
i

 sidHadoop; Secure Inter-Domain Hadoop

Author

Muhammad Obaid ur Rehman

NUST201464152MSEECS63114F

Supervisor

DR. SHAHZAD SALEEM

A thesis submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN INFORMATION SECURITY (MS-IS)

DEPARTMENT OF COMPUTING (DoC)

SCHOOL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE (SEECS)

 NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY (NUST)

ISLAMABAD, PAKISTAN

(July 2018)

ii

Declaration

I certify that this research work titled “sidHadoop; Secure Inter-Domain Hadoop” is my own

work. The work has not been presented elsewhere for assessment. The material that has been used

from other sources it has been properly acknowledged / referred.

Signature of Student

Muhammad Obaid ur Rehman

NUST201464152MSEECS63114F

iii

THESIS ACCEPTANCE CERTIFICATE

 Certified that final copy of MS thesis written by Mr. Muhammad Obaid ur Rehman,

(Registration No NUST201464152MSEECS63114F), of SEECS (School/College/Institute) has

been vetted by undersigned, found complete in all respects as per NUST Statutes/Regulations, is

free of plagiarism, errors and mistakes and is accepted as partial fulfillment for award of MS/M

Phil degree. It is further certified that necessary amendments as pointed out by GEC members of

the scholar have also been incorporated in the said thesis.

Signature: ________________________________

Name of Supervisor: _Dr. Shahzad Saleem______

Date: ___________________________________

Signature (HOD): __________________________

Date: ___________________________________

Signature (Dean/Principal): __________________

Date: ___________________________________

iv

Approval

 It is certified that contents and form of thesis titled “sidHadoop; Secure Inter-Domain

Hadoop” submitted by Mr. Muhammad Obaid ur Rehman, have been found satisfactory for the

requirements of the degree.

Advisor: ___Dr. Shahzad Saleem___

Signature: _____________________

Date: _________________________

Committee Member 1: ___Mr. Fahad Satti___

Signature: _____________________________

Date: _________________________________

Committee Member 2: ___Ms. Hirra Anwar___

Signature: ______________________________

Date: __________________________________

Committee Member 3: __Dr. Muddassir Malik_

Signature: ______________________________

Date: __________________________________

v

Copyright Statement

 Copyright in text of this thesis rests with the student author. Copies (by any process) either

in full, or of extracts, may be made only in accordance with instructions given by the author

and lodged in the Library of SEECS (NUST). Details may be obtained by the Librarian.

This page must form part of any such copies made. Further copies (by any process) may

not be made without the permission (in writing) of the author.

 The ownership of any intellectual property rights which may be described in this thesis is

vested in NUST, subject to any prior agreement to the contrary, and may not be made

available for use by third parties without the written permission of the SEECS (NUST),

which will prescribe the terms and conditions of any such agreement.

 Further information on the conditions under which disclosures and exploitation may take

place is available from the Library of SEECS (NUST).

vi

Acknowledgements

I am very thankful to my Allah Almighty for all his help and blessings in every stage of my life.

I am also thankful to my parents, my sisters and to my brother for supporting and encouraging me

throughout my life.

I would like to give special thanks to my respected sir and supervisor Dr. Shahzad Saleem for his

help throughout my thesis. Besides my supervisor, I am also very thankful to GEC Committee

members: Mr. Fahad Satti, Miss Hirra Anwar and Dr. Muddassir Malik for their efforts,

encouragement, and support to overcome numerous obstacles I have been facing throughout my

research.

Finally, I would like to express my gratitude to all the individuals who have rendered valuable

assistance to my study.

vii

This work is dedicated to my exceptional parents and adored siblings

whose tremendous and unconditional support and for my respected

teachers whose virtuous guidance led me to this wonderful

accomplishment.

viii

Abstract

Hadoop is a big-data processing framework which is widely used for data storage and

processing. Now-a-days security is one of the major concerns in the digital world. Any system is

only considered reliable when it provides proper measures to secure the valuable data of an

organization. Due to the vast popularity and success of Hadoop framework, its use cases started to

evolve from an in-house deployment to grid, cloud and other heterogeneous environments.

Researchers have provided some solutions to access geographically distant resources for Hadoop

computation and storage, utilizing different techniques and frameworks. Due to security and

design issues in those frameworks, we proposed to deploy Hadoop in inter-domain environment.

Inter domain communication can help in collaboration without actually sharing the large

amounts of data between independent Hadoop clusters. If the need to scale resources is temporary

and or the resources are geographically distributed then sidHadoop can help to securely share

resources of Hadoop clusters. One Hadoop cluster cannot communicate with another Hadoop

cluster in the current out-of-the box setup. The proposed solution is working to achieve secure

communication between two independent Hadoop clusters. For abstraction and security purpose

the resources are not delegated to foreign cluster instead the master nodes communicate over WAN

and post jobs for each other. The jobs are run within a cluster just like a single independent Hadoop

setup. This way, the Hadoop core features are not disturbed and the benefits of Hadoop are still

achieved.

Our solution helps in the collaboration among different Hadoop clusters. It has use cases

in academia and business world. It can ease the collaboration of resources of organization with

multiple Hadoop deployments that are geographically distributed. It can help to

utilize/control/manage all these deployments from one single location. Similarly, different

educational institutions having their Hadoop clusters and collaboration agreement with other

institutions will be able make use of data and/or resources of inter-institute Hadoop clusters in a

secure manner.

Key Words: Hadoop, inter-domain, End-point security, Channel Security, WAN, SSL, Mutual

Authentication, Web Services, Geo-distributed resources

ix

Contents
Chapter 1 ... 1

1. Introduction .. 1

1.2 Background (Extended Intro) ... 4

Chapter 2 ... 11

2 Related Work .. 11

2.1 A Hierarchical Framework for Cross-Domain MapReduce Execution [18] 12

2.1.2 Limitations of “A Hierarchical Framework for Cross-Domain MapReduce Execution” 14

2.2 HOG: Distributed Hadoop MapReduce on the Grid [19] .. 14

2.2.2 Limitations of HOG: Distributed Hadoop MapReduce on the Grid .. 16

2.3 Towards a Cross-Domain MapReduce Framework (2013) [38] ... 16

2.3.2 Limitations of “Towards A Cross-Domain MapReduce Framework (2013)”.............................. 18

2.4 G-Hadoop: MapReduce across Distributed Data Centers for Data-Intensive Computing [21] 18

2.4.2 Limitations of “G-Hadoop: MapReduce across Distributed Data Centers for Data-Intensive

Computing” ... 20

2.5 A security framework in G-Hadoop for big data computing across distributed Cloud data centers

[16] 20

2.5.2 Limitations in “A security framework in G-Hadoop for big data computing across distributed

Cloud data centers (2014)” .. 22

2.6 PigOut: Making Multiple Hadoop Clusters Work Together [20] ... 22

2.6.2 Limitations of “PigOut: Making Multiple Hadoop Clusters Work Together” 23

2.7 Key Features from Related Work:... 24

Chapter 3 ... 27

3.1 Research Approach ... 27

3.2 Relation of Design Science and the Presented Research ... 28

3.3 Process of Research... 29

3.3.1 Awareness of the Problem... 31

3.3.2 Suggestion ... 31

3.3.3 Development.. 32

3.3.4 Evaluation ... 32

3.3.5 Conclusion... 32

Chapter 4 ... 34

4. Proposed Solution:... 34

4.1 Inter-Domain Hadoop: ... 35

x

4.2 sidHadoop; Secure Inter-Domain Hadoop: .. 36

4.2.1 End Point Security (EPS): ... 38

4.2.1.1 EPS-1: Mutual Authentication between servers:... 38

4.2.1.2 EPS-2: Authorization of servers:... 38

4.2.1.3 EPS-3: Source Integrity:... 39

4.2.1.4 EPS-4: Single Sign-On:.. 39

4.2.2 Channel Security (CS): ... 39

4.2.2.1 CS-1 Confidentiality of data/job ... 40

4.2.2.2 CS-2 Integrity of data/job ... 40

4.2.2.3 CS-3 Avoid replay attacks .. 40

4.2.2.4 CS-4 Avoid MITM attacks ... 40

4.3 sidHadoop Architecture ... 41

4.3.1 Authentication-Authorization Module: .. 43

4.3.2 Trust Management Module: ... 43

4.3.3 Cluster Operations Module:.. 44

4.4 sidHadoop Workflow Scenario ... 45

4.4.1 Submit & Execute Job on Local Cluster: ... 45

4.4.2 Submit & Execute Job on Remote Cluster: .. 46

4.4.3 Recieve & Execute Job on Remote Cluster: ... 47

Chapter 5 ... 50

5. Implementation: .. 50

5.1 Choice of Implementation Language and Platform:.. 50

5.2 Test Environment .. 52

5.3 Proof of Concept: .. 52

5.2.1 Login and Registration View: ... 53

5.2.2 Meta Data View: ... 55

5.2.3 Upload and Execute jar view .. 56

5.2.4 Results of MR Job View .. 57

5.2.5 Certificate Management View .. 58

Chapter 6 ... 60

6. Results and Discussion... 60

6.1 End Point Security: .. 60

6.1.1 EPS-1: Mutual Authentication between servers:... 60

xi

6.1.2 EPS-2: Authorization of servers:... 61

6.1.3 EPS-3: Source Integrity:... 62

6.1.4 EPS-4: Single Sign-On:.. 63

6.2 Channel Security: .. 63

6.2.1 CS-1 Confidentiality of data/job ... 63

6.2.2 CS-2 Integrity of data/job ... 65

6.2.3 CS-3 Avoid replay attacks .. 65

6.2.4 CS-4 Avoid MITM attacks ... 66

6.3 Efficiency: .. 66

6.4 Key Feature in sidHadoop: .. 67

Chapter 7 ... 70

7.1 Conclusion: ... 70

7.2 Future Work: ... 72

Bibliography .. 73

xii

List of Figures

Figure 1: Hadoop Architecture...5

Figure 2: HDFS Architecture...6

Figure 3: Map Reduce processing model ..7

Figure 4: Hadoop with Security Add-ons...8

Figure 5: A Hierarchical Framework for Cross-Domain MapReduce Execution 13

Figure 6: Hadoop on Grid .. 15

Figure 7: Towards A Cross-Domain MapReduce Framework .. 17

Figure 8: Sensitivity Levels... 17

Figure 9: Security Framework for G-Hadoop ... 21

Figure 10: Security Architecture... 21

Figure 11: Design Cycle [46]... 30

Figure 12: Reasoning in the Design Cycle [47] ... 30

Figure 13: Inter-Domain Hadoop Design... 35

Figure 14: Adding security to Inter-Domain Hadoop.. 37

Figure 15: sidHadoop Plugin with Hadoop Clusters ... 41

Figure 16: sidHadoop Components .. 42

Figure 17: Execute Job on Local Cluster using sidHadoop .. 46

Figure 18: Execute Job on Remote Cluster with sidHadoop.. 47

Figure 19: Recieve and Execute Job from Remote Cluster with sidHadoop ... 48

Figure 20: Spring Framework Architecture ... 51

Figure 21: Login page .. 53

Figure 22: Registration Page .. 54

Figure 23: MetaData from Hadoop Cluster ... 55

Figure 24: Upload and Execute MR job... 56

Figure 25: Execution Complete Notification.. 57

Figure 26: Get Result from Cluster ... 58

Figure 27: Upload New Certificate ... 58

Figure 28: Remove Certificate.. 59

Figure 30: Encrypted SSL Handshake between multiple sidHadoop .. 61

Figure 29: Vulnerability Scan result .. 62

Figure 31: Plaintext communication by inter-domain Hadoop ... 64

Figure 32: Encrypted Data using sidHadoop.. 65

xiii

List of Tables

Table 1: Key Features from Related Work.. 25

Table 2: Security Objectives .. 37

Table 3: Namenode / Master Node Specifications ... 52

Table 4: Datanode / Slave Node Specifications ... 52

Table 5: Performance Tests………………………..………………………………………………………67

Table 6: Key Features in sidHadoop.…………………………………………...…………………………69

xiv

List of Acronyms

sidHadoop

Secure Inter-Domain Hadoop

CD Cross Domain

GFS Google File System

HDFS Hadoop Distributed File Storage

MR Map Reduce

C2A Client Authentication-Authorization

R2A Remote Authentication-Authorization

UM User Manager

CM Certificate Manager

LCO Local Cluster Operations

RCO Remote Cluster Operations

SSL Secure Socket Layer

TDE Transparent Data Encryption

https://www.google.com.pk/imgres?imgurl=https://www.dll-files.com/assets/img/dll-gear-og.png&imgrefurl=https://www.dll-files.com/&h=300&w=300&tbnid=JwWl2hLgifMYzM:&tbnh=160&tbnw=160&usg=__z3kaEXBsEVXuLyvEhwqBaBWzS-U=&vet=1&docid=LtJprVhs2V7HTM&sa=X&ved=0ahUKEwjqk8q1iuDVAhUGZlAKHY3xBE4Q9QEIJzAA
https://www.google.com.pk/imgres?imgurl=https://www.dll-files.com/assets/img/dll-gear-og.png&imgrefurl=https://www.dll-files.com/&h=300&w=300&tbnid=JwWl2hLgifMYzM:&tbnh=160&tbnw=160&usg=__z3kaEXBsEVXuLyvEhwqBaBWzS-U=&vet=1&docid=LtJprVhs2V7HTM&sa=X&ved=0ahUKEwjqk8q1iuDVAhUGZlAKHY3xBE4Q9QEIJzAA

1

Chapter 1

Introduction and Background

1. Introduction

The term big data is used to describe huge volumes of structured or

unstructured data and the technologies and means to process this data [1]. The

advancements in technology and because of its easy and low-cost public access, a

boom was witnessed in the amount of data generated all over the world. Increase in

the data generation desperately required platforms to process these huge amounts

of data. In 2003, Google published a paper introducing Google File System (GFS),

a fast, efficient and reliable storage platform based on a distributed architecture

which offered the use of cheap commodity hardware-based storage clusters [2]. In

2004 Google published another paper introducing MapReduce, a programming

model for parallel processing of huge amounts of data in a distributed environment

[3]. Development community was set to develop technologies which could cater to

the needs of processing big data.

In 2006, Hadoop was created as an open source project. It introduced the

implementations of GFS and MapReduce to provide fast, efficient, fault-tolerant

storage and processing platform [4], [5]. Hadoop supported the use of commodity

hardware in a distributed and cluster oriented environment. Hadoop had two main

pillars, Hadoop Distributed File System HDFS [6] based on Google File System

concept and MapReduce. It offered very fast processing of large amounts of data

due to its distributed storage platform and parallel computing architecture [7].

Initially, Hadoop was introduced with very little or no security mechanisms for

securing the data which was stored in it. This was because the data that was

supposed to be used for processing was only public and non-sensitive. At the time,

there were no existing security technology or mechanism suited for the complex

2

parallel architecture of Hadoop. Kerberos here came to the rescue which required

few design modifications for integration in Hadoop [7]. Kerberos was the first add-

on for Hadoop in the direction of security [8]. Kerberos was not a complete solution

for making Hadoop ready for a production environment but it provided a foundation

of security for Hadoop [9]. Apache Ranger [10], Apache Sentry [11], and Apache

Knox [12] are only a few names in the list of security solutions for Hadoop that

emerged in the open source community with the collaborations of tech giants like

Yahoo, Hortonworks, and Cloudera [13]. Hadoop received security add-ons that

provided a range of options of security levels depending upon the business

requirement. These security add-ons for Hadoop were both open-source as well as

enterprise solutions. Hadoop not only received upgrades in the security domain, it

was also advancing in the domain of analytics. So Hadoop was ready for a

production environment in the form of various mature open-source and enterprise

solutions. Hadoop is being used in production by many tech giants in the industry

like Amazon, Alibaba, Cloudera, Hortonworks and Yahoo to name a few. [14]

Hadoop was designed to be a private in-house environment based solution

but was capable of handling thousands of nodes. For example, Yahoo deployment

of Hadoop consists of over 42,000 nodes spread over hundreds of clusters and

storing more than 200 petabytes of data [15]. The advancements in other domains

of technology, like cloud computing, pushed towards the deployment of Hadoop

on a cloud. Cloud deployment is a very feasible solution which can provide

comfortably elastic storage and processing scalability to Hadoop cluster size [16].

There are many cloud solutions in the market which are offering ready-made

Hadoop deployments on their platform. AWS, Google Cloud etc are among the

cloud vendors that provide paid and/or free cloud resources for Hadoop [1]. But

cloud technology is still not reliable to store sensitive data due to many security

threats [17]. Some researchers may not feel comfortable in keeping their data in a

shared storage space with other users worldwide while others may have a large

amount of data and computation that would be financially too expensive to move

into the cloud [18]. The community of information security is working on reducing

the threats in the cloud environment to the bare minimum. Even though cloud

3

computing provides very easy and elastic scalability of computation and storage

resources but it is sometimes costly considering Small and Medium level

organizations. In-house deployment of Hadoop on commodity hardware suits well

for SMEs where low-cost hardware can be used. Hadoop can be deployed in a

single cluster or multi-cluster setup, so one whole Hadoop instance is confined

within these clusters. Horizontal scalability of resources is possible but sometimes

becomes very hectic in updating configuration of the cluster to add the new node/s

into the cluster.

Researchers have provided some solutions to access geographically distant

resources for Hadoop computation and storage utilizing different techniques and

providing frameworks. HOG; Hadoop on Grid provides a solution to access and

utilize resources that are distributed over the Grid [19]. But it requires specialized

hardware. PigOut; is a system that provides federated data processing over multiple

clusters [20]. This comes somewhat close to Inter-Domain Communication

between multiple clusters with the use of Pig query language for Hadoop. A single

Pig query can be used to access multiple clusters. G-Hadoop; is a solution which

provides utilization of resources spread across multiple data centers [21]. It requires

a centralized server and specialized broadband connection to efficiently perform its

tasks.

Some of these solutions negate the basic feature provided by Hadoop which

is the use of commodity hardware for its deployment. Different solutions were

studied which provide newly designed frameworks and fulfill the requirements of

their own scenarios, but neither of these solutions caters the need of making

multiple Hadoop instances, that are geo-distributed, communicate with each other.

An organization with multiple Hadoop deployments that are geographically

distributed cannot utilize/control/manage all these deployments from one single

location. Similarly, educational institutions having their Hadoop implementations

for research and development purpose and collaboration agreement with other

institutions will not be able to to make use of data and/or resources of Hadoop from

other universities. If a job needs to be executed on a distant cluster, a human

4

resource may be required to deliver the job to be executed to the other cluster.

Hadoop instances in different domains cannot access the data or resources of each

other because Hadoop does not provide support for it.

Given the current situation, there is much that needs to be done in the

domain of big data. There is a dire need to overcome the constraints which Hadoop

puts on its users and introduce systems and techniques to contribute to the domain

of big data. A lot of work is done and is being done in the field of big data. The

details of Hadoop, inter-domain Hadoop and security requirements for securing

inter-domain Hadoop are discussed later.

1.2 Background (Extended Intro)

Hadoop has become an attractive platform for large-scale data analytics. Its

popularity is high because of its many features like parallel processing, fault

tolerance, easy scalability, open-source nature, support community, new

developments and regular updates [7]. It distributes data over a set of available

nodes in a single or multi-cluster environment. Hadoop Distributed File System

HDFS handles the storage operations in Hadoop. The processing is handled by the

famous divide-and-conquer rule which, in this case, is defined as MapReduce (MR)

algorithm. HDFS and MR are two key functional components of Hadoop. The

diagram below highlights the architecture.

5

Figure 1: Hadoop Architecture

Hadoop Distributed File System (HDFS) a scalable file system that

distributes and stores data across all machines in a Hadoop cluster. The HDFS is a

master and slaver framework which contains multiple slaves also called datanodes

and a single master also called namenode. HDFS stores data on the compute nodes,

providing very high aggregate bandwidth across the cluster.

NameNode runs on a “master node” that tracks and directs the storage of

the cluster. It manages the file system namespace, regulates access to files by

clients, executes the operations on file system namespace and maps data blocks to

data nodes. The name node makes all decisions concerning block replication as

well.

DataNode runs on “slave nodes,” which make up the majority of the

machines within a cluster. The NameNode instructs data files to be split into blocks,

each of which is replicated three times and stored on machines across the cluster.

These replicas ensure the entire system won’t go down if one server fails or is taken

offline—known as “fault tolerance.”

6

Figure 2: HDFS Architecture

MapReduce was originally created by Google, its strength lies in the ability

to divide a single large data processing job into smaller tasks. All MapReduce jobs

are written in Java, but other languages can be used via the Hadoop Streaming API,

which is a utility that comes with Hadoop. A client writes a Map/Reduce Job and

gives it to the cluster while specifying the input and output files. This Job is then

split into smaller tasks as per the requirements set in the job. This is the Map step

during which data sets are processed and only the required data is extracted,

processed into the form of key-value pairs and then forwarded to the Reduce Phase

as results. The reduce phase then combines the results, obtained from the map

phase, together and the results are written to an output file on the HDFS. The client

can then obtain the results of the Map/Reduce from the output file initially

specified.

7

Figure 3: Map Reduce processing model

Hadoop is considered one of the very first few outstanding technologies in

the field of big data. Its maturity into security oriented solution made it ready for

production environment. In Hadoop, the data, which is required for processing is

spread over a vast cluster of nodes, with a very basic ‘SSH’ level security [22]. If

the sensitive data of the organization is needed for processing, then putting it in the

cluster will make it accessible to all and thus leave the data vulnerable. Hadoop did

not focus enough on security at the start of the project [23]. Its main goal was to

efficiently process the huge amounts of data so the security aspects were traded-

off. Hadoop’s security has continually come under scrutiny, especially given its

concurrent processing architecture [24]. To cater to the authentication

vulnerabilities, Hadoop introduced central authentication through Kerberos [25].

Through Kerberos, Hadoop achieved authentication using tokens. Different

components of Hadoop were able to authenticate each other using modified tokens

of Kerberos. The basic level of security was covered by Kerberos and it was later

incorporated into core Hadoop distribution.

Authorization was handled later by different open source solutions like

Apache Sentry [11] and Apache Ranger [10]. Apache Sentry provides granular

RBAC for Hadoop components whereas Apache Ranger provides fine-grained

8

RBAC to Hadoop and its components. They both provide a plugin for tools

associated with Hadoop like hive. The plugin is attached with the component and

the communication to that component is allowed or denied through the plugin. Both

these solutions provide support for Kerberos.

Ranger provides additional features like auditing and management console,

whereas sentry requires third-party solutions for these features. Later releases of

Hadoop also included a new feature called Transparent Data Encryption TDE in

HDFS [26]. TDE is a technology that is used to encrypt data at rest. It performs

encryption and decryption in a transparent fashion.

Figure 4: Hadoop with Security Add-ons

The newly included features greatly supported the basic pillars of security

like Authentication, Authorization, Confidentiality and Integrity. This made

Hadoop ready for a production environment, with multiple security options suitable

for different organizational requirements. While there were security advancements

for Hadoop, the technology development for enhancing the capabilities of Hadoop

did not stop. Many organizations started working on their own solutions to handle

different types of data in Hadoop [27]. Facebook started the project Pig [28], which

provides a solution for reading data from Hadoop using structured data approach.

9

Pig is a platform for manipulating data stored in HDFS. It consists of a compiler

for MapReduce programs and a high-level language called Pig Latin [29]. It

provides a way to perform data extractions, transformations and loading, and basic

analysis without having to write MapReduce programs. Furthermore, other projects

like Hive [30] and Ambari [31] are just a few names in a long list of projects that

were made for Hadoop. Hive is a data warehousing and SQL-like query language

that presents data in the form of tables. Hive programming is similar to database

programming. Ambari is a web interface for managing, configuring and testing

Hadoop services and components. It provides an easy interface as opposed to the

direct shell used for performing most of the tasks in Hadoop.

Similarly, solutions started emerging for using Hadoop in a geo-distributed

environment. Researchers felt this need because the resources were spread over

geographically different locations and instead of moving all the resources into one

place, it was thought to explore Hadoop in a geo-separated design. One of these

solutions is HOG; Hadoop on Grid. This solution discusses the use of specialized

Open Science Grid OSG [32] clusters with Hadoop. In HOG, the Data nodes are

distributed over various data centers that are part of the OSG whereas the Name

node is established on a specialized stable node. This node responsible for

maintaining the connection between the various datacenters where the slave nodes

are situated. Thus a single Hadoop instance is created that has its nodes spread over

different locations.

A similar solution to discuss here is G-Hadoop [21], a MapReduce

framework that aims to enable large-scale distributed computing across multiple

clusters. It uses G-Farm [33] for file storage system as opposed to the original

HDFS. G-Farm provides native support for wide-area operations. The data nodes

are spread over multiple locations with a single stable master node that’s

responsible for managing the slaves and distributing data and jobs to these slaves.

G-Hadoop makes a lot of design changes to the core Hadoop design to achieve

Hadoop functionality over the grid. These solutions show that the need to use

Hadoop over a geo-distributed environment was building up. During the same

10

period, providing Hadoop solutions over cloud was another hot domain being

explored [34]. Many researchers were working on achieving the features that

Hadoop offered onto the cloud infrastructure. Amazon now offers elastic on-

demand Hadoop deployment as do other organizations.

The different solutions discussed above over the geographically distributed

environment for Hadoop try to make a single Hadoop deployment. They also

discuss the use of specialized hardware for processing or specialized network

bandwidth requirements which makes it difficult for the implementation of these

solutions. The solutions in the discussion also lack a strong security stance required

for Hadoop, especially when resources utilized by these solutions are spread over

WAN.

In this research we are proposing Hadoop deployment, where two or more

independent Hadoop clusters which are situated over different administrative

domains can securely communicate with each other over WAN without actually

sharing huge amounts of data. The solution will help in the collaboration of Hadoop

resources. Resources will not go to waste and temporary scale will be facilitated by

using resources from other Hadoop instances. The security part will ensure the

reliability of the collaboration between Hadoop instances. With this solution,

academic institutes will be able to share their public data and the best part will be

that complete data will not be needed to transmit but only the required data after

processing will be transmitted that lessens the amount of data to traverse over

WAN. Multiple organizations will be able to share their resources and a single

organization with multiple offices will be able to fully utilize its resources.

11

Chapter 2

Literature Review

2 Related Work

When Hadoop was introduced, the security implications were not in the

scope of its operations. The data in Hadoop was not supposed to be sensitive, the

environment of Hadoop cluster was supposed to very private and only simple ‘ssh’

security to access different physical slave nodes was sufficient. As many companies

started implementing Hadoop in their production environment, the sensitive data of

the companies was required to be put in the Hadoop clusters which made it

vulnerable. Hadoop is in use at many of the world’s largest online media companies

like Yahoo, LinkedIn, Twitter, Fox Interactive Media and Facebook. A huge list of

all the companies who are using Hadoop is provided on the Hadoop website [14].

For the sake of their sensitive data, many companies started customizing Hadoop

according to their own requirements of security. Many companies started

supporting the open-source community to develop open-source solutions for

securing Hadoop.

The latest release of Hadoop has included new features called Transparent

Data Encryption (TDE) in HDFS and Wire Encryption. The newly included

features have greatly supported confidentiality and integrity pillars of security [26].

Researchers have put significant efforts to the easy submission and

scheduling of MapReduce jobs in clusters, grids and clouds. Researchers all around

are working on the storage and processing of data in Hadoop. They are trying to

overcome the constraints that Hadoop puts on its users. Following are the few

papers that provide a solution in the domain of geo-distributed Hadoop resources

which were studied to learn about this domain.

12

2.1 A Hierarchical Framework for Cross-Domain

MapReduce Execution [18]

In this paper, the authors stated that the MapReduce programming model

[3] provides an easy way to execute pleasantly parallel applications. Many life

science applications fit this data-intensive programming model and are benefited

by the scalability it delivered. One such application is AutoDock [35], which

consists of a set of tools for predicting the bound conformations of flexible ligands

to macromolecular targets. However, researchers required sufficient processing

and storage resources to fully enjoy the features of MapReduce. For example, a

typical AutoDock based virtual screening experiment usually has a large amount of

docking processes from different ligands and it takes a lot time to execute them on

a single MapReduce cluster. Although enterprise clouds can provide virtually large

number of computation and storage resources on-demand, but due to high-price,

unreliability and possibly other concerns, many researchers perform their tests on

a number of small clusters with a small number of nodes which could not fully

utilize the benefits of MapReduce.

In this paper, the authors are working on Quarry FutureGrid [36] and

TeraGrid [37] clusters but these cluster only provided a limited number of nodes

which could be used at one time. Also, these clusters are separated by different

administrative domains and due to the current Hadoop structure, a single more

powerful cluster could not be created by making these clusters work together. One

approach could be to combine the underlying physical clusters as a single virtual

cluster by adding a special infrastructure layer. MapReduce jobs could be executed

on this virtual cluster. But using specialized hardware is not everyone’s cup of tea.

The framework discussed in this paper gathers computation resources from

multiple clusters and execute MapReduce jobs. This Hierarchical MapReduce

Framework consists of two layers, the upper layer is the Global Controller which

contain job scheduler, data transferor and user-supplied global reducer, and the

bottom layer consists of multiple local clusters for executing distributed

13

MapReduce jobs. Each local cluster has an MR master node with a workload

reporter and a job manager.

Figure 5: A Hierarchical Framework for Cross-Domain MapReduce Execution

The global controller, works as a centralized server that accepts user-

provided MR jobs and divides them for execution on different local clusters

domains. It divides the jobs into sub-jobs based on the computation resources of

the local clusters. After the jobs are completed, the global controller collects the

results from all local clusters and performs a final reduction to consolidate the

results. In this framework, a user has to write two reducers, 1st is the conventional

reducer and the 2nd is the global reducer for final reduction of results. In this

framework, the global controller divides the data blocks and sends them to multiple

local clusters. It balances the workload by sending tasks in accordance to the

capabilities of each cluster and of each node. The local results are returned back to

the global controller for global reduction. Their experimental evaluation using

AutoDock over MapReduce shows that their load-balancing algorithm performs

efficient distribution of workload across multiple clusters. It also reduces the total

execution time span of the entire MapReduce execution.

14

2.1.2 Limitations of “A Hierarchical Framework for Cross-

Domain MapReduce Execution”

In this paper, they have presented a hierarchical MapReduce framework that

can gather computation resources from different clusters and run MapReduce jobs

across them. It can help with the life science applications. It is suitable for life

science applications which are both compute intensive and data intensive. They

consume a large number of CPU cycles while processing massive data sets which

are either in a large group of small files or could be split naturally. But their

framework doesn’t include the remote connection to Hadoop clusters.

This framework mainly focuses on multiple clusters which are within a

single administrative domain and use ‘ssh’ and ‘scp’ to transfer data across different

clusters. This could not work in a globally distributed clusters and the security

implications will be huge. They have also discussed the lack of security mechanism

in their solution for the protection of data and jobs. Their framework is suitable for

submission and scheduling of massive parallel jobs to reduce the time and efforts.

2.2 HOG: Distributed Hadoop MapReduce on the Grid [19]

MapReduce programming model provides a powerful data processing

platform for enterprise and academic applications. In this paper, a novel Hadoop

MapReduce framework runs on the Open Science Grid [26] which is spread across

multiple locations across the United States. The solution is titled Hadoop on the

Grid (HOG). It is different from previous MapReduce platforms that run on

dedicated environments like clusters or clouds. HOG provides an open source,

scalable, and dynamic MapReduce environment on the opportunistic resources of

the grid. In HOG, fault tolerance of Hadoop is improved for data analysis over

WAN by converting resources in different data centers to virtual racks and by

developing multi-institution failure domains. In HOG, A single Hadoop instance is

created that comprises of physical nodes that are geographically distributed over

the grid using OSG. In HOG, the Namenode instance that handles HDFS and the

15

job tracker that handles MapReduce are kept on a stable centralized server. So that

the master node is available all the time. The slave/worker nodes are distributed

among various data centers. These data centers are transformed into virtual racks

so that these can be accessed from the centralized master node.

Figure 6: Hadoop on Grid

In HOG, they have provided site awareness added to the rack awareness

concept of core Hadoop. It is similar to rack awareness but this implementation has

resources spread over multiple sites so if a whole site goes down or a node inside a

site goes down, it can be identified by site awareness and Hadoop will start to

replicate the data that was inside that site to another active site. The changes to the

Hadoop original design are transparent to already deployed Hadoop MapReduce

applications. In the evaluation, HOG was extended to 1100 nodes on the grid.

Moreover, HOG was evaluated over a simulated Facebook Hadoop MapReduce

workload. It concludes that rapid scalability of HOG can provide comparative

performance to a local Hadoop cluster.

16

2.2.2 Limitations of HOG: Distributed Hadoop MapReduce

on the Grid

In this paper, Hadoop infrastructure was created on the Open Science Grid.

The contribution of this research includes the detection and resolving of zombie

datanode problem, site awareness, and a data availability solution for HOG. The

limitation of this research includes the security issues, HOG utilized HTTP to

perform RPC calls between nodes whereas, in the OSG, users have to use a trusted

certificate to access resources.

In this paper, the target is to consolidate geographically distributed

resources into consolidated virtual clusters, they have made very few changes to

the Hadoop architecture which is a good thing but their framework requires

specialized hardware. Transforming data centers into virtual racks can be costly and

will require dedicated fast broadband for efficient communication between Hadoop

clusters. Also, there is the use of centralized stable server which requires

specialized hardware to maintain stability along with high-speed internet. It

achieves the goal by transforming independent clusters into one single Hadoop

instance as it was discussed in the previous paper an alternate solution to the

framework discussed.

2.3 Towards a Cross-Domain MapReduce Framework

(2013) [38]

Cross Domain Hadoop (CD-Hadoop) focuses on Multi-Level Secure (MLS)

environment for Hadoop. Its idea is to run Hadoop with multiple layers/domains of

security. CD-Hadoop prototype is implemented on Security Enhanced Linux

(SELinux) [39] which provides the configuration to enforce MLS aware policy for

different sensitivity levels based on security labels of subjects and objects. In CD-

Hadoop cluster, there is one physical namenode and multiple physical datanodes.

Namenodes, for different sensitivity levels, reside on the same physical node.

17

Figure 7: Towards A Cross-Domain MapReduce Framework

Different security levels each have a separate surrogate Hadoop instance

with its own namenode and datanode. These surrogate namenode and datanodes

reside in the same physical namenode and datanodes but with different

authorization and sensitivity levels.

Figure 8: Sensitivity Levels

This paper describes different security levels as independent security

domains residing inside the same hardware. This provides an abstraction layer for

data authorization. Lower level security users cannot access higher security level

18

data whereas higher security level users can access the lower security level data.

This is called read-down approach for cross-domain data read operations. But write

operations are only allowed in the same sensitivity domain. This solution does not

offer independent Hadoop instances to communicate with each other at the same

security level, but instead, it dynamically divides a single cluster into multiple

clusters according to the security labels required.

2.3.2 Limitations of “Towards A Cross-Domain MapReduce

Framework (2013)”

This paper provides a good solution for high-security organizations that

require different authorization levels for its different users. It introduces MLS

aware environment [40], multiple instances of Hadoop can run at different

sensitivity levels while their access to Hadoop resources is constrained by

underlying trusted OS. It provides a highly secure MapReduce platform but it also

shows performance degradation. This performance degradation can be acceptable

in cases where security is the first priority than efficiency. The solution discussed

in this paper dynamically creates multiple Hadoop instances in separate security

domains. The physical nodes are responsible for handling the surrogate nodes and

communication across different domains is only allowed though the read-down

approach.

2.4 G-Hadoop: MapReduce across Distributed Data

Centers for Data-Intensive Computing [21]

This paper states that there is significant rise in the computational

requirements for comprehensive data-intensive analysis of scientific data. In High

Energy Physics (HEP) for example, the Large Hadron Collider (LHC) produced 13

petabytes of data in 2010. This large volume of data is processed on more than 140

computing centers spread across 34 countries. The MapReduce programming

model provides highly efficient processing support for large-scale data-intensive

19

computing applications. But, current MapReduce implementations are can only be

deployed on single cluster environments. It could not provide support for large-

scale distributed data processing across multiple data centers. It uses workflow

systems for distributed data processing across geo-distributed resources. The

workflow paradigm has some limitations for distributed data processing, such as

reliability and efficiency.

In this paper, the design and implementation of G-Hadoop, a MapReduce

framework is presented that aims to enable large-scale distributed computing across

multiple data centers. G-Hadoop is slightly similar to Hadoop on Grid, it also

requires a centralized master node that controls/utilizes the slave nodes spread

across different geographical locations. G-Hadoop uses G-Farm [33] file system

rather than the HDFS used by core Hadoop. G-Farm provides a global virtual file

system across multiple administrative domains and is optimized for wide-area

operations to provide site awareness.

The master node in G-Hadoop comprises of two main components, the

Metadata server for keeping a record of data in the G-Farm file system and the Job

Tracker which is responsible for splitting the jobs into smaller tasks, distributing ad

scheduling these tasks among the participating clusters of G-Hadoop. This job

tracker is a modified version of the core Hadoop job tracker which is responsible

for similar tasks but in the local cluster environment. The slave node in G-Hadoop

consists of TaskTracker and I/O Server.

Task Tracker which is similar to core Hadoop task tracker but modified to

handle G-Hadoop architecture. Its job is to accept tasks from Job Tracker and report

back the status. It also keeps a check on the workers and submits the results back

to Job Tracker. I/O Server manages the data stored in the storage of G-Hadoop. It

links with the metadata server and is configured to store the data in the high-

performance file system of its cluster. In this paper, the proposed system does not

generate the metadata by splitting the files into blocks of data like core Hadoop

hdfs, but instead, it keeps a complete file as a block, that is why less metadata is

generated.

20

2.4.2 Limitations of “G-Hadoop: MapReduce across

Distributed Data Centers for Data-Intensive Computing”

The presented framework in this paper supports distributed data-intensive

computation among multiple administrative domains using existing unmodified

MapReduce applications. The proposed system requires specialized

hardware/software for storage that is why G-Farm file system is used. The files are

not distributed into smaller blocks which allows less parallel environment as

compared to core Hadoop architecture. It requires high-performance network

solutions to maintain efficient communication between the clusters. This paper

proposes a solution in which a master node is centralized and slave nodes are

distributed which are connected virtually. The goal of this research is to advance

the MapReduce framework for large-scale distributed computing across multiple

data centers with multiple clusters and does not focus on remote connectivity to

Hadoop clusters. This paper also discusses the security shortcomings of the

proposed solution, but they have worked on covering these security issues in

another paper which is discussed below.

2.5 A security framework in G-Hadoop for big data

computing across distributed Cloud data centers [16]

The G-Hadoop system discussed above re-uses the Hadoop mechanism for

authentication and job submission which is sufficient for a single administrative

domain setup but not for the grid. The framework proposed in this paper has the

following properties; Single Sign-On, Privacy of user information, Access Control,

Scalability, Immutability, and Protection against attacks. The proposed security

framework employs PKI and uses a CA server. The Gfarm file system used by G-

Hadoop already applies the Grid Security Infrastructure GSI [41] so it includes CA.

The framework utilizes this CA to design a suitable symmetric cryptography to

secure G-Hadoop. As G-Hadoop has physical resources spread across multiple data

centers so communication between these resources is performed over WAN. The

21

proposed security framework extends G-Hadoop in the phase of submitting jobs

from a user and the phase of job termination, where additional steps are performed

to authenticate the communication parties and to establish a secure connection

before executing jobs/tasks.

Figure 9: Security Framework for G-Hadoop

The whole workflow consists of the following main phases: user

authentication, proxy credential assignment, preparing authentication information

on the masternode, authentication of the masternode and slavenodes, as well as job

execution, termination, and disconnection.

Figure 10: Security Architecture

The structure of G-Hadoop for user does not change significantly with

security implementation, the user has to log-in to G-Hadoop on the master node

and it takes care of the rest of the steps. To provide proxy credentials, the master

node communicates with the CA Server over SSL. It authenticates itself and

requests the CA Server to provide session keys for the datanodes to authenticate.

22

This must be noted that the datanodes are spread across different data centers that

is why session security is necessary for the communication between namenode and

datanodes. Using the session keys, the namenode authenticates with datanodes and

issues the job that is required to run. When executing the jobs, the namenode

assigns the user session information with each job for uniqueness and security.

When jobs are completed, the datanode returns the result back to the namenode

using the same session information for that job and the user gets to see the results

it intended.

2.5.2 Limitations in “A security framework in G-Hadoop for

big data computing across distributed Cloud data centers

(2014)”

This paper lays out a comprehensive security mechanism for G-Hadoop. It

takes care of user authentication with g-Hadoop, namenode and datanodes mutual

authentication and job execution security. The proposed solution uses SSL security

and PKI using CA provided by G-Farm. In the proposed solution, SSL security is

also being targeted for accessing the remote namenode as discussed in this paper.

G-Hadoop offers the use of geo-distributed physical resources as a single Hadoop

cluster, but in core Hadoop, a namenode requires to access the datanode directly to

execute the jobs. So the security mechanism required for this solution offered the

use of session keys for the period of job execution in which the namenode makes

use of these session keys to securely access the datanodes. This solution is sufficient

in the scenario of G-Hadoop, but it also inherits the limitations of G-Hadoop

solution as they are discussed in the limitations of G-Hadoop section.

2.6 PigOut: Making Multiple Hadoop Clusters Work

Together [20]

The presented system in this paper enables federated data processing over

multiple Hadoop clusters which is titled PigOut. PigOut provides the interface to

23

write a single script in a high-level language to execute jobs on multiple Hadoop

clusters. Manual labor of writing multiple scripts for different clusters and to

coordinate the execution for different clusters is removed. PigOut partitions a

single, user-provided script into multiple scripts for different clusters accordingly.

Moreover, PigOut generates workflow descriptions to keep a check on the

execution across clusters. In doing so, PigOut uses existing solutions that are built

around Hadoop, reducing extra efforts needed from users or administrators. For

example, PigOut uses Pig Latin [23], which is a renowned query language for

Hadoop MapReduce. The modification to Pig Latin a merely in the form of

extension in Pig Latin with full backward compatibility. PigMix is used for

evaluation of the proposed solution, which is the standard benchmark for Pig. It

was demonstrated that PigOut’s automatically-generated scripts and workflow

definitions have comparable performance to manual, hand-tuned ones. They also

reported their experience with manually writing multiple scripts for a set of

federated clusters, and compared the process with PigOut’s automated approach.

2.6.2 Limitations of “PigOut: Making Multiple Hadoop

Clusters Work Together”

This paper presented PigOut, a federated data processing system over

multiple Hadoop clusters. PigOut takes care of all aspects of automation, which

include script and workflow generation, data transfer, and optimization suitable for

cross-cluster execution. The proposed solution does not require any extra work

from the users or cluster administrators of hadoop because it supports Pig Latin’s

syntax out of the box. It utilized standard, core Hadoop components without any

modification.

PigOut uses ‘scp’ for the transfer of pig scripts and data to remote clusters

which is a good and efficient solution for a local deployment but over WAN this

could not suffice. Furthermore, there is no mention of security mechanisms e.g.,

authentication between clusters, the integrity of source cluster and the job received

from that cluster. There is a need for a security mechanism for the implementation

24

of PigOut because the mechanism used for local implementation of Hadoop cannot

cope for the distributed structure of multiple Hadoop instances.

While PigOut is a feasible solution to the multiple data sets over multiple

clusters problem. Its implementation is only confined to using Pig queries over

Hadoop clusters. If a cluster does not use Apache Pig, then this implementation

cannot provide a link to that cluster and manual execution of job will be required

for that cluster. It does not facilitate the problem of accessing an organizational

cluster from outside the organization to access open data. Nor does it solve the

problem of using external clusters for data analysis based on data-sets stored on

them. What PigOut does is strictly limited to an organizational setup of multiple

Hadoop clusters.

2.7 Key Features from Related Work:

This solution may try to achieve, enhance or subtract these features. Table

1, highlights the key features of the above-discussed papers. In this table, the points

discussed are not all those which can be considered as features for the scenario of

this research. Some of the points, mentioned above, are features as per their

respective research papers but they may become either drawbacks or unnecessary

in terms of the research scope of this research thesis. For example, some of the

above-mentioned papers require specialized hardware and network components.

Similarly, the proposed solutions discussed in the related work section

create a single instance of Hadoop with stable centralized Namenode handling all

the geo-distributed datanodes. This increases the traffic flow because the namenode

has to keep track of all the distributed resources in the form of heartbeat or health

status. Site awareness is also required when a central server is handling remote

resources situated at different geographical locations or sites

25

Table 1: Key Features from Related Work

Features

CD-Map

Reduce

Executio

n [18]

HOG

[19]

CD-Map

Reduce

Frame-

work [38]

G-

Hadoop

[21]

Security

Framewo

rk in G-

Hadoop

[16]

PigOut

[20]

Minimal

Changes in

core Hadoop

Geo-

Distributed

Hadoop

resources

Minimal Data

Traversal

Stable and

Centralized

Namenode

Site Awareness

Use of

Specialized

Hardware

Use of

Specialized

Network

Multi-Layer

Security MLS

Transmission

security

Single Sign-On

Protection

from attacks

26

Minimal changes in core Hadoop architecture is a very important feature

because it provides support for backward compatibility. But some of the above-

discussed solutions are offering a lot of design changes. For example, G-Hadoop

uses the g-farm file system in place of hdfs. To implement g-Hadoop, legacy

Hadoop systems would require new configuration and software suite so the

backward compatibility is not supported.

The concept of Geo-distributed Hadoop resources suggest the use of

resources distributed over different administrative and geographical domains. The

papers for g-Hadoop, Hadoop on grid, cross-domain MR execution provide

solutions to connect these resources into a single Hadoop cluster. These resources

are turned into a single Hadoop cluster by deploying a stable namenode. The

datanodes that are distributed over different locations are either virtualized or

redeployed with new software components depending on the solution in question.

Minimal data traversal is achieved by converting the resources that contain data

into slave nodes/data nodes for geo-distributed Hadoop. By doing this, the huge

amount of data does not need to be traversed but instead, simple software

components providing an upgrade for making geo-distributed Hadoop slave nodes

are traversed. The results of the computations on the existing data may be required

to traverse over WAN but by this, the data traversal is lessened by a considerable

amount.

Only a few papers in the above section discuss the requirements of security

in their solution. For example, a security framework for g-Hadoop paper builds a

comprehensive security stance for g-Hadoop providing transaction security, single

sign-on and other features. The paper ‘Towards cross-domain MapReduce

framework’ proposes Hadoop with Multi-layer security domains. The MLS aware

solution creates multiple sensitivity layers and describes them as different security

domains encapsulated within the same hardware. These sensitivity layers though

add extra security controls to the solution but would also increase the performance

overhead.

27

Chapter 3

Research Methodology

3.1 Research Approach

Considering the complex architecture of Hadoop, there are a lot of

interconnected factors to consider. Although increased security is a critical need

nowadays, the non-technical factors, that is, the human beings, have to be given

equal importance. This is because human beings are the ones who are going to be

the actual users of any deployment of Hadoop. Better security practices are really

important especially when applying security features to a solution that is more

focused towards the efficiency of work, but too much security effects the efficiency

if that is the main target. Therefore, the tradeoff between security and usability has

to be developed in such a way that the technology does not lose its core features.

The solution, being dealt with, has its roots in the high-speed performance

of compute-intensive tasks. So the security complexity has to be kept at such a level

that the resources and data are secure as well as it don’t lose much of the efficiency

of the main algorithm. Thus, behavioral research, for studying the non-technical

factors, was also made a part of this research. It was made sure that all factors,

related to Hadoop and its security mechanisms are studied, and a secure, yet

practical solution is presented.

The research was divided into two phases. In the first phase, the basic

concepts of Hadoop and protocols employed were understood along with the idea

of secure communication over an insecure channel. The problem of Inter-Domain

communication between multiple Hadoop instances was studied. After

understanding the concept of inter-domain Hadoop and some solutions presented

by the research community which utilize the concept of inter-domain Hadoop in

different capacities through the years, sid-Hadoop; Secure Inter-Domain Hadoop

was designed and presented. After multiple solutions were studied relating to inter-

28

domain Hadoop, and how these solutions had fewer security concerns, a solution

was devised with the idea of providing better security and usability.

The second phase was the testing phase in which the proposed solution is

tested against any kind of leakage of data so that this solution can hold against

security threats over the public network. Later, these metrics were analyzed to

assess the efficiency and effectiveness of the solution. Through this behavioral

research, a clear idea was obtained about the practicality of the proposed solution.

3.2 Relation of Design Science and the Presented Research

In this research, work has been done to solve a certain problem that is,

providing security for communication between multiple Hadoop instances

separated by different administrative domains. Thus, an effort has been made to

tackle the problem with the theoretical, as well as, a practical aspect in mind. Such

research, which aims to solve problems, can be done better by using "a design

science approach [42]".

In design science, the focus is on developing and evaluating the

performance of a designed artifact with the target of improving the functional

performance of the original artifact. The areas, where design science is most

applied, are engineering and computer science. This is because when artifacts, like

algorithms and human/computer interfaces, are redesigned or reevaluated, the focus

is on solving specific problems. According to [43], the difference between natural

science and design science is that the former tries to understand reality while the

latter attempts to create it.

The products of design science approach serve human purposes, usually.

The evaluation of these products is done to prove their performance, improvement,

value and utility [43]. The suggested technical solution, in this research, was tested

for its utility, improvement and performance.

In design science, innovation is the main part whereby new ideas, practices

and products, are created for serving humans more efficiently [44]. In this research,

a new solution was developed which provides security for inter-domain Hadoop

communication which will allow the users of this technology to utilize and share

29

storage and performance resources that are available on geographically distant

Hadoop clusters. According to Aken, design science aims to solve improvement

and construction problems, in order to implement an innovation [45].

The explanation, given by Aken, also corresponds with this thesis. One of

the basic objectives of this research was the extension of the theoretical basis as an

innovation. The extension, here, is the new security architecture for inter-domain

Hadoop. This extension tackles some specific attacks on the inter-domain Hadoop

while trying to maintain the efficiency of Hadoop. Another innovation was to bring

the attention of the research community towards the development of secure inter-

domain Hadoop.

In short, design science research methodology is chosen because it helps in

testing both the theoretical and practical features of the designed artifacts. This

work is focused on the "improvement problem", as discussed by Aken [45].

3.3 Process of Research

The research process, carried out, will be mapped onto the design science

research process in this section. According to [46], design science research process

comprises of five sub-processes, which are listed below.

1. Awareness of the problem

2. Suggestion

3. Development

4. Evaluation

5. Conclusion

The same concepts about design science research are put forward in[47].

The five different phases of design science research method have been shown in

the form of Figures 3.1 and 3.2 [46]. These figures have helped in understanding

this research method properly.

30

Figure 11: Design Cycle [46]

Figure 12: Reasoning in the Design Cycle [47]

31

3.3.1 Awareness of the Problem

During the first phase of design science research methodology, a researcher

makes himself or herself familiar with the problem and its related domain. Also

called "improvement research", design science research demands awareness of a

problem so a suitable solution can be suggested to [47]. By comparing the object,

under consideration, with its specifications, a problem is identified in this phase

[46].

Studying and understanding the related domain was the first phase of this

research. The basic concepts of Hadoop security architecture of Hadoop were

understood [4], [7]. The concept of inter-domain Hadoop was understood and

lacking solutions for secure inter-domain problems was realized. The concepts of

secure communication over WAN was also discovered. In order to understand the

research done on inter-domain Hadoop or its relating solutions were studied [19]–

[21], [34], [38]. Through this study, it came to be known that there is no such

comprehensive solution exists that can provide secure communication over WAN

for two independent Hadoop clusters.

3.3.2 Suggestion

During the first phase, the knowledge base for the domain and the awareness

of the problem was built. Based on these, a solution was suggested. In this phase,

mainly, the following two steps were taken.

 For solving the problem, the required key concepts were suggested[46].

 A solution, to the current problem, was inferred from the knowledge base of the

domain (built during 'Awareness of the problem' phase) by using abduction

[47].

The gathered knowledge helped in understanding Hadoop and inter-domain

Hadoop thoroughly along with their limitations and security architecture. In

addition, the tradeoff between security and usability was understood. Thus, a

solution which provides security for communication over WAN between Hadoop

32

clusters is presented. Through this solution, dormant resources of Hadoop clusters

can be shared and utilized up to its full potential.

3.3.3 Development

In this phase, the implementation of an artifact is done in the light of the

suggestion phase [47]. If anything unsolved comes up, the whole design cycle

should be repeated [46]. The suggested sidHadoop; Secure Inter-Domain Hadoop

was developed in this phase and prepared for testing.

3.3.4 Evaluation

During the evaluation of the solution to find issues in performance and

suggest further improvement, a new iteration of the design cycle is needed if any

problem is found [46]. It should be remembered that, in a typical design science

approach, the development, evaluation and suggestion phases are performed

iteratively [47].

Effectiveness told about how security mechanisms are protecting against

certain attacks that the traffic over WAN is prone to. The parameter of efficiency

told about how the provided solution effects the efficiency of Hadoop functionality

because if the originality of Hadoop is lost by losing its efficiency than the solution

may not be worth making. Through this usability study, it was found out that the

newly developed system did offer an adequate degree of security. The usability of

one scheme was found to be better than the other.

3.3.5 Conclusion

This phase helps in offering a probable solution and/or changing the

description of the objects [46] and signals the end of a design research project [47].

The knowledge, obtained as an outcome of this research, was shared and

disseminated in this phase.

33

Particular solution i.e., Secure inter-domain Hadoop, was suggested along

with a supporting usability study. This solution was built after proper consideration

of the balance between security and usability. The solution was tested against

security from multiple attacks possible over WAN. Further research work can be

carried out by extending the scope of this solution and providing a solution for

securely and efficiently data sharing for Hadoop over WAN.

34

Chapter 4

Proposed Solution

4. Proposed Solution:

Hadoop is a highly scalable open source framework installed over

commodity hardware for distributed storage and processing of very large data sets,

generally known as Big Data. Due to the security concerns, Hadoop does not allow

remote connectivity which in return demands the need for Hadoop administrators,

who manually do the storage and processing operations. Solutions like HOG and

G-Hadoop as discussed before are either making a single deployment of Hadoop

over geo-distributed physical resources and, sometimes, are making use of

specialized hardware. These solutions require a centralized authority to manage the

distributed resources. The design changes made by these solutions are very high

and some solutions almost strip away the core concept/features provided by

Hadoop. Our proposed solution does no such things.

sidHadoop; Secure Inter-Domain Hadoop is proposed in which different

independent Hadoop deployments, that are geographically distant can securely

communicate with each other. sidHadoop has use cases in academia as well as the

business world. An organization with multiple offices each with its own

deployment of Hadoop will be able to securely share resources with the

implementation of sidHadoop. Similarly, educational institutes can share their

resources with other institutes using sidHadoop.

With the help of sidHadoop, resources can be utilized to their full extent

and it reduces the bandwidth usage because it only transmits the jobs to other

clusters and other clusters only reply with the results. This solution offers no design

changes in the core-Hadoop design that makes sure of the backward compatibility

for already existing clusters. Our solution can be termed as an add-on for Hadoop.

35

It enhances the capability of Hadoop to be able to communicate with other Hadoop

instances to share resources and if required, the data as well. First, the design of

Inter-Domain Hadoop is discussed in which the two Hadoop instances will

communicate with each other over WAN.

4.1 Inter-Domain Hadoop:

Inter-Domain Hadoop is a concept in which multiple independent Hadoop

instances communicate with each other, separated by different administrative

domains, in order to share their resident resources and/or data. One Hadoop

instance requests the other Hadoop instances to perform some computation in the

form of MR Job. The MR Job and the data if it’s not already existing on the other

clusters is then transmitted over WAN. The clusters perform the computation on

their local cluster and sent the results back to the requesting clusters. These Hadoop

instances could be geographically distant and the communication between them can

only be performed over WAN. The below diagram shows the workflow of inter-

domain Hadoop.

Figure 13: Inter-Domain Hadoop Design

Communicating over WAN is a huge security risk for private

communications because the channels are not secure and any adversary can try and

36

look into the conversation between multiple Hadoop instances. That is why

securing the communication between inter-domain Hadoops is very important.

Hadoop itself provides sufficient security measures for a single domain

environment. There are a number of security add-ons that can be used with Hadoop

to enforce authentication and authorization mechanisms. These add-ons include

Kerberos, Apache Ranger, Apache Sentry and Apache Knox. HDFS itself now

provides Transparent Data Encryption for stored data. But when the switch towards

inter-domain environment is made, these security mechanisms are not sufficient. In

the inter-domain environment, the communication flows out of the private network

which changes the security variables altogether. When communication flows over

Wide Area Network, the threat matrix for Hadoop needs to be redefined.

The inter-domain Hadoop model is less emphasized upon the security and

the solutions that discuss inter-domain Hadoop negate one of the core feature of

Hadoop which states that Hadoop can be used on any commodity hardware and

does not require any specialized equipment. The focus has now shifted towards

cloud deployments of Hadoop, but the target of this research and development is

that if multiple instances of Hadoop exist and there is a need of temporary scale

then Hadoop instances should collaborate with each other to share available

resources.

4.2 sidHadoop; Secure Inter-Domain Hadoop:

This project titled sidHadoop targets the security aspects of Hadoop when

multiple Hadoop instances collaborate with each other. sidHadoop will provide a

complete solution to use Hadoop in inter-domain environment. Hadoop

collaboration will result in the sharing of resources between independent Hadoop

instances across different administrative domains. The communication between

multiple Hadoop instances needs to be secure to protect individual setups of

Hadoop and avoid any misuse of physical resources. The below diagram shows the

high-level design for adding security to the inter-domain Hadoop model.

37

Figure 14: Adding security to Inter-Domain Hadoop

If Hadoop instances are at different geographical locations, then the

communication between them will be required to happen over Wide Area Network.

In general, a Hadoop setup is kept inside a private network to avoid any kind of

exploitation from the outside world.

Our focus is on the security as well as the performance of Hadoop. The main

services of security are authorization, authentication, confidentiality, integrity,

accountability and availability [13] on which the Hadoop performance and security

in separate environments will be judged. The two different lock symbols in the

diagram above represent different security issues that this system will cater. These

security issues are mentioned in Table 2.

Table 2: Security Objectives

Code End Point Security (EPS) Code Channel Security (CS)

EPS-1 Mutual Authentication between servers CS-1 Confidentiality of data/job

EPS-2 Authorization of servers CS-2 Integrity of data/job

EPS-3 Source Integrity CS-3 Avoid replay attacks

EPS-4 Single Sign-On CS-4 Avoid MITM attacks

38

The security objectives are divided into two sections, End Point Security

(EPS) and Channel Security (CS). These security measures are not existing in the

inter-domain hadoop model and we propose to add these in our proposed secure

inter-domain model. The security objectives are discussed below

4.2.1 End Point Security (EPS):

To ensure the security between two independent clusters, the public facing

end points need to be protected from attacks. We set the following objectives to

protect the end-point servers.

1. EPS-1 Mutual Authentication between servers

2. EPS-2 Authorization of servers

3. EPS-3 Source Integrity

4. EPS-4 Single Sign-On

4.2.1.1 EPS-1: Mutual Authentication between servers:

As discussed earlier, inter-domain hadoop model does not provide any

security mechanism for the protection of our end-point servers. When two servers

needed to communicate with each other, there was no check available to verify the

authenticity of these clusters. That is why we are proposing to add Mutual

Authentication between servers. The two servers will first authenticate each other

at the start of the communication session so that the authenticity of each cluster is

verified before resource collaboration could take place.

4.2.1.2 EPS-2: Authorization of servers:

The two security pillars Authentication and Authorization always go hand

in hand. The authorization feature comes after the authentication is completed

between two parties. The inter-domain hadoop lacks this feature as well. Any server

could try and access the resources of our cluster without the proper check of

authority. We are proposing to add authorization feature in our proposed solution,

so that only authorized servers could use the resources of our cluster. After

authentication, the authority given to the servers needs to be checked so that the

39

servers which are not allowed to access certain data or resources are barred from

accessing them.

4.2.1.3 EPS-3: Source Integrity:

Verifying that the source which is communicating is actually what it claims

to be defines the source integrity. This provides protection from high jacking of

session. Inter-domain hadoop provides no check for verifying the integrity of the

source. In our proposed solution, if any undeclared change occurs to the source

which is communicating, it will be considered that the source has been tampered

with and the session will be terminated. The integrity of source will also help

protect from man-in-the-middle attacks.

4.2.1.4 EPS-4: Single Sign-On:

Single Sign-On feature provides the user to access the different resources

of the cluster by performing a single sign-in to the application. The client does not

have to authenticate itself to each different services. In our proposed solution, we

will add single sign-on feature so that the client only has to authenticate only once

in our application, and will not have to authenticate itself to the remote clusters

separately. The proposed solution will authenticate automatically to the remote

cluster on behalf of the client.

4.2.2 Channel Security (CS):

When communication flows over public wide area network, the channel is

the not prone to various attacks. The security of channel is as important as the

security of the end points. We set the following objectives to protect the channel

1. CS-1 Confidentiality of data/job

2. CS-2 Integrity of data/job

3. CS-3 Avoid replay attacks

4. CS-4 Avoid MITM attacks

40

4.2.2.1 CS-1 Confidentiality of data/job

Inter-domain hadoop solution uses plain text channel for communication

between servers. This means that the data between two servers could be read by

any adversary from the communication channel. Our solution proposes to provide

confidentiality of data so that our data is protected when it is traversing over public

channel. With the confidentiality feature, our data will not be leaked to

unauthorized sources that could be tapping the public channel.

4.2.2.2 CS-2 Integrity of data/job

It is very important to verify the integrity of data that is traversing over

public channel. Just like other security features, inter-domain hadoop lacks in this

aspect as well. The data integrity is not the concern in the inter-domain hadoop

model, but instead, it only provides solution to connect multiple independent

hadoop instances with each other. The proposed solution will also include the

feature of verifying the integrity of data. Integrity of data ensures the originality of

data that the data is not tampered with when it travels on the public channel.

4.2.2.3 CS-3 Avoid replay attacks

Capturing the communication session and using the same session on a later

time is called relay attack. In the replay attack, the traffic is intercepted and is

captured for later use. By doing this, an attacker high jacks the user session to a

secure service by replaying the authentication traffic. The security checks can be

bypassed and unauthorized access can be granted. In our solution, protection from

replay attacks will be ensured. Mechanisms will be applied to avoid the replay of

traffic from a previously captured session. By applying this feature unauthorized

access to our secure servers will be avoided.

4.2.2.4 CS-4 Avoid MITM attacks

Man-In-the-Middle attack is a form of security threat in which an attacker

comes between two parties, and acts as the authorized entity to which each party is

communicating. The traffic from one side is intercepted and replayed to other side

41

to make the other side believe that it is contacting the right entity. Protection from

MITM attacks is very important for a secure system and our solution proposes to

provide just that. By providing the right security mechanism, our system will not

allow attacks from channel bullies and will provide security from any form of

unauthorized access.

4.3 sidHadoop Architecture

sidHadoop maintains the core architecture of Hadoop with its master/slave

storage and processing model. The proposed design deals with the remote

communication over WAN. It allows one cluster to be able to communicate with

another cluster only if it has the sidHadoop plugin deployed. The sidHadoop plugin

makes sure that the security of the communication channel is achieved. Certain tests

will be performed to show that the required security is achieved. A high-level

diagram of sidHadoop is shown in Figure 15.

Figure 15: sidHadoop Plugin with Hadoop Clusters

sidHadoop is a web-based solution which consists of the following core

modules; Authentication-Authorization module which is divided into sub-modules

Client Authentication-Authorization module (C2A) and Remote Cluster

Authentication-Authorization module (RC2A), Cluster Operations module which

is divided into sub-modules Local Cluster Operations module (LCO) and Remote

Cluster Operations module (RCO) and Trust management module which is divided

into sub-modules Certificate Manager CM and User Manager UM.

42

Figure 16: sidHadoop Components

The client first has to login to the application which decides the level of

access allowed to the client. The access is reflected in the user interface that is

displayed to the client. A user having access to only local cluster operations will be

able to perform operations on the local cluster only. If the user is allowed access to

remote cluster operations, then the user will be able to perform operations on the

remote cluster.

Our application provides a certificate management module which deals with

the remote Hadoop clusters resident inside other administrative domains. In this

module, the administrator uploads a certificate of the trusted remote Hadoop

cluster. These certificates are the first step in establishing a connection between

remote clusters.

This is to be noted that the connection between two clusters will only be

possible when both clusters have each other’s certificate uploaded into the

sidHadoop certificate management module. Remote Cluster Authentication module

verifies if the requests coming from remote clusters are coming from the authorized

source. Requests from remote source carry a certificate of their local domain. That

certificate is verified by the certificate management module and only the verified

requests are allowed to perform further operations on a local cluster by the remote

cluster.

43

4.3.1 Authentication-Authorization Module:

When a client first logs on to the sidHadoop plugin, the authentication

request is intercepted by Client Authentication-Authorization C2A sub-module.

C2A then sends the request to Trust Management module. In Trust Management

Module, User Manager UM validates the user credentials and access is granted to

the user according to the role it has been assigned. The access is granted by C2A

module to the client.

Similarly, when a request is received from a remote cluster, Remote

Authentication-Authorization module intercepts the request. R2A then sends the

request to Certificate Manager CM to validate the certificate credentials provided

by the remote request. The R2A also replies with the certificate of its local cluster

for mutual authentication. The remote cluster follows the same step of verification.

This method ensures the 2-way SSL authentication between the local and remoter

cluster. After the request is validated, only then the operations requested are

performed. The R2A module takes care of the access that is granted to the remote

request and sends the request to Cluster Operation Module.

4.3.2 Trust Management Module:

Trust management module is divided into two sub-modules, User Manager

UM and Certificate Manager CM. User Manager has its own database of users by

the name of User Store. When UM receives a request from C2A module, it checks

the User store for the credentials that are provided. If the credentials are validated,

the UM module replies with the role defined for this particular user. Finally, the

C2A performs its action based on the reply from the UM.

Certificate Manager Module has its own database of trusted certificates by

the name of Certificate Store. CM receives the remote request from R2A module

for validation. CM then checks the certificate store for the trusted certificates that

are available. If the provided certificate is already available in the cert store, then

44

the CM replies with the authorized actions that are allowed to this particular remote

cluster.

4.3.3 Cluster Operations Module:

Cluster Operations module directly deals with the Hadoop cluster. It is

divided into two sub-modules that are Local Cluster Operations LCO module and

Remote Cluster Operations RCO module. The LCO module directly interacts with

the name node of the local Hadoop cluster to perform basic operations. The two

basic operations that are allowed here are MR Job submission and retrieving the

results back. When the user asks to execute some operation on its local cluster, the

LCO module intercepts the request and sends the required instructions to name

node. The name node executes the submitted MR job and notifies about the job

completion. The LCO module then retrieves the result from the cluster to the local

computer for the client to access.

If the client wishes to run a job on a remote cluster, then the Remote Cluster

Operations module receives the request. RCO module is responsible for sending

requests to remote clusters and also, it receives the requests from remote clusters to

perform operations on the local cluster. The client submits an MR job to the

application and requests to execute this job on the remote cluster. The RCO module

receives the request along with the MR job, it then encrypts the job with two levels

of PKI encryption. First encryption is performed using the private key of the local

cluster. This will ensure the source integrity. Second, the encrypted bytes are re-

encrypted using the public key of the remote cluster. The public key of the remote

and private key of the local cluster are retrieved from the Cert Store. The encrypted

MR job is then transmitted over secure SSL channel to the remote cluster.

The remote cluster first verifies the credentials as discussed in module 1.

Then the received MR job is decrypted. The decryption process is the reverse of

the process which was used for decryption. First, the job is decrypted using the

private key of the local cluster and then it is re-decrypted using the public key of

the remote cluster. The keys for decryption are also facilitated by the Certificate

45

Manager. After decryption, the RCO submits the job to LCO so that LCO can

execute it on the local cluster. The LCO notifies of the job completion to RCO.

LCO also retrieves the results from the cluster and submits them to RCO. The RCO

then returns the results back to the remote cluster.

4.4 sidHadoop Workflow Scenario

The functionality of this solution will be discussed using three scenarios.

sidHadoop allows users to execute jobs on remote clusters as well as on local

cluster. The workflow of the solution is discussed based on the following scenarios.

1. Submit & Execute Job on local Cluster only

2. Submit & Execute Job on Remote Cluster

3. Receive & Execute job from Remote Cluster

4.4.1 Submit & Execute Job on Local Cluster:

Submitting and executing a job on local cluster is pretty straightforward.

There is no remote communication required for this interaction. The client will first

have to authenticate itself to the sidHadoop plugin. The authentication request is

received by C2A module. In the second step, C2A module validates the credentials

from UM. After validation, the third step is that the C2A module allows client

access to Cluster Operations Module. The client then submits an MR job to LCO

module in the fourth step. The LCO is responsible for interacting with the local

cluster. The LCO then uploads the MR job to the local cluster and performs the

execution in step five. After the job is completed, the LCO then retrieves the results

from the local cluster and to the application in step six. Finally, the client is

provided with the results received from the local cluster.

46

Figure 17: Execute Job on Local Cluster using sidHadoop

4.4.2 Submit & Execute Job on Remote Cluster:

Submitting and executing a job on the remote cluster is different and the

core functionality of sidHadoop is explored in this scenario. Remote

communication between the local and remote cluster is required for this interaction.

The client will first have to authenticate itself to the sidHadoop plugin. The

authentication request is received by C2A module. In the second step, C2A module

validates the credentials from UM. After validation, in the third step, the C2A

module allows client access to Cluster Operations Module. The client then submits

the MR job to RCO module in the fourth step. The RCO is responsible for

interacting with the remote clusters. The RCO then uploads the MR job to the

Remote cluster and requests to execute this job in the step fine. The RCO then

retrieves the results back from the remote cluster to the application in step six.

Finally, the client is provided with the results received from the remote cluster.

47

Figure 18: Execute Job on Remote Cluster with sidHadoop

4.4.3 Recieve & Execute Job on Remote Cluster:

The last scenario describes the process flow when a request is received from

a remote cluster. In the second scenario, the client submits the job for execution on

a remote cluster. In this scenario, the workflow is shown after the step five in the

previous scenario and before the step 6. When the job is submitted to a remote

cluster by RCO, it is accepted at the remote cluster but first, the remote cluster

request is authenticated. The 2-way SSL authentication takes place transparently in

this step. The RC2A module receives and validates the request from CM. After

validation, in the third step, the RC2A module allows the request to access the

Cluster Operations Module. In step four, the remote cluster uploads the MR job and

requests to execute this job to RCO. The RCO is responsible for interacting with

the remote clusters only so RCO sends this job and requests the LCO to execute the

job in step five. The LCO performs the operations on local cluster as discussed in

the first scenario and returns the results back to the RCO in the same step five. RCO

then returns the results back to the Remote cluster in the final step.

48

Figure 19: Recieve and Execute Job from Remote Cluster with sidHadoop

In the above-discussed scenarios, sidHadoop provides a management UI for

submitting jobs to local and/or remote clusters. The next section discusses how this

solution is achieving the security features discussed earlier in the security objectives

table.

 The Authentication-Authorization module takes care of the very first security

requirement. It authenticates the local clients with the application as well as it

authenticates the remote clients from remote clusters with the help of the

certificates.

 The 2-way SSL authentication between two remote clusters takes care of the

remote authentication and source integrity.

 The verification of certificates and authentication based on certificates provides

protection from MITM attacks.

 Protection from replay attacks is achieved by using ‘csrf tokens’ provided by

spring framework.

 The encrypted SSL channel used between remote clusters encrypts the traffic

to achieve confidentiality and the messages traversed over the channel are

concatenated with message authentication code that ensures the integrity of job

and data.

 Only authorized traffic is catered by this application so this achieves protection

from unauthorized sources.

49

 The encrypted channel and 2-way SSL authentication also provide protection

from job tempering.

sidHadoop application solves the issue of utilizing geographically

distributed Hadoop resources by the concept introduced by inter-domain Hadoop.

Instead of making one single Hadoop cluster consisting of resources spread across

the globe, this solution makes multiple already existing Hadoop instances interact

with each other. By using a single Hadoop cluster, the maintenance and

management of resources becomes a bottleneck and requires a lot of design

modifications in Hadoop. sidHadoop resolves this issue by making the local

clusters manage their own resources. Our application provides a solution for secure

collaboration of independent Hadoop instances so that the data and resources are

shared between these clusters.

50

Chapter 5

Proof of Concept

5. Implementation:

This solution was developed with the aim of making it easier and secure for

Hadoop administrators to collaborate their resources with other instances of

independent Hadoop. It provides a management interface for posting jobs on local

cluster and securely communicating the same over WAN to remote clusters.

5.1 Choice of Implementation Language and Platform:

In this solution spring framework is used for the implementation of the

research modules. It provided support for designing and deploying web services

with greater ease. The Spring Framework [48] is an application framework and

inversion of control container for the Java platform. The framework's core features

can be used by any Java application, but there are extensions for building web

applications on top of the Java EE platform. Although the framework does not

impose any specific programming model, it has become popular in the Java

community as an alternative to, or a replacement for, or even an addition to the

Enterprise JavaBeans (EJB) [49] model. The Spring Framework is open source and

provides support for security from the very core. The following diagram shows the

architecture of the spring framework.

51

Figure 20: Spring Framework Architecture

Spring's web framework is a well-designed web MVC framework, which

provides a great alternative to web frameworks such as Struts or other over-

engineered or less popular web frameworks [50]. In addition to that, it offers a

modular approach where the different modules can interact with ease. Reusability,

troubleshooting and easy alteration of the code were also the added benefits. The

main objective for using spring framework was its support for the implementation

of security mechanisms. The spring security framework offers a variety of inbuilt

security features to implement on your application [51]. It provides a wide range of

authentication authorization modules which support integration with the following

technologies and more,

 HTTP BASIC authentication headers [52]

 HTTP Digest authentication headers [53]

 HTTP X.509 client certificate exchange [54]

 LDAP [55]

52

 Form-based authentication (for simple user interface needs)

 OpenID authentication [56]

5.2 Test Environment

For the test environment, two clusters of Hadoop were used that were

deployed in two different administrative domains. The very basic deployment of

Hadoop was used in which each cluster had one master node and one slave node

and both these clusters were kept on separate networks. The specification for both

the clusters was kept same. The specifications of nodes are as follows

Table 3: Namenode / Master Node Specifications

Processors RAM Storage OS Hadoop

4 Cores 8 GB 500 GB Ubuntu 16.4 Apache

Hadoop

v2.7.3

Table 4: Datanode / Slave Node Specifications

Processors RAM Storage OS Hadoop

2 Cores 4 GB 500 GB Ubuntu 16.4 Apache

Hadoop

v2.7.3

5.3 Proof of Concept:

In the proof of concept PoC, the HTTP X.509 [54] client certificate

exchange and form-based authentication mechanisms were used. The client first

authenticates itself with the application using form based authentication. The form-

based authentication is protected from replay attacks with the use of csrf token [57]

provided by spring framework. The tokens are used to ensure that each request

requires, in addition to the session cookie, a randomly generated token as an HTTP

parameter. When a request is submitted, the server must look up the expected value

for the parameter and compare it against the actual value in the request. If the values

53

do not match, the request should fail. The form-based authentication gives the

access to the sidHadoop application.

5.2.1 Login and Registration View:

Figure 21: Login page

The login view also contains a link to the registration page. Adding of new users is

performed from the Registration page.

54

Figure 22: Registration Page

For remote servers to authenticate each other, 2-way SSL mutual

authentication is used. The HTTP X.509 client certificate exchange solution is

supported by spring security framework and it provides the feature of mutual

authentication between remote servers. When the client makes a request for the

remote server, its digital certificate is also attached with the request. The server first

checks the client certificate and shares its own certificate with the remote client.

The remote client verifies the server certificate and replies with an

acknowledgment. The server receives the acknowledgment and confirms the

request for further processing. The validated request is handed over to the

concerned module by the server.

After the client is authenticated to the application, it is served with the main view

which performs the core cluster operations for Hadoop. There are three main

operations that are performed using the sidHadoop application,

1. View meta-data of the cluster

2. Upload and Execute jar file to the cluster

3. Fetch results from the cluster.

55

The three operations have a separate section in the view. These core operations

define the basic functionality of Hadoop.

5.2.2 Meta Data View:

The meta-data of the cluster is the list of files that are stored in the hdfs.

Viewing the meta-data of the cluster shows the directory structure of the files on

which operations can be executed. The operations are in the form of an MR job.

MR, as discussed in the former sections, is the programming model based on

multiple map and reduce operations. The user designs an MR job and creates a jar

file. The jar file is then transmitted to the Hadoop cluster for execution. After the

MR job has completed execution, the result file can be retrieved from the cluster in

the last operation mentioned above.

Figure 23: MetaData from Hadoop Cluster

In the view meta section, the list of authorized sidHadoop clusters is

displayed in the form of checkboxes. The client has to select the cluster and press

the view meta button to view its metadata. When the client selects a cluster, the

backend business logic checks if the selected cluster is local or remote. If the cluster

is local, the module, named Local Cluster Operations (LCO), is given the request

for further execution. The LCO sends the meta-data request to the local cluster and

returns the result for the view to display. On the other hand, if the request is for the

remote cluster, the RCO remote cluster operations module is given the request for

56

further execution. The RCO compiles the request according to the specifications of

the remote cluster and sends the new request for execution.

5.2.3 Upload and Execute jar view

Figure 24: Upload and Execute MR job

The view for Upload and execution of an MR job is shown above. This view

also lists down the clusters that are available for execution of MR job. The client

has to upload a jar file and provide certain parameters according to the uploaded

jar. These parameters are used in the Hadoop command for execution of MR job.

Hadoop command is provided below,

The parameters in Figure 24 are included in the above command and this

command is executed on the Hadoop cluster. The selection of cluster and flow of

request for the local or remote cluster is performed in the same way as discussed

>> $HADOOP_HOME$/bin/Hadoop<space>jar<space>“jar name + path”

 <space>“class name”<space>“input file path”<space>“output file path”

57

above in the metadata section. After the MR job is executed, the application is

notified by a simple message of job completion.

Figure 25: Execution Complete Notification

5.2.4 Results of MR Job View

Finally, the results generated by the executed job are to be retrieved from

the executing cluster. The view for fetching the results only requires the name of

the output file from client given at the time of execution. The required cluster is

selected from the list of available clusters and the name of the output path is

provided. The successful retrieval of result file gives a notification similar to one

shown in the above figure.

58

Figure 26: Get Result from Cluster

5.2.5 Certificate Management View

Apart from the cluster operations, there is a view which handles the

certificate management. In this view, certificates of the remote clusters are added

and removed. When a new certificate is added, the certificate management

module adds the new certificate in the trusted chain of the local keystore. At the

time of the removal, the certificate is selected from the list of available certificates

and is removed from the trusted chain of local keystore.

Figure 27: Upload New Certificate

59

Figure 28: Remove Certificate

60

Chapter 6

Results and Discussion

6. Results and Discussion

To validate this application, certain tests were performed on the web-service

using different security tools. The tools used are Wireshark to analyze the traffic on

the wire and Web Vulnerability scanner to scan for any vulnerabilities that might

exist in the application.

First, the communication between two Hadoop instances in an inter-domain

environment without security implementation is shown and comparison of the

traffic with the secure inter-domain solution for Hadoop is done. To analyze the

security provided by sidHadoop, this system was studies on the parameters of

security mentioned in the proposed solution section.

 End Point Security

 Channel Security

6.1 End Point Security:

In the End-point security section, this system achieves the following,

1. EPS-1 Mutual Authentication between servers

2. EPS-2 Authorization of servers

3. EPS-3 Source Integrity

4. EPS-4 Single Sign-On

6.1.1 EPS-1: Mutual Authentication between servers:

In sidHadoop, digital certificates of the two parties are used, so these two

parties are authenticated by using 2-way SSL authentication. Mutual authentication

61

is achieved by the two parties before the start of each session. To achieve EPS-1

objective, both parties shared their certificates with each other and stored them in

the list of trusted certificates. With each request, the requesting party provides its

certificate to the remote party for verification and vice versa. After the two parties

had authenticated each other, only then the rest of the request is initiated.

Authentication between the two independent servers is key to control the access to

our secure hadoop clusters. Security of the hadoop clusters from unauthenticated

sources is provided by achieving EPS-1. The below figure shows the requests that

were carried out between two servers for the purpose of mutual authentication.

Figure 29: Encrypted SSL Handshake between multiple sidHadoop

6.1.2 EPS-2: Authorization of servers:

In sidHadoop, the access to remote clusters is only provided to authorized

sources. The authority/roles based authorization is used in our proposed solution.

The authority to run jobs on our local cluster is not given to every remote clusters.

62

The access of every remote cluster to our local one is limited and after

authentication, verification of authority given to remote cluster is also checked.

This provides protection from servers that have been barred from using our remote

clusters. The user may have only read authority to our server and may not have

execution rights. The EPS-2 objective ensures that the access is granted to remote

cluster according to the authority a server has. Figure 29, shows the vulnerability

assessment test performed using Acunetix Web Vulnerability Scanner. It clearly

shows that the tests returned ‘404 Server not Found’ error which is only because

the scanner does not have an authorized certificate to access the server URL.

Figure 30: Vulnerability Scan result

6.1.3 EPS-3: Source Integrity:

Verification of Source Integrity is an additional check to provide access to

authorized servers only. It ensures the originality of the source, and our solution

provides verification of source integrity by using the above mentioned certificates.

In Figure 28, the mutual authentication is shown between the two servers. The

authentication steps include the sharing of digital certificates and verification of

63

these certificates provide source integrity. The verification of the certificate before

each request ensures that the request is coming from an authenticated and valid

source hence validating EPS-3 objective. Any unauthorized request simply gets the

response of server error because all service requests are only visible to sources after

authentication. The test also shows that the web server is equipped with TLSv1

security and is using an encrypted channel for communication. Any authorized

server that has been modified by an attacker is not provided access to the cluster,

because the integrity of the source is compromised.

6.1.4 EPS-4: Single Sign-On:

In sidHadoop, the client only performs a single sign-in on the application.

The client does not require to provide their credentials to remote cluster every

time they access one. The application handles this automatically and completes

the EPS-4 objective. When the request is sent by client to remote cluster, the

sidHadoop authenticates to the remote cluster on behalf of the client. This way,

the client credentials are not sent to multiple sources for verification, instead the

local application verifies them and authenticate with remote server using server

certificate on behalf of the client.

6.2 Channel Security:

In the Channel security section, this system achieves the following,

1. CS-1 Confidentiality of data/job

2. CS-2 Integrity of data/job

3. CS-3 Avoid replay attacks

4. CS-4 Avoid MITM attacks

6.2.1 CS-1 Confidentiality of data/job

Inter-domain Hadoop solution uses plaintext channel to share requests and

data over WAN. This loses the confidentiality for the data and requests. Securing

the channel in communication between multiple sidHadoop instances is the main

task and is being achieved in this solution. sidHadoop shares the requests and data

64

over encrypted SSL channel. The encrypted channel ensures the confidentiality of

data by sending cipher text instead of plaintext over WAN.

The Figure 31, shows the traffic when inter-domain Hadoop communication

is performed. The request and response to and from the server are all served in

plaintext. The request in the above figure is asking the remote cluster to return the

meta-data from the Hadoop cluster. The meta-data from Hadoop cluster shows the

list of files and directory structure in the Hadoop distributed file system. This

information maybe sensitive for some organizations and needs to be protected.

Figure 31: Plaintext communication by inter-domain Hadoop

sidHadoop on the other hand uses the encrypted channel to secure the

communication to remote clusters. Figure 32, shows the traffic when sidHadoop

communication is performed. One can clearly see that the traffic in case of

sidHadoop is encrypted and thus fulfilling the CS-1 objective.

65

Figure 32: Encrypted Data using sidHadoop

6.2.2 CS-2 Integrity of data/job

The integrity of data entails that the data is not tampered intentionally or

un-intentionally over the channel. To achieve the CS-2 objective Message

Authentication Code is also attached with the data. The MAC contains the hash of

the message that is to be sent and is concatenated with the original so that the

message can be verified by taking the hash of the message and comparing it with

the attached hash code. This provides protection from job tempering over the

channel. If the reached message and its hash code does not match, then the data has

lost it integrity and is discarded.

6.2.3 CS-3 Avoid replay attacks

 The SSL authentication and encrypted channel secures the

application from job tempering, unauthorized access, replay and MITM attacks.

66

Apart from this, to avoid replay attacks, our application uses Cross-Site Request

Forgery CSRF tokens. These tokens are uniquely created for each session and any

request containing data also contain a csrf token. The token is provided to the server

which verifies the token for the current session. For the new session, a new token

is created so no old request will be catered and CS-3 objective is complied.

6.2.4 CS-4 Avoid MITM attacks

The protection from MITM attacks is provided by ssl authentication. In figure 30,

where mutual authentication between servers is taking place, the certificates are

shared and these certificates are verified before each request. The certificate and a

challenge response based key exchange between these servers can only be made

possible by having the private key of the certificate. The challenge response

mechanism for key-exchange ensures that the traffic is coming from a verified

source providing compliance with CS-4 objective.

6.3 Efficiency:

In terms of efficiency, this solution was tested in two scenarios, (i) how

much time did a request took when it was ran on a local cluster and (ii) the same

when it was run on a remote cluster. The results for these tests revealed that the

efficiency is effected because of the remote nature of the other cluster and the

request took time to reach the remote domain. The extra time taken by the request

is only the time it took on the wire. The following table shows the start time and

end time of the request from the requesting server to the accepting server and back.

67

Table 5: Performance Tests

Model Take Cluster Start End Difference

Inter-Domain

Hadoop

1 Local 15:20:34.502 15:20:37.633 ~ 3 sec

1 Remote 15:22:19.994 15:22:29.157 ~ 9 sec

2 Local 15:24:27.055 15:24:30.904 ~ 3 sec

2 Remote 15:26:25.265 15:26:28.781 ~ 9 sec

Secure Inter-

Domain

Hadoop

1 Local 15:36:42.138 15:36:45.958 ~ 4 sec

1 Remote 15:38:27.065 15:38:37.916 ~ 11 sec

2 Local 15:40:33.247 15:40:37.950 ~ 4 sec

2 Remote 15:40:27.156 15:40:37.824 ~ 11 sec

We ran the request to fetch meta-data on the inter-domain hadoop and

secure inter-domain hadoop to find out the performance overhead caused by the

security mechanisms implemented. The results shown in table 5 show that a request

to local cluster from inter-domain hadoop takes approximate 3 seconds and the

same request takes approximate 4 seconds in the secure inter-domain hadoop

environment. Similarly, the request to remote cluster took approximate 9 seconds

on the inter-domain hadoop and the same request took 11 seconds on the secure

inter-domain hadoop. The time taken by requests on the implemented security

solution is comparable to the one without security mechanisms. The secure inter-

domain hadoop only gives an overhead of 1 second for local cluster requests and

overhead of two seconds for remote cluster requests. The overhead caused is very

minute and to achieve security, minimal performance overhead is acceptable.

Local Cluster performance overhead = ~ 1 sec

Remote Cluster performance overhead = ~ 2 sec

6.4 Key Feature in sidHadoop:

Now we will discuss the proposed solution in the light of the feature list in

the related work section 2.7. The feature minimal changes in core Hadoop

architecture is fully complied and this solution acts as an add-on for enhancing the

68

Hadoop capabilities. The hadoop instances that were only confined to in-house

deployment are now capable of performing communication with other hadoop

intances.

Geo-distributed Hadoop resources, is the main feature that this solution

provides. In this solution, geo-distributed resources are turned into independent

Hadoop instances. The Hadoop instances communicate with each other over WAN.

Minimal traversal of data is achieved by not moving the data from remote

resource to the local storage. The independent Hadoop instances are responsible for

their own data and the remote cluster can request to perform operations on that data

in the form of MR job. This way the huge volume of raw data is not transferred

over the communication medium and only the request and subsequent refined

results are returned to the requesting cluster. It will help reduce the traffic and thus

improve the overall performance.

The security features discussed in the feature list are Transaction Security,

single-sign on and protection from attacks. Transaction Security is achieved by

using an encrypted channel and 2-way authentication mechanism. As discussed

above, the following table lists the features that are provided by sidHadoop.

69

Table 6: Key Features in sidHadoop

Features

CD-Map

Reduce

Executio

n [18]

HOG

[19]

CD-Map

Reduce

Frame-

work [38]

G-

Hadoop

[21]

Security

Frame-

work in

G-

Hadoop

[16]

PigOut

[20]

sid-

Hadoop

solution

Minimal

Changes in

core Hadoop

Geo-

Distributed

Hadoop

resources

Minimal Data

Traversal

Stable and

Centralized

Namenode

Site Awareness

Use of

Specialized

Hardware

Use of

Specialized

Network

Multi-Layer

Security MLS

Transmission

security

Single Sign-On

Protection

from attacks

70

Chapter 7

Conclusion and Future Work

7.1 Conclusion:

Hadoop is the big data analysis engine which is deployed by many large

mainstream organizations spread over different industries including High-Tech,

Government, Healthcare, Academia, Retail, Financial Services and Manufacturing.

Organizations utilize Hadoop according to their business requirements in different

capacities. Hadoop technology has been matured over the years and there are

different flavors of Hadoop available in the market. Cloudera, Hortonworks, IBM

and Pivotal are the few big names of companies which offer customized and

upgraded enterprise distributions of Hadoop [58].

Hadoop became popular because of its distributed storage file system and

MapReduce which provides extreme parallel processing features over distributed

storage. It provided a good solution that could handle the volume of big data in its

storage and perform operations on this huge volume of data.

In the beginning, Hadoop lacked simple security features for protection of

its stored data. Security solutions were added to Hadoop distributions later which

made it ready for the production environment. Kerberos [8], Apache Ranger [10],

Apache Sentry [11] and many others provide security architecture for Hadoop.

Hadoop is supported by a very large community and a wide amount of development

is open-sourced for the better of the community. The present Hadoop has evolved

to very high standards of integration with other technologies.

Hadoop security architecture has matured a lot and a lot of work has been

done to increase the security of Hadoop. The security solutions in Hadoop are

designed in such a way that they comfortably allow addition of new components

and integration of security to that component too.

71

Hadoop is generally used in a private environment, but its use-cases expand

to many levels. Many such use-cases emerged where petabytes of data were stored

in a geo-distributed cluster environment and complex computations were required

to be performed on this data. Moving the data to a pre-built Hadoop cluster was not

a solution. So solutions were required to expand the reach of Hadoop to geo-

distributed environment. G-Hadoop [21] and HOG [19] are the solutions which

proposed the deployment of Hadoop in a geo-distributed environment. G-Hadoop

and HOG offered a stable solution to join Hadoop over WAN but they required

specialized central server for the role of name node. The stable server could manage

the data nodes that were spread across the globe, over a high bandwidth internet

connection.

The requirement of specialized environment pushed us towards achieving

the same by using multiple Hadoop instances. In this solution, the reach of Hadoop

is being expanded over WAN but, not by deploying a single Hadoop instance with

centralized name node to handle the whole cluster. Instead, this solution proposed

to build multiple Hadoop clusters on different locations where the data is situated,

or using already existing Hadoop instances to communicate with each other.

In Secure Inter-domain Hadoop, multiple Hadoop instances in different

administrative domains will be able to interact and collaborate with each other. The

inter-domain Hadoop is the proposed concept which cannot exist without

implementing security for protection of the Hadoop resources. The security

implementation for sidHadoop ensures that the web service is not accessed for

unauthorized usage. Only the Hadoop clusters which have shared their sidHadoop

credentials with each other have visibility of each other servers.

The sidHadoop solution fulfills the security requirements discussed in the

beginning of this research. The sidHadoop servers authenticate each other at the

start of every request first, to make sure that the authorized service is only allowed

to access the Hadoop cluster. The channel, in use, is encrypted which secures the

communication from channel sniffers. According to the features of the SSL

72

protocol, SSL has the ability to avoid the man-in-the-middle (MITM) attack,

version roll back attack, delay attack and replay attack.

The jobs and results are all communicaed over the encrypted channel which

provides us the feature of confidentiality. It also provides security from other

attacks like replay and MITM attacks. sidHadoop provides a solution for securely

sharing resources of Hadoop clusters over insecure public network. Different

Hadoop instances will be able to communicate with each other, once sidHadoop is

correctly deployed with the Hadoop clusters. It provides a management UI for

handling multiple Hadoop clusters spread over different geographical locations.

7.2 Future Work:

Although security issues are dealt with in sidHadoop, but the scope of this

solution was only limited to transfer of jar and transfer of results back. Currently,

sidHadoop only allows primitive MR job execution over already existing data

between multiple clusters, but other tools like Hive, Pig, Storm associated with

Hadoop are not yet supported by this solution. Support for other components of

Hadoop can be included in the future work to be performed in sidHadoop. Finally,

the results are returned from remote cluster and stored in the local server, whereas

the results from local cluster are also stored in the local server. In the next version

of sidHadoop, it will also provide the final reduce function through which results

from multiple clusters will be compiled to give one final results file.

73

Bibliography

[1] R. L. Villars and C. W. Olofson, “White Paper Big Data : What It Is and

Why You Should Care Information Everywhere , But Where’s The
Knowledge ?,” 2014.

[2] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google file system,”
Proc. Ninet. ACM Symp. Oper. Syst. Princ. - SOSP ’03, p. 29, 2003.

[3] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on

Large Clusters,” Proc. 6th Symp. Oper. Syst. Des. Implement., pp. 137–
149, 2004.

[4] T. White, Hadoop: The definitive guide, vol. 54. 2015.

[5] Apache Hadoop, “Hadoop Wiki.” [Online]. Available:
https://wiki.apache.org/hadoop. [Accessed: 06-Jul-2018].

[6] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop
distributed file system,” 2010 IEEE 26th Symp. Mass Storage Syst.

Technol. MSST2010, pp. 1–10, 2010.

[7] D. Borthakur, “The hadoop distributed file system: Architecture and
design, Hadoop Project Website,” pp. 1–14, 2007.

[8] O. O. Malley, “Integrating Kerberos into Apache Hadoop,” 2010.

[9] S. Narayanan, Securing Hadoop. 2014.

[10] Apache Ranger, “Apache Ranger – Introduction.” [Online]. Available:
http://ranger.apache.org/. [Accessed: 06-Jul-2018].

[11] Apache Sentry, “Sentry Tutorial - Apache Sentry - Apache Software

Foundation.” [Online]. Available:
https://cwiki.apache.org/confluence/display/SENTRY/Sentry+Tutorial.

[Accessed: 06-Jul-2018].

[12] S. Priya and C. Navdeti, “Securing Big Data Hadoop : A Review of
Security Issues , Threats and Solution,” Int. J. Comput. Sci. Inf. Technol.,

vol. 5, no. 2, p. 1, 2015.

[13] B. Spivey and J. Echeverria, Hadoop Security. 2015.

[14] Apache Hadoop, “PoweredBy - Hadoop Wiki.” [Online]. Available:
https://wiki.apache.org/hadoop/PoweredBy. [Accessed: 06-Jul-2018].

[15] B. Sheppard, “Get started with Hadoop - O’Reilly Media,” 2011. [Online].

Available: https://www.oreilly.com/ideas/getting-started-with-hadoop.
[Accessed: 08-Jul-2018].

[16] J. Zhao et al., “A security framework in G-Hadoop for big data computing
across distributed Cloud data centres,” J. Comput. Syst. Sci., vol. 80, no. 5,
pp. 994–1007, 2014.

[17] K. Yang and X. Jia, “Security for Cloud Storage Systems,” vol. 5, no. 6,
pp. 7359–7362, 2014.

[18] Y. Luo, Z. Guo, Y. Sun, B. Plale, J. Qiu, and W. W. Li, “A hierarchical
framework for cross-domain MapReduce execution,” Proc. Second Int.

74

Work. Emerg. Comput. methods life Sci. - ECMLS ’11, pp. 15–22, 2011.

[19] C. He, D. Weitzel, D. Swanson, and Y. Lu, “HOG: Distributed hadoop

MapReduce on the grid,” Proc. - 2012 SC Companion High Perform.
Comput. Netw. Storage Anal. SCC 2012, pp. 1276–1283, 2012.

[20] K. Jeon, S. Chandrashekhara, F. Shen, S. Mehra, O. Kennedy, and S. Y.
Ko, “PigOut: Making multiple Hadoop clusters work together,” Proc. -
2014 IEEE Int. Conf. Big Data, IEEE Big Data 2014, pp. 100–109, 2015.

[21] L. Wang et al., “G-Hadoop: MapReduce across distributed data centers for
data-intensive computing,” Futur. Gener. Comput. Syst., vol. 29, no. 3, pp.

739–750, 2013.

[22] R. K. G. Michael, “A Research on Secure Shell (SSH) Protocol,” vol. 116,
no. 16, pp. 559–564, 2017.

[23] S. Li, T. Zhang, J. Gao, and Y. Park, “A Sticky Policy Framework for Big
Data Security,” 2015 IEEE First Int. Conf. Big Data Comput. Serv. Appl.,

no. March, pp. 130–137, 2015.

[24] N. Miloslavskaya, M. Senatorov, A. Tolstoy, and S. Zapechnikov, “Big
Data Information Security Maintenance,” 2014.

[25] O. O’Malley, K. Zhang, and S. Radia, “Hadoop security design,” Yahoo,
Inc., Tech. Rep, no. October, pp. 1–19, 2009.

[26] Apache Hadoop, “Transparent Encryption in HDFS.” [Online]. Available:
https://hadoop.apache.org/docs/r2.7.0/hadoop-project-dist/hadoop-
hdfs/TransparentEncryption.html. [Accessed: 08-Jul-2018].

[27] P. Adluru, S. S. Datla, and X. Zhang, “Hadoop Eco System for Big Data
Security and Privacy,” 2015.

[28] C. Swarna and Z. Ansari, “Apache Pig - A Data Flow Framework Based on
Hadoop Map Reduce,” vol. 50, no. 5, pp. 271–275, 2017.

[29] C. Olston, B. Reed, R. Kumar, and A. Tomkins, “Pig Latin : A Not-So-

Foreign Language for Data Processing.”

[30] A. Thusoo et al., “Hive – A Petabyte Scale Data Warehouse Using

Hadoop.”

[31] S. S. Aravinth, “An Efficient HADOOP Frameworks SQOOP and Ambari
for Big Data Processing,” vol. 1, no. 10, pp. 252–255, 2015.

[32] OSG, “The Open Science Grid Project,” J. Phys. Conf. Ser. J. Phys. Conf.
Ser, pp. 1–4, 2007.

[33] O. Tatebe and K. Hiraga, “Gfarm Grid File System,” vol. 28, pp. 257–275,
2010.

[34] I. A. T. Hashem, I. Yaqoob, N. B. Anuar, S. Mokhtar, A. Gani, and S.

Ullah Khan, “The rise of ‘big data’ on cloud computing: Review and open
research issues,” Inf. Syst., vol. 47, pp. 98–115, 2015.

[35] Garrett M. Morris et al., “AutoDock — AutoDock.” [Online]. Available:
http://autodock.scripps.edu/. [Accessed: 20-Jul-2018].

[36] G. Von Laszewski et al., “Design of the Futuregrid experiment

management framework,” 2010 Gatew. Comput. Environ. Work. GCE

75

2010, 2010.

[37] P. H. Beckman, “Building the TeraGrid,” Philos. Trans. R. Soc. A Math.

Phys. Eng. Sci., vol. 363, no. 1833, pp. 1715–1728, 2005.

[38] T. D. Nguyen, M. A. Gondree, J. Khosalim, and C. E. Irvine, “Towards a

cross-domain MapReduce framework,” Proc. - IEEE Mil. Commun. Conf.
MILCOM, pp. 1436–1441, 2013.

[39] B. Hicks, S. Rueda, T. Jaeger, and P. Mcdaniel, “Integrating SELinux with

Security-typed Languages.”

[40] C. Hanson, “SELinux and MLS : Putting the Pieces Together.”

[41] A. C. Sekhar and R. P. Sam, “Grid Theory And Grid Security
Infrastructure (GSI),” pp. 184–187, 2015.

[42] K. Piirainen, R. A. Gonzalez, and G. Kolfschoten, “Quo Vadis, Design

Science? - A Survey of Literature,” Glob. Perspect. Des. Sci. Res., vol.
6105, pp. 93–108, 2010.

[43] S. T. March and G. F. Smith, “Design and natural science research on
information technology,” Decis. Support Syst., vol. 15, no. 4, pp. 251–266,
1995.

[44] P. J. Denning, “A new social contract for research,” Commun. ACM, vol.
40, no. 2, pp. 132–134, 1997.

[45] J. Ernst Van Aken, “Management research based on the paradigm of the
design sciences: The quest for field-tested and grounded technological
Rules Design science (as research approach) in entrepreneurship and

innovation mngt View project,” Artic. J. Manag. Stud., no. December,
2001.

[46] H. Takeda, P. Veerkamp, T. Tomiyama, and H. Yoshikawa, “Modeling
Design Processes,” AI Mag., vol. 11, no. 4, pp. 37–48, 1990.

[47] V. Kuechler, B. Vaishnavi, “Design science research in information

systems.,” URI http//www. desrist. org/design-research-in-information-
Syst., 2004.

[48] R. Khanna and P. Bhalla, “Study of spring framework,” no. 10, pp. 419–
423, 2014.

[49] M. Keen, S. Baber, and H. Cui, “Developing Enterprise JavaBeans

Applications,” 2012.

[50] Pivotal Software, “Web MVC framework.” [Online]. Available:

https://docs.spring.io/spring-framework/docs/3.2.x/spring-framework-
reference/html/mvc.html. [Accessed: 16-Jul-2018].

[51] Pivotal Software, “Spring Security Reference.” [Online]. Available:

https://docs.spring.io/spring-
security/site/docs/current/reference/htmlsingle/. [Accessed: 16-Jul-2018].

[52] J. Franks et al., “HTTP Authentication: Basic and Digest Access
Authentication,” Jun. 1999.

[53] D. Ahrens and S. Bremer, “HTTP Digest Access Authentication,” Sep.

2015.

76

[54] S. Sejwani and S. Tanwar, “Implementation of X . 509 Certificate for
Online Applications,” vol. 2, no. 3, pp. 250–254, 2014.

[55] H. Johner, L. Brown, F. Hinner, W. Reis, and J. Westman, “Understanding
LDAP,” Contract, p. 177, 1998.

[56] E. Tsyrklevich and V. Tsyrklevich, “Single Sign-On for the Internet: A
Security Story,” BlackHat USA, Las Vegas, p. 11, 2007.

[57] Pivotal Software, “Cross Site Request Forgery (CSRF).” [Online].

Available: https://docs.spring.io/spring-
security/site/docs/current/reference/html/csrf.html. [Accessed: 16-Jul-

2018].

[58] Brandon Butler, “The top 5 Hadoop distributions, according to Forrester |
Network World.” [Online]. Available:

https://www.networkworld.com/article/3024812/big-data-business-
intelligence/the-top-5-hadoop-distributions-according-to-forrester.html.

[Accessed: 21-Jul-2018].

