496] 

eg7=[4;6;9;10;5;2;1;7;3;8;416] 

eg8=[8;2;5;10;1;4;7;6;3;9;539] 

eg9=[9;3;7;10;2;5;1;6;4;8;597] 

eg10=[6;2;4;10;7;3;5;8;1;9;540] 

eg11=[10;3;6;1;4;9;5;8;7;2;250] 

eg12=[8;3;10;1;2;7;10;6;4;5;280] 

eg13=[9;7;10;3;5;4;2;8;6;1;400] 
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eg14=[9;6;8;10;2;3;4;1;5;7;600] 

eg15=[10;3;2;1;6;8;9;5;4;7;250] 

 

in=[eg1 eg2 eg3 eg4 eg5 eg6 eg7 eg8 eg9 eg10 eg11 eg12 eg13 eg14 eg15]; 

 

Target=[1 1 1 1 1 1 1 1 1 1 0 0 0 0 0]   

 

net = newff(minmax(in),[10 10 10 1]); 

net.trainParam.epochs = 500; 

net = train(net,in,Target); 

savenetnet 

 

Code for validation of FT20 (ACO Domain) 

 

clearall 

closeall 

jobs = 20; 

no_machines = 5; 

machines = [1 2 3 4 5; 

            1 2 4 3 5; 

            2 1 3 5 4; 

            2 1 5 3 4; 

            3 2 1 4 5; 

            3 2 5 1 4; 

            2 1 3 4 5; 

            3 2 1 4 5; 

            1 4 3 2 5; 

            2 3 1 4 5; 

            2 4 1 5 3; 

            3 1 2 4 5; 

            1 3 2 4 5; 

            3 1 2 4 5; 

            1 2 5 3 4; 

            2 1 4 5 3; 

            1 3 2 4 5; 

            1 2 5 3 4; 
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            2 3 1 4 5; 

            1 2 3 4 5] 

time = [29 9 49 62 44; 

        43 75 46 69 72; 

        39 91 90 45 12; 

        71 81 85 22 9; 

        26 22 14 21 72; 

        47 52 84 6 48; 

        61 46 32 32 30; 

        32 46 31 19 36; 

        76 40 85 76 26; 

        64 85 61 47 90; 

        11 78 21 36 56; 

        11 28 90 46 30; 

        85 10 74 89 33; 

        99 52 95 98 43; 

        6 61 49 53 69; 

        95 2 25 72 65; 

        37 21 13 89 55; 

        86 74 48 79 88; 

        11 69 51 89 74; 

        13 7  76 52 45] 

 

eta =1./time; 

prob = zeros(jobs,no_machines); 

avg_time = sum(sum(time))/(jobs*no_machines); 

tau = no_machines/avg_time; 

for i = 1:jobs 

for j = 1:no_machines 

        prob(i,j) = eta(i,j)/(sum(eta(i,:))-eta(i,j)); 

end 

end 

sorted_time = zeros(jobs,no_machines); 

sorted_machines = zeros(jobs,no_machines); 

sorted_prob_mat = zeros(jobs,no_machines); 

for i = 1:jobs 

    [sorted_prob,sorted_locations] = sort(prob(i,:),'descend'); 

    sorted_machines(i,:) = machines(i,sorted_locations); 
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    sorted_time(i,:) = time(i,sorted_locations); 

    sorted_prob_mat(i,:) = sorted_prob; 

end 

sorted_machines 

sorted_time 

sorted_prob_mat 

makespan_g =1500; 

final_machines = zeros(jobs,makespan_g); 

final_machines_con = zeros(jobs,makespan_g,no_machines);  

for i = 1:no_machines 

    machine_col = sorted_machines(:,i); 

    machine_col_n = machine_col; 

    prob_col = sorted_prob_mat(:,i); 

    time_col = sorted_time(:,i); 

    u_machines = unique(machine_col); 

    a=1; %end location 

    loc_arr = []; 

for k = 1:length(u_machines) 

locs = find(machine_col==u_machines(k)) 

if (length(locs)==1)  % no repetition 

            t = time_col(locs); 

for p = 1:t 

                final_machines(locs,a+p-1) = machine_col(locs); 

end 

            loc_arr(end+1) = locs; 

 

% machine run 

end 

 

end 

    machine_col_n(loc_arr)=[]; 

    u_machines = unique(machine_col_n) 

for k = 1:length(u_machines) 

locs = find(machine_col==u_machines(k)) 

if (length(locs)==2)   

            [mv,loc] = max(prob_col(locs));                       

            t = time_col(locs(loc)); 

tu=0; 
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for p = 1:t 

                final_machines(locs(loc),a+p-1) = machine_col(locs(loc)); 

tu= tu+1; 

end 

            [mv,loc] = min(prob_col(locs));                       

            t = time_col(locs(loc)); 

for p = 1:t 

                final_machines(locs(loc),a+p-1+tu) = machine_col(locs(loc)); 

end 

% machine run 

 

            machine_col_n(find(machine_col_n==u_machines(k)))=[]  

end 

 

end 

 

    u_machines = unique(machine_col_n) 

for k = 1:length(u_machines) 

locs = find(machine_col==u_machines(k)) 

if (length(locs)==3)   

            [mv,loc] = max(prob_col(locs));                       

            t = time_col(locs(loc)); 

tu=0; 

            tu1=0; 

            tu2=0; 

for p = 1:t 

                final_machines(locs(loc),a+p-1) = machine_col(locs(loc)); 

tu= tu+1; 

end 

            [mv,loc_x] = sort(prob_col(locs)); 

loc = loc_x(2); 

            t = time_col(locs(loc)); 

for p = 1:t 

                final_machines(locs(loc),a+p-1+tu) = machine_col(locs(loc)); 

                tu1= tu1+1; 

end 

            [mv,loc] = min(prob_col(locs));                       
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            t = time_col(locs(loc)); 

for p = 1:t 

                final_machines(locs(loc),a+p-1+tu+tu1) = 

machine_col(locs(loc)); 

                tu2= tu2+1; 

end 

% machine run 

            machine_col_n(find(machine_col_n==u_machines(k)))=[]  

end 

end 

 

    u_machines = unique(machine_col_n) 

for k = 1:length(u_machines) 

locs = find(machine_col==u_machines(k)) 

if (length(locs)==4)   

            [mv,loc] = max(prob_col(locs));                       

            t = time_col(locs(loc)); 

tu=0; 

            tu1=0; 

            tu2=0; 

            tu3=0; 

for p = 1:t 

                final_machines(locs(loc),a+p-1) = machine_col(locs(loc)); 

tu= tu+1; 

end 

            [mv,loc_x] = sort(prob_col(locs)); 

loc = loc_x(2); 

            t = time_col(locs(loc)); 

for p = 1:t 

                final_machines(locs(loc),a+p-1+tu) = machine_col(locs(loc)); 

                tu1= tu1+1; 

end 

            [mv,loc_x] = sort(prob_col(locs)); 

loc = loc_x(3); 

            t = time_col(locs(loc)); 

for p = 1:t 

                final_machines(locs(loc),a+p-1+tu+tu1) = 

machine_col(locs(loc)); 
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                tu2= tu2+1; 

end 

            [mv,loc] = min(prob_col(locs));                       

            t = time_col(locs(loc)); 

for p = 1:t 

                final_machines(locs(loc),a+p-1+tu+tu1+tu2) = 

machine_col(locs(loc)); 

                tu3= tu3+1; 

end 

% machine run 

            machine_col_n(find(machine_col_n==u_machines(k)))=[]  

end 

end 

 

    u_machines = unique(machine_col_n) 

for k = 1:length(u_machines) 

locs = find(machine_col==u_machines(k)) 

if (length(locs)==6)   

            [mv,loc] = max(prob_col(locs));                       

            t = time_col(locs(loc)); 

tu=0; 

            tu1=0; 

            tu2=0; 

            tu3=0; 

            tu4=0; 

            tu5=0; 

for p = 1:t 

                final_machines(locs(loc),a+p-1) = machine_col(locs(loc)); 

tu= tu+1; 

end 

            [mv,loc_x] = sort(prob_col(locs)); 

loc = loc_x(2); 

            t = time_col(locs(loc)); 

for p = 1:t 

                final_machines(locs(loc),a+p-1+tu) = machine_col(locs(loc)); 

                tu1= tu1+1; 

end 

            [mv,loc_x] = sort(prob_col(locs)); 
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loc = loc_x(3); 

            t = time_col(locs(loc)); 

for p = 1:t 

                final_machines(locs(loc),a+p-1+tu+tu1) = 

machine_col(locs(loc)); 

                tu2= tu2+1; 

end 

            [mv,loc_x] = sort(prob_col(locs)); 

loc = loc_x(4); 

            t = time_col(locs(loc)); 

for p = 1:t 

                final_machines(locs(loc),a+p-1+tu+tu1+tu2) = 

machine_col(locs(loc)); 

                tu3= tu3+1; 

end 

            [mv,loc_x] = sort(prob_col(locs)); 

loc = loc_x(5); 

            t = time_col(locs(loc)); 

for p = 1:t 

                final_machines(locs(loc),a+p-1+tu+tu1+tu2+tu3) = 

machine_col(locs(loc)); 

                tu4= tu4+1; 

end 

            [mv,loc] = min(prob_col(locs));                       

            t = time_col(locs(loc)); 

for p = 1:t 

                final_machines(locs(loc),a+p-1+tu+tu1+tu2+tu3+tu4) = 

machine_col(locs(loc)); 

                tu5= tu5+1; 

end 

% machine run 

            machine_col_n(find(machine_col_n==u_machines(k)))=[]  

end 

end 

 

    u_machines = unique(machine_col_n) 

for k = 1:length(u_machines) 

locs = find(machine_col==u_machines(k)) 
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if (length(locs)==7)   

            [mv,loc] = max(prob_col(locs));                       

            t = time_col(locs(loc)); 

tu=0; 

            tu1=0; 

            tu2=0; 

            tu3=0; 

            tu4=0; 

            tu5=0; 

            tu6=0; 

for p = 1:t 

                final_machines(locs(loc),a+p-1) = machine_col(locs(loc)); 

tu= tu+1; 

end 

            [mv,loc_x] = sort(prob_col(locs)); 

loc = loc_x(2); 

            t = time_col(locs(loc)); 

for p = 1:t 

                final_machines(locs(loc),a+p-1+tu) = machine_col(locs(loc)); 

                tu1= tu1+1; 

end 

            [mv,loc_x] = sort(prob_col(locs)); 

loc = loc_x(3); 

            t = time_col(locs(loc)); 

for p = 1:t 

                final_machines(locs(loc),a+p-1+tu+tu1) = 

machine_col(locs(loc)); 

                tu2= tu2+1; 

end 

            [mv,loc_x] = sort(prob_col(locs)); 

loc = loc_x(4); 

            t = time_col(locs(loc)); 

for p = 1:t 

                final_machines(locs(loc),a+p-1+tu+tu1+tu2) = 

machine_col(locs(loc)); 

                tu3= tu3+1; 

end 

            [mv,loc_x] = sort(prob_col(locs)); 
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loc = loc_x(5); 

            t = time_col(locs(loc)); 

for p = 1:t 

                final_machines(locs(loc),a+p-1+tu+tu1+tu2+tu3) = 

machine_col(locs(loc)); 

                tu4= tu4+1; 

end 

            [mv,loc_x] = sort(prob_col(locs)); 

loc = loc_x(6); 

            t = time_col(locs(loc)); 

for p = 1:t 

                final_machines(locs(loc),a+p-1+tu+tu1+tu2+tu3+tu4) = 

machine_col(locs(loc)); 

                tu5= tu5+1; 

end 

            [mv,loc] = min(prob_col(locs));                       

            t = time_col(locs(loc)); 

for p = 1:t 

                final_machines(locs(loc),a+p-1+tu+tu1+tu2+tu3+tu4+tu5) = 

machine_col(locs(loc)); 

                tu6= tu6+1; 

end 

% machine run 

            machine_col_n(find(machine_col_n==u_machines(k)))=[]  

end 

end 

 

    u_machines = unique(machine_col_n) 

for k = 1:length(u_machines) 

locs = find(machine_col==u_machines(k)) 

if (length(locs)==8)   

            [mv,loc] = max(prob_col(locs));                       

            t = time_col(locs(loc)); 

tu=0; 

            tu1=0; 

            tu2=0; 

            tu3=0; 

            tu4=0; 
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            tu5=0; 

            tu6=0; 

            tu7=0; 

for p = 1:t 

                final_machines(locs(loc),a+p-1) = machine_col(locs(loc)); 

tu= tu+1; 

end 

            [mv,loc_x] = sort(prob_col(locs)); 

loc = loc_x(2); 

            t = time_col(locs(loc)); 

for p = 1:t 

                final_machines(locs(loc),a+p-1+tu) = machine_col(locs(loc)); 

                tu1= tu1+1; 

end 

            [mv,loc_x] = sort(prob_col(locs)); 

loc = loc_x(3); 

            t = time_col(locs(loc)); 

for p = 1:t 

                final_machines(locs(loc),a+p-1+tu+tu1) = 

machine_col(locs(loc)); 

                tu2= tu2+1; 

end 

            [mv,loc_x] = sort(prob_col(locs)); 

loc = loc_x(4); 

            t = time_col(locs(loc)); 

for p = 1:t 

                final_machines(locs(loc),a+p-1+tu+tu1+tu2) = 

machine_col(locs(loc)); 

                tu3= tu3+1; 

end 

            [mv,loc_x] = sort(prob_col(locs)); 

loc = loc_x(5); 

            t = time_col(locs(loc)); 

for p = 1:t 

                final_machines(locs(loc),a+p-1+tu+tu1+tu2+tu3) = 

machine_col(locs(loc)); 

                tu4= tu4+1; 

end 
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            [mv,loc_x] = sort(prob_col(locs)); 

loc = loc_x(6); 

            t = time_col(locs(loc)); 

for p = 1:t 

                final_machines(locs(loc),a+p-1+tu+tu1+tu2+tu3+tu4) = 

machine_col(locs(loc)); 

                tu5= tu5+1; 

end 

            [mv,loc_x] = sort(prob_col(locs)); 

loc = loc_x(7); 

            t = time_col(locs(loc)); 

for p = 1:t 

                final_machines(locs(loc),a+p-1+tu+tu1+tu2+tu3+tu4+tu5) = 

machine_col(locs(loc)); 

                tu6= tu6+1; 

end 

            [mv,loc_x] = sort(prob_col(locs)); 

loc = loc_x(8); 

            t = time_col(locs(loc)); 

for p = 1:t 

                final_machines(locs(loc),a+p-1+tu+tu1+tu2+tu3+tu4+tu5+tu6) = 

machine_col(locs(loc)); 

                tu7= tu7+1; 

end 

% machine run 

            machine_col_n(find(machine_col_n==u_machines(k)))=[]  

end 

end 

 

    u_machines = unique(machine_col_n) 

for k = 1:length(u_machines) 

locs = find(machine_col==u_machines(k)) 

if (length(locs)==9)   

            [mv,loc] = max(prob_col(locs));                       

            t = time_col(locs(loc)); 

tu=0; 

            tu1=0; 

            tu2=0; 
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            tu3=0; 

            tu4=0; 

            tu5=0; 

            tu6=0; 

            tu7=0; 

            tu8=0; 

for p = 1:t 

                final_machines(locs(loc),a+p-1) = machine_col(locs(loc)); 

tu= tu+1; 

end 

            [mv,loc_x] = sort(prob_col(locs)); 

loc = loc_x(2); 

            t = time_col(locs(loc)); 

for p = 1:t 

                final_machines(locs(loc),a+p-1+tu) = machine_col(locs(loc)); 

                tu1= tu1+1; 

end 

            [mv,loc_x] = sort(prob_col(locs)); 

loc = loc_x(3); 

            t = time_col(locs(loc)); 

for p = 1:t 

                final_machines(locs(loc),a+p-1+tu+tu1) = 

machine_col(locs(loc)); 

                tu2= tu2+1; 

end 

            [mv,loc_x] = sort(prob_col(locs)); 

loc = loc_x(4); 

            t = time_col(locs(loc)); 

for p = 1:t 

                final_machines(locs(loc),a+p-1+tu+tu1+tu2) = 

machine_col(locs(loc)); 

                tu3= tu3+1; 

end 

            [mv,loc_x] = sort(prob_col(locs)); 

loc = loc_x(5); 

            t = time_col(locs(loc)); 

for p = 1:t 
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                final_machines(locs(loc),a+p-1+tu+tu1+tu2+tu3) = 

machine_col(locs(loc)); 

                tu4= tu4+1; 

end 

            [mv,loc_x] = sort(prob_col(locs)); 

loc = loc_x(6); 

            t = time_col(locs(loc)); 

for p = 1:t 

                final_machines(locs(loc),a+p-1+tu+tu1+tu2+tu3+tu4) = 

machine_col(locs(loc)); 

                tu5= tu5+1; 

end 

            [mv,loc_x] = sort(prob_col(locs)); 

loc = loc_x(7); 

            t = time_col(locs(loc)); 

for p = 1:t 

                final_machines(locs(loc),a+p-1+tu+tu1+tu2+tu3+tu4+tu5) = 

machine_col(locs(loc)); 

                tu6= tu6+1; 

end 

            [mv,loc_x] = sort(prob_col(locs)); 

loc = loc_x(8); 

            t = time_col(locs(loc)); 

for p = 1:t 

                final_machines(locs(loc),a+p-1+tu+tu1+tu2+tu3+tu4+tu5+tu6) = 

machine_col(locs(loc)); 

                tu7= tu7+1; 

end 

            [mv,loc_x] = sort(prob_col(locs)); 

loc = loc_x(9); 

            t = time_col(locs(loc)); 

for p = 1:t 

                final_machines(locs(loc),a+p-

1+tu+tu1+tu2+tu3+tu4+tu5+tu6+tu7) = machine_col(locs(loc)); 

                tu8= tu8+1; 

end 

% machine run 

            machine_col_n(find(machine_col_n==u_machines(k)))=[]  
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end 

end 

    u_machines = unique(machine_col_n) 

for k = 1:length(u_machines) 

locs = find(machine_col==u_machines(k)) 

if (length(locs)==10)   

            [mv,loc] = max(prob_col(locs));                       

            t = time_col(locs(loc)); 

tu=0; 

            tu1=0; 

            tu2=0; 

            tu3=0; 

            tu4=0; 

            tu5=0; 

            tu6=0; 

            tu7=0; 

            tu8=0; 

            tu9=0; 

for p = 1:t 

                final_machines(locs(loc),a+p-1) = machine_col(locs(loc)); 

tu= tu+1; 

end 

            [mv,loc_x] = sort(prob_col(locs)); 

loc = loc_x(2); 

            t = time_col(locs(loc)); 

for p = 1:t 

                final_machines(locs(loc),a+p-1+tu) = machine_col(locs(loc)); 

                tu1= tu1+1; 

end 

            [mv,loc_x] = sort(prob_col(locs)); 

loc = loc_x(3); 

            t = time_col(locs(loc)); 

for p = 1:t 

                final_machines(locs(loc),a+p-1+tu+tu1) = 

machine_col(locs(loc)); 

                tu2= tu2+1; 

end 

            [mv,loc_x] = sort(prob_col(locs)); 



156 
 

loc = loc_x(4); 

            t = time_col(locs(loc)); 

for p = 1:t 

                final_machines(locs(loc),a+p-1+tu+tu1+tu2) = 

machine_col(locs(loc)); 

                tu3= tu3+1; 

end 

            [mv,loc_x] = sort(prob_col(locs)); 

loc = loc_x(5); 

            t = time_col(locs(loc)); 

for p = 1:t 

                final_machines(locs(loc),a+p-1+tu+tu1+tu2+tu3) = 

machine_col(locs(loc)); 

                tu4= tu4+1; 

end 

            [mv,loc_x] = sort(prob_col(locs)); 

loc = loc_x(6); 

            t = time_col(locs(loc)); 

for p = 1:t 

                final_machines(locs(loc),a+p-1+tu+tu1+tu2+tu3+tu4) = 

machine_col(locs(loc)); 

                tu5= tu5+1; 

end 

            [mv,loc_x] = sort(prob_col(locs)); 

loc = loc_x(7); 

            t = time_col(locs(loc)); 

for p = 1:t 

                final_machines(locs(loc),a+p-1+tu+tu1+tu2+tu3+tu4+tu5) = 

machine_col(locs(loc)); 

                tu6= tu6+1; 

end 

            [mv,loc_x] = sort(prob_col(locs)); 

loc = loc_x(8); 

            t = time_col(locs(loc)); 

for p = 1:t 

                final_machines(locs(loc),a+p-1+tu+tu1+tu2+tu3+tu4+tu5+tu6) = 

machine_col(locs(loc)); 

                tu7= tu7+1; 
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end 

            [mv,loc_x] = sort(prob_col(locs)); 

loc = loc_x(9); 

            t = time_col(locs(loc)); 

for p = 1:t 

                final_machines(locs(loc),a+p-

1+tu+tu1+tu2+tu3+tu4+tu5+tu6+tu7) = machine_col(locs(loc)); 

                tu8= tu8+1; 

end 

            [mv,loc_x] = sort(prob_col(locs)); 

loc = loc_x(10); 

            t = time_col(locs(loc)); 

for p = 1:t 

                final_machines(locs(loc),a+p-

1+tu+tu1+tu2+tu3+tu4+tu5+tu6+tu7+tu8) = machine_col(locs(loc)); 

                tu9= tu9+1; 

end 

% machine run 

            machine_col_n(find(machine_col_n==u_machines(k)))=[]  

end 

end 

 

final_machines_con(:,:,i) = final_machines;     

end 

 

final_row=[]; 

final_mat =zeros(jobs,makespan_g); 

makespan=[]; 

for i = 1 : jobs 

for j = 1: no_machines 

row = final_machines_con(i,:,j); 

        [I,J] = find(row~=0); 

row = row(:,1:max(J)); 

        final_row = [final_row row]; 

 

end 

makespan(end+1) = length(final_row); 
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    final_row = []; 

end 

 

max(makespan) 

min(makespan) 

(max(makespan)+min(makespan))/2 

 

%seq_machines = [3 6 1 2 5 4; 

%            4 3 2 6 1 5; 

%            2 4 3 5 6 1; 

%            4 3 1 2 5 6; 

%            4 2 1 6 5 3; 

%            3 2 4 5 6 1]; 

 

Code for validation of FT20 (ANN Domain) 

 

clc 

clearall 

closeall 

eg1=[1;2;3;4;5;193] 

eg2=[1;2;4;3;5;305] 

eg3=[2;1;3;5;4;277] 

eg4=[2;1;5;3;4;268] 

eg5=[3;2;1;4;5;155] 

eg6=[3;2;5;1;4;237] 

eg7=[2;1;3;4;5;201] 

eg8=[3;2;1;4;5;164] 

eg9=[1;4;3;2;5;303] 

eg10=[2;3;1;4;5;347] 

eg11=[2;4;1;5;3;202] 

eg12=[3;1;2;4;5;205] 

eg13=[1;3;2;4;5;291] 

eg14=[3;1;2;4;5;387] 

eg15=[1;2;5;3;4;238] 

eg16=[2;1;4;5;3;259] 

eg17=[1;3;2;4;5;215] 
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eg18=[1;2;5;3;4;375] 

eg19=[2;3;1;4;5;294] 

eg20=[1;2;3;4;5;193] 

eg21=[1;2;3;4;5;100] 

eg22=[4;2;1;3;5;250] 

eg23=[3;1;2;5;4;175] 

eg24=[3;1;2;4;4;200] 

eg25=[2;3;1;4;5;100] 

eg26=[1;2;3;5;4;175] 

eg27=[4;5;3;1;2;150] 

eg28=[4;2;5;3;1;90] 

eg29=[5;2;3;4;1;250] 

eg30=[4;5;1;2;3;275] 

 

in=[eg1 eg2 eg3 eg4 eg5 eg6 eg7 eg8 eg9 eg10 eg11 eg12 eg13 eg14 eg15 eg16 

eg17 eg18 eg19 eg20 eg21 eg22 eg23 eg24 eg25 eg26 eg27 eg28 eg29 eg30]; 

 

Target=[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0] 

 

net = newff(minmax(in),[10 10 10 1]); 

net.trainParam.epochs = 500; 

net = train(net,in,Target); 

savenetnet 

 

Code for Case Study 1 (Magneto Scheduling) 

 

closeall 

clc 

 

importfile('PC Hu_Min_Makespan_LV.xls'); 

Problem_No=0; 

tic 

Span_Arr=[]; 

tmp_r = 16; 

for r2 = 5:15:140 

    tmp_c = 12; 
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for r = 4:11:103 

        W1 = 1;%input('W1 = '); 

        W2 = 1;%input('W2 = '); 

        W3 = 1;%input('W3 = '); 

        Problem_No=Problem_No+1 

table = data(r2:tmp_r,r:tmp_c); 

        machine1 = table(:,1:3); 

        machine2 = table(:,4:6); 

        machine3 = table(:,7:9); 

 

        TT1 = machine1(:,1) + (machine1(:,2)./(machine1(:,3)*W1)); 

        eta1 = 1./TT1; 

 

        TT2 = machine2(:,1) + (machine2(:,2)./(machine2(:,3)*W2)); 

        eta2 = 1./TT2; 

 

        TT3 = machine3(:,1) + (machine3(:,2)./(machine3(:,3)*W3)); 

        eta3 = 1./TT3; 

 

        P1 = eta1./(eta2+eta3); 

        P2 = eta2./(eta1+eta3); 

        P3 = eta3./(eta1+eta2); 

 

        P = [P1 P2 P3]; 

 

        M_num=[]; 

for j = 1:12 

            M_num(end+1) = find(max(P(j,:)) == P(j,:)); 

end 

 

        M_num; 

display('Machine Assigned'); 

        BAY_1 = find(M_num==1) 

        BAY_2 = find(M_num==2) 

        BAY_3 = find(M_num==3) 

        FT1= sum(TT1(M_1)); 

        FT2= sum(TT2(M_2)); 



161 
 

        FT3= sum(TT3(M_3)); 

        SFT = FT1+FT2+FT3; 

display('Workforce Assigned'); 

        B_1 = round((FT1/SFT)*10) 

        B_2 = round((FT2/SFT)*10) 

        B_3 = 10 - (M_1 + M_2) 

 

        ext_jobs_m1 = machine1(M_1,:); 

        [r,c] = size(ext_jobs_m1); 

flowtime = 0; 

oldflowtime=0; 

        m1_flowtime=[]; 

for p = 1:r 

flowtime = oldflowtime + ext_jobs_m1(p,1)+ 

(ext_jobs_m1(p,2)/(ext_jobs_m1(p,3)*M_1)); 

oldflowtime = flowtime; 

            m1_flowtime(end+1) = flowtime; 

end 

        total_flowtime_machine_1 = flowtime; 

flowtime = 0; 

        ext_jobs_m2 = machine2(M_2,:); 

        [r,c] = size(ext_jobs_m2); 

oldflowtime=0; 

        m2_flowtime=[]; 

for p = 1:r 

flowtime = oldflowtime + ext_jobs_m2(p,1)+ 

(ext_jobs_m2(p,2)/(ext_jobs_m2(p,3)*M_2)); 

oldflowtime = flowtime; 

            m2_flowtime(end+1) = flowtime; 

end 

 

        total_flowtime_machine_2 = flowtime; 

flowtime = 0; 

 

        ext_jobs_m3 = machine3(M_3,:); 

        [r,c] = size(ext_jobs_m3); 

oldflowtime=0; 
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        m3_flowtime=[]; 

for p = 1:r 

flowtime = oldflowtime + ext_jobs_m3(p,1)+ 

(ext_jobs_m3(p,2)/(ext_jobs_m3(p,3)*M_3)); 

oldflowtime = flowtime; 

            m3_flowtime(end+1) = flowtime; 

end 

        total_flowtime_machine_3 = flowtime; 

        Make_span = 

max(max(total_flowtime_machine_1,total_flowtime_machine_2),total_flowtime_mac

hine_3) 

        Span_Arr(end+1) = Make_span; 

        tmp_c = tmp_c+11; 

 

end 

    tmp_r = tmp_r+15; 

end 

tmp_arr = [1:100]'; 

[tmp_arr Span_Arr']; 

toc 
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