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ABSTRACT 

 

Automated segmentation of brain tumour from multimodal MR images is pivotal for 

the analysis and monitoring of disease progression. As gliomas are malignant and 

heterogeneous, efficient and accurate segmentation techniques are used for the 

successful delineation of tumours into intra-tumoural classes. Deep learning 

algorithms outperform on tasks of semantic segmentation as opposed to the more 

conventional, context-based computer vision approaches. Extensively used for 

biomedical image segmentation, Convolutional Neural Networks have significantly 

improved the state-of-the-art accuracy on the task of brain tumour segmentation. In 

this paper, we propose an ensemble of two segmentation networks: a 3D CNN and a 

U-Net, in a significant yet straightforward combinative technique that results in better 

and accurate predictions. Both models were trained separately on the BraTS-19 

challenge dataset and evaluated to yield segmentation maps which considerably 

differed from each other in terms of segmented tumour sub-regions and were 

ensembled variably to achieve the final prediction. The suggested ensemble achieved 

dice scores of 0.750, 0.906 and 0.846 for enhancing tumour, whole tumour, and 

tumour core, respectively, on the validation set, performing favourably in comparison 

to the state-of-the-art architectures currently available.
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INTRODUCTION 

GLIOMAS 

Accurate segmentation of tumours through medical images is of particular importance 

as it provides information essential for analysis and diagnosis of cancer as well as for 

mapping out treatment options and monitoring the progression of the disease. Brain 

tumours are one of the most fatal cancers worldwide and are categorized, depending 

upon their origin, into primary and secondary tumour types [1]. The most common 

histological form of primary brain cancer is the glioma, which originates from the 

brain glial cells [2] and attributes towards 80% of all malignant brain tumours [3]. 

Gliomas can be of the slow-progressing low-grade (LGG) subtype with a better patient 

prognosis or are the more aggressive and infiltrative high-grade glioma (HGG) or 

glioblastoma, which require immediate treatment [4]. These tumours are associated 

with substantial morbidity, where the median survival for a patient with glioblastoma 

is only about 14 months with a 5-year survival rate near zero despite maximal surgical 

and medical therapy [5]. A timely diagnosis therefore becomes imperative for 

effective treatment of the patients.  

DIAGNOSTIC TOOLS 

Magnetic Resonance Imaging (MRI) is a preferred technique widely employed by 

radiologists for the evaluation and assessment of brain tumours [1]. It provides several 

complimentary 3D MRI modalities acquired based on the degree of excitation and 

repetition times i.e. T1-weighted, post-contrast T1-weighted (T1ce), T2-weighted and 

Fluid-Attenuated Inversion Recovery (FLAIR). The highlighted subregions of the 

tumour across different intensities of these sequences [6], such as the whole tumour 
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(the entire tumour inclusive of infiltrative oedema), is more prominent in FLAIR and 

T2 modalities. In contrast, T1 and T1ce images show the tumour core exclusive of 

peritumoural oedema [7]. It allows for the combinative use of these scans and the 

complementary information they deliver towards the detection of different tumour 

subregions. 

DEEP LEARNING 

The Multimodal Brain Tumour Segmentation Challenge (BraTS) is a platform to 

evaluate the development of machine learning models for the task of tumour 

segmentation, by facilitating the participants with an extensive dataset of 3D MRI 

images of the gliomas (both LGG and HGG) and associated ground truths annotated 

by expert physicians. The provided multimodal scans are used for both training and 

validating the neural networks designed for the particular segmentation task [6], [8]±

[11]. 

Manually delineating brain tumour subregions from MRI scans is a subjective task, 

and therefore it is time-consuming and prone to variability [12]. Automated 

segmentation of gliomas from multimodal MRI images can consequently assist the 

physicians to speed-up diagnosis and surgical planning as well as provide an accurate, 

reproducible solution for further tumour analysis and monitoring [13], [14]. The 

classical methods of automated brain tumour segmentation rely on feature 

engineering, which involves the extraction of handcrafted features from input images 

with follow up training of classifier [11], [15]. Unsupervised learning algorithms 

bypass the complexity in designing and selecting features by automatically learning a 

hierarchy of feature representations [16]±[19], with deep learning models excelling at 

the task [11]. Convolutional Neural Networks (CNNs) is regarded as the state of the 



Chapter 1  Introduction 

15 

 

art methods for brain tumour image segmentation as they learn the most useful and 

relevant features automatically [6].  

However, accurate segmentation of tumour remains a challenge; due to heterogeneity 

in terms of shape, size, and appearance of the gliomas as well as ambiguous and fuzzy 

boundary existing between cancer and brain tissue [20]. The intensity variability of 

the MRI data further adds to this difficulty [13]. Therefore, it is still open to 

improvement, allowing further exploration for better segmentation techniques and 

accuracy. 

In this work, we utilise multiple 3D CNN models for brain tumour segmentation from 

multimodal MRI scans and ensemble their probability maps for more stable 

predictions. The networks are trained separately, with hyperparameters optimised for 

each model, on the training dataset acquired from the 2019 Brain Tumour 

Segmentation (BraTS) challenge. A rigorous evaluation on the BraTS validation set 

resulted with the proposed ensemble achieving dice scores of 0.750, 0.906 and 0.846 

for enhancing tumour, whole tumour, and tumour core, respectively. 
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AIMS AND OBJECTIVES 

The aim of the study is the proposition of an automated brain tumour segmentation 

method, for successful delineation of tumour into intra-tumoural classes with greater 

efficiency and accuracy. 

The objectives include to: 

� Develop an automated deep neural network that segments brain tumours from 

MRI scans with great accuracy. 

� Train and test the proposed network on online available brain tumour dataset 

(BraTS-19 Dataset). 

� Determine its efficiency in comparison to methods already implemented and 

available. 
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LITERATURE REVIEW 

Numerous research studies highlight the importance of machine learning (ML) to 

facilitate and improve the efficiency of human practices. From combining ML with 

ubiquitous computing [21] to employing it for foreign object detection [22], many 

techniques have emerged to automate otherwise challenging tasks. Pervasive as 

gliomas have become, it is imperative that they are monitored carefully and operated 

on, depending on the prognosis. Many ML algorithms can accurately segment the 

cancer regions and assist the neuroradiologists in disease monitoring and planning.  

The data used for these techniques must illuminate the variable characteristics of the 

gliomas, from the tumour infiltrative growth patterns to their heterogeneity [23], to 

attain considerable accuracy during segmentation. A study demonstrates the use of 

multimodal MRI data in a tissue type mapping protocol that serves to identify the 

grade as well as acquire spatial information of the tumour [24]. Multi-sequence MRI 

data is also provided by the BraTS challenge, containing both HGG and LGG scans 

of multi-institute patients, to facilitate users for devising successful glioma delineation 

techniques [9]±[11].  

MACHINE LEARNING FOR GLIOMA SEGMENTATION 

Supervised learning techniques with discriminative classifiers have been used for 

accurate delineation of gliomas, of which the most successful are random forests (RF) 

and support vector machines (SVM). Soltaninejad et al. [25] initially devised an 

approach to classify brain tumours grades using superpixels generated through bi-

modal MRI data of patients, particularly by using FLAIR and T2-weighted MR data. 

The mean intensity of the superpixels was utilised to obtain the region of interest (ROI) 
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from which the 1st and 2nd order feature representations were extracted and passed 

onto the SVM classifier to delineate and differentiate between tumour grades. They 

continued down this avenue of research, and worked further with superpixels, acquired 

using mono-modal MRI data of patients [26]. After their segmentation from the 

FLAIR-MRI, statistical and textural features were extracted from these voxel-wise 

class labels, which were then fed into the extremely randomised trees (ERT) as well 

as the SVM classifier to ascertain whether the voxels represented healthy or tumoural 

brain regions. The method performed well on BraTS 2012 dataset, with the 

classification results compared to show that ERT works marginally better than SVM 

on detection and segmentation of the tumour grades.  

Expounding on their earlier work, Soltaninejad et al. [27] employed multi-sequence 

MRI images, along with diffusion tensor imaging (DTI) data, to obtain 3D superxovels 

which provide clear tumour boundaries across the image modalities. The extracted 

texton and intensity-based statistical features were given to the RF classifier to classify 

the voxels. Inclusion of DTI components (isotropic (p) and anisotropic (q)) with the 

conventional MRI data resulted in considerable improvement of classification results. 

The method performed well and provided expert segmentations of the tumours when 

tested on the BraTS 2013 dataset. However, they are not the first to have utilised DTI 

for refined tumour segmentation. Jones et al. [28] suggested the use of diffusion 

characteristics to semi-automatically segment lesions from volumetric MRI data in a 

method termed as diffusion segmentation (D-SEG). After appropriating the voxels in 

the (p, q) space into clusters through k-means clustering, the boundaries segregating 

the healthy brain tissue and tumour regions are made apparent and clear in the resulting 

tissue segments. This information is utilised to extract the volume of interests (VOIs) 
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from which the D-SEG spectrum is calculated, representing the variable proportion of 

diffusion within the VOIs. The spectra are then classified through SVM to achieve 

considerable classification accuracy.  

DEEP LEARNING ARCHITECTURES FOR TUMOUR 

SEGMENTATION 

Deep learning algorithms outperform on tasks of semantic segmentation as opposed 

to the more conventional, context-based computer vision approaches [29]. Extensively 

used for biomedical image segmentation, the Deep Convolutional Neural Networks 

have carved out a niche for achieving the state of the art accuracy on the task of brain 

tumour segmentation [30]±[35].  

A 2D U-Net architecture was put forth for the automated segmentation of brain tumour 

[36]. For increased network efficiency, various data augmentation techniques were 

applied along with the soft dice loss function to mitigate the class imbalance issue in 

the data. Fidon et al. [37] refined a neural network previously used for the task of brain 

parcellation and adapted it for multimodal MRI data input. ScaleNet made use of a 

merging operation in place of concatenation to connect the frontend and backend of 

the network, thereby allowing it to be scalable and generalised. Le et al. [38] designed 

an architecture which combined the standard variational level set (VLS) with a fully 

convolutional network (FCN). The new model referred to as the deep recurrent level 

set (DRLS), performed well in segmenting the tumour in comparison to the other 

models of the time, improving the otherwise rudimentary VLS into a deep learnable 

framework. Y. Qin et al. [39] introduced the autofocus layer, which enhanced the 

multi-scale processing of network and learned through an attention mechanism to 

select the optimal scale for object identification in medical images. The dilated 
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convolution layer improved the interpretability and representation capacity of the 

network leading to improved tumour segmentation.  

A fully convolutional network (FCN) was suggested by Shen et al. [40], trained to 

learn boundary and region tasks, and successfully extracted contextual information 

from MRI scans with considerably low computation cost. Working with a similar 

architecture, Pereira et al. [41] set forth an FCN which captured more sophisticated 

features through feature recombination and also introduced a recalibration block in the 

structure. Zhou et al. [42] proposed a multi-task CNN, which integrated and trained 

on the different tasks of brain tumour segmentation in terms of their correlation and 

simplified the inference process through a one-pass computational scheme. Ji et al. 

[43] proposed a weakly-supervised U-Net that employed a scribble-based approach. 

They initially trained the network on whole tumour scribbles before exposing it to 

global labels for accurate substructure segmentation. Another network is trained on 

the results of the previously trained U-Net to segment the enhancing tumour and 

tumour core. Xu et al. [44] introduced this 3D deep cascaded attention network 

(DCAN), which is more straightforward in complexity compared to other cascaded 

models. It dealt with the multi-class segmentation task through separate branches and 

a shared feature extractor between them. It extracted the correlational information 

between the sub-regions through a cascaded attention method for guidance. 

Brain Tumour Image Segmentation (BraTS) Challenge 2018 

Myronenko [45] ranked first among the top submissions of the BraTS 2018 challenge 

with their encoder-decoder based CNN architecture. It augmented a variational 

autoencoder (VAE) for regularisation, allowing the reconstruction of original input 

images. During training, they used a crop size of 160x192x128 and a batch size of 1, 
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with no additional training dataset employed. The method proposed by Isensee et al. 

[46] placed second in the same challenge with minor alterations made to the original 

U-Net architecture. The 3D U-Net, or the no-new-Net (nnU-Net) as named by the 

authors, replaced ReLU activation functions with leaky ReLU and instance 

normalisation with batch normalisation. The training performed with an image patch 

size of 128x128x128 and batch size of 2. The same architecture, trained from scratch 

with changed hyperparameters, is expanded and used as part of our ensemble as well. 

Working with a U-Net like structure, McKinley et al. [47] incorporated dilated 

convolutions into the DenseNet architecture and trained with a newly formulated label 

certainty loss function. The tensor fed into the network was of the dimensions 2 × 4 × 

5 × 192 × 192, with the batch size of 2. Another noteworthy model is ensemble 

proposed by Zhou et al. [48] which consisted of various improved CNN architectures 

(previously used by them as mentioned above) trained to learn contextual information 

that served to produce robust predictions. 

In this study, we propose an ensemble of two networks; a 3D CNN and a U-Net, in a 

different yet straightforward combinative technique that results in better and accurate 

predictions in comparison to uniform weighting. The task is to develop an automated 

brain tumour segmentation method, for successful delineation of tumours into intra-

tumoural classes with improved efficiency and accuracy in comparison to existing 

methods. Our proposed model shows comparable, and in some cases, improved results 

to the state-of-the-art models.
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MATERIALS & METHODS 

DATASET 

We use the 2019 Brain Tumour Segmentation Challenge (BraTS) dataset [6], with the 

training set employed to train the models and the validation set for the evaluation of 

the proposed ensemble. The training set consists of 259 high-grade glioma and 76 

low-grade glioma patients with expertly annotated ground truths. In contrast, the 

validation set includes 125 cases of unknown grade (the labels are not made available 

to the public) [8]±[11]. The data varies from that utilized in the prior years, more 

specifically data from 2016 and before as the labels of the corresponding images had 

not be manually annotated by experts. Rather, the labels were acquired through the 

coalescence of segmentations from the most successful of architectures of previous 

challenges. 

The multi-institutional dataset, acquired from 19 different contributors, contains 

multimodal MRI scans of each patient, namely T1, T1 contrast-enhanced (T1ce), T2-

weighted (T2), and Fluid Attenuated Inversion Recovery (FLAIR), from which the 

tumoural subregions are segmented. The data is processed to overcome discrepancies 

such that they are skull-stripped, aligned to match an anatomical template, and 

resampled at a resolution of 1mm3. Each sequence has a volume (dimension) of 240 

× 240 × 155. Example images from the training set, as well as the corresponding 

ground truth, are shown in Figure 1. The manual ground truths (inclusive in the 

training set) highlight the three tumour regions: the peritumoural oedema, the 

enhancing tumour, and the necrotic and non-enhancing core 
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Figure 1. Image modalities of a single patient (HGG) in the BraTS-19 Training Set, 
along with the manual annotation overlaid on the Flair image. 

 
As visualized in Figure 2, the manual annotations of the tumour include the 

background (label 0), necrotic and non-enhancing tumour (label 1), peritumoural 

edema (label 2) and GD-enhancing tumour (label 4). These labels are merged into 

three sub-regions: the whole tumour (label 1, 2 and 4), the tumour core (label 1 and 4) 

and the enhancing tumour (label 4). The segmentation accuracy (dice score metric) is 

measured for these regions [11].  

 

Figure 2. Manually annotated ground truth with each of the individual tumour regions 
represented as separate labels. 

 

No external dataset is used in the experiments. Additionally, access to the BraTS-19 

test set is limited to the challenge participants only. Therefore, we report test results 

on the BraTS-19 validation set. We first report the segmentation results of the 
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proposed network on the validation set and later compare it to the existing state of the 

art architectures. 

METHODOLOGY 

Ensembling is often adapted for the task of brain tumour segmentation and has the 

advantage of improving both results and performance [47]±[49]. We propose a 

lightweight ensemble ((as generalized in Figure 3) consisting of as few as two 

networks, each selectively trained on the training set.  

 

Figure 3. General Scheme of the work. Selected models are separately trained on the 
input MRI modalities and then tested to produce probability maps. These soft labels 
are selectively combined to generate the final hard prediction which is submitted 
online for further evaluation. 

 

The outputs of these networks are segmentation map that differs in terms of segmented 

tumour sub-regions. The segmentation maps are then combined to get the final 

prediction. In the following sections, we provide further details on these two networks.  

Network 1 (3D CNN) 

The first model used in the ensemble is a 3D CNN, initially developed by Chen et al. 

[50].  It uses a multifiber unit (an array of 3D CNN, Figure 4) with weighted dilated 

convolutions to glean feature representation at multi-scale for volumetric 
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segmentation. The network showed good results on the BraTS 2018 Challenge. 

Extending on their work, we fine-tune the model for improved segmentation.  

 

Figure 4. A schematic visualization of the 3D CNN architecture, where g represents 
the convolutional channels that are split into groups to reduce feature map 
connectivity. The multi-fiber (MF) blocks make use of a multiplexer allowing for the 
flow of information between groups. Each dilated multi-fiber (DMF) block is a dilated 
convolutional unit, with adaptive weighting, which serves to capture spatial 
information of the tumour. 
 

Preprocessing: The data is augmented using a multitude of techniques (cropping, 

rotation, mirroring) before feeding it into the network for training. 

Training: We trained the model for 150 epochs with a patch size of 128x128 and 

modified loss function, combining the generalised dice loss and the focal loss. 

 𝐿𝑜𝑠𝑠 ൌ  𝐿ீ஽𝐿 ൅  𝐿ி𝐿 (1) 

Focal loss (FL) is employed in object detection and has shown to enhance accuracy 

while dealing with the issue of foreground imbalance [51], [52].  

 𝐿ி𝐿 ൌ  െሺሺ1 െ 𝑝𝑡ሻఊሻ log 𝑝𝑡 (2) 
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where, 𝑝𝑡 is the posterior probability and 𝛾 is the modulating hyperparameter set to 

2.0.  

Developed for the imbalance as occurs in certain rare tasks, the generalized dice loss 

(GDL) has been used to tackle the class imbalance problem that exists in the dataset 

[53].  

 𝐿ீ஽𝐿 ൌ 1 െ 2 
∑ 𝑤௡ ∑ 𝑔௡

௜
௜ 𝑝௡

௜𝑁
௡=1

∑ 𝑤௡ ∑ ሺ𝑔௡
௜ ൅௜ 𝑝௡

௜ ሻ𝑁
௡=1

 (3) 

where, 𝑁 represents the number of classes and 𝑤௡ denotes the weight assigned. 𝑔௡ 

and 𝑝௡ are the voxel values for the ground truth and the predicted image, respectively, 

for class n.  

The fine-tuned hyperparameters are shown in Table 1. 

Table 1. Hyperparameters Used for CNN Training 

Name VALUE 

Input Size 128 × 128 × 128 

Batch Size 5 

Learning Rate 1 × 10-3 

Optimizer Adam 

Epoch 150 

Loss Function LGDL
 a + LFL

 b 

                a LGDL is the generalized dice loss. 
              b LFL is the focal loss 
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Inference: We applied zero-padding to the MRI data so that the original 240 × 240 × 

155 voxels are converted to 240 × 240 × 160, a depth which is divisible by the 

network. Once the data is ready for the inference, we pass it through the trained 

network to generate probability maps. The ensemble subsequently uses these maps for 

final prediction. 

Network 2 (3D U-Net) 

The second model of our ensemble is a 3D U-Net variant which is different from the 

classical U-Net architecture; ReLU activation function is replaced by leaky ReLUs 

and the use of instance normalisation in place of batch normalisation [46]. The 

network has shown comparable results on the medical segmentation benchmark, 

Medical Segmentation Decathlon, and BraTS 2018 Challenge. The model is trained 

from scratch on our dataset while having the same architecture (Figure 5) as reported 

in [46].  

Preprocessing: We crop the data to reduce the size of the MRI slice. Afterwards, we 

resample the images along with median voxel spaces of the otherwise heterogeneous 

data followed by a z-score normalisation.  

Training: For training the network, we use the input patch size of 128 × 128 × 128 

voxels and batch size of 2. Different data augmentation techniques (rotation, mirroring 

and gamma correction) are applied on the data during runtime to circumvent 

overfitting and to enhance the segmentation accuracy of the model. The loss function 

combines the binary cross-entropy and the dice loss. 

 𝐿𝑜𝑠𝑠 ൌ  𝐿ௗ௜௖௘ ൅  𝐿஼ா (4) 
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Dice loss (DL) is a derivative of the Dice score coefficient (DSC), employed to 

determine the measure of overlap between regions [54], which is particularly useful 

for segmentation problems where the labels are available.  

 𝐿ௗ௜௖௘ ൌ  
1

|𝑁| ෍
2 ∑ 𝑔௡

௜
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௜
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 (5) 

While the Cross Entropy (CE) loss maps out the probability distributions [55]. 

 𝐿஼ா ൌ  െ ෍ 𝑔௡ log 𝑝௡

𝑁

௡=1

 (6) 

where, N is the number of classes and 𝑔௡ and 𝑝௡ are the voxel values for the ground 

truth and the predicted image, respectively. 

 
Figure 5. A schematic representation of the U-Net architecture. Inputs of patch size 
128 × 128 × 128 are fed into the model. 3D convolutional blocks (as represented by 
grey boxes) are used with leaky ReLU function activations and instance 
normalization. Trilenaer upsampling is employed to achieve the output of the same 
spatial dimensions as that of the input. 
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Table 2 details the hyperparameters during training. 

Table 2. Hyperparameters Used for CNN Training 

Name VALUE 

Input Size 128 × 128 × 128 

Batch Size 2 

Learning Rate 3 × 10-4 

Optimizer Adam 

Epoch 150 

Loss Function Ldice + LCE
 C 

              c LCE is the cross-entropy loss 

 
Inference: Inference is a patch-based where all the patches overlap by half their size 

and the voxels near the centre have a higher weight attributed to them. Mirroring along 

the patch axes serves as additional data augmentation during the test time. The outputs 

are probability maps for the ensemble. 

 Ensembling 

The ensemble is not built by simple averaging of the predictions (probability maps) 

generated by the two models. We merge the outputs of the two models after rigorously 

testing a strategy termed as variable ensembling (illustrated in Figure 6).  

We separately test these trained networks on the validation set to obtain corresponding 

segmentation images. These predictions from the individual models are evaluated on 

the online BraTS server1 independently to determine their efficiency in segmenting 

 
1 https://ipp.cbica.upenn.edu 
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the tumour regions successfully. We then compare the dice scores of the two models 

to identify which network is more accurate, and outperforms the other, for any specific 

tumour region. 

 

Figure 6. A general representation of the ensembling technique used to generate the 
final output. The 3D CNN (mentioned as N1) more accurately segments the enhancing 
tumour (ET), while the 3D U-Net (mentioned as N2) performs better for the tumour 
core (TC), therefore, the respective models¶ segmentation for that particular subregion 
are used in the final prediction (Pf). For the whole tumour (WT), both models 
contribute equally towards to the output. 

 

Qualitative and quantitative (dice scores) results demonstrate that CNN performs 

better for segmenting the enhancing tumour. At the same time, the U-Net is more 

accurate for segmenting tumour core. However, in case of the whole tumour, 

combining the predictions from both networks (equally) outperforms the segmentation 

results independently. Therefore, to generate the final ensemble predictions for three 

regions; (1) tumour core, we used only U-Net¶s output (2) enhancing tumour, we used 

onl\ CNN¶s output (3) the whole tumour, we equally weighed the output of both 
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networks. The predictions were evaluated on the online server to obtain the dice scores 

for the ensemble. We discuss these results in more detail in the next section. 

.
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RESULTS 

Here we present results from an ensemble of 2 networks, variants of a U-Net and a 

CNN, both selectively trained on the BraTS 2019 training set (n = 335) and tested on 

the provided BraTS 2019 validation set (n = 125). We then intelligently combine the 

segmentation maps from these models to give a final prediction for tumour tissue type 

as shown in Figure 7. The dice scores achieved by the ensemble (proposed) are 0.750 

for enhancing tumour, 0.906 for the whole tumour, and 0.846 for tumour core.  

Figure 7. Predictions of a single patient obtained separately through the models, as 
well as the final combinative prediction. 
 

In Figure 8, we show the segmentation results of a single patient overlaid on the MRI 

Flair. The segmentation maps are generated from both models separately, and then the 

final merged output is shown. The dice score for the patient was 0.930, 0.949 and 

0.927 for enhancing tumour, whole tumour, and tumour core, respectively. 
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Figure 8. Example MRI Flair scan of a single patient exhibited from transverse, 
coronal and sagittal slices, overlaid with the segmentation prediction from the 
proposed model. The tumour regions are color coded, with the whole tumour 
representing all the segmentation classes in green, the tumour core including both the 
blue and red region, while the enhancing tumour is shown as the red region. 

 

VARIABLE ENSEMBLING 

We further analysed different ensemble techniques (as shown in Table 3) to determine 

if there is any difference between the methods and which of the two results in the most 

accurate of segmentations. As depicted in Table 3, the proposed ensembling scheme 

gives better accuracy in comparison to simple averaging. 
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Table 3. Performance (Dice Scores) Through Different Ensembling Efforts on 
BraTS-19 Validation Set 

Strategy ET WT TC 

Simple Averaging 0.740 0.903 0.805 

Variable Ensembling 0.750 0.906 0.846 

 

COMPARISON WITH CHALLENGE PARTICIPANTS 

We evaluated the proposed ensemble on the BraTS 2019 validation set and later 

compared it to top ranking architectures on the challenge website. Table 4 shows 

comparative dice scores obtained through the online BraTS server. The ensemble 

(proposed) achieved dice scores of 0.750, 0.906 and 0.846 for enhancing tumour, 

whole tumour, and tumour core, respectively.  

Table 4. Performance (Dice Scores) in Comparison with Challenge Participants on 
BraTS-19 Validation Set 

Authors ET WT TC 

Jiang et al. [56] 0.802 0.909 0.864 

Zhao et al. [57] 0.754 0.910 0.835 

McKinley et al. [58] 0.770 0.909 0.830 

Proposed Method 0.750 0.906 0.846 

 

The cascaded U-Net employed by Jiang et al. [56] achieved the best scores of the 

challenge, to which our results compare favourably, with significant performance gap 

occurring in terms of the enhancing tumour. Our ensemble gives improved results for 

the tumour core than the DCNN used by Zhao et al. [57] and just falls short for the 
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enhancing tumour with a minor performance gap. Similarly, it segments the tumour 

core with more accuracy as compared to CNN developed by McKinley et al. [58].  

RESULT COMPARISON WITH DIFFERENT FRAMEWORKS 

Table 5 shows the comparison with various state of the art methods (also validated on 

the BraTS 2019 dataset). Any of the other frameworks did not use additional data 

during training. Except for the enhancing tumour, the proposed ensemble results in 

better segmentations than the other available networks for both the whole tumour and 

tumour core, as evidenced by the dice scores.  

Table 5. Performance (Dice Scores) in Comparison with Other Architectures on 
BraTS-19 Validation Set 

Authors ET WT TC 

FCN [59] 0.766 0.896 0.790 

Residual Inception Dense 
Networks [49] 0.779 0.897 0.784 

U-Net [60] 0.787 0.896 0.800 

3D Multi-Encoder/Decoder 
Network [61] 0.75 0.90 0.83 

CNN [62] 0.800 0.894 0.834 

Proposed Method 0.750 0.�06 0.�46 

 

The promising performance by our simple ensemble of a U-Net and CNN is indicative 

of its efficiency and potential usability to achieve comparable and often better 

segmentation accuracy than its contemporaries.  
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DISCUSSION 

We propose an ensemble of a 3D U-Net and CNN for the task of brain tumour 

segmentation on multimodal MRI data. We combine the outputs of the two networks 

through variable ensembling to attain competitive classification accuracy on the 

BraTS 2019 validation set. Our proposed method performs favourably to state of the 

art methods by achieving mean dice scores of 0.750, 0.906 and 0.846 on enhancing 

tumour, whole tumour, and tumour core, respectively. 

We experimented with a multitude of networks and their different combinations before 

deciding on the 3D U-Net and CNN. We also worked on different variants of CNN by 

changing the layers employed in the original architecture, but it did not result in 

improving the performance.  

While our method performs favourably on the whole tumour and tumour core classes, 

the segmentation accuracy of the enhancing tumour needs improvement. Jiang et al. 

[56] implemented an interesting thresholding scheme in which if the enhancing 

tumour is less than the set threshold, the region is substituted with necrosis instead, 

which might cause a significant improvement in the accuracy of the enhancing tumour 

class.  

Certain limitations still exist in the current work. Firstly, the proposed segmentation 

ensemble is only evaluated on the official validation set of the challenge. The 

soundness of the method can be validated further by testing on separate clinical MRI 

data, independent of the challenge. Secondly, we did not extensively pre-process the 

dataset and post-process the results. Many reported models prepare their imaging data 

through intensity normalisation [63], [64] and bias correction [65] schemes to 
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minimise the variability in the data and make it analogous and comparable. Similarly, 

post-processing methods such as the use of conditional random fields [66] are shown 

to enhance segmentation accuracy. Further training on a larger dataset by extension of 

the input data through the inclusion of the BraTS 2016 dataset can also be employed, 

as it has been noted to improve the accuracy of models as demonstrated by Isensee et 

al. [46]. Nonetheless, the proposed ensemble exhibits efficient and robust tumour 

segmentation accuracies across multiple regions. 

Further work can involve training on a larger dataset by expanding of the input data 

through the inclusion of the BraTS 2016 dataset, as it has been noted to improve the 

accuracy of models as demonstrated by Isensee et al. [46]. Additionally, extended 

training for more epochs can result in better generalization ability of the ensemble as 

well. In future, we also intend to add image processing (both pre- and post-processing) 

to the ensemble, along with further tuning of the hyperparameters. 
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CONCLUSION 

In this work, we have described an ensemble of two networks, both of which are 

individually used frequently on the task of biomedical image segmentation. The 

ensemble successfully generates highly accurate segmentation of brain tumours from 

the multimodal MRI scans as provided by the BraTS 2019 challenge, which compares 

favourably with predictions given from various other state of the art models. We use 

a method of variable ensembling to combine the respective outputs from the model to 

achieve the best scores. The proposed ensemble offers an automated and objective 

method of generating brain tumour segmentation to aid in disease planning and patient 

management clinically.
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