
http://www.cambridge.org/9780521827409

This page intentionally left blank

PROTECTING INFORMATION

For many everyday transmissions, it is essential to protect digital informa-
tion from noise or eavesdropping. This undergraduate introduction to error
correction and cryptography is unique in devoting several chapters to quan-
tum cryptography and quantum computing, thus providing a context in which
ideas from mathematics and physics meet. By covering such topics as Shor’s
quantum factoring algorithm, this text informs the reader about current think-
ing in quantum information theory and encourages an appreciation of the
connections between mathematics and science.

Of particular interest are the potential impacts of quantum physics: (i) a
quantum computer, if built, could crack our currently used public-key cryp-
tosystems; and (ii) quantum cryptography promises to provide an alternative
to these cryptosystems, basing its security on the laws of nature rather than
on computational complexity.

No prior knowledge of quantum mechanics is assumed, but students
should have a basic knowledge of complex numbers, vectors, and matrices.

Susan Loepp is an Associate Professor of Mathematics in the Department of
Mathematics and Statistics at Williams College. Her research is in commuta-
tive algebra, focusing on completions of local rings.

William K. Wootters, a Fellow of the American Physical Society, is the Barclay
Jermain Professor of Natural Philosophy in the Department of Physics at
Williams College. He does research on quantum entanglement and other
aspects of quantum information theory.

“The authors have combined the two ‘hot’ subjects of cryptography and cod-
ing, looking at each with regard to both classical and quantum models of
computing and communication. These exciting topics are unified through
the steady, consistent development of algebraic structures and techniques.
Students who read this book will walk away with a broad exposure to both
the theory and the concrete application of groups, finite fields, and vector
spaces.”

– Ben Lotto, Vassar College

Protecting Information

From Classical Error Correction to

Quantum Cryptography

susan loepp
Williams College

william k. wootters
Williams College

  
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

Cambridge University Press
The Edinburgh Building, Cambridge  , UK

First published in print format

- ----

- ----

- ----

© Susan Loepp and William K.Wootters 2006

2006

Information on this title: www.cambridg e.org /9780521827409

This publication is in copyright. Subject to statutory exception and to the provision of
relevant collective licensing agreements, no reproduction of any part may take place
without the written permission of Cambridge University Press.

- ---

- ---

- ---

Cambridge University Press has no responsibility for the persistence or accuracy of s
for external or third-party internet websites referred to in this publication, and does not
guarantee that any content on such websites is, or will remain, accurate or appropriate.

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org

hardback

paperback

paperback

eBook (EBL)

eBook (EBL)

hardback

http://www.cambridge.org
http://www.cambridge.org/9780521827409

Dedicated to

Leona and Franzie,

Dorothy and Franzie,

and Adrienne, Mary, and Nate

Contents

Preface page xi

Acknowledgments xv

1 Cryptography: An Overview . 1
1.1 Elementary Ciphers 1
1.2 Enigma 9
1.3 A Review of Modular Arithmetic and Zn 18
1.4 The Hill Cipher 21
1.5 Attacks on the Hill Cipher 27
1.6 Feistel Ciphers and DES 28
1.7 A Word about AES 34
1.8 Diffie–Hellman Public Key Exchange 35
1.9 RSA 37
1.10 Public Key Exchanges with a Group 43
1.11 Public Key Exchange Using Elliptic Curves 46

2 Quantum Mechanics . 56
2.1 Photon Polarization 57

2.1.1 Linear polarization 58
2.1.2 Review of complex numbers 67
2.1.3 Circular and elliptical polarization 71

2.2 General Quantum Variables 77
2.3 Composite Systems 83
2.4 Measuring a Subsystem 93
2.5 Other Incomplete Measurements 96

3 Quantum Cryptography . 103
3.1 The Bennett–Brassard Protocol 105
3.2 The No-Cloning Theorem 115
3.3 Quantum Teleportation 119

vii

viii Contents

4 An Introduction to Error-Correcting Codes 128
4.1 A Few Binary Examples 129
4.2 Preliminaries and More Examples 134
4.3 Hamming Distance 140
4.4 Linear Codes 145
4.5 Generator Matrices 148
4.6 Dual Codes 155
4.7 Syndrome Decoding 160
4.8 The Hat Problem 166

5 Quantum Cryptography Revisited . 173
5.1 Error Correction for Quantum Key

Distribution 174
5.2 Introduction to Privacy Amplification 179

5.2.1 Eve knows a fixed number of elements
of the bit string 180

5.2.2 Eve knows the parities of certain subsets
of the bit string 183

5.2.3 The general case 185

6 Generalized Reed-Solomon Codes . 193
6.1 Definitions and Examples 193
6.2 A Finite Field with Eight Elements 195
6.3 General Theorems 197
6.4 A Generator Matrix for a GRS Code 200
6.5 The Dual of a GRS Code 202

7 Quantum Computing . 205
7.1 Introduction 205
7.2 Quantum Gates 208
7.3 The Deutsch Algorithm 217
7.4 A Universal Set of Quantum Gates 221
7.5 Number Theory for Shor’s Algorithm 226
7.6 Finding the Period of f (x) 229
7.7 Estimating the Probability of Success 238
7.8 Efficiency of Factoring 249
7.9 Introduction to Quantum Error

Correction 257
7.9.1 An X-correcting code 258
7.9.2 A Z-correcting code 261
7.9.3 The Shor code 262

Contents ix

Appendix A . 269
A.1 Fields 269
A.2 A Glossary of Linear Algebra Definitions and Theorems 271
A.3 Tables for the Alphabet 275

References 277

Index 285

Preface

In these early decades of the information age, the flow of information
is becoming more and more central to our daily lives. It has therefore
become important that information transmission be protected against
eavesdropping (as, for example, when one sends credit card information
over the Internet) and against noise (which might occur in a cell phone
transmission, or when a compact disk is accidentally scratched). Though
most of us depend on schemes that protect information in these ways, most
of us also have a rather limited understanding of how this protection is
done. Part of the aim of this book is to introduce the basic concepts
underlying this endeavor.

Besides its practical significance, it happens that the subject of pro-
tecting information is intimately related to a number of central ideas
in mathematics and computer science, and also, perhaps surprisingly, in
physics. Thus in addition to its significance for society, the subject provides
an ideal context for bringing ideas from these disciplines together. This
interdisciplinarity is part of what has attracted us to the subject, and we
hope it will appeal to the reader as well.

Among undergraduate texts on coding or cryptography, this book is
unusual in its inclusion of quantum physics and the emerging technology
of quantum information. Quantum cryptography, in which an eavesdrop-
per is detected by his or her unavoidable disturbance of delicate quantum
signals, was proposed in the 1980s and since then has been investigated
and developed in a number of laboratories around the world. Though
it is still a technology of the future, that future may not be far from
us. Indeed some companies are already selling quantum cryptographic

xi

xii Preface

systems for a limited range of applications. The other major potential
quantum information technology, quantum computation, is further from
realization – most experts agree that full-scale quantum computation is
at least a few decades away – but it is being vigorously pursued by re-
searchers because of its tremendous potential. Most notably, a quantum
computer would render useless all the standard public key cryptosystems
such as those used in Internet communications. Indeed, the very possi-
bility of quantum computation is part of the motivation for developing
quantum cryptography.

Thus this book pivots around two binary oppositions. First, there are
the two reasons for protecting information: against eavesdropping and
against noise. Second, there are two arenas in which one can work: the
classical and the quantum. Most of the chapters lie primarily on one side
or the other of each of these oppositions, but the book is constructed
with the intention that these different facets complement and reinforce
each other. Thus the mathematics and physics are to some extent inter-
woven, not necessarily seamlessly but in such a way as to make use of the
connections.

The book has grown out of a one-semester course we have taught
a few times now to upper-level undergraduates, mostly in mathematics,
physics, and computer science. A student in this course needs to have a
certain level of mathematical sophistication – linear algebra is particularly
helpful though not absolutely required – but the physics is supposed to be
self-contained. Partly because of the intended audience, we focus more on
the mathematical structure of quantum mechanics than on its connections
with other parts of physics, though a few terms such as “electric field” and
“quark” do make cameo appearances. Most of the problems at the ends
of the sections have been used in our course and seem to be about the
right level of difficulty. There are a few, though, that have not been so
tested. Let the teacher and student be warned!

We begin in Chapter 1 with a selected survey of ideas in cryptography.
The chapter introduces modular arithmetic, first at an elementary level
but building to a more sophisticated understanding. The chapter finishes
with ideas from group theory and the theory of elliptic curves. The next
logical step would be to take up the subject of quantum cryptography, but
this requires some background in quantum physics, which is provided in

Preface xiii

Chapter 2. Rather than keeping the quantum mechanics entirely formal,
we ground it by imagining simple experiments involving the polarization
of photons. The chapter develops the theory far enough that the ideas can
be used not only for quantum cryptography but also, later, for quantum
computation and basic quantum error correction. (The final section of the
chapter can be omitted if one also chooses to omit the section on quantum
error correction.)

With the quantum bases covered, we proceed in Chapter 3 to quantum
cryptography, focusing on the most widely studied quantum strategy for
distributing a secret key. Quantum key distribution motivates two other
subjects in quantum mechanics, the no-cloning theorem and quantum
teleportation, which are therefore also included in Chapter 3. But the
full protocol for quantum key distribution cannot quite be discussed until
we make further progress on the classical front, and this provides one
motivation for Chapter 4 on classical error-correcting codes. The main
mathematical ideas in this chapter revolve around vector spaces over Zp,
where p is a prime number, as the main mathematical ideas of Chapter 2
revolved around vector spaces over the complex numbers. Armed with
generator matrices, check matrices, and syndrome decoding, we return
in Chapter 5 to quantum key distribution to flesh out the protocol. We
then use Zp and other finite fields in Chapter 6 to study generalized Reed-
Solomon codes.

The final chapter belongs to the quantum world. First we develop
enough of the theory of quantum computation to outline the quantum
factoring algorithm, which threatens the public key cryptography intro-
duced in Chapter 1. And the last section shows how in principle one can
protect quantum information against noise.

It would be easy to make a long list of relevant topics that we do not
cover in this book. Of particular note is the whole theory of informa-
tion and entropy, including, for example, the fundamental limits on error
correction. There are many excellent books on this subject, and we can
imagine using such a book in conjunction with this one. (In our own ex-
perience we have found that the topics covered here give students more
than enough to chew on.) While we have not attempted to give a com-
plete bibliography such as one would find in a review article, we have
tried, via footnotes, to give students enough entries into the literature to

xiv Preface

allow them to study in more depth any of the topics we have covered.
Moreover, the book should supply the conceptual background needed to
approach these sources.

We hope that it will also encourage an appreciation of the connec-
tions between mathematics and physics and the role that both of these
disciplines play in current and future information technology.

Acknowledgments

This book has benefited from the comments and suggestions of many
students who have taken our course in this subject over the last several
years. We especially thank those who suffered through the first version, in
which the students themselves were responsible for producing and shar-
ing class notes. Some of these notes have, in some form, found their way
into this book. Two recent students, Evan Miller and Evan Couzo, con-
tributed especially valuable suggestions to a later draft. Besides those who
took the course, there are other students who were tremendously helpful
as teaching assistants. Among these, we particularly want to thank Kevin
O’Connor, Teodora Ivanova, and Philippa Charters whose computer pro-
grams added much to the course and significantly influenced its content.
The development of our course, the computer programs, and this book
were generously supported by Williams College and a grant from the
National Science Foundation.

We are grateful to Jon Hall of Michigan State University for sharing his
expert knowledge, suggestions, and advice. Two colleagues at other insti-
tutions, Ben Lotto of Vassar College and Mike Westmoreland of Denison
University, have both taught courses based on early, sketchy versions of
this book, and we have learned much from their experiences and have
incorporated their comments. Mike and Ben, along with Duane Bailey,
Charles Bennett, Richard Jozsa, and Perry Susskind, have generously
shared their suggestions on more recent versions as well. Obviously, they
are not responsible for the remaining faults! Those are all to be blamed
on the Berkshire hills that surround us here, whose colors have distracted
us from our work.

xv

1 Cryptography: An Overview

1.1 Elementary Ciphers

Cryptography is the design and use of communication schemes aimed at
hiding the meaning of the message from everyone except the intended re-
ceiver. Cryptanalysis is the effort to foil an encryption system, to crack the
code. The study of cryptography and cryptanalysis is called cryptology and
is the focus of this chapter.1 Later we will study some fairly sophisticated
cryptographic systems, but we begin with a few elementary examples.

1.1.1 Substitution ciphers

Substitution ciphers are the familiar sort of encryption that one finds in
Sunday newspaper puzzles, in which each letter of the alphabet stands
for another letter. A special case is the Caesar cipher, in which the al-
phabet is simply shifted by some number of places. In the version used
by Julius Caesar, the alphabet is shifted forward by three places. For
example, if a letter of the original message, or plaintext, is A, the cor-
responding letter of the encrypted message, or cyphertext, is D, and
so on as indicated here:

plaintext: A B C . . . X Y Z

ciphertext: D E F . . . A B C

1 For a compact overview of cryptography and cryptanalysis, including many practical issues,
see Piper and Murphy (2002). A more mathematical information-theoretic approach is
given in Welsh (1988). A popular historical account can be found in Singh (1999). For a
more thorough treatment of the history, see Kahn (1967).

1

2 Chapter 1. Cryptography: An Overview

We can express this cipher mathematically by assigning a number to each
letter: A → 0, B → 1, . . . , Z → 25. Then if x represents a letter of the
plaintext and y the corresponding letter of the ciphertext, Julius Caesar’s
cipher can be expressed as

y = x + 3 (mod 26),

where “(mod 26)” means that one takes the remainder upon dividing by
26. (Much more on modular arithmetic in later sections of this chapter.)
If you are adept at cracking the substitution ciphers of the Sunday paper,
you may find it surprising that Caesar was able to keep any messages
secret with this simple strategy, but evidently it worked well enough.

A simple generalization of the Caesar cipher is expressed by the equa-
tion y = ax + b (mod 26), where a and b are integers.2 It is interesting to
ask whether some values of a and b are better than others, and indeed
this question is the subject of one of the exercises below. A further gen-
eralization is to use an arbitrary permutation of the alphabet.

How does one go about cracking a substitution cipher? The standard
technique, which is well known today but was not known in Roman times,
is frequency analysis. Let us assume that the cryptanalyst knows what lan-
guage the plaintext is expressed in; suppose it is English. In typical English
text, each letter occurs with a certain frequency. The most common letter
in English is E: if you blindly point to a letter on a page in a novel, the
probability that the letter will be E is around 12.7%. The following table
gives the frequencies of all the letters, as computed from a sample of over
300,000 characters taken from newspapers and novels.3

E 12.7% D 4.2% P 1.9%
T 9.0% L 4.0% B 1.5%
A 8.2% U 2.8% V 1.0%
O 7.5% C 2.8% K 0.8%
I 7.0% M 2.4% Q 0.1%
N 6.7% W 2.4% X 0.1%
S 6.3% F 2.2% J 0.1%
H 6.1% G 2.0% Z 0.1%
R 6.0% Y 2.0%

2 The special case with a = 1 and b = 13, called “ROT13,” is used nowadays in online
settings to hide such things as joke punchlines and puzzle solutions.

3 Piper and Murphy (2002). The authors write that the table is based on one originally
compiled by H. J. Beker and F. C. Piper.

1.1. Elementary Ciphers 3

We can use this table to crack a substitution cipher as follows. Given the
ciphertext, we count how many times each letter appears. If the message
is long enough, the frequencies of occurrence will help us guess how
each letter should be decrypted. For example, if v occurs around 13% of
the time, we guess that v represents the letter e. Once we have correctly
guessed a few of the letters, we look for familiar words and so on. A related
technique is to look for pairs of letters that occur frequently together.
Some of the exercises at the end of this section will give you practice with
frequency analysis.

1.1.2 Vigenère ciphers

We now consider a cipher that is more sophisticated than simple substi-
tution. It was invented by Giovan Batista Belaso in the sixteenth century
but later incorrectly attributed to Blaise de Vigenère and given his name.
(Vigenère devised a more powerful variation on this cipher, in which
the message itself was used to generate the key.)4 The secret key in this
case is a word or phrase. It is easiest to explain the cipher by giving an
example; in the following example the message is “Meet me at midnight,”
and the key is “quantum.” (Not a key that Belaso or Vigenère is likely to
have used.)

PLAINTEXT: M E E T M E A T M I D N I G H T

KEY: Q U A N T U M Q U A N T U M Q U

CIPHERTEXT: C Y E G F Y M J G I Q G C S X N

To generate the ciphertext, we have associated an integer with each
letter as before: A→ 0, B→ 1, etc.; in each column above we have added,
mod 26, the numbers corresponding to the given letters of the plaintext
and the key. For example, the first letter of the ciphertext is obtained as
follows:

M + Q → 12 + 16 (mod 26) = 2 → C

In other words, each letter is encrypted with a Caesar cipher – the encryp-
tion is a cyclic shifting of the alphabet – but different letters can be shifted
by different amounts. In the above example, six distinct Caesar ciphers

4 Belaso’s cipher is closely related to ciphers devised by others in the preceding century. A
full account can be found in Kahn (1967).

4 Chapter 1. Cryptography: An Overview

are used in a pattern that repeats after seven letters. The intended recip-
ient should know the key and can recover the plaintext by subtracting
from each letter of the ciphertext the corresponding letter of the key.

Notice how this cipher improves on the simple substitution scheme.
The letter M appears three times in our plaintext, and each time it is
encrypted differently. Conversely, the letter G appears three times in the
ciphertext, and each time it stands for a different letter of the plaintext.
Thus a straightforward frequency analysis will not be nearly as effective
as it is against a substitution cipher.

However, one can still use frequency analysis to crack the cipher if
the message is long enough. Suppose that the cryptanalyst can somehow
figure out the length of the repeated key. Let us say that the length is 7
as in the above example. Then every seventh letter is encrypted with the
same Caesar cipher, which can be cracked by doing a frequency analysis
on just those entries of the ciphertext. So the problem is not hard once
we know the length of the key. But how might the cryptanalyst guess the
length of the key? One method is to look for repeated strings of letters.
For example, in a long message it is quite likely that the word “the” will
be encrypted in the same way several times and will thus produce the
same three-letter sequence several times. So if the cryptanalyst sees, for
example, three instances of “rqv,” the second instance displaced from the
first by 21 steps and the third displaced from the second by 56 steps, he or
she could reasonably guess that the repeated key is seven letters long, since
7 is the only positive integer (other than 1) that divides both 21 and 56.
Of course such a guess becomes more trustworthy if more repetitions are
discovered, since it is always possible for a string of letters of the ciphertext
to be repeated by chance. This method of cracking the Vigenère cipher
was discovered in the nineteenth century by Friedrich Kasiski.

An alternative version of the Vigenère cipher replaces the repeated
key with a “running key,” usually an easily accessible text that is at least as
long as the message. For example, we might use as the key the Constitution
of the United States, beginning with the preamble. Then our encryption
of “Meet me at midnight” would look like this:

PLAINTEXT: M E E T M E A T M I D N I G H T

KEY: W E T H E P E O P L E O F T H E

CIPHERTEXT: I I X A Q T E H B T H B N Z O X

1.1. Elementary Ciphers 5

The recipient, knowing the key, again simply subtracts it, letter by letter,
from the ciphertext to recover the original message.

Clearly the cryptanalytic method we just described will not work
against this encryption scheme, because the key is no longer periodic.
But the key does have some structure, and a cryptanalyst can use this
structure to get a foothold on the plaintext. For example, if the cryptan-
alyst suspects that the key is a piece of English text, she can guess that
the word “the” appears in it frequently. She can then try “the” as part of
the key in various positions along the ciphertext and see if the resulting
plaintext is plausible as part of the message. Let us try this in the above
example, applying THE at each position of the ciphertext.

Trigram in ciphertext Trigram minus THE

IIX PBT
IXA PQW
XAQ ETM
AQT HJP
...

...
ZOX GHT

Most of the trigrams on the right-hand side of the table could not
possibly be part of a message written in English. In fact the only plausible
candidates are ETM and GHT. The latter is particularly helpful, because
there are only a few combinations of letters that are likely to precede
GHT in English. The cryptanalyst might try a few of these, to see what
they would imply about the key. Here is a table showing what he or she
would find:

Guess at plaintext Ciphertext minus plaintext = key

OUGHT NTTHE
NIGHT OFTHE
FIGHT WFTHE
RIGHT KFTHE
LIGHT QFTHE
EIGHT XFTHE

Of these, only the first two make any sense as part of a passage in
English, and of these the second is more likely. So the cryptanalyst might

6 Chapter 1. Cryptography: An Overview

tentatively guess that NIGHT is part of the plaintext and OFTHE part
of the key. Continuing in this way, working back and forth between the
unknown plaintext and the unknown key, he or she has a reasonable
chance of cracking the cipher.

1.1.3 One-time pad

What makes the Vigenère cipher insecure, even with the running key of
the last example, is that the key has some structure that can be exploited by
the cryptanalyst: the key is a piece of English text, and English definitely
has some structure. The natural way to avoid this problem is to use a
running key consisting of purely random letters. The key used in the
following example was generated, literally, by tossing coins.

PLAINTEXT: M E E T M E A T M I D N I G H T

KEY: P O V N H U J B K R C J D C O F

CIPHERTEXT: B S Z G T Y J U W Z F W L I V Y

Of course the intended recipient must also have a copy of the random
key.

In this example, even though there is plenty of structure in the plain-
text, the randomness of the key – if it is truly random – guarantees that
there will be no structure whatsoever in the ciphertext. This cryptographic
scheme can therefore not be broken by cryptanalysis. 5 (An eavesdropper
could try other attacks such as intercepting the secret key on its way to
the intended recipient.) We are assuming here that the random key is at
least as long as the message, so that it will not have to be repeated. Also,
for complete security it is important that the key be used only once. If it is
used twice, an eavesdropper could compare the two ciphertexts and look
for patterns. This method of encryption – a random key used only once –
is known as a one-time pad, suggesting that the key might be copied on
a pad of paper, delivered to the intended recipient, used once, and then
destroyed.

Nowadays much of the information that is conveyed from place to
place is in digital form and can be expressed as a sequence of zeros and

5 A precise statement of this claim was proved by Shannon (1949).

1.1. Elementary Ciphers 7

ones. A one-time pad works fine for such an application, the key in this
case being a random binary string. For example, one might see the fol-
lowing encryption of a rather uninteresting message. (Here again the key
was generated by tossing a fair coin, despite what you may think.)

PLAINTEXT: 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

KEY: 1 0 0 1 0 0 1 0 0 1 0 0 0 0 1 1

CIPHERTEXT: 1 1 0 0 0 1 1 1 0 0 0 1 0 1 1 0

In each column the two entries, one from the plaintext and one from the
key, have been added mod 2: that is, the ordinary sum is replaced by its
remainder upon division by 2, so that 1 + 1 (mod 2) = 0.

Though the one-time pad is perfectly secure against cryptanalysis, it
is by no means the most widely used form of cryptography. The problem
with the scheme is that the random key has to be generated and delivered
securely to the intended recipient at a rate equal to or exceeding the rate
at which messages are to be conveyed. If this rate is large, one might have
to employ an army of trusted couriers to transport the key.

Later in this book we consider in some detail a recently invented
scheme, quantum key distribution, that could potentially solve this prob-
lem by relying not on mathematics but on the laws of nature. But our study
of quantum key distribution will have to wait until we have introduced
the relevant laws in Chapter 2.

EXERCISES

Problem 1. We mentioned a substitution cipher in which each plaintext
letter, represented by an integer x, is replaced by the letter corresponding
to the integer y = ax + b (mod 26), where a and b are integers. If the
alphabet we are using has n letters, where n is not necessarily 26, we can
generalize this rule to y = ax + b (mod n), where “mod n” means that
we take the remainder upon division by n. In answering the following
questions, assume that the integers a and b are restricted to the values
0, . . . , n − 1.

(a) Suppose that n has the value 26, as it does if the plaintext is in
English and we do not encrypt spaces or punctuation marks. Is there a

8 Chapter 1. Cryptography: An Overview

reason not to use certain values of the constant a or of the constant b? If
so, which values are the bad ones and what makes them bad?

(b) If we also count “space” as a character to be encrypted, we have
n = 27. Now what, if any, are the bad values of a? Of b?

(c) For a general n, make a conjecture as to what will be the bad values
of a and b, if there are any.

Problem 2. The following ciphertext was encrypted by a simple shift of
the alphabet. All spaces and punctuation marks were first deleted from
the plaintext, which was then arbitrarily broken into five-letter blocks.
Find the original plaintext.

VQFGE KRJGT VJKUU GPVGP EGUJK HVGCE JNGVV GTDCE
MYCTF DAVYQ UVGRU

Problem 3. The following ciphertext was generated by a Vigenère cipher
with a repeating key. All spaces and punctuation marks were removed
from the plaintext, and the resulting ciphertext was broken into six-letter
blocks.

NRUATW YAHJSE DIODII TLWCIJ DOIPRA DPANTO EOOPEG
TNCWAS DOBYAP FRALLW HSQNHW DTDPIJ GENDEO BUWCEH
LWKQGN LVEEYZ ZEOYOP XAGPIP DEHQOX GIKFSE YTDPOX
DENGEZ AHAYOI PNWZNA SAOEOH ZOGQON AAPEEN YSWYDB
TNZEHA SIZOEJ ZRZPRX FTPSEN PIOLNE XPKCTW YTZTFB
PRAYCA MEPHEA YTDPSA EWKAUN DUEESE YCNJPP LNWWYO
TSKYEG YOSDTD LTPSED TDZPNK CDACWW DCKYSP CUYEEZ
MYDFMW YIJEEH WICPNY PWDPRA LSPSEK CDACOB YAPFRA
LPLLRA YTHJCK XEOQRK XAOZUN NEKFTO TDAZFK FROPLR
PSWYDE DMKCEI JSPPRE ZUO

(a) Look for strings of three or more letters that are repeated in the
ciphertext. From the separations of different instances of the same string,
try to infer the length of the key.

(b) Using frequency analysis or any other means, try to find the key
and the plaintext. (You might find Section A.3 of the Appendix helpful.)

1.2. Enigma 9

1.2 Enigma

Though our review of cryptography is by no means exhaustive, there is
one historical example that we cannot pass by, namely, the Enigma cipher
used by the German military before and during World War II.6

The Enigma cipher is more complex than the ciphers we have con-
sidered so far. Though it can be described in purely mathematical terms
and could in principle be implemented by hand, the cipher is intimately
tied to a mechanical device, the Enigma machine. In this section we de-
scribe a slightly simplified version of the Enigma machine and the cipher
it generates.7

1.2.1 The Enigma cipher

The main cryptographic components of the machine are (i) the plugboard,
(ii) the rotors, and (iii) the reflector. Each of these parts has the effect
of permuting the alphabet, and in each case the permutation is achieved
by electrical wires that we can imagine connecting the input letter to
the output letter. The net effect of all the parts is obtained by following
the wires through the machine, from the original input letter, typed on
a keyboard, to the output letter, indicated by the lighting of a lightbulb
labeled with that letter. We now describe briefly each of the components.

The plugboard includes an array of 26 jacks, one for each letter, and six
electrical cables, each of which can be plugged into two of the jacks so as
to interchange those two letters.8 All the letters that are not part of such
interchanges are left unchanged. Let us call the plugboard’s permutation
A; it is a function that maps the alphabet to itself. If x is an input letter, we
will write Ax (without parentheses) to indicate the plugboard’s output.
Notice that the inverse function A−1, which takes a given output of the
plugboard to the corresponding input, is the same as A itself. This fact
will be important in what follows.

6 For more on the Enigma cipher, see for example Sebag-Montefiore (2000).
7 Our main simplification is to avoid discussing the “rings,” a feature of the Enigma machine

that added some security but did not constitute one of the main cryptanalytic challenges.
8 Each jack actually consists of a pair of holes – an input and an output – and each electrical

cable consists of a pair of wires: if one wire sends the letter B to the letter J, for example,
its companion wire sends J to B.

10 Chapter 1. Cryptography: An Overview

Each rotor is a disk, with 26 input locations arranged in a circle on
one side, and 26 output locations arranged in an identical circle on the
other side. Inside the rotor, a wire runs from each of the input locations
to one of the output locations, and together, the 26 wires implement a
complicated permutation with no special symmetries. The output of the
plugboard becomes the input to the first rotor, the output of the first rotor
becomes the input to the second rotor, and so on. In the original Enigma
machine used by the German army, there were three standard rotors, each
embodying a different permutation.

The reflector acts on the output of the last rotor and effects a permu-
tation that, like that of the plugboard, simply interchanges letters in pairs.
Unlike the permutation of the plugboard, the reflector’s permutation is
fixed and cannot be changed by the operator of the machine, at least not
in the simple version of Enigma that we are considering here. (There were
other versions allowing some freedom to adjust the reflector.) Also the
permutation is not limited to six pairs of letters: every letter is sent to a
different letter. We will call the reflector’s permutation B, and we note
that B−1 = B.

Let us now follow the path by which the input letter leads to a par-
ticular output letter. As we have implied above, the input letter first
encounters the plugboard permutation, then each of the rotor permu-
tations in turn, and then the reflector permutation. After that, the path
goes backwards through the rotors (in reverse order) and finally through
the plugboard again before the output is indicated by a labeled light-
bulb. The whole path is diagrammed for a simplified alphabet in Fig. 1.1.9

Notice that because the reflector leaves no letter unchanged, neither does
the Enigma machine as a whole: it never encodes a letter as itself.

The most characteristic and subtle feature of the Enigma machine is
this: though each rotor has a fixed permutation wired into it, its orientation
with respect to the other rotors and with respect to the other components
can change from one keystroke to the next. There is one special ori-
entation of each rotor which we call the “standard” orientation. Let Ri

be the permutation executed by the ith rotor when it is in its standard
orientation. Then, if the rotor’s orientation is rotated from its standard

9 This figure and Fig. 1.2 were inspired by similar figures in Singh (1999).

1.2. Enigma 11

A

B

C

D

plugboard rotors reflector

Figure 1.1: Schematic illustration of the main cryptographic elements of the
Enigma machine for an alphabet of four letters. Here the letter A is encrypted
as C. (The specific jigs and jags within each rotor have no special significance.
All that matters in each rotor is the mapping between the left side and the
right side.)

A

B

C

D

plugboard rotors reflector

Figure 1.2: This is the same as Fig. 1.1 except that the first rotor (the one on
the left) has advanced by one step. Now the letter A is encrypted as D. Circuit
paths that seem to be heading off the top of the first rotor are continued at
the bottom.

orientation by one “step,” that is, by one 1/26 of a complete cycle, it is as
if the permutation Ri were applied to an alphabet that had been shifted
by one letter. In effect – and this statement defines the direction of the
rotation – the rotor now implements the permutation S−1Ri S, where S is
the simple permutation A → B → · · · → Z → A, and S−1 is its inverse.
(Here the order of operations is from right to left, so that the forward shift
is applied first.) The effect of a one-step rotation is illustrated in Fig. 1.2.
If the rotor has been rotated by n steps from its standard orientation (in
the same direction as before), the permutation it executes is

S−nRi Sn, (1.1)

where S−n = (S−1)n; that is, S−n is the inverse of S applied n times.
At any given keystroke, each rotor has a specific orientation that is

expressed in the value of n in Eq. (1.1). If there are three rotors, there

12 Chapter 1. Cryptography: An Overview

are three such indices n1, n2, and n3, each of which takes values from
0 to 25. At the next keystroke, the values will be different. Typically
the difference is only in n1, which is advanced by one unit mod 26. But
when n1 changes from 25 to 0, n2 is advanced by one unit. (This is what
is special about the “standard” orientation of the first rotor.) Similarly,
n3 is advanced by one unit only when n2 changes from 25 to 0. Thus
the number of keystrokes required before all the rotors return to their
original orientations is 263 = 17576.

Let us put all these pieces together to write down the mapping that the
machine implements in a given keystroke (again, the expression should
be read from right to left):

A(S−n1R1Sn1)−1(S−n2R2Sn2)−1(S−n3R3Sn3)−1 B
(S−n3R3Sn3)(S−n2R2Sn2)(S−n1R1Sn1)A (1.2)

Recall that A and B are the permutations effected by the plugboard and
the reflector respectively. We can simplify this expression a little by writ-
ing out the inverses of the products. One can verify that if C and D are
invertible functions defined on the same set, the inverse of the product CD
is the product of the inverses in reverse order; that is, (CD)−1 = D−1C−1.
(To see this, note that D−1C−1CD is the identity function.) Thus, for ex-
ample, we can write (S−n1R1Sn1)−1 = (Sn1)−1R−1

1 (S−n1)−1 = S−n1R−1
1 Sn1 .

Applying this fact and combining factors when possible, we find that the
mapping of Eq. (1.2) can be rewritten as

AS−n1R−1
1 S(n1−n2)R−1

2 S(n2−n3)R−1
3 Sn3 BS−n3R3S(n3−n2)R2S(n2−n1)R1Sn1 A

(1.3)

In an actual Enigma machine, the order of the three rotors is ad-
justable; that is, each rotor can be taken out and put into a different
rotor-slot. Thus the order in which the permutations R1, R2, and R3 act
need not be the same as in Eq. (1.3).

In Problem 3 at the end of this section, you are asked to show that
the permutation given by Eq. (1.3) is its own inverse. This is no accident.
The Enigma machine was designed so that the procedure for decryption
is exactly the same as the procedure for encryption. Of course, in order
for this to work, it is necessary that the person doing the decryption start
the machine with all the same settings as the person who encrypted the
message: the same plugboard permutation, the same order of the rotors,

1.2. Enigma 13

and the same initial orientation of each rotor. Any other setting would
most likely produce a nonsensical string of letters.

This brings us to the protocol under which the German military used
the Enigma machine, at least in the years leading up to World War II.
Each message was encrypted with two secret keys: the daily key and the
message key. Every person authorized to use the machine was given, each
month, a codebook containing all the daily keys for that month. Each
daily key consisted of three items:

1. The order of the three rotors. (There are six possible orders.)
2. The initial orientations of the rotors. (There are 263 = 17576 such

orientations.)
3. The plugboard settings. (There are about 1011 possible settings. See

Problem 1.)

Altogether the number of possible daily keys is around 1016. The message
key was a sequence of three letters, chosen at random by the operator
of the machine, specifying new orientations of the three rotors for a par-
ticular message. For example, the message key AAA would indicate that
each rotor was to be set in its standard orientation, whereas AAB would
mean that the last rotor should be rotated by one step. The number of
possible message keys is 263 = 17576.

Here is the protocol for sending a message:

1. Set the machine according to the daily key.
2. Type in the randomly chosen message key twice, and send the resulting

six letters as encrypted by the machine.
3. Reset the rotor orientations according to the message key.
4. Type in the message itself and send the ciphertext generated by the

machine.

Thus the protocol for deciphering a message is as follows:

1. Set the machine according to the daily key.
2. Type in the first six letters of the ciphertext to read the message key.

(The result should be two copies of the message key, e.g., GPZGPZ.)
3. Reset the rotor orientations according to the message key.
4. Type in the rest of the ciphertext and read out the plaintext.

14 Chapter 1. Cryptography: An Overview

Clearly the Enigma cipher is complex and not a cipher that is easily
cracked. And yet it was cracked by Polish cryptanalysts, years before the
war started. The full story of this cryptanalysis is quite a long one. In
the next section we outline just one piece of the story, but a piece that is
particularly interesting mathematically.

Cracking Enigma
First, by a combination of methods, including the use of material origi-
nally obtained by French intelligence from a German informant, the Poles
managed to figure out the basic structure of the machine and even the
permutations embodied in the three rotors. With this information they
were able to build several copies of the machine. But this was not enough
to allow them to read encrypted messages. Indeed, the machine was so
designed that even someone who had a copy of the machine could not de-
cipher messages without knowing the key, and the Poles did not have the
daily keys. As we have said, there are 1016 such keys possible; one could
never hope to find the right key by trial and error. What was needed was
a clever idea, and this was provided by the cryptanalyst Marian Rejewski.

To set the stage for his idea, let us imagine a set of intercepted mes-
sages, all from the same day, and consider just the first six letters of each
message, that is, the letters that would have encoded the message keys.
The messages might be as follows:

1st MESSAGE: Q Z A E L L ...
2nd MESSAGE: R S Z J J Q ...
3rd MESSAGE: E X T S I N ...
4th MESSAGE: S R W Q Y K ...
5th MESSAGE: Q P C E B D ...
6th MESSAGE: J P T R B N ...

You might have expected that the last three letters of each group of six
would be the same as the first three, since the message key, which these
letters encode, was typed in twice. But recall that after each letter is typed
in, at least one of the rotors changes its orientation, so that the overall
permutation effected by the machine is different. Thus the E in the first
message encodes the same letter as the Q, but the encoding permutation
has changed.

1.2. Enigma 15

Indeed it is precisely this fact that was exploited by Rejewski. Let us
focus on the change that takes place in the machine’s permutation upon
typing in three letters, starting from the setting determined by the particu-
lar daily key by which all of the above messages were encoded. Evidently,
as we see from the first message printed above, whatever letter was sent to
Q by the original permutation was sent to E by the three-keystrokes-later
permutation. We will say that Q “evolves” into E. Similarly, by looking at
the third message, we can see that E evolves into S, and from the fourth
message we learn that S evolves into Q. Thus this “evolution” includes the
following cycle: Q → E → S → Q. From the second and sixth messages
we similarly obtain the cycle R → J → R. In the same way, given enough
messages, all encrypted with the same daily key, one could write down
all other cycles of this evolution. Rejewski recognized that the lengths of
these cycles contained a crucial clue to the daily key. The reason is that
these lengths do not depend on the plugboard settings. Recall that the
largest contribution to the number 1016 of possible daily keys came from
the 1011 plugboard settings. By finding a property of the messages that
separates the rotor part of the daily key from the plugboard part, one
could make the decryption manageable.

Indeed, the Poles, who possessed copies of the machine, could, by
actually setting the rotors in all possible ways, make a detailed catalogue
connecting the rotor portion of the daily key to a set of cycle lengths.
Note, by the way, that in addition to the “evolution” we discussed above,
which relates the initial keystroke to the fourth keystroke, there is also
an evolution, typically with different cycle lengths, relating the second
keystroke to the fifth, and another relating the third to the sixth. So the
catalogue might include the following entry:

Rotor part
of daily key Lengths of cycles
1-3-2 AXK 1st → 4th: 2-cycle, 2-cycle, 11-cycle, 11-cycle

2nd → 5th: 13-cycle, 13-cycle
3rd → 6th: 1-cycle, 1-cycle, 5-cycle, 5-cycle, 7-cycle,

7-cycle

Here the “1-3-2” refers to the order of the rotors, and the letters AXK
specify their orientations. The number of combinations for the rotor part

16 Chapter 1. Cryptography: An Overview

of the daily key is 6 × 263 ≈ 100,000, so the complete table would have
to have about 100,000 entries. This is a large number, but with the help
of a specially constructed device and with more than a year’s work, the
catalogue could be, and indeed was, constructed.

How could the catalogue be used to read encrypted messages? First,
one would analyze the initial six letters of many messages from the same
day to determine the cycle lengths for that day. Then one would find this
set of cycle lengths in the table – it helps to organize the catalogue by cycle
lengths rather than by rotor settings – and read off the rotor portion of
the daily key. Now one can set the rotors accordingly and let the machine
decrypt several messages. The results will not be immediately comprehen-
sible, because the plugboard settings are still unknown. However, at this
point the only thing standing in the way of the plaintext is the plugboard
permutation, which does not change from one keystroke to the next. The
resulting cryptanalytic problem is not as simple as a substitution cipher,
since the electrical path inside the machine passes through the plugboard
twice. Nevertheless, with the rotors set to the correct orientations, the
Polish team was able to finish cracking the cipher relatively easily.

In this way and by other techniques, the standard Enigma cipher
was rendered transparent years before the outbreak of World War II.
However, in 1938 the Germans increased the complexity of the machine,
and the Poles’ catalogue was no longer directly applicable. Moreover the
Polish cryptanalysts did not have enough computing power to crack the
more complex version. Realizing that the Germans were likely to invade
Poland soon, they passed their knowledge to French and British cryptan-
alysts. The British group, which eventually employed relatively sophisti-
cated computing machines, was quite successful and was largely able to
keep up with subsequent refinements of the Enigma cipher.

EXERCISES

Problem 1. This is a counting problem focusing on the Enigma plugboard.
Recall that the plugboard permutation interchanges some of the letters
in pairs. For example, A and F might be interchanged, and M and X might
be interchanged.

(a) Suppose that only one pair of letters are interchanged and the
other 24 letters are left unchanged. How many ways are there of choosing
the special pair?

1.2. Enigma 17

(b) In the standard Enigma machine, six pairs of letters were swapped.
How many ways are there of choosing these six pairs? Does you answer
agree with our rough estimate 1011?

Problem 2. We said that if the ith rotor has advanced by one step from
its standard orientation, it executes the permutation S−1Ri S. Show that
this statement is consistent with Figs. 1.1 and 1.2.

Problem 3. Show that the permutation given in Eq. (1.3) is its own inverse.

Problem 4. Consider the notion of “evolution” that we introduced in
this section. We can formulate this notion mathematically as follows. For
a given initial setting of the machine, as determined, for example, by the
daily key, let Pm be the permutation executed by the machine after m
keystrokes. We considered a case in which, for some unknown letter x,
P0x = Q and P3x = E. This is what we meant by saying that Q “evolves”
into E. Evidently the permutation that expresses this evolution is P3 P−1

0 .
(Applying P−1

0 to Q gives x, and then applying P3 gives E.) Show that
the cycle lengths of the “evolution” P3 P−1

0 are indeed independent of
the plugboard permutation A, as was noted by Rejewski. (Note that the
permutation Pm is given by Eq. (1.3) with appropriate values of n1, n2,
and n3.)

Problem 5. Consider the Enigma machine with a certain initial setting of
the rotors and plugboard. With this initial setting, let P0 be the permuta-
tion the machine applies to the first letter of the plaintext, and let P3 be
the permutation that it applies to the fourth letter of the plaintext. Recall
the following two facts about the permutations P0 and P3: (i) P−1

0 = P0

and P−1
3 = P3; (ii) P0 does not send any letter to itself, and neither does

P3. These facts will be useful in this problem.
We have seen how cryptanalysts were able to crack Enigma by consid-

ering the lengths of the cycles of the permutation P3 P−1
0 . Let y1, y2, . . . , ym

be a cycle of this permutation. That is, the yi ’s are m distinct letters of the
alphabet, and P3 P−1

0 y1 = y2, P3 P−1
0 y2 = y3, . . . , P3 P−1

0 ym = y1.
(a) Show that P0 ym, P0 ym−1, . . . , P0 y1 is also a cycle of P3 P−1

0 .
(b) Show that the cycle defined in part (a) consists entirely of letters

that do not appear in the original cycle y1, y2, . . . , ym. It follows that the
cycle lengths always come in matching pairs.

18 Chapter 1. Cryptography: An Overview

1.3 A Review of Modular Arithmetic and Zn

As we saw in Section 1.1, doing arithmetic modulo 26 is used frequently in
classical cryptography. It turns out that arithmetic modulo other numbers
also proves to be very useful. In this section, we review modular arithmetic
in general and define Zn, which is a set with a modular arithmetic.10 We
start with two definitions.

Definition. Let a be an integer and n a nonzero integer. We say that n
divides a if there is an integer m such that nm = a. If n divides a, we will
write n|a. If n does not divide a, we write n � | a.

Definition. Let a and b be integers and n a positive integer. If n|(a − b),
we say that a is congruent to b modulo n and we write a ≡ b(mod n).

Examples:
1. 4 ≡ 1(mod 3)
2. −3 ≡ −1(mod 2)
3. 14 ≡ −2(mod 4)
4. 14 ≡ 2(mod 4)
5. If b is an integer and r is its remainder upon division by n, then b ≡

r(mod n).

Definition. Let n be a positive integer. We define Zn to be the set

{0, 1, 2, . . . , (n − 1)}
along with the two operations of addition modulo n and multiplication
modulo n so that when we perform these operations we choose our answer
to be a member of the set Zn.

Suppose n = 6. Then it is true that 4 + 5 ≡ 9(mod 6). However,
when doing arithmetic in Z6, we require that all answers be in the set
{0, 1, 2, 3, 4, 5}. So in Z6 we have that 4 + 5 = 3 since 4 + 5 ≡ 3(mod 6)
and 3 is in the set {0, 1, 2, 3, 4, 5}. Sometimes we will indicate that we are

10 For more details on modular arithmetic and Zn see, for example, Gallian (2006) or Stark
(1970).

1.3. A Review of Modular Arithmetic and Zn 19

in Zn by writing an expression like “a + b (mod n).” Thus 4 + 5 (mod 6)
has the value 3.

We first examine Z2. The elements of Z2 are 0 and 1 and below are the
addition and multiplication tables for Z2:

+ 0 1
0 0 1
1 1 0

× 0 1
0 0 0
1 0 1

Notice that Z2 is pleasingly easy. Because of that, one may conjecture
that it is relatively useless. But in fact, Z2 is one of the stars of protecting
information. Not only is it incredibly important in cryptography, but it is
also invaluable for the theory of correcting errors.

As two more examples, we now write out tables for Z5 and Z6

The tables for Z5

+ 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

× 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

The tables for Z6

+ 0 1 2 3 4 5
0 0 1 2 3 4 5
1 1 2 3 4 5 0
2 2 3 4 5 0 1
3 3 4 5 0 1 2
4 4 5 0 1 2 3
5 5 0 1 2 3 4

× 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 4 0 2 4
3 0 3 0 3 0 3
4 0 4 2 0 4 2
5 0 5 4 3 2 1

The addition tables for Z5, Z6, and, as you can imagine, Zn, where
n is any positive integer, are very predictable. The multiplication tables,
however, are a bit more mysterious. As an example, note that in the
multiplication table for Z5, except for the first row, all elements of

20 Chapter 1. Cryptography: An Overview

Z5 appear in each row. This, however, is not true for Z6. Can you
make a conjecture about what has to be true about the integer n so that
in the multiplication table for Zn, except for the first row, all elements of
Zn appear in each row? (See Problem 2 at the end of this section.)

If we examine the multiplication table for Z6, we see that 2 × 3 = 0.
Now, this might seem a bit distressing. This is an example of two nonzero
elements whose product is zero. Students of linear algebra will recall that
this happens with matrices also! But this does not happen in Z5. Can you
determine for what n there are two nonzero elements in Zn such that
when you multiply them together, you get zero? (See Problem 3 at the
end of this section.) Also, notice that in Z6, we have 3 × 3 = 3 × 1, but
3 �= 1. In other words, we cannot cancel the left-hand 3 on both sides of
the equation. So be careful when doing arithmetic in Zn – not all rules we
are used to will hold!

EXERCISES

Problem 1. Write out the addition and multiplication tables for Z3, Z4,
and Z7.

Problem 2
(a) Let a ∈ Zn. Show that a and n are relatively prime (the only com-

mon divisor of both a and n is 1) if and only if there exists an element
b ∈ Zn such that ab = 1.

(b) Let a ∈ Zn. Show that a and n are relatively prime if and only
if a’s row in the multiplication table of Zn contains every element
of Zn.

(c) Show that n is a prime number if and only if in the multiplica-
tion table for Zn, except for the first row, all elements of Zn appear in
each row.

Problem 3
(a) Show that n is a prime number if and only if whenever a, b ∈ Zn

with ab = 0, we must have that a = 0 or b = 0.
(b) Show that n is a prime number if and only if for every a, b, c ∈ Zn

satisfying a �= 0 and ab = ac, we have that b = c.

1.4. The Hill Cipher 21

Problem 4. Show that addition and multiplication modulo n are well
defined. In other words, show that if a ≡ b(mod n) and c ≡ d(mod n),
then a + c ≡ b + d(mod n) and ac ≡ bd(mod n).

1.4 The Hill Cipher

So far in this chapter, we have discussed ciphers that substitute a single
letter for a single letter. Of course, if we substituted blocks of letters
for blocks of letters, the cipher would be more complicated and therefore
harder for an adversary to break. For example, if we decided to use blocks
of two, we would break the plaintext into blocks of two and then substitute
according to a predetermined key. We could agree that every time we see
AA, we substitute U X, every time we see AB, we substitute HR, etc.
Note that there are 26 × 26 = 676 possible pairs of letters, so two people
wanting to send secret messages to each other would have to agree on
and record all 676 substitutions. If we used blocks of three, then there
would be 263 = 17576 substitutions. As we increase our block size, there
are more possibilities that an adversary needs to check, but unfortunately,
as we increase the block size, we also increase the number of substitutions
that the two parties must agree on and record. The Hill cipher11 provides
us with a more concise description of a way to substitute blocks of letters
for other blocks of letters.

In this chapter, we consider only the case where the block size is 2.
But the method can be generalized to any block size. We note here that
the Hill cipher is easily cracked using today’s computers, but we discuss
it to illustrate an elegant historical block cipher.

We start with a 2 × 2 key matrix, K, whose entries are elements of Z26.
This matrix will serve as the key to our cipher and must not fall into the
hands of an adversary or the cipher will be trivially broken. Suppose we
choose

K =
(

4 3
1 2

)
.

11 For more details on the Hill cipher, see Stinson (2002).

22 Chapter 1. Cryptography: An Overview

Now, if the sender, whom we call Alice, wants to send the message SNOW
to the legitimate recipient, Bob, she first breaks up the message into blocks
of two: the first block is SN and the second is OW. Then she transforms
each block into a two-dimensional vector with entries in Z26 accord-
ing to the rule that 0 represents A, 1 represents B, . . . , 25 represents
Z. Call the vector representing the ith block �xi , so that the vector rep-
resenting SN is �x1 = (18

13

)
and the vector representing OW is �x2 = (14

22

)
.

To get the ciphertext, we compute �yi = K �xi for every i , where all arith-
metic is done in Z26, and convert these vectors back to letters. For our
example,

�y1 = K �x1 =
(

4 3
1 2

)(
18
13

)
=
(

(4(18) + 3(13)) mod 26
(1(18) + 2(13)) mod 26

)
=
(

7
18

)

�y2 = K �x2 =
(

4 3
1 2

)(
14
22

)
=
(

(4(14) + 3(22)) mod 26
(1(14) + 2(22)) mod 26

)
=
(

18
6

)

The reader might find the tables in Section A.3 of the Appendix use-
ful for these computations. Now, the number 7 represents the letter H,
18 represents S, and 6 represents G, so the ciphertext is HSSG. No-
tice that this method substitutes blocks of two letters for blocks of two
letters as we originally desired, but the advantage is that instead of
recording all 676 substitutions, all Alice and Bob need to know is the
matrix K.

How does Bob find the plaintext given the ciphertext? Bob knows K
and �yi for all i . He wants to find �xi for all i . In other words, he wants
to solve the equation �yi = K �xi for �xi . Suppose we could find a matrix B
with entries in Z26 such that BK = (1 0

0 1

)
with all arithmetic done in Z26.

Then �yi = K �xi implies B�yi = BK �xi , so B�yi =
(1 0

0 1

) �xi = �xi . We have thus
reduced the problem to finding such a matrix B. Now, recall from linear
algebra that if A is a square matrix with real numbers as entries, then
there exists a matrix C with real numbers as entries such that C A = I if
and only if the determinant of A is not zero. Here I denotes the identity
matrix – the matrix with ones on the main diagonal and zeros everywhere
else. But be careful here . . . the arithmetic used in standard linear algebra
is not the same as we are using here. After all, we are doing all of our
arithmetic modulo 26. But should that make a difference? Consider the
following example:

1.4. The Hill Cipher 23

Example 1.4.1. Suppose K = (3 1
1 1

)
. Then the determinant of K is 2 �= 0.

But if there were a matrix B such that BK = I where all arithmetic is
done modulo 26, then we would have(

a b
c d

)(
3 1
1 1

)
=
(

1 0
0 1

)
.

So, (
3a + b a + b
3c + d c + d

)
=
(

1 0
0 1

)
.

Therefore, we must have that in Z26, 3a + b = 1, a + b = 0, 3c + d = 0,
and c + d = 1. Now, solving the second equation for b and plugging the
result into the first equation, we get 2a = 1. But there is no element a of
Z26 satisfying this equation. It follows that no such B exists.

We now point out another troubling property of the above matrix K.
Suppose Alice were to use K to send encrypted messages to Bob. If a
block of plaintext were AA, to find the corresponding ciphertext, Alice
would compute (

3 1
1 1

)(
0
0

)
=
(

0
0

)
,

arriving at the corresponding ciphertext AA. But suppose that part of the
plaintext were NN. In that case she computes(

3 1
1 1

)(
13
13

)
=
(

0
0

)

and again finds that the corresponding ciphertext is AA. Now, if Bob
receives AA as a block, he has no way of knowing whether the plaintext
was AA or NN. For this reason, the K in this example is a bad key matrix
to use for encryption.

In light of Example 1.4.1, we want an easy way to tell whether or
not a particular key matrix will be a good one to use for encryption.
Specifically, we want the matrix K to have the property that there is a
matrix B so that BK = I. Also, we want K to have the property that if �x1

and �x2 are different vectors with entries in Z26, then K �x1 and K �x2 are also
different vectors. The following theorem tells us that these two properties

24 Chapter 1. Cryptography: An Overview

are equivalent and that there is an easy way to check whether or not the
properties hold.

Theorem 1.4.1. For a Hill cipher with an alphabet of 26 letters, block size
2, and key matrix K = (a b

c d

)
, the following statements are equivalent:

1. ad − bc is not divisible by 2 or 13.
2. There exists a 2 × 2 matrix B with entries in Z26 satisfying BK =

I = (1 0
0 1

)
.

3. K satisfies the property that if �x1 �= �x2 then K �x1 �= K �x2.

In Theorem 1.4.1, all arithmetic is done in Z26.

Proof. Our strategy will be to show that the first statement implies the
second, the second implies the third, and the third implies the first.

So assume that ad − bc is not divisible by 2 or 13. Then by Problem 2
from Section 1.3 there exists an h ∈ Z26 such that h(ad − bc) = 1 (in Z26).

Let B =
(

hd −hb
−hc ha

)
. Then,

BK =
(

hd −hb
−hc ha

)(
a b
c d

)
=
(

h(ad − bc) h(bd − bd)
h(−ac + ac) h(−bc + ad)

)

=
(

1 0
0 1

)
.

It follows that the second property of the theorem holds.
Now, assume that the second property holds and we will show this

implies that the third property holds. Suppose there is a matrix B such
that BK = I. If K �x1 = K �x2, then BK �x1 = BK �x2, so �x1 = �x2 and it follows
that the third property of the theorem holds.

For the final part of our proof, we assume that K satisfies the prop-
erty that if �x1 �= �x2 then K �x1 �= K �x2. We assume ad − bc is divisible by
2 and arrive at a contradiction. Since 2 divides ad − bc, it must be that
13(ad − bc) = 0. (Remember, all arithmetic is done in Z26.) So,(

a b
c d

)(
13d
−13c

)
=
(

13(ad − bc)
13(cd − cd)

)
=
(

0
0

)

1.4. The Hill Cipher 25

and (
a b
c d

)(
−13b
13a

)
=
(

13(ab − ab)
13(ad − bc)

)
=
(

0
0

)
.

But also, we have

(
a b
c d

)(
0
0

)
=
(

0
0

)
.

As K satisfies the third property of the theorem, it must be that
13d = −13b = 0 and −13c = 13a = 0. Now, consider

(
a b
c d

)(
13
13

)
=
(

13(a + b)
13(c + d)

)
=
(

0
0

)
.

But this contradicts that K satisfies the third property. Similarly, one can
find a contradiction if ad − bc is divisible by 13. ❑

We note here that we can generalize this theorem. We state a gener-
alization without proof.

Theorem 1.4.2. For a Hill cipher with an alphabet of n letters, block size
m, and key matrix K where K is an m× m matrix with entries in Zn, the
following statements are equivalent:

1. The determinant of K and n are relatively prime.
2. There exists an m× m matrix B with entries in Zn satisfying BK = I,

where I is the m× m identity matrix.
3. K satisfies the property that if �x1 �= �x2 then K �x1 �= K �x2.

In Theorem 1.4.2, all arithmetic is done in Zn.
Theorem 1.4.1 is extremely useful. Because of it, Alice and Bob can

easily verify that the key matrix K they have chosen will be a good one
for encrypting messages. They simply compute ad − bc and make sure it
is not divisible by 2 or 13. But we are still left with the problem of how,
in practice, Bob finds the plaintext after receiving the ciphertext. It turns
out that the answer to this problem lies in the proof of Theorem 1.4.1. We
illustrate with an example.

26 Chapter 1. Cryptography: An Overview

Recall the example earlier in this section where Alice and Bob used

K =
(

4 3
1 2

)

as their key matrix and the plaintext was SNOW. As shown earlier, the
ciphertext is HSSG. Assuming that Bob receives HSSG and does not
know the original message that Alice sent, we now show how he would
go about finding the plaintext. He first creates the vectors �y1 and �y2 by
converting the letters to numbers. So, �y1 = (7

18

)
and �y2 = (18

6

)
. Recall that

Bob is trying to find �x1 and �x2 and he knows that K �x1 = �y1 and K �x2 = �y2.
As discussed previously, Bob wants to find a matrix B such that BK =
I. Notice that in the proof of Theorem 1.4.1, we actually constructed
such a matrix. If K = (a b

c d

)
then B = (hd −hb

−hc ha

)
, where h ∈ Z26 satisfies

h(ad − bc) = 1. In our case, a = 4, b = 3, c = 1, and d = 2. So ad − bc = 5
and we want to find h so that 5h = 1 in Z26. Note that 5 × 21 = 1 in Z26,
so h = 21. (For a systematic way of finding such an h, see Section 1.9.)
Now,

B =
(

hd −hb
−hc ha

)
=
(

21(2) −21(3)
−21(1) 21(4)

)
=
(

16 15
5 6

)
.

So,

�x1 = B �y1 =
(

16 15
5 6

)(
7
18

)
=
(

18
13

)

and

�x2 = B �y2 =
(

16 15
5 6

)(
18
6

)
=
(

14
22

)
.

Translating the numbers back into letters, Bob finds that the plaintext was
SNOW and has thus correctly recovered the original message that Alice
sent.

EXERCISES

Problem 1
(a) Use a 26-character Hill cipher to encode the message F OUR using

the key matrix K = (25 0
2 1

)
.

1.5. Attacks on the Hill Cipher 27

(b) Let α1α2α3α4 represent your answer from part (a). Now encode
the message α1α2α3α4 using the same key matrix that you used in part (a).

(c) There should be something surprising about your answer in
part (b). Is that simply a coincidence? Explain.

Problem 2. Alice and Bob agree that they will use a Hill Cipher to
send messages to each other. They decide to use K = (2 1

3 6

)
for the

key matrix. Bob receives the ciphertext SMKH from Alice. What is the
plaintext?

1.5 Attacks on the Hill Cipher

In this section, we briefly describe two methods of attack on the Hill
cipher. This illustrates just how easy it is for an eavesdropper, called Eve,
to crack this cipher. Note that for any Hill cipher, if Eve can find the key
matrix K, then she can decipher all encrypted messages. So we focus on
how she might go about finding the key matrix.

We first describe what is called a chosen-plaintext attack. Suppose that
Eve does not know the key matrix, but she can choose any plaintext and
has a way of finding out the corresponding ciphertext. In other words,
she has access to the Hill cipher “machine” that encrypts the messages,
but she does not know how the machine works. In this case, the cipher
is extremely easy to break. Eve simply chooses to encrypt

(1
0

)
and

(0
1

)
.

This will give her the key matrix. To see this, just note that if K = (a b
c d

)
,

then
(a b

c d

)(1
0

) = (a
c

)
and

(a b
c d

)(0
1

) = (b
d

)
. So Eve has found the key

matrix K.
In practice the adversary typically cannot choose the plaintext. She

still might be able to use what is called a known-plaintext attack. Sup-
pose that Eve happens to know that �x1 = (x11

x12

)
is encrypted as �y1 = (y11

y12

)
and �x2 = (x21

x22

)
is encrypted as �y2 = (y21

y22

)
. Then if K = (a b

c d

)
, we have that

K �x1 = (a b
c d

)(x11
x12

) = (y11
y12

)
and K �x2 = (a b

c d

)(x21
x22

) = (y21
y22

)
. It follows that(a b

c d

)(x11 x21
x12 x22

) = (y11 y21
y12 y22

)
. Eve now hopes that x11x22 − x21x12 is not di-

visible by 2 or 13 so that, by Theorem 1.4.1, she will be able to solve for
the key matrix K. Of course, it may be true that x11x22 − x21x12 is divisible
by 2 or 13, in which case Eve would have to try other techniques. We leave
these to you to devise and investigate on your own.

28 Chapter 1. Cryptography: An Overview

EXERCISES

Problem 1. You discover that the key matrix for a certain Hill cipher
is K = (8 1

1 2

)
. You have intercepted the ciphertext BYIC. What is the

plaintext?

Problem 2. You have intercepted the message

WGTK

and know it has been encrypted using a Hill cipher. You also happen to
know that CD is encrypted as RR and J K is encrypted as OV. What is
the plaintext?

Problem 3. You intercept the message

J QXMDI SJ ZGHIVN

and know it has been encrypted using a Hill cipher. You suspect it contains
the phrase THEBEST. Find the plaintext.

1.6 Feistel Ciphers and DES

We are now ready to discuss more modern methods of encryption. Until
the 1970s cryptography was used almost exclusively for military purposes.
In the two decades following the Second World War, the National Secu-
rity Agency (NSA), created by Truman in 1952 as a top secret organiza-
tion, was actively involved in conducting research in cryptography. In the
1950s and 1960s, the NSA was virtually the only place in the United States
where this kind of research was actively pursued. However, in the early
1970s, with the development of the modern computer, businesses began
to realize the value of cryptography. For example, those in the banking
community realized that the concept of ATMs and electronic funds trans-
fers could become a reality if they had the use of encryption. As a result, in
1973 the National Bureau of Standards solicited proposals for a standard-
ized cryptosystem that could be used nationwide for commerce. In 1977,
the NBS approved a cryptosystem that had been submitted by a team

1.6. Feistel Ciphers and DES 29

from IBM. That system is now known as the data encryption standard,
or DES, and is currently the most widely used cryptosystem in the
world.

The ideal cryptosystem should use as little computing power and com-
puter storage space as possible, be easy to decrypt if one knows the key,
and the ciphertext should look random to make it more difficult for an ad-
versary to crack. DES has all of these desirable properties. In this section,
we give an overview of the key mathematical ideas used in DES.12 We
start with several definitions and a description of a Feistel cipher – an
important ingredient in DES.

DES is a binary cipher. This means that the plaintext and ciphertext
are strings of zeros and ones. Since computers store and send information
using binary representation for the information, it makes sense that a
modern cipher would use zeros and ones for the plaintext and ciphertext.

Definition. We define Z
n
2 to be the set {(a1, a2, . . . , an)|ai ∈ Z2} along with

componentwise addition modulo 2 and scalar multiplication modulo 2
where the set of scalars is Z2. The addition is denoted by ⊕ or XOR.

Example 1.6.1. Note that (101101), (110101) ∈ Z
6
2 and

(101101) ⊕ (110101) = (011000).

Notice that the scalar multiplication in Z
n
2 is very easy. Since 0 and 1

are the only scalars we are allowed to use, we only need define 0�v and 1�v ,
where �v ∈ Z

n
2. We do this in the obvious way: 0�v = �0 and 1�v = �v , where

�0 denotes the element of Z
n
2 consisting of all zeros.

Definition. A function f : Z
n
2 → Z

m
2 is called linear if f (�x ⊕ �y) = f (�x) ⊕

f (�y) and f (c �x) = c f (�x) for all �x, �y ∈ Z
n
2 and all c ∈ Z2.

We take a moment to consider the second condition. When c = 1
it is trivial and when c = 0, f (c �x) = c f (�x) is equivalent to saying that

12 Those wishing for more details are encouraged to consult other sources such as Stinson
(2002).

30 Chapter 1. Cryptography: An Overview

f (�0) = �0. But notice that if �x = �0 and �y = �0, then the first condition of
the definition gives us that f (�0) = �0. So in practice, to check that a function
f : Z

n
2 → Z

m
2 is linear, we need only check the first condition. It is reason-

able then to ask why we include the second condition in the definition at
all. In fact, the definition of a linear function can be generalized and in
the generalization the second condition becomes meaningful.

Example 1.6.2. Define f : Z
3
2 → Z

3
2 as f ((x1, x2, x3)) = (x2, x3, x1).

Then, f ((x1, x2, x3) ⊕ (y1, y2, y3)) = (x2 ⊕ y2, x3 ⊕ y3, x1 ⊕ y1) = (x1, x2,

x3) ⊕ (y1, y2, y3) = f ((x1, x2, x3)) ⊕ f ((y1, y2, y3)). It follows that f is
linear.

DES is a binary block cipher with block size 64. It it can therefore
be thought of as a function from Z

64
2 to Z

64
2 . Call the function DES. So if

�x ∈ Z
64
2 is the plaintext, then �y = DES(�x) is the ciphertext. Now, DES is

not a linear function. In fact, we have introduced the notion of linearity
at this point primarily to emphasize the nonlinearity of DES. Nowadays
one would not want a cryptosystem to be linear (see Problem 3 at the end
of this section) because linear cryptosystems possess too much structure
and, as a result, are too easy to crack. (The Hill cipher that we considered
in Section 1.4 is linear – though not over Z2 – and we saw that it is not
difficult to crack.) The nonlinearity of DES is one of the reasons why it
works well.

We start our mathematical discussion of DES by describing a partic-
ular Feistel cipher.

An r -Round Feistel Cipher with Block Size 64

Let �k ∈ Z
64
2 be a key and r a positive integer. The sender and intended re-

ceiver know �k, but an eavesdropper must not know it or else she will
easily be able to crack the code. Let �ki ∈ Z

48
2 for i = 1, 2, . . . , r be a

subkey obtained from �k. The specific method of generating these sub-
keys is not important for this discussion, but note that the method does
not need to be kept secret. In fact, it is announced publicly. Now, let
f : Z

80
2 → Z

32
2 be any function from Z

80
2 to Z

32
2 . Divide the plaintext, which

will be a long string of zeros and ones, into blocks of 64. We describe
here how to encrypt each block. First, divide the block of 64 into two

1.6. Feistel Ciphers and DES 31

halves – call the left half �L0 and the right half �R0. We will map �L0 to �Lr

and �R0 to �Rr after r rounds according to the following algorithm:

�L1 is defined to be �R0.
�R1 is defined to be �L0 ⊕ f (�R0, �k1).

�L2 is defined to be �R1.
�R2 is defined to be �L1 ⊕ f (�R1, �k2).

And in general,

�Li is defined to be �Ri−1.
�Ri is defined to be �Li−1 ⊕ f (�Ri−1, �ki).

We stop after r rounds to obtain �Lr and �Rr . The ciphertext will be (�Rr , �Lr).
Notice that we have put �Rr on the left and �Lr on the right. This was done
on purpose so that encryption and decryption use the same algorithm.

Now we describe how to find the plaintext knowing the ciphertext
and the key �k. Because we know the ciphertext, we know �Lr and �Rr and
because we know �k, we can find �ki for all i = 1, 2, . . . , r . Recall that �Lr

was defined to be �Rr−1 and �Rr was defined to be �Lr−1 ⊕ f (�Rr−1, �kr). So
we know �Rr−1 = �Lr and

�Lr−1 = �Lr−1 ⊕ (f (�Rr−1, �kr) ⊕ f (�Rr−1, �kr))
= (�Lr−1 ⊕ f (�Rr−1, �kr)) ⊕ f (�Rr−1, �kr) = �Rr ⊕ f (�Rr−1, �kr).

Since we know �Lr , �Rr , f , and �kr we can find �Rr−1 and �Lr−1. In general,
given �Li and �Ri we can obtain �Li−1 and �Ri−1 by

�Ri−1 = �Li and
�Li−1 = �Ri ⊕ f (�Ri−1, �ki).

We continue until we find �L0 and �R0, which gives us the plaintext as
desired. Note that f can be any function from Z

80
2 to Z

32
2 . The trick is to

choose f in a “smart” way.

DES

The key �k for DES is a 64-bit string of zeros and ones. We should note,
though, that 8 of the bits are used for error correction – those 8 bits
depend on the other 56 bits. In other words, from the perspective of an
eavesdropper, the cipher is really based on a 56-bit key. Suppose we have

32 Chapter 1. Cryptography: An Overview

our key, �k ∈ Z
64
2 . We now describe how to encrypt a message using DES.

We assume the message has been converted to a string of zeros and ones.
To encrypt it, break the string up into blocks of 64 and do the following
to each block:

1. Permute the zeros and ones in the block using a specific permutation
called P. The actual permutation used here is not important and we
leave it to the reader to look up the details if desired.13

2. Select sixteen 48-bit subkeys, �k1, �k2, . . . , �k16 (again, there is a specific
method of doing this that the interested reader is encouraged to look
up in other sources) from the key �k and perform a 16-round Feistel
cipher where f (�Ri−1, �ki) = P(S(E(�Ri−1) ⊕ �ki)). We will describe the
functions P, S, and E in a moment.

3. Do the permutation P backwards. In other words, perform P
−1.

Of course, it remains to describe the functions P, S, and E. We will give a
general idea of what these functions do. E is a function from Z

32
2 to Z

48
2 . So

it takes a string of 32 zeros and ones and outputs a string of 48 zeros and
ones by simply repeating some of the bits. The purpose of the function E
is to ensure that if one digit of the input is changed then more than one
digit of output is affected.

The function S is really the meat of DES. In fact, there has been much
controversy surrounding this function over the years. Among other things,
it ensures that DES is not a linear function. (See Problem 4 at the end
of this section.) The function S maps Z

48
2 to Z

32
2 . It involves eight arrays

called S-boxes. These are specific arrays and are public knowledge. For
example, here is the fifth S-box:

2 12 4 1 7 10 11 6 8 5 3 15 13 0 14 9

14 11 2 12 4 7 13 1 5 0 15 10 3 9 8 6

4 2 1 11 10 13 7 8 15 9 12 5 6 3 0 14

11 8 12 7 1 14 2 13 6 15 0 9 10 4 5 3

Before giving the details of the function S, we first recall binary num-
bers. A binary number is of the form anan−1 . . . a1a0, where ai ∈ {0, 1} for

13 Stinson (2002).

1.6. Feistel Ciphers and DES 33

every i . Now, anan−1 . . . a1a0 means an2n + an−12n−1 + · · · + a121 + a020.
So, for example, to convert the binary number 110011 to base ten,
we have 110011 = 1(25) + 1(24) + 0(23) + 0(22) + 1(21) + 1(20) = 32 +
16 + 2 + 1 = 51. A table of the binary representation for the numbers
0 through 25 can be found in Section A.3 of the Appendix.

We are now ready to explain the function S. Given an element of Z
48
2 ,

first break it up into eight blocks of 6-bit strings. Each S-box will have
as input a 6-bit string and will produce a 4-bit string as output. The ith
6-bit string will go through the ith S-box in the following way. Take the
first and sixth bits and convert from binary to base ten. Then look in the
corresponding row of the ith S-box. Take the second, third, fourth, and
fifth bits and convert from binary to base ten. Look in the corresponding
column of the ith S-box. The number you see converted back to binary
is the output. For example, suppose your fifth 6-bit string is 101110. Since
it is the fifth string, we will use the fifth S-box. Looking at the first and
sixth digits, we see 10. Now, 10 is binary for the number 2. So we start
counting from the zeroeth row and look in the second row. Since we
started counting at zero, the second row is the one that starts with a 4.
Now, the second, third, fourth, and fifth bits are 0111 and that is binary
for the number 7. So we look in the seventh column, keeping in mind
that we start counting from the zeroeth column. This is the column that
begins with a 6. The number in the second row and the seventh column
is 8. Converting this back to binary, we get 1000. Hence, 1000 is the 4-bit
output for the given 6-bit string. Finally, concatenating all of the 4-bit
strings will give us the output of the function S.

The function P maps Z
32
2 to Z

32
2 and is simply a specific permutation.

The purpose of P is to ensure that the output from one round affects the
input to multiple S-boxes in the next round.

We take a moment to briefly explain why the S-boxes caused such
controversy. A team at IBM developed the design that DES is based
on, but the NSA modified the design before they agreed to approve
it as the data encryption standard. Evidently they had a list of criteria
that they thought the S-boxes should satisfy. Since they refused to re-
lease those criteria, many people thought that they had designed the
cipher to have a built-in “back door” that would allow the NSA to crack
it easily. Another reason for criticism was that the key size of 56-bits
was thought to be too small. After many years of cryptanalysis on DES

34 Chapter 1. Cryptography: An Overview

without discovering an easy way to crack it, it is now believed that the
NSA did not put in a “back door.” However, over the years, there has
been some progress in cracking DES. Computers have gotten faster, al-
lowing an adversary to try more keys to see if they work. In addition,
there have been some theoretical breakthroughs, most notably differen-
tial cryptanalysis and linear cryptanalysis, that eliminate some of those
possible keys. This theoretical progress along with an increase in com-
puting power resulted in DES being cracked by the Electronic Fron-
tier Foundation in 1998. It was clear that a new encryption standard was
needed.

EXERCISES

Problem 1

(a) Define E : Z
4
2 −→ Z

6
2 by E((x1, x2, x3, x4)) = (x1, x2, x2, x3, x4, x4).

Show that E is linear.
(b) Define P : Z

6
2 −→ Z

6
2 by P((x1, x2, x3, x4, x5, x6)) = (x3, x4, x1,

x5, x2, x6). Show that P is linear.

Problem 2. Let E be an invertible function from Z
n
2 to Z

n
2. Show that if E

is linear, then E−1 is linear.

Problem 3. Let E be a linear invertible function from Z
n
2 to Z

n
2. Define

a cipher of block size n in the following way. Let �x ∈ Z
n
2 be the plain-

text. Then the ciphertext �y ∈ Z
n
2 is obtained by �y = E(�x). You intercept

a message �z ∈ Z
n
2 that has been encrypted using this cipher. Explain how

can you find the plaintext using a chosen-plaintext attack. Assume you
do not know the function E and hence do not know E−1. But you may
choose any plaintext you want and assume you can find the corresponding
ciphertext.

Problem 4. Consider the fifth S-box used in DES. Think of it as a function
from Z

6
2 to Z

4
2. Show that this function is not linear.

1.7 A Word about AES

As mentioned in the previous section, because of advances in computing
power combined with progress in theoretical methods of cracking DES,

1.8. Diffie–Hellman Public Key Exchange 35

the government realized that a new standard of encryption was needed.
In September of 1997, the National Institute of Standards and Technol-
ogy (NIST) asked for submissions of algorithms to be considered for the
new encryption standard, which would be called the advanced encryp-
tion standard (AES). Twenty-one algorithms were submitted and fifteen
met the criteria required by NIST. These fifteen algorithms were tested
and scrutinized and, as a result, five finalists were announced in August of
1999. The five finalists were MARS, RC6, Rijndael, Serpent, and Twofish.
NIST continued a more in-depth analysis of these five algorithms and even
encouraged public comment on them. In October of 2000, NIST chose
Rijndael as the winner. Rijndael again went through rigorous analysis and
testing. Finally, the Secretary of Commerce approved Rijndael as the new
official government encryption standard (AES) effective May 26, 2002.
DES is expected to be phased out over the next few years and replaced by
AES. It is worth noting that the mathematics involved in AES is more
sophisticated than that in DES.14 In fact, AES involves the use of a finite
field much like the one you will see in Section 6.2. For more information
on AES, see http://www.nist.gov/aes.

1.8 Diffie–Hellman Public Key Exchange

So far, we have discussed methods of encryption where the sender and
receiver must share a secret “key.” For example, in the Hill cipher, they
must agree on the key matrix and if that matrix falls into an eavesdropper’s
hands, the cipher will be as legible to the eavesdropper as to the intended
recipient. But how does one get the key safely from the sender to the re-
ceiver? In the 1960s and 1970s, as computers were becoming more pow-
erful, it was possible to imagine millions, and possibly even billions, of
computer-mediated transactions per year between businesses. And many
of these transactions would require encryption. DES could be used, but
for each transaction, the parties involved would somehow have to get the
secret 56-bit key from one party to the other. Whitfield Diffie was one of
the first people to devise a successful strategy for tackling this problem.
Diffie graduated from MIT in 1965 and in the years following became

14 For a mathematical description of AES, see Stinson (2002).

36 Chapter 1. Cryptography: An Overview

consumed with the dilemma we have just described. He traveled around
the country learning all of the cryptography theory that he could. In the
early 1970s he met Martin Hellman who was in the Electrical Engineer-
ing department at Stanford. The two started thinking about this problem
together and in May of 1975, Diffie came up with the crucial idea. If two
people who have never met, and therefore do not share a secret key, want
to communicate in a secure way, they could split the key. Each would
have both a public key and a private one. If Alice wants to send Bob a
message, she looks up his public key and uses it to encrypt the message.
Bob gets the message and uses his private key to decrypt it. An eaves-
dropper will know the public key but not the private one. The idea is
that knowing the public key should make it easy to encrypt messages, but
decrypting should not be easy unless the private key is known. A year
later, in May 1976, Hellman thought of a tantalizingly simple mathemat-
ical way to implement Diffie’s idea to exchange a secret key between
two parties.

Diffie–Hellman Public Key Exchange
Suppose Alice wants to communicate in a secure way with Bob but
they have never met and therefore do not share a secret key. The
Diffie–Hellman public key exchange is a method for them to securely
exchange a key so that they can use that key for encrypting messages
using, for example, DES.

First choose a large prime, p. Then choose g ∈ Zp so that the set
{gs |s ∈ Z} is a large set. Keep in mind that we are doing arithmetic modulo
p, so gs will be an element of Zp. Alice and Bob announce p and g.

Now, Alice chooses a random integer r and keeps it secret. This will
be her private key. Bob also chooses a random integer t , which will be his
private key. Alice computes X = gr ∈ Zp and Bob computes Y = gt ∈ Zp.
They exchange X and Y using a public channel, accessible to everyone. So
Alice knows p, g, r , X, and Y. Bob knows p, g, t , X, and Y. To get the shared
key, Alice computes K = Yr = gtr and Bob computes K = Xt = grt . Thus
Alice and Bob both know K and can use that as their key.

Let us briefly consider what the eavesdropper Eve knows. Alice and
Bob announced p, g, X, and Y. Eve also knows that X = gr . If she could
solve this equation for r , then she could compute K = Yr to get the secret

1.9. RSA 37

key. She might be tempted to take the log base g of both sides to solve for
r . But remember, to get X, Alice computed gr and reduced it modulo p.
So taking the log base g of both sides will not solve for the r that Alice
used. In fact, it will rarely give Eve an integer. Solving X = gr for r is
called the discrete log problem and turns out to be quite hard as long as
Alice and Bob have arranged for the set {gs |s ∈ Z} to be large. Of course,
Eve could try all possible values for r . But Alice and Bob have chosen
p and g so that there are so many possibilities for Eve to check that she
and her computer cannot do it in a reasonable amount of time. So for
practical purposes, Alice and Bob have generated a shared secret key.

EXERCISES

Problem 1. You want to exchange a secret key with a friend using the
Diffie–Hellman public key exchange algorithm. You agree on p = 13 and
g = 2. You choose r = 5. Your friend sends you Y = 7. What is the secret
key that you share? (Of course, in reality, you would want to choose p to
be much larger – we just give this exercise to illustrate the idea.)

Problem 2. Suppose you are an eavesdropper and know that a key
is being exchanged using the Diffie–Hellman method. You know that
p = 17, g = 4 and you intercept X = 13 and Y = 13. Find the key K. Why
was g = 4 an unwise choice for this Diffie–Hellman public key exchange?

1.9 RSA

Shortly after Diffie and Hellman’s groundbreaking ideas, three professors
from the computer science department at MIT, Ron Rivest, Len Adle-
man, and Adi Shamir, started working on other mathematical approaches
to public key cryptography. They were trying to make use of another
function – that is, other than the modular exponentiation of Diffie–
Hellman – that was easy to compute but hard to “undo.” They knew
that multiplying prime numbers together was easy, but given a large in-
teger, factoring it into its prime factors (“undoing” the multiplication)
was much harder. In April of 1977, they discovered how this idea could
be used to implement public key cryptography. Their scheme is known as
RSA, after Rivest, Shamir, and Adleman, and can be used not only for key

38 Chapter 1. Cryptography: An Overview

exchange, but also for sending messages. Incidently, the RSA paper is the
first occurrence of the now standard terminology of Alice, Bob, and Eve.15

We begin by describing the algorithm for sending messages using RSA
and will spend the remainder of the section explaining why it works. As
always, Alice will be the sender and Bob the receiver.

RSA

Bob
1. Choose two distinct large prime numbers, p and q and let n = pq.
2. Let m be the least common multiple of p − 1 and q − 1.
3. Choose a positive integer r so that r and m are relatively prime.
4. Find a positive integer s so that rs ≡ 1(mod m).
5. Announce n and r and keep all other information secret.

Alice
1. Convert the message to a string of numbers.
2. Break up the string of numbers into blocks of the same size. Call the

ith block Mi .
3. Compute Ri = Mr

i (mod n) for each i .
4. Send all the Ri ’s to Bob.

Bob
1. Compute Rs

i (mod n) for all i . We claim that Rs
i (mod n) will actually be

Mi , so that Bob can now recover the original message sent by Alice.

Example 1.9.1. We illustrate with a simple example. Suppose Bob
chooses p = 61 and q = 11. Of course, in reality, he will want to choose
p and q to be very large or else an eavesdropper will easily be able to
crack the cipher. Then we have n = 61 · 11 = 671. The integer m is the
least common multiple of 60 and 10, so in this case m = 60. Suppose Bob
chooses r to be 7. Now he must find an integer s so that rs ≡ 1(mod m).
We illustrate a systematic way of doing this in Example 1.9.2, but for now,
note that 7 · 43 = 301 ≡ 1(mod 60). So s = 43. Now, Bob announces that
n = 671 and r = 7.

15 To read about the political controversy surrounding RSA, see Levy (2001).

1.9. RSA 39

Suppose Alice wants to send the message “be.” She must convert the
message to a string of numbers. Alice and Bob can agree on any way they
want to do that, but we will use ASCII. The letter b in ASCII is represented
by 098 and e is represented by 101. Suppose we agree to use a block size
of 3. Then, M1 = 098 and M2 = 101. Now Alice computes R1 = 987(mod
671) and R2 = 1017(mod 671). When she does this, she gets that R1 = 175
and R2 = 326. So Alice sends 175326 to Bob.

Bob receives 175326 from Alice, so he knows that R1 = 175 and R2 =
326. He computes 17543(mod 671) and 32643(mod 671). You can verify
that he gets 98 and 101. He converts 098101 from ASCII back to letters
to get the message “be.”

Note that if an eavesdropper knows p and q, she can crack the cipher.
But to find these primes, she would have to factor n. The idea is that
Bob chooses the primes so large that for Eve to factor n will take an
unreasonable amount of computer time.

Before explaining why this works, we first discuss a systematic method
for finding the s in the above algorithm. For this we will need the Division
Algorithm, which we state without proof.

Theorem 1.9.1 (The Division Algorithm). Let a and b be integers with
b > 0. Then there exist unique integers r and q such that a = bq + r ,
where 0 ≤ r < b.

Children learning long division actually unknowingly are making use
of the above theorem. When we divide an integer a by a positive integer
b, we get a quotient q and a remainder r . And recall that a/b = q + r/b.
Multiplying this equation by b, we get a = bq + r . So the q in the above
theorem is simply the quotient when dividing a by b and the r is the
remainder. We note here that the Division Algorithm is a theorem and
in fact, not an algorithm. Nevertheless, since it is well known as the
Division Algorithm, that is what we will call it.

Now we get back to the problem at hand. Given that m and r are
relatively prime, we want to find a positive integer s so that rs ≡ 1(mod
m). But this is equivalent to saying that we want m to divide rs − 1, which
is equivalent to saying that we want there to exist an integer t so that mt =
rs − 1. Solving this equation for 1, we get 1 = rs − mt , or 1 = rs + m(−t).

40 Chapter 1. Cryptography: An Overview

In other words, we want to write 1 as a linear combination of r and m.
To do this, we will use the Euclidean Algorithm, which we describe here,
leaving the proof as an exercise at the end of this section.

The Euclidean Algorithm

Given a ≥ 0 and b > 0, both integers, we can find the greatest common
divisor of a and b in the following way. Use the Division Algorithm to
find q1 and r1 so that a = q1b + r1 with 0 ≤ r1 < b. If r1 = 0, stop and b
is the greatest common divisor of a and b. Otherwise, divide b by r1 to
obtain b = q2r1 + r2 with 0 ≤ r2 < r1. If r2 = 0, stop. If not, divide r1 by r2.
Continue this process. Notice that the ri ’s are all nonnegative and strictly
decreasing. Hence, we will eventually get that one of the ri ’s is 0 and the
algorithm will stop. So we have,

a = q1b + r1 with 0 < r1 < b

b = q2r1 + r2 with 0 < r2 < r1

r1 = q3r2 + r3 with 0 < r3 < r2

...

rk−1 = qk+1rk + rk+1 with 0 < rk+1 < rk

rk = qk+2rk+1 + 0

Theorem 1.9.2. The integer rk+1 in the above algorithm is the greatest
common divisor of a and b.

Proof. See Problem 3 at the end of this section. ❑

Notice that the Euclidean Algorithm is a simple way to find the great-
est common divisor of two integers. In fact, this is the algorithm that
computers use to do this.

Now how does the Euclidean Algorithm help us find the integer s
that we are looking for? Recall that m and r are relatively prime, so their
greatest common divisor is 1. Hence, when we run through the Euclidean

1.9. RSA 41

Algorithm with a = m and b = r we will get that rk+1 = 1. We illustrate
with an example.

Example 1.9.2. Suppose m = 696 and r = 13 and we want to find s. Run-
ning through the Euclidean Algorithm, we get

696 = (53)13 + 7

13 = (1)7 + 6

7 = (1)6 + 1

6 = (6)1 + 0

The last nonzero remainder is 1, so as we already knew, the greatest com-
mon divisor of 696 and 13 is 1. Recall that we want to write 1 as a linear
combination of 696 and 13. We can do this by running the Euclidean Algo-
rithm backwards. The third equation tells us that 1 = 7 − 1(6). The second
equation tells us that 6 = 13 − 7(1). Substituting this into the equation
1 = 7 − 1(6), we get 1 = 7 − 1(13 − 7(1)). Grouping the 7’s together, we
get 1 = 2(7) − 13. Now, the first equation tells us that 7 = 696 − 53(13).
Substituting this into 1 = 2(7) − 13, we get 1 = 2(696 − 53(13)) − 13.
Grouping the 13’s we get 1 = 2(696) − 107(13). Notice that we have now
written 1 as a linear combination of 696 and 13. Taking this equation
modulo 696, we get that −107(13) ≡ 1(mod 696). We would like s to
be a positive integer. Noting that −107 ≡ 589(mod 696), we infer that
589(13) ≡ 1(mod 696); so we can choose s to be 589.

Example 1.9.2 illustrates in general how to find s. We just start from the
“end” of the Euclidean Algorithm and work our way backwards, solving
for the remainders and then grouping the appropriate terms.

Now that we understand how RSA works, it remains to explain why
it works. Recall that Rs

i ≡ (Mr
i)s(mod n). We want to show that Rs

i ≡
Mi (mod n). In other words, we want to show that (Mr

i)s ≡ Mi (mod n). To
show this, we first state and prove Fermat’s Little Theorem.

Theorem 1.9.3 (Fermat’s Little Theorem). Let p be a prime number and
a a nonzero element in Zp. Then a p−1 = 1.

42 Chapter 1. Cryptography: An Overview

Proof. Recall that since we are in Zp, all arithmetic is done modulo p. Let
S = Zp − {0} = {1, 2, 3, . . . , p − 1} and aS = {a, 2a, 3a, . . . , (p − 1)a} ⊆
Zp. We claim that S = aS. Suppose 0 ∈ aS. Then there is a nonzero ele-
ment x ∈ S such that 0 = ax. By Problem 3 of Section 1.3, we have that
a = 0 or x = 0. But we are given that a is nonzero and we also know that
x is not 0. It follows that 0 �∈ aS and so we have aS ⊆ S. We show now
that aS has p − 1 distinct elements. Suppose it does not. Then ax = ay for
some x, y ∈ S with x �= y. By Problem 3 of Section 1.3, ax = ay implies
that x = y, a contradiction. It follows that aS = S. Therefore we can mul-
tiply all elements of S together and get the same thing as if we multiplied
all elements of aS together. In other words,

(1)(2)(3) · · · (p − 1) = a(2a)(3a) · · · ((p − 1)a).

It follows that

(1)(2)(3) · · · (p − 1) = a p−1(1)(2)(3) · · · (p − 1).

By cancelation, we have that 1 = a p−1 as desired. ❑

Note that if a is a nonzero element of Zp, then, by the above theorem,
1 = a p−1 = a(a p−2). So the multiplicative inverse of a in Zp is a p−2.

With the help of Fermat’s Little Theorem, we are now ready to prove
that RSA works.

Theorem 1.9.4. Let p and q be prime numbers with p �= q. Let n = pq
and let m be the least common multiple of p − 1 and q − 1. Suppose
r is a positive integer that is relatively prime to m. Let s be a positive
integer such that rs ≡ 1(mod m). Then for every integer M, we have that
Mrs ≡ M(mod n).

Proof. Since rs ≡ 1(mod m), we have that m|rs − 1. So there exists an
integer k such that mk = rs − 1. Rearranging this, we get that rs =
mk+ 1.

We first claim that Mrs ≡ M(mod p). If M ≡ 0(mod p), then it is
clear. On the other hand, if M �≡ 0(mod p), then M ≡ a(mod p) for some
integer a with 0 < a < p. So by Fermat’s Little Theorem, we have that
a p−1 ≡ 1(mod p). It follows that Mp−1 ≡ a p−1 ≡ 1(mod p). Now, Mrs =
Mmk+1 = MmkM. Recall that m is a multiple of p − 1, and so m = (p − 1)l

1.10. Public Key Exchanges with a Group 43

for some integer l. It follows that

MmkM = (Mp−1)l kM ≡ M(modp).

Similarly, we can show that Mrs ≡ M(mod q).
It follows that p|Mrs − M and q|Mrs − M. As p and q are distinct

primes, we have that pq|Mrs − M and so n|Mrs − M. Hence Mrs ≡
M(mod n) and the theorem holds. ❑

EXERCISES

Problem 1. In the RSA cipher, we can never have an Mi be larger than
n. Explain why.

Problem 2. Suppose you intercept the message 231. You know it has been
encrypted using the RSA cipher with n = 341, r = 7, and block size 3. Find
the original message.

Problem 3. Prove that rk+1 in the Euclidean Algorithm is the greatest
common divisor of a and b.

Problem 4. (a) Show that if p is prime, then p divides 2p − 2.
(b) Show that the converse of the above statement is false. In other words,
show that there is an n with n > 1 and n not prime such that n|2n − 2. Hint:
try n = 341.

Problem 5. Show that if n is odd and b is an integer, then bn ≡ b(mod 3).

1.10 Public Key Exchanges with a Group

It turns out that given an algebraic structure called a group, we can use the
group to perform a public key exchange. Recall that the goal of a public
key exchange is for two parties who have never met to find a shared secret
key so that they can use an encryption scheme that requires a shared secret
key, such as DES or AES. In this chapter, we explain how this works. We
start by defining a group.16

16 For a comprehensive introduction to the theory of groups, see Gallian (2006).

44 Chapter 1. Cryptography: An Overview

Definition. Let G be a set together with an operation on pairs of elements
of G which is usually denoted using multiplication notation. We say that
G together with this operation is a group if the following properties are
satisfied.

1. For every a, b ∈ G, we have that ab ∈ G. (G is closed under its oper-
ation)

2. For every a, b, c ∈ G, we have that (ab)c = a(bc). (The operation is
associative)

3. There exists an element e ∈ G such that ae = ea = a for all a ∈ G.
(e is called the identity element of G).

4. For every a ∈ G, there exists a b ∈ Gsatisfying ab = ba = e. (b is called
the inverse of a and is denoted a−1).

Examples:
1. If p is a prime number, Zp − {0} is a group under the multiplication

of Zp.
2. Zn is a group under its addition.
3. The set of all nonsingular 2 × 2 matrices with real numbers as entries

is a group under matrix multiplication.

We now take a moment to comment on notation. If G is a group and
g ∈ G, then, as a convention, we say g0 = e. When we write gn, where n is a
positive integer, we mean g multiplied together n times. When we write gn,
where n is a negative integer, we mean g−1 multiplied together −n
times.

We are now ready to describe a method for a public key exchange
using any finite group.

Alice
1. Pick a finite group G and an element x ∈ G. This should be done in a

“smart” way – we want the group G to have a large number of elements
and we also want the set {xn|n ∈ Z} to be large.

2. Choose a secret integer r and compute xr ∈ G.
3. Announce G, x, and xr .

1.10. Public Key Exchanges with a Group 45

Bob
1. Choose a secret integer t .
2. Compute xt ∈ G.
3. Send xt to Alice.

Now, Alice computes K = (xt)r = xrt ∈ G and Bob computes K =
(xr)t = xrt ∈ G. Then they both share K and can use it as their secret
key.

We take a moment to consider what the eavesdropper, Eve, will know.
She knows G, x, xr , and xt . So Alice should choose a group G so that if
one knows y = xr , then it is difficult to find r . We will discuss such a group
in the next section.

You should also note that when G = Zp − {0}, then this is exactly
the Diffie–Hellman public key exchange. So this method is actually a
generalization of the Diffie–Hellman method.

Sometimes it is more convenient to use additive notation for a group
instead of multiplicative notation. For example, Z is a group under addi-
tion and so it would be confusing to use multiplicative notation in this case.
When we use additive notation, the four properties used in the definition
of a group can be rephrased as follows.

1. For every a, b ∈ G, we have that a + b ∈ G. (Closure)
2. For every a, b, c ∈ G, we have that (a + b) + c = a + (b + c). (Asso-

ciative)
3. There exists an element 0 ∈ G such that a + 0 = 0 + a = a for all

a ∈ G. (0 is called the identity element of G)
4. For every a ∈ G, there exists a b ∈ G satisfying a + b = b + a = 0.

(b is called the inverse of a and is denoted −a)

When we use additive notation for a group, if g is an element of the
group and n is a positive integer, then we will use ng to mean g added
to itself n times. If n is a negative integer, then ng means −g added to
itself −n times. As a convention, 0g = 0.

We now describe the public key exchange described earlier
in this section with multiplicative notation replaced with additive
notation.

46 Chapter 1. Cryptography: An Overview

Alice
1. Pick a finite group G and an element P ∈ G. This should be done

in a “smart” way – we want the group G to have a large number of
elements and we also want the set {nP|n ∈ Z} to be large.

2. Choose a secret integer r and compute rP ∈ G.
3. Announce G, P, and rP.

Bob
1. Choose a secret integer t .
2. Compute tP ∈ G.
3. Send tP to Alice.

Now, Alice computes K = trP = r tP ∈ G and Bob computes K = r tP =
trP ∈ G. Then they both share K and can use it as their secret key.

EXERCISES

Problem 1. Prove that the identity element in a group is unique.

Problem 2. Prove that if G is a group and a ∈ G, then a−1 is unique.

Problem 3. Let U(n) ⊆ Zn be the set of elements of Zn that are relatively
prime to n. Show that U(n) is a group under multiplication modulo n.

1.11 Public Key Exchange Using Elliptic Curves

In this section, we define a group using points on an elliptic curve. Not only
is this group elegant and useful in its own right, but it also has properties
beneficial for applications in cryptography. We use the group we describe
here for public key exchange as explained in Section 1.10.17

Consider the equation

y2 = x3 + ax + b, (1.4)

where a and b are rational numbers satisfying 4a3 + 27b2 �= 0. (This will
ensure that the elliptic curve is smooth.) Equation (1.4) is a specific

17 We will give a brief introduction to the subject and a reader interested in more details
should consult other sources such as Koblitz (1994).

1.11. Public Key Exchange Using Elliptic Curves 47

y

 x

Figure 1.3: The points satisfying y2 = x3 − 3x + 4.

example of an elliptic curve and the only type that we will consider here.
Now let H be the set of points (c, d) such that (c, d) satisfies Eq. (1.4)
(i.e., d2 = c3 + ac + b) and c and d are both rational numbers. We define
the elements of our group G to be H ∪O where we will call O “the point
at infinity.” For example, suppose a = −3 and b = 4. Then we can graph
the set of points that satisfy

y2 = x3 − 3x + 4

as in Fig. 1.3. So the elements of G are O along with the points on the
curve for which both coordinates are rational.

Recall that for G to be a group, we must define an operation, denoted
in this case by +, on pairs of elements of G that satisfies the appropriate
properties. We break up our definition into five different cases as follows.

Case 1: For any point P in G, we define P +O = O + P = P.

We now define + for the other cases. In other words, suppose that P �=
O and Q �= O. Then we can write P = (x1, y1) and Q = (x2, y2), where
x1, x2, y1, and y2 are all rational numbers.

Case 2: If x1 �= x2, draw the line through the points P and Q. As we
will prove after we finish defining +, that line will intersect the elliptic
curve at exactly one more point R = (x3, y3). For this case, we define

48 Chapter 1. Cryptography: An Overview

y

 x

 P Q

 P + Q

Figure 1.4: P + Q in Case 2.

P + Q = (x3,−y3). So P + Q is the reflection of the point R about the x-
axis. See Fig. 1.4 for an illustration of this case. Here we use the convention
that if the line is tangent to the elliptic curve, we say that it intersects the
elliptic curve twice. So, if the line through P and Q is tangent to the elliptic
curve at the point P, then R = P.

Case 3: If x1 = x2 and y1 �= y2 then we define P + Q = O.

Case 4: If P = Q, then draw the line tangent to the elliptic curve at the
point P. If the tangent line is not vertical, it will intersect the elliptic curve
at exactly one more point R = (x3, y3) (we will prove this later). In this
case, we define P + Q = P + P = (x3,−y3). See Fig. 1.5 for an illustration
of this case.

Case 5: On the other hand, if in the above case the tangent line is vertical,
then we define P + Q = P + P = O.

One natural question to ask now is: Unless P + Q = O, how do we
algebraically find the coordinates of the point P + Q? Since the answer
for Case 1 is clear, we need only work out the answer for Case 2 and Case 4.
We start with Case 2.

1.11. Public Key Exchange Using Elliptic Curves 49

y

 x

 P

 P + P

Figure 1.5: P + Q in Case 4.

Let P = (x1, y1) and Q = (x2, y2) with x1 �= x2 and P and Q both on
the elliptic curve given by Eq. (1.4). Then m = y2−y1

x2−x1
is the slope of the

line through P and Q. So the equation of the line through P and Q is

y = mx + h, (1.5)

where h is the y-intercept of the line. We know that (x1, y1) is on the line,
so plugging this into Eq. (1.5) and solving for h, we get

h = y1 − mx1 = y1 −
(

y2 − y1

x2 − x1

)
x1.

Now, we want to find the points of intersection of the line described in
Eq. (1.5) and the elliptic curve given by Eq. (1.4). Plugging Eq. (1.5) into
Eq. (1.4), we get

(mx + h)2 = x3 + ax + b.

Squaring out the left-hand side and rearranging terms, we get

x3 − m2x2 + (a − 2mh)x + (b − h2) = 0.

Since (x1, y1) and (x2, y2) are on both the line and the elliptic curve, we
know that x1 and x2 are solutions to the above equation. Now recall that if
f (x) is a nonzero polynomial with real coefficients and r is a real number,
then r satisfies f (r) = 0 if and only if x − r is a factor of the polynomial

50 Chapter 1. Cryptography: An Overview

f (x). It follows that

f (x) = x3 − m2x2 + (a − 2mh)x + (b − h2)

can be factored as (x − x1)(x − x2)g(x), where g(x) is a polynomial of
degree 1. Since the coefficient of the x3 term of f (x) is 1, we know that
g(x) must be of the form (x − k), where k is a real number. Now, f (x)
has degree 3, so f (x) = 0 has at most three solutions. It follows that x1,
x2, and k are the only solutions. We are given x1 and x2 and so we want
to find the third solution, k, in terms of quantities that we know. Now, we
have

x3 − m2x2 + (a − 2mh)x + (b − h2) = (x − x1)(x − x2)(x − k).

Multiplying everything out, we get

x3 − m2x2 + (a − 2mh)x + (b − h2)
= x3 + (−x1 − x2 − k)x2 + (x1x2 + kx1 + kx2)x − kx1x2.

Equating the coefficients of the x2 term on both sides and solving for k,
we get

k = m2 − x1 − x2.

From our above discussion, we know that the line given by Eq. 1.5 in-
tersects the elliptic curve in exactly three points, namely (x1, y1), (x2, y2),
and (k, mk+ h). So the point R described in Case 2 of the definition of
P + Q is

R = (x3, y3) = (k, mk+ h).

Therefore, we must have that

x3 = k = m2 − x1 − x2 =
(

y2 − y1

x2 − x1

)2

− x1 − x2

and

y3 = mk+ h = mx3 + h =
(

y2 − y1

x2 − x1

)
x3 + y1 −

(
y2 − y1

x2 − x1

)
x1

= y1 +
(

y2 − y1

x2 − x1

)
(x3 − x1) .

1.11. Public Key Exchange Using Elliptic Curves 51

It follows that

P + Q =
((

y2 − y1

x2 − x1

)2

− x1 − x2,−y1 +
(

y2 − y1

x2 − x1

)
(x1 − x3)

)
. (1.6)

Recall that P + Q is defined to be (x3,−y3). So given the coordinates of
P and Q, we can use Eq. (1.6) to find the coordinates of P + Q.

We now describe how to find the coordinates of P + Q for Case 4.
Suppose P = (x1, y1) is on the elliptic curve given by Eq. (1.4) and the
tangent line at P is not vertical. Using implicit differentiation on Eq.
(1.4), we get that 2yy′ = 3x2 + a. Solving for y′, we know that for y �= 0,
y′ = 3x2+a

2y . So the slope of the tangent line to the elliptic curve at the point
P = (x1, y1) is

m = 3x2
1 + a
2y1

.

Notice that y1 �= 0 since the tangent line is not vertical. Running through
the same argument as in Case 2 with our new value for m and with P = Q
so that x1 = x2 and y1 = y2, we arrive at

R = (x3, y3) = (k, mk+ h).

Therefore, we must have that

x3 = k = m2 − x1 − x2 =
(

3x2
1 + a
2y1

)2

− 2x1

and

y3 = mk+ h = mx3 + h =
(

3x2
1 + a
2y1

)
x3 + y1 −

(
3x2

1 + a
2y1

)
x1

= y1 +
(

3x2
1 + a
2y1

)
(x3 − x1).

It follows that

P + P =
((

3x2
1 + a
2y1

)2

− 2x1,−y1 +
(

3x2
1 + a
2y1

)
(x1 − x3)

)
. (1.7)

Recall that P + P is defined to be (x3,−y3). So given the coordinates of
P, we can use Eq. (1.7) to find the coordinates of P + P.

We have completed the definition of our group G and the operation +.
Now we must argue that G is in fact a group under +. To see that G is

52 Chapter 1. Cryptography: An Overview

closed, let P and Q be elements of G. By the definition in Cases 1, 3, and
5 and by Eq. (1.6) in Case 2 and Eq. (1.7) in Case 4, it follows that P + Q
is an element of G. (Notice that by Eq. (1.6) and (1.7), the coordinates
of P + Q in those cases are in fact rational numbers.) It turns out that
to prove (P + Q) + S = P + (Q+ S) for all points P, Q, and S in G is
quite difficult and so will be omitted from our discussion. But rest assured
that + does satisfy the associative property. It is not difficult to see that O
serves as the identity for G. The inverse of O is clearly O and the inverse
of P = (x1, y1), where P �= O is (x1,−y1), the reflection of P about the
x-axis. It follows that G is a group under the operation +.

After all the work we just did to define the group G, we now admit that
it is not the one we will use for public key exchange. But it will be clear in
a moment that G serves as a geometric motivation for the group that we
will use. This latter group G (notationally distinguished by the calligraphic
symbol) is defined as follows. First let pbe a prime number satisfying p > 3
and let a and b be elements of Zp satisfying 4a3 + 27b2 �= 0 (mod p). Let
H be the set of ordered pairs (x1, y1) such that x1 and y1 are elements of
Zp and x1 and y1 satisfy Eq. (1.4), in Zp where a and b are now elements
of Zp. In other words, we must have that

y2
1 = x3

1 + ax1 + b (mod p).

Then we define the elements of the group G to be H ∪O where, as before,
we call O the “point at infinity.” We now work to define the operation +
that we will use on G. First recall that if a ∈ Zp with a �= 0, then there is
an element b ∈ Zp such that ab = 1. When we write 1

a in the following
discussion, we mean b. We are now ready to define +.

Case 1: For any point P in G, we define P +O = O + P = P.

We now define + for the other cases. In other words, suppose that
P �= O and Q �= O. Then we can write P = (x1, y1) and Q = (x2, y2) where
x1, x2, y1, and y2 are now elements of Zp.

Case 2: If x1 �= x2 then we define P + Q to be the point
((y2−y1

x2−x1

)2 − x1−
x2,−y1 + (y2−y1

x2−x1

)
(x1 − x3)

)
, where x3 = (y2−y1

x2−x1

)2 − x1 − x2 and all arith-
metic is done in Zp.

Case 3: If x1 = x2 and y1 �= y2 then we define P + Q = O.

1.11. Public Key Exchange Using Elliptic Curves 53

Case 4: If P = Q and y1 �= 0 then we define P + Q = P + P =((3x2
1+a

2y1

)2 − 2x1,−y1 + (3x2
1+a

2y1

)
(x1 − x3)

)
, where x3 = (3x2

1+a
2y1

)2 − 2x1 and
all arithmetic is done in Zp.

Case 5: On the other hand, if, in the above case, y1 = 0 then we define
P + Q = P + P = O.

With the above definition it can be shown that G is a group under the
operation +. As with the group G described earlier, the element O is the
identity element of the group G, the inverse of O is itself, and the inverse
of any other element (x1, y1) in G is (x1,−y1). This is the group we will
use for public key exchange as described in Section 1.10.

We end with an example.

Example 1.11.1. Let p = 7, a = −3, and b = 4 as before. Since −3 ≡
4(mod 7), we want to find the pairs of elements in Z7 that satisfy the
equation y2 = x3 + 4x + 4. It is not hard to do this by hand to get the
group G.

G = {O, (0, 2), (0, 5), (1, 4), (1, 3), (3, 1), (3, 6), (4, 0), (5, 4), (5, 3)}

Suppose Alice and Bob agree to do a public key exchange with the above
G using the method described in Section 1.10. If Alice chooses P = (0, 2)
and r = 3, then she must compute r P = 3(0, 2) = (0, 2) + (0, 2) + (0, 2).
Now,

(0, 2) + (0, 2) =
((

3(0)2 + 4
4

)2

− 0,−2 +
(

3(0)2 + 4
4

)
(0 − x3)

)

= (1, 5 + (0 − 1))

= (1, 4).

Note that for the above calculation we used Case 4 of the definition. Now
3(0, 2) = (0, 2) + (1, 4), so we have

(0, 2) + (1, 4) =
((

4 − 2
1 − 0

)2

− 0 − 1,−2 +
(

4 − 2
1 − 0

)
(0 − x3)

)

= (3,−2 + (2)(0 − 3))

= (3, 6).

So Alice announces that P = (0, 2) and r P = (3, 6).

54 Chapter 1. Cryptography: An Overview

Now suppose that Bob chooses t = 4. Then tP = 4(0, 2) = 2(0, 2) +
2(0, 2) = (1, 4) + (1, 4). So

(1, 4) + (1, 4) =
((

3(1)2 + 4
2(4)

)2

− 2(1),−4 +
(

3(1)2 + 4
(2)4

)
(1 − x3)

)

= (0 − 2,−4 + (0)(1 − x3))

= (5, 3).

Bob sends tP = (5, 3) to Alice. Alice now computes K = trP = r(tP) =
3(5, 3) as follows.

(5, 3) + (5, 3) =
((

3(5)2 + 4
2(3)

)2

− 2(5),−3 +
(

3(5)2 + 4
(2)3

)
(5 − x3)

)

= (1,−3 + (−2)(5 − 1))

= (1, 3)

and

(1, 3) + (5, 3) =
((

3 − 3
5 − 1

)2

− 1 − 5,−3 +
(

3 − 3
5 − 1

)
(1 − x3)

)

= (1, 4).

Alice now knows that K = (1, 4).
Bob computes K = trP = 4(3, 6).

(3, 6) + (3, 6) =
((

3(3)2 + 4
2(6)

)2

− 2(3),−6 +
(

3(3)2 + 4
(2)6

)
(3 − x3)

)

= (5, 4)

and

(5, 4) + (5, 4) =
((

3(5)2 + 4
2(4)

)2

− 2(5),−4 +
(

3(5)2 + 4
(2)4

)
(5 − x3)

)

= (1, 4).

Now Bob and Alice share the secret key K = (1, 4).

Of course, the above example is a very simple one that could be broken
easily. In practice, Alice and Bob choose p to be much larger. Because

1.11. Public Key Exchange Using Elliptic Curves 55

the operation on the group G is so complicated, it is difficult to “undo”
the operation and that makes it more challenging for an eavesdropper to
find the shared key K.

This concept can be modified so that we can use the group G not only
for public key exchange but also for sending encrypted messages.18

EXERCISES

Problem 1. In the group described in Example 1.11.1, compute (3, 6) +
(5, 4).

Problem 2. Let p = 7 and a = b = 1. Find the elements of the group G.

Problem 3. Alice and Bob decide to do a public key exchange using
the group from Problem 2. Suppose Alice chooses P = (2, 2) and r = 4.
Find rP. Suppose Bob chooses t = 3. Find tP. Go through the steps that
Alice will to find K. Do the same for Bob to verify that they will find
the same K.

18 See Koblitz (1994).

2 Quantum Mechanics

The early twentieth century was a revolutionary time in the history of
physics. People often think of Einstein’s special theory of relativity of
1905, which changed our conceptions of time and space. But among physi-
cists, quantum mechanics is usually regarded as an even more radical
change in our thinking about the physical world. Quantum mechanics,
which was developed between 1900 and 1926, began as a theory of atoms
and light but has now become the framework in terms of which all basic
physical theories are expected to be cast. We need quantum ideas not only
to understand atoms, molecules, and elementary particles, but also to un-
derstand the electronic properties of solids and even certain astronomical
phenomena such as the stability of white dwarf stars. The theory was rad-
ical in part because it introduced probabilistic behavior as a fundamental
aspect of the world, but even more because it seems to allow mutually
exclusive situations to exist simultaneously in a “quantum superposition.”
We will see later that the possibility of quantum superposition is largely
responsible for a quantum computer’s distinctive advantage over an ordi-
nary computer. The present chapter is devoted to introducing the basic
principles of quantum mechanics.1

1 In this book, because of the applications we consider, we focus on the quantum mechanics
of systems having only a finite number of perfectly distinguishable states. A thorough
introduction with a similar focus can be found in the book by Peres (1995). See also
the article by Mermin (2003), which covers some of the same material starting with ideas
from classical computer science. Most quantum mechanics textbooks, reasonably enough,
deal primarily with the quantum mechanics of continuous variables such as position and
momentum, and with applications to atomic and molecular physics. Two widely used books
along these lines are Griffiths (1995) and Park (1992). For a more conceptual approach,
but still assuming the mathematical background of an undergraduate student in physics

56

2.1. Photon Polarization 57

There are essentially four components of the mathematical structure
of quantum mechanics. We need to know how to represent (i) states,
(ii) measurements, (iii) reversible transformations, and (iv) composite
systems. We will develop the first three in stages, starting with a very
simple case – linear polarization of photons – and working toward the
most general case. The treatment of composite systems will be saved for
the last few sections of the chapter.

2.1 Photon Polarization

Any object you can think of – an atom, a baseball, a tree – can in principle
be described by quantum mechanics, though in practice we would never
want to give an exhaustive quantum description of anything as complex
as a baseball. In this book we will mainly be thinking about extremely
simple objects, and even then we will restrict our attention to very simple
properties.

A photon, or particle of light, is a particularly simple object. It has
essentially only two properties, or quantum variables: momentum and
polarization. We use the word state to refer to the most complete charac-
terization that one can give of a quantum variable at a particular moment
in time. The state of a quantum variable can change from one moment to
the next, but at any given moment, you cannot know more about a quan-
tum variable than its state.2 Of the two quantum variables that describe
a photon, the simpler by far is its polarization. So let us consider just that
variable.

For some purposes it is useful to divide the set of possible polarization
states of a photon into three classes: linear, circular, and elliptical. The
linear polarizations are the easiest ones to visualize and we will start
by focusing just on these states. Our discussion of linear polarization is
somewhat informal and is intended to introduce ideas that will be used
throughout our work on quantum mechanics. The terms introduced in that

or engineering, see Greenstein and Zajonc (1997). A less technical introduction to the
fundamental ideas is Styer (2000).

2 We use the word “state” to refer to what is more precisely known as a pure state. If one
has less than maximal knowledge about a quantum variable, one describes it by a state
that is not pure but mixed. We will not explicitly consider mixed states in this book.

58 Chapter 2. Quantum Mechanics

discussion will be defined more precisely when we generalize to circular
and elliptical polarizations.

2.1.1 Linear polarization

In classical physics (that is, nonquantum physics), the polarization of a
linearly polarized light wave is represented by an axis in a plane perpen-
dicular to the direction of propagation of the wave; this axis is understood
to be the axis along which the electric field vector is oscillating. In quan-
tum physics we cannot properly speak of an electric field oscillating along
an axis, but we can still speak of a photon’s polarization, and linear polar-
ization can still be represented as an axis in a plane. Moreover, it is still
helpful to think of this plane as perpendicular to the direction of motion
of the photon, because visualizing the polarization in this way aids the
intuition as we think about how the polarization will change in various
situations.

Suppose that a photon is traveling directly into this page – its direction
of propagation is perpendicular to the page – so that the plane of possible
polarization vectors can be identified with the plane of the page; the plane
has a horizontal axis (which we will call the s1-axis) and a vertical axis (the
s2-axis). Any other axis in the plane can be represented by a vector lying
along that axis, so that we can represent states of linear polarization by
two-dimensional real vectors. In fact we will always use normalized vec-
tors, that is, vectors of unit length, and we will usually write them as column
vectors. Thus a general linear polarization state can be represented by the
vector |s〉 = (s1

s2

) = (cos θ

sin θ

)
, where θ is the angle measured counterclock-

wise from the positive s1-axis, as in Fig. 2.1. Here we use the physicists’
notation | · · · 〉 to denote a vector that represents a quantum state. (One
might have expected �s but this notation is not normally used for quan-
tum states.) We will also use the special symbols |↔〉 and |�〉 to indicate
the horizontal and vertical polarizations as represented by the vectors(1

0

)
and

(0
1

)
respectively. Thus we can write our general linear polariza-

tion state |s〉 as |s〉 = s1 |↔〉 + s2 |�〉. Note that the two vectors |s〉 = (s1
s2

)
and −|s〉 = (−s1

−s2

)
, which are diametrically opposite each other, lie on the

same axis and therefore represent the same polarization state. So there
is not a one-to-one correspondence between normalized vectors and po-
larization states. This feature is quite general in quantum mechanics: we

2.1. Photon Polarization 59

s1

s2

|s

Figure 2.1: A vector representing a state of linear polarization.

will see that two vectors that are proportional to each other (as in this
case where one is the negative of the other) always represent the same
quantum state. (As we will see, in the general case the proportionality
constant can be a complex number.)

We now introduce the concepts of measurements and reversible trans-
formations as they apply to linear polarizations.

We can imagine a measuring device for a quantum variable as a sort
of box that can accept as input the quantum object (which for now will be
a photon) and produce as output one of several possible outcomes. The
outcomes are physical events but they can be labeled by mathematical
symbols. We will say more below about the labeling scheme we will use. If
you have not seen any quantum mechanics before, you might expect that
a measuring device for photon polarization would simply ascertain the
polarization state of the input photon. That is, if you were to insert into
the device a photon in the polarization state

(cos θ

sin θ

)
, the observed outcome

would tell us the value of θ . It turns out, though, that no such device exists.
Moreover, according to quantum mechanics, no such device could ever
be built. In other words, it is impossible for a measuring device to ask
of a photon, “What is your polarization state?” Instead, it can ask only
binary questions, giving the photon a choice between two orthogonal (i.e.,
perpendicular) states. For example, there exists a measuring device that
asks, in effect, “Which of the following two polarizations do you have:
vertical or horizontal?” Of course the photon may well not have either
of these polarizations – it may be polarized along some intermediate
axis – but the measuring device forces the photon to choose between
the two options given. As we will discuss further below, the photon’s
polarization state typically must change in response to the question posed
by the measuring device. Mathematically, a device that measures linear

60 Chapter 2. Quantum Mechanics

polarization is represented by an ordered pair of normalized, mutually
perpendicular state vectors M = (|m(1)〉, |m(2)〉). A set of vectors that are
normalized and mutually perpendicular is called an orthonormal set. The
pair M also constitutes a basis for the space of states (i.e., any vector in
the space can be written as a linear combination of |m(1)〉 and |m(2)〉);
so the measurement is represented by an orthonormal basis. The two
vectors |m(1)〉 and |m(2)〉 correspond to the two possible outcomes of the
measurement.

At this point you may well be wondering how the photon makes its
decision. For example, if the photon’s initial polarization makes an angle
of 30◦ with the horizontal axis, and it is forced to choose between horizon-
tal and vertical, how does it decide which outcome to give? According to
quantum mechanics the decision is made probabilistically: if the state of
the photon before measurement is |s〉, then the probability pi of the out-
come |m(i)〉 (where i = 1 or 2) is the squared cosine of the angle between
|s〉 and |m(i)〉. Notice that because the two vectors |m(1)〉 and |m(2)〉 are
orthogonal, the two probabilities add up to one, as they must. Notice also
that if the polarization vector |s〉 is only a few degrees away from one of
the allowed outcome vectors |m(i)〉, then it is much more likely to yield
that outcome than the other one. This rule for computing probabilities is
consistent with the experimental evidence, and indeed one can easily pro-
duce more such evidence in a simple demonstration that we will describe
shortly.

We can reexpress the above probability rule in a more succinct form
by introducing the inner product between two polarization vectors. If
|s〉 = (s1

s2

)
and |m〉 = (m1

m2

)
are two real vectors representing linear po-

larization states, then the inner product between |s〉 and |m〉 is denoted
〈s|m〉 and is defined to be 〈s|m〉 = s1m1 + s2m2. The probability rule can
now be restated as follows: if a photon with linear polarization |s〉 is sub-
jected to the linear polarization measurement M = (|m(1)〉, |m(2)〉), then
the probability of the outcome |m(i)〉 is |〈s|m(i)〉|2. (The absolute value
sign is not necessary here, but we include it because it will be neces-
sary for more general polarizations, for which 〈s|m(i)〉 can be a complex
number.)

Example 2.1.1. In a certain polarization measurement M, one of the pos-
sible outcomes is represented by the vector |m(1)〉 = (1/2√

3/2

)
. (i) How can

2.1. Photon Polarization 61

horizontal

vertical

Figure 2.2: Distinguishing horizontal and vertical polarizations by means of a
Wollaston prism and two photon detectors.

we represent the other outcome vector? (ii) If M is applied to a photon
with horizontal polarization, what are the probabilities of the two out-
comes?
Answers: (i) The vector |m(2)〉 must be orthogonal to |m(1)〉. This require-
ment forces |m(2)〉 to be proportional to

(√3/2
−1/2

)
. Since we insist on nor-

malization, the only real vectors we can use for |m(2)〉 are
(√3/2
−1/2

)
and(−√

3/2
1/2

)
. (ii) If the incoming photon has horizontal polarization, rep-

resented by |s〉 = (1
0

)
, then the probability of the first outcome is p1 =

|〈s|m(1)〉|2 = (1/2)2 = 1/4, and the probability of the second outcome is
p2 = |〈s|m(2)〉|2 = (

√
3/2)2 = 3/4.

In practice the measuring device represented by an orthonormal basis
M = (|m(1)〉, |m(2)〉) can be realized in a number of ways. One such real-
ization consists of what is called a Wollaston prism, together with a pair of
photon detectors. A Wollaston prism will direct into one path all photons
that are polarized along a certain axis, and will direct into a different path
all photons that are polarized along the orthogonal axis. A photon detec-
tor is placed in each of these two paths to record each photon’s choice, as
illustrated in Fig. 2.2. If a photon’s polarization is neither of the two special
states picked out by the Wollaston prism, then the photon chooses one of
the two detectors probabilistically in accordance with the above rule. By
counting how many photons land in each detector, one can estimate the
probabilities, and one indeed finds that the observations agree with the
theory. Detecting and counting individual photons requires rather fancy
equipment and cannot be done in practice unless the beam of light is ex-
tremely weak. On the other hand, it is quite easy to measure the intensity
of a normal beam of light, and the intensity is proportional to the number
of photons arriving per unit time.

Another very common way to make a measurement of linear polar-
ization is with a polarizing filter. Like a Wollaston prism, a polarizing

62 Chapter 2. Quantum Mechanics

filter distinguishes two orthogonal polarization axes, but instead of send-
ing them along different paths, it simply absorbs photons having one
polarization and transmits photons having the orthogonal polarization.
For example, the polarizing filters used in polarizing sunglasses are ori-
ented so as to transmit vertically polarized light and to absorb hori-
zontally polarized light. This is because glare tends to be horizontally
polarized, for reasons having to do with the behavior of light upon
reflection.

So far we have treated measurements primarily as indicators of one
outcome or the other. But if the photon survives the measurement, we
can also ask how the measurement affects the photon’s state. In classical
physics, an ideal measurement would be one that does not affect the object
being measured. But in quantum physics this ideal must be abandoned.
Consider, for example, the following experiment. A photon is prepared
in the state

(1/
√

2
1/

√
2

)
, that is, with its polarization 45◦ from the horizontal. It

now encounters a polarizing filter whose preferred axis (that is, the axis
of polarization that is transmitted) is vertical. If the photon gets through
this filter, it encounters a second polarizing filter, which likewise favors
vertical polarization. Let us try to predict the probability that the photon
will pass through both filters.

First, the photon has a 50% chance of passing through the first filter,
since sin2(45◦) = 1/2. If the first filter does not affect the photon’s polar-
ization, then the same calculation applies to the second filter, so that the
probability of passing both filters is (1/2)(1/2) = 25%. When one actually
does the experiment, though, one finds that half of the light gets through
both filters. We explain this by saying that in the first measurement, in
which the photon is forced to choose between outcomes corresponding
to vertical and horizontal polarizations, if it chooses “vertical,” then it
becomes vertical. It does not remember that it was originally polarized
at 45◦. Having become vertically polarized, it now has a 100% chance of
passing through the second filter. So the probability of passing through
both filters is not 25% but 50%.

This behavior is quite typical of quantum measurements. Therefore
standard quantum mechanics includes another rule about measurements:
When a quantum particle is measured and gives the outcome associ-
ated with |m(i)〉, its state becomes |m(i)〉, regardless of what it was be-
fore. Note that this effect gives us a way of preparing a quantum state.

2.1. Photon Polarization 63

For example, to prepare a beam of photons having vertical polariza-
tion, we can send an unpolarized beam of light through a vertically po-
larizing filter; the photons that make it through the filter are vertically
polarized.

Example 2.1.2. Consider a sequence of three polarizing filters, oriented
at angles 0◦, 45◦, and 90◦ from the horizontal. If a photon passes through
the first filter, with what probability will it pass through both of the other
filters? Answer: The probability of passing through the second filter is
1/2, and if the photon does pass through that filter, it becomes polarized
at 45◦. It then has probability 1/2 of passing through the final filter. So
the probability of passing through both is (1/2)(1/2) = 1/4. (Notice that
if the middle filter had not been there, the photon would certainly have
been absorbed by the final filter. This example thus nicely illustrates the
fact that a quantum measurement can make a difference.)

We have just seen that a photon’s polarization state can change upon
measurement. It can also change in situations not involving measurement.
For example, if a photon with linear polarization passes through a solution
of ordinary table sugar, the polarization will rotate counterclockwise (as
viewed from directly behind the photon) by an angle proportional to both
the concentration of sugar and the distance the photon travels through
the solution. So it is possible to rotate polarizations. In fact, one finds after
much experimentation that the only physically possible transformations
that are reversible (unlike measurements) and that take linear polariza-
tions into linear polarizations are (i) rotations and (ii) reflections around
an axis. (One device that effects a reflection is called a half-wave plate.)
There is no device, for example, that effects the following transformation
for all angles θ :

(
cos θ

sin θ

)
−→ 1√

(2 cos θ)2 + (sin θ)2

(
2 cos θ

sin θ

)
.

Such a transformation, which stretches the polarization vector in the
horizontal direction and then shrinks it back to unit length, would al-
ways produce an allowed state, but the transformation itself is not al-
lowed by the laws of physics. The allowed transformations – rotations and

64 Chapter 2. Quantum Mechanics

reflections – can be represented by matrices. If |s〉 is the initial polarization
state and |s ′〉 is the final state, we can write

|s ′〉 = R|s〉, (2.1)

where R is a 2 × 2 real matrix satisfying RTR = I. Here T denotes the
transpose and I is the 2 × 2 identity matrix. Any real matrix satisfying
this condition is called an orthogonal matrix, and one can show that every
orthogonal matrix represents a rotation or a reflection.

At this point we should confess that there do exist other measurements
and transformations that one can perform on a photon’s polarization, even
if one restricts one’s attention to linear polarization. For example, there
are “generalized measurements” of polarization that can have more than
two possible outcomes (though for such measurements it will not be the
case that each outcome has a corresponding state that will produce that
outcome with certainty). And there are nonreversible transformations
that are not measurements. However, these alternative operations can al-
ways be constructed from measurements and transformations of the types
we have introduced above, in combination with familiar operations such
as “throwing information away.” So we restrict our attention to these ba-
sic types, which we will distinguish by the terms “standard measurement”
and “reversible transformation.”

Let us summarize, then, the quantum mechanics of linear polarization.

1. A state is represented by a normalized vector in two real dimensions,
and the negative of a vector represents the same state as the vector
itself.

2. A standard measurement is represented by an orthonormal basis
(|m(1)〉, |m(2)〉) for the two-dimensional vector space, and the prob-
ability of the outcome |m(i)〉 when the initial state is |s〉 is |〈s|m(i)〉|2.
After the measurement, the photon’s state is the chosen outcome
vector |m(i)〉.

3. The allowed reversible physical transformations are represented by
orthogonal matrices acting on the two-dimensional vector space, and
every such matrix represents an allowed transformation.

Before we end this section, it is worth saying a few more words about
the concept of a quantum state. In this informal introduction we have
been speaking as if the polarization state of a photon resides in the photon

2.1. Photon Polarization 65

itself, that is, as if it were a literal description of the photon. This is surely
the easiest way to think of a quantum state, but it is problematic, as we will
see later when we discuss composite systems. Some physicists argue that
it is best to think of a quantum state as a state of knowledge, not a literal
property of the object itself. Probably the safest approach is to regard the
quantum state as characterizing the preparation of the object in question.
Thus, the change in state when an object is measured can be taken as
indicating that the measuring device has effected a new preparation of the
object.

You might also be bothered by our focus on measurements. One would
normally think that the aim of physics is simply to describe how the world
works, not how we interact with the world or how we find things out
about the world. So why not just state the rules governing the workings
of the world, and leave us and our measurements out of the picture?
If you are bothered about this, you are not alone. Many physicists and
philosophers have addressed this issue, and there are various strategies
for expressing the content of quantum mechanics without invoking the
concept of a measurement. But these alternative strategies likewise chal-
lenge one’s ordinary views about physics and are no easier to swallow on
a first encounter. (We did mention at the beginning of this chapter that
quantum mechanics was revolutionary!) We have chosen the language of
measurements partly because it is the most commonly used formulation
but also because it is the one that is most useful for describing quantum
cryptography and quantum computation.

There remain many interesting questions about the interpretation of
quantum mechanics. Fortunately, the observable predictions of the theory
are not in dispute, and these are all that we need for our purposes.

EXERCISES

Problem 1. Consider the following state vector |s〉 and measurement
vectors |m1〉 and |m2〉 for photon polarization:

|s〉 =
(

4/5
3/5

)

M = (|m1〉, |m2〉) =
((

3/5
4/5

)
,

(
−4/5
3/5

))

66 Chapter 2. Quantum Mechanics

(a) Show that |s〉 is indeed a legitimate state vector and that M is
indeed a legitimate pair of measurement vectors.

(b) When the measurement M is performed on a photon in the state
|s〉, what are the probabilities of the two outcomes?

Problem 2. Consider the matrix R = (cos φ − sin φ

sin φ cos φ

)
. (a) Show that R

is an orthogonal matrix. (b) Apply R to the linear polarization state
|s〉 = (cos θ

sin θ

)
. Describe in everyday language the effect of this transfor-

mation on a state of linear polarization.

Problem 3. We have asserted that orthogonal matrices represent allowed
reversible transformations. If we had simply said that they represent al-
lowed transformations, how would you know that the transformations
they represent are indeed reversible?

Problem 4. Let R = (cos(π/(2n)) − sin(π/(2n))
sin(π/(2n)) cos(π/(2n))

)
.

(a) Compute Rn. (That is, compute the product of n factors of R, where
the multiplication is matrix multiplication. You may find the following
trigonometric identities helpful: cos α cos β − sin α sin β = cos(α + β);
cos α sin β + sin α cos β = sin(α + β).)

(b) A horizontally polarized photon passes successively through n
small containers of sugar water, each of which effects the transforma-
tion R. The photon then encounters a polarizing filter whose preferred
axis is horizontal. What is the probability of the photon passing the
filter?

(c) Another horizontally polarized photon passes through the same
n containers of sugar water. But now, just after each container there is a
polarizing filter whose preferred axis is horizontal. What is the probability
that the photon will pass through all n filters?

(d) Find the limit of your answer to part (c) as n approaches infinity.

Problem 5. A half-wave plate is a transparent sheet of material that has
the effect of reflecting any linear polarization around a certain axis. Sup-
pose that this special axis makes an angle φ with the horizontal axis (mea-
sured counterclockwise from the horizontal axis). (a) Write down a 2 × 2
orthogonal matrix that represents the effect of the half-wave plate. (b)
Is the answer to part (a) unique? If not, find all orthogonal matrices that
could be used to express this effect.

2.1. Photon Polarization 67

2.1.2 Review of complex numbers

In the preceding subsection, all our vectors and matrices had only real-
valued components. But when we extend the discussion to more general
quantum states, the components of our vectors and matrices will be com-
plex numbers. We now review the basic definitions pertaining to complex
numbers and highlight the properties that will be most useful for our
purpose.

Definition. The field of complex numbers C, consists of all numbers of the
form a + ib, where a and b are real numbers and i is the imaginary unit
defined by i2 = −1. Addition and multiplication are defined as follows:

(a + ib) + (c + id) = (a + c) + i(b + d)
(a + ib)(c + id) = (ac − bd) + i(ad + bc)

One can show that both addition and multiplication are commutative
and associative, and that together they have the distributive property.
Moreover, both operations have inverses. For example, the reciprocal of
a + ib can be written as

1
a + ib

= 1
a + ib

· a − ib
a − ib

= a − ib
a2 + b2

= a
a2 + b2

+ i
(−b

a2 + b2

)
, (2.2)

which exists as long as a + ib �= 0 (that is, as long as a and b are not both
zero). Thus the complex numbers indeed constitute a field. The complex
numbers are usually visualized as points in a Cartesian plane, with a being
the horizontal coordinate and b the vertical coordinate. The horizontal
axis is usually called the real axis, the vertical axis is the imaginary axis,
and the plane itself is called the complex plane. Note that the addition
of complex numbers can be visualized as ordinary vector addition in this
plane. It is also possible to visualize multiplication, but this will be easier
after we have developed a few more conceptual tools.

Definition. The complex conjugate (sometimes called simply the conju-
gate) of the complex number z = a + ib is the complex number a − ib
and is denoted z̄.

68 Chapter 2. Quantum Mechanics

In the complex plane, one obtains the complex conjugate of a number
z by reflecting z around the real axis.

Definition. Let z = a + ib be a complex number. The real part of z is the
real number a and is denoted Re z. The imaginary part of z is the real
number b and is denoted Im z. A complex number is called imaginary if
its real part is zero and its imaginary part is nonzero.

Sometimes it is useful to compute the real and imaginary parts as
follows:

z+ z̄
2

= (a + ib) + (a − ib)
2

= a = Re z.

z− z̄
2i

= (a + ib) − (a − ib)
2i

= b = Im z.

Definition. The magnitude of the complex number z = a + ib (also called
the modulus, norm, or absolute value) is denoted |a| and is equal to the
nonnegative real number

√
a2 + b2.

In the complex plane, the magnitude of z is the distance between the
origin and the point representing z. Sometimes it is convenient to compute
the magnitude of z via the complex conjugate:

√
zz̄ =

√
(a + ib)(a − ib) =

√
a2 + b2 = |z|.

We now introduce a notion that will be extremely useful, namely, the
concept of an imaginary exponent. Recall that the exponential function
ex, for real x, can be expressed as an infinite Taylor series:

ex = 1 + x + x2

2!
+ x3

3!
+ · · · . (2.3)

We now formally replace x everywhere in this expression by iθ , where θ

is real. This gives us

eiθ = 1 + iθ + (iθ)2

2!
+ (iθ)3

3!
+ · · · = 1 + iθ − θ2

2!
− i

θ3

3!
+ · · · . (2.4)

Rearranging so as to separate the real terms from the imaginary terms,
we get

eiθ =
(

1 − θ2

2!
+ θ4

4!
− · · ·

)
+ i

(
θ − θ3

3!
+ θ5

5!
− · · ·

)
, (2.5)

2.1. Photon Polarization 69

which we can resum to arrive at

eiθ = cos θ + i sin θ. (2.6)

These formal manipulations lead us to the following definition.

Definition. Let θ be a real number. We define eiθ to be the complex
number cos θ + i sin θ .

In fact the above manipulations are more than formal. One can rigor-
ously define convergence of a complex infinite series and show that the
series expressed in Eq. (2.4) converges to cos θ + i sin θ for all θ . Indeed
the definition can be extended to make sense of ez for all complex num-
bers z (not just purely imaginary numbers), but we will not need this more
general concept.

The ordinary exponential function ex has the property that exey =
ex+y. Let us check that our newly defined function eiθ has this property
also. We have

eiθeiφ = (cos θ + i sin θ)(cos φ + i sin φ)
= (cos θ cos φ − sin θ sin φ) + i(cos θ sin φ + sin θ cos φ)
= cos(θ + φ) + i sin(θ + φ) = ei(θ+φ).

In fact this property actually follows from the Taylor expansion (2.3), so
it is not surprising that it holds for eiθ .

The relation eiθ = cos θ + i sin θ gives us another way of writing com-
plex numbers. Consider an arbitrary nonzero complex number z = a + ib,
and write both a and b in terms of polar coordinates: a = r cos θ and
b = r sin θ , where r is a nonnegative real number. These relations de-
fine r uniquely – r is the magnitude |z| – and they define θ (in radi-
ans) uniquely up to the addition of a multiple of 2π . One possible value
of θ is the smallest angle by which the positive real axis has to be ro-
tated counterclockwise in order to reach z. The angle θ is usually called
the phase of the complex number z. In terms of r and θ , we can write
z as

z = a + ib = r cos θ + ir sin θ = r(cos θ + i sin θ) = reiθ . (2.7)

The expression reiθ , illustrated in Fig. 2.3, is usually called the polar form
of z. This alternative way of writing complex numbers is often much more
convenient than the Cartesian form z = a + ib. Consider, for example, the

70 Chapter 2. Quantum Mechanics

11

.

.

| |
= | |

Figure 2.3: The polar representation of a complex number. The figure also indi-
cates the location of the complex conjugate z.

multiplication of two complex numbers z1 and z2. If we write them both
in polar form, we have

z1z2 = (
r1eiθ1

) (
r2eiθ2

) = r1r2ei(θ1+θ2).

Thus when we multiply two complex numbers, the magnitudes multiply
as real numbers, and the angles, as measured counterclockwise from the
positive real axis, simply add.

EXERCISES

Problem 1. Let z1 and z2 be complex numbers.
(a) Show that the complex conjugate of z1z2 is z̄1z̄2.
(b) Show that if z2 �= 0, the complex conjugate of z1/z2 is z̄1/z̄2.
(c) Show that |z1z2| = |z1||z2|.
(d) Show that if z2 �= 0, |z1/z2| = |z1|/|z2|.

Problem 2. Starting with e3iθ = (
eiθ
)3, derive a formula for cos(3θ) in

terms of cos θ and sin θ .

Problem 3. Evaluate each of the following quantities.
(a) eiπ

(b) |1 + i |
(c) 2+3i

3+2i

(d) (1 + i)16. (Hint: There is more than one way to approach this
problem.)

2.1. Photon Polarization 71

2.1.3 Circular and elliptical polarization

It is easy to do an experiment showing that linear polarization is not the
last word on the polarization of photons. One can, for example, reversibly
convert a linearly polarized photon into a new polarization state with the
following property: it has a 50% chance of passing through any linearly
polarizing filter, regardless of the orientation of that filter. In other words,
the photon’s new polarization has no preferred axis. Its polarization state
is called “circular.” (We will discuss this experiment further in Examples
2.1.6 and 2.1.7.) As we have said in the preceding section, in order to ex-
press this polarization and other polarizations mathematically, we need
to generalize our earlier formalism. Specifically, we need to let our state
vectors have complex components. In this section we develop the math-
ematical rules for expressing these new states, and we explore some of
the physical consequences of these rules. Of course the rules themselves
were formulated only after much experimentation. You can regard them
as very succinct summaries of a lot of data.

As we will see, the laws of quantum mechanics with complex numbers
are very similar to the ones we have used to describe linear polarization.
But there are some subtleties in the generalization; in particular, we need
to define the inner product carefully.

Definition. Let |s〉 = (s1
s2

)
and |m〉 = (m1

m2

)
be a pair of two-dimensional

complex vectors. The inner product between |s〉 and |m〉 is denoted 〈s|m〉
and is defined to be the complex number s̄1m1 + s̄2m2, where the bar
indicates complex conjugation.

This definition of the inner product also determines what we mean by
“orthogonality” and “length” for complex vectors.

Definition. Let |s〉 and |m〉 be a pair of two-dimensional complex vectors.
The two vectors are orthogonal if and only if 〈s|m〉 = 0.

Definition. Let |s〉 be a two-dimensional complex vector. The length of
|s〉 is 〈s|s〉1/2, and a vector is said to be normalized if its length is 1. (Note
that 〈s|s〉 is always real and nonnegative. The square root is understood
to be the nonnegative square root.)

72 Chapter 2. Quantum Mechanics

The presence of complex conjugation in the definition of the inner
product makes sense. The magnitude of the inner product between two
normalized vectors is supposed to indicate how similar the two quantum
states are that are represented by those vectors. Orthogonal vectors are
supposed to represent states that are as different from each other as
possible. If we removed the bars in the above definition of inner product,
so that 〈s|m〉 were simply s1m1 + s2m2, then a nonzero vector could be
orthogonal to itself, and this would violate the intended interpretation of
orthogonality.

The notation 〈s|m〉 for the inner product can be understood in the
following way. We will consistently regard state vectors written with a
rightward pointing bracket, such as |m〉, as column vectors. A symbol
with a leftward pointing bracket, such as 〈s|, can be understood on its
own as a row vector, so that the 〈s||m〉, regarded as a product of two
matrices, automatically comes out to be a single number. We abbreviate
the notation 〈s||m〉 to 〈s|m〉 to express the inner product. But in order to
understand the above definition of the inner product in this way, we cannot
take 〈s| to be the transpose of |s〉. Rather, it is the complex conjugate of
the transpose. This notation will frequently prove useful in what follows.

Example 2.1.3. Consider the two vectors |s〉 = (1/
√

2
i/
√

2

)
and |t〉 = (1/

√
2

−i/
√

2

)
.

Find the length of each vector and the inner product 〈s|t〉.
Answers: The squared length of |s〉 is 〈s|s〉 = (

1/
√

2 − i/
√

2
)(1/

√
2

i/
√

2

) =
1/2 + 1/2 = 1. So the length itself is also 1. (Here we have used the
row-vector interpretation of 〈s| and ordinary matrix multiplication to
express the sum required in our definition of the inner product.) One
finds similarly that the length of |t〉 is 1. The inner product 〈s|t〉
is
(
1/

√
2 − i/

√
2
)(1/

√
2

−i/
√

2

) = 1/2 − 1/2 = 0. Thus these two vectors are
orthogonal.

There is one more concept that has to be generalized, namely, the
notion of an orthogonal matrix. Recall that any reversible transformation
that takes linear polarizations to linear polarizations can be represented
by an orthogonal matrix. In the world of complex numbers, the natural
generalization is the notion of a unitary matrix, or unitary operator. It
often aids one’s intuition to think of a unitary operator as a rotation,
albeit a more abstract sort of rotation. Though for the time being we need

2.1. Photon Polarization 73

to define unitary transformations only on two-component vectors, we give
the definition for the more general case of N-component vectors because
we will need it later.

Definition. An operator (or linear operator) acting on N-component
complex vectors is an N × N matrix, also having complex components.

Definition. Let M be an operator. The adjoint of M, denoted M †, is the
complex conjugate of the transpose of M. (That is, one takes the complex
conjugate of each component of the transpose.)

Definition. Let U be an operator. We say that U is unitary if and only if
U †U = I, where I is the identity matrix.

Example 2.1.4. Any real orthogonal matrix is also unitary. For a real ma-
trix R, R † = RT ; so the unitarity condition becomes RTR = I, which is
the defining property of an orthogonal matrix.

Example 2.1.5. Consider the matrix V = (1/
√

2)
(1 i

i 1

)
. V is unitary, since

V †V = (1/2)
(1 −i
−i 1

)(1 i
i 1

) = (1 0
0 1

)
.

We can now state the basic quantum mechanical rules for arbitrary
polarizations of a photon.

1. A polarization state is represented by a normalized complex vector in
two dimensions. Moreover, two vectors |s〉 and |t〉 represent the same
polarization state if and only if they differ by no more than an overall
factor, that is, if |s〉 = γ |t〉 for some complex number γ . Since |s〉 and
|t〉 are both normalized, γ must have unit magnitude; that is, γ = eiφ

for some real φ.
2. A standard polarization measurement is represented by an orthonor-

mal basis (|m(1)〉, |m(2)〉) for the two-dimensional complex vector
space, and every such basis represents a possible measurement. The
probability of the outcome |m(i)〉 when the initial state is |s〉 is
|〈s|m(i)〉|2.

3. Every allowed reversible physical transformation on the polarization
of a photon is represented by a 2 × 2 unitary matrix U, and every such
U represents an allowed transformation.

74 Chapter 2. Quantum Mechanics

Thus, in generalizing from linear polarizations to general polarizations,
real vectors and matrices become complex vectors and matrices, and in
inner products and the condition for reversible transformations, one of
the factors has to be complex-conjugated.

We have not yet said what counts as elliptical polarization and what
counts as circular polarization. It is easy enough to make this distinc-
tion mathematically: a vector |s〉 = (s1

s2

)
represents “right-hand circular

polarization” if and only if s2 = is1; it represents “left-hand circular po-
larization” if and only if s2 = −is1. If s2/s1 is any complex number other
than i and −i , but still having a nonzero imaginary part, then |s〉 repre-
sents a state of elliptical polarization. If s2/s1 is real or if s1 = 0, then the
polarization is linear, because |s〉 is proportional to a real vector. Note
that the expression “right-hand circular polarization” describes a single
quantum state, as does “left-hand circular polarization” – all vectors sat-
isfying s2 = is1, for example, are related to each other by an overall factor
and therefore describe the same state – whereas “elliptical polarization”
and “linear polarization” describe whole sets of quantum states, each
containing an infinite number of elements.

To begin to give these distinctions physical meaning, in the following
example we imagine performing a linear polarization measurement on a
photon with circular polarization.

Example 2.1.6. We can represent a general linear polarization measure-
ment as follows:

Mθ = (∣∣m(1)
θ

〉
,
∣∣m(2)

θ

〉) =
((

cos θ

sin θ

)
,

(
− sin θ

cos θ

))
. (2.8)

The orthonormal basis Mθ is obtained from the horizontal–vertical basis
by rotating it counterclockwise through an angle θ . Any such mea-
surement could be implemented with a Wollaston prism suitably ori-

ented. Now consider a photon in the state |s〉 = (1/
√

2
i/
√

2

)
, which represents

right-hand circular polarization. Let us calculate the probability that this
photon will give each of the two possible outcomes of the measurement
M. The probability of the outcome |m(1)〉 is

p1 = ∣∣〈s∣∣m(1)〉∣∣2 =
∣∣∣∣ 1√

2
cos θ − i√

2
sin θ

∣∣∣∣
2

= 1
2
. (2.9)

2.1. Photon Polarization 75

One finds similarly that the probability p2 of the outcome |m(2)〉 is also
equal to 1/2. (This is the example mentioned at the beginning of this
section.)

What is notable about the result of Example 2.1.6 is that the proba-
bilities do not depend on the angle θ . Regardless of the orientation of the
Wollaston prism, the photon has an equal chance of taking either of the
two allowed paths. This behavior is one of the reasons why the photon’s
state is called “circular polarization”: the polarization does not favor any
particular axis. Another reason is that in the corresponding state of a clas-
sical light wave, the electric field vector at a given point in space rotates
in a circular motion as the wave passes through that point. (A state of
elliptical polarization does favor one axis over all the others, but not as
strongly as linear polarization does. You can see an example of this in
Problem 4 of the exercises at the end of this section.)

You might wonder how one creates a photon in a state of circular
polarization. We have seen how a Wollaston prism or a polarizing filter
can be used to generate linearly polarized photons. (Indeed there are
other ways to create such photons. Reflecting a light beam off a window
pane or a puddle of water at the proper angle can also create linearly
polarized photons.) One way to generate circularly polarized photons is
to start with a linearly polarized beam and to let the light pass through
a device known as a quarter-wave plate, as we discuss in the following
example.

Example 2.1.7. A quarter-wave plate executes a reversible transforma-
tion and can therefore be represented by a unitary transformation. In fact
the following simple unitary transformation represents such a device:

U =
(

1 0
0 i

)
. (2.10)

This transformation leaves horizontal polarization horizontal and leaves
vertical polarization vertical, but it significantly changes the 45◦-polarized
state |s〉 = (1/

√
2

1/
√

2

)
:

|s ′〉 = U|s〉 =
(

1 0
0 i

)(
1/

√
2

1/
√

2

)
=
(

1/
√

2
i/
√

2

)
, (2.11)

76 Chapter 2. Quantum Mechanics

which we identified earlier as right-hand circular polarization. It is in-
teresting to note, by the way, that if we allow a photon generated in this
way to pass through a second quarter-wave plate represented by the same
transformation U, the circular polarization will return to linear polariza-
tion, but now flipped around the vertical axis. (The term “quarter-wave
plate” is related to the fact that the two diagonal components of U are
separated by a 90◦ rotation of the complex plane, that is, by one-quarter
of a complete cycle.)

So far, the only polarization measurements we have considered ex-
plicitly are measurements that distinguish between two orthogonal linear
polarizations. But according to our general rules many other measure-
ments must be possible. Right- and left-hand circular polarizations, for
example, are orthogonal to each other; so it should be possible to per-
form a measurement that distinguishes between these two states. In fact
one can do this quite simply, by allowing the photon to pass through a
quarter-wave plate before it hits a Wollaston prism.

EXERCISES

Problem 1. For each of the following state vectors, find a normalized
vector that is orthogonal to the given vector.


√

3
2

1
2





 1√

2

i√
2





 1−i

2

1+i
2




Problem 2. Prove the assertion made in the last paragraph of this section,
that a combination of a quarter-wave plate (see Example 2.1.7) and a
Wollaston prism can be used to distinguish between the two circularly
polarized states

(1/
√

2
i/
√

2

)
and

(1/
√

2
−i/

√
2

)
.

Problem 3. The rotation operation Rφ , defined by

Rφ =
(

cos φ − sin φ

sin φ cos φ,

)

rotates any linear polarization state by an angle φ. What does this trans-
formation do to the right-hand circular polarization state? Is the resulting

2.2. General Quantum Variables 77

state a state of linear polarization, circular polarization, or elliptical
polarization? Does the answer to this question depend on the value
of φ?

Problem 4. Consider the elliptical polarization represented by
|s〉 = (1/

√
2

(1+i)/2

)
. Suppose the measurement Mθ of Example 2.1.6 is applied

to a photon in the state |s〉. (a) Find the probabilities of the two out-
comes as functions of θ . (b) For what value of θ do the two probabilities
differ the most from each other? The basis defined by Mθ for this value
of θ can be thought of as giving the “principal axes” of the elliptical
polarization.

Problem 5. Consider the polarization state |s〉 = (1/2
i
√

3/2

)
. (a) Is |s〉 a state

of linear, circular, or elliptical polarization? (b) Find a unitary transfor-
mation U that turns |s〉 into the (linear) vertically polarized state. (c) Let
U0 be a particular answer to part (b). Is every possible answer to part (b)
of the form eiφU0 for some real number φ?

Problem 6. In this problem we are looking for three photon-polarization
measurements that are related to each other in a special way. Call the
measurements A = (|a1〉, |a2〉), B = (|b1〉, |b2〉), and C = (|c1〉, |c2〉). The
special relationship is this: If a photon has just been subjected to one of
the measurements (and has survived intact) and is about to be subjected
to a different one, then the two outcomes of the second measurement
are always equally likely. (Assume, as we have been doing so far, that
if the first measurement was, say, B, the photon will emerge from that
measurement either in the state |b1〉 or in the state |b2〉.) Does such a
set of measurements exist? If so, find one, writing down explicitly the
components of all six measurement vectors.

2.2 General Quantum Variables

Suppose someone “hands” you a photon and tells you that it is either in
the state |s〉 or in the state |t〉. Your mission is to determine which of these
two states is actually the case. You are guaranteed to be able to accomplish
this task only if |s〉 and |t〉 are orthogonal, because only then does there

78 Chapter 2. Quantum Mechanics

exist a measurement whose outcomes correspond to the two given states.
In any other case, there exists no measurement that will always tell you
unambiguously which of the two states you actually hold. Moreover, if
someone hands you a photon and tells you that its polarization is in one of
the three states |s〉, |t〉, and |u〉, then regardless of the relationship among
the three states, there does not exist a measurement that can reliably
distinguish the three states from each other. Thus, for photon polariza-
tions, the maximum number of perfectly distinguishable states is two. As
we think about generalizing the rules of quantum mechanics from photon
polarization to arbitrary quantum variables, this quantity – the maximum
number of perfectly distinguishable states – is crucially important. We will
usually call this number N, and for reasons that will become clear, we will
refer to it as the dimension of the quantum variable. The dimension can
be either a positive integer or infinity. Now, it is a remarkable physical
fact that once the value of the dimension is specified for a quantum vari-
able, the mathematical description of that variable – how one expresses its
states, measurements, and transformations – is completely determined. In
other words, if two quantum variables have the same maximum number
of perfectly distinguishable states, then their quantum descriptions are
essentially the same.

Examples of quantum variables are the following: for photons –
polarization and momentum; for electrons – spin and momentum; for
quarks – spin, color, and momentum. The following table gives the value
of the dimension N for each of these variables.

Variable N

Photon polarization 2
Photon momentum ∞
Electron spin 2
Electron momentum ∞
Quark spin 2
Quark color 3
Quark momentum ∞

Note that the value of N for electron or quark spin is the same as for
photon polarization. This is a very helpful fact, because it means that if
you understand the quantum mechanics of a photon’s polarization, you

2.2. General Quantum Variables 79

also understand the quantum mechanics of an electron’s or quark’s spin.
This equivalence, and the special importance of quantum variables with
N = 2, has led researchers in quantum cryptography and quantum com-
putation to adopt the generic word “qubit” to refer to any such variable.
Thus electron spin and photon polarization are two examples of qubits.
In Chapter 3, on quantum cryptography, we will mostly be concerned
with qubits. In Chapter 7, on quantum computation, we will need to con-
sider systems with much larger dimension, namely, quantum computers
consisting of many qubits. However, in this book we will never need to
consider the value N = ∞. So we restrict our attention to finite values of
N. In this section we present the basic quantum rules pertaining to any
quantum variable with finite dimension. After our study of photon po-
larization, the rules will probably not be surprising. We begin with some
definitions, which will also not be surprising.

Definition. Let |s〉 =
(s1...

sN

)
and |m〉 =

(m1...
mN

)
be a pair of complex N-

dimensional vectors. The inner product 〈s|m〉 between |s〉 and |m〉 is the
complex number s̄1m1 + · · · + s̄NmN. The vectors |s〉 and |m〉 are orthogo-
nal if and only if 〈s|m〉 = 0. An N-dimensional space of complex vectors,
with the inner product defined above, is called a state space.

Definition. The length of a complex vector |s〉 is 〈s|s〉1/2, and |s〉 is said to
be normalized if its length is 1. A normalized complex vector is called a
state vector.

With these definitions in hand, we can now state the rules of quantum
mechanics for a variable with N perfectly distinguishable states.

1. A state is represented by an N-dimensional state vector, and two
vectors |s〉 and |t〉 represent that same state if and only if they are
complex scalar multiples of each other. Note that, because |s〉 and |t〉
are both normalized, a complex scalar factor relating them must be of
unit magnitude; that is, it must be of the form eiφ for some real φ.

2. A standard measurement is represented by an orthonormal basis
(|m(1)〉, . . . , |m(N)〉) for the state space, and every such basis in princi-
ple represents a possible measurement. Each possible outcome of the

80 Chapter 2. Quantum Mechanics

measurement is associated with one of the vectors |m(i)〉, and the prob-
ability of the outcome |m(i)〉 when the initial state is |s〉 is |〈s|m(i)〉|2.

3. Every allowed reversible physical transformation on the state is rep-
resented by an N × N unitary matrix U, and every such U represents
an allowed transformation.

Two aspects of rule 2 need further comment. First, note that the N
possible outcomes of a standard measurement are exhaustive and mutu-
ally exclusive events – in any given trial, one and only one of the outcomes
will actually happen. Therefore, the probabilities should add up to 1. Is
the mathematics of rule 2 consistent with this requirement? The follow-
ing theorem, whose proof can be found in linear algebra texts, guarantees
that it is.

Theorem 2.2.1. Let |s〉 be an N-dimensional, normalized complex vector,
and let M = {|m(1)〉, . . . , |m(N)〉} be an orthonormal basis for the space.
Let pi = |〈s|m(i)〉|2, i = 1, . . . , N. Then p1 + · · · + pN = 1.

Second, though we will typically not need to worry about generaliza-
tions of our notion of a “standard” measurement, there is one generaliza-
tion that we will need, and it applies only to cases where the dimension
N is greater than 2. This is the notion of an incomplete measurement.
Sometimes we do not want our measurement to distinguish all N of the
elements of an orthogonal basis. For example, if the variable in question
has dimension 4, we may want only to distinguish dimensions 1 and 2 from
dimensions 3 and 4. In other words, we might be trying to distinguish one
subspace from another, without separating vectors that lie in the same
subspace. Such measurements are possible, and they can be less disrup-
tive than our standard measurements, which are called complete. We will
treat incomplete measurements in Sections 2.4 and 2.5. For now, we just
wanted to point out that such measurements are allowed.

To make our three rules of quantum mechanics somewhat more con-
crete, it is helpful to consider a few examples.

Example 2.2.1. As we have said, the spin of an electron is characterized
by the value N = 2; so it is possible to find two spin states of an electron
that are perfectly distinguishable from each other by measurement. One

2.2. General Quantum Variables 81

such set of states is usually labeled |↑〉 and |↓〉; we will represent these
states as

|↑〉 =
(

1
0

)
and |↓〉 =

(
0
1

)
. (2.12)

These vectors are orthogonal and constitute a basis for the state space.
The two states can be distinguished by sending the electron (not by itself
but as part of a neutral atom) through a suitably designed magnetic field.
One can arrange that an electron in the state |↑〉 is pushed upward by
the field, while an electron in the state |↓〉 is pushed downward. Because
|↑〉 and |↓〉 constitute a basis, any spin state can be represented as |s〉 =
s1 |↑〉 + s2 |↓〉 = (s1

s2

)
. If we perform the up-vs-down measurement on

this state, the probability of the outcome |↑〉 is p↑ = |〈s |↑〉|2 = |(s̄1)(1) +
(s̄2)(0)|2 = |s1|2, and the probability of the outcome |↓〉 is p↓ = |〈s |↓〉|2 =
|(s̄1)(0) + (s̄2)(1)|2 = |s2|2.

In the above example we have labeled the two basis states of the
electron’s spin as |↑〉 and |↓〉, because the states |↑〉 and |↓〉 are associ-
ated with two diametrically opposite directions in space as we have said.
This contrasts with the photon polarization states |↔〉 and |�〉, which are
associated with perpendicular directions in space. Thus even though the
mathematics of electron spin is essentially the same as the mathematics of
photon polarization, the physical interpretations of the two cases are quite
different. This difference, though utterly crucial for researchers studying
possible implementations of, say, quantum computation, does not affect
the more formal considerations that we focus on in this book. Later in the
book, when we want to consider a general qubit, which might be realized
physically as a photon’s polarization or an electron’s spin or in some other
way, we will represent the basis vectors not as {|↔〉, |�〉} or as {|↑〉, |↓〉}
but with the more generic notation {|0〉, |1〉}.

Example 2.2.2. The matrix U = 1√
2

(1 1
1 −1

)
is unitary and therefore rep-

resents an allowed transformation of the spin state of an electron. (It can
be realized by placing the electron in a magnetic field for a short time.)
(i) If this transformation is applied to an electron in the “up” state, what
is the spin state after the transformation? (ii) If we then perform the

82 Chapter 2. Quantum Mechanics

up-vs-down measurement on the electron, what is the probability of the
outcome “up”?
Answers: (i) The state after the transformation is |s ′〉 = U|s〉 =

1√
2

(1 1
1 −1

)(1
0

) = (1/
√

2
1/

√
2

)
. (ii) The probability of “up” is p↑ = |〈↑| s ′〉|2 =

1/2.

Example 2.2.3. A ρ meson is an unstable particle whose spin variable
has three orthogonal states. If the state of a certain ρ meson is repre-

sented by the vector |s〉 =
(1

0
0

)
, find a measurement M such that when

it is performed on this particle, the three outcomes are all equally
likely.

Answer: We need to find three orthonormal vectors {|m(1)〉, |m(2)〉, |m(3)〉},
each of which has as its first component a complex number of magnitude
1/

√
3. Here is one such set:

M =




1√
3


1

1
1


 ,

1√
3


 1

ω

ω̄


 ,

1√
3


 1

ω̄

ω




 , (2.13)

where ω = e2π i/3.

We have now covered most of the essential structure of quantum
mechanics, but the one remaining piece is crucially important. It is the
description of composite systems, which is the subject of the following
section.

EXERCISES

Problem 1 (a) Show that for any complex vectors |s〉 and |t〉 in the same
vector space, 〈t |s〉 is the complex conjugate of 〈s|t〉. (b) Show that the
inner product is linear in its second argument. That is, if |c〉 = x|a〉 + y|b〉,
then 〈s|c〉 = x〈s|a〉 + y〈s|b〉. (c) Show that the inner product is conjugate
linear (or antilinear) in its first argument. That is, if |c〉 = x|a〉 + y|b〉, then
〈c|s〉 = x̄〈a|s〉 + ȳ〈b|s〉.

Problem 2. Consider the measurement M given in Example 2.2.3. (a)
Show that the vectors in M are normalized and orthogonal, so that the
ordered triple does indeed represent a standard measurement. (b) For
each of the following state vectors |a〉, |b〉, and |c〉, find the probabilities

2.3. Composite Systems 83

of the three outcomes of the measurement M if the ρ meson is in the
given state.

|a〉 =


1

0
0


 |b〉 = 1√

2


0

1
1


 |c〉 = 1

3
√

2


4

1
1




(c) If we had a thousand ρ mesons all guaranteed to be in the same state,
and if we knew that that state was either |a〉, |b〉, or |c〉, would we be
able to tell which of these three states the particles were actually in by
performing the measurement M on each of them? Explain.

Problem 3. We are given an electron in the state |↑〉 and want to change
its spin to the quantum state represented by |↓〉 (or by any scalar multiple
of |↓〉). There are many unitary transformations that will effect this
change. Find the complete set of such transformations, and prove that
there are no others.

2.3 Composite Systems

We now know everything we need to know about the quantum mechanics
of, say, a single qubit. But later we will want to think about a quantum
computer, which might consist of thousands of qubits. We therefore need
to know the quantum mechanics of composite systems. In classical physics,
the transition from a single object to a system of many objects is entirely
trivial. For example, in order to describe the state of nine planets at any
given moment, it is sufficient to describe the state of each of the planets
separately. The whole is the collection of the parts. But in quantum me-
chanics the situation is quite different. We can illustrate it by considering
a pair of photons. These two photons could be close to each other or in
different galaxies; the principle is the same in either case.

As we have seen, the most general polarization state of a single photon
can be represented as |s〉 = s1 |↔〉 + s2 |�〉. One might therefore think
that the most general polarization state of a pair of photons should be
represented by a pair of vectors, one for each photon:

|s〉 = s1 |↔〉 + s2 |�〉; |t〉 = t1 |↔〉 + t2 |�〉. (2.14)

Such a state is possible, but there are other states that cannot be ex-
pressed in this form. To write down the most general possible state, we first

84 Chapter 2. Quantum Mechanics

focus on the basis states. For a single photon, we have been using the basis
states |↔〉 and |�〉. For a pair of photons, we may regard the following
as our basis states: |↔↔〉, |↔�〉, |�↔〉, |��〉. Within each bracket, the
first symbol refers to the first photon and the second to the second. (We
assume that the physical situation gives us some way to distinguish the
two photons; for example, they could be distinguished by their locations.)
The most general polarization state of a pair of photons is a normal-
ized linear combination of these four basis states, that is, a vector of the
form

|s〉 = s1 |↔↔〉 + s2 |↔�〉 + s3 |�↔〉 + s4 |��〉, (2.15)

where the complex numbers si satisfy
∑

i |si |2 = 1.
We will have to do some thinking about the physical interpretation

of this expression. For now we simply note that this prescription is quite
different from that given in Eq. (2.14). For one thing, once we take into
account the normalization of the vectors and the fact that states differing
only by an overall factor are equivalent, we find that the total number of
real parameters needed to specify the two states in Eq. (2.14) is four (that
is, two parameters for each photon). But the number of real parameters
needed to specify a state of the form given in Eq. (2.15) is six.3 So it cannot
be the case that every state of the latter form can be expressed as a pair
of states as in Eq. (2.14).

The generalization of this idea to arbitrary combinations of quantum
variables can be made via the notion of a tensor product, which we now
define in enough generality to serve our needs for the rest of the book.
The tensor product will also help us make the connection between the
description in Eq. (2.14) – which again applies only in certain cases – and
the more general description in Eq. (2.15).

3 In Eq. (2.14), we can count parameters as follows. Frist, using our freedom to multiply |s〉
by an overall constant, we lose no generality by forcing s1 to be real and nonnegative. Once
s1 is fixed, the magnitude of s2 is determined by the fact that |s〉 is normalized, leaving only
the phase of s2 to be specified. Thus it requires two real parameters to specify |s〉, namely,
the magnitude of s1 and the phase of s2. The same is true for |t〉; so Eq. (2.14) entails four
real parameters. In Eq. (2.15), we can again take s1 to be real and nonnegative. Then the
parameters needed to specify the state are (i) the magnitude of s1, (ii) the magnitudes and
phases of s2 and s3, and (iii) the phase of s4 (the magnitude of s4 is fixed by normalization
once the other magnitudes have been determined). This is a total of six real parameters.

2.3. Composite Systems 85

Definition. The tensor product of two vector spaces.
Let {|b(1)〉, . . . , |b(N)〉} and {|c(1)〉, . . . , |c(M)〉}be orthonormal bases for two
complex vector spaces HN and HM, respectively. The tensor product of
HN with HM is denoted HN ⊗HM and is constructed as follows. First, we
formally write down a new set of basis vectors {|b(i)c(j)〉}, i = 1, . . . , N,
j = 1, . . . , M, which are defined to be orthonormal. The tensor product
HN ⊗HM is the vector space consisting of all complex linear combinations∑

i j si j |b(i)c(j)〉, together with an inner product given by the following rule:
if |s〉 =∑

i j si j |b(i)c(j)〉 and |t〉 =∑
i j ti j |b(i)c(j)〉, then 〈s|t〉 =∑

i j s̄i j ti j .
(Note that because the space HN ⊗HM is spanned by NM orthogonal
vectors, its dimension is NM.)

Definition. The tensor product of two vectors.
Let |v〉 =∑

i vi |b(i)〉 be an element of HN and let |w〉 =∑
j w j |c(j)〉 be an

element of HM. The tensor product of |v〉 with |w〉 is denoted |v〉 ⊗ |w〉
(or sometimes simply |vw〉 for brevity) and is defined to be the vector∑

i j viw j |b(i)c(j)〉 inHN ⊗HM. What this says, in essence, is that the tensor
product obeys the distributive rule.

Example 2.3.1. Let |s〉 = (s1
s2

) = s1 |↔〉 + s2 |�〉 be the state of polariza-
tion of photon a, and let |t〉 = (t1

t2

) = t1 |↔〉 + t2 |�〉 be the state of polar-
ization of photon b. Then the polarization state of the pair ab is

|s〉 ⊗ |t〉 = (s1 |↔〉 + s2 |�〉) ⊗ (t1 |↔〉 + t2 |�〉)

= s1t1 |↔↔〉 + s1t2 |↔�〉 + s2t1 |�↔〉 + s2t2 |��〉 =




s1t1
s1t2
s2t1
s2t2


 .

In writing the column vector in the last step, we have used the following
convention (as we always will):

|↔↔〉 =




1
0
0
0


 |↔�〉 =




0
1
0
0


 |�↔〉 =




0
0
1
0


 |��〉 =




0
0
0
1


 .

86 Chapter 2. Quantum Mechanics

We thus get the following rule, which is often the easiest way to get the
tensor product in practice.

(
s1

s2

)
⊗
(

t1
t2

)
=




s1t1
s1t2
s2t1
s2t2


 .

Note that each element of the first vector multiplies the entire second
vector.

In the following section we will also need the concept of the tensor
product of two operators, which we present here.

Definition. The tensor product of two operators.
Let T be an operator on HN and let V be an operator on HM. The tensor
product T ⊗ V is an operator onHN ⊗HM. Its action on each basis vector
|b(i)c(j)〉 is given by (T ⊗ V)|b(i)c(j)〉 = (T|b(i)〉) ⊗ (V|c(j)〉). Its action on
all other vectors is determined by linearity; e.g., (T ⊗ V)(s1|b(1)c(1)〉 +
s2|b(2)c(2)〉) = s1(T ⊗ V)|b(1)c(1)〉 + s2(T ⊗ V)|b(2)c(2)〉.

Example 2.3.2. It is actually quite easy to compute the tensor product,
given the two matrices T and V. For example, let T and V be operators
on a pair of two-dimensional vector spaces. Thus

T =
(

a b
c d

)
and V =

(
w x
y z

)
.

Then

T ⊗ V =




aw ax bw bx
ay az by bz
cw cx dw dx
cy cz dy dz




That is, each element of the first matrix multiplies the entire second matrix
in order to produce the tensor product.

In terms of the tensor product, we can now state the general rule by
which quantum variables are combined into composite systems:

2.3. Composite Systems 87

The composite system rule
LetHN andHM, of dimensions N and M respectively, be the state spaces of
two quantum variables Aand B. (For example, Acould be the polarization
of one photon and B could be the polarization of another.) Then the
allowed states of the combined system consisting of both A and B – let us
call the combined system AB – are represented by the normalized vectors
in HN ⊗HM. Moreover, the combined system AB follows all the rules of
quantum mechanics, as given in the preceding section, for a variable with
NM dimensions.

Note that if |s〉 is a state of the variable A and |t〉 is a state of the
variable B, then |s〉 ⊗ |t〉, being a normalized vector in HN ⊗HM, is a
possible state of AB. A state of this form is called a product state and
is exactly the kind of state for which one can use a description such as
that given in Eq. (2.14). That is, one can specify a product state by giving
the two factors separately. As we have noted above, not all states of a
two-part system are product states. If the state of a two-part system does
not factor, then neither of the parts of the system has a state of its own.
We will say more about such nonfactorable states shortly, but first let us
look at some examples of states of composite systems.

Example 2.3.3. Consider again a system consisting of two photons. The
first photon is polarized at an angle θ = 45◦, and the second is horizontally
polarized. Let us write down the polarization state of the pair, as an
element of the tensor product space. Each photon has a state of its own,
so the joint state is a product state, namely,

|t〉 =
[

1√
2

(|↔〉+ |�〉)
]
⊗ |↔〉 = 1√

2
(|↔↔〉+ |�↔〉). (2.16)

We can also write the state as a column vector, in which the four compo-
nents are the coefficients of the basis vectors (|↔↔〉, |↔�〉, |�↔〉, |��〉):

|t〉 =
(

1/
√

2
1/

√
2

)
⊗
(

1
0

)
=




1/
√

2
0

1/
√

2
0


 . (2.17)

88 Chapter 2. Quantum Mechanics

Example 2.3.4. Here is a possible polarization state of a pair of photons:

|s〉 = 1√
2

(|↔↔〉+ |��〉). (2.18)

Is this state a product state? We can see by the following argument that
it is not. By definition, a product state is of the form

|t〉 = (a |↔〉 + b |�〉) ⊗ (c |↔〉 + d |�〉)
= ac |↔↔〉 + ad |↔�〉 + bc |�↔〉 + bd |��〉. (2.19)

In the state |s〉, the coefficient of |↔�〉 is zero; so if |s〉 is of the form given
in Eq. (2.19), either a or d must be zero. But then either the coefficient of
|↔↔〉 or the coefficient of |��〉 would also have to be zero, which is not
the case. So |s〉 is not a product state.

By an extension of the argument used in this example, one can show
that a general polarization state of a pair of photons, |s〉 = s1 |↔↔〉 +
s2|↔�〉 + s3 |�↔〉 + s4 |��〉, is a product state if and only if s1s4 = s2s3.
(We leave the proof for the exercises.)

By applying the composite system rule repeatedly, we can construct
the state space of a collection of any number of quantum variables. Thus,
if a quantum computer consists of n qubits – recall that a qubit is any
quantum variable with two orthogonal states – then the state space of
the quantum computer has 2n dimensions. A state |s〉 of any composite
system, with any number n of components, is called a product state if it can
be written as |s〉 = |s1〉 ⊗ · · · ⊗ |sn〉. There is no need to use parentheses
in the multiple tensor product, because the tensor product operation is
associative. (See Problem 1.)

Any state of any composite system that is not a product state is
called an entangled state. (So “entangled” means the same thing as “not
completely factorable.” For a two-part sytem, “entangled” and “nonfac-
torable” mean the same thing.) As we have said earlier for the case of
a bipartite system, if a multicomponent system is in an entangled state,
then some of its components do not have states of their own. In this
sense the whole is literally more than the collection of the parts. Erwin
Schrödinger, one of the pioneers of quantum mechanics, gave this mean-
ing to the word “entangled” in 1935 and identified entanglement as the
feature of quantum mechanics that forces its departure from the concepts

2.3. Composite Systems 89

of classical physics. Indeed there is nothing quite like entanglement in
any area of classical physics. We will see later that entanglement plays
an important role in quantum computation: every promising quantum al-
gorithm involves operations capable of entangling the computer’s qubits.
Entanglement also enters into quantum cryptography: one strategy that
an eavesdropper might use is to entangle each transmitted photon with a
quantum variable controlled by the eavesdropper. The following example
shows how this sort of entangling might be described mathematically.

Example 2.3.5. The polarization state of a pair of photons is represented
by a vector in a four-dimensional complex space. Therefore the allowed
reversible transformations on such a state are represented by 4 × 4 unitary
matrices. Here is one such matrix4:

U =




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


 . (2.20)

This matrix acts on states in the form of four-dimensional column vectors
such as the one shown in Example 2.3.3. By applying U to the four basis
states, one finds that it has the following effect: if the first photon is in the
state |↔〉, it leaves the whole state unchanged; if the first photon is in the
state |�〉, it interchanges the states |↔〉 and |�〉 of the second photon. Let
us apply U to the state |t〉 we considered in Example 2.3.3:

U|t〉 =




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0






1/
√

2
0

1/
√

2
0


 =




1/
√

2
0
0

1/
√

2


 . (2.21)

Note that the resulting state is precisely the state |s〉 of Example 2.3.4,
which we have seen to be entangled. Thus, the operation U is capable of
entangling a pair of photons.

In Problem 6 we describe a practical method of producing an entan-
gled pair of photons. It is important to note that, though entanglement

4 This is the controlled-not operation cnot that we will frequently encounter in Chapter 7.

90 Chapter 2. Quantum Mechanics

beween two particles is usually created when the particles are close to-
gether, the entanglement can persist even after the particles have become
widely separated.

Let us now consider what happens when one makes a measurement
on a composite system in an entangled state. For a pair of photons,
a standard polarization measurement is represented by an orthonor-
mal basis for the four-dimensional state space. So one possible
measurement is defined by our standard basis, M = (|↔↔〉, |↔�〉,
|�↔〉, |��〉). If we perform this measurement on the entangled state |s〉 of
Example 2.3.4 – recall that |s〉 = 1√

2
(|↔↔〉+ |��〉) – we get the following

probabilities of the outcomes: p1 = 1/2, p2 = 0, p3 = 0, p4 = 1/2. That
is, the only possible outcomes are |↔↔〉 and |��〉, so that the observed
polarizations of the two photons are correlated. In the following example,
we show than the potential for correlation that exists in the state |s〉 is a
little more subtle than one might at first think.

Example 2.3.6. Again let us consider the state |s〉 of Example 2.3.4, but
instead of performing a measurement in the standard basis, let us per-
form the following measurement: Q = (|rr〉, |rl〉, |lr〉, |ll〉), where |r〉 =
(1/

√
2)(|↔〉 + i |�〉), |l〉 = (1/

√
2)(|↔〉 − i |�〉), and we are using the ab-

breviated notation for the tensor product, for example, |rr〉 = |r〉 ⊗ |r〉.
The measurement Q checks each photon to see whether it is right- or
left-circularly polarized. (|r〉 is right-circular and |l〉 is left-circular.) It is a
straightforward calculation to compute the probabilities of the four out-
comes; one finds that p1 = 0, p2 = 1/2, p3 = 1/2, p4 = 0. Thus the only
possible outcomes are |rl〉 and |lr〉. That is, when one performs this mea-
surement, the observed polarizations are anticorrelated. This fact is by no
means obvious just by looking at the form of the state |s〉.

One might be tempted to think that if a pair of photons is in the state
we have just been considering – |s〉 = (1/

√
2)(|↔↔〉+ |��〉) – then what

is really going on is that the photons are actually either in the state |↔↔〉
or in the state |��〉, but we simply do not happen to know which one is
correct. Example 2.3.6 makes it clear that this interpretation is wrong. If
the photons really were in the state |↔↔〉, then all four outcomes of the
measurement Q defined in that example would be equally likely, and the
same would be true if the photons were really in the state |��〉. There is

2.3. Composite Systems 91

no way that our ignorance could cause two of the probabilities to be zero
if they would not be zero otherwise. So it is not a question of ignorance on
our part. Rather, the pair of photons is in a quantum superposition of the
states |↔↔〉 and |��〉. There is no good way to interpret the concept of a
quantum superposition in the familiar terms of classical physics. Our best
handle on the concept comes from the predictions we get by following our
mathematical rules. If one is forced to describe a quantum superposition
in ordinary language, perhaps the best one can do is to say that the physical
system (e.g., the pair of photons) is in two states at the same time. But the
meaning of such a statement has to come from the mathematics.

EXERCISES

Problem 1. Prove that the tensor product operation on vectors is asso-
ciative.

Problem 2. Let |s〉 and |t〉 be any two states of polarization of photon
A. Let |v〉 be any state of polarization of photon B. Using the definition
of tensor product, show that the inner product between |s〉 ⊗ |v〉 and
|t〉 ⊗ |v〉 is the same as the inner product between |s〉 and |t〉. The physical
interpretation of this fact is utterly trivial: the degree of distinguishability
of two states of photon A is not changed merely because we decide to
regard photon B as part of our system.

Problem 3. Each of the following vectors represents a state of a pair of
photons. The ordering of the basis vectors is the same as in the examples
of this section. For each vector, determine whether or not it represents a
product state. If it does represent a product, write the vector explicitly as
the tensor product of two two-component vectors.




1
0
0
0






1/2
1/2
1/2
−1/2






1/2
i/2
i/2

−1/2




Problem 4. Prove that if the state |s〉 = s1 |↔↔〉 + s2 |↔�〉 + s3 |�↔〉 +
s4 |��〉 is a product state, then s1s4 = s2s3.

92 Chapter 2. Quantum Mechanics

Problem 5. Prove the converse of the statement in Problem 4: If s1s4 =
s2s3, then |s〉 is a product state.

Problem 6. The following is an interesting example of an entangled state
of a pair of photons:

|v〉 = 1√
2

(|↔�〉− |�↔〉) = 1√
2




0
1
−1
0


 .

Such a state can be produced by passing an ultraviolet pulse through a
special kind of transparent crystal. Most of the photons in the pulse pass
straight through, but sometimes a photon will split into two lower-energy
photons going off in two specifically selected directions not parallel to
the direction of the original pulse. These two lower-energy photons are in
the state |v〉 defined above. In this problem, we ask what happens when a
polarization measurement is made on each of the two entangled photons.
In particular, we imagine making the measurement

Mθ = (|m1〉, |m2〉) =
((

cos θ

sin θ

)
,

(
− sin θ

cos θ

))

on each photon. (We’ve seen this measurement before: it distinguishes
between two orthogonal states of linear polarization.) The two measure-
ments, one performed on each photon, can be thought of as a single
measurement Mθ performed on the pair of photons. The measurement
Mθ has four possible outcomes and can be written as follows:

Mθ = (|m1〉 ⊗ |m1〉, |m1〉 ⊗ |m2〉, |m2〉 ⊗ |m1〉, |m2〉 ⊗ |m2〉).

Find the probabilities of the four possible outcomes of Mθ when it is
performed on the pair state |v〉 defined above. In particular, show that
no matter what the value of θ is, the two photons must give opposite
outcomes: if one of them chooses to be polarized in the θ direction, the
other will choose the orthogonal direction.

2.4. Measuring a Subsystem 93

2.4 Measuring a Subsystem

In Section 2.1, we mentioned that we would sometimes want to consider
incomplete measurements on a quantum system. The case of a composite
system is a case in which we often want to make such a measurement.
Suppose, for example, that we have a pair of photons in some joint state
of polarization. We might choose to measure only the first photon and
leave the second one unmeasured. We have not yet explained (i) how
to compute the probabilities of the outcomes of such a measurement, or
(ii) how to figure out the state of the measured particle and the unmea-
sured particle after the measurement. Fortunately, the rules that answer
these questions are fairly straightforward. In this section we offer a prac-
tical approach to the issue, which will be sufficient for almost all of the
applications in this book. The final section of this chapter gives a more
thorough mathematical treatment that applies to other incomplete mea-
surements; it will be needed in Section 7.9.

Consider the most general polarization state of a pair of photons:

|s〉 = a |↔↔〉 + b |↔�〉 + c |�↔〉 + d |��〉,

which may or may not be entangled. Suppose that we perform the mea-
surement M = (|↔〉, |�〉) on the first photon and leave the second photon
unmeasured. To figure out the effect of this measurement, it is helpful to
rewrite the state as

|s〉 =|↔〉 ⊗ (a |↔〉 + b |�〉)+ |�〉 ⊗ (c |↔〉 + d |�〉),

which is of the form

|s〉 =|↔〉 ⊗ |v〉+ |�〉 ⊗ |w〉, (2.22)

where |v〉 and |w〉 are unnormalized vectors associated with the second
photon. When we make the measurement M on the first photon, what are
the probabilities of the outcomes |↔〉 and |�〉? If there were no second
particle, and if the first particle were in a state of the form v |↔〉 + w |�〉
with v and w being complex numbers, the two probabilities would be |v|2
and |w|2 respectively. When the state is of the form given in Eq. (2.22),
quantum mechanics predicts – according to a general rule to be stated
shortly – that the probabilities will be 〈v|v〉 and 〈w|w〉 respectively. That

94 Chapter 2. Quantum Mechanics

is, instead of using the squared magnitudes of complex coefficients, we
use the squared lengths of the vectors that serve as coefficients.

Figuring out the final states of the photons is easier. If the first photon
gives the outcome |↔〉, its final state is |↔〉 – that is, the photon takes on
the state that defines its outcome, as always – and the final state of the
second photon is proportional to |v〉; that is, the second photon takes on
the state that is paired with |↔〉 in |s〉. (We say “proportional” because a
state vector has to be normalized, but |v〉 is not normalized.)

We express these ideas more generally in the following rule.

Rule for measurements on subsystems
Consider a system AB consisting of two parts A and B, and suppose that
AB as a whole is in the state |s〉. Part A is now subjected to a measurement
(|m1〉, . . . , |mN〉), where N is the dimension of part A. One can show that
the state |s〉 can always be written in the form

|s〉 = |m1〉 ⊗ |v1〉 + · · · + |mN〉 ⊗ |vN〉,
where |v1〉, . . . , |vN〉 are unnormalized vectors associated with part B (it
is possible for one or more of the |vi 〉’s to be the zero vector).

i. The probability of the outcome |mi 〉 is pi = 〈vi |vi 〉.
ii. If the ith outcome occurs, the final state of part A is |mi 〉 and the final

state of part B is |vi 〉/
√〈vi |vi 〉.

Example 2.4.1. A pair of photons is in the state

|s〉 = 1√
2

(|↔↔〉+ |��〉) . (2.23)

We now perform on the first photon the measurement

M = (|m1〉, |m2〉) =
(

1√
2

(|↔〉+ |�〉), 1√
2

(|↔〉− |�〉)
)

.

(i) What is the probability of the outcome |m1〉? (ii) If the outcome is |m1〉,
what is the final state of the second photon?
Answers: To answer these questions, we want to reexpress the state |s〉 in
the form

|s〉 = |m1〉 ⊗ |v1〉 + |m2〉 ⊗ |v2〉.

2.4. Measuring a Subsystem 95

That is, we want

|s〉 = 1√
2

[(|↔〉+ |�〉) ⊗ |v1〉 + (|↔〉− |�〉) ⊗ |v2〉] .

Each |vi 〉 can be written as |vi 〉 = ai |↔〉 + bi |�〉, so that we get

|s〉 = 1√
2

[(|↔〉+ |�〉) ⊗ (a1 |↔〉 + b1 |�〉)
+ (|↔〉− |�〉) ⊗ (a2 |↔〉 + b2 |�〉)]

= 1√
2

[(a1 + a2) |↔↔〉 + (b1 + b2) |↔�〉
+ (a1 − a2) |�↔〉 + (b1 − b2) |��〉].

Comparing this last expression with Eq. (2.23), we see that we must have
a1 + a2 = 1, b1 + b2 = 0, a1 − a2 = 0, and b1 − b2 = 1. The only solution
is a1 = a2 = b1 = 1/2 and b2 = −1/2. Thus

|v1〉 = 1
2

(|↔〉+ |�〉) and |v2〉 = 1
2

(|↔〉− |�〉) .

We can now answer the questions. (i) The probability of the outcome |m1〉
is 〈v1|v1〉 = (1/2)2 + (1/2)2 = 1/2. (ii) If the outcome |m1〉 occurs, the final
state of the second photon is |v1〉/

√〈v1|v1〉 = (1/
√

2)(|↔〉+ |�〉).

The results of this last example may strike you as suspicious. First of all,
it seems that by making a measurement on the first photon, we have had
an effect on the state of the second photon. Now, the two photons do not
have to be close to each other; they may be lightyears apart. How, then, can
a measurement on the first photon have any effect on the second photon?
This is the sort of issue that causes one to question the interpretation of
a quantum state as a literal description of the quantum object. Does the
second photon change its state at the exact moment that the first photon
is measured? But according to the special theory of relativity, the notion
of simultaneity depends on the observer’s state of motion; so what could
be meant by “at the exact moment”? On the other hand, if we regard
the quantum state as a state of knowledge, then the effect on the second
photon is not surprising: making a measurement can certainly change
one’s knowledge about something that is far away. But if the quantum
state is only a state of knowledge, does this mean that there is some
underlying actual state that we do not yet know how to express, or have
we abandoned the notion of an underlying reality? Fortunately it is not

96 Chapter 2. Quantum Mechanics

our mission to resolve these matters here. The observable prediction is
perfectly clear, regardless of how one chooses to interpret it.

There is a related question, however, that we cannot avoid. In the
above example, it is not just that making a measurement on one photon
affects the state of the second photon. In addition, the final state of the
second photon depends on our choice of what measurement to perform
on the first photon. If Alice is standing near the first photon and Bob is
standing near the second one, could Alice send an instantaneous signal to
Bob by her choice of what to measure? There is no argument about the
answer to this question. Alice can choose what measurement to make, but
she cannot control the outcome of her measurement. One can show that
this lack of control prevents her from using the photons’ entanglement to
send a signal to Bob. (See Problem 1 below.)

EXERCISES

Problem 1. (a) Suppose that Alice and Bob share the entangled state |s〉
of Example 2.4.1: Alice holds the first photon while Bob holds the second.
Bob has decided to perform the measurement (|↔〉, |�〉) on his photon.
If, before Bob makes his measurement, Alice measures her photon, using
some arbitrary measurement M = (|m(1)〉, |m(2)〉), show that the probabil-
ities of the outcomes of Bob’s measurement are independent of M. Thus
Alice cannot use her choice of measurement to send a signal to Bob. (b)
Show that the same conclusion holds no matter what measurement Bob
chooses to make on his photon.

2.5 Other Incomplete Measurements

In the preceding section we presented the quantum mechanical rule de-
scribing the effects of a measurement on part of a system. This is one
example of an incomplete measurement, but it is not the most general
case. We now give a more general account of incomplete measurements
in quantum mechanics.

We begin with the familiar example just mentioned – measuring only
the first of two photons – but we now treat the problem in a way that can be
extended to other cases. The standard basis, (|↔↔〉, |↔�〉, |�↔〉, |��〉),

2.5. Other Incomplete Measurements 97

represents a certain complete measurement on the pair of photons. But
suppose we simply want to make the measurement (|↔〉, |�〉) on the first
photon. In terms of our four-element standard basis, this amounts to dis-
tinguishing the first two basis elements from the last two. To express this
measurement mathematically, it is helpful to introduce the notion of a
projection operator. Expressed in our standard basis, multiplication by
the matrix

P1 =




1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


 (2.24)

has the effect of projecting any two-photon state vector onto the subspace
spanned by the first two basis vectors, that is, the subspace in which the
first photon is in the state |↔〉. Similarly, the matrix

P2 =




0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1


 (2.25)

projects onto the last two basis vectors, in which the first photon is in
the state |�〉. The measurement we have in mind does not discriminate
among all four basis vectors; rather, it discriminates between the two
subspaces specified by the above projection operators. This is typical of
incomplete measurements, and in general an incomplete measurement in
quantum mechanics can be specified in terms of projection operators. We
therefore spend the next few paragraphs getting more familiar with this
class of operators.

In general, a projection operator is defined as follows.

Definition. A projection operator P acting on a vector space of N dimen-
sions is an N × N matrix with the following properties: (i) P † = P, (ii)
P2 = P.

One might well wonder why these two properties characterize an op-
erator that projects an arbitrary vector onto a specific subspace. We can
make sense of the definition as follows. First, an operator Q such that

98 Chapter 2. Quantum Mechanics

Q† = Q, called a self-adjoint operator, has the (nonobvious) property
that its eigenvalues are all real and that eigenvectors corresponding to
distinct eigenvalues are orthogonal. We can therefore think of such an
operator in the following way: there exists an orthogonal basis for the
space such that the operator Q squeezes or stretches the space along
each basis vector (or reflects, in the case of negative eigenvalues). The
additional requirement P2 = P implies that the eigenvalues λ, that is, the
squeezing or stretching factors, themselves satisfy λ2 = λ; that is, the only
eigenvalues are 0 and 1. Thus there is a preferred subspace (corresponding
to the eigenvalue 1) that is left unchanged by P, and there is the orthogo-
nal subspace (with eigenvalue 0) that is “squeezed flat” by P. Thus when
it operates on any given vector, P in effect preserves the component in
the favored subspace, and removes the orthogonal component. We now
give a couple of examples of projection operators.

Example 2.5.1. Let |s〉 be any state vector in an N-dimensional state
space. The matrix P = |s〉〈s| is a projection operator that projects onto
the one-dimensional subspace spanned by |s〉. (Here we are using the
interpretation of 〈s| as a row vector.) To see this, consider an arbi-
trary state |ψ〉, and express it in an orthonormal basis that includes |s〉:
|ψ〉 = c1|b(1)〉 + · · · + cN|b(N)〉, where |b(1)〉 = |s〉. When we apply P to
|ψ〉, all but one of the terms vanish because of the orthogonality of the
basis elements, and we are left with the equation P|ψ〉 = c1|s〉. That is, the
resulting vector is proportional to |s〉, and the proportionality constant is
the component of |ψ〉 along |s〉.

Example 2.5.2. Let |s(1)〉 and |s(2)〉 be two orthogonal states in an N-
dimensional state space. Together they span a two-dimensional sub-
space. The operator that projects onto this subspace can be written as
P = |s(1)〉〈s(1)| + |s(2)〉〈s(2)|.

In terms of projection operators, we can now write down the general
quantum mechanical rules for incomplete measurements, for a system
with a state space of arbitrary dimension:

1. A general measurement can be represented by an ordered set of pro-
jection operators M = (P1, . . . , Pn) such that

∑
i Pi = I, the identity

operator.

2.5. Other Incomplete Measurements 99

2. If the initial state of the system is |s〉 and the measurement M is per-
formed, the probability of the ith outcome is

pi = 〈s|Pi |s〉. (2.26)

3. If the initial state is |s〉 and the ith outcome occurs, the final state of
the system is

|si 〉 = Pi |s〉√〈s|Pi |s〉
. (2.27)

Example 2.5.3. A pair of photons is initially in the state |s〉 =
(1/

√
2)(|↔↔〉+ |��〉). We now perform on the first photon the mea-

surement (|↔〉, |�〉). What are the probabilities of the two outcomes, and
for each outcome, what is the final state of the pair of photons?
Answer: First we have to interpret the measurement in terms of projection
operators on the full four-dimensional state space. We have already done
this in the above discussion: the measurement is M = (P1, P2), where P1

and P2 are given by Eqs. (2.24) and (2.25) respectively. Using Eq. (2.26),
we find that the probability of the first outcome is

p1 =
(

1√
2

0 0 1√
2

)



1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0






1/
√

2
0
0

1/
√

2


 = 1

2
.

One similarly finds that the probability of the second outcome is also 1/2.
If the first outcome occurs, then according to Eq. (2.27) the resulting state
of the pair is

|s1〉 = 1√
1/2




1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0






1/
√

2
0
0

1/
√

2


 =




1
0
0
0


 =|↔↔〉.

Thus the measurement not only leaves the measured photon in the state
|↔〉, it also leaves the unmeasured photon in the same state. Note that
this result is consistent with our earlier results concerning the state |s〉 in
Sections 2.3 and 2.4; for example, when we make a complete measurement
on the pair, it is impossible to get the outcome |↔�〉.

100 Chapter 2. Quantum Mechanics

Example 2.5.4. Assume the same initial state |s〉as in the preceding exam-
ple, but now let us perform on the first photon the measurement (|r〉, |l〉),
with |r〉 and |l〉 defined as in Example 2.3.6. That is, we are asking the first
photon to choose between right- and left-hand circular polarization. For
each of the two outcomes, what is the final state of the pair?

Answer: First we need to find the relevant projection operators. Consider,
for example, the first outcome, corresponding to the first photon being
found in the right-hand circular polarization state |r〉. The subspace in
question is spanned by the two orthogonal vectors |r〉⊗ |↔〉 and |r〉⊗ |�〉.
Using the method of Example 2.5.2, we find that the operator that projects
onto this subspace is

P = 1√
2




1 0 −i 0
0 1 0 −i
i 0 1 0
0 i 0 1


 .

Alternatively, we can obtain this matrix P as the tensor product (|r〉〈r |) ⊗
I, where I is the identity operator on the second photon. Using Eq. (2.27),
we find that if the first outcome occurs, the final state of the pair is |rl〉.
Similarly, if the second outcome occurs, the final state of the pair is |lr〉.
That is, the second photon ends up in the state opposite to that of the first
photon. This again is consistent with the result of Example 2.3.6 in which
we considered a complete measurement.

Example 2.5.5. Let us now consider the following incomplete measure-
ment on a pair of photons:

P1 =|↔↔〉〈↔↔| + |��〉〈��|

P2 =|↔�〉〈↔�| + |�↔〉〈�↔|.

Roughly speaking, this measurement asks whether the two photons have
the same polarization or opposite polarizations, in the horizontal–vertical
basis, without asking each individual photon to reveal its own polariza-
tion. Note that unlike the measurements of the last two examples, this
one cannot be realized as a measurement on just one photon. This is
a joint measurement on the pair, which one might perform by bringing

2.5. Other Incomplete Measurements 101

the two photons together and letting them interact in some way. It is
a difficult measurement to perform on photons, because it is difficult to
make photons interact with each other in the right way. But the analogous
measurement on other quantum variables, such as electron spin, can be
easier.

If we perform this measurement on the state |s〉 of the preceding
examples, we find that the probabilities of the outcomes are

p1 = 〈s|P1|s〉 = 1
2

(〈↔↔| +〈��|)(|↔↔〉〈↔↔| + |��〉〈��|)
× (|↔↔〉+ |��〉) = 1

p2 = 〈s|P2|s〉 = 1
2

(〈↔↔| +〈��|)(|↔�〉〈↔�| + |�↔〉〈�↔|)
× (|↔↔〉+ |��〉) = 0

(We see that we do not need to use matrix notation to compute such
probabilities. The bracket notation can sometimes be more convenient.)
Thus the first outcome will definitely occur. When it does, the pair of
photons is, according to our rule, left in the state

|s1〉 = P1|s〉√〈s|P1|s〉
= |s〉.

That is, the measurement has not disturbed the state. Notice that it cer-
tainly would have disturbed the state if we had measured the polarization
of each individual photon. By making this sort of incomplete measure-
ment, we can often learn something about the state without destroying
the subtle quantum superposition between its components.

EXERCISES

Problem 1. This problem explores further the incomplete measurement
(P1, P2) described in Example 2.5.5.

(a) In this example, we considered the initial state |s〉 = 1√
2
(|↔↔〉+

|��〉), and found (i) the probabilities of the two outcomes and (ii) the final
state of the pair of photons when the first outcome occurs. Go through
the same calculations, doing the algebra by means of matrices rather than
by relying on the bracket notation.

102 Chapter 2. Quantum Mechanics

(b) Consider the same incomplete measurement, but now suppose
that the initial state is |t〉 = 1

2 (|↔↔〉+ |↔�〉+ |�↔〉+ |��〉). Find (i) the
probability of the first outcome and (ii) the final state of the pair of photons
if the first outcome occurs.

(c) Starting with a product state, is it possible to create an entangled
state merely by performing an incomplete measurement? (Hint: Is the
state |t〉 in part (b) a product state?)

3 Quantum Cryptography

As we have said, quantum mechanics has become the standard frame-
work for most of what is done in physics and indeed has played this role
for three-quarters of a century. For just as long, physicists and philoso-
phers have, as we have already suggested, raised and discussed questions
about the interpretation of quantum mechanics: Why do we single out
measurement as a special kind of interaction that evokes a probabilistic,
irreversible response from nature, when other kinds of interaction cause
deterministic, reversible changes? How should we talk about quantum
superpositions? What does entanglement tell us about the nature of re-
ality? These are interesting questions and researchers still argue about
the answers. However, in the last couple of decades researchers have also
been thinking along the following line: Let us accept that quantum objects
act in weird ways, and see if we can use this weirdness technologically. The
two best examples of potential uses of quantum weirdness are quantum
computation and quantum cryptography.

One of the first quantum cryptographic schemes to appear in the liter-
ature, and the only one we consider in detail in this book, was introduced
by Charles Bennett and Gilles Brassard in 1984.1 Their idea is not to use
quantum signals directly to convey secret information. Rather, they sug-
gest using quantum signals to generate a secret cryptographic key shared
between two parties. Thus the Bennett–Brassard scheme is an example

1 Bennett and Brassard (1984). A good nonmathematical review of the basic ideas and early
investigations into quantum key distribution is Bennett, Brassard, and Ekert (1992). The
Bennett–Brassard scheme was inspired by ideas in a paper by Wiesner (1983), which had
been written more than a decade before it was published. An alternative approach to
quantum key distribution, based on entanglement, was devised by Ekert (1991).

103

104 Chapter 3. Quantum Cryptography

of “quantum key distribution.” Laboratory implementations of quantum
key distribution always use photons to carry the quantum signals. Usually
these photons are transmitted via optical fiber, but in some cases they are
sent directly through the air.2 (It is no mean feat to detect a single photon
sent to you through the air, and to distinguish it from all the other photons
that happen to be in the vicinity!) In principle, a secret key distributed
by quantum cryptography could be used in one of two ways: (i) it could
be used as a one-time pad; (ii) it could be used as the shared key in a
standard secret-key protocol such as DES or AES. Let us consider these
two cases briefly.

(i) We have discussed one-time pads earlier but we recall the scheme
here. The shared key might be a sequence of zeros and ones, for ex-
ample, 011101001000010. The sender, Alice, somehow translates her
message into binary digits; let us say that her translated message is
101010101010101. She adds each bit of the key to the corresponding bit
of the message, mod 2, to generate the ciphertext:

101010101010101
011101001000010
110111100010111

She then sends this last string of bits to Bob, who performs the same
operation to recover the original message:

110111100010111
011101001000010
101010101010101

In this one-time pad scheme, if the key is random and is truly known only
to Alice and Bob, then the cryptography is unbreakable. But as we have
noted in Chapter 1, it is awkward to have to convey new bits of the secret
key as fast as message bits are being sent. Quantum key distribution offers
a potential solution to this problem, and indeed some experiments have

2 For a review of both theory and experiment, see Gisin et al. (2002), Dusek et al. (2006), Lo,
Popescu, and Spiller (2001), or Bouwmeester, Ekert, and Zeilinger (2000). For a recent
high-key-rate result, see Tang et al. (2006).

3.1. The Bennett–Brassard Protocol 105

already produced net key rates sufficient to transmit a video signal with
one-time-pad encryption.

(ii) If Alice and Bob do not need a one-time pad but only a secret
key for use with a secret-key cryptosystem, they could, of course, gen-
erate such a key via Diffie–Hellman or RSA. However, as we will dis-
cuss in Chapter 7, these public-key cryptosystems ultimately risk being
cracked by a quantum computer. Quantum key distribution systems are
not vulnerable to attack by a quantum computer; so they offer a dis-
tinct advantage here. Moreover, this way of using quantum key distri-
bution can tolerate a slower secret key rate than would be needed for
a one-time pad. As we will discuss later, though, the main challenge
for quantum cryptography at the present time is not transmission rate
but distance. There exist prototype systems that connect sites within
several miles of each other, but, as we will see, qualitatively new chal-
lenges arise when one tries to extend the system to several hundreds of
miles.

In the following section we present the basic ideas of the Bennett–
Brassard protocol. We will, however, have to delay until Chapter 5 a
more detailed discussion of the final steps of the protocol, in which the
parties correct errors and enhance the security of their shared key. To
discuss these issues, we will need the ideas on error correction that will
be developed in Chapter 4.

3.1 The Bennett–Brassard Protocol

As we have seen, a quantum measurement is not a passive acquisi-
tion of information. Rather, it is an invasive procedure that typically
changes the state of the variable being measured. Bennett and Brassard’s
scheme uses this fact about quantum measurements to foil a potential
eavesdropper.

More specifically, we imagine the following scenario. Alice and Bob
want to generate a shared, random, secret key. The eavesdropper, Eve,
wants to gain some information about this key without being detected.
If she can accomplish this, she will later be able to read at least part
of an actual secret message encrypted with that key. Now, because the

106 Chapter 3. Quantum Cryptography

x++x+++xxxxxxx++xxx+xx+x+xxxxx

Bob's Bases:

++++xxx+xx++++++++x+x+++xx++x+

101001001101001010000111100100

Alice's Bit String and Bases:

Figure 3.1: Illustration of the first four steps of the Bennett–Brassard protocol if
there is no eavesdropper and no other source of noise. The shaded entries repre-
sent the cases in which Alice and Bob chose different bases; the corresponding
bits are discarded. In this example, the bit strings A′ and B ′ are both equal to
001000011110.

Bennett–Brassard key distribution protocol has Alice sending quantum
signals to Bob, Eve will typically not be able to measure these signals
without causing some disturbance. In this way Alice and Bob hope to
detect Eve’s presence and thereby foil her plan.

But if Eve cannot measure the signals without causing a disturbance,
then Bob likewise cannot measure the signals without changing them.
So the protocol has to be designed in such a way as to let Bob get the
correct key, in spite of the disturbance caused by his measurements. The
Bennett–Brassard protocol solves this problem by making it possible for
Alice and Bob to know when Bob has made a disruptive measurement,
so that they can discard the resulting data and keep only the data that
Bob has not disturbed.

Here, then, are the steps of the Bennett–Brassard protocol. The first
four steps are illustrated in Fig. 3.1.

1. Alice generates two random binary strings A = (a1, . . . , an) and S =
(s1, . . . , sn). The entries ai are zeros and ones; a subset of these entries
will eventually be used to create a shared secret key. The entries si

are chosen from the binary set {+,×}, where the characters “+” and
“×” will represent two different bases for the state space of a photon’s
polarization.

2. Alice now sends a sequence of n photons to Bob, the polarization
of the ith photon being determined as follows. If si = +, the polar-
ization will be chosen from the orthogonal basis M+ = (|�〉, |↔〉);

3.1. The Bennett–Brassard Protocol 107

if si = ×, the polarization will be chosen from the alternative basis
M× = ((|�〉+ |↔〉)/√2, (|�〉− |↔〉)/√2), whose elements make a 45◦

angle with the elements of M+. In either case, Alice uses the first ele-
ment of the basis if ai = 0 and the second if ai = 1. We think of ai as
the bit Alice is trying to send to Bob, and si as determining the means
by which she will encode this bit.

3. Before he receives any photons, Bob generates a random string R =
(r1, . . . , rn) in which each entry is chosen from the set {+,×}. When
he receives the ith photon, he measures its polarization in the basis
labeled by ri and records the result. Regardless of which basis he uses,
if he obtains the first of the two possible outcomes, he records a 0,
and if he obtains the second of the possible outcomes he records a
1. Thus at the end of this process he has a sequence B = (b1, . . . , bn)
of zeros and ones, the results of his measurements. Note that for any
given photon i , there is no reason to assume that Alice and Bob used
the same basis; that is, si need not equal ri . However, if they have
used the same basis, then provided that the photon was not disturbed
on route from Alice to Bob, we should have ai = bi . For example, if
Alice used the basis (|�〉, |↔〉) and sent the bit 0, that is, if she sent
Bob a photon in the state |�〉, and if Bob measured this photon in the
same basis, then he should have gotten the outcome |�〉 and recorded
the bit 0. On the other hand, if Alice and Bob used different bases,
then there should be no correlation between Alice’s bit ai and Bob’s
bit bi .

4. After all the photons have been sent, Alice and Bob use a public
channel to tell each other their sequences of bases S and R. Each of
them compares these two sequences and makes a note of the values of
the index i for which the two sequences disagree. (Note that they do
not at this point transmit or compare any values from their bit strings
A and B; they are only comparing the bases.) Then Alice removes
from her bit string A the bits corresponding to these values of i , and
Bob does the same with his bit string B. Let the remaining, shorter
strings be called A′ and B′. Again, assuming that there has been no
interference, the strings A′ and B′ should be identical. Note that the
expected length of each of these strings is n/2, since for each photon
transmitted, there is a 50% chance that Alice and Bob used the same
basis.

108 Chapter 3. Quantum Cryptography

5. In reality there will always be errors in transmission even if there is
no eavesdropper. So Alice and Bob now want to estimate the num-
ber of errors, that is, the number of bits in B′ that are not equal to
their counterparts in A′. To do this, Alice sends to Bob, over a public
channel, a small random sample of her actual bits from A′, which Bob
then compares to the corresponding bits in B′. After the comparison,
Alice and Bob discard these bits since Eve could know them. Assum-
ing that the remaining bits have about the same proportion of errors
as the ones they checked, they now want to correct these remaining
errors. Remarkably, they can do this without necessarily giving every-
thing away. We will see in Chapter 5 how this can be done.3 At the end
of this step Alice and Bob should possess strings A′′ and B ′′, which
are shorter than A′ and B′ but are almost certain to be identical.

6. From the number of errors that Alice and Bob have discovered in
step 5, they estimate the maximum amount of information an eaves-
dropper is likely to have obtained about the remaining bits. They use
this information to replace their strings A′′ and B ′′ with even shorter
strings A′′′ and B′′′ about which the eavesdropper has essentially no
knowledge whatsoever.

Though the details of steps 5 and 6 will have to wait until Chapter 5,
we can and should explain here why there is any connection between the
number of errors that Alice and Bob find in step 5, and the amount of
information an eavesdropper might have gained. As we have suggested
before, in the long run an eavesdropper cannot gain information without
causing errors.

To understand this point better, we need to think about how an eaves-
dropper (Eve) would try to intercept Alice’s bits. For a given photon i ,
if Eve knew the basis si , she would be able to find out what bit Alice
was sending, without disturbing the signal: she could simply measure the
photon in the correct basis and then generate and send on to Bob a new
photon having the same polarization. Eve would thus learn Alice’s bit ai

but her action would be invisible to Alice and Bob. However, because

3 It is not actually necessary for Alice and Bob to estimate the number of errors before
taking steps to correct them. The estimation can be done as part of the process of error
correction. But it is probably simpler conceptually to keep these two tasks separate.

3.1. The Bennett–Brassard Protocol 109

of the sending protocol used in step 2, Eve cannot know which basis
Alice uses to encode any given bit. Let us suppose, then, that she simply
guesses which basis Alice is using and makes a measurement according
to her guess. If she is correct, she will get the bit as before. But suppose
she guesses incorrectly. For definiteness let us suppose that Alice is using
the basis M+ = (|�〉, |↔〉) and in fact is sending the bit 0, that is, the state
|�〉. Eve now measures the photon in the wrong basis, the diagonal basis
M×. The two possible outcomes of her measurement are equally likely,
and in either case, her measurement does not tell her what state Alice
actually sent. So she has failed to learn anything about Alice’s bit ai . In
fact, she still does not know that she used the wrong basis, so she prepares
and sends to Bob a new photon having the diagonal polarization that
corresponds to her measurement outcome.

What happens, now, at Bob’s end? If Bob is using the diagonal basis
M×, then it does not matter what happens, because according to step 4,
the bits associated with this photon will eventually be discarded. So we
may as well restrict our attention to the case in which Bob uses the same
basis that Alice used, which in our example is the vertical–horizontal basis
M+. Thus Bob is measuring a diagonally polarized photon in the vertical–
horizontal basis, and the two outcomes are equally likely. If Bob happens
to get the vertical outcome, Eve is lucky, because he then records the
bit bi = 0, which happens to match Alice’s bit ai . Thus this photon has
not given Alice and Bob any evidence of Eve’s interference. (At this
point, “lucky” for Eve refers simply to damage control. We have already
established that she has learned nothing about Alice’s bit. But she can
hope that her attempt will not be detected.) On the other hand, if Bob
gets the horizontal outcome, he will record the bit bi = 1, so that bi �= ai .
This discrepancy will be present in the strings A′ and B′ and might be
detected in step 5. If so, Eve’s efforts to possess information about a key
shared between Alice and Bob will have provided Alice and Bob some
information about Eve’s activity. We illustrate in Fig. 3.2 Eve’s effect on
Bob’s bit string.

Let us work out the relevant probabilities. Suppose that for each pho-
ton, Eve decides probabilistically whether to measure it or not; the prob-
ability that she will measure it is p. Now consider a photon whose bit
will be included in the strings A′ and B′. What is the probability that Eve
will cause an error in such a bit? The answer is p/4: there is a probability

110 Chapter 3. Quantum Cryptography

100010010010101011000010111110100101

x+xxxx++++xxx++xx+x++x+x+x++x+x+++++

Bob's Bases and Measurements:

011101110110

+++xxx+xxx+x

Eve's Bases and Measurements:

+xxx+x+x+++x++x++x+++x++x+xxxx+xxxx+

010100010010110001000010101111100011

Alice's Bit String and Bases:

Figure 3.2: Illustration of the effect of an eavesdropper. Eve has measured certain
randomly chosen photons, and in some cases her measurements have caused
errors that Alice and Bob might detect in step 5. In this example the strings A′

and B ′ are, respectively, 11100010000010 and 11100000000000.

p that she will measure the photon, then a probability 1/2 that she will
choose the wrong basis, and if she chooses the wrong basis, a probability
1/2 that she will cause an error. We can also figure out the probability
that she will learn the value of the bit: this probability is p/2, since she
learns the value whenever she chooses the correct basis. Thus in the long
run, for every two bits whose values she learns, she causes one error.

Of course there are other strategies that Eve might use, and we con-
sider some of them in the exercises and in the following section. For any
such strategy, though, it is useful to have a way of quantifying its suc-
cess. For now let us restrict our attention to strategies in which Eve acts
on each successive photon independently, without regard to what she
has done with the earlier photons or what she has learned from them.
A strategy is good for Eve if she gains a lot of information from a photon
while minimizing her probability of causing a detectable error. We know
how to compute the probability of an error, but how do we compute the
amount of information she gains? In the above example it was relatively
easy, because for each bit, Eve either learned its value with certainty or
she learned nothing. But for other strategies, the information she gains
may be probabilistic: she might end up thinking that the value 0 is more
likely than the value 1, without being certain. It turns out that a useful
mathematical tool for measuring Eve’s information in such a situation is
the Rényi entropy, which we now define.

3.1. The Bennett–Brassard Protocol 111

Before Eve has made any measurement on a given photon, the two
possible bit values, 0 and 1, are for Eve equally likely. That is, their prob-
abilities are p0 = 1/2 and p1 = 1/2. After she has made her measure-
ment (and after she had heard the public communication between Alice
and Bob), her probabilities are, she hopes, more lopsided, for example,
p0 = 3/4 and p1 = 1/4. Whether before or after her measurement, the
Rényi entropy of order 2 of her probability distribution, which we call
“Rényi entropy” for short, is defined by4

HR = − log2

(
p2

0 + p2
1

)
, (3.1)

and is a measure of the amount of information she lacks about the bit. (It
can be helpful to read the word “entropy” as a synonym for “uncertainty.”)
Rényi entropy is a pure number and does not need units, but one usually
speaks of it as being measured in “bits.”5 So if Eve’s probabilities were
p0 = 1 and p1 = 0, her Rényi entropy would be HR = − log2(12 + 02) = 0
bits, indicating that she lacks no information. On the other hand, if the
two probabilities are equal, as they are for Eve before she makes her
measurement, her Rényi entropy is HR = − log2((1/2)2 + (1/2)2) = 1 bit,
which is its largest possible value: if you know nothing about the value
of a bit, you lack one bit of information. If after her measurement the
probabilities are p0 = 3/4 and p1 = 1/4, her Rényi entropy is now

HR = − log2((3/4)2 + (1/4)2) = 0.678 bits, (3.2)

which is less than the maximum value. For convenience we will also speak
of Eve’s “Rényi information,” defined as the amount by which her Rényi
entropy falls short of its maximum possible value.6 Thus,

Rényi information = 1 − (Rényi entropy) = 1 − HR. (3.3)

4 Rényi (1965). For a binary probability distribution, the Rényi entropy of order α is defined
by (1/(1 − α)) log2(pα

0 + pα
1).

5 This is a helpful way of speaking, in part because it distinguishes the definition given in
Eq. (3.2) from an alternative definition using the natural logarithm in place of log2. In the
latter case, the entropy would be measured in “nats.”

6 For valid technical reasons, the term “Rényi information” is not standard in the literature:
specifically, it is impossible to talk about the amount of Rényi information that each of
two random variables provides about the other. However, our more limited definition of
Rényi information is not problematic, and we use it because it simplifies certain statements
and makes them more intuitive.

112 Chapter 3. Quantum Cryptography

In the above example, Eve ends up with 1 − 0.678 = 0.322 bits of Rényi
information.

What makes Rényi entropy useful is its role in a theorem, which we
will discuss in Chapter 5, that relates the Rényi entropy to the ultimate
security of Alice’s and Bob’s shared strings. Because of this theorem, it
is reasonable to use Rényi entropy in comparing different eavesdrop-
ping strategies. For example, we might measure the effectiveness of an
eavesdropping strategy by the ratio

Eve’s Rényi information
Probability of causing an error

.

Eve is trying to make this ratio as large as possible, while Alice and Bob
are hoping that it can be kept low.

Example 3.1.1. Alice sends a photon to Bob, which Eve intercepts and
measures in the basis

(|m1〉, |m2〉) =
((

1/2√
3/2

)
,

(√
3/2

−1/2

))
,

obtaining the first of these two outcomes. Later, Eve learns that Alice
originally prepared the photon in one of the two polarization states |↔〉
and |�〉. How much Rényi information has her measurement given her
about the original state of the photon? (Assume that in the absence of any
evidence from her measurement, the states |↔〉 and |�〉 would be equally
likely for Eve.)

Answer: To figure out Eve’s Rényi information after she has taken her
measurement into account, we need to find p(↔ |m1) and p(� |m1), where
the vertical line is read “given.” For example, p(↔ |m1) is the probability
that Alice sent |↔〉, given that Eve has obtained the outcome |m1〉. This
is not the sort of probability we have been computing using quantum
rules. Rather, we have been computing probabilities such as p(m1| ↔),
the probability of the outcome |m1〉 given that Alice sent the state |↔〉.
In order to obtain the probabilities we want, we need to use Bayes’ rule:

p(B|A) = p(A|B)p(B)
p(A)

. (3.4)

Here A and B are two propositions, and p(A) and p(B) are the overall
probabilities of A and B, not conditioned on each other. Applying this

3.1. The Bennett–Brassard Protocol 113

rule to our problem, we have

p(↔ |m1) = p(m1| ↔)p(↔)
p(m1)

.

Let us compute each factor on the right in turn. Quantum rules tell us that
p(m1| ↔) = |〈m1| ↔〉|2 = 1/4. We are given that p(↔) = 1/2. Finally, we
compute p(m1) as follows: p(m1) = p(↔)p(m1| ↔) + p(�)p(m1| �) =
(1/2)(1/4) + (1/2)(3/4) = 1/2. Putting the numbers together, we get

p(↔ |m1) = (1/4)(1/2)
(1/2)

= 1
4
.

In a similar way, we find that p(� |m1) = 3/4 (as must be the case, since the
probabilities must add up to 1). So Eve’s final Rényi entropy is 0.678 bits,
as computed in Eq. (3.2), and her final Rényi information is 1 − 0.678 =
0.322 bits.

In the following section we explore a particular eavesdropping strat-
egy that might have already occurred to you. What if Eve does not mea-
sure the photons at all? Rather, she makes a copy of each photon as it
passes and she holds on to the copy until she learns, from the public dis-
cussion, which basis Alice used for that photon. Then she can measure
each copy in its proper basis and get every bit that Alice sent. We show
below why this strategy fails.

EXERCISES

Problem 1. In the Bennett–Brassard scheme, suppose that Eve performs
on each photon the measurement

M(θ) =
((

cos θ

sin θ

)
,

(
− sin θ

cos θ

))
.

(Recall our convention that the horizontal polarization |↔〉 is represented
by the vector

(1
0

)
.) Let us suppose that she uses the “intercept-resend”

strategy: if she gets the first outcome, she sends the state
(cos θ

sin θ

)
to Bob,

and if she gets the second outcome, she sends the state
(− sin θ

cos θ

)
.

(a) Assume that Bob measures his received photon in the same basis
that Alice used in her preparation. (As we have said, ultimately this is
the only case that matters.) For each of the four possible states that Alice

114 Chapter 3. Quantum Cryptography

might send, find the probability that the bit Bob receives will not agree
with the bit that Alice sent (because of Eve’s interference). That is, find
the probability of error, as a function of θ , for each of Alice’s four states.

(b) Find the average probability of error as a function of θ . (The aver-
age is over Alice’s four states, which are equally likely.)

(c) For what value of θ does Eve’s measurement cause the least dis-
turbance, in the sense of minimizing the average probability of error? Or
does it not matter which value of θ she chooses?

Problem 2. Assume the same eavesdropping strategy as in Problem 1.
(a) For each of Eve’s two possible outcomes, and for each of the two

possible bases that Alice might have used, compute Eve’s final Rényi
information about the bit that Alice sent.

(b) Find Eve’s average Rényi information about the bit that Alice
sent. (The average is over Eve’s two possible outcomes and Alice’s two
possible bases.)

(c) For what value of θ does Eve’s measurement tell her the most about
Alice’s bit, in the sense of maximizing the average Rényi information?
Or does it not matter which value of θ she chooses?

Problem 3. There are many other possible measurements Eve could per-
form besides the ones considered in Problem 1. The most general com-
plete orthogonal measurement she can perform on a photon can be writ-
ten either as

M =
((

m1

m2

)
,

(
−m̄2

m̄1

))
,

where m1 and m2 are arbitrary complex numbers satisfying |m1|2 +
|m2|2 = 1, or in terms of a specific parameterization, as

M =
((

cos θ

sin θeiφ

)
,

(
− sin θe−iφ

cos θ

))
.

Show that none of these measurements creates less disturbance, that is,
yields a smaller average probability of error, than the measurements con-
sidered in Problem 1. (You may use either of the above representations
of the measurement; they are equivalent.) In other words, show that if
Eve is trying not to be detected, it does not help to use a measurement
with complex components.

3.2. The No-Cloning Theorem 115

Problem 4. Show that when there are just two possibilities – so far we
have defined Rényi entropy only for this case – the maximum value of
the Rényi entropy is indeed 1 as we have claimed.

3.2 The No-Cloning Theorem

For ordinary information – called “classical information” within the
framework of quantum information theory – there is no theoretical limit
on one’s ability to copy it. We can download files from the Internet and
copy them onto our own computer’s disk, as long as there is enough
space to hold the copy. However, for quantum information such copying
is impossible except when the information is essentially classical. We now
prove this assertion.7

Consider a quantum object that could be in any of a number of states
|s1〉, |s2〉, . . . , |sm〉. Suppose that we want to copy the state of this object.
We are not interested in copying an arbitrary state; we are interested only
in the specific states |si 〉. For example, in the Bennett–Brassard scheme
Eve would like to copy each photon, but she cares only about the four
states |�〉, |↔〉, (|�〉+ |↔〉)/√2, and (|�〉− |↔〉)/√2. She does not care if
other states are not copied faithfully. Assume that we are also given a
similar quantum object in a known state |0〉. This is the object onto which
we wish to copy the state of the first object, and the state |0〉 is the “blank”
state, like the state of a piece of paper stored in a photocopier. To copy
the state of the first object onto the second object, we would look for a
unitary transformation U with the following effect:

U(|si 〉 ⊗ |0〉) = |si 〉 ⊗ |si 〉, (3.5)

for each of the possible states |si 〉. The question is, does there exist such
a U? Let us suppose that there is, and see what consequences follow.

It is a fact from linear algebra that unitary transformations preserve
inner products. That is, if |v〉 and |w〉 are two vectors, and |y〉 and |z〉 are

7 The impossibility of copying a general quantum state was pointed out in Dieks (1982) and
Wootters and Zurek (1982). The stronger proof that we give here can be found in Nielsen
and Chuang (2000, p. 532).

116 Chapter 3. Quantum Cryptography

their respective images under U, then

〈y|z〉 = 〈v|w〉. (3.6)

Indeed it is not hard to show this. We use the fact that since |y〉 = U |v〉,
the conjugate transpose of |y〉 is 〈y| = 〈v|U †. (You can convince yourself
that this is true by writing out |v〉, U, and |y〉 as vectors and matrices and
seeing what operations are entailed by the matrix multiplication.) So we
have

〈y|z〉 = 〈v|U †U |w〉 = 〈v|w〉, (3.7)

in which we have used the definition of unitarity: U † = U−1.
Applying this fact to Eq. (3.5) for two different states |si 〉 and |s j 〉, we

get

(〈si | ⊗ 〈0|)(|s j 〉 ⊗ |0〉) = (〈si | ⊗ 〈si |)(|s j 〉 ⊗ |s j 〉). (3.8)

Here each side of the equation is the inner product of two four-
dimensional vectors, each of which is a tensor product. Now, how does
one take the inner product of two tensor product states? One of the prob-
lems at the end of this section asks you to show that the inner product is
simply the ordinary product of the two separate inner products. That is,
in general,

(〈a| ⊗ 〈b|)(|c〉 ⊗ |d〉) = 〈a|c〉〈b|d〉. (3.9)

In the case of Eq. (3.8), this gives us

〈si |s j 〉〈0|0〉 = 〈si |s j 〉〈si |s j 〉. (3.10)

The inner product 〈0|0〉 is equal to 1; so Eq. (3.10) tells us simply that the
inner product 〈si |s j 〉 must be equal to its own square. That is, it must be
0 or 1. An inner product of 1 means that the two states are identical; an
inner product of 0 means that they are orthogonal. Thus a quantum state
chosen from a given set of possible states can be cloned perfectly only if
the states in the set that are distinct are mutually orthogonal. But if a set
of states is orthogonal, the states are related to each other in the same
way that classical alternatives are related to each other. There is none of
the ambiguity that typically characterizes the relation among quantum

3.2. The No-Cloning Theorem 117

states. This is what we meant when we said that cloning is possible only if
the information being cloned is essentially classical.

In the Bennett–Brassard scheme, the four states in question are not
all orthogonal. This was necessary in order to keep Eve from knowing
how to measure each photon, and we have just shown that it also foils any
attempt she might make to copy a photon’s state faithfully. Much work
has been done on quantifying the extent to which one can copy quantum
states. It turns out that one can achieve a kind of partial copying, and
indeed, there is a partial copying strategy that works better for Eve than
the measurement strategy that we discussed in the preceding section. This
partial copying strategy is explored in the exercises.

Returning for a moment to the copying of classical information, we
note that an ordinary fax machine makes a copy but achieves an addi-
tional feat: it produces the copy at some distance from the original. In the
processing of quantum information it can likewise be advantageous to
produce a replica at a distance. But because of the no-cloning theorem
this can be done only if the original is destroyed in the process. It is as if
the fax machine were required to eat the original document in order to
produce a replica somewhere else. Such “faxing with destruction” is in-
deed possible in the quantum world, and it is the subject of the following
section.

EXERCISES

Problem 1. Let |a〉 and |c〉 be two possible quantum states of object A,
and let |b〉 and |d〉 be two possible states of object B. Starting from the def-
inition of the tensor product, show that (〈a| ⊗ 〈b|)(|c〉 ⊗ |d〉) = 〈a|c〉〈b|d〉.

Problem 2. One of the best eavesdropping strategies against the Bennett–
Brassard quantum key distribution scheme is the “partial cloning” strat-
egy that we now describe.8 As Alice’s photon is on its way to Bob, Eve
allows it to interact with her own photon, which she has prepared in the
right-hand circular polarization state.The interaction, designed by Eve, is

8 This strategy was described by Fuchs et al. (1997). (Those authors use a different but
equivalent set of polarization states.)

118 Chapter 3. Quantum Cryptography

given by the following unitary transformation U:

U = 1
4




2 + √
2 −i

√
2 i

√
2 −2 + √

2
−i

√
2 2 + √

2 2 − √
2 −i

√
2

i
√

2 2 − √
2 2 + √

2 i
√

2
−2 + √

2 −i
√

2 i
√

2 2 + √
2




Here we are using our usual convention, in which

|↔↔〉 =




1
0
0
0


 , |↔�〉 =




0
1
0
0


 , etc.,

and the first and second photons are Alice’s photon and Eve’s photon
respectively. After the interaction, Eve allows Alice’s photon to go on to
Bob with no further disturbance (e.g., no measurement), and she holds on
to her probe photon until she learns in which basis Alice encoded her bit.
At that point, she measures her photon in the correct basis. The advantage
of this scheme is that she does not have to guess the basis. However, her
cloning is less than ideal for Eve in two ways: (i) her probe does not
emerge as an exact copy of Alice’s photon, and (ii) the partial cloning
process has disturbed Alice’s photon and this disturbance could later be
detected when Alice and Bob check for errors. Still, this strategy turns
out to be better than the “measure-resend” strategy that we considered
in an earlier section.

(a) Suppose that Alice uses the vertical–horizontal basis, and specifi-
cally that she sends the state |�〉. Compute the polarization state of Alice’s
photon and Eve’s photon after Eve has applied her transformation. (Since
Alice’s photon travels on to Bob, we will henceforth refer to it as Bob’s
photon.)

(b) Assume that Bob and Eve both measure their respective photons
in the correct basis, that is, the vertical–horizontal basis. (We assume this
for Bob because otherwise the bit will be discarded. We assume it for Eve
because she does not measure her photon until she has learned what basis
Alice used.) What are the probabilities of the four possible outcomes?

(c) What is the probability that Bob gets the outcome |↔〉, that is, the
probability of an error?

3.3. Quantum Teleportation 119

(d) How much Rényi information does Eve gain about Alice’s bit?
Compute the ratio, (Rényi information)/(probability of causing an error).
Show that this is better than the optimal value that Eve can obtain using
the intercept-resend strategy. (See Problems 1 and 2 of Section 3.1.)

(e) Show that for the partial-cloning strategy, the value of this ratio is
the same for each of the four states that Alice might send.

3.3 Quantum Teleportation

Though the no-cloning theorem is crucial for preventing Eve from ac-
cessing the bits sent by Alice, it also causes problems for Alice and Bob.
In real life each photon sent by Alice has to pass through some chan-
nel, typically an optical fiber, in which the photon has some probability
of being degraded or destroyed. If photons could be cloned, one could
place cloning devices at regular intervals along the fiber to make sure
that for each photon Alice sends, there is a reasonable probability that
Bob will receive a photon in the same state. But cloning is not possible,
so this strategy is out of the question. Of course, even with a very long
fiber, one might still hope to create a secret key out of the extremely small
percentage of Alice’s photons that actually make it to Bob. However, any
photon detector that Bob might use in practice will occasionally produce
false detections (“dark counts”); so at some point it becomes impossible
for Bob to distinguish Alice’s photons from the background noise. With
the best optical fibers and photon detectors currently available, quantum
key distribution by direct transmission of photons is limited to a few hun-
dred kilometers in principle, and actual demonstrations of quantum key
distribution have in fact rarely exceeded 100 kilometers.

One way around this problem is quantum teleportation.9 Consider two
locations A and B along the fiber. If it can be arranged that two particles,
one at location A and the other at B, are perfectly entangled with each
other, then, as we will see shortly, the state of a photon arriving at A

9 Bennett et al. (1993). The theory and some early experimental implementations of quan-
tum teleporation are reviewed in Bouwmeester, Ekert, and Zeilinger (2000). Two recent
experiments realizing precisely the protocol that we describe here are reported in Riebe
et al. (2004) and Barrett et al. (2004).

120 Chapter 3. Quantum Cryptography

can be teleported directly to B, without having to traverse the intervening
fiber. (The fiber will probably still be necessary to get the entangled pair
to A and B in the first place.) By repeating this process over many suc-
cessive lengths of fiber, it is possible in principle to convey each of Alice’s
key-distribution states over an arbitrary distance. Arranging for the shar-
ing of a well-separated entangled pair is quite tricky and we discuss this
issue toward the end of this section. For now we assume the existence
of such a pair and show how teleportation can in principle be done. For
this discussion we will not insist that the state to be teleported is one of
the four Bennett–Brassard states; rather it is some generic state |s〉. In
fact, to emphasize that teleportation is not just for photons, we will use
the more generic labels |0〉 and |1〉 to represent an orthonormal basis for
each particle, instead of the polarization labels |↔〉 and |�〉. (For the sake
of simplicity we do restrict our discussion to qubits, though the whole
argument can be generalized to arbitrary quantum variables.)

To explain teleportation it is helpful to define the following four two-
qubit states, each of which is maximally entangled:

|�+〉 = (1/
√

2)(|00〉 + |11〉)
|�−〉 = (1/

√
2)(|00〉 − |11〉)

|�+〉 = (1/
√

2)(|01〉 + |10〉)
|�−〉 = (1/

√
2)(|01〉 − |10〉)

(3.11)

Notice that these four states are mutually orthogonal, so that in principle
one can make a measurement on the two qubits, whose outcomes corre-
spond to these states. This particular measurement has a name: it is called
the Bell measurement, after John S. Bell who considerably advanced our
understanding of entanglement. We will make use of this measurement
shortly.

Let us assume the existence of two particles, one at A and the other at
B, in the entangled state |�+〉. In fact, let us call these particles “particle
a” and “particle b,” and let us imagine people at these locations called
Anna and Boris who will carry out the teleportation procedure.10 (These
people are usually called Alice and Bob, but in this chapter Alice and
Bob have already been assigned other roles.) At some moment another

10 We have taken these names from Elliott et al. (2005).

3.3. Quantum Teleportation 121

particle, labeled c, arrives at location A; particle c is the one whose state is
to be teleported to B. Particle c has been prepared (possibly by Alice) in
some state |s〉 = α|0〉 + β|1〉, which is unknown to both Anna and Boris.

Before outlining the teleportation process, let us note that the com-
bined state of particles c, a, and b can be written as follows:

|s〉 ⊗ |�+〉 = 1√
2

(α|000〉 + α|011〉 + β|100〉 + β|111〉), (3.12)

where the order of the particles in each term is cab. As we will see shortly,
in the first step of the teleportation protocol, Anna performs the Bell
measurement on particles c and a, which are both at the same location.
She necessarily leaves particle b unmeasured since she does not have
access to particle b. This is an example of a measurement on a subsystem,
as described in Section 2.4. Recall that to analyze such a measurement,
it is helpful to reexpress the state of the whole system in terms of the
outcome vectors of the measurement. A little algebra shows that when
we do this for the state |s〉 ⊗ |�+〉, we get

|s〉 ⊗ |�+〉 = 1
2

[|�+〉 ⊗ (α|0〉 + β|1〉)
+ |�−〉 ⊗ (α|0〉 − β|1〉)
+ |�+〉 ⊗ (β|0〉 + α|1〉)
+ |�−〉 ⊗ (−β|0〉 + α|1〉)]. (3.13)

Here we have expanded |s〉 ⊗ |�+〉 in terms of the Bell states of particles
c and a, and we see that each of these states is correlated with a specific
state of particle b. Notice that this is merely a mathematical reexpression
of the original state; there is no physical change. In particular, even though
each of the Bell states is entangled, particle c is still not entangled with
particles a and b.

The teleportation procedure can now be explained quite simply:

1. Anna makes the Bell measurement on particles c and a. Once the
outcome of this measurement is determined, the state of particle b is
also determined in accordance with Eq. (3.13). For example, if Anna
gets the outcome |�+〉, the state of particle b is α|0〉 + β|1〉. Here we
are following the rule for measurements of subsystems as presented
in Section 2.4.

122 Chapter 3. Quantum Cryptography

2. Anna conveys to Boris, by a classical signal, the outcome of her mea-
surement.

3. Boris performs a unitary transformation on particle b, the transfor-
mation depending on the result of Anna’s measurement according to
the following table. Here I = (1 0

0 1

)
is the identity operator, and Z

and X are defined as Z = (1 0
0 −1

)
and X = (0 1

1 0

)
.

Outcome Transformation
| �+〉 I
| �−〉 Z
| �+〉 X
| �−〉 XZ

Once Boris has performed the appropriate transformation, his particle
is guaranteed to be in the state |s〉, regardless of the outcome of Anna’s
measurement (as you will show in one of the exercises).

As an example of how this works, suppose that Anna gets the outcome
|�+〉. Then, in accordance with Eq. (3.13), we can take Boris’s particle to
be in the state β|0〉 + α|1〉. This is not the desired state |s〉, but when Boris
applies the transformation X, it becomes |s〉:(

0 1
1 0

)(
β

α

)
=
(

α

β

)
= |s〉.

Note that Boris does not need to know anything about α or β to carry
out this transformation. The same transformation works for any values
of these parameters.

There are a few things to notice about the teleportation process. First,
the state |s〉 has not been cloned. When Anna makes the joint measure-
ment on her two particles, she “collapses” their state into one of the four
states defined by the Bell measurement. Whereas originally particle c was
in the state |s〉, it is now one member of an entangled pair. The state |s〉
no longer exists at Anna’s end but has been teleported to Boris. This is
the sense in which teleportation is a kind of “destructive faxing.”

Second, the classical communication from Anna to Boris, in which
she tells him the outcome of her measurement, in itself contains no in-
formation about the state |s〉. Regardless of the values of α and β, the
probabilities of the four outcomes of Anna’s measurement are all equal
to 1/4, as you will show in the exercises. Thus neither an eavesdropper nor

3.3. Quantum Teleportation 123

Boris himself learns anything about |s〉. Nevertheless, Boris ends up with
a particle in the state |s〉 because he began with a half of an entangled pair
shared with Anna. He knows that his particle b is in the correct state, but
he does not know the state itself.

Finally, teleportation is not instantaneous. Until Boris receives the
signal from Anna telling him the outcome of her measurement, he has
nothing useful. As you showed in an exercise from Section 2.4, no mea-
surement performed by Anna on her half of an entangled pair can have
any effect that Boris can observe. Thus teleportation is no faster than any
other form of communication. What is special about teleportation is that
it conveys a quantum state directly from one place to another, avoiding
any sources of noise in the intervening space.

Of course this is all assuming that Anna and Boris started with two per-
fectly entangled particles, one at location A and one at B, which might be
miles away. For the purpose of quantum key distribution, one might rea-
sonably ask how a pair of photons with this property might be generated if
A and B are connected only by an imperfect optical fiber. If an entangled
pair is created at A and one member of the pair is sent to B over the fiber,
the pair will not be perfectly entangled by the time this photon arrives.
Researchers have studied this problem theoretically and have found that
it is in fact possible in principle to create well-separated entangled pairs
over a noisy fiber. The key idea, called “entanglement purification,” is
based on the following scenario. Anna generates many entangled pairs of
photons at her end and sends one member of each pair to Boris via the
imperfect channel. (Alternatively, a source halfway between Anna and
Boris could generate the pairs and send the two photons in each pair to
the two parties.) The result is that Anna and Boris share many imperfectly
entangled pairs. Now, by a series of measurements made locally by Anna
and Boris, coupled with classical communication between them, Anna
and Boris can sacrifice some fraction of their imperfect pairs and leave
the remaining pairs more entangled than they were.11 We will not go into
the details here but the idea is explored in the exercises. In principle, as
long as the channel is not too noisy, Anna and Boris can achieve arbitrar-
ily perfect entanglement while sacrificing a fixed fraction of their pairs, a
fraction that depends on the noisiness of the channel.

11 Bennett et al. (1996a, 1996b), Deutsch et al. (1996).

124 Chapter 3. Quantum Cryptography

An optical fiber running from New York to Los Angeles would disturb
the photons so much that it would be impossible to purify any entangle-
ment after sending one photon from each of many entangled pairs over
the entire length of the fiber. However, one can imagine dividing the fiber
into sections of, say, 10 kilometers each, and generating many entan-
gled pairs shared between the two ends of each section. (There could
be computers playing the roles of Anna and Boris at the ends of each
section.) Once these pairs have been prepared, the Bennett–Brassard
key distribution scheme can be carried out over an arbitrarily long dis-
tance. For each photon generated by Alice in New York, its state can be
teleported over each section in turn, until it finally reaches Bob in Los
Angeles.12

Alternatively, once there is a pure entangled pair spanning each sec-
tion, these pairs can in principle be combined, by teleportation, to create
an entangled pair shared between Alice and Bob.13 This pair can then
be used directly to create a shared secret bit: Alice and Bob simply mea-
sure the pair in the same basis – they can use public communication to
decide on this basis – and use the result of the measurement as their
shared bit. If their photons really were perfectly entangled, then the bit is
secret because no other party could have been entangled with their two
photons. This entanglement-based method of generating a shared secret
key, which has also served as a basis for some proofs of security, goes back
to a 1991 paper by Artur Ekert.14

Although teleportation itself has been successfully demonstrated in
a number of experiments, at present we do not have the technology to
do entanglement purification on a large scale, and quantum key distri-
bution is therefore limited to modest distances. Purifying entanglement
requires holding on to quantum states for some time and protecting them
from degradation. This is a scientific and technological challenge on which
progress is constantly being made. Presumably it is only a matter of time
before quantum key distribution is possible over arbitrary distances.

12 Alternatively, rather than doing entanglement purification over each 10-km section sep-
arately, one can achieve greater efficiency with a nested scheme as described in Briegel
et al. (1998).

13 The fact that entanglement can be created between particles that have never directly
interacted was pointed out by Yurke and Stoler (1993).

14 Ekert (1991).

3.3. Quantum Teleportation 125

EXERCISES

Problem 1. Verify that the teleportation scheme as described in this sec-
tion does indeed leave Boris with the desired state |s〉 regardless of the
outcome of Anna’s measurement.

Problem 2. Verify that when Anna performs the Bell measurement on
particles c and a, each of the four possible outcomes has probability 1/4.
(Here you will have to use the rule for measurements of subsystems from
Section 2.4.)

Problem 3. Suppose that instead of starting with particles b and c in the
state |�+〉, Anna and Boris start with a and b in the state |�−〉. How
should the table be changed that gives Boris’s unitary transformation for
each outcome of Anna’s measurement? (Anna still performs the standard
Bell measurement on particles c and a.)

Problem 4. This problem extends the teleportation scheme to states be-
longing to a three-dimensional state space. Let {|0〉, |1〉, |2〉} be an or-
thonormal basis for this space, and let |s〉 = α|0〉 + β|1〉 + γ |2〉 be the
state that is to be teleported.

(a) Consider the following states |� j k〉, j, k = 0, 1, 2, of a pair of par-
ticles each having a three-dimensional state space:

|� j k〉 = 1√
3

2∑
l=0

e2π il k/3|l, l + j (mod 3)〉.

Show that these nine states form an orthonormal basis for the state space
of such a pair. The measurement whose outcome vectors are |� j k〉 can be
called a generalized Bell measurement.

(b) We assume three particles, a, b, and c, with the same roles as be-
fore, but now each particle has a three-dimensional state space. Suppose
that particles a and b start out in the entangled state |�00〉 and particle
c starts in the state |s〉. Anna performs the above generalized Bell mea-
surement on particles c and a. For each of the nine possible outcomes
of Anna’s measurement, find the unitary transformation U(i j) that Boris
should perform in order to bring particle b to the desired state |s〉.

Problem 5. This problem should give you an indication of how it is pos-
sible to purify entanglement that has been corrupted by noise. Suppose

126 Chapter 3. Quantum Cryptography

that at one end of an optical fiber, Anna creates two perfectly entangled
qubits in the state |�+〉 = (1/

√
2)(|00〉 + |11〉). She sends the second mem-

ber of each pair through the fiber to Boris. With probability p, the fiber
leaves the state of any particle unchanged, but with probability q = 1 − p
it performs on the particle the transformation X = (0 1

1 0

)
. That is, with

probability q the fiber interchanges |0〉 and |1〉. (This is simpler than what
an actual fiber would do, but it will serve to illustrate the essential idea.)
Thus at the end of this process Anna and Boris share two pairs in one of
the following four states:

|�+〉A1 B1 ⊗ | �+〉A2 B2 , probability p2

|�+〉A1 B1 ⊗ | �+〉A2 B2 , probability pq (3.14)

|�+〉A1 B1 ⊗ | �+〉A2 B2 , probability pq

|�+〉A1 B1 ⊗ | �+〉A2 B2 , probability q2

Here the subscripts indicate the particles involved in each state.
(a) Write out each of these four states explicitly in terms of vectors

such as |0A1 0A2 0B1 0B2〉, in which the states of Anna’s two particles appear
first. (This ordering will be very convenient for the next steps.)

(b) Both Anna and Boris perform the following unitary transforma-
tion on their two particles:

U =




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


 ,

where the ordering of the basis vectors is (|00〉, |01〉, |10〉, |11〉). Write
out the four possible states (with their probabilities) as modified by this
transformation.

(c) Anna and Boris now both measure their second qubits in the stan-
dard basis {|0〉, |1〉}; that is, Anna measures particle A2 and Boris mea-
sures B2. They discard the measured qubits but compare the results of
their measurements. If their results are the same, they keep their first pair
(which has not been measured). If their results differ, they discard their
first pair. Find the probability that, if they keep their first pair, it is in the
original state |�+〉.

3.3. Quantum Teleportation 127

(d) Show that as long as p is greater than 1/2, the probability that you
found in part (c) is greater than p. That is, the pair is now more likely
to be in the uncorrupted state |�+〉. By repeating this procedure many
times – and using up many pairs of qubits – one can distill a much smaller
number of qubits for which the probability of the state |�+〉 is arbitrarily
close to one. Moreover, one can design an extension of this procedure
that will work under a more general class of errors. (But designing such
an extension is not part of this problem!)

4 An Introduction to Error-Correcting Codes

In the preceding chapter we mentioned the inevitable errors that occur
when one tries to send quantum signals over, say, an optical fiber, even
when there is no eavesdropper. But errors in transmission are not a prob-
lem just for quantum cryptography. For this entire chapter we forget about
sending quantum information and instead focus on simply transmitting
ordinary data faithfully over some kind of channel. Moreover, we assume
that the data either is not sensitive or has already been encrypted. Unfor-
tunately, many methods for transmitting data are susceptible to outside
influences that can cause errors. How do we protect information from
these errors? Error-correcting codes provide a mathematical method of
not only detecting these errors, but also correcting them. Nowadays error-
correcting codes are ubiquitous; they are used, for example, in cell-phone
transmissions and satellite links, in the representation of music on a com-
pact disk, and even in the bar codes in grocery stores.

The story of modern error-correcting codes began with Claude
Shannon’s famous paper “A Mathematical Theory of Communication,1”
which was published in 1948. Shannon worked for Bell Labs where he spe-
cialized in finding solutions to problems that arose in telephone communi-
cation. Quite naturally, he started considering ways to correct errors that
occurred when information was transmitted over phone lines. Richard
Hamming, who also worked at Bell Labs on this problem, published a
groundbreaking paper in 1950 on the subject.2 Hamming continued his

1 Shannon (1948).
2 Hamming (1950).

128

4.1. A Few Binary Examples 129

work and today is known as one of the greatest contributers to coding
theory. In fact, there is a famous class of error-correcting codes called
Hamming codes that we introduce in Section 4.8. This chapter is intended
to be a basic introduction to techniques used for error correction.3 We
encourage those readers interested in recent breakthroughs in the the-
ory of error correction to consult sources on such codes as turbo codes4

and low-density parity check codes.5 Researchers have shown that using
these, one can construct highly efficient codes.6 These results, however,
are beyond the scope of this book. We now begin with an elementary
discussion on the theory of error correction.

4.1 A Few Binary Examples

To make things simple, suppose we start with a message expressed in an
alphabet consisting of only eight letters: a, b, c, d, e, f, g, h. In deciding
how to protect our transmission from noise, it is helpful to assume that
the transmission itself will be binary; that is, it will consist of a string
of zeros and ones. The error correction in digital communication is in-
deed usually based on protocols whose output is binary. So we will think
about reasonable ways to encode our eight letters using strings of ze-
ros and ones. Though it is quite possible, and sometimes very useful,
to use strings of different lengths to encode different letters, for sim-
plicity we assume here that every letter is encoded in a string of the
same length. As always, our sender will be Alice and the receiver will be
Bob.

Since we have eight letters that we want to code with blocks of zeros
and ones, the shortest block size we can use is 3. There are exactly eight
strings of zeros and ones of length 3, namely:

000 001 010 011 100 101 110 111

3 For a more in-depth introduction see Pless (1998).
4 Berrou, Glaneux, and Thitimijashima (1993).
5 Gallager (1963) and Mackay and Neal (1996).
6 Specifically, they come very close to reaching Shannon’s limit, an efficiency theorem

proved in Shannan (1948).

130 Chapter 4. An Introduction to Error-Correcting Codes

So we first try making the following assignments assuming that both
Alice and Bob agree on this way to code the eight letters of the alpha-
bet:

Example 4.1.1

a −→ 000
b −→ 001
c −→ 010
d −→ 011
e −→ 100
f −→ 101
g −→ 110
h −→ 111

If no errors occur, this is a perfectly good way to code the eight letters.
For example, if Alice wants to send the message bad to Bob, she sends
the string 001000011. If no errors occur, then Bob receives the string
001000011. He then breaks it up into blocks of three: 001, 000, and 011.
He knows 001 represents the letter b, 000 represents a, and 011 represents
d and so he decodes the message correctly as bad.

But what happens if an error occurs? We note here that the only type
of errors we will consider is when one or more of the numbers in the string
Bob receives is different than the corresponding entry in the string Alice
sent. We will not consider, for example, when one of the numbers is simply
dropped. Suppose Alice sends the same string as before – 001000011 –
but Bob receives 101000011. Notice that there is only one error – the first
zero has been erroneously received as a one – and everything else in the
string has been received correctly. When Bob decodes the string, he gets
101 −→ f , 000 −→ a, 011 −→ d. So he thinks the message that Alice sent
him was fad – a perfectly good English word. Not only does he get the
wrong message, but he is not even aware that an error has occurred. In
other words, he has not even detected the error.

What kind of scheme can Bob and Alice use to be able to at least
detect an error? We first try adjusting the previous example by repeating
each length-three string. In other words, we consider the following assign-
ments.

4.1. A Few Binary Examples 131

Example 4.1.2

a −→ 000000

b −→ 001001

c −→ 010010

d −→ 011011

e −→ 100100

f −→ 101101

g −→ 110110

h −→ 111111

If the string Bob receives is different than the string Alice sent in ex-
actly one position, then Bob will be able to tell that an error occurred in
transmission. For example, if Alice sends the word bad, she transmits the
string 001001000000011011. Suppose that the first number in the string is
received incorrectly, so that Bob receives 101001000000011011. He breaks
up the message into blocks of six: 101001, 000000, and 011011. Now, he
knows that 000000 represents a and 011011 represents d. But the string
101001 was not assigned to any letter, so an error must have occurred. Of
course, Bob cannot tell if the intended message was bad or fad, but at least
he knows there was an error and he can ask Alice to resend the message.

You might notice that our new assignments are not very efficient. In
fact, compared to Example 4.1.1 we have doubled the number of digits it
takes to send a message. Is there a better way? Can we come up with a way
to detect a single error, but use strings of length less than 6? It turns out
that, in fact, we can. Again, suppose we have an alphabet of eight letters.
Consider the following assignment of strings of length 4 to each letter.

Example 4.1.3

a −→ 0000

b −→ 0011

c −→ 0101

d −→ 0110

e −→ 1001

f −→ 1010

g −→ 1100

h −→ 1111

132 Chapter 4. An Introduction to Error-Correcting Codes

Note that the first three digits of each string are exactly the same as we
used in Example 4.1.1. To find the last digit, we simply make sure that
there are an even number of ones in each string of four digits. Now when
Alice sends Bob a message, there are an even number of ones in each
block of four. If exactly one error occurs, then one of the blocks of four
that Bob receives will have an odd number of ones, so he can tell that
there has been a transmission error. Thus this method will detect one
error and is more efficient than Example 4.1.2. Note, though, that in the
above example, if exactly two errors occur, Bob will not be able to detect
that errors have occurred during transmission. For example, if Alice sends
the letter c to Bob, she transmits the string 0101. Suppose the first two
digits are exchanged, so that two errors have occurred. Then Bob receives
1001 and believes that Alice has sent him the letter e. He has no way of
detecting that there has been an error. Example 4.1.3 is called the binary
parity check code of length 4 and can be generalized. We will discuss it in
more detail in the next section.

Now we get back to the question at hand. We know how to detect an
error, but how do we correct an error? We could take Example 4.1.1 and
repeat the message three times instead of two. So the assignments to the
letters would be:

Example 4.1.4

a −→ 000000000

b −→ 001001001

c −→ 010010010

d −→ 011011011

e −→ 100100100

f −→ 101101101

g −→ 110110110

h −→ 111111111

Admittedly, a string of nine digits to represent each letter is excessive,
but let us see if we can use this scheme to correct a single error. Suppose
Alice sends the message bad to Bob. In that case she transmits the string

001001001000000000011011011.

4.1. A Few Binary Examples 133

What happens if the string Bob receives has an error in the first position?
He then receives

101001001000000000011011011.

He breaks up this string into blocks of nine, namely, 101001001, 000000000,
011011011, and knows that 000000000 represents a and 011011011 repre-
sents d. But 101001001 does not represent any letter. He can use the “best
two out of three” approach to correct the error. All the letters are repre-
sented by a string of three that is repeated three times. So Bob takes the
string 101001001, breaks it into the three strings 101, 001, and 001. Since
two out of the three of these agree, he declares that the error occurred
in the first string of three and that the first string should have been 001.
In this way, he can accurately correct any single error. Note that if two
errors occur, this scheme may fail. For example, if Bob receives

101101001000000000011011011

so that errors have occurred in the first and fourth positions, then when
he looks at the first string of nine, 101101001, and breaks it up into three
strings of three 101, 101, 001, he believes that the 001 should have been
101 and decodes the message incorrectly as fad.

So Example 4.1.4 will correct one error, but we used blocks of length
9 to represent each letter. Our goal is to find a more efficient way. In
general, our goal is to find a way to transmit information in a reasonably
efficient way so that we can also correct a reasonable number of errors.

EXERCISES

Problem 1. Use Example 4.1.2 to encode the message beef.

Problem 2. Suppose Alice and Bob agree to use Example 4.1.2 to send
messages. Bob receives the message

010110111111100100101101

from Alice. What is his best guess as to the message that Alice sent?

134 Chapter 4. An Introduction to Error-Correcting Codes

Problem 3. Suppose Alice and Bob agree to use Example 4.1.3 to send
messages. Bob receives the message

11110001000001100001010111111001

from Alice. What is his best guess as to the message that Alice sent?

Problem 4. Find a way to encode the letters a, b, c, d, e, f, g, h using
blocks of zeros and ones of length 6 so that if two or fewer errors oc-
cur in a block, Bob will be able to detect that errors have occurred but
not necessarily be able to correct them.

Problem 5. Find a way to encode the letters a, b, c, d, e, f, g, h using
blocks of zeros and ones of length 6 so that if one error occurs in a block,
Bob will be able to correct the error. To test your answer, first go to
the Construct-A-Code applet on the website www.williams.edu/crypto/.
Then, in the boxes below the blocks of length 3, enter the blocks of length
6 you used for your eight letters. Now, set the Noise Control to Specify
Error Rate Per Block and set it at one or fewer flips per 6 bits. Type
in a message in the Transmitted Text Box and hit the Simulate Message
Transmission several times. Does your message transmit correctly every
time? If so, there is a good chance your answer is a correct one. Play
around with other examples on the applet to try and decide what crite-
rion must hold so that the errors in the transmitted messages are corrected
accurately.

Problem 6. Prove that there is no way to encode the letters a, b, c, d,

e, f, g, h using blocks of zeros and ones of length 5 so that Bob will be
able to correct a single error.

4.2 Preliminaries and More Examples

We first define several mathematical tools we will need for error correc-
tion.

Definition. Let A be any set and n ≥ 1 an integer. We define

An = {(a1, a2, . . . , an)|ai ∈ A}.

4.2. Preliminaries and More Examples 135

Definition. Let A be a finite set and n ≥ 1 an integer. A code C of length
n is any subset of An. In this setting, we call An the codespace and the
elements of An are called words. We call the elements of the code C
codewords.

Suppose Alice wants to send Bob a message. It will be a string of code-
words as defined above with each codeword representing a piece of in-
formation that is not necessarily an actual English word. For example, a
codeword as defined above may represent a letter in the English language,
or it may represent an element of Am where m is less than n. In this setting,
n is the length of each codeword and A is the set of characters Alice has
to choose from for each position of the codeword. The codespace An is
all the words Bob could possibly receive, taking into account that errors
might occur. The elements of our code C are the codewords themselves;
that is, C is the set of words that Alice could send. Consider Example
4.1.1 from Section 4.1. First, note that each word represents a letter of our
alphabet. For this example, A = {0, 1} because for each position, Alice
must choose either a 0 or a 1 to send. And n = 3 because that is the length
of each word we used to represent a letter. So we have that

An = {000, 001, 010, 011, 100, 101, 110, 111}

and

C = {000, 001, 010, 011, 100, 101, 110, 111}.

Note that in this case, C = An and this is why Bob cannot detect errors
using this scheme. All the possible words received are codewords, that is,
words that Alice might have actually sent, and so he cannot tell if an error
occurred.

On the other hand, in Example 4.1.3 from Section 4.1, we have A =
{0, 1}, n = 4,

An = {0000, 0001, 0010, 0011, 0100, 0101, 0110, 1000,

1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111}

and

C = {0000, 0011, 0101, 0110, 1001, 1010, 1100, 1111}.

136 Chapter 4. An Introduction to Error-Correcting Codes

In this example, C is not equal to An. In other words, the set of words
that Bob could possibly receive is larger than the set of words Alice could
send. So Bob could receive a word that Alice could not possibly have
sent. For example, Bob could receive the word 0001, but since that is not
an element of C, he knows it is not the word that Alice intended to send
him and so an error must have occurred.

Notice that in all our examples so far we have had A = {0, 1}. Since
this is the simplest possible alphabet and since many practical cases can
be expressed in such terms, we will use this A for most of our examples.
However, sometimes it is useful to use a different set for A. So we will
include several examples of those codes as well.

Definition. If A = {0, 1} and C is a code of length n, we say C is a binary
code of length n.

Example: The Binary Repetition Code of Length n
Let n be any integer greater than or equal to 1. An is the set of all possible
strings of zeros and ones of length n. Note that An contains 2n elements.
We define the binary repetition code of length n – call it C – to be the
set containing only two elements: the word consisting of all zeros and the
word consisting of all ones. For example, if n = 5, then

An = {00000, 00001, 00010, 00011, 00100, 00101, 00110, 00111,

01000, 01001, 01010, 01011, 01100, 01101, 01110, 01111,

10000, 10001, 10010, 10011, 10100, 10101, 10110, 10111,

11000, 11001, 11010, 11011, 11100, 11101, 11110, 11111}
and

C = {00000, 11111}.
The advantage to this code is that it can correct two errors accurately.
Bob just takes the best three out of five. For example, suppose Alice
sends 11111 to Bob and he receives the word 01011. Then he knows an
error has occurred because the only two words Alice can send are 00000
and 11111. Bob notes that since 01011 has three ones and two zeros, Alice
probably meant to send 11111. This method of error correction will work
as long as no more than two errors occur. The disadvantage to this method

4.2. Preliminaries and More Examples 137

is that it severely limits the amount of information that Alice can send.
Since there are two codewords, she can only code two alternative pieces
of information. Bob and Alice might use this code when they do not need
to send much information, but when correcting errors is important. For
example, suppose Alice wanted to send a message to Bob telling him to
buy or sell a certain stock. They might use 00000 to represent “buy” and
11111 for “sell.” Correcting errors is important (Bob stands to lose a lot
of money if he “buys” when he should “sell”), and there are only two
possible messages that Alice needs to be able to send to Bob. So they
might choose to use a binary repetition code.

Example: The Binary Parity Check Code of Length n
For this code, we again let n be any integer greater than or equal to 1. An

is the set of all possible strings of zeros and ones of length n. We define
the binary parity check code of length n to be the set of elements of An

with an even number of ones. For example, if n = 5, then

An = {00000, 00001, 00010, 00011, 00100, 00101, 00110, 00111,

01000, 01001, 01010, 01011, 01100, 01101, 01110, 01111,

10000, 10001, 10010, 10011, 10100, 10101, 10110, 10111,

11000, 11001, 11010, 11011, 11100, 11101, 11110, 11111}

and

C = {00000, 00011, 00101, 00110, 01001, 01010, 01100, 01111,

10001, 10010, 10100, 10111, 11000, 11011, 11101, 11110}

The binary parity check code will detect an error but not correct it.
Example 4.1.3 in the previous section is the binary parity check code
of length 4. The advantage of the binary parity check code is that Alice
can code a lot of information. The disadvantage is that errors cannot be
corrected.

Example: A Binary [7,4] Hamming Code
For this code, we let n = 7 and A = {0, 1}. Then An = A7 is the set of
all possible strings of length 7 consisting of zeros and ones. There are

138 Chapter 4. An Introduction to Error-Correcting Codes

1

2

3 4

65

7

Figure 4.1: Venn diagram for the binary [7,4] Hamming code.

27 = 128 of them. We define a binary [7,4] Hamming code by

C = {0000000, 0001011, 0010101, 0011110, 0100111, 0101100,

0110010, 0111001, 1000110, 1001101, 1010011, 1011000,

1100001, 1101010, 1110100, 1111111}.
At first glance, it is not apparent how these codewords were chosen. But
notice that if we look at the first four positions of all the codewords,
all 16 possible combinations of zeros and ones occur. So to get the 16
codewords, we first just list those strings of length 4. Then, to get the last
three positions, we use the following three rules:

The sum of the numbers in the first, second, third, and fifth positions
must be even.

The sum of the numbers in the first, second, fourth, and sixth positions
must be even.

The sum of the numbers in the second, third, fourth, and seventh posi-
tions must be even.

Alternatively, we could view this code using the Venn diagram of Fig. 4.1.
We put the first four digits of the codeword in the areas of the diagram
labeled 1, 2, 3, and 4 respectively. Then we must put either a zero or a one
in the area labeled 5. We choose this bit by making sure that the sum of

4.2. Preliminaries and More Examples 139

the digits in the upper left circle is even. Similarly, we put either a zero or
a one in the area labeled 6 and 7, making sure that their respective circles
have an even sum. It turns out that this code will correct one error. We
will prove this in the next section.

We end this section with an example where A = {0, 1, 2}. Alice and
Bob might choose this A if Alice has three choices of input for each
position instead of two.

Example: A Ternary Code
Let n = 3 and A = {0, 1, 2}. Then,

An = {(000), (001), (002), (010), (011), (012), (020), (021), (022),

(100), (101), (102), (110), (111), (112), (120), (121), (122),

(200), (201), (202), (210), (211), (212), (220), (221), (222)}.
We define

C = {(000), (110), (001), (111), (220), (002), (222), (221), (112)}.
Note that C can be described as the set

{α1(110) + α2(001)|α1, α2 ∈ Z3}
where all arithmetic is done component-wise and modulo 3. For example,
ifα1 = 1 andα2 = 2, thenα1(110) + α2(001) = 1(110) + 2(001) = (110) +
(002) = (112) ∈ C.

EXERCISES

Problem 1. Let n and r be positive integers. If A = Zr , how many elements
does An have? Explain your answer.

Problem 2. How many errors will the binary repetition code of length 7
correct? Explain.

Problem 3. Explain why the binary parity check code of length n will not
detect two errors.

Problem 4. Let A = Z5 and n = 3. Let

C = {α1(100) + α2(011)|α1, α2 ∈ Z5}

140 Chapter 4. An Introduction to Error-Correcting Codes

where all arithmetic is done component-wise and modulo 5. Write down
the elements of C.

Problem 5. Let n and r be positive integers. Let A = Zr and �xi ∈ Z
n
r be

the element with a one in the ith position and zeros in all other positions.
Let
 be a nonempty subset of {1, 2, . . . , n}. Describe the set

C =
{∑

j∈

α j �x j |α j ∈ Zr

}

where all arithmetic is done component-wise and modulo r . How many
elements does C contain?

Problem 6. Let n and r be positive integers. Let A = Zr and �xi ∈ Z
n
r for

i = 1, 2, . . . , k be a set of k linearly independent vectors. For a definition
of linearly independent, see Section 4.5. Let

C =
{

k∑
i=1

αi �xi |αi ∈ Zr

}

where all arithmetic is done component-wise and modulo r . How many
elements does C contain? How does your answer change if �x1, �x2, . . . , �xk

are not linearly independent? Explain.

4.3 Hamming Distance

When Bob receives a word from Alice and wants to know if an error has
occurred, he simply looks at the list of codewords and determines whether
or not the word he received is on that list. If so, he assumes no error has
occurred. If not, then an error has occurred. So the method for detecting
errors is clear. Stated in mathematical terms, suppose Alice and Bob have
agreed on a code to use as described in Section 4.2. When Bob receives
the word �r , he checks to see if �r is an element of C. If so, he assumes no
error has occurred. If not, then he assumes at least one error occurred in
the transmission of the word Alice sent.

On the other hand, when Bob receives a word from Alice and wants
to correct the possible errors, he picks the codeword that is “closest” to
his received word. In other words, he wants to find the codeword whose
entries agree with his received word in as many places as possible. In this

4.3. Hamming Distance 141

section, we use mathematical terms to explain this more precisely. We
also prove useful theorems that tell us how many errors a code will detect
and how many it will correct.

Definition. Let �x, �y ∈ An. We define the Hamming distance between �x
and �y, denoted dH(�x, �y), to be the number of places where �x and �y are
different.

Examples:
1. Let n = 6, A = {0, 1}, �x = (110100), and �y = (101010). Then

dH(�x, �y) = 4 since these two words are different in four positions,
namely, the second, third, fourth, and fifth ones.

2. Let n = 5, A = {0, 1, 2, 3, 4}, �x = (34201), and �y = (30210). Then
dH(�x, �y) = 3 since these two words are different in three positions,
namely, the second, fourth, and fifth ones.

The Hamming distance satisfies the following desirable properties for
all �x, �y, and �z in An. The proof of this will be left as an exercise.

(i) dH(�x, �y) ≥ 0
(ii) dH(�x, �y) = 0 if and only if �x = �y

(iii) dH(�x, �y) = dH(�y, �x)
(iv) dH(�x, �y) ≤ dH(�x, �z) + dH(�z, �y)

This list may look familiar. These are exactly the properties used to define
a metric. So in fact, dH is a metric on An. Property (iv) is known as the
triangle inequality.

Using the concept of Hamming distance, we can mathematically de-
scribe the method we will use for error correction. When a word �r is
received, we decode it by finding a codeword �x such that dH(�r , �x) is
the smallest possible. This method is called minimum distance decoding.
Notice that given a received word �r , there may be more than one valid
codeword whose Hamming distance to �r is the smallest possible. In that
case we cannot correct the word with confidence, but we could guess by
choosing one of the closest codewords.

Of course Alice and Bob want to find “good” codes. But what do they
mean by “good”? They would like to have a reasonably large set of code-
words, so that they can code a lot of information, and they would like to

142 Chapter 4. An Introduction to Error-Correcting Codes

detect and correct as many errors as possible. Given a code C, how can
we determine how many errors it will detect and how many errors will
it correct? Imagine a code C where all the codewords are a distance of
at least 3 from each other using the Hamming distance. Suppose Alice
sends Bob a word and we know that no more than one error can oc-
cur. Then, the Hamming distance between the received word �r and the
intended message �x is 1 or 0. Is it possible that there could be another
codeword that is a distance 1 or less from �r? Suppose so. Then there
is a �y ∈ C with �y �= �x satisfying dH(�r , �y) ≤ 1. By the triangle inequality,
we have dH(�x, �y) ≤ dH(�x, �r) + dH(�r , �y) ≤ 2. So there are two codewords
that are a distance less than 3 from each other. But this contradicts our
assumption that all codewords are a distance at least 3 from each other.
It follows that �x is the only closest codeword to �r , so that Bob can con-
fidently decode �r as �x. As long as no more than one error occurs, Bob
will correct all errors accurately. Notice that our assumption that all code-
words were a distance of at least 3 apart was quite important in our argu-
ment. Putting this concept into mathematical terms, we get the following
definition.

Definition. Let C ⊆ An be a code. We define the minimum distance of
the code to be

min
�x,�y∈C,�x �=�y

dH(�x, �y).

We denote the minimum distance of a code by dmin(C) or d(C), or some-
times just d.

To find the minimum distance of a code, we simply compute the Hamming
distance between all possible pairs of distinct codewords. The smallest
number we get is the minimum distance of the code.

Examples:
1. Let C be the binary repetition code of length 4. Then we have that

C = {(0000), (1111)}. So the minimum distance of C is 4. In fact, the
minimum distance of the binary repetition code of length n is n.

2. Let C be the binary parity check code of length 5. We listed the ele-
ments of C in Section 4.2. You can verify that the minimum distance

4.3. Hamming Distance 143

of C is 2. In fact, the minimum distance of the binary parity check code
of length n is 2.

3. Let C be the binary [7,4] Hamming code that we defined in Section 4.2.
The minimum distance of C in that case is 3.

4. Let C be the ternary code we defined in Section 4.2. The minimum
distance of C in that case is 1.

We are now in a position to prove how many errors a code C will
detect and how many errors it will correct. As you might guess from our
above discussion, the answer to these questions involves the minimum
distance of the code.

We first discuss precisely what we mean by a code detecting a certain
number of errors. Recall our method for detecting errors. When Bob
receives a word �r from Alice, he checks to see if �r is an element of C. If
so, he assumes no error has occurred. If not, then he assumes an error
occurred in the transmission of the word Alice sent. We say that a code C
detects e errors if whenever e or fewer errors occur during transmission,
no matter what codeword Alice sent or where the errors occur, Bob is
guaranteed to accurately tell whether or not an error has occurred.

Now, recall our method for correcting errors. When a word �r is re-
ceived, Bob decodes it by finding a codeword �x such that dH(�r , �x) is the
smallest possible. We say that a code C corrects e errors if whenever e or
fewer errors occur during transmission, no matter what codeword Alice
sent or where the errors occur Bob is guaranteed to accurately correct the
errors. Remember that when Bob receives �r , for him to accurately cor-
rect errors it must be that the codeword Alice sent is the unique closest
codeword to �r .

We now prove that if we know the minimum distance of a code, then we
know how many errors it will detect and how many errors it will correct.

Theorem 4.3.1. Let C ⊆ An be a code with minimum distance d. Then C
detects d − 1 errors.

Proof. Suppose �c ∈ C is the codeword that Alice sends to Bob. We assume
that no more than d − 1 errors occur and we will show that Bob is guar-
anteed to accurately tell whether or not an error occurred. Let �r ∈ An be
the word that Bob receives. Now, suppose that no errors occurred. Then,

144 Chapter 4. An Introduction to Error-Correcting Codes

�r = �c ∈ C and so Bob correctly assumes that no error has occurred. On
the other hand, suppose that there were some errors in the transmission,
but remember, no more than d − 1. Then, 1 ≤ dH(�c, �r) ≤ d − 1. Now, as
the minimum distance of C is d, it must be that �r �∈ C. So Bob correctly
assumes that an error occurred. It follows that C detects d − 1 errors. ❑

We note here that if l is a real number we will use �l� to denote the largest
integer that is less than or equal to l.

Theorem 4.3.2. Let C ⊆ An be a code with minimum distance d. Then, C
corrects e errors where e = � d−1

2 �.

Proof. Suppose �c ∈ C is the word that Alice sends to Bob and let �r be
the word that Bob receives. We assume no more than e = � d−1

2 � errors
occur and we show that Bob can accurately correct the errors. Note that
dH(�c, �r) ≤ e. We want to show that �c is the closest element of C to �r .
Suppose on the contrary that there is another codeword �y ∈ C with �y �= �c
that is within a distance e of �r . Then, dH(�y, �r) ≤ e. So by the triangle
inequality, we get

dH(�y, �c) ≤ dH(�y, �r) + dH(�r , �c) ≤ e + e = 2e = 2
⌊

d − 1
2

⌋
≤ d − 1.

Then there are two different elements of C that are a distance less than
d apart. This contradicts that the minimum distance of C is d. It follows
that C corrects e errors. ❑

Examples:
1. Recall that the binary repetition code of length n has minimum dis-

tance n. So it will detect n − 1 errors and correct � n−1
2 � errors. This

code is very good for error correction, but remember that we can
code only two pieces of information with it.

2. The binary parity check code of length n has minimum distance 2. So it
will detect a single error and will not correct any errors. But remember
the advantage of this code is that we can code a lot of information.

3. The binary [7,4] Hamming Code that we discussed in Section 4.2 has
minimum distance 3. So it will detect two errors and it will correct a
single error.

4.4. Linear Codes 145

4. Recall the ternary code we defined in Section 4.2 has minimum dis-
tance 1. It will neither detect nor correct any errors.

There you have it. If we know what the minimum distance of a code is,
we also know how many errors it can detect and how many it can correct.
Of course, our above two theorems imply that the larger the minimum
distance of a code is, the more errors it will detect and will correct. So
codes with large minimum distance are desirable for error correction.

EXERCISES

Problem 1. Prove that for all �x, �y, and �z in An the following properties
hold.

(i) dH(�x, �y) ≥ 0
(ii) dH(�x, �y) = 0 if and only if �x = �y

(iii) dH(�x, �y) = dH(�y, �x)
(iv) dH(�x, �y) ≤ dH(�x, �z) + dH(�z, �y)

Problem 2. How many errors will the code described in Problem 4 of
Section 4.2 detect? How many errors will it correct?

Problem 3. Let A = Z3, n = 4 and define C to be

C = {α1(2101) + α2(0112)|α1, α2 ∈ Z3}
where all arithmetic is done component-wise modulo 3. How many errors
will C detect? How many errors will C correct?

Problem 4. Find a binary code of length 6 containing eight elements that
will correct one error.

Problem 5. Let C be a binary code of length 8 that corrects two errors.
What is the largest number of elements that C can possibly contain?

4.4 Linear Codes

Let A = F where F is any field. For the definition of and examples of
fields, refer to Section A.1. In most of our examples, F will be Zp where p

146 Chapter 4. An Introduction to Error-Correcting Codes

is a prime number, so this is the example you should keep in mind when
we are discussing fields. We define an addition and scalar multiplication
on An = Fn component-wise. In other words,

(a1, a2, . . . , an) + (b1, b2, . . . , bn) = (a1 + b1, a2 + b2, . . . an + bn) and
If α ∈ F, then α(a1, a2, . . . , an) = (αa1, αa2, . . . , αan)

where all the addition and multiplication is done in the field F . Note
that An = Fn is a vector space with the set of scalars being F . For ex-
ample, if F = Z7 and n = 4, then (3, 5, 4, 1) + (6, 4, 1, 0) = (2, 2, 5, 1) and
4(4, 5, 2, 0) = (2, 6, 1, 0).

We now define a set of “good” codes.

Definition. Let A = F where F is any finite field. Let C ⊆ An be a code.
We say that C is a linear code if

(i) C is not empty,
(ii) For every �x, �y ∈ C we have that �x + �y ∈ C, and

(iii) For every α ∈ F and every �x ∈ C, we have that α �x ∈ C.

In other words, a code C is linear if it is nonempty and closed under
addition and scalar multiplication. Saying that a code is linear is the same
thing as saying that C is a subspace of the vector space An = Fn.

The binary repetition code, the binary parity check code, and the bi-
nary [7,4] Hamming code are all linear codes where F = Z2. You can
verify on your own that they are closed under addition and scalar multi-
plication. The ternary code that we defined in Section 4.2 is linear with
F = Z3.

Let A = Z2, n = 4, and C = {(1100), (1110)}. Then C is not linear be-
cause it is not closed under addition. In particular, (1100) + (1110) =
(0010) �∈ C.

Note that if C is a linear code, then the word consisting of all zeros
must be in C. To see this, first let �0 denote the word with zeros in every
position. Then, note that 0 ∈ F . Since C is linear, it is not empty, so there
is an �x ∈ C. We also know that C is closed under scalar multiplication.
So 0�x ∈ C. But 0�x = �0 and it follows that the word consisting of all zeros
must be in C.

We will spend the rest of this chapter studying linear codes. It turns
out that in many ways linear codes are easier to describe and analyze than

4.4. Linear Codes 147

codes that are not linear. Remember that to find the minimum distance of
a code, we have to check the Hamming distance of all pairs of codewords.
For linear codes, it is much easier to determine the minimum distance.
Our goal in this section is to prove this. We begin with a definition.

Definition. Let �x ∈ An. We define the Hamming weight, or simply the
weight, of �x to be the number of nonzero entries in �x. We will denote the
Hamming weight of �x by w(�x).

For example, if �x = (1001110) ∈ Z
7
2, then w(�x) = 4. If �x = (41060) ∈ Z

5
7,

then w(�x) = 3. Note that for any �x ∈ An, we have w(�x) = dH(�x, �0).

Definition. Let C ⊆ An be a code. We define the minimum weight of C,
denoted wmin(C), as

wmin(C) = min
�x∈C,�x �=�0

{w(�x)}.

So to find the minimum weight of a code C, just compute the weights of
all the nonzero codewords of C. The smallest value we get is the minimum
weight of C. For example, the minimum weight of the binary repetition
code of length n is n, the minimum weight of the binary check code of
length n is 2, and the minimum weight of the binary [7,4] Hamming code
is 3. The minimum weight of the ternary code we defined in Section 4.2
is 1. Looking at these four examples as evidence, we might guess that the
minimum weight of a code is equal to the minimum distance of the code.
It turns out that this guess is correct for linear codes.

Theorem 4.4.1. Let C ⊆ Fn be a linear code. Then, wmin(C) = dmin(C).

Proof. Let �x �= �y be two elements of C satisfying dH(�x, �y) = dmin(C). We
know that two such vectors exist by the definition of minimum distance.
Now, let −�x denote the word that satisfies �x + −�x = �0. Note that −�x ∈ C.
The proof of this will be left as an exercise at the end of the section. So
we have

dmin(C) = dH(�x, �y) = dH(�x + −�x, �y + −�x)
= dH(�0, �y + −�x) = w(�y + −�x).

148 Chapter 4. An Introduction to Error-Correcting Codes

Now, since �y ∈ C and −�x ∈ C, and C is linear, we know that �y + −�x ∈ C.
Note also that �y + −�x �= �0. It follows that dmin(C) ≥ wmin(C). Suppose
dmin(C) > wmin(C). Then, there is a nonzero codeword �f ∈ C such that
w(�f) < dmin(C). But then

dH(�f , �0) = w(�f) < dmin(C),

contradicting the definition of minimum distance. It follows that
dmin(C) = wmin(C) as desired. ❑

Notice that computing the minimum weight for a code is easier than
computing the minimum distance for the code. So this theorem has made
finding the minimum distance for linear codes easier. This is useful since
by knowing the minimum distance of a code, we can determine how many
errors it will detect and how many it will correct.

EXERCISES

Problem 1. Let C be a linear code. If �x ∈ Fn, we let −�x denote the word
in Fn satisfying �x + −�x = �0. Show that if �x ∈ C, then −�x ∈ C.

Problem 2. Let F = Z3, n = 3, and

C = {(000), (110), (111), (221), (001), (002)}.
Determine whether or not C is linear. Explain.

Problem 3. Give an example of a binary code C where dmin(C) �=
wmin(C).

Problem 4. Let F = Z2 and C ⊆ F4 = Z
4
2 be a linear code. Show that the

number of elements in C must be 1, 2, 4, 8, or 16.

Problem 5. Let F be a field containing r elements. Let C ⊆ Fn be a linear
code. What can you say about the number of elements in C?

4.5 Generator Matrices

Recall from the last section that an advantage of a linear code is that we
can compute the minimum distance by computing the minimum weight.

4.5. Generator Matrices 149

It turns out that another advantage of using a linear code is that there is a
neat, concise way to represent it using a matrix called a generator matrix.
Before we define generator matrices, we need some terminology.

Definition. Let G be a k× n matrix with entries from a field F . Let �xi be
the ith row of G. We define the rowspace of G, denoted RS(G), to be

RS(G) = {α1 �x1 + α2 �x2 + · · · + αk�xk|αi ∈ F} ⊆ Fn.

So RS(G) is simply the span of the rows of G.

Examples:
1. If F = Z2 and G =

(
1 0 0 1
0 1 0 1
0 0 1 1

)
, then

RS(G) = {(0000), (1001), (0101), (0011), (1100), (1010),
(0110), (1111)}.

Note that this is the binary parity check code of length 4.
2. If F = Z2 and G = (1 1 1 1 1), then

RS(G) = {(00000), (11111)}.

This is the binary repetition code of length 5.
3. If F = Z3 and G = (1 1 0

0 0 1

)
then

RS(G) = {(000), (110), (001), (111), (220), (002), (222), (221), (112)}.

This is the ternary code we described in Section 4.2.

We now recall the definition of linearly independent elements in Fn.

Definition. Let �x1, �x2, . . . , �xk ∈ Fn where F is a field. Suppose that the
only αi ∈ F that satisfy the equation

α1 �x1 + α2 �x2 + · · · + αk�xk = �0

are αi = 0 for i = 1, 2, . . . , k. Then we say that �x1, �x2, . . . , �xk are lin-
early independent. If �x1, �x2, . . . , �xk are not linearly independent, we say
�x1, �x2, . . . , �xk are linearly dependent.

150 Chapter 4. An Introduction to Error-Correcting Codes

Note that if �x1, �x2, . . . , �xk ∈ Fn then α1 = 0, α2 = 0, . . . , αk = 0 will al-
ways satisfy the equation α1 �x1 + α2 �x2 + · · · + αk�xk = �0 no matter whether
�x1, �x2, . . . , �xk are linearly independent or not. For �x1, �x2, . . . , �xk to be lin-
early independent, then, means that α1 = 0, α2 = 0, . . . , αk = 0 is the only
way to choose the αi ’s so that the equation α1 �x1 + α2 �x2 + · · · + αk�xk = �0
is satisfied.

Examples:
1. Let F = Z2. Are (0101), (1110), (0001) linearly independent? To find

out, we must find all the solutions in Z2 to the equation

α1(0101) + α2(1110) + α3(0001) = (0000).

For this equation to hold, we must have

α2 = 0 from the first component
α1 + α2 = 0 from the second component
α2 = 0 from the third component, and
α1 + α3 = 0 from the fourth component.

The only solution to these equations is when α1 = α2 = α3 = 0. So
(0101), (1110), (0001) are linearly independent.

2. Let F = Z2. (1101), (0011), (1110) are linearly dependent since
(1101) + (0011) + (1110) = (0000).

3. Let F = Z5. Then (241) and (032) are linearly independent since for
the equation

α1(241) + α2(032) = (000)

to hold, we must have 2α1 = 0 from the first component. But the only
α1 in Z5 that satisfies this equation is α1 = 0. So our equation becomes

α2(032) = (000).

From the third component, we get that 2α2 = 0 and soα2 = 0. It follows
that (241) and (032) are linearly independent.

4. Let F = Z3. Then (011), (211), and (200) are linearly dependent since
2(011) + (211) = (200).

4.5. Generator Matrices 151

If C ⊆ Fn is a linear code containing more than one element, then there
exists a k× n matrix G with entries in F such that the rows of G are
linearly independent and such that C = RS(G). To find such a G, just find
a basis for C and use the basis elements as the rows of the matrix G.

Definition. Let C ⊆ Fn be a linear code. Let G be a k× n matrix with
entries in F such that the rows of G are linearly independent and such that
C = RS(G). Then, G is called a generator matrix for C and C is called an
[n, k] linear code. The number k is called the dimension of C. If C = {�0}
then we say that C is a linear code with dimension 0.

Note that if we know a generator matrix for a linear code C, then we can
find all elements of C by computing the row space of the matrix. In other
words, the generator matrix provides a concise way of describing a linear
code.

Example:
Let C be the binary [7,4] Hamming code that we defined in Section 4.2.
You can show that it contains all elements (x1, x2, x3, x4, x5, x6, x7) where
x1, x2, x3, x4 can be any elements of Z2 and x5 = x1 + x2 + x3(mod 2), x6 =
x1 + x2 + x4(mod 2), and x7 = x2 + x3 + x4(mod 2). So we can describe C
as any element of Z

7
2 that can be written as

(x1, x2, x3, x4, x1 + x2 + x3, x1 + x2 + x4, x2 + x3 + x4)

where the arithmetic is done modulo 2. Now, we claim that

G =




1 0 0 0 1 1 0
0 1 0 0 1 1 1
0 0 1 0 1 0 1
0 0 0 1 0 1 1




is a generator matrix for C. To see this, you can verify that the rows of G
are linearly independent. We will show here that C = RS(G). Now,

RS(G)
= {α1(1000110) + α2(0100111) + α3(0010101) + α4(0001011)|αi ∈ Z2}.

152 Chapter 4. An Introduction to Error-Correcting Codes

Multiplying this out and adding, we get

RS(G)
= {(α1, α2, α3, α4, α1 + α2 + α3, α1 + α2 + α4, α2 + α3 + α4)|αi ∈ Z2}.

But this is exactly the way we described C above (with the xi ’s replaced
with αi ’s). So RS(G) = C.

Generator matrices for linear codes are not unique! There are many
generator matrices for each linear code. For example, if we take any gener-
ator matrix and exchange two rows then the result will still be a generator
matrix for the code. Recall from linear algebra that most vector spaces
have many different bases. Since we use the elements of a basis as the
rows of G, it follows that there are many different possible generator
matrices for a given linear code. The generator matrix we found above
for the binary [7,4] Hamming code, however, has an especially nice prop-
erty. Remember, we can pick our first four digits to be anything. Once we
pick those, though, the last three are determined. So sometimes we think
of the first four digits as the “information” digits and the last three as
“check” digits. Let us see what happens if we take the 1 × 4 matrix with
the information digits as its entries and multiply that by the generator
matrix:

(x1, x2, x3, x4)




1 0 0 0 1 1 0
0 1 0 0 1 1 1
0 0 1 0 1 0 1
0 0 0 1 0 1 1




= (x1, x2, x3, x4, x1 + x2 + x3, x1 + x2 + x4, x2 + x3 + x4).

The result is the codeword that Alice sends! Now, why did this happen?
Notice that the G we found has the identity matrix on the left-hand side.
Think of the first k digits of the word as the “information.” You can
verify for yourself that when you multiply the “information” vector times
a generator matrix that has the k× k identity matrix on the left, you
will get an element of C that has the “information” vector as its left-
most entries. So generator matrices for linear codes that have the identity
matrix on the left are desirable. However, not all linear codes have such
generator matrices. Finding an example of a linear code that does not
have a generator matrix with the identity matrix on the left will be left as

4.5. Generator Matrices 153

an exercise. What is true, though, is that for any linear code we can find a
generator matrix that has all k columns of the k× k identity matrix. But
these columns do not necessarily occur at the left. We make these ideas
more precise using the following definitions.

Definition. Let C ⊆ Fn be an [n, k] linear code. A generator matrix for C
that contains all kcolumns of the k× k identity matrix is called systematic.

All linear codes of positive dimension have systematic generator matrices.
To convince yourself this is true, first show that performing elementary
row operations on a generator matrix yields another generator matrix.
Then perform elementary row operations on any generator matrix until
it is in reduced row echelon form. Because the rows of the matrix are
linearly independent, we know all k columns of the k× k identity matrix
will appear in this new generator matrix.

Definition. Let C ⊆ Fn be an [n, k] linear code. A generator matrix for
C where the k× k identity matrix appears at the left is called a standard
generator matrix.

As noted above, not all linear codes have standard generator matrices.

Definition. Let C1 and C2 be codes. If by permuting the coordinates of
C1, we get C2, then C1 and C2 are said to be equivalent.

Example:
Let F = Z2,

C1 = {(0000), (1100), (0011), (1111)}
and

C2 = {(0000), (0110), (1001), (1111)}.
Then, C1 is equivalent to C2 because by switching the first and third co-
ordinates of the elements of C1, we get the elements of C2.

It is not hard to show that every linear code of positive dimension
is equivalent to a linear code that has a standard generator matrix. The
proof of this fact will be left as an exercise.

154 Chapter 4. An Introduction to Error-Correcting Codes

EXERCISES

Problem 1. Find a linear code C of positive dimension such that C does
not have a standard generator matrix.

Problem 2. Prove that every linear code of positive dimension is equiv-
alent to a linear code that has a standard generator matrix.

Problem 3. Are the following linearly independent? Explain.

(a) (101111), (000001), (110111) ∈ Z
6
2.

(b) (000), (101) ∈ Z
3
2.

(c) (10000), (01001), (00111) ∈ Z
5
2.

(d) (0212), (0010), (2212) ∈ Z
4
3.

(e) (32410), (01215), (60051) ∈ Z
5
7.

Problem 4. Let

C = {(000000), (101110), (001010), (110111),

(100100), (011001), (111101), (010011)} ⊆ Z
6
2

Note that C is linear.

(a) What is the minimum distance of C?
(b) How many errors will C detect?
(c) How many errors will C correct?
(d) Find a generator matrix for C.
(e) What is the dimension of C?

Problem 5. Let F = Z5 and C be the code with generator matrix

G =
(

1 2 4
0 1 1

)
.

(a) List the elements of C.
(b) What is the minimum distance of C?
(c) How many errors will C detect?
(d) How many errors will C correct?
(e) Find a generator matrix for C that is in reduced row echelon form.

Problem 6. Let F be a field with r < ∞ elements in it. Let C be an [n, k]
linear code over F . How many elements does C contain? Prove your
answer.

4.6. Dual Codes 155

Problem 7. Prove that if C is a binary [n, k] linear code then the sum of
the weights of all the elements in C is less than or equal to n2k−1.

Problem 8. Find the smallest n such that there exists a binary [n, 3] linear
code that corrects two errors.

4.6 Dual Codes

Recall Bob’s method for correcting errors. He receives a word from Alice
and then computes the Hamming distance of that word with every code-
word, a possibly time-consuming task. It turns out that there are more
efficient ways for Bob to correct errors. We describe one of these ways in
the next two sections. To get started, we define the dual code.

Definition. Let C ⊆ Fn be a code. The dual code of C, denoted C⊥ is the
code

C⊥ = {�x ∈ Fn|�x · �c = 0 for every �c ∈ C} ⊆ Fn

where �x · �c is the dot product computed in the field F .

Examples:
1. Let C be the binary parity check code of length 4. So,

C = {(0000), (0011), (0101), (1001), (0110), (1010), (1100), (1111)}.
To find the elements of C⊥, we test all elements of Z

4
2 to see which ones

have a dot product of zero with all the elements of C. Remember, all
arithmetic is done in Z2. So, for example, when we test whether or not
(0111) is in C⊥ we notice that (0111) · (1111) = 0 + 1 + 1 + 1 = 1 in
Z2. Since there is a codeword (1111) whose dot product with (0111) is
not zero, (0111) is not in C⊥. Going through all 16 elements of Z

4
2 in

this way, you can verify that

C⊥ = {(0000), (1111)}.
This is the binary repetition code of length 4. Of course, we could
compute the dual code of the binary repetition code of length 4. When
we do, we get the binary parity check code of length 4. In other words
in this case, (C⊥)⊥ = C.

156 Chapter 4. An Introduction to Error-Correcting Codes

2. Let C be the ternary code we defined in Section 4.2. You can verify
that C⊥ = {(000), (120), (210)} and that (C⊥)⊥ = C.

In light of the above examples, you may conjecture that (C⊥)⊥ = C
for all codes. This, however, is not the case. Let F = Z2 and C = {(001),
(010), (110)}. Then, C⊥ = {(000)} and

(C⊥)⊥ = {(000), (001), (010), (011), (100), (101), (110), (111)} �= C.

But not all is lost. If C is linear, then in fact we do have (C⊥)⊥ = C. We
will prove this soon.

On another note, you may have noticed that for some examples, al-
though C may not be linear, C⊥ is linear. In fact, for all C, linear or not,
it can be shown that C⊥ is linear. The proof of this will be left as an
exercise.

Note that determining whether or not an element of Fn is in the dual
of a code using the definition of the dual code requires us to compute the
dot product of that element and all elements of the code. We now prove
a theorem that shows us an easier method for linear codes. In fact, we
use a generator matrix to test whether or not an element is in the dual
of the code. We note here that if �x ∈ Fn, then we use �xT to denote the
transpose of �x.

Theorem 4.6.1. Let C ⊆ Fn be a linear code and G a generator matrix
for C. An element �x ∈ Fn is in C⊥ if and only if G�xT = �0.

Proof. Let �c1, �c2, . . . , �ck ∈ Fn be the rows of G. Now, suppose �x ∈ C⊥.
Then, �x · �c = 0 for all �c ∈ C. In particular, �x · �ci = 0 for all i = 1, 2, . . . , k.
It follows that G�xT = �0.

On the other hand, suppose G�xT = �0 for some �x ∈ Fn. Then, �x · �ci = 0
for all i = 1, 2, . . . , k. Let �c ∈ C. So,

�c = α1 �c1 + α2 �c2 + · · · + αk �ck

for some αi ∈ F . It follows that

�c · �x = α1(�c1 · �x) + α2(�c2 · �x) + · · · + αk(�ck · �x) = 0.

Hence we have that �x ∈ C⊥ as desired. ❑

4.6. Dual Codes 157

Example:
Recall that G = (1 1 0

0 0 1

)
is a generator matrix for the ternary code we

defined in Section 4.2. If we want to find out whether or not (120) is in

C⊥, we simply compute G(120)T = (1 1 0
0 0 1

)(1
2
0

)
=
(0

0
0

)
. By the theorem

above, we know that (120) ∈ C⊥.

Theorem 4.6.2. If C ⊆ Fn is an [n, k] linear code, then C⊥ is an [n, n − k]
linear code. Moreover, we have (C⊥)⊥ = C.

Proof. The fact that C⊥ is linear will be an exercise. Let G be a generator
matrix for C. Then, G is a k× n matrix of rank k. By Theorem 4.6.1, we
know that the dimension of the dual of C is equal to the dimension of the
nullspace of G. But Theorem A.2.6 tells us that the rank of a matrix plus
the dimension of the nullspace is n. So the dimension of the nullspace
of G is n − k. It follows that C⊥ is an [n, n − k] linear code. Using the
same argument, we can show that the dimension of (C⊥)⊥ is k. Now, it
is easy to show that for any code C, we have C ⊆ (C⊥)⊥. This will be an
exercise at the end of this section. So in our case, we have a subspace of
dimension k contained in another subspace of dimension k. It follows by
Theorem A.2.3 that the two subspaces are equal. In other words, we have
(C⊥)⊥ = C. ❑

The above theorem turns out to be rather useful. Consider a linear code
C. Since we know that C⊥ is a linear code, it must have a generator matrix.
Call this matrix H. By Theorem 4.6.1, then, we know that �x ∈ (C⊥)⊥ if and
only if H�xT = �0. But since we know (C⊥)⊥ = C, this is the same as saying
�x ∈ C if and only if H�xT = �0. In other words, the matrix H allows us to
check whether or not elements of Fn are in our code. In mathematical
language, we have

C = {�x ∈ Fn|H�xT = �0}.

In view of this discussion, we have the following definition.

Definition. Let C ⊆ Fn be a linear code. A generator matrix H for C⊥ is
called a check matrix for C.

158 Chapter 4. An Introduction to Error-Correcting Codes

Example:
We will find a check matrix for the binary [7,4] Hamming code. Recall
that a generator matrix for this code is

G =




1 0 0 0 1 1 0
0 1 0 0 1 1 1
0 0 1 0 1 0 1
0 0 0 1 0 1 1


 .

Now, let �x = (x1, x2, x3, x4, x5, x6, x7) be an element of Z
7
2. Then, by The-

orem 4.6.1, we know �x is in the dual of C if and only if its dot product with
every row of G is zero. In other words, �x ∈ C⊥ if and only if

(1000110) · (x1, x2, x3, x4, x5, x6, x7) = 0,
(0100111) · (x1, x2, x3, x4, x5, x6, x7) = 0,
(0010101) · (x1, x2, x3, x4, x5, x6, x7) = 0, and
(0001011) · (x1, x2, x3, x4, x5, x6, x7) = 0,

where remember that all arithmetic is done modulo 2. But the above
equations hold if and only if

x1 = x5 + x6 and
x2 = x5 + x6 + x7 and
x3 = x5 + x7 and
x4 = x6 + x7.

So �x ∈ C⊥ if and only if it is of the form

(x5 + x6, x5 + x6 + x7, x5 + x7, x6 + x7, x5, x6, x7).

But we can write this as

x5(1110100) + x6(1101010) + x7(0111001).

So if we let

H =


1 1 1 0 1 0 0

1 1 0 1 0 1 0
0 1 1 1 0 0 1




then we know that C⊥ = RS(H). It is easy to verify that the rows of H
are linearly independent. So H is a generator matrix for C⊥ and hence
by definition a check matrix for C. We can use this check matrix to tell
whether a word is an element of C or not. Given a word �x, we simply

4.6. Dual Codes 159

compute H�xT . If we get �0, then �x ∈ C. If we do not get �0, then �x �∈ C. For
example, let �x = (0101110). Now,

H�xT =


1 1 1 0 1 0 0

1 1 0 1 0 1 0
0 1 1 1 0 0 1







0
1
0
1
1
1
0




=


0

1
0




and since
(0

1
0

)
�=
(0

0
0

)
, we know (0101110) �∈ C.

EXERCISES

Problem 1. Let C ⊆ Fn be a code.
(a) Show that C⊥ is a linear code.
(b) Show that C ⊆ (C⊥)⊥.

Problem 2. Let C ⊆ Z
4
2 be defined as

C = {(0000), (1110), (0001)}
(a) Find C⊥.
(b) Find a generator matrix for C⊥.
(c) Find (C⊥)⊥.
(d) Find a generator matrix for (C⊥)⊥.

Problem 3. Let C ⊆ Z
5
2 be defined as

C = {(11010), (01101), (11000)}
(a) Find C⊥.
(b) Find a generator matrix for C⊥.
(c) Find (C⊥)⊥.
(d) Find a generator matrix for (C⊥)⊥.

Problem 4. Let C ⊆ Z
6
2 be the linear code with generator matrix

G =


1 0 1 0 1 1

1 1 0 1 0 0
0 0 0 0 1 1


 .

160 Chapter 4. An Introduction to Error-Correcting Codes

Note that the rows of G are linearly independent.
(a) Find a check matrix H for C.
(b) Use H to determine which of the following are in C.

(i) (011111)
(ii) (110110)

(iii) (011100)

Problem 5. Let C ⊆ Z
4
3 be the linear code with generator matrix

G =
(

1 2 1 0
0 0 2 1

)
.

Note that the rows of G are linearly independent.
(a) Find a check matrix H for C.
(b) Use H to determine which of the following are in C.

(i) (2110)
(ii) (1201)

(iii) (0220)

Problem 6. Let C be a linear code with check matrix H. Prove that if one
column of H is a multiple of another column of H then C will not correct
any errors.

Problem 7. Let C be a linear code with check matrix H. Prove that if no
column of H is a multiple of another column then C will correct at least
one error.

4.7 Syndrome Decoding

In this section, we will discuss a way for Bob to correct errors that does not
require him to compute the Hamming distance from the received word to
all of the codewords. Suppose Alice sends the codeword �c to Bob and let �r
be the word that Bob receives. Then, we can write �r = �c + �e where �e ∈ Fn.
Notice that �e tells us what kind of errors occurred in transmission. For
that reason, we call �e the error vector. Bob knows �r and he wants to find �c.
But since �c = �r − �e, if he can find �e, then he will be able to compute �c. So
our goal for this section will be to find �e. We will assume that messages are
transmitted over some reasonable channel where not very many errors

4.7. Syndrome Decoding 161

occur, and hence w(�e) is small. So Bob can use the following strategy.
He knows that �e = �r − �c. He computes �r − �c for all codewords �c and the
answer he gets that has the smallest weight he assumes is �e. Note that this
is a perfectly good strategy, but it does not seem to save Bob much time.
In fact, we have really just restated our old way of correcting errors. But
thinking about correcting errors in this way will soon prove useful. We
start by defining mathematically the set of words �r − �c for all codewords
�c. The concept of coset we introduce in the definition below is the same
as the cosets seen in Abstract Algebra books.

Definition. Let C ⊆ Fn be a linear code and �x ∈ Fn. We define the coset
�x + C to be

�x + C = {�x + �c | �c ∈ C}.

It will be left as an exercise that in the above definition, replacing the “+”
sign with a “−” sign will result in the same set. So in terms of our new
definition, Bob computes the weight of all elements of the set �r + C, and
the element with the smallest weight, if a unique one exists, will be �e.

Example:
Let C ⊆ Z

4
2 be defined as

C = {(0000), (1100), (0011), (1111)}.

Then, if �x = (1010), we have

�x + C = {(1010), (0110), (1001), (0101)}.

We now define the syndrome of a word. Syndromes will help us char-
acterize cosets for linear codes.

Definition. Let C ⊆ Fn be an [n, k] linear code and H a check matrix for
C. Let �r ∈ Fn. Then �s = H�r T ∈ Fn−k is called the syndrome of �r .

Example:
Recall that H =

(1 1 1 0 1 0 0
1 1 0 1 0 1 0
0 1 1 1 0 0 1

)
is a check matrix for the binary [7,4]

Hamming code. So if we want to compute the syndrome of (1110000), we

162 Chapter 4. An Introduction to Error-Correcting Codes

get


1 1 1 0 1 0 0

1 1 0 1 0 1 0
0 1 1 1 0 0 1







1
1
1
0
0
0
0




=


 1

0
0


 .

So the syndrome of (1110000) is
(1

0
0

)
.

Now, this should look familar. By our arguments in the last section,
we know that �r ∈ C if and only if H�r T = �0. Using our new terminology,
we can restate that �r ∈ C if and only if its syndrome is �0. So Bob now has a
better way to detect errors. Instead of comparing the received word �r with
all the codewords, he can simply compute its syndrome. The syndrome is
�0 if and only if no errors have occurred. Next we will use the concept of
syndrome to correct errors.

Recall that we can write the word Bob receives as �r = �c + �e where �c
is the word that Alice sent. Now, �r and �e have the same syndrome if and
only if H�r T = H�eT , which is true if and only if H(�r − �e)T = �0, which is
true if and only if �r − �e ∈ C. But Bob knows �r − �e = �c ∈ C. It follows that
�r and �e must have the same syndrome. So Bob wants to find a word �e
with small weight such that �e has the same syndrome as �r . We now state a
theorem that tells us that two words have the same syndrome if and only
if they are in the same coset.

Theorem 4.7.1. Let C ⊆ Fn be a linear code. Then �x, �y ∈ Fn have the
same syndrome if and only if �x ∈ �y + C.

The proof will be left as an exercise.

Theorem 4.7.2. Let C ⊆ Fn be a linear code.

(i) If �x ∈ �y + C, then �x + C = �y + C.
(ii) For every �x, �y ∈ Fn, either �x + C = �y + C or �x + C ∩ �y + C = ∅.

4.7. Syndrome Decoding 163

The proof will be left as an exercise.
So the cosets break up Fn into disjoint subsets on the basis of their syn-
dromes.

Now, we can restate Bob’s goal. He knows that the word �r he receives
and the error word �e have the same syndrome. He also knows that all
words with the same syndrome as �r are in the coset �r + C. So he looks
at the elements of �r + C and chooses �e to be the one whose weight is
smallest.

Definition. A word of minimal weight in a coset is called a coset leader.
(Note that there could be more than one coset leader for a given
coset.)

We can summarize Bob’s algorithm as follows:

1. Bob receives a word �r .
2. He calculates the syndrome �s = H�r T of �r .
3. If �s = �0 then no errors have occurred.
4. If �s �= �0, Bob looks at the coset whose elements all have syndromes

equal to �s. He finds the coset leader and assumes it is �e. Now, �r = �c + �e,
so he computes �c = �r − �e to correct errors.

One advantage to this method is that Bob’s computer can compute and
store a chart of syndromes and coset leaders before Alice starts sending
messages to him. Then, when he receives messages, correcting errors is
very fast.

Example:
Recall that

H =


 1 1 1 0 1 0 0

1 1 0 1 0 1 0
0 1 1 1 0 0 1




is a check matrix for the binary [7,4] Hamming code. If Bob and Alice
agree to use this code, then Bob computes the following chart before
Alice starts sending messages.

164 Chapter 4. An Introduction to Error-Correcting Codes

Syndrome Coset leader
0

0
0


 (0 0 0 0 0 0 0)


0

0
1


 (0 0 0 0 0 0 1)


0

1
0


 (0 0 0 0 0 1 0)


1

0
0


 (0 0 0 0 1 0 0)

Syndrome Coset leader
 0

1
1


 (0 0 0 1 0 0 0)


 1

0
1


 (0 0 1 0 0 0 0)


 1

1
0


 (1 0 0 0 0 0 0)


 1

1
1


 (0 1 0 0 0 0 0)

Suppose Bob receives �r = (1011100). Then, computing the syndrome of
�r , he gets �s = H�r T =

(1
0
0

)
.

He then refers to the chart to find the coset leader/error vector

for
(1

0
0

)
. Since he gets the word (0000100) he knows that (1011100) −

(0000100) = (1011000) is a valid codeword. So Bob corrects (1011100) as
(1011000).

In the above example, every coset has a unique coset leader. This is
not always the case. Suppose Alice and Bob are using a linear code that
corrects e errors. If Bob receives a word, computes the syndrome, and
the corresponding coset has more than one coset leader then he knows
that more than e errors have occurred. In this case, of course, it cannot be
guaranteed that Bob can accurately correct the errors.

EXERCISES

Problem 1. Let C ⊆ Fn be a linear code and �x ∈ Fn. Define

�x − C = {�x − �c|�c ∈ C}.

Prove that �x + C = �x − C.

Problem 2. Let C ⊆ Fn be a linear code. Prove that �x, �y ∈ Fn have the
same syndrome if and only if �x ∈ �y + C.

4.7. Syndrome Decoding 165

Problem 3. Let C ⊆ Fn be a linear code.
(a) Prove that if �x ∈ �y + C, then �x + C = �y + C.

(b) Prove that for every �x, �y ∈ Fn, either �x + C = �y + C or �x + C ∩
�y + C = ∅.

Problem 4. Let C ⊆ Z
4
2 be the linear code with generator matrix

G =
(

1 1 0 0
0 1 1 1

)
.

List all the cosets of C.

Problem 5. Let C ⊆ Z
6
2 be the [6, 3] linear code with generator matrix

G =


1 0 0 1 1 0

0 1 0 0 1 1
0 0 1 1 1 1


 .

(a) List the elements of C.
(b) Find the minimum distance of C.
(c) How many errors will C correct?
(d) Find a check matrix for C.
(e) Make a syndrome chart for C.
(f) Use the syndrome chart to correct the errors in the following:

(i) (110101)
(ii) (010111)

(iii) (110111)

Problem 6. Let C ⊆ Z
4
3 be the [4, 2] linear code with generator matrix

G = (1 2 1 0
0 1 1 2

)
.

(a) List the elements of C.
(b) Find the minimum distance of C.
(c) How many errors will C correct?
(d) Find a check matrix for C.
(e) Make a syndrome chart for C.
(f) Use the syndrome chart to decode the following:

(i) (2222)
(ii) (0121)

(iii) (1022)

166 Chapter 4. An Introduction to Error-Correcting Codes

4.8 The Hat Problem

The uses of linear codes are surprisingly diverse. As an example, we now
show how the theory of linear codes can be used to come up with a
good strategy for a game called The Hat Problem, a problem that does
not at first look like it has anything to do with coding. Suppose there
are three people, call them Alice, Bob, and Carol, who will be the team
playing the game. They are allowed to have an initial strategy meeting
but after the game starts, they are not allowed to communicate in any
way. The game starts as they all walk into a room. As the players enter,
a hat is placed on each of their heads. All hats are either blue or red,
where the probability of each color is 0.5. When they are in the room,
each player can see the other players’ hats, but not her own. Each player
is then asked to guess the color of the hat on his own head by writing
down “red,” “blue,” or “pass” on a piece of paper. The players may not
communicate with each other in any way; they cannot even reveal to
each other what they have written down. The team wins if at least one
player has correctly guessed the color of the hat on his head and no player
has guessed incorrectly. For example, suppose Bob guesses correctly and
Alice and Carol pass. Then the team wins. If all three players pass or if
one or more of them guesses wrong, they lose. The question is, then, what
strategy should Alice, Bob, and Carol use? Certainly it is not hard to devise
a strategy in which the probability of the team winning is 0.5. They could,
for example, have Alice and Bob always pass and Carol randomly choose
red or blue. But surprisingly there is a better way. In fact, in this chapter
we prove (see Theorem 4.8.4) an amazing theorem which we now state
as a claim.

Claim. Suppose n people are on a team playing The Hat Game where
n = 2r − 1 for some positive integer r . Then there exists a strategy such
that the probability of the team winning is 1 − 1

2r .

In our above example n = 22 − 1, so according to our claim, there is
a strategy that Alice, Bob, and Carol can use where they will win with
probability 1 − 1

22 = 3
4 . Indeed, suppose that they use the following strat-

egy. Each player looks at the other two players’ hats. If the colors of the
hats they see are the same, they guess the opposite color. If the colors are
different, they pass. For example, suppose that we know Alice has on a

4.8. The Hat Problem 167

red hat and Bob and Carol both blue. Alice sees two red hats and so she
guesses blue. Bob sees a red hat and a blue hat so passes. Carol does the
same and they win the game. Using this strategy the team will win with
probability .75. To see this, we first write down the possibilities of the hat
arrangements on the players in the following table.

Alice Bob Carol

Red Red Red
Red Red Blue
Red Blue Red
Red Blue Blue
Blue Red Red
Blue Red Blue
Blue Blue Red
Blue Blue Blue

Notice that there are a total of eight possibilities, each one occurring with
probability 1

8 . With the strategy described above, the team will lose when
all players have red hats and when all players have blue hats. Otherwise,
the team wins. In other words, the team wins six out of the eight times
and so they win with probability 6

8 = .75 as we claimed above.
So we have a good strategy to use when there are three players. What

happens if there are more? In this section we assume that there are n play-
ers where n = 2r − 1 for some positive integer r . There are, of course, ways
to analyze the case when n is not of this form but we will not consider those
cases here. The claim stated above tells us that as the number of players
increases, the probability of winning increases – that is, if the players use
a good strategy. To illustrate, suppose that n = 7. Then r = 3 and so the
team should be able to win with probability 7

8 . If n = 63 then r = 6 and so
the players should be able to win with probability 63

64 – pretty good odds.
And we can see that the larger the n is, the better the odds that the team
wins. But what is this “good” strategy? We have successfully described
one for the case n = 3, but things get more complicated as n increases. We
now work to describe a strategy that will yield the probability of winning
that the above claim promises. Surprisingly, the theory of binary linear
codes will be the language we use to do so.

Suppose n = 2r − 1 for some positive integer r . We first construct an
r × n matrix H with entries in Z2 such that no column consists of all zeros

168 Chapter 4. An Introduction to Error-Correcting Codes

and such that no column is repeated. For example, if n = 7 then r = 3 and
we could choose H to be the following matrix.

H =


1 1 1 1 0 0 0

1 1 0 0 1 1 0
1 0 1 0 1 0 1


 .

Note that there are many different possibilities for the matrix H – we can
choose any of them. You should convince yourself that the number of
possible nonzero columns for an r × n matrix whose entries are elements
of Z2 is 2r − 1 = n and so all possible nonzero columns must appear in H,
as illustrated in our example.

We now let C ⊆ Z
n
2 be the code defined as follows: �x ∈ Z

n
2 is an element

of C if and only if H�xT = �0, where all arithmetic is done modulo 2. It is
not difficult to show that C is an [n, k] linear code where k = n − r and
that H is a check matrix for C (See Problem 1 at the end of this section).
This leads us to the following definition.

Definition. Let n = 2r − 1 for some positive integer r . Suppose H is an
r × n matrix with entries in Z2 such that all possible nonzero columns
occur exactly once. Let C ⊆ Z

n
2 be the code consisting of all �x ∈ Z

n
2

such that H�xT = �0. Then C is called a binary [n, n − r] Hamming code.
(Note that C is an [n, n − r] linear code and H is a check matrix
for C.)

We now describe the strategy that our team of n players will use in
order to achieve the promised probability of winning.

The Strategy
During the strategy session before the game begins, the players agree
on a binary [n, n − r] Hamming code C and a check matrix H for C. The
players also number themselves 1 through n. They agree to let the number
0 represent blue and 1 represent red. They use the convention that the
vector �v ∈ Z

n
2 will represent the correct description of the way the hats are

distributed. For example, suppose that n = 7 and the hats are as follows.

Person 1 Person 2 Person 3 Person 4 Person 5 Person 6 Person 7

Red Red Red Blue Red Blue Blue

4.8. The Hat Problem 169

Then �v = (1110100). Notice that no one on the team will know the vector
�v when they walk into the room, but nonetheless, it does exist. Now, after
the game begins, the ith person will know all the entries of �v except for
the ith entry. Person i then forms the two possible vectors for �v. Let �v0

denote the description of the way the hats are distributed if Person i has
on a blue hat and �v1 denote the description if Person i has on a Red hat.
Notice that it must be the case that either �v = �v0 or �v = �v1. Now the ith
person does the following:

If H�vT
0 �= �0 and H�vT

1 �= �0 then he passes.
If H�vT

0 = �0 and H�vT
1 �= �0 then he guesses Red.

If H�vT
0 �= �0 and H�vT

1 = �0 then he guesses Blue.

The case where H�vT
0 = �0 and H�vT

1 = �0 will never occur. (See Prob-
lem 2 at the end of this section.)

As an example, suppose n = 7, H is the matrix we decribed above, and
the correct arrangements of the hats is the arrangement described above
so that �v = (1110100). We will go through the strategy for Person 3. He
computes �v0 = (1100100) and �v1 = (1110100) Now, H�vT

0 = (010)T �= �0
and H�vT

1 = (111)T �= �0, so Person 3 passes. If we go through the actions of
all the players, we will find that all of them pass except for Person 1. Person
1 will compute �v0 = (0110100) and �v1 = (1110100) and H�vT

0 = (000)T

and H�vT
1 = (111)T �= �0. So he will guess (correctly) that his hat is red.

This completes the description of the strategy. We will now prove that
using it, our team wins with probability 1 − 1

2r . The idea of the proof
is to show that if H�vT �= �0 then our strategy guarantees we win, but if
H�vT = �0, we are guaranteed to lose. We then argue that the probability
that H�vT �= �0 is exactly 1 − 1

2r .

Lemma 4.8.1. Let n = 2r − 1 for some positive integer r and suppose C
is a binary [n, n − r] Hamming code. If �v ∈ Z

n
2 such that �v �∈ C then there

is a unique codeword �c ∈ C satisfying dH(�v, �c) = 1.

Proof. As a convention, let �ei ∈ Z
n
2 denote the vector with a 1 in the ith

position and a 0 in every other position. Let H be a check matrix for C so
that all possible nonzero columns occur in H. We first show that �c exists
and then we show it is unique.

170 Chapter 4. An Introduction to Error-Correcting Codes

Let �s be the syndrome of �v. In other words, �s = H�vT . Since �v �∈ C
we know that �s �= �0, and so �s is a column of the matrix H. Suppose it is
the ith column and note that H�eT

i = �s. Now, H(�v + �ei)T = H�vT + H�eT
i =

�s + �s = �0. So we have �v + �ei ∈ C. Now let �c = �v + �ei and note that
dH(�v, �c) = 1.

We now show the uniqueness of �c. Suppose �c1, �c2 ∈ C with dH(�v, �c1) =
1 and dH(�v, �c2) = 1. We will show �c1 = �c2. Since dH(�v, �c1) = 1 we know
that �v + �c1 = �ei for some i satisfying 1 ≤ i ≤ n. Likewise, �v + �c2 = �e j

for some j satisfying 1 ≤ j ≤ n. Note that �ei + �e j = �v + �c1 + �v + �c2 =
�c1 + �c2 ∈ C. It follows that H(�ei + �e j)T = �0 and so H�eT

i = H�eT
j . Let

H�eT
i = �si and H�eT

j = �s j and note that �si = �s j . Now, �si is the ith column
of H and �s j is the jth column of H. Since these two columns have the
same entries, it follows that i = j. This follows since the matrix H can-
not have any repeated columns. Hence we have �c1 = �v + �ei = �v + �e j = �c2

as desired. ❑

We now show that in the case H�vT �= �0 the strategy works.

Theorem 4.8.2. Let H and �v be as described in The Strategy. If H�vT �= �0,
then when a team uses The Strategy, they will win the Hat Game. On the
other hand, if H�vT = �0 then the team loses.

Proof. First assume that H�vT �= �0. We will show that using the strategy,
exactly one player will guess correctly and all others will pass. It follows
that the team wins. As in the previous proof, we define �ei ⊆ Z

n
2 to be the

vector with a 1 in the ith position and a 0 in all other positions. Note
that since H�vT �= �0 we have that �v �∈ C and so we can use Lemma 4.8.1.
Consider the set of vectors

X = {�v + �ei |1 ≤ i ≤ n}.

X is simply the set of vectors that are a distance 1 from �v. By Lemma 4.8.1
there is exactly one vector �c ∈ X such that �c ∈ C. Let �c = �v + �et be that
vector where 1 ≤ t ≤ n. So if i �= t then �v + �ei �∈ C. For the tth player in
the Hat Game, we have {�v0, �v1} = {�v, �v + �et }, so

{
H�vT

0 , H�vT
1

} = {H�vT, H(�v + �et)T} = {H�vT �= �0, �0}.

4.8. The Hat Problem 171

It follows that player t will make a guess. If H�vT
0 = �0, then �v cannot be �v0

since H�vT �= �0. So it must be that �v = �v1. According to our strategy, player
t correctly guesses the color corresponding to �v1, that is, Red. Likewise,
if H�vT

1 = �0, then �v = �v0 and player t also guesses correctly in this case.
We now show that all other players will pass. First recall from above

that if i �= t then �v + �ei �∈ C. For the ith player where i �= t , we have
{�v0, �v1} = {�v, �v + �ei }, so{

H�vT
0 , H�vT

1 } = {H�vT �= �0, H(�v + �ei)T �= �0}.
This set contains two nonzero vectors and so person i passes.

It follows that if H�vT �= �0 the team wins the Hat Game.
Now suppose H�vT = �0. Then every player will compute H�vT

0 and H�vT
1 ,

one of which will be the zero vector and the other a nonzero vector. Each
player will guess the color corresponding to the nonzero vector and thus
will guess incorrectly. ❑

So we have shown that the team wins if and only if H�vT �= �0. We now
show that H�vT �= �0 occurs the vast majority of the time.

Lemma 4.8.3. Suppose C is a binary [n, k] linear code. Then the number
of elements in C is equal to 2k.

Proof. We leave this as an exercise for the reader (see Problem 3
at the end of this section). ❑

We are now ready to prove the main result of this section.

Theorem 4.8.4. Suppose n people are on a team playing The Hat Game
where n = 2r − 1 for some positive integer r . Then there exists a strategy
such that the probability of the team winning is 1 − 1

2r = n
n+1 .

Proof. Let C, H, and �v be as described in The Strategy and recall that the
dimension of C is k = n − r . Now Z

n
2 has 2n elements in it. So by Lemma

4.8.3, we know the probability that �v ∈ C is 2k

2n = 1
2n−k = 1

2r . It follows that
the probability that H�vT = �0 is 1

2r and so the probability that H�vT �= �0
is 1 − 1

2r . By Theorem 4.8.2 the team using our strategy wins if and only

172 Chapter 4. An Introduction to Error-Correcting Codes

if H�vT �= �0. It follows that the probability of the team winning is 1 − 1
2r .

Note that 1 − 1
2r = 2r−1

2r = n
n+1 . ❑

The Hat Problem that we have discussed in this section can be gen-
eralized. For example, we could consider the case where n is not of the
form 2r − 1 or when there are more than two hat colors. These cases are
quite interesting but beyond the scope of this book. You might want to
play around with such problems on your own.

EXERCISES

Problem 1. Let n = 2r − 1 for some positive integer r and let H be an
r × n matrix with entries in Z2 such that the zero column does not appear
and such that each column is different. Let C ⊆ Z

n
2 be the code defined

by the property that if �x ∈ Z
n
2 then �x is an element of C if and only if

H�xT = �0. Show that C is an [n, k] linear code where k = n − r and H is a
check matrix for C.

Problem 2. Show that in the strategy described in this section, the case
where H�vT

0 = �0 and H�vT
1 = �0 will never occur.

Problem 3. Show that if C is a binary [n, k] linear code then C contains
2k elements.

5 Quantum Cryptography Revisited

Recall that in the Bennett–Brassard key distribution scheme, after Alice
and Bob have obtained bit strings that ideally are supposed to be identical,
they have to do some further processing to make sure they end up with
strings that really are identical. Our first goal in this chapter is to show
how they can do this.

As you might expect, we will use error-correcting codes of the sort
we have been discussing in the preceding chapter. However, the way
we use error-correcting codes in quantum key distribution is not quite
the same as in classical communication. Normally, one corrects errors
by encoding one’s message into special codewords that are sufficiently
different from each other that they will still be distinguishable after pass-
ing through a noisy channel. But in quantum key distribution the “noise”
of the channel might actually be the effect of an eavesdropper who is free
to manipulate the signals sent by Alice. Ordinary error correction is not
designed for such a setting. So instead of using codewords to encode the
original transmission, we wait until all the bits have been sent and then
use an error-correcting code after the fact.1 In this respect error correction
in quantum key distribution is similar to the use of an error-correcting
code in the “hat problem” discussed at the end of Chapter 4. There also,
the error-correcting code is applied only after all the data – in that case the
vector of hat colors – has been generated and conveyed to the participants.

The following section shows how Alice and Bob can repair discrepan-
cies between their strings. They do this by communicating with each other

1 This strategy was proposed for quantum key distribution by Bennett, Brassard, and Robert
(1988).

173

174 Chapter 5. Quantum Cryptography Revisited

publicly, thus inevitably giving the eavesdropper additional information.
So the eavesdropper has two sources of relevant information: (i) her own
surreptitious monitoring of the original quantum transmission, and (ii)
Alice’s and Bob’s public communication.

Once Alice and Bob are confident that they have corrected all the er-
rors and therefore share identical strings, they need to estimate how much
information Eve has gained from all sources and modify their strings so as
to render useless whatever information Eve may have acquired. From the
observed frequency of errors, they can estimate how much relevant infor-
mation an eavesdropper might have obtained through her measurements
of photons. They are also aware of the information they have given to
Eve during the process of correcting errors. They now use further public
communication to produce, from their shared string, a shorter string that
is almost certainly private. This process, called privacy amplification, is
outlined in Section 6.2. The subject of privacy amplification can be quite
technical and in this book we only scratch the surface. We will consider
first a limited kind of privacy amplification, in which Eve is assumed sim-
ply to know the values of a certain number of the elements of the shared
bit string. We then consider more general kinds of knowledge that Eve
might have, and we end the chapter by quoting an important theorem
that applies to all such cases.

We note that in real life there will always be errors, even if there is
no eavesdropping, because, for example, optical fibers are not perfect.
Thus error correction is an indispensable part of the Bennett–Brassard
protocol. Moreover, even though many of the errors are likely to have
perfectly innocent explanations, Alice and Bob must assume that all the
errors have been caused by eavesdropping. For all they know, Eve has
replaced their imperfect optical fiber with a perfect one, and has allowed
herself to do as much eavesdropping as she can without causing more
errors than an ordinary fiber would cause. Thus privacy amplification is
also an indispensable part of the protocol.

5.1 Error Correction for Quantum Key Distribution

We join Alice and Bob at the point in the protocol where they have already
discarded all the data resulting from photons for which they used different

5.1. Error Correction for Quantum Key Distribution 175

bases. So if the channel were perfect and there were no eavesdropping,
Alice’s string A′ and Bob’s string B′ would be identical. Alice and Bob
now estimate the number of errors in Bob’s string, that is, the number of
places where the two strings differ, by publicly comparing a small random
sample of the two bit strings. They throw out the bits that they have
checked, since Eve now has access to them. Alice and Bob use their
comparisons to estimate the frequency with which errors have occurred.
For example, if Alice randomly chooses 2000 bits of A′ and finds that 100
of them do not agree with the corresponding bits of B′, she will assume
that approximately one out of every twenty of Bob’s remaining bits is
also likely to be wrong. Alice and Bob certainly do not want to check all
of their bits to find out which ones are wrong. This would give Eve all
of their information and they would have no secret bits left. So they will
try to correct the errors in the remaining bits without knowing anything
about where these errors occur. It may seem remarkable that they can do
this without telling Eve everything. Indeed, it is impossible to do it with
absolute certainty. But it is quite possible to do it with sufficient confidence
for all practical purposes.

To see how it is possible in principle to correct the errors, let us consider
first an unrealistically simple example. Suppose that Alice and Bob each
has a bit string consisting of exactly 7 bits, and suppose they are confident
that their strings differ in at most one place. Here is Alice’s string �a:

�a = (a1, a2, a3, a4, a5, a6, a7),

where each ai is in Z2. Bob’s string is

�b = (b1, b2, b3, b4, b5, b6, b7).

Alice and Bob are sure that at most one of the bi ’s is different from the
corresponding ai , but each of the bi ’s is equally suspect. How can they
correct such an error?

Here is a strategy that works.

1. Alice and Bob agree (publicly) on a check matrix H for the binary
[7,4] Hamming code:

H =


1 1 1 0 1 0 0

1 1 0 1 0 1 0
0 1 1 1 0 0 1


 (5.1)

176 Chapter 5. Quantum Cryptography Revisited

2. Alice applies H to �aT to get �s A = H�aT – recall that �s A is the syndrome
of �a – and she sends �s A to Bob over a public channel.

3. Bob applies H to �bT to get �s B = H�bT .
4. Bob computes �s = �s B − �s A = H�bT − H�aT = H(�b − �a)T . Let �e = �b −

�a. Then �s = H �eT .
5. If indeed there is no more than one error in the string of seven bits,

then w(�e) ≤ 1. We know that for this code there is a unique minimum-
weight vector �v that satisfies H�vT = �s. So that vector must be �e. Bob
now replaces his string �b with the corrected version �b − �e.

Example 5.1.1. Suppose �a = (1000111) and �b = (1100111). Then

H �aT =


0

0
1


 , H�bT =


1

1
0


 , �s =


 1

1
0


−


0

0
1


 =


 1

1
1


 ;

so �e = (0100000), and Bob replaces �b with �b − �e = (1100111) −
(0100000) = (1000111), which is the correct string �a.

Thus Bob has been able to correct his error without having to check
each of his bits against the corresponding bit in Alice’s string. (He has
been able to do this only because Alice and Bob had obtained evidence
that limited the number of likely errors in the string.) Of course the pub-
lic communication has given the eavesdropper new information about
Alice’s string, and our participants will have to take further steps to com-
pensate for this leak. This problem belongs to the subject of privacy am-
plification and will be considered in the following section.

One can imagine applying the above strategy on a much larger scale.
Suppose that Alice and Bob each has a string of n bits, and they are very
confident that there are no more than e discrepancies between Alice’s
string and Bob’s. Then for as large a value of k as possible, they choose
an [n, k] code that corrects e errors, and they use a check matrix for that
code just as we had them do in the preceding example. That is, Alice
computes and transmits the syndrome of her bit string – the syndrome
will be a string of n − k bits – and Bob computes his syndrome, and the
difference between the syndromes will tell him how to bring his string into
agreement with Alice’s. Of course this also gives Eve n − k bits that she

5.1. Error Correction for Quantum Key Distribution 177

probably did not have before, but the main point is that Alice and Bob
did not have to give away all their bits in order to correct the errors.

Notice that the error-correction strategy we have been considering so
far involves only one-way communication from Alice to Bob. Bob cor-
rects the errors in his string, and Alice never needs to hear back from
him about where those errors occurred. Schemes of this kind have been
found useful in mathematical proofs of the security of quantum key distri-
bution.2 However, it can be more computationally efficient, and in some
respects simpler, to use an interactive error-correction protocol in which
Alice sends Bob very limited information at first, and then waits to hear
back from him before sending the next piece of information.

Here is a fairly simple interactive protocol, based on a sequence of
parity checks, that will do the job as long as the error rate, that is, the
number of errors divided by the length of the string, is not too high.3

1. Alice and Bob agree publicly on a random permutation of their bit
strings, and they both apply this permutation. This step has the effect
of distributing the errors randomly over the length of the string.

2. Alice and Bob break their respective strings into blocks of a certain
length, the length being chosen so that it is unlikely that a given block
contains more than one error.

3. For each block, Alice and Bob compute and publicly compare the
parity of the block, that is, the sum mod 2 of the bits in the block.
Blocks for which the parities agree are tentatively accepted as correct
(though they may contain an even number of errors).

4. For each block showing a disagreement in step 3, the block is broken
into two subblocks of roughly equal size, and the parities of Alice’s
first subblock and Bob’s first subblock are publicly compared. This tells
them in which half the parity discrepancy lies. The offending subblock
is then itself divided in half, and the process continues until an error
is located in a specific bit. At that point Bob flips the value of the bit
that has been found to be in error.

5. Since the protocol as presented so far will miss errors whenever a block
or subblock has an even number of errors, Alice and Bob now repeat

2 See, for example, Mayers (2001), Section 4.
3 Bennett, et al. (1992).

178 Chapter 5. Quantum Cryptography Revisited

the whole process several times, each time starting with a different
random permutation. But in each repetition, the starting block size
will typically be larger than it was before, since Alice and Bob will
typically estimate that there are fewer errors remaining.4

6. Once the block size becomes comparable to the length of their bit
strings, that is, once there are just a few errors remaining, Alice and
Bob shift to a somewhat different strategy: instead of using blocks, they
choose a random subset (about half as large as the whole string) and
compare parities for this subset. Each time they find a discrepancy,
they break the subset in half as before, repeating the process until
they find and correct the error. They then repeat this random-subset
protocol until several successive repetitions have uncovered no more
errors, at which point it is extremely unlikely that any further errors
remain.

Example 5.1.2. Let us try out steps 3 and 4 on a block of length 8. Suppose
Alice’s and Bob’s strings are �a = (11011001) and �b = (11011011). Alice
sends to Bob the parity of her string, which is 1. Bob tells her that this is
not his parity; so they know that there is an error. Therefore they compare
the parities of the first four bits: these parities agree, so they leave these
bits unchanged and they know that there is a discrepancy in the last four
bits. This leads them to check the parity of a5a6 against b5b6: the parities
agree; so they know the discrepancy is in the last two bits. They check
a7 against b7 and find the error. Bob now changes b7 from 1 to 0. At this
point Alice and Bob cannot be sure that they have corrected all the errors
in the block. For example, there could still be two errors in the first four
bits. Further checking for such errors would come in later rounds. Finally,
note that in the above process Alice has given away only four parity bits;
so as in our earlier technique, she has not had to tell Eve everything.

4 One can refine this protocol, and make it more efficient in the sense of revealing fewer
bits to Eve, by keeping careful track of the parity checks that one has made in earlier
rounds. For example, if Alice and Bob previously found no parity discrepancy in the bit
string b5b8b9b16, but now, in a subsequent round, they find and correct an error in bit
b8, they know that the new version of block b5b8b9b16 has an odd number of errors. So
they return to this bit string and correct an error by dividing the string into substrings
as usual. This approach leads to the “cascade” protocol devised by Brassard and Salvail
(1993).

5.2. Introduction to Privacy Amplification 179

In general, as long as the error rate is limited and the starting strings
are very long, Alice and Bob will in principle be able to correct the errors
by public communication as in the above examples, without giving all
their information to Eve. If Alice and Bob estimate that the error rate is
large, they should still be able to correct the errors, but only by sharing
with Eve almost as many bits as they share with each other. Even this
would be all right, if it were not for the fact that Eve may have already
gained some information from her initial eavesdropping. When the two
sources of Eve’s information are combined, it could happen that Eve
knows everything about Alice’s and Bob’s string. Thus even with error
correction, quantum key distribution will not work if the error rate is too
high. (See the references cited on p. 190.)

EXERCISES

Problem 1. Alice and Bob have determined that it is very unlikely that a
string of seven bits will contain more than one error; so they have decided
to use the binary [7,4] Hamming code to correct their errors, with the
check matrix of Eq. (5.1).

(a) Suppose Bob’s string is 1110110. Alice sends him the syndrome
111. What does Bob’s string become after error correction?

(b) In another case, Bob’s initial string is 0000111. Alice sends him the
syndrome 111. What does Bob’s string become after error correction?

Problem 2. Consider again steps 3 and 4 of the protocol described just
before Example 5.1.2 and used in that example. Consider a block of 32 bits
and suppose that there is indeed a discrepancy in only one of the bits. If
Alice and Bob use this error correcting technique, how many parity bits
will they have to give away to Eve in order to correct the error? Does the
answer to this question depend on the location of the error in Bob’s bit
string?

5.2 Introduction to Privacy Amplification

We assume now that Alice and Bob have made all the corrections nec-
essary to assure themselves that their strings are identical. Let us call the
shared string �a. Moreover, they have combined their knowledge of the

180 Chapter 5. Quantum Cryptography Revisited

error rate with their knowledge of the information that they themselves
have leaked to Eve, to estimate how much information Eve has obtained
altogether. Their goal is to produce a shorter shared string �α about which
Eve knows nothing. We proceed by considering different kinds of knowl-
edge that Eve might have, starting with the simplest case, in which Eve’s
knowledge is limited to a fixed number of elements of Alice and Bob’s
shared string. We confess that this is not a very realistic case in the con-
text of quantum key distribution, but it is useful for showing how privacy
amplification is possible.

5.2.1 Eve knows a fixed number of elements of the bit string

We begin with a simple 3-bit example.

Example 5.2.1. Let �a = (a1, a2, a3). Suppose that Eve knows at most one
of the bits a1, a2, a3 and nothing else. Let �α = (a1 + a3, a2 + a3). We claim
that Eve knows nothing about �α. To verify this claim, consider the follow-
ing table showing the relation between �a and �α:

�a �α
000 00
001 11
010 01
011 10
100 10
101 01
110 11
111 00

Suppose that Eve knows that a1 = 0. This knowledge restricts �a to the
first four entries in the table. But these entries include all four possible
values of �α; so Eve knows nothing about α. One can check that the same
argument works regardless of which bit ai Eve knows and what value it
has. So if Alice and Bob start with the shared string �a, they can agree,
publicly, on the above method of creating the shorter string �α. Eve will
eavesdrop on their discussion and will therefore know exactly what Alice
and Bob are doing, but there is nothing she can do about it: she will end
up with no information whatsoever about �α.

5.2. Introduction to Privacy Amplification 181

Note for future reference that in this example we can express the
relation between �a and �α in matrix form as follows:

�αT =
(

α1

α2

)
=
(

1 0 1
0 1 1

)a1

a2

a3


 ,

or

�αT = G�aT, where G =
(

1 0 1
0 1 1

)
.

Again, we assume that Eve knows the matrix G and how it is being used.
That is, the matrix itself is not a secret, even though it is used to help
generate a secret key.

Now we give a very similar example that does not work so well.

Example 5.2.2. Let �a = (a1, a2, a3, a4). Suppose that Eve knows exactly
two of the four bits and that she knows nothing about the other two. Let
us try the following privacy amplification scheme: α1 = a1 + a2 + a3 and
α2 = a2 + a3 + a4. In matrix form,

�αT = G�aT, where G =
(

1 1 1 0
0 1 1 1

)
.

The string �α is two bits shorter than �a. Since Eve knows exactly two bits,
one might hope that �α is completely secret. But this is not necessarily the
case. Note that α1 + α2 = a1 + a4. So if Eve happens to know a1 and a4,
then she knows α1 + α2. Thus the string �α is not entirely secret.

Why did the first example work for Alice and Bob while the second
example did not? If we think of G as the generator matrix of a linear
code, we can see that the problem with the G of the second example
is that one of its codewords, namely (1001), has too small a weight. Its
weight is equal to the number of bits that Eve knows. So if she happens
to know the correct bits, a1 and a4, then she also knows a certain linear
combination of α1 and α2 (namely, their sum). This example leads us to
make the following conjecture.

182 Chapter 5. Quantum Cryptography Revisited

Conjecture 5.2.1. The string �αT = G�aT is guaranteed to be secret if and
only if the minimum weight of the code generated by G is strictly greater
than the number of bits that Eve knows.

In the case where �a contains four bits of which Eve knows two, one
can verify that this condition can be met only if G has just one row. For
example, we can use

�αT =
(

1 1 1 0
)



a1

a2

a3

a4


 ,

so that the code generated by G has minimum weight 3. So in this case
Alice and Bob have to make their string three bits shorter in order to
guarantee secrecy.

In fact, the above conjecture is correct. We state it now more carefully
as a theorem.5

Theorem 5.2.1. Let �a ∈ Z
n
2. Suppose that Eve knows the values of exactly

t bits of �a and nothing else. (That is, for Eve, t of the bits of �a have fixed
values and the remaining collection of n − t bits take all 2n−t possible
values with equal probability.) Let G generate a linear [n, k] code C ⊂ Z

n
2

with minimum weightw. Let �αT = G�aT . Then ifw > t , Eve knows nothing
about �α. (That is, all 2k values of �α are equally likely.) If w ≤ t , then
Eve could know something about �α. (That is, there exists a set of indices
{i1, i2, . . . , it } such that if the bits ai1 , . . . , ait are the ones whose values are
fixed, then not all values of �α are equally likely.)

Proof. The second part, “If w ≤ t . . . ,” will be covered in the problems at
the end of this section. The rest of the proof is left as an exercise for the
adventurous student. ❑

The above discussion shows that privacy amplification is possible, at
least in a certain context. But the approach we have taken so far demands
too much in a certain sense, and too little in another. It demands too
much in that in real life we cannot insist on perfect security. For example,

5 Bennett, Brassard, and Robert (1988); Chor et al. (1985).

5.2. Introduction to Privacy Amplification 183

Alice and Bob could never put a strict and nontrivial upper bound on
the amount of information that Eve has learned about a given block of
bits; so there will always be some probability that part of Eve’s initial
information will survive the privacy amplification. The best we can do is
to make it extremely unlikely that Eve knows much of anything. On the
other hand, the above approach demands too little in that the nature of
Eve’s information could in fact be much more subtle than what we have
considered. Indeed, already in our examples of the preceding section, Eve
did not end up simply knowing the values of certain bits in the string �a.
Rather, she learned the values of certain sums of bits. The above theorem
does not cover this case.

5.2.2 Eve knows the parities of certain subsets of the bit string

Another case that is mathematically interesting, though still not quite
what we need for quantum key distribution, is the case in which Eve
knows the parities of certain subsets of Alice’s bit string. This is the kind
of information Alice leaked to Eve in the error-correction protocols we
considered in Section 5.1. In this subsection we assume that such parities
are the only information that Eve has obtained; she has not done any
actual eavesdropping on the original quantum signals. It is this assump-
tion that makes the considerations of the present subsection not quite
applicable to quantum key distribution.

Recall that in Example 5.1.1, Alice starts with a 7-bit string �a, and in
effect tells Eve the values of the three syndrome bits given in the following
equation.

�s = H�aT =


1 1 1 0 1 0 0

1 1 0 1 0 1 0
0 1 1 1 0 0 1







a1

a2

a3

a4

a5

a6

a7




=


a1 + a2 + a3 + a5

a1 + a2 + a4 + a6

a2 + a3 + a4 + a7


 =


 s A

1

s A
2

s A
3


 . (5.2)

184 Chapter 5. Quantum Cryptography Revisited

Eve does not know the value of any of the bits ai , but she knows the values
of the three sums that appear in �s. What can Alice and Bob do about this?
As before, we expect that they will have to throw away some of their bits.
But how many bits should they throw away, and does it matter which
ones they choose? To get a feel for this problem, let us try a few different
strategies.

1. Throw away a4, a6, and a7. In this case the remaining bits are a1, a2, a3,
and a5. But according to Eq. (5.2), Eve knows the sum of these four
bits: this sum is the syndrome bit s A

1 . This is bad for Alice and Bob.
2. Throw away a1, a2, and a7. Now the remaining bits are a3, a4, a5, and

a6. But the sum of these bits is the sum of s A
1 and s A

2 , which Eve knows.
So again this is bad.

3. Throw away a5, a6, and a7. In this case the remaining bits are a1, a2, a3,
and a4. Does Eve know anything about these bits? We claim that she
does not. Eve has been given only the syndrome �s and the check matrix
H. One can see that given any values for a1, a2, a3, and a4, there exist
unique values for a5, a6, and a7 such that the syndrome of �a is the given
�s. It follows that Eve cannot rule out any of the possibilities for a1, a2,
a3, and a4, and that all of these possibilities are equally likely. That is,
she has no information about the bits that Alice and Bob have kept.

Notice that in this last strategy, Alice and Bob threw away the check
bits of the code and kept the information bits. By an extension of the
argument just given, this strategy – throwing away the check bits – will
always leave Eve with no information about the remaining bits, assuming
that she had no information to start with.

Similarly, in the interactive error-correcting protocol that we consid-
ered in Section 5.1, each time Alice conveys to Bob the parity of a string of
bits, Alice and Bob could discard, say, the last bit in the string in order to
keep Eve ignorant of the remaining bits. This would indeed keep Eve from
learning anything useful if it is true that she did not already know anything.
In fact, one can show that this strategy also works well for Alice and Bob
even if Eve does have some initial information, as long as this information
is of a certain form, such as knowing the values of particular bits.

However, the strategy of throwing away the check bits does not work
for more general kinds of knowledge that Eve might have (and it was
therefore not recommended by the authors of the interactive protocol).
To see this, consider the following example.

5.2. Introduction to Privacy Amplification 185

Example 5.2.3. Let (a1, a2) be a 2-bit string held by Alice. As part of an
error-correction protocol, she conveys to Bob over a public channel the
parity a1 ⊕ a2, which happens to be 0. (Here ⊕ means addition mod 2.)
She then discards the bit a2, and Bob discards the corresponding bit in
his string, hoping to make the revealed parity bit useless to Eve. How-
ever, it happened that Eve had already done some fancy eavesdropping
that ruled out the specific string 00. That is, for Eve, the only possibili-
ties were 01, 10, and 11. When she hears that the parity a1 ⊕ a2 has the
value 0, she knows immediately that the string is 11. In particular, she
knows that the bit a1, which Alice is keeping, has the value 1, a fact that
she did not know previously. So the strategy of discarding the last bit
after a parity check does not always prevent Eve from learning some-
thing.

The following subsection considers the problem of privacy amplifica-
tion in a more realistic setting.

5.2.3 The general case

To get a sense of how subtle Eve’s information could be, consider the
following eavesdropping strategy. Rather than making a complete mea-
surement on certain photons sent by Alice, Eve could build a probe that
interacts weakly with each of the photons. Then, once she has learned
what basis Alice used for each photon, Eve could measure her probe,
choosing her measurement so as to provide as much information as
possible about the whole string of bits. In one of the problems in Chapter 3
we considered something along these lines, which we called “the partial
cloning strategy.” But that strategy treated each photon separately, so
that the information Eve obtained was always about individual bits of
Alice’s string. Now we are imagining that her probe interacts with all the
photons before she makes her measurement, so that the information she
gains could take the form of correlations among the bits and could be
entirely probabilistic. For example, she may end up knowing that the sum
(mod 2) of a1, a6, and a17 has a 75% chance of being zero. Even though
she may not be certain about the value of any particular bit, or any sum of
bits, this sort of probabilistic information is quite valuable. It would give
her a way to start decrypting any secret message that Alice might send
to Bob using their shared key. Thus it is crucially important that Alice

186 Chapter 5. Quantum Cryptography Revisited

and Bob find a way, in such circumstances, to produce a new string about
which Eve knows essentially nothing.

Below we list various ways in which one might characterize Eve’s
information about the n-bit string �a shared by Alice and Bob. Each item
in the list includes the items that precede it as special cases. Since Eve
may be capable of making a joint measurement on many photons, as in
the above example in which she uses a probe, ultimately the only kind
of bound that Alice and Bob can safely place on Eve’s knowledge will
be a statement about probabilities. The last item in the following list is a
bound of this sort.

1. Eve knows t of the bits in the string �a (as in Subsection 5.2.1).
2. Eve knows the parities of t substrings of �a (as in Subsection 5.2.2).
3. Eve knows the value of f (�a), where f is a function from Z

n
2 to Z

t
2. (This

is still deterministic information, whereas Eve is much more likely to
have obtained probabilistic information.)

4. Eve’s knowledge of �a is characterized by a probability distribution
p(�a) whose Rényi information is no greater than t .

We encountered Rényi information in Chapter 3. But there we defined
it only for a probability distribution (p0, p1) over the two possible values of
a single bit. Now we are thinking of a string of bits �a, which has 2n possible
values if �a consists of n bits. So we need to define Rényi information more
generally. We begin, as before, with the more standard notion of Rényi
entropy.6

Definition. Let {�a} be a string of bits, and let p be a probability distribu-
tion over all possible values of this string. That is, p is a function taking
nonnegative values such that

∑
�a p(�a) = 1. The Rényi entropy HR of the

probability distribution is defined by

HR = − log2

(∑
�a

[p(�a)]2

)
. (5.3)

6 More generally, the Rényi entropy of order α is defined as (1/(1 − α)) log2(
∑

[p(�a)]α).
As in Chapter 3, we are using the Rényi entropy of order 2.

5.2. Introduction to Privacy Amplification 187

As we noted in Chapter 3, the Rényi entropy is usually expressed in units
of bits.

As before, the Rényi entropy can be interpreted as the amount of
information that one lacks about the string �a. To get a feeling for this
quantity, let us consider a few examples.

Example 5.2.4. Suppose that all possible bit strings �a of length n
have the same probability 1/2n. Then the Rényi entropy is HR =
−log2[

∑
�a(1/22n)] = n. This expresses the fact that if all strings are equally

likely for Eve, she lacks n bits of information. One can thus see better why
“bit” is used as a unit of entropy: if you know nothing about a string of n
bits, you lack n bits of information.

Example 5.2.5. At the other extreme, suppose that one of the strings has
probability 1 and the rest have probability 0. In this case the Rényi entropy
is HR = − log2 1 = 0, and we say that Eve lacks zero bits of information
about the string.

Example 5.2.6. Suppose that Eve knows the values of exactly t bits of �a
and nothing else. Then the number of strings that are possible for Eve is
2n−t , and each of these has probability 1/2n−t . So Eve’s Rényi entropy is

HR = − log2

[
2n−t

(
1

2n−t

)2
]

= n − t.

Thus when Eve knows the values of a specific set of bits, her Rényi entropy
is simply equal to the number of remaining bits, about which she knows
nothing.

Whereas the Rényi entropy HR measures the amount of information
that Eve lacks, the Rényi information measures the amount that she has,
by comparing her value of HR to its maximum possible value. For a string
of n bits, this maximum possible value is n. So we define the Rényi infor-
mation as follows.

Definition. Let �a be a string of bits of length n, and let p be a probability
distribution over all possible values of this string. The Rényi information

188 Chapter 5. Quantum Cryptography Revisited

IR of the probability distribution is defined by

IR = n − HR = n + log2

(∑
�a

[p(�a)]2

)
. (5.4)

Rényi entropy is by no means the most common way of quantifying
one’s lack of information. The most common such quantification was given
by Shannon and is the focus of the most central theorems of information
theory. The Shannon entropy of a probability distribution p(�a) is defined
as7

H = −
∑
�a

p(�a) log2 p(�a), (5.5)

a quantity that, like the Rényi entropy HR, ranges from 0 to n for an n-bit
string �a. In fact H is an upper bound for HR:

H ≥ HR (5.6)

If the focus of this book had been on the theoretical limits on error-
correcting codes, for example, we would have devoted several chapters to
Shannon entropy and its applications. Indeed, even in quantum key dis-
tribution, Alice and Bob ultimately want to limit the amount of Shannon
information that Eve possesses about their final shared key, the Shannon
information being defined as I = n − H, which is analogous to Eq. (5.4).
But for assessing whether they can achieve this goal, and for figuring out
how to achieve this goal, it is not sufficient to estimate Eve’s Shannon
information about the string that they share before privacy amplification.
Instead, they should estimate her Rényi information. The justification for
this statement comes from an important theorem to be stated shortly.

The examples of the preceding subsections suggest that in order to
achieve security, Alice and Bob will have to discard at least as many bits
as Eve knows. It turns out that this intuition remains valid even when Eve
does not know t specific bits but has t bits of Rényi information manifested
in some other way. Alice and Bob will have to discard at least t bits, and
the more bits they discard in excess of t bits, the more secret their final
shared string will be.

7 It is interesting that the Shannon entropy is the limit of the Rényi entropy of order α (see
the preceding footnote) as α approaches one. It is a fun exercise to take this limit!

5.2. Introduction to Privacy Amplification 189

Clearly, though, it is not sufficient for Alice and Bob simply to discard
a specified set of bits. For example, if Eve has t bits of Rényi informa-
tion about the string as a whole, it will almost certainly not be sufficient
for Alice and Bob to lop off the last t bits of their strings: at least part
of Eve’s information was probably about some of the other bits. Rather,
they should do what we had them doing earlier in this section: they select
a matrix G which they apply to �a to create the shorter string �α. (As always,
we assume that Eve will know exactly what matrix G Alice and Bob are
using.) But what matrix should they use? The following theorem, in ad-
dition to expressing precisely how the security is enhanced by shortening
the string, also tells us that one can do very well by choosing G at random.
In fact, the matrix does not even have to be a generator matrix; that is,
Alice and Bob do not have to check to see whether the rows are linearly
independent. We state the theorem without proof.8

Theorem 5.2.2. Suppose that Eve has Rényi information IR ≤ t about
the n-bit string �a, where t is a nonnegative integer less than n. Let s
be any positive integer less than n − t , and let k = n − t − s. Finally, let
�αT = G�aT , where G is a randomly chosen k× n binary matrix. Then Eve’s
average Rényi information about the k-bit string �α – that is, averaged over
all possible matrices G – is no larger than 2−s/ ln 2. (Note that Eve’s Rényi
information about �α is defined to be IR = k− HR, since k is the number
of bits in �α.)

It follows that Eve’s final Shannon information about �α, which is what
Alice and Bob ultimately care about, is also bounded by 2−s/ ln 2. This is
because of the inequality (5.6):

I = k− H ≤ k− HR = IR.

Note that Eve’s information shrinks exponentially with increasing s:
each additional bit that Alice and Bob are willing to sacrifice reduces the
upper bound on Eve’s information by another factor of 2. If the original
string �a is very long, the additional s bits that provide the cushion of

8 Bennett et al. (1995). Their theorem is actually more general in that it allows other ways
of producing the shorter string. We also note that the authors state their theorem in terms
of Rényi entropy rather than the less standard notion of Rényi information.

190 Chapter 5. Quantum Cryptography Revisited

length of original string (n)

length of final string (n-t-s)

t bits

s bits

Figure 5.1: Illustration of the effect of privacy amplification. Eve initially has t bits
of Rényi information about Alice and Bob’s string. (These bits do not literally lie
at the end of the string.) After privacy amplification, her information is bounded
by 2−s/ ln 2. The s bits of further shortening represent a security cushion for Alice
and Bob.

security can represent quite a small fraction of the bits that Alice and Bob
finally keep. The effect of privacy amplification is illustrated schematically
in Fig. 5.1.

We see, then, that the complete protocol for quantum key distribution
includes several steps: (i) The original quantum transmission and com-
parison of bases. (After this step Alice and Bob have strings which are
not necessarily identical and not necessarily secret.) (ii) Checking some
bits for errors and discarding these bits. (iii) Correcting the errors in the
remaining bits. (After this step the strings are almost certainly identical
but not private.) (iv) Privacy amplification.

Quantum key distribution has been an area of active research, both
mathematical and experimental, for some decades now and progress con-
tinues to be made on both fronts. One of the greatest mathematical chal-
lenges was to prove that the Bennett–Brassard scheme is indeed secure
against all conceivable eavesdropping strategies allowed by the rules of
quantum mechanics. The strategy we mentioned earlier, in which Eve lets
her probe interact with all the photons and then delays her measurement
until she knows the whole sequence of bases, is particularly subtle. But it
has now been proven in a few different ways that the scheme is indeed
secure against such attacks.9

Ironically, while quantum cryptography in principle provides new
ways to transmit information securely, another quantum technology,
quantum computation, threatens to subvert the ingenious and widely used

9 Mayers (1996); Lo and Chau (1999); Shor and Preskill (2000); Biham et al. (2000). For
recent results on tolerable error rates, see Kraus, Gisin, and Renner (2005) and Chau
(2002).

5.2. Introduction to Privacy Amplification 191

public key cryptosystems that we studied in Chapter 1. We will study this
quantum technology in Chapter 7.

EXERCISES

Problem 1. Prove the second statement of Theorem 5.2.1. That is, if the
weight of the code is less than or equal to the number of bits that Eve
knows about the string �a, then if she knows the right bits of �a she will also
have some information about the string �α.

Problem 2. Alice and Bob share a string �a of n bits. They know that Eve
might know the values of up to t of their bits. So, as in subsection 5.2.1,
they create a k-bit string �α defined as

�αT = G�aT,

where G is a generator matrix for an [n, k] linear code. Let m(n, t) be
the largest value of k for which one can find a G such that the resulting
string �α is guaranteed to be entirely secret. That is, m(n, t) be the greatest
number of genuinely secret bits Alice and Bob can share after privacy am-
plification by this method. Use Theorem 5.2.1 to find the value of m(n, t)
for n = 2, 3, 4, 5 and for t = 1, . . . , n − 1. (You will have to optimize over
various G’s.)

Problem 3. As in problem 2, Alice and Bob share a string of n bits. But
now Eve knows the values of exactly two of the bits. With m(n, t) being
defined as in Problem 2, we are now interested specifically in m(n, 2).
Show that for any fixed positive integer q, one can find an integer n such
that m(n, 2) < n − q. (That is, there is no limit on the number of bits
Alice and Bob might have to sacrifice for perfect secrecy, even though
Eve knows only two bits.)

Problem 4. Alice and Bob share a 3-bit string �a = (a1, a2, a3). Eve has
made a measurement on this string suggesting that (0, 0, 0) is the most
likely value of �a. Specifically, she assigns probability 1/2 to (0, 0, 0) and
splits the remaining probability evenly among the other possibilities.

(a) What is Eve’s Rényi entropy about the string �a?
(b) What is Eve’s Shannon entropy about the string �a?

192 Chapter 5. Quantum Cryptography Revisited

(c) Now suppose that Alice and Bob share an n-bit string. Eve assigns
probability 1/2 to the string (0, 0, 0, . . . , 0) and regards all the other pos-
sibilities as equally likely. Compute Eve’s Rényi and Shannon entropies.
Show that as n approaches infinity, the Shannon entropy also approaches
infinity while the Rényi entropy remains bounded. This example shows
that even if Eve lacks a lot of information in the Shannon sense, she may
not lack much information in the Rényi sense, and therefore Alice and
Bob may still have to do a lot of privacy amplification.

6 Generalized Reed-Solomon Codes

6.1 Definitions and Examples

In this chapter we discuss a class of extremely useful and beautiful linear
codes called generalized Reed-Solomon codes. In fact, many linear codes
in use today can be expressed as a generalized Reed-Solomon code. For
example, generalized Reed-Solomon codes serve as the backbone for the
error-correction scheme used by compact disk and DVD players. This
chapter will serve as a brief introduction to the subject and is intended to
be very basic.1

We begin with several definitions.

Definition. Let F be a field. We define the set of polynomials F[x] as

F[x] = {
r0 + r1x + r2x2 + · · · + rnxn|ri ∈ F, n ∈ N

}
.

Notice that we have a natural addition and multiplication of the poly-
nomials in the set F[x] using “usual” polynomial addition and multipli-
cation and the operations from the field F . We illustrate with several
examples.

Example 6.1.1. Let F = Z7. Then, Z7[x] is the set of all polynomials with
coefficients from the field Z7. Now,

(5 + 2x + 3x2 + 6x3) + (3 + 2x + 6x2) = 1 + 4x + 2x2 + 6x3.

1 The reader interested in learning more should consult other sources such as Pless and
Huffman (1998).

193

194 Chapter 6. Generalized Reed-Solomon Codes

Notice that all the addition is being done modulo 7 since that is the addi-
tion used in the field Z7. Also,

3(5 + 2x + 3x2 + 6x3) = 1 + 6x + 2x2 + 4x3

and

(5 + x)(2 + 2x) = 3 + 5x + 2x2.

Definition. The set F[x] together with the addition and multiplication
described above is called the polynomial ring in the indeterminate x over
the field F .

Definition. Let k be a nonnegative integer and F a field. Then F[x]k

denotes all polynomials of F[x] of degree less than k with the convention
that the zero polynomial has degree −1.

Notice that F[x] is an infinite dimensional vector space over F and that
F[x]k is a subspace of F[x] of dimension k.

We are now in a position to define a generalized Reed-Solomon code.

Definition. Let F be a field and 0 ≤ k ≤ n where kand n are integers. Sup-
pose v1, v2, . . . , vn are nonzero elements of F and α1, α2, . . . , αn are ele-
ments of F satisfyingαi = α j if and only if i = j . Let �α = (α1, α2, . . . , αn) ∈
Fn and �v = (v1, v2, . . . , vn) ∈ Fn. Then we define the generalized Reed-
Solomon code with respect to F , n, k, �α, and �v to be

GRSn,k(�α, �v) = {(v1 f (α1), v2 f (α2), . . . , vn f (αn))| f (x) ∈ F[x]k} ⊆ Fn.

Sometimes we will write �f for (v1 f (α1), v2 f (α2), . . . , vn f (αn)). As the
definition of a generalized Reed-Solomon code is a bit complicated, we
illustrate with an example.

Example 6.1.2. Let F = Z3, n = 3, k = 2, �v = (111), and �α = (012). Then

GRS3,2(�α, �v) = {(f (0), f (1), f (2))| f (x) ∈ Z3[x]2}.

Now, we have that

Z3[x]2 = {0, 1, 2, x, x + 1, x + 2, 2x, 2x + 1, 2x + 2}

6.2. A Finite Field with Eight Elements 195

so

GRS3,2(�α, �v) = {(000), (111), (222), (012), (120), (201),
(021), (102), (210)} ⊂ Z

3
3.

Notice that the size of the field F forces certain constraints on the
code GRSn,k(�α, �v). In particular, since the elements of the vector �α must
be distinct, n cannot be larger than the number of elements of F . For
example, if F = Z2, then the largest that n can be is 2. Of course, codes of
length 2 are not particularly interesting, so we will rarely use F = Z2 for
generalized Reed-Solomon codes.

Notice that the code in Example 6.1.2 is linear. It turns out that
GRSn,k(�α, �v) is always linear. (See Problem 1 at the end of this section.)
Also notice that for Example 6.1.2 the number of elements in the code
is equal to the number of elements in Z3[x]2. In other words, all polyno-
mials in Z3[x]2 give us distinct codewords. Is this true in general? What
is the minimum distance of GRSn,k(�α, �v)? In other words, how good are
these codes for error correction? These are questions we will discuss and
answer in the following sections.

EXERCISES

Problem 1. Show that GRSn,k(�α, �v) is linear.

Problem 2. Let n = 4, k = 2, F = Z5, �v = (1111), �α = (1234), and
C = GRSn,k(�α, �v).

(a) List the elements of C.
(b) Find a generator matrix for C.
(c) Find dmin(C).
(d) How many errors will C correct?

6.2 A Finite Field with Eight Elements

As mentioned in the previous section, it is impractical to use F = Z2 for
generalized Reed-Solomon codes. However, it turns out that generalized
Reed-Solomon codes using fields with 2n elements where n > 1 are very
useful. We describe such a field here – namely a field with eight elements.

196 Chapter 6. Generalized Reed-Solomon Codes

For those of you who have had Abstract Algebra, you will recognize this
field as Z2[x]

(x3+x+1) .
We let

F8 = {0, 1, γ, γ + 1, γ 2, γ 2 + γ, γ 2 + 1, γ 2 + γ + 1}

with addition and multiplication defined modulo 2 and with the rule that
γ 3 = γ + 1. So, for example,

(γ 2 + γ)(γ + 1) = γ 3 + γ 2 + γ 2 + γ

= γ 3 + γ

= γ + 1 + γ

= 1.

Note that with the arithmetic described above, F8 is closed under addition
and multiplication.

We also have the following equalities.

0 = 0
1 = 1
γ = γ

γ 2 = γ 2

γ 3 = γ + 1
γ 4 = γ (γ + 1) = γ 2 + γ

γ 5 = γ 2(γ + 1) = γ 2 + γ + 1
γ 6 = (γ + 1)2 = γ 2 + 1
γ 7 = γ (γ 2 + 1) = γ 3 + γ = γ + 1 + γ = 1.

So we can also think of F8 as the set {0, 1, γ, γ 2, γ 3, γ 4, γ 5, γ 6} with the
rule that γ 7 = 1. It is sometimes useful to think of F8 in this way.

It turns out that F8 is a field (see Problem 2 at the end of this section)
and so we can use it to construct generalized Reed-Solomon codes.

EXERCISES

Problem 1. Write out a multiplication table for F8.

Problem 2. Show that F8 is a field.

Problem 3. How many elements are there in F8[x]2?

6.3. General Theorems 197

6.3 General Theorems

Recall from Chapter 4 that the number of errors that a code can de-
tect and correct depends on the minimum distance of the code. In fact,
if d is the minimum distance of the code, then it can detect d − 1 er-
rors and correct � d−1

2 � errors, where � d−1
2 � represents the largest inte-

ger less than or equal to d−1
2 . So the larger the minimum distance, the

more errors a code can detect and correct. Because of this, we would
like to determine the minimum distance of generalized Reed-Solomon
codes. We do so in this section. We begin with the Singleton Bound
Theorem.

Theorem 6.3.1. (Singleton Bound). If C is an [n, k] linear code, then
dmin(C) ≤ n − k+ 1.

Proof. Let G be a systematic generator matrix for C. So all columns of
the identity matrix appear in G. Every row of G has weight at most n.
But in every row, at least k− 1 entries are zero. So the weight of the
codewords in each row is at most n − (k− 1) = n − k+ 1. It follows that
dmin(C) ≤ n − k+ 1. ❑

Theorem 6.3.1 says that the minimum distance cannot be “too big.”
No matter how hard we try, we cannot construct an [n, k] linear code
with minimum distance larger than n − k+ 1. In light of this theorem,
the “best” we can hope for is to have the minimum distance equal to
n − k+ 1. This motivates the following definition.

Definition. An [n, k] linear code satisfying dmin(C) = n − k+ 1 is called
maximum distance separable or simply MDS.

It turns out that generalized Reed-Solomon codes belong to this nice
class of codes. We will prove this fact, but to do so, we need the following
lemma.

Lemma 6.3.2. Let F be a field, k a positive integer, and h(x) a nonzero
polynomial in F[x]k. Then h(x) has at most k− 1 roots in F .

198 Chapter 6. Generalized Reed-Solomon Codes

The proof of this lemma will be omitted, but can be found in any
standard Abstract Algebra book.

We note here that if F is not a field, Lemma 6.3.2 need not hold. For
example, consider

f (x) = (x − 2)(x − 3) ∈ Z6[x].

The degree of f (x) is 2, but notice that f (0) = 0, f (2) = 0, f (3) = 0, and
f (5) = 0 (remember, all arithmetic is done modulo 6), so f (x) has four
roots in Z6.

We are now in a position to show that GRSn,k(�α, �v) has dimension k
and is, in fact, MDS.

Theorem 6.3.3. Let F be a finite field and 0 ≤ k ≤ n. Then GRSn,k(�α, �v)
is an [n, k] linear code. Moreover, if k �= 0, then GRSn,k(�α, �v) is MDS.

Proof. Let C = GRSn,k(�α, �v). By Problem 1 of Section 6.1, C is linear.
We now show that the dimension of C is k. To do this, we first show

that |C| = |F |k where |C| denotes the number of elements in C and |F |
the number of elements in F . Now, the number of elements in F[x]k

is |F |k, so we have that |C| ≤ |F |k. Assume that |C| < |F |k. Then there
exist polynomials f (x), g(x) ∈ F[x]k such that f (x) �= g(x) but �f = �g. Let
h(x) = f (x) − g(x) ∈ F[x]k and note that h(x) is not the zero polynomial.
Now,

�h = (v1h(α1), . . . , vnh(αn))
= (v1 f (α1), . . . , vn f (αn)) − (v1g(α1), . . . , vng(αn))
= �f − �g
= �0

so vi h(αi) = 0 for i = 1, 2, . . . , n. But vi �= 0 for all i , and so we must have
that h(αi) = 0 for i = 1, 2, . . . , n. Recall that the αi ’s are distinct, so h(x)
has n distinct roots in F . But by Lemma 6.3.2, we know h(x) has at most
k− 1 < n roots, a contradiction. It follows that |C| = |F |k.

Now, we claim that since |C| = |F |k, it must be that the dimension of
C is k. Clearly the dimension of C is at least k (or else C would have fewer
than |F |k elements). Suppose the dimension of C is l where l > k. Then,
there exist �v1, . . . , �vl ∈ C such that �v1, . . . , �vl are linearly independent and

6.3. General Theorems 199

so that if G is the matrix where the ith row is �vi , then C = RS(G). In other
words, G is a generator matrix for C. Consider codewords of the form
c1 �v1 + c2 �v2 + · · · + cl �vl ∈ C where ci ∈ F for all i . If all codewords of this
form were distinct, then C would have |F |l > |F |k elements, contradicting
that |C| = |F |k. Hence, there exists ci , di ∈ F for i = 1, 2, . . . , l such that
c j �= dj for some j and such that

c1 �v1 + c2 �v2 + · · · + cl �vl = d1 �v1 + d2 �v2 + · · · + dl �vl .

It follows that

(c1 − d1)�v1 + · · · + (c j − dj)�v j + · · · + (cl − dl)�vl = �0.

But c j − dj �= 0 and so we have that �v1, . . . , �vl are not linearly indepen-
dent, a contradiction. It follows that the dimension of C is k.

We have left to show that if k �= 0, C is MDS. Recall that by the
Singleton Bound, we have dmin(C) ≤ n − k+ 1. We must show that
dmin(C) ≥ n − k+ 1. Let �h ∈ C with �h �= �0. Note that such a codeword
exists since k �= 0. Then, by Lemma 6.3.2, h(x) ∈ F[x]k has at most
k− 1 roots. It follows that �h has at most k− 1 entries that are 0. So
wH(�h) ≥ n − (k− 1) = n − k+ 1. It follows that dmin(C) ≥ n − k+ 1 and
so C is MDS. ❑

Theorem 6.3.3 states that generalized Reed-Solomon codes are very
good for error correction. In addition, notice that within the proof of the
theorem, we showed that |C| = |F |k. It follows that distinct elements of
F[x]k give us distinct codewords in C. In other words, if f (x), g(x) ∈ F[x]k

with f (x) �= g(x), then �f �= �g.

EXERCISES

Problem 1. Find an element �f of GRSn,k(�α, �v) that satisfies wH(�f) =
n − k+ 1.

Problem 2. Let F = F8 as defined in Section 6.2. Let �v = (1, 1, 1, 1, 1, 1, 1)
and �α = (1, γ, γ 2, γ 3, γ 4, γ 5, γ 6).

(a) How many elements are there in GRS7,2(�α, �v)? Optional: List
them.

200 Chapter 6. Generalized Reed-Solomon Codes

(b) How many errors will GRS7,2(�α, �v) detect? How many will it
correct?

(c) List the elements of GRS7,2(�α, �v) whose entries consist only of
zeros and ones. Be sure to explain why your answer is correct.

Problem 3
(a) Let F be a field. Suppose f (x), H(x) ∈ F[x]k so that there exist

distinct elements α1, α2, . . . , αk of F satisfying f (αi) = H(αi) for all i =
1, 2, . . . , k. Show that f (x) = H(x).

(b) Define

L(x) =
n∏

i=1

(x − αi)

and

Lj (x) =
n∏

i=1,i �= j

(x − αi).

Use part (a) to show that if
�f ∈ GRSn,k(�α, �v) with
�f = (v1 f (α1), v2 f (α2), . . . , vn f (αn)) and

H(x) =
n∑

j=1

Lj (x)
Lj (α j)

f (α j),

then f (x) = H(x).
This shows how to find f (x) if we are given �f ∈ GRSn,k(�α, �v).

We just use the above problem and observe that if we know
(v1 f (α1), v2 f (α2), . . . , vn f (αn)) and all the v′

i s, which we do, we can find
(f (α1), f (α2), . . . , f (αn)). So we know f (αi) for every i = 1, 2, . . . , n.

6.4 A Generator Matrix for a GRS Code

Since GRSn,k(�α, �v) is an [n, k] linear code, it must have a generator matrix.
We now show that we can easily write one down.

6.4. A Generator Matrix for a GRS Code 201

Theorem 6.4.1. The matrix

G =




v1 v2 · · · vn

v1α1 v2α2 · · · vnαn
...

...
...

v1α
i
1 v2α

i
2 · · · vnα

i
n

...
...

...
v1α

k−1
1 v2α

k−1
2 · · · vnα

k−1
n




is a generator matrix for GRSn,k(�α, �v).

Proof. We must show that the rows of G are linearly independent and
that GRSn,k(�α, �v) = RS(G). Suppose

c0(v1, . . . , vn) + c1(v1α1, . . . , vnαn) + · · · + ck−1
(
v1α

k−1
1 , . . . , vnα

k−1
n

)
= (0, 0, . . . , 0).

Then the following equalities must hold.

v1
(
c0 + c1α1 + c2α

2
1 + · · · + ck−1α

k−1
1

) = 0

v2
(
c0 + c1α2 + c2α

2
2 + · · · + ck−1α

k−1
2

) = 0
...

vn
(
c0 + c1αn + c2α

2
n + · · · + ck−1α

k−1
n

) = 0

But vi �= 0 for all i , so αi is a root of the polynomial f (x) = c0 + c1x +
c2x2 + · · · + ck−1xk−1 ∈ F[x]k for all i = 1, 2, . . . , n. But k ≤ n and if
f (x) is not the zero polynomial, then by Lemma 6.3.2 it can have at
most k− 1 distinct roots. It follows that f (x) must be the zero polyno-
mial. So c0 = 0, c1 = 0, . . ., ck−1 = 0. Hence, the rows of G are linearly
independent.

Now, we show that GRSn,k(�α, �v) = RS(G). Let �f ∈ GRSn,k(�α, �v).
Then there exists f (x) ∈ F[x]k such that �f = (v1 f (α1), v2 f (α2), . . . ,
vn f (αn)). Let f (x) = c0 + c1x + c2x2 + · · · + ck−1xk−1. Then

�f = (
v1
(
c0 + c1α1 + c2α

2
1 + · · · + ck−1α

k−1
1

)
,

v2
(
c0 + c1α2 + c2α

2
2 + · · · + ck−1α

k−1
2

)
,

. . . , vn
(
c0 + c1αn + c2α

2
n + · · · + ck−1α

k−1
n

))
.

202 Chapter 6. Generalized Reed-Solomon Codes

Rearranging this, we get that

�f = (v1c0, v2c0, . . . , vnc0) + (v1c1α1, v2c1α2, . . . , vnc1αn)

+ · · · + (v1ck−1α
k−1
1 , v2ck−1α

k−1
2 , . . . , vnck−1α

k−1
n).

So,

�f = c0(v1, . . . , vn) + c1(v1α1, . . . , vnαn) + · · · + ck−1
(
v1α

k−1
1 , . . . , vnα

k−1
n

)
.

It follows that GRSn,k(�α, �v) = RS(G). ❑

EXERCISES

Problem 1. Let pbe a prime number. Recall that if a ∈ Zp is nonzero, then
there is a b ∈ Zp such that ab = 1. We will denote b by a−1. Let F = Zp

and C = GRSn,k(�α, �v) where, as usual, �α = (α1, α2, . . . , αn). Assume that
αi �= 0 for all i = 1, 2, . . . , n. Define �β = (α−1

1 , α−1
2 , . . . , α−1

n). Find a vector
�w such that C = GRSn,k(�β, �w).
Note: This shows that if C is a generalized Reed-Solomon code, �α and �v
are not unique.

6.5 The Dual of a GRS Code

In Section 6.3, we showed that GRS codes are [n, k] linear codes. So we
know that the dual of a particular GRS code of length n and dimen-
sion k is an [n, n − k] linear code. The natural question to ask, then,
is whether or not the dual of a GRS code is again a GRS code. In
other words, if C = GRSn,k(�α, �v), can C⊥ be expressed as GRSn,n−k(�β, �u)
for some vectors �β and �u? The following theorem answers this
question.

Theorem 6.5.1. GRSn,k(�α, �v)⊥ = GRSn,n−k(�α, �u) where �u = (u1, u2, . . . ,

un) and

u j = v−1
j

(
n∏

i=1,i �= j

(α j − αi)

)−1

6.5. The Dual of a GRS Code 203

Proof. Define

L(x) =
n∏

i=1

(x − αi)

and

Lj (x) =
n∏

i=1,i �= j

(x − αi).

We want to show that if �f ∈ GRSn,k(�α, �v) and �g ∈ GRSn,n−k(�α, �u), then
the dot product of �f and �g is zero. Let f (x) ∈ F[x]k be the polynomial
corresponding to �f and g(x) ∈ F[x]n−k the polynomial corresponding to
�g. Note that the product f (x)g(x) has degree at most n − 2. Now, we
have

n∑
j=1

Lj (αi)
Lj (α j)

f (α j)g(α j) = Li (αi)
Li (αi)

f (αi)g(αi) = f (αi)g(αi)

for every i = 1, 2, . . . , n. It follows by Problem 3 from Section 6.3
that

f (x)g(x) =
n∑

j=1

Lj (x)
Lj (α j)

f (α j)g(α j).

The degree of f (x)g(x) is less than or equal to n − 2, so the coeffi-
cient of xn−1 on the left-hand side of the equation is zero. Hence, the
coefficient of xn−1 on the right-hand side of the equation is also zero.
So,

0 =
n∑

j=1

1
Lj (α j)

f (α j)g(α j) =
n∑

j=1

(v j f (α j))(u j g(α j))

and this is just the dot product of �f and �g. Hence, the dot product is zero.
It follows that GRSn,n−k(�α, �u) ⊆ GRSn,k(�α, �v)⊥. But since these are both
linear codes of dimension n − k, it follows from Theorem A.2.3 that we
have equality. ❑

Note that we can now easily write down a check matrix for
GRSn,k(�α, �v). We know that a check matrix for a linear code is a generator
matrix for the dual of that code. But in the last section we discovered how

204 Chapter 6. Generalized Reed-Solomon Codes

to find generator matrices for GRS codes. It follows that the following
matrix is a check matrix for GRSn,k(�α, �v).

H =




u1 u2 · · · un

u1α1 u2α2 · · · unαn
...

...
...

u1α
i
1 u2α

i
2 · · · unα

i
n

...
...

...
u1α

n−k−1
1 u2α

n−k−1
2 · · · unα

n−k−1
n




EXERCISES

Problem 1. Find a check matrix for the code described in Problem 2 of
Section 6.1.

Problem 2. Find a check matrix for the code described in Problem 2 of
Section 6.3.

7 Quantum Computing

7.1 Introduction

In an ordinary computer, information is stored in a collection of tiny
circuits each of which is designed to have two stable and easily distin-
guishable configurations: each represents a bit. In our study of quantum
cryptography, we have seen how it can be useful to express information
not in ordinary bits but in qubits. Whereas a bit can have only two values,
say 0 and 1, a qubit can be in any quantum superposition of |0〉 and |1〉.
Moreover, a qubit can be entangled with other qubits. Thus one might
wonder whether a quantum computer, in which the basic elements for
storing and processing information are qubits, can outperform an ordi-
nary (classical) computer in certain ways. This question was addressed by
researchers starting in the 1980s.1 In terms of practical consequences,
perhaps the most dramatic answer has been given by Peter Shor in his
1994 factoring algorithm for a quantum computer, an algorithm that is
exponentially faster than any known classical algorithm. As we have seen
in Chapter 1, the difficulty of factoring a product of two large primes is
the basis of the security of the RSA cryptosystem. So if one could build a
large enough quantum computer – and there is no reason in principle why
this could not be done – the RSA system would be rendered ineffective.
In this chapter we present the basics of quantum computation and then
focus on Shor’s factoring algorithm.2

1 Especially important is the pioneering work of Deutsch (1985).
2 Over the last several years many books have been written that include chapters on quan-

tum computation. A few such sources are Nielsen and Chuang (2000), Bouwmeester,

205

206 Chapter 7. Quantum Computing

How should we picture a quantum computer? In our discussion of
quantum cryptography we have usually thought of a qubit as being man-
ifested physically as the polarization of a photon. It is conceivable that
one could similarly build a quantum computer using photons as the basic
qubits: each photon could either be trapped (temporarily) between two
curved mirrors or allowed to fly around at the speed of light. However,
most current proposals for building a quantum computer use less ethereal
objects as qubits.

One model that is easy to visualize uses ions (i.e., electrically charged
atoms) to manifest the basic qubits. The electrons in an ion can arrange
themselves in any of a large number of orthogonal quantum states –
the dimension of the ion’s state space is in fact infinite in principle –
but under certain circumstances one can limit the set of likely states to
a two-dimensional subspace, so that the ion can represent a qubit. For
example, a singly ionized beryllium atom contains three electrons, and
two of the lowest-energy quantum states of this ion differ from each
other only in the orientation of the spin of the outermost electron relative
to the spin of the nucleus. (Recall the introduction of electron spin in
Examples 2.2.1 and 2.2.2.) One can use lasers to prepare and control the
ion in such a way that its state is mostly confined to the two-dimensional
subspace spanned by these two orthogonal states; these states can then
play the roles of |0〉 and |1〉. A quantum computer might consist of a
collection of these carefully prepared ions, arranged in a line and evenly
spaced – they repel each other electrically – the whole array being held
in place by an electromagnetic trap. In order to carry out a quantum
computation, one could manipulate the states of the ions with laser pulses.
We will return to this model of a quantum computer in the following
section.

Many other possible designs have been proposed, some of them based
on potential refinements, albeit difficult refinements, of the semiconductor
technology that underlies present-day computers. For example, in a layer

Ekert, and Zeilinger (2000), Lo, Popescu, and Spiller (2001), Pittenger (2000), Benenti,
Casati, and Strini (2004), and Preskill (2004). Three review articles focusing specifically
on Shor’s algorithm are Ekert and Jozsa (1996), Gerjuoy (2005), and Rieffel and Polak
(2000), the last of these being explicitly addressed to nonphysicists. The original paper is
Shor (1994); an expanded version is Shor (1997).

7.1. Introduction 207

of silicon, individual electrons could be localized at special sites forming a
regular array, and the spins of these electrons could be taken as the basic
qubits.

All potential designs for a quantum computer have to face the same
difficulty, namely, how to keep the qubits from interacting too strongly
with other objects that they might happen to come into contact with,
while at the same time allowing them to interact sufficiently strongly with
each other when necessary. Accidental interactions with the outside world
could, for example, create entanglement between the qubits of the com-
puter and extraneous quantum variables, and too much of this entan-
glement would make quantum computation impossible. (We often do
want the computer’s qubits to become entangled with each other, but not
with the outside world.) The problem of designing a quantum computer
is the focus of much ongoing research, and most researchers agree that
a full-scale quantum computer is at least decades away. But this prob-
lem is beyond the scope of this book. Here we only want to indicate
what one could do with a quantum computer if such a computer were
available.

One way of representing a classical computation is as a sequence of
simple gates. Each gate is a function, implemented as a physical operation,
that takes the state of a small number of bits to another state, possibly of
a different number of bits. A simple example of a classical gate is the not
gate, which acts on a single bit as follows:

0 → 1
1 → 0 (7.1)

Another is the and gate, which takes as input a pair of bits and pro-
duces one bit of output (it is equivalent to multiplication of the bit
values):

00 → 0
01 → 0
10 → 0 (7.2)
11 → 1

208 Chapter 7. Quantum Computing

Finally we mention the xor (exclusive or) gate, which is the same as
addition in Z2:

00 → 0
01 → 1
10 → 1 (7.3)
11 → 0

One can show that, as long as one is given arbitrarily many bits to start
with, all in a standard state (say, 0), and as long as one can freely copy a
bit or exchange the values of two bits, then the three gates just described
are sufficient to perform any calculation that a computer can perform.
That is, including additional, more complicated gates does not extend the
range of problems the computer can solve.

We begin our study of quantum computation by exploring the concept
of a quantum gate.

7.2 Quantum Gates

Let us try to express the and operation [Eq. (7.2)] as an operation on
qubits. At the outset we have a problem: the and operation takes two bits
to one bit, but the only operations we know how to perform on qubits are
unitary transformations, and these always take one state of a quantum
system to another state of the same quantum system, not to a state of a
smaller one. Of course we can always throw away one of the qubits after
the operation; so for now let us try to put the output of the and gate into
the second qubit, figuring that we can always throw away the first qubit.
Thus we might try to find a transformation that has the following effect,
in which the first qubit, which will be thrown away, is always brought to
the state |0〉 at the end of the operation:

|00〉 → |00〉
|01〉 → |00〉
|10〉 → |00〉 (7.4)
|11〉 → |01〉

Is there a single unitary matrix that accomplishes all four of these trans-
formations? It is easy to see that the answer is no. A unitary matrix always
has an inverse – the inverse of U is U† – but the above transformations are

7.2. Quantum Gates 209

not invertible, since three distinct initial states yield the same final state
|00〉.

So let us try to be more clever. Rather than setting the first qubit to
the state |0〉 in each case, let us use three distinct states |a〉, |b〉, and |c〉 to
make sure that each initial state has a distinct final state:

|00〉 → |a0〉
|01〉 → |b0〉
|10〉 → |c0〉 (7.5)
|11〉 → |01〉

For example, the state |a〉 might be |0〉, |b〉 might be |1〉, and |c〉 might be
(1/

√
2)(|0〉 + |1〉). But no such scheme will work, for the following reason.

A unitary transformation always takes orthogonal states to orthogonal
states. (We showed in Section 3.2 that a unitary transformation always
preserves inner products. Orthogonality is a special case in which the inner
product is zero.) The four initial states in Eq. (7.5) are orthogonal, but the
first three of the final states cannot all be orthogonal: the orthogonality
would have to come from the first qubit, and it is impossible to find three
mutually orthogonal states |a〉, |b〉, and |c〉 in a two-dimensional state
space.

At this point we give up on realizing the and operation as an operation
on just two qubits. Let us try to express it as an operation on three qubits:
the first two are the ones on which the and gate is acting, and the last one
is the one in which the result of the operation is to be expressed. Let us
imagine starting this third qubit in the state |0〉; this will be the “ready”
state. Thus we want our operation to effect the following changes:

|000〉 → |000〉
|010〉 → |010〉
|100〉 → |100〉 (7.6)
|110〉 → |111〉

Note that Eq. (7.6) is consistent with a unitary transformation. The four
given initial states, which are mutually orthogonal, are mapped into four
mutually orthogonal final states. In fact there are many different unitary
transformations that will accomplish these transformations. To see this,

210 Chapter 7. Quantum Computing

consider the following orthogonal basis for the three-qubit state space:

{|000〉, |001〉, |010〉, |011〉, |100〉, |101〉, |110〉, |111〉} (7.7)

Equation (7.6) tells us how four of these basis vectors transform, but it
does not tell us what happens to the other four.

How shall we finish defining our transformation? It is sufficient to
define it on the basis vectors; then its action on all other vectors can be
determined by linearity. (How linearity is used in this way is made explicit
in Eq. (7.11) below.) Let us try the following definition:

|x1, x2, y〉 → |x1, x2, x1 ∧ x2〉 (7.8)

Here x1, x2, and y each takes the values 0 and 1, and x1 ∧ x2 is the result of
applying the classical and gate to x1 and x2. This formulation is consistent
with Eq. (7.6), but it cannot be realized as a unitary transformation since
the two orthogonal states |000〉 and |001〉 both get mapped to the same
final state |000〉. A simple formulation that does work is given as follows:

U and|x1, x2, y〉 = |x1, x2, y ⊕ (x1 ∧ x2)〉, (7.9)

where ⊕ indicates addition mod 2. This transformation has the following
effect on the four basis vectors not covered by Eq. (7.6):

|001〉 → |001〉
|011〉 → |011〉
|101〉 → |101〉 (7.10)
|111〉 → |110〉

Equation (7.9) defines Uand only as it acts on the eight basis states
|x1, x2, y〉. We define its action on other states by linearity: that is, for
any two states |s〉 and |t〉 and complex numbers α and β, we insist that

Uand(α|s〉 + β|t〉) = α(Uand|s〉) + β(Uand|t〉). (7.11)

One can show that the operator Uand defined in this way is indeed unitary.
(See problem 1.)

Here, then, is a way to perform the and operation on two bits x1 and
x2 using a quantum computer: (i) set two qubits to the state |x1, x2〉, (ii)
set a third qubit (playing the role of y) to the state |0〉, (iii) perform Uand
on |x1, x2, y〉, (iv) perform the measurement (|0〉, |1〉) on the third qubit:
the outcome of this measurement gives the desired result of the and

7.2. Quantum Gates 211

operation. By an extension of this strategy, one can see that a quantum
computer can perform any ordinary classical operation, though in a rather
more cumbersome way.3

To get a hint of the potential power of a quantum computer, let us imag-
ine performing the operation Uand on a more interesting quantum state.
We begin by defining a new one-qubit operation called the Hadamard
gate, whose effect on the basis states is given by H|0〉 = (1/

√
2)(|0〉 + |1〉)

and H|1〉 = (1/
√

2)(|0〉 − |1〉). As before, let |0〉 and |1〉 be represented
explicitly by the vectors

|0〉 =
(

1
0

)
and |1〉 =

(
0
1

)
.

Then we can write H in matrix form:

H = 1√
2

(
1 1
1 −1

)
. (7.12)

Now let us imagine starting a three-qubit quantum computer in the state
|000〉 = |0〉A ⊗ |0〉B ⊗ |0〉C and then performing the operation HA ⊗ HB ⊗
IC, where I is the identity operation. The resulting state is

1
2

(|0〉 + |1〉) ⊗ (|0〉 + |1〉) ⊗ |0〉 = 1
2

(|000〉 + |010〉 + |100〉 + |110〉).
(7.13)

On this state let us perform the operation Uand. The result is

1
2

(|000〉 + |010〉 + |100〉 + |111〉). (7.14)

Note that in each term of this quantum superposition, the value expressed
in the last qubit is the result of applying the classical and operation to
the values of the first two qubits. Moreover, all four possible values of
the first two qubits are contained in this state. Thus there is a sense in
which the computer has, in a single application of the transformation
Uand, performed the and operation simultaneously on all possible inputs.
It is the recognition of this “quantum parallelism” that led researchers
to wonder whether a quantum computer could outperform a classical
computer.

3 Quantum gates such as Uand are reversible gates. The study of reversible computation
preceded the study of quantum computation. See, for example, Bennett (1973).

212 Chapter 7. Quantum Computing

One might raise the following objection: In order to write down
Eq. (7.14), we had to consider each of the four possible values of (x1, x2),
that is, 00, 01, 10, and 11, and we had to perform the and operation on
each of these. It must therefore also be harder, or take longer, for a quan-
tum computer to carry out the operation Uand starting with the state
Eq. (7.13) than starting with a simple state such as |000〉. But this is not
true. The quantum computer does not “know” what state it is acting on. It
goes through the same physical process whether it is acting on the simple
state |000〉 or on the more complicated state given in Eq. (7.13). It is true
that it is harder for us to write down what the quantum computer is doing
when the input state is complicated, but it is not harder for the computer
itself.

Even though there is a sense in which the quantum computer can
carry out many computations simultaneously, it is no mean feat to take
advantage of this quantum parallelism. One may be able to arrive at the
state (7.14) in a single application of Uand, but one cannot simply read
out all the information that appears in the mathematical expression of
this state: as we have seen in Chapter 2, it is impossible to ascertain the
state of a single quantum system by measurement. We could perform the
measurement (|0〉, |1〉) on each of our three qubits. But the effect of this
measurement would be to tell us (i) for which of four possible inputs we
will obtain the result of the and operation, and (ii) the result of the and
operation for that particular input. This is worse than using an ordinary
classical and gate: in that case we at least get to choose our own input,
rather than having a quantum measurement choose it for us randomly!
We will see in later sections how one can take advantage of quantum
parallelism, but for now we continue our discussion of quantum gates.

As in the above examples, the operations that we refer to as quantum
gates will always be unitary transformations. Though in the example of
the and gate it was useful to consider a transformation on three qubits,
the most basic gates that are typically used in discussions of quantum
computation are gates that act on just one or two qubits. Here we present
some of the most commonly used gates, expressed as matrices. It will be
clear from the size of the matrix whether each gate acts on one or two
qubits: recall that a 2 × 2 matrix acts on a single qubit and a 4 × 4 matrix
acts on a pair of qubits. For completeness we include the Hadamard gate
defined above.

7.2. Quantum Gates 213

1. The T gate: T = (1 0
0 e iπ/4

)
2. The Hadamard gate: H = 1√

2

(1 1
1 −1

)
3. The X gate: X = (0 1

1 0

)
4. The Z gate: Z = (1 0

0 −1

)
5. The controlled-not gate: cnot =

(
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

)

In writing this last gate as a matrix, we are using the representation

|00〉 =




1
0
0
0


 , |01〉 =




0
1
0
0


 , |10〉 =




0
0
1
0


 , |11〉 =




0
0
0
1


 .

Thus the cnot gate has the following effect on a pair of qubits: |00〉 → |00〉,
|01〉 → |01〉, |10〉 → |11〉, |11〉 → |10〉. That is, when we consider the effect
of this gate on the standard basis states, the value of the first qubit is
unchanged, and the value of the second is flipped if and only if the value
of the first is 1. In this sense the second qubit is controlled by the first one.
We call the first qubit the “control qubit,” and the second is called the
“target qubit.”

A quantum program can be regarded as a sequence of quantum gates
and measurements, as in the following example.

Example 7.2.1. Consider the following simple program for a three-qubit
quantum computer.

1. Start with all three qubits in the state |0〉; so the whole computer is in
the state |000〉.

2. Perform on the second qubit the operation X, defined above. (Note
that X|0〉 = |1〉 and X|1〉 = |0〉. You may recall this operation from
Chapter 3, where it was used in quantum teleportation.)

3. Perform the cnot gate, with the second qubit as the control and the
third qubit as the target.

4. Perform the cnot gate, with the first qubit as control and the third
qubit as target.

5. Finally, measure the third qubit in the basis (|0〉, |1〉).

214 Chapter 7. Quantum Computing

1

2

3

X

0

0

0

Figure 7.1: A circuit diagram illustrating Example 7.2.1. In each cnot gate, the
symbol • is placed on the control qubit and ⊕ is placed on the target qubit. The
symbol for the final measurement is supposed to be a box with two light bulbs on
it, one for each possible outcome.

The whole sequence of gates can be expressed as follows:

(cnot)13(cnot)23 X2|000〉 (7.15)

Here the subscripts indicate, in the case of the single-qubit gate X, which
qubit is being acting upon, and in the case of the two-qubit gate cnot,
which qubit is the control and which is the target.

We can interpret our sample program as follows. First, you can con-
vince yourself that the two cnot gates, acting on a state of the form
|x1, x2, 0〉, have the effect of adding (mod 2) the bits x1 and x2 and placing
the result in the third qubit. That is,

(cnot)13(cnot)23|x1, x2, 0〉 = |x1, x2, x1 ⊕ x2〉,

where we again use ⊕ to indicate addition mod 2. The initial Xgate, acting
on the second qubit, has the effect of giving (x1, x2) the values (0, 1). So
the program evaluates 0 ⊕ 1 and finds that the answer is 1. We extract the
answer by measuring the third qubit. With a different use of X gates, we
could have prepared any of the four possible combinations of (x1, x2) and
in this way could have computed x1 ⊕ x2 for any of these cases.

It is often helpful to visualize a quantum program, and there is an easy
way to do this: let each qubit be represented by a horizontal line, and each
gate or measurement by an appropriate symbol, the whole diagram being
read from left to right. In this way the above program can be represented
by the diagram shown inFig. 7.1. A diagram of this sort is traditionally
called a circuit diagram.

Returning to the ion-trap model of a quantum computer, we can inter-
pret a circuit diagram in very physical terms. Each line in the diagram rep-
resents an ion. Each single-qubit gate represents a carefully constructed
laser pulse literally focused on the particular ion on which the gate is

7.2. Quantum Gates 215

supposed to act.4 To realize a two-qubit gate, one method is to hit both
of the relevant ions with laser pulses, one at a time, and to use the pos-
sibility of an overall vibration of the whole line of ions as a vehicle for
conveying quantum information from one ion to the other. Thus we ar-
rive at one possible physical image of a quantum computation: there is a
line of ions prepared in a special state, and the computation proceeds as a
programmed sequence of laser pulses, each pulse targeting a specific ion.
Measuring an ion’s state is also accomplished with a laser: one sends in a
specific frequency and polarization of laser light that will cause the ion to
fluoresce if it is, say, in the |0〉 state but not if it is in the |1〉 state.

The general model of quantum computation that we have presented
here, that is, a sequence of gates and measurements, is not the only possi-
ble model. An alternative model that shows considerable promise is one in
which the computation consists only of measurements. In this alternative
model, one starts by preparing a large collection of qubits in a particular
entangled state. The computation is then expressed as a sequence of mea-
surements, each measurement usually being performed on just one or two
qubits. The choice of what measurement to perform at each step might
depend on the outcomes of earlier measurements. Though there may be
advantages to such measurement-based models, we will focus here on the
model based on gates, which has been the focus of most of the research
so far on quantum computation.

We have not yet presented an example of a problem for which a quan-
tum algorithm can do better than any classical algorithm. In other words,
we have not yet shown how, despite the fact that one cannot simply read
out a quantum state, one can nevertheless take advantage of quantum par-
allelism. The following section provides a simple example demonstrating
the quantum advantage.

EXERCISES

Problem 1. Show that the operator Uand defined in Eqs. (7.9) and (7.11)
is indeed unitary.

4 Actually, because the energy difference between the states |0〉 and |1〉 of the ion is much
smaller than the energy scale associated with visible light, one uses not a single laser pulse
but rather a pair of pulses with slightly different frequencies. The difference between the
two frequencies is tuned to the small energy difference between the qubit states.

216 Chapter 7. Quantum Computing

Problem 2. Consider the single-qubit operations X and Z that we used
for teleportation in Chapter 3 and included in our list of gates in this
section:

X =
(

0 1
1 0

)
Z =

(
1 0
0 −1

)

Suppose we have a device that can perform the operations H =
1√
2

(1 1
1 −1

)
and T2 = (1 0

0 i

)
. By a sequence of such operations, is it pos-

sible to perform X and Z, at least up to an overall phase factor (which is
physically irrelevant)? If so, what sequence gives X, and what sequence
gives Z?

Problem 3. Suppose that three qubits ABC start out in the state
(1/

√
3)(|000〉 + |100〉 + |101〉). Is it possible by any sequence of single-

qubit operations (not necessarily just the ones listed in this section) to
bring the qubits to the state (1/

√
3)(|100〉 + |010〉 + |001〉)? If so, find such

a sequence. If not, prove that no such sequence exists. (Here, applying
a single-qubit gate U to the first qubit, for example, means applying the
transformation U ⊗ I ⊗ I to the whole system.)

Problem 4. The “controlled-Z ” gate is defined by the matrix

controlled-Z =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1


 .

Show how to perform the controlled-Z gate as a sequence of gates
containing only H and cnot. (Here the H can act on either qubit;
that is, the operation on the pair of qubits can be either H ⊗ I or
I ⊗ H.)

Problem 5. Consider the single-qubit states |+〉 = (1/
√

2)(|0〉 + |1〉) and
|−〉 = (1/

√
2)(|0〉 − |1〉). These two states constitute an orthonormal basis

for a single qubit.
(a) Find the result of applying the cnot gate to each of the following

two-qubit states: | + +〉, | + −〉, | − +〉, | − −〉. (Here “| + +〉,” for exam-
ple, is short for |+〉 ⊗ |+〉.)

7.3. The Deutsch Algorithm 217

(b) In terms of the basis states |+〉 and |−〉, can the action of the cnot
gate be reasonably described as “controlled-not”? In what important way
does this action differ from the action of cnot on the standard basis states?

7.3 The Deutsch Algorithm

In 1985 David Deutsch presented a simple example showing how a quan-
tum computer can in principle outperform a classical computer.5 The
example involves the evaluation of a simple function. So we begin by
discussing the general problem of evaluating a function with a quantum
computer.

We have already considered one such function, namely, the classical
and gate. This gate can be thought of as the function f from Z

2
2 to Z2

defined by

f (00) = 0
f (01) = 0 .
f (10) = 0
f (11) = 1

In the preceding section we arrived at a method of evaluating this function:
let Uf be the unitary transformation having the following effect on the
basis states of three qubits.

Uf |x1, x2, y〉 = |x1, x2, y ⊕ f (x1, x2)〉, (7.16)

where ⊕ is addition mod 2. The effect of Uf on all other states of three
qubits is defined by linearity. To evaluate f (x1, x2), we bring our quantum
computer, consisting of three qubits, to the state |x1, x2, 0〉, then apply Uf ,
and finally measure the third qubit. The result of this measurement will
be f (x1, x2).

In the same way, if we want to evaluate a function �g from Z
n
2 to Z

m
2 , we

arrange for our quantum computer to carry out the unitary transformation
defined by

Ug|�x, �y〉 = |�x, �y ⊕ �g(�x)〉, (7.17)

5 Deutsch (1985).

218 Chapter 7. Quantum Computing

where �y ⊕ �g(�x) is an m-component vector whose kth component is the
sum, mod 2, of the kth component of �y and the kth component of �g(�x).
Now, depending on the function, implementing the transformation Ug

physically might be quite complicated, but the laws of quantum mechanics
tell us that such a transformation, being unitary, is allowed in principle.
(You will prove in the exercises that Ug is indeed unitary.)

We are now ready to describe the Deutsch algorithm. Fortunately it
requires the evaluation of the simplest sort of function, namely, a func-
tion from Z2 to Z2. There are only four such functions, which we label
f1, . . . , f4:

f1(0) = 0; f1(1) = 0
f2(0) = 0; f2(1) = 1
f3(0) = 1; f3(1) = 0
f4(0) = 1; f4(1) = 1

Suppose that we are given a piece of hardware that computes one of the
functions fk, but we are not told the value of k; that is, we are not told
which function our device computes. (The problem is going to be to find
out something about this function.) Actually let us suppose that we are
given two such pieces of hardware, each of which computes the same fk.
One of them is classical and can be inserted into a classical computer;
the other is quantum – it executes the unitary transformation Ufk – and
can be inserted into a quantum computer. We have a choice about which
piece of hardware to use – we will use one or the other exclusively – and
we need to decide which one is better for our purpose.

Now, what exactly is our purpose? We are asked to figure out, not
the whole function fk, but only the value of f (0) ⊕ f (1) (the addition is
mod 2). And we are trying to minimize the number of times that we use
our piece of hardware.

If we choose the classical device, it is clear that we will have to use
the device twice: we use it once to evaluate f (0), and we use it again to
evaluate f (1). Then we can compute f (0) ⊕ f (1). If we have not found
both f (0) and f (1), then there is no way we can know the value of the
sum.

On the other hand, if we choose the quantum device (imbedded in
a quantum computer), it turns out that we need to use it only once. In

7.3. The Deutsch Algorithm 219

x

y X

0

0

H

H

Hx x

Ufk

y y+fk(x)

1 2 3 4 5

Figure 7.2: A circuit diagram illustrating the Deutsch algorithm.

this sense it is better to use a quantum computer. Let us now see how to
accomplish this feat.

Figure 7.2shows the whole algorithm in diagrammatic form. Our quan-
tum computer consists of two qubits, whose basis states are labeled by the
bits x and y. Here are the steps of the algorithm.

1. Start the computer in the state |00〉. Let us call this state |ψ1〉.
2. Apply the X gate to the second qubit. The result is |ψ2〉 = X2|ψ1〉 =

|01〉.
3. Apply the Hadamard gate H to each qubit. The result is

|ψ3〉 = H1 H2|ψ2〉 = (H|0〉) ⊗ (H|1〉)
=
[

1√
2

(|0〉 + |1〉)
]
⊗
[

1√
2

(|0〉 − |1〉)
]

.

4. Apply the device that implements Ufk. To figure out the effect of this
device on |ψ3〉, let us first think about what happens when we apply
it to the simpler state |x〉 ⊗ [(1/

√
2)(|0〉 − |1〉)]. The transformation

Ufk has the effect of adding fk(x) to the bit expressed in the second
qubit. If fk(x) = 0, then the second qubit is unchanged, and so the
whole state is unchanged. But if fk(x) = 1, the state of the second
qubit changes from (1/

√
2)(|0〉 − |1〉) to (1/

√
2)(|1〉 − |0〉), which is

the negative of the original state. (If the state of the system actually
were |x〉 ⊗ [(1/

√
2)(|0〉 − |1〉)], this negative sign would be irrelevant –

it would be an overall phase factor – but the actual state is a super-
position of two states of this form, so the negative sign might make a
difference, since it might affect one component of the superposition
but not the other.) Putting these observations together, we have

Ufk|x〉 ⊗
[

1√
2

(|0〉 − |1〉)
]
= (−1) fk(x)|x〉 ⊗

[
1√
2

(|0〉 − |1〉)
]

.

220 Chapter 7. Quantum Computing

Now applying Ufk to the actual state |ψ3〉, we have

|ψ4〉 = Ufk|ψ3〉 = 1√
2

[
(−1) fk(0)|0〉 + (−1) fk(1)|1〉

]
⊗ 1√

2
(|0〉 − |1〉).

Notice that if fk(0) ⊕ fk(1) = 0, that is, if fk(0) = fk(1), then |ψ4〉 can
be written as

|ψ4〉 = ± 1√
2

(|0〉 + |1〉) ⊗ 1√
2

(|0〉 − |1〉) (fk(0) ⊕ fk(1) = 0).

On the other hand, if fk(0) ⊕ fk(1) = 1, so that fk(0) �= fk(1), then
we have

|ψ4〉 = ± 1√
2

(|0〉 − |1〉) ⊗ 1√
2

(|0〉 − |1〉) (fk(0) ⊕ fk(1) = 1).

We see, then, that the value of fk(0) ⊕ fk(1) is expressed in the first
qubit. Moreover, the two possible states of that qubit are orthogonal to
each other. So it should be possible for us to extract that information.
We could, in fact, perform at this point a measurement on the first
qubit, using the measurement states ((1/

√
2)(|0〉 + |1〉), (1/

√
2)(|0〉 −

|1〉)). The next two steps offer an alternative approach.
5. Apply the Hadamard gate H to the first qubit. Note that H(1/

√
2)(|0〉

+ |1〉) = |0〉and H(1/
√

2)(|0〉 − |1〉) = |1〉. So the state of our quantum
computer is now

|ψ5〉 = H1|ψ4〉 =
{±|0〉 ⊗ 1√

2
(|0〉 − |1〉) if fk(0) ⊕ fk(1) = 0

±|1〉 ⊗ 1√
2
(|0〉 − |1〉) if fk(0) ⊕ fk(1) = 1

6. Measure the first qubit in the basis (|0〉, |1〉). The bit labeling the out-
come of this measurement is the value of fk(0) ⊕ fk(1).

We have thus been able to figure out the value of fk(0) ⊕ fk(1) with
only one application of the device that evaluates fk. (We applied Ufk

in step 4 and nowhere else.) We were able to do this because we ap-
plied this device to a state that involved both of the possible values of
x. The result therefore involved both fk(0) and fk(1). Notice that this
algorithm does not tell us the value of either fk(0) or fk(1). We could
not have extracted either of these values from |ψ4〉, for example. But the
algorithm cleverly arranges that the desired combination of these two
values can be extracted. Something very similar will happen in Shor’s fac-
toring algorithm. The quantum computer will appear to compute many

7.4. A Universal Set of Quantum Gates 221

different values in one step, but we will not be able to extract these
values from the quantum state. Rather, we will be able to extract the
one combination of these values that we need for factoring the given
integer.

Though the Deutsch algorithm indicates how a quantum computer
can be more efficient than a classical one, there is a sense in which the
comparison is not fair. If we choose to use a quantum computer, then
we are allowed to use the quantum device that implements Ufk. This is a
different sort of resource than the classical device that computes fk. So
one could argue that the quantum problem is not the same as the classical
problem. A real test of the value of a quantum computer would be to
pose a problem that is independent of hardware. The factoring problem
will provide such a test.

EXERCISES

Problem 1. (a) Let |x〉, x = 0, 1, . . . , N, denote the basis states of an N-
dimensional state space. Show that if f (x) is any permutation of the inte-
gers 0, 1, . . . , N, then the linear transformation defined by U|x〉 = | f (x)〉
is unitary.

(b) Show that any transformation of the form given in Eq. (7.17)
permutes the basis states |x, y〉 and therefore, by part (a), is unitary.

Problem 2. Why was the initial X gate necessary for the Deutsch algo-
rithm? Go through the remaining steps of the algorithm with the X gate
omitted to see what happens in that case.

7.4 A Universal Set of Quantum Gates

Let us summarize again the model of quantum computation that we are
considering. First, the computer is placed in a standard state, which we
will always take to be |0〉 ⊗ |0〉 ⊗ · · · ⊗ |0〉. Then one executes a series of
steps, each step consisting either of a gate (that is, a unitary transforma-
tion) acting on a small number of qubits, or a measurement performed
on some of the qubits. At the end, the results of these measurements
provide the output of the computation. One can show that any quantum

222 Chapter 7. Quantum Computing

computation of this form can be converted into another quantum com-
putation in which all the measuring happens at the very end. In that
case, we have a particularly simple conception of the process: start the
computer in its standard state, execute a sequence of gates, and make
a measurement. Each gate acts on a limited number of qubits, but we
will assume that at each step, one can choose which qubits the gate is to
act on. For example, we may choose to let the cnot gate act on qubits 3
and 17.

Because each of the gates is simply a unitary transformation, the
whole sequence of gates that one finds in a quantum computation can
together be thought of as constituting a single, usually very complicated
unitary transformation performed on the whole computer. A set of gates
is called universal if, by combining them in a sequence, one can ap-
proximate to any desired precision an arbitrary unitary transformation
on a quantum computer of arbitrary size. In the following paragraphs
we will offer a rough outline of the proof of the following important
theorem.6

Theorem 7.4.1. The cnot gate, together with all conceivable single-qubit
gates, constitutes a universal set. In fact, for this set of gates one can drop
the qualification, “to any desired precision”: these gates can generate any
unitary transformation exactly. (In building an arbitrary unitary transfor-
mation out of these basic gates, one will sometimes want to let the cnot
gate act on, say, qubits 4 and 6, sometimes on qubits 71 and 5, and so on.
Similarly, in any given step, a single-qubit gate can be applied to any of
the n qubits.)

To get a sense of how one might prove this claim of universality, we
begin with an easier problem. Let U be an arbitrary 3 × 3 unitary matrix.
(This U does not act on a collection of qubits, since the dimension of
the state space of a collection of qubits is always a power of 2. But it is
nevertheless helpful to start here.) It is a fact, which you will confirm in
Problem 2, that any such U can be written in the form U = U1U2U3, where

6 DiVincenzo (1995); Barenco et al. (1995). Our treatment follows that of Nielsen and
Chuang (2000), Section 4.5.

7.4. A Universal Set of Quantum Gates 223

the Ui have the following forms.

U1 =


a b 0

b̄ −ā 0
0 0 1


 , U2 =


 c 0 d

0 1 0
d̄ 0 −c̄


 , U3 =


1 0 0

0 e f
0 f̄ −ē


 .

(7.18)

Here |a|2 + |b|2 = |c|2 + |d|2 = |e|2 + | f |2 = 1. One can verify that each
of the Ui is unitary.

Of course if our computer consists of n qubits, the dimension of the
state space is N = 2n, but one can similarly show that any N × N unitary
matrix can be written as a product of simple unitary matrices, each of
which acts only on two dimensions like the three Ui ’s in Eq. (7.18). Now,
“two dimensions” may sound like it refers to the state space of a single
qubit. So it may seem that we have reduced any unitary transformation
into a sequence of single-qubit operations. But this is not the case. A uni-
tary transformation acting on two dimensions is more like a controlled
operation on a single qubit. Consider, for example, a unitary transforma-
tion of the form

U =




1 0 0 0
0 a 0 b
0 0 1 0
0 c 0 d


 , (7.19)

which acts only on two dimensions, namely, the second and fourth di-
mensions. That is, only the second and fourth components of a vector
are affected by U. Note that this transformation performs the operation(a b

c d

)
on the first qubit if the state of the second qubit is |1〉, and leaves the

first qubit unchanged if the state of the second qubit is |0〉. In this sense
the operation is controlled by the second qubit.

But what about a unitary matrix of the form

V =




1 0 0 0
0 a b 0
0 c d 0
0 0 0 1


 , (7.20)

which likewise acts only on two dimensions? This matrix does not repre-
sent a controlled operation on a single qubit; rather, it connects the two
states |01〉 and |10〉, which differ in the states of both qubits. Nevertheless,

224 Chapter 7. Quantum Computing

we can express V as a sequence of controlled single-qubit operations.
Specifically, one can work out that V = (cnot)U(cnot), where U is given
by Eq. (7.19). In a similar way, one can show that any unitary trans-
formation that acts only on two dimensions can be written as a se-
quence of controlled single-qubit operations. It follows, then, that any
unitary transformation on n qubits, acting on arbitrarily many dimen-
sions, can likewise be written as a sequence of controlled single-qubit
operations.

Finally, one can show that any controlled single-qubit operation can be
written as a sequence of ordinary (not controlled) single-qubit operations
and the cnot gate. In this way one sees that the set of gates consisting of
the cnot and all single-qubit gates is universal.

Though it is comforting to have in hand a universal set of reason-
ably simple gates, the set that we have is infinite, since there are infinitely
many single-qubit gates. In order to evaluate the efficiency of a quan-
tum computation, it is necessary to work with a finite set of basic gates.
Then if one asks, for example, how the number of steps in a computa-
tion grows with the size of the problem to be solved, one can be confi-
dent that the answer has a practical meaning. (For example, one would
like to know how the number of steps in a factoring algorithm grows
with the length of the number to be factored.) If an infinite number
of basic gates were allowed, one expects that it would take an infinite
amount of time to home in on the exact gate to be used in a typical
step.

Now, we can convert our infinite set of gates into a finite set if we can
find a finite set of single-qubit gates that, when combined in sequences, are
sufficient to generate an arbitrary single-qubit gate. LetG = {G1, . . . , Gm}
be some finite set of gates that we want to take as basic. It will certainly not
be possible to express every single-qubit gate as a finite sequence of gates
chosen from G, simply because there are uncountably many single-qubit
gates and only countably many finite sequences of elements chosen from
a finite set. However, we can hope to approximate each single-qubit gate
with arbitrary precision using such sequences.

In fact one can show that any single-qubit gate can be approximated
arbitrarily well by a sequence consisting only of the gates {H, T} in
some order, where H and T are the Hadamard and T gates defined in

7.4. A Universal Set of Quantum Gates 225

Section 7.2.7 Since any unitary transformation can be expressed as a
sequence of cnots and single-qubit gates, it follows that any unitary trans-
formation can be approximated arbitrarily closely by a sequence of gates
chosen from the finite set {cnot, H, T}.

Of course it is conceivable that an algorithm that appears to be quite
efficient when expressed as a sequence of cnots and arbitrary single-qubit
gates might be extremely inefficient once each of the single-qubit gates
is expanded out into a sequence of gates chosen from the set {H, T}.
Fortunately it has been proven that in the translation of an arbitrary
single-qubit gate into a sequence of H’s and T’s, the length of the sequence
grows quite slowly with increasing precision of the approximation.8 So the
translation from an infinite set of basic gates to a finite set ultimately does
not cause any problems for the efficiency of quantum computation.

It turns out that a typical unitary transformation on a collection of
qubits, when expressed as a sequence of gates chosen from any finite set,
requires a sequence whose length grows exponentially with the number of
qubits. Fortunately, however, some very interesting computational prob-
lems require unitary transformations that are very atypical in this respect.
A prime example is Shor’s factoring algorithm, which we begin to study
in the following section.

EXERCISES

Problem 1. Show that the transformation V of Eq. (7.20) can indeed be
written as V = (cnot)U(cnot), with U given by Eq. (7.19).

Problem 2. This problem aims to show that any 3 × 3 unitary matrix can
be expressed as in Eq. (7.18). Let the unitary transformation we are trying
to express be

U =


 r s t

u v w

x y z


 .

7 Boykin et al. (1999).
8 This result is due to Solovay (1995, unpublished) and Kitaev (1997). For a review, see

Dawson and Nielsen (2006).

226 Chapter 7. Quantum Computing

Our strategy is to multiply this matrix on the left by a succession of simple
matrices, so that the result is the identity matrix. Reversing the process
then produces U.

(a) In terms of the components of U, find a matrix U1 of the form given
in Eq. (7.18), such that U†

1U has a 0 in the first position of the second row.
(b) Let U†

1U be written as

U†
1U =


 r ′ s ′ t ′

0 v′ w′

x′ y′ z′


 .

In terms of these components, find a matrix U2 of the form given in
Eq. (7.18), such that U†

2U†
1U has a 0 in the first position of the third row

and a 1 in the upper left-hand corner.
(c) The matrix U†

2U†
1U now must have the form

U†
2U†

1U =


 1 0 0

0 v′′ w′′

0 y′′ z′′


 .

The zeros in the first row are a consequence of the fact that U†
2U†

1U
is itself unitary: any other values would make the sum of the squared
magnitudes of the first-row elements too large. In terms of the remaining
nonzero components, find U3 of the form given in Eq. (7.18), such that
U†

3U†
2U†

1U = I . It follows, then, that U = U1U2U3.

7.5 Number Theory for Shor’s Algorithm

Before we start discussing Shor’s factoring algorithm in detail, we should
note that it is a probabilistic algorithm. As we will see shortly, the very first
step is to make a random choice. And later we will see that the algorithm
involves a quantum measurement whose outcome is probabilistic. As is
usually the case with a probabilistic algorithm, there is no absolute guar-
antee that the algorithm will be successful. Rather, there will be some
probability of success. For practical purposes this is just fine, as long as
one can place a reasonable lower bound on this probability. Even if the
probability of failure is, say, 90%, one can run several independent trials,
thereby making the overall probability of failure smaller and smaller: for

7.5. Number Theory for Shor’s Algorithm 227

example, the probability of failure in each of 50 successive trials would
be (0.90)50 = 0.005.

The algorithm is based on a mathematical approach to factoring that
has been known for some time. In this section we present the basic mathe-
matics; the quantum mechanics will come into our analysis in the following
section. It is the quantum part that is usually called “Shor’s algorithm.”

Let M be the composite integer we are trying to factor. Let us choose
at random an integer a, with 1 < a < M, and find gcd(a, M). Recall that
the greatest common divisor can be found via the Euclidean algorithm,
which is quite efficient. If this greatest common divisor is not 1, then we
have found a nontrivial factor of M. If gcd(a, M) = 1, then a and M are
relatively prime, and we proceed as follows.

Consider the function f (x) = ax (mod M) for x = 0, 1, 2, We claim
that this function is periodic with period r ≤ M. (See Problem 1.) Here
by “period” we mean the smallest positive integer r such that f (x + r) =
f (x) for all x. The period r is called the “order” of a modulo M.

Now suppose that we can find this period. (This is what the quantum
computer will do for us.) And suppose that r happens to be even. Then
since

ar − 1 = 0 (mod M),

we have

(ar/2 + 1)(ar/2 − 1) = 0 (mod M),

which means that (ar/2 + 1)(ar/2 − 1), which is a positive integer, is a
multiple of M. This in turn implies that all the prime factors of M
must be present in (ar/2 + 1) and (ar/2 − 1) combined. Therefore either
gcd(ar/2 + 1, M) or gcd(ar/2 − 1, M), or both, must be a factor of M that
is greater than 1. If this factor is not equal to M itself – it could equal M if
all the prime factors of M were located in (ar/2 + 1) – then we have found
a nontrivial factor.

There are two ways in which this simple algorithm can fail: (i) r might
turn out not to be even, or (ii) the factor we find might turn out to be M
itself. We state the following comforting theorem without proof.9

9 The proof is in Ekert and Jozsa (1996), Appendix B.

228 Chapter 7. Quantum Computing

Theorem 7.5.1. As long as M is not even and not a power of a prime, then
if a is chosen at random from those integers in {2, 3, . . . , M − 1} that are
relatively prime to M, the probability of this method giving a nontrivial
factor of M is at least 1/2.

Thus by repeating the algorithm several times, we can quickly increase
the odds of succeeding. By the way, it is easy to recognize success when
it happens: finding factors is difficult, but checking that one has found
a factor is a quick calculation. Note that in the RSA cryptosystem, the
integer M, which the eavesdropper would like to factor, is indeed odd and
not a power of a prime. (We called this integer n in Section 1.9.)

Example 7.5.1. Let M = 39 and a = 5. We list the first few values of the
function f (x) = ax (mod 39).

f (0) = 1 f (1) = 5 f (2) = 25 f (3) = 8 f (4) = 1

We see, then, that the period r is equal to 4. Since r is even, we can proceed
with the algorithm. So we look at ar/2 + 1 and ar/2 − 1:

ar/2 − 1 = 52 − 1 = 24 ar/2 + 1 = 52 + 1 = 26
gcd(ar/2 − 1, M) = gcd(24, 39) = 3 gcd(ar/2 + 1, M) = gcd(26, 39) = 13

So in fact we have found both nontrivial factors of 39.

In this example it was easy to find the period r because the integer M
was so small. If the number we are trying to factor has several hundred
digits, finding the period by a straightforward evaluation of the func-
tion f (x) is out of the question, even on a computer (that is, a classical
computer). Other factoring algorithms are much more efficient. A quan-
tum computer, however, can do the job, but not by what one would call a
straightforward evaluation.

EXERCISES

Problem 1. Let M be any integer greater than 1, let a < M be relatively
prime to M, and define f (x) to be f (x) = ax mod M. Show that f (x) is
periodic with some period r ≤ M.

7.6. Finding the Period of f (x) 229

Problem 2. Let M, a, and f (x) be as in Problem 1, and let r be the order of
a mod M. Show that the integers f (0), f (1), . . . , f (r − 1) are all distinct.
That is, show that no value is repeated until one has finished a whole
period.

Problem 3. Show how the factoring algorithm presented in this section
works out for M = 85 and a = 3. That is, carry out the steps of Example
7.5.1 but with these numbers.

7.6 Finding the Period of f (x)

The basic idea behind Shor’s algorithm is this. We will, through a series
of operations, bring the quantum computer into a superposition of many
distinct quantum states, in which each of the component states expresses
(i) a value of x and (ii) the corresponding value of f (x). Moreover, all
possible values of x up to some chosen maximum will be represented
in this superposition. Then we will perform a clever operation, called
the “quantum Fourier transform,” that will allow us to extract informa-
tion about the period r . In order to get a sufficiently high probability of
obtaining the period in this way, we will need the computer to have com-
puted, in superposition, the values of f (x) over many periods. Since the
period r might be of the same order of magnitude as M itself, we want
the maximum value of x to be many times M. As we will see later, we
can obtain the period with a sufficiently high probability of success if we
let this maximum value be approximately M2. Though we have in mind
that this algorithm will be used to factor a product of two large primes,
as in the RSA system, we will not assume here that M is such a number.
In fact, the algorithm presented here could be used to find the order of a
mod M for any integer M greater than 2 and any relatively prime a less
than M.

It is helpful to imagine the quantum computer as containing two
“registers.” The “x-register” consists of m qubits, with m chosen so that
M2 ≤ 2m < 2M2. In other words, m is the smallest integer greater than
or equal to log2(M2) = 2 log2 M. The basis states of this register, such
as |000 . . . 0〉, can be read as the binary representations of the integers
0, . . . , 2m − 1. For example, the state |111 . . . 1〉 represents the integer

230 Chapter 7. Quantum Computing

2m − 1. In this way the register can express values of x at least up to
M2− 1. And the register itself is roughly twice as long as what would be
needed to store the number M. The “y-register” will be used to express
the value of f (x) = ax (mod M). This function takes integer values be-
tween 0 and M − 1, so the number of qubits needed for the y-register
is the smallest integer greater than or equal to log2 M. Thus in the two
registers combined, the number of qubits is about three times the length
in binary of the number M. Let the basis states of the two registers be
labeled |x, y〉. Here x is an integer whose binary expansion labels a basis
state of the x-register, and y similarly labels a basis state of the y-register.

Example 7.6.1. Suppose the number M that we want to factor is a 500-
digit number. That is, M ≈ 10500. Then the number of binary digits it takes
to express M is roughly log2(10500) = 500 log2(10) = 500(3.32) = 1660.
So the x-register will contain roughly 2(1660) = 3320 qubits, and the y-
register will contain roughly 1660 qubits. This means that in principle,
a quantum computer capable of factoring a 500-digit number efficiently
would only have to have a few thousand qubits. (In reality many more
qubits would be required in order to do the necessary error correction.)

We now go through the steps of Shor’s algorithm for finding the period
of f (x). For now we will not be concerned with the question of how
efficiently each step can be carried out. Rather, we simply assume that
any unitary transformation can be realized, and we save questions of
efficiency for later. Moreover, while the first four steps in the following
sequence are relatively straightforward, the last two involve mathematical
claims that we will have to justify. Our approach is to lay out the algorithm
in a compact way and to save the justification for the following section.
In particular, the quantum Fourier transform appearing in step 5, which
is in a sense the heart of the algorithm, will be discussed in some detail in
Section 7.7

1. Set the two registers to the initial state |�0〉 = |0, 0〉. That is, each qubit
in each register is set to the state |0〉.

2. Apply the Hadamard gate H to each qubit in the x-register. Recall
that H|0〉 = (1/

√
2)(|0〉 + |1〉). So the x-register is now in the state

1√
2

(|0〉 + |1〉) ⊗ 1√
2

(|0〉 + |1〉) ⊗ · · · ⊗ 1√
2

(|0〉 + |1〉).

7.6. Finding the Period of f (x) 231

x

f(x)

Figure 7.3: A schematic illustration showing which basis states are included in the
state |�2〉. Note that the periodic function f (x) never repeats itself until it has run
through an entire period. The object of the Shor algorithm is to find the period r .

Note that when this product is multiplied out, every possible string
of m bits is represented, each with the same coefficient. Thus we can
write the state of the two registers as

|�1〉 = 1√
2m

2m−1∑
x=0

|x, 0〉.

3. We now want to evaluate the function f (x) = ax (mod M) and place
the result in the y-register. Since the x-register is in a superposition
of all values of x that can be expressed in the given number of bits,
this operation will simultaneously evaluate f (x) on all such values, an
example of quantum parallelism. But how do we represent the oper-
ation? It must be represented as a unitary operator, and the operator
we use is Uf , defined by Uf |x, y〉 = |x, y ⊕ f (x)〉, where “⊕” indi-
cates bitwise addition mod 2. (This is similar to what we did to express
the and gate in Section 7.2 and to express the function fk in Section
7.3.) That Uf is indeed unitary follows from Problem 1 of Section
7.3. Note that Uf |x, 0〉 = |x, f (x)〉; so the two registers are now in the
state

|�2〉 = Uf |�1〉 = 1√
2m

2m−1∑
x=0

|x, f (x)〉. (7.21)

We can picture this state as inFig. 7.3. Each possible position within the
rectangle represents a basis state |x, y〉 of the quantum computer, with
x plotted horizontally and y plotted vertically. The dots that are shown
in the picture indicate those basis states that are actually included in
the state |�2〉: they are simply a graph of the periodic function f (x).
All the basis states that are included have equal weight in the state, as
one can see from Eq. (7.21).

232 Chapter 7. Quantum Computing

4. Now measure the y-register in the standard basis. That is, for each
qubit, perform the measurement with outcomes corresponding to the
states |0〉 and |1〉. This is an example of an incomplete measurement
of the sort we studied in Section 2.4: we are measuring the y-register
but leaving the x-register unmeasured. The measurement forces each
qubit in the y-register to be in one of the states |0〉 or |1〉. Taken
together, these bits constitute the binary expansion of some integer u
in the range 0, . . . , M − 1. Though this measurement “collapses” the y-
register to the specific value u, it leaves the x-register in a superposition
of values, namely, all the values of x such that f (x) = u. Recall that
f (x) is a periodic function with a period no larger than M. The x-
register holds values up to M2 − 1; so f (x) will take the specific value
u for at least M different values of x that can be expressed in the
x-register. In fact, since f (x) does not repeat itself within a single
period,10 we can write these values as x0, x0 + r, x0 + 2r, and so on up
to within r of 2m, where x0 is a nonnegative integer less than the period
r . (This x0 is the smallest value of x for which f (x) = u.) These are
the values that are now superposed in the x-register. So we can write
the state of the two registers after the measurement as

|�3〉 = 1√
K

2m−1∑
x=0

g(x)|x, u〉,

where K is the number of values of x for which f (x) = u, and

g(x) =
{

1, if f (x) = u
0, if f (x) �= u.

The basis states that are included in |�3〉 are illustrated inFig. 7.4.
Notice that the y-register is now in the definite state |u〉 and the x-
register is in a superposition of all the states |x〉 for which f (x) = u.
From now on we will no longer perform any operations on the y-
register – it has served its purpose – so we will no longer write down
its state. (Its state will be |u〉 for the rest of the computation.)

5. Recall that we are trying to find the period r of f (x). Evidently the
function g(x), which is imbedded in the state |�3〉, likewise has period
r . So we now try to find the period of g(x). We do this by applying

10 See Problem 2 at the end of the preceding section.

7.6. Finding the Period of f (x) 233

x

u

Figure 7.4: A schematic illustration of the basis states included in the state |�3〉.
The period is still r , but the function g(x) is much simpler than f (x).

to the x-register a unitary transformation Uqft – this is the quantum
Fourier transform mentioned earlier – defined as follows:

Uqft|x〉 = 1√
2m

2m−1∑
c=0

e2π icx/2m|c〉. (7.22)

This transformation can look quite mysterious upon encountering it
for the first time. It will seem more familiar after you have done Prob-
lems 1 and 2. Applying Uqft to the x part of the state |�3〉, we obtain
the state

|�4〉 = 1√
K

2m−1∑
c=0

G(c)|c〉,

where

G(c) = 1√
2m

2m−1∑
x=0

g(x)e2π icx/2m
.

The function G(c) is called the discrete Fourier transform of g(x). Be-
cause g(x) is a very simple binary function, taking the value 1 only
at regular intervals, its discrete Fourier transform G(c) is also fairly
simple. We will study its properties in some detail in the following
section, and, in particular, we will justify and make precise the fol-
lowing claim: If the integer c is within 1/2 of a multiple of 2m/r , that
is, if |c − j(2m/r)| ≤ 1/2 for some integer j , then G(c) is relatively
large; otherwise it is small. Thus the locations of the peaks of the func-
tion G(c) tell us something about the desired quantity r . These peaks
are regular: they occur near multiples of 2m/r . This fact is illustrated
schematically inFig. 7.5.

6. Measure the x-register in the standard basis. The outcome of this
measurement will be some integer expressed in binary notation. The

234 Chapter 7. Quantum Computing

x

1

g(x)

(a)

c

|G(c)|

(b)

r

2m/r

Figure 7.5: An illustration of g(x) and G(c). G(c) determines the likely values of
c; so a measurement of c provides information about the original period r . (The
peak at c = 0 is shown to be higher because this is typically the case in practice.
As will become clearer in the following section, this happens because zero is the
multiple of 2m/r that is always guaranteed to be an integer.)

probability of getting a specific integer c is (1/K)|G(c)|2. According
to what we have just said, this probability tends to be reasonably large
for values of c that are within 1/2 of a multiple of 2m/r , that is, for
which

∣∣∣∣c − j
(

2m

r

)∣∣∣∣ ≤ 1
2

for some integer j . We will refer to such values of c as “good” values.
If our measured value of c is a good value (which, again, is reasonably
likely), it follows that

∣∣∣∣ c
2m

− j
r

∣∣∣∣ ≤ 1
2m+1

.

From this inequality we can hope to learn the value of r via the next
step in the algorithm. (We have now finished the quantum part of the
algorithm; the rest is math.)

7.6. Finding the Period of f (x) 235

7. Look for a number j ′/r ′, with j ′ and r ′ integers and r ′ < M, such that∣∣∣∣ c
2m

− j ′

r ′

∣∣∣∣ ≤ 1
2m+1

.

As we will show in the following section, there will always be at most
one such number j ′/r ′. If our value of c is a “good” value, then there
will be such a number j ′/r ′ and it will be equal to j/r for some integer
j . So our strategy is this: if there exists a fraction j ′/r ′ satisfying the
above conditions, write this fraction in reduced form and hope that
the resulting denominator is r . If there is no such fraction j ′/r ′, start
over at step 1, using the same fuction f (x).

8. If the preceding step has produced a candidate value of r , use this
value to compute f (r) = ar (mod M). If f (r) = 1, we have almost
certainly found the order of a. (If c was “bad,” it is still possible, but
extremely unlikely, that our candidate value is a multiple of the order.)
If f (r) �= 1, we run the algorithm again on the same function f (x).

Thus if all has gone well, we will have obtained the period r , which we
can then use as in Section 7.5 to try to find a nontrivial factor of M.

You might be wondering why we needed to go through step 5 at all.
We already had a quantum state, |�3〉, that embodied a periodic function
having the period r that we wanted to find. Step 5 replaced this state with
another state, |�4〉, that is nearly periodic, with a “period” that is not r
itself but 2m/r . Why is the latter better than the former? Both seem to
embody the information that we want to extract. The answer is that in
|�3〉 the periodic function is not anchored to any particular point on the
x-axis, at least no point that we know. So if we were to measure the value
of x when the computer is in the state |�3〉, we would learn nothing about
the period r . If we could measure the same computer several times while
it was in the state |�3〉, we could extract the period, but such repeated
measurements on the same state are not allowed by quantum mechanics:
the first measurement would collapse the variable x to a particular value,
and subsequent measurements would only produce the same value over
and over. Alternatively, we could try repeating the whole algorithm up
to that point several times, each time measuring the value of x. But these
repetitions would typically produce different values of u in step 4, and
the resulting functions g(x) would be shifted relative to each other, so
that these measurements of x would tell us nothing about the period r .

236 Chapter 7. Quantum Computing

In contrast, the function G(c) embodied in |�4〉 is anchored to the origin,
so that measuring the value of c can tell us something about r . This is
why step 5 is the crucial step of the algorithm. It is the step that allows
us to extract precisely the information we want without asking for more
information about the state than quantum mechanics allows.

But there are ways in which the algorithm can fail. Evidently we need
to find a good lower bound on the probability of succeeding in a given
trial. Moreover, the last two steps involve mathematical claims that clearly
need to be justified. These are the jobs of the following section. But first,
let us go through the Shor algorithm for the simple case of factoring the
number 39.

Example 7.6.2. Let us suppose, as in an earlier example, that the number
we are trying to factor is 39. Thus M = 39, M2 = 1521, and we therefore
choose m to be �2 log2 39 , which equals 11. That is, there are 11 qubits in
the x-register. The y-register will consist of 6 qubits, the minimum number
required to express all the integers in the range 0, . . . , 38.

In our earlier example we used a = 5 as the base in the function f (x) =
ax (mod M). For the present purpose it turns out to be more interesting
to use a = 7. (We will return to a = 5 in Example 7.7.1.) So f (x) = 7x

(mod 39). Suppose that we have run the Shor algorithm on our quantum
computer and have finally measured the x-register, obtaining the outcome
c = 853. In theory, this number is likely to be within 1/2 of a multiple
of 2m/r = 211/r = 2048/r . We cannot check this yet because we do not
know what r is. But if 853 is within 1/2 of j(2048/r) for some integer j ,
then the theory guarantees that we can find the fraction j/r , because it
will be the unique fraction, with denominator less than 39, that is within
1/212 of 853/2048. There is a reasonably small number of likely fractions
having denominator less than 39, and one can run through them all with
a calculator. One finds, sure enough, that only one of them is within the
specified distance of 853/2048. It is 5/12:∣∣∣∣ 853

2048
− 5

12

∣∣∣∣ = 0.000163 <
1

212
= 0.000244.

So our candidate for the fraction j/r is 5/12. This is consistent with
j = 5 and r = 12, but it is also consistent with j = 10 and r = 24.
Now, the algorithm asks us to write the fraction in reduced form, that

7.6. Finding the Period of f (x) 237

is, 5/12, and hope that the denominator is indeed equal to the pe-
riod r . Does the algorithm succeed in this particular example? One
can check that 712 (mod 39) = 1. So we have indeed found the
period.

In this case we were able to find a suitable fraction j ′/r ′ by trial and
error, but if we are trying to factor a 500-digit number, we will not be able
to do this. Toward the end of the following section we will present a more
systematic way of looking for such a fraction.

EXERCISES

Problem 1. This problem explores the discrete Fourier transform for the
case where the variable x can be expressed in just three bits; that is, x
takes the values 0, 1, . . . , 7. Define g(x) as

g(x) =
{

1, x = 0, 3, 6 .
0, otherwise

(Such a g could arise in the factoring algorithm if the period r is 3.) The
discrete Fourier transform of g is defined to be

G(c) = 1
8

7∑
x=0

g(x)e2π icx/8.

(a) Find the values of G(c) for c = 0, 1, . . . , 7. (We would strongly
recommend that you do this calculation pictorially. That is, draw eight
equally spaced complex numbers on the unit circle and figure out, for
each value of c, which ones have to be added together. The adding itself
can also be done geometrically.)

(b) In Shor’s quantum algorithm, the probability of measuring a spe-
cific value of c is (1/3)|G(c)|2. Check that the probabilities computed from
your answer to part (a) add up to 1.

(c) In order for Shor’s algorithm to be successful in a given trial, it is
necessary that the measured value of c be within 1/2 of a multiple of 2m/r ,
which in this case is 8/3. Which values of c have this property, and what is
their combined probability? According to the theory (see the following
section), this probability is expected to be at least 4/π2. Is this prediction
borne out in this example?

238 Chapter 7. Quantum Computing

Problem 2. In the text, we claimed that the transformation Uqft [Eq.
(7.22)] takes the state |�3〉 to the state |�4〉. Show that this claim is
correct.

Problem 3. Consider a modified version of Shor’s algorithm in which the
y-register is set initially to the binary representation of some fixed integer
y0 rather than to the state |0〉. Otherwise the algorithm is unchanged.
Will this modified algorithm have the same success in factoring as the
unmodified algorithm? Explain.

Problem 4. We are using Shor’s algorithm to factor the number 35. (In
this problem the value of a in f (x) = ax mod 35 is not specified.)

(a) How many qubits are in the x-register? How many in the y-
register? How does one express the integer 35 in binary notation? Is
it true that the number of qubits in the y-register is about the same as the
number of bits in the binary expression for 35, and that the number in the
x-register is about twice that number?

(b) At the end of the algorithm, we measure the x-register and obtain
c = 341. We do not yet know whether this is a “good” value of c, that is,
whether it is within 1/2 of a multiple of 2m/r . Supposing that it is a good
value, what is the value of the fraction j/r? (Hint: For this problem, it
helps to start by trying the smallest possible denominators and working
upwards until you find a satisfactory fraction.)

(c) On the basis of your answer to part (b), and still assuming that 341
is a good value of c, what are the possible values of the period r? (Here
you are to work only with your answer to part (b). We do not want you
to have to go through all the possible values of a to figure out whether
some values of r are impossible for M = 35.)

7.7 Estimating the Probability of Success

We begin by exploring the properties of the function G(c), which depends
on the simple periodic function g(x):

G(c) = 1√
2m

2m−1∑
x=0

g(x)e2π icx/2m
.

7.7. Estimating the Probability of Success 239

We claimed that G(c) has sharp peaks near multiples of 2m/r . So our
immediate goal is to make this claim precise and to prove it. Because of
the way g(x) is produced – that is, by looking for all the integers x for
which f (x) has some specific value u – the function g(x) is equal to 1 for
the following values of x:

x = x0, x0 + r, x0 + 2r, . . . , x0 + (K − 1)r, (7.23)

where x0 is the smallest integer for which f (x) = u (note that x0 is in the
range 0, . . . , r − 1), and K is the largest integer for which the sequence
does not go beyond 2m − 1. We can write K explicitly as �(2m − x0)/r ,
that is, the smallest integer greater than or equal to (2m − x0)/r . For values
of x not listed in Eq. (7.23), g(x) has the value 0. So we can write G(c) as

G(c) = 1√
2m

K−1∑
k=0

e2π ic(x0+kr)/2m = 1√
2m

e2π icx0/2m
K−1∑
k=0

e2π ickr/2m
. (7.24)

The latter sum in Eq. (7.24) is of the form
∑K−1

k=0 αk, a finite geometric
series for which there is an explicit formula. The formula is in fact

K−1∑
k=0

αk = 1 − αK

1 − α
, (7.25)

which holds as long as α �= 1. If α = 1, the sum has the value K. In our
problem, α = exp(2π icr/2m), which equals 1 if and only if cr/2m happens
to be an integer.11 It turns out that the case α = 1 plays a particularly
important role when r divides 2m. Though this case is unlikely, it is also
easy to analyze. So we consider this case first.

The case when r divides 2m (i.e., r is a power of 2)
In this case K is equal to the integer 2m/r – there is no need to subtract
x0 or use the �· · · symbol – and the latter sum in Eq. (7.24) has the
value K whenever c is a multiple of K. Otherwise the formula (7.25)
holds, and the sum has the value 0, since αK = exp(2π ic) = 1. Thus we

11 Here and in several other places in this section we use the common expression “exp(· · ·)”
as a substitute for “e(···)”. We do this only to avoid typographical crowding in the exponent.

240 Chapter 7. Quantum Computing

have

G(c) = 1√
2m

e2π icx0/2m ×
{

K, if c = j K, for j = 0, . . . , r − 1
0, otherwise

.

Recall that the probability of measuring the value c is (1/K)|G(c)|2. Let
us evaluate this probability in the case we are now considering. The factor
exp(2π icx0/2m) has unit magnitude, so it has no effect on the probability.
Using the fact that K/2m = 1/r , we get

Probability of c = 1
K

|G(c)|2 =
{

1/r, if c = j K, for j = 0, . . . , r − 1
0, otherwise

.

So in this case the peaks of probability are quite extreme: the only possible
values of c are multiples of K, that is, multiples of 2m/r . In Fig. 7.5 all the
peaks would be perfectly sharp in this case. Note that the probabilities
add up to 1, as they must.

Suppose we have measured the value of c. Then the above analysis
implies that c equals j(2m/r) for some integer j , so that c/2m = j/r . To
find r , we write our known fraction c/2m in reduced form. As long as c is
not 0, the denominator of this fraction is either r itself or a factor of r (since
j and r might have a common factor). The value of j is randomly chosen,
by the quantum measurement, among the values 0, . . . , r − 1. In the case
we are considering now, j and r will have a common factor if and only if
j is even, which happens with probability 1/2. So with probability 1/2, the
denominator of the reduced form of c/2m will in fact be r . Following the
Shor prescription, we would now check to see whether this denominator
is indeed the period of f (x). (It is easy to check whether ar = 1 (mod
M).) If it is, we have found the order of a mod M. If not, we try again, but
as we have said before, the probability of failing every time diminishes
exponentially with the number of trials.

Before we consider the more typical case in which r is not a
factor of 2m, let us illustrate the above considerations in a simple
example.

Example 7.7.1. Suppose as always that we are trying to factor the number
39. As we have seen, in this case the number of qubits m in the x-register
is 11 (which makes 2m equal to 2048), and the number of qubits in the y-
register is 6. For this example we choose a = 5, so that f (x) = 5x (mod 39).

7.7. Estimating the Probability of Success 241

We saw earlier that the period of this function is r = 4. Of course the
quantum computer does not know this, but when it goes through the steps
of the Shor algorithm, it will produce the state |�4〉 of the x-register in
which only four values have nonzero probability, namely, the values c = 0,
2048/4, 2(2048/4), and 3(2048/4). When we measure the x-register, we will
obtain one of these values at random: they are all equally likely. According
to the above prescription, we now consider the fraction c/2m = c/2048 in
reduced form. This fraction will be 0, 1/4, 1/2, or 3/4. In two of these cases,
we obtain the correct value of r by reading off the denominator. We know
that we have found the correct answer once we have checked that 54 (mod
39) does indeed equal 1.

In this example, as we predicted above, we have probability 1/2 of find-
ing the period r , since there are two good values of c/2m out of four possi-
bilities. Notice that even if we fail, we can get some information about r : if
we get c = 2(2048/4), so that c/2048 = 1/2, we learn that 2 is likely to be
a factor of r . (We cannot reach this conclusion with certainty, because we
do not know a priori that the period divides 2m. As you will show in Prob-
lem 5, when r does not divide 2m, it is possible for the measured value of
c to produce a candidate period that does not divide the actual period r .)

The case when r does not divide 2m

In this case the quantity α = exp(2π icr/2m) takes the value 1 only for
very special values of c (indeed only for c = 0 if r happens to be odd).
Using the formula (7.25), we find that

G(c) = 1√
2m

e2π icx0/2m ×
{

K, if cr = a multiple of 2m

1−e2π icKr/2m

1−e2π icr/2m , otherwise
.

The probability (1/K)|G(c)|2 of obtaining the value c when we make our
measurement works out to be

Probability of c = 1
2m

×



K, if cr = a multiple of 2m

1
K

[
sin(πcKr/2m)
sin(πcr/2m)

]2
, otherwise

.

(7.26)
We claim that this probability, even in the second case, is peaked when
c/2m is near any of the values j/r , where j = 0, . . . , r − 1.

To see this, note first that the spacing between possible values of c/2m

is 1/2m, so that each possible value of j/r is within 1/2m+1 of c/2m for some

242 Chapter 7. Quantum Computing

allowed value of c. That is, for each j = 0, . . . , r − 1, there is an integer c
in the range 0, . . . , 2m − 1 such that

∣∣∣∣ c
2m

− j
r

∣∣∣∣ ≤ 1
2m+1

. (7.27)

Moreover, this value of c is unique, because it is impossible for the fraction
j/r to be exactly halfway between two consecutive values of c/2m. (This
would require that j/r = (2c + 1)/2m+1, which is impossible since the
fraction on the right cannot be reduced and r is much less than 2m+1.)

Now, let us add up the probabilities of all the c’s for which Eq. (7.27)
is satisfied for some j . One can show12 that each of these probabilities
is at least 4/π2r , except for a very small additive term that is negligible
for large M. (See Problem 3.) Moreover, there are exactly r such values
of c, since there are r possible values of j . It follows that the sum of the
probabilities of the values of c satisfying Eq. (7.27) can be estimated to
be at least 4/π2 ≈ 0.4.

We see, then, that there is a reasonable chance that the value of c
that we obtain from our quantum measurement will be within 1/2m+1 of
j/r for some j = 0, . . . , r − 1. Hoping that our value of c is indeed such
a value, how do we go about finding the corresponding fraction j/r? In
Example 7.6.2 we did it by trial and error but promised a better method
later. Here we present the better method.

First note that given the fraction c/2m, there can be at most one fraction
j ′/r ′ with r ′ ∈ {1, . . . , M − 1} that satisfies the desired inequality,

∣∣∣∣ c
2m

− j ′

r ′

∣∣∣∣ ≤ 1
2m+1

. (7.28)

(Here we are not insisting that r ′ be the actual period r . It could be any
integer in the given range.) For suppose that there were two such fractions.
Then the difference between them would be

∣∣∣∣ j ′

r ′ −
j ′′

r ′′

∣∣∣∣ =
∣∣∣∣ j ′r ′′ − j ′′r ′

r ′r ′′

∣∣∣∣ ≥ 1
r ′r ′′ >

1
M2

. (7.29)

12 See Ekert and Jozsa (1996) or Gerjuoy (2005).

7.7. Estimating the Probability of Success 243

But since both j ′/r ′ and j ′′/r ′′ are supposed to be within 1/2m+1 of the
same number, their difference must also satisfy

∣∣∣∣ j ′

r ′ −
j ′′

r ′′

∣∣∣∣ ≤ 1
2m

≤ 1
M2

. (7.30)

(We see now why we wanted the x-register to go up to M2. The size of
this register is what determined the constant on the right-hand side of
Eq. (7.27).) The contradiction between Eqs. (7.29) and (7.30) shows that
there can be at most one such fraction.

Once we have measured the value of c, the algorithm for finding the
fraction j ′/r ′, if it exists, is remarkably simple. Any rational number can
be expanded as a continued fraction, as in the following example.

853
2048

= 1
2048
853

= 1

2 + 342
853

= 1

2 + 1
853
342

= 1

2 + 1
2+ 169

342

= 1

2 + 1
2+ 1

342
169

(7.31)

= 1

2 + 1
2+ 1

2+ 4
169

= 1

2 + 1
2+ 1

2+ 1
169

4

= 1

2 + 1
2+ 1

2+ 1
42+ 1

4

We stop when the numerator of each fraction is 1 (beyond this point the
procedure would not produce any new fractions). At each stage, we can
drop the final fraction to obtain an approximation to the original number,
and the approximation gets better at each stage. In the above example,
the approximations are 1/2, 2/5, 5/12, and 212/509, obtained by dropping,
respectively, 342/853, 169/342, 4/169, and 1/4. The approximations are
called convergents. We now invoke without proof a useful theorem.13

Theorem 7.7.1. Let z be a rational number and let a and b be integers
such that a/b satisfies

∣∣∣z− a
b

∣∣∣ <
1

2b2
.

Then a/b is one of the convergents in the continued fraction expansion
of z.

13 You can find the proof in Hardy and Wright (1965), Section 10.15.

244 Chapter 7. Quantum Computing

Let us identify c/2m with the z of this theorem, and j ′/r ′ with the a/b.
Then, if there exists a fraction j ′/r ′ satisfying Eq. (7.28), the hypothesis
of the theorem is satisfied, since from Eq. (7.28) we have∣∣∣∣ c

2m
− j ′

r ′

∣∣∣∣ ≤ 1
2
· 1

2m
≤ 1

2
· 1

M2
<

1
2r ′2 .

The theorem thus guarantees that if there exists a number j ′/r ′ satisfying
Eq. (7.28), we can find this number by finding the convergents generated
by c/2m.

What, then, are the possible outcomes of the algorithm? If our mea-
sured value of c is “good,” then the method of continued fractions will
produce a fraction j ′/r ′ that is equal to j/r for some integer j . In this
case the algorithm can still fail, in two ways: (i) in its reduced form, the
denominator of this fraction might not be r itself but only a factor or r ; (ii)
the integer j might be 0. If our value of c is not good, that is, if Eq. (7.27)
is not satisfied for any integers j , then one of two things will happen:
(i) every convergent of c/2m will be unacceptable as a candidate for the
fraction j ′/r ′, either because it is not within 1/2m+1 of c/2m or because
its denominator is not small enough; or (ii) there will be an acceptable
j ′/r ′, but r ′ will not be the actual period r (it need not have any particular
relation to r). In the latter case, the discrepancy will almost certainly be
revealed when we check to see whether ar ′

mod M is equal to 1.

Example 7.7.2. In Example 7.6.2, we considered the function f (x) = 7x

(mod 39) for factoring the number 39. There, we needed to look for a
fraction j ′/r ′ with denominator less than 39 satisfying∣∣∣∣ 853

2048
− j ′

r ′

∣∣∣∣ ≤ 1
4096

. (7.32)

To search for such a number more systematically, we expand 853/2048
as a continued fraction and note the successive convergents. In fact we
have already carried out this calculation in Eq. (7.31), obtaining the four
convergents 1/2, 2/5, 5/12, and 212/509. Plugging these into Eq. (7.32), we
find that the first one that is close enough to 853/2048 is 5/12. So 5/12
is our number j ′/r ′. (And, as must be the case, the denominator of the
next convergent, 212/509, is not smaller than 39 and is therefore not an
acceptable candidate for j ′/r ′.)

7.7. Estimating the Probability of Success 245

Let us now bring together various estimates of probabilities. First there
is the matter of choosing a good integer a < M. Theorem 7.5.1 tells us that
as long as M is not even or a power of a prime, then if a is chosen randomly
(and is relatively prime to M), the method of finding the period of f (x) =
ax (mod M) will produce a nontrivial factor of M with probability at least
1/2. There are efficient ways to check whether M is even (obviously) or a
power of a prime (less obviously). Let us assume that we have done this
checking, so that we have a probability at least 1/2 of choosing a good a.
Then, in trying to find the order of f (x), we ultimately measure a value of
c, which we need to be within 1/2 of a multiple of 2m/r . The probability
of this happening14 is, as we have said, at least 4/π2.

Finally, if we have obtained such a value of c and therefore have been
able to find the corresponding fraction j/r , it is possible that j and r
will share a common factor, in which case when we write j/r in reduced
form, the denominator15 will not be r , but will be some factor of r . The
conceptually easiest way to deal with this problem is simply to perform
the algorithm twice for a given value of a. If each trial does indeed result
in a good value of c, then we will get two fractions j/r and j ′/r whose
reduced forms give us two denominators, each of which is a factor of r .
We then take the least common multiple of these two denominators and
hope that it equals r . One can show16 that the probability of succeeding in
this way (assuming that each of the two trials has produced a good value
of c) is at least 1/4. Altogether, then, with a random choice of a, and two
trials to find the period r , the probability of finding a nontrivial factor of
M can be estimated to be at least(

4
π2

)2 (1
4

)(
1
2

)
= 0.02.

This is perhaps not an impressive number! The main point, though, is that
the probability is bounded below by a number that does not get smaller
as one tries to factor larger and larger numbers. Moreover, the estimate
we have given here very much underestimates the actual probability of

14 Again, except for a negligible additive term.
15 There is a small chance, about 1/r , that the value of c will be 0, in which case we get

no denominator at all by reducing c/2m. The chance of this happening diminishes with
increasing M, and we neglect it in this discussion.

16 See Nielsen and Chuang (2000), p. 231.

246 Chapter 7. Quantum Computing

success.17 And in practice, one need not repeat the whole procedure in the
case of failure. For example, if the problem is only that the two denomi-
nators do not yield the value of r , one can perform a third trial producing
a new denominator, which, when combined with the first two, should be
much more likely to yield the value of r .

EXERCISES

Problem 1. Suppose we are trying to factor the number 21 using the Shor
algorithm. We decide to use a = 2, so that we are trying to find the period
of the function f (x) = 2x (mod 21). We run through the Shor algorithm
and finally measure the x-register, getting the outcome c = 427.

(a) What is the number m of qubits in the x-register?
(b) Use the continued fraction method to find a fraction j ′/r ′, with de-

nominator less than 21, that is within 1/2m+1 of the ratio c/2m.
(c) Verify, by considering all possible denominators 11, . . . , 20, that there

is no other such fraction close enough to c/2m. (For each denominator,
it is sufficient to consider just the one fraction that is closest to c/2m.
Note that there is no need to include the denominators 1, . . . , 10, since
any fraction with such a denominator is equal to another fraction with
a denominator in the range 11, . . . , 20.)

(d) We hope that the denominator in j ′/r ′, when the fraction is in reduced
form, is the period of f (x). Check to see that it is indeed the period.

(e) Use your value of r to find the factors of 21.

Problem 2. For m = 2, write out Uqft as a matrix and verify that it is
unitary.

Problem 3. Consider all “good” values of c, that is, all values that lie within
1/2 of j2m/r for some integer j = 0, . . . , r − 1. We claimed that each of
these values has a probability at least 4/(π2r) except for a negligible
additive term. This problem aims to justify this claim when r is not a
power of 2. (When r is a power of 2, we have already proved the stronger
result that the probability in question is 1/r .)

17 Improved estimates are given in Gerjuoy (2005). Gerjuoy estimates, for example, that the
probability of obtaining a useful value of c in a single run of the algorithm is over 90%.

7.7. Estimating the Probability of Success 247

(a) Let P(c) be the probability of obtaining the value c. When r is not a
power of 2, we can write [see Eq. (7.26)]

P(c) = 1
2mK

[
sin(π Krc/2m)
sin(πrc/2m)

]2

. (7.33)

Though c is restricted to integer values, we can make sense of this
equation for all real values of c, and when the denominator is 0 we
define the function to take its limiting value. Show that, regarded as
a function of a real variable, P(c) is periodic with period 2m/r . One
can also show (but you do not have to) that P(c) takes its maximum
value, K/2m, at each of the points j2m/r ; moreover, around each of
these points, it falls off symmetrically on both sides.

(b) Consider all real values of c satisfying |c − j2m/r | ≤ 1/2, for some
j = 0, . . . , r − 1. This interval is symmetric around one of the maxima
of the function P(c), and within this interval, P(c) takes its smallest
value at the two endpoints. (You do not need to prove this fact.) Show
that this smallest value can be written as

1
2mK

[
sin

(
π
2

Kr
2m

)
sin

(
π
2

r
2m

)
]2

.

(c) Using the fact that |y| ≥ | sin y|, show that for each good value of c,

P(c) ≥ 4
π2r

sin2 (π
2 x
)

x
,

where x = Kr/2m.
(d) Prove that x defined in part (c) satisfies

1 − 1
M

< x < 1 + 1
M

,

where M is the number we are trying to factor.
(e) Another fact you need not prove is that within the interval 1/2 < x <

3/2, the following inequality holds:

sin2 (π
2 x
)

x
≥ 3x − 2x2.

Use this fact to show that

P(c) ≥ 4
π2r

(
1 − 1

M
− 2

M2

)
.

248 Chapter 7. Quantum Computing

This is the desired result. Note that in any real-life application, the
corrections involving M are quite negligible.

Problem 4. Suppose that someone named Eve is trying to factor the
integer 21 using Shor’s algorithm. She chooses a = 5, so that she is trying
to find the period of f (x) = 5x (mod 21). (It happens that the period is
r = 6, which actually does not produce any nontrivial factor of 21, but
Eve does not know this yet.) Note that the x-register has to hold 512
possible values – that is, 2m = 512 – since 512 is the smallest power of 2
that exceeds 212.

(a) As usual, let K be the number of values of x for which f (x) is
equal to the particular value u measured in the y-register. Show that in
this example, there are exactly two possible values of K, depending on
the value of u. What are these two possible values of K ?

(b) For each of the two possible values of K, find all the values of c
(the number measured in the x-register) that have probability exactly 0.
You should find that there are not many such values of c. This behavior is
typical when the period r is not a power of 2 (moreover, the typical value
of r is not a power of 2). That is, even though the probability distribution
for c is peaked at regular intervals, in a typical example hardly any values
of c are absolutely excluded.

Problem 5. Here we consider the same example as in Problem 4; so Eve is
trying to find the order of 5 mod 21. Consider each of the following values
of c, which she might obtain when she measures the x-register. (None of
these values is absolutely excluded.) In each case, say whether the value
of c leads Eve to the correct value of r (that is, r = 6), and if not, say in
which of the following ways the algorithm fails: (i) there exists no fraction
j ′/r ′ with r ′ < 21 such that j ′/r ′ is within 1/2m+1 of c/2m; (ii) there exists
such a fraction but the denominator of the reduced form is only a factor
of r , not r itself; (iii) there exists such a fraction but the denominator of
its reduced from is not even a factor of r .

(a) c = 85.
(b) c = 171.
(c) c = 154.
(d) c = 112.

7.8. Efficiency of Factoring 249

7.8 Efficiency of Factoring

Shor’s approach to factoring a large integer is intriguing and original
and clearly makes use of the strange behavior of quantum systems – the
function f (x) is evaluated for all values of x at the same time in a quantum
superposition. But is this method better than the best classical methods?
The aim of this section is to produce a plausible answer to this question.

First, what is the best that can be done classically? Let M again be the
number we are trying to factor, and let L = log2 M be the (approximate)
length of the binary expansion of M. The best general classical factor-
ing algorithm currently known is called the “number field sieve,” and a
heuristic argument indicates that the number of basic operations needed
to perform this algorithm is

Number of basic operations = e(c+ε)L1/3(log2 L)2/3
, (7.34)

where c ≈ 1.32 and ε approaches zero as M approaches infinity.18 It is con-
ceivable that some as yet undiscovered algorithm is considerably more
efficient. No one has proved, for example, that there is no classical algo-
rithm that scales as some power of L – any power of L would, for large
enough L, ultimately rise less quickly than the exponential function in
Eq. (7.34) – but at present Eq. (7.34) is the formula to beat.

We now need to figure out roughly how many basic operations are
needed to carry out Shor’s algorithm. There are two operations in the
algorithm that could conceivably require a large number of steps: Uqft
and Uf . Let us begin by considering Uf . How does the number of steps
rise with the length L of the integer we are trying to factor?

Recall that Uf is a quantum version of the computation of an ordinary
function, namely, f (x) = ax (mod M). So we can get a sense of the com-
plexity of Uf by asking ourselves how we would go about evaluating f (x).
A good strategy is to compute successive squares: that is, we compute in
succession

a2, a4, a8, a16, . . . , a(some integer close to x),

18 Coppersmith (1993); Crandall and Pomerance (2005). More precisely, c = 1
3 (92 +

26
√

13)1/3 ln 2.

250 Chapter 7. Quantum Computing

all mod M. Once the exponent is close to x, we will have to do a few
more multiplications to reach x itself, but for large x, the bulk of the
computation will be in the sequence of squarings. Now, how many such
squarings will we need to do? Roughly log2 x, since the exponents go
up by factors of 2, and 2log2 x = x. The variable x takes many values, the
largest of which is around M2. So the number of squarings the computer
will have to do is around log2(M2), which is 2L.

Each of these squarings in turn requires a number of basic steps which
depends on the size of M, since the number being squared in each case
might be as large as M − 1 and therefore have length L when expressed
in binary notation. How many basic steps does it take to square a number
consisting of L bits? Here is an example:

1011
x 1011

1011
1011
0000
1011

1111001

There are exactly L2 individual multiplications, each being 0 × 0, 0 × 1,
1 × 0, or 1 × 1. And in the addition part of the process, there are also
roughly L2 basic addition steps in which the summands are 0 and 1. So a
single squaring operation takes about 2L2 basic multiplication or addition
operations. Each of these in turn requires no more than a fixed number
of elementary gates. Thus with 2L squarings, each requiring a number of
basic gates that scales as L2, we estimate that the number of basic gates
required to carry out Uf is c1L3, where c1 is some constant. In fact it turns
out that there are more efficient multiplication strategies than the naive
one we considered above, and one can show that for large L the number
of basic gates required to carry out Uf is bounded by

Number of gates for Uf < c2L2(log2 L)(log2 log2 L), (7.35)

c2 being another constant.

7.8. Efficiency of Factoring 251

We now turn to Uqft, which is more quantum mechanical in the sense
that we cannot resort to a classical analogue in order to estimate the
number of steps required. To get a handle on the problem, let us consider
the operation Uqft acting on just two qubits. Recall the definition given
in Eq. (7.22):

Uqft|x〉 = 1√
2m

2m−1∑
c=0

e2π icx/2m|c〉.

In the case of two qubits (m = 2), with the integer c expressed in binary
notation, this becomes

Uqft|x〉 = 1
2

[|00〉 + i x|01〉 + (−1)x|10〉 + (−i)x|11〉].
More explicitly, writing the integer x on the left-hand side in binary form,
we have

Uqft|00〉 = 1
2

[|00〉 + |01〉 + |10〉 + |11〉]
Uqft|01〉 = 1

2

[|00〉 + i |01〉 − |10〉 − i |11〉]
Uqft|10〉 = 1

2

[|00〉 − |01〉 + |10〉 − |11〉]
Uqft|11〉 = 1

2

[|00〉 − i |01〉 − |10〉 + i |11〉]

This can all be expressed more compactly by giving the matrix form of
UQFT :

Uqft = 1
2




1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i


 .

We can break this transformation into a few simpler steps, each consisting
of one of the following operations: (i) A Hadamard gate acting on a
single qubit. (ii) The operation T2 = (1 0

0 i

)
acting on the first qubit, but

controlled by the second qubit, that is, acting only if the second qubit is

252 Chapter 7. Quantum Computing

T2x1

x2

H

H

SWAP

Figure 7.6: A sequence of gates that executes the quantum Fourier transform on
two qubits.

in the state |1〉. The matrix representation of this controlled gate is

controlled T2 =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 i


 .

(Note that we can just as well think of the first qubit as controlling the
second.) (iii) The swap gate, which interchanges the two qubits. Its matrix
expression is

swap =




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


 .

One can check by direct matrix multiplication that

Uqft = (swap)(I ⊗ H)(controlled T2)(H ⊗ I).

Figure 7.6 illustratesthis method of carrying out the two-qubit quantum
Fourier transform.

The problem becomes more complicated when we increase the num-
ber of qubits, but one finds that Uqft can still be systematically reduced to
simpler operations. We will not attempt to go through the argument lead-
ing to such a reduction, but we simply present without proof, inFig. 7.7,
a sequence of operations that realizes Uqft.19 This sequence includes, in
addition to the operations used above, others that multiply the basis state
|11〉 not by the factor i as in T2 but by different phase factors. The symbol

19 Coppersmith (1994). Figure 7.7 is based on a figure in Nielsen and Chuang (2000), p. 219.

7.8. Efficiency of Factoring 253

R(2)x1

x2

H

H

.

.

.

xm H

… R(m)

… R(m 1)

…

Figure 7.7: A sequence of gates that executes the quantum Fourier transform on
mqubits. After each Hadamard gate, the qubit on which that gate acted undergoes
a series of controlled phase changes, one for each qubit below it in the diagram.
Not shown is a sequence of swap gates at the end of the computation that reverses
the order of the qubits.

R(k) in the figure represents the single-qubit gate

R(k) =
(

1 0
0 e2π i/2k

)

Note that the gate T is the same as R(3), and the gate T2, used above, is
the same as R(2).

Let us now estimate the number of steps involved in this implemen-
tation of the transformation UQFT. The diagram starts with a sequence of
m gates acting on the first qubit, followed by m− 1 gates acting on the
second qubit, and so on, with a single Hadamard gate finally acting on the
mth qubit. This is a total of m(m+ 1)/2 gates. The number of swap gates
at the end, for reversing the order of the qubits, grows linearly with m. So
the dominant contribution to the number of gates is m2/2. Now, m is the
number of qubits in the x register, which is about twice the length L of
the number we are trying to factor. So it would seem that the number of
gates required to implement UQFT grows roughly as (2L)2/2 = 2L2. This
is not even as quickly growing as the number of gates required to imple-
ment Uf , given in Eq. (7.35). Of course the gates used in Fig. 7.7 include
many that are not in our set of basic gates {H, T, cnot}. The swap is not
a problem because each application of the swap gate always requires a
fixed number of basic gates; so the number of basic gates involved in all
the swap operations still grows linearly with L. The gates R(k) are more
problematic since they entail more and more refined phase changes as
the number of qubits increases. However for the purpose of factoring, it
is not necessary to implement UQFT exactly. It is sufficient to implement

254 Chapter 7. Quantum Computing

20 40 60 80 100
L

0.5 108

1 108

1.5 108

2 108

2.5 108
number of steps

Figure 7.8: A comparison of quantum and classical factoring algorithms, showing
the scaling of the number of steps required to factor an integer of length L.
The solid curve, growing more quickly for large L, is the classical case given
by Eq. (7.34) with ε = 0. The dashed quantum curve is the right-hand side of
Eq. (7.36) with c3 = 1000.

a good approximation, and for this purpose it turns out that the number
of gates required still grows no more rapidly than the number required
for Uf .

We have, then, that for sufficiently large L the number of basic quan-
tum gates required to carry out Shor’s factoring algorithm is bounded by

Gates required for factoring < c3L2(log2 L)(log2 log2 L), (7.36)

where c3 is another constant. The logarithms grow very slowly, so for
most purposes we can think of the factoring algorithm as requiring
a number of operations that grows as the square of the length of the
number to be factored. This is to be contrasted with what is currently
the best general factoring algorithm for a classical computer, for which
the number of operations grows exponentially in L1/3 [Eq. (7.34)].

To give a sense of the difference between the two formulas, we have
plotted both of them in Fig. 7.8 as a function of L, choosing c3 to have the
value 1000 and taking ε in Eq. (7.34) to have the value 0. One can see that
the quantum algorithm wins out dramatically as the length of the number
gets very large.

In this chapter we have focused particularly on the factoring problem,
but this is by no means the only problem for which a quantum computer
would beat a classical computer in efficiency. In the same paper in which
Shor presented his factoring algorithm, he also presented a quantum

7.8. Efficiency of Factoring 255

algorithm for computing the discrete logarithm, that is, for finding an
integer r such that gr = X (mod p) when the integers g and X and the
prime number p are all known.20 Recall that the Diffie–Hellman proto-
col for key exchange is secure only because this is a difficult problem to
solve. As with the factoring algorithm, Shor’s discrete logarithm algorithm
is again based on the quantum Fourier transform. And in analogy with
the factoring algorithm, the number of basic quantum steps required to
compute the discrete logarithm grows roughly as L2, where L is the num-
ber of digits (or the number of bits) in the prime number p. By contrast,
the number of steps in the best classical algorithm grows exponentially
in L.

A quantum algorithm with a different flavor is Grover’s search algo-
rithm.21 Imagine a mathematical problem of the following type: we are
looking for a solution to f (x) = 0, where f is a function that is easy to
compute but difficult to invert, and x is limited to a fixed range. (The dis-
crete logarithm problem fits this description, with f (x) = gx − X (mod
p).) For simplicity, suppose we know that there is one and only one so-
lution in some range x = 1, 2, . . . , N (an assumption that applies to the
discrete logarithm problem if the integer being exponentiated is a primi-
tive root of the prime p). Moreover, suppose that our best idea for solving
the problem is to use trial and error: we have an f -computing subroutine
that we will apply to various allowed values of x, hoping to find the one
value for which f (x) = 0. How many times will we have to use our subrou-
tine before we find the answer? For classical trial-and-error computing,
the answer depends on how lucky we are, but on average, we will have to
run N/2 tests before finding the right answer. Remarkably, the quantum
algorithm requires running the subroutine only about

√
N times. So if

there are a million potential answers, we will be able to find the correct
answer after running only a thousand tests or so. (The underlying idea
here is similar to what we saw in the Deutsch algorithm: one applies the
test to a quantum register that holds a superposition of many values of x.)
Note that the speed-up here is not as dramatic as in the case of factoring:
we get a square-root advantage rather than an exponential advantage.

20 Shor (1994).
21 Grover (1996, 1997).

256 Chapter 7. Quantum Computing

Nevertheless, because many different problems can be couched as search
problems, this is a very interesting potential application of a quantum
computer.

It may be worth reminding ourselves at this point that we are not
in possession of any full-scale quantum computers. On the other hand,
small quantum computers have been developed, and proof-of-principle
tests of the search algorithm22 and the factoring algorithm23 have been
carried out. So far, the largest number that has been factored by a quan-
tum computer is 15. (The factors turned out to be 3 and 5.) But re-
searchers have been quite creative in identifying physical systems that
could potentially be used for quantum computation, and as we have
seen, there is much to motivate such research. So it will be quite inter-
esting to follow the progress in quantum computation over the coming
years.

EXERCISES

Problem 1. (a) For a general value of m (the number of qubits), find
exactly the minimum number of swap gates one must execute at the right-
hand end of Fig. 7.7 in order to reverse the order of the qubits. For each
swap gate, you are allowed to specify any pair of qubits for the gate to
act on.

(b) Write the swap gate as a sequence of the basic gates {H, T, cnot}.

Problem 2. (a) Draw the circuit diagram for the quantum Fourier trans-
form acting on three qubits. (It may contain controlled-R(k) gates and the
swap gate.)

(b) Starting from Eq. (7.22), write down explicitly the 8 × 8 matrix
that represents UQFT for three qubits. To simplify the notation, it may be
helpful to introduce a symbol η = exp(2π i/8).

(c) (Optional) Show explicitly that the circuit you drew in part (a)
generates the matrix you wrote down in part (b).

22 Chuang, Gershenfeld, and Kubinec (1998).
23 Vandersypen et al. (2001).

7.9. Introduction to Quantum Error Correction 257

7.9 Introduction to Quantum Error Correction

In the preceding sections we have talked about preparing each qubit of
the quantum computer in the state |0〉, for example, and performing spe-
cific gates on single qubits or pairs of qubits. But the space of states of
any quantum system is a continuous space, and the set of unitary trans-
formations is also continuous. It is entirely unrealistic to imagine that in
the actual world we will be able to prepare a qubit precisely in the state
|0〉, or to perform a unitary transformation that is exactly equal to the
Hadamard gate. We never have infinite precision in our manipulations of
the physical world. Moreover, between gate operations, a qubit will not
be perfectly isolated from its environment, so we cannot expect that it
will stay precisely in the state that our idealized algorithm assumes it to
be in. For example, it will probably become at least partially entangled
with some extraneous quantum variable, as we noted in the introduction
to this chapter. For all of these reasons, it is crucial that we know how to
do error correction on qubits.

The subject of quantum error correction began to be investigated only
in the mid-1990s, but the theory is already highly developed.24 This section
will hardly scratch its surface. Our aim here is only to show that it is indeed
possible to correct errors in a quantum system. Moreover, we will restrict
our discussion in the following three respects: (i) We will consider only
the problem of protecting the state of a qubit. We will not worry about
how to make our quantum gates and measurements free of error. (ii) For
simplicity, we will focus on the case in which the qubit to be protected has a
quantum state of its own – it is not initially entangled with anything. In an
actual quantum computer, a qubit will typically be entangled with other
qubits, but this fact turns out not to change the basic strategies of error
correction. (iii) We will assume that all the operations that we perform in
order to carry out our error-correction protocols are themselves perfect.
This last assumption is clearly too strong. One needs also to show that
quantum computation is possible even when every single measurement,
state preparation, and gate is suspect, including those being used to correct

24 For a thorough treatment of quantum error correction, see for example Preskill (1998,
2004) and Nielsen and Chuang (2000). The full theory of quantum error correction uses
many ideas from classical error correction, such as those we have introduced in earlier
chapters.

258 Chapter 7. Quantum Computing

errors. A computational design that meets this stronger criterion is called
“fault tolerant,” and researchers have shown that fault-tolerant quantum
computation is indeed possible in principle. But this subject goes beyond
the scope of our present discussion.

7.9.1 An X-correcting code

Suppose, then, that we are given a single qubit whose state |s〉 we do
not know, and we want to protect the state while it is subject to noise.
It may seem at first that this is impossible. We cannot, for example, use
a simple repetition code, replacing the single qubit in the state |s〉 with
a triple of qubits in the state |s〉 ⊗ |s〉 ⊗ |s〉. To do so would violate the
no-cloning theorem (recall Section 3.2). However, there is a different way
to generalize the repetition code to the quantum setting. Let the state |s〉
be expressed in the standard basis as

|s〉 = a|0〉 + b|1〉.

(Again, we are assuming that we do not know the values of a and b.) We
can certainly append two additional qubits in the standard state |0〉, giving
us the three-qubit state |s, 00〉 = a|000〉 + b|100〉. Then we can perform
a unitary transformation that leaves |000〉 unchanged but changes |100〉
into |111〉. The result is the three-qubit state

|sC〉 = a|000〉 + b|111〉, (7.37)

in which the subscript C indicates that this is an encoded state. We have
encoded the state of a single qubit into three qubits.

In what sense does this simple code protect the qubit’s state from
errors? Let us suppose that the noise affects at most only one of the three
qubits. (This is exactly the sort of assumption we made in the classical
case.) Moreover, let us assume for now that the error, if it occurs, flips
the qubit from |0〉 to |1〉 or from |1〉 to |0〉. That is, we assume that the
noise source has possibly changed one of the qubits by the action of the
operation X, whose matrix representation is

X =
(

0 1
1 0

)
.

7.9. Introduction to Quantum Error Correction 259

There are many other single-qubit errors that we could imagine – for ex-
ample, the noise source might change one of the qubits by applying the
Hadamard gate, or it might rotate the qubit’s state by a small angle –
but for now we consider only this one kind of error. We can detect and
correct an X error as follows. First, we perform a special incomplete mea-
surement on the system of three qubits. This measurement will have four
outcomes, each associated not with a specific vector in the state space but
rather with a two-dimensional subspace, and the subspaces correspond-
ing to different outcomes will be mutually orthogonal. (The state space
for three qubits has eight dimensions; so these four mutually orthogonal
2-d subspaces together span the whole space.) As in Section 2.5, each out-
come can be represented by a projection operator that projects onto the
appropriate 2-d subspace. For the specific measurement we have in mind,
the four projection operators are as follows (compare Examples 2.5.2 and
2.5.5):

P1 = |100〉〈100| + |011〉〈011|
P2 = |010〉〈010| + |101〉〈101|
P3 = |001〉〈001| + |110〉〈110|
P4 = |000〉〈000| + |111〉〈111|

If there has been no error, then we know that the state, whatever it is, must
lie in the subspace picked out by P4: the state is in the subspace spanned
by |000〉 and |111〉. Similarly, if there has been an X-type error on the first
qubit, then the state will lie in the subspace picked out by P1, since |000〉
will have been changed to |100〉 and |111〉 to |011〉. Errors on the other
two qubits correspond in the same way to P2 and P3. Thus the outcome of
this measurement tells us (i) whether an X-type error has occurred and
(ii) if so, which qubit was affected. To correct the error, we simply apply
X to the affected qubit, since X is its own inverse and will undo the effect
of the error.

What is not so clear is whether the above strategy is good for correcting
any errors other than those corresponding to a simple flip between |0〉 and
|1〉. In fact it is good for correcting at least some other errors, as we now
show.

260 Chapter 7. Quantum Computing

Suppose again that only a single qubit is affected by the noise, but now
let the effect be represented by a unitary transformation of the form

U =
(

cos θ i sin θ

i sin θ cos θ

)
, (7.38)

where θ is a real number. For definiteness we suppose that the second
qubit is the one that is affected. Then our encoded state |sC〉 becomes

|s ′C〉 = U2|sC〉 = a(cos θ |000〉 + i sin θ |010〉) + b(i sin θ |101〉 + cos θ |111〉).
(The subscript 2 indicates that U acts on the second qubit.) When we
perform the measurement (P1, P2, P3, P4) on this state, only two of the
outcomes have nonzero probabilities, namely, those associated with P2

(error in the second qubit) and P4 (no error). We compute these proba-
bilities according to Eq. (2.26):

p2 = 〈s ′C|P2|s ′C〉 = sin2 θ

p4 = 〈s ′C|P4|s ′C〉 = cos2 θ

If we get the outcome P4, the final state after the measurement is, accord-
ing to Eq. (2.27),

P4|s ′C〉√〈s ′C|P4|s ′C〉
= a|000〉 + b|111〉. (7.39)

That is, in this case the measurement itself, by effecting a projection onto
the no-error subspace, has automatically corrected the error! If we get
this outcome, we do not need to do any further error correction. On the
other hand, if we get the outcome P2, the resulting state is

P2|s ′C〉√〈s ′C|P2|s ′C〉
= a|010〉 + b|101〉. (7.40)

If we get this outcome, we know that we should correct the error by
applying the X operator to the second qubit. The result will be the correct
state |s〉 = a|000〉 + b|111〉, and we never have to learn the values of a and
b. Indeed, we know that it is impossible to learn those values given only
a single copy of the state.

Notice what has happened here. When we assumed that the error was
a simple flip between |0〉 and |1〉, the measurement was used only to inform
us about the error; the state was already in one of the subspaces picked out

7.9. Introduction to Quantum Error Correction 261

by the measurement. In contrast, when the error was of the type U given
by Eq. (7.38), the measurement was an active part of the error-correction
process: it placed the state in one of the special subspaces and it told us
which subspace it had placed it in. We could then finish correcting the
error just as in the simpler case. In this way, what might have seemed a
very difficult problem – correcting one of a continuum of possible errors
parameterized by θ – has been turned into a simpler problem of correcting
one of a discrete set of errors. This is possible only because a quantum
measurement is, as we have emphasized before, not a passive gathering of
information; in most cases it actively causes a disturbance in the measured
system, and for the purpose of error correction the disturbance is very
helpful.

7.9.2 A Z-correcting code

We should not yet be satisfied, though. Errors of the type given in
Eq. (7.38) are still very special, and one can show that our X-correcting
code does not correct other errors such as the following operation applied
to one of the qubits:

Z =
(

1 0
0 −1

)

If this operator acts on any of our three qubits, the resulting state is

|s ′C〉 = a|000〉 − b|111〉.
As long as neither a nor b is zero, this state is not the state we want, and
yet when we perform the measurement (P1, P2, P3, P4) on this state, we
will definitely get the outcome P4, indicating no error. So we must modify
our scheme.

It is helpful to consider a scheme designed precisely for errors of the
Z type. It will not correct errors of the X type but later we will combine
the two schemes to create a more effective error-correction strategy. Let
the states |+〉 and |−〉 be defined as

|+〉 = 1√
2

(|0〉 + |1〉)

|−〉 = 1√
2

(|0〉 − |1〉)

262 Chapter 7. Quantum Computing

One can see that Z|+〉 = |−〉 and Z|−〉 = |+〉. That is, Z acts on (|+〉, |−〉)
in the same way that X acts on (|0〉, |1〉). So we can proceed by analogy
with the scheme described above. That is, we can protect any single-qubit
state from a Z-type error by encoding the state |+〉 as

| + ++〉 = 1

2
√

2
(|0〉 + |1〉) ⊗ (|0〉 + |1〉) ⊗ (|0〉 + |1〉) (7.41)

and the state |−〉 as

| − −−〉 = 1

2
√

2
(|0〉 − |1〉) ⊗ (|0〉 − |1〉) ⊗ (|0〉 − |1〉), (7.42)

again using two additional qubits. To correct such an error, we project
onto a different set of four subspaces, defined by the projection operators

Q1 = | − ++〉〈− + +| + | + −−〉〈+ − −|
Q2 = | + −+〉〈+ − +| + | − +−〉〈− + −|

.

Q3 = | + +−〉〈+ + −| + | − −+〉〈− − +|
Q4 = | + ++〉〈+ + +| + | − −−〉〈− − −|

We then apply the operator Z to qubit 1, 2, or 3, or not at all, depending on
the outcome of the measurement. One can show that this scheme protects
not only against Z errors, but also against all single-qubit errors given (in
the standard basis) by the unitary transformation

V =
(

1 0
0 eiφ

)
. (7.43)

Again, the measurement itself does part of the error correction.

7.9.3 The Shor code

We now put the above two schemes together to create an error-correction
protocol that protects against all single-qubit errors. Again, we are trying
to protect the state

|s〉 = a|0〉 + b|1〉.
We begin by appending eight additional qubits in a standard state; we
then perform a unitary transformation so that the single-qubit state |0〉

7.9. Introduction to Quantum Error Correction 263

ends up being encoded as

|0C〉 = 1

2
√

2
(|000〉 + |111〉) ⊗ (|000〉 + |111〉) ⊗ (|000〉 + |111〉), (7.44)

and the single-qubit state |1〉 is encoded as

|1C〉 = 1

2
√

2
(|000〉 − |111〉) ⊗ (|000〉 − |111〉) ⊗ (|000〉 − |111〉). (7.45)

Here we have started with our Z-correcting scheme, defined by Eqs. (7.41)
and (7.42), and within this scheme we have replaced each |0〉 with |000〉
and each |1〉 with |111〉, in accordance with our X-correcting scheme. The
initial state |s〉 = a|0〉 + b|1〉 is thus encoded as |sC〉 = a|0C〉 + b|1C〉. This
code was discovered by Peter Shor and is known as the Shor code.25 The
process of combining codes as we have just done is called concatena-
tion and has been used effectively in proving that fault-tolerant quantum
computation can be done in principle.

Let us now ask what happens to the encoded state |sC〉 when an error
occurs in one of the qubits. We consider for now 27 different single-qubit
errors that might occur: X1, . . . , X9, Z1, . . . , Z9, and X1 Z1, . . . , X9 Z9. (We
will consider more general errors shortly.) Here the subscript indicates
which qubit is affected, and the product XZ is simply the Z operation
followed by the X operation. You might think we are about to make
the following claim: each of these 27 errors takes the two-dimensional
subspace spanned by |0C〉 and |1C〉 into a different two-dimensional sub-
space, and all these resulting subspaces are orthogonal not only to the
original, uncorrupted subspace, but also to each other. If this were the
case, we could perform an incomplete measurement to determine which
of these subspaces our state occupies, in order to determine which, if
any, of the 27 possible errors occurred. We could then correct the er-
ror by applying the appropriate operator (X, Z, or XZ) to the affected
qubit.

The actual situation is not quite this simple, but it is not much different.
The only subtlety is that the Z errors do not all have distinct effects. For
example, if any of the errors Z1, Z2, or Z3 acts on the encoded state |0C〉,

25 Shor (1995).

264 Chapter 7. Quantum Computing

the result is

Z1|0C〉 = 1

2
√

2
(|000〉 − |111〉) ⊗ (|000〉 + |111〉) ⊗ (|000〉 + |111〉).

(Here we have written Z1, but we could just as well have written Z2

or Z3. The result is the same.) So these three errors cannot be distin-
guished. But this is not a problem, because all of these errors are cor-
rected in the same way, namely, by applying the Z operator to any of
the first three qubits. Similar statements can be made about the other Zj

errors.
Altogether, then, the 27 error operators listed above, along with the

identity operator I (associated with the case of no error) define a collec-
tion of 22 mutually orthogonal two-dimensional subspaces. Here is a list
of the subspace-defining error operators:

X1, X2, X3, X4, X5, X6, X7, X8, X9

{Z1, Z2, or Z3}, {Z4, Z5, or Z6}, {Z7, Z8, or Z9} (7.46)
X1 Z1, X2 Z2, X3 Z3, X4 Z4, X5 Z5, X6 Z6, X7 Z7, X8 Z8, X9 Z9

I (no error)

Because the subspaces are mutually orthogonal, one can perform a mea-
surement to find out in which subspace the state lies, and then one can
correct the error by applying the corresponding operator.26 As always
in quantum error correction, it is important that the measurement is in-
complete. The measurement is complete enough to tell us how to correct
the error, but not so refined as to destroy the subtle quantum superpo-
sition that we were trying to protect. A complete measurement might,
for example, collapse a|0〉 + b|1〉 down to |0〉, and we would have lost our
superposition.

Of course not every single-qubit error is given by one of the 27 oper-
ators listed above. Suppose that one of our nine qubits is subjected to a

26 The measurement will have to have more than 22 outcomes, because these 22 subspaces do
not span the whole state space of nine qubits. To finish the description of the measurement,
it would be sufficient to include just one additional outcome, associated with the entire
subspace orthogonal to all 22 of our special subspaces. This last subspace would have
29 − 2(22) dimensions and would be associated with all the ways in which an error could
affect more than one qubit.

7.9. Introduction to Quantum Error Correction 265

general unitary transformation W:

W =
(

w x
y z

)
.

You will show in the exercises that any 2 × 2 complex matrix such as W,
whether or not it is unitary, can be expressed as a linear combination of
the four matrices I, X, Z, and XZ. So we can write W as

W = t I + uX+ vZ+ wXZ,

where t , u, v, and w are complex numbers. When W acts on, say, the j th
qubit of the state |sC〉, the resulting state is

Wj |sC〉 = t |sC〉 + uXj |sC〉 + vZj |sC〉 + wXj Zj |sC〉. (7.47)

Let us now imagine performing our diagnostic measurement on this state.
Notice that the four different terms on the right-hand side of Eq. (7.47)
belong to four of the 22 special subspaces defined by our measurement. So
when we get a particular outcome, associated with a particular subspace,
the measurement will automatically have “collapsed” the state Wj |sC〉
into one of the four states

|sC〉, Xj |sC〉, Zj |sC〉, or Xj Zj |sC〉.
Thus, even though the operation Wj is not one of the error operators
we considered above, the measurement forces the qubit in question to
act as if it had been affected by one of the specific operators I, X, Z, or
XZ. We can then correct the error just as before, by applying one of the
operators I , Xj , Zj , or Zj Xj . (Zj Xj is the inverse of Xj Zj .) This is very
much like what happened in Eqs. (7.39) and (7.40). Again, the measure-
ment has turned what seemed to be a continuum of possible errors into a
discrete set.

The same principle makes it possible to correct errors even in the
more realistic case in which each of the nine qubits is subjected to some
small error. As long as all these errors are small, then when we make our
diagnostic measurement, there is a very good chance that we will get an
outcome associated with one of our 22 special subspaces. In that case, the
measurement will have brought the system to a state in which at most one
of the qubits has been affected, and the error can be corrected just as in
the above cases.

266 Chapter 7. Quantum Computing

Actually we still have not considered all possible single-qubit errors.
We have considered all possible unitary transformations on a single qubit.
But what if a qubit in our system becomes entangled with some external
quantum variable? Does the code that we have just described also correct
this kind of error? It does indeed, and you will work out an example of
this sort of error correction in the exercises.

Finally, you may be wondering whether there is a more efficient way of
correcting a single-qubit error. In the classical case, we can correct a single
bit error by encoding a single bit into three bits. Do we really need nine
qubits to correct a single-qubit error? The answer is no, we can be more
efficient. However, the quantum case cannot be as efficient as the classical
case, because the complex-vector-space structure of quantum mechanics
allows distinct kinds of error (e.g., X and Z), whereas in the classical case
there is only one kind. One of the exercises presents the most efficient
possible code for correcting a single-qubit error; it encodes one qubit into
five qubits.

EXERCISES

Problem 1. Show that every 2 × 2 complex matrix can be written in the
form

t I + uX+ vZ+ wXZ,

where t , u, v, and w are complex numbers.

Problem 2. Verify that the Z-correcting code presented in this section
corrects all single-qubit errors of the type given in Eq. (7.43).

Problem 3. Consider the 22 subspaces defined by applying the opera-
tors of Eq. (7.46) to the subspace spanned by the states |0C〉 and |1C〉
of Eqs. (7.44) and (7.45). Show that these 22 subspaces are all mutually
orthogonal. (Hint: You might want to use Eq. (3.9).)

Problem 4. The “five-qubit code” encodes the single-qubit state |s〉 =
a|0〉 + b|1〉 into the five-qubit state |sC〉 = a|0C〉 + b|1C〉, where |0C〉 and

7.9. Introduction to Quantum Error Correction 267

|1C〉 are defined by27

|0C〉 = 1
4

(|00000〉 + |10010〉 + |01001〉 + |10100〉
+ |01010〉 − |11011〉 − |00110〉 − |11000〉
− |11101〉 − |00011〉 − |11110〉 − |01111〉
− |10001〉 − |01100〉 − |10111〉 + |00101〉)

and

|1C〉 = 1
4

(|11111〉 + |01101〉 + |10110〉 + |01011〉
+ |10101〉 − |00100〉 − |11001〉 − |00111〉
− |00010〉 − |11100〉 − |00001〉 − |10000〉
− |01110〉 − |10011〉 − |01000〉 + |11010〉)

There are 15 basic single-qubit errors X1, . . . , X5, Z1, . . . , Z5, and
X1 Z1, . . . , X5 Z5. In this problem, consider only Z1, . . . , Z5. Show that
the five subspaces generated by applying these operators to the subspace
spanned by |0C〉 and |1C〉 are all orthogonal to each other, and are or-
thogonal to the original uncorrupted subspace. (In fact the subspaces
generated by the other error operators also have this property. So this is
a good error-correcting code.)

Problem 5. Consider the code defined by Eq. (7.37). Suppose that the last
of the three qubits interacts with a fourth qubit from outside the quan-
tum computer. This fourth qubit starts out in the state (1/

√
2)(|0〉 + |1〉),

and the third and fourth qubits are acted upon by the operation cnot43.
(The subscripts indicate that the fourth qubit is the control and the third
qubit is the target.) Show that the standard error-correction process for
the X-correcting code also corrects this error. (For this problem you will
need to use new versions of the projection operators P1, . . . , P4, since the
space that needs to be acted upon is now a four-qubit state space. This
is a straightforward extension, in which the P operators leave the fourth
qubit unaffected. For example, whereas the original version of P1 projects
onto the subspace spanned by |100〉 and |011〉, the new version will project
onto the four-dimensional subspace spanned by |1000〉, |1001〉, |0110〉, and
|0111〉. In other words, the new version of P1 is P1 ⊗ I, where I is the iden-
tity operator on the fourth qubit.)

27 Bennett et al. (1996b); Laflamme et al. (1996).

appendix a

A.1 Fields

Fields are important algebraic structures used in almost all branches of
mathematics. Here we only cover the definitions and theorems needed
for the purposes of this book.1

Definition. A field F is a set along with two operations (denoted with
addition and multiplication notation) on pairs of elements of F such that
the following properties are satisfied.

1. For all a and b in F , we have that a + b ∈ F .
2. For all a, b, and c in F , we have that (a + b) + c = a + (b + c).
3. There exists an element 0 in F satisfying a + 0 = a for all a ∈ F .
4. For every a ∈ F there exists a b in F such that a + b = 0.
5. For all a and b in F we have that a + b = b + a.
6. For all a and b in F we have that ab ∈ F .
7. For all a, b, and c in F we have that (ab)c = a(bc).
8. There is an element 1 in F satisfying 1a = a for all a ∈ F .
9. For every a ∈ F with a �= 0, there exists a b ∈ F such that ab = 1.

10. For every a and b in F we have that ab = ba.
11. For every a, b, and c in F we have that a(b + c) = ab + ac.

It is easy to see by the definition that a field F is a group under addition
and the set F − {0} is a group under multiplication.

1 For an introduction to fields, see Gallian (2006).

269

270 Appendix A

The sets of rational numbers, real numbers, and complex numbers are
all fields. The set of integers, however, is not. We can easily see that not all
integers have multiplicative inverses that are integers. For example, there
is no integer we can multiply by 3 to get 1.

Theorem A.1.1. Zn is a field under its addition and multiplication if and
only if n is a prime number.

To see why the above theorem is true, we suggest reading Section 1.3 and
working the exercises following that section.

In Section 6.2 we described a field with eight elements. It turns out that
if F is a field with finitely many elements then the number of elements in
F must be a power of a prime integer. We can generalize the idea of the
construction of the field in Section 6.2 to construct a field with pn elements,
where p is a prime number and n is a positive integer. We briefly describe
the method here and leave the details to the reader.

Consider the set of polynomials Zp[x] as described in Section 6.1.
Now let f (x) be a degree n nonzero irreducible element of Zp[x]. In
other words, f (x) can be written as

f (x) = anxn + an−1xn−1 + · · · + a1x + a0,

where an �= 0, ai ∈ Zp for all i , and if f (x) = g(x)h(x) where g(x) and
h(x) are elements in Zp[x], then g(x) or h(x) is a nonzero constant poly-
nomial. This really means that f (x) is a degree n polynomial that cannot
be factored into two polynomials of smaller degree. Now we define Fpn

to be all polynomials in Zp[x] with the rule that f (x) = 0. In other words,

anxn + an−1xn−1 + · · · + a1x + a0 = 0.

This means that

xn = −a−1
n

(
an−1xn−1 + · · · + a1x + a0

)
.

So whenever we see the term xn, we can replace it with terms of smaller
degree. We leave it to the reader to verify that Fpn is a field with pn

elements.

Appendix A 271

A.2 A Glossary of Linear Algebra Definitions and Theorems

In this section, we cover only the definitions and theorems from Linear
Algebra that we need for the material covered in this book.2

Definition. Let V be a set and F a field. Suppose that an operation (called
addition) is defined on pairs of elements of V and a scalar multiplication
is defined. In other words, we can multiply an element of F by an element
of V and we get an element of V. We say that V is a vector space over F (or
simply a vector space if the field F is obvious) if the following conditions
hold.

1. For every �v1, �v2 ∈ V, we have that �v1 + �v2 ∈ V.
2. For every �v1, �v2, �v3 ∈ V we have that (�v1 + �v2) + �v3 = �v1 + (�v2 + �v3).
3. There exists an element �0 ∈ V such that �v1 + �0 = �0 + �v1 for every

�v1 ∈ V.

4. For every �v1 ∈ V, there exists an element −�v1 ∈ V satisfying �v1 +
−�v1 = −�v1 + �v1 = �0.

5. For every �v1, �v2 ∈ V, we have that �v1 + �v2 = �v2 + �v1.

6. For every α ∈ F and every �v1 ∈ V we have that α�v1 ∈ V.
7. For every α ∈ F and all �v1, �v2 ∈ V we have that α(�v1 + �v2) = α�v1 +

α�v2.
8. For every α, β ∈ F and all �v1 ∈ V we have that (α + β)�v1 = α�v1 + β�v1.

9. For every α, β ∈ F and all �v1 ∈ V we have that (αβ)�v1 = α(β�v1).
10. For all �v1 ∈ V we have 1�v1 = �v1.

Notice that the first four conditions of the definition above could be re-
placed by the condition that V be a group under addition.

Definition. Let V be a vector space over the field F . Suppose that W
is a nonempty subset of V such that W is a vector space over F under
the addition and scalar multiplication defined on V. Then W is called a
subspace of V.

2 For more details see, for example, Leon (2006).

272 Appendix A

Theorem A.2.1. Let V be a vector space over the field F and W a
nonempty subset of of V such that for every α ∈ F and every �w1, �w2 ∈
W we have that α �w1 ∈ W and �w1 + �w2 ∈ W. Then W is a subspace
of V.

Definition. Let V be a vector space over the field F and let �v1, �v2, . . . , �vn

be elements of V. The elements �v1, �v2, . . . , �vn are said to span V if for
every �x ∈ V there exist elements α1, α2, . . . , αn ∈ F such that �x = α1�v1 +
α2�v2 + · · · + αn�vn.

Definition. Let V be a vector space over the field F and let �v1, �v2, . . . , �vn ∈
V. Suppose that the only αi ∈ F that satisfy the equation

α1�v1 + α2�v2 + · · · + αn�vn = �0

are αi = 0 for i = 1, 2, . . . , n. Then we say that �v1, �v2, . . . , �vn are lin-
early independent. If �v1, �v2, . . . , �vn are not linearly independent, we say
�v1, �v2, . . . , �vn are linearly dependent.

Definition. Let V be a vector space over the field F . The elements
�v1, �v2, . . . , �vn of V are said to be a basis for V if they span V and are
linearly independent.

Theorem A.2.2. Let V be a vector space. Suppose that the elements
�v1, �v2, . . . , �vn and �w1, �w2, . . . , �wm are both a basis for V. Then n = m.

Definition. Let V be a vector space. Suppose that the elements
�v1, �v2, . . . , �vn are a basis for V. Then we say that the dimension of V
is n and we write dimV = n.

Theorem A.2.3. Let V be a vector space with dimV = n > 0 and suppose
W is a subspace of V with dimW = n. Then W = V.

Definition. The n × n matrix with ones along the main diagonal (from
the upper left to the lower right) and zeros everywhere else is called the
n × n identity matrix and is denoted I.

Appendix A 273

Example A.2.1. The following matrix is the 3 × 3 identity matrix:

I =


1 0 0

0 1 0
0 0 1




Note that for any n × n matrix A, we have that AI = I A = A.

Definition. The determinant of the 2 × 2 matrix

A =
(

a b
c d

)

is defined to be ad − bc.

Definition. The following operations on an m× n matrix are called ele-
mentary row operations:

1. Exchanging two rows of the matrix.
2. Multiplying a row of the matrix by a nonzero constant.
3. Replacing a row with the sum of that row and a multiple of another

row.

Definition. An m× n matrix is said to be in reduced row echelon form if
it satisfies the following properties:

1. The first nonzero entry in every row is 1 and the first nonzero entry in
every row is the only nonzero entry in its column.

2. If the ith row is not all zeros, the number of zeros before the first
nonzero entry of the ith row is less than the number of zeros before
the first nonzero entry of the (i + 1)st row.

3. All the rows consisting entirely of zeros are at the bottom of the matrix.

Theorem A.2.4. Let Abe an m× n matrix. Then there is an m× n matrix
U in reduced row echelon form that is obtained by performing elementary
row operations on A.

274 Appendix A

Definition. Let A be an m× n matrix and U a matrix in reduced row
echelon form obtained from Aby performing elementary row operations.
The number of nonzero rows of U is called the rank of A.

Definition. Let A be an m× n matrix. The transpose of A is defined to be
the n × m matrix B such that the entry in the ith row and jth column of
B is the same as the entry in the jth row and ith column of A. We denote
the transpose of A by AT .

Definition. Let �v = (v1, v2, . . . , vn) and �w = (w1, w2, . . . , wn) be ele-
ments of Fn where F is any field. The dot product of �v and �w is defined
to be v1w1 + v2w2 + · · · + vnwn ∈ F and is denoted by �v · �w.

Definition. Let A be an m× n matrix with entries from a field F . We
define the nullspace of A to be the set {�v ∈ Fn | A�vT = �0}.

Theorem A.2.5. The nullspace of a matrix A is a subspace of the vector
space Fn. (Note that Fn is a vector space over the field F .)

Theorem A.2.6. Let A be an m× n matrix with entries from a field F .
Then the rank of A plus the dimension of the nullspace of A is equal
to n.

Appendix A 275

A.3 Tables for the Alphabet

Letters to Decimal to Binary

Letter Decimal Binary
A 0 00000
B 1 00001
C 2 00010
D 3 00011
E 4 00100
F 5 00101
G 6 00110
H 7 00111
I 8 01000
J 9 01001
K 10 01010
L 11 01011
M 12 01100

Letter Decimal Binary
N 13 01101
O 14 01110
P 15 01111
Q 16 10000
R 17 10001
S 18 10010
T 19 10011
U 20 10100
V 21 10101
W 22 10110
X 23 10111
Y 24 11000
Z 25 11001

“Addition” Table for the Alphabet

+ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
A A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
B B C D E F G H I J K L M N O P Q R S T U V W X Y Z A
C C D E F G H I J K L M N O P Q R S T U V W X Y Z A B
D D E F G H I J K L M N O P Q R S T U V W X Y Z A B C
E E F G H I J K L M N O P Q R S T U V W X Y Z A B C D
F F G H I J K L M N O P Q R S T U V W X Y Z A B C D E
G G H I J K L M N O P Q R S T U V W X Y Z A B C D E F
H H I J K L M N O P Q R S T U V W X Y Z A B C D E F G
I I J K L M N O P Q R S T U V W X Y Z A B C D E F G H
J J K L M N O P Q R S T U V W X Y Z A B C D E F G H I
K K L M N O P Q R S T U V W X Y Z A B C D E F G H I J
L L M N O P Q R S T U V W X Y Z A B C D E F G H I J K
M M N O P Q R S T U V W X Y Z A B C D E F G H I J K L
N N O P Q R S T U V W X Y Z A B C D E F G H I J K L M
O O P Q R S T U V W X Y Z A B C D E F G H I J K L M N
P P Q R S T U V W X Y Z A B C D E F G H I J K L M N O
Q Q R S T U V W X Y Z A B C D E F G H I J K L M N O P
R R S T U V W X Y Z A B C D E F G H I J K L M N O P Q
S S T U V W X Y Z A B C D E F G H I J K L M N O P Q R
T T U V W X Y Z A B C D E F G H I J K L M N O P Q R S
U U V W X Y Z A B C D E F G H I J K L M N O P Q R S T
V V W X Y Z A B C D E F G H I J K L M N O P Q R S T U
W W X Y Z A B C D E F G H I J K L M N O P Q R S T U V
X X Y Z A B C D E F G H I J K L M N O P Q R S T U V W
Y Y Z A B C D E F G H I J K L M N O P Q R S T U V W X
Z Z A B C D E F G H I J K L M N O P Q R S T U V W X Y

276 Appendix A

Addition and Multiplication Tables for Z26

+ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 0
2 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 0 1
3 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 0 1 2
4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 0 1 2 3
5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 0 1 2 3 4
6 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 0 1 2 3 4 5
7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 0 1 2 3 4 5 6
8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 0 1 2 3 4 5 6 7
9 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 0 1 2 3 4 5 6 7 8

10 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 0 1 2 3 4 5 6 7 8 9
11 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 0 1 2 3 4 5 6 7 8 9 10
12 12 13 14 15 16 17 18 19 20 21 22 23 24 25 0 1 2 3 4 5 6 7 8 9 10 11
13 13 14 15 16 17 18 19 20 21 22 23 24 25 0 1 2 3 4 5 6 7 8 9 10 11 12
14 14 15 16 17 18 19 20 21 22 23 24 25 0 1 2 3 4 5 6 7 8 9 10 11 12 13
15 15 16 17 18 19 20 21 22 23 24 25 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
16 16 17 18 19 20 21 22 23 24 25 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
17 17 18 19 20 21 22 23 24 25 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
18 18 19 20 21 22 23 24 25 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
19 19 20 21 22 23 24 25 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
20 20 21 22 23 24 25 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
21 21 22 23 24 25 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
22 22 23 24 25 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
23 23 24 25 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
24 24 25 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
25 25 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

× 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
0 0
1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
2 0 2 4 6 8 10 12 14 16 18 20 22 24 0 2 4 6 8 10 12 14 16 18 20 22 24
3 0 3 6 9 12 15 18 21 24 1 4 7 10 13 16 19 22 25 2 5 8 11 14 17 20 23
4 0 4 8 12 16 20 24 2 6 10 14 18 22 0 4 8 12 16 20 24 2 6 10 14 18 22
5 0 5 10 15 20 25 4 9 14 19 24 3 8 13 18 23 2 7 12 17 22 1 6 11 16 21
6 0 6 12 18 24 4 10 16 22 2 8 14 20 0 6 12 18 24 4 10 16 22 2 8 14 20
7 0 7 14 21 2 9 16 23 4 11 18 25 6 13 20 1 8 15 22 3 10 17 24 5 12 19
8 0 8 16 24 6 14 22 4 12 20 2 10 18 0 8 16 24 6 14 22 4 12 20 2 10 18
9 0 9 18 1 10 19 2 11 20 3 12 21 4 13 22 5 14 23 6 15 24 7 16 25 8 17

10 0 10 20 4 14 24 8 18 2 12 22 6 16 0 10 20 4 14 24 8 18 2 12 22 6 16
11 0 11 22 7 18 3 14 25 10 21 6 17 2 13 24 9 20 5 16 1 12 23 8 19 4 15
12 0 12 24 10 22 8 20 6 18 4 16 2 14 0 12 24 10 22 8 20 6 18 4 16 2 14
13 0 13 0 13 0 13 0 13 0 13 0 13 0 13 0 13 0 13 0 13 0 13 0 13 0 13
14 0 14 2 16 4 18 6 20 8 22 10 24 12 0 14 2 16 4 18 6 20 8 22 10 24 12
15 0 15 4 19 8 23 12 1 16 5 20 9 24 13 2 17 6 21 10 25 14 3 18 7 22 11
16 0 16 6 22 12 2 18 8 24 14 4 20 10 0 16 6 22 12 2 18 8 24 14 4 20 10
17 0 17 8 25 16 7 24 15 6 23 14 5 22 13 4 21 12 3 20 11 2 19 10 1 18 9
18 0 18 10 2 20 12 4 22 14 6 24 16 8 0 18 10 2 20 12 4 22 14 6 24 16 8
19 0 19 12 5 24 17 10 3 22 15 8 1 20 13 6 25 18 11 4 23 16 9 2 21 14 7
20 0 20 14 8 2 22 16 10 4 24 18 12 6 0 20 14 8 2 22 16 10 4 24 18 12 6
21 0 21 16 11 6 1 22 17 12 7 2 23 18 13 8 3 24 19 14 9 4 25 20 15 10 5
22 0 22 18 14 10 6 2 24 20 16 12 8 4 0 22 18 14 10 6 2 24 20 16 12 8 4
23 0 23 20 17 14 11 8 5 2 25 22 19 16 13 10 7 4 1 24 21 18 15 12 9 6 3
24 0 24 22 20 18 16 14 12 10 8 6 4 2 0 24 22 20 18 16 14 12 10 8 6 4 2
25 0 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

References

Barenco, A., C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus,
P. Shor, T. Sleator, J. Smolin, and H. Weinfurter, “Elementary gates for
quantum computation,” Phys. Rev. A 52, 3457–3467 (1995).

Barrett, M. D., J. Chiaverini, T. Schaetz, J. Britton, W. M. Itano, J. D. Jost,
E. Knill, C. Langer, D. Leibfried, R. Ozeri, and D. J. Wineland, “Deter-
ministic quantum teleportation of atomic qubits,” Nature 429, 737 (2004).

Benenti, G., G. Casati, and G. Strini, Principles of Quantum Computation
and Information, Volume I: Basic Concepts (World Scientific, Singapore,
2004).

Bennett, C. H., “Logical reversibility of computation,” IBM J. Res.
Develop. 17, 525–532 (1973).

Bennett, C. H., F. Bessette, G. Brassard, L. Salvail, and J. Smolin,
“Experimental quantum cryptography,” J. Cryptol. 5, 3–28 (1992).

Bennett, C. H., and G. Brassard, “Quantum cryptography: Public key dis-
tribution and coin tossing,” in Proceedings of the IEEE International Con-
ference on Computers, Systems and Signal Processing, Bangalore, India,
December 1984 (IEEE, New York, 1984), pp. 175–179.

Bennett, C. H., G. Brassard, and J.-M. Robert, “Privacy amplification by
public discussion,” SIAM J. Comput. 17, 210–229 (1988).

Bennett, C. H., G. Brassard, and A. K. Ekert, “Quantum cryptography,”
Sci. Am. 267(4), 50 (Oct. 1992).

277

278 References

Bennett, C. H., G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K.
Wootters, “Teleporting an unknown quantum state via dual classical
and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899
(1993).

Bennett, C. H., G. Brassard, C. Crépeau, and U. M. Maurer, “Generalized
privacy amplification,” IEEE Trans. Inf. Theory, 41(6), 1915–1923 (Nov.
1995).

Bennett, C. H., G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and
W. K. Wootters, “Purification of noisy entanglement and faithful telepor-
tation via noisy channels,” Phys. Rev. Lett. 76, 722–725 (1996a).

Bennett, C. H., D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, “Mixed
state entanglement and quantum error correction,” Phys. Rev. A 54, 3824
(1996b).

Berrou, C., A. Glavieux, and P. Thitimijashima, “Near Shannon limit
error-correction coding and decoding: Turbo codes,” in Proceedings of
the 1993 IEEE International Conference on Communications, Geneva,
Switzerland, 1993, pp. 1064–1070.

Biham, E., M. Boyer, P. O. Boykin, T. Mor, and V. Roychowdhury, “A
proof of the security of quantum key distribution,” in Proceedings of the
32nd Annual ACM Symposium on Theory of Computing (ACM Press,
New York, 2000).

Bouwmeester, D., A. K. Ekert, and A. Zeilinger, editors, The Physics of
Quantum Information: Quantum Cryptography, Quantum Teleportation,
Quantum Computation (Springer, Berlin, 2000).

Brassard, G., and L. Salvail, “Secret-key reconciliation by public discus-
sion,” Lect. Notes Comput. Sci. 765, 410–423 (1993).

Briegel, H.-J., W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: The
role of imperfect local operations in quantum communication,” Phys. Rev.
Lett. 81, 5932–5935 (1998).

Boykin, P. O., T. Mor, M. Pulver, V. Rowchowdhury, and F. Vatan, “On
universal and fault-tolerant quantum computing: A novel basis and a new
constructive proof of universality for Shor’s basis,” in Proceedings of the

References 279

40th Annual Symposium on Foundations of Computer Science (FOCS’99)
(IEEE Computer Society Press, Los Alamitos, CA, 1999), pp. 486–494.

Chau, H. F., “Practical scheme to share a secret key through a quantum
channel with a 27.6% bit error rate,” Phys. rev. A 66, 60302 (2002).

Chor, B., O. Goldreich, J. Hastad, J. Friedmann, S. Rudich, and R. Smolen-
sky, “The bit extraction problem of t-resilient functions,” in Proceedings of
the 26th IEEE Symposium on Foundations of Computer Science, Portland,
Oregon, 1985, pp. 396–407.

Chuang, I. L., N. Gershenfeld, and M. Kubinec, “Experimental implemen-
tation of fast quantum searching,” Phys. Rev. Lett. 80, 3408–3411 (1998).

Coppersmith, D., “Modifications to the number field sieve,” J. Cryptology
6, 169–180 (1993).

Coppersmith, D., “An approximate Fourier transform useful in quantum
factoring,” IBM Research Report RC 19642 (1994).

Crandall, R. and C. Pomerance, Prime Numbers: A Computational Per-
spective, 2nd edition (Springer, New York, 2005).

Dawson, C. M., and M. A. Nielsen, “The Solovay-Kitaev algorithm,”
Quantum Inf. Comput. 6, 81–95 (2006).

Deutsch, D., A. Ekert, R. Jozsa, C. Macchiavello, S. Popescu, and A.
Sanpera, “Quantum privacy amplification and the security of quantum
cryptography over noisy channels,” Phys. Rev. Lett. 77, 2818–2821 (1996).

Deutsch, D., “Quantum theory, the Church-Turing Principle and the uni-
versal quantum computer,” Proc. Roy. Soc. Lond. A 400, 97 (1985).

Dieks, D. “Communication by EPR devices” Phys. Lett. A 92, 271–272
(1982).

DiVincenzo, D. P., “Two-bit gates are universal for quantum computa-
tion,” Phys. Rev. A 51, 1015–1022 (1995).

Dusek, M., N. Lutkenhaus, and M. Hendrych, “Quantum Cryptography,”
e-print quant-ph/0601207, available at http://www.arXiv. org (2006).

280 References

Ekert, A. K., “Quantum cryptography based on Bell’s theorem” Phys.
Rev. Lett. 67, 661–663 (1991).

Ekert, A., and R. Jozsa, “Quantum computation and Shor’s factoring
algorithm,” Rev. Mod. Phys. 68, 733–753 (1996).

Elliott, C., A. Colvin, D. Pearson, O. Pikalo, J. Schlafer, and H. Yeh, “Cur-
rent status of the DARPA Quantum Network,” e-print quant-ph/0503058,
available at http://www.arXiv.org (2005).

Fuchs, C. A., N. Gisin, R. B. Griffiths, C.-S. Niu, and A. Peres, “Optimal
eavesdropping in quantum cryptography. I. Information bound and opti-
mal strategy,” Phys. Rev. A 56, 1163–1172 (1997).

Gallager, R. G. Low-Density Parity-Check Codes (MIT Press, Cambridge,
MA, 1963).

Gallian, Joseph A. Contemporary Abstract Algebra, 6th ed. (Houghton
Mifflin, Boston, 2006).

Gerjuoy, E., “Shor’s factoring algorithm and modern cryptography. An
illustration of the capabilities inherent in quantum computers,” Am. J.
Phys. 73, 521 (2005).

Gisin, N., G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptogra-
phy,” Rev. Mod. Phys. 74, 145–195 (2002).

Greenstein, George, and Arthur G. Zajonc, The Quantum Challenge:
Modern Research on the Foundations of Quantum Mechanics (Jones and
Bartlett, Sudbury, MA, 1997).

Griffiths, David J. Introduction to Quantum Mechanics (Prentice Hall,
Englewood Cliffs, NJ, 1995).

Grover, L., “A fast quantum mechanical algorithm for database search,”
in Proceedings of the 28th Annual ACM Symposium on the Theory of
Computation (ACM Press, New York, 1996), pp. 212–219.

Grover, L., “Quantum mechanics helps in searching for a needle in a
haystack,” Phys. Rev. Lett. 79, 325 (1997).

Hamming, R. W., “Error detecting and error correcting codes,” Bell Syst.
Tech. J., 29, 147–160 (1950).

References 281

Hardy, G. H., and E. M. Wright, An Introduction to the Theory of Numbers,
4th ed. (Clarendon, Oxford, 1965).

Kahn, D., The Codebreakers (Macmillan, New York, 1967).

Kitaev, A. Y., “Quantum computations: Algorithms and error correction,”
Russ. Math. Surv. 52, 1191–1249 (1997).

Koblitz, Neal, A Course in Number Theory and Cryptography (Springer-
Verlag, New York, 1994).

Kraus, B., N. Gisin, and R. Renner, “Lower and upper bounds on the
secret-key rate for quantum key distribution protocols using one-way
classical communication,” Phys. Rev. Lett. 95, 080501 (2005).

Laflamme, R., C. Miquel, J.-P. Paz, and W. H. Zurek, “Perfect quantum
error correction code,” Phys. Rev. Lett. 77, 198 (1996).

Leon, Steven J., Linear Algebra with Applications (Prentice Hall, Upper
Saddle River, NJ, 2006).

Levy, Steven, Crypto: How the Code Rebels Beat the Government–Saving
Privacy in the Digital Age (Viking, New York, 2001).

Lo, H.-K., and H. F. Chau, “Unconditional security of quantum key dis-
tribution over arbitrarily long distances,” Science 283, 2050 (1999).

Lo, H.-K., S. Popescu, and T. Spiller, editors, Introduction to Quantum
Computation and Information (World Scientific, Singapore, 2001).

MacKay, D. J. C., and R. M. Neal, “Near Shannon limit performance of
low density parity check codes,” Electron. Lett. 32(18), 1645–1646 (1996).

Mayers, D., Lecture Notes in Computer Science, Vol. 1109 (Springer-
Verlag, Berlin, 1996), p. 343.

Mayers, D., “Unconditional security in quantum cryptography,” JACM
48, 351–406 (2001).

Mermin, N. D., “From Cbits to Qbits: Teaching computer scientists quan-
tum mechanics,” Am. J. Phys. 71, 23–30 (2003).

Nielsen, Michael A., and Isaac L. Chuang, Quantum Computation and
Quantum Information (Cambridge Univ. Press, Cambridge, 2000).

282 References

Park, David, Introduction to the Quantum Theory, 3rd ed. (McGraw-Hill,
New York, 1992).

Peres, Asher, Quantum Theory: Concepts and Methods (Kluwer,
Dordrecht, 1995).

Piper, Fred, and Sean Murphy, Cryptography: A Very Short Introduction
(Oxford Univ. Press, Oxford, 2002).

Pittenger, A. O., An Introduction to Quantum Computing Algorithms
(Birkhäuser, Boston, 2000).

Pless, Vera, Introduction to the Theory of Error-Correcting Codes, 3rd ed.
(Wiley, New York, 1998).

Pless, V., Huffman, W. C., editors, Handbook of Coding Theory, Vols. I
and II (Elsevier, New York, 1998).

Preskill, J., “Fault-tolerant quantum computation,” in Quantum Infor-
mation and Computation, edited by H.-K. Lo, T. Spiller, and S. Popescu
(World Scientific, Singapore, 1998).

Preskill, J., Physics 229: Quantum Computation and Information,
California Institute of Technology. URL: http://www.theory.caltech.edu/
people/preskill/ph229/(2004).

Rényi, A., “On the foundations of information theory,” Rev. Int. Statist.
Inst. 33, 1 (1965).

Riebe, M., H. Häffner, C. F. Roos, W. Hänsel, J. Benhelm, G. P. T.
Lancaster, T. W. Körber, C. Becher, F. Schmidt-Kaler, D. F. V. James,
and R. Blatt, “Deterministic quantum teleportation with atoms,” Nature
429, 734 (2004).

Rieffel, E. G., and W. Polak, “An introduction to quantum computing for
non-physicists,” ACM Comput. Surv. 32, 300–335 (2000).

Sebag-Montefiore, Hugh, Enigma: The Battle for the Code (Wiley, New
York, 2000).

Shannon, C. E., “A mathematical theory of communication,” Bell Syst.
Tech. J., 27, 379–423, 623–656 (1948).

References 283

Shannon, C. E., “Communication theory of secrecy systems,” Bell. Sys.
Tech. J. 28, 656 (1949).

Shor, P. W., “Algorithms for quantum computation: Discrete logarithms
and factoring,” in Proceedings of the 35th Annual Symposium on the Foun-
dations of Computer Science, edited by S. Goldwasser (IEEE Computer
Society Press, Los Alamitos, CA, 1994), pp. 124–134.

Shor, P., “Scheme for reducing decoherence in a quantum computer mem-
ory,” Phys. Rev. A 52, 2493 (1995).

Shor, P. W. “Polynomial-time algorithms for prime factorization and dis-
crete logarithms on a quantum computer,” SIAM J. Comput. 26, 1484
(1997).

Shor, P. W., and J. Preskill, “Simple proof of security of the BB84 quantum
key distribution protocol,” Phys. Rev. Lett. 85, 441 (2000).

Singh, Simon, The Code Book: The Science of Secrecy from Ancient Egypt
to Quantum Cryptography (Random House, New York, 1999).

Stark, Harold M., An Introduction to Number Theory (The MIT Press,
Cambridge, 1970).

Stinson, Douglas R., Cryptography: Theory and Practice, 2nd ed. (CRC
Press, Boca Raton, FL, 2002).

Styer, D. F., The Strange World of Quantum Mechanics (Cambridge Univ.
Press, Cambridge, 2000).

Tang, X., L. Ma, A. Mink, A. Nakassis, H. Xu, B. Hershman, J. C. Bienfang,
D. Su, R. F. Boisvert, C. W. Clark, and C. J. Williams. “Experimental study
of high speed polarization-coding quantum key distribution with sifted-
key rates over Mbit/s,” Optics Express 14, 2062 (2006).

Vandersypen, L. M. K., M. Steffen, G. Breyta, C. S. Yannoni, M. H. Sher-
wood, and I. L. Chuang, “Experimental realization of Shor’s quantum
factoring algorithm using nuclear magnetic resonance,” Nature 414, 883–
887 (2001).

Welsh, Dominic, Codes and Cryptography (Oxford Univ. Press, Oxford,
1988).

284 References

Wiesner, S., “Conjugate coding,” SIGACT News 15, 77 (1983).

Wootters, W. K., and W. H. Zurek, “A single quantum cannot be cloned,”
Nature 299, 802–803 (1982).

Yurke, B. and D. Stoler, “Bell’s-inequality experiments using
independent-particle sources,” Phys. Rev. A 46, 2229 (1992).

Index

adjoint of an operator, 73
Adleman, Len, 37
AES, 34, 104
AND gate, 207, 208

basis, 272
Bayes’ rule, 112
Belaso, Giovan Batista, 3
Bell measurement, 120
Bell, John S., 120
Bennett, Charles, 103
Bennett–Brassard protocol, 105, 117, 174
binary code, 136
binary parity check code, 137
binary repetition code, 136
block cipher, 21, 30
Brassard, Gilles, 103

Caesar cipher, 1
check matrix, 157
chosen-plaintext attack, 27, 34
circuit diagram, 214
circular polarization, 71, 74
CNOT gate, 213
code, 135
codespace, 135
codeword, 135
complex conjugate, 67
complex numbers, 67
composite system, 83
continued fraction, 243
control qubit, 213
controlled-not gate, 213
convergents, 243
coset, 161
coset leader, 163

DES, 28, 29, 31, 33, 34, 35, 36, 104
determinant, 22, 273
Deutsch algorithm, 217
Deutsch, David, 205, 217
differential cryptanalysis, 34
Diffie, Whitfield, 35, 37
Diffie–Hellman public key exchange, 35,

36, 45
dimension, 272
dimension of a code, 151
dimension of a quantum variable, 78
discrete Fourier transform, 233, 238
discrete log problem, 37
divides, 18
Division Algorithm, 39
dot product, 155, 274
dual code, 155

Ekert, Artur, 124
electric field, 58
electron spin, 78, 80
Electronic Frontier Foundation, 34
elementary row operations, 273
elliptic curve, 47
elliptical polarization, 71, 74
Enigma, 9
Enigma protocol, 13
entanglement, 88, 92, 120
entanglement purification, 123, 125
equivalent codes, 153
Euclidean Algorithm, 40

factoring, 205, 226, 249
factoring, efficiency of, 249
Feistel cipher, 28, 29, 30, 32
Fermat’s Little Theorem, 41

285

286 Index

field, 195, 269
five-qubit code, 266
Fourier transform, discrete, 233, 238
Fourier transform, quantum, 229, 233, 251
frequency analysis, 2, 4

gate, computational, 207
gate, quantum, 221
generalized measurements, 64
generalized Reed-Solomon code, 193, 194
generator matrix, 148, 151
group, 44

Hadamard gate, 211, 213
Hamming code, 129, 137, 168
Hamming distance, 141
Hamming weight, 147
Hamming, Richard, 128
hat problem, 166
Hellman, Martin, 36, 37
Hill cipher, 21, 35

identity matrix, 22, 272
imaginary part of a complex number, 68
incomplete measurement, 93, 96, 98, 121,

259
inner product, 60, 71, 79, 116

Kasiski, Friedrich, 4
key matrix, 21
known-plaintext attack, 27

length of a vector, 71, 79
linear code, 146, 151
linear cryptanalysis, 34
linear function, 29
linear polarization, 58, 64
linearly independent, 149, 272

magnitude of a complex number, 68
MARS, 35
maximum distance separable, 197
minimum distance, 142
minimum distance decoding, 141
minimum weight, 147
modular arithmetic, 2, 18
momentum, 57, 78

National Bureau of Standards, 28
National Institute of Standards and

Technology, 35

National Security Agency, 28
no-cloning theorem, 115
normalization, 71
NOT gate, 207
nullspace, 274

one-time pad, 6, 104
operator, 73
order of an integer, 227
orthogonal matrix, 64
orthogonality, 71, 79

parity check code, 132
phase of a complex number, 69
photon, 57
polar form of a complex number, 69
polarization, 57
polarizing filter, 61
polynomial ring, 194
privacy amplification, 174, 179
product state, 87
projection operator, 97

quantum computer, potential designs,
206

quantum cryptography, 103, 173
quantum error correction, 257
quantum Fourier transform, 229, 233, 251
quantum gate, 208, 221
quantum key distribution, 103
quantum measurement, 59, 73, 79, 90, 98
quantum parallelism, 211
quantum probabilities, 60, 73, 80
quantum state, 57, 64, 73, 79
quantum superposition, 56, 91
quantum teleportation, 119
quantum variable, 57, 77
quarter-wave plate, 75
qubit, 79

rank, 274
RC6, 35
real part of a complex number, 68
reduced row echelon form, 273
Rejewski, Marian, 14
relatively prime, 20
Rényi entropy, 111, 186
Rényi information, 186
repetition code, 258
reversible transformation, 59, 63, 73, 80
Rijndael, 35

Index 287

Rivest, Ron, 37
rowspace, 149
RSA, 37, 38, 205, 228

S-box, 32
Schrödinger, Erwin, 88
Serpent, 35
Shamir, Adi, 37
Shannon entropy, 188
Shannon, Claude, 128
Shor code, 262
Shor’s algorithm, 205, 226, 229
Shor, Peter, 205
singleton bound, 197
span, 272
standard generator matrix, 153
subspace, 271
substitution cipher, 1
syndrome, 161
syndrome decoding, 160
systematic generator matrix, 153

T gate, 213
target qubit, 213
tensor product of operators, 86
tensor product of vector spaces,

85
tensor product of vectors, 85, 116
ternary code, 139
transpose, 274
Twofish, 35

unitary matrix, 72, 73, 115
universal set of gates, 222

vector space, 271
Vigenére cipher, 3
Vigenére, Blaise de, 3

Wollaston prism, 61, 74
word, 135

XOR gate, 208

	Cover
	Half-title
	Title
	Copyright
	Dedication
	Contents
	Preface
	Acknowledgments
	1 Cryptography: An Overview
	1.1 Elementary Ciphers
	1.1.1 Substitution ciphers
	1.1.2 Vigenère ciphers
	1.1.3 One-time pad

	1.2 Enigma
	1.2.1 The Enigma cipher
	Cracking Enigma

	1.3 A Review of Modular Arithmetic and Zn
	1.4 The Hill Cipher
	1.5 Attacks on the Hill Cipher
	1.6 Feistel Ciphers and DES
	An r-Round Feistel Cipher with Block Size 64
	DES

	1.7 A Word about AES
	1.8 Diffie–Hellman Public Key Exchange
	Diffie–Hellman Public Key Exchange

	1.9 RSA
	RSA
	The Euclidean Algorithm

	1.10 Public Key Exchanges with a Group
	1.11 Public Key Exchange Using Elliptic Curves

	2 Quantum Mechanics
	2.1 Photon Polarization
	2.1.1 Linear polarization
	2.1.2 Review of complex numbers
	2.1.3 Circular and elliptical polarization

	2.2 General Quantum Variables
	2.3 Composite Systems
	The composite system rule

	2.4 Measuring a Subsystem
	Rule for measurements on subsystems

	2.5 Other Incomplete Measurements

	3 Quantum Cryptography
	3.1 The Bennett–Brassard Protocol
	3.2 The No-Cloning Theorem
	3.3 Quantum Teleportation

	4 An Introduction to Error-Correcting Codes
	4.1 A Few Binary Examples
	4.2 Preliminaries and More Examples
	4.3 Hamming Distance
	4.4 Linear Codes
	4.5 Generator Matrices
	4.6 Dual Codes
	4.7 Syndrome Decoding
	4.8 The Hat Problem
	The Strategy

	5 Quantum Cryptography Revisited
	5.1 Error Correction for Quantum Key Distribution
	5.2 Introduction to Privacy Amplification
	5.2.1 Eve knows a fixed number of elements of the bit string
	5.2.2 Eve knows the parities of certain subsets of the bit string
	5.2.3 The general case

	6 Generalized Reed-Solomon Codes
	6.1 Definitions and Examples
	6.2 A Finite Field with Eight Elements
	6.3 General Theorems
	6.4 A Generator Matrix for a GRS Code
	6.5 The Dual of a GRS Code

	7 Quantum Computing
	7.1 Introduction
	7.2 Quantum Gates
	7.3 The Deutsch Algorithm
	7.4 A Universal Set of Quantum Gates
	7.5 Number Theory for Shor’s Algorithm
	7.6 Finding the Period of f (x)
	7.7 Estimating the Probability of Success
	7.8 Efficiency of Factoring
	7.9 Introduction to Quantum Error Correction
	7.9.1 An X-correcting code
	7.9.2 A Z-correcting code
	7.9.3 The Shor code

	APPENDIX A
	A.1 Fields
	A.2 A Glossary of Linear Algebra Definitions and Theorems
	A.3 Tables for the Alphabet

	References
	Index

