
1

PROBLEM SOLUTIONS: Chapter 1

Problem 1.1
Part (a):

Rc =
lc
µAc

=
lc

µrµ0Ac
= 0 A/Wb

Rg =
g

µ0Ac
= 1.017× 106 A/Wb

part (b):

Φ =
NI

Rc +Rg
= 1.224× 10−4 Wb

part (c):

λ = NΦ = 1.016× 10−2 Wb

part (d):

L =
λ

I
= 6.775 mH

Problem 1.2
part (a):

Rc =
lc
µAc

=
lc

µrµ0Ac
= 1.591× 105 A/Wb

Rg =
g

µ0Ac
= 1.017× 106 A/Wb

part (b):

Φ =
NI

Rc +Rg
= 1.059× 10−4 Wb

part (c):

λ = NΦ = 8.787× 10−3 Wb

part (d):

L =
λ

I
= 5.858 mH
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Problem 1.3
part (a):

N =

√
Lg

µ0Ac
= 110 turns

part (b):

I =
Bcore

µ0N/g
= 16.6 A

Problem 1.4
part (a):

N =

√
L(g + lcµ0/µ)

µ0Ac
=

√
L(g + lcµ0/(µrµ0))

µ0Ac
= 121 turns

part (b):

I =
Bcore

µ0N/(g + lcµ0/µ)
= 18.2 A

Problem 1.5
part (a):

part (b):

µr = 1 +
3499√

1 + 0.047(2.2)7.8
= 730

I = B

(
g + µ0lc/µ

µ0N

)
= 65.8 A
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part (c):

Problem 1.6
part (a):

Hg =
NI

2g
; Bc =

(
Ag

Ac

)
Bg = Bg

(
1− x

X0

)

part (b): Equations

2gHg +Hclc = NI; BgAg = BcAc

and

Bg = µ0Hg; Bc = µHc

can be combined to give

Bg =


 NI

2g +
(

µ0
µ

)(
Ag
Ac

)
(lc + lp)


 =


 NI

2g +
(

µ0
µ

)(
1− x

X0

)
(lc + lp)




Problem 1.7
part (a):

I = B


g +

(
µ0
µ

)
(lc + lp)

µ0N


 = 2.15 A

part (b):

µ = µ0

(
1 +

1199√
1 + 0.05B8

)
= 1012 µ0

I = B


g +

(
µ0
µ

)
(lc + lp)

µ0N


 = 3.02 A
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part (c):

Problem 1.8

g =
(
µ0N

2Ac

L

)
−
(
µ0

µ

)
lc = 0.353 mm

Problem 1.9
part (a):

lc = 2π(Ro −Ri)− g = 3.57 cm; Ac = (Ro −Ri)h = 1.2 cm2

part (b):

Rg =
g

µ0Ac
= 1.33× 107 A/Wb; Rc = 0 A/Wb;

part (c):

L =
N2

Rg +Rg
= 0.319 mH

part (d):

I =
Bg(Rc +Rg)Ac

N
= 33.1 A

part (e):

λ = NBgAc = 10.5 mWb

Problem 1.10
part (a): Same as Problem 1.9
part (b):

Rg =
g

µ0Ac
= 1.33× 107 A/Wb; Rc =

lc
µAc

= 3.16× 105 A/Wb
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part (c):

L =
N2

Rg +Rg
= 0.311 mH

part (d):

I =
Bg(Rc +Rg)Ac

N
= 33.8 A

part (e): Same as Problem 1.9.

Problem 1.11

Minimum µr = 340.

Problem 1.12

L =
µ0N

2Ac

g + lc/µr

Problem 1.13

L =
µ0N

2Ac

g + lc/µr
= 30.5 mH

Problem 1.14
part (a):

Vrms =
ωNAcBpeak√

2
= 19.2 V rms

part (b):

Irms =
Vrms

ωL
= 1.67 A rms; Wpeak = 0.5L(

√
2 Irms)2 = 8.50 mJ
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Problem 1.15
part (a):

R3 =
√
R2

1 +R2
2 = 4.27 cm

part (b):

L =
µ0AgN

2

g +
(

µ0
µ

)
lc

= 251 mH

part (c): For ω = 2π60 rad/sec and λpeak = NAgBpeak = 0.452 Wb:

(i) Vrms = ωλpeak = 171 V rms

(ii) Irms =
Vrms

ωL
= 1.81 A rms

(iii) Wpeak = 0.5L(
√
2Irms)2 = 0.817 J

part (d): For ω = 2π50 rad/sec and λpeak = NAgBpeak = 0.452 Wb:

(i) Vrms = ωλpeak = 142 V rms

(ii) Irms =
Vrms

ωL
= 1.81 A rms

(iii) Wpeak = 0.5L(
√
2Irms)2 = 0.817 J

Problem 1.16
part (a):
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part (b):

Emax = 4fNAcBpeak = 345 V

Problem 1.17
part (a):

N =
LI

AcBsat
= 99 turns; g =

µ0NI

Bsat
− µ0lc

µ
= 0.36 mm

part (b): From Eq.3.21

Wgap =
AcgB

2
sat

2µ0
= 0.207 J; Wcore =

AclcB
2
sat

2µ
= 0.045 J

Thus Wtot = Wgap + Wcore = 0.252 J. From Eq. 1.47, (1/2)LI2 = 0.252 J.
Q.E.D.

Problem 1.18
part (a): Minimum inductance = 4 mH, for which g = 0.0627 mm, N =

20 turns and Vrms = 6.78 V
part (b): Maximum inductance = 144 mH, for which g = 4.99 mm, N =

1078 turns and Vrms = 224 V

Problem 1.19
part (a):

L =
µ0πa

2N2

2πr
= 56.0 mH

part (b): Core volume Vcore ≈ (2πr)πa2 = 40.0 m3. Thus

W = Vcore

(
B2

2µ0

)
= 4.87 J

part (c): For T = 30 sec,

di

dt
=

(2πrB)/(µ0N)
T

= 2.92× 103 A/sec

v = L
di

dt
= 163 V

Problem 1.20
part (a):

Acu = fwab; Volcu = 2ab(w + h+ 2a)

part (b):
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B = µ0

(
JcuAcu

g

)

part (c):

Jcu =
NI

Acu

part (d):

Pdiss = Volcu
(
ρJ2

cu

)
part (e):

Wmag = Volgap

(
B2

2µ0

)
= gwh

(
B2

2µ0

)

part (f):

L

R
=

(
1
2

)
LI2(

1
2

)
RI2

=
Wmag(
1
2

)
Pdiss

=
2Wmag

Pdiss
=

µ0whA
2
cu

ρgVolcu

Problem 1.21
Using the equations of Problem 1.20

Pdiss = 115 W
I = 3.24 A
N = 687 turns
R = 10.8 Ω
τ = 6.18 msec
Wire size = 23 AWG

Problem 1.22
part (a):

(i) B1 =
µ0N1I1

g1
; B2 =

µ0N1I1
g2

(ii) λ1 = N1(A1B1 +A2B2) = µ0N
2
1

(
A1

g1
+

A2

g2

)
I1

(iii) λ2 = N2A2B2 = µ0N1N2

(
A2

g2

)
I1
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part (b):

(i) B1 = 0; B2 =
µ0N2I2

g2

(ii) λ1 = N1A2B2 = µ0N1N2

(
A2

g2

)
I2

(iii) λ2 = N2A2B2 = µ0N
2
2

(
A2

g2

)
I2

part (c):

(i) B1 =
µ0N1I1

g1
; B2 =

µ0N1I1
g2

+
µ0N2I2

g2

(ii) λ1 = N1(A1B1 +A2B2) = µ0N
2
1

(
A1

g1
+

A2

g2

)
I1 + µ0N1N2

(
A2

g2

)
I2

(iii) λ2 = N2A2B2 = µ0N1N2

(
A2

g2

)
I1 + µ0N

2
2

(
A2

g2

)
I2

part (d):

L11 = N2
1

(
A1

g1
+

A2

g2

)
; L22 = µ0N

2
2

(
A2

g2

)
; L12 = µ0N1N2

(
A2

g2

)

Problem 1.23

RA =
lA
µAc

; R1 =
l1
µAc

; R2 =
l2
µAc

; Rg =
g

µ0Ac

part (a):

L11 =
N2

1

R1 +R2 +Rg +RA/2
=

N2
1µAc

l1 + l2 + lA/2 + g (µ/µ0)
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LAA = LBB =
N2

RA +RA||(R1 +R2 +Rg)
=

N2µAc

lA

[
lA + l1 + l2 + g (µ/µ0)

lA + 2(l1 + l2 + g (µ/µ0))

]

part (b):

LAB = LBA =
N2(R1 +R2 +Rg)

RA(RA + 2(R1 +R2 +Rg))
=

N2µAc

lA

[
l1 + l2 + g (µ/µ0)

lA + 2(l1 + l2 + g (µ/µ0))

]

LA1 = L1A = −LB1 = −L1B =
−NN1

RA + 2(R1 +R2 +Rg)
=

−NN1µAc

lA + 2(l1 + l2 + g (µ/µ0))

part (c):

v1 =
d

dt
[LA1iA + LB1iB] = LA1

d

dt
[iA − iB]

Q.E.D.

Problem 1.24
part (a):

L12 =
µ0N1N2

2g
[D(w − x)]

part (b):

v2 =
dλ2

dt
= I0

dL12

dt
= −

(
N1N2µ0D

2g

)
dx

dt

= −
(
N1N2µ0D

2g

) ( ε ωw
2

)
cosωt

Problem 1.25
part (a):

H =
N1i1

2π(Ro +Ri)/2
=

N1i1
π(Ro +Ri)

part (b):

v2 =
d

dt
[N2(tn∆)B] = N2tn∆

dB

dt

part (c):

vo = G

∫
v2 dt = GN2tn∆B
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Problem 1.26

Rg =
g

µ0Ag
= 4.42× 105 A/Wb; Rc =

lc
µAg

=
333
µ

A/Wb

Want Rg ≤ 0.05Rc ⇒ µ ≥ 1.2× 104µ0. By inspection of Fig. 1.10, this will be
true for B ≤ 1.66 T (approximate since the curve isn’t that detailed).
Problem 1.27

part (a):

N1 =
Vpeak

ωt(Ro −Ri)Bpeak
= 57 turns

part (b):

(i) Bpeak =
Vo,peak

GN2t(Ro −Ri)
= 0.833 T

(ii) V1 = N1t(Ro −Ri)ωBpeak = 6.25 V, peak

Problem 1.28
part (a): From the M-5 magnetization curve, for B = 1.2 T, Hm = 14 A/m.

Similarly, Hg = B/µ0 = 9.54× 105 A/m. Thus, with I1 = I2 = I

I =
Hm(lA + lC − g) +Hgg

N1
= 38.2 A

part (b):

Wgap =
gAgapB

2

2µ0
= 3.21 Joules

part (c):

λ = 2N1AAB = 0.168 Wb; L =
λ

I
= 4.39 mH

Problem 1.29
part (a):
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part (b): Area = 191 Joules
part (c): Core loss = 1.50 W/kg.

Problem 1.30
Brms = 1.1 T and f = 60 Hz,

Vrms = ωNAcBrms = 46.7 V

Core volume = Aclc = 1.05 × 10−3 m3. Mass density = 7.65 × 103 kg/m3.
Thus, the core mass = (1.05× 10−3)(7.65× 103) = 8.03 kg.

At B = 1.1 T rms = 1.56 T peak, core loss density = 1.3 W/kg and rms
VA density is 2.0 VA/kg. Thus, the core loss = 1.3× 8.03 = 10.4 W. The total
exciting VA for the core is 2.0 × 8.03 = 16.0 VA. Thus, its reactive component
is given by

√
16.02 − 10.42 = 12.2 VAR.

The rms energy storage in the air gap is

Wgap =
gAcB

2
rms

µ0
= 3.61 Joules

corresponding to an rms reactive power of

VARgap = ωWgap = 1361 Joules

Thus, the total rms exciting VA for the magnetic circuit is

VArms = sqrt10.42 + (1361 + 12.2)2 = 1373 VA

and the rms current is Irms = VArms/Vrms = 29.4 A.

Problem 1.31
part(a): Area increases by a factor of 4. Thus the voltage increases by a

factor of 4 to e = 1096cos377t.
part (b): lc doubles therefore so does the current. Thus I = 0.26 A.
part (c): Volume increases by a factor of 8 and voltage increases by a factor

of 4. There Iφ,rms doubles to 0.20 A.
part (d): Volume increases by a factor of 8 as does the core loss. Thus

Pc = 128 W.

Problem 1.32
From Fig. 1.19, the maximum energy product for samarium-cobalt occurs at

(approximately) B = 0.47 T and H = -360 kA/m. Thus the maximum energy
product is 1.69× 105 J/m3.

Thus,

Am =
(

0.8
0.47

)
2 cm2 = 3.40 cm2

and
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lm = −0.2 cm
(

0.8
µ0(−3.60× 105)

)
= 0.35 cm

Thus the volume is 3.40× 0.35 = 1.20 cm3, which is a reduction by a factor
of 5.09/1.21 = 4.9.

Problem 1.33
From Fig. 1.19, the maximum energy product for neodymium-iron-boron

occurs at (approximately) B = 0.63 T andH = -470 kA/m. Thus the maximum
energy product is 2.90× 105 J/m3.

Thus,

Am =
(

0.8
0.63

)
2 cm2 = 2.54 cm2

and

lm = −0.2 cm
(

0.8
µ0(−4.70× 105)

)
= 0.27 cm

Thus the volume is 2.54×0.25 = 0.688 cm3, which is a reduction by a factor
of 5.09/0.688 = 7.4.

Problem 1.34
From Fig. 1.19, the maximum energy product for samarium-cobalt occurs at

(approximately) B = 0.47 T and H = -360 kA/m. Thus the maximum energy
product is 1.69 × 105 J/m3. Thus, we want Bg = 1.2 T, Bm = 0.47 T and
Hm = −360 kA/m.

hm = −g
(
Hg

Hm

)
= −g

(
Bg

µ0Hm

)
= 2.65 mm

Am = Ag

(
Bg

Bm

)
= 2πRh

(
Bg

Bm

)
= 26.0 cm2

Rm =

√
Am

π
= 2.87 cm

Problem 1.35
From Fig. 1.19, the maximum energy product for neodymium-iron-boron oc-

curs at (approximately) Bm = 0.63 T and Hm = -470 kA/m. The magnetization
curve for neodymium-iron-boron can be represented as

Bm = µRHm +Br

where Br = 1.26 T and µR = 1.067µ0. The magnetic circuit must satisfy
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Hmd+Hgg = Ni; BmAm = BgAg

part (a): For i = 0 and Bg = 0.5 T, the minimum magnet volume will occur
when the magnet is operating at the maximum energy point.

Am =
(
Bg

Bm

)
Ag = 4.76 cm2

d = −
(
Hg

Hm

)
g = 1.69 mm

part (b):

i =

[
Bg

(
dAg

µRAm
+ g

µ0

)
− Brd

µR

]
N

For Bg = 0.75, i = 17.9 A.
For Bg = 0.25, i = 6.0 A.

Because the neodymium-iron-boron magnet is essentially linear over the op-
erating range of this problem, the system is linear and hence a sinusoidal flux
variation will correspond to a sinusoidal current variation.
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PROBLEM SOLUTIONS: Chapter 2

Problem 2.1
At 60 Hz, ω = 120π.

primary: (Vrms)max = N1ωAc(Brms)max = 2755 V, rms

secondary: (Vrms)max = N2ωAc(Brms)max = 172 V, rms

At 50 Hz, ω = 100π. Primary voltage is 2295 V, rms and secondary voltage is
143 V, rms.

Problem 2.2

N =
√

2Vrms

ωAcBpeak
= 167 turns

Problem 2.3

N =

√
75
8

= 3 turns

Problem 2.4
Resistance seen at primary is R1 = (N1/N2)2R2 = 6.25Ω. Thus

I1 =
V1

R1
= 1.6 A

and

V2 =
(

N2

N1

)
V1 = 40 V

Problem 2.5
The maximum power will be supplied to the load resistor when its im-

pedance, as reflected to the primary of the ideal transformer, equals that of
the source (2 kΩ). Thus the transformer turns ratio N to give maximum power
must be

N =
√

Rs

Rload
= 6.32

Under these conditions, the source voltage will see a total resistance of Rtot =
4 kΩ and the current will thus equal I = Vs/Rtot = 2 mA. Thus, the power
delivered to the load will equal

Pload = I2(N2Rload) = 8 mW
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Here is the desired MATLAB plot:

Problem 2.6
The maximum power will be supplied to the load resistor when its im-

pedance, as reflected to the primary of the ideal transformer, equals that of
the source (2 kΩ). Thus the transformer turns ratio N to give maximum power
must be

N =
√

Rs

Rload
= 6.32

Under these conditions, the source voltage will see a total impedance of Ztot =
2 + j2 kΩ whose magnitude is 2

√
2 kΩ. The current will thus equal I =

Vs/|Ztot| = 2
√

2 mA. Thus, the power delivered to the load will equal

Pload = I2(N2Rload) = 16 mW

Here is the desired MATLAB plot:



17

Problem 2.7

V2 = V1

(
Xm

Xl1 + Xm

)
= 266 V

Problem 2.8
part (a): Referred to the secondary

Lm,2 =
Lm,1

N2
= 150 mH

part(b): Referred to the secondary, Xm = ωLm,2 = 56.7 Ω, Xl2 = 84.8 mΩ
and Xl1 = 69.3 mΩ. Thus,

(i) V1 = N

(
Xm

Xm + Xl2

)
V2 = 7960 V

and

(ii) Isc =
V2

Xsc
=

V2

Xl2 + Xm||Xl1

= 1730 A

Problem 2.9
part (a):

I1 =
V1

Xl1 + Xm
= 3.47 A; V2 = NV1

(
Xm

Xl1 + Xm

)
= 2398 V

part (b): Let X ′
l2

= Xl2/N
2 and Xsc = Xl1 + Xm||(Xm + X ′

l2
). For Irated =

50 kVA/120 V = 417 A

V1 = IratedXsc = 23.1 V

I2 =
1
N

(
Xm

Xm + Xl2

)
Irated = 15.7 A

Problem 2.10

IL =
Pload

VL
= 55.5 A

and thus

IH =
IL

N
= 10.6 A; VH = NVL + jXHIH = 2381 � 9.6◦ V

The power factor is cos (9.6◦) = 0.986 lagging.
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Problem 2.11
part (a):

part (b):

Îload =
30 kW
230 V

ejφ = 93.8 ejφ A

where φ is the power-factor angle. Referred to the high voltage side, ÎH =
9.38 ejφA.

V̂H = ZHÎH

Thus, (i) for a power factor of 0.85 lagging, VH = 2413 V and (ii) for a power
factor of 0.85 leading, VH = 2199 V.

part (c):
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Problem 2.12
part (a):

part (b): Following methodology of Problem 2.11, (i) for a power factor of
0.85 lagging, VH = 4956 V and (ii) for a power factor of 0.85 leading, VH =
4000 V.

part (c):

Problem 2.13
part (a): Iload = 160 kW/2340 V = 68.4 A at � = cos−1 (0.89) = 27.1◦

V̂t,H = N(V̂L + ZtIL)

which gives VH = 33.7 kV.
part (b):

V̂send = N(V̂L + (Zt + Zf)IL)



20

which gives Vsend = 33.4 kV.
part (c):

Ssend = Psend + jQsend = V̂sendÎ∗send = 164 kW − j64.5 kVAR

Thus Psend = 164 kW and Qsend = −64.5 kVAR.
Problem 2.14

Following the methodology of Example 2.6, efficiency = 98.4 percent and
regulation = 1.25 percent.

Problem 2.15
part (a):

|Zeq,L| =
Vsc,L

Isc,L
= 107.8 mΩ

Req,L =
Psc,L

I2
sc,L

= 4.78 mΩ

Xeq,L =
√
|Zeq,L|2 − R2

eq,L = 107.7 mΩ

and thus

Zeq,L = 4.8 + j108 mΩ

part (b):

Req,H = N2Req,L = 0.455 Ω

Xeq,H = N2Xeq,L = 10.24 Ω

Zeq,H = 10.3 + j0.46 mΩ

part (c): From the open-circuit test, the core-loss resistance and the magne-
tizing reactance as referred to the low-voltage side can be found:

Rc,L =
V 2

oc,L

Poc,L
= 311 Ω

Soc,L = Voc,LIoc,L = 497 kVA; Qoc,L =
√

S2
oc,L − P 2

oc,L = 45.2 kVAR

and thus
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Xm,L =
V 2

oc,L

Qoc,L
= 141 Ω

The equivalent-T circuit for the transformer from the low-voltage side is
thus:

part (d): We will solve this problem with the load connected to the high-
voltage side but referred to the low-voltage side. The rated low-voltage current
is IL = 50 MVA/8 kV = 6.25 kA. Assume the load is at rated voltage. Thus
the low-voltage terminal voltage is

VL = |Vload + Zeq,LIL| = 8.058 kV

and thus the regulation is given by (8.053-8)/8 = 0.0072 = 0.72 percent.
The total loss is approximately equal to the sum of the open-circuit loss and

the short-circuit loss (393 kW). Thus the efficiency is given by

η =
Pload

Pin
=

50.0
50.39

= 0.992 = 99.2 percent

part (e): We will again solve this problem with the load connected to the
high-voltage side but referred to the low-voltage side. Now, ÎL = 6.25 � 25.8◦ kA.
Assume the load is at rated voltage. Thus the low-voltage terminal voltage is

VL = |Vload + Zeq,LÎL| = 7.758 kV

and thus the regulation is given by (7.758-8)/8 = -0.0302 = -3.02 percent. The
efficiency is the same as that found in part (d), η = 99.2 percent.

Problem 2.16
The core length of the second transformer is is

√
2 times that of the first, its

core area of the second transformer is twice that of the first, and its volume is
2
√

2 times that of the first. Since the voltage applied to the second transformer
is twice that of the first, the flux densitities will be the same. Hence, the core
loss will be proportional to the volume and

Coreloss = 2
√

23420 = 9.67 kW
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The magnetizing inductance is proportional to the area and inversely pro-
portional to the core length and hence is

√
2 times larger. Thus the no-load

magnetizing current will be
√

2 times larger in the second transformer or

Ino−load =
√

2 4.93 = 6.97 A

Problem 2.17
part (a): Rated current at the high-voltage side is 20 kVA/2.4 kV = 8.33 A.

Thus the total loss will be Ploss = 122 + 257 = 379 W. The load power is equal
to 0.8 × 20 = 16 kW. Thus the efficiency is

η =
16

16.379
= 0.977 = 97.7 percent

part (b): First calculate the series impedance (Zeq,H = Req,H + jXeq,H) of
the transformer from the short-circuit test data.

Req,H =
Psc,H

I2
sc,H

= 3.69 Ω

Ssc,H = Vsc,HIsc,H = 61.3 × 8.33 = 511 kV A

Thus Qsc,H =
√

S2
sc,H − P 2

sc,H = 442 VAR and hence

Xeq,H =
Qsc,H

I2
sc,H

= 6.35 Ω

The regulation will be greatest when the primary and secondary voltages of
the transformer are in phase as shown in the following phasor diagram

Thus the voltage drop across the transformer will be equal to ∆V = |Iload||Zeq,H| =
61.2 V and the regulation will equal 61.2 V/2.4 kV = 0.026 = 2.6 percent.

Problem 2.18
For a power factor of 0.87 leading, the efficiency is 98.4 percent and the

regulation will equal -3.48 percent.

Problem 2.19
part (a): The voltage rating is 2400 V:2640 V.
part (b): The rated current of the high voltage terminal is equal to that of

the 240-V winding, Irated = 30× 103/240 = 125 A. Hence the kVA rating of the
transformer is 2640 × 125 = 330 kVA.
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Problem 2.20
part (a):

part (b): The rated current of the high voltage terminal is equal to that of
the 120-V winding, Irated = 104/120 = 83.3 A. Hence the kVA rating of the
transformer is 600 × 83.3 = 50 kVA.

part (c): The full load loss is equal to that of the transformer in the con-
ventional connection, Ploss = (1 − 0.979) 10 kW = 210 W. Hence as an auto-
transformer operating with a load at 0.85 power factor (Pload = 0.85×50 kW =
42.5 kW), the efficiency will be

η =
42.5 kW
42.71 kW

= 0.995 = 99.5 percent

Problem 2.21
part (a): The voltage rating is 78 kV:86 kV. The rated current of the high

voltage terminal is equal to that of the 8-kV winding, Irated = 50× 106/8000 =
6.25 kA. Hence the kVA rating of the transformer is 86 kV × 6.25 kA =
537.5 MVA.

part (b): The loss at rated voltage and current is equal to 393 kW and hence
the efficiency will be

η =
537.5 MW
538.1 MW

= 0.9993 = 99.93 percent

Problem 2.22
No numerical result required for this problem.

Problem 2.23
part (a): 7.97 kV:2.3 kV; 191 A:651 A; 1500 kVA
part (b): 13.8 kV:1.33 kV; 109 A:1130 A; 1500 kVA
part (c): 7.97 kV:1.33 kV; 191 A:1130 A; 1500 kVA
part (d): 13.8 kV:2.3 kV; 109 A:651 A; 1500 kVA

Problem 2.24
part (a):

(i) 23.9 kV:115 kV, 300 MVA
(ii) Zeq = 0.0045 + j0.19 Ω
(iii) Zeq = 0.104 + j4.30 Ω
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part (b):

(i) 23.9 kV:66.4 kV, 300 MVA
(ii) Zeq = 0.0045 + j0.19 Ω
(iii) Zeq = 0.0347 + j1.47 Ω

Problem 2.25
Following the methodology of Example 2.8, Vload = 236 V, line-to-line.

Problem 2.26
The total series impedance is Ztot = Zf + Zt = j11.7 + 0.11 + j2.2 Ω =

0.11 + j13.9 Ω. The transformer turns ratio is N = 9.375. The load current, as
referred to the transformer high-voltage side will be

Iload = N2

(
325 MVA√

3 24 kV

)
ejφ = 7.81ejφ kA

where φ = − cos−1 0.93 = −21.6◦. The line-to-neutral load voltage is Vload =
24

√
3 kV.

part (a): At the transformer high-voltage terminal

V =
√

3 |NVload + IloadZt| = 231.7 kV, line-to-line

part (b): At the sending end

V =
√

3 |NVload + IloadZtot| = 233.3 kV, line-to-line

Problem 2.27

Problem 2.28
First calculate the series impedance (Zeq,H = Req,H + jXeq,H) of the trans-

former from the short-circuit test data.

Zeq,H = 0.48 = j1.18 Ω
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The total imedance between the load and the sending end of the feeder is Ztot =
Zf +Zeq,H = 0.544+ j2.058Ω. The transformer turns ration is N = 2400:120

√
3

= 11.6.
part (a): The referred load voltage Vload and current Iload will be in phase

and can be assumed to be the phase reference. Thus we can write the phasor
equation for the sending-end voltage as:

V̂s = Vload + IloadZtot

We know that Vs = 2400/sqrt3 = 1386 V and that Iload = 100 kVA/(
√

32.4 kV).
Taking the magnitude of both sides of the above equation gives a quadradic
equation in Vload

V 2
load + 2RtotIloadVload + |Ztot|2I2

load − V 2
s

which can be solved for Vload

Vload = −RtotIload +
√

V 2
s − (XtotIload)2 = 1.338 kV

Referred to the low-voltage side, this corresponds to a load voltage of 1.338 kV/N =
116 V, line-to-neutral or 201 V, line-to-line.

part (b):

Feeder current =
∣∣∣∣ 2400√

3Ztot

∣∣∣∣ = 651 A

HV winding current =
651√

3
= 376 A

LV winding current = 651N = 7.52 kA

Problem 2.29
part (a): The transformer turns ratio is N = 7970/120 = 66.4. The sec-

ondary voltage will thus be

V̂2 =
V1

N

(
jXm

R1 + jX1 + jXm

)
= 119.74 � 0.101◦

part (b): Defining R′
L = N2RL = N21 kΩ = 4.41 MΩ and

Zeq = jXm||(R′
2 + R′

L + jX ′
2) = 134.3 + j758.1 kΩ

the primary current will equal

Î1 =
7970

R1 + jX1 + Zeq
= 10.3 � − 79.87◦ mA
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The secondary current will be equal to

Î2 = NÎ1

(
jXm

R′
2 + R′

L + j(Xm + X2)

)
= 119.7 � 0.054◦ mA

and thus

V̂2 = RLÎ2 = 119.7 � 0.054◦ V

part (c): Following the methodology of part (b)

V̂2 = 119.6 � 0.139◦ V

Problem 2.30
This problem can be solved iteratively using MATLAB. The minimum reac-

tance is 291 Ω.
Problem 2.31

part (a):

part (b):
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Problem 2.32
part (a): The transformer turns ratio N = 200/5 = 40. For I1 = 200 A

I2 =
I1

N

(
jXm

R′
2 + j(Xm + X ′

2)

)
= 4.987 � 0.024◦

part (b): Defining R′
L = N2250µΩ = 0.4 Ω

I2 =
I1

N

(
jXm

R′
2 + R′

L + j(Xm + X ′
2)

)
= 4.987 � 0.210◦

Problem 2.33
part (a):

part (b):

Problem 2.34

Zbase,L =
V 2

base,L

Pbase
= 1.80 Ω

Zbase,H =
V 2

base,H

Pbase
= 245 Ω
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Thus

R1 = 0.0095Zbase,L = 17.1 mΩ; X1 = 0.063Zbase,L = 113 mΩ

Xm = 148Zbase,L = 266 Ω

R2 = 0.0095Zbase,H = 2.33 Ω; X2 = 0.063Zbase,H = 15.4 Ω

Problem 2.35
part (a):

(i) Zbase,L =
(7.97 × 103)2

75 × 103
= 0.940 Ω; XL = 0.12Zbase,L = 0.113 Ω

(ii) Zbase,H =
(7970)2

75 × 103
= 847 Ω; XH = 0.12Zbase,H = 102 Ω

part (b):

(i) 797 V:13.8 kV, 225 kVA
(ii) Xpu = 0.12
(iii) XH = 102 Ω
(iv) XL = 0.339 Ω

part (c):

(i) 460 V:13.8 kV, 225 kVA
(ii) Xpu = 0.12
(iii) XH = 102 Ω
(iv) XL = 0.113 Ω

Problem 2.36
part (a): In each case, Ipu = 1/0.12 = 8.33 pu.

(i) Ibase,L = Pbase/(
√

3 Vbase,L) = 225 kVA/(
√

3 797 V) = 163 A
IL = IpuIbase,L = 1359 A

(ii) Ibase,H = Pbase/(
√

3 Vbase,H) = 225 kVA/(
√

3 13.8 kV) = 9.4 A
IH = IpuIbase,H = 78.4 A

part (b): In each case, Ipu = 1/0.12 = 8.33 pu.

(i) Ibase,L = Pbase/(
√

3 Vbase,L) = 225 kVA/(
√

3 460 V) = 282 A
IL = IpuIbase,L = 2353 A

(ii) Ibase,H = Pbase/(
√

3 Vbase,H) = 225 kVA/(
√

3 13.8 kV) = 9.4 A
IH = IpuIbase,H = 78.4 A
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Problem 2.37
part (a): On the transformer base

Xgen =
(

Pbase,t

Pbase,g

)
1.57 =

(
800 MVA
850 MVA

)
1.57 = 1.27 pu

part (b): On the transformer base, the power supplied to the system is Pout =
700/850 = 0.824 pu and the total power is Sout = Pout/pf = 0.825/0.95 =
0.868 pu. Thus, the per unit current is Î = 0.868 � φ, where φ = − cos−1 0.95 =
−18.2◦.

(i) The generator terminal voltage is thus

V̂t = 1.0 + ÎZt = 1.03 � 3.94◦ pu = 26.8 � 3.94◦ kV

and the generator internal voltage is

V̂gen = 1.0 + Î(Zt + Zgen) = 2.07 � 44.3◦ pu = 53.7 � 44.3◦ kV

(ii) The total output of the generator is given by Sgen = V̂tÎ
∗ = 0.8262 +

0.3361. Thus, the generator output power is Pgen = 0.8262× 850 = 702.2 MW.
The correspoinding power factor is Pgen/|Sgen| = 0.926 lagging.
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PROBLEM SOLUTIONS: Chapter 3

Problem 3.1
By analogy to Example 3.1,

T = 2B0Rl [I1 sin α + I2 cosα] = 6.63× 10−2 [I1 sin α + I2 cosα] N·m

Thus
part (a): T = 0.530 cosα N·m
part (b): T = 0.530 sinα N·m
part (c): T = 0.530 [I1 sin α + I2 cosα] N·m

Problem 3.2
T = 0.5304 N·m

Problem 3.3
Can calculate the inductance as

L =
Nφ

I
=

1000× 0.13
10

= 13 H

Thus

Wfld =
1
2

LI2 = 650 Joules

Problem 3.4
part (a): For x = 0.9 mm, L = 29.5 mH and thus, for I = 6 A, Wfld =

0.531 Joules.
part (b):For x = 0.9 mm, L = 19.6 mH and thus, for I = 6 A, Wfld =

0.352 Joules. Hence, ∆Wfld = −0.179 Joules.

Problem 3.5
For a coil voltage of 0.4 V, the coil current will equal I = 0.4/0.11 = 3.7 A.

Under the assumption that all electrical transients have died out, the solution
will be the same as that for Problem 3.4, with a current of 3.7 A instead of
6.0 A.

part (a): Wfld = 0.202 Joules
part (b): ∆Wfld = −0.068 Joules.

Problem 3.6
For x = x0, L = L0 = 30 mH. The rms current is equal to Irms = I0/

√
2

and thus
part (a):

< Wfld >=
1
2
LI2

rms = 0.227 Joules
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part (b):

< Pdiss >= I2
rmsR = 1.63 W

Problem 3.7
part (a):

Bg =
µ0Ni

2g

Wfld =

(
B2

g

2µ0

)
× Air-gap volume =

(
B2

g

2µ0

)
× 2gAg

=
µ0N

2A0

4g

(
1 −

(
4θ

π

)2
)

i2

part (b):

L =
2Wfld

i2
=

µ0N
2A0

2g

(
1 −

(
4θ

π

)2
)

Here is the MATLAB plot:

Problem 3.8
part (a):

vC(t) = V0e
−t/τ ; τ = RC

part (b): Wfld = q2/(2C) = Cv2
C/2. Thus

Wfld(0) =
CV 2

0

2
; Wfld(∞) = 0
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part (c)

iR(t) =
vC(t)

R
; Pdiss(t) = i2R(t)R =

V 2
0 e−2t/τ

R

Wdiss =
∫ ∞

0

Pdiss(t) dt =
CV 2

0

2

Problem 3.9
part (a):

iL(t) =
V0

R
e−t/τ ; τ =

L

R

part (b):

Wfld(0) =
V 2

0 L

2R2
; Wfld(∞) = 0

part (c)

Pdiss(t) = i2L(t)R =
V 2

0 e−2t/τ

R

Wdiss =
∫ ∞

0

Pdiss(t) dt =
V 2

0 L

2R2

Problem 3.10
Given:

τ =
L

R
= 4.8 sec; I2R = 1.3 MW

Thus

1
2
Li2 =

1
2
L

(
i2R

R

)
=
(τ

2

)
i2R = 6.24 MJoules

Problem 3.11
part (a): Four poles
part (b):

Tfld =
∂W ′

fld

∂θm
=

d

dθm

[
I2
0

2
(L0 + L2 cos 2θm)

]
= −I2

0L2 sin 2θm
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Problem 3.12
part (a):

Bg =
µ0Ni

g + g1R/(2h)

where g1 is the length of the fixed gap, l is its length and R is the radius of the
solenoid. Here is the MATLAB plot:

part (b):

Wfld = πR2g

(
B2

g

2µ0

)

Here is the MATLAB plot:
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part (c): L = 2Wfld/i2. Here is the MATLAB plot:

Problem 3.13
If the plunger is moved very slowly (i.e. idL/dt << Ldi/dt, the current will

be essentially constant and all of the change in stored energy will come from
the mechanical work applied to the plunger. Thus,

part (a):

Work = Wfld(g = 0.2 cm) − Wfld(g = 2.25 cm) = 46.7 µJoules

part (b): The battery will supply only the energy dissipated in the coil.

Problem 3.14
The coil inductance is equal to L = µ0N

2Ac/(2g) and hence the lifting force
is equal to

ffld =
i2

2
dL

dg
= −

(
µ0N

2Ac

4g2

)
i2

where the minus sign simply indicates that the force acts in the direction to
reduce the gap (and hence lift the mass). The required force is equal to 931 N
(the mass of the slab times the acceleration due to gravity, 9.8 m/sec2). Hence,
setting g = gmim and solving for i gives

imin =
(

2gmin

N

)√
ffld

µ0Ac
= 385 mA

and vmin = iminR = 1.08 V.

Problem 3.15
part (a):

a1 = −9.13071× 10−5 a2 = 0.124209 a3 = 28.1089
a4 = 10558.2

b1 = 9.68319× 10−11 b2 = −1.37037× 10−7

b3 = 6.32831× 10−5 b4 = 1.71793× 10−3
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part (b): (i) Here is the MATLAB plot:

(ii)

Wfld = 13.0 Joules and W ′
fld = 13.7 Joules

Assuming no core relctance, Wfld = 11.8 Joules and W ′
fld = 13.0 Joules

part (c): (i) Here is the MATLAB plot:

(ii)

Wfld = 142 Joules and W ′
fld = 148 Joules

Assuming no core relctance, Wfld = 139 Joules and W ′
fld = 147 Joules

Problem 3.16

L =
µ0N

2Ac

g
; ffld =

(
i2

2

)
dL

dg
= −

i2L

2g

The time-averaged force can be found by setting i = Irms where Irms = Vrms/(ωL).
Thus

< ffld >= − Irms

2gω2L
= − V 2

rms

2ω2µ0N2Ac
= −115 N
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Because the inductor is being driven by a voltage source, the gap flux density
remains constant independent of the air-gap length and hence the force also
remains constant.

Problem 3.17
part (a):

Bs =
µ0i

s

part (b):

φs = Bsxl =
µ0xl

s

part (c): Note that as the coil moves upward in the slot, the energy associated
with the leakage flux associated withing the coil itself remains constant while
the energy in the leakage flux above the coil changes. Hence to use the energy
method to calculate the force on the coil it is necessary only to consider the
energy in the leakage flux above the slot.

Wfld =
∫

B2
s

2µ0
dV =

µ0xli2

2s

Because this expression is explicity in terms of the coil current i and becasue
the magnetic energy is stored in air which is magnetically linear, we know that
W ′

fld = Wfld. We can therefore find the force from

ffld =
dW ′

fld

dx
=

µ0li
2

2s

This force is positive, acting to increase x and hence force the coil further into
the slot.

part (d): ffld = 18.1 N/m.

Problem 3.18

W ′
fld =

(
µ0H

2

2

)
× coil volume =

(
µ0πr2

0N
2

2h

)
i2

Thus

f =
dW ′

rmfld

dr0
=
(

µ0πr0N
2

h

)
I2
0

and hence the pressure is

P =
f

2πr0h
=
(

µ0N
2

2h2

)
I2
0
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The pressure is positive and hence acts in such a direction as to increase the
coil radius r0.

Problem 3.19
part (a):

Wfld(q, x) =
∫ q

0

v(q′, x)dq′

part (b):

ffld = − ∂Wfld

∂x

∣∣∣∣
q

part (c):

W ′
fld = vq − dWfld ⇒ dW ′

fld = qdv + fflddx

Thus

W ′
fld =

∫ v

0

q(v′, x)dv′; ffld =
∂W ′

fld

∂x

∣∣∣∣
v

Problem 3.20
part (a):

Wfld =
∫ q

0

v(q′, x)dq′ =
q2

2C
=

xq2

2ε0A

W ′
fld =

∫ v

0

q(v′, x)dv′ =
Cv2

2
=

ε0Av2

2x

part (b):

ffld =
∂W ′

fld

∂x

∣∣∣∣
v

=
Cv2

2
=

ε0Av2

2x2

and thus

ffld(V0, δ) =
ε0AV 2

0

2δ2

Problem 3.21
part (a):

Tfld =
(

V 2
dc

2

)
dC

dθ
=
(

Rd

2g

)
V 2

dc

part (b): In equilibrium, Tfld + Tspring = 0 and thus
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θ = θ0 +
(

Rd

2gK

)
V 2

dc

Here is the plot:

Problem 3.22
part (a):

L11 =
µ0N

2
1 A

2g0
; L22 =

µ0N
2
2 A

2g0

part (b):

L12 =
µ0N1N2A

2g0
;

part (c):

W ′
fld =

1
2
L11i

2
1 +

1
2
L22i

2
2 + L12i1i2 =

µ0A

4g0
(N1i1 + N2i2)

2

part (d):

ffld =
∂W ′

fld

∂g0

∣∣∣∣
i1,i2

= −µ0A

4g2
0

(N1i1 + N2i2)
2

Problem 3.23
part (a):

W ′
fld =

1
2
L11i

2
1 +

1
2
L22i

2
2 + L12i1i2 = I2 (L11 + L22 + 2L12) sin2 ωt

Tfld =
∂W ′

fld

∂θ

∣∣∣∣
i1,i2

= −4.2× 10−3I2 sin θ sin2 ωt N·m
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part (b):

Tfld = −2.1× 10−3I2 sin θ N·m

part (c): Tfld = −0.21 N·m.
part (d):

part (e): The curve of spring force versus angle is plotted as a straight line on
the plot of part (d). The intersection with each curve of magnetic force versus
angle gives the equilibrium angle for that value of current. For greater accuracy,
MATLAB can be used to search for the equilibrium points. The results of a
MATLAB analysis give:

I θ
5 52.5◦

7.07 35.3◦

10 21.3◦

part (f):
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Problem 3.24
part (a):

Tfld = i1i2
dL12

dθ
= −2.8i1i2 sin θ N·m

λ2 = 0 ⇒ i2 = −
(

L12

L22

)
i1 = −1.12i1 cos θ

Therefore, for i1 = 10 sinωt,

Tfld = −3.14i21 sin θ cos θ = −314 sin2 (ωt) sin θ cos θ

= −78.5 (1 − cos (2ωt)) sin (2θ) N·m

part (b):

< Tfld >= −78.5 N·m

part (c): It will not rotate. It will come to rest at angular positions where

< Tfld >= 0 and
d < Tfld >

dθ
= 0

i.e. at θ = 90◦ or θ = 270◦.
Problem 3.25

part (a): Winding 1 produces a radial magnetic which, under the assumption
that g << r0,

Br,1 =
µ0N1

g
i1

The z-directed Lorentz force acting on coil 2 will be equal to the current in coil
2 multiplied by the radial field Br,1 and the length of coil 2.

fz = 2πr0N2Br,1i2 =
2πr0µ0N1N2

g
i1i2

part (b): The self inductance of winding 1 can be easily written based upon
the winding-1 flux density found in part (a)

L11 =
2πr0lµ0N

2
1

g

The radial magnetic flux produced by winding 2 can be found using Ampere’s
law and is a function of z.

Bz =





0 0 ≤ z ≤ x

−µ0N2i2(z−x)
gh x ≤ z ≤ x + h

−µ0N2i2
g x + h ≤ z ≤ l
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Based upon this flux distribution, one can show that the self inductance of
coil 2 is

L22 =
2πr0µ0N

2
2

g

(
l − x − 2h

3

)

part (c): Based upon the flux distribution found in part (b), the mutual
inductance can be shown to be

L12 =
2πr0µ0N1N2

g

(
x +

h

2
− l

)

part (d):

ffld =
d

dx

[
1
2
L11i

2
1 +

1
2
L22i

2
2 + L12i1i2

]
= −πr0µ0N

2
2

g
i22 +

2πr0µ0N1N2

g
i1i2

Note that this force expression includes the Lorentz force of part (a) as well
as a reluctance force due to the fact that the self inductance of coil 2 varies with
position x. Substituting the given expressions for the coil currents gives:

ffld = −πr0µ0N
2
2

g
I2
2 cos2 ωt +

2πr0µ0N1N2

g
I1I2 cosωt

Problem 3.26
The solution follows that of Example 3.8 with the exception of the magnet

properties of samarium-cobalt replaced by those of neodymium-boron-iron for
which µR = 1.06µ0, H ′

c = −940 kA/m and Br = 1.25 T.
The result is

ffld =
{

-203 N at x = 0 cm
-151 N at x = 0.5 cm

Problem 3.27
part (a): Because there is a winding, we don’t need to employ a “fictitious”

winding. Solving

Hmd + Hgg0 = Ni; BmwD = Bg(h − x)D

in combination with the constitutive laws

Bm = µR(Hm − Hc); Bg = µ0Hg

gives

Bm =
µ0(Ni + Hcd)

dµ0
µR

+ wg0
(h−x)

Note that the flux in the magnetic circuit will be zero when the winding
current is equal to I0 = −Hcd/N . Hence the coenergy can be found from
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integrating the flux linkage of the winding from an initial state where it is zero
(i.e. with i = I0) to a final state where the current is equal to i. The flux
linkages are given by λ = NwDBm and hence

W ′
fld(i, x) =

∫ i

I0

λ(i′, x)di′ =
µ0wDN

dµ0
µR

+ wg0
(h−x)

[
Ni2

2
+ Hc

(
i +

Hcd

2N

)]

The force is then

ffld =
dW ′

fld

dx
=

−µ0w
2DNg0

(µ0d(h−x)
µR

+ wg0)2

[
Ni2

2
+ Hc

(
i +

Hcd

2N

)]

(i) for i = 0,

ffld =
dW ′

fld

dx
=

−µ0w
2Dg0(Hcd)2

2(µ0d(h−x)
µR

+ wg0)2

where the minus sign indicates that the force is acting upwards to support the
mass against gravity.

(ii) The maximum force occurs when x = h

fmax = −µ0wD(Hcd)2

2
= −Mmaxa

where a is the acceleration due to gravity. Thus

Mmax =
µ0wD(Hcd)2

2a

part (b): Want

f(Imin,x=h = −a
Mmax

2
= −µ0wD(Hcd)2

4

Substitution into the force expression of part (a) gives

Imin = (2 −
√

2)(−Hcd) = −0.59Hcd

Problem 3.28
part (a): Combining

Hmd + Hgg = 0; πr2
0Bm = 2πr0lBg

Bg = µ0Hg; Bm = µR(Hm − Hrmc)

gives
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Bg =
−Hcdµ0

g +
(

µ0
µR

)(
2ld
r0

)

part (b): The flux linkages of the voice coil can be calculate in two steps.
First calculate the differential flux linkages of a differential section of the voice
coil of dN2 turns at height z′ above the bottom of the voice coil (which is at
z = x).

dλ2 = dN2

∫ l

z′
Bg(2πr0)dz =


 (−Hcdµ0)(2πr0)(l − z′)

g +
(

µ0
µR

)(
2ld
r0

)


 dN2

Recognizing that dN2 = (N2/h)dz′ we can now integrate over the coil to
find the total flux linkages

λ2 =
∫ x+h

x

dλ2 =
N2(−Hcdµ0)(2πr0)(l − x − h/2)

g +
(

µ0
µR

)(
2ld
r0

)

part (c): Note from part (a) that the magnet in this case can be replaced
by a winding of N1i1 = −Hcd ampere-turns along with a region of length d and
permeability µR. Making this replacement from part (a), the self inductance of
the winding can be found

λ11 = N1Φ11 = 2πr0hN1Bg =
2πr0hN2

1dµ0

g +
(

µ0
µR

)(
2ld
r0

) i1

and thus

L11 =
2πr0hN2

1 dµ0

g +
(

µ0
µR

)(
2ld
r0

)

Similar, the mutual inductance with the voice coil can be found from part
(b) as

L12 =
λ2

i1
=

N1λ2

−Hcd
=

N2N2µ0(2πr0)(l − x − h/2)

g +
(

µ0
µR

)(
2ld
r0

)

We can now find the coenergy (ignoring the term L22i
2
2/2)

W ′
fld =

1
2

L11i
2
1 + L12i1i2

=
µ0(Hcd)2πr0h

g +
(

µ0
µR

)(
2ld
r0

) +
µ0N2(−Hcd)(2πr0d)(l − x − h

2 )

g +
(

µ0
µR

)(
2ld
r0

) i2
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part (d):

ffld =
dW ′

fld

dx
= −µ0N2(−Hcd)(2πr0d)

g +
(

µ0
µR

)(
2ld
r0

)

Problem 3.29
part (a):

Hmtm + Hxx + Hgg = 0; π(R2
3 − R2

2)Bm = πR2
1Bx = 2πR1hBg

Bg = µ0Hg; Bx = µ0Hx; Bm = µR(Hm − Hc)

where µR = 1.05µ0 and H ′
c = −712 kA/m.

Solving gives

Bg =


 µ0R1(−Hctm)

2hx + gR1 + 2µ0R2
1htm

µR(R2
3−R2

2)


 = 0.562 T

and

Bx =
(

2h

R1

)
Bg = 0.535 T

part (b): We can replace the magnet by an equivalent winding of Ni =
−Hctm. The flux linkages of this equivalent winding can then be found to be

λ = N(2πR1h)Bg =


 2πµ0hR2

1N
2

2hx + gR1 + 2µ0R2
1htm

µR(R2
3−R2

2)


 i = Li

The force can then be found as

ffld =
i2

2
dL

dx
=

−2πµ0(hR1)2(Ni)2
(
2hx + gR1 + 2µ0R2

1htm
µR(R2

3−R2
2)

)2

=
−2πµ0(hR1)2(−Hctm)2

(
2hx + gR1 + 2µ0R2

1htm
µR(R2

3−R2
2)

)2 = −0.0158 N

part (c):

X0 = x − f

K
= 4.0 mm
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Problem 3.30
part (a): If the plunger is stationary at x = 0.9a, the inductance will be

constant at L = 0.1L0. Thus

i(t) =
V0

R
e−t/τ

where τ = L/R.
The force will thus be

ffld =
i2

2
dL

dx
= −L0

2a

(
V0

R

)2

e−2t/τ

part (b):

X0 = 0.9a +
f

K0
= 0.9a − L0

2aK0

(
V0

R

)2

Problem 3.31
part (a): Since the current is fixed at i = I0 = 4 A, the force will be constant

at f = −I2
0L0/()2a = −1.45 N. Thus

X0 = 0.9 ∗ a +
f

K0
= 1.56 cm

part (b):

M
d2x

dt2
= f + K0(0.9a − x) ⇒ 0.2

d2x

dt2
= 5.48− 350x N

v = I0R + I0
dL

dt
= I0R − L0

a

dx

dt
⇒ v = 6 − 0.182

dx

dt

part (c): The equations can be linearized by letting x = X0 + x′(t) and
v = V0 + v′(t). The result is

d2x′

dt2
= −1750x′

and

v′ = −0.182
dx′

dt

part (d) For ε in meters,

x′(t) = ε cosωt m

where ε =
√

1750 = 41.8 rad/sec and
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v′(t) = 7.61ε sin ωt V

Problem 3.32
part (a): For a dc voltage of V0 = 6 V, the corresponding dc current will be

I0 = V0/R = 4 A, the same as Problem 3.31. Hence the equilibrium position
will be the same; X0 = 1.56 cm.

part (b): For a fixed voltage, the dynamic equations become:

V0 = iR +
d

dt
(Li) = iR + L0

(
1 −

x

a

) di

dt
−
(

L0

a

)
i
dx

dt

or

6 = 1.5i + 4 × 10−3(1 − 40x)
di

dt
− (0.182) i

dx

dt

and

M
d2x

dt2
= f − K0(0.9a − x) = −

(
i2

2

)(
L0

a

)
+ K0(0.9a− x)

or

0.2
d2x

dt2
= −0.0909i2 + 6.93− 350x

part (c): The equations can be linearized by letting x = X0 + x′(t) and
i = I0 + i′(t). The result is

0 = i′R + L0

(
1 − X0

a

)
di′

dt
−
(

L0

a

)
I0

dx

dt

or

0 = 1.5i′ + 1.5× 10−3 di′

dt
− 0.728

dx

dt

and

M
d2x′

dt2
= −

(
I0L0

a

)
i′ − K0x

′

or

0.2
d2x

dt2
= −0.727i2 − 350x′

Problem 3.33
part (a): Following the derivation of Example 3.1, for a rotor current of 8 A,

the torque will be give by T = T0 sin α where T0 = −0.0048 N·m. The stable
equilibrium position will be at α = 0.
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part (b):

J
d2α

dt2
= T0 sin α

part (c): The incremental equation of motion is

J
d2α

dt2
= T0α

and the natural frequency is

ω =

√
T0

J
= 0.62 rad/sec

corresponding to a frequency of 0.099 Hz.
Problem 3.34

As long as the plunger remains within the core, the inductance is equal to

L =
µ0dπN2

ag

((a

2

)2

− x2

)

where x is the distance from the center of the solenoid to the center of the core.
Hence the force is equal to

ffld =
i2

2
dL

dx
= −

µ0dπN2i2x

ag

Analogous to Example 3.10, the equations of motor are

ft = −M
d2x

dt2
− B

dx

dt
− K(x − l0) −

µ0dπN2i2x

ag

The voltage equation for the electric system is

vt = iR +
µ0dπN2

ag

((a

2

)2

− x2

)
di

dt
− 2µ0dπN2x

ag

dx

dt

These equations are valid only as long as the motion of the plunger is limited
so that the plunger does not extend out of the core, i.e. ring, say, between the
limits −a/2 < x < a/2.
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PROBLEM SOLUTIONS: Chapter 4

Problem 4.1
part (a): ωm = 1200× π/30 = 40π rad/sec
part (b): 60 Hz; 120π rad/sec
part (c): 1200× 5/6 = 1000 r/min

Problem 4.2
The voltages in the remaining two phases can be expressed as V0 cos (ωt − 2π/3)

and V0 cos (ωt + 2π/3).

Problem 4.3
part (a): It is an induction motor.
parts (b) and (c): It sounds like an 8-pole motor supplied by 60 Hz.

Problem 4.4
part (a):

part (b):
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part (c):

part (d):

Problem 4.5
Under this condition, the mmf wave is equivalent to that of a single-phase

motor and hence the positive- and negative-traveling mmf waves will be of equal
magnitude.

Problem 4.6
The mmf and flux waves will reverse direction. Reversing two phases is the

procedure for reversing the direction of a three-phase induction motor.

Problem 4.7

F1 = Fmax cos θae cosωet =
Fmax

2
(cos (θae − ωt) + cos (θae + ωt))

F2 = Fmax sin θae sin ωet =
Fmax

2
(cos (θae − ωt) − cos (θae + ωt))

and thus

Ftotal = F1 + F2 = Fmax cos (θae − ωt)
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Problem 4.8
For n odd

∣∣∣∣∣∣

∫ β/2

−β/2
cos (nθ)dθ

∫ π/2

−π/2
cos (nθ)dθ

∣∣∣∣∣∣
= sin (

nθ

2
)

For β = 5π/6,

sin (
nθ

2
) =





0.97 n = 1
0 n = 3
0.26 n = 5

Problem 4.9
part (a): Rated speed = 1200 r/min
part (b):

Ir =
πgBag1,peak(poles)

4µ0krNr
= 113 A

part (c):

ΦP =
(

2
3

)
lRBag1,peak = 0.937 Wb

Problem 4.10
From the solution to Problem 4.9, ΦP = 0.937 Wb.

Vrms =
ωNΦ√

2
= 8.24 kV

Problem 4.11
From the solution to Problem 4.9, ΦP = 0.937 Wb.

Vrms =
ωkwNaΦ√

2
= 10.4 kV

Problem 4.12
The required rms line-to-line voltage is Vrms = 13.0/

√
3 = 7.51 kV. Thus

Na =
√

2 Vrms

ωkwΦ
= 39 turns

Problem 4.13
part (a): The flux per pole is

Φ = 2lRBag1,peak = 0.0159 Wb

The electrical frequency of the generated voltage will be 50 Hz. The peak voltage
will be
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Vpeak = ωNΦ = 388 V

Because the space-fundamental winding flux linkage is at is peak at time
t = 0 and because the voltage is equal to the time derivative of the flux linkage,
we can write

v(t) = ±Vpeak sin ωt

where the sign of the voltage depends upon the polarities defined for the flux
and the stator coil and ω = 120π rad/sec.

part (b): In this case, Φ will be of the form

Φ(t) = Φ0 cos2 ωt

where Φ0 = 0.0159 Wb as found in part (a). The stator coil flux linkages will
thus be

λ(t) = ±NΦ(t) = NΦ0 cos2 ωt = ±
1
2

NΦ0(1 + cos 2ωt)

and the generated voltage will be

v(t) = ∓ωΦ0 sin 2ωt

This scheme will not work since the dc-component of the coil flux will produce
no voltage.

Problem 4.14

Fa = ia[A1 cos θa + A3 cos 3θa + A5 cos 5θa]
= Ia cosωt[A1 cos θa + A3 cos 3θa + A5 cos 5θa]

Similarly, we can write

Fb = ib[A1 cos (θa − 120◦) + A3 cos 3(θa − 120◦) + A5 cos 5(θa − 120◦)]
= Ia cos (ωt − 120◦)[A1 cos (θa − 120◦) + A3 cos 3θa + A5 cos (5θa + 120◦)]

and

Fc = ic[A1 cos (θa + 120◦) + A3 cos 3(θa + 120◦) + A5 cos 5(θa + 120◦)]
= Ia cos (ωt + 120◦)[A1 cos (θa + 120◦) + A3 cos 3θa + A5 cos (5θa − 120◦)]

The total mmf will be
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Ftot = Fa + Fb + Fc

=
3
2
Ia[A1 cos (θa − ωt)A5 cos (5θa + ωt)]

=
3
2
Ia[A1 cos (θa − ωt)A5 cos 5

(
θa + (

ωt

5
)
)

]

We see that the combined mmf contains only a fundamental space-harmonic
component that rotates in the forward direction at angular velocity ω and a 5’th
space-harmonic that rotates in the negative direction at angular velocity ω/5.

Problem 4.15
The turns must be modified by a factor of

(
18
24

)(
1200
1400

)
=

9
14

= 0.64

Problem 4.16

Φp =
30Ea

N(poles)n
= 6.25 mWb

Problem 4.17
part (a):

Φp =
(

2
poles

)
2Bpeaklr =

(
2
4

)
× 2 × 1.25× 0.21× (.0952/2) = 12.5 mWb

Nph =
Vrms × poles√
2 πfmekwΦp

=
(230/

√
3) × 4√

2 π × 60 × 0.925× 0.0125
= 43 turns

part (b): From Eq. B.27

L =
16µ0lr

πg

(
kwNph

poles

)2

= 21.2 mH

Problem 4.18
part (a):

Φp =
Vrms√
2 πNph

= 10.8 mWb

Bpeak =
Φp

2lr
= 0.523 T
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part (b):

If =
πBpeakg

2µ0krNr
= 0.65 A

part (c):

Laf =
λa,peak

If
=

√
2 Vrms/ω

If
= 0.69 H

Problem 4.19
No numerical solution required.

Problem 4.20

Φpeak =
(

2Dl

poles

)
Bpeak

Fr,peak =
4krNrIr,max

π × poles

Tpeak =
π

2

(
poles

2

)2

ΦpeakFr,peak = 4.39× 106 N·m

Ppeak = Tpeakωm = 828 MW

Problem 4.21

Φpeak =
(

2Dl

poles

)
Bpeak

Fr,peak =
4krNrIr,max

π × poles

Tpeak =
π

2

(
poles

2

)2

ΦpeakFr,peak = 16.1 N·m

Ppeak = Tpeakωm = 6.06 kW

Problem 4.22
part (a):

T = iaif
dMaf

dθ0
+ ibif

dMbf

dθ0

= Mif (ib cos θ0 − ia sin θ0)
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This expression applies under all operating conditions.
part (b):

T = 2MI2
0 (cos θ0 − sin θ0) = 2

√
2 MI2

0 sin (θ0 − π/4)

Provided there are any losses at all, the rotor will come to rest at θ0 = π/4 for
which T = 0 and dt/dθ0 < 0.

part (c):

T =
√

2 MIaIf(sin ωt cos θ0 − cosωt sin θ0)

=
√

2 MIaIf sin (ωt − θ0) =
√

2 MIaIf sin δ

part (d):

va = Raia +
d

dt
(Laaia + Mafif)

=
√

2 Ia(Ra cosωt − ωLaa sinωt) − ωMIf sin (ωt − δ)

vb = Raib +
d

dt
(Laaib + Mbfif)

=
√

2 Ia(Ra sin ωt + ωLaa cosωt) + ωMIf cos (ωt − δ)

Problem 4.23

T = MIf(ib cos θ0 − ia sin θ0)

=
√

2 MIf [(Ia + I ′/2) sin δ + (I ′/2) sin (2ωt + δ)]

The time-averaged torque is thus

< T >=
√

2 MIf(Ia + I ′/2) sin δ

Problem 4.24
part (a):

T =
i2a
2

dLaa

dθ0
+

i2b
2

dLbb

dθ0
+ iaib

dLab

dθ0
+ iaif

dMaf

dθ0
+ ibif

dMbf

dθ0

=
√

2 IaIfM sin δ + 2I2
aL2 sin 2δ

part (b): Motor if T > 0, δ > 0. Generator if T < 0, δ < 0.
part (c): For If = 0, there will still be a reluctance torque T = 2I2

aL2 sin 2δ
and the machine can still operate.
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Problem 4.25
part (a):

v =
f

λ
= 25 m/sec

part (b): The synchronous rotor velocity is 25 m/sec.
part (c): For a slip of 0.045, the rotor velocity will be (1 − 0.045) × 25 =

23.9 m/sec.

Problem 4.26

Irms =
Bpeak√

2

(
g

µ0

)(
2
3

) (π

4

)(
2p

kwNph

)

=
1.45√

2

(
9.3× 10−3

µ0

) (
2
3

) (π

4

)(
2 × 7

0.91× 280

)
= 218 A

Problem 4.27
part (a): Defining β = 2π/wavelength

Φp = w

∫ π/β

0

Bpeak cosβxdx =
2wBpeak

β
= 1.48 mWb

part (b): Since the rotor is 5 wavelengths long, the armature winding will
link 10 poles of flux with 10 turns per pole. Thus, λpeak = 100Φp = 0.148 Wb.

part (c): ω = βv and thus

Vrms =
ωλpeak√

2
= 34.6 V, rms
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PROBLEM SOLUTIONS: Chapter 5

Problem 5.1
Basic equations are T ∝ ΦRFf sin δRF. Since the field current is constant, Ff

is constant, Note also that the resultant flux is proptoortional to the terminal
voltage and inversely to the frequency ΦR ∝ Vt/f . Thus we can write

T ∝ Vt sin δRF

f

P = ωfT ∝ Vt sin δRF

part (a): Reduced to 31.1◦

part (b): Unchanged
part (c): Unchanged
part (d): Increased to 39.6◦

Problem 5.2
part (a): The windings are orthogonal and hence the mutual inductance is

zero.
part (b): Since the two windings are orthogonal, the phases are uncoupled

and hence the flux linkage under balanced two-phase operation is unchanged by
currents in the other phase. Thus, the equivalent inductance is simply equal to
the phase self-inductance.

Problem 5.3

Lab = −1
2
(Laa − Lal) = −2.25 mH

Ls =
3
2
(Laa − Lal) + Lal = 7.08 mH

Problem 5.4
part (a):

Laf =
√
2 Vl−l,rms√
3ωIf

= 79.4 mH

part (b): Voltage = (50/60) 15.4 kV = 12.8 kV.

Problem 5.5
part (a): The magnitude of the phase current is equal to

Ia =
40× 103

0.85×√
3 460

= 59.1 A

and its phase angle is − cos−1 0.85 = −31.8◦. Thus



57

Îa = 59.1e−j31.8◦

Then

Êaf = Va − jXsÎa =
460√
3

− j4.15× 59.1e−j31.8◦
= 136 � − 56.8◦ V

The field current can be calculated from the magnitude of the generator
voltage

If =
√
2Eaf

ωLaf
= 11.3 A

part (b):

Êaf = 266 � − 38.1◦ V; If = 15.3 A

part (c):

Êaf = 395 � − 27.8◦ V; If = 20.2 A

Problem 5.6
The solution is similar to that of Problem 5.5 with the exception that the

sychronous impedance jXs is replaced by the impedance Zf + jXs.
part (a):

Êaf = 106 � − 66.6◦ V; If = 12.2 A

part (b):
Êaf = 261 � − 43.7◦ V; If = 16.3 A

part (c):
Êaf = 416 � − 31.2◦ V; If = 22.0 A

Problem 5.7
part (a):

Laf =
√
2 Vl−l,rms√
3ωIf

= 49.8 mH

part (b):

Îa =
600× 103√
3 2300

= 151 A

Êaf = Va − jXsÎa = 1.77 � − 41.3◦ V

If =
√
2Eaf

ωLaf
= 160 A
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part (c): See plot below. Minimum current will when the motor is operating
at unity power factor. From the plot, this occurs at a field current of 160 A.

Problem 5.8
part (a):

Zbase =
V 2

base

Pbase
=
(26× 103)2
750× 106 = 0.901 Ω

Ls =
Xs,puZbase

ω
= 4.88 mH

part (b):

Lal =
Xal,puZbase

ω
= 0.43 mH

part (c):

Laa =
2
3
(Ls − Lal) + Lal = 3.40 mH

Problem 5.9
part (a):

SCR =
AFNL
AFSC

= 0.520

part (b):
Zbase = (26× 103)2/(800× 106) = 0.845 Ω

Xs =
1

SCR
= 2.19 pu = 1.85 Ω

part (c):

Xs,u =
AFSC

AFNL, ag
= 1.92 pu = 1.62 Ω
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Problem 5.10
part (a):

SCR =
AFNL
AFSC

= 1.14

part (b):
Zbase = 41602/(5000× 103) = 3.46 Ω

Xs =
1

SCR
= 1.11 pu = 3.86 Ω

part (c):

Xs,u =
AFSC

AFNL, ag
= 0.88 pu = 3.05 Ω

Problem 5.11
No numerical solution required.

Problem 5.12
part (a): The total power is equal to S = P/pf = 4200 kW/0.87 = 4828 kVA.

The armature current is thus

Îa =
4828× 103√
3 4160

� (cos−1 0.87) = 670 � 29.5◦ A

Defining Zs = Ra + jXs = 0.038 + j4.81 Ω

|Eaf | = |Va − ZsIa| = |4160√
3

− ZsIa| = 4349 V, line− to− neutral

Thus

If = AFNL
(

4349
4160/

√
3

)
= 306 A

part (b): If the machine speed remains constant and the field current is not
reduced, the terminal voltage will increase to the value corresponding to 306 A
of field current on the open-circuit saturation characteristic. Interpolating the
given data shows that this corresponds to a value of around 4850 V line-to-line.
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Problem 5.13

Problem 5.14
At rated power, unity power factor, the armature current will be Ia =

5000 kW/(
√
3 4160 V) = 694 A. The power dissipated in the armature winding

will then equal Parm = 3× 6942 × 0.011 = 15.9 kW.
The field current can be found from

|Eaf | = |Va − ZsIa| = |4160√
3

− ZsIa| = 3194 V, line-to-neutral

and thus

If = AFNL
(

3194
4160/

√
3

)
= 319 A

At 125◦C, the field-winding resistance will be

Rf = 0.279
(
234.5 + 125
234.5 + 75

)
= 0.324 Ω

and hence the field-winding power dissipation will be Pfield = I2
f Rf = 21.1 kW.

The total loss will then be

Ptot = Pcore + Parm + Pfriction/windage + Pfield = 120 kW

Hence the output power will equal 4880 kW and the efficiency will equal 4880/5000
= 0.976 = 97.6%.
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Problem 5.15
part (a):

part (b): AFNL = 736 A. AFSC = 710 A.
part (c): (i) SCR = 10.4, (ii) Xs = 0.964 per unit and (iii) Xs,u = 1.17 per

unit.

Problem 5.16
For Va = 1.0 per unit, Eaf,max = 2.4 per unit and Xs = 1.6 per unit

Qmax =
Eaf,max − Va

Xs
= 0.875 per unit

Problem 5.17
part (a):

Zbase =
V 2

base

Pbase
= 5.29 Ω

Xs =
1

SCR
= 0.595 per-unit = 3.15 Ω
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part (b): Using generator convention for current

part (c):

Eaf =
150
420

= 0.357 per-unit

For Va = 1.0 per-unit,

Îa =
Eaf − Va

jXs
= 1.08 � 90◦ per-unit = 1.36 � 90◦ kA

using Ibase = 1255 A.
part (d): It looks like an inductor.
part (e):

Eaf =
700
420

= 1.67 per-unit

For Va = 1.0 per-unit,

Îa =
Eaf − Va

jXs
= 1.12 � − 90◦ per-unit = 1.41 � − 90◦ kA

In this case, it looks like a capacitor.
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Problem 5.18

Problem 5.19
part (a): It was underexcited, absorbing reactive power.
part (b): It increased.
part (c): The answers are the same.

Problem 5.20
part (a):

Xs =
226
842

= 0.268 per-unit

part (b): P = 0.875 and S = P/0.9 = 0.972, both in per unit. The power-
factor angle is − cos−1 0.9 = −25.8◦ and thus Îa = 0.875 � − 25.8◦.

Êaf = Va + jXsÎa = 1.15 � 11.6◦ per-unit

The field current is If = AFNL|Êaf | = 958 A. The rotor angle is 11.6◦ and the
reactive power is

Q =
√

S2 − P 2 = 4.24 MVA

part (c): Now |Eaf | = 1.0 per unit.

δ = sin−1

(
PXs

Va
|Eaf |

)
= 13.6◦

and thus Êaf = 1.0 � 13.6◦.

Îa =
Êaf − Va

jXs
= 0.881 � 6.79◦

Q = Imag[VaÎ
∗
a ] = −0.104 per-unit = −1.04 MVAR
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Problem 5.21

Îa =
Êaf − Va

jXs
= j

Va

Xs
+

Eaf

Xs
(sin δ − j cos δ)

The first term is a constant and is the center of the circle. The second term is
a circle of radius Eaf/Xs.

Problem 5.22
part (a):

(i)

(ii) Vt = V∞ = 1.0 per unit. P = 375/650 = 0.577 per unit. Thus

δt = sin−1

(
PX∞
VtV∞

)
= 12.6◦
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and

Îa =
Vte

jδt − V∞
jX∞

= 0.578 � 3.93◦ per-unit

Ibase = Pbase/(
√
3 Vbase) = 15.64 kA and thus Ia = 9.04 kA.

(iii) The generator terminal current lags the terminal voltage by δt/2 and thus
the power factor is

pf = cos−1 δt/2 = 0.998 lagging

(iv)

|Êaf | = |V∞ + j(X∞ +Xs)Îa| = 1.50 per-unit = 36.0 kV,line-to-line

part (b):
(i) Same phasor diagram
(ii) Îa = 0.928 � 6.32◦ per-unit. Ia = 14.5 kA.
(iii) pf = 0.994 lagging
(iv) Eaf = 2.06 per unit = 49.4 kV, line-to-line.

Problem 5.23
part (a):
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part (b):

part (c):

Problem 5.24

part (a): From the solution to Problem 5.15, Xs = 0.964 per unit. Thus,
with V∞ = Eaf = 1.0 per unit
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Pmax =
V∞Eaf

Xs
= 1.04 per-unit

noindent Hence, full load can be achieved. This will occur at

δ = sin−1

(
Xs

EafVinfty

)
= 74.6◦

part (b): The generator base impedance is 1.31 Ω. Thus, X∞ = 0.14/1.31
= 0.107 per unit. Now

Pmax =
V∞Eaf

(X∞ +Xs
= 1.04 per-unit = 0.934 per-unit = 135 MW

Problem 5.25
Follwing the calculation steps of Example 5.9, Eaf = 1.35 per unit.

Problem 5.26
Now Xd = .964 per unit and Xq = 0.723 per unit. Thus
part (a):

P =
V∞Eaf

Xd
sin δ +

V 2∞
2

(
1

Xq
− 1

Xd

)
sin 2δ = 1.037 sinδ + 0.173 sin2δ

An iterative solution with MATLAB shows that maximum power can be achieved
at δ = 53.6◦.

part (b): Letting XD = Xd +X∞ and XQ = Xq +X∞

P =
V∞Eaf

X
sin δ +

V 2∞
2

(
1

XQ
− 1

XD

)
sin 2δ = 0.934 sin δ + 0.136 sin2δ

An iterative solution with MATLAB shows that maximum power that can be
achieved is 141 Mw, which occurs at a power angle of 75◦.

Problem 5.27
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Problem 5.28

Problem 5.29

Problem 5.30
For Eaf = 0,

Pmax =
V 2

t

2

(
1

Xq
− 1

Xq

)
= 0.21 = 21%

This maximum power occurs for δ = 45◦.

Id =
Vt cos δ

Xd
= 0.786 per-unit

Iq =
Vt sin δ

Xq
= 1.09 per-unit
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and thus Ia =
√

I2
d + I2

q = 1.34 per unit.

S = VtIa = 1.34 per-unit

Hence

Q =
√

S2 − P 2 = 1.32 per-unit

Problem 5.30

P =
V∞Eaf

Xd
sin δ +

V 2
∞
2

(
1

Xq
− 1

Xd

)
sin 2δ

The generator will remain synchronized as long as Pmax > P . An iterative
search with MATLAB can easily be used to find the minimum excitation that
satisfies this condition for any particular loading.

part (a): For P = 0.5, must have Eaf ≥ 0.327 per unit.
part (b): For P = 1.0, must have Eaf ≥ 0.827 per unit.

Problem 5.32
part (a):

part (b): We know that P = 0.95 per unit and that

P =
V∞Vt

Xbus
sin δt

and that

Îa =
V̂t − V∞

jXt

It is necessary to solve these two equations simultaneously for V̂t = Vt � δt so
that both the required power is achieved as well as the specified power factor
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angle with respect to the generator terminal voltage. This is most easily done
iteratively with MATLAB. Once this is done, it is straightforward to calculate

Vt = 1.02 per-unit; Eaf = 2.05 per-unit; δ = 46.6◦

Problem 5.33
part (a): Define XD = Xd +Xbus and XQ = Xq +Xbus.

(i)
Eaf,min = Vbus − XD = 0.04 per-unit

Eaf,max = Vbus +XD = 1.96 per-unit

(ii)

part (b):
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part (c):

Problem 5.34

f =
n × poles
120

=
3000× 6
120

= 150 Hz

Problem 5.35
part (a): Because the load is resistive, we know that

Ia =
P

3Va
=

4500√
3192

= 13.5 A

part (b): We know that Eaf = 208/
√
3 = 120 V. Solving

Eaf =
√

V 2
a + (XsIa)2

for Xs gives

Xs =

√
E2

af − V 2
a

Ia
= 3.41 Ω

part (c): The easiest way to solve this is to use MATLAB to iterate to
find the required load resistance. If this is done, the solution is Va = 108 V
(line-to-neutral) = 187 V (line-to-line).

Problem 5.36

Îa =
Ea

Ra +Rb + jωLa
=

ωKa

Ra +Rb + jωLa

Thus

|Îa| = ωKa√
(Ra +Rb)2 + (ωLa)2

=
Ka

La

√
1 +

(
Ra+Rb

ωLa

)
Clearly, Ia will remain constant with speed as long as the speed is sufficient

to insure that ω >> (Ra +Rb)/La
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PROBLEM SOLUTIONS: Chapter 6

Problem 6.1
part (a): Synchronous speed is 1800 r/min. Therefore,

s =
1800− 1755
1800

= 0.025 = 2.5%

part (b): Rotor currents are at slip frequency, fr = s60 = 1.5 Hz.
part (c): The stator flux wave rotates at synchronous speed with respect to

the stator (1800 r/min). It rotates at slip speed ahead of the rotor (s1800 = 45
r/min).
part (d): The rotor flux wave is synchronous with that of the stator. Thus it

rotatesat synchronous speed with respect to the stator (1800 r/min). It rotates
at slip speed ahead of the rotor (s1800 = 45 r/min).

Problem 6.2
part (a): The slip is equal to s = 0.89/50 = 0.0178. The synchronous speed

for a 6-pole, 50-Hz motor is 1000 r/min. Thus the rotor speed is

n = (1− s)1000 = 982 r/min

part (b): The slip of a 4-pole, 60-Hz motor operating at 1740 r/min is

s =
1800− 1740
1800

= 0.0333 = 3.33%

The rotor currents will therefore be at slip frequency fr = 60 ∗ 0.0333 = 2 Hz.
Problem 6.3
part (a): The synchronous speed is clearly 1200 r/min. Therefore the motor

has 6 poles.
part (b): The full-load slip is

s =
1200− 1112
1200

= 0.0733 = 7.33%

part (c): The rotor currents will be at slip frequency fr = 60 ∗ 0.0733 = 4.4
Hz.
part (d): The rotor field rotates at synchronous speed. Thus it rotates at

1200 r/min with respect to the stator and (1200-1112) = 88 r/min with respect
to the rotor.

Problem 6.4
part (a): The wavelenth of the fundamental flux wave is equal to the span

of two poles or λ = 4.5/12 = 0.375 m. The period of the applied excitation is
T = 1/75 = 13.33 msec. Thus the synchronous speed is
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vs =
λ

T
= 28.1 m/sec = 101.3 km/hr

part (b): Because this is an induction machine, the car in this case) will
never reach synchronous speed.
part (c):

s =
101.3− 95
101.3

= 0.0622 = 6.22%

The induced track currents will be a slip frequency, f = s75 = 4.66 Hz.
part (d): For a slip of 6.22% and a car velocity of 75 km/hr, the synchronous

velocity must be

vs =
75
1− s

= 80.0 km/hr

Thus the electrical frequency must be

f = 80
(
75
101.3

)
= 59.2 Hz

and the track currents will be at a frequency of sf = 3.68 Hz.

Problem 6.5
part (a): For operation at constant slip frequency fr, the applied electrical

frequency fe is related to the motor speed in r/min n as

fe = n

(
poles
120

)
+ fr

and thus, since the slip frequency fr remains constant, we see that the applied
electrical frequency will vary linearly with the desired speed.
Neglecting the voltage drop across the armature leakage inductance and

winding resistance, the magnitude of the armature voltage is proportional to the
air-gap flux density and the frequency. Hence the magnitude of the armature
voltage must vary linearly with electrical frequency and hence the desired speed.
part (b): The electrical frequency of the rotor currents is equal to the slip

frequency and hence will remain constant. Since the rotor will be operating in
a constant flux which varies at a constant frequency, the magnitude of the rotor
currents will be unchanged.
part (c): Because the rotor air-gap flux density and the rotor currents are

unchanged, the torque will remain constant.

Problem 6.6
part (a): Since the torque is proportional to the square of the voltage, the

torque-speed characteristic will simply be reduced by a factor of 4.
part (b): Neglecting the effects of stator resistance and leakage reactance,

having both the voltage and frequency maintains constant air-gap flux. Hence
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the torque-speed characteristic looks the same as the original but the synchro-
nous speed is halved.
Problem 6.7
part (a): Four poles.
part (b): Counterclockwise
part (c): 1800 r/min
part (d): Four poles
part (e): No. There will be dc flux linking the induction-motor rotor wind-

ings but there will be no resultant voltage at the slip rings.

Problem 6.8
part (a): 1500 r/min
part (b): The induction motor rotor is rotating at 1500 r/min in the clock-

wise direction. Its stator flux wave is rotating at 3000× (2/poles) = 1000 r/min
in the counterclockwise direction. Thus, the rotor sees a flux wave rotating at
2500 r/min. Noting that a flux wave rotating at 1000 r/min would produce
50-Hz voltages at the slip rings, we see that in this case the rotor frequency will
be fr = 50× (2500/1000) = 125 Hz.
part (c): Now the stator flux wave will rotate at 1000 r/min in the clockwise

direction and the rotor will see a flux wave rotating at 500 r/min. The induced
voltage will therefore be at a frequency of 25 Hz.

Problem 6.9
part (a): R1 will decrease by a factor of 1.04 to 0.212 Ω.
part (b): Xm will increase by a factor of 1/.85 to 53.8 Ω.
part (c): R2 will decrease by a factor of 3.5/5.8 to 0.125 Ω.
part (d): All values will decrease by a factor of 3.

Problem 6.10
This problem can be solved by direct substitution into the equations in

chapter 6, which can in-turn be easily implemented in MATLAB. The following
table of results was obtained from a MATLAB script which implemented the
equivalent-circuit equations assuming the core-loss resistance Rc is in parallel
with the magnetizing reactance. Rc was calculated as

Rc =
4602

220
= 962 Ω

slip [%] 1.0 2.0 3.0
speed [r/min] 1782 1764 1746
Tout [N·m] 8.5 16.5 23.4
Pout [kW] 8.5 16.5 23.4
Pin [kW] 45.8 89.6 128
power factor 0.81 0.87 0.85
efficiency [%] 93.3 94.4 93.8

Problem 6.11
part (a): 1741 r/min
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part (b): 1799 r/min
part (c):

part (d):

Problem 6.12
For a speed of 1725 r/min, Pout = 426, kW, Pin = 457 kW, pf = 0.751

lagging and η = 93.3 %.

Problem 6.13
It is necessary to find find the value of R2. This can be easily done by writing

a MATLAB script to iteratively find that value of R2 which full-load internal
torque at a slip of 3.5%. The result is R2 = 0.0953 Ω. Once this is done, the
same MATLAB script can be used to sustitute the machine parameters into
the equations of chapter 6 to find Tmax = 177 N·m at a slip of 18.2% and
Tstart = 71.6 N·m.
Problem 6.14
This problem is readily solved once the value of R2 has been found as dis-

cussed in the solution to Problem 6.13. The impedance of the feeder must be
added in series with the armature resistance R1 and leakage reactance X1. A
MATLAB script can then be written to find the desired operating point. The
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result is that the motor achieves rated output at a slip of 3.67% and a terminal
voltage of 221.6 V, line-to-line.

Problem 6.15
part (a): For R1 = 0, R1,eq = 0 and thus from Eq. 6.34

R2

smaxT
= (X1,eq +X2)

From Eq. 6.36,

Tmax =
0.5nphV

2
1,eq

ωs(X1,eq +X2)

and from Eq.6.33 with s = 1

Tstart =
nphV

2
1,eqR2

ωs[R2
2 + (X1,eq +X2)2]

Noting that
Tmax

Tstart
=
2.20
1.35

= 1.63

we can take the ratio of the above equations

Tmax

Tstart
= 1.63 =

R2
2 + (X

2
1,eq +X2)2

R2(X1,eq +X2)
=

(
R2

X1,eq+X2

)2

+ 1
R2

X1,eq+X2

From Eq.6.34, with Req,1 = 0, smaxT = R2/(X1,eq +X2). Hence

0.5(s2
maxT + 1)
smaxT

= 1.63

which can be solved to give smaxT = 0.343 = 34.3%.
part (b): From Eq. 6.33 with Req,1 = 0 and with s = srated,

Trated =
nphV 2

1,eq(R2/srated)
ωs[(R2/srated)2 + (X1,eq +X2)2]

and thus

Tmax

Trated
= 2.1 =

0.5[(R2/srated)2 + (Xeq,1 +X2)2]
(R2/srated)(Xeq,1 +X2)

=
0.5[1 + (smaxT/srated)2]

smaxT/srated

This can be solved to give
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srated = 0.240smaxT = 0.0824 = 8.24%

part (c):

Î2,start =
V̂1,eq

R2 + j(Xeq,1 +X2)
=

V̂1,eq

(Xeq,1 +X2)(smaxT + j)

Î2,rated =
V̂1,eq

R2/srated + j(Xeq,1 +X2)
=

V̂1,eq

(Xeq,1 +X2)(smaxT/srated + j)

Thus

|Î2,start|
|Î2,rated|

=
|smaxT/srated + j|

|smaxT + j| =
|4.16 + j|
|.343 + j| = 4.05 = 405%

Problem 6.16
Given Tmax = 2.3Tfl, smaxT = 0.55 and sfl = 0.087, start by taking the ratio

of Eqs. 6.36 and 6.33

Tmax

Tfl
=

0.5[(R1,eq +R2/sfl)2 + (X1,eq +X2)2](
R1,eq +

√
R2

1,eq + (X1,eq +X2)2
)
(R2/sfl)

Substituting Eq. 6.34 gives

Tmax

Tfl
=
0.5sfl

[(
2
sfl

)(
R1,eq
R2

)
+
(

1
sfl

)2

+
(

1
smaxT

)2
]

R1,eq
R2

+ 1
smaxT

Substituting given values and solving gives

Req,1

R2
= 1.315

From Eq. 6.33 we can write

Tstart

Tfl
= sfl



(

Req,1
R2

+ 1
sfl

)2

+
(

Xeq,1+X2
R2

)2

(
Req,1
R2

+ 1
smaxT

)2

+
(

Xeq,1+X2
R2

)2




From Eq. 6.34,
(

X1,eq +X2

R2

)2

=
(

1
smaxT

)2

−
(

R1,eq

R2

)2

and thus we can solve for
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Tstart = 1.26Tfl

Problem 6.17
part (a): Using MATLAB to solve the equivalent-circuit equations, from

the equivalent-circuit at a slip of 3.35%, the power applied to the shaft can be
calculated to be 503.2 kW. Thus the rotational loss is 3.2 kW. Similarly, the
input power to the equivalent circuit is 528.0 kW. Based upon an efficiency of
94%, the actual motor input power is 500 kW/0.94 = 531.9 kW. Thus, the core
losses are equal to 531.9 - 528.0 = 3.9 kW.
part (b): The equivalent circuit is solved in the normal fashion. For ease of

calculation, the core loss can be accounted for by a resistor connected at the
equivalent-circuit terminals (based upon the results of part (a), this corresponds
to a resistance of 1.47 kΩ. The shaft input power is equal to the negative of
the shaft power calculated from the equivalent circuit plus the rotational loss
power. The electrical output power is equal to the negative of the input power
to the equivalent circuit. The result is (using MATLAB):

(i) Generator output power = 512 kW
(ii) efficiency = 91.6%
(iii) power factor = 0.89

part (c): Basically the same calculation as part (b). The impedance of the
feeder must be added to armature impedance of the induction motor. The result
is (using MATLAB):

(i) Power supplied to the bus = 498 kW
(ii) Generator output power = 508 kW

Problem 6.18

Problem 6.19
part (a): Given I2

2,maxTR2 = 9.0I2
2,flR2. Thus I2,maxT = 3.0I2,fl. Ignoring

R1, R1,eq = 0 and we can write
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Î2 =
V̂eq

R2/s+ j(Xeq +X2)

and thus

Î2,fl

Î2,maxT

=
j(Xeq +X2) +R2/smaxT

j(Xeq +X2) +R2/sfl

Substitution from Eq. 6.34

(X1,eq +X2) =
R2

smaxT

gives

Î2,fl

Î2,maxT

=
j + 1

j + smaxT/sfl

and thus

I2,fl

I2,maxT
=

|j + 1|
|j + smaxT/sfl| =

√
2√

1 + (smaxT/sfl)2

Finally, we can solve for smaxT

smaxT = 4.12sfl = 0.0948 = 9.48%

part (b): Taking the ratio of Eqs. 6.36 and 6.33 with R1,eq = 0 and substi-
tution of Eq. 6.34 gives

Tmax

Tfl
=
0.5[(R2/sfl)2 + (X1,eq +X2)2]

(X1,eq +X2)(R2/sfl)
=
0.5[1 + (smaxT/sfl)2]

(smaxT/sfl)
= 2.18

In other words, Tmax = 2.18 per unit.
part (c): In a similar fashion, one can show that

Tstart

Tfl
= sfl

(
1 + (smaxT/sfl)2

1 + s2
maxT

)
= 0.41

In other words, Tstart = 0.41 per unit.
Problem 6.20
part (a): T ∝ I2

2R2/s. Thus

Tstart

Tfl
= sfl

(
I2,start

I2,fl

)2

= 1.32

and thus Tstart = 1.32 per unit.
part (b): As in the solution to Problem 6.15, neglecting the effects of R1
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|Î2,start|
|Î2,rated|

=
|smaxT/sfl + j|
|smaxT + j|

This can be solved for smaxT

smaxT = sfl

√
1− (I2,start/Ifl)2

(sflI2,start/Ifl)2 − 1 = 0.224 = 22.4%

Again, from the solution to Problem 6.15,

Tmax

Trated
=
0.5[1 + (smaxT/sfl)2]

smaxT/sfl
= 3.12

and thus Tmax = 3.12 per unit.
Problem 6.21
part (a): Solving the equations of chapter 6, with s = 1 for starting, with

MATLAB yields

Istart = 233 A
Tstart = 79.1 N·m

part (b): (i) When the motor is connected in Y, the equivalent-circuit para-
meters will be three times those of the normal ∆ connection. Thus

R1 = 0.135 Ω
R2 = 0.162 Ω
X1 = 0.87 Ω
X2 = 0.84 Ω
Xm = 28.8 Ω

(ii)

Istart = 77.6 A
Tstart = 26.3 N·m

Problem 6.22
part (a):

Prot = Pnl − 3I2
nlR1 = 2672 W

part (b): The parameters are calculated following exactly the procedure
found in Example 6.5. The results are:

R1 = 1.11 Ω
X1 = 3.90 Ω
R2 = 1.34 Ω
X2 = 3.90 Ω
Xm = 168 Ω
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part (c): Solving the equations of chapter 6 using the equivalent-circuit
parameters of part (b)

Ia = 29.1 A
Pin = 106 kW
power factor = 0.91 lagging
Pout = 100 kW
efficiency = 94.5%

Problem 6.23
Because this is a blocked-rotor test, one can ignore the magnetizing reactance

Xm. As a result, the motor input impedance can be approximated as

Zin ≈ R1 +R2 + j(X1 +X2)

R2 can be calculated from the blocked-rotor power and current

R2 =
Bbl

3I2
bl

− R1

which gives

Motor 1: R2 = 0.174 Ω
Motor 2: R2 = 0.626 Ω

The motor starting torque is proportional to I2
blR2 and thus the torque ratio

is given by

Tmotor2

Tmotor1
=
(I2

2 )motor2(R2)motor2

(I2
2 )motor1(R2)motor1

=
(
(R2)motor2

(R2)motor1

)(
(I2

2 )motor2

(I2
2 )motor1

)

Thus, for the same currents, the torque will be simply proportional to the
resistance ratio and hence

Tmotor2

Tmotor1
= 0.278

From the given data, we see that for the same voltage, the current ratio will
be (I2)motor2/(I2)motor1 = 99.4/74.7 = 1.39 and hence

Tmotor2

Tmotor1
= 0.492

Problem 6.24

Rotational loss = 3120 W

R1 = 0.318 Ω R2 = 0.605 Ω
X1 = 2.28 Ω X2 = 3.42 Ω Xm = 63.4 Ω
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Problem 6.25
Neglecting R1 and hence Req,1 gives from Eq. 6.35

smaxT =
R2

X1,eq +X2

and from Eq. 6.36

Tmax =
0.5nphV

2
1,eq

ωs(X1,eq +X2)
=
0.5nphV

2
1,eqsmaxT

ωsR2

If the frequency is reduced from 60 to 50 Hz, X1,eq + X2 will drop by a
factor of 5/6 and hence smaxT will increase by a factor of 6/5 to smaxT = 18%,
corresponding to a speed of 1000(1− 0.18) = 820 r/min.

Tmax will increase as

(Tmax)50
(Tmax)60

=
(190/230)2(6/5)

5/6
= 0.983

or (Tmax)50 = 283%
Problem 6.26

smaxT ∝ R2. Therefore

R2 =
1.1

[(smaxT )Rext=1.1/(smaxT )Rext=0]− 1 = 2.07 Ω

Problem 6.27
part (a): From the solution to Problem 6.15

Tmax

Tfl
=
0.5[1 + (smaxT/sfl)2]

smaxT/sfl

Given that Tmax/Tfl = 2.25 and smaxT = 0.16, this can be solved for sfl =
0.0375 = 3.75%.
part (b): The rotor rotor power dissipation at rated load is given by

Protor = Prated

(
sfl

1− sfl

)
= 2.9 kW

part (c): From the solution to Problem 6.19

Tstart

Tfl
= sfl

(
1 + (smaxT/sfl)2

1 + s2
maxT

)
= 0.70

Rated torque is equal to 75 kW/ωm,fl where ωm,fl = 60π(1−sfl) = 181.4 rad/sec.
Thus Trated = 413 N·m and Tstart = 0.70 per unit = 290 N·m.
part (d): If the rotor resistance is doubled, the motor impedance will be the

same if the slip is also doubled. Thus, the slip will be equal to s = 2sfl = 7.50%.
part (e): The torque will equal to full-load torque. Thus T = 413 N·m.
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Problem 6.28

Problem 6.29
part (a):

Protor = Prated

(
sfl

1− sfl

)
= 3.63 kW

part (b): From the solution to Problem 6.15

Tmax

Tfl
=
0.5[1 + (smaxT/sfl)2]

smaxT/sfl

Given that Tmax/Tfl = 3.10 and sfl = (1200 − 1158)/1200 = 0035, this can be
solved for smaxT = 0.211 = 21.1%. This corresponds to a speed of 1200(1 −
0.211) = 947 r/min.
part (c): Sufficient resistance must be inserted to increase smaxT from 0.211

to 1.0. Thus R2,tot = 0.17/.211 = 0.806 Ω and hence the added resistance must
be Rext = 0.806− 0.211 = 0.635 Ω.
part (d): The applied voltage must be reduced by a factor of 5/6 to 383 V,

line-to-line.
part (e): From Eq. 6.35, smaxT = R2/(X1,eq + X2). If the frequency de-

creases by a factor of 5/6, the reactances will also decrease by a factor of 5/6 and
hence smaxT will increase by a factor of 6/5 to 0.042. Hence, the corresponding
speed will be 1000(1− 0.042) = 958 r/min.
Problem 6.30
If the impedance of the motor at starting is made equal to that of the motor

at a slip of 5.6% the starting current will be equal to 200% of its rated value.
This can be done by increasing the rotor resistance for 90/2 = 45 mΩ to

R2,tot =
0.045
0.056

= 804 mΩ

and hence the requierd added resistance will be Rext = 804 − 45 = 759 mΩ.
The starting torque under this condition will be 190% of the full-load torque.
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Problem 6.31
The synchronous speed of this motor is 3600/8 = 450 r/min (47.12 rad/sec).

Thus its full-load speed is 450(1− 0.041) = 431.6 r/min. The corresponding
torque will be (250 × 103)[47.12(1 − 0.041)] = 5.53 × 103 N·m. At a speed of
400 r/min, the torque will be 5.53× 103(400/431.6)2 = 4.75× 103 N·m.
With no external resistance, the slope of the torque-speed characteristic is

thus 5.53 × 103/431.6 = 12.81. The slope of the desired torque-speed charac-
teristic is 4.75 × 103/400 = 11.88. Since the initial slope of the torque-speed
characteristic is inversely proportional to the rotor resistance, the total rotor
resistance must be

Rtot =
(
12.81
11.88

)
24.5 = 26.4 mΩ

Therefore the required added resistance is 26.4− 24.5 = 1.9 mΩ.
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PROBLEM SOLUTIONS: Chapter 7

Problem 7.1
part (a): ωm ∝ Va.
part (b): ωm ∝ 1

If
part (c): ωm will be constant.

Problem 7.2
part (a): For constant terminal voltage, the product nIf (where n is the

motor speed) is constant. Hence, since If ∝ 1/Rf

Rf

1180
=

Rf + 5
1250

and hence Rf = 84.2 Ω.
part (b): 1380 r/min

Problem 7.3
Check this
part (a): ωm halved; Ia constant
part (b): ωm halved; Ia doubled
part (c): ωm halved; Ia halved
part (d): ωm constant; Ia doubled
part (e): ωm halved; Ia reduced by a factor of 4.

Problem 7.4
part (a): Rated armature current = 25 kW/250-V = 100 A.
part (b): At 1200 r/min, Ea can be determined directly from the magneti-

zation curve of Fig. 7.27. The armature voltage can be calculated as

Va = Ea + IaRa

and the power output as Pout = VaIa. With Ia = 100 A

If [A] Ea [V] Va [V] Pout [kW]
1.0 150 164 16.4
2.0 240 254 25.4
2.5 270 284 28.4

part (c): The solution proceeds as in part (b) but with the generated voltage
equal to 900/1200 = 0.75 times that of part (b)

If [A] Ea [V] Va [V] Pout [kW]
1.0 112 126 12.6
2.0 180 194 19.4
2.5 202 216 21.6
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Problem 7.5
part (a):

part (b):
(i)

(ii)
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Problem 7.6
part (a):

Pshaft = Ea

(
Va − Ea

Ra

)

and thus

Ea =
Va +

√
V 2

a − 4PshaftRa

2
The motor speed n can then be found from

n = 1200
(

Ea

1.67× 1200
)
r/min

Here is the desired plot, produced by MATLAB

part (b): The solution for Ea proceeds as in part (a). With the speed
constant at 1200 r/min (and hence constant ωm), solve for If as

If =
Ea

Kf

where Kf = 150D V/A. Here is the desired plot, produced by MATLAB.
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Problem 7.7
The solution is similar to that of Problem 7.6 with the exception that the

assumed straight-line magnetization characteristic is replaced by the non-linear
characteristic of Fig. 7.27. MATLAB, with the ’spline()’ function used to
represent the non-linear characteristic of Fig. 7.27, then produces the following
plots.
part (a):

part (b):

Problem 7.8
part (a): From the load data, the generated voltage is equal to 254+ 62.7×

0.175 = 265 A. From the magnetizing curve (using the ’spline()’ function of
MATLAB), the corresponding field current is 1.54 A. Hence the demagnetizing
effect of this armature current is equal to (1.95− 1.54)500 = 204 A-turns/pole.
part (b): At the desired operating point, the generator output power will be

250 V × 61.5 A = 15.4 kW. Therefore, the motor speed will be

n = 1195− 55
(
15.4
15

)
= 1139 r/min

Because the machine terminal voltage at no load must equal 230 V, from
the magnetizing curve we see that the shunt field under this operating condition
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must equal 1.05 A and hence the shunt field resistance must be 219 Ω. Hence,
under this loading condition, with a terminal voltage of 250 V, the armature
voltage will be 250 + 61.5× 0.065 = 250.8 V, the shunt field current will equal
250.8/219 = 1.15 A and thus the armature current will equal 61.5 + 1.15 =
62.7 A.
The generated voltage can now be calculated to be 250.8 + 62.7(0.175) =

286 V. The corresponding voltage on the 1195 r/min mag curve will be Ea =
286(1195/1139) = 285 V and hence the required net field ampere-turns is (using
the MATLAB ‘spline()’ function) 1042 A-turns. The shunt-field ampere-turns
is 1.15× 500 = 575 A-turns, the demagnetizing armature amp-turns are 204 A-
turns and hence the required series turns are

Ns =
1042− (575− 204)

61.5
= 10.6 ≈ 11 turns

Problem 7.9
From the given data, the generated voltage at Ia = 90A and n(90) =

975 r/min is

Ea(90) = Va − Ia(Ra +Rs) = 230− 90(0.11 + 0.08) = 212.9 V
Similarly, the generated voltage at Ia = 30 A is

Ea(30) = 230− 30(0.11 + 0.08) = 224.3 V
Since Ea ∝ nΦ

Ea(30)
Ea(90)

=
(

n(30)
n(90)

)(
Φ(30)
Φ(90)

)

Making use of the fact that Φ(30)/Φ(90) = 0.48, we can solve for n(30)

n(30) = n(90)
(

Ea(30)
Ea(90)

)(
Φ(90)
Φ(30)

)
= 2140 r/min

Problem 7.10
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Problem 7.11
part (a): For constant field current, and hence constant field flux, constant

torque corresponds to constant armature current. Thus for speeds up to 1200
r/min, the armature current will remain constant. For speeds above 1200 r/min,
ignoring the voltage drop across the armature resistance, the motor speed will
be inversely proportional to the field current (and hence the field flux). Thus the
armature current will increase linearly with speed from its value at 1200 r/min.
Note that as a practical matter, the armature current should be limited to its
rated value, but that limitation is not considered in the plot below.

part (b): In this case, the torque will remain constant as the speed is in-
creased to 1200 r/min. However, as the field flux drops to increase the speed
above 1200 r/min, it is not possible to increase the armature current as the field
flux is reduced to increase the speed above 1200 r/min and hence the torque
track the field flux and will decrease in inverse proportion to the change in speed
above 1200 r/min.

Problem 7.12
part (a): With constant terminal voltage and speed variation obtained by

field current control, the field current (and hence the field flux) will be inversely
proportional to the speed. Constant power operation (motor A) will then require
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constant armature current. Constant torque (motor B) will require that the
armature current variation be proportional to the motor speed. Thus

motor A: Ia = 125 A
motor B: Ia = 125(500/1800) = 34.7 A

part (b):

motor A: Ia = 125 A
motor B: Ia = 125(1800/125) = 450 A

part (c): Under armature voltage control and with constant field current,
the speed will be proportional to the armature voltage. The generated voltage
will be proportional to the speed. Constant-power operation (motor A) will re-
quire aramture current that increases inversely with speed while constant torque
operation (motor B) will require constant armature current.
For the conditions of part (a):

motor A: Ia = 125(1800/125) = 450 A
motor B: Ia = 125 A

For the conditions of part (b):

motor A: Ia = 125(500/1800) = 34.7 A
motor B: Ia = 125 A

Problem 7.13

ωm =
Ea

KaΦd
=

Va − IaRa

KaΦd

Ia =
T

KaΦd

Thus

ωm =
1

KaΦd

(
Va − TRa

KaΦd

)

The desired result can be obtained by taking the derivative of ωm with Φd

dωm

dΦd
=

1
KaΦ2

d

(
2TRa

KaΦd
− Va

)

=
1

KaΦ2
d

(2IaRa − Va)

=
1

KaΦ2
d

(Va − 2Ea)

From this we see that for Ea > 0.5Va, dωa/dΦd < 0 and for Ea < 0.5Va,
dωa/dΦd > 0. Q.E.D.
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Problem 7.14
part (a):

Synchronous machine:

Ia,ac =
30× 103√
3 460

= 37.7 A

Eaf = |Va,ac + jXsIa,ac| = |460/
√
3 + j5.13× 37.7| = 328.4 V, l− n

DC machine:

P = EaIa,dc = 30 kW

Ea = Va,dc − Ia,dcRa

Thus,

E2
a =

Va,dc +
√

V 2
a,dc − 4PRa

2
= 226 V

part (b): Increase the dc-motor field excitation until Ea = Va,dc = 230 V,
in which case the dc motor input current will equal zero and it will produce no
shaft power. The ac machine will operate at a power angle of zero and hence
its terminal current will be

Ia,ac =
Eaf − V a, ac

Xs
= 12.2 A

part (c): If one further increases the dc-machine field excitation the dc
machine will act as a generator. In this case, defining the dc generator current
as positive out of the machine,

P = EaIa,dc = 30 kW

Ea = Va,dc + Ia,dcRa

Thus,

E2
a =

Va,dc +
√

V 2
a,dc + 4PRa

2
= 226 V

and

Ia,dc =
Ea − Va,dc

Ra
= 128 A
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The ac machine will now be operating as a motor. The armature current
will be the negative of that of part (a) and hence the power factor will be unity.
Its magnitude will be 37.7 A.

Problem 7.15
First find the demagnetizing mmf. At rated load,

Ea = Va − IaRtot = 600− 250× 0.125 = 568.8 V
Using the MATLAB ‘spline’ function, the corresponding field current on the 400
r/min magnetizing curve is

If = 232 A

Thus, the demagnetizing mmf at a current of 250 A is equal to 250− 232 =
18 A and in general, the effective series-field current will be equal to

Is,eff = Ia − 18
(

Ia

250

)2

For a starting current of 460 A, the effective series field current will thus equal
399 A. Using the MATLAB ‘spline()’ function, this corresponds to a generated
voltage of 474 V from the 400 r/min magnetization curve. The corresponding
torque (which will be the same as the starting torque due to the same flux and
armature current) can then be calculated as

T =
EaIa

ωm
=
474× 560
400(π/30)

= 5200 N ·m

Problem 7.16
At no load, Ea,nl = 230 − 6.35 × 0.11 = 229.3 V. At full load, Ea,fl =

230− 115 ∗ 0.11 = 217.4 V. But, Ea ∝ nΦ, thus

nfl = nnl

(
Ea,fl

Ea,nl

)(
Φnl

Φfl

)
= 2150

(
217.4
229.3

)(
1
0.94

)
= 2168 r/min

Problem 7.17
The motor power is given by P = EaIa, where

Ea = KaΦdωm

and where, from Eq. 7.3

Ka =
poles Ca

2πm
=
4× 666
2π × 2 = 212

Thus, for Φd = 0.01, Ea = KaΦdωm = 2.12ωm.

Ia =
Vt − Ea

Ra
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Using MATLAB and its ‘spline()’ function to represent the fan character-
istics, an iterative routine can be written to solve for the operating point (the
intersection of the motor and fan characteristics). The result is that the motor
will operate at a speed of 999 r/min and an output power of 8.39 kW.

Problem 7.18
part (a): Assuming negligible voltage drop across the armature resistance

at no load, the field current can be found from the 1300 r/min magnetization
curve by setting Ea = 230 V. This can be most easily done using the MATLAB
‘spline()’ function. The result is If = 1.67 A. This corresponds to NfIf =
2500 a·turns of mmf.
part (b): At rated load, Ea = Va−IaRa = 230−46.5×0.17 = 222.1 V. From

the no-load, 1300 r/min magnetization curve, the corresponding field current
is 1.50 A (again obtained using the MATLAB ‘spline()’ function). Thus, the
effective armature reaction is

Armature reaction = (1.67− 1.5) A× 1500 turns/pole
= 251 A · turns/pole

part (c): With the series field winding, Rtot = Ra + Rs = 0.208 Ω. Thus,
under this condition, Ea = Va−IaRa = 220.3. This corresponds to a 1300 r/min
generated voltage of 236.7 V and a corresponding field current (determined
from the magnetization curve using the MATLAB ‘spline()’ function) of 1.84 A,
corresponding to a total of 2755 A·turns. Thus, the required series field turns
will be

Ns =
2755− (2500− 251)

46.5
= 10.8

or, rounding to the nearest integer, Ns = 11 turns/pole.
part (d): Now the effective field current will be

Ieff =
2500− 251 + 20× 46.5

1500
= 2.12 A

From the 1300 r/min magnetization curve, Ea = 246.1 V while the actual
Ea = Va − RtotIa = 220.3 V. Hence the new speed is

n = 1300
(
220.3
246.1

)
= 1164 r/min

Problem 7.19
part (a): At full load, 1185 r/min, with a field current of 0.554 A

Ea = Va − IaRtot = 221.4 V

where Rtot = 0.21 + 0.035 = 0.245 Ω.
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An 1825 r/min magnetization curve can be obtained by multiplying 230 V
by the ratio of 1185 r/min divided by the given speed for each of the points in
the data table. A MATLAB ‘spline()’ fit can then be used to determine that this
generated voltage corresponds to a field-current of 0.527 A . Thus, the armature
reaction is (0.554− 0.527)2000 = 53.4 A·turns/pole.
part (b): The full-load torque is

T =
EaIa

ωm
=
221.4× 34.2
1185(π/30)

= 62.8 N ·m

part (c): The maximum field current is 230/310 = 0.742 Ω. The effective
field current under this condition will therefore be

Ieff =
2000× 0.742− 160

2000
= 0.662 A

From the 1185 r/min magnetization curve found in part (b), this corresponds
to a generated voltage of 245 V. Thus, the corresponding torque will be

T =
EaIa

ωm
=

245× 65
1185(π/30)

= 128 N ·m

part (d): With the addition of 0.05 Ω, the total resistance in the armature
circuit will now be Rtot = 0.295 Ω. The required generated voltage will thus be

Ea = Va − IaRtot = 219.6 V

This corresponds to 219.6(1185/1050) = 247.8 V on the 1185 r/min magnetiza-
tion curve and a corresponding effective field current of 0.701 A.
As can be seen from the data table, a no-load speed of 1200 r/min corre-

sponds to a field current of 0.554 A. Thus the series-field A·turns must make up
for the difference between that required and the actual field current as reduced
by armature reaction.

Ns =
Nf(If,eff − If) + Armature reaction

Ia

=
2000(0.701− 0.554) + 53.4

35.2
= 9.8 turns

Problem 7.20
part (a): From the demagnetization curve, we see that the shunt field current

is 0.55 A since the no-load generated voltage must equal 230 V. The full-load
generated voltage is

Ea = Va − IaRa = 219.4 V

and the corresponding field current (from the demagnetization curve obtained
using the MATLAB ‘spline()’ function) is 0.487 A. Thus the demagnetization
is equal to 2000(0.55− 0.487) = 127 A·turns.
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part (b): The total effective armature resistance is now Rtot = 0.15+0.028 =
0.178 Ω. Thus, the full-load generated voltage will be

Ea = Va − IaRtot = 217.4 V

The net effective field current is now equal to 0.487+70.8(4/2000) = 0.628 A.
The corresponding voltage at 1750 r/min (found from the magnetization curve
using the MATLAB ‘spline()’ function) is 242.7 V and hence the full-load speed
is

n = 1750
(
217.4
242.7

)
= 1567 r/min

part (c): The effective field current under this condition will be

Ieff = 0.55 + 125(4/2000)− 230/2000 = 0.685 A
From the 1750 r/min magnetization curve (using the MATLAB ‘spline()’ func-
tion), this corresponds to a generated voltage of 249 V. Thus, the corresponding
torque will be

T =
EaIa

ωm
=
249× 125
1750(π/30)

= 170 N ·m

Problem 7.21
part (a): For a constant torque load, changing the armature resistance will

not change the armature current and hence Ia = 60 A.
part(b):

Ea = Va − RaIa

Thus, without the added 1.0Ω resistor, Ea = 216 V and with it Ea = 156 V.
Thus,

Speed ratio =
156
216

= 0.72

Problem 7.22
parts (a) and (b):
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Operation in the fourth quadrant means that the motor torque is positive while
the speed is negative. In this case the motor is acting as a generator and
absorbing energy from the lowering load, which would otherwise accelerate due
to the effects of gravity.
part (c): -473 r/min

Problem 7.23
part (a): At rated load, Ea = 230 − 122 times0.064 = 222 V. Thus, rated-

load speed is

n = 1150
(
222
230

)
= 1133 r/min

part (b): The maximum value of the starting resistance will be required at
starting.

230
Ra +Rmax

= 2× 122 = 244

and thus Rmax = 0.878 Ω.
part (c): For each value of Rtot = Ra+Rext, the armature current will reach

its rated value when the motor reaches a speed such that

Ea = 230− 122Rtot,old

At this point Rtot will be reduced such that the armature current again reaches
122 A. Based upon this alogrithm, the external resistance can be controlled as
shown in the following table:

Step number Rext[Ω] Ea,min [V] nmin [r/min] [V] Ea,max [V] nmax [r/min]
1 0.878 0 0 115 587
2 0.407 115 587 173 882
3 0.170 173 882 202 1030
4 0.051 202 1030 216 1101
5 0 216 1101 - -

Problem 7.24
part (a): At no load, Ea,nl = Kmωm,nl = Va. Thus

ωm,nl =
Va

Km
=

85
0.21

= 405 rad/sec

Hence, the full-load speed is ωm,nl(30/π) = 3865 r/min.
part (b): At zero speed, the current will be Ia = Va/Ra = 44.7 A and the

corresponding torque will be T = KmIa = 9.4 N·m.
part (c):

T = KmIa =
Km(Va − Ea)

Ra
=

Km(Va − Kmωm)
Ra
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Here is the desired plot, obtained using MATLAB:

Problem 7.25
part (a): At no load, ωm,nl = 11, 210(π/30) = 1174 rad/sec and Ea,nl =

Va − Ia,nlRa = 4.94 V. Thus

Km =
Ea,nl

ωm,nl
= 4.21× 10−3 V/(rad/sec)

part (b): The no load rotational losses are

Prot,nl = Ea,nlIa,nl = 62 mW

part (c): At zero speed, the current will be Ia = Va/Ra = 1.09 A and the
corresponding torque will be T = KmIa = 4.6 mN·m.
part (d): The output power versus speed characteristic is parabolic as shown

below.

An iterative MATLAB scripts can easily find the two desired operating points:
2761 r/min for which the efficiency is 24.3% and 8473 r/min for which the
efficiency is 72.8%.
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Problem 7.26
No numerical solution required for this problem.

Problem 7.27
Based upon the calculations of Problem 7.25, at 8750 r/min, the rotational

losses will be 29.4 mW. Thus, the total required electromechanical power will
be P = 779 mW. The generated voltage will be Ea = Kmωm = 3.86 V and the
armature current will thus be Ia = P/Ea = 0.202 A.
Thus the desired armature voltage will be

Va = Ea +RaIa = 4.79 V
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PROBLEM SOLUTIONS: Chapter 8

Problem 8.1
part (a): In this case, β = 45◦ = π/4 rad and

Lmax =
N2µ0βRD

2g
= 96 mH

and there is a 15◦ overlap region of constant inductance.

part (b):

Tmax,1 =
LmaxI

2
1

2β
= 6.1× 10−2I2

1 N ·m

Tmax,1 =
LmaxI

2
2

2β
= 6.1× 10−2I2

2 N ·m
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part (c): i1 = i2 = 5 A;

(i) ω = 0 Tnet = 0
(ii) ω = 45◦ Tnet = 0 (iii) ω = 75◦ Tnet = 1.53 N·m

Problem 8.2
When a single phase is excited, magnetic circuit analysis can show that all

the mmf drop occurs across the two air gaps associated with that phase. Thus,
there is no additional mmf available to drive flux through the second phase.

Problem 8.3
Same argument as in the solution of Problem 8.3.

Problem 8.4
part (a) and (b):

Lmax =
DRαµ0N

2

2g
= 21.5 mH
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part (c):

I0 =
2gB

µ0N
= 6.96 A

part (d):

Tmax =
I02

2

(
Lmax

α/2

)
= 1.99 N ·m
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part (e):
phase 1 ON:

−120◦ ≤ θ ≤ −90◦, −30◦ ≤ θ ≤ 0◦, 60◦ ≤ θ ≤ 90◦, 150◦ ≤ θ ≤ 180◦

phase 2 ON:
−150◦ ≤ θ ≤ −120◦, −60◦ ≤ θ ≤ −30◦, 30◦ ≤ θ ≤ 60◦, 120◦ ≤ θ ≤ 150◦

phase 3 ON:
−180◦ ≤ θ ≤ −150◦, −90◦ ≤ θ ≤ −60◦, 0◦ ≤ θ ≤ 30◦, 90◦ ≤ θ ≤ 120◦

part (f): The rotor will rotate 90◦ in 30 msec.

n =
(1/4) r
35 msec

= 7.14 r/sec = 429 r/min

The rotor will rotate in the clockwise direction if the phase sequence is 1 - 2 -
3 - 1 ....

Problem 8.5
When the rotor is aligned with any given pole pair, it is clearly med-way

between the other two pole pairs. Thus rotation in one direction will increase
the inductance of one set of poles and decrease the inductance of the remaining
set. Thus, depending on which of the remaining poles is excited, it is possible
to get torque in either direction.

Problem 8.6
The rotor will rotate 15◦ as each consecutive phase is excited. Thus, the rotor

will rotate 1 revolution in 24 sequences of phase excitation or 8 complete sets of
phase excitation. Thus, the rotor will rotate 1 revolution in 8× 15 = 120! msec.
Thus it will rotate at 1/0.12 = 8.33 r/sec = 500 r/min.

Problem 8.7
part (a): If phase 1 is shut off and phase 2 is turned on, the rotor will move

to the left by 2β/3 ≈ 4.29◦. Similarly, turning off phase 2 and turning on phase
3 will cause the rotor to move yet another 4.29◦. Thus, starting with phase 1
on, to move 21.4◦/4.29◦ ≈ 5 steps, the sequence will be:

1 ON
1 OFF & 2 ON
2 OFF & 3 ON
3 OFF & 1 ON
1 OFF & 2 ON
2 OFF & 3 ON

part (b): Clockwise is equivalent to rotor rotation to the right. The required
phase sequence will be ... 1 - 3 - 2 - 1 - 3 - 2 .... The rotor will rotate≈ 4.29◦/step
and hence the rotor speed will be
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125 r/min× 360◦

r
× 1 step

4.29◦
= 1.05× 104 steps/min

Thus the required step time is

time
step

=
1 min

8400 step
× 60 sec

min
= 5.72 msec/step

Problem 8.8
part (a): When phase 1 is energized, the rotor will be aligned as shown in

the following figure:

From the figure, we see that if phase 1 is turned off and phase 2 is energized, the
rotor will rotate 4.61◦ degrees to the right (clockwise) to align with the phase-2
pole. Similarly, if phase 3 is excited after phase 1 is turned off, the rotor will
rotate 4.61◦ degrees to the left (counterclockwise).

part (b):

80 r/min× 360◦

r
× 1 step

4.61◦
= 6.25× 103 steps/min

time
step

=
1 min

6.25× 103 step
× 60 sec

min
= 9.6 msec/step

The required phase sequence will thus be ... 1 - 3 - 2 - 1 - 3 - 2 - 1 ....

Problem 8.9
part (a): For time in which the current is building up

i1(t) =
100t

0.005 + 57.5t
A
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This expression is valid until time t = 2.22 msec, at which point i1(t) = 1.67 A.
part (b):

i1(t) =
0.22− 200(t− 2.22× 10−3)
0.05 + 57.5(4.44× 10−3)− 7

This expression is valid until time t = 3.32 msec.
part (c): Here are the desired plots

The integral under the torque curve is 2.38×10−4 N·m·sec while the positive
torque integral is 3.29 N·m·sec. Thus there is a 25.7% reduction in torque due
to negative torque production during the current-decay period.

Problem 8.10
part (a): For time in which the current is building up

i1(t) =
100t

0.005 + 57.5t
A

This expression is valid until time t = 2.22 msec, at which point i1(t) = 1.67 A.
part (b):

i1(t) =
0.22− 250(t− 2.22× 10−3)
0.05 + 57.5(4.44× 10−3)− 7
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This expression is valid until time t = 3.10 msec.
part (c): Here are the desired plots

The integral under the torque curve is 2.59×10−4 N·m·sec while the positive
torque integral is 3.20 N·m·sec. Thus there is a 19.0% reduction in torque due
to negative torque production during the current-decay period.
Problem 8.11

part (a): The phase inductance looks like the plot of Problem 8.4, part (a),
with the addition of the Lleak = 4.5 mH leakage inductance. Now Lmax =
21.5 + 4.5 = 26.0 mH.
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part (b): For −30◦ ≤ θ ≤ 0◦

dL

dθ
=

21.5 mH
π/3 rad

= 20.5 mH/rad

ωm =
dθ

dt
=

1750 r
min

× 2πrad
r

× 1min
60sec

= 183 rad/sec

dL

dt
= ωm

dL

dθ
= 3.76 Ω

The governing equation is

v = iR + L
di

dt
+ i

dL

dt

Noting that dL/dt >> R, we can approximate this equation as

v ≈ d(Li)
dt

and thus

i(t) =
∫

v(t) dt

L(t)

Substituting v(t) = 75 V and L(t) = 4.5× 10−3 + 3.76t then gives

i(t) =
75 t

4.5× 10−3 + 3.76t
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which is valid over the range 0 ≤ t ≤ 5.71 msec, at which time i(t) = 16.5 A.

Here is the desired plot:

part (c): During this time, starting at time t = 5.71 msec, v(t) = −75 V
and L(t) = 26.0× 10−3 − 3.76(t− 5.71× 10−3). Thus

i(t) = 16.5 +
−75 (t − 5.71× 10−3)

26.0× 10−3 − 3.76(t − 5.71× 10−3)

which reaches zero at t = 8.84 msec. Here is the plot of the total current
transient.

part (d): The torque is given by

T =
i2

2
dL

dθ

Here is the plot:
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Problem 8.12
part (a): The plot of Lθ is shown below

Here, from Examples 8.1 and 8.3, Lleak = 5 mH and Lmax = 133 mH.
part (b): The solution for −67.5◦ ≤ θ ≤ −7.5◦ (0 ≤ t ≤ 2.5 msec) is exactly

the same as part (a) of Example 8.3

i(t) =
100t

0.005 + 51.2t
A

For −7.5◦ ≤ θ ≤ 7.5◦ (2.5 msec ≤ t ≤ 3.13 msec), dL/dt = 0 and thus

v = iR + L
di

dt
⇒ −100 = 1.5i+ 0.133

di

dt

This equation has an exponential solution with time constant τ = L/R =
88.7 msec.

i = −66.7 + 68.6e−(t−0.0025)/0.0887

At t = 3.13 msec, i(t) = 1.39 A.
Following time t = 3.13 msec, the solution proceeds as in Example 8.3. Thus

i(t) = 1.468− 100− 3.13× 10−3

0.005− 51.2(t− 5.63× 10−3)

The current reaches zero at t = 4.25 msec. Here is the corresponding plot,
produced by MATLAB
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part (c):

T =
i2

2
dL

dθ

Problem 8.13
part (a):
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part (b):

Inverter volt− ampere rating
Net output power

= 1.55

part (c): Pmech = 2968 W.

Problem 8.14
part (a): Based upon the discussion in the text associated with Fig. 8.18,

the following table can be produced:

θm bit pattern i1 i2
0◦ 1000 I0 0
45◦ 1010 I0 I0

90◦ 0010 0 I0

135◦ 0110 −I0 I0

180◦ 0100 −I0 0
225◦ 0101 −I0 −I0

270◦ 0001 0 −I0

315◦ 1001 I0 −I0

part (b): There will be 8 pattern changes per revolution. At 1200 r/min
= 20 r/sec, there must be 160 pattern changes per second, corresponding to a
time of 6.25 msec between pattern changes.

Problem 8.15
part (a): The rotor will rotate 2◦ counter clockwise.
part (b): The phase excitation will look like (with T = 41.7 msec):
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part (c):

8r
min

=
2880◦

min
=

48◦

sec
=

2◦

41.7 msec

The frequency will be

f =
1
4T

= 6 Hz

Problem 8.16
part (a): The displacement will be 360◦/(3× 14) = 8.571◦.
part (b): There will be one revolution of the motor for every 14 cycles of the

phase currents. Hence

f =
(
900 r
min

)(
1 min
60 sec

)(
14 cycles

r

)
= 210 Hz
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PROBLEM SOLUTIONS: Chapter 9

Problem 9.1
part (a):

Îmain =
V̂

Zmain
= 13.8 � − 56.4◦ A

Îaux =
V̂

Zaux
= 9.9 � − 49.2◦ A

part (b): We want the angle of the auxiliary-winding current to lead that
of the main winding by 90c (π/2 rad). Thus, defining Z ′

aux = Zaux + jXC

(XC = 1/ωC), we want

� Z ′
aux = tan−1 Im[Zaux]− XC

Re[Zaux]
= � Zmain +

π

2

Thus XC = 14.5 Ω and C = 183 µF.
part (c):

Îmain =
V̂

Zmain
= 13.8 � − 56.4◦ A

Îaux =
V̂

Z ′
aux

= 12.6 � 33.6◦ A

Problem 9.2
The solution is basically the same as for Problem 9.1, but now with Zmain =

4.82 + j6.04 Ω and Zaux = 7.95 + j7.68 Ω and ω = 100π.
part (a):

Îmain = 15.5 � − 51.4◦ A

Îaux = 10.9 � − 44.0◦ A

part (b): C = 227 µF.
part (c):

Îmain = 15.5 � − 51.4◦ A

Îaux = 11.8 � 38.6◦ A

Problem 9.3
No numerical solution required.
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Problem 9.4

Imain = 3.48 A
power factor = 0.59
Pout = 132 W
speed = 1719 r/min
Torque = 0.732 N·m
efficiency = 58.5 %

Problem 9.5
The solution follows that of Example 9.2.

Imain = 4.38 A
power factor = 0.65
Pout = 204 W
speed = 1724 r/min
Torque = 1.13 N·m
efficiency = 63.0 %

Problem 9.6
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Problem 9.7
part (a): From Eq. 4.6, the peak amplitude, in space and time, of the mmf

waves are given by

Fpeak =
4
π

(
kwNph

poles

)
Ipeak

Thus

Fmain,peak =
4
π

(
42
4

)(
20.7

√
2
)
= 391 A · turns

and

Faux,peak =
4
π

(
68
4

)(
11.1

√
2
)
= 340 A · turns

part (b): The auxiliary winding current must be phase shifted by 90◦ from
that of the main winding and the mmf amplitudes must be equal. Hence, Iaux

should be increased to

Iaux = Imain
(

Nmain

Naux

)
= 12.8 A

Problem 9.8
The internal torque is proportional to Rrmf − Rb and thus is equal to zero

when Rf = Rb. From Example 9.2,

Rf =

(
X2

m,main

X22

)
1

sQ2,main + 1/(sQ2,main)

and

Rb =

(
X2

m,main

X22

)
1

(2− s)Q2,main + 1/((2− s)Q2,main)

We see that Rf = Rb if (2− s)Q2,main = 1/(sQ2,main) or

s = 1±
√
1 +

1
Q2,main

and thus

n = ns(1 − s) = ±ns

√
1 +

1
Q2,main

where ns is the synchronous speed in r/min.
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Problem 9.9
The solution follows that of Example 9.3.
part (a): Iα = 34.5 � − 32.3◦ A, Iβ = 7.1 � 30.0◦ A
part (b): Pmech = 6700 W

Problem 9.10
part (a): Following the calculations of Example 9.3 with s = 1, Tmech =

14.8 N·m.
part (b): Setting

Vα = 230 V Vβ = 230ej90 ◦ V

gives Tmech = 16.4 N·m.
part (c): Letting V̂α = Vα and V̂β = jVβ gives

Vf =
Vα + jVβ

2
; Vb =

Vα − jVβ

2

Let Z = R1 + jX1 + Zf . Thus

If =
Vf

Z
=

Vα + jVβ

2Z
; Ib =

Vb

Z
=

Vα − jVβ

2Z

T =
Pgap,f − Pgap,b

ωs
=

Rf(I2
f − I2

b)
ωs

=
(

Rf

|Z|2
)

VαVβ

Clearly, the same torque would be achived if the phase voltages were each equal
in magnitude to

√
VαVβ .

Problem 9.11
The impedance Z must be added to the impedances of the motor of Problem

9.9. The solution then proceeds as in Example 9.3. The terminal voltage can
be found as

V̂t,α = V̂α − ÎαZ

V̂t,β = V̂β − ÎβZ

For

V̂α = 235 � 0◦; V̂β = 212 � 78◦

a MATLAB analysis gives

V̂t,α = 205 � − 8.0◦; V̂t,β = 194 � 73◦

which is clearly more balanced than the applied voltage.
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Problem 9.12
part (a): slip s = 0.035

V̂f =
1
2
(V̂α − jV̂β) = 214.8 � − 12.5◦ V

V̂b =
1
2
(V̂α + jV̂β) = 47.6 � 77.5◦ V

Zf and Zb can be calculated from Eqs. 9.4 and 9.5 with s = 0.035

Îf =
V̂f

R1 + jX1 + Zf
= 2.99 � − 64.0◦

Îb =
V̂b

R1 + jX1 + Zb
= 4.48 � 0.7◦

Pgap,f = 2I2
f Rf = 784 W Pgap,b = 2I2

bRb = 65.9 W

Tgap =
(Pgf − Pgb)

ωs
= 3.81 N ·m

part (b): Repeating the analysis of part (a) with s = 1 gives Tstart = 12.0n·m.
part (c): Now we have a two-phase machine operating under balanced two-

phase conditions. We can now apply the analysis of Section 6.5.

V1,eq =
∣∣∣∣V1

(
jXm(R1 + jX1)

R1 + j(X1 + Xm)

)∣∣∣∣ = 208 V

and R1,eq + jX1,eq = jXm in parallel with R1 + jX1 = 0.698 + j5.02 Ω.
Thus

smax,T =
R2√

R2
1,eq + (X1,eq + X2)2

= 0.348

and

Tmax =
1
ωs


 0.5nphV

2
1,eq

R1,eq +
√

R2
1,eq + (X1,eq + X2)2


 = 20.8 N ·m

part (d): Now we have a single-phase machine operating with Vα = 220 V
and s = 0.04

Îα =
Vα

(R1 + jX10.5(Zf + Zb)
= 5.73 � − 52.3◦ A
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Pgap = 0.5I2
α(Rf − Rb) = 691 W

Pmech = Pgap(1− s) = 664 W

and finally

Pout = Pmech − Prot = 599 W

part (e):

Îf = Îb = 0.5Îα = 2.82 � − 52.3◦

V̂f = (R1 + jX1 + Zf)Îf ; V̂b = (R1 + jX1 + Zb)Îb

and thus

V̂β = j(Vf − Vb) = 0.5jÎα(Zf − Zb) = 167 � 81.3◦ V

In other words, the open-circuit voltage across the β winding will be 167 V.

Problem 9.13
This problem can be solved using a MATLAB script similar to that written

for Example 9.5.
part (a): Tstart = 0.28 N·m.
part (b): Imain = 19.3 A; Iaux = 3.2 A
part (c): I = 21.3 A and the power factor is 0.99 lagging
part (d): Pout = 2205 W
part (e): Pin = 2551 W and η = 86.4%

Problem 9.14
This problem can be solved using a MATLAB script similar to that written

for Example 9.5. An iterative search gives C = 70.4 µF and an efficiency of
87.1%.

Problem 9.15
This problem can be solved using a MATLAB script similar to that written

for Example 9.5. An iterative search shows that the minimum capacitance is
80.9 µF.
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Problem 9.16
part (a):

parts (b) and (c):



120

PROBLEM SOLUTIONS: Chapter 10

Problem 10.1

part (a):

part (b):

Vrms =

√
1
T

∫ T

0

v2
R(t) dt =

√
2
T

∫ T/4

0

(
4V0t

T

)2

dt =
V0√

6
= 3.67 V

part (c): < pdiss >= V 2
rms/R = 9 mW.

Problem 10.2

part (a): The diode does not turn on until the source voltage reaches 0.6 V,
which occurs at time t = (0.6/4V0)T = T/60.
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part (b):

Vrms =

√
2
T

∫ T/4

T/60

(
4 × 8.4t

T

)2

dt = 3.43 V

part (c): < pdiss >= V 2
rms/R = 7.8 mW.

Problem 10.3

Vrms =

√
2
T

∫ T/4

td

(
4V0t

T

)2

dt =
32V 2

0

3

(
1
43

−
(

td
T

)3
)

Problem 10.4

Problem 10.5
part (a): Peak VR = 310 V.
part (b): Ripple voltage = 25.7 V.
part (c): Time-averaged power dissipated in the load resistor = 177 W.
part (d): Time-averaged power dissipated in the diode bridge = 0.41 W.

Problem 10.6
If vs(t) ≥ 0, diode D1 is ON, diode D2 is off and the inductor current is

governed by the following differential equation:

L
di

dt
+ Ri = vs(t)

of vs(t) < 0, diode D1 is off and diode D2 is on and the inductor current is
governed by the differential equaion:

L
di

dt
+ Ri = 0

A simple integration implemented in MATLAB produces the following plot:
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Problem 10.7

Problem 10.8
part (a): Letting T = 2π/ω

Vdc =
1
T

∫ T/2

0

V0 sin ωt =
V0

π
= 14.3 V

part (b):

Idc =
Vdc

R
= 2.9 A
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part (c):

part (d):

Problem 10.9
part (a): Letting T = 2π/ω

Vdc =
1
T

∫ T/2

td

V0 sin ωt =
V0

2π
(1 + cos ωtd)

part (b):

Idc =
Vdc

R
=

V0

2πR
(1 + cos ωtd)
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part (c):

Problem 10.10
part (a): Letting T = 2π/ω

Vdc =
2
T

∫ T/2

td

V0 sin ωt =
V0

π
(1 + cos ωtd)

part (b):

Idc =
Vdc

R
=

V0

πR
(1 + cos ωtd)

part (c):
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part (d):

Problem 10.11
part (a):

(i)

(ii)

Vdc =
1
π

∫ 5π/4

π/4

V0 sin θ dθ =
V0

π
cos α2 =

V0

π
√

2

(iii)

Pload = VdcIdc =
V0Idc

π
√

2
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part (b):
(i)

(ii)

Vdc =
1
π

∫ 7π/4

3π/4

V0 sin θ dθ =
V0

π
cos α2 = − V0

π
√

2

(iii)

Pload = VdcIdc = −V0Idc

π
√

2

The power is negative, hence energy is being extracted from the load.

Problem 10.12
part (a) From Eq. 10.11

Idc =
2V0

πR + 2ωLs
= 18.3 A

and from Eq. 10.8

tc =
1
ω

cos−1

[
1 − 2IdcωLs

V0

]
= 3.12 msec

part (b): For Ls = 0

Idc =
2V0

πR
= 23.6 A

Problem 10.13
part (a): At 1650 r/min, the generated voltage of the dc motor is equal to

Ea = 85
(

1650
1725

)
= 81.3 V
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The motor input power will then be

Pin = Ia(Ea + IaRa) = 665 W

part (b):

Vdc =
(

2V0

π

)
cos αd =

(
2
√

2 × 115
π

)
cos αd = 103.5 cos αd V

Thus for Vdc = Ea + Ia(Ra + RL) = 90.5 V, αd = 29.1◦.

Problem 10.14
The rated current of this motor is

Irated =
Prated

Vrated
=

1000
85

= 11.8 A

The controller must limit Idc to twice Irated or 23.6 A. Under this condition,
Vdc = Ia(Ra + RL) = 28.5 V.

From part (b) of the solution to Problem 10.13,

Vdc = 103.5 cos αd V

and thus the controller must set αd = 74.0◦.

Problem 10.15
The required dc voltage is Vf = IfRf = 277 V. From Eq. 10.19,

Vl−l,rms =
πVf

3
√

2
= 204 V, rms

Problem 10.16
The required dc voltage is Vf = IfRf = 231 V. From Eq. 10.20,

αd = cos−1

(
πVf

3
√

2 Vl−l,rms

)
= 39.0◦

Problem 10.17
part (a): The magnet resistance is sufficiently small that its voltage drop

can be ignored while the magnet is being charged. The desired charge rate is

di

dt
= 80 A25 sec = 3.2 A/sec

Thus the required dc voltage will be

Vdc = L
di

dt
= 15.7 V
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Thus

αd = cos−1

(
πVdc

3
√

2 Vl−l,rms

)
= cos−1

(
π 15.7

3
√

2 × 15

)
= 39.3◦

part (b): Constant current simply requires a dc voltage of Vdc = RIdc =
3.6 × 10−3 × 80 = 0.29 V. Thus

αd = cos−1

(
πVdc

3
√

2 Vl−l,rms

)
= cos−1

(
π 15.7

3
√

2 × 0.288

)
= 89.2◦

Problem 10.18
part (a):

V1 =
2
T

∫ T

0

v(t) cos
(

2πt

T

)
dt =

8
T

∫ DT/2

0

V0 cos
(

2πt

T

)
dt

=
V0

4π
sin πD = 51.5 V

part (b):

Harmonic number Peak amplitude [V]
1 51.5
2 0
3 6.6
4 0
5 12.7
6 0
7 2.8
8 0
9 5.7
10 0

Problem 10.19
part (a):

V3 =
3
T

∫ T

0

v(t) cos
(

6πt

T

)
dt =

4V0

3π
sin (3πD)

A3 = 0 for D = 1/3
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part (b):

Harmonic number Peak amplitude [V]
1 55.1
2 0
3 0.007
4 0
5 11.0
6 0
7 7.9
8 0
9 0.007
10 0

Problem 10.20
part (a):

Time period S1 S2 S3 S4
0 ≤ ωt < αd + DT/2 ON OFF ON OFF

αd + DT/2 ≤ ωt < π + αd − DT/2 ON ON OFF OFF
π + αd − DT/2 ≤ ωt < π + αd + DT/2 OFF ON OFF ON
π + αd + DT/2 ≤ ωt < 2π + αd − DT/2 OFF OFF ON ON

2π + αd − DT/2 ≤ ωt < 2π ON OFF ON OFF

part (b): By analogy to the solution of Problem 10.18, part (a)

I1 =
I0

4π
sin πD

and by inspection φ1 = αd.
part (c):

p(t) =< i1(t)vL(t) >=
VaI1

2
cos φ1 =

VaI0

8π
cos αd

Problem 10.21
From Eq. 10.34

(iL)avg =
[2D − 1]V0

R
= 17.65 A

From Eq. 10.29

(iL)min = −
(

V0

R

) [1 − 2e
−T(1−D)

τ + e−
T
τ

]
(1 − e−

T
τ )

= 17.45 A

and from Eq. 10.20

(iL)max =
(

V0

R

) [1 − 2e
−DT

τ + e−
T
τ

]
(1 − e−

T
τ )

= 17.84 A

Finally
Ripple = (iL)max − (iL)min = 0.39 A



130

PROBLEM SOLUTIONS: Chapter 11

Problem 11.1
part (a): From the no-load data

Kf =
Ea,nl

ωm,nlIf,nl
=

120
(1718π/30)× 0.7

= 0.953

Combining

T =
EaIa

ωm

and

Va = Ea + IaRa

gives

Ea = 0.5
(

Va +
√

V 2
a − 4ωmT Ra

)
= 0.5

(
120 +

√
1202 − 4(1800π/30)× 15.2× 0.145

)
= 116.4 V

Thus

If =
Ea

ωmKf
= 0.648 A

and, defining If,max = 120/104 = 1.14 A,

D =
If

If,max
= 0.567

part (b): If = 0.782 A and D = 0.684.
part (c):
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Problem 11.2
part (a): If = 0.645 A and D = 0.565.
part (b): If = 0.784 A and D = 0.686.
part (c):

Problem 11.3
part (a): From part (a) of Problem 11.1, kf = 0.953. For Ea = 120 V and n

= 1300 r/min (ωm = 1300π/30) and thus

If,1 =
Ea

ωmKf
= 0.925 A

and

D =
If

If,max
= 0.809

where If,max = 1.14 A as found in Problem 11.1.
part (b): If,2 = DIf,max = 0.686 A.

ωm =
Ea

IfKf
= 183.7 r/min

and thus n = 30ωm/π.
part (c):

if(t) = If,2 + (If,1 − If,2)e−t/τ = 0.686 + 0.239e−t/τ

where τ = Lf/Rf = 35.2 msec.
part (d):

J
dωm

dt
= Kfif(t)Ea = Kfif(t)

(
Va − Kfif(t)ωm

Ra

)

where if(t) is as given in part (c).
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Problem 11.4
part (a):

Ea,nl = Va − RaInl = 239.7 V

The rotational loss is given by Prot = Ea,nlIa,nl = 374 W.
Based upon If = Va/Rf = 1.81 A,

ωm,nl =
Ea,nl

IfKf
= 312.5 r/min

and thus nnl = 30ωm,nl/π = 2984 r/min.
part (b):

part (c):
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part (d):

Problem 11.5
part (a): First convert Km to SI units.

Km = 2.18× 10−4 V
r/min

1r/min
π/30 rad/sec

= 2.08 mV/(rad/sec)

Tstall = 0.094 oz/cdotin = 6.64× 10−4 N · m. At stall, Ia,stall = Tstall/Km =
0.319 A. Thus

Ra =
Va

Ia
=

3
0.319

= 9.41 Ω

part (b): ωm,nl = nnl

(
π
30

)
= 1299 rad/sec. Thus Ea,nl = ωm,nlKm,nl =

2.70 V.

Ia,nl =
Va − Ea,nl

Ra
= 31.5 mA

and thus the no-load rotational loss is

Prot = Ea,nlIa,nl = 85.3 mA

part (c):
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Problem 11.6
part (a): ωm,nl = nnl

(
π
30

)
= 374.9 rad/sec.

Ea,nl = Va − Ia,nlRa = 24.0 V

Km =
Ea,nl

ωm,nl
= 63.9 mV/(rad/sec)

part (b): Prot = Ea,nlIa,nl = 11.3 W
part (c):

D Ia [A] r/min Pload [W]
0.80 13.35 3393 293
0.75 12.70 3179 261
0.70 12.05 2964 231
0.65 11.40 2749 203
0.60 10.70 2535 176
0.55 10.05 2320 151
0.50 9.30 2107 127

Problem 11.7
The rotor acceleration is governed by the differential equation:

J
dωm

dt
= T = KmIa

Converted to kg·m2, the moment of inertia is 4.52× 10−9 kg·m2. Thus, to get
to the final speed ωm = 1.2× 104 π/30 = 1257 rad/sec,

t =
Jωm

KmIa
=

(4.5× 10−9) × 1257
(2.08× 10−3) × 0.1

= 27.3 msec

Problem 11.8
part (a):

Ia,rated =
Prated + Prot

ωm,ratedKm
=

1187
(3000π/30)× 0.465

= 8.12 A

Trated = KmIa,rated = 3.78 N · m

part (b): Tload = KmIa − Trot. Here Trot = 87/(3000π/30) = 0.27 N·m.
Thus Tload = 2.61 N·m and Pload = Tloadωm = 729 W.

part (c): The differential equation governing the motor speed is

J
dωm

dt
=
(

πJ

30

)
dn

dt
= Tmech − Trot − Tload
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Here, n is the motor speed in r/min, Tmech = KmIa = 0.465× 7.0 = 3.26 N·m
and, from part (b),

Tload = 729
( n

2670

)
= 0.273 n N ·m

Thus, the differential equation is

dn

dt
+ 4.094 n − 1.252× 104 = 0

and the solution is

n = 3051− 381e−t/τ r/min

where τ = 0.255 sec.

Problem 11.9
From the solution to Problem 11.8, Ia,rated = 8.12 A. Neglecting rotational

losses, the motor speed can be calculated from the differential equation

J
dωm

dt
= Tmech = −KmIa,rated

and thus

ωm = ωm,0 −
(

KmIa,rated

J

)
t

and thus the motor will reach zero speed at time

t =
Jωm,0

KmIa,rated
=

(1.86× 10−3) × (3000π/30)
0.465× 8.12

= 0.155 sec

Problem 11.10
part (a): Rated speed = 120f/poles = 1800 r/min.
part (b):

Irated =
Prated√
3 Vrated

= 138.0 A

part (c): In per unit, Va = 1.0 and P = 1000/1100 = 0.909. Thus, Ia = 0.909
and

Eaf = Va − jXsIa = 1.55 � − 49.7◦ per unit

Thus If = 1.55× 85 = 131 A.
part (d): The inverter frequency will equal f = 60(1300/1800) = 43.3 Hz

and the motor power input will be P = 1000(1300/1800)2.5 = 443 W. If one
scales the base voltage and base power with frequency then the base impedance
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will scale with frequency. Hence, under this new operating condition, the per-
unit terminal voltage, generated voltage and synchronous reactance will be un-
changed while the per-unit power will be P = 443/(1100×43.3/60) = 0.558 per
unit. Thus

δ = − sin−1

(
P Xs

VaEaf

)
= −27.9circ

and Êaf = 1.55 � −27.9◦

Îa =
Va − Êaf

jXs
= 0.688 � 26.8◦

Thus the power factor is cos−1(26.8◦) = 0.89 leading.
part (e): Continuing with the base quantities of part (d), Ia = 0.558 per

unit and

Eaf = Va − jXsIa = 1.20 � − 47.0◦ per unit

and thus If = 1.20× 85 = 102 A.

Problem 11.11
part (a): No numerical calculation required.
part (b):

1500 r/min:

Va = 3.83 kV, l − l
Pmax = 833 kW
If = 131 A

2000 r/min:

Va = 4.60 kV, l-l
Pmax = 1000 kW
If = 126 A

Problem 11.12

Ls = 5.23 mH
Laf = 63.1 mH
Trated = 531 N · m

Problem 11.13
part (a):

Laf =
√

2 Vbase√
3 ωbase AFNL

= 63.1 mH

Ls can be calculated from the per-unit value of Xs.
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Zbase =
V 2

base

Pbase
= 2.12 Ω

and Lbase = Zbase/ωbase = 5.6 mH. Thus,

Xs =
Xs

Zbase
= 1.97 Ω

Ls =
Xs

Lbase
= 5.23 mH

part (b): ωm,base = ωbase(2/poles) = 60π and Tbase = Pbase/ωm,base =
531 N·m. Thus, T = 0.5 Tbase = 265 N·m.

iQ =
(

2
3

)(
2

poles

)(
T

LafIf

)
= 100 A

Ia =
iQ√
2

= 70.8 A, rms

part (c):

Eaf =
ωbaseLafIf√

2
= 235 V

Because iD = 0, Îa and Êaf both lie along the quadrature axis. Thus, the
terminal voltage magnitude will be given by

Va = |Eaf + jXsIa| = 274 V, l-n = 474 V, l-l

Problem 11.14
part (a): The various machine parameters were calculated in the solution to

Problem 11.13. T = 0.75Tbase = 398 N·m and ωm = 1475π/30 = 154.5 rad/sec.
Thus, P = ωmT = 61.5 kW.

part (b):

iQ =
(

2
3

)(
2

poles

)(
T

LafIf

)
= 145.1 A

Ia =
iQ√
2

= 102.6 A, rms

part (c): fe = 60(1475/1800) = 49.2 Hz.
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part (d):

Eaf =
ωbaseLafIf√

2
= 200 V

Because iD = 0, Îa and Êaf both lie along the quadrature axis. Thus, the
terminal voltage magnitude will be given by

Va = |Eaf + jXsIa| = 260 V, l-n = 450 V, l-l

Problem 11.15
part (a): The various machine parameters were calculated in the solution to

Problem 11.13. With Tref increased to 0.8Tbase = 424 N·m

iQ =
(

2
3

)(
2

poles

)(
Tref

LafIf

)
= 160.3 A

Ia =
iQ√
2

= 113.3 A, rms

Eaf =
ωbaseLafIf√

2
= 235.3 V

Because iD = 0, Îa and Êaf both lie along the quadrature axis. Thus, the
terminal voltage magnitude will be given by

Va = |Eaf + jXsIa| = 324.5 V, l-n = 562.1 V, l-l = 1.22 per unit

part (b): The required calculations follow those of Example 11.9.
(i) The terminal voltage will be set equal to 460 V, l-l (1.0 per unit).
(ii) The line-to-neutral terminal voltage is Va,l−n = 460/sqrt3 = 265.6 V.

Thus

Ia =
(ωmTref

3Va,l−n
= 100.4 A, rms

(iii)

δ = tan−1

(
ωmLsIa

Va,l−n

)
= −26.7◦

Thus

irmQ =
√

2 Ia sin δ = 113.8 A

and

irmD =
√

2 Ia sin δ = −84.9 A
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(iv)

If =
(

2
3

)(
2

poles

)(
Tref

LafiQ

)
= 19.7 A

Problem 11.16

T = 4431 N·m
If = 121.7 A
iD = -78.4 A
iQ = 95.5 A
Ia = 87.4 A, rms
Va = 1993 V, rms, l-l

Problem 11.17
part (a):

ΛPM =

√
2 Va,rated, l-n

ωm,rated
=

√
2
(
230/

√
3
)

3500π/30
= 0.512 Wb

part (b): The frequency will be 60 Hz and hence Xs = ωeLs = 3.24 Ω.
Eaf = (3600/3500)(230/

√
3) = 136.6 V. Ia,rated = 2000/(sqrt3 230) = 5.02 A.

The armature current is equal to

Ia =

(
Va,rated, l-n − Êaf

)
jXs

Although the magnitude of Êaf = Eaf � δ is known, its angle δ (required to
give Ia = Ia,rated) is not. A MATLAB script can be used to easily iterate to
find that δ = −6.73 ◦. The motor power is then given by

P = −
(

3Eaf Va,rated, l-n
Xs

)
sin δ = 1.96 kW

Then,

T =
P

ωm
= 5.22 N · m

and

iQ =
(

2
3

)(
2

poles

)(
T

ΛPM

)
= 6.80 A

iD =
√

2I2
a,rated + i2Q = 2.05 A
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Problem 11.18
As calculated in the solution to Problem 11.17, ΛPM = 0.512 Wb. At 4000

r/min, fe = (4000/3600)60 = 66.7 Hz and thus ωe = 2πfe = 418.9 rad/sec.
The rms line-to-neutral armature flux linkages under this operating condition

will be

λa =

√
2 Va,rated, l-n

ωe
= 0.448 Wb

and maximum torque will correspond to operating the motor at its rated arma-
ture current Ia = Ia,rated = 5.02 A.

Solving

λa =

√
λ2

D + λ2
Q

2

=

√
(Ls + ΛPM)2 + (LsiQ)2

2

=

√
2(LsIa)2 + 2LsiDΛPM + Λ2

PM

2

for iD gives

iD =
2λ2

a − 2(LsIa)2 − Λ2
PM

2LsΛPM
= −4.38 A.

Thus

iQ =
√

2I2
a − i2D = 5.62 A

Thus, the maximimum torque will be given by

Tmax =
(

3
2

)(
poles

2

)
ΛPMiQ = 4.32 N ·m

and, for a speed of 4000 r/min (ωm = 418.9 rad/sec)

Pmax = ωmTmax = 1810 W

Problem 11.19
The rated current of this motor is

Ia,rated =
Prated√

3
(

Va,rated, l-l
) = 37.7 A

ΛPM =

√
2
(

Va,rated, l-n
)

ωe
=

√
2(230/sqrt3)
7620π/30

= 0.235 Wb
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part (a): The torque will be maximized when iQ is maximized. In this case,
this will occur when iD = 0 and thus

iQ,max =
√

2 Ia,rated = 53.2 A

and thus

Tmax =
(

3
2

)(
poles

2

)
ΛPMiQ,max = 18.8 N ·m

part (b): The peak line-to-neutral flux linkages are

λa =
√

Λ2
PM + λ2

Q =
√

Λ2
PM + (LsiQ,max)2 = 0.257 Wb

Thus, to avoid exceeding rated terminal voltage, the electrical frequency of
the motor must be limited to

ωe,max =

√
2
(

Va,rated, l-n
)

λa
= 731.9 rad/sec

and the corresponding motor speed will be

n = ωe,max

(
30
π

)
= 6989 r/min

part (c): At 10,000 r/min, ωe = 10000π/30 = 1047 rad/sec. In order to
maintain rated terminal voltage, the peak line-to-neutral armature flux linkages
must now be limited to

λa,max =

√
2
(

Va,rated, l-n
)

ωe
= 0.179 Wb

Thus, solving the peak line-to-neutral armature flux linkages

λa,max =
√

λ2
D + λ2

Q

=
√

(Ls + ΛPM)2 + (LsiQ)2

=

√
2(LsIa,rated)2 + 2LsiDΛPM + Λ2

PM

2

for iD gives

iD =
λ2

a,max − 2(LsIa,rated)2 − Λ2
PM

2LsΛPM
= −37.3 A.

and thus
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iQ =
√

2I2
a,rated − i2D = 38.0 A

The motor torque is then given by

T =
(

3
2

)(
poles

2

)
ΛPMiQ = 13.4 N · m

Since this is a two-pole machine and ωm = ωe, the corresponding power will be
P = ωmT = 14.1 kW.

The motor power factor will be

power factor =
P

√
3
(

Va,rated l-l
)

Ia,rated

= 0.937

Problem 11.20

Problem 11.21
part (a): Following the analysis of Chapter 6

Z1,eq = R1,eq + X1,eq =
jXm(R1 + jX1)
R1 + j(X1 + Xm

= 0.099 + j1.08Ω
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Tmax =
0.5nphV 2

1,eq

ωs(X1,eq + X2)
= 234 N · m

smaxT =
R2√

R2
1,eq + (X1,eq + X2)2

= 0.102 = 10.2%

part (b): ωs = 2πf(2/poles) = 60π = 188.5 rad/sec. At s = 0.029, ωm =
(1− s)ωs = 183.0 rad/sec. The torque is given by

T =
1
ωs

[
nph V 2

1,eq(R2/s)
(R1,eq + (R2/s))2 + (X1,eq + X2)2

]
= 126 N ·m

and the power is P = ωmT = 23.1 kW.
part (c): With the frequency reduced from 60 Hz to 30 Hz, ωs, the terminal

voltage and each reactance must be scaled by the factor (35/60). The torque
expression can be solved for the slip. This can most easily be done iteratively
with a MATLAB script. The result is s = 0.051 = 5.1%, the speed is 997 r/min
and the output power is 13.1 kW.

Problem 11.22
part (a):

part (b): The same MATLAB script can be used to iteratively find the drive
frequency for which smaxT = 1.0. The result is a drive frequency of 5.44 Hz and
a torque of 151 N·m.
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Problem 11.23

Problem 11.24
The motor torque is a function of the ratio R2/s. The slip with R2,ext = 0

is

s0 =
1200− 1157

1200
= 0.0358

and that with R2,ext = 0.87 Ω is

s1 =
1200− 1072

1200
= 0.1067

Thus, solving

R2

s0
=

R2 + 0.87
s1

for R2 gives R2 = 0.44 Ω.

Problem 11.25
The motor torque is a function of the ratio R2/s. The slip with R2,ext = 0

is

s0 =
1200− 1157

1200
= 0.0358

The desired operating speed corresponds to a slip of

s1 =
1200− 850

1200
= 0.2917

Thus substituting the value of R2 found in the solution to Problem 11.24 and
solving for R2,ext

R2

s0
=

R2 + R2,ext

s1
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for R2,ext gives R2,ext = 3.14 Ω.

Problem 11.26
part (a): If R1 is assumed negligible, the torque expression becomes

T =
1
ωs

[
nph V 2

1,eq(R2/s)
(R2/s)2 + (X1,eq + X2)2

]

Substituting the corresponding expressions for Tmax

Tmax =
1
ωs

[
0.5nphV 2

1,eq

X1,eq + X2

]

smaxT =
R2

X1,eq + X2

gives

T = Tmax

(
2

s
smaxT

+ smaxT
s

)

Defining the ratio of full-load torque to maximum torque as

k ≡ Tfl

Tmax
=

1
2.12

= 0.472

the full-load slip can then be found as

sfl = smaxT

(
k

1 +
√

1− k2

)
= 0.0414 = 4.14%

part (b): The full load rotor power dissipation is given by

Protor = Pfl

(
sfl

1− sfl

)
= 3240 W

part (c): At rated load, ωm,rated = (1 − sfl)ωs == 180.7 rad/sec. The rated
torque is Trated = Prated/ωm,rated = 415 N·m.

Setting s = 1 gives

Tstart = Tmax

(
2

1
smaxT

+ smaxT

)
= 68.1% = 283 N ·m

part (d): If the stator current is at its full load value, this means that R2/s
is equal to its full load value and hence the torque will be equal to the full-load
torque, 415 N·m.
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part (e): The slip will be twice the original full load slip or 8.26%.

Problem 11.27
part (a):

sfl =
1200− 1169

1200
= 0.0258

and thus the full-load rotor power dissipation is equal to

Protor = Pfl

(
sfl

1− sfl

)
= 928 W

part (b): Defining

k ≡ Tmax

Tfl
= 2.45

and using the derivation found in the solution to Problem 11.26 gives

smaxT = sfl

(
k +

√
k2 − 1

)
= 0.1211

Thus the motor speed at maximim torque is nmax = 1200(1−smaxT) = 1055 r/min.
part (c): We want smaxT to increase by a factor of 1/0.1211 = 8.26. Thus

the rotor resistance must increase by this factor. In other words

R2 + R2,ext = 8.26R2

which gives R2,ext = 1.67 Ω.
part (d): The 50-Hz voltage will be (5/6) that of 60-Hz. Thus the applied

voltage will be 367 V, line-to-line.
part (e): If the frequency and voltage are scaled from their rated value by a

factor kf , the torque expression becomes

T =
(

1
kfωs0

)[
nph (kfV1,eq)2(R2/s)

(R2/s)2 + (kf(X1,eq + X2))
2

]

where ωs0 is the rated-frequency synchronous speed of the motor. Clearly, the
torque expression will remain constant if the slip scales invesely with kf . Thus

sfl,50 =
(

60
50

)
sfl,60 = 0.031

The synchronous speed at 50 Hz is 1000 r/min and thus

nfl,50 = 1000(1− sfl,50) = 969 r/min
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Problem 11.28
part (a): From the data given in Problem 11.23, the motor inductances are:

L1 = 3.13 mH; L2 = 3.50 mH; Lm = 128 mH;

and thus

LS = L1 + Lm = 131.5 mH

and

LR = L2 + Lm = 131.9 mH

Ra = R1 = 108 mΩ and RaR = R2 = 296 mΩ. Finally, the rated motor torque
The peak flux linkages corresponding to rated voltage line-to-neutral voltage

are given by

λrated =
√

2 Vbase√
3 ωbase

=
√

2 2400√
3 (120π)

= 5.19 Wb

The required torque can be determined from the given power and speed as

Tmech =
Pmech

ωm
=

400× 103

1148π/30
= 3327 N · m

Setting λDR = λrated gives

iQ =
(

2
3

)(
2

poles

)(
LR

Lm

)(
Tmech

λDR

)
= 146.1 A

and

iD =
λDR

Lm
= 40.5 A

part (b):

Ia =

√
i2D + i2Q

2
= 107.2 A

part (c):

ωme = ωm

(
poles

2

)
= 360.6 rad/sec

ωe = ωme +
(

RaR

LR

)(
iQ
iD

)
= 368.7 rad/sec

and thus
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fe =
ω2

2π
= 58.7 Hz

part (d):

Va =

√
(RaiD − ωe(LS − L2

m
LR

)iQ)2 + (RaiQ + ωeLSiD)2

2
= 1421 V, l-n = 2461 V, l-l

Problem 11.29
part (a): From the given data, the motor inductances are:

L1 = 0.915 mH; L2 = 0.936 mH; Lm = 49.34 mH;

and thus

LS = L1 + Lm = 50.25 mH

and

LR = L2 + Lm = 50.27 mH

Ra = R1 = 32.2 mΩ and RaR = R2 = 70.3 mΩ. Finally, the rated motor torque
The peak flux linkages corresponding to rated voltage line-to-neutral voltage

are given by

λrated =
√

2 Vbase√
3 ωbase

=
√

2 230√
3 (120π)

= 0.498 Wb

The motor torque is Tmech = 85(1300/1800) = 61.4 N·m. Setting λDR =
λrated, we can solve for iQ and iD

iQ =
(

2
3

)(
2

poles

)(
LR

Lm

)(
Tmech

λDR

)
= 41.9 A

and

iD =
λDR

Lm
= 10.1 A

The motor mechanical velocity in electrical rad/sec is

ωme = ωm

(
poles

2

)
= 272.3 rad/sec

and thus
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ωe = ωme +
(

RaR

LR

)(
iQ
iD

)
= 278.1 rad/sec

and

fe =
ω2

2π
= 44.3 Hz

part (b):

Ia =

√
i2D + i2Q

2
= 30.4 A

Va =

√
(RaiD − ωe(LS − L2

m
LR

)iQ)2 + (RaiQ + ωeLSiD)2

2
= 101.8 V, l-n = 176.3 V, l-l

part (c):

Sin =
√

3 VaIa = 9.30 kVA

part (d):

Problem 11.30
The motor parameters are calculated in the solution to Problem 11.29.
part (a): The motor torque is Tmech = 85(1450/1800) = 68.5 N·m. Setting

λDR = λrated, we can solve for iQ and iD

iQ =
(

2
3

)(
2

poles

)(
LR

Lm

)(
Tmech

λDR

)
= 46.7 A

iD =
λDR

Lm
= 10.1 A
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and

Ia =

√
i2D + i2Q

2
= 33.8 A

part (b):
The motor mechanical velocity in electrical rad/sec is

ωme = ωm

(
poles

2

)
= 303.7 rad/sec

and thus

ωe = ωme +
(

RaR

LR

)(
iQ
iD

)
= 310.1 rad/sec

and

fe =
ω2

2π
= 49.4 Hz

part (c): iQ is now increased to 51.4 A and hence, with IDR and hence λDR

unchanged

Tmech =
(

3
2

)(
poles

2

)(
Lm

LR

)
λDRiQ = 75.3 N ·m

Thus the motor speed is

n = 1800
(

Tmech

85

)
= 1595 r/min

and ωm = nπ/30 = 167.0 rad/sec.

Pmech = Tmechωm = 11.4 kW

part (d): The terminal voltage is

Va =

√
(RaiD − ωe(LS − L2

m
LR

)iQ)2 + (RaiQ + ωeLSiD)2

2
= 125.6 V, l-n = 217.5 V, l-l

The drive frequency can be found from

ωme = ωm

(
poles

2

)
= 334.1 rad/sec

ωe = ωme +
(

RaR

LR

)(
iQ
iD

)
= 341.2 rad/sec
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and

fe =
ω2

2π
= 54.3 Hz

part (e):

Sin =
√

3 VaIa = 13.9 kVA

part (f): Iteration with a MATLAB script gives λDR = 95.3% of λrated.

Problem 11.31
part (a): From the given data, the motor inductances are:

L1 = 4.96 mH; L2 = 6.02 mH; Lm = 118.3 mH;

and thus

LS = L1 + Lm = 123.3 mH

and

LR = L2 + Lm = 124.3 mH

Ra = R1 = 212 mΩ and RaR = R2 = 348 mΩ. Finally, the rated motor torque
The peak flux linkages corresponding to rated voltage line-to-neutral voltage

are given by

λrated =
√

2 Vbase√
3 ωbase

=
√

2 4160√
3 (120π)

= 9.01 Wb

At a power output of 1050 kW and a speed of 828 r/min, ωm = 84.3 rad/sec,
Tmech = 1.25× 104 N·m. Setting λDR = λrated gives

iQ =
(

2
3

)(
2

poles

)(
T

ΛPM

)
= 242.1 A

iD =
√

2I2
a,rated + i2Q = 76.2 A

Ia =

√
i2D + i2Q

2
= 179.5 A

The terminal voltage is

Va =

√
(RaiD − ωe(LS − L2

m
LR

)iQ)2 + (RaiQ + ωeLSiD)2

2
= 2415 V, l-n = 4183 V, l-l
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The drive frequency can be found from

ωme = ωm

(
poles

2

)
= 337.2 rad/sec

ωe = ωme +
(

RaR

LR

)(
iQ
iD

)
= 346.1 rad/sec

and

fe =
ω2

2π
= 55.1 Hz

part (b): The equivalent-circuit of Chapter 6 can be analyzed readily using
MATLAB as follows:

- All the reactances must be scaled from their 60-Hz values to 55.1 Hz.
- The rms input voltage must be set equal to 2415 V, line-to-neutral.
- The slip must be calculated based upon a synchronous speed of
ns = 60fe(2/poles) = 826 r/min.

If this is done, the equivalent circuit will give exactly the same results as those
of part (a).
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