STUDY OF PLASMONICS & PHOTOVOLTAIC EFFECT ON POLYCRYSTALINE CdTe THIN FILMS BY DOPING WITH Ag NANOPARTICLES

Shan E Ahmad **BILAL AHMED**

REG No: NUST201434632BSCME99214F **REG No: NUST2014 34718 BSCME99214F** RABEEKA FERDOUS REG No: NUST201434750BSCME99214F

This report is submitted as a FYP thesis in partial fulfillment of the requirement for the degree of

(BE in MaterialsEngineering)

Supervisor: Dr.Iftikhar Hussain gull

Department of Materials Engineering School of Chemical and Materials Engineering

National University of Sciences and Technology

May, 2018

Certificate

This is to certify that work in this thesis has been carried out by **Mr.Shan e Ahmad** and completed under my supervision in Thermal transport lab, school of chemical and materials engineering, National University of Sciences and Technology, H-12, Islamabad, Pakistan.

Supervisor: _____

Department of Materials Engineering School of Chemical & Materials Engineering, National University of Sciences and Technology, Islamabad

Submitted through:

Dean:
Department of Materials Engineering
School of Chemical & Materials
Engineering,
National University of Sciences and
Technology, Islamabad

DEDICATION

By grace of Allah we completed our final year project and also we would like to dedicate our work to community around us which is being helping us in completion of this research project. Our parents for their throughout support and to our teachers for their encouragement during this research. Even with the odds against us, we pull up together in finalizing our project and our research study for giving something back to society. With keen innovation and interest we're proud to contribute towards the developing society advancing in fields of sciences and engineering.

ACKNOWLEDGMENTS

Work presented in this thesis is supported by School of Chemical and Material Engineering of the National University of science and technology (NUST). We would like to thank Sir Iftikhar Hussain Gul for his guidance and supervision in completion of this research study.With his constant support knowledge share and technical and administrative support we pull up this project against all odds. We also like to thank Dr. sofia javed for her suggestions and helping hand especially in last critical stages of project. We formally thank to MS Student Sohaib Akram for his guidance and great helping hand as been throughout our project as well as his assistance in technical lab issues.

ABSTRACT

Semiconductors plays a crucial part in revolutionizing modern day industry in terms of efficiency, integrated circuits, intricate designs and environment friendly applications. In order to get familiar with working of this amazing technology we have to have some basic knowledge of all processes, scientific laws and conditions in case to avoid along process curies. Properties of materials varies in different conditions and they behave totally different as e.g. at nanoscale some certain factors and their influence cannot be ignored as we can do at bulk level. In this chapter we are covering all the aspects of research, basic terminologies and their introduction regarding our project.

In our project we are making CdTe thin films by using CSS (closed spaced sublimation) apparatus and then doped with different nanoparticles like Ag, Au, Cu etc. by taking into account the changes in film thickness and size and shape of nanoparticles and their effects regarding absorption, capacitance and efficiency for applications like solar cells. Many researches has been made in order to improve the efficiency of photovoltaic effect and study about plasmonic excitations. Our research is the succession of previous study as one step forward towards improvement and innovation. In this chapter we will give a brief explanation of all processes that we are going to perform in order to get the final shape of our product, to grasp all details. Brief introduction of thin films, their growth modes, apparatus used, doping, nanoparticle structure, morphologies etc. will be given.

Contents

CHAPTER I Plasmonics study & Photovoltaic applications	1
CHAPTER II Literature Reviewed	5
CHAPTER III Experimental Techniques	
CHAPTER VI Characterization Techniques	
XRD EXPERIMENTAL RESULTS	
UV-Vis Spectroscopy EXPERIMENTAL RESULTS	
SEM	20
EXPERIMENTAL RESULTS	
CHAPTER V DOPING	
Introduction	
Material Selection For Doping	
Effect of size & Distribution	
Doping By Using Ion Exchange Method	
CHAPTER VI After doping Characterization	41
SEM	41
UV-VIS	
BandGap	45
CONCLUSION	47
FUTURE RECOMMENDATIONS.	48
LITERATURE CITED	49

LIST OF FIGURES

Figure 1:	wavelength vs normalized scattering	page 8
Figure 2:	light entrapment process	page 10
Figure 3:	PL enhancement and intensity vs wavelength	page 12
Figure 4:	Diffusion pump working	page 16
Figure 5:	Rotary pump working	page 17
Figure6:	Vacuum chamber	page 18
Figure 7:	X-ray diffractometer	page 22
Figure 8:	Xrd pattern (a), (b), (c)	page 24, 25and 26
Figure 9:	transmission (a), absorbance (b) vs wavelength	page 31, 32
Figure 10:	SEM	page 35
Figure 11:	SEM SAMPLE GRAPHS	page 32
Figure 12:	band model of doped semiconductors	page 34
Figure 13:	optical density vs wavelength	page 36
Figure 14:	comparison between gold and silver	page 37
Figure 15	Size comparision of silver NPs	page 38
Figure 16	After Doped SEM	page 41
Figure 17	After Doped Transmission UV-VIS	Page 42
Figure 18	Absorbance	Page 43
Figure 19 Figure 20	UV-vis spectro plasmon reference BandGap	Page 44 Page 45
-	•	-

LIST OF TABLES

Table 1: Deposition parameters in CSS	17
Table 2: XRD DATA	24
Table 3: size distribution effect	38

