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G. Latouche
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PREFACE

The book deals with the numerical solution of structured Markov chains
which have a wide applicability in queueing theory and stochastic modeling and
include M/G/1 and G/M/1-type Markov chains, quasi-birth–death (QBD) pro-
cesses, non-skip-free queues and tree-like stochastic processes.

By using a language familiar to both applied probabilists and numerical an-
alysts, the book provides a systematic treatment of the theory and algorithms
for important families of structured Markov chains. In fact, the subject is at
the intersection of two major research areas: applied probability and numerical
analysis which are also of great interest for applications.

The book is addressed to PhD students, researchers in the field of applied
probability and numerical analysis but also to engineers and scientists dealing
with actual telecommunications and computer systems, and generally with the
evaluation of computer system performance. The book is useful both to readers
interested in a thorough reference work on algorithms for use in their scientific
and applied work, and to those who work in the design and analysis of numerical
algorithms and in numerical linear algebra who want to learn more about certain
applications and to find more material and motivation for their research.

A comprehensive and self-contained treatment of the Markov chains encoun-
tered in the most important queueing problems is performed by means of ex-
amples which clarify the applicative importance of the mathematical models. A
thorough treatment of the literature on algorithmic procedures for these prob-
lems, from the simplest to the most advanced and efficient, is carried out. Func-
tional iterations, doubling methods, logarithmic reduction, cyclic reduction, and
subspace iteration are classes of methods which are described and analyzed in
detail in the book. Their adaptation to different specific models coming from
applications but also interesting in themselves is described and analyzed.

The theory at the basis of the numerical methods developed in the book is
treated in a systematic way. Results from the current literature are reported with
a unifying language and new results are also provided concerning the convergence
and the analysis of the numerical performance of some methods. The book of-
fers also a comprehensive and self-contained treatment of the structured matrix
tools which are at the basis of the fastest algorithmic techniques for the solu-
tion of structured Markov chains. The main results concerning Toeplitz matrices,
displacement operators, and Wiener–Hopf factorizations are reported as far as
they are useful for the numerical treatment of Markov chains. Advanced com-
putational techniques like evaluation interpolation at the roots of 1, performed
by means of FFT, fast power series arithmetic, Toeplitz matrix computations,
and displacement representations, are described in detail. The most up to date

v
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algorithms which so far are scattered in diverse papers written with different
languages and notation are reported with a unifying language.

Much space is devoted to the theoretical issues concerning Wiener–Hopf fac-
torizations, canonical factorizations and matrix equations trying to relate con-
cepts and tools from the fields of numerical analysis and operator theory with the
fields of applied probability. These concepts provide a unifying framework where
structured Markov chains can be naturally investigated from a computational
point of view. The reader will discover that the Ramaswami formula is nothing
else but the canonical factorization of a matrix power series and that FFT-based
algorithms allow one to implement this formula in a way that is much faster
than the customary implementation. From canonical factorizations applied to
more general contexts, the reader will also learn that the Ramaswami formula
can be extended to wider classes of Markov chains. Certain transformations, like
the reduction of an M/G/1 Markov chain to a QBD process with infinite blocks
are viewed from the algebraic point of view in a more general framework.

Each solution method, even the most advanced and apparently complicated
one, is reported in detailed algorithmic form so that the reader can translate it
into a code in a high-level language with minimum effort.

Besides the major results published in journal papers, the book also contains
new achievements concerning the convergence analysis and the computational
analysis of certain algorithms. These results become more simple and direct when
analyzed in the framework of Wiener algebra and of canonical factorizations.

The book is divided into three parts: Tools, Structured Markov Chains, and
Algorithms.

The first part, concerning the tools, is formed of three chapters: Chapter
1 contains a basic description of the fundamental concepts related to Markov
chains; Chapter 2 contains a systematic treatment of the structured matrix tools
needed throughout the book, including finite Toeplitz matrices, displacement
operators, and FFT; the third chapter concerns infinite block Toeplitz matri-
ces, their relationships with matrix power series, and the fundamental problem
of solving matrix equations and computing canonical factorizations. Here, the
concept of a Wiener algebra is introduced; this provides a natural theoretical
framework where the convergence properties of algorithms for solving Markov
chains can be easily proved. Also the concept of canonical factorization provides
a powerful tool for solving infinite linear systems like the fundamental system
πTP = πT.

The second part deals with the description and the analysis of structured
Markov chains. In Chapter 4, M/G/1-type Markov chains are analyzed; the
reduction to solving a nonlinear matrix equation and the role played by canonical
factorizations in this regard is pointed out. Phase-type queues are treated in
Chapter 5 where G/M/1-type Markov chains, non-skip-free, QBD processes and
tree-like processes are described and analyzed.

The third part concerns solution algorithms. In Chapter 6 the major algo-
rithms based on functional iteration techniques for solving nonlinear matrix equa-
tions are described, analyzed, and compared. First, the basic concepts on fixed
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point iterations are recalled, then linearly convergent iterations are treated, and
finally Newton’s iteration is considered. Chapter 7 concerns quadratically con-
vergent algorithms for solving matrix equations encountered in M/G/1, G/M/1
and QBD processes. The algorithm of logarithmic reduction for solving QBDs
is described and analyzed, and an algebraic proof of its convergence is provided.
Then the cyclic reduction technique for QBDs is explained and related to log-
arithmic reduction. Then cyclic reduction is extended to M/G/1 and G/M/1
processes. Here, new convergence and applicability results are proved. Compu-
tational issues concerning the implementation of cyclic reduction are treated by
relying on the tools introduced in the first part of the book. Chapter 8 deals
with some alternative approaches. A general technique for accelerating the con-
vergence of iterative methods is described; its application to accelerating cyclic
reduction is analyzed. A functional iteration relying on the combination of cyclic
reduction and fixed point iteration is introduced: its convergence is linear but
its convergence rate can be arbitrarily large. A doubling method, evaluation in-
terpolation techniques and the invariant subspace method complete the chapter.
Finally, in Chapter 9 some specialized structures are investigated and part of the
algorithms described in the previous chapters are adapted to the specific cases.
Markov chains with limited displacement (non-skip-free processes) are solved
by means of functional iterations and cyclic reduction. The special QBD pro-
cess obtained by reducing an M/G/1-type Markov chain to a QBD with infinite
blocks is considered and treated with cyclic reduction. Finally three different
algorithms for tree-like stochastic processes, relying on fixed point iterations,
Newton’s iteration and cyclic reduction, are introduced and analyzed.

Each chapter ends with some bibliographic notes which provide more in-
formation about the results treated in the chapter and about further related
subjects that the reader might be interested in.

For the sake of completeness, the appendix collects the main general concepts
and results used in the book which are part of the numerical background.

A list of the main notation used in the book, the bibliography, the list of
algorithms and the index complete the volume.

We wish to thank Albrecht Boettcher, Leiba Rodman, Ilya Spitkovsky and
Paolo Tilli for their suggestions and nice discussions which helped us to improve
the presentation, and Bruno Iannazzo for carefully reading the manuscript and
for pointing out some typos.

This work has been partially carried out under the project “Structured ma-
trix analysis: numerical methods and applications” by the Italian Minister of Re-
search and University, grant number 2002014121, and with the partial support
of GNCS, the Italian National Group of Scientific Computing of the INDAM,
Istituto Nazionale di Alta Matematica.
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1

INTRODUCTION TO MARKOV CHAINS

1.1 Discrete-time Markov chains

Markov chains are used to model systems which evolve in time. They come
under various guises but we only consider here discrete-state processes, meaning
that the total number of states which the process may occupy is either finite
or countably infinite. Time may either increase by discrete, constant amounts,
as when the modeled system is controlled by a digital clock, or it may increase
continuously.

A stochastic process1 is a family {Xt : t ∈ T} of random variables Xt indexed
by some set T and with values in a common set E: Xt ∈ E for all t ∈ T . Here,
E is a denumerable set and is called the state space, and T is the time space. If
T is denumerable, say T = N, the process is said to be discrete, otherwise it is
continuous.

We first define discrete-state, discrete-time Markov chains.

Definition 1.1 (Markov property) The stochastic process {Xn : n ∈ N} is a
Markov chain if2

P[Xn+1 = j|X0, X1, . . . , Xn−1, Xn] = P[Xn+1 = j|Xn], (1.1)

for all states j ∈ E, and for all time n ∈ N.

This means that if one knows the state Xn of the system at time n, then the
past history X0, X1, . . . , Xn−1 does not help in determining which state might
be occupied at time n + 1. One also usually requires that the laws which govern
the evolution of the system be time-invariant; this is formulated as follows.

Definition 1.2 (Homogeneity assumption) A Markov chain {Xn : n ∈ N}
is homogeneous if

P[Xn+1 = j|Xn = i] = P[X1 = j|X0 = i], (1.2)

for all states i, j ∈ E and for all time n ∈ N.

1We give in Section 1.9 a few references for the reader who might wish for a more elaborate
presentation than we give here, about stochastic processes in general and Markov chains in
particular.

2Throughout, we denote by P[X = j] the probability that the random variable X takes the
value j, and by P[X = j|Y = i] the conditional probability that X takes the value j, given
that the random variable Y takes the value i.

3



4 INTRODUCTION TO MARKOV CHAINS

A few examples may help the reader get some feeling for the type of processes
which we have in mind.

Example 1.3 Queueing models are used to represent systems of resources,
traditionally called “servers”, which are to be used by several users, called “cus-
tomers”. The terminology stems from applications like bank tellers, hotel recep-
tion desks, toll booths on freeways, and so on, where customers actually queue
up until they are served by an employee. Queueing theory is used in much more
diverse circumstances, however.

Simple queues consist of one server which attends to one customer at a time,
in order of their arrivals, with the added assumption that customers are indefi-
nitely patient. We assume that time is discretized into intervals of fixed length,
that a random number of customers join the system during each interval, and
that the server removes one customer from the queue at the end of each interval,
if there is any. Defining αn as the number of new arrivals during the interval
[n − 1, n) and Xn as the number of customers in the system at time n, we have

Xn+1 =

{
Xn + αn+1 − 1 if Xn + αn+1 ≥ 1
0 if Xn + αn+1 = 0.

(1.3)

If {αn} is a collection of independent random variables, then Xn+1 is condition-
ally independent of X0, . . . , Xn−1 if Xn is known. If, in addition, the αn’s are
identically distributed, then {Xn} is homogeneous. The state space is N.

Example 1.4 Phase-type random variables are extensively used in Markov
modeling. An elementary case is given by the negative binomial distribution:
take a Bernoulli sequence of independent trials, each of which results in a success
with probability q and failure with probability 1− q. The trial number V of the
kth success has a negative binomial distribution with parameters k and q. We
may represent this random variable through a process {Xn} on the state space
E = {0, 1, . . . , k}, where Xn corresponds to the number of successes still to be
observed after the nth trial. Starting from X0 = k, we have

Xn+1 =

{
Xn − In+1 if Xn ≥ 1
0 if Xn = 0,

(1.4)

where {In} is a sequence of independent, identically distributed random vari-
ables, equal to one with probability q and zero otherwise. The instant when Xn

becomes zero determines V .

The Markov and the homogeneity assumptions are extremely powerful, for
they automatically induce a number of properties of Markov chains, as we show
below, and they allow one to simplify several of the proofs in the remainder of
this book. In the sequel, we always assume that Markov chains are homogeneous.

Define the matrix P = (pi,j)i,j∈E with one row and one column for each state
in E and such that
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pi,j = P[X1 = j|X0 = i], for all i, j in E.

This is called the transition matrix of the Markov chain; it is a row-stochastic
matrix, that is, its elements are nonnegative and its row sums are all equal to
one, which we write in short as P ≥ 0, P1 = 1, where 1 is the vector with all
components equal to one.

Returning to the two examples given earlier, we see that the transition matrix
associated with (1.3) is

P =


b q2 q3 q4 . . .

q0 q1 q2 q3
. . .

q0 q1 q2
. . .

0
. . . . . . . . .

 , (1.5)

where qi is the probability P[α = i] that i new customers join the queue during a
unit time interval, α denoting any of the identically distributed random variables
αn, and b = q0 + q1.

For the Markov chain defined by (1.4), the transition matrix is

P =


1 0
q 1 − q

q 1 − q
. . . . . .

0 q 1 − q

 . (1.6)

For the general phase-type random variables alluded to in Example 1.4, the first
row is like in (1.6) but the remainder of the transition matrix may be anything.

As a matter of fact, the matrix (1.5) is a special case of the so-called M/G/1
queue,given by

P =


b0 b1 b2 b3 . . .

a−1 a0 a1 a2
. . .

a−1 a0 a1
. . .

0
. . . . . . . . .

 (1.7)

with ai, bi nonnegative for all i,
∑+∞

i=0 bi =
∑+∞

i=−1 ai = 1. This is one of the
structures which we shall extensively investigate. Another one is the G/M/1
queue, the transition matrix of which being

P =



b0 a1 0
b−1 a0 a1

b−2 a−1 a0 a1

b−3 a−2 a−1 a0
. . .

...
...

. . . . . . . . .

 (1.8)
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with ai, bi nonnegative for all i,
∑+∞

i=−1 a−i ≤ 1, and b−n = 1 −
∑1

i=−n+1 ai for
n = 0, 1, 2, . . .

It is no surprise that the transition matrix should play an important role
since the dynamic behavior of Markov chains is completely characterized by the
one-step transition probabilities. The next two propositions are readily proved3

by induction.

Proposition 1.5 One has

P[Xn+k = j|Xn = i] = (P k)i,j ,

for all times n ≥ 0, all intervals of time k ≥ 0, and all pairs of states i and j
in E.

Let π(n) = (π(n)
i )i∈E be the probability vector of the Markov chain at time n,

that is, π
(n)
i = P[Xn = i|X0]. Then Proposition 1.5 implies the following vector

equation
π(n+1)T = π(n)TP, n ≥ 0

and also
π(n)T = π(0)TPn, n ≥ 0.

This draws attention to the fact that, in addition to the system dynamics, one
must choose the starting point X0. This may be a specific state, or it may be
chosen at random, depending on the circumstances. Most of our interest, how-
ever, will concentrate on conditional probabilities and we shall seldom explicitly
take the initial probability distribution into account.

Proposition 1.6 One has

P[Xn+1 = j1, Xn+2 = j2, . . . , Xn+k = jk|Xn = i]
= P[X1 = j1, X2 = j2, . . . , Xk = jk|X0 = i]
= pi,j1pj1,j2 · · · pjk−1,jk

for all times n ≥ 0, all intervals of time k ≥ 1, and all sequences of states i, j1,
. . . , jk in E.

In the definitions and propositions above, the time n is arbitrary but fixed.
Proposition 1.6, for instance, states that if we wait n units of time, observe the
system and find that it is in state i, then we know that the system will evolve
after time n just as if it were a new system which would start in state i with
its own clock at zero. Sometimes, similar properties hold if the time chosen for
the observation is random, even if it is determined by the system itself. This is
true, in particular, for stopping times, as stated by the important strong Markov
property, which we introduce below.

3The material in this chapter is quite standard and appears widely in the literature on
stochastic processes. For that reason, we do not give detailed proofs, except when we feel that
the method of proof itself will help in understanding the material in later chapters.



CLASSIFICATION OF STATES 7

In short, a random variable V is a stopping time for the Markov chain
{X0, X1, X2, . . .} if it suffices to examine X0, X1, . . . , Xk, in order to deter-
mine whether V ≤ k or V > k. In other words, we may write that V , if it is
finite, is computable, using the Markov chain. To give one example, take a subset
A of states and define T as the first epoch when the system visits a state in A:

T = min{n ≥ 0 : Xn ∈ A},

with T being taken to be infinite if Xn �∈ A for all n. This is a stopping time. An
example of a random variable which is not a stopping time is the last visit to A.

Theorem 1.7 (Strong Markov property) Consider the Markov chain {Xn :
n ≥ 0} with transition matrix P . Let V be a stopping time for the Markov chain.
Conditional on V < ∞ and XV = i, the process {XV +n : n ≥ 0} is a Markov
chain with transition matrix P and initial state i, and is independent of X0, X1,
. . . , XV .

This is a fundamental property, which is used over and over again in the
analysis of Markov chains.

1.2 Classification of states

The states of a Markov chain may be transient or positive recurrent or null
recurrent, and their characteristics are very different, depending on the category
to which they belong. The classification is based on the random variables which
count the number of visits to a state and on those which measure intervals of
time between successive visits.

Denote by Nj the total number of times the Markov chain visits state j.
Formally, we write that

Nj =
+∞∑
n=0

I{Xn = j}, (1.9)

where I{·} is the indicator function: it has the value 1 if the condition inside the
braces is true and the value 0 otherwise.

In order to analyze Nj , we need to introduce the first passage time θj to
state j:

θj = min{n ≥ 0 : Xn = j},
taken to be infinite if Xn �= j for all n. In some cases, we are interested in the
first visit to j without taking into account the state at 0. The time Tj until this
event is called the first return time, defined by

Tj = min{n ≥ 1 : Xn = j};

it differs from θj only if X0 = j. We also define

fi,j = P[Tj < ∞|X0 = i],

that is, fi,j is the probability that, starting from i, the Markov chain returns to
j in a finite time.
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The following property is easily proved. We give the details because they
illustrate in a simple manner the use of the strong Markov property.

Theorem 1.8 The conditional distribution of Nj , given that X0 = j, is

P[Nj = n|X0 = j] = fn−1
j,j (1 − fj,j), for n ≥ 1. (1.10)

Proof Since X0 = j, the number of visits to j is at least equal to 1. It is exactly
1 if the Markov chain never returns to j after time 0, and thus

P[Nj = 1|X0 = j] = P[Tj = ∞|X0 = j] = 1 − fj,j .

If the Markov chain does return to j, then we may write that Nj = 1+ Ñj where
Ñj is the total number of visits after (and including) the first return, that is, Ñj

is the total number of visits to j for the process XTj
, XTj+1, XTj+2, . . . . By the

strong Markov property, this has the same distribution as Nj itself, and we may
write that

P[Nj = n|X0 = j] = fj,jP[Ñj = n − 1|Tj < ∞] = fj,jP[Nj = n − 1|X0 = j],

and (1.10) is easily proved by induction. �

The next property is stated without proof.

Corollary 1.9 The conditional distribution of Nj , given that X0 = i �= j, is

P[Nj = 0|X0 = i] =1 − fi,j ,

P[Nj = n|X0 = i] =fi,jf
n−1
j,j (1 − fj,j), for n ≥ 1.

(1.11)

The important observation here is that we identify two categories of states
with different characteristics: if fj,j < 1, then Nj has a proper distribution and
it is finite with probability 1. Such states are called transient and may be visited
a finite number of times only by the Markov chain. If, on the contrary, fj,j = 1,
then P[Nj = n|X0 = j] = 0 for all finite n, which implies that Nj = ∞ with
probability 1. Such states are called recurrent and, once the Markov chain has
visited one of these states, it will return to it over and over again.

A further distinction is made between positive recurrent and null recurrent
states: a state is positive recurrent if the expected4 return time E[Tj |X0 = j] is
finite; it is null recurrent if the expectation of Tj is infinite, despite the fact that
Tj is finite with probability one.

4We denote by E[X] the expected value of the random variable X and by E[X|A] the
conditional expectation of X, given the event A.



IRREDUCIBLE CLASSES 9

Defining ri,j = E[Nj |X0 = i], we find from Theorem 1.8 and Corollary 1.9
that

ri,j =

{
fi,j/(1 − fj,j), for i �= j,

1/(1 − fj,j), for i = j,
(1.12)

where for i �= j the right-hand side of (1.12) is assumed to be zero if fi,j = 0,
that is, if it is impossible to reach j from i, and infinity if fi,j > 0 and fj,j = 1;
similarly, for i = j the right-hand side of (1.12) is infinity if fj,j = 1.

Thus, another way of making a distinction among the states is by noting
that rj,j is finite if and only if state j is transient, in which case ri,j is finite
for all starting states i; for recurrent states, ri,j is infinite or zero, depending on
whether or not it is possible to reach j from i.

As a consequence of this, the matrix P has the following property.

Theorem 1.10 Consider the power series S = (si,j)i,j∈E =
∑+∞

n=0 Pn. The
element si,j is the conditional expected number of visits to j, given that the
initial state is i.

If j is a transient state, then si,j ≤ sj,j < ∞, for all i. If j is recurrent, then
sj,j = ∞, and si,j = ∞ or 0, for i �= j.

Proof From (1.9), we have by the monotone convergence theorem5

E[Nj |X0 = i] =
+∞∑
n=0

E[I{Xn = j}|X0 = i] =
+∞∑
n=0

P[Xn = j|X0 = i]

=
+∞∑
n=0

(Pn)i,j = si,j

The proof of the theorem is now a consequence of the discussion above. �

1.3 Irreducible classes

One associates in a natural way a transition graph with the Markov chain: to
each state there corresponds a node of the graph and one defines a directed arc
from node i to node j, denoted by (i, j), for each pair of states such that pi,j > 0.
A finite sequence of directed arcs (i, i1), (i1, i2), · · · , (ik, j) is called a path from
state i to state j. A path from i to i is called a loop through i. We also write
that state i leads to j if there is a path from i to j in the transition graph, and
we write that i and j communicate if i leads to j and j leads to i.

It is useful to adopt the convention that every state communicates with itself,
even if there is no loop through it; with this convention, we may regard the re-
lation of communication as an equivalence relation which induces a partition of
the state space into equivalence classes, called communicating classes of states.
In other words, the subset C of E is a communicating class if for every i in C,
every j in E which communicates with i belongs to C as well. In the literature,

5The monotone convergence theorem is stated as Theorem A.17 in the appendix.
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Fig. 1.1 Transition graph of an irreducible Markov chain

communicating classes are also said to be irreducible. A Markov chain is called
irreducible if all its states communicate, that is, if they form one single com-
municating class; in this case the transition matrix P is also irreducible.6 We
show in Figure 1.1 an example of a transition graph associated to an irreducible
Markov chain.

If a Markov chain with transition matrix P has K communicating classes, de-
noted by C1, C2, . . . , CK , then the states may be permuted so that the transition
matrix P ′ = ΠPΠT associated with the permuted states is block triangular:

P ′ =


P1,1 0
P2,1 P2,2

...
...

. . .
PK,1 PK,2 . . . PK,K

 (1.13)

where Pi,j is the submatrix of transition probabilities from the states of Ci to
Cj , the diagonal blocks are irreducible square matrices and Π is the permutation
matrix associated with the rearrangement.

One also defines final and passage classes: a communicating class C is a final
class if there is no path out of it: for every state i in C, there is no state j out
of C such that i leads to j. If, on the contrary, the states in C lead to some
state out of C, the class is said to be a passage class. A single state which forms
a final class by itself is called absorbing. Examples of passage classes and final
classes are shown in Figures 1.2 and 1.3. For the Markov chain associated with
the transition matrix (1.13), the class C1 is final and each class Ci, for 2 < i ≤ K,
is final if and only if Pi,j = 0 for j = 1, . . . , i − 1.

It is clear that, for the Markov chain (1.4) with transition matrix (1.6), the
states 1 to k are each in a passage class of their own, if q > 0, and that state zero
is absorbing. The Markov chain (1.3) with transition matrix (1.7) is irreducible
if a−1 > 0 and a−1 + a0 < 1.

In the case where the state space is finite, the directed graph associated with
a Markov chain is a useful tool for interpreting the classification of states given
in Section 1.2. In fact, it turns out that a state i is transient if it leads to some
state j from which there is no path back to i, otherwise it is recurrent. This
follows from the two theorems below. Thus, State 3 in both Figures 1.2 and 1.3
is transient.

If the state space is infinite, then the directed graph is not enough to thor-
oughly identify all transient and recurrent states and we return to this issue in
Section 1.5.

6See Definition A.8 in the appendix.
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Fig. 1.2 The set C = {1, 2} is a
passage class, State 3 forms a pas-
sage class by itself and State 4 is
absorbing.
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Fig. 1.3 The set C = {1, 2} is a
final class, State 3 forms a passage
class by itself and State 4 is absorb-
ing.

The theorem below shows that the nature of a state is a class property.

Theorem 1.11 The states in a passage class are transient. In a final class, the
states are either all positive recurrent, or all null recurrent, or all transient.

The second statement in the theorem only tells us that, if we can somehow
determine the nature of one state in a final class, then we can extend our iden-
tification to the other states in the same class. In this way, we call a final class
positive/null recurrent or transient if all its states are positive/null recurrent or
transient, respectively. We can be more specific in the case where a final class
only contains finitely many states, as we now state.

Theorem 1.12 If a final class contains a finite number of states only, then it is
positive recurrent.

A final property worth mentioning is that the interconnection between recur-
rent states is very strong: once a Markov chain has visited a recurrent state i, it
will visit with probability one each state which is on a path from i, and each of
these states will be reached in a finite time. That is the meaning of the following
theorem.

Theorem 1.13 If C is a final class of recurrent states, then fi,j = 1 for all i
and j in C.

On the basis of these properties, we can make a few general statements about
the transition matrix P and the power series S. Assume that there are K com-
municating classes, denoted by C1, C2, . . . , CK , so that P ′ = ΠPΠT has the
structure (1.13). The matrix S′ =

∑+∞
n=0(P

′)n has the same structure as P ′. If
Cj is a transient class, then Si,j is finite for all i. If Cj is recurrent, then all the
elements of Sj,j are infinite and, for i �= j, Si,j is identically zero if there is no
path from Ci to Cj , or Si,j contains infinite elements only, if there is such a path.

This property holds also in the case where the number K of communicating
classes is infinite.

In consequence, once the class structure is elucidated, which is usually very
easy, we need only concentrate on the analysis of the final classes. This explains
why it is usually assumed that the Markov chain under study is irreducible, or,
equivalently, that all states communicate.

1.4 First passages

By Theorem 1.11 we know that, when the Markov chain is irreducible, if one
state is transient, then all states are transient and every element in the series
S =

∑+∞
n=0 Pn is finite. If, on the contrary, one state is recurrent, then every
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element of S is infinite. Now, let us partition the state space E into two nonempty
subsets A and B (A∪B = E, A∩B = ∅). Denote by PA, PB the submatrices of
P made up by the elements of P with indices in A and B, respectively, denote
also by PA,B the submatrix of P with row indices in A and column indices in
B; similarly for PB,A. Arrange the states so that the transition matrix can be
partitioned as

P =
[

PA PA,B

PB,A PB

]
. (1.14)

Define τ as the first return time to any state out of A:

τ = min{n ≥ 1 : Xn �∈ A};

we have the following property.

Theorem 1.14 Assume that the Markov chain is irreducible.

• For any proper subset A of states, the series S =
∑+∞

n=0 Pn
A converges.

• For all i and j in A, Si,j is the expected number of visits to state j, starting
from i, during the interval of time [0, τ ].

• For all i in B and j in A, (PB,AS)i,j is the expected number of visits to
state j, starting from i, during the interval of time [0, τ ].

• For all i in A, (S1)i = E[τ |X0 = i], that is, it is the expected first passage
time to B, starting from i.

• For all i in A and j in B, (SPA,B)i,j = P[τ < ∞ and Xτ = j|X0 = i], that
is, it is the probability that j is the first state visited in B, given that the
process starts in i.

Proof Define the matrix

P̃ =
[

PA PA,B

0 I

]
which corresponds to a new Markov chain where the states in B have been made
absorbing: if the Markov chain enters state j in B, then it stays there forever.
The important point here is that the first passage time from A to B is identical
in the original and in the new processes.

Since P is irreducible, there is for every i in A a path to some j in B, so that
the states of A are transient in the new Markov chain, and the expected number
of visits to j in A, starting from i in A, is finite. From Theorem 1.10, these
expected numbers of visits are given by the upper-left corner of S̃ =

∑+∞
n=0 P̃n,

which is clearly given by
∑+∞

n=0 Pn
A. This proves the first two claims.

The third statement is proved by conditioning on the first transition:

E[Nj |X0 = i] =
∑
k∈A

Pi,kE[Nj |X0 = k] = (PB,AS)i,j .

The fourth statement results from the fact that if X0 ∈ A, then τ =
∑

j∈A Nj ,
where Nj is the total number of visits to A.
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Finally, if we decompose the event [Xτ = j] according to the possible values
of τ and the last state visited in A at time τ − 1, we have

P[Xτ = j|X0 = i] =
+∞∑
n=1

∑
k∈A

P[Xn−1 = k, Xn = j, τ = n|X0 = i]

=
+∞∑
n=1

∑
k∈A

(Pn−1
A )i,k(PA,B)k,j = (SPA,B)i,j ,

which concludes the proof. �

This property has a number of immediate algebraic consequences, which we
state as a corollary for future reference.

Corollary 1.15 The system (I −PA)X = I always has a solution. The solution
is unique and S = (I−PA)−1 if the size of PA is finite. If the size of PA is infinite,
S =

∑+∞
n=0 Pn

A is the minimal nonnegative solution.

Proof Clearly, S1 = I +PAS, so that S is a solution of the system (I−PA)X =
I. If the size of PA is finite, that solution is (I − PA)−1. If the size is infinite,
there may be multiple solutions. For any nonnegative solution X, we may write

X = I + PAX

= I + PA + P 2
A + · · · + Pn

A + Pn+1
A X

≥ I + PA + P 2
A + · · · + Pn

A

for all n, so that X ≥ limn→+∞
∑n

i=0 P i
A = S, which concludes the proof. �

1.5 Stationary distribution

We discuss in this section the asymptotic behavior of the probability distribution
of Xn, or, equivalently, the successive powers Pn of the transition matrix, as
n → +∞. Before doing so, we need to introduce the notion of periodicity.

By definition, a state i has periodicity δ > 1 if all loops through i in the
transition graph have a length which is a multiple of δ. This is equivalent to
saying that P[Xn = i|X0 = i] > 0 only if n = 0 mod δ. The case of a state i
such that P[Xn = i|X0 = i] = 0 for all n poses technical difficulties only and we
do not deal with such cases.

Periodicity is a class property and all states in a communicating class have
the same period. Thus, as long as we restrict ourselves to irreducible Markov
chains, either all states are non-periodic, or all have the same period δ, which
we may call the period of the Markov chain itself.

Figure 1.4 shows an example of a periodic irreducible Markov chain of period
3. The associated transition matrix has the following structure where “∗” denotes
a nonzero element
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Fig. 1.4 Graph of an infinite irreducible periodic Markov chain of period 3.

P =



0 ∗ 0
0 0 ∗
∗ 0 0 ∗
0 0 0 0 ∗
0 0 ∗ 0 0 ∗
0 0 0 0 0 0

. . .

0 0 0 0 ∗ 0
. . .

. . . . . . . . . . . . . . . . .


.

If P is the transition matrix of an irreducible finite periodic Markov chain of
period δ, then there exists a permutation matrix Π such that P ′ = ΠPΠT has
the form

P ′ =



0 0 . . . 0 P1,δ

P2,1 0
. . . 0

P3,2
. . . . . .

...
. . . 0 0

0 Pδ,δ−1 0


, (1.15)

where the zero diagonal blocks are square. Any irreducible matrix P which can
be put in the form (1.15) by means of the transformation P ′ = ΠPΠT is called
cyclic of period (or index of cyclicity) δ.

If the Markov chain is irreducible and nonperiodic, then it is not difficult to
verify that for all i and j, there exists n0 such that P[Xn = j|X0 = i] > 0 for
all n ≥ n0. This means that, for every starting state i and every destination
state j of interest, there is a strictly positive probability of being in j at any
given time, provided that we look far enough in the future. Clearly, this cannot
hold if the Markov chain is periodic since successive visits to j are separated
by intervals of time which are multiples of the period. Nevertheless, there is a
similar property and one shows that for all i and j, there exist r and n0 such
that P[Xnδ+r = j|X0 = i] > 0 for all n ≥ n0, and P[Xm = j|X0 = i] = 0 for all
m �= r mod δ.

We are now ready to discuss the limiting distribution, which is easiest to
handle in the transient case.

Theorem 1.16 Assume that the Markov chain is irreducible. If the states are
transient, then limn→+∞ P[Xn = j|X0 = i] = 0 for all i and j.

Proof The proof immediately follows from the fact that the series∑+∞
n=0(P

n)i,j =
∑+∞

n=0 P[Xn = j|X0 = i] converges for all i and j, by Theo-
rem 1.10. �
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For recurrent states, the proofs are more involved and we refer to Norris [93,
Sections 1.7 and 1.8]. Let us first discuss the positive recurrent case.

Theorem 1.17 Assume that the Markov chain is irreducible. The states are
positive recurrent if and only if there exists a strictly positive invariant proba-
bility vector, that is, a vector π = (πi) such that πi > 0 for all i, with

πTP = πT and πT1 = 1. (1.16)

In that case,

• if the Markov chain is nonperiodic, then

lim
n→+∞ P[Xn = j|X0 = i] = πj (1.17)

for all j, independently of i;

• if the Markov chain is periodic, with period δ, then

lim
n→+∞ P[Xnδ = j|X0 = j] = δπj

for all j.

• The invariant vector π is unique among nonnegative vectors, up to a mul-
tiplicative constant.

One observes that, in the non-periodic case, πi is the inverse of the expected
return time to i, starting from i. Also, we may write (1.17) in the periodic case
too.

Null-recurrent states being in some sense at the boundary between transient
and positive recurrent states, their properties fall somewhat between Theorems
1.16 and 1.17 as we now state.

Theorem 1.18 Assume that the Markov chain is irreducible. If the states are
null recurrent, then limn→+∞ P[Xn = j|X0 = i] = 0 for all i and j. In addition,
there exists a strictly positive invariant vector, unique up to a multiplicative
constant, and such that the sum of its elements is not finite (stated otherwise,
this vector is not normalizable).

Thus, there always exists an invariant vector for the transition matrix of a
recurrent Markov chain. Some transient Markov chains also have an invariant
vector (with infinite mass, like in the null recurrent case) but some do not.

The following examples illustrate the situations encountered with positive,
null recurrent and transient Markov chains.
Example 1.19 For the transition matrix

P =


0 1 0

1/2 0 1/2
1/2 0 1/2

0 . . . . . . . . .


we have πTP = πT with πT = [1/2, 1, 1, . . .]. The vector π has “infinite” mass
that is, the sum of its components is infinite. Observe that the Markov chain is
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actually null recurrent but, in order to show this, one needs to verify that the
return time to any of its states is finite with probability one.

Example 1.20 For the transition matrix

P =


0 1 0

1/4 0 3/4
1/4 0 3/4

0 . . . . . . . . .


we have πTP = πT with πT = [1, 4, 12, 36, 108, . . .]. The vector π has unbounded
elements. In this case the Markov chain is transient.

Example 1.21 For the transition matrix

P =


0 1 0

3/4 0 1/4
3/4 0 1/4

0 . . . . . . . . .


we have πTP = πT with πT = (2/3)[1/2, 2/3, 2/9, 2/27, . . .] and

∑+∞
i=0 πi = 1.

In this case the Markov chain is positive recurrent by Theorem 1.17.

1.6 Censoring of a Markov chain

The property in this section is used in later chapters, when we analyze the
stationary distribution of structured Markov chains. It is important because it
gives a probabilistic meaning to many algorithmic procedures for the stationary
distribution of a positive recurrent Markov chain, and, therefore, it illustrates
well our approach which relies both on algebraic and on probabilistic arguments.

We partition the state space into two subsets, A and B. We denote by
{t0, t1, t2, . . .} the epochs where the Markov chain visits the set A:

t0 = min{n ≥ 0 : Xn ∈ A}, tk+1 = min{n ≥ tk + 1 : Xn ∈ A},

for k ≥ 0.

Definition 1.22 The censored process restricted to the subset A is the sequence
{Xtn

}n≥0 of successive states visited by the Markov chain in A.

In other words, we make the subset B invisible by censoring out from the
original Markov chain all the intervals of time during which it is in B.

Define Yn = Xtn , for n ≥ 0; by the strong Markov property, the censored
process {Yn} is a Markov chain also. If we partition the transition matrix P of
{Xn} as in (1.14), then the transition matrix of {Yn} is

P ′ = PA +
+∞∑
n=0

(PA,BPn
BPB,A) (1.18)
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provided that
∑+∞

n=0(PA,BPn
BPB,A) is convergent. If the series

S′ =
+∞∑
n=0

Pn
B . (1.19)

is convergent, then we may rewrite (1.18) as

P ′ = PA + PA,BS′PB,A. (1.20)

The argument goes in three steps.
1. Define T = S′PB,A. By Theorem 1.14, Tk,j is the probability that, starting

from k in B, the Markov chain eventually reaches j in A before any other
state in A.

2. Thus, (PA,BT )i,j is the probability that, starting from i in A, the Markov
chain moves to B before eventually returning to A, with j being the first
state visited in A.

3. Finally, by adding the one-step transition probability matrix PA, we obtain
that (P ′)i,j is the probability of moving from i to j, either directly or after
an interval of unspecified length spent in B.

Observe that there is a strong connection between censoring and Schur comple-
mentation:7 if the state space is finite, then

I − P ′ = I − PA − PA,B(I − PB)−1PB,A

since S′ = (I −PB)−1 by Corollary 1.15, so that I −P ′ is the Schur complement
of I − PB in the matrix [

I − PA −PA,B

−PB,A I − PB

]
.

The identification to the Schur complement extends to the case where the set B
is infinite since S′ is, in that case, the minimal nonnegative inverse of I − PB .

Now, let us partition the stationary vector π as πT = [πT
A,πT

B ], with πA =
(πi)i∈A and πB = (πi)i∈B . We have the following property.

Theorem 1.23 Assume that the Markov chain is irreducible and positive re-
current. Partition the state space E into the subsets A and B. We have

πT
AP ′ = πT

A, (1.21)

πT
B = πT

APA,BS′, (1.22)

with P ′ and S′ respectively given by (1.20), (1.19).
If the state space is finite, the proof is elementary. If E is infinite, then it is

more involved and we refer to Kemeny et al. [72, Proposition 6.4, Lemmas 6.6
and 6.7] and Latouche and Ramaswami [79, Theorems 5.2.1 and 5.3.1] for two
different proofs based on probabilistic arguments.

7Definition A.6 in the appendix.
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In order to make the connection with algorithmic procedures, assume for
the time being that E = {1, 2, . . . , M}, with M finite, and take A = {2, . . . , M},
B = {1}. It is easy to verify that (1.21, 1.22) are the equations which one obtains
after applying the first step of Gaussian elimination to the system (I−P )Tπ = 0.
To illustrate the advantages of using both the algebraic and the probabilistic
approaches, it suffices to mention that the Grassmann-Taksar-Heyman (GTH)
algorithm was based on the observation that Gaussian elimination is identical to
censoring [53; 94].

1.7 Continuous-time Markov processes

When it is necessary to model time as a continuous parameter, one uses contin-
uous-time Markov chains, also called Markov processes. Their definition below
closely mimics Definitions 1.1 and 1.2.

Definition 1.24 The stochastic process {X(t) : t ∈ R
+} on the denumerable

state space E is a homogeneous Markov process if

P[X(t + s) = j|X(u) : 0 ≤ u ≤ t] = P[X(t + s) = j|X(t)]

and if

P[X(t + s) = j|X(t) = i] = P[X(s) = j|X(0) = i]

for all states i and j in E, for all times t ≥ 0, and for all intervals s ≥ 0.

Under suitable regularity assumptions about the stochastic behavior of the
Markov process (assumptions which are satisfied in actual applications) one
shows that the transition functions Fi,j(t) = P[X(t) = j|X(0) = i] are the
minimal nonnegative solutions of the Kolmogorov equations

∂F (t)/∂t = F (t)Q (1.23)

with F (0) = I, where the elements of the coefficient matrix Q have the following
interpretations.
• For i �= j, Qi,j is the instantaneous transition rate from state i to state j.

That is, Qi,jh is the conditional probability that X(t + h) = j, given that
X(t) = i, for an interval of time h small enough. Clearly, Qi,j is nonnegative,
and it is strictly positive if it is possible to move from i to j in one jump.

• The diagonal elements are such that Qi,i = −∑j∈E,j �=i Qi,j . Their inter-
pretation is that the process remains in each state during an exponentially
distributed interval of time, with parameter qi = −Qi,i for state i, before
jumping to the next state. If Qi,i = 0, then Qi,j = 0 for all j, which means
that i is an absorbing state: once the process has reached it, it ceases to
evolve and remains there forever.

The matrix Q plays exactly the same role for continuous-time Markov processes
as the matrix P − I does for discrete-time Markov chains. For instance, the next
property is the equivalent of Theorem 1.17.
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Theorem 1.25 Assume that the Markov process is irreducible. It is positive
recurrent if and only if there exists a probability vector π such that πi > 0 for
all i, πTQ = 0, and πT1 = 1. This vector is such that

lim
t→+∞ P[X(t) = j|X(0) = i] = πj (1.24)

for all j, independently of i, and is unique among nonnegative vectors, up to a
multiplicative constant.

Furthermore, if we partition the state space into two proper subsets A and
B, and write

Q =
[

QA QA,B

QB,A QB

]
,

where QA is the submatrix corresponding to the rows and columns in A, and if
we define the first passage time out of A as τ = inf{t ≥ 0 : X(t) �∈ A} then we
have the next property, similar to Theorem 1.14.

Theorem 1.26 Assume that the Markov process is irreducible.

• For any proper subset A of states, the system −QAX = I has a minimal
nonnegative solution S̃ which is finite.

• For all i and j in A, (S̃)i,j is the expected total time spent in state j, starting
from i, during the interval of time [0, τ ].

• For all i in A, (S̃11)i = E[τ |X0 = i].
• For all i in A and j in B, (S̃QA,B)i,j = P[τ < ∞ and Xτ = j|X0 = i].

From an algebraic point of view, these properties reflect the fact that the
matrices Q and P −I have exactly the same characteristics. Thus, any procedure
which is developed for discrete-time Markov chains is immediately adapted to
continuous-time Markov processes. This is the reason why we mostly consider
the discrete-time case in the sequel.

1.8 Finite nonnegative matrices
Since the transition matrix of a Markov chain is stochastic, it is in particular
nonnegative and, if the state space is finite, one may call upon the Perron–
Frobenius theory. This is a consolidated body of many results concerning the
spectral radius ρ(A) of a nonnegative matrix A and its dominant eigenvectors,
that is, the eigenvectors corresponding to the eigenvalues λ such that |λ| = ρ(A).

Theorem 1.27. (Perron–Frobenius) Let A ≥ 0 be an irreducible matrix of
finite size n. Then:

1. A has a positive real eigenvalue equal to ρ(A).
2. There corresponds to ρ(A) a right eigenvector x > 0 and a left eigenvector

yT > 0 such that Ax = ρ(A)x, yTA = ρ(A)yT.

3. ρ(A) is a simple eigenvalue of A, that is, ρ(A) is a simple root of det(A−λI).
4. If A has exactly p eigenvalues of modulus ρ(A) then these eigenvalues are

the roots of the equation λp − ρ(A)p = 0. If p > 1 then A is cyclic of index
of cyclicity p (see equation (1.15)).



20 INTRODUCTION TO MARKOV CHAINS

5. If B is a nonnegative matrix of size n such that A − B ≥ 0, B �= A, then
ρ(A) > ρ(B).

Observe that, if the matrix A is not cyclic, then there exists only one eigen-
value of maximum modulus. Matrices which share this property are called prim-
itive.

We see that, for finite matrices, the conditions of existence and uniqueness of
the invariant probability vector are very simple. Indeed, it immediately follows
from Theorem 1.27 that, if P is an irreducible stochastic matrix of finite size,
then there exists a unique positive vector such that πTP = πT. Therefore, the
Markov chain associated with P is positive recurrent and Theorem 1.12 is a
direct consequence of the Perron–Frobenius theorem.

If the matrix is nonnegative and not necessarily irreducible then we have the
following weaker result:

Theorem 1.28 Let A ≥ 0 be a matrix of finite size n. Then:

1. A has a nonnegative real eigenvalue equal to ρ(A).
2. There correspond to ρ(A) a right eigenvector x ≥ 0 and a left eigenvector

yT ≥ 0 such that Ax = ρ(A)x, yTA = ρ(A)yT.

3. If B is a nonnegative matrix of size n such that A−B ≥ 0 then ρ(A) ≥ ρ(B).

The spectral radius ρ(A) of a nonnegative matrix A is also called the Perron–
Frobenius eigenvalue and any corresponding nonnegative right eigenvector x
is called Perron–Frobenius eigenvector. Similarly any pair (ρ(A), x) is called
Perron–Frobenius pair.

The following result will be used in Chapter 7 in order to prove some con-
vergence properties.
Theorem 1.29 Let A ≥ 0 be a matrix of finite size n. If A has only one irre-
ducible final class, then there exists a positive vector x such that Ax = ρ(A)x.

Proof For Theorem 1.28 the vector x has nonnegative components. Without
loss of generality, in light of Theorem A.9, we may assume that A is in the
following form

A =


A1,1 0
A2,1 A2,2

...
. . . . . .

Ak,1 . . . Ak,k−1 Ak,k


where Ai,i, i = 1, . . . , k are irreducible. Since A1,1 corresponds to the final class,
then ρ(A) = ρ(A1,1). Let us partition v according to the partitioning of A as
x = (xi)i=1,...,k. We prove the theorem by induction on the number of irreducible
classes k. For k = 1 the matrix A is irreducible so that for the Perron–Frobenius
theorem x > 0. Assume that the theorem holds for k − 1 irreducible classes and
let us prove it for k irreducible classes. Let us denote by Ak−1 the submatrix
of A corresponding to the first k − 1 irreducible classes and observe that the
vector w with block components xi, i = 1, . . . , k − 1 is an eigenvector of Ak−1,



BIBLIOGRAPHIC NOTES 21

that is Ak−1w = ρ(A)w. Therefore for the inductive assumption we have xi > 0
for i = 1, . . . , k − 1. We have to prove that xk > 0. Observe that xk cannot
be identically zero, otherwise we have

∑k−1
j=1 Ak,jxj = 0 that is, since xj > 0

for j = 1, . . . , k − 1, we would have Ak,j = 0 for j = 1, . . . , k − 1 so that there
would be another final class. Assume for a contradiction that xk has some null
componenents, say the first h, and the remaining components are nonzero. In
this case, from the inequality Ak,kxk ≤ ρ(A)xk we deduce that the elements
of Ak,k with indices (i, j), where i ≤ h and j ≥ h + 1, must be zero. This fact
implies that Ak,k is reducible, which contradicts the assumptions. �

1.9 Bibliographic notes

The interested reader may find in Norris [93] all the proofs which we have not
given for properties of Markov chains and Markov processes. The two books by
Çinlar [30] and Resnick [102] also offer a very clear introduction to the subject
of Markov chains. For a presentation with a clear connection to numerical anal-
ysis, one may cite Seneta [105] and Stewart [107]. Two old favorites of ours are
Kemeny and Snell [71] and Kemeny et al. [72] and one should not forget to
mention Chung [33]. With regard to the Perron–Frobenius theory on nonnega-
tive matrices, we direct the reader to the classical books by Berman and Plem-
mons [9] and Varga [116]. There are plenty of introductory books on probability
theory; two recent ones are Grinstead and Snell [54], with an algorithmic slant,
and Stirzaker [108].
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STRUCTURED MATRIX ANALYSIS

2.1 Introduction
We recall and analyse certain structural and computational properties which
are the basis of the design and analysis of fast algorithms for the numerical
solution of Markov chains. After introducing the definition of discrete Fourier
transform and the FFT algorithm for its computation, we describe circulant
matrices, z-circulant matrices, and Toeplitz matrices, together with their block
analogs, which intervene in the mathematical modeling of structured Markov
chains. Then we introduce the concept of displacement operator and of displace-
ment rank which allow one to provide efficient representations and to design
efficient algorithms for a wide class of matrices related to Toeplitz matrices.

We first introduce the definition of block matrices, block vectors, Kronecker
and Hadamard products of matrices.

Given the positive integers p, q and mi, nj , i = 1, . . . , p, j = 1, . . . , q, and
given the mi × nj matrices Ai,j , i = 1, . . . , p, j = 1, . . . , q, the matrix

A =


A1,1 A1,2 . . . A1,q

A2,1 A2,2 . . . A2,q

...
...

...
Ap,1 Ap,2 . . . Ap,q


of size m × n, m =

∑p
i=1 mi, n =

∑q
j=1 nj , is called a p × q block matrix with

block elements Ai,j , i = 1, . . . , p, j = 1, . . . , q. If q = 1 the matrix A is called
a block column vector of block size p, with block components Ai,1, i = 1, . . . , p.
Similarly, if p = 1 the matrix A is called a block row vector of block size q, with
block components A1,j , j = 1, . . . , q. For instance, the matrix

A =


1 1 1 0 0
1 1 1 0 0
2 2 2 1 0
2 2 2 0 1


can be rewritten in block form as

A =
[

E 02

2E I2

]
where E is the 2 × 3 matrix with all the elements equal to 1, 02 is the 2 × 2
matrix with all the elements equal to 0, and I2 is the 2 × 2 identity matrix.

23
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If A = (ai,j) and B = (bi,j) are matrices of size m×n and p× q respectively,
we denote by A⊗B the Kronecker product of A and B, that is, the m×n block
matrix with block elements ai,jB, i = 1, . . . , m, j = 1, . . . , n, of size p × q. In
particular, for an m × m matrix A we have

In ⊗ A =

A 0
. . .

0 A

 , A ⊗ In =

a1,1In . . . a1,mIn

...
. . .

...
am,1In . . . am,mIn

 ,

where In denotes the n × n identity matrix.
The Kronecker product allows one to write in vector form a product of ma-

trices. For this purpose, introduce the notation

x = vec(X) = [x1,1, . . . , xm,1, . . . , . . . , x1,n, . . . , xm,n]T (2.1)

which associates with the m × n matrix X the mn-dimensional vector obtained
by concatenating the columns of X. We readily find that

vec(AXB) = (BT ⊗ A) vec(X). (2.2)

Similarly, if x is a vector of dimension mn, we define vec−1
m (x) the m × n

matrix such that vec(vec−1
m (x)) = x.

Given the vectors a = (ai)i=1,n, b = (bi)i=1,n we denote with a ∗ b the
Hadamard, or component-wise product of the vectors a and b, that is,

a ∗ b = [a1b1, . . . , anbn].

The Hadamard product is naturally extended to block vectors that is,

[A1, . . . , An] ∗ [B1, . . . , Bn] = [A1B1, . . . , AnBn].

We denote with Diag(A1, . . . , An) the block diagonal matrix having for diag-
onal blocks the matrices Ai, i = 1, . . . , n. If the blocks are scalars, i.e., Ai = ai,
then Diag(a1, . . . , an) represents a diagonal matrix.

2.2 Discrete Fourier transform
Let i be the imaginary unit such that i2 = −1. For an integer n ≥ 1, let us
define

ωn = cos(2π/n) + i sin(2π/n).

The complex number ωn is a primitive nth root of unity, i.e., ωn is such that
ωn

n = 1 and ωi
n �= ωj

n, i �= j, i, j = 0, . . . , n − 1. The entries of the set {ωi
n, i =

0, . . . , n − 1} are the n solutions of the equation zn − 1 = 0, known also as the
nth roots of unity or Fourier points.

The Vandermonde matrix

Ωn = (ω(i−1)(j−1)
n )i,j=1,n

formed with the Fourier points is called the Fourier matrix of order n. It is
nonsingular and its inverse is Ω−1

n = 1
nΩn where Ωn is the complex conjugate of



DISCRETE FOURIER TRANSFORM 25

the matrix Ωn. This fact is an immediate consequence of the following property
of the nth roots of 1:

n−1∑
i=0

ωij
n =

{
0 if j �= 0 mod n,
n if j = 0 mod n.

The transformation x → y = 1
nΩnx is called the discrete Fourier transform

of order n or DFT for short. The inverse transformation y → x = Ωny is called
the inverse discrete Fourier transform, or briefly, IDFT of order n. We also write
y = DFTn(x) and x = IDFTn(y). In terms of components we have the following
relations

yi = 1
n

∑n
j=1 ω

(i−1)(j−1)
n xj

i = 1, 2, . . . , n.

xi =
∑n

j=1 ω
(i−1)(j−1)
n yj

(2.3)

If n is an integer power of 2, the IDFT of a complex vector of length n can
be computed by the fast Fourier transform (FFT) algorithms with just 5n log2 n
arithmetic operations with real numbers (ops). The same asymptotic number of
ops is sufficient for computing the DFT. If x is a real vector, then IDFTn(x) can
be computed in roughly 5

2n log2 n ops. The same computational cost is sufficient
to compute the DFT of a vector y which is the IDFT of a real vector.

Different algorithms and different implementations exist for FFTs. We refer
the reader to Section 2.5 for bibliographic notes and references to software.

We may interpret the definition of DFT in terms of polynomials in the follow-
ing way. Let y(z) =

∑n−1
j=0 zjyj+1 be the polynomial of degree less than n defined

by the vector y and observe from (2.3) that xi = y(ωi−1
n ), i = 1, . . . , n. Therefore

we may regard the IDFT of a vector as the values that the polynomial y(z) takes
at the nth roots of 1. Similarly, the DFT can be viewed as the coefficients of the
polynomial y(z) interpolating the values xi, i = 1, . . . , n, at the nth roots of 1.

Remark 2.1 From the properties Ω−1
n = 1

nΩn and ΩT
n = Ωn, we deduce that the

matrix Wn = 1√
n
Ωn is unitary, i.e., W

T

nWn = I. This implies that ‖x‖2 = ‖y‖2,
whenever y = Wnx, i.e., y = 1√

n
IDFTn(x).

Discrete Fourier transforms can be extended to block vectors. Given the block
column vectors x,y of block size n, with m× p components, the transformation
x → y = 1

n (Ωn ⊗ Im)x is called block discrete Fourier transform of order n.
The inverse transformation y → x = (Ωn ⊗ Im)y is called block inverse discrete
Fourier transform of order n. As in the scalar case, we write y = DFTn(x) and
x = IDFTn(y). In terms of block components we have

Yi = 1
n

∑n
j=1 ω

(i−1)(j−1)
n Xj

i = 1, 2, . . . , n.

Xi =
∑n

j=1 ω
(i−1)(j−1)
n Yj
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Observe that a block DFT (IDFT) consists in computing mp DFTs (IDFTs).
More precisely, by denoting (Yi)h,k the element of Yi in position (h, k), the vector
v(h,k) = [(Y1)h,k, (Y2)h,k, . . . , (Yn)h,k]T is such that

v(h,k) = DFTn([(X1)h,k, (X2)h,k, . . . , (Xn)h,k]T), h = 1, . . . , m, k = 1, . . . , p.

A similar relation holds for IDFTn.
Similarly to the scalar case, we may associate with the block vector y the

matrix polynomial Y (z) =
∑n−1

i=0 ziYi+1. We call an m × p matrix polynomial
any polynomial whose coefficients are m × p matrices, or equivalently, a matrix
whose elements are polynomials. The maximum degree of its elements is called
the degree of the matrix polynomial. In this way, the IDFT of a block vector can
be viewed as the values taken by the matrix polynomial Y (z) at the roots of
1. The DFT of a block vector x can be viewed as the coefficient vector of the
matrix polynomial which interpolates Xi, i = 1, . . . , n, at the nth roots of 1.

A nice application of the DFT is Algorithm 2.1 for computing the product
A(z) of two m×m matrix polynomials B(z) and C(z), based on the evaluation–
interpolation technique. The idea at the basis of this algorithm is to compute the
coefficients of A(z) by interpolating to the values of A(z) at the Fourier points
by means of a DFT. The latter values are computed by multiplying the values
of B(z) and C(z) at the Fourier points which are separately computed by means
of two IDFTs. The number N of Fourier points must be greater than the degree
of A(z).

The computational effort of this algorithm amounts to 2m2 IDFTs of length
N , to m2 DFTs of length N and to N matrix products therefore its cost is
O(m2N log N +m3N). If the coefficients of B(z) are real, then it follows that U1

and UN/2+1 are real and that Ui = UN−i+2, i = 2, . . . , N/2. The same property
holds for the block components Vi of v if C(z) has real coefficients. Thus, if
both B(z) and C(z) have real coefficients, then y also has this property and
the computation of w, is reduced to computing two products of real matrices
and N/2− 1 products of complex matrices. Since a product of complex matrices
can be performed with three multiplications and five additions of real matrices
by means of (A.3), the overall cost of stage 4 of 2.1 is about 3N/2 real matrix
multiplications, and 5N/2 real matrix additions. Therefore for a real input the
cost of Algorithm 2.1 is

N(3m3 + 2m2) +
15
2

m2N log N (2.4)

ops up to lower order terms. If m is large enough, the dominant part of the
complexity is 3Nm3. By using the customary algorithm for polynomial multipli-
cation the cost would be 2m3(n1 + 1)(n2 + 1) ops. Observe that for moderately
large values of n1 and n2 one has N << (n1 + 1)(n2 + 1).

Remark 2.2 From the polynomial interpretation of DFT and IDFT, we deduce
a useful property which allows one to save arithmetic operations in the point-
wise power series arithmetic which we will describe in Section 3.1.2. In that
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Algorithm 2.1 Product of matrix polynomials
Input: The coefficients of the m×m matrix polynomials B(z) =

∑n1
i=0 ziBi and

C(z) =
∑n2

i=0 ziCi of degree n1 and n2, respectively.

Output: The coefficients of the m × m matrix polynomial A(z) = B(z)C(z) =∑n
i=0 ziAi of degree at most n = n1 + n2 + 1.

Computation:

1. Compute the minimum integer power of two N such that N > n1 + n2.
2. Let b be the N -dimensional block column vector with elements Bi−1 for

i = 1, . . . , n1 + 1 and null components elsewhere. Similarly define c as the
N -dimensional block column vector with elements Ci−1 for i = 1, . . . , n2 +1
and null components elsewhere.

3. Compute u = IDFTN (b), v = IDFTN (c).
4. Compute w = u ∗ v.
5. Compute y = (Yi)i=1,N = DFTN (w).
6. Output Ai = Yi+1, i = 0, . . . , n.

context, we have to compute IDFTs of block vectors whose length is doubled at
each step by padding them with zeros. More precisely, we need to compute the
IDFT2n of the vector [Y1, . . . , Yn, 0, . . . , 0] of length 2n once we have the IDFTn

of [Y1, . . . , Yn] without starting the computation from scratch.
Assume that we are given the block vector y = (Yi)i=1,n defining the matrix

polynomial Y (z) =
∑n−1

i=0 ziYi+1 and that we have computed IDFTn(y), that
is, the values Xj = Y (ωj−1

n ), j = 1, . . . , n. We wish to compute the values
Tj = Y (ωj−1

2n ) for j = 1, . . . , 2n, that is, IDFT2n(ŷ), ŷ = (Ŷi)i=1,2n, where
Ŷi = Yi for i = 1, . . . , n, and Ŷi = 0 elsewhere. Since ω2

2n = ωn, we find that
T2j−1 = Xj , j = 1, . . . , n. Therefore, the odd components of t = (Tj)j=1,2n are
already available. By direct inspection one proves that the block vector w =
(T2j)j=1,n of the even components can be computed by means of the expression
w = IDFTn(Dy), where D = Diag(1, ω2n, ω2

2n, . . . , ωn−1
2n ) ⊗ Im. Therefore, in

order to compute Tj , j = 1, . . . , 2n, it is sufficient to compute just one additional
IDFT of length n.

The interpolation (a DFT) problem may be stated as follows: given the matrix
polynomial X(z) =

∑n−1
i=0 ziXi+1 of degree less than n, and given y = (Yi)i=1,n,

one needs to compute the matrix polynomial W (z) =
∑2n−1

i=0 ziWi+1 of degree
less than 2n such that W (ωi

n) = X(ωi
n), i = 0, . . . , n − 1 and W (ω2i−1

2n ) = Yi,
i = 1, . . . , n. With w(1) = (Wi)i=1,n and w(2) = (Wi)i=n+1,2n, one shows that
w(1) = (x+D ·DFTn(y))/2 and w(2) = (x−D ·DFTn(y))/2, so that, here also,
it suffices to compute a DFT of length n in order to compute W1, . . . , W2n.

2.3 Structured matrices

We recall the structural and computational properties of some important classes
of matrices among which, circulant, z-circulant and Toeplitz matrices, and their



28 STRUCTURED MATRIX ANALYSIS

block analogs, that play an important role in the design of algorithms for the
solution of structured Markov chains.

2.3.1 Circulant matrices
Circulant matrices are closely related to DFTs.
Definition 2.3 Given the row vector [a0, a1, . . . , an−1], the n × n matrix

A = (aj−i mod n)i,j=1,n =


a0 a1 . . . an−1

an−1 a0
. . .

...
...

. . .
. . . a1

a1 . . . an−1 a0


is called the circulant matrix associated with [a0, a1, . . . , an−1] and is denoted by
Circ(a0, a1, . . . , an−1).

A circulant matrix is fully defined by its first row rT = [a0, a1, . . . , an−1] or
its first column c = [a0, an−1, . . . , a1]T. Any other row or column is obtained
from the preceding one by applying a cyclic permutation to its elements: the last
element is moved to the first position and the remaining ones are shifted by one
position. With C denoting the circulant matrix associated with [0, 1, 0, . . . , 0],
i.e.,

C =



0 1 0 . . . 0

0 0 1
. . .

...
...

. . . . . . . . . 0

0
. . . . . . 0 1

1 0 . . . 0 0


, (2.5)

it can easily be verified that

A =
n−1∑
i=0

aiC
i, (2.6)

that is, any circulant matrix can be viewed as a polynomial in C.
By direct inspection we see that

CΩn = Ωn Diag(1, ωn, ω2
n, . . . , ωn−1

n );

multiplying the latter expression on the left by 1
nΩn yields

1
n

ΩnCΩn = Diag(1, ωn, ω2
n, . . . , ωn−1

n );

moreover, taking the conjugate transpose of both sides, we find

1
n

ΩnCTΩn = Diag(1, ωn, ω2
n, . . . , ωn−1

n ),

since Ωn is symmetric. From the above two equations and (2.6) we deduce the
following property
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Theorem 2.4 If A is a circulant matrix with first row rT and first column c,
then

A =
1
n

Ωn Diag(w)Ωn,

where w = Ωnc = Ωnr.

An immediate corollary of the theorem above is that we can compute the
product Ax of an n × n circulant matrix A and a vector x by means of two
IDFTs of length n and a DFT. In fact, the above result can be rephrased in the
form

Ax = DFTn(IDFTn(c) ∗ IDFTn(x)) (2.7)

where “∗” denotes the Hadamard, or component-wise product of vectors.
From Theorem 2.4 we also find that the product of two circulant matrices is

still circulant and the inverse of a nonsingular circulant matrix is circulant.
The definition of circulant matrix is naturally extended to block matrices.

Definition 2.5 Given the block row vector [A0, A1, . . . , An−1] where Ai, i =
0, . . . , n − 1, are m × m matrices, the n × n block matrix

A = (Aj−i mod n)i,j=1,n =


A0 A1 . . . An−1

An−1 A0
. . .

...
...

. . .
. . . A1

A1 . . . An−1 A0


is called the block circulant matrix associated with [A0, A1, . . . , An−1] and is
denoted by Circ(A0, A1, , . . . , An−1).

Similarly to the scalar case we have

A =
n−1∑
i=0

Ci ⊗ Ai, (2.8)

and Theorem 2.4 is generalized to the following property

Theorem 2.6 If A is a block circulant matrix with first block row rT and with
first block column c we have

A =
1
n

(Ωn ⊗ Im)Diag(W1, . . . , Wn)(Ωn ⊗ Im)

where

[W1, . . . , Wn] = rT(Ωn ⊗ Im),W1

...
Wn

 = (Ωn ⊗ Im)c.
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Like circulant matrices, the class of block-circulant matrices is closed under
matrix multiplication and inversion.

Equation (2.7) becomes

Ax = DFTn(IDFTn(c) ∗ IDFTn(x)) (2.9)

where c is the first block column of A, which shows that one can compute the
product Ax of an n×n block circulant matrix A and a block vector x with block
components of size m × p by means of two block IDFTs and one block DFT of
length n, and n products of m × m times m × p matrices.

We synthesize (2.7) and (2.9) with Algorithm 2.2 for multiplying a block
circulant matrix and a block vector. For m = p = 1, the algorithm reduces to
the scalar case.

Algorithm 2.2 Block circulant matrix-vector product
Input: Positive integers m, n, p, where n = 2k, k a positive integer, the n-
dimensional block vector c = (Ci)i=1,n with m × m block components which is
the first block column of the block circulant matrix A, and the n-dimensional
block vector x = (Xi)i=1,n with m × p block components.

Output: The block vector y = Ax = (Yi)i=1,n.

Computation:

1. Compute w = (Wi)i=1,n = IDFTn(c).
2. Compute v = (Vi)i=1,n = IDFTn(x).
3. Compute the matrix products Ui = WiVi, i = 1, 2, . . . , n.
4. Compute y = DFTn(u) for u = (Ui)i=1,n.

The cost of computing y, given x and c is clearly O((m+p)mn log n+nm2p)
ops. If the elements of c are real, then it follows that W1 and Wn/2+1 are real
and that Wi = Wn−i+2, i = 2, . . . , n/2. The same property holds for the block
components Vi of v if x is real. Thus, if both c and x are real, then u also has
this property and the computation of Ui, i = 1, 2, . . . , n, is reduced to computing
two products of real matrices and n/2 − 1 products of complex matrices. Since
a product of complex matrices can be performed with three multiplications and
five additions of real matrices by means of (A.3), the overall cost of stage 3 is
3(n/2 − 1) + 2 real matrix multiplications between m × m and m × p matrices,
n/2−1 additions of m×m matrices, and 4(n/2−1) additions of m×p matrices.
Therefore for a real input the cost of Algorithm 2.2 is

n(3m2p + m(m + 3p)/2)) +
5
2
(m2 + 2mp)n log n (2.10)

ops up to lower order terms. If m and p are large enough, the dominant part of
the complexity is 3m2np. By using the customary algorithm for a matrix-vector
product the cost would be 2m2n2p ops.
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2.3.2 z-circulant matrices

A generalization of circulant matrices is provided by the class of z-circulant
matrices.

Definition 2.7 Given a scalar z �= 0 and the row vector [a0, a1, . . . , an−1], the
n × n matrix

A =


a0 a1 . . . an−1

zan−1 a0
. . .

...
...

. . .
. . . a1

za1 . . . zan−1 a0


is called the z-circulant matrix associated with [a0, a1, . . . , an−1].

Observe that a z-circulant matrix is fully defined by z and by the elements in
its first row rT = [a0, a1, . . . , an−1] or in its first column c = [a0, zan−1, . . . , za1]T.

We denote by Cz the z-circulant matrix whose first row is [0, 1, 0, . . . , 0], i.e.,

Cz =



0 1 0 . . . 0

0 0 1
. . .

...
...

. . . . . . . . . 0

0
. . . . . . 0 1

z 0 . . . 0 0


,

and we easily verify that

A =
n−1∑
i=0

aiC
i
z. (2.11)

That is, any z-circulant matrix can be viewed as a polynomial in Cz.
It is simple to verify that

Czn = zDzCD−1
z , Dz = Diag(1, z, z2, . . . , zn−1),

where C is the circulant matrix in (2.5). Therefore, if A is zn-circulant, from
(2.11) we deduce that

A = Dz

(
n−1∑
i=0

aiz
iCi

)
D−1

z

where
∑n−1

i=0 aiz
iCi is circulant. Whence, from Theorem 2.4 we obtain the fol-

lowing

Theorem 2.8 If A is the zn-circulant matrix with first row rT and first column
c then

A =
1
n

DzΩn Diag(w)ΩnD−1
z ,

with w = ΩnDzr = ΩnD−1
z c.
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The above theorem states that, like circulant matrices, all the matrices in the
z-circulant class can be simultaneously diagonalized by means of a combination
of DFT and diagonal scaling with the integer powers of z. Therefore, for any given
z, z-circulant matrices are closed under matrix multiplication and inversion.

The extension to block matrices trivially applies to z-circulant matrices.

Definition 2.9 Given a scalar z �= 0 and the block row vector [A0, A1, . . . , An−1],
the n × n matrix

A =


A0 A1 . . . An−1

zAn−1 A0
. . .

...
...

. . .
. . . A1

zA1 . . . zAn−1 A0


is called the block z-circulant matrix associated with [A0, A1, . . . , An−1].

The analog of Theorem 2.8 for block z-circulant matrices is stated below.

Theorem 2.10 If A is the block zn-circulant matrix with first block column c
and with first block row [A0, A1, . . . , An−1], then

A =
1
n

(Dz ⊗ Im)(Ωn ⊗ Im)Diag(w)(Ωn ⊗ Im)(D−1
z ⊗ Im),

where

w = (Ωn ⊗ Im)(Dz ⊗ Im)

 A0

...
An−1

 = (Ωn ⊗ Im)(D−1
z ⊗ Im)c.

2.3.3 Toeplitz matrices

A Toeplitz matrix is a matrix of the form

A =


a0 a1 a2 . . .

a−1 a0 a1
. . .

a−2 a−1 a0
. . .

...
. . . . . . . . .


that is, it has equal elements along each diagonal. The element in position (i, j)
of a Toeplitz matrix is a function of the difference j − i. For this reason we also
write A = (aj−i)i,j∈E , where the set E of the indices can be E = {1, . . . , n},
E = N or E = Z. In general a matrix is called finite if the set E of indices is
{1, . . . , n}, is called semi-infinite, or more simply infinite, if E = N and bi-infinite
if E = Z. Similarly, block Toeplitz matrices have the form A = (Aj−i)i,j∈E where
Ak, k = 0,±1,±2, . . . , are m × m matrices 1.

1We should remark that in the classical theory a Toeplitz matrix is defined in the form
A = (ai−j)i,j∈E so that the elements in the lower triangular part have positive indices and
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A simple example of a Toeplitz matrix is obtained by removing the first row
of the transition matrix (1.5) of Example 1.3.

An n×n Toeplitz matrix A = (aj−i)i,j=1,n, can be embedded into the 2n×2n
circulant matrix B whose first row is [a0, a1, . . . , an−1, ∗, a−n+1, . . . , a−1], where ∗
denotes any number. We observe that the leading n×n submatrix of B coincides
with A. An example with n = 3 is shown below

B =


a0 a1 a2 ∗ a−2 a−1

a−1 a0 a1 a2 ∗ a−2

a−2 a−1 a0 a1 a2 ∗
∗ a−2 a−1 a0 a1 a2

a2 ∗ a−2 a−1 a0 a1

a1 a2 ∗ a−2 a−1 a0

 .

More generally, an n × n Toeplitz matrix can be embedded into a q × q
circulant matrix for any q ≥ 2n − 1: it is sufficient to replace ∗ with q − 2n + 1
arbitrary elements. If q = 2n − 1 there is no extra element. Similarly, an n × n
block Toeplitz matrix A with m×m blocks can be embedded into a q × q block
circulant matrix B with m × m blocks for any q ≥ 2n − 1.

This embedding property allows one to compute the product y = Ax of a
(block) Toeplitz matrix A and a (block) vector x by means of Algorithm 2.2 in
the following manner. First we embed A in a circulant matrix B. Second we define
the q-dimensional block vector z = (Zi) obtained by filling up x with zeros, i.e.,
Zi = Xi, i = 1, 2, . . . , n, Zi = 0 elsewhere. The first n block components of the
block vector w = Bz coincide with y. If q is chosen as an integer power of 2, then
the product Bz can be efficiently computed by means of Algorithm 2.2 which is
based on the FFT.

We synthesize this computation in Algorithm 2.3 which includes the scalar
case when m = p = 1.

The complexity analysis of Algorithm 2.3 can be carried out similarly to the
case of Algorithm 2.2 and leads to the computational cost of

O((m + p)mn log n + nm2p)

ops. If p = m = 1, that is, A is a Toeplitz matrix and x is a vector, then the
asymptotic cost reduces to O(n log n) ops, versus the O(n2) cost of the customary
algorithm for matrix-vector multiplication. If m = p, the asymptotic cost is
O(m2n log n + m3n) = O(m2n(log n + m)); thus, if m is large with respect
to log n, the cost of computing FFTs is negligible with respect to the cost of
computing the matrix products.

From the complexity bound (2.10) of the product of a circulant matrix and
a vector we deduce that for real input the complexity bound of the product of a
Toeplitz matrix and a vector is

the elements in the upper triangular part have negative indices. This has specific motivations
related to the functional interpretation of Toeplitz matrices. Here we abandon this convention
and adopt the definition A = (aj−i)i,j∈E which is more suitable for Markov chains applications.
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Algorithm 2.3 Block Toeplitz matrix-vector product
Input: Positive integers m,n, p, the m × m matrices Ai, i = −n + 1, . . . , n − 1,
which define the n×n block Toeplitz matrix A = (Aj−i)i,j=1,n; the n-dimensional
block vector x = (Xi)i=1,n with m × p block components.

Output: The block vector y = Ax = (Yi)i=1,n.

Computation:

1. Compute the least integer k such that 2k ≥ 2n; set q = 2k.
2. Define the q-dimensional block column vector v = (Vi)i=1,q such that Vi =

A−i+1 if i = 1, . . . , n, Vq−i+1 = Ai if i = 1, 2, . . . , n−1, and Vi = 0 elsewhere,
and define the q × q block circulant matrix B having the first block column
v. The block Toeplitz matrix A is embedded in B.

3. Define the q-dimensional block column vector z = (Zi)i=1,q such that Zi =
Xi if i = 1, . . . , n, Xi = 0 elsewhere.

4. Compute w = Bz = (Wi)i=1,q by means of Algorithm 2.2.
5. Set Yi = Wi, i = 1, . . . , n.

q(3m2p + m(m + 3p)/2)) +
5
2
(m2 + 2mp)q log q (2.12)

up to terms of lower order, where q is the minimum integer power of 2 greater
than 2n − 1. In Figure 2.1 we compare the cost (2.12), where q = q(n), and the
cost 2n2m2p of the customary algorithm as a function of n for m = p = 10. We
see that even for relatively small values of n, Algorithm 2.3 is faster than the
customary algorithm.

Algorithm 2.3, formulated for the computation of the product of a block row
vector and a block Toeplitz matrix, is reported as Algorithm 2.4.

2.3.4 Triangular Toeplitz matrices

Let Z = (zi,j)i,j=1,n be the n × n lower shift matrix

Z =


0 0

1
. . .
. . . . . .

0 1 0

 , (2.13)

with zi+1,1 = 1 for i = 1, . . . , n − 1, zi,j = 0 elsewhere.
For a given vector x = (xi)i=1,n, we define the n×n lower triangular Toeplitz

matrix

L(x) =
n−1∑
i=0

xi+1Z
i =


x1 0
x2 x1

...
. . . . . .

xn . . . x2 x1

 ,

having x as first column.
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Fig. 2.1 Computational costs of the algorithms for multiplying a block Toeplitz matrix
and a block vector for m = p = 10 as a function of n.

Similarly, given a row vector yT = [y1, y2, . . . , yn], we define the n × n upper
triangular Toeplitz matrix

U(yT) =
n−1∑
i=0

yi+1(ZT)i =


y1 y2 . . . yn

y1
. . .

...
. . . y2

0 y1

 ,

having yT as first row.
The above definitions extend to block matrices in the following way: we denote

with L(x) the block lower triangular Toeplitz matrix having first block column
x, and with U(yT) the block upper triangular Toeplitz matrix having first block
row yT, that is,

L(x) =


X1 0
X2 X1

...
. . . . . .

Xn . . . X2 X1

 , x =


X1

X2

...
Xn

 ,

U(yT) =


Y1 Y2 . . . Yn

Y1
. . .

...
. . . Y2

0 Y1

 , yT = [Y1, Y2, . . . , Yn].

Let Tn = L(a), a = (ai−1)i=1,n, be an n × n lower triangular Toeplitz ma-
trix. Since Tn is a polynomial in Z and Zk = 0 for k ≥ n, the class of lower
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Algorithm 2.4 Block vector-Toeplitz matrix product
Input: Positive integers m,n, p, the m × m matrices Ai, i = −n + 1, . . . , n − 1,
which define the n×n block Toeplitz matrix A = (Aj−i)i,j=1,n; the n-dimensional
block row vector xT = [X1, . . . , Xn] with p × m block components.

Output: The block row vector yT = xTA = [Y1, . . . , Yn]

Computation:

1. Consider the block Toeplitz matrix H = AT = (AT
i−j)i,j=1,n and the block

column vector w = x = (XT
i )i=1,n.

2. Compute the product v = Hw by means of Algorithm 2.3.
3. Output Yi = V T

i , i = 1, . . . , n.

triangular Toeplitz matrices is closed under multiplication. Moreover, by the
Cayley–Hamilton theorem (Theorem A.10 in the appendix) the inverse of any
nonsingular matrix A can be written as a polynomial in A, therefore T−1

n is still a
lower triangular Toeplitz matrix and to compute T−1

n is equivalent to computing
the elements in the first column of T−1

n . Similarly, the class of block triangular
Toeplitz matrices is closed under matrix product and matrix inversion.

Now, assume n = 2h, h a positive integer, and partition Tn into h×h blocks,
writing

Tn =
[

Th 0
Sh Th

]
, (2.14)

where Th, Sh are h × h Toeplitz matrices and Th is lower triangular. If Tn is
nonsingular then Th also is nonsingular and

T−1
n =

[
T−1

h 0
−T−1

h ShT−1
h T−1

h

]
.

Thus, the first column vn of T−1
n is given by

vn = T−1
n e1 =

[
vh

−T−1
h Shvh

]
=
[

vh

−L(vh)Shvh

]
, (2.15)

where L(vh) = T−1
h is the lower triangular Toeplitz matrix whose first column

is vh.
The same relation holds if Tn is block triangular Toeplitz. In this case the

elements a0, . . . , an−1 are replaced with the m × m blocks A0, . . . , An−1 and vn

denotes the first block column of T−1
n .

The representation (2.15) of vn leads to a recursive algorithm for its compu-
tation (Algorithm 2.5), which we describe for block triangular Toeplitz matrices
of block size n = 2k, for a positive integer k.

The computation of the block vector u at the ith step of Algorithm 2.5
requires the computation of two products of a block Toeplitz matrix and a
block vector. Since this can be performed in O(2im3 + i2im2) ops by means
of Algorithm 2.3, the overall cost of Algorithm 2.5 is O(nm3 + nm2 log n).
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Algorithm 2.5 Block lower triangular Toeplitz matrix inversion
Input: The positive integer k and the m × m block elements A0, . . . , An−1,
n = 2k, of the first block column of the block lower triangular Toeplitz matrix
Tn, where det A0 �= 0.

Output: The first block column vn of T−1
n .

Computation:

1. Set v1 = A−1
0

2. For i = 0, . . . , k − 1, given vh, h = 2i:
(a) Compute the block Toeplitz matrix-vector products w = Shvh and

u = −L(vh)w.
(b) Set

v2h =
[

vh

u

]
.

More precisely, if the input is real, from the complexity estimate (2.12) with
p = m, we deduce that the complexity bounds of the ith stage reduce to
2(3m3q + 15

2 m2q log q + 2m2q) for q = 2i+1. Moreover, in this complexity es-
timate, we counted twice the cost of the computation of the DFT of the vector
vh (filled with zeros) which appears in both the Toeplitz matrix-vector products
Shvh and L(vh)w (see Steps 2 and 3 of Algorithm 2.3). Taking this into con-
sideration, the complexity bound is reduced to 25

2 m2h log(h) + 6m3h + 4m2h.
Therefore, since

∑k−1
i=0 2i+1 = 2(2k − 1), the overall cost is less than

25m2n log(2n) + (12m3 + 8m2)n (2.16)

where we have bounded log 2i with log n.
The block triangular Toeplitz system Tnx = b can be solved in O(m2n log n+

m3n) ops, by first computing the inverse matrix T−1
n by means of Algorithm 2.5

and then computing the product T−1
n b by means of Algorithm 2.3.

Alternatively, the computation of the first block column of the inverse of Tn

might be performed by using the customary approach, i.e, by inverting the diag-
onal block A0 and by applying forward substitution. This amounts to computing
n(n + 1)/2 matrix products and n(n − 1)/2 matrix sums. The cost in the case
of real input is n2m3 ops, up to terms of lower order. A plot of the latter cost
estimate versus the bound (2.16) as functions of n is reported in Figure 2.2, with
m = 10.

Algorithm 2.5 can be easily adjusted to invert a block upper triangular
Toeplitz matrix at the same cost. This is described as Algorithm 2.6.

If Tn is block upper triangular Toeplitz, then the system Tnx = b can be
solved in O(m2n log n + m3n) ops, by first computing the inverse matrix T−1

n

by means of Algorithm 2.6 and then computing the product T−1
n x by means of

Algorithm 2.3.
If the block Toeplitz matrix Tn is not block triangular, its inverse is not block

Toeplitz, as the following simple example shows:
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Fig. 2.2 Computational costs of the algorithms for inverting a block triangular
Toeplitz matrix for m = 10 as a function of n.

Example 2.11 Let n = 4 and

A =


4 3 2 1
0 4 3 2
1 0 4 3
0 1 0 4

 .

We have

A−1 =
1

265


65 −50 5 5
12 56 −48 5
−14 23 56 −50
−3 −14 12 65

 .

However, it is possible to introduce a more general structure which is preserved
under inversion. This is the subject of the next section.

2.4 Displacement operators

The concept of displacement operator and displacement rank is a powerful tool
for dealing with Toeplitz matrices. We refer the reader to Section 2.5 for historical
and bibliographic notes. Here, we recall the main results concerning displacement
rank, and prepare the tools that we will use later on. Throughout this section
we refer to section 2.11 of [12].

Define the displacement operator

∆(A) = AZ − ZA, (2.17)

applied to an n × n matrix A, where Z is the lower shift matrix of (2.13).
Multiplying the matrix A on the left by Z shifts down each row of A by one
position. Similarly, multiplying the matrix A on the right by Z shifts each column
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Algorithm 2.6 Block upper triangular Toeplitz matrix inversion
Input: The positive integer k and the m × m block elements A0, . . . , An−1,
n = 2k, of the first block row of the upper block triangular Toeplitz matrix Tn,
where det A0 �= 0.

Output: The first block row vT
n of T−1

n .

Computation:

1. Set Bi = AT
i , i = 0, . . . , n − 1, and b = (Bi−1)i=1,n.

2. Apply Algorithm 2.5 to the block lower triangular matrix L(b) = TT
n and

compute the first block column vn of (TT
n )−1.

3. Output the block row vector vT
n .

of A by one position to the left. In particular, if A = (aj−i)i,j=1,n is Toeplitz
then

∆(A) =


a1 a2 . . . an−1 0

−an−1

0 ...
−a2

−a1

 = e1e
T
1 AZ − ZAeneT

n , (2.18)

where e1 and en denote the first and the last column of the n×n identity matrix.
Therefore, ∆(A) has at most rank 2. We say that a matrix A has displacement
rank (at most) k with respect to the operator ∆ if rank ∆(A) = k (rank∆(A) ≤
k). As a particular case, Toeplitz matrices have displacement rank at most 2, so
that the class of matrices with “low” displacement rank are a generalization of
Toeplitz matrices.

It is important to recall that an n × n matrix X has rank k if and only if
there exist n × k matrices V,W of full rank such that X = V WT. Therefore, if
∆(A) has rank k then there exist two n× k matrices V and W of full rank such
that ∆(A) = V WT and vice versa. We call a displacement generator of A with
respect to the operator ∆ any pair (V, W ) of such matrices. For instance, in the
case of (2.18) one has ∆(A) = V WT where

V =


1 0
0 an−1

...
...

0 a1

 , WT =
[

a1 . . . an−1 0
0 . . . 0 −1

]
.

Observe that we might have a pair of n×h matrices (V, W ) such that h > k,
V WT = ∆(A) and rank(V ) = rank(W ) = rank∆(A) = k. We call such a pair
a displacement generator of nonminimal rank of A. A generator of nonminimal
rank stores the information about ∆(A) in a redundant way. Using numerical
linear algebra tools like the singular value decomposition any generator can be
reduced to minimal rank.
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The displacement generator of a matrix A, together with the first column of
A, contains all the information which allows one to represent all the elements of
A, as shown in the next theorem.

Theorem 2.12 Let A be an n×n matrix having first column a and displacement
rank k. If (V,W ) is a displacement generator of A, then

A = L(a) +
k∑

i=1

L(vi)U(wT
i ZT)

where vi and wi are the ith column of V and W , respectively.

Equivalent representations can be given in terms of different operators. Be-
sides the Sylvester type operator ∆ we may consider operators of the Stein
type like ∇(A) = A − ZAZT. More generally, we may consider operators like
AZ1 − Z2A or A − Z1AZT

2 where Z1 and Z2 can be different, say z-circulant,
or (−z)-circulant. We refer the reader to [70] and to [12, Section 2.11] for more
details on this regard.

A simple but important consequence of Theorem 2.12 is that any matrix with
displacement rank k can be decomposed as the sum of at most k + 1 matrices,
each of them the product of a lower and an upper triangular Toeplitz matrix.
Therefore, the product y = Ax can be split into at most 2k + 1 products of
triangular Toeplitz matrices and vectors. Each one of these products can be
efficiently performed by using Algorithm 2.3 in O(n log n) ops. The overall cost
of the algorithm for computing y in this way is O(kn log n).

Another nice consequence of Theorem 2.12 concerns the inverse matrix of A.
Observe that if A is nonsingular then pre- and post-multiplying (2.17) by A−1

yields the simple relation

∆(A−1) = −A−1∆(A)A−1, (2.19)

from which we conclude that the displacement ranks of A and of A−1 coincide.
Moreover, given a displacement generator (V,W ) of the nonsingular matrix A,
the pair (−A−1V, (A−1)TW ) is a displacement generator for A−1. This allows
one to represent A−1 in a compact way by means of Theorem 2.12 as

A−1 = L(A−1e1) −
k∑

i=1

L(A−1vi)U(wT
i A−1ZT). (2.20)

Observe that even though the inverse of a Toeplitz matrix A is not generally
Toeplitz, its displacement rank is at most 2.

Example 2.13 For the Toeplitz matrix A of Example 2.11 we have ∆(A−1) =
V WT where

V =
1

265


−65 25
−12 25
14 15
3 −205

 , WT =
1

265

[
205 −15 −25 −25
3 14 −12 −65

]
.
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Computing the displacement representation of A−1 is reduced to solving at
most 2k + 1 linear systems. This is particularly convenient when k is small with
respect to n. Moreover, once A−1 is represented by means of its displacement
generator, solving any additional system of the kind Ax = b is reduced to com-
puting the product x = A−1b, with the cost of O(kn log n) ops.

Displacement representations are also useful for computing products of ma-
trices with low displacement rank. It is a simple matter to prove that

∆(AB) = A∆(B) + ∆(A)B (2.21)

so that a displacement generator (possibly of nonminimal rank) of C = AB is
given by (VC ,WC) where

VC =
[
AVB VA

]
, WC =

[
WB BTWA

]
,

and (VA,WA) and (VB ,WB) are displacement generators of A and B, respec-
tively. Therefore, to compute the displacement generator (possibly of nonminimal
rank) of the product AB given the displacement generators of A and B, one only
needs to compute the products AVB and BTWA, at the cost O(kn log n), where
k is the maximum displacement rank of A and B, if we use the displacement
representation of A and B and Algorithm 2.3.

The concept of displacement rank is easily extended to block matrices. Let
Z = Z ⊗ I, where I is the m × m identity matrix, and consider the operator
A → AZ−ZA applied to an n×n block matrix with m×m blocks. Observe that
this operator coincides with ∆ if m = 1. Therefore, for notational simplicity, we
will denote it with the same symbol and write that ∆(A) = AZ − ZA.

It is easy to see that, if A = (Aj−i)i,j=1,n is block Toeplitz, then

∆(A) =


A1 A2 . . . An−1 0

−An−1

0 ...
−A2

−A1


=(e1 ⊗ I)(e1 ⊗ I)TAZ − ZA(en ⊗ I)(en ⊗ I)T.

We say that the block matrix A has block displacement rank k if k is the minimum
integer such that there exist n × k block matrices V and W with m × m blocks
satisfying ∆(A) = V WT. Any such pair (V,W ) is called a block displacement
generator of A. The representation theorem 2.12 still holds as well as equations
(2.19), (2.20) and (2.21) suitably adjusted to the block notation. We synthesize
these properties in the following

Theorem 2.14 Let ∆(A) = AZ − ZA. If A is nonsingular then

∆(A−1) = −A−1∆(A)A−1.

Given matrices A,B,C such that A = BC then
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∆(A) = B∆(C) + ∆(B)C.

Moreover, if ∆(A) = V WT, where V and W are n×k block matrices with m×m
blocks, then

A = L(a) +
k∑

i=1

L(vi)U(wT
i ZT)

where a is the first block column of A, vi and wi denote the ith block column of
V and W , respectively, for i = 1, . . . , k. In particular, if A is nonsingular, then

A−1 = L(a′) −
k∑

i=1

L(A−1vi)U(wT
i A−1ZT)

where a′ is the first block column of A−1.

It is interesting to point out that, ∆(A) = 0 if and only if A is block lower
triangular Toeplitz. Observe also that the “dual” operator ∆2(A) = AZT−ZTA,
which satisfies the same formal properties of ∆, is such that ∆2(A) = 0 if and
only if A is block upper triangular Toeplitz. In Chapter 9 we will use both
operators ∆ and ∆2 and we will use the notation ∆1 instead of ∆. The symbol
∆ will be used only to denote a general displacement operator in the expressions
which are valid for both ∆1 and ∆2.

We summarize the properties of ∆2(A) in the following theorem.

Theorem 2.15 Let ∆2(A) = AZT −ZTA. If A is nonsingular then

∆2(A−1) = −A−1∆2(A)A−1.

Given matrices A,B,C such that A = BC then

∆2(A) = B∆2(C) + ∆2(B)C.

Moreover, if ∆2(A) = V WT, where V and W are n × k block matrices with
m × m blocks, then

A = U(aT) −
k∑

i=1

L(Zvi)U(wT
i )

where vi and wi denote the ith block column of V and W , respectively, for
i = 1, . . . , k, and aT is the first block row of A. In particular, if A is nonsingular,
then

A−1 = U(a′′T) +
k∑

i=1

L(ZA−1vi)U(wT
i A−1).

where a′′T is the first block row of A−1.

Another interesting property which relates the operators ∆1 = ∆ and ∆2 is
expressed by the following
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Theorem 2.16 If ∆1(A) = AZ − ZA and ∆2(A) = AZT −ZTA then

∆1(A) = −Z∆2(A)Z − ZA(em ⊗ I)(em ⊗ I)T + (e1 ⊗ I)(e1 ⊗ I)TAZ.

Proof Multiply both sides of ∆2(A) = AZT −ZTA by Z on the right and on
the left by Z and obtain

Z∆2(A)Z = ZAZTZ − ZZTAZ.

Use that fact that I−ZZT = (e1⊗I)(e1⊗I)T and I−ZTZ = (em⊗I)(em⊗I)T

and obtain the claim. �

The Toeplitz structure, and more generally, the displacement structure, can
be effectively used for computing matrix inverses. For solving general block
Toeplitz systems there are algorithms based on Schur complementation and
displacement rank. We refer the reader to Section 2.5 for references both on
theoretical analysis and on the available software.

An alternative to direct algorithms are iterative algorithms which provide
a sequence of successive approximations to the solution of the linear system
Ax = b. For positive definite systems, particular attention is paid to conjugate
gradient iteration which provides the exact solution after mn steps, but which
may provide reasonable approximations after just a few iterations. Furthermore,
convergence can be accelerated by means of preconditioning techniques.

Each step of the conjugate gradient requires the multiplication of a Toeplitz
matrix and a vector. This computation is inexpensive if performed by means
of Algorithm 2.3. For nonsymmetric matrices, iterative algorithms like GMRES
and Arnoldi methods should be used. All these algorithms for Toeplitz inversion
can be extended to the case of matrices having a low displacement rank.

References are given in Section 2.5.

2.5 Bibliographic notes

Analysis of algorithms for FFT can be found in Van Loan [115]; discrete fast
transforms are analyzed in Elliot and Rao [36]. A treatise on circulant matrices
is in Davis [35], α-circulant matrices have been introduced in Cline, Plemmons,
and Worm [34], and some properties of circulant and α-circulant matrices can be
found in Bini and Pan [12]. A package for computing fast trigonometric trans-
forms has been developed by Swarztrauber in [109]. It may be downloaded from
http://www.netlib.org/fftpack. A very efficient package in C (the “best FFT
in the West”: FFTW) , with a hardware-dependent optimization, has been de-
signed at MIT by Matteo Frigo and Steven G. Johnson [39]. It may be down-
loaded from http://www.fftw.org.

Algorithms for Toeplitz and polynomial computations are analyzed in [12].
Other important algorithmic issues concerning Toeplitz and Toeplitz-like ma-
trices are treated in Kailath and Sayed [70] and in Heinig and Rost [62]. Con-
cerning preconditioning techniques and conjugate gradients we refer the reader
to the books [66] and [70] and to the survey papers [32] and [31]. Arnoldi-like
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methods and GMRES can be found in [50] and [103]. Software for Toeplitz and
block Toeplitz matrices has been developed in [8] and can be downloaded from
http://www.win.tue.nl/wgs.

The theory of displacement operators dates back to the papers by Kailath et
al. [68], [67]. A basic treatment, with many historical notes, is given in Chapter
1 of [70] and in [69].



3

MATRIX EQUATIONS AND CANONICAL
FACTORIZATIONS

3.1 Matrix power series and structured matrices

Let {Ai}i∈Z be a sequence of m×m matrices. We call a matrix power series any
formal expression of the kind A(z) =

∑+∞
i=0 ziAi, where “formal” means that at

the moment we ignore issues like the convergence of the power series for given
values of z. If Ai = 0 for i > n and An �= 0 for a nonnegative integer n, then
A(z) is a matrix polynomial of degree n.

We call a matrix Laurent power series any formal expression of the kind
A(z) =

∑+∞
i=−∞ ziAi. Given n1, n2 ≥ 0, if Ai = 0 for i < −n1 and for i > n2,

and if A−n1 �= 0, An2 �= 0, then we call A(z) =
∑n2

i=−n1
ziAi a matrix Laurent

polynomial of degree (n1, n2).
Matrix power series and matrix Laurent power series are closely related to

block Toeplitz matrices. Here we point out the strict relationship between struc-
tured matrices and matrix power series and show the interplay between algo-
rithms for structured matrix computations and algorithms for matrix power se-
ries computations.

Given a matrix Laurent power series A(z) =
∑+∞

i=−∞ ziAi we denote by

Tn[A(z)] = (Aj−i)i,j=1,n,

T∞[A(z)] = (Aj−i)i,j∈N,

T±∞[A(z)] = (Aj−i)i,j∈Z,

the n × n, semi-infinite and bi-infinite block Toeplitz matrices, respectively, as-
sociated with A(z).

If A(z) is a matrix Laurent polynomial, such that Ai = 0 for |i| > k, then
Tn[A(z)], T∞[A(z)], T±∞[A(z)] are block banded block Toeplitz matrices. If A(z)
is a matrix power series in z then Tn[A(z)], T∞[A(z)] and T±∞[A(z)] are block
upper triangular Toeplitz matrices. Similarly, if A(z) is a matrix power series in
z−1 then the associated block Toeplitz matrices are block lower triangular.

3.1.1 Power series and infinite Toeplitz matrices

Wiener algebra plays an important role in the analysis of matrix Laurent power
series. We call a Wiener algebra the set W of complex m × m matrix valued
functions A(z) =

∑+∞
i=−∞ ziAi such that

∑+∞
i=−∞ |Ai| is finite. We recall (see,

e.g., [27]) that, if A(z) ∈ W is nonsingular for |z| = 1 then A(z)−1 exists for

45
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|z| = 1 and A(z)−1 ∈ W; moreover, if A(z), B(z) ∈ W, then also A(z) + B(z)
and A(z)B(z) are in W. Thus W is closed under addition, multiplication and
inversion, so that it has the structure of an algebra.

We denote by W+ and W− the subalgebras of W made up by power series
of the kind

∑+∞
i=0 ziAi and

∑+∞
i=0 z−iAi, respectively; the former are analytic

functions in the open unit disk D = {z ∈ C : |z| < 1}, the latter are analytic
outside the closed unit disk. Observe that a function in W+ may be invertible
in W but not in W+. A simple example of this fact is the function zI ∈ W+; its
inverse z−1I ∈ W− does not belong to W+.

The Wiener condition
∑+∞

i=−∞ |Ai| < +∞ is specific to the matrix functions
encountered in Markov chains where, typically, Ai ≥ 0 and

∑+∞
i=−∞ Ai is stochas-

tic so that
∑+∞

i=−∞ |Ai| =
∑+∞

i=−∞ Ai is finite. A general example of this situation
is represented by the M/G/1 Markov chains which will be studied in Chapter 4
where the transition matrix P is the block Hessenberg stochastic matrix of (4.3).

In order to deal with semi-infinite and bi-infinite matrices we have to regard
them as linear operators on 
2(N) and 
2(Z) respectively, that is, on the space of
infinite vectors x = (xi) indexed by N and Z, respectively, such that

∑
i |xi|2 is

finite. In this context it is useful to use also the notation 
1(N) and 
1(Z) for the
vector spaces x = (xi) such that

∑
i |xi| is finite. The properties 
1(N) ⊂ 
2(N)

and 
1(Z) ⊂ 
2(Z) are easily verified. For x = (xi) ∈ 
2 we define the norm
‖x‖2 = (

∑
i |xi|2)1/2, similarly, for x ∈ 
1 we define the norm ‖x‖1 =

∑
i |xi|.

Other important vector spaces are the spaces 
∞(N) and 
∞(Z) of vectors indexed
by N, Z, respectively, such that ‖x‖∞ = supi |xi| is finite.

A linear operator A : 
2 → 
2 is bounded if and only if

sup
x∈�2,x �=0

‖Ax‖2

‖x‖2
< +∞,

and we have the following classical result

Theorem 3.1 The bi-infinite block Toeplitz matrix (Aj−i)i,j∈Z defines a
bounded operator on 
2(Z) if and only if there exists a function A(z) defined
for |z| = 1 such that sup|z|=1 |A(z)| is finite, and such that {Aj}j∈Z is the se-
quence of the Fourier coefficients of A(z):

Aj =
1
2π

∫ 2π

0

A(eiθ)e−ijθdθ, j ∈ Z.

The same property holds for semi-infinite matrices.

As a consequence of the above theorem we conclude that if A(z) ∈ W, then
the associated semi- or bi-infinite block Toeplitz matrix defines a bounded oper-
ator.

Concerning the invertibility of a function in W+ we have the following result
(see, e.g., [27]), a similar property holding for functions in W−.

Theorem 3.2 The function A(z) ∈ W+ is invertible in W+ if and only if one
of the following equivalent conditions hold:
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1. detA(z) �= 0 for |z| ≤ 1;

2. T∞[A(z)] is invertible.

Given matrix Laurent power series A(z), B(z), C(z) ∈ W such that C(z) =
A(z) + B(z), it is immediate to verify that

T±∞[C(z)] = T±∞[A(z)] + T±∞[B(z)], T∞[C(z)] = T∞[A(z)] + T∞[B(z)].

Likewise, if A(z) = αB(z) then

T±∞[A(z)] = αT±∞[B(z)], T∞[A(z)] = αT∞[B(z)],

where α is any complex number.
Concerning the product of matrix Laurent power series we may prove a

similar property. Let us first consider the case of semi-infinite block Toeplitz
matrices and of matrix power series. Consider the formal matrix power se-
ries A(z) =

∑+∞
i=0 ziAi, B(z) =

∑+∞
i=0 ziBi, C(z) =

∑+∞
i=0 ziCi, such that

A(z) = B(z)C(z). By equating the coefficients of zi in the above expression
for i = 0, 1, . . ., we get

A0 = B0C0,
A1 = B0C1 + B1C0,
A2 = B0C2 + B1C1 + B2C0,
...

,

which we may rewrite in matrix form as
A0 A1 A2 . . .

A0 A1
. . .

A0
. . .

0 . . .

 =


B0 B1 B2 . . .

B0 B1
. . .

B0
. . .

0 . . .




C0 C1 C2 . . .

C0 C1
. . .

C0
. . .

0 . . .

 , (3.1)

where the block triangular Toeplitz matrices in the above expression are semi-
infinite, that is, their subscripts range in N. In this way we may regard the
product of matrix power series as a product of block upper triangular Toeplitz
matrices.

Similarly, we may look for the inverse of A(z), that is, a matrix power series
H(z) =

∑+∞
i=0 ziHi such that A(z)H(z) = I. If the matrix function A(z) is

invertible for |z| ≤ 1, then the inverse of T∞[A(z)] exists and is block upper
triangular in light of Theorem 3.2. Once again, equating the coefficients of zi on
both sides of A(z)H(z) = I we obtain that

A0 A1 A2 . . .

A0 A1
. . .

A0
. . .

0 . . .



−1

=


H0 H1 H2 . . .

H0 H1
. . .

H0
. . .

0 . . .

 . (3.2)
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Summarizing this property we have

T∞[A(z)] = T∞[B(z)]T∞[C(z)], if A(z) = B(z)C(z),

T∞[A(z)]−1 = T∞[H(z)], if H(z) = A(z)−1.
(3.3)

In general, however, if A(z), B(z) and C(z) are matrix Laurent power se-
ries, then T∞[A(z)] �= T∞[B(z)]T∞[C(z)], and T∞[A(z)]−1 �= T∞[H(z)] as the
following example shows.
Example 3.3 Let A(z) = z−1I + I + zI, B(z) = A(z) so that

T∞[A(z)] = T∞[B(z)] =


I I 0
I I I

I I
. . .

0 . . . . . .

 ,

and

T∞[A(z)B(z)] =


3I 2I I 0
2I 3I 2I I
I 2I 3I 2I I

I 2I 3I 2I
. . .

0 . . . . . . . . . . . .

 .

We have

T∞[A(z)]T∞[B(z)] =


2I 2I I 0
2I 3I 2I I
I 2I 3I 2I I

I 2I 3I 2I
. . .

0 . . . . . . . . . . . .

 ,

that is, T∞[A(z)]T∞[B(z)] is not block Toeplitz and differs from the matrix
T∞[A(z)B(z)] for the block element in position (1, 1).

Nevertheless, formula (3.3) is still valid if we replace semi-infinite matrices
with bi-infinite matrices.

To see this, assume that B(z) =
∑+∞

i=−∞ ziBi and C(z) =
∑+∞

i=−∞ ziCi

are two matrix Laurent power series in the Wiener algebra, and define A(z) =∑+∞
i=−∞ ziAi, Ak =

∑+∞
i=−∞ BiCk−i, so that A(z) = B(z)C(z), Consider the

matrix S = T±∞[B(z)]T±∞[C(z)] and observe that the element Si,j is given by

+∞∑
p=−∞

Bp−iCj−p =
+∞∑

q=−∞
BqCj−i−q

so that Si,j = Aj−i. Then S is the block Toeplitz matrix associated with A(z),
and
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T±∞[A(z)] = T±∞[B(z)]T±∞[C(z)], if A(z) = B(z)C(z), (3.4)

from which we conclude that

T±∞[A(z)]−1 = T±∞[H(z)], if H(z) = A(z)−1, (3.5)

provided that A(z) ∈ W is invertible.
The above properties clearly show the interplay between bi-infinite block

Toeplitz matrices and matrix Laurent power series.
In Chapter 7 we will encounter the problem of inverting an infinite block

triangular Toeplitz matrix T∞[A(z)], where A(z) =
∑k−1

i=0 ziAi, Ai ≤ 0 for i ≥ 1,
A0 is an M-matrix and

∑k−1
i=0 Ai is a nonsingular M-matrix (for the definition of

M-matrix we refer to Definition A.12). Under this assumption A(z)−1 is a matrix
power series and its coefficients can be easily computed relying on the following

Theorem 3.4 Let A(z) =
∑k−1

i=0 ziAi, be such that Ai ≤ 0 for i ≥ 1, and∑k−1
i=0 Ai is a nonsingular M-matrix. Then A(z) is invertible in W+ and V (z) =

A(z)−1 =
∑+∞

i=0 ziVi has nonnegative block coefficients. Moreover, if A(1)−1 −∑n−1
i=0 Vi ≤ εE then

∑+∞
i=n Vi ≤ εE, where E is the m×m matrix with elements

equal to 1.

Proof Since
∑k−1

i=0 Ai is a nonsingular M-matrix, and since Ai ≤ 0 for i ≥ 1,
then A(z) is in W+ and it is nonsingular for |z| ≤ 1. Therefore it is invertible
in W+ for Theorem 3.2. Since for any n ≥ 1 one has Tn[A(z)]−1 = Tn[V (z)],
and since Tn[A(z)] is a nonsingular M-matrix, then for Theorem A.13 one has
Tn[A(z)]−1 ≥ 0 so that Vi ≥ 0 for i = 0, . . . , n − 1, for any n. Since A(1)−1 =
V (1) =

∑+∞
i=0 Vi then 0 ≤ A(1)−1 −∑n−1

i=0 Vi =
∑+∞

i=n Vi. �

According to the above theorem, the matrix (T∞[A(z)])−1 can be approxi-
mated with the infinite banded Toeplitz matrix associated with the matrix poly-
nomial Vn(z) =

∑n−1
i=0 ziVi, and the approximation error is at most ε in infinity

norm if A(1)−1 −
∑n−1

i=0 Vi ≤ εE.
Relying on the nonnegativity properties of the coefficients of V (z) one may

design a procedure for computing a value of n such that
∑+∞

i=n Vi ≤ εE and for
computing the block coefficients V0, V1, . . . , Vn−1. Indeed, by using the doubling
technique described in Algorithm 2.5 we may compute the sequences of inverses
(T2i [A(z)])−1, i = 0, 1, . . ., having first block row with block elements Vj , j =

0, 1, . . . , 2i − 1, until A(1)−1 −
∑2i−1

j=0 Vj ≤ εE. In fact, in light of Theorem 3.4,
the latter inequality implies that

∑+∞
j=2i Vj ≤ εE.

Algorithm 3.1 synthesizes the above computation, i.e., given the error bound
ε, it computes the first N block elements of the first block row of (T∞[A(z)])−1,
where N is such that

∑+∞
i=N Vi ≤ εE. Here we follow the notation of Section 2.3.4,

in particular L(v) is the block lower block triangular Toeplitz matrix whose first
block column is v, and the matrix SN is the Toeplitz matrix defined in formula
(2.14).

Algorithm 3.1 is the extension to the infinite case of Algorithm 2.6. Concern-
ing comments on the computational cost, and on the computation of the Toeplitz
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Algorithm 3.1 Infinite block triangular Toeplitz matrix inversion
Input: The positive integer k and the m × m block elements A0, . . . , Ak−1, of
the first block row of the block triangular Toeplitz matrix T∞[A(z)], such that
Ai ≤ 0 for i ≥ 1, and

∑k−1
i=0 Ai is a nonsingular M-matrix; an error bound ε > 0.

Output: An integer N and the first N block elements Vi, i = 0, . . . , N − 1, of
the first block row of T∞[A(z)]−1, where N is such that

∑+∞
i=N Vi ≤ εE.

Computation:

1. Set Bi = AT
i , i = 0, . . . , k − 1.

2. Compute W = (
∑k−1

i=0 Bi)−1.
3. Set N = 1, y1 = B−1

0 and Y0 = y1.
4. Given yN = (Yi)i=0,N−1

(a) compute the Toeplitz matrix-vector products w = SNyN , u =
−L(yN )w, where SN is the Toeplitz matrix defined in formula (2.14);

(b) set

y2N =
[

yN

u

]
;

(c) set N = 2N .
5. If W −∑N−1

i=0 Yi ≤ εE then output N and Vi = Y T
i , i = 0, . . . , N − 1; else

continue from step 4.

matrix-vector products w = SNyN and u = −L(yN )w we refer the reader to
the comments after Algorithm 2.5. In particular, the overall computation cost is
less than 25m2N log(2N) + (12m3 + 8m2)N .

3.1.2 Power series arithmetic
In this section we first examine some algorithmic issues related to computing
the first n block coefficients of the product of two matrix power series and of
the inverse of a given matrix power series; later, we consider the case of matrix
Laurent power series.

Let A(z), B(z) and C(z) be matrix power series such that A(z) = B(z)C(z).
The first n coefficients of A(z) are the coefficients of the polynomial

A(z) mod zn =
n−1∑
i=0

ziAi,

which is the matrix polynomial obtained by applying element-wise the modular
relation to A(z). Here, p(z) mod zn is the remainder on division of p(z) by zn.

Observe that the relation which we obtain by cutting (3.1) to the finite block
size n, can be rewritten in polynomial form as1

1Another interesting remark which relates structured matrices with matrix polynomials is
that equating the coefficients of the same degree in both sides of A(z) = B(z)C(z) mod zn −
1 yields the matrix equation Circ(A0, . . . , An−1) = Circ(B0, . . . , Bn−1)Circ(C0, . . . , Cn−1),
where Circ(·) denotes the circulant matrix of Definition 2.5.
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A(z) = B(z)C(z) mod zn.

Therefore, we may compute the first n block coefficients of the product A(z) =
B(z)C(z) by performing this computation modulo zn and applying Algorithm
2.4 to the product [A0, A1, . . . , An−1] = [B0, B1, . . . , Bn−1]Tn[C(z)]: since block
upper triangular Toeplitz matrices are uniquely defined by their first block row,
the first block row of Tn[A(z)] is the product of the first block row of Tn[B(z)]
and Tn[C(z)].

Observe that if the matrix power series B(z) and C(z) reduce to matrix poly-
nomials of degree n1 and n2, and if A(z) = B(z)C(z) then the relation between
the coefficients of A(z), B(z) and C(z) is fully determined by the product of the
upper block triangular Toeplitz matrices of size n = n1 + n2 + 1 obtained by
truncating (3.1), i.e., Tn[A(z)] = Tn[B(z)]Tn[C(z)].

The computation of this product of block upper triangular Toeplitz matrices
can be done by reducing it to computing the product A(z) of the two matrix
polynomial B(z) and C(z) relying on Algorithm 2.1.

Similarly, the computation of the first n block coefficients of H(z) = A(z)−1,
is obtained by reducing the power series modulo zn. This corresponds to trun-
cating equation (3.2) to block size n. In this way the computation is reduced to
inverting the n × n block triangular Toeplitz matrix Tn[A(z)]. For this compu-
tation we may apply Algorithm 2.6.

Observe also that H(z) can be computed by formally applying the New-
ton iteration to the equation H(z)−1 − A(z) = 0 where the unknown is H(z).
We recall that the Newton method for approximating the zeros of a function
f(x) : R → R consists in generating the sequence xk+1 = xk − f(xk)/f ′(xk),
k = 0, 1, . . ., starting from a given x0. For the function f(x) = x−1 − a this re-
currence turns into xk+1 = 2xk − x2

ka so that we formally obtain the functional
iteration φ(k+1)(z) = 2φ(k)(z)−φ(k)(z)2A(z), k = 0, 1, . . ., where φ(0)(z) = A−1

0 .
It is easy to show that φ(k)(z) = H(z) mod z2k

. Whence the algorithm ob-
tained by rewriting the above formula as φ(k+1)(z) = 2φ(k)(z) − φ(k)(z)2A(z)
mod z2k+1

and by implementing the latter equation by means of the evaluation–
interpolation at the roots of 1, is equivalent to Algorithm 2.6.

A more general approach which applies to matrix Laurent power series can
be followed if the matrix power series are in the Wiener algebra.

The coefficients of matrix Laurent power series which are analytic in the
annulus

A = {z ∈ C : r < |z| < R}, 0 < r < 1 < R, (3.6)

have a useful decay property as stated by the following classical result concerning
Laurent series which are analytic in an annulus (see Theorem 4.4c of the book
by Henrici [63]):

Theorem 3.5 Let a(z) =
∑+∞

i=−∞ ziai be a Laurent power series analytic in
the annulus A of (3.6). Then for any ρ such that r < ρ < R, the coefficients an

satisfy
|an| ≤ M(ρ)ρ−n, n = 0,±1,±2, . . . ,
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where M(ρ) = max|z|=ρ |a(z)|.
Applying the above theorem to all the elements of the matrix Laurent power

series A(z) we deduce the following result.

Theorem 3.6 Let A(z) =
∑+∞

i=−∞ ziAi be a matrix Laurent power series an-
alytic in the annulus A of (3.6). Then for any ρ such that r < ρ < R, the
coefficients An satisfy

|An| ≤ M(ρ)ρ−n, n = 0,±1,±2, . . . ,

where M(ρ) is the m×m matrix with elements max|z|=ρ |ai,j(z)|. In particular,
if r < 1 < R then the elements of Ai converge exponentially to 0 for n → ±∞.
Moreover, if A(z) is nonsingular for z ∈ A then there exists H(z) =

∑+∞
i=−∞ ziHi

analytic in A such that A(z)H(z) = I, and the coefficients Hn satisfy

|Hn| ≤ M(ρ)ρ−n, n = 0,±1,±2, . . . ,

where M(ρ) is the m×m matrix with elements max|z|=ρ |hi,j(z)|. In particular,
if r < 1 < R then the elements of Hn converge exponentially to 0 for n → ±∞.

A particular case of Theorem 3.5 restricted to matrix power series is the
following.
Theorem 3.7 Let a(z) =

∑+∞
i=0 ziai be analytic for |z| < R. Then for any ρ

such that 0 < ρ < R one has

|an| ≤ M(ρ)ρ−n, n = 0, 1, 2, . . . ,

where M(ρ) = max|z|=ρ |a(z)|.
The decay property allows one to look at a matrix Laurent power series as

a matrix Laurent polynomial plus a term which has negligible coefficients. More
precisely, for a fixed ε > 0 let n1, n2 be nonnegative integers such that the matrix∑

i<−n1
|Ai| +

∑
i>n2

|Ai| has elements at most ε. Then we have

A(z) =
n2∑

i=−n1

ziAi + Rε(z)

where Rε(z) =
∑

i<−n1
ziAi +

∑
i>n2

ziAi has coefficients with small moduli.
In this case we say that the matrix Laurent power series has ε-degree at most
(n1, n2). If ε is the machine precision of floating point arithmetic, we say that
the numerical degree is at most (n1, n2).

Similarly, we define the ε-degree and numerical degree of a matrix power
series. More precisely, we say that the matrix power series A(z) =

∑+∞
i=0 ziAi

has ε degree at most n if the matrix
∑

i>n |Ai| has elements at most ε.
The following result can be proved by direct inspection.

Theorem 3.8 Let A(z) =
∑+∞

i=−∞ ziAi be convergent for |z| = 1. Let n1 and N

be nonnegative integers such that N ≥ n1 + 1. Let ωi
N , i = 0, . . . , N − 1 be the
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Nth roots of 1. Consider the matrix Laurent polynomial P (z) =
∑N−n1−1

i=−n1
ziPi

of degree at most (n1, N − n1 − 1) such that P (ωi
N ) = A(ωi

N ), i = 0, . . . , N − 1.
Then

Pi = Ai +
+∞∑
j=1

(Ai+Nj + Ai−Nj), for i = −n1, . . . , N − n1 − 1.

According to the above theorem, if A(z) has ε-degree at most (n1, n2) and we
choose N ≥ n1 + n2 + 1, then the coefficients of the matrix Laurent polynomial
P (z) of degree at most (n1, N − n1 − 1), which interpolates A(z) at the Nth
roots of 1, are such that |Pi − Ai| has elements less than ε, that is Pi provide
approximations to Ai within the absolute error ε. Observe in fact that N −n1 −
1 ≥ n2.

As a first application of the decay property stated in Theorem 3.6 and of
Theorem 3.8 we describe an algorithm for approximating the coefficients Hi,
i = −n1, . . . , n2, of H(z) = A(z)−1, where the matrix Laurent power series
A(z) is analytic and invertible in the annulus A and H(z) has ε-degree at most
(n1, n2). The algorithm is based on the evaluation–interpolation technique. Our
goal is to compute the coefficients of the matrix Laurent polynomial Ĥ(z) =∑N−n1−1

i=−n1
ziĤi such that Ĥ(ωi

N ) = H(ωi
N ) for i = 0, . . . , N − 1, where N ≥

n1 +n2 +1. In fact, for Theorem 3.8 these coefficients provide approximations to
Hi for i = −n1, . . . , n2 within the absolute error ε. In the case where the ε-degree
is not known, it is possible to apply an adaptive strategy which we discuss after
the description of Algorithm 3.3.

Let P (z) =
∑n2

i=−n1
ziPi be a matrix Laurent polynomial of degree (n1, n2)

and let N ≥ n1 + n2 + 1 be an integer (say, a power of 2). Consider the vector

u =



P0

...
PN−n1−1

P−n1

...
P−1


. (3.7)

where Pj = 0 for j = n2 + 1, . . . , N − n1 − 1 From the definition of IDFT,
since ωN−i

N = ω−i
N we conclude that v = (Vi)i=1,N = IDFTN (u) is such that

Vi = P (ωi−1
N ), i = 1, . . . , N . Assuming that P (z) is nonsingular for |z| = 1, we

have that Vi is nonsingular for i = 1, . . . , N . Therefore, denoting w = (V −1
i )i=1,N

and y = (Yi)i=1,N = DFTN (w) we find that the matrix Laurent polynomial
Q(z) =

∑N−n1−1
i=−n1

ziQi, of degree at most (n1, N − n1 − 1), defined by

Qi = Yi+1, for i = 0, . . . , N − n1 − 1,

Qi = YN+i+1, for i = −n1, . . . ,−1,

is such that
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Q(ωi
N ) = P (ωi

N )−1, i = 0, . . . , N − 1.

The same property holds if v is the vector with the values that a matrix
Laurent power series A(z) takes at the Nth roots of 1, i.e., Vi = A(ωi−1

N ), i =
1, . . . , N . In this case A(ωi

N ) = P (ωi
N )−1, i = 0, . . . , N − 1.

This is the basis of Algorithm 3.2.

Algorithm 3.2 Matrix Laurent power series inversion
Input: The m × m matrix Laurent power series A(z), analytic and nonsingular
for z ∈ A of (3.6), a positive number ε, integers n1, n2 ≥ 0 such that the ε-degree
of H(z) = A(z)−1 is at most (n1, n2).
Output: Approximations Ĥi, within the absolute error ε, to the coefficients Hi,
i = −n1, . . . , n2, of H(z).
Computation: Let N = 2q be the minimum integer power of 2 such that N ≥
n1 + n2 + 1.

1. Compute v = (Vi)i=1,N such that Vi = A(ωi−1
N ), i = 1, . . . , N .

2. Compute w = (Wi)i=1,N , where Wi = V −1
i , i = 1, . . . , N , which provide

the values of H(ωi−1
N ).

3. Compute y = (Yi)i=1,N = DFTN (w).
4. Output the approximations Ĥi = Yi+1, for i = 0, . . . , n2, Ĥi = YN+i+1,

i = −n1, . . . ,−1.

Observe that the computation of Vi = A(ωi−1
N ), i = 1, . . . , N , at stage 1 of

Algorithm 3.2 can be carried out within the absolute error ε if one knows an upper
bound (m1, m2) on the ε-degree of the input Laurent series A(z). By Theorem
3.8, if M is the least integer power of 2 such that M ≥ max{N,m1 + m2 + 1},
then an IDFT of order M provides the Vi’s within the absolute error bound ε.

The cost of Algorithm 3.2 is dominated by the inversion of Vi, i = 1, . . . , N ,
that is O(Nm3) ops, while the costs of stages 1 and 3 are O(Mm2 log M) and
O(Nm2 log N) ops, respectively. Moreover, in view of Theorem 3.6, the farther
r and R are from 1, the lower is the number N of interpolation points needed to
reach a required accuracy.

It is interesting to point out that the evaluation–interpolation technique at
the basis of Algorithm 3.2 can be applied to solve more general problems. Assume
that we are given a rational function F (X1, . . . , Xh) of the matrices X1, . . . , Xh.
Given matrix functions Xi(z) ∈ W, i = 1, . . . , h, in the Wiener algebra, assume
also that H(z) = F (X1(z), . . . , Xh(z)) is analytic in the annulus A of (3.6).
Our goal is to approximate the coefficients of H(z) given the functions Xi(z),
i = 1, . . . , h. Relying on the evaluation–interpolation technique, we describe in
Algorithm 3.3 a paradigm for performing this computation where we assume we
are given the ε-degree (n1, n2) of H(z).

If the evaluation at stage 1 of Algorithm 3.3 is not affected by errors, then
from Theorem 3.8 it follows that |Pi − Hi| < εE, i = −n1, . . . , n2, where E
is the matrix with all the elements equal to 1. Possible errors introduced at



MATRIX POWER SERIES AND STRUCTURED MATRICES 55

Algorithm 3.3 Point-wise Laurent power series computation—1
Input: The matrix functions Xi(z) ∈ W, i = 1, . . . , h, and a rational matrix
function F (X1, X2, . . . , Xh) such that H(z) = F (X1(z), . . . , Xh(z)) is analytic
for z ∈ A of (3.6). Integers n1, n2 ≥ 0 and a positive number ε such that the
ε-degree of H(z) = F (X1(z), . . . , Xh(z)) is at most (n1, n2).
Output: Approximations Ĥi, within the absolute error ε, to the coefficients Hi,
i = −n1, . . . , n2, of H(z).
Computation: Let N = 2q be the minimum integer power of 2 such that N ≥
n1 + n2 + 1.

1. Compute Wi,j = Xi(ω
j
N ), j = 0, . . . , N − 1, i = 1, . . . , h.

2. Compute Fj = F (W1,j , . . . , Wh,j), j = 0, . . . , N − 1.
3. Compute the coefficients Pi of the matrix Laurent polynomial P (z) =∑N−n1−1

i=−n1
ziPi such that P (ωj

N ) = Fj , j = 0, . . . , N − 1.

4. Output approximations Ĥi = Pi to Hi, for i = −n1, . . . , n2.

stage 1, generated by truncating the power series Xj(z) to their ε-degree, are
not amplified by the discrete Fourier transform (see Remark 2.1).

The above algorithm reduces the computation of a given function of matrix
power series to the evaluation of the same function to a set of N numerical
matrix values. In particular, it can be applied for the computation of the product
A(z)B(z) of matrix Laurent power series and of the inverse A(z)−1, by choosing
F (X1, X2) = X1X2 and F (X1) = X−1

1 , respectively.
If the ε-degree of H(z) is not known it is possible to apply a doubling strategy

provided that we are given a test for detecting if

N/2−1∑
i=−N/2

|Hi − Pi| +
∑

i<−N/2

|Hi| +
∑

i>N/2−1

|Hi| < εE, (3.8)

where P (z) =
∑N/2−1

i=−N/2 ziPi is the matrix Laurent polynomial which interpolates
H(z) at the Nth roots of 1. Observe that, since

∑
i<−N/2

|Hi| +
∑

i>N/2−1

|Hi| ≤
N/2−1∑

i=−N/2

|Hi − Pi| +
∑

i<−N/2

|Hi| +
∑

i>N/2−1

|Hi|,

the condition (3.8) implies that the ε-degree (n1, n2) of H(z) is such that N/2 ≥
n1 and N/2 − 1 ≥ n2.

Algorithm 3.4 relies on the evaluation–interpolation strategy at the Nth roots
of 1 where N doubles at each step. An efficient way for implementing this dou-
bling technique, which does not require us to compute from scratch each IDFT
and DFT in the evaluation stage, has been described in Remark 2.2.

In the particular case where H(z) is a matrix power series, then Algorithms
3.2 and 3.3 are simpler since we can set n1 = 0 so that H(z) is approximated by
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Algorithm 3.4 Point-wise Laurent power series computation—2
Input: The matrix functions Xi(z) ∈ W, i = 1, . . . , h, and a rational matrix
function F (X1, X2, . . . , Xh) such that H(z) = F (X1(z), . . . , Xh(z)) is analytic
for z ∈ A of (3.6). A positive number ε and a test TEST(H(z), P (z)) which is
true if

∑N/2−1
i=−N/2 |Hi −Pi|+

∑
i<−N/2 |Hi|+

∑
i>N/2−1 |Hi| < εE, where E is the

matrix with all the elements equal to 1.
Output: Approximations Pi, within the absolute error ε, to the coefficients Hi,
i = −N/2, . . . , N/2 − 1, of H(z) = F (X1(z), . . . , Xh(z)) where N is such that
the ε-degree of H(z) is at most (N/2, N/2 − 1).
Computation: Set N = 2.

1. Compute Wi,j = Xi(ω
j
N ), j = 0, . . . , N − 1, i = 1, . . . , h.

2. Compute Fj = F (W1,j , . . . , Wh,j), j = 0, . . . , N − 1.
3. Compute the coefficients P−N/2, . . . , PN/2−1 of the matrix Laurent polyno-

mial P (z) such that P (ωj
N ) = Fj , j = 0, . . . , N − 1.

4. If TEST(H(z), P (z)) is false then set N = 2N and continue from step 1.
5. Output the approximations Pj to the coefficients Hj , j = −N/2, . . . , N/2−1.

a matrix polynomial of degree at most N −1. Concerning Algorithm 3.4, setting
n1 = 0 does not reduce to its minimum value the length of the discrete Fourier
transforms. Algorithm 3.5 is an optimized version of Algorithm 3.4 in the case
where H(z) is a matrix power series when we are given a test for detecting if

N−1∑
i=0

|Hi − Pi| +
+∞∑
i=N

|Hi| < εE, (3.9)

where P (z) =
∑N−1

i=0 ziPi is the polynomial which interpolates H(z) at the Nth
roots of 1. Observe that, since

+∞∑
i=N

|Hi| ≤
N−1∑
i=0

|Hi − Pi| +
+∞∑
i=N

|Hi|,

the condition (3.9) implies that the ε-degree of H(z) is at most N .
The following example shows the effectiveness of the evaluation–interpolation

technique with the automatic detection of the ε-degree.

Example 3.9 Consider the function F (X) = (I−X)−1 with X(z) = zB+z2C,
where B, C ≥ 0 and ‖B‖ + ‖C‖ < 1 for some operator norm ‖ · ‖. From the
expression H(z) = F (X(z)) =

∑+∞
i=0 (zB+z2C)i, we find that H(z) is convergent

for |z| ≤ 1 and Hi ≥ 0. Observe that

H ′(z) =
[
(I − zB − z2C)−1

]′
= (I − zB − z2C)−1(B + 2zC)(I − zB − z2C)−1

so that H ′(1) = (I −B −C)−1(B + 2C)(I −B −C)−1 is given explicitly and is
computable without knowing the coefficients of H(z).
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Algorithm 3.5 Point-wise power series computation
Input: The matrix Laurent power series Xi(z), i = 1, . . . , h, and a rational
matrix function F (X1, X2, . . . , Xh), such that H(z) = F (X1(z), . . . , Xh(z)) is
a matrix power series convergent for |z| ≤ 1. A positive number ε and a test
TEST(H(z), P (z)) which is true if

∑N−1
i=0 |Hi − Pi| +

∑+∞
i=N |Hi| < εE.

Output: Approximations Pi, within the absolute error ε, to the coefficients Hi,
i = 0, . . . , N − 1, of H(z) = F (X1(z), . . . , Xh(z)) where N is greater than or
equal to the ε-degree of H(z).
Computation: Set N = 2.

1. Compute Wi,j = Xi(ω
j
N ), j = 0, . . . , N − 1, i = 1, . . . , h.

2. Compute Fj = F (W1,j , . . . , Wh,j), j = 0, . . . , N − 1.
3. Compute the coefficients P0, . . . , PN−1 of the matrix polynomial P (z) of

degree at most N − 1 such that P (ωj
N ) = Fj , j = 0, . . . , N − 1.

4. If TEST(H(z), P (z)) is false then set N = 2N and continue from step 1.
5. Output the approximations P0, . . . , PN−1 to the values H0, . . . , HN−1.

Let P (z) be the polynomial of degree at most N − 1 such that P (ωj
N ) = Fj ,

j = 0, . . . , N − 1. Then, in light of Theorem 3.8 applied to H(z) we have

P ′(1) =
N−1∑
i=1

iHi +
N−1∑
i=1

+∞∑
j=1

iHi+Nj .

Therefore,

H ′(1) − P ′(1) =
+∞∑
i=N

iHi −
N−1∑
i=1

+∞∑
j=1

iHi+Nj ≥
+∞∑
i=N

Hi,

and so, H ′(1) − P ′(1) ≤ εE implies that
∑+∞

i=N Hi ≤ εE, i.e., H(z) has ε-degree
at most N . Since both H ′(1) and P ′(1) are explicitly computable, the condition
H ′(1) − P ′(1) ≤ εE is a guaranteed test for dynamically checking the ε-degree
of H(z).

3.2 Wiener–Hopf factorization

Let a(z) =
∑+∞

i=−∞ ziai be a complex-valued function in the Wiener algebra
W, such that a(z) �= 0 for |z| = 1. A Wiener–Hopf factorization of a(z) is a
decomposition

a(z) = u(z)zκl(z), |z| = 1 (3.10)

where κ is an integer, u(z) =
∑+∞

i=0 ziui and l(z) =
∑+∞

i=0 z−il−i belong to
the Wiener algebra and are different from zero for |z| ≤ 1 and 1 ≤ |z| ≤ ∞,
respectively.

It is well known [27] that for functions in the Wiener algebra which are non-
singular for |z| = 1 the Wiener–Hopf factorization always exists. In particular,
l0 and u0 are nonzero.
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(c) a3(z), κ = 2

Fig. 3.1 Winding numbers of a1(z) = 2z−4−2z−1+3z+1, a2(z) = 3z−2+z−1−2+2z3

and a3(z) = 2z−1 − 1/2 + 3z2.

If the function a(z) is analytic in the annulus A of (3.6), and if ξ ∈ A is such
that a(ξ) = 0, then {

u(ξ) = 0 if |ξ| > 1
l(ξ) = 0 if |ξ| < 1.

that is, the zeros of a(z) of modulus greater than 1 coincide with the zeros of
u(z), and the zeros of a(z) of modulus less than 1 coincide with the zeros of l(z).
In other words, the Wiener–Hopf factorization provides a splitting of the zeros
of a(z) with respect to the unit circle.

The number κ coincides with the winding number of a(z). Its formal defini-
tion, related to the polar representation a(z) = ρ(z)eiθ(z), is

κ =
1
2π

(
lim

t→2π−
θ(cos t + i sin t) − lim

t→0+
θ(cos t + i sin t)

)
.

In other words the winding number of a(z) is the number of times that the
oriented curve Γ = {a(eiθ) : θ ∈ [0, 2π]} winds round the origin in the complex
plane. In Figure 3.1 we show the curve Γ for different functions a(z).

We may describe the Wiener–Hopf factorization in matrix form in terms of
bi-infinite Toeplitz matrices. For simplicity, consider the most interesting case
where κ = 0. For the matrices T±∞[a(z)] = (aj−i)i,j∈Z, T±∞[u(z)] = (uj−i)i,j∈Z,
T±∞[l(z)] = (lj−i)i,j∈Z, where ui = l−i = 0 if i < 0,

T±∞[a(z)] = T±∞[u(z)]T±∞[l(z)] = T±∞[l(z)]T±∞[u(z)],

where T±∞[u(z)] is upper triangular and T±∞[l(z)] is lower triangular.
A similar factorization holds for semi-infinite matrices: if

T∞[a(z)] = (aj−i)i,j∈N, T∞[u(z)] = (uj−i)i,j∈N, T∞[l(z)] = (lj−i)i,j∈N,

then T∞[a(z)] = T∞[u(z)]T∞[l(z)], that is,
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
a0 a1 a2 . . .

a−1 a0 a1
. . .

a−2 a−1 a0
. . .

...
. . . . . . . . .

 =


u0 u1 u2 . . .

u0 u1
. . .

0 . . . . . .




l0 0
l−1 l0
l−2 l−1 l0
...

. . . . . . . . .

 .

That is, a Wiener–Hopf factorization is equivalent to a UL factorization of a semi-
infinite Toeplitz matrix into an upper triangular Toeplitz matrix U = T∞[u(z)]
and a lower triangular Toeplitz matrix L = T∞[l(z)].

Wiener–Hopf factorizations may also be defined for matrix valued functions.
Let A(z) =

∑+∞
i=−∞ ziAi be an m × m complex matrix valued function in the

Wiener algebra such that detA(z) �= 0 for |z| = 1. A Wiener–Hopf factorization
of A(z) is a decomposition

A(z) = U(z)Diag(zκ1 , . . . , zκm)L(z), |z| = 1, (3.11)

where κ1 ≤ · · · ≤ κm are integers called the partial indices of A(z), U(z) =∑+∞
i=0 ziUi and L(z) =

∑+∞
i=0 z−iL−i, belong to the Wiener algebra and are

invertible for |z| ≤ 1 and 1 ≤ |z| ≤ ∞, respectively. Note that in particular U0

and L0 are nonsingular.
If A(z) is analytic in the annulus A of (3.6), we say that λ ∈ A is a root of

A(z) if detA(λ) = 0. The roots of U(z) in A coincide with the roots of A(z) of
modulus greater than 1 and the roots of L(z) in A coincide with the roots of
A(z) of modulus less than 1.

Similarly, for matrix valued functions we have the following existence condi-
tion:
Theorem 3.10 Let A(z) =

∑+∞
i=−∞ ziAi be in the Wiener algebra such that

detA(z) �= 0 for |z| = 1. Then there exists a Wiener–Hopf factorization (3.11) of
A(z).

Also in the block case, if κ1 = · · · = κm = 0 we may provide a matrix inter-
pretation given in terms of block Toeplitz matrices. In that case, T±∞[A(z)] =
T±∞[U(z)]T±∞[L(z)] where T±∞[L(z)] is block lower triangular and T±∞[U(z)]
is block upper triangular. A similar factorization holds for semi-infinite block
matrices, i.e., T∞[A(z)] = T∞[U(z)]T∞[L(z)].

Remark 3.11 Let a(z) = u(z)l(z) be a Wiener–Hopf factorization of a(z) with
κ = 0. If ai = 0 for i < −p, where p ≥ 0, then l(z−1) is a polynomial of degree
at most p and a(z) has at most p zeros in the open unit disk D. If ai = 0 for
i > q, where q ≥ 0, then u(z) is a polynomial of degree at most q and a(z) has
at most q zeros outside the closure of D. The same property holds for matrix
valued functions where the coefficients are m × m matrices provided that there
exists a Wiener–Hopf factorization A(z) = U(z)L(z) with null partial indices. In
this case det A(z) has at most mp zeros of modulus less than 1 and mq zeros of
modulus greater than 1.

A Wiener–Hopf factorization with null partial indices is called canonical fac-
torization.
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It is interesting to observe that the Wiener–Hopf factorization of a function
a(z) or of a matrix function A(z) provides an expression for the inverse of a(z)
and A(z), respectively: we obtain from (3.11) that

A(z)−1 = L(z)−1 Diag(z−κ1 , . . . , z−κm)U(z)−1, |z| = 1,

where L(z−1)−1 and U(z)−1 are matrix power series analytic for |z| < 1.

Remark 3.12 Let A(z) = U(z)L(z) be a canonical factorization. Since the
functions A(z), U(z) and L(z) belong to the Wiener algebra and are nonsin-
gular for |z| = 1, then from Theorem 3.1 the matrices T±∞[A(z)], T±∞[L(z)]
and T±∞[U(z)] define bounded operators together with their inverses. The same
property holds also for T∞[A(z)], T∞[L(z)], and T∞[U(z)]. In particular we have

T±∞[A(z)]−1 = T±∞[L(z)]−1T±∞[U(z)]−1

T∞[A(z)]−1 = T∞[L(z)]−1T∞[U(z)]−1.

Remark 3.13 In the framework of Markov chains we encounter matrix Laurent
power series A(z) such that detA(z) = 0 for |z| = 1. In this case the assumption
of invertibility of A(z) for |z| = 1 does not hold, and a Wiener–Hopf factorization
does not exist in the form defined in this section. However, we may still consider
factorizations of the kind A(z) = U(z)Diag(zκ1 , . . . , zκm)L(z) where U(z) and
L(z−1) are nonsingular for |z| < 1 and may be singular for |z| = 1. In this
case, the nice property of invertibility of A(z), L(z) and U(z) no longer holds
for |z| = 1.

In the following, we will call weak Wiener–Hopf factorization a factorization
of the kind (3.11) where U(z) and L(z) are in the Wiener algebra W and U(z)
and L(z−1) are invertible for |z| < 1. That is, we allow U(z) or L(z), or both,
to be singular for some values z of modulus 1. Similarly, we call weak canonical
factorization a weak Wiener–Hopf factorization with null partial indices.

For instance, the factorization A(z) = (I−zH)(I−z−1uuT), where ρ(H) ≤ 1
and uTu = 1, is a weak canonical factorization. In fact, L(z) = I − z−1uuT is
singular for z = 1 and one shows that L(z−1)−1 = I + uuT

∑+∞
i=1 zi. Observe

that L(z)−1 is convergent for |z| > 1 but not for z = 1. However, its coefficients
are bounded.

Conditions for the existence of a (weak) canonical factorization of a matrix
Laurent power series of the kind

∑+∞
i=−1 ziAi can be given in terms of solutions

of certain nonlinear matrix equations. This is the subject of the next section.

3.3 Nonlinear matrix equations

Let us consider the m × m matrix Laurent power series

S(z) =
+∞∑

i=−1

ziAi

which we assume to be in the Wiener algebra, and define the matrix power series
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A(z) = zS(z).

Since S(z) ∈ W, A(z) is analytic in the open unit disk D and continuous in its
closure. We associate with A(z) the matrix equation

A−1 + A0X + A1X
2 + · · · = 0 (3.12)

where the unknown X is an m×m matrix, and we are interested in solutions X
of (3.12) which are power bounded, i.e., such that |Xk| is bounded from above
by a constant for any positive integer k. This boundedness condition is satisfied
if ρ(X) < 1 since Xk converges to zero for k → +∞. Conversely, if X is power
bounded then ρ(X) ≤ 1. However, if ρ(X) = 1, then X is not necessarily power
bounded, a simple example being X = [ 1 1

0 1 ], for which Xk = [ 1 k
0 1 ]. In particular,

among the power bounded solutions, we are interested in those solutions (if they
exist) which have minimal spectral radius.

Definition 3.14 A solution X of (3.12) is called a spectral minimal solution or
more simply, a minimal solution, if ρ(X) ≤ ρ(Y ) for any other solution Y . A
solution X is called a minimal nonnegative solution if 0 ≤ X ≤ Y for any other
nonnegative solution Y , where the inequalities hold component-wise.

Under suitable conditions, which are naturally satisfied in the context of
Markov chains, the minimal nonnegative solution exists and coincides with the
spectral minimal solution.

Let G be a power bounded solution of (3.12), and assume that λ is an eigen-
value of G corresponding to the eigenvector u, i.e., such that Gu = λu, u �= 0.
Since Giu = λiu, multiplying (3.12) on the right by u yields

A−1u + λA0u + λ2A1u + · · · = A(λ)u = 0,

where the left-hand side is convergent since |λ| ≤ ρ(G) ≤ 1 and S(z) ∈ W. In
other words, for any solution G such that ρ(G) ≤ 1, if (λ,u) is an eigenpair of
G, i.e., Gu = λu then A(λ)u = 0. This property extends to Jordan chains as we
state in the next theorem. First, we have to introduce some definitions.

Let J = U−1GU be the Jordan canonical form of G. If λ is an eigenvalue of
G belonging to a Jordan block of size k,

λ 1 0 . . . 0

λ 1
. . .

...
. . . . . . 0

. . . 1
0 λ


and if u1, . . . ,uk are the corresponding columns of U such that

Gu1 = λu1,

Gui = λui + ui−1, i = 2, . . . , k,

we say that the vectors u1 = u, u2, . . . ,uk, form a cycle of length k corresponding
to the eigenvalue λ of G.
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If λ is a root of the matrix power series A(z) we say that the vectors v1, . . . ,vh

form a Jordan chain of length h for A(z) corresponding to λ if

i∑
j=0

1
j!

A(j)(λ)vi−j+1 = 0, for i = 0, . . . , h − 1,

where A(j)(z) denotes the jth derivative of A(z) with respect to z.
The following result which relates the Jordan chains of A(z) to the Jordan

cannical form of G has been proved in [40].

Theorem 3.15 Let G be a power bounded solution of (3.12), and let u1, . . . ,uk

be a cycle of length k corresponding to the eigenvalue λ of G. Then the vectors
u1, . . . ,uk form a Jordan chain for the matrix power series A(z) corresponding
to λ. Conversely, let λj , |λj | ≤ 1, j = 1, . . . , ν, be roots of A(z) with Jordan

chains u
(j)
i , i = 1, . . . , kj for j = 1, . . . , ν; define the matrix U having columns

u
(j)
i , i = 1, . . . , kj , j = 1, . . . , ν, and the block diagonal matrix J having Jordan

blocks Jj of size kj × kj associated with λj . Assume that
∑ν

i=1 ki = m and that
detU �= 0. Then the matrix G = UJU−1 solves (3.12) and ρ(G) ≤ 1.

An immediate consequence of Theorem 3.15 follows.

Corollary 3.16 If A(z) has exactly m roots in the closed unit disk, counted
with their multiplicities, and if G is a solution of (3.12) such that ρ(G) ≤ 1,
then G is the unique minimal solution of (3.12).

Canonical factorization is a useful tool which allows one to characterize the
minimal solutions of equation (3.12). In order to show this we need a preliminary
result which generalizes to matrix power series Corollary 1 on page 252 of [74],
valid for matrix polynomials.

Lemma 3.17 Let P (z) =
∑+∞

i=0 ziPi and Q(z) =
∑+∞

i=0 ziQi be m × m matrix
power series and assume that there exists a matrix G such that P (z) = Q(z)(zI−
G), and limn QnGn+1 = 0. Then

∑+∞
i=0 PiG

i = 0. Similarly, if P (z) = (zI −
R)C(z) and limn Rn+1Cn = 0, where C(z) =

∑+∞
i=0 ziCi is an m × m power

series and R is an m × m matrix, then
∑+∞

i=0 RiPi = 0.

Proof From P (z) = Q(z)(zI − G) we find that P0 = −Q0G and that Pi =
Qi−1 − QiG, for i > 0. Therefore,

n∑
i=0

PiG
i = − Q0G + (Q0 − Q1G)G + (Q1 − Q2G)G2 + · · ·

+ (Qn−1 − QnG)Gn = −QnGn+1,

and we conclude that
∑+∞

i=0 PiG
i = limn

∑n
i=0 PiG

i = − limn QnGn+1 = 0. A
similar argument is used for the second claim. �

We are ready now to prove the following theorem.



NONLINEAR MATRIX EQUATIONS 63

Theorem 3.18 Let S(z) =
∑+∞

i=−1 ziAi be an m×m matrix valued function in
the Wiener algebra W. If there exists a canonical factorization

S(z) = U(z)L(z), L(z) = L0 + z−1L−1, |z| = 1,

then G = −L−1
0 L−1 is the unique solution of (3.12) such that ρ(G) < 1. In

particular, G is the minimal solution. Conversely, if there exists a solution G of
(3.12) such that ρ(G) < 1 and if A(z) = zS(z) has exactly m roots in the open
unit disk and is nonsingular for |z| = 1, then S(z) has a canonical factorization

S(z) = U(z)L(z) = (U0 + zU1 + · · · )(I − z−1G), |z| = 1 (3.13)

where Ui =
∑+∞

j=i AjG
j−i, i ≥ 0.

Proof If there exists a canonical factorization for S(z), since Ai = 0 for i < −1
then, in light of Remark 3.11, L(z) = L0+z−1L−1. Moreover, from the properties
of canonical factorizations L0 is nonsingular and we may write L(z) = L0(I −
z−1G) with G = −L−1

0 L−1 so that

A(z) = (U0 + zU1 + z2U2 + · · · )L0(zI − G).

Since L(z) is nonsingular for |z| ≥ 1, ρ(G) < 1 and detA(z) has exactly m zeros
in the open unit disk. Since ρ(G) < 1 and limi Ui = 0, we conclude from Lemma
3.17 that X = G is a solution of (3.12). In particular, G is the unique minimal
solution in light of Corollary 3.16. Conversely, assume that G is a solution of
(3.12) such that ρ(G) < 1 and A(z) is nonsingular for |z| = 1. Consider the
formal product

S(z)
+∞∑
i=0

z−iGi =
+∞∑

i=−∞
ziUi,

with

Ui =

{(∑+∞
j=−1 AjG

j+1
)

G−i−1 for i < 0∑+∞
j=i AjG

j−i for i ≥ 0.
(3.14)

Observe that the matrices Ui are well defined since the series A(z) is convergent
for |z| ≤ 1 and ρ(G) < 1. Since G is such that

∑+∞
j=−1 AjG

j+1 = 0, then Ui = 0
for i < 0.

Clearly, L(z) = I − z−1G is in the Wiener algebra and is nonsingular for 1 ≤
|z| ≤ ∞. Concerning U(z) =

∑+∞
i=0 ziUi, observe that for any matrix norm ‖ · ‖,

the condition
∑+∞

i=0 |Ui| < +∞ (that is, U(z) ∈ W) is equivalent to
∑+∞

i=0 ‖Ui‖ <
+∞. Moreover, since ρ(G) < 1, there exists a matrix norm ‖ · ‖ such that
σ = ‖G‖ < 1 (see Theorem A.2). In this way, from (3.14) we have

+∞∑
i=0

‖Ui‖ ≤
+∞∑
i=0

+∞∑
j=i

σj−i‖Aj‖ =
+∞∑
i=0

σi
+∞∑
j=i

‖Aj‖ ≤ 1
1 − σ

+∞∑
i=0

‖Ai‖ < +∞,

which shows that U(z) is in the Wiener algebra, so that we may write
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S(z) =

(
+∞∑
i=0

Uiz
i

)
(I − z−1G), |z| = 1.

Since A(z) is nonsingular for |z| = 1 and since the roots of A(z) in the open
unit disk are the eigenvalues of G, from the relation detA(z) = det U(z) det(zI−
G) one concludes that det U(z) cannot have zeros of modulus less than or equal
to 1. Therefore (3.13) is a canonical factorization. �

Similarly, the following result is valid for weak canonical factorizations.

Theorem 3.19 Let S(z) =
∑+∞

i=−1 ziAi be an m×m matrix valued function in
the Wiener algebra W. If there exists a weak canonical factorization

S(z) = U(z)L(z), L(z) = L0 + z−1L−1, |z| = 1,

such that G = −L−1
0 L−1 is power bounded, then G is a minimal solution of

(3.12) such that ρ(G) ≤ 1. Conversely, if
∑+∞

i=0 (i + 1)|Ai| < +∞, there exists
a power bounded solution G of (3.12) such that ρ(G) = 1, and if all the zeros
of det A(z) in the open unit disk are eigenvalues of G then there exists a weak
canonical factorization of the form (3.13).

Proof We do not give the detailed proof of the first part, since it follows the
same lines of the proof of Theorem 3.18. For the second part, by following the
same argument as in the proof of Theorem 3.18, we obtain (3.14). Now we prove
that U(z) ∈ W. Since G is power bounded there exists a constant σ > 0 such
that |Gj | ≤ σE for any j ≥ 0 where E is the matrix with all the elements equal
to 1. Therefore we have

+∞∑
i=0

|Ui| ≤ σ

+∞∑
i=0

+∞∑
j=i

|Aj |E = σ

+∞∑
i=0

(i + 1)|Ai|E

which is bounded from above, therefore U(z) ∈ W. Moreover det U(z) cannot
have zeros in the open unit disk since det(zS(z)) = det U(z) det(zI −G) and the
zeros of det(zS(z)) in D are eigenvalues of G. �

3.3.1 Linearization
Solving the matrix equation (3.12) is equivalent to solving a semi-infinite linear
system. Assume that there exists a canonical factorization of S(z), denote by
G the minimal solution of (3.12) and recall that ρ(G) < 1. From the property∑+∞

i=−1 AiG
i+1 = 0 we deduce that

A0 A1 A2 . . .
A−1 A0 A1 . . .

A−1 A0 . . .

0 . . . . . .




G
G2

G3

...

 =


−A−1

0
0
...

 (3.15)

where the above system is semi-infinite. In other words, the infinite block vector
with components G,G2, . . ., is a solution of the above semi-infinite system, and its
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columns are in 
2(N). Moreover, from the existence of the canonical factorization,
the semi-infinite matrix (Aj−i)i,j∈N is invertible (as we mentioned in Remark
3.12), and this implies the uniqueness in 
2(N) of the solution of the above
system.

In the context of structured Markov chains, the function S(z) = z−1A(z)
has a weak canonical factorization S(z) = U(z)L(z) where L(z) = I − z−1G,
G is power bounded and U(z) is nonsingular for |z| ≤ 1. Then G is a solution
of the matrix equation (3.12) and the system (3.15) still holds, but the matrix
does not represents an operator with bounded inverse in 
2(N). Still, T∞[U(z)]
is invertible and T∞[L(z)] has a block lower triangular inverse with bounded
elements Gi−j , i ≥ j.

3.3.2 Quadratic matrix equations

The special case
A−1 + A0X + A1X

2 = 0 (3.16)

where (3.12) is quadratic deserves special attention since the particular features
of this problem allow one to give stronger properties of the solutions. Further-
more, as we will show in Section 3.4, more general matrix equations can be
reduced to the quadratic case.

Let us consider the easier case where the function S(z) = z−1A−1+A0+zA1 is
nonsingular for |z| = 1 and denote A(z) = zS(z). Since detA(z) is a polynomial,
then a necessary condition for the existence of a canonical factorization of S(z)
is that det A(z) has exactly m zeros in the open unit disk (see Remark 3.11).

We have the following:

Theorem 3.20 Define S(z) = z−1A−1 + A0 + zA1 and A(z) = zS(z), where
Ai, i = −1, 0, 1, are m × m matrices. Assume that the polynomial det A(z) has
zeros ξi, i = 1, . . . , 2m, such that

|ξ1| ≤ · · · ≤ |ξm| < 1 < |ξm+1| ≤ · · · ≤ |ξ2m|

where we assume zeros at ∞ if the degree of det A(z) is less than 2m. If there
exists a matrix G which solves (3.16) such that ρ(G) < 1, then the following
properties hold:

1. S(z) has a canonical factorization

S(z) = (U0 + zU1)(I − z−1G), |z| = 1, (3.17)

with
U0 = A0 + A1G, U1 = A1;

moreover, detU0 �= 0, G is the minimal solution of (3.16) and ρ(G) = |ξm|.
2. The matrix R = −U1U

−1
0 = −A1(A1G + A0)−1 is the minimal solution of

the matrix equation
A1 + XA0 + X2A−1 = 0; (3.18)

moreover, ρ(R) = 1/|ξm+1| and A1G = RA−1.
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3. The matrix U0 solves the equation

X = A0 − A1X
−1A−1;

moreover U0 = A0 + RA−1.

4. The matrix Laurent power series S(z) is invertible in the annulus A = {z ∈
C : |ξm| < |z| < 1/|ξm+1|} and H(z) = S(z)−1 =

∑+∞
i=−∞ ziHi is such

that

Hi =


G−iH0, i < 0,∑+∞

j=0 GjU−1
0 Rj , i = 0,

H0R
i, i > 0.

5. If the matrix equation

A−1X
2 + A0X + A1 = 0 (3.19)

has a solution Ĝ such that ρ(Ĝ) < 1, then Ĝ is the minimal solution,

detH0 �= 0, det(A−1Ĝ + A0) �= 0 and R̂ = −A−1(A−1Ĝ + A0)−1 is the
minimal solution of the equation

X2A1 + XA0 + A−1 = 0.

Moreover, we have the following representation of Hi:

Hi =

{
G−iH0 = H0R̂

−i, i ≤ 0,

ĜiH0 = H0R
i, i ≥ 0.

Therefore, G = H−1H
−1
0 , Ĝ = H1H

−1
0 , R = H−1

0 H1, R̂ = H−1
0 H−1.

Proof Part 1 follows from Theorem 3.18. To prove part 2, we rewrite (3.17)
as S(z) = (I − zR)(U0 + z−1A−1), and we find from Lemma 3.17 that R solves
(3.18). By using the same argument as in the proof of Theorem 3.18 we prove
that R is the minimal solution and that ρ(R) = 1/|ξm+1|. Finally, from the
definition of R, we have A1G = −R(A1G+A0)G = RA−1. Part 3 can be proved
by direct inspection. Concerning part 4, since the matrix functions S(z), U(z)
and L(z) = I − z−1G are analytic and invertible in the annulus A, so are their
inverses and H(z) = S(z)−1 = (I − z−1G)−1U−1

0 (I − zR)−1, from which we
conclude that

Hi =


(
∑+∞

j=0 GjU−1
0 Rj)Ri = H0R

i for i > 0,∑+∞
j=0 GjU−1

0 Rj for i = 0,

G−i(
∑+∞

j=0 GjU−1
0 Rj) = G−iH0 for i < 0.

(3.20)

Concerning part 5, if there exists a solution Ĝ of A−1X
2 + A0X + A1 = 0 such

that ρ(Ĝ) < 1 then, by following the same arguments as before, one shows that
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A−1Ĝ+A0 is nonsingular and that the matrix R̂ = −A−1(A−1Ĝ+A0)−1 solves
the equation X2A1 + XA0 + A−1 = 0. In particular, we obtain that Hi = ĜiH0

for i ≥ 0 and Hi = H0R̂
−i for i < 0, so that

H(z) =

(
I +

+∞∑
i=1

(z−iGi + ziĜi)

)
H0 = H0

(
I +

+∞∑
i=1

(z−iR̂i + ziRi)

)
.

From the latter equation, the singularity of H0 would imply that detH(z) = 0
for any z ∈ A which is absurd since det H(z) = 1/ detS(z) is nonzero for any
z ∈ A. �

Observe that the existence of a solution G of (3.16) with ρ(G) < 1 is not
sufficient to guarantee the existence of the solution Ĝ with ρ(Ĝ) < 1 of the
reversed matrix equation (3.19). In fact, the existence of a canonical factorization
of S(z) does not imply the existence of a canonical factorization of the reversed
matrix Laurent polynomial zS(z−1) as shown by the following example.
Example 3.21 Consider the polynomial S(z) = z−1A−1 + A0 + zA1 with

A−1 =

[
1
3 0

1 2

]
, A0 = I, A1 =

[
2 0

0 1
20

]
.

One has a(z) = det zS(z) = (2z2 + z + 1
3 )( 1

20z2 + z + 2) so that a(z) has two
zeros of modulus less than 1 and two zeros of modulus greater than 1. Moreover,
there exists a canonical factorization S(z) = (I − zR)U0(z−1G − I) with

G =

[
361
234

45421
14040

− 40
39 − 239

117

]
, R =

[
− 2101

4680
45421
14040

− 1
1560 − 239

4680

]
, U0 =

[
478
117

45421
7020

− 2
39

2101
2340

]
,

in fact G and R are the minimal solutions of (3.16) and (3.18), respectively.
However, the equation (3.19) does not have a minimal solution so that there is
no canonical factorization of the matrix Laurent polynomial z−1A1 +A0 +zA−1.
In fact, the block coefficient H0 of H(z) is singular.

An immediate consequence of the above results is the following relation con-
cerning the linearization of a quadratic matrix equation, given in terms of bi-
infinite matrices, which holds if there exist G and Ĝ with ρ(G) < 1 and ρ(Ĝ) < 1
which solve (3.16) and (3.19), respectively:



. . . . . . . . . 0
A−1 A0 A1

A−1 A0 A1

A−1 A0 A1

0 . . . . . . . . .





...
Ĝ2

Ĝ
I
G
G2

...


H0 =



...
0
0
I
0
0
...


.
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A sufficient condition for the invertibility of H0 for general matrix Laurent
power series of the kind F (z) =

∑+∞
i=−1 ziFi is expressed by the following theo-

rem, shown in [26], which extends part of the results of Theorem 3.20.

Theorem 3.22 Let F (z) =
∑+∞

i=−1 ziFi ∈ W be invertible for |z| = 1 and

denote H(z) = F (z)−1 ∈ W, H(z) =
∑+∞

i=−∞ ziHi. If there exist canonical
factorizations of F (z) and of F (z−1), then H0 is invertible.

Proof Canonical factorization of F (z), if exists, has the form

F (z) =

+∞∑
j=0

zjUj

(I − z−1G
)
,

with the matrix G having spectral radius strictly less than 1. Taking the inverses
in both sides yields

H(z) =

(
+∞∑
k=0

z−kGk

)+∞∑
j=0

zjVj

 .

From here it follows, in particular, that

H0 =
+∞∑
k=0

GkVk

and

H−i =
+∞∑
k=0

Gk+iVk = GiH0, i = 1, 2, . . . (3.21)

Suppose now that the coefficient H0 is singular. Then there exists a non-zero
vector x for which H0x = 0. From (3.21) it follows that also H−ix = 0 for all
i = 1, 2, . . ., so that the vector function

φ+(z) := z−1H(z)x =
+∞∑
j=1

zj−1(Hjx)

is analytic in the unit disk. On the other hand, the vector function

φ−(z) = −z−1x

is analytic outside the unit disk, vanishes at infinity, and together with φ+(z)
satisfies the boundary condition

φ+(z) + H(z)φ−(z) = 0. (3.22)

Thus, the homogeneous Riemann-Hilbert problem (3.22) with the matrix coeffi-
cient H(z) has non-trivial solutions. This means (see, e.g., [46]) that H(z) does
not admit a canonical factorization. Equivalently, its inverse F (z) is such that
F (z−1) does not admit a canonical factorization. The contradiction obtained
shows that H0 is invertible. �
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Observe for completeness that condition on the Laurent series decomposition
of F (z) in Theorem 3.22 is essential. Namely, there even exist scalar functions
F (z) in W admitting a canonical factorization for which F (z)−1 has a vanishing
constant term. As a concrete example, let H(z) = −2z−4 + 2z−1 − 3z. Being a
trigonometric polynomial, this function belongs to W. It is also non-vanishing
on the unit circle, with the winding number equal to zero. Thus, this function
(and therefore its inverse F (z)) admits a canonical factorization. Nevertheless,
the constant term of H(z) = F (z)−1 is indeed zero.

3.3.3 Power series matrix equations

Let us assume that the m×m matrix Laurent power series S(z) =
∑+∞

i=−N ziAi

belongs to the Wiener algebra, where N ≥ 1, and define the matrix power series
A(z) = zNS(z). Observe that the semi-infinite block Toeplitz matrix associated
with S(z) is in upper generalized block Hessenberg form, that is,

T∞[S(z)] =



A0 A1 A2 A3 A4 . . .

A−1 A0 A1 A2 A3
. . .

...
. . . . . . . . . . . . . . .

A−N . . . A−1 A0 A1
. . .

A−N . . . A−1 A0
. . .

0 . . . . . . . . . . . .


. (3.23)

If we partition the above matrix into mN × mN blocks Ai, i = −1, 0, 2, . . ., we
may look at (3.23) as a block matrix in block upper Hessenberg form, i.e.,

A0 A1 A2 A3 . . .

A−1 A0 A1 A2 . . .

A−1 A0 A1
. . .

A−1 A0
. . .

0 . . . . . .


, (3.24)

where

Ai =


AiN AiN+1 . . . AiN+N−1

AiN−1 AiN
. . .

...
...

. . . . . . AiN+1

AiN−N+1 . . . AiN−1 AiN

 , i = −1, 0, 1, . . . . (3.25)

Defining S(z) =
∑+∞

i=−1 ziAi we may denote by T∞[S(z)] the matrix in (3.24)
so that T∞[S(z)] = T∞[S(z)].
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We now discuss the roots of α(z) = detA(z) where A(z) = zS(z). Observe
that

A(z) =


φ0(z) φ1(z) . . . φN−1(z)

zφN−1(z) φ0(z)
. . .

...
...

. . . . . . φ1(z)
zφ1(z) . . . zφN−1(z) φ0(z)

 (3.26)

where φj(z) =
∑+∞

i=−1 zi+1AiN+j , j = 0, . . . , N − 1. Therefore A(z) is a block z-
circulant matrix (see Section 2.3.2). The following result, which has been proved
in Gail, Hantler and Taylor [42] in the context of Markov chains, is a direct
consequence of Theorem 2.10:

Theorem 3.23 The matrix power series A(zN ) can be block diagonalized as
follows:

1
N

(ΩN ⊗ Im) (D(z) ⊗ Im)−1 A(zN ) (D(z) ⊗ Im) (ΩN ⊗ Im)

=


A(z) 0

A(zωN )
. . .

0 A(zωN−1
N )

 ,

for z �= 0, |z| ≤ 1, where D(z) = Diag(1, z, . . . , zN−1), ΩN is the N × N Fourier
matrix and Im is the m × m identity matrix.

From the above theorem it follows that

detA(zN ) =
N−1∏
i=0

det A(zωi
N ). (3.27)

Therefore, if w is a zero of det A(z) then wN is a zero of detA(z).
Now we show that if there exists a weak canonical factorization

S(z) = U(z)L(z), |z| = 1, (3.28)

where

U(z) =
+∞∑
i=0

ziUi, L(z) = Im +
N∑

i=1

z−iL−i, (3.29)

then there exists a closely related weak canonical factorization of S(z).

Theorem 3.24 Let S(z) =
∑+∞

i=−N ziAi be an m×m matrix valued function in
the Wiener algebra which has a weak canonical factorization (3.28) where U(z)
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and L(z) are given in (3.29). The matrix Laurent power series S(z) has the weak
canonical factorization

S(z) = U(z)L(z), |z| = 1, (3.30)

where

U(z) =
+∞∑
i=0

ziUi, L(z) = ImN − z−1G,

and

G =



0 Im 0 . . . 0

0 0 Im
. . .

...
...

. . .
. . .

. . . 0
0 . . . 0 0 Im

−L−N −L−N+1 . . . . . . −L−1



N

. (3.31)

Moreover, G is a minimal solution of the matrix equation

A−1 + A0X + A1X 2 + · · · = 0. (3.32)

Given the block row vector rT = [R1, R2, . . . , RN ] we define

C(rT) =


0 I 0 . . . 0

0 0 I
. . .

...
...

. . . . . . . . . 0
0 . . . 0 0 I

R1 R2 . . . . . . RN


the block companion matrix associated with rT. In this way, the result ex-
pressed in the above theorem can be rewritten as G = C(gT)N where gT =
[−L−N ,−L−N+1, . . . ,−L−1].

The N -th power of an N × N block companion matrix can be factorized as
products of two block triangular Toeplitz matrices as stated by the following
classical result known as Barnett factorization [7].

Theorem 3.25 The matrix G of (3.31) can be factorized as

G = −


Im 0
L−1 Im

...
. . .

. . .

L−N+1 . . . L−1 Im


−1 

L−N L−N+1 . . . L−1

. . .
. . .

...
L−N L−N+1

0 L−N

 . (3.33)

Besides providing a useful representation of the matrix G, the Barnett fac-
torization can be used for proving Theorem 3.24
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Proof of Theorem 3.24 By rewriting the factorization S(z) = U(z)L(z) in
matrix form we get

T∞[S(z)] =


U0 U1 U2 . . .

U0 U1
. . .

U0
. . .

0 . . .





Im 0
L−1 Im

...
. . . . . .

L−N . . . L−1 Im

L−N . . . L−1 Im

0 . . . . . . . . . . . .


.

By reblocking the above semi-infinite matrices into mN × mN blocks we
obtain

T∞[S(z)] = T∞[S(z)] =


Ũ0 Ũ1 Ũ2 . . .

Ũ0 Ũ1
. . .

Ũ0
. . .

0 . . .




L̃0 0
L̃−1 L̃0

L̃−1 L̃0

0 . . . . . .

 = UL (3.34)

where

L̃0 =


Im 0
L−1 Im

...
. . . . . .

L−N+1 . . . L−1 Im

 , L̃−1 =


L−N L−N+1 . . . L−1

. . . . . .
...

L−N L−N+1

0 L−N

 .

Since L̃0 is nonsingular we may scale to the left L by L̃−1
0 and U to the right by

L̃0, so that (3.34) can be rewritten as

T∞[S(z)] =


U0 U1 U2 . . .

U0 U1
. . .

U0
. . .

0 . . .




ImN 0
L−1 ImN

L−1 ImN

0 . . . . . .

 ,

where Ui = ŨiL̃0, i = 0, 1, . . ., L−1 = −G, and G = −L̃−1
0 L̃−1. The above matrix

factorization provides the functional factorization S(z) = U(z)(ImN + z−1L1).
We now show that this is a weak canonical factorization. Observe that U(z) and
L(z) belong to the Wiener algebra since U(z), L(z) ∈ W. By Theorem 3.25,
G = C(gT)N , therefore the eigenvalues of G are the Nth powers of the zeros of
the polynomial det(zNIm +

∑N
i=1 zN−iL−i), see Theorem A.11 in the appendix,

which are the zeros of det L(z). Thus ξ is a zero of det L(z) if and only if ξN is
a zero of detL(z) = det(ImN − z−1G), and detL(z) has zeros with modulus less
than or equal to 1 only. Since, by (3.27), the roots of A(z) are the Nth powers
of the roots of A(z), we conclude that (3.30) is a weak canonical factorization.
From Theorem 3.19 we deduce that G is a minimal solution of (3.32). �
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Remark 3.26 From the structure (3.33) it follows that the first block row of
−G, i.e., [L−N , . . . , L−1] defines all the block coefficients of L(z). Therefore, the
knowledge of G provides the factors L(z) and L(z) of the canonical factorization
of S(z) and S(z), respectively, at no cost. The factors U(z) and U(z) can be com-
puted from the equations S(z) = U(z)L(z), and S(z) = U(z)L(z), respectively.
Conversely, the knowledge of the factor L(z) provides immediately the solution
of the matrix equation (3.32). Moreover, the factor L(z) provides the first block
row of G which uniquely defines G through (3.33).

Theorem 3.27 Let S(z) =
∑+∞

i=−N ziAi be an m × m matrix Laurent power
series in the Wiener algebra such that detS(z) �= 0 for |z| = 1, and such that
there exists a canonical factorization S(z) = U(z)L(z), |z| = 1, where L(z) =
Im +

∑N
i=1 z−iL−i, U(z) =

∑+∞
i=0 ziUi. Let H(z) =

∑+∞
i=−∞ ziHi be the inverse

of S(z). Consider the q × q block Toeplitz matrix Tq[H(z)] = (Hj−i)i,j=1,q, for
q > N . The coefficients of L(z) satisfy the following equation

eT
q ⊗ Im = U0[L−q+1, L−q+2, . . . , L−1, Im]Tq[H(z)]

where Li = 0 for i < −N and eq is the q-th column of the q × q identity matrix.

Proof We use a similar argument as in Theorem 3.24, adapted to bi-infinite
matrices. Let T±∞[S(z)] = (Aj−i)i,j∈Z, where Ai = 0 for i < −N . Partition
T±∞[S(z)] into mq × mq blocks and from the canonical factorization of S(z)
obtain the UL decomposition similar to (3.34) where the matrices are bi-infinite
and the blocks L̃i and Ũi have size mq. Scale on the right the factor L by
multiplying it by L̃−1

0 and obtain the decomposition

T±∞[S(z)] =



. . . . . . . . . . . . . . .
Ũ0 Ũ1 Ũ2 . . .

Ũ0 Ũ1
. . .

Ũ0
. . .

0 . . .





. . . 0

. . . ImN

L−1 ImN

L−1 ImN

0 . . . . . .




. . . 0

L̃0

L̃0

0 . . .



where L−1 = L̃−1L̃−1
0 . Compute the inverses on both sides of the above rela-

tion, observe that T±∞[S(z)]−1 = T±∞[H(z)] = (Hj−i)i,j∈Z, and compare the
diagonal blocks in both sides of the equation obtained in this way. We find
that Tq[H(z)] = L̃−1

0

∑+∞
i=0 (−L−1)iKi, where

∑+∞
i=0 ziKi = (

∑+∞
i=0 ziŨi)−1. Now

observe that the last block row of L−1 is zero since q > N , and deduce that
multiplying to the left Tq[H(z)] by (eT

q ⊗ Im)L̃0 yields (eT
q ⊗ Im)L̃0Tq[H(z)] =

(eT
q ⊗ m)K0 = (eT

q ⊗ Im)Ũ−1
0 = U−1

0 (eT
q ⊗ Im). �

The above theorem relates the inverse of S(z) with the canonical factorization
of S(z). Observe that, in order to compute the canonical factorization of S(z)
it is sufficient to compute the 2N + 1 central coefficients of the inverse S(z)−1
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and then to solve a block Toeplitz system. Concerning the latter problem we
refer the reader to Section 2.4, and to Section 3.1.2 for the former. Conversely, if
the canonical factorization of S(z) is known, then the coefficients Hi of H(z) =
S(z)−1 can be computed by means of the equation

Hj =
+∞∑
i=0

U
(−1)
i L

(−1)
−i−j , j = 0,±1,±2, . . . ,

derived from (3.28) where
∑+∞

i=0 ziU
(−1)
i = U(z)−1,

∑+∞
i=0 z−iL

(−1)
−i = L(z)−1

and U
(−1)
−i = L

(−1)
i = 0 for i > 0.

We recall that, if S(z) is analytic and invertible in a suitable annulus contain-
ing the unit circle, then the coefficients U

(−1)
i and L

(−1)
−i decay exponentially to

zero for i → ∞ by Theorem 3.6. In this way the matrices Hj can be approximated
by truncating the infinite summations to a finite sum.

3.4 Reduction of matrix equations

The technique of reblocking introduced in the previous section may be used to
reduce a polynomial matrix equation of the kind

A−1 + A0X + A1X
2 + · · · + AN−1X

N = 0 (3.35)

into a quadratic matrix equation. More precisely, defining the matrices A−1,A0,
and A1 as in (3.24), (3.25), where we set Ai = 0 if i < −1 or i > N − 1, we find
that the matrix

X =


0 . . . 0 X
0 . . . 0 X2

...
...

...
0 . . . 0 XN


solves the quadratic matrix equation

A−1 + A0X + A1X 2 = 0. (3.36)

Observe that the nonnull eigenvalues of X coincide with the nonnull eigen-
values of XN , i.e., with the Nth power of the eigenvalues of X. In this way, X
is a minimal solution of (3.35) if and only if X is a minimal solution of (3.36)
and ρ(X ) = ρ(X)N .

A different strategy, which allows one to reduce any power series matrix
equation into a quadratic matrix equation, has been introduced by Ramaswami
in the framework of Markov chains [100]. Here we recall the main result given in
terms of algebraic properties.

Let G be a solution of the matrix equation (3.12), and define the semi-infinite
matrices
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A−1 =

A−1 0 . . .
0 0 . . .
...

...

 , A0 =


A0 A1 A2 . . .

Im 0 . . .

Im
. . .

0 . . .

 , A1 =


0 0

−Im 0

−Im
. . .

0 . . . . . .

 .

Then the semi-infinite matrix

X =

 X 0 . . .
X2 0 . . .
...

...
. . .

 ,

solves the quadratic matrix equation with semi-infinite blocks

A−1 + A0X + A1X 2 = 0.

Observe that the semi-infinite matrix X − λI is not invertible if λ is zero
or equal to an eigenvalue of X. Therefore, the eigenvalues of X , defined as the
values of λ which make X −λI noninvertible, coincide with the eigenvalues of X
or with zero.

3.5 Infinite systems and canonical factorization

In this section we analyze the problem of computing a vector x = (xi)i∈N which
solves the semi-infinite system

xTT∞[S(z)] = bT (3.37)

given the vector b = (bi)i∈N and the matrix T∞[S(z)] associated with the m×m
matrix Laurent power series S(z) =

∑+∞
i=−∞ ziAi ∈ W.

This problem is crucial in the context of Markov chains where we have to
compute a vector π such that πT(I−P ) = 0 and where T∞[S(z)] is a submatrix
of the semi-infinite matrix I − P .

We partition the vectors x and b into vectors xi, bi, i = 1, 2, . . ., of dimension
m, and rewrite the above system as

[xT
1 , xT

2 , . . .]


A0 A1 A2 A3 . . .

A−1 A0 A1 A2
. . .

A−2 A−1 A0 A1
. . .

...
. . . . . . . . . . . .

 = [bT
1 , bT

2 , . . .]. (3.38)

If det S(z) �= 0 for |z| = 1 and if there exists a canonical factorization S(z) =
U(z)L(z) of S(z), then the above system takes the form

xTT∞[U(z)]T∞[L(z)] = bT (3.39)

where T∞[U(z)] is the block upper triangular Toeplitz matrix
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T∞[U(z)] =


U0 U1 U2 . . .

U0 U1
. . .

0 . . . . . .


and T∞[L(z)] is the block lower triangular Toeplitz matrix

T∞[L(z)] =


L0 0
L−1 L0

L−2 L−1 L0

...
. . . . . . . . .

 .

Since L(z) is in W− and is nonsingular for 1 ≤ |z| ≤ ∞, K(z) = L(z)−1 =∑+∞
i=0 z−iK−i exists and belongs to W−, that is

∑+∞
i=0 |K−i| < +∞ so that

sup|z|=1 |K(z)| is a matrix with finite elements. Therefore, by Remark 3.12
T∞[L(z)]−1 = T∞[K(z)] is a bounded operator on 
2(N) and

cT = bTT∞[K(z)] (3.40)

is in 
2(N) if b ∈ 
2(N).
Multiplying on the right both sides of (3.39) by T∞[L(z)]−1 yields

xTT∞[U(z)] = cT. (3.41)

Since T∞[U(z)] also is a bounded operator, as well as its inverse, x ∈ 
2(N) if
b ∈ 
2(N).

We thus obtain the following property.

Theorem 3.28 Let S(z) =
∑+∞

i=−∞ ziAi ∈ W be an m × m matrix Laurent
power series such that detS(z) �= 0 for |z| = 1, and such that there exists a canon-
ical factorization S(z) = U(z)L(z), U(z) =

∑+∞
i=0 ziUi, L(z) =

∑+∞
i=0 z−iL−i. If

b ∈ 
2(N) then the system (3.37) has a solution x ∈ 
2(N). Partition x and
b into m-dimensional subvectors xi, bi, i = 1, 2, . . ., so that x = (xi)i=1,2,...,
b = (bi)i=1,2,.... Then

xT
1 = cT

1 U−1
0 ,

xT
i =

cT
i −

i−1∑
j=1

xT
j Ui−j

U−1
0 , i = 2, 3, . . . ,

(3.42)

where

cT
i =

+∞∑
j=i

bT
j Ki−j , i = 1, 2, . . .

+∞∑
i=0

ziK−i = L(z−1)−1.

(3.43)
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Observe that the expressions for xi, i = 1, . . . , n, in the above equations are
obtained by solving the block upper triangular finite system

[xT
1 , . . . ,xT

n ]Tn[U(z)] = [cT
1 , . . . , cT

n ]

by forward substitution. The same system can be solved with a lower asymptotic
complexity by means of Algorithm 2.6.

The first M block components of c can be approximated in the following way.
Using Algorithm 2.5, we compute TM [K(z)] where M is large enough so that∑

i>M |ci| is negligible; then we compute [bT
1 , . . . , bT

M ]TM [K(z)] with Algorithm
2.4.

A simpler situation, which is often encountered in practice, occurs if bi = 0
for i sufficiently large, say, for i > M . In this case ci = 0 for i > M and
the computation is reduced to solving the finite system [cT

1 , . . . , cT
M ]TM [L(z)] =

[bT
1 , . . . , bT

M ]. In practice, this situation holds for b ∈ 
2(N) since bi is numerically
zero for i large enough. This system can be solved by means of Algorithms 2.5
and 2.4.

In the case where S(z) =
∑+∞

i=−1 ziAi, we may assume that L(z) is of the
form L(z) = I−z−1G, so that K(z) =

∑+∞
i=0 z−iGi and we arrive at the equation

cT
i =

+∞∑
j=i

bT
j Gj−i, i = 1, 2, . . .

If bi is zero (or numerically negligible) for i > M , then the vectors ci, i =
1, 2, . . ., can be computed (or approximated) by means of the following Horner-
like scheme:

cT
M = bT

M ,

cT
i = cT

i+1G + bT
i , i = M − 1, . . . , 1.

If S(z) = U(z)L(z) is a weak canonical factorization, in principle we cannot
apply the above technique since the matrix power series U(z)−1 and L(z)−1

may have unbounded coefficients. However, under additional assumptions on
the vector b, we may still apply the above machinery as stated by the following
theorem.

Theorem 3.29 Let S(z) =
∑+∞

i=−∞ ziAi ∈ W be an m × m matrix Lau-
rent power series such that there exists a weak canonical factorization S(z) =
U(z)L(z), U(z) =

∑+∞
i=0 ziUi, L(z) =

∑+∞
i=0 z−iL−i. If U(z) is nonsingular for

|z| = 1, the coefficients of L(z)−1 are uniformly bounded in norm by a constant,
and

∑+∞
i=1 i‖bi‖1 is finite, then (3.42) and (3.43) provide a solution x ∈ 
2(N) of

the system (3.37).
If L(z) is nonsingular for |z| = 1, the coefficients of U(z)−1 are uniformly

bounded in norm by a constant, and
∑+∞

i=1 ‖bi‖1 is finite, then (3.42) and (3.43)
provide a solution x ∈ 
∞(N) of the system (3.37).
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Proof Assume that, in the weak canonical factorization of S(z), the matrix
U(z) is nonsingular for |z| = 1, and that the coefficients of K(z) =

∑+∞
i=0 z−iK−i

= L(z)−1 are uniformly bounded in norm by a constant, more specifically let us
assume that ‖KT

−i‖1 ≤ γ, i ≥ 0. If
∑+∞

i=1 i‖bi‖1 < +∞, then we have from (3.43)

‖ci‖1 ≤
+∞∑
j=i

‖bj‖1 · ‖KT
i−j‖1 ≤ γ

+∞∑
j=i

‖bj‖1 < +∞, i = 1, 2, . . . ,

so that ‖c‖1 =
∑+∞

i=1 ‖ci‖1 ≤ γ
∑+∞

i=1 i‖bi‖1 < +∞, that is, c ∈ 
1(N). This
implies that c ∈ 
2(N) and, since U(z)−1 is in the Wiener algebra, we find that
xT = cTT∞[U(z)]−1 is in 
2(N). In this way we may apply (3.42) to compute x.

We proceed in a similar manner if L(z)−1 is in the Wiener algebra and U(z)−1

has bounded coefficients. In this case, assuming that
∑+∞

i=1 ‖bi‖1 < +∞, we
deduce that b(z) =

∑+∞
i=0 zibi+1 is in the Wiener algebra, that the function

c(z) =
∑+∞

i=0 zici+1 is such that c(z) = L(z−1)−1b(z) and, being a product of
functions in W, that c(z) belongs to W. In particular,

∑+∞
i=1 ‖ci‖1 is finite, that is

c ∈ 
1(N). From the boundedness of the coefficients of R(z) = U(z)−1 it follows
that xT = cTT∞[R(z)] has bounded coefficients, i.e., x ∈ 
∞(N). Once again we
may apply equations (3.42) for computing x. �

The above technique for solving semi-infinite block Toeplitz systems can be
used for solving the more general system

xT


V0 V1 V2 . . .
V−1

V−2 T∞[S(z)]
...

 = bT (3.44)

where V0 is an mN×mN matrix, Vi, i ≥ 1, are mN×m matrices, Vi, i ≤ −1, are
m × mN matrices, for N positive integer, and T∞[S(z)] is the matrix in (3.38).

In fact, we have the following

Theorem 3.30 Let S(z) =
∑+∞

i=−∞ ziAi ∈ W be an m × m matrix Laurent
power series such that detS(z) �= 0 for |z| = 1 and such that there exists a canon-
ical factorization S(z) = U(z)L(z), U(z) =

∑+∞
i=0 ziUi, L(z) =

∑+∞
i=0 z−iL−i.

Consider the system (3.44) where b ∈ 
2(N) and
∑+∞

i=1 ‖Vi‖2,
∑+∞

i=1 ‖V−i‖2, are
finite for a given matrix norm ‖ · ‖. Partition x and b into subvectors xi, bi,
i = 0, 1, 2, . . ., respectively, where x0 and b0 have dimension mN , while xi, bi,
i = 1, 2, . . ., have dimension m. Then there exists finite the matrices

Y = T∞[S(z)]−1

V−1

V−2

...

 , W = V0 − [V1, V2, . . .]Y,

and the vector fT = bT
0 − [bT

1 , bT
2 , . . .]Y . If W is nonsingular, then there exists

a solution x ∈ 
2(N) of (3.44) where x0 solves the mN × mN linear system
xT

0 W = fT, and the vector x̂ = (xi)i≥1 solves the system
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x̂TT∞[S(z)] = b̂
T

where b̂ = (b̂i)i≥1, b̂
T

i = bT
i − xT

0 Vi, i = 1, 2, . . ..

Proof By following the same argument used to prove Theorem 3.30 we deduce
that the columns of Y are in 
2(N) so that W exists finite as well as fT. From
(3.44) one has that

xT
0 V0 + x̂T

V−1

V−2

...

 = bT
0 ,

xT
0 [V1, V2, . . .] + x̂TT∞[S(z)] = [bT

1 , bT
2 , . . .].

(3.45)

Therefore, from the second expression we deduce that if x0 is known, then the
vector x̂ = (xi)i≥1 solves the system

x̂TT∞[S(z)] = b̂
T
,

where b̂
T ∈ 
2(N), so that by Theorem 3.28 there exists a solution x̂T ∈ 
2(N).

By recovering x̂T from the second equation of (3.45) and by substituting x̂T in
the first equation of (3.45) we obtain xT

0 W = fT. �

For the above theorem the first component x0 of the solution can be com-
puted by solving a finite linear system, while the successive components can be
computed by applying the formulas of Theorem 3.28.

Remark 3.31 The above theorem is still valid under the weaker assumptions of
Theorem 3.29 on the matrix function S(z) under the additional condition that∑+∞

i=1 i‖Vi‖1 < +∞ and
∑+∞

i=1 ‖V−i‖1 < +∞ if L(z) is singular for some z of
modulus 1, and that

∑+∞
i=1 ‖Vi‖1 < +∞,

∑+∞
i=1 i‖V−i‖1 < +∞ if U(z) is singular

for some z of modulus 1.

The assumptions of Theorem 3.29 are satisfied in a wide class of problems
encountered in Markov chains where S(z) has the form S(z) = I −∑+∞

i=−1 ziPi,
with P =

∑+∞
i=−1 Pi being stochastic, and where L(z) = I − z−1G, with G

stochastic. The computation of the stationary vector π by using Theorem 3.29
leads to the well-known Ramaswami formula, which was first obtained by using
a probabilistic argument, given in Section 4.2. The linear system for π0 in the
Ramaswami formula can be derived from Theorem 3.30.

3.6 Shifting technique

In this section we describe a suitable technique for transforming a weak canon-
ical factorization of a function S(z) into a canonical factorization of a slightly
modified function S̃(z) which is nonsingular on the unit circle. This technique
consists in shifting into zero any λ such that detS(λ) = 0 and |λ| = 1. In order
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to apply this strategy we need to know, besides λ, the corresponding vectors
v �= 0 such that S(λ)v = 0. In the context of Markov chains this information
is readily available, since S(1) = I − P , where P is a stochastic matrix, and
therefore λ = 1 and v = 1; moreover, under weak assumptions, λ = 1 is the only
root of modulus 1 of S(z) and is simple.

Let S(z) =
∑+∞

i=−N ziAi be an m × m matrix Laurent power series in the
Wiener algebra and let A(z) = zNS(z). Let us, in addition, assume that the
derivative S′(z) of S(z) belongs to the Wiener algebra as well, that is,

+∞∑
i=−N

|iAi| < +∞. (3.46)

Let us, finally, assume that there is only one simple zero λ of det S(λ) which has
modulus 1 and that v is a vector such that S(λ)v = 0, v �= 0. The general case
with more zeros on the unit circle will be treated later on.

We introduce the following matrix function

S̃(z) = S(z)(I − z−1λQ)−1, Q = vuT (3.47)

where u is any fixed vector such that vTu = 1.
Observe that Qi = Q for any i > 0 and, consequently, the inverse of I−z−1λQ

is formally

(I − z−1λQ)−1 = I + Q

+∞∑
i=1

z−iλi.

Therefore, from (3.47), we obtain that

S̃(z) = S(z) + S(z)Q
+∞∑
i=1

z−iλi.

By denoting S̃(z) =
∑+∞

i=−∞ ziÃi, from the above relation we find that

Ãi = Ai +

 +∞∑
j=i+1

λj−iAj

Q = Ai + λ−i

 +∞∑
j=i+1

λjAj

Q, (3.48)

for i = 0,±1,±2, . . .. We assumed that Ai = 0 if i < −N . Since S(λ)v = 0,
therefore

∑+∞
j=−N λjAjQ = 0, and Ãi = 0 for i < −N as well. The coefficients

of the matrix Laurent power series S̃(z) =
∑+∞

i=−N ziÃi are given in (3.48); we
may also write

Ãi = Ai −

 i∑
j=−N

λj−iAj

Q, i = −N,−N + 1, . . . . (3.49)
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Both the functions A(z) = zNS(z) and Ã(z) = zN S̃(z) are matrix power series,
and

Ã(z) = A(z)(I − z−1λQ)−1. (3.50)

Observe that S̃(z) is defined for z = λ, where it takes the value

S̃(λ) =
+∞∑

i=−N

λiAi +

(
+∞∑

i=−N+1

(i + N)λiAi

)
Q,

which is finite by (3.46).
The transformation (3.47) has the effect of moving the root λ to zero leaving

unchanged the remaining roots as stated by the following theorem.

Theorem 3.32 Assume that the m × m matrix Laurent power series S(z) =∑+∞
i=−N ziAi is in the Wiener algebra together with S′(z), and define A(z) =

zNS(z). Let λ be the only zero of detA(z) with modulus 1, assumed to be

simple, and let v �= 0 be such that S(λ)v = 0. Then the matrix function S̃(z)
defined in (3.47) is in the Wiener algebra and, with Ã(z) = zN S̃(z), one has:

1. if z �∈ {0, λ}, then det Ã(z) = 0 if and only if detA(z) = 0;

2. det Ã(0) = 0 and Ã(0)v = 0;

3. det Ã(λ) �= 0 and Ã(z) is nonsingular for |z| = 1;

4. if µ �∈ {0, λ} is a root of A(z), and if w �= 0 is such that A(µ)w = 0, then µ

is a root of Ã(z) and Ã(µ)r = 0, for r = (I − λ
µQ)w = w − λ

µ (uTw)v;

5. if 0 is a root of A(z), w �= 0 is such that A(0)w = 0, and if v and w are
linearly dependent, then the vectors v, w form a Jordan chain of length 2
corresponding to 0; otherwise, if v and w are linearly independent, and if u
is such that uTw = 0, then Ã(0)w = 0.

Proof From (3.49), we have

+∞∑
i=−N

|Ãi| ≤
+∞∑

i=−N

|Ai| +
+∞∑

i=−N

 +∞∑
j=i+1

|Aj |

Q

which is bounded in view of (3.46). Concerning the zeros of det Ã(z) = 0, observe
that det(I − z−1λQ)−1 = z/(z − λ) so that

det Ã(z) =
z

z − λ
detA(z).

Therefore, if z �∈ {0, λ}, then det Ã(z) = 0 if and only if detA(z) = 0. In
particular det Ã(z) �= 0 if |z| = 1 and z �= λ. Since λ is a simple zero of det A(z),
then also det Ã(λ) �= 0. Moreover, det Ã(0) = 0 and, from (3.49) we have Ã(0)v =
Ã−Nv = A−N (I − Q)v = 0.
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If µ �∈ {0, λ} is a root of A(z), and if w �= 0 is such that A(µ)w = 0, then
from (3.50) we have

Ã(µ)
(

I − λ

µ
Q

)
w = A(µ)w = 0,

which shows that Ã(µ)r = 0.
Suppose that A(0)w = 0, w �= 0; if w = αv for some scalar α, then the vectors

v are w form a Jordan chain of length 2 corresponding to 0 since Ã(0)v = 0 and

Ã′(0)v + Ã(0)w = (A−N+1(I − Q) − λ−1A−NQ)v + A−N (I − Q)w = 0;

if w �= αv, then we may choose u such that uTw = 0, and then Ã(0)w =
A−N (I − Q)w = A−Nw = 0. �

Observe that if A(z) has k nonzero roots µ1 = λ, µ2, . . . , µk and linearly
independent vectors w1 = v, w2, . . . , wk such that A(µi)wi = 0, for i = 1, . . . , k,
then Ã(z) has the roots 0, µ2, . . . , µk such that Ã(0)v = 0, Ã(µi)ri = 0, for
i = 2, . . . , k, where ri = (I− λ

µ i
Q)wi = wi− λ

µ i
(uTwi)v, i = 2, . . . , k; moreover,

the vectors v, r2, . . . , rk, are linearly independent.
The theorem above allows one to pass from a weak canonical factorization of

S(z) to a canonical factorization of S̃(z), and vice-versa, so that we may apply
algorithms for the canonical factorization in order to compute a weak canonical
factorization. Let us assume that there exists a weak canonical factorization

S(z) = U(z)L(z)

where U(z) is nonsingular for |z| = 1 and λ is the only zero of detL(z) of modulus
1. Let S̃(z) be the “shifted” matrix Laurent power series of (3.47). One easily
shows that

S̃(z) = Ũ(z)L̃(z),

where
Ũ(z) = U(z),
L̃(z) = L(z)(I − z−1λQ)−1

(3.51)

is a canonical factorization of S̃(z); L̃(z−1) is a matrix polynomial of degree at
most N , and the coefficients of L̃(z) =

∑N
i=0 z−iL̃−i and of L(z) =

∑N
i=0 z−iL−i

are related by

L−i = L̃−i − λL̃−i+1Q, i = 1, 2, . . . , N,

L0 = L̃0,

L̃−i = L−i +

i−1∑
j=0

λi−jL−j

Q, i = 1, 2, . . . , N.

(3.52)

In fact, the first and the second equations above are obtained by comparing the
coefficients in the expression L̃(z)(I − z−1λQ) = L(z); the third equation can be
inductly proved by using the first one.
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The above relations between canonical factorizations lead to the following.

Theorem 3.33 Let S(z) =
∑+∞

i=−1 ziAi be an m×m matrix valued function in
the Wiener algebra W, together with S′(z). Let λ be the only zero of detS(z) of
modulus 1 and let v �= 0 be such that S(λ)v = 0. If there exists a weak canonical
factorization

S(z) = U(z)L(z), L(z) = I − z−1G, |z| = 1,

such that G is power bounded and ρ(G) = λ, then G is the minimal solution of

the matrix equation
∑+∞

i=−1 AiX
i+1 = 0. Moreover, the matrix G̃ = G − λQ is

the minimal solution of the matrix equation
∑+∞

i=−1 ÃiX
i+1 = 0 and ρ(G̃) < 1.

Proof The first part of the theorem follows from Theorem 3.19. Concerning the
second part, observe that S̃(z) has a canonical factorization S̃(z) = Ũ(z)L̃(z),
Ũ(z) = U(z), and L̃(z) = (I −z−1G)(I −z−1λQ)−1 = I −z−1G̃, since Gv = λv.
Therefore, in light of Theorem 3.18, G̃ is the minimal solution of the matrix
equation

∑+∞
i=−1 ÃiX

i+1 = 0, and is the unique solution with spectral radius less
than one. �

We can also provide an explicit relation between the formal inverse H(z) =
S(z)−1 =

∑+∞
i=−∞ ziHi and the inverse H̃(z) = S̃(z)−1 =

∑+∞
i=−∞ ziH̃i. From

(3.47), we obtain
H(z) = (I − z−1λQ)−1H̃(z)

which, expressed in terms of the coefficients, turns into

Hi = H̃i + λ−iQ

+∞∑
j=i+1

λjH̃j .

Furthermore, if we define

H∗ =
+∞∑

i=−∞
λiH̃i = H̃(λ) = S̃(λ)−1

then we find that

Hi = H̃i − λ−iQ(
i∑

j=−∞
λjH̃j − H∗). (3.53)

The shifting technique also applies in the case where we are given a left
eigenvector w such that wTS(λ) = 0, and λ is the only zero of detS(z) of
modulus 1: in that case, we define

S̃(z) = (I − z−1λQ)−1S(z), Q = uwT,

where u is any vector such that wTu = 1. For the transformed matrix Laurent
power series S̃(z) we may write a theorem analogous to Theorem 3.32. In this
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case also the (weak) canonical factorizations of S(z) and of S̃(z) can be related:
if S(z) = U(z)L(z) is a weak canonical factorization of S(z), where det U(λ) = 0
and L(z) is nonsingular for |z| = 1, then S̃(z) has a canonical factorization
S̃(z) = Ũ(z)L̃(z), where

Ũ(z) = (I − z−1λQ)−1U(z),

L̃(z) = L(z).
(3.54)

Formally, since (I − z−1λQ)−1 = I + Q
∑+∞

i=1 z−iλi, if we write
∑+∞

i=−∞ ziŨi =
(I − z−1λQ)−1U(z), then we find that Ũi = 0 for i < 0 and

Ũi = Ui + Q

+∞∑
j=i+1

λj−iUj , i = 0, 1, . . . .

In the case where S(z) =
∑M

i=−∞ ziAi, for a nonnegative integer M , and
where λ is the only zero of detS(z) on the unit circle, we may move the root λ
to infinity by applying a similar shifting technique. Let us assume that v is such
that S(λ)v = 0. We observe that µ = λ−1 is a root of the “reversed” matrix
Laurent power series T (z) =

∑M
i=−∞ z−iAi =

∑+∞
i=−M ziA−i, and it is the only

zero of det T (z) on the unit circle. Define the “shifted” matrix Laurent power
series

T̃ (z) = T (z)(I − z−1λ−1Q)−1, Q = vuT

where uTv = 1; the function

S̃(z) = T̃ (z−1) = S(z)(I − zλ−1Q)−1

has the same roots of S(z) except for the point z = λ which is moved to infinity. In
this case also we may relate as follows the (weak) canonical factorizations of S(z)
and S̃(z). Assuming that S(z) = U(z)L(z) is a weak canonical factorization of
S(z), where det L(λ) = 0 and U(z) is nonsingular for |z| = 1, S̃(z) has a canonical
factorization S̃(z) = Ũ(z)L̃(z) where Ũ(z) = U(z), L̃(z) = L(z)(I − zλ−1Q)−1.
Moreover, L̃(z) =

∑+∞
i=0 z−iL̃−i is such that

L̃i = Li +
i−1∑

j=−∞
λ−i+jLjQ, i = 0,−1,−2, . . . .

In the case where S(z) has more than one root of modulus 1, the shift tech-
nique can be repeatedly applied in order to shift these roots either to zero or to
infinity.

3.7 Bibliographic notes

Relationships between matrix equations, Wiener–Hopf factorizations, infinite
Toeplitz matrices and matrix (Laurent) power series are investigated in [14],
[15], [24]. The results expressed in Theorems 3.18 and 3.19 are new.
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There is a wide literature on the theory of Wiener–Hopf factorizations. The
books [27] and [48] contain all the material on Toeplitz matrices which is needed
for our purposes. Theorem 3.1 is a classic result by Toeplitz [111]. The notion
of the Wiener–Hopf factorization as it is used here was introduced by Krĕın in
the scalar case [73] and by Gohberg and Krĕın [49] in the matrix case. Theorem
3.10 was proved by Gohberg and Krĕın [49]. A comprehensive and self-contained
survey on factorization of matrix function of the Wiener–Hopf type over Lp from
the operator theory point of view, with extensive comments on related results
and with a wide bibliography, can be found in [85] and in [46].

Matrix polynomials and related topics are treated in the book [47], where
relations between inverses of matrix Laurent polynomials and Wiener–Hopf fac-
torizations are investigated. In particular, concerning monic matrix polynomials,
chapter 4 contains necessary and sufficient conditions for the existence of a canon-
ical factorization, together with representation formulas for the spectral minimal
solution of matrix equations. Theorems 3.20 and 3.22 have been proved in [14]
and [26], respectively.

Linearizations of matrix polynomials are introduced in the book [47]; lin-
earizations of matrix equations are introduced in the papers [100], [25], [11], and
[15].

The shift technique has been introduced in the paper [59] and generalized in
[15] and in [24]. A result related to this technique concerns the deflation of a
root of an analytic matrix function and is described in section 1.2 of [46].
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4

M/G/1-TYPE MARKOV CHAINS

4.1 Introduction

We assume from now on that in our Markov chains the state space is two-
dimensional. One illustrative example is given by a buffer in a telecommunica-
tions system. The buffer content follows the evolution equation

Xn+1 = max(Xn + αn − 1, 0) (4.1)

just as in Example 1.3, where Xn is the buffer occupancy at time n and αn is the
number of new packets which arrive during the nth transmission interval. Often,
it is not legitimate to assume, like we did earlier, that the αn’s are independent
and identically distributed random variables. Instead, they depend on various
factors which vary slowly in time, such as the number of active customers or the
congestion of the network.

These external factors often are modeled as a Markov chain {ϕn} on some
state space S, and one lets the distribution of αn depend on ϕn. For historical
reasons, S is called the set of phases, the process {ϕn} itself being called the
environmental Markov chain; the structure of S may be more or less complicated,
according to circumstances.

Under this assumption, the two-dimensional process {(Xn, ϕn)} is a Markov
chain on the state space E = N × S and the transition matrix has the structure

P =



B A2 A3 A4 . . .

A0 A1 A2 A3
. . .

A0 A1 A2
. . .

A0 A1
. . .

0
. . . . . .


(4.2)

similar to (1.5); here, however, B and the Ak’s are matrices, with

(Ak)i,j = P[αn = k, ϕn+1 = j|ϕn = i] for k ≥ 0, i, j ∈ S,

being the probability that k packets arrive during a packet transmission interval,
and that the next environmental phase is j, given that the current one is i.

This is called a Markov chain of M/G/1 type, to emphasize the resemblance
between (4.2) and (1.5). The component Xn of the Markov chain is generally

89
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called the level, and we also say that the structure of (4.2) is skip-free to lower
levels, in reference to the dynamic evolution of the process: starting in level n at
time t, the process may move without hindrance to higher levels at time t + 1,
but it may not move in one step beyond n − 1 in the direction of lower levels.
For similar reasons, Markov chains with the structure (1.8) where Xt+1 is at
most equal to Xt + 1 are called skip-free to higher levels. Furthermore, since
the transition probabilities from Xt = i to Xt+1 = j depend on j − i only and
not specifically on i and j (for i and j at least equal to 1), we also say that
the transition matrix is homogeneous away from level 0. Observe that the skip-
free to lower level property of Markov chains corresponds to an upper block
Hessenberg transition matrix. Similarly, the skip-free to higher level property
generates lower block Hessenberg transition matrices. Finally a transition matrix
which is homogeneous away from level 0 has the block Toeplitz structure except
for its first block row.

Applications are numerous and varied and we give in Section 4.8 a few point-
ers to the literature. Our analysis, however, is based on the high-level structure
displayed in (4.2) only, and not on the finer structure of the sub-blocks; we
may, therefore, assume without loss of generality that the phase set S is simply
{1, 2, . . . , m}. Furthermore, we assume that m is finite, since most of the devel-
opments in this book require that assumption; nevertheless, we shall indicate it,
when a property holds even for m = ∞.

More properties of the case where m = ∞ can be found in the specific chapters
of the book [79].

4.2 Markov chains skip-free to lower levels

Our first family of structured processes have transition matrices
given by

P =



B0 B1 B2 B3 . . .
A−1 A0 A1 A2 . . .

A−1 A0 A1
. . .

A−1 A0
. . .

0 . . . . . .


(4.3)

where Ai, for i ≥ −1, and Bi, for i ≥ 0, are nonnegative matrices in R
m×m such

that
∑+∞

i=−1 Ai,
∑+∞

i=0 Bi, are stochastic. That is P is in upper block Hessenberg
form and it is block Toeplitz except for its first block row.

The two-dimensional state space is E = N × {1, 2, . . . , m}, where m is finite,
and we have

(Ak)j,j′ = P[Xn+1 = i + k, ϕn+1 = j′|Xn = i, ϕn = j],

for k ≥ −1, i ≥ 1, and 1 ≤ j, j′ ≤ m, and

(Bk)j,j′ = P[Xn+1 = k, ϕn+1 = j′|Xn = 0, ϕn = j],
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for k ≥ 0. In words, if the Markov chain is in the nonboundary level i ≥ 1,
then A−1 gives the transition probabilities down by one level and Ak, for k ≥ 0,
gives the transition probabilities up by k levels, while Bk gives the transition
probabilities up to level k, starting from the boundary level 0.

We shall see that the key to analyze such Markov chains is the matrix equation

X =
+∞∑

i=−1

AiX
i+1, (4.4)

where the unknown X is an m×m matrix. We need to make some assumptions,
to ensure that the stochastic process is sufficiently well-behaved. The first one is
as follows.

Condition 4.1 The Markov chain with transition matrix (4.3) is irreducible
and nonperiodic.

This is a traditional hypothesis. It guarantees, by Theorems 1.16 and 1.17,
that the state probabilities at time t have a limit, as t → +∞, independently
of the initial state. If, in addition, the Markov chain is positive recurrent, then
the limits are strictly positive. We denote by π ∈ R

N the stationary probability
vector, that is, the unique solution of the system (1.16), and we partition it as
π = (πn)n=0,1,..., with πn = (πn,j)j=1,...,m, and πn,j = limt→+∞ P[Xt = n, ϕt =
j|X0 = n′, ϕ0 = j′], independently of n′ and j′.

We determine π in three steps. First, we analyze the probabilities of first
passage to lower levels; we define θ as the first return time to the level 0:

θ = min{n ≥ 0 : Xn = 0}
and we define the matrices G(n), with

G
(n)
j,j′ = P[θ < ∞, ϕθ = j′|X0 = n, ϕ0 = j]

being the probability that, starting from the state (n, j) in level n, the process
reaches down to the level 0 in a finite time, and that (0, j′) is the first state
visited in level 0.

Lemma 4.2 One has

H


G(1)

G(2)

G(3)

...

 =


A−1

0
0
...

 , (4.5)

where

H =



I − A0 −A1 −A2 −A3 . . .

−A−1 I − A0 −A1 −A2
. . .

−A−1 I − A0 −A1
. . .

−A−1 I − A0
. . .

0 . . .
. . .


. (4.6)
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Furthermore, the matrices G(1), G(2), G(3), . . ., form the minimal nonnegative
solution of the system (4.5) according to the element-wise ordering.

Proof This is a direct consequence of the last statement of Theorem 1.14 and
of Corollary 1.15, where we take the set A to be the level 0, and the set B to be
made up of all the other levels. �

Next, we observe that any sequence of displacements which takes the process
from level n to level 0 also takes the process from level n+1 to level 1, and from
level n + 2 to level 2, etc., so that we actually have

G
(n)
j,j′ = P[θ(k) < ∞, ϕθ(k) = j′|X0 = n + k, ϕ0 = j], for all k ≥ 0, (4.7)

where θ(k) = min{n ≥ 0 : Xn = k} is the first return time to level k. This leads
to the following result.

Theorem 4.3 Denote by Gmin the matrix of first passage probabilities from
level k + 1 to level k, independently of k ≥ 0.

The matrix Gmin is the minimal nonnegative solution of (4.4) in the sense of
Definition 3.14, and one has G(n) = Gn

min, for all n ≥ 0. If the Markov chain is
recurrent, then Gmin is stochastic, otherwise it is substochastic with Gmin1 ≤ 1,
Gmin1 �= 1.

Proof We decompose the trajectory from level n to level 0 into a first passage
from level n to n − 1 followed by a first passage from level n − 1 to 0. In so
doing, we obtain that G(n) = GminG(n−1), from which one proves by induction
that G(n) = Gn

min.
With this, (4.5) becomes

H


Gmin

G2
min

G3
min
...

 =


A−1

0
0
...

 ,

the first row of which is equivalent to Gmin =
∑+∞

i=−1 AiG
i+1
min. This shows that

Gmin is one solution of (4.4).
Now, take another nonnegative solution Z of (4.4). We have

H


Z
Z2

Z3

...

 =


A−1

0
0
...

 ,

so that, by Lemma 4.2, Zn ≥ G(n), which shows that Z ≥ Gmin and that Gmin

is the minimal nonnegative solution.
If the Markov chain is recurrent, then the process reaches in finite time any

state in level 0 (with probability one), starting from any state in level 1 and,
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therefore, the probability (Gmin1)j of reaching in finite time some state in level
0, starting from (1, j) is also equal to 1 for all j. Conversely, if the Markov chain
is transient, then the probability of returning to the states in level 0 is strictly
less than one, which implies that (Gmin1)j < 1 for at least one value of j. �

In the next theorem, proved in [98], we apply the censoring principle described
in Section 1.6 and obtain a recurrence equation for the subvectors πn, for n ≥ 1.
The same result can also be obtained by means of a purely algebraic approach as
an immediate consequence of Theorems 3.28, 3.29 and 3.30. In order to give more
details of this algebraic approach we need further properties which are explained
in Section 4.4, therefore we pospone the algebraic interpretation of this theorem
to Section 4.5.

Theorem 4.4 Assume that the Markov chain of M/G/1 type is positive recur-
rent, and let

A∗
n =

+∞∑
i=n

AiG
i−n
min , B∗

n =
+∞∑
i=n

BiG
i−n
min , for n ≥ 0. (4.8)

Then I − A∗
0 is nonsingular,

πT
n =

(
πT

0 B∗
n +

n−1∑
i=1

πT
i A∗

n−i

)
(I − A∗

0)
−1, for n ≥ 1, (4.9)

and π0 is such that

πT
0 B∗

0 = πT
0 . (4.10)

Proof Choose an arbitrary level n and partition E into the subsets A = {(i, j) :
0 ≤ i ≤ n, 1 ≤ j ≤ m} and B = {(i, j) : i > n, 1 ≤ j ≤ m}. We show that, in the
notations of Section 1.6,

S′PB,A =


0 . . . 0 Gmin

0 . . . 0 G2
min

0 . . . 0 G3
min

...
...

...
...


by Theorem 1.14. The argument goes as follows: the (i, i′)th block of S′PB,A

gives the first passage probabilities from level n + i in B to level i′ in A, before
any other level in A. In view of the skip-free property of the Markov chain, the
first level visited in A is of necessity the level n, so that the last block of columns
is the only one which may be different from 0. Then we recall from Theorem 4.3
that the first passage probabilities from level n + i to level n are given by Gi

min.
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Simple algebraic manipulations show that the matrix PA+PA,BS′PB,A, which
we denote by P ′, is given by

P ′ =



B0 B1 . . . Bn−1 B∗
n

A−1 A0 . . . An−2 A∗
n−1

A−1
. . .

...
...

. . . A0 A∗
1

0 A−1 A∗
0

 .

With πT
A = [πT

0 , πT
1 , . . . ,πT

n ], (4.9) directly results from (1.21). The fact that
I − A∗

0 is nonsingular is justified as follows: the matrix P ′ is irreducible since,
otherwise, the states in A would break into separate communicating classes, in
violation of Condition 4.1, then we apply Corollary 1.15.

Incidentally, we may write that

Gmin = (I − A∗
0)

−1A−1, (4.11)

which readily results from (4.4).
If we take A = {(0, j) : 1 ≤ j ≤ m}, then P ′ = B∗

0 , so that the last statement
follows, and the proof is complete. �

It is worth observing that Lemma 4.2 and Theorems 4.3 and 4.4 hold even if
m = ∞, in which case we only need to take care of replacing the matrix (I−A∗

0)
−1

in (4.9) by the series
∑+∞

ν=0(A
∗
0)

ν . In the sequel, however, the assumption that
m < ∞ becomes important.

Remark 4.5 There exist M/G/1-type systems with a slightly more general
transition structure at level zero, because the behavior at the boundary is
markedly different from its behavior in the other levels. In such cases, we have

P =



B0 B1 B2 B3 . . .
C−1 A0 A1 A2 . . .

A−1 A0 A1
. . .

A−1 A0
. . .

0 . . . . . .


(4.12)

where B0 is now a matrix in R
m0×m0 , with m0 possibly different from m, C−1

is in R
m×m0 and the blocks Bi, for i ≥ 1, are in R

m0×m.
It is not very difficult to adapt Theorem 4.4 to these circumstances, the only

difference being that B∗
0 is now given by

B∗
0 = B0 + B∗

1(I − A∗
0)

−1C−1.
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4.3 Ergodicity

We determine now the conditions under which Theorem 4.4 applies, that is, the
conditions under which the Markov chain is positive recurrent. We will need
to impose some constraint on the blocks A−1, A0, A1, . . . . The simplest is the
condition given below. It is not very restrictive in practice, but we defer the
discussion of this question to Section 4.7.

Condition 4.6 The matrix

A =
+∞∑

i=−1

Ai (4.13)

is irreducible, in addition to being stochastic.

Since m < ∞, Condition 4.6 implies in light of Theorem 1.27 that A has an
invariant probability vector α, that is, a vector such that αTA = αT, αT1 = 1.

Theorem 4.4 is incomplete in that it does not indicate when the Markov chain
is positive recurrent, and it lacks a normalizing equation for π0, as the solution
of (4.10) is given up to a multiplicative constant only.

Before stating the next theorem it is useful to introduce the following matrix
functions

S(z) = z−1A−1 + A0 + zA1 + z2A2 + · · · =
+∞∑

i=−1

ziAi,

A(z) = zS(z).

(4.14)

Under our assumptions, A(z) is a matrix power series whose elements are
analytic in the open unit disk D and convergent in the closed unit disk. That
series plays an important role and we call it the generating function of the Markov
chain.

Theorem 4.7 Assume that m < ∞, that Conditions 4.1 and 4.6 hold and that

+∞∑
i=−1

(i + 1)Ai < +∞, (4.15)

so that we may define the vector

a =
+∞∑

i=−1

iAi1; (4.16)

moreover, set
µ = αTa, (4.17)

where α is the vector such that αTA = αT , αT1 = 1, for A =
∑+∞

i=−1 Ai. Then
the Markov chain with transition matrix (4.3) is recurrent if and only if µ ≤ 0
and transient if and only if µ > 0. It is positive recurrent if and only if µ < 0
and b =

∑+∞
i=1 iBi1 < ∞.
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We do not give the detailed proof, because it is quite technical (see [4, Propo-
sition 4.6], [92, Theorem 1.3.1] or [41, Corollary 3], for instance). Nevertheless,
the property is simple to interpret. Assume that the state is (n, i) at some time
t; at time t+1 it will be (n′, j), with n′ and j random. The component ai of the
vector a is the expectation of the jump size n′ − n, when the phase is i, and µ
is obtained by averaging over the phases with the probability distribution α. If
µ < 0, then the jumps are negative on the average and the process is attracted
to the level 0 at the bottom of the state space.

The constant µ in (4.17) is called the drift of the Markov chain.
Similarly, the component bi of the vector b is the expected level reached in one

jump from the state (0, i). If b < ∞ and if the drift is negative, then the cycles
from level 0 back to level 0 take a finite amount of time, on average. Building
upon the definitions in Section 1.2, one eventually reaches the conclusion that
the states are positive recurrent.

If µ = 0, or if µ < 0 and bi = ∞ for some i, then the cycles have an infinite
expectation, so that the process is null recurrent. If µ > 0, then the drift is away
from level 0 and there is a strictly positive probability that the process never
returns to level 0, which makes the Markov chain transient.

In order to fully characterize the stationary distribution, we need an addi-
tional equation. The one given below is adapted from [104].

Theorem 4.8 Assume that m < ∞ and that Conditions 4.1 and 4.6 hold. If
the Markov chain with transition matrix (4.3) is positive recurrent, then π0 is
such that

πT
0 b − µπT

0 1 + πT
0 (I − B)(I − A)#a = −µ,

where B =
∑+∞

n=0 Bn and the operator (·)# denotes the group inverse1 of a
matrix.

Proof In addition to (4.14), define

B(z) =
+∞∑
i=0

ziBi and π(z) =
+∞∑
i=0

ziπi = π0 + zψ(z).

1The group inverse of a matrix M is the unique matrix M# such that MM#M = M ,
M#MM# = M# and M#M = MM#. We refer to [29, Chapters 7 and 8] for details and only
recall here that, if P is the transition matrix of an irreducible Markov chain, and if M = I −P ,
then M# is the unique solution of the linear system

MX = I − 1πT, πTX = 0,

or equivalently, the unique solution of

XM = I − 1πT, X1 = 0,

where π is the stationary probability vector of P [29, Theorem 8.5.5]. The second system is
interesting because it has the same coefficient matrix as the system πTM = 0, πT1 = 1 for
the stationary distribution and, therefore, may be solved by the same procedure.

One may verify by direct substitution in either of the systems above that

M# = (M + 1πT)−1 − 1πT.
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We write the system πTP = πT as

πT
n = πT

0 Bn +
n+1∑
i=1

πT
i An−i,

for n ≥ 0, multiply the nth equation by zn, sum over all n, and obtain that

ψ(z)T(zI − A(z)) + πT
0 (I − B(z)) = 0. (4.18)

The latter equation is a functional interpretation of πTP = πT, where P is
represented by ψ(z) and P by A(z) and B(z).

Now, for all z in (0, 1], A(z) is finite, nonnegative and irreducible, therefore,
we may define its Perron–Frobenius eigenvector/eigenvalue pair u(z), χ(z), with

A(z)u(z) = χ(z)u(z). (4.19)

We post-multiply (4.18) by u(z) and obtain that

ψT(z)u(z) = −πT
0 (I − B(z))u(z)/(z − χ(z)).

At z = 1, χ(1) = 1 and u(1) = 1 by continuity, the left-hand side is ψT(1)1 =
1 − πT

0 1 and, therefore, the right-hand side has a limit as z tends to 1. We find
by L’Hospital’s rule that

1 − πT
0 1 = [−πT

0 (I − B)u′(1) + πT
0 B′(1)1]/(1 − χ′(1)). (4.20)

Taking the derivative of (4.19) with respect to z and evaluating it at z = 1, we
obtain that

(A − I)u′(1) = χ′(1)1 − A′(1)1 = χ′(1)1 − (a + 1) (4.21)

by (4.16). Premultiplying this equation by αT gives us χ′(1) = αTa = 1 + µ.
Furthermore, it results from [86, Lemma 2.3] that the solution of (4.21) is

u′(1) = (A − I)#a + c1

where c is an unknown scalar.
Altogether, (4.20) becomes

1 − πT
0 1 = [πT

0 (I − B)(I − A)#a + πT
0 b]/(−µ),

from which the statement follows. �

4.4 Properties of the generating function

It is clear that the whole stationary distribution of the M/G/1-type Markov
chain is easily determined once the minimal nonnegative solution of (4.4) is
identified and one is, therefore, interested in knowing as much as possible about
the solutions of that equation. We briefly present in this section, and in Section
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4.6, properties which have been proved in [40; 41], through a detailed analysis of
their spectral characteristics.

Assume that G is any solution of (4.4) with eigenvalue λ and associated
eigenvector v. We post-multiply both sides of (4.4) by v and find that

Gv = λv =
+∞∑

i=−1

λi+1Aiv = A(λ)v, (4.22)

where the generating function A(z) is defined in (4.14). Observe that equation
(4.22) is a particular case of the more general Theorem 3.15.

In particular, Gmin being a substochastic matrix, its eigenvalues have modulus
at most one, and we are led to determine the values of z in the closed unit disk
for which zI − A(z) is singular; in other words, we are looking for the zeros in
the closed unit disk of the scalar function

a(z) = det(zI − A(z)). (4.23)

This function inherits the properties of A(z): it is a power series, analytic in the
open unit disk D and convergent for |z| = 1.

We define a new Markov chain, on the state space E′ = Z × {1, 2, . . . , m}
with transition matrix

P ′ = T±∞[A(z)] =



. . . . . . . . . . . .

. . . A0 A1 A2 A3

A−1 A0 A1 A2
. . .

A−1 A0 A1
. . .

A−1 A0
. . .

0
. . . . . .


; (4.24)

that is, we remove the boundary at level 0 and we allow the Markov chain to
move freely to any negative level, as well as to the positive ones. This we shall
call the doubly infinite or bi-infinite Markov chain.

Even if we assume that Conditions 4.1 and 4.6 are satisfied, it may happen
that (4.24) is not irreducible. For instance, take

S(z) =


0 zr1 0 z−1p1

z−1p2 0 q2 zr2

z−1p3 q3 0 0
zr4 z−1p4 0 0

 . (4.25)

It is irreducible if all the parameters are strictly positive, nevertheless, inspection
of the transition graph of P ′ shows that there are three disjoint final classes: E′

0,
E′

1 and E′
2, with

E′
k = {(n, 1), (n + 1, 2), (n + 1, 3), (n + 2, 4) : n = k mod 3},

for k = 0, 1 and 2 (see Figure 4.1).
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Fig. 4.1 Graph of the bi-infinite Markov chain defined by (4.25).

This is an important observation because the class structure of P ′ influences
the roots of a(z) in the following way. For every phase j, define Dj as the set of
integers d for which there is a path from (0, j) to (d, j). Define D as the union
of the Dj ’s, for j = 1, . . . , m, and define

κ = gcdD. (4.26)

An equivalent definition of κ is

κ = max{k : z−m/ka(z1/k) is a (single valued) function in |z| ≤ 1}. (4.27)

The following property is proved in [41].

Theorem 4.9 Assume that m is finite, that Condition 4.6 holds, and that a is
finite. Define the drift µ as in Theorem 4.7.

• If µ < 0, then a(z) has m−κ zeros in the open unit disk, and κ simple zeros
on the unit circle at the κth roots of 1;

• if µ = 0 and
∑+∞

i=−1(i+1)2Ai is finite, then a(z) has m−κ zeros in the open
unit disk, and κ zeros of multiplicity 2 on the unit circle at the κth roots of
1;

• if µ > 0, then a(z) has m zeros in the open unit disk, and κ simple zeros on
the unit circle at the κth roots of 1.

Since in the above theorem the conditions concerning µ are exhaustive, also
the reverse implication is valid in each of the three parts. In particular, if a(z)
has m − κ zeros in the open unit disk, and κ simple zeros on the unit circle at
the κth roots of 1, then µ < 0.

If both b and
∑+∞

i=−1(i + 1)2Ai are finite then the three cases correspond,
respectively, to the positive recurrent, null recurrent and transient cases identified
in Theorem 4.7.

The following result, which characterizes the eigenvalues of Gmin in terms of
the zeros of a(z), is a corollary of Proposition 7 of [40].
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Theorem 4.10 Under the hypotheses of Theorem 4.9 the eigenvalues of Gmin

are:

• the zeros of a(z) in the closed unit disk if µ < 0;

• the zeros of a(z) in the open unit disk and the κ-th roots of 1 if µ = 0;

• the zeros of a(z) in the open unit disk if µ > 0.

From the above theorem it follows that the minimal nonnegative solution
Gmin of equation (4.4) is also the spectral minimal solution in the sense of Defi-
nition 3.14, i.e., ρ(Gmin) ≤ ρ(X) for any other solution X of (4.4).

Turning to the roots in |z| > 1, we define the convergence radius ra of A(z)
and observe that for r real in (0, ra), A(r) is well defined, irreducible and non-
negative. Therefore, its Perron–Frobenius eigenvalue ρ(A(r)) is defined in that
interval.

The following result, proved in [44], [43], shows that the decay of the steady
state vector π is related to the zeros outside the unit disk of the function a(z) =
det(zI − A(z)). In particular, the decay is exponential when one of such zeros
exists.

Theorem 4.11 Let A(z) and B(z) be the matrix power series defining the first
two block rows of an irreducible and positive recurrent M/G/1-type Markov
chain. If A(z) is analytic for |z| < ra, where 1 < ra < +∞, and if a(z) has a zero
of modulus greater than 1 and less than ra, then there exists a zero ξ of smallest
modulus such that 1 < |ξ| < ra, moreover, ξ is real, positive and simple and
it coincides with the spectral radius of A(ξ), that is ξ = ρ(A(ξ)). If in addition
z = 1 is the only zero of a(z) of modulus one, then ξ is the only zero of minimal
modulus, moreover, if B(z) is analytic for |z| < ra, then the steady state vector
π = (πi)i≥0 is such that πi = γ

ξi+1 + O(ξ−i) for a suitable positive constant γ.

The following conditions which guarantee the existence of ξ are shown in [43]:

Theorem 4.12 Let A(z) be the generating function associated with an irre-
ducible and positive recurrent M/G/1-type Markov chain. If the matrix function
A(z) is entire or rational, then there exists a real number ξ > 1 such that
det(ξI − A(ξ)) = 0. Moreover,

ξ = min{|z| : z ∈ C, a(z) = 0, |z| > 1}.

From the above results it follows that, if A(z) is a matrix polynomial, then
the vector π has exponential decay.

4.5 Canonical factorization

The crucial step in the results of Section 4.2 was the identification of Gmin as
the minimal nonnegative solution of (4.4). From that starting point, we might
have followed a purely algebraic approach to Theorem 4.4 by using the results
of Section 3.5.

In this section we obtain Ramaswami’s formula (4.9) as an algebraic deriva-
tion from the canonical factorization introduced in Section 3.2.
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The matrix Gmin induces a weak canonical factorization of I −S(z) as stated
by the following.
Theorem 4.13 Under the hypotheses of Theorem 4.9 the matrix Laurent power
series I − S(z) has the following weak canonical factorization

I − S(z) = U(z)L(z), |z| = 1,

U(z) = I −
+∞∑
i=0

ziA∗
i , L(z) = I − z−1Gmin,

(4.28)

where A∗
i , for i ≥ 0, are defined in (4.8) Moreover,

• if µ < 0 then U(z) is nonsingular for |z| = 1, L(z) is singular for z = ωi
κ,

i = 0, . . . , κ − 1, and the coefficients of L(z)−1 are uniformly bounded in
norm by a constant;

• if µ = 0 and
∑+∞

i=−1(i+1)2Ai is finite, then both L(z) and U(z) are singular

for z = ωi
κ, i = 0, . . . , κ − 1 and the coefficients of L(z)−1 are uniformly

bounded in norm by a constant;

• if µ > 0 then L(z) is nonsingular for |z| = 1, U(z) is singular for z = ωi
κ,

i = 0, . . . , κ − 1.

Proof The factorization (4.28) can be proved by direct verification, using (4.11)
and the fact that A∗

i = Ai + A∗
i+1Gmin for i ≥ 0 which follows from (4.8). The

function L(z) is in the Wiener algebra since it is a matrix polynomial. Since∑+∞
i=0 |A∗

i | =
∑+∞

i=0 A∗
i and since the infinity norm of the latter summation is

‖∑+∞
i=0 A∗

i 1‖∞ ≤ ‖∑+∞
i=0 (i + 1)Ai1‖∞, which is finite since a in (4.16) is finite

by Theorem 4.7, we deduce that also U(z) is in the Wiener algebra. Moreover,
by construction, L(z) is singular if z is an eigenvalue of Gmin. Therefore L(z−1)
is nonsingular for |z| < 1. For Theorem 4.9 we find that the zeros of detU(z)
have modulus greater than or equal to 1. Therefore (4.28) is a weak canonical
factorization. The spectral properties for µ > 0, µ = 0 and µ < 0 follow from
Theorems 4.9 and 4.10. If µ ≤ 0 then the coefficients of L(z)−1 are uniformly
bounded in norm by a constant since Gi

min1 ≤ 1 for any i ≥ 0. �

An immediate consequence of the theorem above is the following result, which
was proved in [92] by means of probabilistic arguments, and which will be used
in Chapter 6 to show convergence properties of functional iterations:

Theorem 4.14 Under the assumptions of Theorem 4.13 the matrix I−∑+∞
i=0 A∗

i

is:

• a nonsingular M-matrix if µ < 0;

• a singular M-matrix if either µ > 0 or µ = 0 and
∑+∞

i=−1(i + 1)2Ai is finite.

In particular, the following result holds:

Theorem 4.15 Under the assumptions of Theorem 4.13 we have ρ(A∗
0) < 1,

where A∗
0 =

∑+∞
i=0 AiG

i
min, therefore I − A∗

0 is a nonsingular M-matrix.
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Proof Since Gmin1 ≤ 1, we have 0 ≤ A∗
01 =

∑+∞
i=0 AiG

i
min1 ≤

∑+∞
i=0 Ai1 =

1 − A−11 ≤ 1. Therefore ‖A∗
0‖∞ ≤ 1, which implies ρ(A∗

0) ≤ 1 (see Theorem
A.2 in the appendix). Since A∗

0 ≥ 0, then by the Perron–Frobenius theorem,
its spectral radius is eigenvalue of A∗

0. Since by Theorem 4.13 U(z) is the left
factor of a weak canonical factorization, one has detU(z) �= 0 for |z| < 1 and,
in particular, det(I − A∗

0) = det U(0) �= 0. Therefore the spectral radius of A∗
0

cannot be 1. �

In matrix form, we write (4.28) as H = UL, with

U =


I − A∗

0 −A∗
1 −A∗

2 . . .

I − A∗
0 −A∗

1

. . .
. . . . . .

0 . . .

 ,

L =


I 0

−Gmin I
−Gmin I

0 . . . . . .

 ,

and H defined in (4.6).
We transform πT(I − P ) = 0 into

[πT
1 , πT

2 , . . .]H = πT
0 [B1, B2, . . .],

which is of the form (3.38). Under the hypothesis of positive recurrence the
assumptions of Theorem 3.29 are satisfied and we obtain equations (3.42) which
coincide with the Ramaswami formula (4.9).

4.6 Solutions of the matrix equation

It is clear that (4.4) has only one substochastic solution when the Markov chain
is recurrent: Gmin is the minimal solution and is stochastic, and there cannot
exist a stochastic matrix M such that Gmin ≤ M , Gmin �= M .

The situation is more involved in the transient case. On the one hand, Gmin is
not stochastic and, on the other hand, [92, page 87] shows that there is always at
least one stochastic solution to (4.4). Therefore, there are at least two solutions
and the question immediately arises as to how many there are and what are they.

The most detailed characterization is given in [40], which we now summarize.

Theorem 4.16 The matrix G is a power-bounded solution of (4.4) if and only
if it has the form

G = Gmin +
k∑

j=1

(σjI − Gmin)xjy
T
j (4.29)

where
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1. {σ1, . . . , σk} is a set of roots, not necessarily distinct, of a(z) of modulus 1;

2. {x1, . . . ,xk} is a set of linearly independent vectors such that A(σj)xj = xj ,
j = 1, . . . , k;

3. the linear space span{y1, . . . , yk} is invariant under multiplication by GT
min;

4. yT
i xj = δi,j

or, equivalently,

1′. {σ1, . . . , σk} are the eigenvalues of G with |σj | = 1;

2′. yj is a left eigenvector of G for the eigenvalue σj , j = 1, . . . , k;

3′. {x1, . . . ,xk} is a basis of the right eigenspace corresponding to {σ1, . . . , σk}
such that yT

i xj = δi,j .

The close connection between the eigencharacteristics of the solutions G and
those of the fundamental matrix A(z) is given in (4.22) and (4.23). Briefly stated,
Theorem 4.16 tells us that we may obtain all the power-bounded solutions by
starting from Gmin, ripping apart some of its eigenvalues and replacing them by
other roots of a(z) on |z| = 1.

In dealing with the nonnegative, and with the substochastic solutions, it is
necessary to introduce the following constraint.

Condition 4.17 The function a(z) has no zero such that |z| = 1, z �= 1.

We shall return to this assumption in Section 4.7, meanwhile, we observe
that if it holds, then the σi’s in Theorem 4.16 are all equal to 1 and (4.29)
reduces to G = Gmin +

∑k
j=1(I −Gmin)xjy

T
j . Clearly, it suffices that xj and yj

be nonnegative, and xj ≥ Gminxj for all j, in order for G to be nonnegative.
Remarkably, this is also necessary as the theorem below asserts.

Theorem 4.18 [40] Let xj ,yj ∈ R
m, j = 1, . . . , k be such that:

1. A(1)xj = xj , j = 1, . . . , k;

2. the vectors yT
j are left eigenvectors of Gmin, j = 1, . . . , k;

3. yT
i xj = δi,j

4. xj ≥ 0, yj ≥ 0, Gminxj ≤ xj , j = 1, . . . , k.

Then

G = Gmin +
k∑

j=1

(I − Gmin)xjy
T
j (4.30)

is a nonnegative power-bounded solution of (4.4).
Conversely, if Condition 4.17 holds, any nonnegative power bounded solution

of (4.4) has the form (4.30) where 1–4 are satisfied. Moreover, the vectors yj ,

j = 1, . . . , k can be chosen such that yT
i yj = 0 if i �= j.

Finally, G is substochastic if and only if
∑k

j=1 xj ≤ 1, and yT
j 1 = 1, for

j = 1, . . . , k, and G is stochastic if and only if
∑k

j=1 xj = 1.



104 M/G/1-TYPE MARKOV CHAINS

Remark 4.19 In certain cases, the matrix equation (4.4) might have an infinite
number of power-bounded solutions. This occurs, for instance, if

S(z) =

p1z
−1 + q1z 0 0

0 p2z
−1 + q2z 0

0 0 p3z
−1 + q3z


with p3 < q3; in fact, any matrix of the form

Gα =

 1 0 0
0 1 0

α(1 − p3/q3) (1 − α)(1 − p3/q3) p3/q3


is a stochastic solution of (4.4), for any 0 ≤ α ≤ 1 [40, page 29].

It is important to point out that, if Condition 4.17 is satisfied, then we may
apply the shifting technique introduced in Section 3.6 to the function ϕ(z) =
I −S(z). In fact, z = 1 is the only root of ϕ(z) on the unit circle and ϕ(1)1 = 0.
The shifted function is ϕ̂(z) = ϕ(z)(I − z−1Q)−1, where Q = 1uT, and u is any
vector such that uT1 = 1. The new function ϕ̂(z) is nonsingular for |z| = 1, and
by denoting ϕ̂(z) = I −∑+∞

i=−1 ziÂi, one has that Ĝ = Gmin − Q is the spectral
minimal solution of the matrix equation

∑+∞
i=−1 ÂiX

i+1 = X and ρ(Ĝ) < 1.

4.7 Irreducibility assumptions

In practice, the situation is much simpler than the results in the preceding sec-
tions make it appear. Consider again the Markov chain (4.24) defined by allow-
ing the level to be negative. Assume that Condition 4.1 holds, but that P ′ is re-
ducible. In such a situation, there are several classes of states in N×{1, 2, . . . , m}
which communicate only through the level 0. To give one example, take B1 > 0
and

S(z) =

p1z
−1 + q1z 0 0

0 p2z
−1 + q2z 0

ar3 (1 − a)r3 p3z
−1 + q3z

 ,

with parameter values such that S(1) is a stochastic matrix.
The phases 1 and 2 are different from the phase 3: if the system is in a state

(n, 1) with n > 0, it will behave as if the other phases did not exist, until it
returns to the level 0, and similarly for the phase 2. Phase 3 acts more like a
transitory phase which the system occupies until it settles on either phase 1 or 2.

It is very unlikely that a model of physical interest would have the type of
behavior exhibited by phases 1 and 2 and it is quite legitimate to impose the
following constraint on Markov chains of M/G/1 type.

Condition 4.20 The Markov chain on Z×{1, 2, . . . , m} with transition matrix
(4.24) has only one final class Z×S, where S ⊆ {1, 2, . . . , m}. Every other state
is on a path to the final class.
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A stronger assumption (that of the irreducibility of P ′) has been introduced
in [82] and has been very useful for the development of the theory.

The properties of the matrix P ′ = T±∞[A(z)] of (4.24) are closely related
to the properties of the finite matrix A = A(1) =

∑+∞
i=−1 Ai. A first simple

remark is that if T±∞[A(z)] is irreducible then A is irreducible. In fact, for a
contradiction, if there exist two disjoint subsets S1 and S2 of {1, . . . ,m} such
that S1 ∪ S2 = {1, . . . , m} and ai,j = 0 for i ∈ S1 and j ∈ S2, then it holds
a
(n)
i,j = 0 for i ∈ S1 and j ∈ S2 and for any n ≥ −1 where we set A(n) = (a(n)

i,j ).
Therefore looking at the structure of the bi-infinite matrix T±∞[A(z)], we deduce
that any state (n, i) for i ∈ S1 cannot communicate with a state (k, j) with j ∈ S2

since a
(k−n)
i,j = 0 for i ∈ S1 and j ∈ S2. The converse is not true as the example

in Section 4.4 shows.
Another remark concerns irreducible classes. Let S ⊂ {1, . . . , m} and S =

Z×S. Let A(z)S and T±∞[A(z)]S be the submatrices of A(z) and T±∞[A(z)] with
indices in S and S, respectively. Then it holds that T±∞[A(z)]S = T±∞[A(z)S ].
Therefore, if S is an irreducible class of T±∞[A(z)] then S is an irreducible class
for A.

Similarly, if S is final, then S is final in A. Also this property can be easily
verified by contradiction. In fact, if S is not final, there exist j �∈ S, k ∈ S and
n ∈ Z such that the element of An in position (j, k) is nonzero. This implies
that in T±∞[A(z)] the node (n, k) �∈ S can be reached from (n, j) ∈ S, that is S
would not be final.

The above arguments imply the following

Theorem 4.21 Let the Markov chain (4.24) satisfy Condition 4.20, and let
S = Z×S, S ⊂ {1, . . . ,m} be the only final class of T±∞[A(z)], then the matrix
A =

∑+∞
i=−1 Ai has only one final class S.

Proof According to the arguments introduced before the theorem, S is a final
class of A. Assume that S′ �= S is another final class for A, and that k ∈ S′.
For Condition 4.20, for any n ∈ Z there exists a path connecting (n, k) to some
(p, h) ∈ S. To this path there corresponds a path in {1, . . . ,m} which connects
k ∈ S′ to h ∈ S. Therefore, S′ cannot be final. �

Finally, Condition 4.20 has the following simple consequence.

Remark 4.22 Observe that under the Condition 4.20, there exists a permuta-
tion matrix Π and an integer K > 0 such that

ΠA(z)ΠT =


V1,1(z) 0 . . . 0

V2,1(z) V2,2(z)
. . .

...
...

...
. . . 0

VK,1(z) VK,2(z) . . . VK,K(z)


where V1,1(1) is stochastic and irreducible (it corresponds to the final class),
Vi,i(z) are irreducible and substochastic, for i = 2, . . . , K, moreover, Vi,1(1) �= 0
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for i = 2, . . . , K. In this way, ρ(V1,1(1)) = 1 since V1,1(1) is stochastic, more-
over, ρ(Vi,i(1) < 1 for i = 2, . . . , K. The latter property holds since Vi,i(1) ≤∑i

j=1 Vi,j(1) = Bi and Vi,i(1) �= Bi because of Vi,1 �= 0. Since Vi,i(1) is irre-
ducible, from the Perron–Frobenius theorem 1.27 one has ρ(Vi,i(1) < ρ(Bi) = 1.

Another consequence of Condition 4.20 is that the submatrix of A−1 with
indices in S cannot be the null matrix. In fact, if the elements of A−1 with
indices in S were zero then there would be no back transition from a state (k, i)
to a state (h, j) for h < k and i, j ∈ S so that the class S = Z × S could not
be irreducible. A similar, argument can be used to prove that the submatrix of∑+∞

i=1 Ai = 0 with indices in S cannot be the null matrix.

An important property which will be useful in Chapter 7 concerns certain
Schur complements of I − P where P is the bi-infinite matrix. (4.24)
Theorem 4.23 Assume that the Markov chain (4.24) satisfies Condition 4.20,
and let S = Z×S, S ⊂ {1, . . . , m} be the only final class of T±∞[A(z)]. Consider
a nonempty subset U ⊂ Z and partition the set of states Z×{1, . . .m} in the two
disjoint subsets E1 and E2 such that E1 = U ×{1, . . . , m}. Assume that the sum∑+∞

i=0 P i
E1

is finite, where PE1 is the submatrix of P with subscripts in the set E1.

Then, we may define the censored Markov chain P ′ = PE1 +PE2(
∑+∞

i=0 P i
E1

)PE1 ,
moreover, P ′ satisfies Condition 4.20 where the unique final class is U × S.

Proof The set of states U × S is an irreducible class for P ′. In fact, for any
pair of states (n1, i1), (n2, i2) ∈ U ×S there exists a path in P connecting them.
This implies that in the Markov chain P ′ there exists a path connecting (n1, i1)
with (n2, i2). The set of states U ×S is a final class, in fact if there exists a path
from (n1, i1) to (n2, i2) where (n1, i1) ∈ U × S and (n2, i2) �∈ U × S, (n2, i2) ∈
U × {1, . . . , m} then there will be a path out of Z × S in P , which contraddicts
the assumptions. Moreover every state (n, i) �∈ U × S, (n, i) ∈ U × {1, . . . , m}
is in a path to U × S in P ′. In fact, there exists a path in P from (n, i) to
(n1, i1) ∈ Z × S. If n1 ∈ U then the property holds, otherwise, since Z × S is an
irreducible class, there exists a path from (n1, i1) to (n2, i1) where n2 ∈ U . This
completes the proof. �

Another interesting consequence of Condition 4.20 is that the quantity κ
defined in (4.27) is equal to one. In order to see this, take j in the set S. By
Condition 4.20, all the states (n, j) are accessible to (0, j), so that the set Dj

defined on page 99 is equal to Z. This implies that D = Z and that κ = 1 by
(4.26).

Thus, Condition 4.20 allows us to strengthen as follows Theorems 4.9 and
4.18.

Theorem 4.24 Assume that m is finite, that Condition 4.20 holds, and that
a is finite. The only zero of a(z) on |z| = 1 is z = 1. It has multiplicity 1 if
µ �= 0 and multiplicity 2 if µ = 0 and

∑+∞
i=−1(i + 1)2Ai is finite where µ is the

drift defined in (4.17). The only substochastic solutions of (4.4) are Gmin and, if
µ > 0, Gmin + (I − Gmin)1yT, where y is the left Perron–Frobenius eigenvector
of Gmin.
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Theorem 4.7 remains valid in that case: the important point is that there
should be a unique invariant probability vector for the matrix A.

Remark 4.25 In Lemma 15 of [43] it is shown that, if A(z) satisfies the as-
sumptions of Theorem 4.11, then any zero ζ of a(z) with modulus ξ = min{|z| :
a(z) = 0, |z| > 1} is such that ζ/ξ is zero of a(z). Moreover Theorem 4.12 states
that ξ is a zero of a(z). If Condition 4.20 is satisfied, then z = 1 is the only zero
of modulus 1 of a(z), therefore ξ is the only zero of a(z) of minimal modulus
outside the unit circle.

An immediate consequence of Theorem 4.24 is that in the recurrent case
λ = 1 is the only eigenvalue of modulus 1 of Gmin and is simple. In general we
have the following.

Theorem 4.26 Let η = max{|z| : |z| < 1, a(z) = 0}. If the drift µ is nonneg-
ative then for any matrix norm and for any ε such that η + ε < 1, there exists a
positive γ such that

• if µ > 0 then ‖Gn
min‖ ≤ γ(η + ε)n

• if µ ≤ 0 and Condition 4.20 is satisfied then ‖Gn
min − 1gT‖ ≤ γ(η + ε)n,

where g ≥ 0 is the invariant probability vector of Gmin, i.e., gTGmin = gT,
gT1 = 1.

Proof If µ > 0 then ρ(Gmin) = η. Applying Corollary A.4 of the appendix
to the matrix Gmin we find that for any matrix norm ‖ · ‖ there exists γ > 0
such that ‖Gn

min‖ ≤ γ(η + ε)n. If µ ≤ 0 and Condition 4.20 is satisfied then
ρ(Gmin) = 1 and 1 is the only eigenvalue of Gmin of modulus equal to ρ(Gmin)
and is simple, moreover η is the second largest modulus eigenvalue. Therefore,
since Gmin1gT = 1gTGmin = 1gT, then by using an inductive argument we find
that (Gmin − 1gT)n = Gn

min − 1gT. Applying Corollary A.4 of the appendix to
the matrix Gmin − 1gT provides the bound ‖Gn

min − 1gT‖ ≤ γ(η + ε)n. �

4.8 Bibliographic notes

One finds in [4], [58] and, above all, in [92], a more extensive analysis of M/G/1-
type queues from the probabilistic point of view. The spectral analysis of the
generating function (and its solutions) has been mainly conducted in [96] and
in a series of papers by Gail, Hantler and Taylor, of which we have cited the
most directly relevant ones. The relationship between Ramaswami’s formula and
canonical factorizations is pointed out in [87] and [24].
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5

PHASE-TYPE QUEUES

5.1 Introduction

We consider here a series of processes on the two-dimensional state space E =
N × {1, 2, . . . , m} for some finite m, with a variety of transition structures. We
group these under the generic name of phase-type queues (PH queues) because
they usually serve as models of queueing systems, and the queues defined in (4.3)
are but the first family of PH queues which we have encountered.

We first deal with the so-called G/M/1-type Markov chains which are in some
sense symmetrical to those analyzed in Chapter 4: starting from level n at some
time t, the process may move to any of the levels n − 1, n − 2, . . . down to the
level zero at time t + 1, but it may not move up beyond the level n + 1; one
says that it is skip-free to higher levels. Furthermore, the transition probabilities
from Xt = n to Xt+1 = k depend on k − n only, for k ≥ 1, and the transition
matrix has the form

P =


B0 A1 0
B−1 A0 A1

B−2 A−1 A0 A1

B−3 A−2 A−1 A0
. . .

...
...

. . . . . . . . .

 .

Observe that the transition matrix is block lower Hessenberg and, except for its
first block column, is block Toeplitz.

The stationary distribution of such processes depends on a matrix equation
similar to (4.4) and we show in Section 5.3 that there is an extremely tight
connection between G/M/1 and M/G/1-type queues, so that one family may be
considered as the dual of the other.

There are two ways of “combining” these two structures. The first is to allow
the full generality of each, and to assume that the transition matrix has the form

P =



B0 B1 B2 B3 . . .
B−1 A0 A1 A2 . . .

B−2 A−1 A0 A1
. . .

B−3 A−2 A−1 A0
. . .

...
...

. . . . . . . . .


.

109
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Here, the process is allowed to move from any level n to any level n + j, where
j = . . . ,−2,−1, 0, 1, 2, . . . without any restriction save that the level may not
become negative; furthermore, the transition probability is independent of n
and depends on j only, as long as n �= 0 and n + j �= 0, that is, the transition
matrix is block Toeplitz except for its first block row and its first block column.
This leads to a rather unwieldy set of equations which becomes, as we show in
Section 5.5, more manageable if one imposes some constraint on the jumps in
one direction.

Alternately, one may impose both the restrictions of M/G/1 and G/M/1-type
queues, and forbid transitions by more than one level at a time. The resulting
processes are called quasi-birth-and-death (QBD) Markov chains and are said to
be skip-free in both directions. Their transition matrix is

P =


B0 A1 0
A−1 A0 A1

A−1 A0 A1

A−1 A0
. . .

0 . . . . . .

 .

QBD’s are the most popular phase-type queues because their characteristic equa-
tions are very simple, as we show in Section 5.6.

We conclude with a short section on an interesting generalization of QBD’s.
We may think of a QBD as evolving on a simple linear list: each level is a node
in the list and the process is allowed to move from one node to one of its two
neighbors. For the processes in Section 5.8, the level evolves on a tree. This gives
rise to a set of interconnected quadratic matrix equations.

5.2 G/M/1-type Markov chains
We analyze, in this and in the next section, Markov chains with transition matrix

P =


B0 A1 0
B−1 A0 A1

B−2 A−1 A0 A1

B−3 A−2 A−1 A0
. . .

...
...

. . . . . . . . .

 . (5.1)

Here, A−i, i ≥ −1, and B−i, i ≥ 0 are nonnegative matrices in R
m×m such

that
∑n−1

i=−1 A−i + B−n is stochastic for all n ≥ 0. Often, it so happens that
limn→+∞ B−n = 0 and then the matrix A =

∑+∞
i=−1 A−i is stochastic, but this

is not always the case.
We immediately assume that the Markov chains under study satisfy the fol-

lowing conditions.

Condition 5.1 The Markov chain with transition matrix (5.1) is irreducible
and nonperiodic.



G/M/1-TYPE MARKOV CHAINS 111

Condition 5.2 The doubly infinite Markov chain on Z × {1, 2, . . . , m} with
transition matrix

P ′ = T±∞[A(z)] =



. . .
. . . 0

. . . A0 A1

. . . A−1 A0 A1

. . . A−2 A−1 A0 A1

. . . A−3 A−2 A−1 A0
. . .

. . .
. . .

. . .
. . .

. . .
. . .


(5.2)

has only one final class Z × S, where S ⊆ {1, 2, . . . , m}. Every other state is on
a path to the final class.

Our justification for making these assumptions is the same as for Conditions
4.1 and 4.20: the first one ensures the existence of limits for the state probabil-
ities, the second removes from consideration examples which do not correspond
to physical systems of practical interest.

An immediately useful consequence is that the matrix A =
∑+∞

i=−1 A−i has
only one irreducible class. If, in addition, it is stochastic, then, in view of the
Perron–Frobenius Theorem 1.27, there exists a unique vector α such that αTA =
αT, αT1 = 1, with αi > 0 for i in the irreducible class and αi = 0 elsewhere.

Theorem 5.3 Assume that m < ∞ and that Condition 5.1 holds.
If A =

∑+∞
i=−1 A−i is not stochastic, then the Markov chain with transition

matrix (5.1) is positive recurrent.
If A is stochastic and if Condition 5.2 holds, then the Markov chain is positive

recurrent if δ < 0, null recurrent if δ = 0, and transient if δ > 0, where δ = αTa,
α is such that αTA = αT, αT1 = 1, and a =

∑+∞
i=−1 iA−i1.

Detailed proofs may be found in [91, Section 1.3] in the case where A is irre-
ducible and in [41] in all generality but, like in Chapter 4, the property is simple
to understand. If A is not stochastic, then the sequence {B−n}n≥−1 cannot con-
verge to zero, and there is, at least for some phases, a positive probability of
jumping straight to the level zero, no matter how far the process happens to be
in the higher levels. Thus, returns to level zero are frequent and the process is
positive recurrent. If A is stochastic, δ measures some average drift over unit
time intervals. If δ < 0, then the drift is toward level zero and the process is
positive recurrent, the other two cases being similarly interpreted. Several equiv-
alent conditions are given in [83] to characterize the stability of Markov chains
of G/M/1 as well as M/G/1-types.

Similarly to the M/G/1 case, we partition the stationary probability vector
π, when it exists, into subvectors πn ∈ R

m, n ≥ 0 of length m, so that π =
(πn)n=0,1,.... It depends in a very simple manner on the matrix equation
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X =
+∞∑

i=−1

Xi+1A−i (5.3)

as we now explain.

Theorem 5.4 If the Markov chain with transition matrix (5.1) is positive re-
current, then

πT
n = πT

0 Rn
min for n ≥ 1, (5.4)

where Rmin is the minimal nonnegative solution of (5.3).
That matrix is such that (Rmin)i,j is the expected number of visits to (1, j),

starting from (0, i), before the first return to level zero.
The vector π0 is characterized by the system

πT
0 = πT

0

+∞∑
i=0

Ri
minB−i, πT

0 (I − Rmin)−11 = 1. (5.5)

This holds even if m = ∞, in which case one needs to replace (I − Rmin)−1 in
(5.5) by the series

∑+∞
i=0 Ri

min.

Proof The proof proceeds in several steps.
To begin with, we define the matrices R(k), for k ≥ 1, with (R(k))i,j being the

expected number of visits to (k, j), starting from (0, i), before the first return to
level zero. We apply Theorem 1.23 with the set A being level zero, and the set
B being the collection of all the other levels, and we obtain that

πT
n = πT

0 R(n) for n ≥ 1. (5.6)

Furthermore, in the notation of Section 1.4,[
R(1) R(2) R(3) . . .

]
= PA,BS′ =

[
A1 0 0 . . .

]
S′,

where S′ is the minimal nonnegative solution of S′H = I, with

H =


I − A0 −A1 0
−A−1 I − A0 −A1

−A−2 −A−1 I − A0 −A1

−A−3 −A−2 −A−1 I − A0
. . .

...
. . . . . . . . . . . .

 , (5.7)

so that
[
R(1) R(2) R(3) . . .

]
is the minimal nonnegative solution of the system[

X1 X2 X3 . . .
]
H =

[
A1 0 0 . . .

]
.

We show below that R(n) = (R(1))n, for all n. This has two immediate conse-
quences. The first is that

[
R(1) R(2) R(3) . . .

]
=
[
R1

min R2
min R3

min . . .
]
, where

Rmin is the minimal solution of the system[
Z Z2 Z3 . . .

]
H =

[
A1 0 0 . . .

]
. (5.8)

Since the equation obtained by equating the first block in both sides of (5.8) is
equivalent to Z =

∑+∞
i=−1 Zi+1A−i, we are led to the conclusion that Rmin is the
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minimal nonnegative solution of (5.3) and, by (5.6), that the vector π has the
matrix-geometric form (5.4).

The second consequence is that we obtain from the first set of equations in
πT = πTP that

πT
0 =

+∞∑
i=0

πT
i B−i = πT

0

+∞∑
i=0

Ri
minB−i.

Since we assume that the Markov chain is positive recurrent, the series
∑+∞

i=0 πT
i

converges and, by (5.4), this implies that
∑+∞

i=0 Ri
min converges to (I −Rmin)−1.

Altogether, we see that the normalizing equation πT1 = 1 becomes πT
0 (I −

Rmin)−11 = 1, which proves the last statement of the theorem.
It remains for us to prove that R(n) = (R(1))n. Since the process is skip-

free to higher levels, and since we start from level zero, every visit to level n is
preceded by a visit to level n − 1. Conditioning on the visits to level n − 1, we
write that

R
(n)
i,j =

m∑
k=1

R
(n−1)
i,k R

(n−1,n)
k,j , (5.9)

where R
(n−1,n)
k,j is the expected number of visits to (n, j), starting from (n−1, k),

before the first return to level n − 1. Now, as long as one avoids level zero, the
transition probabilities depend on the difference between levels only and not on
their specific values. This leads us to the conclusion that R

(n−1,n)
k,j is independent

of n and that we may rewrite (5.9) as R(n) = R(n−1)R(1) = (R(1))n, which
concludes the proof. �

Similarly to the case of M/G/1 Markov chains, here we associate with the
transition matrix (5.1) the matrix power series

S(z) = zA1 + A0 + z−1A−1 + z−2A−2 + · · · =
+∞∑

i=−1

z−iA−i,

A(z) = z−1S(z).

(5.10)

Under our assumptions, A(z) is a matrix power series in z−1, and A(z−1) is
analytic in the open unit disk D and convergent in the closed unit disk. Similarly
to the M/G/1 case, we call A(z) the generating function of the Markov chain.

5.3 A duality property
The characteristic equations (4.4, 5.3) of M/G/1 and G/M/1-type Markov chains
are very similar, and it comes as no surprise that they should have been the
object of parallel developments in the literature, and that the results of Sections
4.4 and 4.6 apply here as well, mutatis mutandis. The theorem below corresponds
to Theorems 4.9 and 4.24; details are to be found in [40].

Theorem 5.5 Assume that m is finite, that Condition 5.2 holds, A is stochastic,
and that a is finite. Define the drift δ as in Theorem 5.3 and A(z) as in (5.10).
Define a(z) = det(zI − A(z−1)).
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i If δ > 0, then a(z) has m − 1 zeros in the open unit disk and one simple
zero equal to 1;

ii if δ = 0 and if
∑+∞

−1 (i + 1)2A−i is finite, then a(z) has m − 1 zeros in the
open unit disk and z = 1 is a zero of multiplicity two;

iii If δ < 0, then a(z) has m zeros in the open unit disk and one simple zero
equal to 1.

If R is a power-bounded solutions of (5.3) and if λ is one of its eigenvalues,
then |λ| ≤ 1 and a(λ) = 0. Thus, the only power bounded solution of (5.3) are
Rmin and, when δ < 0, the matrix

R1 = Rmin + zαT(I − Rmin), (5.11)

where z is the right Perron–Frobenius eigenvector of Rmin, normalized by αTz =
1.

We had seen in the proof of Theorem 5.4 that, when the process is positive
recurrent, the series

∑+∞
i=0 Ri

min converges, which implies that ρ(Rmin) < 1. The
converse is true, and the following property is proved in [91, Section 1.3].

Theorem 5.6 The matrix Rmin is power-bounded. It has spectral radius strictly
less than one if and only if the G/M/1 Markov chain is positive recurrent.

Like the case of the solution Gmin, the minimal nonnegative solution Rmin

of the equation (5.3) is also minimal in terms of spectral radius (see Definition
3.14). That is, ρ(Rmin) ≤ ρ(X) for any other solution X.

It is worth mentioning that, if the matrix A =
∑+∞

i=−1 A−i is irreducible and
stochastic, the connection between the two matrix equations is extremely simple.
Define D = Diag(α), where α is the strictly positive stationary probability
vector of A and define Ãi = D−1AT

−iD, for i = −1, 0, 1, . . . Note that the matrix
Ã =

∑+∞
i=−1 Ãi is stochastic and has the same stationary probability vector α as

A.
Now, take any solution R of (5.3) and define G̃ = D−1RTD. It is easy to

verify that G̃ is a solution of

X =
+∞∑

i=−1

ÃiX
i+1, (5.12)

which is the characteristic equation of the M/G/1-type Markov chain with tran-
sition matrix

P =



B̃0 B̃1 B̃2 B̃3 . . .

Ã−1 Ã0 Ã1 Ã2 . . .

Ã−1 Ã0 Ã1
. . .

Ã−1 Ã0
. . .

0 . . . . . .


, (5.13)

where B̃i = D−1BT
−iD, for i = 0, 1, 2, . . .. Furthermore, it is easy to see that the

drift µ̃ = αT
∑+∞

i=−1(i + 1)Ãi1 of the new Markov chain is equal to the drift δ of
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the Markov chain (5.1) and that D−1RT
minD is the minimal nonnegative solution

of (5.12).
These observations, combined with Theorems 4.7 and 5.3, lead us to the

following conclusion.

Theorem 5.7 To determine Rmin for a positive recurrent G/M/1-type Markov
chain is equivalent to determining Gmin for a transient M/G/1-type Markov
chain. Conversely, to determine Rmin for a null recurrent or transient G/M/1-
type Markov chain is equivalent to determining Gmin for a recurrent M/G/1-type
Markov chain.

The construction above has a probabilistic interpretation, naturally, which
was given in [5] and which we briefly present here. Consider the doubly infinite
process {Xn, ϕn} with transition matrix (5.2) and define the jumps Kn = Xn −
Xn−1. Take the dual process {Xd

n, ϕd
n} with transition matrix

P d =



. . . . . . . . . . . . . . . . . .

. . . Ã0 Ã1 Ã2 Ã3
. . .

Ã−1 Ã0 Ã1 Ã2
. . .

Ã−1 Ã0 Ã1
. . .

Ã−1 Ã0
. . .

0
. . . . . .


and define the jumps Kd

n = Xd
n − Xd

n−1. Finally, assume that the phase at time
zero is chosen according to the stationary distribution α. Theorem 3.5 in [5]
states that

P[ϕ0 = j0,K1 = k1, . . . , Kn = kn, ϕn = jn]
= P[ϕd

0 = jn,Kd
1 = kn, . . . , Kd

n = k1, ϕ
d
n = j0]

and means that the dual process is obtained from the original process by reversing
the flow of time and changing the sign of the jumps.

Based on this duality property, the canonical factorization associated with
the M/G/1 Markov chain of Theorem 4.13 induces a canonical factorization of
the function I − S(z) in (5.10).

Theorem 5.8 If A is irreducible, then the matrix Laurent power series I−S(z)
has the factorization

I − S(z) = (I − zRmin)

(
I −

+∞∑
i=0

z−iA∗
−i

)
, (5.14)

where
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A∗
−i =

+∞∑
j=i

Rj−i
minA−i, i = 0, 1, . . . .

This factorization is canonical if A is substochastic, and is weak canonical if A
is stochastic.

Proof If A is stochastic then, in view of Theorem 4.13, the function I− S̃(z) =
I −
∑+∞

i=−1 ziÃi has a weak canonical factorization

I − S̃(z) = (I −
+∞∑
i=0

ziÃ∗
i )(I − z−1Gmin).

From the relations Gmin = D−1RT
minD, Ã∗

i = D−1(A∗
−i)

TD, and S̃(z−1) =
D−1S(z)TD we arrive at (5.14). If A is substochastic then the function I − S̃(z)
is nonsingular for |z| = 1 and the above weak canonical factorization turns into
a canonical factorization. �

Rewriting (5.14) in matrix form yields the factorization H = UL of the
matrix H of (5.7), where

U =


I −Rmin 0

I −Rmin

. . . . . .

0 . . .

 and L =


I − A∗

0 0
−A∗

−1 I − A∗
0

...
. . . . . .

...
. . . . . . . . .

 .

From πT(I − P ) = 0, we deduce that

[πT
1 ,πT

2 , . . .]H = πT
0 [A1, 0, 0, . . .];

applying the factorization of H given above, we obtain that

[πT
1 ,πT

2 , . . .]U = πT
0 [A1(I − A∗

0)
−1, 0, 0, . . .];

solving this block triangular system by forward substitution yields (5.4).
All of this explains why, in the rest of the book, we concentrate on solving

the equation (4.4) to the exclusion of (5.3).
To conclude this section, we mention that there may exist a matrix-geometric

invariant vector, that is, a vector πT = [πT
0 ,πT

0 R, πT
0 R2, . . .] such that πT =

πTP even when the G/M/1-type queue is transient. Naturally, in that case, the
vector is not summable. It is precluded on the existence of some ξ > 1 such that
A(ξ) converges and such that the spectral radius of A(ξ) is ξ. The theorem below
is proved in [43, Theorems 2 and 3].

Theorem 5.9 Define R̂ as follows:

• if δ = 0, then R̂ = Rmin;
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• if δ > 0 and if there exists ξ > 1 and � > 0 such that �TA(ξ) = ξ�,
then R̂ = Rmin + z�T(ξI − Rmin), where z is the right Perron–Frobenius
eigenvector of Rmin.

In both cases, there exists a vector πT
0 such that πT

0 = πT
0

∑+∞
i=0 R̂iB−i and

πT
n = πT

0 R̂n yields a matrix-geometric invariant vector.

5.4 Toeplitz-like transitions

We now turn our attention to Markov chains for which the transition matrix is

P =



B0 B1 B2 B3 . . .
B−1 A0 A1 A2 . . .

B−2 A−1 A0 A1
. . .

B−3 A−2 A−1 A0
. . .

...
...

. . . . . . . . .


, (5.15)

where the blocks Bi and Ai (for all i) are nonnegative matrices in R
m×m.

Since P is stochastic, the series
∑+∞

i=−(n−1) Ai + B−n, for n ≥ 1, and the series∑+∞
i=0 Bi are all stochastic. Furthermore, the matrix A =

∑+∞
i=−∞ Ai is stochastic

if limn→+∞ B−n = 0.
In order to determine the stationary probability vector of (5.15), we begin

like we did in the proof of Theorem 4.4. We choose an arbitrary level n and we
partition E into the subset A of levels less than or equal to n, and the subset B
of levels strictly greater than n. Then we obtain the recurrence equation

πT
n =

(
πT

0 C∗
n +

n−1∑
k=1

πT
k A∗

n−k

)
(I − A∗

0)
−1, for n ≥ 1, (5.16)

where the matrices A∗
k and C∗

k have the following interpretations:
• for k ≥ 0 and i, j ∈ {1, 2, . . . , m}, (A∗

k)i,j is the probability that, starting
from (n − k, i), the Markov chain visits (n, j) before any other state in the
levels 0 to n, possibly after visiting the levels n+1 and higher, independently
of n for n ≥ k + 1;

• for n ≥ 1 and i, j ∈ {1, 2, . . . , m}, (C∗
n)i,j is the probability of the same

event if the initial state is (0, i); it does depend on n.
The next theorem is given without proof because it is an immediate consequence
of the equation above.

Theorem 5.10 If the Markov chain with transition matrix (5.15) is positive
recurrent, then

πT
n = πT

0 R0,n +
n−1∑
i=1

πT
i Rn−i,

for n ≥ 1, where Rk = A∗
k(I − A∗

0)
−1 gives the expected number of visits to the

states in level m, starting from level m − k, before the first visit to any of the
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levels 0 to m − 1, independently of m ≥ k, and R0m = C∗
m(I − A∗

0)
−1 gives the

expected number of such visits starting from level 0.
Observe that, in the case of G/M/1-type Markov chains, the only nonzero

matrices are A∗
0, A∗

1 and C∗
1 , with A∗

1 = C∗
1 = A1, so that the equation above

becomes πT
n = πT

0 R1 for all n, which is identical to (5.4).
In order to characterize the first passage probability matrices A∗

k, [51] intro-
duce the matrices Gk and Gk,0 defined as follows:

• for k ≥ 1 and i, j ∈ {1, 2, . . . , m}, (Gk)i,j is the probability that, starting
from (n, i), the Markov chain visits (n − k, j) before any other state in the
levels 0 to n−1, possibly after spending some time in the levels n and higher,
independently of n ≥ k + 1;

• similarly, for n ≥ 1 and i, j ∈ {1, 2, . . . , m}, (Gn,0)i,j is the probability that,
starting from (n, i), the Markov chain visits (0, j) before any other state in
the levels 0 to n − 1.

Note that, for a Markov chain of M/G/1 type, the only such nonzero matrices
are G1 and G1,0, which are then both equal to Gmin.

Theorem 5.11 The matrices A∗
k, (k ≥ 0), C∗

k , Gk and Gk,0, (k ≥ 1), are such
that

A∗
k = Ak +

+∞∑
i=1

A∗
k+iGi, (5.17)

C∗
k = Ck +

+∞∑
i=1

C∗
k+iGi, (5.18)

Gk = A−k +
+∞∑
i=0

A∗
i Gk+i, (5.19)

Gk,0 = B−k +
+∞∑
i=0

A∗
i Gk+i,0. (5.20)

Proof Assume that the initial state is in level n − k, for n ≥ k + 1. For the
process to visit the level n before any of the levels 0 to n − 1, two cases may
occur: either the Markov chain immediately jumps to level n, or it visits some
higher level. The probability of the first case is given by Ak, which justifies the
first term in (5.17). In the second case, there will be some lowest level visited
above n and the product A∗

k+iGi gives the probability that it should be n + i:
A∗

k+i ensures that the level n+i is actually visited before any other level between
0 and n+ i− 1, and Gi ensures that, afterward, the level n will be visited before
any other level between 0 and n + i − 1. This proves (5.17).

The same argument is used to prove the other equations. �

The coupled systems (5.17, 5.19) may also be written as[
A∗

0 A∗
1 A∗

2 . . .
]
MG =

[
A0 A1 A2 . . .

]
(5.21)
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and

MA


G1

G2

G3

...

 =


A−1

A−2

A−3

...

 , (5.22)

where

MG =


I 0

−G1 I
−G2 −G1 I

...
. . . . . . . . .


and

MA =


I − A∗

0 −A∗
1 −A∗

2 . . .

I − A∗
0 −A∗

1

. . .

I − A∗
0

. . .

0 . . .

 ;

furthermore, (5.18) may be written as
[
C∗

1 C∗
2 C∗

3 . . .
]
MG =

[
C1 C2 C3 . . .

]
and

(5.20) as

MA


G1,0

G2,0

G3,0

...

 =


B−1

B−2

B−3

...

 .

The next theorem generalizes Theorems 5.8 and 4.13.

Theorem 5.12 If
∑+∞

i=0 (I−MA)i and
∑+∞

i=0 (I−MG)i are finite then the matrix

Laurent power series I − S(z), S(z) =
∑+∞

i=−∞ ziAi, has the (weak) canonical
factorization

I − S(z) = (I −
+∞∑
i=0

ziA∗
i )(I −

+∞∑
i=1

z−iGi)

where A∗
i , Gi+1, i ≥ 0, are defined in Theorem 5.11.

Proof The factorization formally holds from (5.21) and (5.22). It is (weak)
canonical since the matrix functions I −∑+∞

i=0 ziA∗
i and I −∑+∞

i=1 ziGi are an-
alytic and invertible for |z| < 1. �

Finally, one needs an equation to characterize π0; it is given in the next
lemma.
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Lemma 5.13 If the Markov chain (5.15) is positive recurrent, then πT
0 = πT

0 B∗
0 ,

where

B∗
0 = B0 +

+∞∑
k=1

C∗
kGk,0. (5.23)

and the normalizing equation is

πT
0

(
I +

+∞∑
n=0

R0,n(I −
+∞∑
n=1

Rn)−1

)
1 = 1. (5.24)

Proof We apply the censoring principle of Section 1.6 and obtain that πT
0 =

πT
0 B∗

0 where B∗
0 is defined as follows: its (i, j)th element is the probability that,

starting from (0, i), the Markov chain visits (0, j) upon its first return to level 0.
To prove (5.23), we proceed as in Theorem 5.11 and note that either the

process immediately returns to level 0, with probability given by B0, or it moves
to some higher level. In the second case, there will be some lowest level visited
above 0 and C∗

kGk,0 is the probability that it is level k. The normalizing equation
is easily proved. �

It is interesting to point out that equations (5.16) and (5.24) can be proved
by means of purely algebraic arguments by using the canonical factorization of
I − S(z) together with Theorem 3.30.

The characterization given in Theorem 5.10 and in Lemma 5.13, even if inter-
esting from the theoretical point of view, is not always convenient for algorithmic
purposes. In fact, unlike the case of M/G/1 and G/M/1 Markov chains, the com-
putation of the stationary probability vector π is not reduced to solving a single
matrix equation. However, it is interesting to observe that once the matrices Gi

and A∗
i , i = 0, 1, . . ., are known, then (5.16) provides a useful algorithmic tool

for computing π. On the other hand, in the light of Theorem 5.12, the matrices
Gi and A∗

i , i = 0, 1, . . ., are provided by the canonical factorization of I − S(z).
Therefore, an efficient algorithm for computing the latter factorization is a valid
tool for the numerical solution of these Markov chains. In this regard we refer
the reader to Section 3.3 for further details.

5.5 Limited displacements

Take the Toeplitz-like matrix (5.15) and assume that Ai = 0, i ≥ −N − 1, for
some positive N . That means that the displacements to lower levels are limited
to a distance at most equal to N , with the possible exception of direct jumps
to the level 0 if limn→−∞ Bn �= 0. In that case, the first passage probability
matrices GN+1, GN+2, . . . are all equal to zero since it is not possible to reach,
from level n, any level between 1 and n−N − 1 without visiting either the level
0 or some intermediary level n − N , n − N + 1, . . .n − 1.

Thus, the equations (5.17, 5.19) in Theorem 5.11 become
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[
A∗

0 A∗
1 A∗

2 . . .
]


I 0
−G1 I

... −G1
. . .

−GN

...
. . .

−GN

0 . . .


=
[
A0 A1 A2 . . .

]
(5.25)

and 
I − A∗

0 −A∗
1 . . . −A∗

N−1

I − A∗
0

. . .
...

. . . −A∗
1

0 I − A∗
0




G1

G2

...
GN

 =


A−1

A−2

...
A−N

 . (5.26)

Now, define the power series

S(z) =
+∞∑

i=−N

ziAi, A(z) = zNS(z).

The following result is a consequence of Theorem 5.12

Theorem 5.14 The matrix Laurent power series I −S(z) has a weak canonical
factorization

I − S(z) = (I − A∗(z))(I − G(z−1)), (5.27)

where A∗(z) =
∑+∞

i=0 ziA∗
i and G(z) =

∑N
i=1 ziGi. Furthermore, the matrix

power series A∗(z) and G(z) are a solution of the equation

A(z) = G(z) + A∗(z)(zNI − G(z)). (5.28)

It is actually proved in [42] that G(z) is the matrix polynomial with minimal,
nonnegative coefficients that satisfies (5.28).

Another approach to the problem follows if one reorganizes the structure
of the transition matrix into blocks of size mN , this is called “reblocking”. In
order to simplify this presentation, we assume that the matrix A =

∑+∞
i=−N Ai

is stochastic. Then the transition matrix is
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P =



B0 B1 B2 B3 . . .
B−1 A0 A1 A2 . . .

...
...

...
...

. . .

B−N+1 A−N+2 A−N+3 A−N+4
. . .

A−N A−N+1 A−N+2 A−N+3
. . .

A−N A−N+1 A−N+2
. . .

A−N A−N+1
. . .

A−N
. . .

0 . . .



. (5.29)

We may view this matrix as having the structure (4.3) with blocks of size Nm,
corresponding to what we might call “macro levels”:

P =



B0 B1 B2 B3 . . .
A−1 A0 A1 A2 . . .

A−1 A0 A1
. . .

A−1 A0
. . .

0 . . . . . .


(5.30)

where

Ai =


AiN AiN+1 . . . AiN+N−1

AiN−1 AiN
. . .

...
...

. . . . . . AiN+1

AiN−N+1 . . . AiN−1 AiN

 , (5.31)

for i = −1, 0, 1, . . ., where we assume that Aj = 0 if j < −N , and

B0 =


B0 B1 . . . BN−1

B−1 A0 . . . AN−2

...
...

. . .
...

B−N+1 A−N+2 . . . A0

 ,

Bi =


BNi BNi+1 . . . BNi+N−1

ANi−1 ANi . . . ANi+N−2

...
...

. . .
...

ANi−N+1 ANi−N+2 . . . ANi

 , i > 0.

The matrix Gmin of first passage probabilities from one macro level to the one
below may be characterized as being the minimal nonnegative solution of the
matrix equation
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X =
+∞∑

i=−1

AiX i+1 (5.32)

but, as noted in [42], it may also be directly related to the first passage probability
matrices G1, . . . , GN between ordinary levels. In the remainder of this section
we shall write In for the identity matrix of size n.

Theorem 5.15 The matrix Gmin is given by Gmin = CN , where

C =



0 Im 0 . . . 0

0 0 Im
. . .

...
...

. . .
. . .

. . . 0
0 . . . 0 0 Im

GN GN−1 . . . . . . G1

 . (5.33)

Proof A macro level is a set of N successive levels, say {L + 1, L + 2, . . . , L +
N − 1} for some 
. The matrix Gmin is partitioned into blocks (Gi,j)1≤i,j≤N and
Gi,j is the matrix of first passage probabilities from level L+i to L−N +j before
any of the levels L − N + 1, L − N + 2, . . . , L; it is independent of L, provided
that L > N . We shall use the short-hand notation

Gi,j = P[L + i � L − N + j before L − N + 1, . . . , L].

With this notation, we have that

Gj = P[L + 1 � L − N + j before L − N + 1, . . . , L]

and we immediately see that G1j = GN+1−j for all j.
For i ≥ 2, we decompose the paths from L + i to L − N + j into two sets,

according to whether they go through level L + 1 or not. Thus,

Gi,j = P[L + i � L − N + j before L − N + 2, . . . , L + 1]
+P[L + i � L + 1 before L − N + 2, . . . , L + 1]
×P[L + 1 � L − N + j before L − N + 1, . . . , L].

The reason for this decomposition is that, starting from level L + i ≥ L + 2,
there are certain lower levels, like L − N + 1, which cannot be reached without
passing through one of the levels between L − N + 2 and L + 1. Because of the
homogeneity in the transition probabilities, this may also be written as

Gi,j = P[L + i − 1 � L − N + j − 1 before L − N + 1, . . . , L]
+P[L + i − 1 � L before L − N + 1, . . . , L]
×P[L + 1 � L − N + j before L − N + 1, . . . , L]

= Gi−1,j−1 + Gi−1,NG1j .

If we denote by Gi• the row
[
Gi1 Gi2 . . . GiN

]
, the equation above may be read

as Gi• = Gi−1,•C, so that
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Gmin =


Gi•
Gi•C

...
Gi•CN−1

 , (5.34)

from which one obtains, after simple but tedious algebraic manipulations, that
Gmin = CN . �

This theorem makes it very clear that to solve the system (5.25, 5.26) is equivalent
to solving the reblocked system. Theorem 5.15 can be proved by using purely
algebraic arguments, as a direct consequence of Theorem 3.24. In fact, from the
latter theorem and from Theorem 5.14 we deduce the following result:

Theorem 5.16 Let

S(z) = z−1A−1 + A0 + zA1 + · · · .

The matrix Laurent power series ImN − S(z) has the following weak canonical
factorization:

ImN − S(z) =

(
ImN −

+∞∑
i=0

ziA∗
i

)
(ImN − z−1Gmin),

where A∗
n =

∑+∞
i=n AiGi−n

min . Moreover, Gmin can be factorized as

Gmin =


Im 0
−G1 Im

...
. . .

. . .

−GN−1 . . . −G1 Im


−1 

GN GN−1 . . . G1

. . .
. . .

...
GN GN−1

0 GN

 . (5.35)

In closing this section, we briefly discuss the roots of α(z) = det(zImN−A(z)),
where A(z) = zS(z). Observe that as pointed out in Section 3.3.3 we have

A(z) =


ϕ0(z) ϕ1(z) . . . ϕN−1(z)

zϕN−1(z) ϕ0(z)
. . .

...
...

. . . . . . ϕ1(z)
zϕ1(z) . . . zϕN−1(z) ϕ0(z)


where ϕj(z) =

∑+∞
i=−1 zi+1AiN+j , j = 0, . . . , N −1. That is, A(z) is a z-circulant

matrix.
Observe that according to Theorem 3.23, the matrix A(z) can be block di-

agonalized by means of a scaled block DFT and we have

det(zNImN −A(zN )) =
N−1∏
i=0

det(zNIm − A(zωi
N )). (5.36)

The following theorem is a direct consequence of the above equation.
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Theorem 5.17 If the matrix power series A(z) is analytic for |z| < R, R > 1,
then the matrix power series A(z) is analytic for |z| < RN . Moreover, if λ is a
zero of det(zNI − A(z)) then λN is a zero of det(zI − A(z)), if ν is a zero of
detA(z) then the N -th roots of ν are zeros of det a(z).

Proof Indeed A(z) is analytic for |z| < 1 since A(1) is stochastic. Assuming
A(z) analytic for |z| < R, from Theorem 3.23 we deduce that A(zN ) is analytic
for 0 < |z| < R. Since A(z) is a matrix power series, then is analytic for |z| < RN .
The property relating the zeros of det(zI − A(z)) and det(zNI − A(z)) follows
from (5.36). �

Therefore, if w is a zero of det(zIm −A(z)) then wN is a zero of det(zImN −
A(z)) and, if the function a(z) = det(zIm −A(z)) has κ > 1 zeros of modulus 1,
then, by Theorem 4.9, these zeros are the κth roots of 1. Hence, by reblocking the
matrix P into κm× κm blocks, we obtain a different representation of the same
M/G/1 problem such that the generating function is A(z) and det(zIκm −A(z))
has only one zero of modulus 1. This, however, does not simplify the quest for
all the solutions of the matrix equation since A is no longer irreducible and falls
outside the scope of Theorem 4.9.

Observe that, from (5.34) as well as (5.35), it follows that the first block
row of Gmin defines all the block elements. It has been shown in [42] that a
nonminimal solution G of the matrix equation (5.32) does not have necessarily
the structure (5.33).

As a last comment, we also like to point out that the factorization (5.35)
with (5.33) provides the UL factorization of the Nth power of a block companion
matrix. This result is a special instance of a more general result known as Barnett
factorization (see Theorem 3.25).

If the displacements are constrained in the upward direction, that is, if
AN+1 = AN+2 = . . . = 0, then we may adapt equations (5.17, 5.19) to the
new circumstances, and write that

[
A∗

0 A∗
1 . . . A∗

N

]


I 0
−G1 I

...
. . . . . .

−GN . . . −G1 I

 =
[
A0 A1 . . . AN

]
(5.37)

and 
I − A∗

0 −A∗
1 . . . −A∗

N 0
I − A∗

0 −A∗
1 . . . −A∗

N

. . . . . . . . . . . .
0




G1

G2

G3

...

 =


A−1

A−2

A−3

...

 . (5.38)

Alternately, we may restructure the transition matrix into blocks of size Nm
and deal with a G/M/1-type queue. Then we must study its rate matrix Rmin,
either directly, like in [42], or by duality. In any event, it appears that
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Rmin =


0 . . . 0 RN

I
. . .

... RN−1

. . . 0
...

0 I R1


N

.

If the displacements are bounded in both directions, that is, if ANu+1 = ANu+2 =
. . . = 0 and A−Nd−1 = A−Nd−2 = . . . = 0 for some Nu and Nd, then we may
specialize (5.37, 5.38) even further and, assuming that Nu < Nd, obtain

[
A∗

0 A∗
1 . . . A∗

Nu

]


I 0
−G1 I

...
. . . . . .

−GNu
. . . −G1 I

 =
[
A0 A1 . . . ANu

]

and 

I − A∗
0 −A∗

1 . . . −A∗
Nu

0
I − A∗

0 −A∗
1

. . .
. . . . . . −A∗

Nu

...
0 I − A∗

0




G1

G2

...
GNd

 =


A−1

A−2

...
A−Nd

 ,

(with obvious modifications if Nu ≥ Nd).
Of course, we may also restructure the transition matrix into blocks of size

N∗m, where N∗ = max(Nu, Nd); in that case, the process may be considered to
be a QBD, one of the family of processes which we analyze in the next section.

5.6 Quasi-birth–death processes

Recall that we indicated two ways of combining the structures of M/G/1 and
G/M/1-type Markov chains, one of which has been dealt with in Section 5.4.
The other consists in imposing the constraints of each, so that the process may
change by one level at a time, thereby becoming skip-free in both directions.
Such Markov chains are called quasi-birth-and-death (QBD) processes and their
transition matrix is

P =


B0 A1 0
A−1 A0 A1

A−1 A0 A1

A−1 A0
. . .

0 . . . . . .

 (5.39)

where A−1, A0, A1 ∈ R
m×m and B0, B1 ∈ R

m×m, are nonnegative matrices such
that A−1 + A0 + A1 and B0 + B1 are stochastic.



QUASI-BIRTH–DEATH PROCESSES 127

Observe that a QBD can be viewed like an M/G/1-type Markov chain but
also like a G/M/1-type Markov chain. Therefore, Theorem 5.4 applies and the
stationary distribution, when it exists, is of the matrix-geometric form (5.4).
This we state below as a theorem.
Theorem 5.18 If the QBD is positive recurrent, then

πT
n = πT

0 Rn
min, for n ≥ 0

πT
0 (B0 + B1Gmin) = πT

0

πT
0 (I − Rmin)−11 = 1

where Rmin is the minimal nonnegative solution of the matrix-quadratic equation

X = X2A−1 + XA0 + A1. (5.40)

and Gmin is the minimal nonnegative solution of

X = A−1 + A0X + A1X
2. (5.41)

Proof As stated above, the matrix-geometric structure is a consequence of The-
orem 5.4, and (5.40) is just a rewriting of (5.3) under the present circumstances.

Now, if we think of a QBD as being a simple case of an M/G/1 queue,
then Theorem 4.4 applies as well and we see that π0 is given by (4.10) where
B∗

0 = B0 + B1Gmin where Gmin is the minimal nonnegative solution of (4.4)
which is written here as (5.41). �

Both Theorems 4.7 and 5.3 apply and we restate them here as a corollary.

Corollary 5.19 Assume that the QBD is irreducible and m finite, assume that
the stochastic matrix A = A−1+A0+A1 is irreducible, and define µ = αT(−A−1+
A1)1, where α is the stationary probability vector of A. The QBD is

• positive recurrent if and only if µ < 0,

• null recurrent if and only if µ = 0,

• transient if and only if µ > 0.

We have seen in Section 5.3 that there exists a close connection between the
matrix Rmin and the matrix G̃min of the dual process. In the case of a QBD,
there is a direct connection between the matrix Rmin and the matrix Gmin of the
same process. This connection is made through the matrix A∗

0 which plays here
an important role, and which we now denote by U .

As we saw in Theorem 5.10, and in (4.8, 4.11) we have

Gmin = (I − U)−1A−1

Rmin = A1(I − U)−1
(5.42)

where U = A0+A1Gmin. Thus, Rmin, Gmin and U are three matrices which carry
exactly the same information about the stationary distribution of the stochastic
process. It is easy to see that U is a solution of
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X = A0 + A1(I − X)−1A−1 (5.43)

and one shows ([79, ]) that U is actually the minimal nonnegative solution of
that equation.

The function S(z) associated with a QBD is the matrix Laurent polynomial

S(z) = z−1A−1 + A0 + zA1 (5.44)

and the generating function is the quadratic polynomial A(z) = A−1+zA0+z2A1

if the QBD is viewed as an M/G/1-type queue, or Â(z) = A1 + zA0 + z2A−1

if we take the G/M/1 view. We may switch between the two views by means
of the transformation A(z) ⇒ z2A(z−1) = Â(z) which reverses the order of
the matrix coefficients of the polynomial A(z). The same relation occurs for the
determinants

a(z) = det(zI − A(z)) (5.45)

and
â(z) = det(zI − Â(z)). (5.46)

In fact, â(z) is the reversed polynomial of a(z), that is, â(z) = z2ma(z−1).
If A1 is nonsingular, then a(z) = det(zI−A(z)) has degree 2m, otherwise, its

degree is r < 2m. In the latter case we may look at a(z) as a polynomial of degree
2m having 2m− r zeros at infinity. In this way, if we denote by ξi, i = 1, . . . , 2m,
the zeros of a(z), then the zeros of z2ma(z−1) are 1/ξi, i = 1, . . . , 2m, where we
assume that null zeros are transformed into infinity, and vice versa.

Since A(z) is a polynomial, it is meromorphic in the complex plane and the
results of Section 4.4 apply. In particular, by adding zeros equal to infinity if
necessary, we may directly state the following property (it is the local version of
Theorems 4.9 and 4.24, as well as Theorem 5.5).

Theorem 5.20 Assume that m is finite and that Conditions 5.1 and 5.2 hold.
The polynomial a(z) defined in (5.45) has

• m − 1 zeros in the open unit disk, one simple zero equal to 1, and m zeros
outside the closed unit disk, if µ < 0;

• m − 1 zeros in the open unit disk, one zero of multiplicity two equal to 1,
and m − 1 zeros outside the closed unit disk, if µ = 0;

• m zeros in the open unit disk, one simple zero equal to 1, and m − 1 zeros
outside the closed unit disk, if µ > 0.

If the QBD is positive recurrent, then Gmin is the unique solution of (5.41)
with spectral radius equal to one, in the set of nonnegative matrices and Rmin

is the unique solution of (5.40) spectral radius less than one, in the set of non-
negative matrices. In all cases, the eigenvalues of Gmin are the zeros of smallest
modulus of a(z) in the closed unit disk and the eigenvalues of Rmin are the
zeros of smallest modulus of z2ma(z−1) in the closed unit disk. In particular,
the spectral radius of Rmin is 1/ξ where ξ = min{|z| : a(z) = 0, |z| > 1}. In
light of Theorems 4.11, 4.12 one has that 1/ξ is the only eigenvalue of maximum
modulus of Rmin and it is simple.
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5.7 Reductions to QBDs

We have defined QBDs as a family at the intersection of M/G/1 and G/M/1-type
Markov chains. It is interesting to note that QBDs may be seen as encompassing
the two classes, so that the theory of QBDs may be thought of as a unifying
umbrella.

Let us first take on M/G/1-type queues with transition matrix (4.3). We
replace the simple transitions of the form (n, i) → (n+k, j) by a more elaborate,
virtual procedure, whereby a new phase j is chosen first, as well as a number k
of steps upward, and only then is the level increased, one unit at a time, until
level n + k is finally reached. Graphically, we have

(n, i) → (n; k, j) → (n + 1; k − 1, j) · · · → (n + k − 1; 1, j) → (n + k, j).

At each transition of this virtual sequence, one keeps track of the number of
steps which remain until the final level is reached. In order to have homogeneous
notation, we shall write (n, i) as (n; 0, i).

We define in this way a three-dimensional process {Xt,Kt, ϕt}t=0,1,... on the
state space N×N×{1, 2, . . . ,m} for which the pair (Kt, ϕt) constitutes the phase.
We also write that Kt is the sublevel. The transition matrix of the new process
is

P =


B A1 0

A−1 A0 A1

A−1 A0
. . .

0 . . . . . .

 , (5.47)

with

B =


B0 B1 B2 · · ·
0 0 0 · · ·
0 0 0 · · ·
...

...
...

. . .

 , (5.48)

A1 =


0 0
I 0

I 0
. . . . . .

0

 , (5.49)

A0 =


A0 A1 A2 · · ·
0 0 0 · · ·
0 0 0 · · ·
...

...
...

. . .

 , (5.50)

and
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A−1 =


A−1 0 0 · · ·
0 0 0 · · ·
0 0 0 · · ·
...

...
...

. . .

 . (5.51)

Theorem 5.21 The matrix Gmin of the QBD with blocks (5.49–5.51) has the
structure

Gmin =


Gmin 0 0 · · ·
G2

min 0 0 · · ·
G3

min 0 0 · · ·
...

...
...

. . .

 , (5.52)

where Gmin is the matrix of first passage probabilities from states of the form
(n, 0, i) to (n − 1, 0, j).

Proof Whenever the process moves to a lower level, the sublevel of the new
state is necessarily 0, by (5.51). Thus, we have

Gmin =


G0 0 0 · · ·
G1 0 0 · · ·
G2 0 0 · · ·
...

...
...

. . .

 ,

where the matrices Gk, k ≥ 0, record the transition probability to level n − 1,
starting from the sublevel k in level n. For k = 0, this is Gmin by definition. If
k ≥ 1, the process first reaches up from (n, k, i) to (n + k, 0, i), then goes down
k times by one level, so that Gk = Gk

min. �

By Theorem 5.18, Gmin is the minimal nonnegative solution of the equation
G = A−1+A0G+A1G

2. It is a simple matter to verify that it is equivalent to the
property that Gmin is the minimal nonnegative solution of (4.4). Furthermore, if
we decompose each subvector πn by the sublevel, so that πn = πn0, πn1, πn2, . . .,
one easily sees that πn0 satisfies the system (4.9): one applies the matrix-
geometric property πn = πn−1Rmin with Rmin = A1(I − A0 − A1Gmin)−1,
and uses the structure of Gmin. For details, see [79, Theorem 13.1.5].

An important issue is to figure out if Condition 4.20 is satisfied by the QBD
process (5.47) if the same condition is satisfied by the original M/G/1 Markov
chain with transition matrix (4.3). This property is proved in the following

Theorem 5.22 If the M/G/1 process (4.3) is such that Condition 4.20 is satis-
fied, then the QBD process (5.47) also satisfies that condition.

Proof By assumption, the bi-infinite M/G/1-type Markov chain (4.24) on Z×
{1, 2, . . . , m} has one final class and every other state is on a path to the final
class; that final class is of the form Z × S, with S ⊆ {1, 2, . . . , m}.

The state space of the bi-infinite QBD is Z×N×{1, 2, . . . , m}. We show that
there exists a set Z×S of states which communicate and that every other state
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is on a path to Z⊗S. This will prove that there exists a unique final class which
contains Z × S and, possibly, some other states as well.

We define

S = N × S \ {(k, j) : (Ak′)i,j = 0,∀i,∀k′ ≥ k}.
This means that we remove from consideration all the states (n, k, j) which
cannot be reached either by a transition of the form (n, 0, i) to (n, k, j) or (n −
1, k + 1, j) to (n, k, j). We now prove that the states in Z × S all communicate.
We proceed in four steps.

Step 1. The set S obviously contains all the states (0, i) with i ∈ S.
Step 2. For all i, j ∈ S, all n and n′, there is a path from the state (n, 0, i)

to the state (n′, 0, j), which we write as (n, 0, i) � (n′, 0, j). This is because the
state (n, i) of the M/G/1 Markov chain is identified with the state (n, 0, i) of the
QBD and, by assumption, (n, i) � (n′, j) for all i, j ∈ S, all n and n′.

Step 3. Assume that (k, j) is in S, with k > 0. For all i ∈ S, all n and n′,
(n, 0, i) � (n′, k, j). To see this, we note that there exists some l and some k′ ≥ k
such that (Ak′)l,j �= 0, which shows that there exists a path

(n, 0, i) � (n′ − k′ + k, 0, l) → (n′ − k′ + k, k′, j) � (n′, k, j)

where the symbol → indicates a direct transition in one jump.
Step 4. For all (k, j) ∈ S, all i ∈ S, all n and n′, there is a path

(n, k, j) � (n + k, 0, j) � (n′, 0, i)

where the path from (n, k, j) to (n+k, 0, j) is obvious and the one from (n+k, 0, j)
to (n′, 0, i) is justified in step 2 above.

At this stage we have proved that all the states in Z × S communicate. To
conclude the proof, we need to show that for all (k, j) �∈ S, there exists a path
from (n, k, j) to some state in Z × S. This is done as follows:

(n, k, j) � (n + k, 0, j) � (n′, 0, i),

for all n′ and all i ∈ S. The first part of the path is obvious, and the existence
of the second part is guaranteed by the fact that the states (n + k, 0, j) and
(n′, 0, i) are respectively identified with the states (n + k, j) and (n′, i) of the
M/G/1 Markov chain and by Condition 4.20. �

In the case of a G/M/1-type queue with transition matrix (5.1), we proceed
in a similar manner and we enlarge the state to (X,K, ϕ), where K is the number
of steps which need to be taken in the downward direction. There is a difference
with the previous situation, however: K must always be at most equal to X since
the level cannot become negative. Thus, the transition matrix is

P =


A0

0 A0
1 0

A1
−1 A1

0 A1
1

A2
−1 A2

0

. . .

0 . . . . . .

 , (5.53)



132 PHASE-TYPE QUEUES

where Ai
0, for i ≥ 0, is a matrix in R

m(i+1)×m(i+1) and the other blocks are
rectangular with appropriate dimensions. One has

A0
0 = B0,

Ai
0 =


A−1 . . . A−i+1 B−i

0 . . . 0 0
0 . . . 0 0
...

...
...

...

 , for i ≥ 1,

Ai
1 =


A1 0 . . . 0
0 0 . . . 0
0 0 . . . 0
...

...
...

 , for i ≥ 0,

and

Ai
−1 =



0 0
I 0

I
. . .
. . . 0

0 I

 , for i ≥ 1.

Observe that the transition probabilities in (5.53) are level-dependent, that is,
the probability of moving from some state (n, k, i) to some other state is given
by the matrices An

−1, An
0 and An

−1, which depend on n. The theory of level-
dependent QBDs is more involved that than presented in Section 5.6 and does
not, in general, give rise to the same elegant equations.

We do not pursue the matter further and refer the reader to [79, Section
13.2], where the connection to Theorem 5.4 is given in full detail.

5.8 Tree-like processes

Let {(Yn, ϕn) : n ≥ 0} be a discrete-time bivariate Markov process in which the
values of the random variables Yn are represented by the nodes of a d-ary tree,
and the random variables ϕn take integer values in {1, . . . , m}. A d-ary tree is a
tree for which each node has d children, where d ≥ 2 is an integer.

Each node is represented by a string of integers taking values in {1, . . . , d}.
If J = (j1, j2, . . . , j�) is one such string, its length 
 is denoted by |J | and its
children by J + k = (j1, j2, . . . , j�, k), with 1 ≤ k ≤ d. The root is represented by
∅, the empty string of length 0. Thus, the random variables (Yn, ϕn) take their
values in the state space S where

S = {(j1, . . . , j�; i) : 
 ≥ 0, 1 ≤ j1, . . . , j� ≤ d, 1 ≤ i ≤ m}.

The state space is partitioned into nodes

NJ = {(j1, . . . , j�; i) : 1 ≤ i ≤ m}
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where J = (j1, j2, . . . , j�). We also partition S into levels: for fixed 
,

S� = {(j1, . . . , j�; i) : 1 ≤ j1, . . . , j� ≤ d, 1 ≤ i ≤ m}

is the reunion of all the nodes represented by strings of length 
. The first, or
root level, comprises the unique node

N∅ = {i : 1 ≤ i ≤ m}.

The possible transitions are as follows:

1. within a node, from (J, i) to (J, i′) with probability (Bj)i,i′ where j is the
rightmost integer in J ;

2. within the root node, from i to i′ with probability (B0)i,i′ ;
3. between a node and one of its children, from (J, i) to (J + k, i′) with prob-

ability (Ak)i,i′ , for 1 ≤ k ≤ d;
4. between a node and its parent, from (J + k, i) to (J, i′) with probability

(Dk)i,i′ , for 1 ≤ k ≤ d.

Here, Ak, Bk and Dk are m × m matrices, moreover, B0 + A1 + · · · + Ad and
Bi + Di + A1 + · · · + Ad, i = 1, . . . , d, are stochastic.

With these assumptions, it is clear that the transition graph between nodes
is a tree, which is why we call these tree-like processes. In their full generality,
tree-like processes allow a fifth type of transitions:

(5a) between a node at level 
 and any node in the levels 0 to 
, for all 


or

(5b) between a node and any of its descendants

but we do not consider this type of transitions here. Instead, we make the further
simplifying assumption that

B1 = B2 = · · · = Bd = B;

that is, we assume that, except at the root node, transition probabilities within
a node do not depend on the specific node.

The structure of the matrix generator of this Markov process depends on the
ordering of the states. There are two natural ways of ordering the nodes: level
by level or lexicographically. If we enumerate the nodes level by level, then we
recognize that the Markov process has the structure of a nonhomogeneous QBD.

It is, however, more fruitful to use the lexicographical order: N∅ comes first,
then N1 and all the nodes NJ for which the leftmost integer of J is 1, followed
by N2 and all the nodes NJ for which the leftmost integer of J is 2, and so on
up to Nd and all its descendants. With this ordering, the generator Q = P − I
(where P is the transition matrix of the Markov chain) is



134 PHASE-TYPE QUEUES

Q =



C0 Λ1 Λ2 . . . Λd

V1 W 0 . . . 0

V2 0 W
. . .

...
...

...
. . . . . . 0

Vd 0 . . . 0 W

 , (5.54)

where Λ1, . . . , Λd are matrices with m rows and infinitely many columns, given
by

Λi =
[
Ai 0 0 . . .

]
, for 1 ≤ i ≤ d,

the matrices V1, . . . , Vd have m columns and infinitely many rows and are given
by

Vi =


Di

0
0
...

 , for 1 ≤ i ≤ d,

the infinite matrix W is recursively defined by

W =


C Λ1 Λ2 . . . Λd

V1 W 0 . . . 0

V2 0 W
. . .

...
...

...
. . . . . . 0

Vd 0 . . . 0 W

 , (5.55)

and C0 = B0 − I, where B0 is an m × m substochastic matrix.
The nature of this matrix can be better understood if we introduce the set

of multi-indices

S =
⋃∞

�=0 S�,

S0 = {1, 2, . . . , m},
S� = {(j1, . . . , j�; i) : 1 ≤ j1, . . . , j� ≤ d, 1 ≤ i ≤ m}, 
 = 1, 2, . . . .

In fact, W is a linear operator defined on the linear space 
1(S) made up by
all the multi-index sequences x = (xk)k∈S , xk ∈ R, having bounded 1-norm,
i.e., ||x|| =

∑
k∈S |xk| < ∞. Here, the ordering of the components of x, which

provides the particular structure (5.55) to the matrix W , is lexicographic. That
is, (j1, . . . , j�; i) < (j′

1, . . . , j
′
�′ ; i′) if either 
 < 
′ or there exists h, 1 ≤ h ≤ 


such that jh < j′
h, jq = j′

q for q = 1, . . . , h − 1, or jq = j′
q for q = 1, . . . , 


and i < i′. In this way the multi-index sequence x = (xk)k∈S can be naturally
partitioned as

x = (x(0), x(1), . . . ,x(d)), (5.56)

where x(0) is indexed by the indices of S of length 
 = 0, i.e., x(0) = (xi)i∈S0 ; the
sequence x(q), for q = 1, . . . , d is indexed by the indices k = (j1, . . . , j�; i) ∈ S of
length 
 ≥ 1 with the first component j1 = q.
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Observe that in each row and in each column of W there is a finite number of
nonzero elements. From this property it follows that the 1-norm of W is finite. In
order to prove this, consider a vector x = (xk)k∈S such that ||x||1 =

∑
k∈S |xk| =

1, and partition it as x = (x(0),x(1), . . . ,x(d)), as described in (5.56). From the
definition of 1-norm of x it follows that 1 = ||x||1 =

∑d
i=0 ||x(i)||1. Now let

y = Wx and partition y as y = (y(0), y(1), . . . ,y(d)), similarly to (5.56). Then

y(0) = Cx(0) +
∑d

i=1 Aix
(i,0)

y(i) = Wx(i) + Vix
(0), i = 1, . . . , d

(5.57)

where x(i,0) is the first block in the partitioning (5.56) of x(i). Taking the norms
in both sides of (5.57) we get

||y(0)||1 ≤ γ(||x(0)||1 +
∑d

i=1 ||x(i,0)||1)

||y(i)||1 ≤ γ||x(0)||1 + ||Wx(i)||1, i = 1, . . . , d,

where γ is a positive constant depending on C, Di and Ai, i = 1, . . . , d. Therefore,
we have

||Wx||1 = ||y(0)||1+· · ·+||y(d)||1 ≤ (d+1)γ||x(0)||1+γ

d∑
i=1

||x(i,0)||1+
d∑

i=1

||Wx(i)||1

which recursively yields

||Wx||1 ≤ (d + 2)γ(||x(0)||1 +
d∑

i=1

||x(i,0)||1 +
d∑

i,j=1

||x(i,j,0)||1 + · · · ) = γ(d + 2)

where x(i,j,0) is the first block component of the j-th block component of x(i) in
the recursive block decomposition (5.56). The latter inequality implies that W
is a linear operator on 
1(S) with bounded 1-norm.

The computation of the stationary distribution of the Markov process, i.e.,
the infinite nonnegative vector π = (πi)i∈S such that πTQ = 0T,

∑
i∈S πi = 1,

is reduced to computing the UL factorization of (5.54) and this computation can
be ultimately reduced to solving

X +
∑

1≤i≤d

AiX
−1Di = C, (5.58)

where we assume that

1. C = B − I, and B is substochastic;
2. Ai and Di have nonnegative elements;
3. the matrices I + C + Di + A1 + · · · + Ad, i = 1, . . . , d, are stochastic.
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The theorem below has been proved by different means in [122], [121], and
[79]. In particular, the proof in [79] proceeds along purely probabilistic argu-
ments. We provide here some remarks based on the recursive structure of W in
(5.55).
Theorem 5.23 Assume that the tree-like process with generator (5.54) is posi-
tive recurrent. Denote by πJ the subvector of stationary probabilities associated
with the states in node NJ .

One has that
πJ = π∅Rj1 · · ·Rj�

(5.59)

if J = (j1, . . . , j�), where

Ri = Ai(−S)−1, for 1 ≤ i ≤ d,

and S = T − I, where Tk,k′ is the probability of moving from the state (J, k) to
the state (J, k′) at a later time, without visiting the node NJ or its parent in
between, independently of J �= ∅. The matrix S is the minimal solution of the
nonlinear matrix equation

X +
d∑

i=1

AiX
−1Di = C, (5.60)

with respect to the componentwise ordering. The vector π∅ is the solution of

π∅

[
C0 +

m∑
i=1

Ai(−S)−1Di

]
= 0 (5.61)

normalized by

π∅
∑
n≥0

 ∑
1≤i≤d

Ri

n

1 = 1.

A first remark related to the previous theorem comes from the UL factoriza-
tion of W as stated by the following

Theorem 5.24 Let S be a nonsingular matrix. Then matrices L, U recursively
defined by

U =



S Λ1 Λ2 . . . Λd

0 U 0 . . . 0

0 0 U
. . .

...
...

...
. . .

. . . 0
0 0 . . . 0 U

 , L =



I 0 0 . . . 0
Y1 L 0 . . . 0

Y2 0 L
. . .

...
...

...
. . .

. . . 0
Yd 0 . . . 0 L

 ,

with Yi =

S−1Di

O
...

, for i = 1, . . . , d, represent linear operators in 
1(S) with

bounded 1-norm. Moreover, S is a solution of (5.60) if and only if W = UL.
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Proof The boundness of the operators L and U can be proved by following the
same argument used for proving the boundness of W . The remaining part of the
proposition can be proved by direct inspection. �

The matrices L and U have formal inverses recursively defined by

L−1 =



I 0 0 . . . 0
−L−1Y1 L−1 0 . . . 0

−L−1Y2 0 L−1 . . .
...

...
...

. . . . . . 0
−L−1Yd 0 . . . 0 L−1


and

U−1 =



S−1 −S−1Λ1U
−1 −S−1Λ2U

−1 . . . −S−1ΛdU
−1

0 U−1 0 . . . 0

0 0 U−1 . . .
...

...
...

. . . . . . 0
0 0 . . . 0 U−1

 ,

respectively. From the above relations it follows that L−1 and U−1 have finite
elements, however, they may have an unbounded 
1-norm even under the as-
sumptions of stochasticity and positive recurrence of the tree-like process.

Once the matrix S is known, the stationary probability vector can be com-
puted by using the UL factorization of W . In order to show this, we rewrite as
follows the matrix Q given in (5.54):

Q =
[

C0 Λ0

V0 W0

]
,

and we decompose π as π = (π∅, π�), where π∗ is the stationary probability
vector for all the nodes below the root. The equation πQ = 0 immediately leads
to

π∅
[
C0 + Λ0(−W0)−1V0

]
= 0 (5.62)

π� = π∅Λ0(−W0)−1. (5.63)

Next we decompose π� as π� = (π1�, . . . ,πd�) where πi� is the stationary
probability subvector of all the nodes NJ for which the string J begins with the
integer i; we find from (5.63) that

πi� = π∅Λi(−W )−1 = π∅ΛiL
−1(−U)−1,

that is, πi� = π∅Λi(−U)−1 and we readily find that[
πi πi1� . . . πid�

]
= π∅Ri

[
I Λ1(−U)−1 . . . Λd(−U)−1

]
where πij� is the stationary probability vector for all the nodes NJ for which
the string J begins with the integers i and j.
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This shows that πi = π∅Ri for all i, and it suffices to iterate these calculations
to prove (5.59) for all strings J . It is a simple matter to verify that (5.61) and
(5.62) are identical equations.

We should emphasize that, although we deal with discrete-time Markov
chains, nevertheless our results are directly adapted to continuous-time Markov
processes; in that case, the matrices B + Di + A1 + · · · + Ad are conservative,
stable matrices, and we set C = B in (5.58).

5.9 Bibliographic notes

A systematic treatment of G/M/1-type Markov chains is made in [91]. The
duality property between M/G/1 and G/M/1 queues has been analyzed in [5;
99]. A direct analysis of the spectral properties in both the M/G/1 and G/M/1
can be found in [40; 42]. The case of Toeplitz-like transition has been treated
in [51; 52], while the case of limited displacements has been analyzed in [42].
Concerning QBD processes we refer the reader to the book [79]. The reduction
of M/G/1 and G/M/1 Markov chains to the QBD process has been investigated
in [100; 79]

Before concluding this chapter, we briefly discuss the case of semi-infinite
blocks. We saw in Section 5.7 one example of a QBD for which the phase takes
infinitely many values.

For such processes, it is known that the structure of the stationary distri-
bution, assuming that it exists, is just as in the case of a finite set of phases.
The article [112] deals with G/M/1-type queues on an arbitrary set of phases
(continuous as well as discrete). Other authors have considered special cases;
for instance, [101] shows that the theory applies to product-form stochastic net-
works.

It seems that conditions for ergodicity are very much dependent on each
particular application and we have very few results equivalent to Theorems 4.7
or 5.3 when the number of phases is infinite. Even fewer results exist about the
properties of the generating function of such processes, and the solutions of the
matrix equations.

Typical applications of tree-like processes have been investigated by Yeung
and Sengupta [122] (single server queues with LIFO service discipline), He and
Alfa [60], [61] (an arriving customer interrupts the service in progress), and by
Takine, Sengupta and Yeung [110] (an arriving customer is placed at the head
of the queue but does not preempt the server). Van Houdt and Blondia [113]
use tree-like processes to evaluate a medium access control protocol with an
underlying stack structure. A brief general introduction is given in Latouche and
Ramaswami [79, Chapter 14]. Further analysis is performed in [17] and [114].



Part III

Algorithms

139



This page intentionally left blank 



6

FUNCTIONAL ITERATIONS

6.1 Basic concepts

In this chapter we analyze the algorithmic issues concerning the solution by
means of functional iterations of matrix equations of the kind

X =
+∞∑

i=−1

AiX
i+1 (6.1)

where Ai, i ≥ −1, and X are m × m matrices. By following the notation of
Chapter 4 we set

A(z) = zS(z), S(z) =
+∞∑

i=−1

ziAi.

For any solution G of (6.1) one has G = A(G), where A(G) =
∑+∞

i=−1 AiG
i+1.

Here and hereafter, given a matrix power series V (z) =
∑+∞

i=0 ziVi, we denote by
V (X) =

∑+∞
i=0 ViX

i the extension of V (z) to a function of the matrix variable
X.

In general, given a matrix valued function F (X), we call a fixed point of F (X)
any matrix W such that W = F (W ). According to this definition, any solution
G of (6.1) is a fixed point of the function A(X).

In this chapter, we assume that the matrix Ai is nonnegative for i = −1, 0, . . .,
and that

∑+∞
i=−1 Ai is stochastic. Here, the matrices Ai, i = −1, 0, . . ., define the

block Toeplitz part of the transition matrix (4.3) associated with an M/G/1-type
Markov chain. We also assume that Condition 4.20 is satisfied by the Markov
chain with transition matrix (4.3). This latter assumption ensures that the matrix
A =

∑+∞
i=−1 Ai has only one final class and that z = 1 is the only zero of the

function a(z) = det(zI − A(z)) on the unit circle.
The computation of the minimal nonnegative solution Gmin of (6.1) is fun-

damental in the numerical solution of M/G/1 type Markov chains, as explained
in Chapter 4. We recall that if the drift µ of (4.17) is nonpositive then Gmin is
stochastic, while if µ > 0 then Gmin is substochastic.

The problem of approximating a fixed point W of a matrix function F (X) is
naturally solved by means of functional iteration methods.

Given a matrix valued function F (X) the functional iteration or fixed point
iteration defined by F (X) is the set of all the matrix sequences {Xn}n∈N, defined
by
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Xn = F (Xn−1), n = 1, 2, . . . , (6.2)

where X0 is any matrix. It is immediate to verify that, if F (X) is a continuous
function and if, for a given X0, there exists the matrix W = limn Xn then
F (W ) = W , that is, W is a fixed point of F (X).

Our goal is to design and analyze suitable functional iterations which pro-
vide sequences converging to the minimal solution Gmin or to the stochastic
solution Gsto of the matrix equation (6.1). A natural choice is given by F (X) =∑+∞

i=−1 AiX
i+1, whose fixed points satisfy the equation (6.1). Other functions

can be obtained by formally manipulating the matrix equation (6.1).
Before introducing and analyzing specific functional iterations, we need to

provide some concepts and definitions on which our subsequent analysis is based.
Given the sequence {Xn}n≥0 such that limn Xn = W , it is useful to introduce
the approximation error

En = W − Xn

and its infinity-norm
en = ‖En‖∞

which represents the distance of the approximation Xn to W at the step n.
Based on the definition of en we may introduce a measure of the convergence

speed of a sequence of matrices. Consider the limit, if it exists,

γ = lim
n

en+1

en
(6.3)

which expresses an asymptotic estimate of the error reduction at each step of
the iteration. Observe that, since the sequence converges, then γ ≤ 1. We call
γ the convergence rate of the sequence. Indeed, the smaller is γ, the faster is
the convergence speed of the sequence. In particular, if γ = 1, the convergence
becomes extremely slow; if γ = 0 we have a very favorable situation where the
convergence is very fast. We say that the convergence of the sequence {Xn}n≥0 is
sublinear if γ = 1, is linear if 0 < γ < 1, and is superlinear if γ = 0. For sequences
which have a superlinear convergence, if for a real p > 1 there exists finite and
nonzero limn en+1/ep

n, we say that the convergence has order of convergence p.
If p = 2 we say also that the convergence is quadratic.

The following example shows, in the scalar case, the different behavior of
sublinear, linear and superlinear convergence.

Example 6.1 Consider the real valued function f1(x) = log x + 1, such that
f1(1) = 1. For the sequence generated by xn+1 = f1(xn) with x0 = 1.5 it holds
limn xn = 1. Moreover, since xn+1 − 1 = f1(xn) − f1(1) = f ′

1(ξ)(xn − 1), where
|ξ − 1| < |xn − 1|, we have limn |xn+1 − 1|/|xn − 1| = f ′

1(1) = 1. That is, the
convergence is sublinear. By using similar arguments we deduce that the sequence
generated by the function f2(x) = 1

2 log x+1 with x0 = 1.5 has linear convergence
since limn |xn+1 − 1|/|xn − 1| = f ′

2(1) = 1/2. Finally the sequence generated by
the function f3(x) = log2 x + 1 is such that limn |xn+1 − 1|/|xn − 1| = f ′

3(1) = 0,
and limn |xn+1 −1|/|xn −1|2 = 1 so that the convergence is quadratic. In Figure
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Fig. 6.1 Approximation errors of the three functional iterations of Example 6.1

6.1 we report the approximation errors of the three sequences generated in this
way.

In order to better appreciate the difference between linear and superlinear
convergence, consider the simple case where en+1 ≤ γen for 0 < γ < 1. In this sit-
uation it holds that en ≤ γne0. Here the error bound converges to zero exponen-
tially with n. In the case of quadratic convergence, we find that en+1 ≤ βe2

n for a
suitable β > 0. By the latter bound we inductively deduce that en ≤ β−1(βe0)2

n

,
so that, if βe0 < 1 the convergence to zero of the error bound is doubly expo-
nential. This further explains the rapid convergence which we encounter with
superlinear convergence.

A functional iteration method is said to be locally convergent to W with
sublinear, linear or superlinear convergence, if there exists a neighborhood V of
W such that for any X0 ∈ V the sequence {Xn}n≥0 generated by (6.2) converges
to W sublinearly, linearly or superlinearly, respectively.

A sufficient condition which ensures the local convergence of a functional
iteration is expressed in the following general result.

Theorem 6.2 Let f : U ⊂ R
k → R

k be a continuous function having continuous
partial derivatives, where U is an open subset of R

k, k ≥ 1. Denote J(x) =(
∂fi(x)

∂xj

)
i,j=1,k

the Jacobian matrix of f(x) at x = (xi)i=1,k ∈ U . Let w ∈ U
be a fixed point of f(x), i.e., f(w) = w. If ρ(J(w)) < 1 then there exists a
neighborhood V ⊂ U of w such that for any x0 ∈ V the sequence generated by
xn+1 = f(xn) converges to w.

We may express the convergence rate γ by means of a different formula
which in certain circumstances is more convenient for our convergence analysis.
Consider the geometric mean of the reduction of the error at each step, evaluated
along the first n steps of the functional iteration,
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σ(n) =
(

en

en−1

en−1

en−2
· · · e1

e0

)1/n

. (6.4)

A simple calculation shows that

σ(n) =
(

en

e0

)1/n

.

The limit of σ(n) for n → +∞ represents the asymptotic mean value of the
reduction of the error per step. It is a simple matter to deduce from (6.4) that
if there exists the limit (6.3) then

lim
n→+∞ σ(n) = γ; (6.5)

moreover, this limit is independent of the norm with which en = ‖En‖ is com-
puted. The latter property holds true from the equivalence of norms on finite
dimensional spaces (see Theorem A.1 in the appendix). Therefore, also the con-
vergence rate, i.e., the limit (6.3) if it exists, is independent of the norm.

We observe that the existence of the limit (6.5) does not imply that the limit
(6.3) exists as the following example shows. Therefore, (6.5) is a more general
definition of the convergence rate γ.

Example 6.3 Define the sequence {en}n≥0 in the following way

en =
{

2λn if n is even
λn if n is odd,

where λ > 0 is a given real number. Then the limit (6.5) exists and is equal to
λ, whereas en+1/en = 2λ for n odd and en+1/en = λ/2 for n even so that the
limit (6.3) does not exist.

6.2 Linearly convergent iterations
Functional iterations which generate sequences linearly convergent to the min-
imal solution Gmin of (6.1) can be easily designed. The most natural way is
provided by the function F (X) = A(X) derived directly from the matrix equa-
tion (6.1), that is,

F (X) =
+∞∑

i=−1

AiX
i+1. (6.6)

Different functional iterations are provided by the following functions obtained
by means of simple formal manipulation of the matrix equation (6.1):

F (X) = (I − A0)−1
(
A−1 +

+∞∑
i=1

AiX
i+1
)
, (6.7)

F (X) =
(
I −

+∞∑
i=0

AiX
i
)−1

A−1. (6.8)

It is immediate to verify that (6.6) and (6.7) are defined and continuous
for any nonnegative matrix X such that X1 ≤ 1. In fact, the power series
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∑+∞
i=−1 AiX

i+1 is convergent since it is an infinite summation of nonnegative
matrices such that

∑+∞
i=−1 AiX

i+11 ≤
∑+∞

i=−1 Ai1 = 1; moreover I − A0 is
nonsingular. The function in (6.8) is defined for any X such that 0 ≤ X ≤ Gmin;
in fact, the power series

∑+∞
i=0 AiX

i is obviously convergent, while I−
∑+∞

i=0 AiX
i

is nonsingular since 0 ≤
∑+∞

i=0 AiX
i ≤
∑+∞

i=0 AiG
i
min and the spectral radius of

the latter matrix is less than one, in light of Theorem 4.15.

6.2.1 Convergence properties: the case X0 = 0

Let us denote by {X(N)
n }n≥0 the sequence defined by (6.6) (natural algorithm),

by {X(T )
n }n≥0 the sequence defined by (6.7) (traditional algorithm) and by

{X(U)
n }n≥0 the sequence defined by (6.8) (algorithm based on the matrix U =∑+∞

i=0 AiG
i
min), starting with a null initial approximation, i.e., X

(N)
0 = X

(T )
0 =

X
(U)
0 = 0.

The three sequences obtained in this way converge monotonically to Gmin as
stated by the following:

Theorem 6.4 The sequences {X(N)
n }n≥0, {X(T )

n }n≥0, {X(U)
n }n≥0 converge

monotonically to the matrix Gmin, that is Xn+1 − Xn ≥ 0 for Xn being any

of X
(N)
n , X

(T )
n , X

(U)
n . Moreover, for any n ≥ 0, it holds

X(N)
n ≤ X(T )

n ≤ X(U)
n .

Proof Consider the sequence {X(N)
n }n≥0. Let us prove its monotonicity by

induction on n. For n = 1 the thesis is true, since X
(N)
1 = A−1 ≥ 0 = X

(N)
0 .

Suppose that X
(N)
n ≥ X

(N)
n−1 and let us prove that X

(N)
n+1 ≥ X

(N)
n : from the

inductive hypothesis, we obtain

X
(N)
n+1 =

+∞∑
i=−1

AiX
(N)
n

i+1 ≥
+∞∑

i=−1

AiX
(N)
n−1

i+1
= X(N)

n .

By using a similar argument we now prove that X
(N)
n ≤ Gmin. Clearly X

(N)
0 =

0 ≤ Gmin. Assuming that X
(N)
n ≤ Gmin, we have

X
(N)
n+1 =

+∞∑
i=−1

AiX
(N)
n

i+1 ≤
+∞∑

i=−1

AiG
i+1
min = Gmin.

Since 0 ≤ X
(N)
n ≤ Gmin, and since the sequence {X(N)

n }n≥0 is monotonic, there
exists G = limn X

(N)
n . Moreover G is a solution of the matrix equation (6.1) such

that 0 ≤ G ≤ Gmin. Since Gmin is the minimal nonnegative solution, G must
coincide with Gmin. By using similar arguments we may prove that the sequences
{X(T )

n }n≥0, {X(U)
n }n≥0 converge mononically to Gmin.



146 FUNCTIONAL ITERATIONS

Let us now show that X
(T )
n ≥ X

(N)
n for any n. For n = 0 equality holds.

Assume that X
(T )
n ≥ X

(N)
n for fixed n ≥ 0, and we show that X

(T )
n+1 ≥ X

(N)
n+1. We

have, from the definition of X
(T )
n+1,

X
(T )
n+1 = (I − A0)−1

(
A−1 +

+∞∑
i=1

AiX
(T )
n

i+1
)

= A−1 + A0(I − A0)−1A−1 + (I − A0)−1
+∞∑
i=1

AiX
(T )
n

i+1

= A−1 + A0X
(T )
n+1 +

+∞∑
i=1

AiX
(T )
n

i+1
.

From the latter equality, since X
(T )
n+1 ≥ X

(T )
n ≥ 0, we deduce that

X
(T )
n+1 ≥

+∞∑
i=−1

AiX
(T )
n

i+1
.

For the inductive hypothesis X
(T )
n ≥ X

(N)
n , therefore we obtain

X
(T )
n+1 ≥

+∞∑
i=−1

AiX
(N)
n

i+1
= X

(N)
n+1.

By using similar arguments we may prove that X
(U)
n ≥ X

(T )
n for any n. �

A first immediate consequence of the theorem above is that the three se-
quences are well defined when the initial approximation is the null matrix. In
fact, every element X of the three subsequences is such that 0 ≤ X ≤ Gmin;
therefore, in light of the comments at the beginning of Section 6.2, the functions
(6.6), (6.7) and (6.8) are well defined in X.

Theorem 6.4 allows one to deduce that the number of iterations IN , IT ,
IU sufficient to obtain the approximations within the same error bound of the
matrix Gmin by means of the sequences {X(N)

n }n≥0, {X(T )
n }n≥0, {X(U)

n }n≥0,
respectively, are such that

IU ≤ IT ≤ IN .

Indeed, with the same number of iterations, the method based on (6.8) pro-
vides better approximations than the one based on (6.7), and the method based
on (6.7) provides better approximations than the one based on (6.6). In the case
where µ ≤ 0 we may give a more precise result by estimating also the rate of
convergence of the three sequences.

Define, for each integer n, the matrices

E(N)
n = Gmin − X(N)

n ,

E(T )
n = Gmin − X(T )

n ,

E(U)
n = Gmin − X(U)

n ,
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which represent the error at step n for the sequences defined by (6.6), (6.7), (6.8),
respectively, with X0 = 0. Observe that, for the monotonicity stated by Theorem
6.4, the matrices E

(N)
n , E

(T )
n and E

(U)
n are nonnegative. Therefore, their infinity

norms can be expressed in a simple way as

‖En‖∞ = ‖En1‖∞

for En being any of the three matrices E
(N)
n , E

(T )
n and E

(U)
n .

Moreover, for the three sequences, it is possible to give a bound on the error
at step n + 1 in terms of the error at step n as shown by the following

Theorem 6.5 If µ ≤ 0, then for every integer n ≥ 0 one has

E
(N)
n+11 = R(N)

n E(N)
n 1,

E
(T )
n+11 = R(T )

n E(T )
n 1,

E
(U)
n+11 = R(U)

n E(U)
n 1

(6.9)

where, for n ≥ 0,

R(N)
n =

+∞∑
i=0

+∞∑
j=i

AjX
(N)
n

j−i
,

R(T )
n = (I − A0)−1

(+∞∑
i=0

+∞∑
j=i

AjX
(T )
n

j−i − A0

)
,

R(U)
n =

(
I −

+∞∑
i=0

AiX
(U)
n

i
)−1(+∞∑

i=1

+∞∑
j=i

AjX
(U)
n

j−i
)
.

(6.10)

Proof We rely on the following identity, valid for any m × m matrices X, Y ,
which can be proved by induction:

Xi − Y i =
i∑

j=1

Xj−1(X − Y )Y i−j , i ≥ 1. (6.11)

Let us first analyze the sequence generated by the function (6.6). From (6.11),
(6.1) and (6.2) it follows that

E
(N)
n+1 =Gmin − X

(N)
n+1 =

+∞∑
i=1

Ai−1

(
Gi

min − X(N)
n

i
)

=
+∞∑
i=1

i∑
j=1

Ai−1X
(N)
n

i−j
E(N)

n Gj−1
min .

Exchanging the order of the summations in the latter equality yields
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E
(N)
n+1 =

+∞∑
i=0

+∞∑
j=i

AjX
(N)
n

j−i
E(N)

n Gi
min.

Whence, since Gmin is stochastic, we have

E
(N)
n+11 =

+∞∑
i=0

+∞∑
j=i

AjX
(N)
n

j−i
E(N)

n 1 = R(N)
n E(N)

n 1.

Analogously, for the functional iteration based on (6.7), we obtain

E
(T )
n+1 =Gmin − X

(T )
n+1 = (I − A0)−1

+∞∑
i=2

Ai−1

(
Gi

min − X(T )
n

i
)

=(I − A0)−1
+∞∑
i=2

i∑
j=1

Ai−1X
(T )
n

i−j
E(T )

n Gj−1
min .

Once again, exchanging the order of the summations yields

E
(T )
n+1 = (I − A0)−1

(+∞∑
i=0

+∞∑
j=i

AjX
(T )
n

j−i
E(T )

n Gi
min − A0E

(T )
n

)
.

Hence, from the stochasticity of Gmin, we obtain

E
(T )
n+11 = R(T )

n E(T )
n 1.

Let us now analyze the functional iteration based on (6.8). Recalling that A∗
0 =∑+∞

i=0 AiG
i
min, from (6.2) and (6.1) we have

E
(U)
n+1 =Gmin − X

(U)
n+1

=
[
(I − A∗

0)
−1 −

(
I −

+∞∑
i=0

AiX
(U)
n

i
)−1]

A−1

=
(
I −

+∞∑
i=0

AiX
(U)
n

i
)−1(

A∗
0 −

+∞∑
i=0

AiX
(U)
n

i
)
(I − A∗

0)
−1A−1

=
(
I −

+∞∑
i=0

AiX
(U)
n

i
)−1(

A∗
0 −

+∞∑
i=0

AiX
(U)
n

i
)
Gmin.

Whence, from (6.11), it follows that

E
(U)
n+1 =

(
I −

+∞∑
i=0

AiX
(U)
n

i
)−1(+∞∑

i=1

i∑
j=1

AiX
(U)
n

i−j
E(U)

n Gj−1
min

)
Gmin.

Interchanging the order of summations and using the stochasticity of Gmin yields

E
(U)
n+11 = R(U)

n E(U)
n 1.

�
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Theorem 6.5 allows one to express the norm of the error at step n, by means
of the matrices R

(N)
n , R

(T )
n , R

(U)
n of (6.10):

Corollary 6.6 If µ ≤ 0, then for every integer n ≥ 1 one has

‖E(N)
n ‖∞ =

∥∥∥ n−1∏
i=0

R
(N)
i

∥∥∥
∞

,

‖E(T )
n ‖∞ =

∥∥∥ n−1∏
i=0

R
(T )
i

∥∥∥
∞

,

‖E(U)
n ‖∞ =

∥∥∥ n−1∏
i=0

R
(U)
i

∥∥∥
∞

,

(6.12)

where the matrices R
(N)
i , R

(T )
i , R

(U)
i are defined in (6.10) and

∏n−1
i=0 Hi =

Hn−1Hn−2 . . . H0, for m × m matrices Hi.

Proof For every integer n, since E
(N)
n ≥ 0, we have ‖E(N)

n ‖∞ = ‖E(N)
n 1‖∞.

Whence, for Theorem 6.5, ‖E(N)
n ‖∞ = ‖∏n−1

i=0 R
(N)
i E

(N)
0 1‖∞. On the other

hand, since X
(N)
0 = 0, we have E

(N)
0 1 = Gmin1 = 1. Therefore, ‖E(N)

n ‖∞ =
‖∏n−1

i=0 R
(N)
i 1‖∞ = ‖∏n−1

i=0 R
(N)
i ‖∞. The analogous relations for E

(T )
n and E

(U)
n

readily follow by using the same arguments. �

Now it is possible to estimate the asymptotic rate of convergence of the
sequences {X(N)

n }n≥0, {X(T )
n }n≥0, {X(U)

n }n≥0. An important role in the conver-
gence analysis is played by the following matrices

R(N) =
+∞∑
i=0

A∗
i ,

R(T ) = (I − A0)−1
(+∞∑

i=0

A∗
i − A0

)
,

R(U) = (I − A∗
0)

−1
+∞∑
i=1

A∗
i

(6.13)

where A∗
i are defined in (4.8). Since the functions X →∑+∞

i=0

∑+∞
j=i AjX

j−i and
X →∑+∞

i=1

∑+∞
j=i AjX

j−i are continuous at X = Gmin we deduce that

R(N) = lim
n

R(N)
n , R(T ) = lim

n
R(T )

n , R(U) = lim
n

R(U)
n . (6.14)

Moreover, since the sequences {‖E(N)
n ‖}n≥0, {‖E(T )

n ‖}n≥0, {‖E(U)
n ‖}n≥0 are

bounded from above by a constant, there exist the limits

rN = lim
n

n

√
‖E(N)

n ‖, rT = lim
n

n

√
‖E(T )

n ‖, rU = lim
n

n

√
‖E(U)

n ‖,



150 FUNCTIONAL ITERATIONS

where ‖ ·‖ is any matrix norm. The above limits express the rates of convergence
for the sequences {X(N)

n }n≥0, {X(T )
n }n≥0, {X(U)

n }n≥0, respectively. The following
result relates these convergence rates:

Theorem 6.7 If µ ≤ 0, one has

rN = ρ(R(N)), rT = ρ(R(T )), rU = ρ(R(U)), (6.15)

where the matrices R(N), R(T ), R(U) are defined in (6.13).

Proof We prove the theorem only for the sequence {X(N)
n }n≥0; the same ar-

gument applies to the sequences {X(T )
n }n≥0 and {X(U)

n }n≥0. For Corollary 6.6
one has

rN = lim
n

n

√
‖E(N)

n ‖∞ = lim
n

n

√√√√∥∥∥ n−1∏
i=0

R
(N)
i

∥∥∥
∞

. (6.16)

For the monotonicity of the sequence {X(N)
n }n≥0 stated by Theorem 6.4 one has

0 ≤ R(N)
n ≤ R

(N)
n+1 ≤ R(N).

Therefore,
∏n−1

i=0 R
(N)
i ≤ R(N)n

. Since ‖X‖∞ ≥ ‖Y ‖∞ for X ≥ Y ≥ 0, we find
that

lim
n

n

√√√√∥∥∥ n−1∏
i=0

R
(N)
i

∥∥∥
∞

≤ lim
n

n

√
‖R(N)n‖∞ = ρ(R(N)),

where the last equality follows from Theorem A.3 in the appendix. Whence

rN ≤ ρ(R(N)). (6.17)

We now prove the opposite inequality. Suppose first that the nonnegative vector
R

(N)
0 1 has no null components. For any integer k < n, for the monotonicity of

the sequence {X(N)
n }n≥0 and for the monotonicity of ‖ · ‖∞, one has

∥∥∥ n−1∏
i=0

R
(N)
i

∥∥∥
∞

≥
∥∥∥R(N)

k

n−k
k−1∏
i=0

R
(N)
i

∥∥∥
∞

≥
∥∥R(N)

k

n−k
R

(N)
0

k∥∥
∞. (6.18)

Hence, for any integer k, since the nonnegative vector R
(N)
0

k
1 also has no null

components, it holds that∥∥R(N)
k

n−k
R

(N)
0

k∥∥
∞ =

∥∥R(N)
k

n−k
R

(N)
0

k
1
∥∥

∞ ≥

ck

∥∥R(N)
k

n−k
1
∥∥

∞ = ck

∥∥R(N)
k

n−k∥∥
∞

(6.19)

where ck > 0 is the minimum value of the components of the positive vector

R
(N)
0

k
1. From (6.14) it follows that, for any fixed ε > 0, there exists an integer

k0 such that ρ(R(N)
k0

) ≥ ρ(R(N)) − ε. Whence, from (6.18) and (6.19), we obtain
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rN ≥ lim
n

n

√∥∥R(N)
k0

n−k0
R

(N)
0

k0∥∥
∞ ≥ lim

n

n

√
ck0

∥∥R(N)
k0

n−k0∥∥
∞

= lim
n

n

√∥∥R(N)
k0

n−k0∥∥
∞ = ρ(R(N)

k0
) ≥ ρ(R(N)) − ε,

where we have applied Theorem A.3 in the appendix.
Therefore, for the arbitrarity of ε, the above inequality, together with (6.17),

leads to the thesis. Now, let us suppose that some components of the nonnegative
vector R

(N)
0 1 = E

(N)
1 1 are zero. Without loss of generality we may suppose that

the first i components of the nonnegative vector R
(N)
0 1 = E

(N)
1 1 are zero and that

the remaining components are nonnull. Whence, for the monotonic convergence
of the sequence {X(N)

n }n≥0, it follows that also the first i components of the
nonnegative vector E

(N)
n 1 are zero for any n ≥ 1. Moreover, it can be easily

proved that, for any n ≥ 0, the first i components of the vector R
(N)
n 1 are zero.

Therefore, the matrices R
(N)
n have the structure

R(N)
n =

[ 0 0
T

(N)
n U

(N)
n

]
where U

(N)
n is an (m − i) × (m − i) matrix and T

(N)
n is an (m − i) × i matrix.

Moreover, the matrix R(N) has the structure

R(N) =
[

0 0
T (N) U (N)

]
where U (N) = limn U

(N)
n , T (N) = limn T

(N)
n . If, except for the first i components,

no other entry of the vector E
(N)
n 1 vanishes in a finite number of steps, then

the matrices U
(N)
n have no null columns for any n ≥ 1. Let v be the m − i

dimensional vector defined by the nonnull components of the vector E
(N)
1 1. From

the monotonicity of the sequence {X(N)
n }n≥0 and from the monotonicity of ‖·‖∞,

it follows that, for any integer k < n∥∥∥ n−1∏
i=0

R
(N)
i

∥∥∥
∞

=
∥∥∥ n−1∏

i=1

U
(N)
i v

∥∥∥
∞

≥ c
∥∥∥ n−1∏

i=1

U
(N)
i

∥∥∥
∞

≥ c
∥∥∥ k−1∏

i=1

U
(N)
k

n−k
U

(N)
i

∥∥∥
∞

≥ c
∥∥U (N)

k

n−k
U

(N)
1

k−1∥∥
∞ ≥ ck

∥∥U (N)
k

n−k∥∥
∞,

where c, ck > 0 are suitable constants. Whence, for every ε > 0, there exists k0

such that

rN ≥ lim
n

n

√
ck0

∥∥U (N)
k0

n−k0∥∥
∞ = ρ(U (N)

k0
) ≥ ρ(U (N)) − ε = ρ(R(N)) − ε,

which leads to the thesis, for the arbitrarity of ε. If the components i+1, . . . , i+i0
of the vector E

(N)
n 1 vanish in a finite number of steps and no other component

vanishes, then for n ≥ 1, the matrices U
(N)
n have the structure
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U (N)
n =

[
V̂

(N)
n 0

T̂
(N)
n Û

(N)
n

]

where Û
(N)
n is an (m− i− i0)× (m− i− i0) matrix having no null columns and

V̂
(N)
n is an upper triangular matrix with null diagonal elements. Therefore we

may apply the same arguments to the matrix Û
(N)
n , concluding the proof. �

Based on the properties of the regular splittings of M-matrices which are
recalled in the appendix, we are able to compare the rate of convergence of the
three sequences.

Theorem 6.8 If µ < 0 then the spectral radii of the matrices R(N), R(T ) and
R(U) are related by the following inequality

ρ(R(U)) ≤ ρ(R(T )) ≤ ρ(R(N)) < 1.

Moreover, if µ = 0 then

ρ(R(U)) = ρ(R(T )) = ρ(R(N)) = 1.

Proof Observe that

R(N) = D(N)−1
C(N), R(T ) = D(T )−1

C(T ), R(U) = D(U)−1
C(U),

where

C(N) =
+∞∑
i=0

A∗
i , D(N) = I,

C(T ) =
+∞∑
i=0

A∗
i − A0, D(T ) = I − A0,

C(U) =
+∞∑
i=1

A∗
i , D(U) = I − A∗

0,

are such that

D(N) − C(N) = D(T ) − C(T ) = D(U) − C(U) = I −
+∞∑
i=0

A∗
i ,

that is, the matrices R(N), R(T ) and R(U) are obtained by means of regular
splittings (compare with Definition A.14 in the appendix) of the M-matrix I −∑+∞

i=0 A∗
i . According to Theorem 4.14, if µ < 0 then I−

∑+∞
i=0 A∗

i is a nonsingular
M-matrix. For the properties of regular splittings (see Theorem A.15 in the
appendix), since

C(U) ≤ C(T ) ≤ C(N),

it follows that
ρ(R(U)) ≤ ρ(R(T )) ≤ ρ(R(N)) < 1.

If µ = 0 then, according to Theorem 4.14, I −∑+∞
i=0 A∗

i is a singular M-matrix,
so that ρ(R(U)) = ρ(R(T )) = ρ(R(N)) = 1 (see Theorem A.15). �
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In light of Theorem 6.15, a direct consequence of the above theorem is that
the convergence of the three sequences is linear if µ < 0, and is sublinear if µ = 0.
Moreover, if µ < 0, then the convergence rate of the sequence defined by (6.6) is
less than or equal to the convergence rate of the sequence defined by (6.7). The
latter rate is less than or equal to the convergence rate of the sequence defined
by (6.8).

In the case where µ > 0, and therefore Gmin is substochastic, a similar con-
vergence analysis can be performed, under the additional assumption that the
matrices Gmin and

∑+∞
n=1

∑n−1
i=0 (I ⊗Ai−1)((GT

min)n−1−i ⊗Gi
min) are strictly pos-

itive. In this case Guo in [55] has shown that

lim sup
n

‖Gmin − X(N)
n ‖1/n ≤ ρ(M1),

lim sup
n

‖Gmin − X(T )
n ‖1/n ≤ ρ(M2),

lim sup
n

‖Gmin − X(U)
n ‖1/n ≤ ρ(M3)

where

M1 =
+∞∑
i=0

(GT
min)iA∗

i ,

M2 =
+∞∑
i=0

(GT
min)i ⊗ (I − A0)−1A∗

i − I ⊗ (I − A0)−1A0,

M3 =
+∞∑
i=1

(GT
min)i ⊗ (I − A0)−1A∗

i .

Moreover, the spectral radii of the three matrices are such that

ρ(M3) ≤ ρ(M2) ≤ ρ(M1) < 1.

As a consequence, the three sequences have a linear convergence, and one expects
that the sequence {X(U)

n }n converges faster than the sequence {X(T )
n }n, which

converges faster than {X(N)
n }n.

6.2.2 A general class of functional iterations

Here we introduce a general class of functional iterations which contains the
methods defined by (6.6), (6.7), (6.8). We show that the convergence properties
of the previous section can be generalized to this more general class. Moreover,
we prove that, in the case where the initial approximation is the null matrix, the
functional iteration defined by (6.8) is the fastest of this class.

Consider the additive splitting A(z) = zH(z) + K(z) of the matrix power
series A(z) =

∑+∞
i=−1 zi+1Ai, where H(z) =

∑+∞
i=0 ziHi and K(z) =

∑+∞
i=0 ziKi

are such that Hi ≥ 0, Ki ≥ 0, i ≥ 0. In this way we have A−1 = K0 and
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Ai = Hi + Ki+1, for i ≥ 0. Based on this splitting, we may introduce the matrix
function

F (X) = (I − H(X))−1K(X), (6.20)

defined for each matrix X such that I−H(X) is nonsingular. The function F (X)
defines the matrix equation

X = (I − H(X))−1K(X). (6.21)

Here, K(X) =
∑+∞

i=0 KiX
i, H(X) =

∑+∞
i=0 HiX

i.
It is immediate to observe that, if H(z) = 0 then (6.20) coincides with (6.6),

if H(z) = A0 then (6.20) coincides with (6.7), and finally if H(z) =
∑+∞

i=0 ziAi

then (6.20) coincides with (6.8).
The matrix

∑+∞
i=0 AiG

i
min has spectral radius less than one (see Theorem

4.15). Therefore for Theorem 1.28, since 0 ≤ Hi ≤ Ai for i ≥ 0, it follows that
ρ(H(Gmin)) < 1 so that I − H(Gmin) is a nonsingular M-matrix. In particular,
the function (6.20) is defined for any matrix X such that 0 ≤ X ≤ Gmin.

The solutions of the matrix equation (6.21) are related to the solution of
(6.1), as stated by the following:

Theorem 6.9 If G in an m×m matrix such that I−H(G) is nonsingular, then G
solves the matrix equation (6.1) if and only if it solves the matrix equation (6.21).
Moreover, I − H(Gmin) is nonsingular and Gmin is the minimal nonnegative
solution of (6.21).

Proof The matrix G solves the equation (6.1) if and only if it solves equation

(I − H(X))X = K(X).

Therefore, if I − H(G) is nonsingular, G solves the matrix equation (6.1) if and
only if it solves the matrix equation (6.21). Since I − H(Gmin) is nonsingular,
Gmin solves (6.21). If G ≥ Gmin were the minimal solution of (6.21), then, for
the first part of the theorem, G would be also the minimal solution of (6.1),
therefore G = Gmin. �

Equation (6.2) allows one to define the sequence of matrices

Xn = F (Xn−1), n ≥ 1

where F (X) is defined in (6.20). The following result extends Theorem 6.4:

Theorem 6.10 The sequence Xn = F (Xn−1), X0 = 0, where F (X) is given by
(6.20), converges monotonically to the matrix Gmin.

Proof We first prove that if 0 ≤ Y ≤ X ≤ Gmin then F (X) ≥ F (Y ). Observe
that if 0 ≤ Y ≤ X ≤ Gmin then 0 ≤ H(Y ) ≤ H(X) ≤ H(Gmin) and 0 ≤
K(Y ) ≤ K(X) ≤ K(Gmin). Moreover, since ρ(H(Gmin)) < 1 from Theorem 1.28
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it follows that ρ(H(Y )) ≤ ρ(H(X)) ≤ ρ(H(Gmin)) < 1, therefore I − H(X) and
I − H(Y ) are nonsingular M-matrices. One has

(I − H(Y ))−1 =
+∞∑
i=0

H(Y )i ≤
+∞∑
i=0

H(X)i = (I − H(X))−1.

That is, F (X) ≥ F (Y ) ≥ 0. Now we prove the monotonicity of the sequence
{Xn}n≥0 by induction on n. For n = 1 the thesis is true, since X1 = F (X0) ≥
0 = X0. Suppose that Xn ≥ Xn−1 and let us prove that Xn+1 ≥ Xn: from (6.20)
and from the inductive hypothesis, we obtain

Xn+1 = F (Xn) = (I − H(Xn))−1K(Xn) ≥ (I − H(Xn−1))−1K(Xn−1) = Xn.

By using a similar argument we now prove that Xn ≤ Gmin. Clearly X0 = 0 ≤
Gmin. Assuming that Xn ≤ Gmin, we have

Xn+1 = F (Xn) = (I − H(Xn))−1K(Xn) ≤ (I − H(Gmin))−1K(Gmin) = Gmin.

Since 0 ≤ Xn ≤ Gmin and since the sequence is nondecreasing, there exists
G = limn Xn, with G ≤ Gmin. Since Gmin is the minimal nonnegative solution it
follows that G = Gmin. �

Define, for each integer n ≥ 0, the matrices En = G−Xn, which represent the
error at step n of the sequence {Xn}n≥0 converging to G. The matrices {En}n≥0

satisfy the following general recursive relations which can be proved with the
same arguments used in Section 6.2.1.

Theorem 6.11 For any matrix X0 consider the sequence {Xn}n≥0 such that
Xn = F (Xn−1), where F (X) is defined by (6.20). Let G = limn Xn and En =
G − Xn. Then for every integer n ≥ 0 one has

En+1 = (I − H(Xn))−1
(+∞∑

i=1

KiX
i−1
n En +

+∞∑
j=1

+∞∑
i=j

AiX
i−j
n EnGj

)
. (6.22)

From the above proposition we derive the generalization of Theorem 6.5:

Corollary 6.12 Let Xn = F (Xn−1), X0 = 0, where F (X) is defined by (6.20).
If µ ≤ 0, then for every integer n ≥ 0 one has that

En+11 = RnEn1 (6.23)

where, for n ≥ 0,

Rn = (I − H(Xn))−1
(+∞∑

j=0

+∞∑
i=j

AiX
i−j
n − H(Xn)

)
. (6.24)
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Proof For the stochasticity of the matrix Gmin, from (6.22) and from the rela-
tion Ai = Hi + Ki−1 we obtain

En+11 = (I − H(Xn))−1
(+∞∑

j=1

+∞∑
i=j

Ai−1X
i−j
n − H(Xn)

)
En1.

�

The following result is a straightforward consequence of Corollary 6.12 and
a generalization of Corollary 6.6.

Corollary 6.13 Let Xn = F (Xn−1), X0 = 0, where F (X) is defined by (6.20).
If µ ≤ 0, then for every integer n ≥ 1 one has

‖En‖∞ =
∥∥∥ n−1∏

i=0

Ri

∥∥∥
∞

(6.25)

where the matrices Rn are defined in (6.24) and
∏n−1

i=0 Ri = Rn−1Rn−2 . . . R0.

Define the matrix

RF = (I − H(Gmin))−1
(+∞∑

i=0

A∗
i − H(Gmin)

)
(6.26)

such that limn Rn = RF . The matrix RF allows one to express the asymptotic
rate of convergence of the sequence {Xn}n≥0, by means of the following result
which can be easily proved by using the same arguments of Theorem 6.7.

Theorem 6.14 Assume µ ≤ 0, and let

r = lim
n

n
√
‖En‖

be the convergence rate of the sequence Xn = F (Xn−1), X0 = 0, where F (X) is
defined in (6.20) and ‖ · ‖ is any matrix norm. Then

r = ρ(RF )

where RF is given in (6.26).

The expression of the rate of convergence in terms of the spectral radius of
the matrix RF provided by the above theorem is very useful for comparing the
convergence speed. In fact, observe that the matrix RF can be written in the
form

RF = D−1C,

where

C =
+∞∑
i=0

A∗
i − H(Gmin), D = I − H(Gmin)
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are such that

C ≥ 0, D−1 ≥ 0, D − C = I −
+∞∑
i=0

A∗
i ,

that is, RF is obtained by means of a regular splitting (see Definition A.14 in
the appendix) of the M-matrix I −

∑+∞
i=0 A∗

i . Suppose that R1 = D−1
1 C1 and

R2 = D−1
2 C2 are the matrices of (6.26) associated with the functions F1(X),

F2(X) of (6.20), respectively, and suppose that C1 ≤ C2. From Theorem A.15
in the appendix, it follows that

ρ(R1) ≤ ρ(R2).

On the other hand observe that, for any choice of F (X) defined by (6.20), since
0 ≤ Hi ≤ Ai for any i, one has that

H(Gmin) =
+∞∑
i=0

HiG
i
min ≤

+∞∑
i=0

AiG
i
min = A∗

0.

Whence

C =
+∞∑
i=0

A∗
i − H(Gmin) ≥

+∞∑
i=1

A∗
i = C(U),

where R(U) = D(U)−1
C(U) is the matrix associated with the sequence {X(U)

n }n≥0

defined by (6.8). Therefore, if µ < 0, the functional iteration method defined by
(6.8) is the fastest one in the class of methods defined by (6.20), with X0 = 0. If
µ = 0, all the methods of this class have sublinear convergence.

6.2.3 Convergence properties: the case X0 = I

In the case where µ ≤ 0, since Gmin is stochastic, it can be natural to start
the functional iteration with a stochastic matrix. Consider sequences {Xn}n≥0

generated by the recursion

Xn = F (Xn−1), X0 = I (6.27)

where F (X) is given by (6.20). It is immediate to verify that, if Xn is a stochastic
matrix, and if F (Xn) is defined, then Xn+1 is stochastic. In fact, H(Xn)1 +
K(Xn)1 = 1, so that Xn+11 = (I − H(Xn))−1K(Xn)1 = 1. Therefore, if the
sequence defined by (6.27) can be generated without any breakdown, it is a
sequence of stochastic matrices. The following theorem shows that, if µ ≤ 0, this
sequence converges to Gmin.

Theorem 6.15 Assume that µ ≤ 0. If the sequence {Xn}n≥0 defined by (6.27)
can be generated without any breakdown, then it converges to Gmin. Moreover
the matrices obtained at each step of the iterative process are stochastic.

Proof The proof is the extension of the proof of Theorem 3 of [76].
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Let {Yn}n≥0 be the sequence defined by Y0 = 0, Yn = F (Yn−1), for n ≥ 1,
where F (X) is given by (6.20). In the previous section we have shown that the
sequence {Yn}n≥0 converges monotonically to Gmin.

We now show by induction that Yn ≤ Xn for any n ≥ 0. The inequality holds
for n = 0. Assume that Yn ≤ Xn for a given n ≥ 0. Then, as in the proof of
Theorem 6.10, one has that H(Yn) ≤ H(Xn) and K(Yn) ≤ K(Xn); therefore

Yn+1 = (I − H(Yn))−1K(Yn) ≤ (I − H(Xn))−1K(Xn) = Xn+1.

Since the sequence {Xn}n≥0 is a sequence of stochastic matrices, it has at
least one accumulation point, and it must be a stochastic matrix. Let X∗ be
one of these accumulation points. Since Yn ≤ Gmin, limn Yn = Gmin and since
Yn ≤ Xn for any n ≥ 0, we conclude that Gmin ≤ X∗. Since both Gmin and X∗

are stochastic, they must coincide, therefore the sequence {Xn}n≥0 converges to
Gmin. �

It has been proved in [79] that for QBD processes no breakdowns are encoun-
tered in generating the sequence (6.27).

In this section we study the convergence of the sequence {Xn}n≥0 to Gmin.
In particular we show that, if µ ≤ 0, then the sequence of matrices obtained
starting from any stochastic approximation converges faster than the sequence
of matrices obtained by starting with the null matrix.

Consider the error En = Gmin − Xn of the sequence {Xn}n≥0 generated
by (6.27). A recursive expression of the error En is provided by Theorem 6.11.
We wish to evaluate the norm of En at each step n. Observe that, differently
from the case analyzed in the previous section where X0 = 0, the matrices En

are not necessarily nonnegative. For this reason, the evaluation of the norm of
En is not immediate as in the previous section. To this purpose we need to
use Kronecker products (see Section 2.1) to rewrite (6.22) in a different way.
Define εn, for n ≥ 0, the m2-dimensional vector associated with the matrix En,
i.e., εn = vec(En). By using equation (2.2), the recursive formula (6.22) can be
rewritten as

εn+1 = R̂nεn (6.28)

where

R̂n =I ⊗ (I − H(Xn))−1
+∞∑
i=1

KiX
i−1
n

+
+∞∑
j=1

(Gj−1
min )T ⊗ (I − H(Xn))−1

+∞∑
i=j

AiX
i−j
n .

Observe that the matrix R̂n, for n ≥ 0, can be expressed in the form

R̂n =
+∞∑
j=0

(Gj
min)T ⊗ Yj,n (6.29)
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where

Y0,n = (I − H(Xn))−1
+∞∑
i=1

KiX
i−1
n ,

Yj,n = (I − H(Xn))−1
+∞∑
i=j

AiX
i−j
n , j ≥ 1.

(6.30)

Let

Y0 = (I − H(Gmin))−1
+∞∑
i=1

KiG
i−1
min,

Yj = (I − H(Gmin))−1
+∞∑
i=j

AiG
i−j
min, j ≥ 1,

R̂F =
+∞∑
j=0

(Gj
min)T ⊗ Yj ,

(6.31)

such that Yj = limn Yj,n, j ≥ 0, and R̂F = limn R̂n. Observe that the matrix
YF =

∑+∞
j=0 Yj is given by

YF = (I − H(Gmin))−1
(+∞∑

j=0

+∞∑
i=j

AiG
i−j
min − H(Gmin)

)
. (6.32)

If µ ≤ 0, the matrix YF coincides with the matrix RF of (6.26), which is related
to the speed of convergence of the sequence Xn = F (Xn−1), X0 = 0. This fact
is the key to show that, when µ ≤ 0, the sequences obtained by starting with a
stochastic matrix X0 converge faster than the sequences obtained with X0 = 0.

The following lemma which characterizes the eigenvalues of R̂F is fundamen-
tal to prove these convergence properties.

Lemma 6.16 The eigenvalues of the matrix R̂F are given by the set

⋃
α∈Λ

{
η|η is eigenvalue of

+∞∑
j=0

Yjα
j
}
,

where Λ is the set of the eigenvalues of Gmin.

Proof Let S be the Schur canonical form [116] of the matrix GT
min. Then, the

matrix
∑+∞

j=0(S
j ⊗ Yj) is similar to the matrix R̂F . The lemma immediately

follows since S is upper triangular with the diagonal elements equal to the eigen-
values of Gmin. �
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Theorem 6.17 If µ ≤ 0 then ρ(R̂F ) = ρ(RF ). Moreover, a nonnegative m2-
dimensional vector w such that

wTR̂F = λwT,

where λ = ρ(RF ), is given by w = 1⊗y, where y is a nonnegative m-dimensional
vector such that yTRF = λyT.

Proof From Lemma 6.16, since 1 ∈ Λ and since YF = RF , we deduce that the
eigenvalues of the matrix RF are also eigenvalues of the matrix R̂F , therefore
ρ(R̂F ) ≥ ρ(RF ). On the other hand, for Theorem 1.28, since for any α ∈ Λ one
has that ∣∣∣+∞∑

j=0

Yjα
j
∣∣∣ ≤ +∞∑

j=0

Yj |αj | ≤
+∞∑
j=0

Yj = RF ,

we find that ρ(R̂F ) ≤ ρ(RF ), whence ρ(R̂F ) = ρ(RF ). From the properties of
the tensor product and from the relation Gmin1 = 1, we obtain

(1T ⊗ yT)R̂F = (1T ⊗ yT)
+∞∑
j=0

(Gj
min)T ⊗ Yj

=
+∞∑
j=0

(Gj
min1)T ⊗ (yTYj) =

+∞∑
j=0

1T ⊗ (yTYj)

= 1T ⊗ yT
+∞∑
i=0

Yj = λ(1T ⊗ yT).

Therefore, the vector wT = 1T ⊗ yT is a left nonnegative eigenvector of the
matrix R̂F . �

By following the same argument of the proof of Theorem 6.17, it is straight-
forward to prove the following.

Theorem 6.18 If µ ≤ 0 then for every n ≥ 0 the spectral radius of the matrix
R̂n is given by

ρ(R̂n) = ρ
(+∞∑

j=0

Yj,n

)
.

Moreover, a nonnegative m2-dimensional vector wn such that

wT
n R̂n = λnwT

n ,

where λn = ρ(Rn), is given by wn = 1 ⊗ yn, where yn is a nonnegative m-
dimensional vector such that yT

n

∑+∞
j=0 Yj,n = λnyT

n .
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From Thereom 6.18 it follows that, for any integer n ≥ 0, the left nonnegative
eigenvector wn of the matrix R̂n associated with its spectral radius λn belongs
to the linear space S generated by the orthogonal vectors

v1 =
1√
m

(1 ⊗ e1), v2 =
1√
m

(1 ⊗ e2), . . . ,vm =
1√
m

(1 ⊗ em), (6.33)

where ei is the m-dimensional vector having the i-th component equal to 1 and
the remaining components equal to zero. Let T be the linear space formed by the
vectors orthogonal to v1, . . . ,vn. We may easily observe that, if A is any m×m
matrix, then vT

i vec(A) = 1√
m

eT
i A1, i = 1, . . . , m, therefore, since both Xn and

Gmin are stochastic, one has vT
i εn = 1√

m
eT

i (Gmin − Xn)1 = 0, for i = 1, . . . ,m,
where εn = vec(Gmin − Xn). Therefore the error vector εn belongs to the linear
space T , for any n.

In particular, if S and T are the matrices whose columns are an orthogonal
basis of the linear spaces S and T , respectively, then the m2 × m2 matrix Γ =
[S|T ] is such that

ΓTΓ = I, ΓTεn =
[

0
ε̂n

]
,

where ε̂n = TTεn is an m(m − 1)-dimensional vector. Whence the recursive
equations (6.28) can be rewritten in the form[

0
ε̂n+1

]
= (ΓTR̂nΓ)(ΓTεn) = (ΓTR̂nΓ)

[
0
ε̂n

]
. (6.34)

On the other hand, observe that, if w ∈ S then, from (6.29) and from the
properties of the tensor product, it follows that (wTR̂n)T ∈ S, whence STR̂nT =
0. Therefore the matrix ΓTR̂nΓ has the structure

ΓTR̂nΓ =

ST

−
TT

 R̂n (S|T ) =
[

Vn 0
TTR̂nS Wn

]
, (6.35)

where Vn = STR̂nS, and
Wn = TTR̂nT. (6.36)

Moreover, from the representation (6.29) of R̂n, we obtain that

Vn = STR̂nS =
1
m

(1T ⊗ I)R̂n(1 ⊗ I) =
+∞∑
j=0

Yj,n.

From the above equation and from (6.35) we deduce that

ΓTR̂F Γ =
[

YF 0
TTR̂F S WF

]
, (6.37)

where WF = TTR̂F T and YF is the matrix of (6.32).
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The recurrences (6.34) can be rewritten in the form

ε̂n+1 = Wnε̂n. (6.38)

The above properties allow one to prove the following convergence results.

Theorem 6.19 For the convergence rate

r = lim
n

n
√
‖εn‖

of the sequence (6.27), where F (X) is defined by (6.20) and ‖ · ‖ is any vector
norm, we have

r ≤ ρ(WF )

where WF = TTR̂F T and R̂F is defined in (6.31). Moreover, if µ < 0 and RF is

irreducible, then ρ(WF ) < ρ(R̂F ) = ρ(RF ).

Proof From (6.34) and (6.38) it follows that

r = lim
n

n
√
‖εn‖ = lim

n

n
√
‖ε̂n‖.

Therefore, we analyze the convergence of the sequence {ε̂n}n≥0. Let ε > 0 be
fixed and let ‖ · ‖ε be a matrix norm such that

‖WF ‖ε ≤ ρ(WF ) + ε

(see Theorem A.2 in the appendix). Since the sequence {Wn}n≥0 of (6.36) con-
verges to WF , there exists an integer i0 such that

‖Wi‖ε ≤ ‖WF ‖ε + ε

for any i ≥ i0. Therefore

‖ε̂n‖ε = ‖Wn−1Wn−2 . . . W0ε̂0‖ε ≤ ci0‖Wn−1‖ε‖Wn−2‖ε . . . ‖Wi0‖ε

≤ ci0(‖WF ‖ε + ε)n−i0 ≤ ci0(ρ(WF ) + 2ε)n−i0

where ci0 is a positive constant. Hence, by taking the n-th root, we have

n
√
‖ε̂n‖ε ≤ n

√
ci0(ρ(WF ) + 2ε)1−i0/n.

By taking the limit for n → +∞, we obtain

r = lim
n

n
√
‖ε̂n‖ε ≤ ρ(WF ) + 2ε.

Therefore r ≤ ρ(WF ) for the arbitrarity of ε.
To prove the second part of the theorem it is sufficient to show that ρ(WF ) <

ρ(R̂F ). For this purpose observe that from (6.37) the set of eigenvalues of R̂F

is the union of the set of eigenvalues of YF and the set of eigenvalues of WF .
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Moreover, in light of Lemma 6.16 the set of eigenvalues of R̂F is the union of
the set of eigenvalues of YF and the set

⋃
α∈Λ
α�=1

{
η|η is eigenvalue of

∑+∞
j=0 Yjα

j
}
.

Therefore

ρ(WF ) = max
α∈Λ
α�=1

ρ
(+∞∑

j=0

Yjα
j
)
.

Since µ < 0, then
∑+∞

j=0 Yj = RF , which is assumed irreducible. Therefore for
the Perron–Frobenius Theorem 1.27 one has ρ

(∑+∞
j=0 Yjα

j
)

< ρ(RF ) for any α
of modulus less than 1. �

In the cases where the matrix RF is irreducible and µ < 0, from the above
theorem and from the results of the previous section, it follows that the rate of
convergence of the sequence Xn = F (Xn−1) is:

– equal to the spectral radius of RF , if X0 = 0;
– strictly less than the spectral radius of RF , if X0 = I.
In many cases the modulus of the second largest eigenvalue of a matrix can be

much smaller than its spectral radius. In the Figures 6.2, 6.3 and 6.4 we report,
for the functional iterations defined by (6.6), (6.7), (6.8) the logarithm (to the
base 10) of the residual ‖Xn −∑+∞

i=0 Xi
nAi‖∞, for the sequences obtained by

starting with X0 = 0 and with X0 = I, for a problem arising from the modelling
of a metropolitan network [3]. It is worth pointing out the increasing of the speed
of convergence obtained by starting with X0 = I instead of X0 = 0. Moreover it
can be observed that the method defined by (6.8) (method based on the matrix
U) converges more quickly than the methods based on (6.6) and (6.7) (natural
and traditional algorithm, respectively). More precisely the spectral radius ρ1

of the matrix R̂F , which gives the mean asymptotic rate of convergence of the
sequence obtained by starting with X0 = 0, is given by ρ1 = 0.998448 for the
natural algorithm defined by (6.6), ρ1 = 0.998379 for the traditional algorithm
defined by (6.7) and ρ1 = 0.998176 for the algorithm based on the matrix U
defined by (6.8). On the other hand the second largest modulus eigenvalue of
the matrix R̂F is ρ2 = 0.883677 for the natural algorithm, ρ2 = 0.875044 for the
traditional algorithm and ρ2 = 0.858737 for the algorithm based on the matrix
U . Moreover, as can easily be observed from the figures 6.2, 6.3 and 6.4, for this
particular example the rate of convergence of the sequence obtained by starting
with X0 = I is equal to the second largest modulus eigenvalue of the matrix R̂F .

An important role of the matrix R̂F is also played in the analysis of the local
convergence of functional iterations Xn+1 = F (Xn).

Theorem 6.20 Let fF (x) : R
m2 → R

m2
be the function defined by

fF (x) = vec
(
F
(
vec−1(x)

))
,

where F (X) is given in (6.20), and denote by JF (x) the m2 × m2 Jacobian
matrix associated with the function fF (x). If F (G) = G, then fF (g) = g where
g = vec(G), and JF (g) =

∑+∞
j=0(G

j)T ⊗ Yn(G), where
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Fig. 6.2 Residual errors of the natural algorithm, for X0 = 0 (graph marked with +),
and for X0 = I (graph marked with �).

Y0(G) = (I − H(G))−1
+∞∑
i=1

KiG
i−1

Yj(G) = (I − H(G))−1
+∞∑
i=j

AiG
i−j , j ≥ 1.

Proof The proof follows directly from the properties of the Kronecker product.
�

Observe that, if µ ≤ 0, and hence G = Gmin, then JF (g) = R̂F . If µ < 0, one
has ρ(R̂F ) < 1. Therefore, the above theorem implies the local convergence in
light of Theorem 6.2.

A remarkable property, pointed out by Latouche and Taylor [81], is that if
µ > 0, so that Gmin �= Gsto, there are at least two different nonnegative fixed
points for the function A(X). Moreover, while Gmin is an attractive fixed point,
the matrix Gsto is not attractive so that the sequence {Xn}n≥0 generated by
functional iterations with X0 stochastic, or even belonging to a close neighbor-
hood of Gsto, may fail to converge to Gsto and may converge to Gmin. The reason
of this behaviour is that the spectral radius of the Jacobian of JF (vec(Gsto)) is
greater than 1 so that the conditions of Theorem 6.20 are not satisfied, while
ρ(JF (vec(Gmin))) < 1.

6.2.4 Computational issues

In this section we discuss some problems related to the computational aspects
of functional iterations. A first approximation that we must do in order to nu-
merically solve the matrix equation (6.1) is to truncate the matrix power series
(6.1) to a matrix polynomial



LINEARLY CONVERGENT ITERATIONS 165

-12

-10

-8

-6

-4

-2

0

2

0 50 100 150 200 250

L
o

g
 (

re
si

d
u

a
l)

Iterations

Identity
Zero

Fig. 6.3 Residual errors of the traditional algorithm, for X0 = 0 (graph marked with
+), and for X0 = I (graph marked with �).

X =
k∑

i=−1

AiX
i+1. (6.39)

An important issue which must be taken into account is the analysis of the conse-
quences of replacing the power series matrix equation (6.1) with the polynomial
matrix equation (6.39). In fact, the truncated matrix equation has a minimal non-
negative solution G̃min such that G̃min ≤ Gmin. The problem of giving bounds
to the error Gmin − G̃min is not trivial at all as the following example of Gail,
Hantler and Taylor [42] shows.

Example 6.21 Consider the matrix polynomial A(z) = A−1 + zA0 + z2A1 +
zkAk−1, where k > 2 and

A−1 =
[

p 0
0 0

]
, A0 =

[
0 1 − p − q
0 0

]
, A1 =

[
q 0
0 1 − ε

]
, Ak−1 =

[
0 0
ε 0

]
with p+q ≤ 1, ε > 0. One has µ < 0 if and only if p > q+(1−p−q)(k−2+1/ε).
Consider also the approximation to A(z) given by Ã(z) = A−1 + zA0 + z2A1

and observe that Ã(1) is reducible whereas A(1) is irreducible. The minimal
nonnegative solutions of the equations X = A(X) and X = Ã(X) are

Gmin =
[

1 0
1 0

]
, G̃min =

[
α 0
0 0

]
,

respectively, where α = [1 − (1 − 4pq)1/2]/(2q) is independent of ε. Thus, even
though the difference A(z) − Ã(z) becomes negligible as ε → 0, the difference
Gmin − G̃min remains away from zero.



166 FUNCTIONAL ITERATIONS

-12

-10

-8

-6

-4

-2

0

2

0 50 100 150 200 250

L
o

g
 (

re
si

d
u

a
l)

Iterations

Identity
Zero

Fig. 6.4 Residual errors of the algorithm based on matrix U , for X0 = 0 (graph
marked with +), and for X0 = I (graph marked with �).

The following result of Gail, Hantler and Taylor [42] provides bounds on the
error Gmin − G̃min.

Theorem 6.22 Let A(z) =
∑+∞

i=−1 zi+1Ai be the Laurent matrix power series
associated with an M/G/1-type Markov chain such that µ < 0. Let Gmin the
minimal nonnegative solution of the matrix equation (6.1). Consider the trun-

cated polynomial Ã(z) =
∑k

i=−1 zi+1Ai and let G̃min be the minimal nonnegative

solution of the matrix equation X = Ã(X). Then 0 ≤ G̃min ≤ Gmin and

(Gmin − G̃min)1 ≤
(
I −
∑
i≥0

A∗
i

)−1

(A(1) − Ã(1))1.

Observe that, since the term (A(1)−Ã(1))1 is the truncation error
∑

i>k Ai1,
the nonnegative matrix (I−

∑
i≥0 A∗

i )
−1 expresses the amplification factor of the

truncation error in the solution G̃min.
Another computational issue related to the implementation of the functional

iterations analyzed in this section concerns the evaluation of a matrix polynomial
at a matrix value. More precisely, given the matrix polynomial B(z) =

∑k
i=0 ziBi

and the matrix X, compute the matrix Y = B(X) =
∑k

i=0 BiX
i.

The Horner rule provides a means to perform this computation in a reliable
and efficient way. It is based on the expression

B(X) =
(

. . .
(
(BkX + Bk−1)X + Bk−2

)
X + · · ·

)
X + B0

which can be computed by means of Algorithm 6.1
Observe that the computational cost of Algorithm 6.1 is just k matrix mul-

tiplications and k matrix additions for an overall cost of 2km3 arithmetic oper-
ations.
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Algorithm 6.1 Horner rule for matrix polynomials
Input: The degree k and the m × m matrix coefficients Bi, i = 0, . . . , k, of the
matrix polynomial B(z) =

∑k
i=0 ziBi, an m × m matrix X.

Output: The m × m matrix Y = B(X).

Computation:

1. Set Y = Bk.
2. For i = 1, . . . , k compute Y = Y X + Bk−i.

A different but not less relevant computational problem is to design criteria
for stopping the functional iteration. The most natural way is to halt the iteration
if ‖Xn+1−Xn‖ ≤ ε for a given positive ε and for a given norm ‖·‖. The following
theorem relates the error Gmin −Xn with ε when the iteration is halted with the
above criterion. A similar result holds for general functional iterations generated
by F (X) of (6.20).

Theorem 6.23 Let {Xn}n≥0 be any sequence generated by the natural func-
tional iteration Xn+1 = A(Xn) and assume that limn Xn = G. Then we have

vec(G − Xn) =
(
I −

+∞∑
i=0

(GT)i ⊗
+∞∑
j=i

AjX
j−i
n

)−1

vec(Xn+1 − Xn).

Proof One has Xn+1 − Xn = −(G − Xn+1) + (G − Xn). Moreover, by ap-
plying the same arguments used in the proof of Theorem 6.5, we find that
G−Xn+1 =

∑+∞
i=0

∑+∞
j=i AjX

j−i
n (G−Xn)Gi. Therefore, by using the properties

of the Kronecker product we obtain the claim. �

Observe that, in the limit, the matrix in the above theorem turns into (I −∑+∞
i=0 (GT)i ⊗∑+∞

j=i AjG
j−i). In the case where µ < 0 and G = Gmin then the

above matrix is a nonsingular M-matrix and coincides with I − R̂F of (6.31),
therefore its inverse is nonnegative and has spectral radius (1 − ρ(R̂F ))−1. In
particular, if ρ(R̂F ) is close to 1, besides a slow convergence rate of the sequence
{Xn}n≥0, we have the drawback that a small value of ε does not guarantee a
small approximation error in Gmin.

In Algorithm 6.2 we report a scheme for the computation of Gmin by using
the general functional iteration generated by (6.20). Different specification of
the polynomials H(z) and K(z) provide the different algorithms analyzed in this
section.

In Table 6.1 we report the costs per step of the natural, traditional and
U -based iterations applied to the polynomial equation (6.39), where, for the
traditional algorithm the inversion of I −A0 is performed once for all and is not
included in the evaluation of the cost per step.

Natural choices for X0 are X0 = 0 and X0 = I. If µ < 0, in both cases
the convergence to the minimal solution is guaranteed and all the matrices Xn
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Algorithm 6.2 General functional iteration: M/G/1 case
Input: The integer k > 0 and the m × m matrix coefficients Ai, i = −1, . . . , k,
of the matrix polynomial A(z) =

∑k
i=−1 zi+1Ai, such that µ < 0; an m × m

matrix X0; a positive ε and the matrix polynomials H(X) and K(X) defining
the matrix function F (X) of (6.20).

Output: An approximation Y of the minimal nonnegative solution Gmin of the
equation X = A(X) such that ‖Y − F (Y )‖ ≤ ε for a given norm ‖ · ‖.
Computation:

1. Set X = X0

2. Apply Algorithm 6.1 to compute H(X) and K(X).
3. Set Y = (I − H(X))−1K(X).
4. If ‖X − Y ‖ ≤ ε then output Y = X. Otherwise set X = Y and repeat from

step 2.

generated by the algorithm are nonnegative, moreover their computation in-
volves addition of nonnegative numbers and inversion of an M-matrix. This fact
guarantees that no numerical cancellation is encountered in the computation
so that the algorithm is numerically stable. However, the choice X0 = I pro-
vides a faster convergence rate. If µ < 0 and X0 = I, the approximation Y to
Gmin is substochastic. Therefore, the condition ‖1 − Y 1‖∞ ≤ ε guarantees that
‖Gmin − Y ‖∞ ≤ ε. Thus the inequality ‖1− Y 1‖∞ ≤ ε is a valid stop condition
for the iteration.

If the Markov chain models a QBD problem, then Ai = 0 for i > 1 so that
A(z) is a polynomial of degree 2. In this case the functional iterations have a
simpler formulation and their complexity per steps is very small. In Table 6.2 we
report the cost of performing one step for the sequences X

(N)
n , X

(T )
n and X

(U)
n ,

where the inversion of I − A0 in the traditional algorithm is performed once for
all and is not included in the evaluation of the cost per step.

6.2.5 Further developments

In Section 6.2.3 we have pointed out that, when µ ≤ 0, we may improve the rate
of convergence by choosing an appropriate initial approximation, which shares
with Gmin the dominant eigenvalue and the corresponding right eigenvector.
In the case where µ > 0 one could think of applying a similar strategy, if the
dominant eigenvalue, and the corresponding right eigenvector of Gmin are known.
Unfortunately, in this case Gmin is not stochastic, so the dominant eigenvalues
is not readily available. An alternative strategy to improve the convergence, in
the case where µ > 0 and Ai = 0, for i > k, for a suitable k > 1, could be to
apply the shifting technique of Section 3.6 to move the singular point z = 1 of
det(zI−A(z)) to infinity. Then, by means of functional iterations with null initial
approximation, we compute the minimal (in the sense of spectral radius) solution
of the new matrix equation, which provides the matrix Gmin. A precise analysis
of the convergence rate obtained after the shifting has not been performed, but
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Algorithm Additions Multiplications Inversions
Natural k + 1 k + 1 0

Traditional k k + 2 0
Matrix U -based k k + 1 1

Table 6.1 Costs per step of the functional iterations in terms of matrix operations.

several numerical experiments have shown that the speed of convergence is much
improved in many cases.

6.3 Newton’s iteration

Our purpose here is to show that Newton’s method can be applied for solv-
ing (6.1), the iteration is well defined, and the convergence is monotonic and
quadratic under very weak conditions which are extremely simple to verify, and
which have a fundamental probabilistic interpretation.

Throughout the section we assume that µ < 0 and that

+∞∑
i=−1

(i + 1)2Ai < +∞. (6.40)

We define 〈0, G〉 the set of matrices X such that 0 ≤ X ≤ Gmin (we use the
natural partial order where X ≤ Gmin if Xi,j ≤ (Gmin)i,j for all i and j). We
define the operator M on 〈0, Gmin〉 as follows:

MX =
+∞∑
i=0

AiX
i. (6.41)

Observe that the series above converges for all X in 〈0, Gmin〉. Moreover, we have
that

MX ≤ MY, for all X ≤ Y in 〈0, Gmin〉. (6.42)

We also define the matrix U = MGmin, which is nonnegative, substochastic, and
ρ(U) < 1.

The operator L on 〈0, U〉 is defined as follows:

LV = (I − V )−1A−1. (6.43)

Since ρ(U) < 1, therefore ρ(V ) < 1 for all V in 〈0, U〉, so that (I − V )−1 exists
and is equal to the series

∑
ν≥0 V ν . As a consequence, we have that

LV ≤ LW, for all V ≤ W in〈0, U〉. (6.44)

We also have that LU = Gmin so that M applies 〈0, G〉 on 〈0, U〉, and L applies
〈0, U〉 on 〈0, G〉.
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Algorithm Additions Multiplications Inversions
Natural 2 2 0

Traditional 1 2 0
Matrix U – based 1 2 1

Table 6.2 Costs per step of the functional iterations for QBD problems in terms of
matrix operations.

Finally, we define as follows the operator F on 〈0, G〉:

FX = {I − LM}X, (6.45)

where I is the identity operator such that IX = X. In fact, the operator F is
well defined for any (sub)stochastic matrix X. The matrix Gmin is the minimal
non-negative solution of the equation FX = 0.

Our objective is to show that Newton’s sequence

Xn+1 = Xn −F ′(Xn)−1FXn, n ≥ 0 (6.46)

is well defined, converges monotonically to Gmin if X0 is in 〈0, Gmin〉, and con-
verges quadratically.

The Gateaux derivatives of M and L are operators such that

M′(X)H =
+∞∑
i=1

Ai

∑
0≤j≤i−1

XjHXi−1−j , (6.47)

L′(V )H = (I − V )−1H(I − V )−1A−1, (6.48)

and for any H ≥ 0 satisfy the inequalities

M′(X)H ≤ M′(Y )H, for all X ≤ Y in 〈0, Gmin〉, (6.49)
L′(V )H ≤ L′(W )H, for all V ≤ W in 〈0, U〉. (6.50)

We shall show that the chain rule applies, so that F ′(X) is given by

F ′(X) = I − L′(MX)M′(X),

and we shall successively prove that F ′ is Lipschitz-continuous, order-concave,
antitone and non-singular on 〈0, Gmin〉.

Under condition (6.40) we may easily verify that the right-hand side of (6.47)
is well defined for X in 〈0, Gmin〉. For that purpose, it suffices to prove that
|M′(X)H|1 is finite:



NEWTON’S ITERATION 171

|M′(X)H|1 ≤
+∞∑
i=1

Ai

i−1∑
j=0

Xj |H|Xi−1−j1

≤
+∞∑
i=1

Ai

i−1∑
j=0

Xj |H|1

≤ c

+∞∑
i=1

Ai

i−1∑
j=0

Xj1 ≤ c

+∞∑
i=1

iAi1,

which is finite by assumption. The second and fourth inequalities result from
X1 ≤ Gmin1 ≤ 1; for the third inequality, we choose c such that |H|1 ≤ c1.

Here we use ‖ · ‖ to denote the infinity norm, however the results that we
obtain are valid for any induced norm. We recall the following monotonicity
property of the infinity norm:

‖X‖∞ ≤ ‖Y ‖∞ ≤ 1 for all X ≤ Y in 〈0, Gmin〉 or 〈0, U〉. (6.51)

Our first step is to analyze the operator M and its derivative.
Lemma 6.24 The operators M and M′ are Lipschitz-continuous on 〈0, Gmin〉,
and M′(X) is the Fréchet derivative of M. The norm of M′ is uniformly bounded
on 〈0, Gmin〉.
Proof Assume that H is a matrix of norm 1, and that X,Y are two matrices
in 〈0, Gmin〉. We may write

[M′(X) −M′(Y )]H =
+∞∑
i=1

Ai

i−1∑
j=0

(XjHXi−1−j − Y jHY i−1−j),

since we show below that the series in the right-hand side is absolutely conver-
gent. Thus, we have that

‖[M′(X) −M′(Y )]H‖ ≤
+∞∑
i=1

‖Ai‖
i−1∑
j=0

‖XjHXi−1−j − Y jHY i−1−j‖,

≤‖H‖
+∞∑
i=1

‖Ai‖
i−1∑
j=0

‖Xj − Y j‖(‖Xi−1−j‖ + ‖Y i−1−j‖),

≤2
+∞∑
i=1

‖Ai‖
i−1∑
j=0

‖Xj − Y j‖,

since ‖H‖ = 1, and ‖X‖, ‖Y ‖ ≤ ‖Gmin‖ ≤ 1 by (6.51). We also have that

‖Xj − Y j‖ ≤ (‖X‖j−1 + ‖X‖j−2‖Y ‖ + · · · + ‖Y ‖j−1)‖X − Y ‖
≤ j‖X − Y ‖.

Hence, for the operator norm of M′(X) −M′(Y ) it holds
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‖M′(X) −M′(Y )‖ ≤ γ1‖X − Y ‖, (6.52)

with γ1 =
∑+∞

i=1 i(i−1)‖Ai‖. This last series converges since the matrices Ai are
nonnegative, and we assumed that the series

∑+∞
i=1 (i + 1)2Ai converges due to

the assumption (6.40).
Since the coefficient γ1 in (6.52) is independent of X and Y , therefore M′

is Lipschitz-continuous, it is the Fréchet derivative of M and M is Lipschitz-
continuous (see Ortega Rheinboldt [95] sections 3.2.8 and 3.1.6).

Finally, the norm of M′(X) is bounded as follows:

‖M′(X)‖ ≤ ‖M′(X) −M′(0)‖ + ‖M′(0)‖.

The right-hand side is independent of X since M′ is Lipschitz-continuous and
‖X‖ ≤ ‖Gmin‖. �

Our second step is to prove similar properties for the operator L′. We shall
temporarily denote by A the operator AV = (I − V )−1, for V in 〈0, U〉. It is
easily seen that

AV ≤ AW ≤ AU, for all V ≤ W in 〈0, U〉, (6.53)

and also that A is Fréchet-differentiable in 〈0, U〉, with the derivative A′(V )
being defined as follows:

A′(V )H = (AV )H(AV ). (6.54)

Lemma 6.25 The operator L′ is Lipschitz-continuous and uniformly bounded
in 〈0, U〉.
Proof Assume that H is a matrix of norm 1, and that V and W are in 〈0, Gmin〉.
Then

‖[L′(V ) − L′(W )]H‖
≤ ‖(AV )H(AV )A−1 − (AW )H(AW )A−1‖
≤ (‖AV ‖ + ‖AW‖)‖H‖‖AV −AW‖‖A−1‖
≤ 2‖A−1‖‖AU‖‖AV −AW‖, by (6.53), (6.51)
≤ 2‖A−1‖‖AU‖( sup

0≤t≤1
‖A′(Vt)‖)‖V − W‖,

by [95], section 3.2.3, where Vt = V + t(W − V ) is in 〈0, U〉 for 0 ≤ t ≤ 1. From
(6.53), (6.54), we obtain that

sup
0≤t≤1

‖A′(Vt)‖ ≤ ( sup
0≤t≤1

‖AVt‖)2 ≤ ‖AU‖2.

and eventually that

‖L′(V ) − L′(W )‖ ≤ γ2‖V − W‖,

where γ2 = 2‖A−1‖‖AU‖2 is independent of V and W . This proves that L′(V )
is Lipschitz-continuous.
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Finally, we have that

‖L′(V )‖ ≤ ‖L′(V ) − L′(0)‖ + ‖L′(0)‖,

where the right-hand side is independent of V , since L′ is Lipschitz-continuous
and ‖V ‖ ≤ ‖U‖. �

Since both M′ and L′ are Fréchet derivatives, the chain-rule applies and
F ′(X) = I −L′(MX)M′(X) is the Fréchet derivative of F at X. The operator
F and its derivative have the following properties.
Lemma 6.26 The operator F is order-concave on 〈0, Gmin〉; the operator F ′ is
antitone and Lipschitz-continuous on 〈0, Gmin〉.
Proof Let us consider two matrices X and Y in 〈0, Gmin〉 such that X ≤ Y ,
and let us define V = MX,W = MY . The following inequality immediately
results from (6.42), (6.49), (6.50):

F ′(X) −F ′(Y ) = L′(W )M′(Y ) − L′(V )M′(X) ≥ 0,

which proves that F ′ is antitone. Then, if X ≤ Y ,

[F ′(X) −F ′(Y )](X − Y ) ≤ 0,

which proves that F is order-concave (see [95] section 13.3.2).
The last statement is proved as follows. For any X, Y in 〈0, Gmin〉, we have

that

‖F ′(X) −F ′(Y )‖
= ‖L′(MX)M′(X) − L′(MY )M′(Y )‖
≤ ‖L′(MX) − L′(MY )‖‖M′(X)‖ + ‖L′(MY )‖‖M′(X) −M′(Y )‖
≤ c1‖L′(MX) − L′(MY )‖ + c2‖L′(MY )‖‖X − Y ‖,

for some constants c1 an c2 by Lemma 6.24. Since X and Y are in 〈0, Gmin〉,
therefore MX and MY are in 〈0, U〉 and we may apply Lemma 6.25, to obtain

‖F ′(X) −F ′(Y )‖ ≤ (c3c1 + c4c2)‖X − Y ‖

for some constants c3 an c4. This proves that F ′ is Lipschitz-continuous in 〈0, G〉.
�

Finally, we prove that F ′(X) is nonsingular. We shall write F ′(X) as I −
P(X), with

P(X)H = L′(MX)M′(X)H

= (I −MX)−1
+∞∑
i=1

Ai

i−1∑
j=0

XjHXi−1−j(I −MX)−1A−1.

The linear operator P(X) is nonnegative, and is increasing in 〈0, Gmin〉: P(X) ≤
P(Y ) for X ≤ Y , by (6.42), (6.49), (6.50).
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Lemma 6.27 If the constant µ defined in Theorem 4.7 is such that µ < 0, then
the spectral radius of P(X) is strictly less than one for all X in 〈0, Gmin〉. This im-
plies that F ′(X) = I−P(X) is nonsingular, and that F ′(X)−1 =

∑
ν≥0(P(X))ν

is nonnegative. If µ = 0, then F ′(Gmin) is singular.

Proof Since P(X) is increasing in 〈0, Gmin〉, and since ρ(A) ≤ ρ(B) for 0 ≤
A ≤ B, it is enough to prove the stated properties for P(Gmin), which may be
written as

P(Gmin)H = (I − U)−1
+∞∑
i=1

Ai

i−1∑
j=0

GjHGi−j ,

since MGmin = U , and (I −U)−1A−1 = LU = Gmin. After elementary manipu-
lations, we find that

P(Gmin) = (I − U)−1[T ∗(Gmin) − UI],

where the linear operator T ∗(Gmin) is defined as [90], Equation (46); its spectral
radius is strictly less than one if µ < 0, and equal to one if µ = 0 ([90], Corollary
3 and Lemma 5).

Since we also have that

F ′(Gmin) = I − P(Gmin) = (I − U)−1[I − T ∗(Gmin)],

we see that F ′(Gmin) is nonsingular if µ < 0.
Define the matrix M which is the solution to the equation

(I − P(Gmin))M = (I − U)−1E,

where E is the matrix with all elements equal to one. We have that

M = (I − P(Gmin))−1(I − U)−1E

= (I − T ∗(Gmin))−1E

=
∑
ν≥0

(T ∗(Gmin))νE ≥ E > 0,

since the spectral radius of T ∗(Gmin) is strictly less than one. As (I −U)−1 ≥ I,
we have that (I−P(Gmin))M ≥ E, which implies that P(Gmin)M ≤ M−E < M .
This last inequality, together with the facts that M > 0 and that P(Gmin) is
nonnegative, implies that the spectral radius of P(Gmin) is strictly less than one.

�

The theorem below is stated without proof. In view of Lemmas 6.24–6.27,
we merely need to paraphrase the proof of [95] 13.3.4. As indicated in [95] page
452, there are four sets of natural versions of that theorem. Ours correspond to
the fourth column in [95] Table 13.1, page 444.
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Theorem 6.28 Let F be defined by (6.41), (6.43), (6.45). Assume that A is
irreducible, that

∑+∞
i=−1(i + 1)2Ai is convergent, and that µ < 0. Assume that

X0 is chosen such that 0 ≤ X0 ≤ Gmin, and FX0 ≤ 0. Then Newton’s iterates

Xn+1 = Xn −F ′(Xn)−1FXn, for n ≥ 0,

are well defined and converge to Gmin as n tends to infinity. They satisfy the
inequality Xn ≤ Xn+1 for all n ≥ 0. There exists a positive constant c such that

‖Xn+1 − Gmin‖ ≤ c‖Xn − Gmin‖2,

for all n ≥ 0.

6.3.1 Computational issues

The major problem is to evaluate expressions of the form F ′(X)−1W for certain
substochastic matrices X and W , see equation (6.46). In other words, for given
matrices X and W , we have to find the unique matrix Z such that F ′(X)Z = W ,
or

Z − (I −MX)−1
+∞∑
i=1

Ai

i−1∑
j=0

XjZXi−1−j(I −MX)−1A−1 = W.

One method proceeds by successive substitutions; another transforms the equa-
tion above into a more standard linear system equation. This is a well-known
procedure, see Lancaster and Tismenetsky [74], which we have already intro-
duced in Section 2.1. In fact, with the notation (2.1), in light of (2.2) one has
(I − DX)z = vec(W ), where z = vec(F ′(X)−1W ),

DX =
+∞∑
i=1

i−1∑
j=0

AT
−1(I − V T)−1(XT)i−1−j ⊗ (I − V )−1AiX

j ,

and V = MX.
The resulting scheme is described in Algorithm 6.3 where we assumed that

the matrices Ai are negligible for i ≥ k + 1. If µ < 0, then it is known that
Gmin is stochastic, so that the stopping criterion ‖Y 1−1‖∞ ≤ ε guarantees that
‖Y − Gmin‖∞ ≤ ε.

A simple analysis shows that the number of multiplications and divisions
needed by one step of Newton’s iteration is given by

1
3
m6 + km4 +

1
2
k2m3 +

3
2
km3 − 2

3
m3 + O(m). (6.55)

This is much larger than the complexity of one step of the very simple algorithms
which implements the classic iterations of Section 6.2 described in Algorithm 6.2.
Newton’s method, therefore, is not very attractive, except in cases where m and
k have small values and where the number of iterations required by the classic
iterations is very high. However, it may be used as a standard with which one
may compare the speed of other algorithms.



176 FUNCTIONAL ITERATIONS

Algorithm 6.3 Newton’s iteration: M/G/1 case
Input: The integer k > 0 and the m × m matrix coefficients Ai, i = −1, . . . , k,
of the matrix polynomial A(z) =

∑k
i=−1 zi+1Ai, such that µ < 0; a positive ε.

Output: An approximation Y to the minimal nonnegative solution Gmin of the
equation X = A(X) such that ‖Y − Gmin‖∞ ≤ ε.

Computation

1. Set Y = (I − A0)−1A−1.
2. Set V = Ak.
3. For i = 1 to k + 1 compute V = Ak−i + V Y .
4. Set DY = 0 and T = AT

−1(I − V T)−1.
5. For i = 1 to k

(a) Set S = Ak.
(b) For j = k − i to 1 compute S = Ak−j + SY .
(c) Compute S = (I − V )−1S, DY = DY + T ⊗ S and T = TY T.

6. Compute z = (I − DY )−1 vec((I − V )−1A−1 − Y ).
7. Compute Y = Y + vec−1

m (z).
8. If ‖Y 1 − 1‖∞ ≤ ε then output Y , else repeat from step 2.

6.4 Bibliographic notes

A general theory on functional iterations can be found in the book [95]. Vari-
ous iterative methods for solving matrix equations in Markov chains have been
proposed by M. Neuts, V. Ramaswami and G. Latouche in [91], [92], [97], [75].
The monotonic convergence of natural and traditional iterations is investigated
by M. Neuts in [92]. The iteration based on the matrix U has been introduced
and analyzed in [76] where the different speeds of convergence of the sequences
{X(N)

n }n≥0, {X(T )
n }n≥0 and {X(U)

n }n≥0 is proved and where the different behav-
ior of the sequences obtained with X0 = 0 and X0 stochastic has been observed.
A systematic analysis of the rate of convergence of these sequences is performed
in [88]. The analysis of the stability of the convergence to Gmin and to Gsto for
transient QBD processes is performed in [81].

Newton’s iteration has been introduced and studied in [77].
In the literature there exist other results concerning functional iterations for

solving matrix equations in Markov chains, which are not reported in this book.
In particular, acceleration techniques of classical functional iterations, based on
the choice of the starting approximation X0 and on relaxation techniques, are
developed in [38] and [37]. These techniques, however, in order to be effective,
require additional information on the spectral properties of Gmin. Different func-
tional iterations which are inverse-free have been introduced in [6] and analyzed
in [55]. The speed of convergence of these iterations is compared with the conver-
gence of classical linearly convergent iterations only in the case where X0 = 0.
Functional iterations having linear convergence with an arbitrarily small conver-
gence rate have been designed in [10] and are reported in Section 8.3.
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Functional iterations for solving quadratic matrix equations encountered in
different contexts are also investigated in [64], [65].
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7

LOGARITHMIC REDUCTION AND CYCLIC
REDUCTION

7.1 Introduction

In this chapter we continue the analysis of numerical methods for computing
the minimal nonnegative solution Gmin of the matrix equation (4.4), that is,
X =

∑+∞
i=−1 AiX

i+1 associated with the M/G/1-type Markov chain with tran-
sition matrix (4.3). We recall that Ai, i = −1, 0, . . ., are m × m matrices with
nonnegative elements such that

∑+∞
i=−1 Ai is stochastic.

Here we follow an approach which is completely different from the one used
in Chapter 6. The methods that we will design in this chapter, based on a
divide-and-conquer strategy, have the nice feature of providing sequences of ap-
proximations which generally converge quadratically to Gmin and do not require
any initial approximation in order to be started.

Unlike Newton’s iteration, which shares with the algorithms of this chapter
the quadratic convergence speed, the cost of one step of the algorithms designed
here is comparable with the cost of one step of the classic functional iterations
of Chapter 6. This makes the methods particularly effective, especially in the
cases where the Markov chain is close to being null recurrent. In fact in this
situation the number of iterations needed by the functional iteration methods of
Chapter 6 is generaly extremely large whereas the methods based on divide-and-
conquer strategies still converge quickly. In particular, for null recurrent Markov
chains, the convergence of classical functional iterations is sublinear whereas the
convergence of the methods designed in this chapter is at least linear and it is
possible to turn to quadratic convergence with a simple modification.

In the case of QBD processes, the methods based on the divide-and-conquer
technique can be described and implemented in a very simple way. In the general
case of M/G/1-type Markov chains the algorithms are more involved and they
heavily rely on the structured matrix tools introduced in Chapters 2 and 3.

We start first by describing the algorithms in the case of QBD processes and
then we treat the general M/G/1-type case by extending almost all the properties
valid for QBDs.

Throughout this chapter we assume that Condition 4.20 is valid and that
a =

∑+∞
i=0 (i + 1)Ai1 is finite, so that in light of Theorem 4.24, z = 1 is the only

zero of modulus 1 of the function a(z) = det(zI −A(z)) defined in (4.23), where
A(z) =

∑+∞
i=−1 zi+1Ai.

179
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7.2 Logarithmic reduction

The algorithm of logarithmic reduction applies to QBD processes that is com-
putes the minimal nonnegative solution Gmin of the quadratic matrix equation

X = A−1 + A0X + A1X
2. (7.1)

The idea of logarithmic reduction relies on the possibility of expressing Gmin in
terms of G2

min, then expressing G2
min in terms of G4

min and so forth, so that one
arrives at a formula expressing Gmin in terms of G2n

min. This formula provides
an effective tool for approximating Gmin since, in light of Theorem 4.26, G2n

min

quadratically converges to 0 or to a matrix of rank 1 if the QBD is transient or
positive recurrent, respectively.

Since Gmin is a solution of (7.1), then we have

Gmin = B−1 + B1G
2
min (7.2)

where B−1 = (I − A0)−1A−1, B1 = (I − A0)−1A1. Post-multiplying (7.2) by
Gmin and by G2

min yields

G2
min = B−1Gmin + B1G

3
min, (7.3)

G3
min = B−1G

2
min + B1G

4
min. (7.4)

By performing a simple formal manipulation of the two equations above and of
(7.2) it is possible to arrive at a matrix equation in G2

min. More precisely, pre-
multiply (7.2) by B−1, premultiply (7.4) by B1, sum the equations obtained in
this way with (7.3) and get

G2
min = B2

−1 + (B−1B1 + B1B−1)G2
min + B2

1G4
min.

If the matrix I −B−1B1 −B1B−1 is nonsingular, the latter equation allows one
to express G2

min as a function of G4
min as

G2
min = B

(1)
−1 + B

(1)
1 G4

min (7.5)

where

B
(1)
−1 = (I − B−1B1 − B1B−1)−1B2

−1, B
(1)
1 = (I − B−1B1 − B1B−1)−1B2

1 .

In this way, replacing (7.5) in (7.2) provides the following expression of Gmin in
terms of G4

min

Gmin = B−1 + B1B
(1)
−1 + B1B

(1)
1 G4

min.

Assuming that all the matrices which must be inverted are nonsingular, this
process can be recursively repeated by generating successive expressions of Gmin

as functions of G2
min, G4

min, G8
min,. . . . More formally, assuming that no singularity
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is encountered, we generate the sequences of matrices {B(n)
−1 }n≥0 and {B(n)

1 }n≥0

by means of the following recursions

B
(n+1)
−1 = (C(n))−1(B(n)

−1 )2,

B
(n+1)
1 = (C(n))−1(B(n)

1 )2, n ≥ 0,
(7.6)

where
C(n) = I − B

(n)
−1 B

(n)
1 − B

(n)
1 B

(n)
−1 (7.7)

and
B

(0)
−1 = (I − A0)−1A−1, B

(0)
1 = (I − A0)−1A1.

The sequences of matrices generated in this way constitute the logarithmic re-
duction algorithm.

We may easily verify that, for any n ≥ 0,

Gmin = B
(0)
−1 +

n∑
i=1

(i−1∏
j=0

B
(j)
1

)
B

(i)
−1 +

n∏
j=0

B
(j)
1 G2n+1

min , (7.8)

where, given the matrices R0, . . . , Ri, the product
∏i

j=0 Ri is equal to R0R1 · · ·Ri.
In the case where the drift µ is nonzero (see equation (4.17)) so that the QBD

is positive recurrent or transient, we may show that no breakdown is encountered
and that the matrix B

(n)
−1 + B

(n)
1 is stochastic for any n ≥ 0 as stated by the

following:

Theorem 7.1 If µ �= 0 then the matrices C(n) = I − B
(n)
−1 B

(n)
1 − B

(n)
1 B

(n)
−1

are nonsingular M-matrices for any n ≥ 0. Moreover, B
(n)
−1 ≥ 0, B

(n)
1 ≥ 0 and

B
(n)
−1 + B

(n)
1 is stochastic.

Proof One shows by induction that B
(n)
1 contains the probability that, starting

from level zero, the doubly infinite QBD with transition matrix

P ′ =



. . . . . . 0

. . . A0 A1

A−1 A0 A1

A−1 A0 A1

A−1 A0
. . .

0
. . . . . .


reaches the level 2n before it reaches the level −2n and B

(n)
−1 contains the probabil-

ity that the QBD reaches the level −2n before 2n; the detailed argument is given
in [79, page 191]. This leads us to the interpretation that B

(n)
−1 B

(n)
1 + B

(n)
1 B

(n)
−1

is the probability that, starting from level zero, the QBD returns to level zero
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after having reached 2n or −2n but before having reached 2n+1 or −2n+1, which
shows that C(n) is an M-matrix. Under Condition 4.20, the QBD may not re-
main forever locked between these two levels, so that, by Theorem 1.14, C(n) is
nonsingular.

We prove the second part of the theorem by induction on n. For n = 0 we
have B

(0)
−1 = (I −A0)−1A−1 ≥ 0, B

(0)
1 = (I −A0)−1A1 ≥ 0 and (B(0)

−1 +B
(0)
1 )1 =

(I −A0)−1(A−1 +A1)1 = 1. Now assume that the property holds for n ≥ 0, and
we prove it for n + 1. The matrices B

(n+1)
−1 and B

(n+1)
1 are clearly nonnegative.

Since (B(n)
−1 +B

(n)
1 )1 = 1 by the inductive hypothesis, then (B(n)

−1 +B
(n)
1 )21 = 1,

therefore

(I − B
(n)
−1 B

(n)
1 + B

(n)
−1 B

(n)
1 )−1((B(n)

−1 )2 + (B(n)
1 )2)1 = 1.

�

If µ is different from zero, nice convergence properties of logarithmic reduction
allow to deduce from (7.8) that the minimal nonnegative solution Gmin of (7.1)
is

Gmin = B
(0)
−1 +

+∞∑
i=1

(i−1∏
j=0

B
(j)
1

)
B

(i)
−1. (7.9)

Before showing this important property, we need to introduce the matrix Rmin,
that is the minimal nonegative solution of the quadratic matrix equation

X = A1 + XA0 + X2A−1. (7.10)

A crucial role in the analysis of the convergence is played by the spectral prop-
erties of the matrices Rmin and Gmin. We recall that (see Section 5.6), if µ < 0
then ρ(Gmin) = 1 and ρ(Rmin) < 1, if µ > 0 then ρ(Gmin) < 1 and ρ(Rmin) = 1.
If µ = 0 the situation is more delicate, since both Gmin and Rmin have spectral
radius equal to 1, however, under additional assumptions, some weaker conver-
gence properties hold.

It is also useful to provide a functional interpretation of logarithmic reduction.
To this puropose let us introduce the matrix polynomial

B(n)(z) = B
(n)
−1 + z2B

(n)
1 , n = 0, 1, . . . .

From (7.6) and (7.7) we may easily deduce that

(zI − B(n)(z))(−zI − B(n)(−z)) = −C(n)(z2I − B(n+1)(z2)), (7.11)

and since the right-hand side of (7.11) is a function of z2, we also have

(zI − B(n)(z))(−zI − B(n)(−z)) = (−zI − B(n)(−z))(zI − B(n)(z)), (7.12)

that is, the matrix polynomials zI −B(n)(z) and zI +B(n)(−z) commute. Equa-
tion (7.11) is important in the analysis of the convergence properties of logarith-
mic reduction. A simple observation which follows from (7.11) is that the roots
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of the matrix polynomial zI −B(n+1)(z) are the squares of the roots of the ma-
trix polynomial zI −B(n)(z). Moreover, from (7.11) and (7.12) we find that the
corresponding Jordan chains of zI − B(n)(z) and zI − B(n+1)(z) are the same.
This implies that the number of roots of zI − B(n)(z) inside, outside the unit
disk and on the unit circle, respectively, is the same for any n ≥ 0. Observe that,
since zI − B(0)(z) = (I − A0)−1(zI − A(z)), the roots of zI − B(0)(z) coincide
with the roots of zI − A(z).

In order to better understand the role of (7.11) consider the case where the
logarithmic reduction is convergent and denote by B(∞)(z) the limit of B(n)(z).
If zI−B(0)(z) has k roots of modulus less than 1 and h roots of modulus greater
than 1, then zI−B(∞)(z) has k roots equal to 0 and h roots at infinity. Moreover,
the Jordan chains of zI − B(∞)(z) corresponding to 0 and to infinity coincide
with the union of the Jordan chains of zI − B(0)(z) corresponding to the roots
inside the unit disk and outside the unit disk, respectively.

In the different cases where µ < 0 or µ > 0, we may provide more specific
convergence properties of logarithmic reduction based on the different location
of the roots of zI − A(z) with respect to the unit circle.

Theorem 7.2 If the drift µ is negative, equal to zero, or positive, respectively,
then for each n ≥ 0, the drift associated with the matrix polynomial B(n)(z)
is negative, equal to zero, or positive, respectively. Moreover, the matrices G2n

min

and R2n

min are the minimal nonnegative solutions of the matrix equations

X = B
(n)
−1 + B

(n)
1 X2,

X = B
(n)
1 + X2B

(n)
−1 ,

respectively.

Proof Assume that µ < 0. Then the matrix polynomial zI −B(0)(z) has m−1
roots of modulus less than 1, and one root equal to 1. Therefore, for the properties
of logarithmic reduction, the matrix polynomial zI − B(n)(z) has m − 1 roots
of modulus less than 1, and one root equal to 1, i.e., the drift associated with
B(n)(z) is negative as well (compare with Theorem 5.20). A similar argument
applies if µ = 0 or µ > 0.

We prove now the second part of the theorem by induction on n. For n = 0 the
thesis is obviously true. Assume that G2n

min is the minimal nonnegative solution
of X = B

(n)
−1 +B

(n)
1 X2, for a fixed n ≥ 0. Then we apply the same argument used

for proving (7.5). That is, we consider the equation G2n

min = B
(n)
−1 + B

(n)
1 (G2n

min)2

and the two equations obtained by post-multiplying it by G2n

min and by (G2n

)2,
respectively. Manipulating these three equations as we already performed at the
beginning of this section, yields

G2n+1

min = (B(n)
−1 )2 + (B(n)

−1 B
(n)
1 + B

(n)
1 B

(n)
−1 )G2n+1

min + (B(n)
1 )2(G2n+1

min )2

which implies G2n+1

min = B
(n+1)
−1 + B

(n+1)
1 (G2n+1

min )2. That is, G2n+1

min is a solution of
the matrix equation X = B

(n+1)
−1 + B

(n+1)
1 X2. Moreover, G2n+1

min is the minimal



184 LOGARITHMIC REDUCTION AND CYCLIC REDUCTION

solution since its eigenvalues are the m roots of the smallest moduli of zI −
B(n+1)(z) (compare with Theorem 4.10).

The same argument can be applied for Rmin. �

It is useful to introduce special notation for the root with largest modulus
of zI − A(z) in the open unit disk and the root of smallest modulus out of the
closed unit disk. More precisely we denote

ξ = min{|z| : det(zI − A(z)) = 0, |z| > 1},
η = max{|z| : det(zI − A(z)) = 0, |z| < 1}. (7.13)

Recall that, if µ < 0, then for Theorem 4.12 and Remark 4.25, ξ is a simple
zero of det(zI − A(z)) and there are no other zeros with the same modulus.
Similarly, if µ > 0, then η is a simple zero of det(zI − A(z)) and there are
no other zeros with the same modulus. This follows by applying Theorem 4.12
and Remark 4.25 to the reversed matrix polynomial A′(z) = A1 + zA0 + z2A−1

which defines a QBD with the drift µ < 0. In fact the roots of zI −A′(z) are the
reciprocal of the roots of zI − A(z).

If µ �= 0, we may prove suitable convergence properties of logarithmic reduc-
tion which allow the approximation of Gmin.

Theorem 7.3 If µ < 0 then for any matrix norm and for any ε > 0 such that
ε + η < 1, there exists γ > 0 such that

‖B(n)
1 ‖ ≤ γξ−2n

,

‖B(n)
−1 − 1gT‖ ≤ γ

(
ξ−2n

+ (η + ε)2
n)

,

‖I − C(n)‖ ≤ γξ−2n

and

‖Gmin − B
(0)
−1 −

n∑
i=1

(i−1∏
j=0

B
(j)
1

)
B

(i)
−1‖ ≤ γξ−2n

,

where g ≥ 0 is such that gTGmin = gT, gT1 = 1.
If µ > 0 then, for any matrix norm and for any ε > 0 such that ε + ξ−1 < 1,

there exists γ > 0 such that

‖B(n)
−1 ‖ ≤ γη2n

,

‖B(n)
1 − 1g′T‖ ≤ γ

(
(ξ−1 + ε)2

n

+ η2n)
,

‖I − C(n)‖ ≤ γη2n

,

and

‖Gmin − B
(0)
−1 −

n∑
i=1

(i−1∏
j=0

B
(j)
1

)
B

(i)
−1‖ ≤ γη2n

,

where g′ ≥ 0 is such that g′TĜmin = g′T, g′T1 = 1, and G′
min is the minimal

nonnegative solution of the equation X = A1 + A0X + A−1X
2.
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Proof Let us first suppose that µ < 0. In this case the matrix equation (7.10)
has a minimal nonnegative solution Rmin such that ρ(Rmin) = ξ−1; moreover
ξ−1 is simple and there are no other eigenvalues with the same modulus (see
Section 5.6). In light of Theorem 7.2 one has

0 ≤ B
(n)
1 = R2n

min − R2·2n

min B
(n)
−1 ≤ R2n

min.

For Theorem A.2 in the appendix, there exists a matrix norm ‖ · ‖ such that
‖Rmin‖ = ξ−1, therefore ‖R2n

min‖ ≤ ξ−2n

. Now observe that ‖B(n)
1 ‖∞ ≤ ‖R2n

min‖∞,
since ‖ · ‖∞ is monotonic when applied to nonnegative matrices. For the equiva-
lence of matrix norms (see Theorem A.1), there exists α > 0 such that ‖R2n

min‖∞ ≤
α‖R2n

min‖ ≤ αξ−2n

, therefore ‖B(n)
1 ‖∞ ≤ αξ−2n

. For the equivalence of ma-
trix norms we deduce that for any matrix norm there exists γ > 0 such that
‖B(n)

1 ‖ ≤ γξ−2n

. Concerning the convergence of the sequence {B(n)
−1 }n≥0, ob-

serve that, for any matrix norm

‖B(n)
−1 − 1gT‖ ≤ ‖1gT − G2n

min‖ + ‖B(n)
−1 − G2n

min‖.

From Theorem 7.2 we deduce that

‖B(n)
−1 −1gT‖ ≤ ‖1gT−G2n

min‖+‖B(n)
1 G2·2n

min ‖ ≤ ‖1gT−G2n

min‖+‖B(n)
1 ‖·‖G2·2n

min ‖.

By Theorem 4.26 for any matrix matrix norm ‖ · ‖ there exists γ′ > 0 such
that ‖Gn

min − 1gT‖ ≤ γ′(η + ε)n. Since the sequence {G2n

min}n≥0 is bounded we
conclude that for any norm ‖ · ‖, we have ‖B(n)

−1 −1gT‖ ≤ γ
(
(η + ε)2

n

+ ξ−2n)
for

a suitable positive γ. The convergence of the sequence I − C(n) follows directly
from the convergence of the sequences B

(n)
−1 and B

(n)
1 . Now, from (7.8) and from

the inequality 0 ≤ B
(n)
1 ≤ R2n

min, one has

0 ≤ Gmin − B
(0)
−1 −

n∑
i=1

(i−1∏
j=0

B
(j)
1

)
B

(i)
−1 =

n∏
j=0

B
(j)
1 G2n+1

min

≤
n∏

j=0

R2j

minG2n+1

min = R2n+1−1
min G2n+1

min .

Taking the infinity norm of both sides of the latter equation, since ‖A‖∞ ≤ ‖B‖∞
for 0 ≤ A ≤ B, we find that

‖Gmin − B
(0)
−1 −

n∑
i=1

(i−1∏
j=0

B
(j)
1

)
B

(i)
−1‖∞ ≤ ‖R2n+1−1

min G2n+1

min ‖∞

≤ ‖R2n+1−1
min ‖∞‖Gmin‖2n+1

∞

≤ ‖R2n+1−1
min ‖∞.

The proof is completed by invoking Theorem A.2 in the appendix.
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If µ > 0, it is sufficient to consider the QBD defined by the matrices A′
−1 =

A1, A′
0 = A0, A′

1 = A−1. For the latter QBD the drift is negative, and therefore
the first part of the theorem holds. Whence we deduce the second part. �

Observe that from the above theorem we deduce that the sequences {B(n)
−1 }n

and {B(n)
1 }n have quadratic convergence. At least one of the two sequences

converges to zero in the case where µ is different from zero. It is also interesting to
observe that the sequence {C(n)} generated by logarithmic reduction converges
to the identity matrix.

It is worth pointing out that the matrices Xn = B
(0)
−1 +

∑n
i=1

(∏i−1
j=0 B

(j)
1

)
B

(i)
−1

provide a nondecreasing sequence of nonnegative matrices which quadratically
converges to Gmin. This fact is very useful in order to design a stopping crite-
rion for the logarithmic reduction in the positive recurrent case where Gmin is
stochastic. In fact, in this case we have

1 − ‖Xn‖∞ = ‖Gmin − Xn‖∞.

The expression in the left-hand side provides a method for computing the ap-
proximation error ‖Gmin − Xn‖∞.

If µ = 0, the convergence of logarithmic reduction still holds under additional
assumptions, however the convergence becomes linear. For instance, consider the
case where m = 1 and A0 = 1/2, A1 = A−1 = 1/4, that is, B−1 = B1 = 1/2. In
this case we have Gmin = 1 and C(n) = B

(n)
−1 = B

(n)
1 = 1/2 for any n ≥ 0 so that

limn B
(n)
1 �= 0 and limn B

(n)
−1 �= 0. From (7.8) we find that the approximation

error

Gmin − B
(0)
−1 −

n∑
i=1

i−1∏
j=0

B
(j)
1

B
(i)
−1

is equal to 1/2n+1. That is, the convergence of logarithmic reduction becomes
linear with convergence rate 1/2.

Since the QBD defined by the blocks B−1, 0, B1 has a null drift, also the
Markov chain obtained by interchanging B−1 and B1 has null drift. Therefore
the quadratic matrix equation

X = B1 + B−1X
2

has a minimal nonnegative solution G′
min which is stochastic. Let us denote by g′

its probability vector. Since 1 is the only eigenvalue of modulus 1 for both Gmin

and G′
min, one has limn Gn

min = 1gT and limn G′
min

n = 1g′T. From Theorem 7.2
one has

G2n

min = B
(n)
−1 + B

(n)
1 G2·2n

min ,

G′
min

2n

= B
(n)
1 + B

(n)
−1 G′

min
2·2n

.
(7.14)
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Since B
(n)
−1 + B

(n)
1 is stochastic and B

(n)
−1 , B

(n)
1 are nonnegative, the sequences

{B(n)
−1 } and {B(n)

1 } are bounded. Therefore both of them have convergent sub-
sequences. Let B

(∞)
−1 and B

(∞)
1 denote the limits of some subsequence of {B(n)

−1 }
and {B(n)

1 }, respectively. From (7.14) one has

1gT = B
(∞)
−1 + B

(∞)
1 1gT,

1g′T = B
(∞)
1 + B

(∞)
−1 1g′T.

From the above equations we deduce that

B
(∞)
−1 = (1 − B

(∞)
1 1)gT = B

(∞)
−1 1gT,

B
(∞)
1 = (1 − B

(∞)
−1 1)g′T = B

(∞)
1 1g′T.

In particular the limits of the converging subsequences of B
(n)
−1 and B

(n)
1 are

matrices of rank 1 of the kind agT and bg′T where a + b = 1.
We are ready to state the following convergence result whose proof can be

found in [56].

Theorem 7.4 If the QBD is null recurrent and if for any convergent subse-

quence of B
(n)
−1 its limit agT is such that 0 < g′Ta < 1, then the sequences

{B(n)
−1 } and {B(n)

1 } are convergent and limn B
(n)
−1 = 1

21gT, limn B
(n)
1 = 1

21g′T.
Moreover, for any matrix norm

lim
n

‖Gmin −
n∑

i=0

(i−1∏
j=0

B
(j)
1

)
B

(i)
−1‖1/n =

1
2
.

According to [56], the assumptions of the above theorem concerning the prop-
erties of the limits of subsequences of {B(n)

−1 } are satisfied if

S(g′) ⊂ S(g), or S(g) ⊂ S(g′),

where for the vector v = (vi), we define S(v) = {i : 1 ≤ i ≤ m, vi = 0}.
The above condition is trivially satisfied if at least one of Gmin and G′

min is
irreducible, in fact, in this case one of the two vectors g and g′ is positive by the
Perron–Frobenius Theorem 1.27.

Observe that, according to Theorem 7.4, the convergence of logarithmic re-
duction applied to a null recurrent QBD is linear and the convergence rate is
1/2. Therefore logarithmic reduction is still more efficient than the functional
iteration methods of Section 6.2 which for null recurrent QBDs have sublinear
convergence. However, as we will show in Section 8.2, the application of suit-
able techniques enables one to transform the original null recurrent QBD into
a new problem for which the convergence of logarithmic reduction still remains
quadratic.
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Algorithm 7.1 Logarithmic reduction for QBDs: the case µ < 0
Input: The positive integer m and the m × m matrices A−1, A0, A1, defining a
positive recurrent QBD; a real ε > 0.

Output: An approximation Y of the minimal nonnegative solution of the equa-
tion (7.1) such that ‖Gmin − Y ‖∞ ≤ ε.

Computation:

1. Set Vi = (I−A0)−1Ai, i = −1, 1, W = I−V−1V1−V1V−1, Y = V−1, U = I.
2. Compute

V ′
−1 = W−1V 2

−1,

V ′
1 = W−1V 2

1 ,

W = I − V ′
−1V

′
1 − V ′

1V ′
−1,

U = UV1, Y = Y + UV ′
−1

and set Vi = V ′
i , i = −1, 1.

3. If 1 − ‖Y ‖∞ ≤ ε then output Y and stop, otherwise repeat from step 2.

Algorithm 7.1 synthesizes logarithmic reduction in the positive recurrent case,
where µ < 0. Since 0 ≤ Y ≤ Gmin and Gmin is stochastic, then the stop condition
1 − ‖Y ‖∞ ≤ ε implies that ‖Gmin − Y ‖∞ ≤ ε.

We observe that one step of logarithmic reduction can be performed with the
cost of one matrix inversion and eight matrix multiplications. Observe that in
the estimate of the computational cost we do not count matrix additions since
they have a lower cost in terms of the matrix size. In fact m×m matrix addition
costs m2 ops while matrix multiplication costs 2m3−m2 ops and matrix inversion
costs 2m3 + O(m2) ops if performed by means of LU factorization.

Concerning the numerical stability of logarithmic reduction, we observe that
at each step we have to invert the M-matrix W and to compute some products
of nonnegative matrices. Both computations are numerically stable. Possible nu-
merical cancellation could be encountered in the computation of the diagonal
elements of W . However, these subtractions of nonnegative numbers can be
avoided by using the trick of Grassman, Taksar and Heyman [53] adjusted to
this computation by Qiang Ye in [120].

It is interesting to observe that we may save one matrix product at each
step of logarithmic reduction if the matrices V 2

−1, V 2
1 and V−1V1 + V1V−1 are

computed with the following expressions:

T = (V−1 + V1)2,

Y = (V−1 − V1)2,

Z = V 2
−1,

V−1V1 + V1V−1 = (T − Y )/2;

V 2
1 = (T + Y )/2 − Z.
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In this way the cost per step is reduced to seven matrix multiplications and
one matrix inversion. A drawback of these faster formulae is that the numerical
stability properties of the classical implementation are not guaranteed. In fact
numerical cancellation may occurr in the computation of Y , (T − Y )/2 and
(T + Y )/2 − Z.

For transient QBDs, when µ > 0, logarithmic reduction can still be applied
but the stop condition must be modified since Gmin is not stochastic. In order
to do this, since the sequence B

(n)
−1 converges to zero we may halt the algorithm

if ‖B(n)
−1 ‖ ≤ ε for a suitable value of ε > 0. This condition does not immediately

provide an a-posteriori error bound on the approximation to Gmin even though,
in light of Theorem 7.3, the norm ‖B(n)

−1 ‖ and the error ‖Gmin − Xn‖ have the
same asymptotic decay.

The logarithmic reduction algorithm, modified in this way, is summarized in
Algorithm 7.2.

Algorithm 7.2 Logarithmic reduction for QBDs: the case µ > 0
Input: The positive integer m and the m × m matrices A−1, A0, A1, defining a
transient QBD; a real ε > 0.

Output: An approximation Y of the minimal nonnegative solution of the equa-
tion (7.1).

Computation:

1. Set Vi = (I−A0)−1Ai, i = −1, 1, W = I−V−1V1−V1V−1, Y = V−1, U = I.
2. Compute

V ′
−1 = W−1V 2

−1,

V ′
1 = W−1V 2

1 ,

W = I − V ′
−1V

′
1 − V ′

1V ′
−1,

U = UV1, Y = Y + UV ′
−1

and set Vi = V ′
i , i = −1, 1.

3. If ‖V−1‖∞ ≤ ε then output Y and stop, otherwise repeat from step 2.

For null recurrent QBDs, when µ = 0, even though the logarithmic reduction
algorithm still converges with a linear convergence, it is more convenient to
apply the acceleration techniques described in Section 8.2 which guarantee the
quadratic convergences even in this case.

7.3 Cyclic reduction for quasi-birth–death processes

The method of cyclic reduction, which we present in this section, was originally
introduced in the late 1960s by B.L. Buzbee, G.H. Golub and C.W. Nielson, for
solving certain block tridiagonal systems which arise in the numerical solution
of elliptic equations. Cyclic reduction can also be viewed as a simple modifica-
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tion of logarithmic reduction. The advantage of this modification is that unlike
logarithmic reduction, this technique can be extended to M/G/1-type Markov
chains.

In Section 3.3 we have shown that the matrix equation (3.12) defined by
the power series A(z) =

∑+∞
i=−1 zi+1Ai can be transformed into the semi-infinite

linear system (3.15). For the equation (7.1) this transformation leads to the linear
system 

I − A0 −A1 0
−A−1 I − A0 −A1

−A−1 I − A0
. . .

0 . . . . . .




Gmin

G2
min

G3
min
...

 =


A−1

0
0
...

 .

Applying an even–odd permutation to the block rows and to the block columns
of the above system yields

I − A0 0 −A−1 −A1 0
I − A0 −A−1

. . .

0 . . . 0 . . .
−A1 0 I − A0 0
−A−1 −A1 I − A0

0 . . . . . . 0 . . .





G2
min

G4
min
...

Gmin

G3
min
...


=



0
0
...

A−1

0
...


, (7.15)

which we rewrite in compact form as[
I − U1,1 −U1,2

−U2,1 I − U2,2

] [
x+

x−

]
=
[

0
b

]
,

where x+, x− are the block vectors of components G2i
min and G2i−1

min , respectively,
i = 1, 2, . . ., while b is the block vector with null components except the first one
which is equal to A−1.

Now we may apply one step of block Gaussian elimination to the 2× 2 block
system above and obtain[

I − U1,1 −U1,2

0 H

] [
x+

x−

]
=
[

0
b

]
,

where
H = I − U2,2 − U2,1(I − U1,1)−1U1,2.

From the above system we deduce that

Hx− = b.

In this transformation there are two remarkable properties which it is worth
pointing out. The matrix H, that is the Schur complement of I − U2,2, is the
block tridiagonal matrix
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H =


I − Â

(1)
0 −A

(1)
1 0

−A
(1)
−1 I − A

(1)
0 −A

(1)
1

−A
(1)
−1 I − A

(1)
0

. . .

0 . . . . . .


which is still block Toeplitz except for the block in position (1,1), where

A
(1)
−1 = A−1(I − A0)−1A−1,

A
(1)
0 = A0 + A−1(I − A0)−1A1 + A1(I − A0)−1A−1,

A
(1)
1 = A1(I − A0)−1A1,

Â
(1)
0 = A0 + A1(I − A0)−1A−1.

The other property is that the first block component of the unknown vector x−
in the system Hx− = b has the first block component equal to Gmin, and that
the right-hand side b is the same vector as in the original system.

In other words, the block even–odd permutation followed by one step of block
Gaussian elimination has led to a new system having almost the same structure
as the original system, namely

I − Â
(1)
0 −A

(1)
1 0

−A
(1)
−1 I − A

(1)
0 −A

(1)
1

−A
(1)
−1 I − A

(1)
0

. . .

0 . . . . . .




Gmin

G3
min

G5
min
...

 =


A−1

0
0
...

 .

Now we may repeat this process by applying again the even–odd permutation
followed by one step of block Gaussian elimination. After n steps of this process,
which is called cyclic reduction, we obtain the system

I − Â
(n)
0 −A

(n)
1 0

−A
(n)
−1 I − A

(n)
0 −A

(n)
1

−A
(n)
−1 I − A

(n)
0

. . .

0 . . . . . .




Gmin

G2n+1
min

G2·2n+1
min

G3·2n+1
min

...

 =


A−1

0
0
...

 (7.16)

where

A
(n+1)
−1 = A

(n)
−1 (I − A

(n)
0 )−1A

(n)
−1 ,

A
(n+1)
0 = A

(n)
0 + A

(n)
−1 (I − A

(n)
0 )−1A

(n)
1 + A

(n)
1 (I − A

(n)
0 )−1A

(n)
−1 ,

A
(n+1)
1 = A

(n)
1 (I − A

(n)
0 )−1A

(n)
1 ,

Â
(n+1)
0 = Â

(n)
0 + A

(n)
1 (I − A

(n)
0 )−1A

(n)
−1 ,

(7.17)

for n = 0, 1, . . ., and Â
(0)
0 = A0, A

(0)
i = Ai, i = −1, 0, 1.
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If the entire process can be carried out, that is, if det(I − A
(n)
0 ) �= 0 for

n = 0, 1, 2, . . ., and if det(I − Â
(n)
0 ) �= 0 then from the first equation of (7.16) we

find that
Gmin = (I − Â

(n)
0 )−1(A−1 + A

(n)
1 G2n+1

min ). (7.18)

This formula is a valid tool for approximating the minimal solution Gmin once we
prove that the sequence {A(n)

1 G2n+1
min } converges quadratically to zero and that

{I − Â
(n)
0 } is quadratically convergent to a nonsingular matrix.

This property will be proven in the general case of M/G/1 Markov chains in
the next section. Here, in the QBD case, we simply deduce this property from
the relationships between cyclic reduction and logarithmic reduction.

In order to point out the similarities between logarithmic reduction and cyclic
reduction, it is convenient to provide a functional formulation also of cyclic re-
duction. For this purpose let us introduce the quadratic matrix polynomial

A(n)(z) = A
(n)
−1 + zA

(n)
0 + z2A

(n)
1 .

From (7.17) we may easily deduce that

(zI − A(n)(z))(I − A
(n)
0 )−1(−zI − A(n)(−z)) = −(z2I − A(n+1)(z2)). (7.19)

Comparing (7.19) with (7.11) we deduce the following result which relates loga-
rithmic reduction and cyclic reduction:

Theorem 7.5 If µ �= 0 then cyclic reduction can be carried out and the following
equations hold

B
(n)
i = (I − A

(n)
0 )−1A

(n)
i , i = −1, 1,

C(n) = (I − A
(n)
0 )−1(I − A

(n+1)
0 ),

(7.20)

for n = 0, 1, . . .. Moreover the matrix A
(n)
−1 + A

(n)
0 + A

(n)
1 is stochastic for any

n ≥ 0.

Proof We proceed by induction. For n = 0 we have B
(0)
i = (I − A0)−1Ai by

definition, and

C(0) =I − B
(0)
−1B

(0)
1 − B

(0)
1 B

(0)
−1

=(I − A0)−1(I − A0 − A−1(I − A0)−1A1 − A1(I − A0)−1A−1)

=(I − A0)−1(I − A
(1)
0 ).

Since C(0) is nonsingular for Theorem 7.1 we deduce that also I − A
(1)
0 is non-

singular so that the second step of cyclic reduction can be performed. For the
inductive step, assume that I − A

(n)
0 is nonsingular and equations (7.20) hold

for n. Then, since C(n) is nonsingular for Theorem 7.1, we deduce that also
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I −A
(n+1)
0 is nonsingular. Moreover, from equation (7.6) and from the inductive

hypothesis one has

B
(n+1)
i =(C(n))−1(B(n)

i )2

=(I − A
(n+1)
0 )−1(I − A

(n)
0 )
[
(I − A

(n)
0 )−1A

(n)
i

]2
=(I − A

(n+1)
0 )−1

[
A

(n)
i (I − A

(n)
0 )−1A

(n)
i

]
=(I − A

(n+1)
0 )−1A

(n+1)
i .

Similarly, by using the expression B
(n+1)
i = (I − A

(n+1)
0 )−1A

(n+1)
i we deduce

that

C(n+1) =I − B
(n+1)
−1 B

(n+1)
1 − B

(n+1)
1 B

(n+1)
−1

=I − (I − A
(n+1)
0 )−1A

(n+1)
−1 (I − A

(n+1)
0 )−1A

(n+1)
1

− (I − A
(n+1)
0 )−1A

(n+1)
1 (I − A

(n+1)
0 )−1A

(n+1)
−1

=(I − A
(n+1)
0 )−1(I − A

(n+2)
0 ).

In particular we find that I−A
(n+2)
0 is nonsingular, which completes the inductive

proof. Finally, the stochasticity of A
(n)
−1 +A

(n)
0 +A

(n)
1 follows from the stochasticity

of B
(n)
−1 + B

(n)
1 which holds for Theorem 7.1. �

A simple consequence of the above result is obtained from the convergence
properties of logarithmic reduction (see Theorem 7.3) and is summarized in the
following theorem. The speed of convergence is related to the moduli of the roots
of A(z) closest to the unit circle, defined in equation (7.13).
Theorem 7.6 If µ < 0, then the following limits exist

lim
n

A
(n)
0 = A

(∞)
0 , lim

n
Â

(n)
0 = Â

(∞)
0 ,

lim
n

A
(n)
−1 = (I − A

(∞)
0 )1gT, lim

n
A

(n)
1 = 0,

where Â
(∞)
0 is the minimal nonnegative solution of

X = A0 + A1(I − X)−1A−1, (7.21)

and g ≥ 0 is such that gTGmin = gT, gT1 = 1. Moreover, for any matrix norm
and for any ε > 0 such that ε + η < 1, there exists γ > 0 such that

‖A(n)
0 − A

(∞)
0 ‖ ≤ γξ−2n

‖A(n)
1 ‖ ≤ γξ−2n

,

‖A(n)
−1 − (I − A

(∞)
0 )1gT‖ ≤ γ

(
ξ−2n

+ (η + ε)2
n)

,

‖Â(n)
0 − Â

(∞)
0 ‖ ≤ γξ−2n

,
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and

‖Gmin − (I − Â
(n)
0 )−1A−1‖ ≤ γξ−2n

,

‖Rmin − A1(I − Â
(n)
0 )−1‖ ≤ γξ−2n

,

for any n ≥ 0.
If µ > 0, then there exist the following limits

lim
n

A
(n)
0 = A

(∞)
0 , lim

n
Â

(n)
0 = Â

(∞)
0 ,

lim
n

A
(n)
1 = (I − A

(∞)
0 )1g′T, lim

n
A

(n)
−1 = 0,

where Â
(∞)
0 is the minimal nonnegative solution of

X = A0 + A1(I − X)−1A−1,

and g′ ≥ 0 is such that g′TG′
min = g′T, g′T1 = 1, G′

min is the minimal nonnega-
tive solution of the equation X = A1 +A0X +A−1X

2. Moreover, for any matrix
norm and for any ε > 0 such that ε + ξ−1 < 1, there exists γ > 0 such that

‖A(n)
0 − A

(∞)
0 ‖ ≤ γη2n

‖A(n)
−1‖ ≤ γη2n

,

‖A(n)
1 − (I − A

(∞)
0 )1g′T‖ ≤ γ

(
(ξ−1 + ε)2

n

+ η2n)
,

‖Â(n)
0 − Â

(∞)
0 ‖ ≤ γη2n

and

‖Gmin − (I − Â
(n)
0 )−1A−1‖ ≤ γη2n

,

‖Rmin − A1(I − Â
(n)
0 )−1‖ ≤ γη2n

,

for any n ≥ 0.

Proof Let us first assume that µ < 0. We may deduce from (7.17) that the
sequence {A(n)

0 } is nondecreasing. Moreover it is bounded since the matrices
A

(n)
0 , n ≥ 0, are substochastic for Theorem 7.5. Therefore there exists A

(∞)
0 =

limn A
(n)
0 and from (7.20) one has that for any matrix norm

‖A(n)
1 ‖ ≤ ‖I − A

(n)
0 ‖ · ‖B(n)

1 ‖ ≤ c‖B(n)
1 ‖,

for a suitable constant c > 0. Therefore, from Theorem 7.3 we deduce that for
any matrix norm there exists γ > 0 such that

‖A(n)
1 ‖ ≤ γξ−2n

.

From (7.20) and (7.17) we deduce that
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I − C(n) = (I − A
(n)
0 )−1

(
A

(n)
−1 (I − A

(n)
0 )−1A

(n)
1 + A

(n)
1 (I − A

(n)
0 )−1A

(n)
−1

)
.

(7.22)
Observe that

A
(n+1)
0 − A

(n)
0 = A

(n)
−1 (I − A

(n)
0 )−1A

(n)
1 + A

(n)
1 (I − A

(n)
0 )−1A

(n)
−1 .

Therefore, since (I − A
(n)
0 )−1 ≥ I and A

(n+1)
0 − A

(n)
0 ≥ 0, from (7.22) one has

A
(n+1)
0 − A

(n)
0 ≤ I − C(n). Since ‖X‖∞ ≤ ‖Y ‖∞ if 0 ≤ X ≤ Y , we obtain

‖A(n+1)
0 − A

(n)
0 ‖∞ ≤ ‖I − C(n)‖∞.

From Theorem 7.3 there exists a constant γ′ such that ‖I − C(n)‖∞ ≤ γ′ξ−2n

.
Therefore ‖A(n+1)

0 − A
(n)
0 ‖∞ ≤ γ′ξ−2n

. From Lemma A.16 of the appendix we
conclude that ‖A(n)

0 − A
(∞)
0 ‖∞ ≤ γξ−2n

for a suitable γ > 0. By using a similar
argument we may prove that the sequence {Â(n)

0 } converges with the same rate
to a limit Â

(∞)
0 . Now, from the convergence of the sequences {A(n)

0 } and {B(n)
−1 },

we may easily deduce the convergence of the sequence {A(n)
−1}. In fact, from (7.20)

one has that for any norm ‖ · ‖,

‖A(n)
−1 − (I − A

(∞)
0 )1gT‖ =‖(I − A

(n)
0 )B(n)

−1 − (I − A
(∞)
0 )1gT‖

=‖(A(∞)
0 − A

(n)
0 )B(n)

−1 + (I − A
(∞)
0 )(B(n)

−1 − 1gT)‖
≤c1‖A(∞)

0 − A
(n)
0 ‖ + c2‖B(n)

−1 − 1gT‖,

where c1 and c2 are suitable positive numbers. From the latter inequality we
conclude that for any matrix norm and for any ε > 0 such that ε + η < 1, there
exists a positive constant γ such that

‖A(n)
−1 − (I − A

(∞)
0 )1gT‖ ≤ γ(ξ−2n

+ (η + ε)2
n

).

Let U be the minimal nonnegative solution of the matrix equation (7.21). We
wish to show that limn Â

(n)
0 = U . For this purpose, observe that by (5.42) the

matrix Gmin can be written as Gmin = (I − U)−1A−1. The equations −A−1 +
(I − A0)Gmin − A1G

2
min = 0 and I − U = I − A0 − A1Gmin, which is derived

from (7.21), can be rewritten in matrix form as
I − A0 −A1 0
−A−1 I − A0 −A1

−A−1 I − A0
. . .

0 . . . . . .




I
Gmin

G2
min
...

 =


I − U

0
0
...

 . (7.23)

Applying cyclic reduction to the above system yields
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I − Â

(n)
0 −A

(n)
1 0

−A
(n)
−1 I − A

(n)
0 −A

(n)
1

−A
(n)
−1 I − A

(n)
0

. . .

0 . . . . . .




I
G2n

min

G2·2n

min
...

 =


I − U

0
0
...

 .

From the first equation we deduce that

Â
(n)
0 + A

(n)
1 G2n

min = U. (7.24)

This implies that limn Â
(n)
0 = U . In particular, I − U is nonsingular and from

(7.18) one has ‖Gmin − (I − Â
(n)
0 )−1A−1‖ ≤ γξ−2n

.
If µ > 0, we apply the above argument to the positive recurrent Markov chain

obtained by interchanging A−1 with A1 in order to show the concergence of the
sequences {A(n)

i }n, i = −1, 0, 1. Concerning the convergence of the sequence
{Â(n)

0 } we apply cyclic reduction to the system (7.23) and obtain (7.24). Since
ρ(Gmin) = η and {A(n)

1 } is bounded, the convergence of {Â(n)
0 } to U holds for

(7.24). �

The approximation of the minimal solution of the matrix equation (7.1) by
means of cyclic reduction is synthesizes by Algorithm 7.3.

Algorithm 7.3 Cyclic reduction for QBDs: the case µ < 0
Input: The positive integer m and the m × m matrices A−1, A0, A1, defining a
positive recurrent QBD; a real ε > 0.

Output: An approximation Y of the minimal nonnegative solution of the equa-
tion (7.1) such that ‖Y − Gmin‖∞ ≤ ε‖(I − U)−1‖∞, where U is the minimal
nonnegative solution of (7.21).

Computation:

1. Set Vi = Ai, i = −1, 0, 1, V̂ = A0.
2. Compute

H = (I − V0)−1V1, K = (I − V0)−1V−1,

V ′
1 = V1H, V ′

−1 = V−1K,

W = V1K, V̂ ′ = V̂ + W,

V ′
0 = V0 + W + V−1H,

and set Vi = V ′
i , i = −1, 0, 1, V̂ = V̂ ′.

3. If ‖V1‖∞ < ε then output Y = (I − V̂ )−1A−1 and stop, otherwise repeat
from step 2.

Observe that the stop condition guarantees that ‖Y − Gmin‖∞ ≤ ε‖(I −
U)−1‖∞. In fact, since at the n-th step of cyclic reduction we have (7.18) we



CYCLIC REDUCTION FOR QUASI-BIRTH–DEATH PROCESSES 197

find that Gmin −G(n) = (I − Â
(n)
0 )−1A

(n)
1 G2n+1

min , where G(n) = (I − Â
(n)
0 )−1A−1.

Therefore,

‖Gmin − G(n)‖∞ =‖(I − Â
(n)
0 )−1A

(n)
1 G2n+1

min ‖
≤‖(I − Â

(n)
0 )−1‖∞‖A(n)

1 ‖∞‖G2n+1
min ‖∞

≤‖(I − U)−1‖∞‖A(n)
1 ‖∞‖G2n+1

min ‖∞,

(7.25)

since (I − Â
(n)
0 )−1 ≤ (I −U)−1 and the infinity norm is monotonic when applied

to nonnegative matrices. From the property ‖Gmin‖∞ = 1 and ‖A(n)
1 ‖∞ ≤ ε, we

find that ‖Gmin − G(n)‖∞ ≤ ε‖(I − U)−1‖∞.
Concerning the computational cost we observe that the matrices V ′

i , i =
−1, 0, 1 and V̂ ′ at step 2 of Algorithm 7.3 can be computed with one matrix
inversion and six matrix multiplications. As in the case of logarithmnic reduction,
in our complexity estimates we do not count matrix additions. This provides a
slight improvement with respect to logarithmic reduction which requires one
matrix inversion and eight matrix multiplications per step.

Likewise for logarithmic reduction, the cyclic reduction algorithm involves at
each step the inversion of a nonsingular M-matrix and products and additions
of nonnegative matrices. All these computation are numerically stable. The only
possible source of cancellation is the computation of the diagonal elements of
I − V0 by subtraction. This subtraction can be avoided by using the Grassman,
Taksar and Heyman technique of [53].

In the case of a transient QBD we may still apply cyclic reduction with
the difference that in this case the sequence A

(n)
−1 converges to zero while the

sequence A
(n)
1 is bounded from below by a nonnull matrix. Therefore, we have

to replace the stop condition ‖A(n)
1 ‖ ≤ ε with ‖A(n)

−1‖ ≤ ε, and at the same time
we have to deduce an a-posteriori bound for the error ‖Gmin −G(n)‖ for G(n) =
(I − Â

(n)
0 )−1A−1, given in terms of ‖A(n)

−1‖. For this purpose we rely on equation
(7.25); since ‖A(n)

1 ‖∞ ≤ 1 we have ‖Gmin −G(n)‖∞ ≤ ‖(I −U)−1‖∞‖G2n+1
min ‖∞.

An estimate of ‖G2n+1
min ‖∞ can be given in terms of ‖A(n)

−1‖∞ which converges
to zero. In fact, since

G2n

min = (I − A
(n)
0 )−1A

(n)
−1 + (I − A

(n)
0 )−1A

(n)
1 (G2n

min)2,

we obtain that

‖G2n

min‖∞ ≤‖(I − A
(n)
0 )−1‖∞

(
‖A(n)

−1‖∞ + ‖A(n)
1 ‖∞‖G2n

min‖2
∞
)

≤‖(I − A
(n)
0 )−1‖∞

(
‖A(n)

−1‖∞ + ‖G2n

min‖2
∞
)

.

Whence, if ‖A(n)
−1‖∞ ≤ ε and σ = ‖(I − A

(n)
0 )−1‖∞, we deduce that

‖G2n

min‖∞ ≤ σ(ε + ‖G2n

min‖2
∞),
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which implies

‖G2n

min‖∞ ≤ 1 −
√

1 − 4σ2ε

2σ
= σε + O(ε2). (7.26)

Observe that, since (I − A
(n)
0 )−1 monotonically converges to (I − A

(∞)
0 )−1, we

have σ ≤ ‖(I − A
(∞)
0 )−1‖∞. Therefore, from (7.26) and (7.25) one has that

‖Gmin − G(n)‖∞ ≤ ‖(I − U)−1‖∞
1 −

√
1 − 4σ2ε

2σ
= σε‖(I − U)−1‖∞ + O(ε2).

The scheme that we obtain in this way is reported in Algorithm 7.4.

Algorithm 7.4 Cyclic reduction for QBDs: the case µ > 0
Input: The positive integer m and the m × m matrices A−1, A0, A1, defining a
transient QBD; a real ε > 0.

Output: An approximation Y of the minimal nonnegative solution of the equa-
tion (7.1) and an a-posteriori error bound δ ≤ ε‖(I − A

(∞)
0 )−1‖∞ + O(ε2), such

that ‖Gmin − Y ‖∞ ≤ δ‖(I − U)−1‖∞.

Computation:

1. Set Vi = Ai, i = −1, 0, 1, V̂ = A0.
2. Compute

H = (I − V0)−1V1, K = (I − V0)−1V−1,

V ′
1 = V1H, V ′

−1 = V−1K,

W = V1K, V̂ ′ = V̂ + W,

V ′
0 = V0 + W + V−1H,

and set Vi = V ′
i , i = −1, 0, 1, V̂ = V̂ ′.

3. If ‖V−1‖∞ < ε then output the approximation Y = (I − V̂ )−1A−1 and the
error bound δ = 1−√

1−4σ2ε
2σ = σε + O(ε2), where σ = ‖(I − V0)−1‖∞, and

stop; otherwise repeat from step 2.

As with logarithmic reduction, under some weak additional assumptions the
cyclic reduction algorithm can still be applied in the case of a null recurrent
QBD, where µ = 0, but the quadratic convergence no longer holds. In this case
it is much more convenient to apply the acceleration techniques shown in Section
8.2 which guarantee the quadratic convergence of cyclic reduction modified in
this way.

It is interesting to point out that the cyclic reduction algorithm can be easily
modified in order to approximate the minimal nonnegative solutions Gmin, G′

min,
Rmin and R′

min of the following four matrix equations, respectively:
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A−1 + A0X + A1X
2 = X,

A1 + A0X + A−1X
2 = X,

A1 + XA0 + X2A−1 = X,

A−1 + XA0 + X2A1 = X,

(7.27)

at almost the same cost of solving only one equation. In fact, besides the se-
quences {Â(n)

0 }, {A(n)
i }, i = 0, 1,−1, it is sufficient to compute the sequence

{Ã(n)
0 } defined by

Ã
(n+1)
0 = Ã

(n)
0 + A

(n)
−1 (I − A

(n)
0 )−1A

(n)
1 , n ≥ 0,

with Ã
(0)
0 = A0. We may show that, if µ �= 0, the sequence {Ã(n)

0 } quadratically
converges to the minimal nonnegative solution Ã

(∞)
0 of the matrix equation

X = A0 + A−1(I − X)−1A1

and, according to (5.42) applied to the first two equations of (7.28), we obtain
that the solutions of the matrix equations (7.27) are given by

Gmin = (I − Â
(∞)
0 )−1A−1,

G′
min = (I − Ã

(∞)
0 )−1A1,

Rmin = A1(I − Â
(∞)
0 )−1,

R′
min = A−1(I − Ã

(∞)
0 )−1.

(7.28)

Recall that these expressions have been proved in Theorem 3.20 under the addi-
tional condition that the polynomial det(A−1 + z(A0 − I)+ z2A1) is nonzero for
|z| = 1. This condition, which is not satisfied in our case, can be easily relaxed
by means of a continuity argument under the assumptions of nonsingularity of
the matrices I − Â

(∞)
0 and I − Ã

(∞)
0 .

In Section 8.2, by means of a suitable shifting of the roots of the matrix
polynomial A−1+z(A0−I)+z2A1 we will transform the QBD problem into a new
problem where the hypotheses of Theorem 3.20 are satisfied. This transformation
provides an acceleration of the convergence of cyclic reduction.

As a last remark of this section we provide a functional formulation of cyclic
reduction which is slightly different from the one given in (7.19) and will be
particularly useful in Section 9.2 to prove certain structural properties valid in the
solution of non-skip-free M/G/1-type Markov chains. In fact, setting ϕ(n)(z) =
zI −A(n)(z), since I −A

(n)
0 = (ϕ(n)(z)−ϕ(n)(−z))/(2z), we deduce from (7.19)

that

ϕ(n+1)(z2) =
(

ϕ(n)(z)−1 − ϕ(n)(−z)−1

2z

)−1

, n ≥ 0,

which holds for all the values of z such that detϕ(n)(z),det ϕ(n)(−z) �= 0 and
det(ϕ(n)(z)−1 − ϕ(n)(−z)−1) �= 0.
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A nicer formulation of the above property can be given in terms of the func-
tions ψ(n)(z) = (z−1ϕ(n)(z))−1. In fact, by means of a formal manipulation one
can easily verify that

ψ(n+1)(z2) =
1
2
(ψ(n)(z) + ψ(n)(−z)), n ≥ 0.

In particular, if ψ(0)(z) = (I − z−1A(z))−1 =
∑+∞

i=−∞ ziHi, then

ψ(n)(z) =
+∞∑

i=−∞
ziHi·2n , n ≥ 0.

7.4 Cyclic reduction for M/G/1-type Markov chains
The cyclic reduction algorithm can be suitably extended to the case of M/G/1-
type Markov chains where the minimal nonnegative solution Gmin of the equation

X =
+∞∑

i=−1

AiX
i+1 (7.29)

can be computed, still maintaining the nice convergence features valid for QBD
processes.

In order to show this, we follow the same line used in the QBD case, that is,
we translate the matrix equation (7.29) into the semi-infinite linear system

I − A0 −A1 −A2 −A3 . . .

−A−1 I − A0 −A1 −A2
. . .

−A−1 I − A0 −A1
. . .

−A−1 I − A0
. . .

0 . . . . . .




Gmin

G2
min

G3
min
...

 =


A−1

0
...
...

 . (7.30)

Applying an even–odd permutation to the block rows and to the block columns
of the above system yields

I − A0 −A2 −A4 . . . −A−1 −A1 −A3 . . .

I − A0 −A2
. . . −A−1 −A1

. . .

I − A0
. . . −A−1

. . .

0 . . . 0 . . .
−A1 −A3 −A5 . . . I − A0 −A2 −A4 . . .

−A−1 −A1 −A3
. . . I − A0 −A2

. . .

−A−1 −A1
. . . I − A0

. . .

0 . . . . . . 0 . . .





G2
min

G4
min
...

Gmin

G3
min
...


=



0
0
...

A−1

0
...



(7.31)
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which we rewrite in compact form as[
I − U1,1 −U1,2

−U2,1 I − U2,2

] [
x+

x−

]
=
[

0
b

]
(7.32)

where x+, x− are the block vectors of components G2i
min and G2i−1

min , respectively,
i = 1, 2, . . ., while b is the block vector with null components except the first
which is equal to A−1.

In order to describe in compact form the entire process of cyclic reduction
for M/G/1-type Markov chains it is convenient to apply the notation and the
tools introduced in Section 3.1, where we denoted with T∞[F (z)] = (Fj−i)i,j∈N

the semi-infinite block Toeplitz matrix associated with the matrix Laurent power
series F (z) =

∑+∞
i=−∞ ziFi. Another useful tool which we need is the concept of

even and odd part of a matrix Laurent power series F (z). We define the even
part Feven(z) and the odd part Fodd(z) of F (z) as

Feven(z) =
1
2
(F (

√
z) + F (−

√
z)) =

+∞∑
i=−∞

ziF2i,

Fodd(z) =
1

2
√

z
(F (

√
z) − F (−

√
z)) =

+∞∑
i=−∞

ziF2i+1,

so that F (z) = Feven(z2)+ zFodd(z2). We will also use the notation [F (z)]even =
Feven(z2) and [F (z)]odd = Fodd(z2).

Consider the generating function A(z) =
∑+∞

i=−1 zi+1Ai associated with the
M/G/1-type Markov chain and observe that the block triangular Toeplitz matrix
U1,1 = U2,2 is associated with the matrix power series Aodd(z), while U1,2 is
associated with the matrix power series Aeven(z) and the block U2,1 is associated
with z−1Aeven(z). That is, with formal notation we have

U1,1 = U2,2 = T∞[Aodd(z)],
U1,2 = T∞[Aeven(z)],

U2,1 = T∞[z−1Aeven(z)].

(7.33)

Observe also that, since Ai ≥ 0 and A(1) =
∑+∞

i=−1 Ai is finite then the
function A(z) belongs to the Wiener algebra W+ (see Section 3.1.1), therefore
also Aodd(z) and Aeven(z) belong to W+. Moreover, we may show that I−Aodd(z)
is nonsingular for |z| ≤ 1 so that its inverse exists and belongs to W+ in light of
Theorem 3.2.

Theorem 7.7 Let A(z) =
∑+∞

i=−1 zi+1Ai be the generating function associated
with an M/G/1-type Markov chain. Assume that Condition 4.20 is satisfied.
Then I − Aodd(z) is nonsingular for |z| ≤ 1 and ρ(A0) < 1.

Proof Since the Markov chain (4.24) satisfies Condition 4.20, there exists only
one final class S = Z × S, S ⊂ {1, . . . , m} of T±∞[A(z)]. For simplicity we may
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assume S = {1, . . . , k} for some k > 0. Then for Theorem 4.21 and Remark 4.22
the matrix A =

∑+∞
i=−1 Ai has the only one final class S so that

A =
[

B 0
C D

]
where ρ(B) = 1, C �= 0, B is irreducible and ρ(D) < 1. Let us partition the
matrix A(z) according to the partition of A so that

A(z) =
[

B(z) 0
C(z) D(z)

]
and

A =
[

B 0
C D

]
=
[

Beven 0
Ceven Deven

]
+
[

Bodd 0
Codd Dodd

]
,

where Beven = Beven(1), Bodd = Bodd(1), Ceven = Ceven(1), Codd = Codd(1),
Deven = Deven(1), Dodd = Dodd(1). Then we have ρ(Aodd(1)) = max{ρ(Bodd),
ρ(Dodd)}. Since Dodd ≤ Dodd + Deven = D, from Theorem 1.28 we have
ρ(Dodd) ≤ ρ(D) < 1. Observe that Beven ≥ (A−1)S �= 0 in light of Remark
4.22, so that Bodd �= B. Therefore, since Bodd ≤ B and B is irreducible, from
the Perron–Frobenius Theorem 1.27 one has ρ(Bodd) < ρ(B) = 1. Whence we
deduce that ρ(Aodd(1)) < 1. Since |Aodd(z)| ≤ Aodd(1) for |z| ≤ 1, applying once
again Theorem 1.28 we may conclude that ρ(Aodd(z)) < 1 for |z| ≤ 1 so that
I −Aodd(z) is nonsingular for |z| ≤ 1. Since A0 ≤ Aodd(1), by Theorem 1.28 one
has ρ(A0) ≤ ρ(Aodd(1)) < 1. �

Now, since the matrix functions Aodd(z), Aeven(z), and (I−Aodd(z))−1 belong
to W+, they belong to W. Therefore, for Theorem 3.1 and for the subsequent
comments, the semi-infinite matrices U1,2, U2,1, I −U2,2 and (I −U1,1)−1 define
bounded operators so that we may apply one step of block Gaussian elimination
to the 2 × 2 block system (7.32) and obtain[

I − U1,1 −U1,2

0 H

] [
x+

x−

]
=
[

0
b

]
,

H = I − U2,2 − U2,1(I − U1,1)−1U1,2,

(7.34)

where H is the Schur complement of I − U2,2.
Now observe that since (I−Aodd(z))−1 ∈ W+ then (I−U1,1)−1 is block upper

triangular Toeplitz and also the product W = (I − U1,1)−1U1,2 is block upper
triangular Toeplitz. Observe also that U2,1W is a block Hessenberg matrix, so
that H is block Hessenberg.

Let us analyze more closely the structure of U2,1W . Observe that the matrix
U ′

2,1 obtained by removing the first block row of U2,1 is block upper triangular
Toeplitz so that the product U ′

2,1W is block upper triangular Toeplitz. This fact
implies that the matrix obtained by removing the first block row of H is block
upper triangular Toeplitz. In other words, the Schur complement H is block
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Hessenberg and block Toeplitz except for the first block row so that the system
Hx− = b turns into

I − Â
(1)
0 −Â

(1)
1 −Â

(1)
2 −Â

(1)
3 . . .

−A
(1)
−1 I − A

(1)
0 −A

(1)
1 −A

(1)
2 . . .

−A
(1)
−1 I − A

(1)
0 −A

(1)
1

. . .

−A
(1)
−1 I − A

(1)
0

. . .

0 . . . . . .




Gmin

G3
min

G5
min
...

 =

A−1

0
...

 . (7.35)

The reduction obtained in this way can be described in a more simple way in
functional form. Besides the matrix power series A(z), Aodd(z) and Aeven(z) we
introduce the functions Â(1)(z) =

∑+∞
i=0 ziÂ

(1)
i and A(1)(z) =

∑+∞
i=−1 zi+1A

(1)
i

which completely define the block Hessenberg matrix of (7.35). In this way, by
using the equivalence between block triangular Toeplitz matrices and matrix
power series of Section 3.1.1, from (7.34) and (7.33) we obtain that

A(1)(z) = zAodd(z) + Aeven(z)(I − Aodd(z))−1Aeven(z),

Â(1)(z) = Âeven(z) + Âodd(z)(I − Aodd(z))−1Aeven(z),
(7.36)

where we have introduced the function Â(z) =
∑+∞

i=0 ziAi. Observe that the
functions Â(1)(z) and A(1)(z) are in the Wiener algebra W+.

With an inductive argument we may deduce that this process can be recur-
sively repeated by applying at each step the even–odd permutation followed by
one step of block Gaussian elimination. After n steps of this cyclic reduction
process we obtain the system

I − Â
(n)
0 −Â

(n)
1 −Â

(n)
2 −Â

(n)
3 . . .

−A
(n)
−1 I − A

(n)
0 −A

(n)
1 −A

(n)
2 . . .

−A
(n)
−1 I − A

(n)
0 −A

(n)
1

. . .

0 . . . . . . . . .




Gmin

G2n+1
min

G2·2n+1
min

G3·2n+1
min

...

 =


A−1

0
0
...

 , (7.37)

where the blocks A
(n)
i , Â

(n)
i+1, i = −1, 0, . . ., are defined by means of the recursions

A(n+1)(z) = zA
(n)
odd(z) + A(n)

even(z)(I − A
(n)
odd(z))−1A(n)

even(z),

Â(n+1)(z) = Â(n)
even(z) + Â

(n)
odd(z)(I − A

(n)
odd(z))−1A(n)

even(z),
(7.38)

which generalize (7.36).
The applicability of cyclic reduction relies on the invertibility at each step of

the matrix power series I − A
(n)
odd(z) for |z| ≤ 1.

Theorem 7.8 In the hypotheses of Theorem 7.7, for any n ≥ 0,
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1. the functions A(n)(z) and Â(n)(z) are in the Wiener algebra W+;

2. A
(n)
i+1, Â

(n)
i ≥ 0, for i ≥ −1, and A(n)(1), A−1 + Â(n)(1) are stochastic;

3. the bi-infinite Markov chain with transition matrix T±∞[z−1A(n)(z)] satis-
fies Condition 4.20;

4. the function I − A
(n)
odd(z) is invertible for |z| ≤ 1 and its inverse belongs to

W+, so that cyclic reduction can be carried out, moreover, ρ(A(n)
odd(1)) < 1;

5. the matrices A
(n)
even(1)(I − A

(n)
odd(1))−1 and (I − A

(n)
odd(1))−1A

(n)
even(1) have

spectral radius 1, moreover the latter is stochastic.

Proof We proceed by induction on n. For n = 0 the matrix I − A
(0)
odd(z)

is invertible for |z| ≤ 1 by Theorem 7.7, the remaining properties are satis-
fied by assumption. Assume that the thesis holds for n and let us prove it
for n + 1. Concerning part 1, since I − A

(n)
odd(z) is invertible and its inverse

is in W+, and since A(n)(z), Â(n)(z) ∈ W+, then the functions A(n+1)(z) and
Â(n+1)(z) exist and belong to W+ by (7.38). Concerning part 2, since A

(n)
odd(z)

has nonnegative coefficients then the matrix power series (I − A
(n)
odd(z))−1 =∑+∞

i=0 (A(n)
odd(z))i has nonnegative coefficients. Therefore, from (7.38) it follows

that the matrices A
(n+1)
i and Â

(n+1)
i+1 for i ≥ −1 are nonnegative since they are

sums of products of nonnegative matrices. The matrix A(n+1)(1) is stochas-
tic since from (7.38) it follows that A(n+1)(1)1 = A

(n)
odd(1)1 + A

(n)
even(1)(I −

A
(n)
odd(1))−1A

(n)
even(1)1 = A

(n)
odd(1)1 + A

(n)
even(1)1 = 1. Here we used the property

(I −A
(n)
odd(1))−1A

(n)
even(1)1 = 1 which holds by induction. Similarly we may show

that (A−1 + Â(n+1)(1))1 = 1. Concerning part 3, since the assumptions of The-
orem 4.23 are satisfied then the bi-infinite Markov chain with transition matrix
T±∞[z−1A(n+1)(z)] satisfies Condition 4.20. Concerning part 4, the invertibil-
ity of I − A

(n+1)
odd (z) holds from Theorem 7.7 applied to the function A(n+1)(z).

Since A
(n+1)
odd (1) is substochastic then ρ(A(n+1)

odd (1)) < 1. Finally, concerning part
5, since A(n+1)(1) = A

(n+1)
odd (1) + A

(n+1)
even (1) is stochastic, then (A(n+1)

even (1) +
A

(n+1)
odd (1))1 = 1, whence (I − A

(n+1)
odd (1))−1A

(n+1)
even (1)1 = 1, that is, the ma-

trix (I − A
(n+1)
odd (1))−1A

(n+1)
even (1) is stochastic and therefore has spectral radius

1. Moreover, since (I − A
(n+1)
odd (1))−1A

(n+1)
even (1) and A

(n+1)
even (1)(I − A

(n+1)
odd (1))−1

are similar then ρ(A(n+1)
even (1)(I − A

(n+1)
odd (1))−1) = 1. �

From the first equation of (7.37) we find that

Gmin = (I − Â
(n)
0 )−1(A−1 +

+∞∑
i=1

Â
(n)
i Gi·2n+1

min ). (7.39)

This formula is a valid tool for approximating the minimal solution Gmin once
we prove that the summation

∑+∞
i=1 Â

(n)
i Gi·2n+1

min converges quadratically to zero
for n → +∞ and that (I − Â

(n)
0 )−1 is bounded and quadratically convergent.

These properties will be proved in Section 7.4.1.
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Similarly to the QBD case, defining ϕ(n)(z) = zI − A(n)(z), we find that

I − A
(n)
odd(z2) =

1
2z

(ϕ(n)(z) − ϕ(n)(−z)) = ϕ
(n)
odd(z2)

and after some formal manipulations from (7.38) we obtain

ϕ(n+1)(z2) = − ϕ(n)(z)
(

ϕ(n)(z) − ϕ(n)(−z)
2z

)−1

ϕ(n)(−z)

= − ϕ(n)(z)ϕ(n)
odd(z2)−1ϕ(n)(−z), n ≥ 0.

(7.40)

The above formula can be rewritten in a slightly different form as

ϕ(n+1)(z2) =
(

ϕ(n)(z)−1 − ϕ(n)(−z)−1

2z

)−1

, n ≥ 0, (7.41)

which holds for all the values of z such that detϕ(n)(z),det ϕ(n)(−z) �= 0 and
det(ϕ(n)(z)−1 − ϕ(n)(−z)−1) �= 0.

Moreover, setting ψ(n)(z) = (z−1ϕ(n)(z))−1, one has

ψ(n+1)(z2) =
1
2
(ψ(n)(z) + ψ(n)(−z)), n ≥ 0. (7.42)

In particular, if ψ(0)(z) = (I − z−1A(z))−1 =
∑+∞

i=−∞ ziHi, then

ψ(n)(z) =
+∞∑

i=−∞
ziHi·2n . (7.43)

We may provide similar expressions for the function Â(n)(z) satisfying (7.38),
which will be useful in Chapter 9, as shown in the following.

Theorem 7.9 The function Â(n)(z) defined by (7.38) can be represented in the
following different ways

Â(n+1)(z2) =Â(n)(z) − Â
(n)
odd(z2)ϕ(n)

odd(z2)−1ϕ(n)(z)

=Â(n)(z) + Â
(n)
odd(z2)ϕ(n)(−z)−1ϕ(n+1)(z2)

= −
[
Â(n)(z)ϕ(n)

odd(z2)−1ϕ(n)(−z)
]
odd

=
[
Â(n)(z)ϕ(n)(z)−1

]
odd

ϕ(n+1)(z2)

= −
[
z−1Â(n)(z)ϕ(n)

odd(z2)−1ϕ(n)(−z)
]
even

=
[
z−1Â(n)(z)ϕ(n)(z)−1

]
even

ϕ(n+1)(z2).

(7.44)
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Proof Rewrite the second equation in (7.38) with z replaced by z2 and then
replace Â

(n)
even(z2) with Â(n)(z) − zÂ

(n)
odd(z2) and obtain

Â(n+1)(z2) = Â(n)(z) − Â
(n)
odd(z2)

(
zI − (I − A

(n)
odd(z2))−1A(n)

even(z2)
)

.

By means of formal manipulations it turns out that the rightmost factor in the
above expression can be written as (I − A

(n)
odd(z2))−1ϕ(n)(z). Therefore, since

I − A
(n)
odd(z) = ϕ

(n)
odd(z), one obtains the first expression for Â(n+1)(z2) in (7.44).

The second expression can be simply deduced from the first one by observing
that ϕ

(n)
odd(z2)−1ϕ(n)(z) = −ϕ(n)(−z)−1ϕ(n+1)(z2) which holds from the equation

obtained by replacing z with −z in (7.40).
Concerning the third representation of Â(n+1)(z2), we rewrite the first for-

mula of (7.44) by replacing Â
(n)
odd(z2) with (Â(n)(z)− Â(n)(−z))/(2z) and obtain

Â(n+1)(z2)

=
1
2z

Â(n)(z)
(
2zI − ϕ

(n)
odd(z2)−1ϕ(n)(z)

)
+

1
2z

Â(n)(−z)ϕ(n)
odd(z2)−1ϕ(n)(z).

Now, since 2zI−ϕ
(n)
odd(z2)−1ϕ(n)(z) = ϕodd(z2)−1(ϕ(n)(z)−ϕ(n)(−z)−ϕ(n)(z)) =

−ϕ
(n)
odd(z2)−1ϕ(n)(−z), from the latter displayed formula we get

Â(n+1)(z2) = − 1
2z

Â(n)(z)ϕ(n)
odd(z2)−1ϕ(n)(−z) +

1
2z

Â(n)(−z)ϕ(n)
odd(z2)−1ϕ(n)(z),

that is Â(n+1)(z2) = −
[
Â(n)(z)ϕ(n)

odd(z2)−1ϕ(n)(−z)
]
odd

.
The fourth representation is obtained from the third representation by re-

placing ϕ
(n)
odd(z2)−1ϕ(n)(−z) with −ϕ(n)(z)−1ϕ(n+1)(z2) so that

−
[
Â(n)(z)ϕ(n)

odd(z2)−1ϕ(n)(−z)
]
odd

=
[
Â(n)(z)ϕ(n)(z)−1ϕ(n+1)(z2)

]
odd

=
[
Â(n)(z)ϕ(n)(z)−1

]
odd

ϕ(n+1)(z2).

The remaining representations can be proved similarly relying on the equation
[z−1f(z)]even = [f(z)]odd which holds for any function f(z). �

Observe that for the last equation in (7.44) one has

Â(n+1)(z2)ϕ(n+1)(z2)−1 =
[
z−1Â(n)(z)ϕ(n)(z)−1

]
even

and replacing ϕ(n)(z)−1 with z−1ψ(z) yields

Â(n+1)(z2)ψ(n+1)(z2) =
[
Â(n)(z)ψ(n)(z)

]
even

. (7.45)

A nice consequence of (7.40) and of Theorem 7.8 is that the roots of ϕ(n+1)(z)
in the closed unit disk are the square of the roots of ϕ(n)(z) in the closed unit
disk. This fact enables one to prove the following.
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Theorem 7.10 If the drift µ of the generating function A(z) is negative, or
positive, then the drift of the generating function A(n)(z) is negative, or positive,
respectively.

Proof The result follows from Theorem 4.9 and from the subsequent
comments. �

Theorem 7.11 Let A(z) be the generating function associated with an M/G/1-
type Markov chain. Assume that A(z) is analytic for |z| < r, with 1 < r, and
that there exists ζ, such that 1 < |ζ| < r and det(ζI − A(ζ)) = 0. If the drift µ
is negative and if Condition 4.20 is satisfied, then:

1. There exists a root ξ of ϕ(z) = zI − A(z) of smallest modulus among the
roots of modulus greater than 1. Moreover, ξ is real and simple, 1 < ξ < r,
ρ(A(ξ)) = ξ, and there exists a positive vector v such that A(ξ)v = ξv.

2. For n ≥ 0 the matrix power series ϕ(n)(z) = zI − A(n)(z) is convergent for
|z| = ξ2n

and therefore is analytic for |z| < ξ2n

.

3. For n ≥ 0, ξ2n

is the root of smallest modulus among the roots of modulus
greater than 1 of ϕ(n)(z), moreover ρ(A(n)(ξ2n

)) = ξ2n

and A(ξ2n

)v = ξ2n

v.

Proof The existence of ξ and its properties follow from Theorem 4.11. The
positivity of v follows from Condition 4.20 in light of Theorem 1.29. Parts 2
and 3 are proved by induction. For n = 0, they are valid by assumption. As-
sume that parts 2 and 3 hold for n and prove them for n + 1. In order to prove
that ϕ(n+1)(z) is convergent for |z| = ξ2n+1

, we first observe that from (7.40)
one has ϕ(n+1)(z2) = −ϕ(n)(z)ϕ(n)

odd(z2)−1ϕ(n)(−z), so that it is sufficient to
prove that ϕ

(n)
odd(z) is nonsingular for |z| = ξ2n+1

. Since ϕ
(n)
odd(z) = I − A

(n)
odd(z),

and the block coefficients of A(n)(z) are nonnegative, it is sufficient to prove
that ρ(A(n)

odd(ξ2n+1
)) < 1. Since z−1A(n)(z) = A

(n)
odd(z2) + z−1A

(n)
even(z2), then

A
(n)
odd(ξ2n+1

) ≤ ξ−2n

A(n)(ξ2n

) and from the Perron–Frobenius theorem we have
ρ(A(n)

odd(ξ2n+1
)) ≤ ρ(ξ−2n

A(n)(ξ2n

)) = 1, where the latter equality holds by the
inductive assumption. In order to prove the strict inequality ρ(A(n)

odd(ξ2n+1
)) <

ρ(ξ−2n

A(n)(ξ2n

)) we rely on Condition 4.20 and follow the same argument used in
the proof of Theorem 7.7. Moreover, from (7.40) we deduce that ϕ(n+1)(ξ2n+1

)v =
0, that is, A(n+1)(ξ2n+1

)v = ξ2n+1
v. The minimality of ξ2n+1

as root of ϕ(n+1)(z)
follows from (7.40). Finally, since v is positive, then ξ2n+1

is the spectral radius
of A(n+1)(ξ2n+1

). �

7.4.1 Convergence properties

The convergence of cyclic reduction can be proved under quite general assump-
tions which substantially reduce to Condition 4.20 which we have assumed at the
beginning of the chapter. A first important property at the basis of convergence
is expressed by the following.

Theorem 7.12 Let Gmin be the minimal nonnegative solution of the equation
(7.29) and let . Then G2n

min is the minimal nonnegative solution of the equation
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X =
+∞∑

i=−1

A
(n)
i Xi+1, n ≥ 0. (7.46)

Proof First we show that G2n

min is a solution of (7.46). For this puropose, observe
that applying n steps of cyclic reduction to the system

I − A0 −A1 −A2 −A3 . . .

−A−1 I − A0 −A1 −A2
. . .

−A−1 I − A0 −A1
. . .

−A−1 I − A0
. . .

0 . . . . . .




I

Gmin

G2
min
...

 =


I − A∗

0

0
...
...

 , (7.47)

where A∗
0 =

∑+∞
i=0 AiG

i
min, yields

I − Â
(n)
0 −Â

(n)
1 −Â

(n)
2 −Â

(n)
3 . . .

−A
(n)
−1 I − A

(n)
0 −A

(n)
1 −A

(n)
2

. . .

−A
(n)
−1 I − A

(n)
0 −A

(n)
1

. . .

−A
(n)
−1 I − A

(n)
0

. . .

0 . . . . . .




I

G2n

min

G2·2n

min
...

 =


I − A∗

0

0
...
...

 . (7.48)

From the second equation it follows that G2n

min =
∑+∞

i=−1 A
(n)
i G

(i+1)·2n

min . Con-
cerning the minimality of G2n

min among the nonnegative solutions, we observe
that the eigenvalues of G2n

min are the (2n)-th power of the eigenvalues of Gmin

and therefore coincide with the minimum modulus roots of ϕ(n)(z) in light of
(7.40). Therefore G2n

min is the spectral minimal solution of equation (7.46), and
for Theorem 4.10, G2n

min is also the minimal nonnegative solution. �

For positive recurrent Markov chains we may prove the following convergence
result.

Theorem 7.13 Let A(z) be the generating function associated with an M/G/1-
type Markov chain with a negative drift µ satisfying Condition 4.20. Assume that
A(z) is analytic for |z| < r, with 1 < r, and that there exists ζ, such that 1 <
|ζ| < r and det(ζI − A(ζ)) = 0. Denote η = max{|z| : |z| < 1, detϕ(z) = 0},
ξ = min{|z| : |z| > 1, detϕ(z) = 0}. Let ε be a positive number such that
η + ε < 1 and ξ − ε > 1, and let ‖ · ‖ be any fixed matrix norm. Then the

matrix power series A(n)(z) =
∑+∞

i=−1 zi+1A
(n)
i , Â(n)(z) =

∑+∞
i=0 ziÂ

(n)
i , n ≥ 0,

generated by the recurrences (7.38) satisfy the following properties.

1. There exists a positive γ such that

‖A(n)
i ‖ ≤ γξ2n

(ξ − ε)−(i+1)2n

, i ≥ 1,

‖Â(n)
i ‖ ≤ γξ2n

(ξ − ε)−(i+1)2n

, i ≥ 1,
(7.49)
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for any n ≥ 0.

2. There exist A
(∞)
0 = limn A

(n)
0 , Â

(∞)
0 = limn Â

(n)
0 , A

(∞)
−1 = limn A

(n)
−1 , where

A
(∞)
−1 = (I − A

(∞)
0 )1gT, Â

(∞)
0 =

∑+∞
i=0 AiG

i
min, and g ≥ 0 is such that

gTGmin = gT, gT1 = 1; moreover,

‖Â(n)
0 − Â

(∞)
0 ‖ ≤ γξ2n

(ξ − ε)−2n+1
, n ≥ 0.

3. The sequence {ϕ(n)(z)}n, where ϕ(n)(z) = zI−A(n)(z) for n ≥ 0, uniformly

converges to ϕ(∞)(z) = −A
(∞)
−1 − z(A(∞)

0 − I) over any compact subset of

the disk {z ∈ C : |z| < ξ}, moreover ρ(Â(∞)
0 ) ≤ ρ(A(∞)

0 ) < 1.

4. For any n ≥ 0

‖A(n)
0 − A

(∞)
0 ‖ ≤ γξ2n

(ξ − ε)−2n+1
,

‖A(n)
−1 − A

(∞)
−1 )‖ ≤ γ

(
ξ2n

(ξ − ε)−2n+1
+ (η + ε)2

n
)

.

5. For any n ≥ 0
‖Gmin − G(n)‖ ≤ γξ2n

(ξ − ε)−2n+1
,

where G(n) = (I − Â
(n)
0 )−1A−1.

Proof By Theorem 7.11 the function ϕ(n)(z) is analytic for |z| < ξ2n

. There-
fore, from Theorem 3.7 one deduces that

A
(n)
i−1 ≤ M((ξ − ε)2

n

)(ξ − ε)−i·2n

, i ≥ 0, (7.50)

for 0 < ε < ξ − 1, where the m × m matrix M(σ) is such that M(σ) =
max|z|=σ |A(n)(z)|. Since A(n)(z) has nonnegative coefficients and since 1 <

ξ − ε < ξ, one has M((ξ − ε)2
n

) = A(n)((ξ − ε)2
n

) ≤ A(n)(ξ2n

). By Theo-
rem 7.11 one has A(n)(ξ2n

)v = ξ2n

v where v is strictly positive. Whence, one
deduces that (A(n)(ξ2n

))i,j ≤ ξ2n

σ, i, j = 1, . . . , m, where σ = maxi vi/ mini vi.
Therefore from equation (7.50) one has ‖A(n)

i ‖∞ ≤ γξ2n

(ξ − ε)−(i+1)·2n

, i ≥ 1
for a suitable γ > 0. Thus, the first equation of (7.49) follows from Theorem A.1
on the equivalence of matrix norms. Concerning the convergence of {Â(n)

i }, for
i ≥ 1, we observe that 0 ≤ Â

(n)
i ≤ A

(n)
i for i ≥ 0, which can be easily proved

by induction on n relying on (7.38). Therefore, ‖Â(n)
i ‖∞ ≤ γξ2n

(ξ − ε)−(i+1)·2n

,
i ≥ 1. This completes the proof of part 1.

Concerning part 2, from (7.38) one has that the sequences {A(n)
0 }n, {Â(n)

0 }n

are nondecreasing. Since the matrices A
(n)
0 and Â

(n)
0 are substochastic for any n,

it follows that there exists A
(∞)
0 = limn A

(n)
0 and Â

(∞)
0 = limn Â

(n)
0 . Now, from

Theorem 7.12 one has

A
(n)
−1 = (I − A

(n)
0 )G2n

min −
+∞∑
i=1

A
(n)
i (G2n

min)i+1. (7.51)

Since by the properties stated in part 1 the summation in the above equation
converges to zero for n → ∞, and since limn G2n

min = 1gT, limn A
(n)
0 = A

(∞)
0 ,
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then taking the limits in (7.51) as n → +∞ yields limn A
(n)
−1 = (I − A

(∞)
0 )1gT.

In order to prove that limn Â
(n)
0 =

∑+∞
i=0 AiG

i
min we proceed as in the proof of

Theorem 7.12. Namely, from (7.48) one has that

Â
(n)
0 = A∗

0 −
+∞∑
i=1

Â
(n)
i Gi·2n

min ,

where A∗
0 =

∑+∞
i=0 AiG

i
min, therefore, by taking the infinity norm, since Gmin is

stochastic, we obtain

‖Â(n)
0 − A∗

0‖∞ =
∥∥∥+∞∑

i=1

Â
(n)
i

∥∥∥
∞

≤ γξ2n
+∞∑
i=1

(ξ − ε)−(i+1)2n ≤ γ′ξ2n

(ξ − ε)−2n+1
,

for suitable positive constants γ and γ′. This completes part 2.
Concerning part 3, in order to prove the uniform convergence we have to

show that, for any compact subset K of the disk {z ∈ C : |z| < ξ}, one
has limn supz∈K |ϕ(n)(z) − ϕ(∞)(z)| = 0. Let K be any compact subset and let
σ = maxz∈K |z|. One has

|ϕ(n)(z) − ϕ(∞)(z)| ≤ |A(n)
−1 − A

(∞)
−1 | + σ|A(n)

0 − A
(∞)
0 | +

+∞∑
i=1

σi+1A
(n)
i ,

for any z ∈ K. Therefore

sup
z∈K

|ϕ(n)(z) − ϕ(∞)(z)| ≤ |A(n)
−1 − A

(∞)
−1 | + σ|A(n)

0 − A
(∞)
0 | +

+∞∑
i=1

σi+1A
(n)
i .

Since, for part 2, limn |A(n)
−1 −A

(∞)
−1 | = limn |A(n)

0 −A
(∞)
0 | = 0, it remains to prove

that limn

∑+∞
i=1 σi+1A

(n)
i = 0. In order to show this, we apply part 1 and deduce

that for any ε such that 0 < ε < ξ − σ and for any norm there exists γ > 0 such
that ∥∥∥+∞∑

i=1

σi+1A
(n)
i

∥∥∥ ≤ γξ2n
+∞∑
i=1

σi+1(ξ − ε)−(i+1)2n ≤ γ′ξ2n

(ξ − ε)−2n+1
.

Whence limn

∑+∞
i=1 σi+1A

(n)
i = 0. Since the sequence {ϕ(n)(z)}n uniformly con-

verges over any compact subset K also the sequence {detϕ(n)(z)}n uniformly
converges over any compact subset K to detϕ(∞)(z). Therefore we may apply
Theorem A.19 to det ϕ(n)(z) and deduce that for any θ, 1 < θ < ξ, the number of
zeros in the disk D = {z ∈ C : |z| < θ} of det ϕ(n)(z) and of detϕ(∞)(z) is the
same for any n sufficiently large. Since µ < 0, for any n the function detϕ(n)(z)
has exactly m zeros in D. Therefore also detϕ(∞)(z) has exactly m zeros in D.
Now, since A

(∞)
−1 = (I−A

(∞)
0 )1gT, we find that ϕ(∞)(z) = (I−A

(∞)
0 )(zI−1gT).
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Therefore, I − A
(∞)
0 cannot be singular otherwise any z ∈ D would be a zero of

detϕ(∞)(z). Since from Theorem 7.8 ρ(A(n)
0 ) < 1, then ρ(A(∞)

0 ) ≤ 1. Now we
prove that ρ(A(∞)

0 ) �= 1. If by a condradiction ρ(A(∞)
0 ) �= 1, then 1 would be

eigenvalue of A
(∞)
0 in light of Theorem 1.28, therefore the matrix I−A

(∞)
0 would

be singular.
In order to prove part 4 we provide an explicit espression of the block coeffi-

cients A
(n)
0 as follows. From (7.36) we deduce that

A
(n+1)
0 = A

(n)
0 + A

(n)
−1K

(n)
0 A

(n)
1 + A

(n)
−1K

(n)
1 A

(n)
−1 + A

(n)
1 K

(n)
0 A

(n)
−1

where (I − A
(n)
odd(z))−1 =

∑+∞
i=0 ziK

(n)
i . Since K

(n)
0 = (I − A

(n)
0 )−1 and K

(n)
1 =

(I − A
(n)
0 )−1A

(n)
2 (I − A

(n)
0 )−1, we find that

A
(n+1)
0 − A

(n)
0 =A

(n)
−1 (I − A

(n)
0 )−1A

(n)
1

+ A
(n)
−1 (I − A

(n)
0 )−1A

(n)
2 (I − A

(n)
0 )−1A

(n)
−1

+ A
(n)
1 (I − A

(n)
0 )−1A

(n)
−1 .

From parts 2 and 3 the matrices A
(n)
−1 and (I −A

(n)
0 )−1 have uniformly bounded

norms; from part 1 we have that for any matrix norm and for any ε > 0 such that
ξ− ε > 1, there exists a positive constant γ such that ‖A(n)

1 ‖ ≤ γξ2n

(ξ− ε)−2n+1

and ‖A(n)
2 ‖ ≤ γξ2n

(ξ−ε)−3·2n

. Whence we find that ‖A(n+1)
0 −A

(n)
0 ‖ ≤ γ′ξ2n

(ξ−
ε)−2n+1

for a suitable γ′ > 0. Since there exists the limit of {A(n)
0 }, from the latter

inequality and from Lemma A.16 in the appendix, we conclude that ‖A(n)
0 −

A
(∞)
0 ‖ ≤ γ′′ξ2n

(ξ− ε)−2n+1
for a suitable γ′′ > 0. Let us analyze the convergence

speed of the sequence {A(n)
−1}. From part 2 we have A

(∞)
−1 = 1gT − A

(∞)
0 1gT,

from (7.46) we have A
(n)
−1 = G2n

min −A
(n)
0 G2n

min −
∑+∞

i=1 A
(n)
i G

(i+1)2n

min . Subtracting
both sides of the latter two equations yields

A
(n)
−1 − A

(∞)
−1 =(G2n

min − 1gT) + A
(∞)
0 (1gT − G2n

min)

+ (A(∞)
0 − A

(n)
0 )G2n

min −
+∞∑
i=1

A
(n)
i G

(i+1)2n

min .
(7.52)

Since from Theorem 4.26 ‖G2n

min−1gT‖ ≤ γ′(η + ε)2
n

, for a suitable γ′ > 0, from
the convergence of the sequences {A(n)

i }n for i ≥ 0 and from (7.52) we deduce
that

‖A(n)
−1 − A

(∞)
−1 ‖ ≤ γ

(
ξ2n

(ξ − ε)−2n+1
+ (η + ε)2

n
)

.

Part 5 is a direct consequence of (7.39) and of the quadratic convergence of
the sequences {Â(n)

i }n, i ≥ 1, to the null matrix, and of the sequence {Â(n)
0 }n to

Â
(∞)
0 , with ρ(Â(∞)

0 ) < 1, stated in parts 1–4. �
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If the Markov chain is transient then the convergence of cyclic reduction still
holds even if with different features as shown in the following.

Theorem 7.14 Let A(z) be the generating function associated with an M/G/1-

type Markov chain with positive drift µ. Let A(n)(z) =
∑+∞

i=−1 zi+1A
(n)
i , Â(n)(z) =∑+∞

i=0 ziÂ
(n)
i , n ≥ 0, be the matrix power series generated by the recurrences

(7.38), and let η = max{|z| : |z| < 1, detϕ(z) = 0}. Then:

1. For any ε > 0 such that η + ε < 1 and for any matrix norm ‖ · ‖ there exists
a positive γ such that

‖A(n)
−1‖ ≤ γ(η + ε)2

n

.

2. There exist the limits A
(∞)
0 = limn A

(n)
0 and Â

(∞)
0 = limn Â

(n)
0 , where

Â
(∞)
0 =

∑+∞
i=0 AiG

i
min, moreover, ρ(Â(∞)

0 ) < 1.

3. For any ε > 0 such that η + ε < 1 and for matrix norm ‖ · ‖ there exists a
positive γ such that

‖Gmin − G(n)‖ ≤ γ(η + ε)2
n

where G(n) = (I − Â
(n)
0 )−1A−1.

Proof From Theorem 7.12 we find that

A
(n)
−1 = (I − A

(n)
0 )G2n

min −
+∞∑
i=1

A
(n)
i (G2n

min)i+1.

By Theorem 4.26 there exists a positive γ′ such that ‖G2n

min‖ ≤ γ′(η + ε)2
n

. Since
the matrices A

(n)
i , i ≥ 0, are substochastic for any n ≥ 0 by Theorem 7.8, we

conclude that for any matrix norm ‖·‖ there exists a positive γ such that ‖Â(n)
−1‖ ≤

γ(η + ε)2
n

. Concerning part 2, from (7.38) the sequences {A(n)
0 } and {Â(n)

0 } are
monotonic and bounded, therefore they are convergent. Moreover, by proceeding
as in the proof of Theorem 7.12, we find that Â

(n)
0 = A∗

0−
∑+∞

i=1 Â
(n)
i Gi·2n

min , where
A∗

0 =
∑+∞

i=0 AiG
i
min. Therefore, from the convergence to zero of G2n

one has
limn Â

(n)
0 = A∗

0. The inequality ρ(Â(∞)
0 ) < 1 follows from Theorem 4.15. Part 3

follows from (7.39), from the substochasticity of the matrices Â
(n)
i , i ≥ 1, and

from the quadratic convergence of {G2n

min}n to the null matrix. �

For null recurrent Markov chains we no longer have the quadratic convergence
of cyclic reduction. However, by using a suitable shift technique we may trans-
form the Markov chain into a new problem for which cyclic reduction applies
with quadratic convergence. This will be shown in Section 8.2.

7.5 Computational issues of cyclic reduction

The implementation of cyclic reduction for a M/G/1-type Markov chain is more
delicate than for QBD problems. In fact in this case we have to deal with an
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infinite number of blocks Ai, i ≥ −1. Let us examine closely the general step of
cyclic reduction and consider the block Hessenberg matrix H(n) obtained at the
nth step

H(n) =


I − Â

(n)
0 −Â

(n)
1 −Â

(n)
2 −Â

(n)
3 . . .

−A
(n)
−1 I − A

(n)
0 −A

(n)
1 −A

(n)
2 . . .

−A
(n)
−1 I − A

(n)
0 −A

(n)
1

. . .

0 . . . . . . . . .

 . (7.53)

Denote also by Π the permutation matrix associated with the block even–odd
permutation so that

ΠH(n)ΠT =

[
I − U

(n)
1,1 −U

(n)
1,2

−U
(n)
2,1 I − U

(n)
2,2

]
(7.54)

and

U
(n)
1,1 =


A

(n)
0 A

(n)
2 A

(n)
4 . . .

A
(n)
0 A

(n)
2

. . .

0 . . . . . .

 , U
(n)
1,2 =


A

(n)
−1 A

(n)
1 A

(n)
3 . . .

A
(n)
−1 A

(n)
1

. . .

0 . . . . . .

 ,

U
(n)
2,1 =


Â

(n)
1 Â

(n)
3 Â

(n)
5 . . .

A
(n)
−1 A

(n)
1 A

(n)
3

. . .

0 . . . . . . . . .

 , U
(n)
2,2 =


Â

(n)
0 Â

(n)
2 Â

(n)
4 . . .

A
(n)
0 A

(n)
2

. . .

0 . . . . . .

 .

The main computational task of cyclic reduction is computing the first two
block rows of the matrix

H(n+1) = I − U
(n)
2,2 − U

(n)
2,1 (I − U

(n)
1,1 )−1U

(n)
1,2 . (7.55)

Here we follow two different approaches based on the matrix and on the func-
tional interpretation of equation (7.55).

Before considering these two approaches we need to analyze the propagation
of the errors at each step of cyclic reduction. In fact, in the computation of the
cyclic reduction step we cannot avoid introducing errors. The source of these
errors is twofold. On one hand, in dealing with infinite matrices and with power
series we have to perform truncations and approximations: finite computations
will necessarily introduce approximation errors. On the other hand, using floating
point arithmetic introduces a roundoff error in each arithmetic operation.

In order to analyze the propagation of these errors it is useful to make a
distinction between the local errors generated at a single step of cyclic reduction
and the global error which results from the accumulations of the errors generated
at the previous steps. We now formalize these two concepts.
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Let us consider the pair of matrix functions (A(n)(z), Â(n)(z)) which defines
the matrix H(n) at the n-th step of cyclic reduction and let us call F the trans-
formation which defines the single cyclic reduction step so that

(A(n+1)(z), Â(n+1)(z)) = F(A(n)(z), Â(n)(z)).

Let us denote with F̃ the function which we actually implement in place of F .
In general F̃ is different from F due to rounding errors and to approximation
errors generated by truncating power series to polynomials and infinite triangular
matrices to banded matrices. Then we define the local error generated in one step
of cyclic reduction at (A(n), Â(n)) as the expression

L(A(n)(z), Â(n)(z)) = F̃(A(n)(z), Â(n)(z)) −F(A(n)(z), Â(n)(z)).

Let (B(n)(z), B̂(n)(z)) be the pairs actually generated by cyclic reduction
when each single step is affected by the local error, so that we have

(B(n+1)(z), B̂(n+1)(z)) = F̃(B(n)(z), B̂(n)(z)), n ≥ 0,

B(0)(z) = A(0)(z), B̂(0)(z) = Â(0)(z).

Define the global error at step n as

E(n)(z) = (E(n)(z), Ê(n)(z)) = (B(n)(z), B̂(n)(z)) − (A(n)(z), Â(n)(z))

and deduce that

E(n+1)(z) = F̃(B(n)(z), B̂(n)(z)) −F(A(n)(z), Â(n)(z)).

Since F̃(B(n)(z), B̂(n)(z)) = F(B(n)(z), B̂(n)(z)) + L(B(n)(z), B̂(n)(z)), we find
that

E(n+1)(z) = F(B(n)(z), B̂(n)(z)) −F(A(n)(z), Â(n)(z)) + L(n)(z), (7.56)

where for simplicity we denote L(n)(z) = L(B(n)(z), B̂(n)(z)) = (L(n)(z), L̂(n)(z)).
Therefore we may divide our analysis in two parts: estimating the error

F(B(n)(z), B̂(n)(z)) −F(A(n)(z), Â(n)(z))

generated by the perturbation E(n)(z) in the variables of the function F , and
analyzing the local error L(n)(z) = (L(n)(z), L̂(n)(z)).

While the latter issue depends on the way the cyclic reduction step is im-
plemented, the former issue can be simply answered relying on the next lemma.
Here and hereafter, we perform a first-order error analysis, that is, in the er-
ror expressions we consider only the terms which are linear in the errors and
we neglect quadratic and higher-order terms. We use the symbol =̇ to denote
equality up to quadratic and higher-order terms in the errors, therefore we will
use expression like (1 + ε)n=̇1 + nε, and 1/(1 − ε)=̇1 + ε, where ε denotes the
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error. This formal analysis is realistic if the errors are sufficiently small so that
their products or powers are actually negligible. Similarly we use the symbol ≤̇
for denoting inequality up to quadratic and higher-order terms.

For a matrix power series F (z) =
∑+∞

i=0 ziFi in the Wiener algebra W we
denote

‖F (z)‖∗ = ‖
+∞∑
i=0

|Fi| ‖∞.

It is a simple matter to show that ‖ · ‖∗ is a norm in W.
The following lemma analyzes the propagation of the error at a general step

of cyclic reduction. For notational simplicity we do not write the superscript (n)
and we denote with A(z) and Â(z) the matrix power series defining the first two
block rows of H(n) in (7.53).

Lemma 7.15 Let A(z) and Â(z) be the matrix power series defining the first

two block rows of H(n) in (7.53). Let B(z) and B̂(z) be approximations to

A(z) and Â(z), respectively, and denote with R(z) = B(z) − A(z) and R̂(z) =
B̂(z) − Â(z) the approximation errors, respectively. Then, for the matrix power
series

R(1)(z) = B(1)(z) − A(1)(z), R̂(1)(z) = B̂(1)(z) − Â(1)(z),

where (B(1)(z), B̂(1)(z)) = F(B(z), B̂(z)) and (A(1)(z), Â(1)(z)) = F(A(z), Â(z)),
one has

R(1)(z)=̇zRodd(z) + Reven(z)W (z) + V (z)Reven(z) + V (z)Rodd(z)W (z),

R̂(1)(z)=̇R̂even(z) + R̂odd(z)W (z) + V̂ (z)Reven(z) + V̂ (z)Rodd(z)W (z),
(7.57)

where V (z) = Aeven(z)(I−Aodd(z))−1, W (z) = (I−Aodd(z))−1Aeven(z), V̂ (z) =
Âodd(z)(I − Aeven(z))−1. Moreover, one has

‖R(1)(z)‖∗≤̇2‖R(z)‖∗(1 + ‖V (1)‖∞),

‖R̂(1)(z)‖∗≤̇2‖R̂(z)‖∗ + 2‖R(z)‖∗‖V̂ (1)‖∞.

Proof Let us rewrite (7.36) replacing A(z) with B(z) and obtain

B(1)(z) = zBodd(z) + Beven(z)(I − Bodd(z))−1Beven(z),

B̂(1)(z) = B̂even(z) + B̂odd(z)(I − Bodd(z))−1Beven(z).
(7.58)

Now observe that

I−Bodd(z) = I−Aodd(z)−Rodd(z) = (I−Aodd(z))[I−(I−Aodd(z))−1Rodd(z)]

so that

(I − Bodd(z))−1 = [I − (I − Aodd(z))−1Rodd(z)]−1(I − Aodd(z))−1.
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Moreover, since [I−(I−Aodd(z))−1Rodd(z)]−1=̇I +(I−Aodd(z))−1Rodd(z), one
has

(I − Bodd(z))−1=̇(I − Aodd(z))−1 + (I − Aodd(z))−1Rodd(z)(I − Aodd(z))−1.

Plugging the latter expression in both equations of (7.58) and subtracting equa-
tions (7.36) from the expressions obtained in this way, respectively, yields (7.57).
For the second part, applying ‖·‖∗ at both sides of (7.57), and using the triangle
inequality yields

‖R(1)(z)‖∗≤̇‖Rodd(z)‖∗ + ‖Reven(z)‖∗‖W (z)‖∗ + ‖V (z)‖∗‖Reven(z)‖∗
+‖Rodd(z)‖∗‖V (z)‖∗‖W (z)‖∗.

For the monotonicity of the infinity norm one has ‖Rodd(z)‖∗ ≤ ‖R(z)‖∗ and
‖Reven(z)‖∗ ≤ ‖R(z)‖∗. Moreover, since the block coeffcients of W (z) are non-
negative and since by Theorem 7.8, W (1) is a stochastic matrix then ‖W (z)‖∗ =
‖W (1)‖∞ = 1. Whence we find that

‖R(1)(z)‖∗≤̇2‖R(z)‖∗(1 + ‖V (z)‖∗) = 2‖R(z)‖∗(1 + ‖V (1)‖∞),

where the latter equality holds since the matrix power series V (z) has nonnega-
tive coefficients. Similarly we may prove the inequality for ‖R̂(1)(z)‖∗. �

It is interesting to point out that by Theorem 7.8 the matrices V (1) and
W (1) have spectral radius 1.

From the above lemma and from equation (7.56) we immediately find that

E(n+1)(z)=̇zE
(n)
odd(z) + V (n)(z)E(n)

even(z)

+ (E(n)
even(z) + V (n)(z)E(n)

odd(z))W (n)(z) + L(n)(z)

Ê(n+1)(z)=̇Ê(n)
even(z) + V̂ (n)(z)E(n)

even(z)

+ (Ê(n)
odd(z) + V̂ (n)(z)E(n)

odd(z))W (n)(z) + L̂(n)(z)

(7.59)

for n = 0, 1, . . ., where E(0)(z) = Ê(0)(z) = 0 and

V (n)(z) = A(n)
even(z)(I − A

(n)
odd(z))−1,

V̂ (n)(z) = Â(n)
even(z)(I − A

(n)
odd(z))−1,

W (n)(z) = (I − A
(n)
odd(z))−1A(n)

even(z).

Taking norms ‖·‖∗ in (7.59), since ‖W (n)(z)‖∗ = 1 and ‖E(n)
odd(z)‖∗, ‖E(n)

even(z)‖∗ ≤
‖E(n)(z)‖∗, and ‖Ê(n)

odd(z)‖∗, ‖Ê(n)
even(z)‖∗ ≤ ‖Ê(n)(z)‖∗, yields

‖E(n+1)(z)‖∗≤̇2(1 + ‖V (n)(1)‖∞)‖E(n)(z)‖∗ + ‖L(n)(z)‖∗

‖Ê(n+1)(z)‖∗≤̇2‖Ê(n)(z)‖∗ + 2‖E(n)(z)‖∗‖V̂ (n)(z)‖∗

+‖L̂(n)(z)‖∗.

(7.60)

In order to better understand the growth of ‖E(n)(z)‖∗ as a function of n,
let us assume that ‖L(n)(z)‖∗ ≤ ν and that 2(1 + ‖V (n)(1)‖∞) = γn ≤ γ for



COMPUTATIONAL ISSUES OF CYCLIC REDUCTION 217

some ν > 0 and γ > 1. Then the upper bound provided by the first inequality
in (7.60) takes the form

‖E(n+1)(z)‖∗ ≤ ν(1 + γ1 + γ1γ2 + · · · + γ1γ2 · · · γn) ≤ nνγn, (7.61)

which is exponential with n. A similar bound can be derived for ‖Ê(n)(z)‖∗.
In principle this exponential growth of the error bound might suggest that the

algorithm is numerically unstable. On the other hand the results of the numer-
ical experiments performed with different implementations of cyclic reduction
show the reliability and the stability of the algorithm. This apparent contradic-
tion can be explained with the following arguments. The upper bound (7.61) is
obtained by applying several times the triangular inequality assuming each time
the worst case error bound. This generally leads to a pessimistic error bound
which rarely is reached in practice. Moreover, due to the quadratic convergence
of cyclic reduction, the number of iterations generally required in practice is very
small. This makes the exponential growth of the error bound less destructive as
in principle it could seem.

A further observation relies on the fact that if E(n)(z) has null coefficients
from degree 0 up to degree k and if L(n)(z) has null coefficients from degree 0 up
to degree k/2, then from (7.59) one has that E(n+1)(z) has null coefficients from
degree 0 up to degree k/2. Therefore, we deduce that if the ith step of cyclic
reduction is performed so that L(i)(z) has null coefficients from degree 0 up to
degree k/2i, for i = 0, . . . , n − 1, then E(n)(z) has null coefficients from degree
0 up to degree k/2n−1. In other words, the lower degree coefficients of E(n)(z)
can be kept to zero by truncating the cyclic reduction step at a sufficiently large
degree. A similar observation applies to Ê(n)(z).

Finally, another important observation concerning the error propagation is
that, as we will see later on in Section 8.2, with a suitable shift technique we
may transform the original problem into a different one where the quantities
‖W (n)(z)‖∗, ‖V (n)(z)‖∗, and ‖V̂ (n)(z)‖∗, are bounded from above by θσ2n

for
suitable θ > 0 and 0 < σ < 1. This property, together with (7.57) implies that
‖E(n+1)(z)‖∗≤̇(1+2θσ(2n

)‖E(n)(z)‖∗ +‖L(n)(z)‖∗. Therefore, (7.61) holds with
γn = (1 + 2θσ2n

).
Since log(1 + x) ≤ x

log
n∏

i=1

γi =
m∑

i=1

log γi ≤ 2θ

n∑
i=1

σ2i ≤ 2θσ2/(1 − σ2),

so that from the first inequality in (7.61) we find that

‖E(n)(z)‖∗ ≤ ν(n + 1)e2θ σ2

1−σ2 (7.62)

which is a bound linear in n. A similar analysis can be performed for Ê(n)(z).
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7.5.1 Matrix implementation

Concerning the matrix interpretation, the most expensive part in the implemen-
tation of (7.55) is the computation of the first two block rows of the matrix
U

(n)
2,1 (I − U

(n)
1,1 )−1U

(n)
1,2 . This computation can be split into the following parts:

1. compute T∞[K(z)] = (I − U
(n)
1,1 )−1, where K(z) = (I − A

(n)
odd(z))−1;

2. compute the block vectors

vT = uT(I − U
(n)
1,1 )−1, v̂T = ûT(I − U

(n)
1,1 )−1, (7.63)

where ûT = [Â(n)
1 , Â

(n)
3 , Â

(n)
5 , . . .] and uT = [A(n)

−1 , A
(n)
1 , A

(n)
3 , . . .] are the

first and the second block rows of U
(n)
2,1 , respectively;

3. compute the products yT = vTU
(n)
1,2 , ŷT = v̂TU

(n)
1,2 .

In all three stages above we have to perform computations involving infinite
block triangular Toeplitz matrices.

In order to deal with infinite matrices we could replace them with finite
matrices obtained by means of truncation at a sufficiently large size d. However,
this technique does not allow one reliable control of the truncation errors and a
better approach can be devised by approximating the infinite triangular matrices
with infinite banded matrices. In fact, despite their infinite size, banded Toeplitz
matrices are defined by a finite number of parameters. This technique of band
truncation relies on the decay properties of the block elements of the matrices
involved.

In fact, according to Theorem 7.8 the functions A(n)(z), Â(n)(z), are in the
Wiener algebra W+ and I − A

(n)
odd(z) is nonsingular and its inverse K(z) =∑+∞

i=0 ziKi = (I − A
(n)
odd(z))−1 is in W+. In this way, the coefficients of A(n)(z),

Â(n)(z) and K(z) decay to zero, i.e., for any ε > 0 there exist positive integers
s, q > 0 such that

∑
i≥s A

(n)
i < εE,

∑
i≥s+1 Â

(n)
i < εE,

∑
i≥q Ki < εE, where E

is the matrix with all elements equal to 1. Moreover, if in addition these functions
are analytic in an open set containing the unit circle, then for Theorem 3.6 the
decay is exponential.

Based on this property, we may replace the matrices H(n) with block banded
matrices defined by the matrix polynomials A

(n)
s (z) =

∑s−1
i=−1 zi+1A

(n)
i and

Â
(n)
s (z) =

∑s
i=0 ziÂ

(n)
i where possibly s depends on n. For the sake of sim-

plicity, without loss of generality we choose s + 1 even. With this choice the
number of block coefficients of the matrix polynomials A

(n)
s (z) and Â

(n)
s (z) is

the even number d = s + 1. In this way the operations at stages 2 and 3 of the
above scheme can be reduced to matrix polynomial multiplications and we may
use the algorithms of Section 2.2 having cost O(m2d log d + m3d).

From the computational point of view, a first problem which we encounter is
to estimate the value of d which guarantees a local error less than a given bound
ε. Since the blocks A

(n)
i and Â

(n)
i are nonnegative and A(n)(1), A−1 + Â(n)(1)

are stochastic (see Theorem 7.8), we may easily estimate the truncation error of
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replacing the matrix power series with the matrix polynomial. In fact, if ‖1 −
A

(n)
d−1(1)1‖∞ ≤ ε then

∑
i≥d−1 A

(n)
i < εE. A similar property holds for Â(n)(z),

namely, if ‖1 − (A−1 + Â
(n)
d−1(1))1‖∞ ≤ ε then

∑
i≥d Â

(n)
i < εE.

Concerning the computation of (I − U
(n)
1,1 )−1, we observe that the inverse

of a banded Toeplitz matrix is no longer banded. However, relying on the re-
sults of Chapter 3, we approximate (I − U

(n)
1,1 )−1 with a block banded block

Toeplitz matrix T∞[Kq(z)], where Kq(z) = K(z) mod zq is a matrix polynomial
of degree at most q − 1, where q is such that ‖T∞[Kq(z)] − T∞[K(z)]‖∞ ≤ ε,
for a given error bound ε. In other words, the matrix T∞[Kq(z)] is obtained
by truncating T∞[K(z)] at a finite band q. In this way, T∞[Kq(z)] and (I −
U

(n)
1,1 )−1 coincide in the nonzero part. This is obtained by applying Algorithm

3.1, where the input matrices A0, A1, . . . , Ak−1 are replaced with the matri-
ces I − A

(n)
0 ,−A

(n)
2 , . . . ,−A

(n)
d−2, which outputs Ki, i = 0, . . . , q − 1, where Ki,

i = 0, . . . , q−1, are the first q block elements of the first block row of (I−U
(n)
1,1 )−1

such that
∑+∞

i=q Ki ≤ εE.
In this way, the computation of vT and v̂T in (7.63) can be carried out

in an approximate way by reducing it to multiplying an infinite vector with a
finite number of nonnull elements and an infinite block upper triangular banded
Toeplitz matrix.

For the equivalence of block banded Toeplitz matrices and matrix polynomials
pointed out in Section 3.1, the nonnull block elements of v =T [V0, V1 . . .] and
v̂T = [V̂0, V̂1, . . .] are given by the block coefficients of the matrix polynomials

d/2+q−2∑
i=0

ziVi =

d/2−1∑
i=0

ziA
(n)
2i−1

(q−1∑
i=0

ziKi

)
,

d/2+q−2∑
i=0

ziV̂i =

d/2−1∑
i=0

ziÂ
(n)
2i+1

(q−1∑
i=0

ziKi

)
.

(7.64)

Similarly, the computation of yT = [Y0, Y1, . . .] and ŷ = [Ŷ0, Ŷ1, . . .] is performed
by means of

d+q−3∑
i=0

ziYi =

d/2+q−2∑
i=0

ziVi

d/2−1∑
i=0

ziA
(n)
2i−1

 ,

d+q−3∑
i=0

ziŶi =

d/2+q−2∑
i=0

ziV̂i

d/2−1∑
i=0

ziA
(n)
2i−1

 .

(7.65)

The computations in (7.64) and (7.65) can be performed by means of Algorithm
2.1 in O(m2(d + q) log(d + q) + m3(d + q)) ops.
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Now we analyze the error generated in one step of cyclic reduction by trun-
cating K(z) to a polynomial of degree q−1. For the sake of notational simplicity
we omit the superscript (n) from all the variables.

Let us denote with A′(z) and Â′(z) the functions obtained by the cyclic
reduction step applied to A(z) and Â(z) and with B′(z) and B̂′(z) the func-
tions obtained by performing the above step by truncating the power series
K(z) = (I − A

(n)
odd(z))−1 to degree q − 1, where q is such that the residual

Γ(z) =
∑+∞

i=q ziKi has norm at most ε, i.e., ‖Γ(z)‖∗ = ‖Γ(1)‖∞ ≤ ε, where
the latter equation holds since K(z) has nonnegative block coefficients. More
specifically, let

A′(z) = zAodd(z) − Aeven(z)(I − Aodd(z))−1Aeven(z),

Â′(z) = Âeven(z) − Âodd(z)(I − Aodd(z))−1Aeven(z),

and

B′(z) = zAodd(z) − Aeven(z)
(
(I − Aodd(z))−1 − Γ(z)

)
Aeven(z),

B̂′(z) = Âeven(z) − Âodd(z)
(
(I − Aodd(z))−1 − Γ(z)

)
Aeven(z).

By subtracting the former equations from the latter ones, for the local error
L(z) = (L(z), L̂(z)) = (B′(z), B̂′(z)) − (A′(z), Â′(z)) we obtain

L(z) = Aeven(z)Γ(z)Aeven(z),

L̂(z) = Âodd(z)Γ(z)Aeven(z).

Moreover, since L(z) has nonnegative block coefficients one has

‖L(z)‖∗ = ‖Aeven(1)Γ(1)Aeven(1)‖∞ ≤ ‖Γ(1)‖∞ ≤ ε

since ‖Aeven(1)‖∞ ≤ 1. Similarly we find that ‖L(z)‖∗ ≤ ε. We also have L(z) =
L̂(z) = 0 mod zq, that is the local errors in the first q coefficients are zero.

We may synthesize these properties in the following.

Theorem 7.16 Let d′ = max(d/2, q) and let B′(z), B̂′(z) be the functions ob-
tained by applying the cyclic reduction step modulo zd′

, where A(1) is stochastic

and Â(1) is substochastic. For the local error

L(z) = (L(z), L̂(z)) = (B′(z), B̂′(z)) − (A′(z), Â′(z))

it holds

L(z) = Aeven(z)Γ(z)Aeven(z)

L̂(z) = Âodd(z)Γ(z)Aeven(z)

where Γ(z) =
∑+∞

i=q ziKi, K(z) = (I −Aodd(z))−1, and ‖Γ(z)‖∗ = ‖Γ(1)‖∞ ≤ ε.

Moreover ‖L(z)‖∗ = ‖L(1)‖∞ ≤ ε and ‖L̂(z)‖∗ = ‖L̂(1)‖∞ ≤ ε. Finally, L(z) = 0
mod zq, L̂(z) = 0 mod zq, that is the local errors in the first q coefficients are

zero, and ‖(∑d′−2
i=−1 B′

i)1 − 1‖∞ ≤ ε, ‖(∑d′−1
i=0 B̂′

i −
∑d−1

i=0 Âi)1‖∞ ≤ ε.



COMPUTATIONAL ISSUES OF CYCLIC REDUCTION 221

Algorithm 7.5 synthesizes a step of cyclic reduction applied in approximate
way to an M/G/1-type Markov chain.

Algorithm 7.5 CR step: M/G/1 case, matrix version

Input: Positive even integer d and the m × m block elements Ai−1, Âi, i =
0, . . . , d− 1, defining the first two block rows of the matrix (7.53) at the general
step of cyclic reduction; an error bound ε > 0.

Output: Positive integers q, d′ and the m × m block elements B′
i−1, B̂

′
i, i =

0, . . . , d′ − 1, approximating the block elements A′
i−1, Â′

i, i =, 0, . . . , d′ − 1 in
the first two block rows of the matrix (7.53) after one step of cyclic reduction,
such that ‖1−∑d′−2

i=−1 B′
i1‖∞ ≤ ε, ‖(∑d′−1

i=0 B̂′
i −
∑d−1

i=0 Â′
i)1‖∞ ≤ ε and B′

i = A′
i,

i = −1, 0, . . . , q − 2, B̂′
i = Â′

i, i = 0, . . . , q − 1, ‖A′(z) −∑d′−1
i=−1 zi+1B′

i‖∗ ≤ ε,

‖Â′(z) −∑d′−1
i=0 ziB̂′

i‖∗ ≤ ε.

Computation:

1. Apply Algorithm 3.1, with input: the integer d/2, the matrices I −
A0,−A2, . . . ,−Ad−2 and the error bound ε. Obtain in output the integer
q and matrices Ki, i = 0, . . . , q−1, where Ki, i = 0, . . . , q−1, are the first q
block elements of the first block row of (I−U1,1)−1 such that

∑+∞
i=q Ki ≤ εE.

2. Compute the block vectors v and v̂ of (7.64) by applying Algorithm 2.1.
3. Compute the block vectors y and ŷ of (7.65) by applying Algorithm 2.1.
4. Set d′ = max(d/2, q) and

B′
i = A2i + Yi+1 i = −1, . . . , d′ − 1,

B̂′
i = Â2i + Ŷi i = 0, . . . , d′ − 1,

where Ai = 0 if i < −1 or if i ≥ d − 1 and Âi = 0 if i ≥ d.

The computational cost of this algorithm can be easily evaluated relying on
the complexity estimates of Algorithms 2.1 and 3.1. In fact we have the following
asymptotic complexity bound

O(m3d′ + m2d′ log d′).

Indeed, from Theorem 7.11, we have that zI−A(n)(z) as well as I−A
(n)
odd(z) are

analytic for |z| < ξ2n

; moreover, the latter matrix power series is also nonsingular
for |z| < ξ2n

. Therefore (I−A
(n)
odd(z))−1 is analytic for |z| < ξ2n

and for Theorem
3.7 the coefficients of the latter matrix power series decay esponentially to zero
with exponential basis σ−2n

for any 1 < σ < ξ. This property guarantees that
the numerical degree of (I − A

(n)
odd(z))−1 is bounded from above by a constant.

For positive recurrent Markov chains where the drift µ is negative, one should
expect a rapid decrease of the value of d′ after just a few iterations in view of
Theorem 7.13.
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Observe that if A(1) is stochastic then the matrix B′(1) is ε-stochastic. In
order to preserve the stochasticity of the matrix provided by the cyclic reduction
step we may modify Algorithm 7.5 by using a simple trick which uses the idea
of the GTH trick of [53]. Indeed, at stage 4 we may replace the jth diagonal
element of B′

0 with 1 − eT
j (B′

−11 +
∑d′−1

i=1 B′
i1 + B′

0(1 − ej)), for j = 1, . . . ,m.
Similarly we may do the same with B̂′

0 where we need to use the initial matrix
A

(0)
−1 such that A

(0)
−1 +

∑+∞
i=0 Â

(n)
i is stochastic for any n ≥ 0. In fact we replace

the jth diagonal element of B̂′
0 with 1 − eT

j (t +
∑d′−1

i=1 B̂′
i1 + B̂′

0(1 − ej)), for

j = 1, . . . , m, where t = A
(0)
−11.

7.5.2 Functional implementation
A different way for implementing the cyclic reduction step relies on the fast
power series arithmetic, based on the evaluation–interpolation technique, intro-
duced in Chapter 3. More precisely, the evaluation of the expression A

(n)
even(z)(I−

A
(n)
odd(z))−1A

(n)
even(z) in (7.38) is not performed by applying the fast algorithms for

multiplying and inverting block Toeplitz matrices, rather we evaluate the power
series zA

(n)
odd(z)+A

(n)
even(z)(I −A

(n)
odd(z))−1A

(n)
even(z) at a sufficiently large number

of points and then perform interpolation. Similarly we do the same for Â(n)(z).
This technique enables one to reduce the number of FFTs used still keeping full
control on the local error generated by this computation.

In fact, we rely on Algorithm 3.5 applied twice for computing A(n+1)(z) and
Â(n+1)(z). In the former computation we have as input the matrix power series
X1(z), X2(z), X3(z) and the rational function F (X1, X2, X3)

X1(z) = A
(n)
odd(z), X2(z) = A(n)

even(z), X3(z) = zA
(n)
odd(z),

F (X1, X2, X3) = X3 + X2(I − X1)−1X2,

in the latter case we have

X1(z) = A
(n)
odd(z), X2(z) = A(n)

even(z), X3(z) = Â(n)
even(z), X4(z) = Â

(n)
odd(z),

F (X1, X2, X3, X4) = X3 + X4(I − X1)−1X2.

As output we obtain the matrix polynomials P (n+1)(z) and P̂ (n+1)(z) which
interpolate A(n+1)(z) and Â(n+1)(z) at the dth roots of 1 where d is dynamically
determined so that

d−1∑
i=0

|A(n+1)
i−1 − P

(n+1)
i |1 +

+∞∑
i=d−1

|A(n+1)
i |1 ≤ ε1

d−1∑
i=0

|Â(n+1)
i − P̂

(n+1)
i |1 +

+∞∑
i=d

|Â(n+1)
i |1 ≤ ε1

(7.66)

for a given error bound ε > 0. In this way the approximation error is bounded
by ε.
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In order to control the number d of interpolation points we have to describe
the test used in Algoritm 3.5. For this purpose we introduce the following vectors

α(n) =
+∞∑
i=0

(i + 1)A(n)
i 1, α̂(n) =

+∞∑
i=1

iÂ
(n)
i 1, (7.67)

which can be computed recursively, without computing the new blocks A
(n+1)
i

by means of the following.

Lemma 7.17 For the vector sequences {α(n)}, {α̂(n)} one has

α(n+1) =
1
2
(1 + α(n) − A(n)

even(1)(I − A
(n)
odd(1))−1(1 − α(n))),

α̂(n+1) =
1
2
(α̂(n) − Â

(n)
odd(1)(I − A

(n)
odd(1))−1(1 − α(n))).

Proof Rewrite (7.67) in matrix form as

H(n)


0
1
21
31
...

 =


−α̂(n)

1 − α(n)

1 − α(n)

1 − α(n)

...

 ,

where H(n) is the matrix in (7.53). Apply one step of cyclic reduction to the
above system and obtain

2H(n+1)


0
1
21
31
...

 =


−α̂(n)

1 − α(n)

1 − α(n)

1 − α(n)

...

+ U
(n)
2,1 (I − U

(n)
1,1 )−1


1 − α(n)

1 − α(n)

1 − α(n)

1 − α(n)

...

 ,

where U
(n)
2,1 and U

(n)
1,1 are the matrices defined in (7.54). By formal manipulations

one can show that the vector in the right-hand side of the above equation has
the first block component equal to

−α̂(n) +
+∞∑
i=0

Â
(n)
2i+1(I −

+∞∑
i=0

A
(n)
2i )−1(1 − α(n))

and the remaining block components equal to

1 − α(n) +
+∞∑
i=0

A
(n)
2i−1(I −

+∞∑
i=0

A
(n)
2i )−1(1 − α(n)).

This completes the proof. �
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The test used in Algorithm 3.5 for determining the number d of interpolation
points which guarantee the error bound ε in the ouput relies on the following.

Theorem 7.18 Let P (n)(z) =
∑d−1

i=0 ziP
(n)
i , P̂ (n)(z) =

∑d−1
i=0 ziP̂

(n)
i be the

matrix polynomials of degree at most d − 1 which interpolate the matrix power
serie A(n)(z) and Â(n)(z), respectively, at the dth roots of 1. Then one has

d
+∞∑

i=d−1

A
(n)
i 1 ≤ α(n) −

d−1∑
i=1

iP
(n)
i 1

d

+∞∑
i=d

Â
(n)
i 1 ≤ α̂(n) −

d−1∑
i=1

iP̂
(n)
i 1.

(7.68)

Proof From Theorem 3.8 one has

P
(n)
i = A

(n)
i−1 +

∑
h≥1

A
(n)
i−1+hd, i = 0, 1, . . . , d − 1

P̂
(n)
i = Â

(n)
i +

∑
h≥1

Â
(n)
i+hd, i = 0, 1, . . . , d − 1.

(7.69)

By using the first of (7.69) in the expression α(n)−∑d−1
i=1 iP

(n)
i 1 and by replacing

α(n) with equation (7.67) one has

α(n) −
d−1∑
i=1

iP
(n)
i 1 =

+∞∑
i=d−1

(i + 1)A(n)
i 1 −

d−2∑
i=0

(i + 1)
∑
h≥1

A
(n)
i+hd1 ≥ d

+∞∑
i=d−1

A
(n)
i 1,

which proves the first inequality. The second inequality can be similarly proved.
�

From the above theorem it follows that if d is such that

α(n+1) −
d−1∑
i=1

iP
(n+1)
i 1 ≤ 1

2
dε1

α̂(n+1) −
d−1∑
i=1

iP̂
(n+1)
i 1 ≤ 1

2
dε1

then condition (7.66) is satisfied. In fact, from (7.68) one has
∑+∞

i=d−1 A
(n+1)
i 1 ≤

1
2ε1 and

∑+∞
i=d Â

(n+1)
i 1 ≤ 1

2ε1; combining the latter inequalities with equation
(7.69) yields (7.66).

Algorithm 7.6 describes one step of cyclic reduction based on the fast power
series arithmetic where we apply the technique shown in Algorithm 3.5.

The cost of the cyclic reduction step performed by means of Algorithm 7.6
is clearly

O(m3d′ + m2d′ log d′).

Observe also that, as pointed out in Remark 2.2, in the point-wise power series
arithmetic technique, we do not have to recompute from scratch the matrices
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W1,j , W2,j , Ŵ1,j , Ŵ2,j , Fj and F̂j , for j = 0, . . . , M − 1, when we switch from
M to 2M interpolation points. This allows one to reduce the complexity still
keeping the same asymptotics.

Concerning the local error of the cyclic reduction step performed in functional
form, we have the following.
Theorem 7.19 For the local error L(z) = (L(z), L̂(z)) = (B′(z), B̂′(z)) −
(A′(z), Â′(z)) it holds ‖L(z)‖∗ ≤ ε, ‖L̂(z)‖∗ ≤ ε.

7.5.3 Cyclic reduction algorithm

The cyclic reduction scheme for M/G/1-type Markov chains is summarized in
Algorithm 7.7.

Indeed, the overall cost of this algorithm depends on the maximum numerical
degrees dmax of the matrix power series A(n)(z) and Â(n)(z) generated by cyclic
reduction. This cost amounts to

O(m3dmax + m2dmax log dmax)

ops.
It is important to observe that, under the assumptions of the convergence

theorem 7.13, the coefficients of zi in the matrix power series A(n)(z) and Â(n)(z)
have norm bounded from above by γσ−i·2n

for a constant γ, where 1 < σ < ξ
and ξ is the root of zI −A(z) of minimum modulus among the roots of modulus
greater than 1. That is, the decay to zero of the coefficients of A(n)(z) holds with
the exponential basis σ−2n

. This means that the numerical degree of the matrix
power series A(n)(z) and Â(n)(z) is bounded from above by a constant and that
one should expect a rapid decrease of the numerical degrees of the power series
involved after just a few iterations.

For transient Markov chains the above algorithm can still be applied provided
that we replace the stop condition which relies on the propertie of positive recur-
rence of the Markov chain. A possible stop condition is ‖G(n+1) − G(n)‖∞ ≤ ε,
where G(n) = (I − B̂

(n)
0 )−1A−1 is the approximation to Gmin provided at the

n-th step of the algorithm.
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Algorithm 7.6 CR step: M/G/1 case, functional version

Input: Positive integer d = 2h and the m×m block elements A−1, A0, . . . , Ad−2,
Â0, . . . , Âd−1, defining the first two block rows of the matrix (7.53) at the general
step of cyclic reduction; the vectors α and α̂ of (7.67); an error bound ε > 0.

Output: Positive integer d′ and the m × m matrices B′
−1, B

′
0, . . . , B

′
d′−2,

B̂′
0, . . . , B̂

′
d′−1, which approximate the block elements A′

−1, A
′
0, . . . , A

′
d′−2,

Â′
0, . . . , Â

′
d′−1, defining the first two block rows of the matrix (7.53) after one step

of cyclic reduction such that (7.66) is satisfied; the vectors α′ =
∑d′−2

i=0 (i+1)A′
i1

and α̂′ =
∑d′−1

i=1 iÂ′
i1.

Computation:

1. Compute α′ = 1
2 (1 + α − Aeven(1)(I − Aodd(1))−1(1 − α)), α̂′ = 1

2 (α̂ −
Âodd(1)(I − Aodd(1))−1(1 − α)).

2. Set M = d/2.
(a) Compute W1,j = Aodd(ωj

M ), W2,j = Aeven(ωj
M ), Ŵ1,j = Âodd(ωj

M ),
Ŵ2,j = Âeven(ωj

M ), for j = 0, . . . , M − 1 in the following way:
i. Set x = (Xi)i=1,M where Xi = A2i−2, for i = 1, . . . , d/2, Xi = 0 for

i > d/2; compute y = IDFTM (x), set W1,j−1 = Yj , j = 1, . . . , M .
ii. Set x = (Xi)i=1,M where Xi = A2i−3, for i = 1, . . . , d/2, Xi = 0 for

i > d/2; compute y = IDFTM (x), set W2,j−1 = Yj , j = 1, . . . , M .
iii. Set x = (Xi)i=1,M where Xi = Â2i−1, for i = 1, . . . , d/2, Xi = 0 for

i > d/2; compute y = IDFTM (x), set Ŵ1,j−1 = Yj , j = 1, . . . , M .
iv. Set x = (Xi)i=1,M where Xi = Â2i−2, for i = 1, . . . , d/2, Xi = 0 for

i > d/2; compute y = IDFTM (x), set Ŵ2,j−1 = Yj , j = 1, . . . , M .
(b) Compute Fj = ωj

MW1,j + W2,j(I −W1,j)−1W2,j , F̂j = Ŵ2,j + Ŵ1,j(I −
W1,j)−1W2,j , j = 0, . . . , M − 1.

(c) Compute the coefficients Pi, P̂i, i = 0, . . . , M − 1, of the matrix
polynomials P (z) and P̂ (z), respectively, such that P (ωj

M ) = Fj and
P̂ (ωj

M ) = F̂j , j = 0, . . . ,M − 1, in the following way
i. Set y = (Yi)i=1,M where Yi = Fi−1, for i = 1, . . . , M ; compute

x = DFTM (y), set Pj−1 = Xj , j = 1, . . . , M .
ii. Set y = (Yi)i=1,M where Yi = F̂i−1, for i = 1, . . . , M ; compute

x = DFTM (y), set P̂j−1 = Xj , j = 1, . . . , M .
(d) If α′ −∑M−1

i=1 iPi1 > 1
2Mε1 or α̂′ −∑M−1

i=1 iP̂i1 > 1
2Mε1 set M = 2M

and continue from step 2b.
3. Output d′ = M and B′

j−1 = Pj , B̂′
j = P̂j , j = 0, . . . , d′ − 1.
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Algorithm 7.7 CR for M/G/1 type Markov chains: the case µ < 0
Input: Positive integer k and the m × m block elements A−1, A0, . . . , Ak−1,
defining the block Toeplitz block Hessenberg matrix in (7.30) such that µ < 0;
an error bound ε > 0.

Output: An approximation Y to the matrix Gmin.

Computation:

1. Set n = 0, A(n)(z) =
∑k−1

i=−1 zi+1Ai, Â(n)(z) =
∑k−1

i=0 ziAi.

(a) Compute approximations B(n+1)(z) and B̂(n+1)(z) to A(n+1)(z) and
Â(n+1)(z), respectively, by means either of Algorithm 7.5 or of Algo-
rithm 7.6.

(b) If ‖1−(A−1+B̂
(n)
0 )1‖∞ ≤ ε, set n = n+1, A(n)(z) = B(n)(z), Â(n)(z) =

B̂(n)(z), and repeat from step 1a.
2. Output Y = (I − B̂

(n)
0 )−1A−1.

7.6 Bibliographic notes

Logarithmic reduction was introduced by Latouche and Ramaswami in [78]. Con-
vergence properties in the null recurrent case are shown by Guo [56]. An error
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The cyclic reduction technique was first introduced in the late 1960s by
Buzbee, Golub and Nielson [28] for the solution of certain block tridiagonal
systems which discretize elliptic differential equations. Actually, the method was
originally invented by Gene H. Golub when he was a PhD student at the Urbana-
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implementation of cyclic reduction. Among the stability and convergence prop-
erties we refer the reader to the papers [2], [118], [117].

Cyclic reduction is applied to solving matrix equations in QBD problems in
[119], [84] by San-Qi Li et al., even though they call it folding algorithm. Cyclic
reduction is extended to M/G/1-type Markov chains in [18], where this technique
is used for computing π. Its application to solve power series matrix equations
is in [11] for the polynomial version and in [19] for the evaluation–interpolation
technique; the non-skip-free case is investigated in [22], [21] where the properties
of displacement operators are used for decreasing the computational cost. Cyclic
reduction for QBD problems derived from M/G/1-type Markov chains is ana-
lyzed in [25]; the case of PH/PH/1 queues is studied in [13]. Cyclic reduction,
logarithmic reduction, and matrix sign iteration are compared in [16]. A survey
on displacement structure, cyclic reduction, and the divide-and-conquer method
can be found in [23]. General properties of cyclic reduction, its relation with
Graeffe’s iteration and applications to infinite Toeplitz systems and to nonlinear
matrix equations are presented in [14].
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8

ALTERNATIVE APPROACHES

8.1 Introduction
In this chapter we describe diverse methods for the solution of the matrix equa-
tion

X =
+∞∑

i=−1

Ai+1X
i (8.1)

and for the computation of the invariant probability vector π such that πTP =
πT where the matrix P is defined in (4.3). These methods rely in part on the
tools and properties presented in the previous chapters and in part on different
techniques.

We first deal, in Section 8.2, with the application of the tools introduced in
Section 3.6, that is, the shifting technique, where the matrix equation (8.1) is
transformed to a new one having better computational features and show that
the convergence of cyclic reduction is much faster for the new equation than for
the original one. The algorithm obtained in this way also has better stability
properties, that is, the local errors obtained in the cyclic reduction steps are not
much amplified during the iteration.

Then, in Section 8.3, we consider a method which is obtained by combining
together the divide-and-conquer strategy of cyclic reduction and the technique of
functional iteration. This method shares the self-correcting features of functional
iterations and its convergence is linear but with an arbitrarily high convergence
rate. This method relies on the fact that at each step of cyclic reduction a
functional iteration formula is generated. This formula may be used to continue
the approximation in place of cyclic reduction. The method can be useful in the
cases where cyclic reduction, combined with the shifting technique, encounters
some breakdown or near-breakdown problem. In fact in this case, keeping the
cyclic reduction iteration might lead to large amplification of the errors whereas
continuing with the functional iteration still improves the approximation and
avoids the breakdown.

In Section 8.4 we describe a different doubling technique which is still based
on a divide-and-conquer strategy, but where the recursive doubling is performed
on the size of the finite matrices obtained by truncating T∞[I − z−1A(z)] to a
finite size.

The subsequent section deals with methods based on the evaluation–interpo-
lation technique. Here we rely on the tools introduced in Section 3.5 where the
vector π is expressed in terms of a canonical factorization of the function I −

229
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z−1A(z), and this factorization is expressed as a function of the block coefficients
of (I −z−1A(z))−1. Since the function I −z−1A(z) is singular for z = 1, in order
to approximate its coefficients, we have to apply the shift technique of Section
3.6 and deal with the modified function I − z−1Ã(z) which is nonsingular for
|z| = 1. Thus, the block coefficients of the inverse of the latter function are
approximated by means of evaluation interpolation at the roots of 1 and from
these coefficients we obtain the coefficients of (I − z−1A(z))−1 and then the
weak canonical factorization of I − z−1A(z). Also the case of QBD stochastic
processes is considered in this section where we rely on Theorem 3.20 which
relates the coefficients of (I − z−1Ã(z))−1 with the minimal solution G̃min of the
matrix equation X = Ã(X). The coefficients of the inverse matrix function are
computed by means of evaluation–interpolation at the roots of 1. This approach is
particularly effective for Markov chains with limited displacement (NSF Markov
chains) of Section 5.5.

Invariant subspace methods are the subject of Section 8.6.
Throughout this chapter we assume that Condition 4.20 is valid and that

a =
∑+∞

i=0 (i + 1)Ai1 is finite, so that in light of Theorem 4.24, z = 1 is the only
zero of modulus 1 of the function a(z) = det(zI −A(z)) defined in (4.23), where
A(z) =

∑+∞
i=−1 zi+1Ai.

8.2 Convergence acceleration
The shifting technique, introduced in Section 3.6, can be applied to the function
ϕ(z) = zI − A(z) in order to remove the root λ = 1 of ϕ(z) corresponding to
the eigenvector 1 such that ϕ(1)1 = 0. More precisely, a new function ϕ̃(z) =
ϕ(z)(I − z−1Q)−1 is constructed so that ϕ̃(z) has the same roots of ϕ(z) except
for z = 1 which is replaced by the root z = 0. Here we set Q = 1uT where u
is any vector such that uT1 = 1. Moreover, if ϕ(z) = zI −∑+∞

i=−1 zi+1Ai, then
ϕ̃(z) = zI −∑+∞

i=−1 zi+1Ãi where

Ã−1 = A−1(I − Q)

Ãi = Ai − (
i∑

j=−1

Aj − I)Q, i = 0, 1, . . . .
(8.2)

For more details of this technique we refer the reader to Section 3.6.
To be more specific, consider the case where the drift µ is negative, and

assume that the function ϕ(z) is analytic for |z| < r, for a given r > 1 and that
there exists at least a root of ϕ(z) of modulus greater than 11. Moreover, without
loss of generality let us arrange the roots ξi, i = 1, 2 . . ., of ϕ(z) so that

|ξ1| ≤ |ξ2| ≤ · · · ≤ |ξm−1| < ξm = 1 < |ξm+1| ≤ · · · < r, (8.3)

where ξm = 1 is simple. Then, in light of Theorem 3.32, the roots ξ̃i, i = 1, 2, . . .,
of the new function ϕ̃(z) are such that ξ̃1 = 0, ξ̃i+1 = ξi, i = 1, . . . , m−1, ξ̃i = ξi,
i = m + 1, . . ., that is,

1Conditions under which this assumption is verified are given in Theorem 4.12.



CONVERGENCE ACCELERATION 231

ξ̃1 = 0 ≤ |ξ̃2| ≤ · · · ≤ |ξ̃m| = |ξm−1| < 1 < |ξ̃m+1| = |ξm+1| ≤ · · · < r,

in fact, by construction, the root ξm = 1 is moved into the root ξ̃1 = 0. Therefore
the function ϕ̃(z) as well as the matrix Laurent power series z−1ϕ̃(z) is analytic
and invertible in the annulus A = {z ∈ C : |ξm−1| < |z| < |ξm+1|}. In this
way the coefficients of the matrix Laurent power series z−1ϕ̃(z) as well as the
coefficients of the matrix Laurent power series ψ̃(z) = (z−1ϕ̃(z))−1 have an
exponential decay (compare with Theorem 3.6). This fact allows one to prove
faster convergence properties of cyclic reduction applied to the shifted function
ϕ̃(z).

If G̃min is the solution with minimal spectral radius of the matrix equation

Ã−1 + Ã0X + Ã1X
2 + · · · = X (8.4)

associated with ϕ̃(z), which exists in light of Theorem 3.33, then the minimal
solution Gmin of the original matrix equation (7.29) can be immediately recovered
by means of the simple expression

Gmin = G̃min + Q.

According to (3.51), there exists a canonical factorization of the function
z−1ϕ̃(z), namely,

z−1ϕ̃(z) = U(z)(I − z−1G̃min)

where U(z) is a suitable matrix power series analytic for |z| < 1 and invertible
for |z| ≤ 1. A similar factorization can be proved for the function zϕ̃(z−1) as
shown by the following.

Theorem 8.1 Let A(z) be the generating function associated with an M/G/1-
type Markov chain with negative drift µ which verifies Condition 4.20. Assume
that A(z) is analytic for |z| < r with 1 < r < +∞. Let Q = 1uT, u > 0 be

such that uT1 = 1 and let Ã(z) =
∑+∞

i=−1 zi+1Ãi be the matrix power series

whose coefficients Ãi, i ≥ −1 are defined by (8.2). Then there exists the spectral

minimal solution R̃min of the matrix equation

X =
+∞∑

i=−1

Xi+1Ãi (8.5)

and the function I − zÃ(z−1) has a canonical factorization

I − zÃ(z−1) = (I − zR̃min)L̃(z), (8.6)

where L̃(z) =
∑+∞

i=0 z−iL̃−i.

Proof Since the drift µ is negative, then there exists the minimal nonnegative
solution Rmin of the equation X =

∑+∞
i=−1 Xi+1Ai, and the matrix Rmin has

spectral radius ρ(Rmin) = 1. Moreover ρ(Rmin) is a simple eigenvalue and is the
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unique eigenvalue of modulus 1 of Rmin. In light of Theorem 5.8 there exists a
weak canonical factorization

I − zA(z−1) = (I − zRmin)S(z) (8.7)

where S(z) =
∑+∞

i=0 z−iSi, S0 is nonsingular and S(z) is analytic for |z| > r−1.
Observe that since 0 = (I −A(1))1 = (I −Rmin)S(1)1, then v = S(1)1 is a right
eigenvector of Rmin corresponding to the eigenvalue ρ(Rmin) = 1. Moreover, v is
nonnegative since Rmin is nonnegative. Let us denote by w a nonnegative vector
such that wTv = 1. Rewrite (8.7) as

I − zA(z−1) = (I − zRmin)(I − zvwT)−1(I − zvwT)S(z).

A simple calculation shows that (I − zRmin)(I − zvwT)−1 = I − zR̃min for
R̃min = Rmin − vwT. Therefore, since I − zÃ(z−1) = (I − zA(z−1))(I − zQ)−1,
for Q = 1uT, we have

I − zÃ(z−1) = (I − zR̃min)(I − zvwT)S(z)(I − zQ)−1. (8.8)

Now, taking determinants of I−zR̃min = (I−zRmin)(I−zvwT)−1 yields det(tI−
R̃min) = det(tI − Rmin) t

t−1 , where we set t = z−1. This shows that 0 is an
eigenvalue of R̃min together with all the eigenvalues of Rmin different from 1 and
that, since 1 is a simple eigenvalue of Rmin it cannot be eigenvalue of R̃min. This
implies that ρ(R̃min) < 1 and that the matrix function I−zR̃min is invertible for
|z| ≤ 1. Now we prove that the rightmost factor L̃(z) = (I−zvwT)S(z)(I−zQ)−1

in (8.8) is a matrix power series in z−1 in the Wiener algebra W− and invertible
for |z| ≥ 1. We first analyze the product B(z) = S(z)(I −zQ)−1 =

∑+∞
i=−∞ ziBi.

It holds

Bi =
{

S−i +
∑+∞

j=−i+1 SjQ if i ≤ 0
vuT if i > 0

(8.9)

in fact, if i > 0 then Bi =
∑+∞

j=0 SjQ = S(1)Q = S(1)1uT = vuT. Now we are
ready to show that for a suitable w the product

L̃(z) = (I − zvwT)B(z)

is a matrix power series in W−. Indeed, since

L̃(z) =
+∞∑

i=−∞
ziBi −

+∞∑
i=−∞

zi(vwTBi−1),

we obtain
L̃i = Bi − vwTBi−1, i = 0,±1,±2, . . . , (8.10)

and from (8.9) we deduce that L̃1 = B1 − vwTB0 = v(uT − wTB0). Therefore,
since S−1

0 ≥ 0 (see Theorem 5.8), and u > 0, then uTS−1
0 v > 0, and choosing
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wT =
1

uTS−1
0 v

uTS−1
0

yields wTv = 1 and

uT − wTB0 =uT − 1
uTS−1

0 v
uTS−1

0 (S0 +
+∞∑
j=1

SjQ)

=
(

1 − 1
uTS−1

0 v

)
uT − 1

uTS−1
0 v

uTS−1
0 (v − S01)uT = 0,

where we used the property
∑+∞

j=0 Sj1 = v. This implies that L̃1 = 0. From (8.9)
and (8.10) it follows that L̃i = 0 for i > 1, that is, L̃(z) is a matrix power series
in z−1. Moreover,

∑+∞
i=0 |L̃−i| ≤

∑+∞
i=0 |B−i| +

∑+∞
i=0 |vwTB−i−1|. Therefore, in

order to prove that L̃(z) ∈ W− it is sufficient to show that
∑+∞

i=0 |B−i| is finite. To
prove this property it is sufficient to show that B(z) = S(z)(I−zQ)−1 is analytic
for r−1 < |z| < 1, in fact the convergence of

∑+∞
i=0 z−iBi for r−1 < |z| < 1 implies

the convergence of
∑+∞

i=0 B−i since Bi ≥ 0 for i ≤ −1. The analiticity of B(z) for
r−1 < |z| < 1 holds since S(z) is analytic for |z| > r−1 and (I−zQ)−1 is analytic
for |z| < 1. Finally, in order to complete the proof we have to show that L̃(z) is
invertible for |z| ≥ 1. This property holds since det(I − zÃ(z−1)) has exactly m
zeros outside the closed unit disk, and no zeros of modulus 1. Therefore, the only
values of z of modulus greater than 1 which make I − zÃ(z−1) noninvertible are
the zeros of det(I − zR̃min), that is, the reciprocal of the eigenvalues of R̃min,
and the factorization I − zÃ(z−1) = (I − zR̃min)L̃(z) implies the nonsingularity
of L̃(z) for |z| ≥ 1. �

Since ϕ̃(z) is analytic and invertible for |ξm−1| < |z| < |ξm+1|, then the func-
tion ψ̃(z) = (z−1ϕ̃(z))−1 is analytic for |ξm−1| < |z| < |ξm+1|. Let us denote by
ψ̃(z) =

∑+∞
i=−∞ ziH̃i its Laurent series. Denote also ψ̃(n)(z) =

∑+∞
i=−∞ ziH̃i·2n ,

n = 0, 1, . . ., so that

ψ̃(n+1)(z2) =
1
2
(ψ̃(n)(z) + ψ̃(n)(−z)). (8.11)

Let us apply cyclic reduction to the function ϕ̃(z) generating in this way the

sequence of matrix power series ϕ̃(n)(z) and ̂̃ϕ(n)
(z) by means of (7.40) suitably

adjusted by replacing any ocurrence of ϕ(n)(z) with ϕ̃(n)(z) and any occurrence

of ϕ̂(n)(z) with ̂̃ϕ(n)
(z). For the sake of simplicity we use the same notation of

Chapter 7 and set
η = |ξm−1|, ξ = |ξm+1|. (8.12)

We have the following convergence result concerning cyclic reduction applied to
the function ϕ̃(z).
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Theorem 8.2 Let A(z) be the generating function associated with an M/G/1-
type Markov chain with negative drift µ which satisfies Condition 4.20. Assume
that A(z) is analytic for |z| < r with 1 < r < +∞, and that there exists ζ
such that 1 < |ζ| < r and det(ζI − A(ζ)) = 0. Let ξi, i ≥ 1 be the roots of
ϕ(z) = zI − A(z) such that (8.3) and (8.12) hold. Let u > 0 be such that
T1 = 1, set Q = 1uT, ϕ̃(z) = ϕ(z)(I − z−1Q)−1. Then for any ε > 0 such that
η + ε < 1 < ξ− ε, there exist a real 0 < θ < 1 and a positive integer n0 such that
for any n ≥ n0 the function ψ̃(n)(z) defined in (8.11) is analytic and invertible
in the annulus An(θ, ε) = {z ∈ C : θ−1(η + ε)2

n

< |z| < θ(ξ − ε)2
n}, and has

a uniformly bounded inverse for z ∈ An(θ, ε). Moreover, for any n ≥ n0, the
function

ϕ̃(n)(z) = z(ψ̃(n)(z))−1 = −Ã
(n)
−1 + z(I − Ã

(n)
0 ) − z2Ã

(n)
1 − · · · ,

is analytic and invertible in An(θ, ε), and for any operator norm ‖ · ‖ there exist
positive constants ci, i = −1, 1, 2, . . ., such that

||Ã(n)
i || ≤

{
ci(ξ − ε)−i2n

, for i > 0,
ci(η + ε)−i2n

for i = −1.
(8.13)

for any n ≥ n0. Therefore, cyclic reduction applied with the shift technique is
convergent.

Proof Let ε > 0 be such that η + ε < 1 < ξ − ε. By using an inductive
argument on n, from (8.11) it follows that ψ̃(n)(z) is analytic in the annulus
{z ∈ C : (η + ε)2

n

< |z| < (ξ− ε)2
n} which contains An(θ, ε) for any 0 < θ < 1.

Now we prove that there exist n0 > 0 and 0 < θ < 1 such that, for any n ≥ n0,
the matrix ψ̃(n)(z) is nonsingular for z ∈ An(θ, ε) and has a uniformly bounded
inverse. Recall that z−1ϕ̃(z) has a canonical factorization and, by Theorem 8.1,
also the function zϕ̃(z−1) has a canonical factorization. Therefore we may apply
Theorem 3.22 and deduce that the matrix H̃0 is nonsingular. Thus, we may write
ψ̃(n)(z) = H̃0(I + W (n)(z)) where

W (n)(z) = H̃−1
0

+∞∑
i=1

(ziH̃i2n + z−iH̃−i2n). (8.14)

In order to prove the nonsingularity of ψ̃(n)(z) and the boundedness of its in-
verse for z ∈ An(θ, ε) it is sufficient to prove that there exists an operator
norm such that ‖W (n)(z)‖ ≤ 1/2 for z ∈ An(θ, ε). In fact, the latter bound
implies that ρ(W (n)(z)) ≤ 1/2 for z ∈ An(θ, ε) (see Lemma A.2 in the appendix)
so that det(I + W (n)(z)) �= 0. Moreover, since ‖ψ̃(n)(z)−1‖ ≤ ‖H̃−1

0 ‖ · ‖(I +
W (n)(z))−1‖ and since ‖(I + W (n)(z))−1‖ ≤ 1/(1−‖W (n)(z)‖) (see Lemma A.5
in the appendix), then the condition ‖W (n)(z)‖ ≤ 1/2 for z ∈ An(θ, ε), implies
‖(I + W (n)(z))−1‖ ≤ 1/2 for z ∈ An(θ, ε), that is, the uniform boundedness of
ψ̃(n)(z)−1.
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Let us prove that there exists an operator norm ‖ · ‖ and there exists n0 > 0
such that for any n ≥ n0, ‖W (n)(z)‖ < 1/2 for z ∈ An(θ, ε). Since ψ̃(z) is analytic
in A then, by Theorem 3.6, for any operator norm ‖ · ‖, there exists a constant
c such that

||H̃i|| ≤
{

c(ξ − ε)−i, for i > 0,
c(η + ε)−i for i < 0.

(8.15)

Let n0 be such that 2(η + ε)2
n

< 1 < 1
2 (ξ − ε)2

n

for any n ≥ n0. Then from
(8.15) and (8.14) we obtain that

‖W (n)(z)‖ ≤‖H̃−1
0 ‖ · ‖

+∞∑
i=1

(ziH̃i2n + z−iH̃−i2n)‖

≤c‖H̃−1
0 ‖

+∞∑
i=1

(|z|i(ξ − ε)−i·2n

+ |z|−i(η + ε)i·2n

)

=c‖H̃−1
0 ‖

( |z|(ξ − ε)−2n

1 − |z|(ξ − ε)−2n +
|z|−1(η + ε)2

n

1 − |z|−1(η + ε)2n

)
≤γ(|z|(ξ − ε)−2n

+ |z|−1(η + ε)2
n

),

where the latter inequality is valid for any n ≥ n0 provided that 2(η + ε)2
n

<

|z| < 1
2 (ξ− ε)2

n

, with γ = 4c‖H̃−1
0 ‖. Therefore it is sufficient to prove that there

exists a constant 0 < θ < 1 such that

γ(|z|(ξ − ε)−2n

+ |z|−1(η + ε)2
n

) ≤ 1/2, for z ∈ An(θ, ε), (8.16)

and

θ−1(η + ε)2
n

< θ(ξ − ε)2
n

. (8.17)

Since (η + ε)/(ξ − ε) < 1, equation (8.17) is satisfied for
(

η+ε
ξ−ε

)2n−1

< θ < 1.
Moreover, (8.16) is satisfied for any θ ≤ 1/(4γ). Choosing θ = 1/(4γ) and n0 such

that
(

η+ε
ξ−ε

)2n0−1

< 1/(4γ) then (8.17) and (8.16) are satisfied for any n ≥ n0.

Concerning the last part of the theorem, recall that ϕ̃(n)(z) = z(ψ̃(n)(z))−1

and ψ̃(n)(z)−1 is analytic and bounded in An(θ, ε) for any n ≥ n0. Therefore,
from Theorem 3.6 applied to ψ̃(n)(z)−1 one deduces that there exists a constant
γ such that ‖Ã(n)

i ‖ ≤ γθi(ξ − ε)−i2n

for i > 0 and ‖Ã(n)
i ‖ ≤ γθi(η + ε)−i2n

for
i = −1. Therefore, choosing ci = γθi yields (8.13). �

From the above theorem we deduce the following result concerning the con-

vergence to Gmin of the sequence G(n) = (I − ̂̃A(n)

0 )−1A−1, n = 0, 1, 2, . . ..
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Theorem 8.3 In the assumption of Theorem 8.2, if det(I − ̂̃A(n)

0 ) �= 0 and if

‖(I − ̂̃A(n)

0 )−1‖ is uniformly bounded from above, then limn G(n) = Gmin, where

G(n) = (I − ̂̃A(n)

0 )−1A−1. Moreover,

Ã
(n)
−11 = 0, (I − ̂̃A(n)

0 )1 = A−11, n ≥ 0 (8.18)

and for any matrix norm and for any ε > 0 such that η + ε < 1 < ξ − ε, there
exist γ > 0 and σi > 0, i ≥ 1, such that

‖Gmin − G(n)‖ ≤ γ

(
η + ε

ξ − ε

)2n

, n ≥ 0,

and

‖ ̂̃A(n)

i ‖ ≤ γi(ξ − ε)−i·2n

, i ≥ 1. (8.19)

Proof Let us prove (8.19). From (7.45), denoting V (z) = ̂̃
A(z)ψ̃(z), one haŝ̃

A
(n)

(z)ψ̃(n)(z) = V (n)(z), where V (n)(z) =
∑+∞

i=−∞ ziVi2n . Therefore,

̂̃
A

(n)

(z) = V (n)(z)ψ̃(n)(z)−1 = z−1V (n)(z)ϕ̃(n)(z).

Comparing the coefficients in the above expression yields

̂̃
A

(n)

k = Vk·2n −
+∞∑
i=0

V(k−i+1)2nÃ
(n)
i−1, k ≥ 0.

Taking norms of both sides yields

‖ ̂̃A(n)

k ‖ ≤ ‖Vk·2n‖ +
+∞∑
i=0

‖V(k−i+1)2n‖ · ‖Ã(n)
i−1‖.

Since V (z) is analytic for η < |z| < ξ, there exists θ > 0 such that ‖Vk·2n‖ ≤
θ(ξ − ε)−k·2n

for any n, k > 0 and ‖Vk·2n‖ ≤ θ(η + ε)−k·2n

for any k < 0, n > 0.
Moreover, from (8.13) we have ‖Ã(n)

i ‖ ≤ γi(ξ − ε)−i·2n

. Therefore we find that
there exists σk > 0 such that

‖ ̂̃A(n)

k ‖ ≤ σk(ξ − ε)−k2n

for any n, k > 0. Equations (8.18) can be proved by induction. Concerning the
convergence of G(n) to Gmin, since

(I − ̂̃A(n)

0 )G̃min = Ã−1 +
+∞∑
i=1

̂̃
A

(n)

i G̃i·2n

min ,
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from equation (8.18) one has (I− ̂̃A(n)

0 )Gmin = A−1 +
∑+∞

i=1
̂̃
A

(n)

i G̃i·2n

min . Therefore
we obtain

Gmin − G(n) = (I − ̂̃A(n)

0 )−1
+∞∑
i=1

̂̃
A

(n)

i G̃i·2n

min . (8.20)

Since ρ(G̃min) = η, for Theorem A.2 in the appendix we have that for any ε > 0
there exists a matrix norm ‖ · ‖ such that ‖G̃min‖ = η + ε. Therefore, for the
equivalence of matrix norms, for any matrix norm there exists a constant θ > 0
such that ‖G̃i2n

min‖ ≤ θ(η + ε)i2n

, so that

‖Gmin − G(n)‖ ≤ ‖(I − ̂̃A(n)

0 )−1‖
+∞∑
i=1

θ(η + ε)i·2n‖ ̂̃A(n)

i ‖.

Since ‖(I − ̂̃A(n)

0 )−1‖ is bounded from above by a constant, from (8.19) we have
‖Gmin − G(n)‖ ≤ γ(η+ε

ξ−ε )
2n

for a suitable γ. �

Algorithm 8.1 summarizes the entire process of cyclic reduction with shift
applied to an M/G/1-type Markov chain where µ < 0.

Algorithm 8.1 Shifted cyclic reduction for M/G/1-type problems with µ < 0
Input: The m × m matrices Ai, i = −1, 0, . . . , d, which define the block
Toeplitz block Hessenberg matrix in (7.30) and the matrix polynomial A(z) =∑d

i=−1 zi+1Ai where µ < 0; a real ε > 0.

Output: An approximation Y to the minimal solution Gmin of the equation
A−1 +A0X + · · ·+AdX

d+1 = X and a real σ > 0 such that ‖Gmin −Y ‖∞ ≤ εσ.

Computation:

1. Choose any vector u > 0 such that uT1 = 1 and set Q = 1uT.
2. Set Ãi = Ai + (

∑d
j=i+1 Aj)Q for i = 0, . . . , d, Ã−1 = A−1 − A−1Q, and

ϕ̃(z) = zI −∑d
i=−1 zi+1Ãi, ̂̃ϕ(z) = I −∑d

i=0 ziÃi.

3. Apply one step of cyclic reduction to the functions ϕ̃(z) and ̂̃ϕ(z), that is,
compute

ϕ̃′(z2) = −ϕ̃(z)ϕ̃odd(z2)−1ϕ̃(−z),̂̃ϕ′
(z2) = ̂̃ϕ(z) + ̂̃ϕodd(z2)ϕ̃odd(z2)−1ϕ̃(z).

4. Set ϕ̃(z) = ϕ̃′(z), ̂̃ϕ(z) = ̂̃ϕ′
(z).

5. If
∑bd

i=1 ‖Ãi‖∞ ≤ ε, where d̂ is the numerical degree of ϕ̃(z), then output

Y = (I − ̂̃A0)−1A−1 and σ = 2‖(I − ̂̃A0)−1‖∞; otherwise, repeat from stage
3.
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The error bound ‖Gmin−Y ‖∞ ≤ εσ holds since G̃i
min = Gi

min−Q for any i ≥ 1
so that ‖G̃i

min‖∞ ≤ ‖Gi
min‖∞ +‖Q‖∞ = 2. Therefore from the stop condition we

deduce that
∑+∞

i=1 ‖ ̂̃A(n)

i ‖∞=̇
∑bd

i=1 ‖
̂̃
A

(n)

i ‖∞ ≤ ε whence the bound follows from
(8.20).

The cyclic reduction step at stage 3 of this algorithm can be implemented
with the functional approach as in Algorithm 7.6 or with the matrix approach
as in Algorithm 7.5.

We recall that cyclic reduction applied to the new functions ϕ̃(z) and ̂̃ϕ(z) is
more stable than cyclic reduction applied to the functions ϕ(z) and ϕ̂(z) since
|ξm−1| < 1 < |ξm+1| in light of (7.62).

From the above result, it follows that the shifted cyclic reduction can be much
faster than the original one. Indeed, if the second largest modulus eigenvalue
ξm−1 of Gmin is far from the unit circle, then the rate of convergence is much
improved.

Thus, the deflating technique leads to a better speed of convergence, but
destroys the nonnegativity and the M-matrix properties of the blocks generated

at each step. Indeed, in general the matrices Ã
(n)
i and ̂̃A(n)

i+1 generated by the
shifted cyclic reduction are not nonnegative. In principle this fact could lead to a
loss of accuracy of the results obtained with the shifting technique. In practice,
no differences in terms of accuracy have been pointed out between the results
obtained with the two algorithms [59]. Furthermore, as has been proved in [59]
for the QBD case, the shifted equation is numerically better conditioned than the
original one. We recall also that, according to the analysis performed in Section
7.5, the amplification of the errors generated at each step of cyclic reduction is
much more limited than in the unshifted case.

8.2.1 The QBD case

If ϕ(z) = −A−1 + z(I − A0) − z2A1z and ϕ̃(z) = −Ã−1 + z(I − Ã0) − z2Ã1z,
then we may show that cyclic reduction applied to ϕ̃(z) can be carried out with
no break-down. We first recall that in principle cyclic reduction can encounter
a break-down if the matrix

[
ϕ(n)(z)

]
odd

= (I − A
(n)
0 ) is singular. It is shown

in [14] that det(I − A
(n)
0 ) is equal to zero if and only if the block tridiagonal

matrix T2n+1−1 is singular, where we denote by Tk the mk×mk leading principal
submatrix of the semi-infinite block tridiagonal block Toeplitz matrix

T =

 I − A0 −A1

−A−1 I − A0 −A1

. . . . . . . . .

 .

Moreover, by Theorem 7.5, under Condition 4.20 cyclic reduction can be carried
out with no breakdown so that detT2n+1−1 �= 0 for any n ≥ 0.

In order to show that shifted cyclic reduction can be carried out with no
break-down it is sufficient to prove that det T̃2n+1−1 �= 0 for any n ≥ 0 where T̃k
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is the mk×mk leading principal submatrix of the semi-infinite block tridiagonal
block Toeplitz matrix

T̃ =

 I − Ã0 −Ã1

−Ã−1 I − Ã0 −Ã1

. . . . . . . . .

 .

In order to prove this property we need some preliminary results.
First of all we prove that, if cyclic reduction can be applied to ϕ(z), then

detTk �= 0 for any k > 1. Assume by a contradiction that there exists some
k0 such that detTk0 = 0 then ρ(I − Tk0) = 1. Let k be any integer such that
k > k0. Denoting with Uk the mk×mk matrix having I−Tk0 as leading principal
submatrix and null elements elsewhere, it holds 0 ≤ Uk ≤ I−Tk. From Theorem
1.28 we get 1 = ρ(Uk) ≤ ρ(I − Tk) ≤ 1. Thus we obtain that ρ(I − Tk) = 1
and applying once again Theorem 1.28 we find that there exists an eigenvalue
of I − Tk equal to 1, therefore the matrix Tk is singular for any k > k0. This
would imply that cyclic reduction cannot be carried out in contradiction with
our assumptions.

Theorem 8.4 Let Tk be nonsingular, set Wk = T−1
k and denote with Pk the

m×m block of Wk in the lower rightmost corner. Then the matrix T̃k is singular
if and only if uTPkA11 = 1.

Proof The equation ϕ̃(z) = ϕ(z)(I − z−1Q)−1 can be equivalently rewritten in
the matrix form as

T̃ = T


I
Q I
Q Q I
...

. . . . . . . . .

 ,

whence we deduce that

T̃k = Tk


I
Q I
...

. . . . . .
Q . . . Q I

+


0
...
0

−A1

 [Q Q . . . Q
]
.

This implies that T̃k is singular if and only if the matrix in the right hand side
of the above expression is singular, that is, if and only if

det(I − Wk


0
...
0

A11

 [0 . . . 0 uT
]
) = 0.

The latter determinant is given by 1 − uTPkA11. �
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Theorem 8.5 Let u > 0 and det Tk �= 0, then uTPkA11 = 1 if and only if
PkA11 = 1.

Proof It is clear that if PkA11 = 1 then uTPkA11 = uT1 = 1. In order to
prove the reverse implication, observe that, since (A−1 + A0 + A1)1 = 1, then

Tk

1
...
e

 =


A−11

0
...
0

A11

 .

Whence we obtain 1
...
e

 = Wk


A−11

0
...
0

A11

 .

Therefore from the last m rows in the above expression we get

QkA−11 + PkA11 = 1, (8.21)

where Qk is the m×m submatrix in the lower leftmost corner of Wk. Since Wk

is the inverse of a nonsingular M-matrix, it is nonnegative, so that QkA−11 ≥ 0
and 0 ≤ PkA11 ≤ 1. This implies that if PkA11 �= 1 then uTPkA11 − 1 �= 0,
which completes the proof. �

Now we are ready to prove the main applicability result:

Theorem 8.6 Let A−1, A0 and A1 be m×m matrices defining a QBD process.
Let us assume that cyclic reduction can be applied to ϕ(z). If u > 0 and if
I −A0 −A1Q is nonsingular, then cyclic reduction can be applied to the shifted
problem associated with ϕ̃(z) with no break-down.

Proof We prove that det T̃k �= 0 for k ≥ 1. If k = 1 then T̃1 = I − Â0 =
I − A0 − A1Q. Therefore the nonsingularity of T̃1 follows by assumption.

Let us consider the case k > 1. Since cyclic reduction can be applied, then
detTk �= 0 for any k. Apply Theorems 8.4, 8.5 and deduce that det T̃k = 0 if
and only if PkA11 = 1. Assume by a contradiction that det T̃k0 = 0 for some
k0, so that Pk0A11 = 1. Then we prove that PkA11 = 1 for any k ≥ k0 so
that, in view of Theorems 8.4 and 8.5, the matrix T̃k would be singular for any
k ≥ k0. This property contradicts the fact that, by Theorem 8.2, there exists
n0 such that for any n ≥ n0 the matrices ψ̃(n)(z) and ϕ̃(n)(z) are invertible
for |z| = 1. In order to prove that PkA11 = 1, consider the Schur complement
Sk of Tk−1 in Tk and recall that since Tk and Tk−1 are nonsingular then Sk

exists, is nonsingular and S−1
k = Pk. Moreover, from the definition of the Schur
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complement and from the block tridiagonal structure of Tk and Tk+1 it holds that
Sk+1 = (I − A0) − A−1S

−1
k A1 = (I − A0) − A−1PkA1. Therefore, if PkA11 = 1

then Sk+11 = (I−A0)1−A−1S
−1
k A11 = 1−A01−A−11 = A11, where the latter

equation holds since A−1 + A0 + A1 is stochastic. Thus we get 1 = Pk+1A11
which completes the proof. �

For QBD processes the shifted cyclic reduction technique can be much simpli-
fied. Algorithm 8.2 synthesizes cyclic reduction for solving the matrix equations
associated with a positive recurrent QBD.

Algorithm 8.2 Shifted yclic reduction for QBDs: the case µ < 0
Input: The m×m matrices A−1, A0 and A1 which define the matrix polynomial
A(z) = A−1 + zA0 + z2A1 associated with a QBD process with a negative drift
µ; a real ε > 0.

Output: An approximation Y to the minimal solution Gmin of the equation
A−1 + A0X + A1X

2 = X and a real σ > 0 such that ‖Gmin − Y ‖∞ ≤ εσ.

Computation:

1. Choose any vector u > 0 such that uT1 = 1 and set Q = 1uT.

2. Set Ã−1 = A−1 − A−1Q, Ã0 = A0 + A1Q, Ã1 = A1,
̂̃
A0 = Ã0.

3. Compute the matrices

Ã′
−1 = Ã−1(I − Ã0)−1Ã−1,

Ã′
0 = Ã0 + Ã1(I − Ã0)−1Ã−1 + Ã−1(I − Ã0)−1Ã1,

Ã′
1 = Ã1(I − Ã0)−1Ã1,̂̃

A
′
0 = ̂̃A0 + Ã1(I − Ã0)−1Ã−1.

4. Set Ãi = Ã′
i, for i = −1, 0, 1 and ̂̃A0 = ̂̃A′

0.

5. If ‖Ã1‖∞ ≤ ε then output Y = (I − ̂̃A0)−1A−1, σ = 2‖(I − ̂̃A0)−1‖∞;
otherwise repeat from stage 3.

In the case µ > 0 the shift technique can be similarly applied. Here, the root
z = 1 is mapped to infinity. If µ = 0, then det(zI − A(z)) has two unit zeros
z1 = z2 = 1. In this case we still can apply this technique by shifting z1 = 1 into
0. The convergence speed can be increased if, in addition, z2 = 1 is shifted into
∞.

8.3 Cyclic reduction and functional iterations

In this section we present a class of functional iterations for the solution of the
matrix equation

−A−1 + (I − A0)X − A1X
2 = 0. (8.22)
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which exploit the strategy of divide-and-conquer on the basis of the methods of
logarithmic reduction and of cyclic reduction.

We recall that the algorithms based on functional iterations which we have
analyzed in Chapter 6 have a linear convergence and are self-correcting. The lat-
ter property means that possible errors introduced at any step, say by floating
point arithmetic, are corrected in the subsequent steps due to the local con-
vergence of the iteration. On the other hand, logarithmic reduction and cyclic
reduction provide iterations which generally have a quadratic convergence but
they are not self-correcting.

In this section we try to combine the nice features of functional iterations like
the self-correction, and the high speed of the divide-and-conquer techniques in
order to design a class of functional iterations which share the following features:
each iteration in this class is globally convergent, self-correcting, and the local
convergence is linear with an arbitrarily large rate of convergence. More precisely,
the kth element of this one-parameter family of functional iterations generates
a sequence of approximations such that the error e

(k)
n at the generic n-th step

converges to zero as e
(k)
n = O(σn2k

) and the cost of a single step is independent
of k, where 0 < σ < 1. This places the algorithms in this class in between the
functional iterations of Chapter 6 and the cyclic reduction process of Section 7.3,
obtained in the limit as k → ∞.

Let us assume that the roots ξ1, . . . , ξ2m of a(z) = det(−A−1 + (I − A0)z −
A1z

2) satisfy the splitting property

0 ≤ |ξ1| ≤ · · · ≤ |ξm| < 1 < |ξm+1| ≤ · · · ≤ |ξ2m| ≤ ∞, (8.23)

where we assume roots at infinity if the polynomial a(z) has degree less than
2m. In this way the minimal solution of (8.22) has eigenvalues ξ1, . . . , ξm.

This assumption is no loss of generality since, under the general Condition
4.20, we may reduce to this case by applying the shift technique of Section 8.2.

Let us consider the following functional iteration

W (n+1) = S1(W (n)), n = 0, 1, 2, . . . , (8.24)

which is started with an initial matrix W (0), where

S1(W ) = I − A0 − A1W
−1A−1;

our goal is to relate the fixed points of (8.24) and the solutions of (8.22). To this
end we have the following.

Remark 8.7 Observe that if there exists a nonsingular solution R of the equa-
tion S1(R) = R then X = R−1A−1 is a solution of the equation −A−1 + (I −
A0)X − A1X

2 = 0. In fact, for X = R−1A−1 it follows that

−A−1 + (I − A0)X − A1X
2 = (−R + (I − A0) − A1R

−1A−1)R−1A−1 = 0

since −R +(I −A0)−A1R
−1A−1 = −R +S1(R) = 0. Similarly we find that the

matrix Y = A1R
−1 solves −Y 2A−1 + Y (I − A0) − A1 = 0.
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Consider the function s(w) = vec(S1(W )) : R
m2 → R

m2
, where w = vec(W ).

We indicate with J (W ) the m2 ×m2 Jacobian matrix of the function s(w) and
with ρ(J (w)) its spectral radius. Concerning the convergence of the sequence
{W (n)} we have the following.

Theorem 8.8 Let ξi, i = 1, . . . , 2m, be the zeros of det(−A−1+z(I−A0)−z2A1)
satisfying (8.23) and let V be a solution of S1(V ) = V , i.e., a fixed point of the
function S1(W ). Then ρ(J (V )) < 1 if and only if X = V −1A−1 and Y = A1V

−1

are minimal solutions of the equations −A−1 + (I − A0)X − A1X
2 = 0 and

−A1+Y (I−A0)−Y 2A−1 = 0, respectively, that is, X has eigenvalues ξ1, . . . , ξm,
and Y has eigenvalues ξ−1

m+1, . . . , ξ
−1
2m. Moreover, if the fixed point V satisfies

ρ(J (V )) < 1 then V is unique and, given an operator norm ‖ · ‖, there exists
a neighborhood S = {W ∈ R

m×m : ‖W − V ‖ ≤ δ} of V such that for any
W0 ∈ S the sequence (8.24) is well defined and converges to V . More specifically,
for any σ, |ξm/ξm+1| < σ < 1, there exists a positive constant γ such that
‖V − W (n)‖ < γσn.

Proof It can be easily verified that the Jacobian matrix of s(w) is J (W ) =
(A1W

−1)T ⊗ (W−1A−1) and that ρ(J (W )) = ρ(A1W
−1)ρ(W−1A−1). If V =

S1(V ) then from Remark 8.7 the matrices X = V −1A−1 and Y = A1V
−1 are

solutions of the equations −A−1 + (I − A0)X − A1X
2 = 0, −A1 + Y (I − A0) −

Y 2A−1 = 0, respectively. Since the eigenvalues of X are a subset of m entries
(counting multiplicities) of {ξ1, . . . , ξ2m}, and the eigenvalues of Y are a subset of
m entries of {ξ−1

1 , . . . , ξ−1
2m} (compare with Section 3.3), the condition ρ(J (V )) =

ρ(X)ρ(Y ) < 1 implies that the eigenvalues of X are ξ1, . . . , ξm, and the eigen-
values of Y are ξ−1

m+1, . . . , ξ
−1
2m, so that ρ(J (V )) = |ξm/ξm+1|. Conversely, if X

and Y are minimal solutions then ρ(X) = |ξm|, ρ(Y ) = |ξm+1|−1, and this im-
plies ρ(J (V )) = |ξm/ξm+1| < 1 so that V is an attractive fixed point in light
of Theorem 6.2. Concerning uniqueness, if V1 and V2 were fixed points then
V1 − V2 = S1(V1)− S1(V2) = −A1(V −1

1 − V −1
2 )A−1 = A1V

−1
1 (V1 − V2)V −1

2 A−1.
That is, vec(V2−V1) would be an eigenvector of the matrix (V −1

2 A−1)T⊗(A1V
−1
1 )

corresponding to the eigenvalue 1, that is, ρ((V −1
2 A−1)T ⊗ (A1V

−1
1 )) ≥ 1. This

contradicts the fact that ρ((V −1
2 A−1)T ⊗ (A1V

−1
1 )) = ρ(V −1

2 A−1)ρ(A1V
−1
1 ) < 1

since ρ(V −1
2 A−1) < 1 and ρ(A1V

−1
1 ) < 1. Whence V1 − V2 = 0 and the unique-

ness is proved. Finally, the local convergence properties follow from customary
arguments on the convergence theory of iterative methods (see
Theorem 6.2). �

Under the assumptions of the above theorem the iteration (8.24) provides
a means to solve the matrix equation (8.22) if complemented with the expres-
sion X(n) = (W (n))−1A−1. According to Theorem 8.8 the local convergence of
{X(n)} to the minimal solution Gmin of (8.22) is linear with rate of convergence
|ξm/ξm+1| < σ < 1.

Let us inductively define Sn(W ) = Sn−1(S1(W )) so that

Sn(W ) = S1(· · · (S1(S1(W )) · · · ), n times.

In this way the function Sh(W ) defines a functional iteration
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Z(n+1) = Sh(Z(n)), n = 0, 1, . . . ,

such that, for Z(0) = W (0) then Z(n) = W (n·h), n = 0, 1, . . .. In other words,
the iteration defined by the function Sh(Z) generates a subsequence of {W (n)}
obtained by picking up elements at the distance of h steps from each other.
Indeed the sequence {Z(n)} still has a linear convergence but its convergence
rate is σh.

Now, our goal is to show that we may perform one step of the functional
iteration associated with the function S2k(W ) at a cost independent of k. In
order to do this we will prove the following expression

S2k(W ) = Â
(k)
0 + A

(k)
1 (W − Ã

(k)
0 )−1A

(k)
−1 .

for suitable matrices Â
(k)
0 , Ã

(k)
0 , A

(k)
i , i = −1, 1 which are computed once for all

at a low cost by applying a slight modification of cyclic reduction.
For this purpose, consider the n × n block tridiagonal matrix

Tn = Tn(W ) =


W −A−1 0
−A1 I − A0

. . .
. . . . . . −A−1

0 −A1 I − A0

 ,

and assume that it is nonsingular for any n > 0. From T2 we deduce that S1(W )
is nothing else but the Schur complement of T1 in T2. In general, from the block
LU decomposition of Tn

Tn =


I 0
∗ I

. . . . . .
0 ∗ I




W −A−1 0
S1(W )

. . .

. . . −A−1

0 Sn−1(W )


where “∗” denotes generally nonzero blocks, and from the properties of the Schur
complement (see Definition A.6 and Theorem A.7) we may inductively deduce
that Sn−1(W ) is the Schur complement of Tn−1 in Tn. In fact, from the block
Gaussian elimination we deduce that

S1(W ) = I − A0 − A1W
−1A−1,

S2(W ) = I − A0 − A1S1(W )−1A−1 = S1(S1(W )),

Si+j(W ) = Si(Sj(W )) ∀i, j > 0.

Now let Pn−1 be any permutation matrix and define T ′
n−1 = PT

n−1Tn−1Pn−1,

T ′
n = PT

n TnPn, where P ′
n =

[
P ′

n−1 0
0 1

]
. Then the Schur complement of of Tn−1

in Tn coincides with the Schur complement of of T ′
n−1 in T ′

n.
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In order to provide a suitable expression for S2k(W ), we choose n = 2k + 1,
for a positive integer k, and apply a suitable permutation Pn to the rows and
columns of Tn which leaves unchanged the last block row and the last block
column and then apply the Schur complementation to the matrices T ′

n and T ′
n−1

obtained in this way. The permutation that we choose is the one obtained by
applying cyclic reduction. By following the same strategy used in Section 7.3,
let us apply the even–odd permutation to block rows and to block columns of
Th followed by a step of block Gaussian elimination. For simplicity we recall this
transformation in the case n = 5 so that

T5 =


W −A−1 0
−A1 I − A0 −A−1

−A1 I − A0 −A−1

−A1 I − A0 −A−1

0 −A1 I − A0


and after the even–odd permutation we get

I − A0 0 −A1 −A−1 0
0 I − A0 0 −A1 −A−1

−A−1 0 W 0 0
−A1 −A−1 0 I − A0 0

0 −A1 0 0 I − A0

 .

The Schur complementation of the 2 × 2 block matrix yields W̃ (1) −A
(1)
−1 0

−A
(1)
1 I − A

(1)
0 −A

(1)
−1

0 −A
(1)
1 I − Â

(1)
0

 (8.25)

with

A
(1)
0 = A0 + A−1(I − A0)−1A1 + A1(I − A0)−1A−1,

A
(1)
−1 = A−1(I − A0)−1A−1, A

(1)
1 = A1(I − A0)−1A1,

Â
(1)
0 = A0 + A−1(I − A0)−1A1,

W̃ (1) = W − A1(I − A0)−1A−1.

It is evident that in the Schur complement the block tridiagonal structure is
kept. Also the block Toeplitz structure is kept except for the blocks W̃ (1) and
I − Â

(1)
0 in the north-west and south-east corners.

Another step of cyclic reduction applied to the 3 × 3 block matrix (8.25)
generates the 2 × 2 block matrix[

W̃ (2) −A
(2)
−1

−A
(2)
1 I − Â

(2)
0

]

where W̃ (2) = W − A
(1)
1 (I − A

(1)
0 )−1A

(1)
−1. The overall permutation that we ob-

tain in this way is the composition of the even–odd permutations of blocks:
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(2, 4, 1, 3, 5), (2, 4, 3, 1, 5) which leave the last block unchanged. Therefore, the
last step of Schur complement I−Â

(2)
0 −A

(2)
−1(W̃

(2))−1A
(2)
1 , provides S4(W ), that

is,

S4(W ) = Â
(2)
0 − A

(2)
1 (W̃ (2))−1A

(2)
−1.

In general, for any n = 2k + 1, we may recursively apply this transformation
provided that the matrices I − A

(i)
0 are nonsingular for i = 1, 2, . . ., until we

arrive at a 2 × 2 block [
W̃ (k) −A

(k)
−1

−A
(k)
1 I − Â

(k)
0

]
,

and then compute the Schur complement

S2k(W ) = I − Â
(k)
0 − A

(k)
1 (W̃ (k))−1A

(k)
−1

provided that W̃ (k) is nonsingular. In fact, the composition of the even–odd
permutations leave the last block unchanged. In this way we obtain the following
sequence of matrices where we have introduced Ã

(k)
0 = W − W̃ (k):

A
(n+1)
0 = A

(n)
0 + A

(n)
−1 (I − A

(n)
0 )−1A

(n)
1 + A

(n)
1 (I − A

(n)
0 )−1A

(n)
−1 ,

A
(n+1)
−1 = A

(n)
−1 (I − A

(n)
0 )−1A

(n)
−1 ,

A
(n+1)
1 = A

(n)
1 (I − A

(n)
0 )−1A

(n)
1 ,

Â
(n+1)
0 = Â

(n)
0 + A

(n)
−1 (I − A

(n)
0 )−1A

(n)
1 ,

Ã
(n+1)
0 = Ã

(n)
0 + A

(n)
1 (I − A

(n)
0 )−1A

(n)
−1 ,

(8.26)

with the initial conditions A
(0)
0 = A0, A

(0)
−1 = A−1, A

(0)
1 = A1, Â

(0)
0 = A0,

Ã
(0)
0 = 0, and so

S2k(W ) = Â
(k)
0 + A

(k)
−1(W − Ã

(k)
0 )−1A

(k)
1 . (8.27)

The above formula provides a means to compute the sequence {W (i·2k)}i=0,1,...

by performing only a finite number of matrix operations per step, once the pre-
computation of the blocks A

(k)
i , i = −1, 0, 1, Ã

(i)
0 and Â

(i)
0 has been completed.

Moreover the sequence {Z(n)}n, Z(n) = W (n·2k) converges linearly to the fixed
point V with the convergence rate σ2k

for σ > |ξm/ξm+1|.
We may synthesize the results of this section with Algorithm 8.3 for the

solution of the matrix equation (8.1).
The local convergence of the sequence generated with this algorithm has a

linear speed such that ‖W (i·2k)−V ‖ = O(σi·2k

) for |ξm/ξm+1| < σ < 1, moreover
the algorithm is self-correcting.
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Algorithm 8.3 Functional iteration with cyclic reduction
Input: The m × m block elements A−1, A0, A1, such that det(−A−1 + z(I −
A0)− z2A1) has zeros ξi such that (8.23) holds; an error bound ε > 0, a positive
integer k; either an initial approximation W (0) of the fixed point V of S(W ), or
the matrix W (0) = I.

Output: An approximation Y to the matrix Gmin.

Computation:

1. (initialization) Compute Â(k), Ã(k), A
(k)
−1 and A

(k)
−1 by applying (8.26).

2. Compute

V (n+1) = Â
(k)
0 + A

(k)
−1(V (n) − Ã

(k)
0 )−1A

(k)
1 , n = 0, 1, . . . ,

until the residual ‖V (n+1) − V (n)‖∞ ≤ ε.
3. Set Y = (V (n+1))−1A1.

8.4 Doubling methods

The even–odd permutation at the basis of logarithmic reduction and of cyclic
reduction, relies on a divide and conquer strategy applied to the coefficients of
the power series A(z) or, equivalently, to the block diagonals of the block Toeplitz
matrix (7.30). A different idea relies on applying the divide and conquer strategy
to the size of the matrices obtained by truncating (7.30) to a finite size. More
precisely, consider (7.30) which we rewrite below for the sake of clarity

I − A0 −A1 −A2 −A3 . . .

−A−1 I − A0 −A1 −A2
. . .

−A−1 I − A0 −A1
. . .

−A−1 I − A0
. . .

0 . . . . . .




Gmin

G2
min

G3
min
...

 =


A−1

0
...
...

 , (8.28)

and consider the linear system obtained by truncating (8.28) to finite block size
n, that is

I − A0 −A1 −A2 . . . −An−1

−A−1 I − A0 −A1
. . .

...

−A−1 I − A0
. . . −A2

. . . . . . −A1

0 −A−1 I − A0




X

(n)
1

X
(n)
2
...

X
(n)
n

 =


A−1

0
...
0

 . (8.29)

Here, the idea is to approximate Gmin with X
(n)
1 for n sufficiently large with the

hope that the components of the solution of the finite system (8.29) converge
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to the corresponding components of the solution of the infinite system (8.28).
In this context we assume that the drift µ is negative, that A(z) is analytic for
|z| < r, where r > 1, and that detϕ(z), with ϕ(z) = zI−A(z), has at least a zero
of modulus greater than 1. The latter property is satisfied under the assumptions
of Theorem 4.12. In this way, the zeros z = ξi, i = 1, 2, . . ., of detϕ(z) can be
ordered so that |ξ1| ≤ · · · ≤ ξm = 1 < |ξm+1| ≤ · · · . As in Chapter 7 we denote

η = max{|z| : |z| < 1, detϕ(z) = 0},
ξ = min{|z| : |z| > 1, detϕ(z) = 0}.

The convergence property of the doubling technique can be proved relying
on the weak canonical factorization (see Theorem 4.13)

I − z−1A(z) = U(z)(I − z−1Gmin),

U(z) =
+∞∑
i=0

ziUi, det U(z) �= 0 for |z| ≤ 1,

ρ(Gmin) = 1,

(8.30)

of the function I − z−1A(z) and on the nonnegativity of the coefficients Ai,
i ≥ −1.

Theorem 8.9 Let A(z) be the generating function associated with an M/G/1-
type Markov chain. Assume that A(z) is analytic for |z| < r, with 1 < r < +∞,
and that there exists ζ, such that 1 < |ζ| < r and det(ζI − A(ζ)) = 0. If the

drift µ is negative and if Condition 4.20 is satisfied, then for the matrix X
(n)
1

defined in (8.29) one has 0 ≤ X
(n)
1 ≤ X

(n+1)
1 ≤ Gmin for n ≥ 1, X

(n)
i ≤ Gi

min

for i = 1, . . . , n. Moreover Gmin − X
(n)
1 = U

(−1)
n A−1X

(n)
n , where U

(−1)
n is the

coefficient of the term of degree n in the matrix power series U(z)−1 of (8.30),
and for any ε > 0 there exist a positive constant γ such that

‖Gmin − X
(n)
1 ‖∞ ≤ γ(ξ − ε)−n,

for any n > 0.

Proof Denote by H∞ = T∞[I − z−1A(z)] the block Hessenberg block Toeplitz
matrix (8.29) and Hn = Tn[I − z−1A(z)] its section to block size n and observe
that Hn = I − Tn[z−1A(z)]. By Theorem 1.14 and Corollary 1.15 the series∑+∞

i=0 T∞[z−1A(z)]i is convergent, and is the minimal nonnegative inverse of
H∞. Since 0 ≤ K∞ ≤ T∞[z−1A(z)] where

K∞ =
[

Tn[z−1A(z)] 0
0 0∞

]
and 0∞ is the semi-infinite matrix with all the elements equal to zero, then Ki

∞ ≤
T∞[z−1A(z)]i for any i ≥ 0. Therefore

∑+∞
i=0 Ki

∞ ≤∑+∞
i=0 T∞[z−1A(z)]i < +∞,

so that the series
∑+∞

i=0 Tn[z−1A(z)]i is convergent, is a nonnegative matrix and
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H−1
n =

∑+∞
i=0 Tn[z−1A(z)]i. This implies that X

(n)
i ≥ 0, for i = 1, . . . , n. More-

over observe that the (n + 1) × (n + 1) block matrix

Kn+1 =
[

Tn[z−1A(z)] 0
0 0m

]
,

where 0m is the m × m matrix with all the elements equal to zero, is such that
0 ≤ Kn+1 ≤ Tn+1[z−1A(z)], where the inequality holds element-wise. Therefore,
0 ≤∑+∞

i=0 Ki
n+1 ≤∑+∞

i=0 Tn+1[z−1A(z)]i and 0 ≤ (I − Kn+1)−1 ≤ H−1
n+1. Since

(I − Kn+1)−1 =
[

H−1
n 0
0 I

]
,

one has (H−1
n )1,1 ≤ (H−1

n+1)1,1, where (H−1
i )1,1 denotes the m×m block of H−1

i

in position (1, 1), which implies that 0 ≤ X
(n)
1 ≤ X

(n+1)
1 .

In order to prove that Gi
min − X

(n)
i ≥ 0 for i = 1, . . . , n, observe that

H∞



Gmin − X
(n)
1

...
Gn

min − X
(n)
n

Gn+1
min

Gn+2
min
...


=



0
...
0

A−1X
(n)
n

0
...


, (8.31)

where the nonzero block in the right-hand side is the (n+1)st block component.
Recall that I − z−1A(z) admits the weak canonical factorization (8.30) where
U0 = I − A∗

0, Ui = −A∗
i for i ≥ 1, where A∗

i are defined in (4.8), and U0 is an
M-matrix in light of Theorem 4.15 so that we have U−1

0 ≥ 0. In matrix form we
have

H∞ =


U0 U1 U2 . . .

U0 U1
. . .

0 . . . . . .




I 0
−Gmin I

−Gmin I

0 . . . . . .

 . (8.32)

Since U0 is an M-matrix and Ui are nonpositive for i ≥ 1, then any finite section
of the block upper triangular Toeplitz matrix in the above expression are M-
matrices, so that their inverses are nonnegative. Since the minimum modulus zero
of det U(z) is ξ, then U(z) is analytic and invertible for |z| < ξ so that we may
define the matrix power series U(z)−1 =

∑+∞
i=0 ziU

(−1)
i , such that T∞[U(z)]−1 =

T∞[U(z)−1] for |z| < ξ. Then from (8.31) and (8.32) we find that
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
I 0

−Gmin I
−Gmin I

0 . . . . . .





Gmin − X
(n)
1

...
Gn

min − X
(n)
n

Gn+1
min

Gn+2
min
...


=



U
(−1)
n

...
U

(−1)
0

0
...


A−1X

(n)
n . (8.33)

The nonnegativity of the matrices U
(−1)
i , i ≥ 0, of A−1 and of X

(n)
n implies that

Gi
min −X

(n)
i ≥ 0 for i = 1, . . . , n. Moreover, from the first equation of (8.33) one

has Gmin − X
(n)
1 = U

(−1)
n A−1X

(n)
n .

Since the function U(z) is analytic and invertible for |z| < ξ, therefore, ap-
plying Theorem 3.6 to U(z)−1 we find that for any ε there exists γ > 0 such
that ‖U (−1)

i ‖∞ ≤ γ(ξ − ε)i for any i > 0. This implies that ‖Gmin − X
(n)
1 ‖∞ ≤

γ(ξ − ε)n‖A−1‖∞‖X(n)
n ‖∞ ≤ γ(ξ − ε)n. �

If the drift µ is positive we may prove a similar convergence result. Indeed,
the weak canonical factorization (8.30) still holds, where U(z) is nonsingular for
|z| < 1, U(z)−1 has uniformly bounded block coefficients, and ρ(Gmin) = η < 1.
Therefore, from the relation Gmin − X

(n)
1 = U

(−1)
n A−1X

(n)
n we deduce that for

any matrix norm ‖·‖ and for any ε > 0 such that η+ε < 1 there exists a constant
σ such that ‖Gmin − X

(n)
1 ‖∞ ≤ σ(η + ε)n, for n ≥ 1.

It is natural to design an algorithm which allows one to compute X
(2n)
1 given

X
(n)
1 . This can be done relying on the Shermann–Morrison–Woodbury formula

(A.2). Denoting by Hn = Tn[I − z−1A(z)] the block Hessenberg block Toeplitz
matrix (8.29) we may partition H2n into a 2 × 2 block matrix obtaining

H2n =
[

Hn Tn

−fnA−1l
T
n Hn

]
,

where we denoted by fn and ln the first and the last block columns of size
mn × m of an mn × mn identity matrix, and where Tn is the block Toeplitz
matrix

Tn = −


An An+1 . . . A2n−1

An−1 An
. . .

...
...

. . . . . . An+1

A1 . . . An−1 An

 .

In particular we may decompose H2n as

H2n =
[

Hn Tn

0 Hn

]
+
[

0 0
−fnA−1l

T
n 0

]
= S2n − u2nA−1v

T
2n, (8.34)

where
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S2n =
[

Hn Tn

0 Hn

]
, u2n =

[
0

fn

]
, v2n =

[
ln
0

]
. (8.35)

Assume that both Hn and H2n are nonsingular, then by applying the Sherman–
Morrison–Woodbury formula (A.2) to the decomposition (8.34), we immediately
find that I − vTS−1

2n u2nA−1 is nonsingular and

H−1
2n = S−1

2n + S−1
2n u2nA−1(I − vT

2nS−1
2n u2nA−1)−1vT

2nS−1
2n , (8.36)

where

S−1
2n =

[
H−1

n −H−1
n TnH−1

n

0 H−1
n

]
. (8.37)

In this way the matrix inverse of H2n is expressed by means of the matrix
inverse of Hn. By using the concept of displacement rank of Section 2.4, we may
find even more useful relations between H−1

2n and H−1
n . Due to the block upper

Hessenberg structure of Hn it is suitable to consider the displacement operator
∆2(A) = AZT −ZTA, for Z = I ⊗Z, introduced in Section 2.4. For the sake of
notational simplicity, we will denote by ∆(·) the operator ∆2(·). It is a simple
matter to verify that

∆(Hn) = fnA−1f
T
n − lnA−1l

T
n . (8.38)

Therefore, in light of Theorem 2.15,

∆(H−1
n ) = −H−1

n fnA−1f
T
nH−1

n + H−1
n lnA−1l

T
nH−1

n ,

and

H−1
n =

(
I + L(Zc(1)

n A−1)
)
U((r(1)

n )T) − L(Zc(2)
n A−1)U((r(2)

n )T), (8.39)

where

c(1)
n = H−1

n fn, c(2)
n = H−1

n ln,

(r(1)
n )T = fT

nH−1
n , (r(2)

n )T = lTnH−1
n .

(8.40)

From (8.39) we deduce that the first and the last block columns and rows of
H−1

n are sufficient to fully define H−1
n . By using the decomposition (8.36), we

may provide recursive relations among the four vectors of (8.40), which allow
the efficient computation of H−1

n , when n is a power of 2:

Theorem 8.10 The first and the last block columns c
(1)
2n , c

(2)
2n , and the first and

the last block rows (r(1)
2n )T, (r(2)

2n )T of H−1
2n are related to the corresponding block

vectors of H−1
n by means of the following equations:
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c
(1)
2n =

[
c
(1)
n

0

]
+

[
−H−1

n Tnc
(1)
n

c
(1)
n

]
Wn(lTnc(1)

n ),

c
(2)
2n =

[
−H−1

n Tnc
(2)
n

c
(2)
n

]
−
[
−H−1

n Tnc
(1)
n

c
(1)
n

]
Wn((r(2)

n )TTnc(2)
n ),

(r(1)
2n )T = [(r(1)

n )T,−(r(1)
n )TTnH−1

n ]

−
(
(r(1)

n )TTnc(1)
n

)
Wn[(r(2)

n )T,−(r(2)
n )TTnH−1

n ],

(r(2)
2n )T = [0, (r(2)

n )T] + (lTnc(1)
n )Wn[(r(2)

n )T,−(r(2)
n )TTnH−1

n ],

(8.41)

where Wn = A−1

(
I + (r(2)

n )TTnc
(1)
n A−1

)−1

.

Proof From the definition (8.35) of un and vn, and from (8.37) one has that

S−1
2n u2n =

[
−H−1

n Tnc
(1)
n

c
(1)
n

]
,

vT
2nS−1

2n = [(r(2)
n )T,−(r(2)

n )TTnH−1
n ],

vT
2nS−1

2n u2n = −(r(2)
n )TTnc(1)

n .

By using the above relations, and by multiplying (8.36) by f2n, l2n on the right,
and by fT

2n, lT2n on left, respectively, we obtain (8.41). �

The theorem above can be used to generate the sequence of vectors {c(1)
2n }n,

{c(2)
2n }n, {r(1)

2n }n, {r(2)
2n }n, which define the sequence of inverses {H−1

2n }n. The
computation of c

(1)
2n , c

(2)
2n , (r(1)

2n )T, (r(2)
2n )T, starting from c

(1)
n , c

(2)
n , (r(1)

n )T, (r(2)
n )T,

requires the computation of block Toeplitz matrix-block vector products, which
can be performed by means of the algorithms of Section 2.3. More specifically,
one step of the doubling method can be summarized in Algorithm 8.4.

The most expensive parts of this algorithm are the stages where the products
of n× n block Toeplitz matrices and block vectors must be computed. The cost
of this part amounts to O(m3n + m2n log n) ops.

The doubling method for approximating the matrix Gmin in the case µ < 0
is described in Algorithm 8.5.

Observe that, since X
(n)
1 converges monotonically to Gmin then ‖Gmin −

X
(n)
1 ‖∞ = ‖(Gmin − X

(n)
1 )1‖∞ = ‖1 − X

(n)
1 1‖∞. Therefore, the stop condition

‖X(n)
1 1 − 1‖∞ ≤ ε guarantees that ‖Gmin − X

(n)
1 ‖∞ ≤ ε.

The overall cost of Algorithm 8.5 is O(m3nmax +m2nmax log nmax) ops where
nmax = 2s, and s is the maximum number of steps needed by the algorithm to
arrive at completion. Therefore if the number s of doubling steps needed to arrive
at a reliable approximation is large, then the complexity of the algorithm is not
negligible. Decay properties of the coefficients of I − z−1A(z) and of its inverse
might help in order to reduce the complexity of this computation even though
this reduction is only minor with respect to the overall complexity. An interesting
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Algorithm 8.4 Doubling method: single step
Input: An integer n ≥ 1, the matrices Ai, i = −1, . . . , 2n, the first and the last
block columns c

(1)
n , c

(2)
n and the first and the last block rows (r(1)

n )T and (r(2)
n )T,

respectively, of the matrix H−1
n .

Output: The first and the last block columns c
(1)
2n , c

(2)
2n and the first and the

last block rows (r(1)
2n )T and (r(2)

2n )T, respectively, of the matrix H−1
2n .

Computation:

1. Compute the block vectors u(1) = Tnc
(1)
n , u(2) = Tnc

(2)
n .

2. Compute the m × m matrices Wn = A−1(I − (r(2)
n )Tu(1)A−1)−1, Q1 =

Wn(lTnc
(1)
n ), Q2 = Wn((r(2)

n )Tu(2)), Q3 = (r(1)
n )Tu(1)Wn, Q4 = (lTnc

(1)
n )Wn.

3. Compute the row vectors (v(1))T = (r(1)
n )TTn, (v(2))T = (r(2)

n )TTn.
4. Compute the block vectors y(1) = H−1

n u(1), y(2) = H−1
n u(2), (t(1))T =

(v(1))TH−1
n , (t(2))T = (v(2))TH−1

n , by using the representation (8.39) and
Algorithms 2.3 and 2.4 for computing the products of the block Toeplitz
matrices and the block vectors involved in the formula.

5. Compute and output

c
(1)
2n =

[
c
(1)
n

0

]
+
[−y(1)

c
(1)
n

]
Q1,

c
(2)
2n =

[−y(2)

c
(2)
n

]
+
[

y(1)

−c
(1)
n

]
Q2,

(r(1)
2n )T = [(r(1)

n )T,−(t(1))T] − Q3[(r(2)
n )T,−(t(2))T],

(r(2)
2n )T = [0, (r(2)

n )T] + Q4[(r(2)
n )T,−(t(2))T].

feature of this algorithm is that we do not have to invert any mn×mn matrix for
n = 4, 8, . . .. The only inversions involved concerns H2, which must be computed
only at the initial recursive step, and the m × m matrix I − (r(2)

n )Tu(1)A−1.
In the case of a QBD process where the matrix Hn is block tridiagonal, the

equations (8.41) are much simplified. However, the algorithm still remains more
expensive than logarithmic reduction or cyclic reduction.

8.5 Evaluation–interpolation techniques

Consider the general problem of approximating a finite number of block compo-
nents of the vector π which solves the system

πTP = πT

where the matrix P is the infinite matrix (5.15) of Section 5.4 which we recall
below
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Algorithm 8.5 Doubling method: the case µ < 0
Input: The m×m block elements Ai, i = −1, 0, 1, . . ., defining the block Toeplitz
block Hessenberg matrix in (7.47) with µ < 0; an error bound ε > 0.

Output: Approximation Y to the matrix Gmin such that ‖Gmin − Y ‖∞ ≤ ε.

Computation:

1. Set n = 2, compute H−1
2 and set c

(1)
n , c

(2)
n , (r(1)

n )T, (r(2)
n )T the first and the

second block rows and block columns, respectively, of H−1
2 .

2. Compute c
(1)
2n , c

(2)
2n , r

(1)
2n , r

(2)
2n by means of Algorithm 8.4.

3. Compute Y = KA−1 where K is the first block component of c
(1)
2n .

4. If ‖Y 1 − 1‖∞ > ε then set n = 2n and continue from stage 2. Otherwise
output Y .

P =



B0 B1 B2 B3 . . .
B−1 A0 A1 A2 . . .

B−2 A−1 A0 A1
. . .

B−3 A−2 A−1 A0
. . .

...
...

. . . . . . . . .


. (8.42)

This system, rewritten in the form πT(I − P ) = 0, can be solved by means of
the weak canonical factorization of the function

I − S(z) = I −
+∞∑

i=−∞
ziAi

in light of the results of Section 3.5.
More precisely, assume that S(z) =

∑+∞
i=−∞ ziAi is analytic for r1 < |z| < r2,

where r1 < 1 < r2, and that there exists a weak canonical factorization

I − S(z) = U(z)L(z)

where U(z) =
∑+∞

i=0 ziUi is analytic for |z| < 1 and nonsingular for |z| ≤ 1 and
L(z) =

∑+∞
i=0 z−iL−i is analytic for |z| > 1 and nonsingular for |z| > 1. We

assume also that, if L(z) is singular for some z of modulus 1, then z = 1 is the
only zero of detL(z) and it is simple. Observe that if

∑+∞
i=−∞ Ai is stochastic,

one has (I − S(1))1 = 0, which implies L(1)1 = 0.
Since the matrix Laurent power series S(z) is analytic, its coefficients Ai

decay to zero so that they are negligible for i < −N and i > M for sufficiently
large N,M > 0. Therefore for the sake of simplicity we assume that S(z) =∑M

i=−N ziAi. Here we consider the case where L(1) is singular. If the latter
condition is not satisfied, then the procedure is much simplified since we do not
need to apply the shifting stage. We proceed according to the following steps:
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1. Apply the shift technique of Section 3.6 and construct the matrix Laurent
power series

I − S̃(z) = (I − S(z))(I − z−1Q)−1

which admits a canonical factorization in light of the results of Section 3.6,
where Q = 1uT and u is any vector such that uT1 = 1.

2. Compute the canonical factorization I − S̃(z) = Ũ(z)L̃(z) of the matrix
Laurent power series I − S̃(z) by approximating the central K coefficients
of the inverse of the matrix Laurent power series I−S̃(z) in light of Theorem
3.27, where K > N . Here, since the matrix Laurent power series I − S̃(z) is
nonsingular for |z| = 1 we may apply Algorithm 3.2 based on the evaluation–
interpolation technique at the Fourier points.

3. Compute the weak canonical factorization I − S(z) = U(z)L(z) of I − S(z)
by means of the relations U(z) = Ũ(z) and L(z) = L̃(z)(I − z−1Q)−1, that
is, compute L−i = L̃−i − L̃−i+1Q, i = 1, 2, . . . , N , L̃0 = L0; set Ui = Ũi,
i = 0, 1, . . . (compare with (3.51)).

4. Use the weak canonical factorization of I−S(z) in order to solve the system
(8.42) with the techniques of Section 3.5.

Now we describe in more detail the stages of the above computational scheme.
The computation at stage 1 is simply performed in the following way.
1a. Choose any vector u such that uT1 = 1;
1b. set Ãi = Ai − (

∑i
j=−N Aj)1uT, for i = −N, . . . ,−1, and Ãi = Ai + (I −∑i

j=−N Aj)1uT, for i = 0, 1, . . . , M ;

1c. set S̃(z) =
∑M

i=−N ziÃi.
The computation at stage 2, i.e., the inversion by means of evaluation–

interpolation, is slightly more involved and is described by Algorithm 8.6 which
is a slight modification of Algorithm 3.2.

The evaluation part at stage 2 at each cycle of this algorithm may not be
performed from scratch. In fact we may follow the strategy described in Remark
2.2 where it is shown how to update, with low cost, the discrete Fourier transform
at 2h points of an assigned function, given the discrete Fourier transform at h
points of the same function. Similarly we may do the same for the interpolation
stage 4. We refer the reader to Remark 2.2 and to the entire Section 2.2 for more
details in this regard and to related topics.

The cost of the algorithm amounts to O(m2h log h) ops for the evaluation
and for the interpolation stages, and to O(m3h) ops for the inversion of stage 3.

The computation of the canonical factorization of I − S̃(z) at stage 3 of the
main scheme, once the central coefficients of H(z) = (I − S̃(z))−1 have been
approximated, is performed in light of Theorem 3.27. More precisely, denoting
by H ′(z) the approximation to H(z) provided by Algorithm 8.6, and denoting
by [X−K+1, X−K , . . . , X0] the solution of the system

[X−K+1, X−K , . . . , X−1, X0]TK [H ′(z)] = eT
K ⊗ I,
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Algorithm 8.6 Matrix Laurent polynomial inversion
Input: Positive integers m, M , N , K, a positive real ε, and the m × m blocks
Ã−M , . . . , Ã0, . . . , ÃN , of the matrix Laurent power series S̃(z) =

∑M
i=−N ziÃi.

Output: Approximations H ′
i, i = −K, . . . , K, of the central block components

of H(z) = (I − S̃(z))−1 =
∑+∞

i=−∞ ziHi.

Computation:

1. Let h = 2q, q = max(�log2(N + M)�, �log2 2K + 1�), h0 = h.
2. Set ωh = cos(2π/h) + i sin(2π/h) and compute v = (Vi)i=1,h such that

Vi = S̃(ωi−1
h ), i = 1, . . . , h.

3. Compute w = (Wi), where Wi = (I −Vi)−1, i = 1, . . . , h, which provide the
values of H(ωi−1

h ).
4. Compute y = (Yi) = DFTh(w).
5. If h = h0 then set H

(old)
i = Yi+1, i = 0, . . . , K, H

(old)
i = Yh+i+1, for i =

−1, . . . ,−K, h = 2h and continue from stage 2.
6. Set H ′

i = Yi+1, i = 0, . . . , K, H ′
i = Yh+i+1, for i = −1, . . . ,−K.

7. If max−K≤i≤K ‖H ′
i − H

(old)
i ‖∞ ≤ ε then output H ′

i, i = −K, . . . , K.
Otherwise set h = 2h, H

(old)
i = H ′

i, i = −K, . . . ,K and continue from
stage 2.

where eT
K is the last row of the K×K identity matrix, TK [H ′(z)] = (H ′

j−i)i,j=1,K ,
and H ′(z) =

∑K
i=−K ziH ′

i, we have that the matrices L̃′
0 = I, Ũ ′

0 = X0, L̃′
i =

X−1
0 Xi, i = −1, . . . ,−N , provide approximations to the blocks Ũ0, L̃i, i =

0, . . . ,−N . This computation requires the solution of a K × K block Toeplitz
system for which we may use any of the available direct or iterative algorithms
(see Section 2.4). The choice of the algorithm depends on the size of the blocks
and on the size of the block matrix. In certain cases the customary inversion
algorithm based on Gaussian elimination is more convenient.

In order to compute the first K coefficients of Ũ(z) we rewrite the equation
I − S̃(z) = Ũ(z)L̃(z) in matrix form as

[Ũ0, Ũ1, . . .]



I 0
L̃−1 I

L̃−2 L̃−1 I
...

. . . . . . . . .

L̃−N
. . . . . . . . . . . .

0
. . . . . . . . . . . .

...
. . . . . . . . . . . .


= [H0,H1,H2, . . .]

and observe that for the decay properties of the coefficients of Ũ(z), there is a
positive integer q such that Ũi is negligible for i > q. Therefore, assuming Ui = 0
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for i > q the above infinite system turns into a q × q (finite) block triangular
block Toeplitz system which we may solve with the algorithms of Chapter 2
once we have replaced the matrices L̃i with their computed approximations L̃′

i,
i = 0, . . . ,−N .

The cost of this latter computation amounts to O(m2q log q+m3q) operations.
Concerning the last stage of the main scheme, that is, computing the vector π

once the weak canonical factorization of I−S(z) has been computed, we describe
the algorithm which relies on the results of Section 3.5. For the sake of simplicity
we assume that Bi = B−i = 0 for i > d. This assumption is no loss of generality
since in practice the blocks Bi and B−i have a decay property and are negligible
for sufficiently large i.

Observe that in light of the results of Section 3.5, the system πT(I −P ) = 0
can be rewritten as

πT


I − B0 −B1 −B2 . . .
−B−1

−B−2 T∞[I − S(z)]
...

 = 0

that is,

πT
0 W = 0

[πT
1 , πT

2 , . . .]T∞[I − S(z)] = πT
0 [B1, B2, . . .]

W = I − B0 − [B1, B2, . . .]T∞[I − S(z)]−1

B−1

B−2

...

 .

In this way, the computation of the first K components πi, i = 0, 1, . . . , K − 1,
of π is reduced to:
4a. solving the system

T∞[I − S(z)]y =

B−1

B−2

...

 (8.43)

where y = (Yi)i=1,2,...;
4b. computing W = I − B0 −

∑d
i=1 BiYi;

4c. solving the homogeneous system πT
0 W = 0;

4d. solving the system

[πT
1 ,πT

2 , . . .]T∞[I − S(z)] = πT
0 [B1, B2, . . .].

The most expensive parts in the above computation at stages 4a and 4d are
much simplified in light of the weak canonical factorization

T∞[I − S(z)] = T∞[U(z)]T∞[L(z)].
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In fact, the system (8.43), rewritten as

T∞[U(z)]T∞[L(z)]y =

B−1

B−2

...


can be solved in the following way

y = T∞[L(z)]−1z

z = T∞[U(z)]−1

B−1

B−2

...

 ,
(8.44)

and the system at stage 4.d, rewritten as

[πT
1 , πT

2 , . . .]T∞[U(z)]T∞[L(z)] = πT
0 [B1, B2, . . .],

can be solved by means of

[πT
1 ,πT

2 , . . .] = πT
0 [B1, B2, . . .]T∞[L(z)]−1T∞[U(z)]−1. (8.45)

More precisely, we perform the computation at stages 4a–4d according to the
following steps:

4a’. compute the first d block elements U
(−1)
i , i = 0, . . . , d − 1, of the matrix

power series U(z)−1 by means of Algorithm 2.6, that is the block elements
of the first block row of the matrix Td[U(z)]−1;

4b’. compute

zd = Td[U(z)]−1


B−1

B−2

...
B−d

 ;

by means of Algorithm 2.3;
4c’. compute Td[L(z)]−1 by means of Algorithm 2.5 and then the Toeplitz vector

product yd = Td[L(z)]−1zd which provides the first d components Y1, . . . , Yd

of y;
4d’. compute W = I − B0 −

∑d
i=1 BiYi.

Similarly, the solution of the system (8.45) can be computed in the following
way:

4e’. compute tTd = [B1, . . . , Bd]Td[L(z)]−1;
4f’. compute [πT

1 , . . . ,πT
K ] = πT

0 tTd TK [U(z)]−1;

still relying on Algorithm 2.4 for the Toeplitz matrix vector product.
Observe that the components πi, i = 1, . . . , K are uniquely determined by

π0 which is unique up to a scaling factor. In order to compute the vector π ≥ 0
such that πT1 = 1 we have to choose a suitable scaling factor for π0. This can
be done by relying on (8.45). Indeed, from (8.45) we deduce that

∑+∞
i=1 πT

i 1 =
πT

0 tTd U(1)−11. Therefore π0 must be normalized so that πT
0 (1+tTd U(1)−11) = 1.
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8.6 Invariant subspace method

The invariant subspace method consists in approximating the minimal nonneg-
ative solution Gmin of the matrix equation (8.1) by approximating the left in-
variant subspace of a suitable block companion matrix. In order to apply this
approach, we need to assume that the matrix equation (8.1) is a polynomial
matrix equation, i.e., Ai = 0 for i > N . Therefore the matrix power series A(z)
reduces to the matrix polynomial A(z) =

∑N−1
i=−1 zi+1Ai.

Before describing the invariant subspace method, we recall the definition of
matrix sign and the definition of left invariant subspace:

Definition 8.11 Let M be an m × m real matrix, with no pure imaginary
eigenvalues. Let M = S(D + N)S−1 be the Jordan decomposition of M , where
D = Diag(λ1, λ2, . . . , λm) and N is nilpotent and commutes with D. Then the
matrix sign of M is given by

Z = Sign(M) = S Diag(Sign(λ1), Sign(λ2), . . . ,Sign(λm))S−1,

where, for any complex number z with real(z) �= 0,

Sign(z) =
{

1 if real(z) > 0
−1 if real(z) < 0.

Definition 8.12 Let A be an m × m real matrix. Let S be a k-dimensional
subspace of R

m such that Ax ∈ S, for any x ∈ S. Let S be an m × k matrix,
whose columns are a basis of S. Denote with A1 a k × k matrix such that
AS = SA1. Then the subspace S is called the (closed) left invariant subspace
of A if the eigenvalues of A1 are contained in the (closed) left half-plane of the
complex plane, and there is no larger subspace for which this inclusion holds.

The invariant subspace method consists in computing a left invariant sub-
space in the complex plane C, i.e., it provides a splitting of the eigenvalues with
respect to the imaginary axis. On the other hand, the eigenvalues of Gmin are
the roots of zI −A(z) inside the closed unit disk, no matter what their position
with respect to the imaginary axis. Therefore, in order to reduce the computa-
tion of Gmin to the computation of a left invariant subspace, we have to apply
the Cayley transform to the function zI − A(z).

The Cayley transform z(t) and its inverse w(s) are defined by the functions

z(t) = (1 + t)/(1 − t), w(s) = (s − 1)/(s + 1) (8.46)

of a complex variable, where t �= 1 and s �= −1, respectively. The functions z(t)
and w(s) respectively map the unit circle without the point 1 and without the
point −1 into the imaginary axis, and they map the imaginary axis into the unit
circle without the point −1 and the point 1, respectively. Moreover, z(t) and
w(s) respectively map the open unit disk into C

+ and into C
− and they map

the complement of the closed unit disk into C
− and into C

+, respectively.
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By the properties of the Cayley transform the matrix polynomial H(t) =∑N
i=0 tiHi, defined as

H(t) =
N∑

i=0

tiHi = (1 − t)N (zI − A(z))|z=z(t)

=(1 − t)N−1(1 + t)I −
N∑

i=0

(1 − t)N−i(1 + t)iAi−1,

is such that det H(t) = 0 has exactly m − 1 roots with imaginary part less than
zero (which correspond to the roots of zI − A(z) in the open unit disk) and
a simple root at t = 0 (which corresponds to the root z = 1 of zI − A(z)).
Moreover, det HN �= 0, since HN = (−1)N (−I − A(−1)).

Since Gmin is the unique solution of the matrix equation (8.1) with eigenvalues
lying in the closed unit disk, by applying the inverse Cayley transform w(s) to
the matrix Gmin, we may easily verify that the matrix

Ĝ = (Gmin − I)(Gmin + I)−1

is the unique solution of the matrix equation

X = H0 + H1X + · · · + HNXN

having eigenvalues with nonpositive real part.
Now, define the matrices Ĥi = H−1

N Hi, for i = 0, . . . , N −1, and consider the
N × N block companion matrix

F =


0 I 0
...

. . . . . .
0 . . . 0 I

−Ĥ0 −Ĥ1 . . . −ĤN−1

 .

Let T be a Nm×m matrix whose columns are a basis of the closed left invariant
subspace of the matrix F , and partition the matrix T as

T =


T1

T2

...
TN

 ,

where Ti for i = 1, . . . , N , are m × m matrices. Then, in [1] it is shown that the
matrix Gmin is given by

Gmin = (T1 + T2)(T1 − T2)−1. (8.47)

Therefore, the computation of Gmin is reduced to computing the closed left
invariant subspace of F .
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From the computational point of view, the computation of the closed invari-
ant subspace of F is not trivial, since F has an eigenvalue equal to 0, and the
sign of zero is not defined. This difficulty is overcome in [1] by observing that
the closed left invariant subspace of F coincides with the left invariant subspace
of the matrix

F̂ = F − yxT

xTy
,

where

xT =
[
xT

0 Ĥ1 xT
0 Ĥ2 · · · xT

0 ĤN−1 xT
0

]
, y =


y0

0
...
0

 ,

and x0, y0 are two vectors such that xT
0 Ĥ0 = 0, Ĥ0y0 = 0. Now, a basis of the

left invariant subspace of F̂ , forming the columns of the matrix T , is given by m
linearly independent columns of I − S, where S is the matrix sign of F̂ .

In order to compute the matrix sign S we may use the Newton iteration
(matrix sign function iteration){

S0 = F̂
Sn+1 = 1

2

(
Sn + S−1

n

)
, n ≥ 0,

(8.48)

with the stopping criterion

||Sn+1 − Sn||1 < ε||Sn||1,

for a fixed small error bound ε. The above sequence quadratically converges to
S. Once S is known, the matrix T is computed by means of the rank revealing
QR decomposition of the matrix I − S. The first two block elements T1 and T2

of T allow us to recover Gmin by means of (8.47).
The computational cost of this approach is dominated by the inversion of the

N × N block matrix Sn at each step n of the matrix sign iteration. The matrix
Sn belongs to the algebra generated by the block companion matrix F . This is
a matrix with small displacement rank, and its inversion costs O(m3N log2 N)
ops. Finally we have to compute a QR factorization of an N × N block matrix;
this computation requires O(m3N3) arithmetic operations, and this is the most
expensive part of the overall computation for large N .

By denoting with ξi, i = 1, . . . , m − 1, the eigenvalues of Gmin in the open
unit disk, and by ηi = w(ξi), i = 1, . . . , m− 1, the convergence speed of Sn to S
depends on how fast the values J (n)(ηi) converge to ±1, as n tends to infinity,
where J (n)(t) denotes the composition n times with itself of Joukowski’s function
J(t) = 1

2 (t + t−1). Defining wn+1 = J(wn), one has that wn+1 ± 1 = (wn±1)2

2wn
, so

that one may expect slow convergence if w0 = w(ξi) is very close to zero or if w0

is very large in modulus or if w0 is very close to the imaginary axis. These three
conditions correspond to eigenvalues of Gmin being close to 1, to −1, or to the
unit circle.
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8.7 Bibliographic notes

The shifting technique at the basis of convergence acceleration was introduced
in [59] for QBD processes. It has been generalized to M/G/1-type Markov chains
in [15] and used to prove the quadratic convergence of logarithmic reduction for
null recurrent QBDs in [57]. The results concerning the convergence of shifted
cyclic reduction for M/G/1-type Markov chains and the applicability of shifted
cyclic reduction for QBD processes were introduced in [26].

The combination of functional iterations and cyclic reduction has been pro-
posed and analyzed in [10].

The divide-and-conquer method has been introduced by W. J. Stewart [106]
in order to devise an efficient doubling method for solving general block Hessen-
berg systems. It has been applied by Latouche and Stewart [80] for computing
Gmin, and improved by Bini and Meini in [20] by exploiting the Toeplitz struc-
ture of the block Hessenberg matrices. The convergence results presented in
Section 8.4 are new. A survey on displacement structure, cyclic reduction and
divide-and-conquer method can be found in [23].

The shifting technique has been combined with the evaluation–interpolation
strategy in [24] where the application to Markov chains with limited displacement
is analyzed in detail.

The invariant subspace method has been applied to the solution of M/G/1-
type Markov chains by N. Akar and K. Sohraby in [1]. Comparisons among the
invariant subspace method, logarithmic reduction, and cyclic reduction, in terms
of accuracy and speed of convergence, are performed in [89] and [16].

Other methods for computing Gmin, which are not considered in this book,
are the so-called “spectral methods”, which consist of computing the eigenvalues
(with their multiplicities) and the right (generalized) eigenvectors of Gmin by
approximating the zeros of det(zI−A(z)) in the unit disk, and the corresponding
null vectors (or Jordan chains), and then in recovering Gmin by means of its
spectral decomposition. A drawback of this approach is that, besides being no
trivial to compute the zeros of det(zI −A(z)) in the unit disk, the matrix of the
Jordan chains of Gmin must be computed together with its inverse. This task
can be numerically ill-conditioned especially when multiple zeros corresponding
to large Jordan blocks are encountered. We refer to [41; 44] and to the references
cited therein for more details on these methods.
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SPECIALIZED STRUCTURES

9.1 Introduction

In this chapter we specialize the numerical methods introduced in the previous
chapters to Markov chains with specific structures.

In Section 9.2 we consider Markov chains with limited displacement (non-
skip-free Markov chains, or simply NSF Markov chains), and we exploit the
structure of the blocks defining the probability transition matrix, to reduce the
computational cost of linearly convergent functional iterations and of the cyclic
reduction method.

In Section 9.3 we consider the reduction of an M/G/1-type Markov chain
to a QBD performed along the same lines as Section 5.7. We perform a de-
tailed analysis of this particular structure and then apply the cyclic reduction
method, combined with the concept of displacement rank, to solve the associated
quadratic matrix equation.

Tree-like stochastic processes, introduced in Section 5.8 are the subject ana-
lyzed in the last section. For these special processes we reduce the computation
of the steady state vector π to the solution of a nonlinear matrix equation which
is expressed in rational form. For this equation we present and analyze different
solution methods based on classical functional iterations, cyclic reduction and
Newton’s iteration.

9.2 Markov chains with limited displacement

For Markov chains with limited displacement where the transition matrix has
the generalized Hessenberg structure (5.29), we are interested in the solution of
the matrix equation

X =
+∞∑

i=−1

AiX i+1 (9.1)

where the coefficients Ai, defined in (5.31), are obtained by the reblocking (5.30)
of the transition matrix.

The peculiarity of the coefficients Ai allows one to design specific algorithms
which have a computational cost per step lower than the cost of the general
methods of Section 6.2. A first important feature concerns the minimal solution
Gmin which has the form

Gmin = C(hT)N ,

263
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where C(hT) is the block companion matrix associated with the block row vector
hT defined on page 71 (see Theorem 5.15).

In fact, Gmin is uniquely defined in terms of its first block row which coincides
with hT so that the computation of hT is sufficient to determine all its elements.

9.2.1 Functional iterations

Since Gmin is defined by its first block row hT, we may modify the functional
iterations of Section 6.2 by looking at the problem in terms of a fixed point of a
vector function instead of a fixed point of a matrix function. This allows one to
generate a sequence of vectors converging to hT, this is computationally simpler
than generating a matrix sequence.

Let us introduce the function

δ(xT) = (eT
1 ⊗ Im)A(C(xT)N ),

for xT ∈ R
m×mN , where A(X ) is the matrix valued function

A(X ) =
+∞∑

i=−1

AiX i+1.

Observe that δ(xT) is the first block row of the matrix A(C(xT)N ). We may
modify the natural iteration

Xn+1 = A(Xn), n ≥ 0, (9.2)

turning it into a more computationally simple one. For this purpose, let Yn be
a matrix of the form C(xT

n )N for a suitable block vector xT
n and consider the

matrix
W = A(Yn).

We wish to approximate W with a matrix of the form C(xT
n+1)

N . For this pur-
pose, we define

xT
n+1 = (eT

1 ⊗ Im)W = δ(xT
n )

and we take Yn+1 = C(xT
n+1)

N as an approximation of W . In this way we
generate the sequence of vectors

xT
n+1 = δ(xT

n ), n ≥ 0, (9.3)

which are a sort of “projection” of the sequence Xn+1 = A(Xn) on the set of the
N -th powers of all block companion matrices.

We have the following result which has been proved in [42]:

Theorem 9.1 For x0 = 0, the sequence {xT
n}n∈N generated by (9.3) converges

monotonically to the block vector hT such that Gmin = C(hT)N . Moreover, let
{Xn}n≥0 be the sequence generated by the natural iteration (9.2) with X0 = 0.
Then

0 ≤ Xn ≤ C(xT
n )N ≤ Gmin, n ≥ 0.
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According to the previous theorem the sequence {C(xT
n )N}n≥0 provides a

better approximation to Gmin with respect to the sequence {Xn}n≥0.
In order to design an efficient algorithm to compute xT

n+1 given xT
n we have

to state some properties concerning block companion matrices. The following
lemma can be verified by direct inspection.

Lemma 9.2 Let rT an N -dimensional block row vector. One has

C(rT)j =



eT
j+1 ⊗ Im

...
eT

N ⊗ Im

rT

...
rTC(rT)j−1


, j = 1, . . . , N − 1

and

C(rT)j =

rTC(rT)j−N

...
rTC(rT)j−1

 , j = N, N + 1, . . .

From Lemma 9.2 we directly obtain the following.

Theorem 9.3 One has

δ(rT) =
N−1∑
i=0

Ai−N (eT
i+1 ⊗ Im) +

+∞∑
i=N

Ai−NrTC(rT)i−N .

Proof By definition δ(rT) = (eT
1 ⊗ Im)A(C(rT)N ). Replacing C(rT)N with

the expression given in Lemma 9.2 yields

δ(rT) = [A−N , A−N+1, . . .]



eT
1 ⊗ Im

...
eT

N ⊗ Im

rT

rTC(rT)
rTC(rT)2

...


.

�

According to the above result, the computation of δ(rT) can be carried out
once the vectors rT

j = rTC(rT)j , j = 0, 1, 2, . . ., are computed. The latter com-
putation can be performed by means of the following relations

rT
j+1 = rT

j C(rT), j = 0, 1, . . . , (9.4)

starting from rT
0 = rT, which requires N multiplications and N − 1 additions of

m × m matrices.
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Algorithm 9.1 Functional iteration for NSF problems
Input: Positive integers k,N and the m × m matrix coefficients Ai, i =
−N, . . . , k, of the matrix polynomial A(z) =

∑k
i=−N zi+NAi, defining a non-

skip-free M/G/1-type Markov chain; a positive ε.

Output: An approximation yT of the first block row of the minimal nonnega-
tive solution Gmin of the equation X = A(X ) such that ‖yT − δ(yT)‖∞ ≤ ε.

Computation: Set n = 0, x = 0.
1. Compute xTC(xT)j , for j = 1, . . . , k, by means of (9.4).
2. Compute

yT = δ(xT) =
N−1∑
i=0

Ai−N (eT
i+1 ⊗ Im) +

k+N∑
i=N

Ai−NxTC(xT)i−N .

3. If ‖yT − xT‖∞ ≤ ε then output y = x. Otherwise set x = y and repeat
from stage 1.

The resulting method for approximating the first block row hT of Gmin is
summarized in Algorithm 9.1.

The overall cost of computing yT given xT is about 4m3Nk arithmetic oper-
ations while the cost of performing one step of the natural iteration (6.6) to the
reblocked equation (9.1) is 2m3N2k. This provides an acceleration by a factor
of N in the computational cost per step.

Even for this algorithm, all the additions are performed with nonnegative
numbers so that no cancellation is encountered in this computation. This ensures
the numerical stability of the algorithm.

9.2.2 Cyclic reduction

In this section we analyze the behavior of cyclic reduction when applied to
M/G/1-type Markov chains which are derived from a limited displacement pro-
cess.

The main issues to be discussed here are the applicability and the convergence
of cyclic reduction and the analysis of the structural properties of the matrix
power series A(n)(z) =

∑+∞
i=−1 zi+1A(n)

i , and Â(n)(z) =
∑+∞

i=0 ziÂ(n)
i , generated

by applying (7.38) to the matrix power series A(z) =
∑+∞

i=−1 zi+1Ai where Ai,
i = −1, . . ., are N × N block matrices with m × m blocks defined in (5.31).

In fact, relying on these properties we will show that the cyclic reduction step
can be performed with a computational cost and with a memory storage which
are much less than the costs and the storage needed by cyclic reduction applied
to an M/G/1-type Markov chain with mN × mN blocks.

In order to prove that cyclic reduction can be carried out, we may rely on
Theorem 7.8. The only hypothesis that we have to assume is that Condition
4.20 is satisfied by the reblocked matrix (5.30). Under this assumption cyclic
reduction applied to (5.30) can be carried out without breakdown.
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In order to analyze the convergence properties of cyclic reduction applied to
the matrix power series A(z), we rely on Theorems 5.17 and 7.13:

Theorem 9.4 Assume that A(z) =
∑+∞

i=−N zi+NAi is analytic for |z| < r, r > 1
and the bi-infinite Markov chain associated with the transition matrix T±∞[A(z)]
satisfies Condition 4.20 and that the drift of A(z) is negative. If there exists a
zero ζ of det(zNI − A(z)) of modulus greater than 1 then there exists a root ξ
of zNI − A(z) of smallest modulus among the roots of modulus greater than 1,
such that ξ is real and simple, 1 < ξ < r. Moreover, for any matrix norm ‖ · ‖
and for any ε > 0 such that ηN + ε < 1 < ξN − ε, where η = max{|z| : |z| <
1,det(zNI − A(z)) = 0}, there exists a positive γ such that:

1. for any n ≥ 0

‖Â(n)
i ‖ ≤ γξN2n

(ξN − ε)−(i+1)2n

, i ≥ 1

‖A(n)
i ‖ ≤ γξN2n

(ξN − ε)−(i+1)2n

, i ≥ 1;

2. there exist A(∞)
0 = limn A(n)

0 , Â(∞)
0 = limn Â(n)

0 , A(∞)
−1 = limn A(n)

−1 , where

A(∞)
−1 = (I − A(∞)

0 )1gT, Â(∞)
0 =

∑+∞
i=0 AiG

i
min, and g ≥ 0 is such that

gTGmin = gT, gT1 = 1; moreover,

‖Â(n)
0 − Â(∞)

0 ‖ ≤ γξN2n

(ξN − ε)−2n+1
;

3. the sequence {ϕ(n)(z)}n, where ϕ(n)(z) = zI −A(n)(z) for n ≥ 0, uniformly

converges to ϕ(∞)(z) = −A(∞)
−1 − z(A(∞)

0 − I) over any compact subset of

the disk {z ∈ C : |z| < ξN}; moreover ρ(Â(∞)
0 ) ≤ ρ(A(∞)

0 ) < 1;

4. for any n ≥ 0

‖A(n)
0 −A(∞)

0 ‖ ≤ γξN2n

(ξN − ε)−2n+1
,

‖A(n)
−1 −A(∞)

−1 ‖ ≤ γ
(
ξN2n

(ξN − ε)−2n+1
+ (ηN + ε)2

n
)

;

5. for any n ≥ 0

‖Gmin − G(n)‖ ≤ γξ−N2n

(ξN − ε)−2n+1

where G(n) = (I − Â(n)
0 )−1A−1.

Proof Since there exists a zero ζ of det(zNI−A(z)) of modulus greater than 1,
then there exists a zero of det(zI −A(z)) of modulus greater than 1 by Theorem
5.17. From Theorem 4.11 there exists the root of zI−A(z) of minimum modulus
σ among the roots of modulus greater than 1, and ρ(A(σ)) = σ. By Theorem
5.17, σ = ξN where ξ is the zero of minimum modulus of det(zNI−A(z)) among
the zeros of modulus greater than 1. Therefore we may apply Theorem 7.13 to
A(z) and the result follows. �
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9.2.3 Displacement structure of cyclic reduction
Now we analyze the structure of the matrix power series A(n)(z) relying on the
structured matrix tools of Chapter 2.

Recall that Ai, i ≥ −1, are N ×N block Toeplitz matrices with m×m blocks
and that the matrix function A(z) is a block z-circulant matrix, as we already
observed in (3.26) (for the concept of z-circulant matrices see also Definition 2.9).
This is the key property which will enable us to reduce the amount of memory
space and the computational cost of performing a single step of cyclic reduction.

In order to show this, let us consider cyclic reduction applied to the matrix
power series A(z) expressed in functional form. We recall that for ϕ(0)(z) =
ϕ(z) = zI −A(z) one has

ϕ(n)(z) = zI −A(n)(z), ψ(n)(z) = (z−1ϕ(n)(z))−1, n = 0, 1, . . . ,

where
ψ(n+1)(z2) =

1
2
(ψ(n)(z) + ψ(n)(−z)), n = 0, 1, . . . , (9.5)

which is valid for any z for which z−1ϕ(n)(z) is invertible (see Section 7.4).
We have the following result.

Theorem 9.5 The matrix Laurent power series ψ(n)(z), n ≥ 0, are block
Toeplitz matrices for any z for which they are defined.

Proof Recall that ϕ(0)(z) is a block z-circulant matrix therefore its inverse
ϕ(0)(z)−1 is still block z-circulant since block z-circulant matrices are closed
under inversion (see Section 2.3.2). Therefore also ψ(0)(z) is block z-circulant,
and in particular is block Toeplitz since block z-circulant matrices are particular
instances of block Toeplitz matrices.

From (9.5) we deduce that ψ(1)(z2) is a sum of two block Toeplitz matrices
and therefore is block Toeplitz for any z for which it is defined. This implies that
ψ(1)(z) is Toeplitz as well. By means of an induction argument we deduce that
ψ(n)(z) is block Toeplitz since it is the sum of two block Toeplitz matrices in
light of (9.5). �

This fact implies that for any n and for any z for which it is defined, the
matrix ϕ(n)(z) = z−1ψ(n)(z)−1, being the inverse of a block Toeplitz matrix, has
block displacement rank at most 2 (see Section 2.4). This property enables us to
represent each matrix ϕ(n)(z) in terms of a few block vectors and to implement
the cyclic reduction algorithm in a fast way, despite the possibly large size of the
blocks Ai, by relying on the algorithms described in Chapter 2. For this purpose
we have to analyze the displacement structure of the matrix power series ϕ(n)(z)
for n ≥ 0.

Now we give a detailed description of the displacement representation of the
matrix power series ϕ(n)(z) and ϕ̂(n)(z) generated by cyclic reduction applied
to a non-skip-free Markov chain. More specifically we show that also ϕ̂(n)(z)
has a constant block displacement rank and we provide explicit formulae relat-
ing the displacement representation of ϕ(n)(z) and ϕ̂(n)(z) to the displacement
representation of ϕ(n+1)(z) and ϕ̂(n+1)(z).
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These properties allow us to devise an algorithm, based on FFT, that per-
forms a single cyclic reduction step in O(dµ(N, m) + (m3 + m2 log(dN))dN)
arithmetic operations, where d is the numerical degree of the matrix power se-
ries A(z), and µ(N,m) is the cost of inverting an N × N block matrix with
m × m blocks having constant block displacement rank. This bound compares
favourably with the estimate O(N3m3d + (Nm)2d log d) that we would obtain
without exploiting the Toeplitz structure of the blocks Ai, that is, by treating
Ai as general mN × mN matrices.

Let Z be the lower shift matrix of (2.13), set Z = Z ⊗ Im, and denote with
∆1(A) = AZ−ZA, ∆2(A) = AZT−ZTA the associated displacement operators.

For the sake of notational simplicity here and throughout the section we use
e1 and eN instead of e1 ⊗ Im and eN ⊗ Im, respectively. We prove the following
result.

Theorem 9.6 For the matrix power series ϕ(n)(z) = zI − A(n)(z) generated
after n steps of cyclic reduction one has

∆1(ϕ(n)(z)) = −z−1ϕ(n)(z)
(
e1e

T
1 ψ(n)(z)Z − Zψ(n)(z)eNeT

N

)
ϕ(n)(z),

∆2(ϕ(n)(z)) = −z−1ϕ(n)(z)
(
eNeT

Nψ(n)(z)ZT −ZTψ(n)(z)e1e
T
1

)
ϕ(n)(z).

where ψ(n)(z) = (z−1ϕ(n)(z))−1.

Proof By Theorem 9.5, ψ(n)(z) = zϕ(n)(z)−1 is a Toeplitz matrix for any value
of z for which z−1ϕ(n)(z) is invertible. Therefore, from (2.18) one has

∆1(ψ(n)(z)) = e1e
T
1 ψ(n)(z)Z − Zψ(n)(z)eNeT

N ,

and similarly ∆2(ψ(n)(z)) = eNeT
Nψ(n)(z)ZT−ZTψ(n)(z)e1e

T
1 . Now, from (2.19)

one has ∆(A−1) = −A−1∆(A)A−1, for ∆ = ∆1, ∆2. Since ϕ(n)(z) = zψ(n)(z)−1,
one finds that

∆(ϕ(n)(z)) = z∆(ψ(n)(z)−1) = −zψ(n)(z)−1∆(ψ(n)(z))ψ(n)(z)−1,

and we may conclude that

∆1(ϕ(n)(z)) = −z−1ϕ(n)(z)
(
e1e

T
1 ψ(n)(z)Z − Zψ(n)(z)eNeT

N

)
ϕ(n)(z),

∆2(ϕ(n)(z)) = −z−1ϕ(n)(z)
(
eNeT

Nψ(n)(z)ZT −ZTψ(n)(z)e1e
T
1

)
ϕ(n)(z).

�

The above result turns into simple expressions relating the displacement of
ϕ(n)(z) with the displacement of ϕ(n+1)(z).
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Corollary 9.7 It holds

∆1(ϕ(n)(z)) = −z−1(ϕ(n)(z)e1u
(n)(z)T − v(n)(z)eT

Nϕ(n)(z)),

∆2(ϕ(n)(z)) = −z−1(ϕ(n)(z)eNu(n)(z)T − v(n)(z)eT
1 ϕ(n)(z)),

(9.6)

where v(n)(z) is a block column vector power series, and u(n)(z)T is a block row
vector power series, such that

u(n+1)(z2)T = −
[
u(n)(z)Tϕ

(n)
odd(z2)−1ϕ(n)(−z)

]
even

v(n+1)(z2) = −
[
ϕ(n)(−z)ϕ(n)

odd(z2)−1v(n)(z)
]
even

(9.7)

for n ≥ 0, where for ∆1 the initial conditions are u(0)(z)T = eT
N , v(0)(z) = e1,

while for ∆2, the initial conditions are u(0)(z)T = z2eT
1 , v(0)(z) = z2eN .

Proof Consider the case of the operator ∆1. The first equation of (9.6) fol-
lows from Theorem 9.6 with u(n)(z)T = eT

1 ψ(n)(z)Zϕ(n)(z) and with v(n)(z) =
ϕ(n)(z)Zψ(n)(z)eN . Therefore, from (7.40) and (7.42)

u(n+1)(z2)T =eT
1 ψ(n+1)(z2)Zϕ(n+1)(z2)

= − 1
2
eT

1 (ψ(n)(z) + ψ(n)(−z))Zϕ(n)(z)ϕ(n)
odd(z2)−1ϕ(n)(−z)

= − 1
2
eT

1

(
ψ(n)(z)Zϕ(n)(z)K(z) + ψ(n)(−z)Zϕ(n)(−z)K(−z)

)
= − eT

1

[
u(n)(z)TK(z)

]
even

with K(z) = (ϕ(n)
odd(z2))−1ϕ(n)(−z), where we used the fact that ϕ(z)K(z) =

ϕ(−z)K(−z). With a similar argument we may prove the equation relating
v(n+1)(z) and v(n)(z). Concerning the initial conditions we observe that
u(0)(z)T = eT

N − (eT
1 ϕ(z)−1e1)eT

Nϕ(z) and v(0)(z) = e1 − ϕ(z)e1(eT
1 ϕ(z)−1e1)

and

∆1(ϕ(0)(z)) = e1e
T
1 ϕ(z)Z − ϕ(z)ZeNeT

N = −z−1(ϕ(z)e1e
T
N − e1e

T
Nϕ(z))

where the latter equality holds since ϕ(z) is a z-circulant matrix. Therefore,
the vectors (eT

1 ϕ(z)−1e1)eT
Nϕ(z) and ϕ(z)e1(eT

1 ϕ(z)−1e1) do not appear in the
expression of ∆1. By using an inductive argument it is possible to prove that

u(n)(z)T = p(n)(z)T − W (n)(z)eT
Nϕ(n)(z),

v(n)(z) = q(n)(z) − ϕ(n)(z)e1W
(n)(z),

where p(0)(z) = eN , q(0)(z) = e1. Moreover p(n)(z) and q(n)(z) are related to
p(n+1)(z) and q(n+1)(z), respectively, by (9.7) where u(n), u(n+1), v(n), v(n+1),
are replaced by p(n), p(n+1), q(n), q(n+1), and ∆1(ϕ(n)(z)) is given by (9.6) with
the same replacement. Therefore we may ignore the contribution of W (n)(z)
and choose u(0)(z) = eN and v(0)(z) = e1 as initial vectors. Similarly we may
proceed for ∆2. �
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The results expressed in the above corollary are fundamental to provide dis-
placement representations of the matrix ϕ(n)(z) in light of Theorem 2.12, where,
following the notation of Section 2.3.4, we denote with L(b) the block lower tri-
angular block Toeplitz matrix whose first block column is the block vector b and
with U(rT) the block upper triangular block Toeplitz matrix whose first block
row is the block row vector rT.

Theorem 9.8 We have

ϕ(n)(z) =L(ϕ(n)(z)e1)U(eT
1 − z−1u(n)(z)TZT)

+ z−1L(v(n)(z))U(eT
Nϕ(n)(z)ZT),

where the matrix power series u(n)(z)T and v(n)(z) are defined in (9.7) with the
initial conditions u(0)(z)T = eT

N , v(0)(z) = e1. Moreover,

ϕ(n)(z) =z−1L(Zϕ(n)(z)eN )U(u(n)(z)T)

+ L(e1 − z−1Zv(n)(z))U(eT
1 ϕ(n)(z)),

(9.8)

where the matrix power series u(n)(z)T and v(n)(z) are defined in (9.7) with the
initial conditions u(0)(z)T = z2eT

1 , v(0)(z) = z2eN .

Proof The first representation is obtained by applying Theorem 2.14 to the first
equation of (9.6). The second representation is obtained by applying Theorem
2.15 to the second equation of (9.6). �

We may provide a similar result concerning the displacement of the function
Â(n)(z) generated by cyclic reduction according to (7.38). In the following we
describe this property by using the general notation ∆ for the displacement
operator and by specifying it as ∆1 or ∆2 according to the needs.

Theorem 9.9 For the function Â(n)(z) generated by cyclic reduction according
to (7.38) we have

∆(Â(n)(z)) =
(
(I − Â(n)(z))∆(ψ(n)(z)) − (∆(A−1)T (n)(z)

− A−1∆(T (n)(z)))
)

ψ(n)(z)−1
(9.9)

where we denote T (n)(z) =
∑+∞

i=−∞ ziHi·2n+1, ψ(z) =
∑+∞

i=−∞ ziHi, ψ(n)(z) =∑+∞
i=−∞ ziHi·2n . Moreover, if ∆ = ∆1 then Â(n)(z) has displacement rank at

most 4 and if ∆ = ∆2 then Â(n)(z) has displacement rank at most 3.

Proof Set V (n)(z) = Â(n)(z)ψ(n)(z) and apply the displacement operator ∆ to
both sides of the latter equation. From the property (2.21) valid for both ∆ = ∆1

and ∆ = ∆2 one obtains ∆(V (n)) = ∆(Â(n)(z))ψ(n)(z) + Â(n)(z)∆(ψ(n)(z))
whence

∆(Â(n)(z)) =
(
∆(V (n)(z)) − Â(n)(z)∆(ψ(n)(z))

)
ψ(n)(z)−1. (9.10)
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Moreover, from (7.45) one has V (n+1)(z2) = [V (n)(z)]even that is,

V (n)(z) =
+∞∑

i=−∞
ziVi·2n (9.11)

where V (0)(z) =
∑+∞

i=−∞ ziVi. Now, recall that Â(0)(z) = z−1(A(z) −A−1) and
ψ(z) = z(zI −A(z))−1, so that

V (0)(z) =(A(z) −A−1)(zI −A(z))−1

=(A(z) − zI + zI −A−1)(zI −A(z))−1

= − I + (I − z−1A−1)ψ(z).

From (9.11) one has

V (n)(z) = −I + ψ(n)(z) −A−1T
(n)(z),

T (n)(z) =
+∞∑

i=−∞
ziHi·2n+1.

Whence

∆(V (n)(z)) =
(
∆(ψ(n)(z)) − ∆(A−1)T (n)(z) −A−1∆(T (n)(z))

)
. (9.12)

Therefore, from (9.10) and (9.12) we immediately deduce (9.9). The properties of
the displacement rank with ∆ = ∆1 and ∆ = ∆2 follow from (9.9) since ψ(n)(z),
T (n)(z) and A−1 are Toeplitz and since ∆2(A−1) = 0. �

A more detailed representation of ∆(Â(n)(z)), which is particularly useful
from the algorithmic point of view, is reported in the following theorem where,
in particular, it is shown that the displacement rank of Â(n)(z) is at most 3 for
both the operators ∆1 and ∆2.

Theorem 9.10 For the matrix power series Â(n)(z) we have

∆1(Â(n)(z)) =Zv̂(n)(z)eT
1 ϕ(n)(z)Z − ZÂ(n)(z)eN (eT

N − z−1u(n)(z)TZ)

+ e1e
T
1 Â(n)(z)Z,

and

∆2(Â(n)(z)) = −v̂(n)(z)eT
1 ϕ(n)(z) + z−1(I − Â(n)(z))eNu(n)(z)T −A−1eNeT

1

(9.13)
where

v̂(n+1)(z) = v̂
(n)
odd(z) + z−1Â(n)

odd(z)ϕ(n)
odd(z)−1v(n)

even(z), (9.14)

with v̂(0)(z) = eN , and u(n)(z)T and v(n)(z) are defined in (9.7) with the initial
conditions u(0)(z)T = z2eT

1 and v(0)(z) = z2eN .
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Proof The equation for ∆2 is proved by induction in n. For n = 0 it can be
proved by a direct inspection. For the inductive step, relying on the first equation
of (7.44) and on Theorem 2.15, we obtain that

∆2(Â(n+1)(z2)) =∆2(Â(n)(z)) − ∆2(Â(n)
odd(z2))ϕ(n)

odd(z2)−1ϕ(n)(z)

+ Â(n)
odd(z2)ϕ(n)

odd(z2)−1∆2(ϕ
(n)
odd(z2))ϕ(n)

odd(z2)−1ϕ(n)(z)

− Â(n)
odd(z2)ϕ(n)

odd(z2)−1∆2(ϕ(n)(z)).

The inductive step is proved by substituting

∆2(Â(n)
odd(z2)) =

1
2z

(
∆2(Â(n)(z)) − ∆2(Â(n)(−z))

)
∆2(ϕ

(n)
odd(z2)) =

1
2z

(
∆2(ϕ(n)(z)) − ∆2(ϕ(n)(−z))

)
in the above formula and by replacing ∆2(ϕ(n)(z)) with the second equation in
(9.6) and ∆2(Â(n)(z)) with the equation (9.13). The equation for ∆1 is obtained
by formally substituting the equation for ∆2 in the expression

∆1(A) = −Z∆2(A)Z − ZAeNeT
N + e1e

T
1 AZ,

which holds by Theorem 2.16. �

From the above result we deduce the following displacement representations
for the matrix power series Â(n)(z) in light of Theorems 2.14 and 2.15.

Theorem 9.11 We have

Â(n)(z) =L(Â(n)(z)e1) + L(Zv̂(n)(z))U(eT
1 ϕ(n)(z)ZZT)

+ z−1L(ZÂ(n)(z)eN )U(u(n)(z)TZZT) + U(eT
1 Â(n)(z)ZZT).

Moreover,

Â(n)(z) =U(eT
1 Â(n)(z)) + L(Zv̂(n)(z))U(eT

1 ϕ(n)(z))

+ z−1L(ZÂ(n)(z)eN )U(u(n)(z)T) + L(ZA−1eN )
(9.15)

where v̂(n)(z) is defined in (9.14) with v̂(0)(z) = eN , and u(n)(z)T is defined in
(9.7) with u(0)(z)T = z2eT

1 , and ZZT = I − e1e
T
1 .

Proof The proof simply follows from Theorems 2.14 and 2.15 and from Theo-
rem 9.10. �

From the above results it follows that, using the displacement representations
(9.8), (9.15), given by the displacement operator ∆2, at each step n of cyclic
reduction only the seven block vector power series

u(n)(z)T, v(n)(z), v̂(n)(z),

r(n)(z)T = eT
1 ϕ(n)(z), c(n)(z) = ϕ(n)(z)eN ,

r̂(n)(z)T = eT
1 Â(n)(z), ĉ(n)(z) = Â(n)(z)eN ,

(9.16)
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need to be computed in order to represent the matrix power series ϕ(n)(z) and
Â(n)(z).

To sum up, the functions ϕ(n)(z) and Â(n)(z) are defined by the equations

ϕ(n)(z) =z−1L(Zc(n)(z))U(u(n)(z)T) + L(e1 − z−1Zv(n)(z))U(r(n)(z)T),

Â(n)(z) =U(r̂(n)(z)T) + L(Zv̂(n)(z))U(r(n)(z)T)

+ z−1L(Z ĉ(n)(z))U(u(n)(z)T) + L(w),
w =ZA−1eN .

(9.17)

The vectors defining ϕ(n)(z) and Â(n)(z) are related by the following equa-
tions

u(n+1)(z2)T = −
[
u(n)(z)Tϕ

(n)
odd(z2)−1ϕ(n)(−z)

]
even

v(n+1)(z2) = −
[
ϕ(n)(−z)ϕ(n)

odd(z2)−1v(n)(z)
]
even

v̂(n+1)(z) = v̂
(n)
odd(z) + z−1Â(n)

odd(z)ϕ(n)
odd(z)−1v(n)

even(z),

r(n+1)(z)T = zr
(n)
odd(z)T − r(n)

even(z)Tϕ
(n)
odd(z)−1ϕ(n)

even(z)

c(n+1)(z) = zc
(n)
odd(z) − ϕ(n)

even(z)ϕ(n)
odd(z)−1c(n)

even(z)

r̂(n+1)(z)T = r̂(n)
even(z)T − r̂

(n)
odd(z)Tϕ

(n)
odd(z)−1ϕ(n)

even(z)

ĉ(n+1)(z) = ĉ(n)
even(z) − Â(n)

odd(z)ϕ(n)
odd(z)−1c(n)

even(z)

(9.18)

with the initial conditions

u(0)(z)T = z2eT
1 , v(0)(z) = z2eN , v̂(0)(z) = eN ,

r(0)(z)T = eT
1 ϕ(0)(z), c(0)(z) = ϕ(0)(z)eN ,

r̂(0)(z)T = eT
1 Â(0)(z), ĉ(0)(z) = Â(0)(z)eN .

(9.19)

The above relations can be implemented in order to update the vectors defin-
ing the matrix power series ϕ(n)(z) and Â(n)(z). One difficulty that we may en-
counter in this computation is the fact that the coefficients of the vectors involved
are matrix power series. We may overcome this difficulty if we know an upper
bound d on the numerical degrees of the block vector power series at the step n+1,
since in this case it is sufficient to apply the point-wise technique of evaluation in-
terpolation at the set Fd = {ωi

d, i = 0, . . . , d−1}, ωd = cos(2π/d)+i sin(2π/d),
of the d roots of 1. That is, we evaluate all the vector power series at step n for
z ∈ Fd, we apply equations (9.18) for each value of z ∈ Fd and obtain the values
of the new vectors at step n+1 at the same points z ∈ Fd. Then it is sufficient to
interpolate to these values in order to get an approximation of the coefficients of
the vectors. We refer the reader to Section 3.1 for more details of this technique,
in particular concerning the error introduced with this approximation.



MARKOV CHAINS WITH LIMITED DISPLACEMENT 275

In this way we turned the functional relations (9.18) into d independent
matrix relations obtained by replacing z with the interpolation points ωi

d, i =
0, . . . , d − 1, for which it is possible to apply the Toeplitz matrix machinery
described in Chapter 2.

The main operations involved in the matrix computation obtained for each
value of z ∈ Fd, are
(a1) Computing, for z ∈ Fd, the displacement representation of the matrix

ϕ
(n)
odd(z)−1 from the displacement representation of the matrix ϕ

(n)
odd(z) by

means of the relation ∆(ϕ(n)
odd(z)−1) = −ϕ

(n)
odd(z)−1∆(ϕ(n)

odd(z))ϕ(n)
odd(z)−1,

where ∆(ϕ(n)
odd(z)) is expressed as the sum of four terms of the kind p(z)q(z)T,

for pairs of block column and block row vector power series p(z) and q(z).
This computation requires solving eight block systems with the matrix
ϕ

(n)
odd(z). The Toeplitz like systems can be solved either by means of general

methods like pivoted Gaussian elimination or relying on fast techniques like
the conjugate gradient method which are based on FFT (see Section 2.3.3).

(a2) Once the displacement representation of ϕ
(n)
odd(z)−1 has been computed,

the implementation of (9.18) is reduced to computing a finite number of
products of block triangular Toeplitz matrices and block vectors. For this
computation we rely on Algorithms 2.3, 2.4.

We synthesize this computation in Algorithm 9.2 where, for simplicity, we
assume that an upper bound d to the numerical degrees of the block vector
power series at step n + 1 is available in input.

Concerning the computational cost of this algorithm we observe that except
for the computation of the displacement representation of the matrix ϕ

(n)
odd(z) at

a single value z ∈ Fd, whose cost is denoted with µ(N, m), the remaining part
of the algorithm is reduced to computing a finite number of products of N × N
block triangular block Toeplitz matrices and block vectors having m×m blocks.
According to the estimates of Section 2.3.3, this cost is O(m3N + m2N log N).
Therefore the overall cost of the algorithm has the order of

dµ(N, m) + d(m3N + m2N log N)

arithmetic operations.
From the convergence properties in the positive recurrent case, and from

(9.17) we deduce that the vectors r(n)(z)T and c(n)(z) converge to matrix poly-
nomials of degree at most one, while r̂(n)(z)T and ĉ(n)(z) converge to constant
matrices.

These convergence properties imply also that the numerical degree of the
matrix vector power series encountered at each step becomes 1 after some steps
of cyclic reduction. Therefore the number d of interpolation points needed in
the evaluation–interpolation technique, is bounded from above by a constant
independent of the number of steps.

Since limn(I − Â(n)
0 )−1A−1 = Gmin, the first block row of Gmin is given by

hT = eT
1 (I − Â(∞)

0 )−1A−1 where Â(∞)
0 = limn Â(n)

0 . Therefore, once the dis-
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Algorithm 9.2 One step of cyclic reduction for NSF problems
Input: The block vector w = ZA−1eN , the matrix coefficients of the block
vector power series u(n)(z)T, v(n)(z), v̂(n)(z), r(n)(z)T, c(n)(z), r̂(n)(z)T, ĉ(n)(z),
which define the matrix power series ϕ(n)(z) and Â(n)(z) according to (9.17) and
(9.15), respectively at the step n; an upper bound d on the numerical degree of
the block vector power series at the step n + 1, where d is an integer power of 2.

Output: An approximation to the first d block coefficients of the block vector
power series u(n+1)(z)T, v(n+1)(z), v̂(n+1)(z), r(n+1)(z)T, c(n+1)(z), r̂(n+1)(z)T,
ĉ(n+1)(z), which define the matrix power series ϕ(n+1)(z) and Â(n+1)(z).

Computation:

1. Evaluate the functions v̂
(n)
odd(z) and ĉ(n)

even(z) for z ∈ Fd, evaluate the func-
tions u(n)(z)T, v(n)(z), r(n)(z)T, c(n)(z) and r̂(n)(z)T for z ∈ F2d, so that
the values of the odd and of the even parts of such functions at z ∈ Fd are
available.

2. For each value of z = ωi
d, i = 0, . . . , d − 1, compute a displacement repre-

sentation of ϕ
(n)
odd(z)−1 by following the lines described in part (a1) above.

3. For each value of z ∈ Fd, by using the displacement representation of
ϕ

(n)
odd(z)−1, ϕ(n)(z), Â(n)

odd(z), Â(n)
even(z) compute the values at z ∈ Fd, of

the vectors at step n + 1 by applying equations (9.18).
4. Interpolate to the values obtained in this way and recover an approximation

of the first d block coefficients of the series u(n+1)(z)T, v(n+1)(z), v̂(n+1)(z),
r(n+1)(z)T, c(n+1)(z), r̂(n+1)(z)T, ĉ(n+1)(z).

placement representation of Â(∞)
0 has been approximated by means of cyclic

reduction, it is sufficient to solve a Toeplitz like system in order to approximate
the first block row of Gmin.

In the case m = 1, where the blocks Ai reduce to scalar elements, the formu-
lae displayed in Theorem 9.11 can be substantially simplified. In fact, by using
induction on n and relying on (9.5) we may prove the following.

Theorem 9.12 If m = 1, then the matrix polynomial A(n)(z) satisfies the fol-
lowing relation

A(n)(z)T = JA(n)(z)J,

where J denotes the N×N permutation (reversion) matrix having unit elements
along the anti-diagonal.

Whence, the vectors u(n)(z), v(n)(z), r(n)(z), c(n)(z) are related, as stated
by the following.

Theorem 9.13 If m = 1, then the vectors u(n)(z), v(n)(z), r(n)(z), c(n)(z) are
such that v(n)(z) = Ju(n)(z), c(n)(z) = Jr(n)(z), thus

∆2(ϕ(n)(z)) = −z−1(Jr(n)(z)u(n)(z)T − Ju(n)(z)r(n)(z)T)
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9.2.4 The banded case

In the case where Ai = 0 for |i| > N , the matrix (5.29) is block banded and
the reblocked matrix (5.30) is block tridiagonal, therefore the power series ϕ(z)
turns into a quadratic polynomial ϕ(z) = −A−1 + z(I − A0) − z2A1. In this
case the results concerning the structural properties of the blocks generated by
cyclic reduction are further simplified, in fact, we can give explicit expressions
of the blocks A(n)

i , i = −1, 0, 1, Â(n)
0 . Moreover, since A(n)(z) = zI − ϕ(n)(z) is

a matrix polynomial of degree 2 having displacement rank at most 2, then we
may prove that its coefficients have bounded displacement rank. We need the
following.

Lemma 9.14 The matrix power series u(n)(z), v(n)(z), and v̂(n)(z), have the
form

u(n)(z)T = z(u(n)
0 )T + z2(u(n)

1 )T,

v(n)(z) = zv
(n)
0 + z2v

(n)
1 ,

v̂(n)(z) = v
(n)
1 ,

where u
(0)
0 = v

(0)
0 = 0, u

(0)
1 = e1, v

(0)
1 = eN and

(u(n+1)
0 )T =(u(n)

0 )T + (u(n)
1 )T(I −A(n)

0 )−1A(n)
−1

(u(n+1)
1 )T =(u(n)

1 )T(I −A(n)
0 )−1A(n)

1

v
(n+1)
0 =v

(n)
0 + A(n)

−1 (I −A(n)
0 )−1v

(n)
1

v
(n+1)
1 =A(n)

1 (I −A(n)
0 )−1v

(n)
1 , n ≥ 0.

Moreover, one has c(n)(z) = c
(n)
0 + zc

(n)
1 + z2c

(n)
2 and r(n)(z)T = (r(n)

0 )T +
z(r(n)

1 )T + z2(r(n)
2 )T, where

c
(n+1)
0 = A(n)

−1 (I −A(n)
0 )−1c

(n)
0

c
(n+1)
1 = c

(n)
1 + A(n)

−1 (I −A(n)
0 )−1c

(n)
2 + A(n)

1 (I −A(n)
0 )−1c

(n)
0

c
(n+1)
2 = A(n)

1 (I −A(n)
0 )−1c

(n)
2

(r(n+1)
0 )T = (r(n)

0 )T(I −A(n)
0 )−1A(n)

−1

(r(n+1)
1 )T = (r(n)

1 )T + (r(n)
0 )T(I −A(n)

0 )−1A(n)
1 + (r(n)

2 )T(I −A(n)
0 )−1A(n)

−1

(r(n+1)
2 )T = (r(n)

2 )T(I −A(n)
0 )−1A(n)

1 , n ≥ 0,

and c
(0)
0 = −A−1eN , c

(0)
1 = (I − A0)eN , c

(0)
2 = −eNAN , (r(0)

0 )T = −eT
1 A−1,

(r(0)
1 )T = eT

1 (I −A0), (r(0)
2 )T = −ANeT

1 .

Proof We proceed by induction. For n = 0 the properties are trivial. We prove
the inductive step only for u(n)(z), the other relations can be proved similarly.
From the first equation of (9.18) we have
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u(n+1)(z2)T = −
[
(z(u(n)

0 )T + z2(u(n)
1 )T)(I −A(n)

0 )−1

(−A(n)
−1 − z(I −A(n)

0 ) − z2A(n)
1 )
]
even

= z2((u(n)
0 )T + (u(n)

1 )T(I −A(n)
0 )−1A(n)

−1 )

+ z4(u(n)
1 )T(I −A(n)

0 )−1A(n)
1 .

�

A nice consequence of the above lemma is that

c
(n)
2 = −v

(n)
1 AN

(r(n)
2 )T = −AN (u(n)

1 )T
(9.20)

for any n ≥ 0. Therefore, the vectors c
(n)
2 and r

(n)
2 can be expressed in terms of

v
(n)
1 and u

(n)
1 , respectively. By comparing the terms of the same degree in (9.6)

and (9.13) and by using (9.20), we immediately obtain the following.

Theorem 9.15 If Ai = 0 for i > 1, then for the matrices A(n)
i , i = −1, 0, 1,

and Â(n)
0 , n ≥ 0, generated by cyclic reduction (7.17) we have, for ∆ = ∆2,

∆(A(n)
−1 ) = c

(n)
0 (u(n)

0 )T − v
(n)
0 (r(n)

0 )T

∆(A(n)
0 ) = c

(n)
0 (u(n)

1 )T + c
(n)
1 (u(n)

0 )T − v
(n)
0 (r(n)

1 )T − v
(n)
1 (r(n)

0 )T

∆(A(n)
1 ) = (c(n)

1 + v
(n)
0 AN )(u(n)

1 )T − v
(n)
1 ((r(n)

1 )T + AN (u(n)
0 )T)

∆(Â(n)
0 ) = −v

(n)
1 (r(n)

0 )T + (eN − ĉ
(n)
0 )(u(n)

0 )T −A−1eNeT
1 ,

where ĉ
(n)
0 = Â(n)

0 eN , n ≥ 0.

From the above theorem and by the results of Section 2.4 we obtain the
following representation of the matrices generated by cyclic reduction.

Theorem 9.16 At each step n of cyclic reduction, the matrices A(n)
−1 , A(n)

0 ,

A(n)
1 , K(n) = (I −A(n)

0 )−1, Â(n)
0 can be rewritten as

A(n)
−1 =(L(Zv

(n)
0 ) − I)U((r(n)

0 )T) − L(Zc
(n)
0 )U((u(n)

0 )T),

A(n)
0 =(L(Zv

(n)
0 ) − I)U((r(n)

1 )T) − L(Zc
(n)
1 )U((u(n)

0 )T)

− L(Zc
(n)
0 )U((u(n)

1 )T) + L(Zv
(n)
1 )U((r(n)

0 )T),

A(n)
1 = − U((r(n)

1 )T) + L(Zv
(n)
1 )U((r(n)

1 )T + AN (u(n)
0 )T),

K(n) =U(eT
1 K(n)) − L(ZK(n)v

(n)
0 ))U((r(n)

1 )TK(n))

+ L(ZK(n)c
(n)
1 )U((u(n)

0 )TK(n)) + L(ZK(n)c
(n)
0 )U((u(n)

1 )TK(n))

− L(ZK(n)v
(n)
1 )U((r(n)

0 )TK(n)),

Â(n)
0 = U((r̂(n)

0 )T) + L(Zv
(n)
1 )U((r(n)

0 )T) + L(Z ĉ
(n)
0 )U((u(n)

0 )T) + L(w)

where w = ZA−1eN and (r̂(n)
0 )T = eT

1 Â
(n)
0 .
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Below we synthesize the relations between the vectors defining the matrices
at two subsequent steps of cyclic reduction:

(u(n+1)
0 )T = (u(n)

0 )T + (u(n)
1 )T(I −A(n)

0 )−1A(n)
−1

(u(n+1)
1 )T = (u(n)

1 )T(I −A(n)
0 )−1A(n)

1

v
(n+1)
0 = v

(n)
0 + A(n)

−1 (I −A(n)
0 )−1v

(n)
1

v
(n+1)
1 = A(n)

1 (I −A(n)
0 )−1v

(n)
1

c
(n+1)
0 = A(n)

−1 (I −A(n)
0 )−1c

(n)
0

c
(n+1)
1 = c

(n)
1 −A(n)

−1 (I −A(n)
0 )−1v

(n)
1 AN + A(n)

1 (I −A(n)
0 )−1c

(n)
0

(r(n+1)
0 )T = (r(n)

0 )T(I −A(n)
0 )−1A(n)

−1

(r(n+1)
1 )T = (r(n)

1 )T + (r(n)
0 )T(I −A(n)

0 )−1A(n)
1 − AN (u(n)

1 )T(I −A(n)
0 )−1A(n)

−1

(r̂(n+1)
0 )T = (r̂(n)

0 )T + AN (u(n)
1 )T(I −A(n)

0 )−1A(n)
−1

ĉ
(n+1)
0 = ĉ

(n)
0 −A(n)

1 (I −A(n)
0 )−1c

(n)
0

(9.21)
for n ≥ 0, where u

(0)
0 = v

(0)
0 = 0, u

(0)
1 = eN , v

(0)
1 = e1, c

(0)
0 = −A−1eN ,

c
(0)
1 = (I −A0)eN , (r(0)

0 )T = −eT
1 A−1, (r(0)

1 )T = eT
1 (I −A0), (r̂(0)

0 )T = eT
1 A0,

ĉ
(0)
0 = A0eN .

Algorithm 9.3 One step of cyclic reduction for NSF problems: banded case

Input: The block vectors ĉ
(n)
0 , r̂

(n)
0 , u

(n)
i , v

(n)
i , c

(n)
i , r

(n)
i , for i = 0, 1, which

define the matrices A(n)
i , i = −1, 0, 1 and Â(n)

0 according to Theorem 9.16.

Output: The block vectors ĉ
(n+1)
0 , r̂

(n+1)
0 , u

(n+1)
i , v

(n+1)
i , c

(n+1)
i , r

(n+1)
i , for

i = 0, 1, which define the matrices A(n+1)
i , i = −1, 0, 1 and Â(n+1)

0 .

Computation:

1. Compute the diplacement representation of (I −A(n)
0 )−1, given in Theorem

9.16. This computation requires solving six block systems with the matrix
I−A(n)

0 . These Toeplitz like systems can be solved either by means of general
methods like pivoted Gaussian elimination or relying on fast techniques like
the conjugate gradient method which are based on FFT (compare with
Section 2.3.3).

2. By using the displacement representation of A(n)
−1 , (I − A(n)

0 )−1 and A(n)
1 ,

compute the block vectors (u(n+1)
i )T, v

(n+1)
i , c

(n+1)
i , (r(n+1)

i )T, i = 0, 1, and
ĉ
(n+1)
0 , (r̂(n+1)

0 )T, by means of relations (9.21). This latter computation con-
sists in computing a finite number of products of block triangular Toeplitz
matrices and block vectors, which can be performed by using Algorithm 2.3.

The computational cost per step of Algorithm 9.3 is reduced to O(µ(N, m)+
m2N log N + m3N) operations.

According to the convergence theorems of Section 7.3, if the drift µ is nonzero,
then Gmin = limn(I − Â(n)

0 )−1A−1, therefore the first block row of Gmin can be
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approximated by solving the Toeplitz like linear system xT(I − Â(n)
0 ) = eT

1 , for
a sufficiently large n, and by computing the product xTA−1.

The cyclic reduction algorithm particularly shows its effectiveness, with re-
spect to the linearly convergent method of Section 9.2.1, when the block dimen-
sion N is large; in fact, the computational cost of one step of the latter method
is O(m3N), and many iterations may need to be computed in order to reach a
good approximation of Gmin.

9.2.5 Acceleration techniques
The shift technique, introduced in Section 3.6 and exploited in Section 8.2 for
M/G/1-type Markov chains, can be successfully applied to non-skip-free prob-
lems. Indeed, in this case we consider the modified matrix Laurent power series
I − S̃(z) = (I − S(z))(I − z−1Q)−1, where Q = 1uT, uT ≥ 0, uT1 = 1, and
S̃(z) =

∑+∞
i=−N ziÃi, S(z) =

∑+∞
i=−N ziAi.

Therefore, instead of applying the reblocking technique of Section 5.5 to the
function I−S(z) in order compute its weak canonical factorization, we may apply
the same technique to the new function I− S̃(z) in order to compute a canonical
factorization. Indeed, for the function I − S̃(z) obtained by the reblocking of
I − S̃(z) the convergence of iterative methods like cyclic reduction is faster than
for the function I − S(z), obtained by reblocking I − S(z) in light of Theorem
8.3.

Alternatively, we may apply either the functional iteration methods of Section
6.2 to the function I − S̃(z) or the functional iteration of Section 9.2.1 to the
function I − S̃(z). However, the convergence analysis of these methods applied
to the shifted problem has not yet been performed.

9.3 Solving M/G/1-type Markov chains through a QBD
Consider the M/G/1-type Markov chain (4.3) and consider the QBD process
obtained by embedding the M/G/1-type Markov chain, as in Section 5.7.

By Theorem 5.21 the computation of the minimal nonnegative solution Gmin

of X =
∑+∞

i=−1 AiX
i+1 can be reduced to the computation of the minimal non-

negative solution Gmin of the matrix equation

X = A−1 + A0X + A1X
2, (9.22)

where the matrices Ai, i = −1, 0, 1, are defined in (5.49), (5.50) and (5.51),
respectively. In fact, the matrix Gmin has the structure

Gmin =


Gmin 0 0 . . .
G2

min 0 0 . . .
G3

min 0 0 . . .
...

...
...

 .

Therefore, algorithms designed for the QBD case can be applied in order to
solve general M/G/1-type Markov chains. In particular we may consider quadrat-
ically convergent methods like the logarithmic reduction or the cyclic reduction
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algorithm. The main issue in the application of these methods is the exploitation
of the structures of the blocks Ai, i = −1, 0, 1, and of the solution Gmin that must
be taken into account if we want to arrive at an efficient design of the solution
algorithm.

Let us denote by A′
i, i = −1, 0, 1, and G′

min the block N×N matrices obtained
by truncating Ai, i = −1, 0, 1, and Gmin at the block size N , respectively. Then
it is easy to verify that, if Ai = 0, for i > N − 1 then G′

min = A′
−1 + A′

0G′
min +

A′
1(G′

min)2. Since
∑+∞

i=−1 Ai is stochastic, the matrices Ai are negligible for i large
enough. In practice, if the elements of Ai are such that 1 −∑N−1

i=−1 Ai1 < ε1,
where ε is the machine precision of the floating point arithmetic used in the
computation, then we may assume that Ai = 0 for i > N − 1. In this way
without loss of generality, for practical applications, we may assume that the
blocks Ai, i = −1, 0, 1, of (5.49), (5.50) and (5.51), have finite block size N .
Here and hereafter we make this assumption.

Let A(n)
i , i = −1, 0, 1, Â(n)

0 , n ≥ 0, be the blocks generated by cyclic reduction
(7.17), with A(0)

i = Ai, i = −1, 0, 1, Â(0)
0 = A0.

For notational simplicity we denote by e1 the block vector e1⊗Im, and recall
that Z denotes the N × N block lower shift matrix Z = Z ⊗ Im.

Concerning the structure properties of the matrices generated by cyclic re-
duction we have the following first result, which does not involve any diplacement
operator.

Theorem 9.17 The matrices A(n)
i , i = −1, 0, 1, and Â(n)

0 , satisfy the following
relations:

Â(n)
0 = e1(v(0))T + Zu(n)eT

1 ,

A(n)
0 = e1(v(n))T + Zu(n)eT

1 ,

A(n+1)
1 = A(n)

1 (I + û(n)S(n)(v(n))T)A(n)
1 ,

A(n)
−1 = e1A

(n)
−1eT

1 ,

(I −A(n)
0 )−1 = I +

[
e1 Zu(n)

] [S(n) T (n)

S(n) I + T (n)

] [
(v(n))T

eT
1

]
, n ≥ 0,

(9.23)

where A
(n)
−1 is an m × m matrix, u(n), û(n), v(n) are block vectors such that

u(n) = ZTû(n) and

A(0)
1 = Z, A

(0)
−1 = A−1, û(0) = e1, (v(0))T = [A0, . . . , AN−1] ,

A
(n+1)
−1 = A

(n)
−1 (S(n)V

(n)
1 + T (n) + I)A(n)

−1 ,

û(n+1) = û(n) + A(n)
1 û(n)(S(n)V

(n)
1 + T (n) + I)A(n)

−1 ,

(v(n+1))T = (v(n))T + A
(n)
−1S(n)(v(n))TA(n)

1 , n ≥ 0,

(9.24)

with

S(n) = (I − (v(n))Tû(n))−1, T (n) = S(n)(v(n))TZu(n), (9.25)

and V
(n)
1 is the first block component of the block row vector (v(n))T.
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Proof Proceed by induction on n. For n = 0 the theorem trivially holds. In
the general case, by applying (7.17) we immediately obtain the representation of
A(n)

i , i = −1, 0, 1. The representation of (I −A(n)
0 )−1 follows from the Sherman–

Morrison–Woodbury formula (formula (A.2) in the appendix) applied to I−A(n)
0 .

�

From the above theorem it follows that the blocks Â(n)
0 , A(n)

i , i = −1, 0
still retain the sparsity properties of Â(0)

0 , A(0)
i , i = −1, 0, respectively. More

precisely, the matrices Â(n)
0 and A(n)

0 have null block elements except for the
blocks in the first block column and in the first block row; and the matrices A(n)

−1

have null block elements except for the one in position (1,1). At first glance, the
matrices A(n)

1 have neither sparsity nor structural properties; indeed, it is easy
to verify that if n < log2 N , then A(n)

1 has the following structure

A(n)
1 =



0 0 . . . 0
∗ ∗ . . . ∗
...

...
...

∗ ∗ . . . ∗
I 0

. . .
0 I


where ∗ denotes a possibly nonzero block element and where the number of
nonzero block rows above the identity matrices is 2n−1; if n ≥ log2 N , then A(n)

1

seems to be a general N×N block matrix without any structural properties. The
lack of structure of A(n)

1 would lead to an inefficient implementation of the cyclic
reduction algorithm; in fact each step of cyclic reduction would cost O(N3m3)
ops.

Fortunately, it is possible to prove that the matrix A(n)
1 has a displace-

ment structure that allows one to implement one step of cyclic reduction with
O(m2N log N + m3N) ops. This property is not trivial and its proof relies on
the tools introduced in Section 2.4.

Consider the matrix polynomial ϕR(z) = −A1 + z(I −A0)− z2A−1 obtained
by reverting the order of the coefficients of ϕ(z). Observe that cyclic reduction
applied to ϕR(z) generates the polynomials ϕ

(n)
R (z) which are obtained by revert-

ing the order of the coefficients of the polynomials ϕ(n)(z) generated by cyclic
reduction applied to ϕ(n)(z). Observe that

ϕR(z) =


zI − zA0 − z2A−1 −zA1 −zA2 . . . −zAN−1

−I zI 0
−I zI

. . . . . .
0 −I zI

 . (9.26)
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The matrix functions ϕ
(n)
R (z) = −A(n)

1 + z(I −A(n)
0 )− z2A(n)

−1 have displace-
ment rank at most 3, as shown by the following.

Theorem 9.18 For the operator ∆(A) = ZA − AZ, the matrix polynomials

ϕ
(n)
R (z) generated by applying cyclic reduction to ϕ

(0)
R (z) = ϕR(z) are such that

∆(ϕ(n)
R (z)) =(s(n)

1 + eN + zs
(n)
2 )eT

1 ϕ
(n)
R (z) + (s(n)

1 + zs
(n)
2 )γTϕ

(n)
R (z)

+ ϕ
(n)
R (z)e1((r

(n)
1 )T + z(r(n)

2 )T)
(9.27)

where

γ = [0, A1, A2, . . . , AN−1],

s
(n)
2 = e1W

(n),

(r(n)
2 )T = H(n)eT

1 , n ≥ 0,

and the m × m matrices W (n), H(n), and the block vectors s
(n)
2 , (r(n)

2 )T are
recursively defined by

s
(n+1)
1 = s

(n)
1 + A(n)

1 (I −A(n)
0 )−1e1W

(n),

(r(n+1)
1 )T = (r(n)

1 )T + H(n)eT
1 (I −A(n)

0 )−1A(n)
1 ,

W (n+1) = A
(n)
−1eT

1 (I −A(n)
0 )−1e1W

(n),

H(n+1) = H(n) + eT
1 (I −A(n)

0 )−1e1A
(n)
−1 , n ≥ 0,

(9.28)

with the initial conditions

s
(0)
1 = 0, r

(0)
1 = 0, W (0) = −I, H(0) = I.

Proof We prove (9.27) by induction on n. Let n = 0, and observe that, from
(9.26), one has

[A1, . . . , AN−1, 0] = zγT − γTϕ
(0)
R (z),

which can be rewritten as

[A1, . . . , AN−1, 0] = −eT
1 ϕ

(0)
R (z) + e1(zI − zA0 − z2A−1)eT

1 −γTϕ
(0)
R (z). (9.29)

By applying the displacement operator ∆ to ϕ
(0)
R (z) we find that

∆(ϕ(0)
R (z)) = eNeT

1 ϕ
(0)
R (z) − zeNeT

1 + ze1[A1, . . . , AN−1, 0].

By replacing in the above equation the expression of the block vector (9.29), we
find that

∆(ϕ(0)
R (z)) = (eN − ze1)eT

1 ϕ
(0)
R (z) − ze1γ

Tϕ
(n)
R (0) + zϕ

(0)
R (z)e1e

T
1 .

Therefore (9.27) holds for n = 0, with s
(0)
1 = 0, r

(0)
1 = 0, W (0) = −I, H(0) = I.
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Now assume that (9.27) holds for an n ≥ 0. Let us denote B(z) = ϕ
(n)
R (z)−1−

ϕ
(n)
R (−z)−1 and observe that

B(z)−1 = −(2z)−1ϕ
(n)
R (z)

(
ϕ

(n)
R (z) − ϕ

(n)
R (−z)

2z

)−1

ϕ
(n)
R (−z)

= −(2z)−1ϕ
(n)
R (z)(I −A(n)

0 )−1ϕ
(n)
R (−z),

(9.30)

and since B(z) = −B(−z),

B(z)−1 = −(2z)−1ϕ
(n)
R (−z)(I −A(n)

0 )−1ϕ
(n)
R (z). (9.31)

Since, ϕ
(n+1)
R (z2) = 2zB(z)−1 (see (7.40)) and ∆(A−1) = −A−1∆(A)A−1, ∆(A+

B) = ∆(A) + ∆(B) (see Section 2.4), we have:

∆(ϕ(n+1)
R (z2)) =2z∆(B(z)−1)

= − 2zB(z)−1∆(B(z))B(z)−1

= − 2zB(z)−1(−ϕ
(n)
R (z)−1∆(ϕ(n)

R (z))ϕ(n)
R (z)−1

+ ϕ
(n)
R (−z)−1∆(ϕ(n)

R (−z))ϕ(n)
R (−z)−1)B(z)−1;

by substituting relation (9.27) in the above equation we obtain

z−1∆(ϕ(n+1)
R (z2)) =2B(z)−1ϕ

(n)
R (z)−1(s(n)

1 + eN + zs
(n)
2 )eT

1 B(z)−1

− 2B(z)−1ϕ
(n)
R (−z)−1(s(n)

1 + eN − zs
(n)
2 )eT

1 B(z)−1

+ 2B(z)−1ϕ
(n)
R (z)−1(s(n)

1 + zs
(n)
2 )γTB(z)−1

− 2B(z)−1ϕ
(n)
R (−z)−1(s(n)

1 − zs
(n)
2 )γTB(z)−1

+ 2B(z)−1e1(r
(n)
1 + zr

(n)
2 )Tϕ

(n)
R (z)−1B(z)−1

− 2B(z)−1e1(r
(n)
1 − zr

(n)
2 )Tϕ

(n)
R (−z)−1B(z)−1.

Since

2zeT
1 B(z)−1 = eT

1 ϕ
(n+1)
R (z2),

2zγTB(z)−1 = γTϕ
(n+1)
R (z2),

2zB(z)−1e1 = ϕ
(n+1)
R (z2)e1,

we obtain
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∆(ϕ(n+1)
R (z2)) =B(z)−1

[
(ϕ(n)

R (z)−1 − ϕ
(n)
R (−z)−1)(s(n)

1 + eN )

+ z(ϕ(n)
R (z)−1 + ϕ

(n)
R (−z)−1)s(n)

2

]
eT

1 ϕ
(n+1)
R (z2)

+ B(z)−1
[
(ϕ(n)

R (z)−1 − ϕ
(n)
R (−z)−1)s(n)

1

+ z(ϕ(n)
R (z)−1 + ϕ

(n)
R (−z)−1)s(n)

2

]
γTϕ

(n+1)
R (z2)

+ ϕ
(n+1)
R (z2)e1

[
(r(n)

1 )T(ϕ(n)
R (z)−1 − ϕ

(n)
R (−z)−1)

+ z(r(n)
2 )T(ϕ(n)

R (z)−1 + ϕ
(n)
R (−z)−1)

]
B(z)−1.

(9.32)

By using the definition of B(z), from the above equation we have

B(z)−1(ϕ(n)
R (z)−1 − ϕ

(n)
R (−z)−1) = I,

and by (9.30), (9.31)

B(z)−1(ϕ(n)
R (z)−1 + ϕ

(n)
R (−z)−1) = −(ϕ(n)

R (z) + ϕ
(n)
R (−z))(I −A(n)

0 )−1/(2z)

= (A(n)
1 + zA(n)

−1 )(I −A(n)
0 )−1/z.

Therefore (9.32) can be rewritten as

∆(ϕ(n+1)
R (z)) =(s(n+1)

1 + eN + zs
(n+1)
2 )eT

1 ϕ
(n+1)
R (z)

+ (s(n+1)
1 + zs

(n+1)
2 )γTϕ

(n+1)
R (z)

+ ϕ
(n+1)
R (z)e1((r

(n+1)
1 )T + z(r(n+1)

2 )T)

where

s
(n+1)
1 = s

(n)
1 + A(n)

1 (I −A(n)
0 )−1s

(n)
2 ,

s
(n+1)
2 = A(n)

−1 (I −A(n)
0 )−1s

(n)
2 ,

(r(n+1)
1 )T = (r(n)

1 )T + (r(n)
2 )T(I −A(n)

0 )−1A(n)
1 ,

(r(n+1)
2 )T = (r(n)

2 )T(I −A(n)
0 )−1A(n)

−1 .

By using the above relations and the equation A(n)
−1 = e1A

(n)
−1eT

1 , we may easily
show by induction on n that

s
(n)
2 = e1W

(n), (r(n)
2 )T = H(n)eT

1 ,

where the matrices W (n), H(n), n ≥ 0, are recursively defined as in (9.28). �

From the theorem above the displacement representation of A(n)
1 immediately

follows:
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Corollary 9.19 For the blocks A(n)
1 , n ≥ 0, one has

∆(A(n)
1 ) = s

(n)
1 γTA(n)

1 + A(n)
1 e1(r

(n)
1 )T

where the vectors s
(n)
1 , (r(n)

1 )T, and γT are defined in Theorem 9.18.

Proof By comparing the block coefficients of zero degree in (9.27), we obtain

∆(A(n)
1 ) = (s(n)

1 + eN )eT
1 A

(n)
1 + s

(n)
1 γTA(n)

1 + A(n)
1 e1(r

(n)
1 )T. (9.33)

Since eT
1 A

(0)
1 = 0, we may easily verify by induction on n that eT

1 A
(n)
1 = 0 for

any n ≥ 0, therefore the first term in the right-hand side of (9.33) is the null
matrix. �

As a consequence of the above result we find a displacement representation
of the matrix A(n)

1

A(n)
1 = L(c(n))(I + U((r(n)

1 )TZT)) + L(s(n)
1 )U((w(n))TZT), (9.34)

where c(n) = A(n)
1 e1 and (w(n))T = γTA(n)

1 .
Concerning the convergence properties of cyclic reduction, we observe that

the roots of ϕ(z) coincide with the roots of zI −∑N−1
i=−1 zi+1Ai. Therefore, if the

original Markov chain is positive recurrent or transient, then also the associated
QBD obtained by means of the embedding technique is positive recurrent or
transient. Assume that the bi-infinite Markov chain associated with T±∞[A(z)]
satisfies Condition 4.20. Therefore the assumptions of Theorems 7.8 and 7.13
are satisfied so that cyclic reduction can be applied to the QBD problem and
convergence is guaranteed.

Now we are ready to describe the main algorithm for performing one step of
cyclic reduction. This is summarized in Algorithm 9.4.

The computational cost of stage 1 is O(m3N) ops; at stage 2 we have to
perform products between matrices with block displacement rank at most 2,
and block vectors that can be computed in O(m3N + m2N log N) ops; similar
computations are involved in stage 4 with the same cost; the cost of stage 3 is
O(m3) ops. Thus, the overall computational cost of one step of cyclic reduction
is O(m3N + m2N log N).

9.4 Tree-like stochastic processes

In this section we design algorithms based on functional iterations for solving
matrix equations of the kind

X +
d∑

i=1

AiX
−1Di = C, (9.35)

encountered in the analysis of tree-like stochastic processes (see Section 5.8). We
recall that, according to the assumptions of Section 5.8, the m × m matrices C,
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Algorithm 9.4 Cyclic reduction step for the embedded problem

Input: The block vectors û(n), v(n), s
(n)
1 , r

(n)
1 , v(n), (w(n))T = γTA(n)

1 , c(n) =
A(n)

1 e1; the matrices A
(n)
−1 , W (n) and H(n);

Output: The block vectors û(n+1), v(n+1), s
(n+1)
1 , r

(n+1)
1 , v(n+1), (w(n+1))T =

γTA(n+1)
1 , c(n+1) = A(n+1)

1 e1; the matrices A
(n+1)
−1 , W (n+1) and H(n+1);

Computation:

1. Compute S = (I − (v(n))Tû(n))−1, T = S(v(n))TZZTû(n).
2. Compute

A
(n+1)
−1 = A

(n)
−1 (SV1 + T + I)A(n)

−1

û(n+1) = û(n) + A(n)
1 û(n)(SV1 + T + I)A(n)

−1 ,

(v(n+1))T = (v(n))T + A
(n)
−1S(v(n))TA(n)

1 ,

where V1 is the first block element of (v(n))T and where the products
A(n)

1 û(n) and (v(n))TA(n)
1 are computed by means of the displacement rep-

resentation (9.34) of A(n)
1 .

3. Compute

W (n+1) = A
(n)
−1eT

1 (I −A(n)
0 )−1e1W

(n),

H(n+1) = H(n) + eT
1 (I −A(n)

0 )−1e1A
(n)
−1 ,

where the matrix vector products involving the matrix (I − A(n)
0 )−1 are

computed by using the representation in (9.23).
4. Compute

s
(n+1)
1 = s

(n)
1 + A(n)

1 (I −A(n)
0 )−1e1W

(n),

(r(n+1)
1 )T = (r(n)

1 )T + H(n)eT
1 (I −A(n)

0 )−1A(n)
1 ,

c(n+1) = A(n)
1 (I −A(n)

0 )−1c(n),

(w(n+1))T = (w(n))T(I −A(n)
0 )−1A(n)

1 ,

where the matrix vector products involving the matrix (I − A(n)
0 )−1 are

computed by using the representation in (9.23), the matrix vector products
involving the matrix A(n)

1 are computed by using the displacement repre-
sentation (9.34).

Ai, and Di are such that C = I − B, B ≥ 0, Ai, Di ≥ 0, for i = 1, . . . , d, B is
substochastic, and the matrices I + C + Di + A1 + · · · + Ad, i = 1, . . . , d, are
stochastic.
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We define the matrices Gi = (−S)−1Di for i = 1, . . . , d which have the
following interpretation: (Gi)k,k′ is the probability that, starting at time 0 from
the state (i; k) in Ni, the tree-like process eventually moves to the root node and
(k′) is the first state visited there. If the process is positive recurrent, then Gi is
stochastic for all i.

With this definition, we may rewrite (9.35) as a system of coupled equations:

S = C +
d∑

i=1

AiGi, (9.36)

Gi = (−S)−1Di, for 1 ≤ i ≤ d. (9.37)

9.4.1 Linearly convergent iterations

From (9.36) and (9.37) we may obtain S by fixed point iterations, as stated in the
following theorem (see Latouche and Ramaswami [79, Section 14.3] and Yeung
and Alfa [121, Section 8] for the proof).

Theorem 9.20 The sequences {Sn}n≥0 and {Gi,n}n≥0, i = 1, . . . , d, defined by

Sn = C +
d∑

i=1

AiGi,n, (9.38)

Gi,n+1 = (−Sn)−1Di, for 1 ≤ i ≤ d, n ≥ 0, (9.39)

with G1,0 = . . . = Gd,0 = 0, monotonically converge to S and Gi for i = 1, . . . , d,
respectively.

It is useful to note that Gi,n is the matrix of first passage probabilities from
Ni to N∅ in a truncated process where transitions are not allowed beyond the
level Sn. Furthermore, it is shown in [121] that S is minimal in the following
sense: S = T − I where T is a substochastic matrix satisfyng the minimality
property:

Lemma 9.21 The matrix T = S + I is the minimal nonnegative solution of the
equation

X = B +
d∑

i=1

Ai(I − X)−1Di.

Armed with these, we may define another converging sequence.

Theorem 9.22 The sequences {S̄n}n≥0 and {Ḡi,n}n≥0, i = 1, . . . , d, defined by
(9.38), (9.39) with Ḡ1,0 = . . . = Ḡd,0 = I converge to S and Gi for i = 1, . . . , d,
respectively. Moreover, Ḡi,n is stochastic for all i and n.

Proof The proof proceeds along the same lines as the proof of [79, Theo-
rem 8.3.1] and we briefly outline it here.

First, we consider a tree-like process on the finite set of levels N∅∪S1∪· · ·∪Sn.
We keep the same transition probabilities as in the original process except at the
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last level Sn: if NJ is a leaf, that is, if J is of length |J | = n, it is not possible
to move from (J ; k) to any of the states (J + i; k′), with 1 ≤ i ≤ d; instead, the
transition probability to (J, k′) is now equal to (B + A1 + · · · + Ad)k,k′ .

By repeating verbatim the argument on [79, Page 180] we show that the new
tree-like process is irreducible, for every n ≥ 1. Moreover, one readily verifies that
Ḡi,n is the matrix of first passage probabilities from Ni to N∅ in this new process,
from which we conclude that S̄n is nonsingular and that Ḡi,n is a stochastic
matrix for all n and i.

Since the set of stochastic matrices of order m is compact, the sequence
{(Ḡ1,n, . . . , Ḡd,n) : n ≥ 0} has at least one accumulation point. We denote by
(G∗

1, . . . , G
∗
d) one such point and we choose a subset of indices {n1, n2, . . .} such

that limt→∞ Ḡi,nt
= G∗

i . By Theorem 9.20 we have that limt→∞ Gi,nt
= Gi.

Note that both G∗
i and Gi are stochastic matrices.

Furthermore, Ḡi,0 ≥ Gi,0 and we easily show by induction that Ḡi,n ≥ Gi,n

for all n, so that G∗
i ≥ Gi. Since G∗

i 1 = Gi1 = 1, necessarily G∗
i = Gi and

the sequence {(Ḡ1,n, . . . , Ḡd,n) : n ≥ 0} has only one accumulation point, which
proves the theorem. �

Both the sequences {Sn}n and {S̄n}n are linearly convergent, and each step
of the fixed point iteration requires one m × m matrix inversion and 2d matrix
products. The sequence {S̄n}n converges faster than {Sn}n and we estimate
the asymptotic rate of convergence in Theorem 9.24 below. Before doing so,
however, we need to recall the following notation introduced in (2.1) of Section
2.1: vec(A) is the mn-dimensional vector obtained by arranging column-wise the
elements of the m×n matrix A; C = A⊗B is the matrix having block elements
Ci,j = ai,jB, where A = (ai,j)i,j . We make use of the fact that Y = AXB if and
only if vec(Y ) = (BT ⊗A) vec(X), where A, B, X, Y are matrices of compatible
size (see (2.2)).

The following result relates the error at two subsequent steps:

Theorem 9.23 Let {Sn }n≥0 be the sequence defined by (9.38)–(9.39), with
arbitrary initial approximations Gi,0, i = 1, . . . , d, and define εn = vec(En),
where En = S − Sn. The following relation holds:

εn+1 =

(
d∑

i=1

((−Sn)−1Di)T ⊗ Ri

)
εn, n ≥ 0. (9.40)

Proof By subtracting (9.38) from (9.36) and by observing that

Gi − Gi,n+1 = S−1EnS−1
n Di, i = 1, . . . , d, n ≥ 0,

we obtain that

En+1 =
d∑

i=1

RiEn(−Sn)−1Di, n ≥ 0,

from which (9.40) immediately follows. �
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In the following, λ(A) denotes the set of the eigenvalues of A. From Theorem
9.23 we derive the following estimate of the mean asymptotic rate of convergence.

Theorem 9.24 The eigenvalues of the matrix R =
∑d

i=1 Ri are such that

λ(R) ⊂ λ

(
d∑

i=1

GT
i ⊗ Ri

)
.

Moreover, if R has a positive left eigenvector, corresponding to its spectral radius,
then

ρ(R) = ρ

(
d∑

i=1

GT
i ⊗ Ri

)

and the sequences {Sn}n≥0, {S̄n}n≥0 defined in (9.38)–(9.39), obtained with
G1,0 = . . . = Gd,0 = 0 and Ḡ1,0 = . . . = Ḡd,0 = I, respectively, are such that

lim
n→∞ ‖εn‖1/n = ρ(R), (9.41)

lim
n→∞ ‖ēn‖1/n ≤ max

{
|σ| : σ ∈ λ

(
d∑

i=1

GT
i ⊗ Ri

)
\ λ(R)

}
(9.42)

for any vector norm || · ||, where εn = vec(S − Sn), ēn = vec(S − S̄n).

Proof We proceed in a manner similar to Section 6.2 and define the orthogonal
m2 × m2 matrix Π = [Π1|Π2], with Π1 = (1/

√
m)1 ⊗ I ∈ R

m2×m, and Π2 ∈
R

m2×(m2−m). Since 1TGT
i = 1T, we have that

ΠT
1

(
d∑

i=1

GT
i ⊗ Ri

)
Π2 = 0

and

ΠT
1

(
d∑

i=1

GT
i ⊗ Ri

)
Π1 = R,

that is,

ΠT

(
d∑

i=1

GT
i ⊗ Ri

)
Π =

[
R 0
H K

]
, (9.43)

where H = ΠT
2

(∑d
i=1 GT

i ⊗ Ri

)
Π1 and K = ΠT

2

(∑d
i=1 GT

i ⊗ Ri

)
Π2. Thus, it

is clear that λ(R) ⊂ λ
(∑d

i=1 GT
i ⊗ Ri

)
.
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Let vT > 0 be a left eigenvector of R corresponding to ρ(R). Since Gi,
i = 1, . . . , d, are stochastic, it follows that

(1T ⊗ vT)

(
d∑

i=1

GT
i ⊗ Ri

)
= ρ(R)(1T ⊗ vT), (9.44)

that is, 1T ⊗vT is a left eigenvector corresponding to the eigenvalue ρ(R). Since∑d
i=1 GT

i ⊗Ri is a nonnegative matrix and 1T⊗vT is a positive vector, it follows

that ρ
(∑d

i=1 GT
i ⊗ Ri

)
= ρ(R) (see [116]).

The relation (9.41) is proved as follows. Since v has positive components, we
may define the vector norm || · || such that ||x|| = (1T ⊗ vT)|x|, where x ∈ R

m2

and |x| = (|xi|)i. Since the vectors εn are nonnegative and since the sequences
{(−Sn)−1Di}n≥0 converge monotonically to Gi for i = 1, . . . , d, we obtain from
(9.40) that

‖εn‖ = (1T ⊗ vT)εn ≤ (1T ⊗ vT)

(
d∑

i=1

GT
i ⊗ Ri

)
εn−1

= ρ(R)(1T ⊗ vT)εn−1 = ρ(R)||εn−1||.

Hence limn→∞ ‖εn‖1/n ≤ ρ(R). Let us now show the opposite inequality. From
(9.40) one has

‖εn‖ =(1T ⊗ vT)εn

=(1T ⊗ vT)

((
d∑

i=1

GT
i ⊗ Ri

)
−
(

d∑
i=1

(Gi − (−Sn−1)−1Di)T ⊗ Ri

))
εn−1

=ρ(R)||εn−1|| − (1T ⊗ vT)

(
d∑

i=1

(Gi − (−Sn−1)−1Di)T ⊗ Ri

)
εn−1.

Since the sequences {(−Sn)−1Di}n≥0 converge monotonically to Gi for i =
1, . . . , d, for any ε > 0 there exists an integer n0 such that

Gi − (−Sn)−1Di ≤
ε

m
(1 1T)

for any i = 1, . . . , d and for any n ≥ n0. Thus, we obtain that for any n ≥ n0

‖εn‖ ≥ρ(R)||εn−1|| − (ε/m)(1T ⊗ vT)

(
d∑

i=1

(1 1T) ⊗ Ri

)
εn−1

=(1 − ε)ρ(R)||εn−1||,

so that limn→∞ ‖εn‖1/n ≥ ρ(R)(1 − ε). Since ε is arbitrary, we deduce that
limn→∞ ‖εn‖1/n = ρ(R), and this equality holds for any vector norm for the
equivalence of the norms (see Theorem A.1 in the Appendix).
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We finally prove (9.42). Since the matrices Ḡi,n are stochastic for any i and
n, it can be easily shown by induction on n that ΠT

1 εn = 0 for all n, and thus

ΠTεn =
[

0
hn

]
, where hn = ΠT

2 εn. Since

ΠTεn = ΠT

(
d∑

i=1

((−Sn−1)−1Di)T ⊗ Ri

)
Π(ΠTεn−1)

=
[

R 0
Hn−1 Kn−1

]
(ΠTεn−1),

where

Hn = ΠT
2

(
d∑

i=1

((−Sn)−1Di)T ⊗ Ri

)
Π1

and

Kn = ΠT
2

(
d∑

i=1

((−Sn)−1Di)T ⊗ Ri

)
Π2,

one has hn = Kn−1hn−1, from which we deduce (9.42) by applying the same
techniques as in [88]. �

From the above theorem it follows that the convergence of the sequence ob-
tained with Gi,0 = I is generally faster than the one obtained with Gi,0 = 0,
when the Perron–Frobenius eigenvector vT of R is strictly positive.

Remark 9.25 The property that the Perron–Frobenius eigenvector vT of R is
strictly positive is related to irreducibility characteristics of the stochastic process
under study and does not seem to be a very restrictive assumption. For instance,
for d = 1, if A1 + B + D1 is irreducible then vT > 0 (Neuts [91, Lemma 1.3.2]).
For a general tree-like process, such simple sufficient conditions are not as readily
available.

We report in Algorithm 9.5 the method for solving tree-like stochastic pro-
cesses based on functional iterations.

9.4.2 Newton’s iterations
Another tool for solving tree-like stochastic processes is applying Newton’s iter-
ation. Define the matrices

G =

G1

...
Gd

 , D =

D1

...
Dd

 , A =
[
A1 · · · Ad

]
,

and the four matrix operators

I : R
md×m → R

md×m : IX = X,
M : R

md×m → R
m×m : MX = C + AX,

L : R
m×m → R

md×m : LV = [Id ⊗ (−V )−1]D,
F : R

md×m → R
md×m : FX = (I − LM)X.
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Algorithm 9.5 Functional iteration for tree-like processes
Input: The m × m matrices C, Ai, and Di are such that C = I − B, B ≥ 0,
Ai, Di ≥ 0, for i = 1, . . . , d, B is substochastic, and the matrices I + C + Di +
A1 + · · · + Ad, i = 1, . . . , d, are stochastic. An error bound ε.

Output: An approximation X to the minimal solution S of the matrix equation
(9.35).

Computation:

1. Set Y = C +
∑d

i=1 Ai.
2. Compute Wi = Y −1Di, i = 1, . . . , d; and set

X = C −
d∑

i=1

AiWi.

3. If ‖X − Y ‖∞ ≤ ε, then output X; otherwise set Y = X and continue from
step 2.

The first is the identity operator. The operator M is defined for matrices X in
< 0, G >, that is, for matrices such that 0 ≤ X ≤ G, and the operator L is
defined for matrices V in < C,S >.

It is not difficult to verify that if C ≤ V ≤ S, then 0 ≤ −C−1 ≤ −V −1 ≤
−S−1, so that LV is in < 0, G >; similarly, it is clear that if X is in < 0, G >, then
MX is in < C,S >. We eventually conclude that G is the minimal nonnegative
solution of FG = 0.

Newton’s method yields the sequence of matrices

Ĝn+1 = Ĝn −F ′(Ĝn)−1FĜn, (9.45)

with Ĝ0 = 0. As we show below, the chain rule applies, so that

F ′(X) = I − L′(MX)M′(X)

with

M′(X)H = AH

L′(V )K =
[
I ⊗ V −1KV −1

]
D.

To see that the chain rule applies, one needs to repeat nearly verbatim the
argument of Section 6.3. We only repeat the salient steps here.

Lemma 9.26 The operators M and M′ are Lipschitz-continuous on < 0, G >
and M′(X) is the Fréchet derivative of M. The norm of M′ is uniformly bounded
on < 0, G >.

Proof The proof directly follows that of Lemma 6.24; it is much simpler here
because [M′(X) −M′(Y )]H ≡ 0. �
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Lemma 9.27 The operator L′ is Lipschitz-continuous and uniformly bounded
in < C, S >.

Proof We use the infinity norm for matrices.
If V and W are in < C,S > and if ‖K‖ = 1, then

‖[L′(V ) − L′(W )]K‖
= ‖[I ⊗ V −1KV −1 − I ⊗ W−1KW−1]D‖
≤ ‖D‖ · ‖V −1KV −1 − W−1KW−1‖
≤ ‖D‖(‖(V −1 − W−1)KV −1‖ + ‖W−1K(V −1 − W−1)‖)
≤ ‖D‖ · ‖W−1‖ · ‖V −1‖ · ‖V − W‖(‖V −1‖ + ‖W−1‖)
≤ 2‖D‖ · ‖S−1‖3‖V − W‖

since 0 ≤ −V −1,−W−1 ≤ −S−1. The remainder of the proof is identical to that
of Lemma 6.25. �

Since both M′ and L′ are Fréchet derivatives, the chain rule applies, F ′(X) =
I−L′(MX)M′(X) is the Fréchet-derivative of F at X by [95, Proposition 3.1.7]
and Newton’s sequence (9.45) may be written as

Ĝn+1 = Ĝn − Zn (9.46)

with
Zn =

[
I − L′(MĜn)M′(Ĝn)

]−1

(I − LM) Ĝn.

If we define
Ŝn = MĜn = C + AĜn,

we may write that Zn is the solution of[
I − L′(Ŝn)M′(Ĝn)

]
Zn = Ĝn − LMĜn

and this may be written after a few algebraic manipulations as

Zn −
[
I ⊗ Ŝ−1

n AZnŜ−1
n

]
D = Ĝn +

[
I ⊗ Ŝ−1

n

]
D. (9.47)

If we premultiply this equation by A and if we define

Yn = AZn, (9.48)

we find that Yn is a solution of the equation

Yn +
d∑

i=1

AiŜ
−1
n Yn(−Ŝn)−1Di = Ln, (9.49)

where
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Ln = Ŝn − C +
d∑

i=1

AiŜ
−1
n Di.

Now, with AZn = AĜn − AĜn+1 = Ŝn − Ŝn+1, we have

Ŝn+1 = Ŝn − Yn.

Finally, we have by (9.46, 9.47, 9.48) that

Ĝn+1 = −
[
I ⊗ Ŝ−1

n YnŜ−1
n

]
D −

[
I ⊗ Ŝ−1

n

]
D,

so that
Ĝi,n+1 = Ŝ−1

n (Yn(−Ŝn)−1Di − Di).

In summary, Newton’s method generates d+1 sequences {Ŝn}n≥0, {Ĝi,n}n≥0,
i = 1, . . . , d, recursively defined by

Ŝn+1 = Ŝn − Yn,

Ĝi,n+1 = Ŝ−1
n (Yn(−Ŝn)−1Di − Di), i = 1, . . . , d, n ≥ 0,

Ŝ0 = C,

where Yn solves (9.49). The above sequences quadratically converge to S and Gi,
i = 1, . . . , d, respectively.

The applicability of this method relies on the efficient solution of the linear
matrix equation (9.49). Indeed, the computation of Ln and of the matrix coeffi-
cients in (9.49) requires 3d matrix products, while the computation of Ŝn+1 and
Ĝi,n+1, 1 ≤ i ≤ d, requires 2d more matrix products.

Equation (9.49) constitutes a linear system of m2 equations in m2 unknowns.
The customary solution algorithms like Gaussian elimination would cost O(m6)
ops. There are efficient direct methods in the literature for solving matrix equa-
tions of the form H1Y K1+H2Y K2 = L, which are known as Sylvester equations;
these methods consist in performing a Hessenberg–Schur orthogonal transforma-
tion of the matrix coefficients H1, H2, K1, K2, and in solving a quasi-triangular
linear system for the overall cost O(m3) (see [45]). Unfortunately, the more gen-
eral case

∑r
i=1 HiY Ki = L, where r > 2, cannot be solved with these methods.

To solve (9.49), we may apply two kinds of fixed point iterations. The first
fixed point iteration consists in generating the sequence {Yn,h}h≥0 defined by

Yn,h+1 = Ln +
d∑

i=1

(AiŜ
−1
n )Yn,h(Ŝ−1

n Di), h ≥ 0, (9.50)

with Yn,0 = Ln. The second one generates the sequence {Yn,h}h≥0 defined by

Yn,h+1 − (ArŜ
−1
n )Yn,h+1(Ŝ−1

n Dr) = Ln +
d∑

i=1
i �=r

(AiŜ
−1
n )Yn,h(Ŝ−1

n Di), h ≥ 0,

(9.51)
with Yn,0 = Ln, and where r is such that 1 ≤ r ≤ d.
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Concerning the choice of r we observe that (9.49) can be viewed as a linear
system with matrix I−Bn, Bn =

∑d
i=1 Ŝ−1

n Di⊗AiS
−1
n . If Bn ≥ 0 and ρ(Bn) < 1

then I − Bn is a nonsingular M-matrix, therefore, for the properties of regular
splittings (see Theorem A.15) the more convenient choice for r is the one for
which ||ArŜ

−1
n || · ||Ŝ−1Dr|| is maximum for a given norm || · ||.

From numerical experiments it seems that the functional iteration (9.51) is
generally faster than (9.50), but each step requires the solution of a Sylvester
matrix equation. In order to solve it, we can apply the algorithm of [45], where the
Hessenberg–Schur orthogonal transformation of the matrix coefficients is done
once and for all. In principle, the convergence of the sequences (9.50) and (9.51)
is not guaranteed; in fact, examples can be constructed where (9.51) diverges.

We summarize the method based on Newton’s iteration as Algorithm 9.6.

Algorithm 9.6 Newton’s iteration for tree-like processes
Input: The m × m matrices C, Ai, and Di are such that C = I − B, B ≥ 0,
Ai, Di ≥ 0, for i = 1, . . . , d, B is substochastic, and the matrices I + C + Di +
A1 + · · · + Ad, i = 1, . . . , d, are stochastic. An error bound ε.

Output: An approximation X to the minimal solution S of the matrix equation
(9.35).

Computation:

1. Set X = C.
2. Compute Wi = X−1Di, i = 1, . . . , d.
3. Compute L = X − C +

∑d
i=1 AiWi.

4. Compute Y solving the equation

Y +
d∑

i=1

AiX
−1Y Wi = L

and set X = X + Y .
5. If ‖Y ‖∞ ≤ ε, then output X; otherwise continue from step 2.

9.4.3 Cyclic reduction

Cyclic reduction can be combined with functional iterations for solving the equa-
tion (9.35). By writing (9.37) as Di +SGi = 0 and replacing S by the right-hand
side of (9.36), we obtain the system

Di + (C +
d∑

j=1
j �=i

AjGj)Gi + AiG
2
i = 0, (9.52)

for i = 1, . . . , d. If we define Fi as
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Fi = C +
d∑

j=1
j �=i

AjGj , (9.53)

then (9.52) becomes

Di + FiGi + AiG
2
i = 0, 1 ≤ i ≤ d. (9.54)

For each i, we recognize this as the equation which defines the matrix of first
passage probabilities to lower levels in a QBD process characterized by the tran-
sition matrices Ai, Fi and Di. Those quadratic equations may be solved by the
cyclic reduction method of Section 7.3 or by means of logarithmic reduction of
Section 7.2 which converge quadratically. Thus, we may determine the matrices
Gi, 1 ≤ i ≤ d, and the matrix S by the following iterative procedure: we define
sequences of matrices {Gi,n}n≥0, for i = 1, . . . , d, such that, for n ≥ 1 and for
each i, Gi,n is the minimal nonnegative solution of the quadratic matrix equation

Di + Fi,nGi,n + AiG
2
i,n = 0, (9.55)

where

Fi,n = C +
i−1∑
j=1

AjGj,n +
d∑

j=i+1

AjGj,n−1. (9.56)

Theorem 9.28 The sequences {G′
i,n}n≥0 obtained from (9.55), (9.56), starting

with G′
1,0 = G′

2,0 = · · · = G′
d,0 = 0, monotonically converge to Gi, for 1 ≤ i ≤ d.

The sequences {G̃i,n}n≥0 obtained from (9.55), (9.56), starting with G̃1,0 =
G̃2,0 = · · · = G̃d,0 = I, converge to Gi, for 1 ≤ i ≤ d. Moreover, G̃i,n is
stochastic for all i and n.
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Fig. 9.1 A pictorial representation of the tree T2,n for d = 3.

Proof We define a sequence of trees {Ti,n : n ≥ 0, 1 ≤ i ≤ d} as follows (see
Figure 9.1 for a graphical description). The trees Ti,0 comprise a single node.
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For n ≥ 1, the root of Ti,n has d children; each child with index j ≤ i − 1 is
the root of a tree which is isomorphic to Tj,n; each child with index j ≥ i + 1
is the root of a tree which is isomorphic to Tj,n−1; the child with index i is the
root of a tree isomorphic to Ti,n itself. The transition probabilities are the same
as in the original tree-like process, except at the leaf nodes where two cases are
considered.

In the first case, for every node NJ which has no child, the transition prob-
ability from (J, k) to (J, k′) is Bkk′ . One proves by induction that for all n ≥ 1
and all i, G′

i,n is the matrix of first passage probabilities from Ni to N∅ in Ti,n.
The detailed proof is similar to that of Theorem 9.20.

In the second case, for every node NJ which has no child, the transition
probability from (J, k) to (J, k′) is (B+A1+· · ·+Ad)kk′ . One proves by induction
that G̃i,n is the matrix of first passage probabilities from Ni to N∅ in Ti,n. Then
we repeat the argument of Theorem 9.22. �

Let us now analyze the convergence speed of the sequences {G̃i,n}n and
{G′

i,n}n. Define the matrices Ei,n = Gi − Gi,n, i = 1, . . . , d, representing the
errors at step n, and the corresponding vectors εi,n = vec(Ei,n). The errors at
two subsequent steps are related as stated in the following theorem.

Theorem 9.29 Let {Gi,n}n, i = 1, . . . , d, be the sequences generated by means
of (9.55),(9.56), with arbitrary initial approximations Gi,0, i = 1, . . . , d. Then,
at each step n we have that

εi,n −
i∑

j=1

(
GT

i,n ⊗ (−S)−1Aj

)
εj,n =

d∑
j=i+1

(
GT

i,n ⊗ (−S)−1Aj

)
εj,n−1, (9.57)

for i = 1, . . . , d.

Proof From (9.54, 9.55) we obtain that

FiGi − Fi,nGi,n + Ai(G2
i − G2

i,n) = 0

for all i and n. By replacing in the latter equation Fi and Fi,n, respectively, by
the expressions from (9.53) and (9.56), and G2

i − G2
i,n by GiEi,n + Ei,nGi,n, we

obtain that

CEi,n +
i−1∑
j=1

Aj(GjGi − Gj,nGi,n) +
d∑

j=i+1

Aj(GjGi − Gj,n−1Gi,n) +

+ AiGiEi,n + AiEi,nGi,n = 0,

from which, using

GjGi − Gj,nGi,n = GjEi,n + Ej,nGi,n

and
GjGi − Gj,n−1Gi,n = GjEi,n + Ej,n−1Gi,n,
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we arrive atC +
d∑

j=1

AjGj

Ei,n +
i∑

j=1

AjEj,nGi,n +
d∑

j=i+1

AjEj,n−1Gi,n = 0.

We obtain (9.57) after multiplying this equation on the left by S−1. �

The equation (9.57) may also be written as

fn = (I − Hn)−1Knfn−1 (9.58)

where fn is the dm2-dimensional vector made up by the vectors εi,n (i =
1, . . . , d), Kn is the d × d block lower triangular matrix with block elements

(Kn)i,j =
{

GT
i,n ⊗ R̃j i = 1, . . . , d, j = 1, . . . , i

0 otherwise,
(9.59)

Kn is the d × d block strictly upper triangular matrix with block elements

(Kn)i,j =
{

GT
i,n ⊗ R̃j i = 1, . . . , d, j = i + 1, . . . , d

0 otherwise,
(9.60)

and R̃i = (−S)−1Ai = S−1RiS, 1 ≤ i ≤ d.
Since Hn + Kn = D1,n(11T ⊗ I)D2,n where

D1,n = Diag
(
GT

1,n ⊗ I,GT
2,n ⊗ I, . . . , GT

d,n ⊗ I
)
,

D2,n = Diag
(
I ⊗ R̃1, I ⊗ R̃2, . . . , I ⊗ R̃d

)
,

we conclude that Hn+Kn has (d−1)m2 eigenvalues equal to 0, and the remaining
m2 eigenvalues are the eigenvalues of

∑d
i=1 GT

i,n ⊗ R̃i. Since Ri = SR̃iS
−1, these

are the eigenvalues of
∑d

i=1 GT
i,n ⊗ Ri.

Let H and K, respectively, be the d × d block lower and strictly upper tri-
angular matrices with block elements

(H)i,j =
{

GT
i ⊗ R̃j i = 1, . . . , d, j = 1, . . . , i

0 otherwise,
(9.61)

(K)i,j =
{

GT
i ⊗ R̃j i = 1, . . . , d, j = i + 1, . . . , d

0 otherwise.
(9.62)

The matrices H and K are the limits of {Hn}n and {Kn}n, respectively, when
Gi,0, i = 1, . . . , d, are the null matrices, or the identity matrices. As for Hn +Kn,
H+K has (d−1)m2 eigenvalues equal to 0, and the remaining m2 eigenvalues are
the eigenvalues of

∑d
i=1 GT

i ⊗ Ri. By Theorem 9.24, we have λ(R) ⊂ λ(H + K)
and, if the Perron–Frobenius eigenvector of R is strictly positive, then ρ(H+K) =
ρ(R) < 1. Since H + K is nonnegative, M = I − H − K is a nonsingular M -
matrix and N = (I − H)−1K is the iteration matrix obtained by means of a
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regular splitting applied to M . From the properties of regular splittings (see
Theorem A.15) it follows that ρ(N) ≤ ρ(H + K), and thus ρ(N) ≤ ρ(R). This
inequality allows us to prove that the iteration defined by (9.55), (9.56) with
G′

i,0 = 0 is generally faster than the iteration (9.38), (9.39) starting with Gi,0 = 0,
i = 1, . . . , d. This result is reported in the next theorem which shows also that the
sequences {G̃i,n}n≥0, i = 1, . . . , d, converge faster than the sequences {G′

i,n}n≥0,
i = 1, . . . , d.

Theorem 9.30 One has

lim
n→∞ ||f ′

n||1/n = ρ((I − H)−1K)

for any vector norm ‖ · ‖, and

λ
(
(I − H̃)−1K̃

)
⊂ λ

(
(I − H)−1K

)
,

where f ′
n is the dm2-dimensional vector made up by the vectors ε′

i,n = vec(Gi −
G′

i,n), i = 1, . . . , d,

H̃ =


R̃1 0
R̃1 R̃2

...
...

. . .

R̃1 R̃2 . . . R̃d

 and K̃ =


0 R̃2 R̃3 . . . R̃d

0 R̃3 . . . R̃d

. . .
. . .

...

0 R̃d

0 0

 .

Moreover, if the Perron–Frobenius eigenvector of (I−H̃)−1K̃ is strictly positive,
then one has that

ρ
(
(I − H̃)−1K̃

)
= ρ
(
(I − H)−1K

)
and

lim
n→∞ ‖f̃n‖

1/n ≤ max
{
|σ| : σ ∈ λ

(
(I − H)−1K

)
\ λ
(
(I − H̃)−1K̃

)}
for any vector norm ‖ · ‖, where f̃n is the dm2-dimensional vector made up by
the vectors ε̃i,n = vec(Gi − G̃i,n), i = 1, . . . , d.

Proof Concerning the convergence of {f ′
n}n, from the monotonicity of the

sequences {G′
i,n}n, from (9.59), (9.60) and (9.58) we deduce that

f ′
n ≤ (I − H)−1Kf ′

n−1 ≤ ((I − H)−1K)nf ′
0

whence limn→∞ ||f ′
n||1/n ≤ ρ((I −H)−1K). For the opposite inequality observe

that

f ′
n = (I − H)−1Kf ′

n−1 − ((I − H)−1K − (I − Hn)−1Kn)f ′
n−1. (9.63)

Let Q be any nonnegative matrix such that (I −H)−1K − εQ ≥ 0 for any ε > 0
in a suitable neighborhood U of 0. Then for any positive ε ∈ U there exists n0
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such that for any n ≥ n0 we have (I −H)−1K − (I −Hn)−1Kn ≤ εQ. From the
latter inequality and from (9.63) we deduce that f ′

n ≥ ((I−H)−1K−εQ)f ′
n−1 ≥

((I −H)−1K − εQ)nf ′
0, hence limn→∞ ||f ′

n||1/n ≥ ρ((I −H)−1K − εQ). For the
arbitrariness of ε we obtain limn→∞ ||f ′

n||1/n = ρ((I −H)−1K). Concerning the
remaining part of the theorem, let us define the (dm2)×(dm2) orthogonal matrix
Π̃ = [Π̃1|Π̃2], where Π̃1 = Id ⊗Π1, Π̃2 = Id ⊗Π2, Id is the d× d identity matrix,
and Π = [Π1|Π2] is the (m2) × (m2) orthogonal matrix defined in the proof of
Theorem 9.24. Since G̃i is stochastic for any i, from (9.61), (9.62) it follows that
Π̃T

1 H = H̃Π̃T
1 , and that Π̃T

1 K = K̃Π̃T
1 . Thus, we have that

Π̃T(I − H)−1KΠ̃ =
[

(I − H̃)−1K̃ 0
T1 T2

]
,

where T1 = Π̃T
2 (I−H)−1KΠ̃1 and T2 = Π̃T

2 (I−H)−1KΠ̃2, and we conclude that
λ
(
(I − H̃)−1K̃

)
⊂ λ

(
(I − H)−1K

)
. If u is a positive Perron–Frobenius right

eigenvector of (I−H̃)−1K̃, that is, (I−H̃)−1K̃u = ρu then (I−H)−1Kv = ρv,
where v = Π̃1u. Since v is positive and (I − H)−1K is nonnegative, ρ is the
spectral radius of (I −H)−1K [116]. Moreover, since G̃i,n is stochastic for any i

and n, we have that Π̃T
1 f̃n = 0 for any n. Thus, as in the proof of Theorem 9.24,

limn→∞ ‖f̃n‖
1/n ≤ ρ(T2). �

Unfortunately, the result above does not allow us to conclude that, when
one starts with Gi,0 = I, i = 1, . . . , d, the iteration defined by (9.55), (9.56)
is generally faster than the iteration (9.38), (9.39). Nevertheless, we conjecture
that the procedure described in this section does require fewer iterations than
the ones in Section 9.4.1. Our argument is illustrated in Figure 9.2 where we
show how the tree fills up in the case where d = 2 during the first two iterations
of (9.55), (9.56). We represent at the top the first eight levels of a binary tree;
underneath are the same levels for the trees T1,1, T2,1, T1,2 and T2,2. By contrast,
only the first 2 levels are filled after the first two iterations of (9.38), (9.39).

Concerning the computational cost, the most expensive part at each itera-
tion is the solution of the d quadratic equations (9.55); the computation of the
coefficients Fi,n, 1 ≤ i ≤ d, in (9.55) requires only d matrix products. If the
quadratic matrix equations are solved by means of the cyclic reduction algo-
rithm, which is quadratically convergent, the cost is one matrix inversion and
six matrix products per step.

9.4.4 Numerical behavior
An experimental analysis of the fixed point iteration (FPI), the algorithm based
on the reduction to quadratic equations (QE), solved by means of cyclic reduc-
tion, and Newton’s method (NM), can be easily performed. We report here the
results of some experiments carried out in [17]. Concerning NM, we have solved
(9.49) by applying the fixed point iteration (9.51), with r = 1.

We consider a system similar to the M/M/1 queue in a random environment
(see [79, Example 9.2.2]). The service rate is constant and the arrival rate depends
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Fig. 9.2 Pictorial representation of the filling up of the nodes of the tree-like process,
when d = 2. The first eight levels are depicted, for the whole tree and for the trees T1,1,
T2,1, T1,2 and T2,2.

on the state of a Markovian environmental process. Each arrival has a label which
indicates which direction is taken in the tree.

The parameters are as follows: the number of children is d = 2, the size of
the blocks is m, D1 = αI, D2 = D1, A1 = Diag(a, b, . . . , b), A2 = bI, C =
T − D1 − A1 − A2, a = ρfm, b = ρ(1 − f)m/(2m − 1), and T = (ti,j)i,j=1,m,
ti,i = −1, for i = 1, . . . , m, ti,i+1 = 1, for i = 1, . . . , m − 1, tm,1 = 1, ti,j = 0
elsewhere.

This system is stable if ρ (the stationary arrival rate) is less than α (the
service rate). The parameter f , which ranges from 0 to 1, measures the fraction
of arrivals which occur in phase 1; when f is small, the system behaves nearly
like an ordinary M/M/1 queue, when f is large, the arrivals are very bursty:
in phase 1 the system is strongly driven to higher levels in the direction of the
children labeled “1”, in all the other phases the system is strongly driven toward
the root of the tree. The burstiness is higher for large values of m.

In Figure 9.3, we represent the CPU time as a function of the parameter f ,
needed to run the programs on a Pentium III at 500 MHz. It is interesting to
observe the opposite monotonicity of FPI, with respect to QE and NM (which
have the same behavior). The algorithm FPI is convenient when the number of
iterations is not too large; otherwise QE is more convenient. QE and NM have
the same behavior in terms of monotonicity.

We report in Table 9.1 the number of iterations and the residual error, for
different values of the parameter f . It is interesting to observe the different
behavior of the number of iterations for the three methods. The number of
iterations of FPI grows with f . The number of iterations of QE decreases, as f
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Algorithm 9.7 Cyclic reduction for tree-like processes
Input: The m × m matrices C, Ai, and Di are such that C = I − B, B ≥ 0,
Ai, Di ≥ 0, for i = 1, . . . , d, B is substochastic, and the matrices I + C + Di +
A1 + · · · + Ad, i = 1, . . . , d, are stochastic. An error bound ε.

Output: Approximations Wi, i = 1, . . . , d, to the minimal nonnegative solutions
Gi, i = 1, . . . , d, of the matrix equations (9.54).

Computation:

1. Set Wi = I, for i = 1, . . . , d.
2. For i = 1, . . . , d:

(a) compute F = C +
∑i−1

j=1 AjW
′
j +
∑d

j=i+1 AjWj ;
(b) compute by means of Algorithm 7.1 or Algorithm 7.3 the minimal non-

negative solution W ′
i of the matrix equation X = −F−1Di−F−1AiX

2.
3. If maxi ‖Wi − W ′

i‖∞ ≤ ε, then output Wi = W ′
i , i = 1, . . . , d; otherwise

continue from step 2.

grows, and the number of inner iterations needed to solve the quadratic matrix
equations is almost constant. The number of iterations of NM is almost constant,
as f grows, while the number of inner iterations of (9.51) decreases.

9.5 Bibliographic notes

Markov chains with limited displacement have been analyzed by Gail, Hantler
and Taylor in [42], where the classic functional iterations have been adapted to
this specific case and where error bounds to the solution of the truncated matrix
equation are proved. The analysis of cyclic reduction for NSF Markov chains is
performed in [21] and in [22] in terms of solving a banded Toeplitz system, where
the displacement rank structure is pointed out and exploited for designing fast
algorithms.

The reduction of M/G/1-type Markov chains to infinite QBDs has been dis-
covered by Ramaswami in [100]; the algorithmic analysis of cyclic reduction
applied to the infinite QBD is performed in [25]

Functional iterations for tree-like stochastic processes are introduced and
analyzed by Latouche and Ramaswami [79, Section 14.3] and Yeung and Alfa
[121, Section 8]. The analysis of convergence of functional iterations is performed
in [17]. Newton’s iteration and the combination of functional iterations with
cyclic reduction are introduced and analyzed in [17].
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Fig. 9.3 α = 2, ρ = 1.8, m = 100, CPU time

FPI QE NM
f Steps Residual Steps Residual Steps Residual

0.1 269 7.8e-15 25 (10) 3.6e-15 10 (101) 9.3e-16
0.2 445 8.0e-15 21 (11) 2.8e-15 10 (82) 5.4e-16
0.3 643 9.5e-15 17 (12) 2.6e-15 10 (69) 4.2e-16
0.4 873 9.1e-15 15 (12) 2.2e-15 10 (60) 3.7e-16
0.5 1133 9.7e-15 13 (13) 3.4e-15 10 (53) 5.8e-16
0.6 1379 9.0e-15 11 (13) 3.5e-15 10 (46) 6.7e-16
0.7 1664 9.7e-15 10 (14) 2.3e-15 10 (38) 1.0e-15
0.8 1927 1.0e-14 9 (14) 2.5e-15 10 (27) 8.9e-16
0.9 2153 1.0e-14 8 (15) 1.8e-15 10 (21) 8.9e-16
0.99 2411 9.5e-15 6 (15) 1.5e-15 11 (9) 1.0e-15

Table 9.1 α = 2, ρ = 1.8, m = 100
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An application ‖ ·‖ : C
n → R is called a norm or a vector norm if for any x ∈ C

n

‖x‖ ≥ 0
‖x‖ = 0 if and only if x = 0
‖αx‖ = |α|‖x‖, for α ∈ C

‖x + y‖ ≤ ‖x‖ + ‖y‖, for any y ∈ C
n.

Useful norms are:

‖x‖1 =
∑

i

|xi|

‖x‖2 =
√∑

i

|xi|2

‖x‖∞ = max
i

|xi|

They are called the 1-norm, the 2-norm (or the Euclidean norm) and the infinity-
norm, respectively.

Similarly we may define a norm in the set of n × n complex matrices. Given
a vector norm ‖ · ‖, the following application defines a norm in the set of n × n
matrices, called the induced matrix norm or operator norm and is denoted with
the same symbol ‖A‖:

‖A‖ = max
‖x‖=1

‖Ax‖.

The operator norm induced by the 1-norm, the 2-norm and the infinity norm are
given by

‖A‖1 = max
j

∑
i

|ai,j |,

‖A‖2 =
√

ρ(ĀTA),

‖A‖∞ = max
i

∑
j

|ai,j |,

where ρ(A) denotes the spectral radius of A, that is the maximum modulus of
the eigenvalues of A and Ā is the conjugate of A.

The following property of norms is fundamental.
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Theorem A.1. (Equivalence of norms) For any pair of norms ‖ · ‖′, ‖ · ‖′′ in
C

n there exist two positive constants α, β such that for any x ∈ C
n

α‖x‖′ ≤ ‖x‖′′ ≤ β‖x‖′.

A similar result holds for matrix norms.
The following theorem relates operator norms and the spectral radius of a

matrix.

Theorem A.2 Let A be an m × m matrix. Then for any operator norm ‖ · ‖
one has

ρ(A) ≤ ‖A‖.

Therefore, for any ε > 0 there exists an operator norm ‖ · ‖ such that

‖A‖ ≤ ρ(A) + ε.

If any eigenvalue of modulus ρ(A) belongs to a Jordan block of dimension 1,
then there exists an operator norm ‖ · ‖ such that ‖A‖ = ρ(A). In particular,
this holds if the eigenvalues of modulus ρ(A) are simple.

The following result relates spectral radius with any matrix norm.

Theorem A.3 Let A be an m×m matrix. Then for any matrix norm ‖ · ‖ and
for any q ∈ Z one has

ρ(A) = lim
n

‖An+q‖1/n.

Corollary A.4 Let A be an m×m matrix, then for any matrix norm ‖ · ‖ and
for any ε > 0 there exists n0 > 0 such that

‖An‖ ≤ (ρ(A) + ε)n, ∀n ≥ n0.

Moreover there exists γ > 0 such that

‖An‖ ≤ γ(ρ(A) + ε)n for any n ≥ 0.

Proof From Theorem A.3 recall that limn ‖An‖1/n = ρ(A). Therefore, from
the definition of limit, one has that for any ε > 0 there exists n0 such that

‖An‖1/n ≤ ρ(A) + ε, ∀n ≥ n0.

Whence ‖An‖ ≤ (ρ(A) + ε)n, for any n ≥ n0. �

Theorem A.5 Let ‖ · ‖ be any operator norm such that ‖A‖ < 1 where A is an
m × m matrix. Then I − A is nonsingular and

‖(I − A)‖−1 ≤ 1
1 − ‖A‖ .
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Definition A.6 Consider the following partitioning of the n × n matrix A:

A =
[

A1,1 A1,2

A2,1 A2,2

]
(A.1)

where A1,1 is m × m and A2,2 is (n − m) × (n − m). If A1,1 is nonsingular then
the matrix S = A2,2 − A2,1A

−1
1,1A1,2 is called the Schur complement of A1,1 in

A. If A2,2 is nonsingular then the matrix S′ = A1,1 − A1,2A
−1
2,2A2,1 is the Schur

complement of A2,2 in A.

Schur complements are related to block LU factorization:

Theorem A.7 If A1,1 is nonsingular then

A =
[

I 0
A2,1A

−1
1,1 I

] [
A1,1 A1,2

0 S

]
Similarly, if A2,2 is nonsingular then

A =
[

S′ A1,2

0 A2,2

] [
I 0

A−1
2,2A2,1 I

]
.

Moreover, if A and A1,1 are nonsingular, then also S is nonsingular and the lower
rightmost (n−m)× (n−m) submatrix of A−1 coincides with S−1. Similarly, if
A and A2,2 are nonsingular, then also S′ is nonsingular and the leading principal

m × m submatrix of A−1 coincides with S′−1
.

The irreducibility of a matrix A can be defined in terms of the directed graph
G[A] associated with A, where an oriented arc connects the node i with the node
j if ai,j �= 0.

Definition A.8 A matrix A is irreducible if its directed graph is strongly con-
nected, that is, for any pair i, j there exists a sequence of oriented arcs connecting
the node i with the node j. A is said to be reducible if it is not irreducible.

Theorem A.9 An m × m matrix A is reducible if and only if there exists a
permutation matrix Π such that ΠTAΠ has the form

ΠTAΠ =
[

A1,1 0
A2,1 A2,2

]
where A1,1 and A2,2 are square blocks.

Theorem A.10. (Cayley–Hamilton theorem) Let p(λ) = det(A − λI) =∑n
i=0 λiai the characteristic polynomial of the n × n matrix A. Then

p(A) =
n∑

i=0

aiA
i = 0.

Moreover, if A is nonsingular one has

A−1 = −a−1
0

n−1∑
i=0

ai+1A
i.
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Theorem A.11 Let Ai, i = 0, . . . , n − 1, be m × m matrices and consider the
block companion matrix

C(aT) =



0 I 0 . . . 0

0 0 I
...

...
. . .

. . . 0

0
. . .

. . . 0 I
−A0 −A1 . . . . . . −An−1


,

where aT = [−A0,−A1, . . . ,−An−1]. Then the eigenvalues of C(aT) are the

solutions of the equation det(
∑n−1

i=0 λiAi + λnI) = 0.

M-matrices play an important role in Markov chains and in many other ap-
plications.

Definition A.12 Let B ≥ 0 be an n× n matrix. The matrix A = αI −B is an
M-matrix, if ρ(B) ≤ α.

M-matrices and nonnegative matrices are strictly related.

Theorem A.13 The inverse of a nonsingular M-matrix is nonnegative.

Regular splittings are at the basis of many iterative methods:

Definition A.14 Let A be an M-matrix. The splitting A = M − N of A is
called a regular splitting if the matrices M and N are such that N ≥ 0 and M
is an M-matrix.

Theorem A.15 If A = M1 − N1 and A = M2 − N2 are two regular splittings
of the M-matrix matrix A and if N1 ≥ N2 and det M1 �= 0, det M2 �= 0 then
ρ(M−1

1 N1) ≥ ρ(M−1
2 N2). If A is singular then ρ(M−1

1 N1) = ρ(M−1
2 N2) = 1.

Lemma A.16 Let {an}n be a real sequence such that limn an = a∗. If |an+1 −
an| ≤ γσ2n

for some γ > 0 and 0 < σ < 1, then there exists θ such that
|an − a∗| ≤ θσ2n

.

Proof Let en = an − a∗. Then we have en = en+1 + an+1 − an. Therefore,
|en| ≤ |en+1| + γσ2n

. Whence we deduce that

|en| ≤ γσ2n

+ γσ2n+1
+ γσ2n+2

+ · · · ≤ γσ2n 1
1 − σ

The proof is completed by setting θ = γ/(1 − σ). �

Inverses of matrices which differ by a low rank correction are closely related.
Let A = B + UV T where A and B are n × n matrices, U and V are n × k
matrices with k < n. Then, if A and B are nonsingular then also the k × k
matrix I + V TB−1U is nonsingular and the inverses of A and B are related by
the Sherman–Morrison–Woodbury formula
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A−1 = B−1 − B−1U(I + V TB−1U)−1V TB−1. (A.2)

Let A,B be m×n matrices and C, D be n×p matrices. The real part and the
imaginary part of the product of the complex matrices A+iB and C+iD can be
computed with three real matrix multiplications and five real matrix additions
by means of the following formula

(A + iB)(C + iD) = P1 + P2 − P3 + i(P2 + P3)
P1 = (A + B)(C − D), P2 = AD, P3 = BC.

(A.3)

Theorem A.17. (Monotone convergence theorem) Let X be a measure
space, and let 0 ≤ f1 ≤ f2 ≤ · · · be a monotone increasing sequence of nonneg-
ative measurable functions. Let f be the function defined almost everywhere by

f(x) = limn→∞ fn(x). Then f is measurable, and lim
n→∞

∫
X

fn =
∫

X

f.

Concerning functions of a complex variable we have the following definitions
and properties.

Definition A.18 A function f(z) defined in an open subset Ω of the complex
plane C is analytic in Ω if for any z ∈ Ω there exists the first derivative f ′(z)
in z. A function f(z) defined on a nonempty open connected subset R of the
complex plane is meromophic if at every point of R it is either analytic or has
an isolated singularity that is at most a pole. A function f(z) is entire if it is
analytic at all the finite points of the complex plane.

A function analytic in Ω has a power series representation for any z0 ∈ Ω of
the kind f(z) =

∑+∞
i=0 (z − z0)iai which is convergent for any z ∈ Ω.

The following result is proved in [63] (see Theorem 4.10d).

Theorem A.19 Let {fn(z)}n be a sequence of analytic functions in a nonempty
open connected set R in the complex plane. Assume that the sequence {fn(z)}
converges uniformly to f(z) on every compact subset of R. Let Γ be any Jordan
curve in R whose interior belongs to R and let f(z) �= 0 for z ∈ Γ. Then for all
sufficiently large n, the functions fn(z) have the same number of zeros in the
interior of Γ as f(z).
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NOTATION

R, C: real and complex fields
N, Z: set of natural and integer numbers
D = {z ∈ C : |z| < 1}: open unit disk
T = {z ∈ C : |z| = 1}: unit circle
A = {z ∈ C : r1 < |z| < r2}: open annulus
i: imaginary unit
TN [A(z)]: finite block Toeplitz matrix associated with the function A(z)
T∞[A(z)]: infinite block Toeplitz matrix associated with the function A(z)
T±∞[A(z)]: bi-infinite block Toeplitz matrix associated with the function A(z)
ωn = cos 2π

n + i sin 2π
n : primitive n-th root of 1

Ωn: Fourier matrix
DFTn: discrete Fourier transform of order n
IDFTn: inverse discrete Fourier transform of order n
1: vector of elements equal to 1
ei: vector with unit ith component and with zero components elsewhere
‖u‖: vector norm
‖u‖∞: infinity norm
‖u‖1: 1-norm
‖u‖2: 2-norm (Euclidean norm)
=̇: equality up to higher-order terms
≤̇: inequality up to higher-order terms
�x�: minimum integer greater than or equal to x
�x�: maximum integer less than or equal to x

2(N), 
2(Z): spaces of sequences with finite sum of squares of the moduli

1(N), 
1(Z): spaces of sequences with finite sum of moduli

∞(N), 
∞(Z): spaces of sequences with bounded values
W: Wiener algebra
W+: Wiener algebra of matrix power series in z
W−: Wiener algebra of matrix power series in z−1

‖A(z)‖∗: the infinity norm of
∑+∞

i=−∞ |Ai|, for A(z) ∈ W
fodd(z2): the odd part of the function f(z), i.e., (f(z) − f(−z))/(2z)
feven(z2): the even part of the function f(z), i.e., (f(z) + f(−z))/2
⊗: Kronecker product
∗: Hadamard (component-wise) product
Im: m × m identity matrix
I: identity matrix
Z: lower shift matrix
Z: the matrix Z ⊗ I
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∆: displacement operator
a = vec(A): vector formed by column-wise arranging the matrix A
A = vec−1

m (a): the m × n matrix such that a = vec(A)
PA: submatrix of the m × m matrix P with indices in A ⊂ {1, . . . , m}
PA,B : submatrix of P with row indices in A and column indices in B
ρ(A): spectral radius of A
λ(A): set of eigenvalues of A
E: the matrix with all elements equal to 1
E[X]: the expected value of the random variable X
E[X|A]: conditional expectation
P[X = j]: probability that the random variable X takes the value j
P[X = j|Y = i]: conditional probability
I{}: indicator function
π: invariant probability vector
µ: drift of an M/G/1-type Markov chain
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skip-free to higher levels, 90
skip-free to lower levels, 90

Markov process, 18
homogeneous, 18

matrix Laurent polynomial, 45
matrix Laurent polyonomial

inversion, 256
matrix Laurent power series, 45

inversion, 54
matrix polynomial, 26, 45
matrix power series, 45
meromorphic function, 309
minimal nonnegative solution, 61
minimal solution, 61

natural algorithm, 145
Newton’s iteration, 51, 169, 292, 296

algorithm, 176
for tree-like processes, 296

non-skip-free Markov chain, 263
norm, 305
NSF Markov chain, 263
numerical degree of matrix Laurent power

series, 52
numerical degree of matrix power series, 52

operator norm, 305
order of convergence, 142

partial indices, 59
passage class, 10
path, 9
periodicity, 13
Perron–Frobenius eigenvalue, 20
Perron–Frobenius eigenvector, 20
Perron–Frobenius pair, 20
PH queues, 109
Phase-type queues, 109
phase-type random variables, 4
point-wise Laurent power series computa-

tion, 55, 56
point-wise power series computation, 57
power bounded, 61
primitive matrix, 20

QBD Markov chain, 110
Quasi-birth–death processes, 126
quasi-birth-and-death Markov chain, 110
queueing models, 4

recurrent state, 8
null, 8
positive, 8

reducible matrix, 307
regular splitting, 308
root of a matrix function, 59
roots of unity, 24

primitive, 24

Schur complement, 307
semi-infinite block Toeplitz matrices, 45
Sherman–Morrison–Woodbury formula, 308
shifted cyclic reduction, 237, 241
shifting technique, 79, 230
skip-free to higher levels, 90
skip-free to lower levels, 90
spectral minimal solution, 61
spectral radius, 19, 305
state space, 3
stochastic process, 3

continuous, 3
discrete, 3
tree-like, 132, 133, 286

stopping time, 7
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strong Markov property, 7

time space, 3
Toeplitz matrix, 32
traditional algorithm, 145
transient state, 8
transition graph, 9
transition matrix, 5
tree-like processes, 132, 133, 286

unitary matrix, 25
upper triangular Toeplitz matrix, 35

vector norm, 305

weak canonical factorization, 60
weak Wiener–Hopf factorization, 60
Wiener algebra, 45
Wiener–Hopf factorization, 57, 59

weak, 60
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