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Preface

Today, more than at any other time in the history of mankind, computers are increas-
ingly and successfully being exploited to gain a better understanding of our physical
world and as a result, also deepen our appreciation and reverence for God’s Creation.
Consequently, as computers evolve, so must the means to control them through ad-
vancements not just in hardware but also in software.

In order to satisfy this demand for better software, Microsoft released an entirely
new programming language called C# that incorporates the best features of all the
other existing popular programming languages such as Java, C/C++, and Visual Ba-
sic. In spite of considerable resistance by some people who persist on clinging on to
the past and continue to program computers the hard way, C# has now firmly estab-
lished itself worldwide as arguably the preferred language for software application
development. Although many excellent books on the topic of general programming
in C# have been written, there is still a considerable lack of published material on
the topic of numerical methods in C#.

Accordingly, Numerical Methods, Algorithms and Tools in C# is a book contain-
ing a large collection of very useful ready-to-use mathematical routines, algorithms
and other computational tools aimed at programmers, mathematicians, statisticians,
scientists, engineers and anyone else interested in developing mathematically ori-
ented computer applications in the relatively new and easy-to-learn object-oriented
C# programming language from Microsoft. With a heavy emphasis on using well
established numerical methods, object-oriented techniques and the latest state-of-
the-art Microsoft .NET programming environment, this book provides readers with
working C# code including practical examples that can be easily customized and im-
plemented to solve complex engineering and scientific problems typically found in
real-world applications.

For the benefit of those readers who are not yet familiar with C#, Chapter 1 pro-
vides a brief outline of the .NET Framework, the C# programming language and the
basic concepts of Object Oriented Programming (OOP). Special attention is given to
topics that illustrate how to best utilize these and other tools to develop accurate and
robust numerical methods in C#.

Chapter 2 is entirely focused on the .NET Framework Math Class Library which
already comes built into Microsoft’s Visual Studio software development system.
Additional material is introduced where appropriate in order to supplement, com-
plete or otherwise enhance the features already available with this library.

Chapter 3 introduces data structures along with their associated functions that are
particularly useful for programming and working with vectors and matrices. These

iii
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iv Numerical Methods, Algorithms and Tools in C#

routines are often used in more advanced applications in later chapters.
Chapter 4 is entirely dedicated to the topic of complex numbers. Since timing

issues can sometimes pose a substantial problem when doing numerical calculations,
complex number functions are presented using both elegant state-of-the-art object-
oriented methods which, although slick, can at times carry some overhead and the
old fashioned but proven methods which at times have been found to actually run
faster on some computers. In addition, important overflow and underflow issues are
also discussed and alternative solutions to avoid those problems are proposed.

Chapter 5 is devoted solely to sorting and searching algorithms. Computers are
often required to perform various types of data sorting for which many different
algorithms exist. Consequently, choosing the most efficient sorting algorithm is a
very important decision that developers frequently have to make. In this chapter,
readers are provided with both a wide selection of sorting and searching algorithms
from which to choose along with a brief explanation of how each algorithm works.

Chapter 6 is centered on the topic of bit manipulation which is typically used in
a variety of programming applications ranging anywhere from computer interfacing
to image processing.

Chapter 7 is focused on interpolation methods. Equations that cannot be solved
analytically often need to be solved using some kind of interpolation scheme, and
this chapter has plenty of practical examples to illustrate how one might handle this
kind of problem.

Chapter 8 centers on the numerical manipulation of linear algebraic equations.
This is actually a huge topic by itself and quite worthy of its own book. Neverthe-
less, a substantial amount of useful information can be readily obtained from just a
handful of these powerful tools.

Chapter 9 is focused on numerical methods for calculating approximate solutions
to nonlinear equations which often appear naturally in various branches of science
and engineering.

Chapter 10 is devoted exclusively to the topic of random numbers. Although C#
comes with its own internal random number generator function, it is not regarded to
be sufficiently robust for use in advanced secured applications or in computer sim-
ulations that require thousands and sometimes even millions of random numbers in
order to produce reliable and accurate results. Alternate ways to obtain both com-
puter generated pseudo-random numbers and real random numbers obtained from
naturally occurring physical phenomena are also discussed. In addition, routines are
also provided for generating random numbers that follow a particular probability
distribution function.

Chapter 11 describes various methods for approximating numerical differentiation
of functions. This is a very tricky and controversial topic whose approximations can
give fairly good to atrociously bad results. Nevertheless, numerical methods do exist
for calculating these types of functions. The trick is really in learning to recognize the
difference between good and bad results and in choosing the best available method
for use in a particular situation.

Chapter 12 centers on developing numerical methods for approximating integrals
of specific functions as well as from collections of raw data points. Other more exotic
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Preface v

ways of calculating integrals, such as by using Monte Carlo methods, are also briefly
discussed.

Chapter 13 contains a considerable number of routines for use in performing sta-
tistical analysis of data.

Chapter 14 is devoted to developing numerical methods for approximating special
functions which are typically found in various branches of mathematics, physics and
engineering.

Chapter 15 is focused on least squares and numerical curve fitting methods that
are frequently used in analyzing experimental data. A brief discussion of the χ2

goodness-of-fit test is also included.
Chapter 16 centers on developing routines to find numerical solutions to ordinary

differential equations. Although this is really a huge topic, there are some basic
numerical methods which can be used successfully to solve a lot of these types of
equations in many real-world applications.

Chapter 17 introduces some numerical methods for solving partial differential
equations. Although this is also a huge topic by itself and quite deserving of its
own book, there are some standard types of partial differential equations that arise
naturally in many areas of science and engineering, and whose solutions can be ap-
proximated by well established numerical methods.

Chapter 18 focuses on optimization methods which are primarily aimed at the
minimization or maximization of functions and thus have many practical scientific
and engineering applications. Since this is still a very active area of ongoing research,
the examples presented here are more narrowly focused on just a few established
topics with the explicit purpose of illustrating how such methods may be individually
customized and then applied towards solving more advanced problems.

Lastly, I would like to point out that most of the numerical methods described in
this book have actually been around in one form or another for years, and sometimes
even for centuries, and it is only their computer implementation in C# that makes
this book uniquely different from some other book on the topic of numerical anal-
ysis. Accordingly, I have made every effort to track down and give proper credit to
original sources whenever possible as the size of this book’s reference section can
easily attest. In addition, I have also made every effort to provide my readers with
accurate, reliable information to help them in their efforts to successfully complete
their programming projects. Unfortunately, unwanted mistakes including typograph-
ical errors may inadvertently creep up somewhere in this book. As a result, I would
greatly appreciate if my readers would be so kind as to bring to my attention if such
errors are ever found so that I may promptly have the problem corrected for any fu-
ture editions of this book. Also, as with just about everything we do in life, there is
always room for improvement. Accordingly, I would also very much welcome any
constructive criticism that my readers may have regarding this book so that I can per-
haps make appropriate changes. Finally, there is an old saying that states, “an author
never finishes a book, but merely abandons it.” I have certainly come to appreciate
that observation after working on this project for so long and making countless revi-
sions. Nevertheless, this has certainly been a very enjoyable project where just about
every word was carefully chosen and every topic was meticulously researched and
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documented. Therefore, if it is indeed true that I have willingly chosen to abandon
writing this book, it is only with the modest hope that it may be useful to my readers
in spite of any possible shortcomings.

Waldemar Dos Passos, Ph.D.
Concord, California
e-mail: waldemar007@hotmail.com
website: www.waldemardospassos.com
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1

Introduction

The main objective of this first chapter is to provide my readers with a brief outline
of the .NET Framework, the C# programming language and the basic concepts of
Object Oriented Programming (OOP). Special attention will be given to materials
that illustrate how to best utilize these tools to develop accurate and robust numerical
methods in C# primarily for use in scientific and engineering applications.

1.1 C# and the .NET Framework

In the late 1990s, Microsoft embarked on a project to update and improve its flag-
ship software application development system, more commonly known as Visual
Studio, and as a result of this effort, an entirely new programming language named
C# emerged that, among other things, essentially incorporates the best features of
all the other popular programming languages of the time such as Java, C/C++ and
Visual Basic. Consequently, since its first release in July of 2000, C# has quickly
established itself worldwide as perhaps the preferred language for software applica-
tion development. Besides being a very powerful general purpose, object-oriented
programming language, C# enjoys the full advantage and benefits of being fully in-
tegrated with the Microsoft .NET Framework system.

The Microsoft .NET Framework is a fundamental Windows operating system
component that supports building and running both software applications as well
as Web services. It consists of a large set of class libraries of pre-coded solutions to
common programming problems and also provides a new environment for build-
ing applications that can be deployed and executed across multiple architectures
and operating systems. The .NET Framework was designed to be installed on top
of the Windows operating system and is divided into two key components: a run-
time environment called the Common Language Runtime (CLR), which provides
the runtime services to manage and execute applications originally written in any
one of the .NET programming languages, and a large library of pre-coded object ori-
ented classes called the Framework Class Library (FCL) which provides the required
services for developing .NET applications. Conceptually, .NET applications reside
above the .NET Framework architecture and can be illustrated abstractly as shown
in Table 1.1.

The C# language specification [1] has been standardized by ECMA International,

1
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2 Numerical Methods, Algorithms and Tools in C#

TABLE 1.1
Outline of the .NET Framework Architecture

.NET Applications
Visual Basic Visual C# Visual C++

.NET Framework Class Library (FCL)

Common Language Runtime (CLR)

Operating System

which is an industry association dedicated to the standardization of information
and communication systems. As a result, consumers can now choose to buy their
C# compilers from among several different manufacturers such as Microsoft [2],
SharpDevelop [3], DotGNU [4] and Mono [5]. However, the most popular C# com-
piler on the market today comes bundled with Microsoft’s Visual Studio software
development system which, in addition to having a C# compiler, also provides a
full featured integrated development environment (IDE) that standardizes support
for many of the other popular programming languages like Visual Basic and Visual
C++. Accordingly, all the code and examples contained in this book were written
and tested using the latest version of Microsoft Visual Studio.

As part of the natural evolution of programming languages, C# has incorporated
and exploited familiar features from C/C++ and Java that already had a proven record
of success. In addition, C# also has a number of unique new features that make it a
very attractive programming language. For example, C# controls access to hardware
and memory resources and, by default, does not allow for the explicit usage and ma-
nipulation of pointers as C and C++ do except for sections of code that have been
specifically designated as unsafe. This feature, along with the support of a more pow-
erful garbage collector that automatically manages all aspects of memory allocation
and de-allocation during runtime, has now made frustrating memory leaks and dan-
gling pointers, often hard to find and debug in C/C++ programs, a thing of the past.
In addition, improvements made in exception handling provide a well structured
and extensible approach to error detection and recovery. C# is also designed with
type-safe features that make it impossible to have non-initialized variables, to index
arrays beyond their bounds, or to perform unchecked type casts. The C# language
also supports more advanced features such as multi-threading and Just-in-Time (JIT)
compilation from byte code to native code to name a few.
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1.2 Installing C# and the .NET Framework

You can buy Visual C# either by itself or as part of the Visual Studio IDE, which also
includes, in addition to Visual C#, support for other programming languages such as
Visual Basic and Visual C++. Visual C# comes in several editions. If you want
Visual C# all by itself, you have only one choice: the Express edition. However,
if you buy Visual C# as part of the Visual Studio package, you have three choices:
Standard, Professional and Team editions to accommodate every budget, work en-
vironment and skill level. There is also the Academic version of the Professional
edition which is available at a substantial discount for students and teachers. The
key differences between these various editions center primarily on the number of
development environment features available to the programmer. If you do computer
programming as a hobby, the Express edition should work just fine for most of the
applications described in this book. However, if you do a significant amount of soft-
ware development in various languages and platforms, then you will likely derive
most benefit from the multipurpose Professional edition.

The Visual C# installation kit may consist of one or more CDs depending on the
edition chosen. The installation itself is relatively easy and is simply a matter of fol-
lowing the directions displayed on the screen. If you do not have the required .NET
Framework already installed on your system, the installation program will perform
that task automatically for you prior to doing anything else. Due to the huge size
of the program, it may take some time to install. But patience is a virtue in pro-
gramming and it begins with the installation of Microsoft Visual Studio. Installing
the latest version of the MSDN reference libraries directly on your computer is also
highly recommended so that help files can be retrieved and promptly consulted as
needed.

1.3 Overview of Object-Oriented Programming (OOP)

There are primarily two methods of programming in use today: procedural and
object-oriented. Procedural programming has its roots in the earliest forms of pro-
gramming languages and essentially involves creating and naming computer memory
locations that can hold data which can then be changed and manipulated through a
series of sequential steps. The named computer memory locations are called vari-
ables because they hold values that might vary at some point during the life of the
program. Sometimes a finite number of these sequential steps used in computer
programs can be grouped into smaller logical units called procedures. Hence the
objective of procedural programming is to focus on the creation of procedures to op-
erate and potentially alter data. If, at some later point in time, the program’s original
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specifications somehow change significantly enough to warrant a corresponding fun-
damental change in the program’s original data structure then the original code must
also be changed and rewritten to accept the new data format. Unfortunately, such
changes often result in additional work for programmers and this may ultimately
lead to potential project release delays, higher production costs and perhaps most
importantly, can also increase the chances for unwanted bugs to appear in the code.

Object-oriented programming can be thought of as a major significant improve-
ment of procedural programming. Whereas procedural programming is focused on
creating procedures to manipulate data, object-oriented programming centers on cre-
ating abstract, self-contained software entities called objects that contain both at-
tributes and methods, previously also known as data and procedures. The attributes
of an object provide information about its characteristics whereas the methods of an
object provide information about how to manipulate those attributes. More formally,
an object is said to be an instance of a class and a class is said to be a template or
a blueprint for describing how an object is created and how it behaves at runtime.
Hence, a class defines behavior, properties and other attributes of an object that is an
instance, or example, of that class.

Object-oriented programs have attributes and methods that are said to be encap-
sulated into objects. Encapsulation is the object oriented principle associated with
hiding the internal structural details of an object from the outside world so that pro-
grammers can only use a well defined interface to interact with an object’s internal
structure. This feature is intended to prevent programmers from easily and perhaps
even recklessly altering an object’s internal structure or behavior. Polymorphism is
the object-oriented programming principle that allows the creation of methods that
act appropriately depending on the context within which a particular task is carried
out. Inheritance is an object oriented principle relating to how one class, called the
derived or child class, can share the characteristics and behavior from another class,
called the base or parent class. In addition to its own new and unique attributes and
methods, the derived class is said to inherit and thus contain nearly all the attributes
and methods of the existing base class.

Therefore, besides retaining all the familiar and well established concepts of data
(i.e. attributes) and procedures (i.e. methods), object-oriented programming also
contains six additional unique features that are called: objects, classes, encapsula-
tion, interfaces, polymorphism, and inheritance.

1.4 Your First C# Program

There are at least four general types of applications that can be created with C#:
Console applications, Windows Form applications, Web Services and ASP.NET ap-
plications. Console applications run from the command line and are the most fun-
damental and easiest applications to understand. Consequently, console applications
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will be the preferred type of application used to illustrate the numerical examples
given throughout this book. Window Form applications are applications that use the
graphical user interface (GUI) provided by Microsoft Windows. Web Services are
routines that can be called across the Web. ASP.NET applications are executed on a
Web Server to generate dynamic Web pages.

It may come as a complete surprise for most people that they can actually start
programming in C# for free. All that is needed to get started are two things: (1) a
text editor like Notepad that already comes installed on your computer with the Win-
dows operating system and (2) the .NET Framework which also comes with a simple
command line C# compiler that you can easily download for free from the Microsoft
website [6]. However, as your programs begin to grow in size, you will very likely
want to eventually migrate towards a full featured integrated development environ-
ment that is much easier to use and is also rich with exciting features and tools. For
now, however, let’s start by examining the simplest possible C# program that can
be written and then learn how to compile it and make it run. It is a long standing
tradition in computer programming to introduce a new language with an example
that displays the phrase, Hello World! on the console screen. The C# program to
accomplish this task looks like this:

class MyFirstProgram
{

static void Main()
{

System.Console.WriteLine("Hello, World!");
}

}

The code consists of a class called MyFirstProgram and a method called Main. Each
C# program has one and only one Main method, also called the entry point, which is
called when the program is first started. WriteLine(...) is a method of the Console
class that is found in the System namespace. Namespaces are used to group type
declarations and classes that belong together into a cohesive unit. By using sepa-
rate namespaces, collisions with identically named types and classes can be avoided.
The System namespace, for example, which comes already built into the C# com-
piler, holds commonly used classes and is used to eliminate the need to write a lot
of repeated code. When combined together these program instructions cause the
computer to produce an output directed at the console screen. Using any text ed-
itor, type and save the above program to a file having a name of your choice but
preferably ending with the extension .cs, such as Example01.cs. The command line
Microsoft C# compiler, csc.exe, is located in the directory of the latest version of
the .NET Framework installed in your computer. For the .NET Framework version
3.5 installed on a Windows XP operating system, for example, the Microsoft C#
command line compiler, csc.exe, can be found in the following directory:

C:\WINDOWS\Microsoft.NET\Framework\3.5\

If you only want to use the C# command line compiler, then you should also add
its location to the path variable in the Windows environment so that you will then
be able to call it from any directory in your computer. To compile your program
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then enter: csc Example01.cs at the command prompt of your console window.
If the compiling process went well and there are no scary looking error messages
displayed on your screen, you can then run your program by entering its name at
the command prompt after which you should see the resulting output: Hello World!
displayed on your monitor screen. Alternatively, if you have installed Microsoft’s
Visual Studio IDE, you do not need to worry about setting up the path. Instead just
open the Visual Studio command prompt by using the following steps: (1) click the
Start menu button, (2) select All Programs, (3) select Microsoft Visual Studio, and
finally (4) select the Visual Studio Command Prompt. This will not just open up
a command line prompt window for you to use but will also automatically add the
location of the command line compiler csc.exe to your operating system’s path.

A useful feature of C# programs is that they can be spread across several files that
can then be compiled together or separately. You can find more information about
alternate and more elaborate ways to compile C# programs from the command line
prompt by visiting Microsoft’s MSDN website [7]. However, as you create larger C#
programs, compiling them this way can quickly become very tedious. Fortunately,
there are far easier ways to compile C# programs than using long, cumbersome and
hard-to-remember compiler options in command line arguments.

Another way to write and compile your C# programs is to use the Visual Studio
IDE. There are several advantages to using this approach. First, some of the code
you need will be automatically created for you. Second, there are fantastic built-
in debugging tools available for you to use which will, among many other things,
automatically identify and place the cursor where errors are found in the code. Third,
there is automatic statement completion which, together with the other extraordinary
software resources already built into the IDE for you to use, will very likely save you
countless hours of additional work.

Before using the Visual Studio IDE, you have to decide what type of project you
wish to create. A Windows Forms Application project will allow you to create com-
plete Windows applications, including dynamic linked libraries which can be linked
to or referenced by other programs that do not necessarily even need to be written in
C#. Unfortunately, as exciting as all these and other features may sound, developing
Windows applications is beyond the scope of this book and is also not necessary for
learning how to write useful numerical routines in C#. Instead, simpler project types
using the Console Application option will be chosen to illustrate most of the material
contained in this book. Once the basic numeric routines have been written and tested,
one can then just add a reference to them or even copy and paste them inside more
intricate Windows applications or even embed them into versatile dynamic linked
libraries.

To compile and execute programs using the Visual Studio IDE you must first call
up Visual Studio from your desktop. Once the Start Page is displayed on your screen,
go to the menu bar at the top and click File followed by New Project. A new dialog
window (see Fig.1-1) will pop up prompting the user to select the Project Type (Vi-
sual C#) and the Templates (Console Application) to use. The user is also asked to
enter a project name and a location in the computer for it to be stored. Also, be sure
to select the .NET Framework 3.5 option (or higher, if available) on the combo box
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FIGURE 1.1
Setting up for a new project in Visual Studio IDE.

FIGURE 1.2
Default Console Application project option in Visual Studio IDE.
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located on the upper right corner of the screen as this will insure that your project
files will be setup using the latest and greatest version of the .NET Framework.

After clicking Ok and waiting a few seconds, a new dialog window (see Fig.1-2)
will pop up enabling the user to start entering code. Note that the IDE has automat-
ically generated some code to get you started on your merry way to programming
bliss. Nevertheless, you need to exercise some discretion since not every line of the
automatic generated code is really necessary for the particular application you may
have in mind. However, leaving any automatically generated code untouched should
not cause problems when you try to compile your program.

In the region where you see the automatic generated code you can clear everything
and then re-enter the original Hello World program described earlier or you can enter
a slightly different version of that same program as shown below.

using System;
namespace Example02
{

class MySecondProgram
{

static void Main(string[] args)
{

Console.WriteLine("Hello World!");
Console.ReadLine();

}
}

}

As the reader may have noticed, there were three additional using directives which
were automatically generated when the Console Application template was selected.
However, these were all manually deleted in the final version of Example02.cs be-
cause they are not needed to successfully compile this program. using directives are
optional but when declared at the start of a code file, they are used to import specific
namespaces for later use by the program and judicious use of such directives can
save programmers from having to do a lot of additional typing.

You can also change the name Program of the original class to whatever name you
prefer, such as MyFirstClass, but you should do it from the Solution Explorer because
it is used to manage all the project files that make up a complete solution. There-
fore, any changes you make using the Solution Explorer will be immediately and
globally recognized by all the other code references contained within your project.
Failure to do this step in the way just described will likely cause the C# compiler to
generate unwanted error messages when you attempt to compile your program. To
do this step simply take your mouse and right click on the highlighted item labeled
Program.cs, select rename followed by entering the new name of your choice while
preferably retaining the .cs file extension. Then finally confirm that you want the
IDE to automatically rename all the references related to this item contained inside
this project. An additional line of code containing the statement Console.ReadLine
(); was added in order to pause the output display on the screen until the user hits
the enter key on the keyboard to continue. This prevents the output window from
immediately closing after displaying its output: Hello World!.
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To compile a program using the Visual Studio IDE, go to the menu toolbar at
the top of the screen and click Build followed by Build Solution. Alternatively you
can just press F6. If you are really lucky, and the compiling was a total success
without displaying any error messages, then you should see status messages like
Build followed by Succeeded appear in the Output Window. Finally, to do a test
run of your program again go to the menu toolbar at the top of the screen and select
Debug followed by Start Without Debugging. Alternatively you can also just press F5
from the outset. Either way, you should now see the output of your program appear
on your monitor screen. While it’s good practice to first build your project before
attempting to run it so that any unwanted bugs in your code will be immediately
detected and corrected, you can also press F5 which will automatically build your
project and then immediately run it without any pause unless, of course, errors are
found somewhere in your code.

Unlike when you use the Microsoft command line compiler csc, if you create and
compile a C# program using the Visual Studio IDE, many additional files are created
along with some folders. Of these, the innermost folder contains a bin folder, an obj
folder and a properties folder along with some additional files. If you explore the
directories down further, you should find that the bin folder contains a Debug folder
which contains the executable file of the program you just created. Although at first
the Visual Studio editor seems to create a lot of extraneous useless files, these extra
files will become vitally important as you create more advanced C# projects.

1.5 Overview of the IDE Debugger

By default a program will enter into break mode whenever it encounters some kind of
problem that is not properly handled, while executing its source code. This sequence
of events is more commonly known as throwing an exception. When an application
throws an exception that is not properly handled, the offending code statement is
immediately highlighted upon entering the break mode and the Exception Assistant
tries very hard, at various levels, to automatically determine the cause and location
of the exception for you. However, the resulting error message is sometimes difficult
to interpret so that the source code of the program can then be properly fixed. For-
tunately, the Microsoft Visual Studio IDE comes equipped with a very powerful full
feature debugger to help you locate and correct errors that prevent your application
from running properly. With it you can step through program source code one line at
a time to see how its execution is carried out, you can monitor form property values
and you can even reset values at runtime. Features like this can help you understand
the logic flow of a program and allow you to experiment with and even alter your
code while the program is still running.

For a short descriptive tour of the basic features contained in the Visual Studio
debugger, simply open your project file inside the IDE to bring up your source code
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on the console screen. Then in the code editor you can set one or more breakpoints,
which pauses the program’s execution at a specific code command, by clicking in the
gray area on the left side of the code editor. A red dot will then appear on the left
edge of the line that contains the breakpoint and the IDE will reverse highlight the
code in red. Then run your application as usual and after the program pauses at the
breakpoint, an arrow will mark the command that executes next. To step through the
program’s commands, click Step Into on the toolbar. To see the value of a particular
item, place the mouse pointer on a reference to the item in the code editor. While
the program’s execution has paused at a breakpoint, you can also place the mouse
pointer over a variable, property or expression to display its current value in a data
tip. In addition, the Edit and Continue feature allows you to immediately fix an error
and confirm that the correction you just made actually fixed the problem. In some
cases this feature is very useful because it lets you fix one or more bugs in the code
in just one test run. You can also reset the position of the program’s execution arrow
to run one or more commands again. To do this, right click the command on which
you want to reset the execution arrow and then click the Set Next statement.

While in debug mode, you can also use the Immediate Window to display current
program code values and even change them while the program is still running. To
display the Immediate Window, click Debug on the menu bar, point to Windows,
then click Immediate. To display a current program data value in the Immediate
Window, type a question mark (?), followed by the item name and then press Enter.
To change a program’s data value, type an assignment statement that resets the value,
and then press Enter.

Another useful debugging tool is the Locals Window which displays all current
code variables and their associated values during program execution. As the execu-
tion proceeds, the variable values are all updated automatically. To open the Locals
Window, click Debug on the menu bar, point to Windows, then click Locals. For
more complex programs with many variables, the Locals Window can display a very
long list of variables and values. Since you ordinarily track only a few variables at
a time during a typical debugging session, it can sometimes become somewhat hard
to find all the values you need in the Locals Window. However, by creating a Watch,
you can create a list similar to the one given by the Locals Window with the excep-
tion that it now shows only the selected variables and values you want to watch. To
create a Watch, place the mouse pointer on the variable you want to track or highlight
the expression you want to track. Then click Debug on the menu bar, followed by
QuickWatch which then opens a dialog window that allows you to setup and config-
ure the watch. To delete a watch, right click the watch in the Watch window, then
click Delete Watch. Finally, you can clear the current breakpoint by clicking on the
red dot on the gray section on the left side of the Code editor and the breakpoint
disappears.

In addition to using this amazing IDE debugger and sending program output to the
command prompt window, you can also send program output results to the Output
Window. The Output Window is used by Visual C# to display various status mes-
sages including any build errors found during the code compilation process and can
also be a very useful tool in debugging code. However, before using this tool, you
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must add the using System.Diagnostics; directive at the start of your code file
and then add the output statement Debug.WriteLine(...); anywhere you wish to
retrieve output information. If this Output Window is not being displayed on your
system, you can easily bring it up by clicking View in the menu toolbar at the top of
the screen and then selecting Output.

To summarize, the IDE comes equipped with a full feature debugger that can be
very useful in finding and fixing faulty program source code. However, because of
the lengthy and complex nature of the debugging process there is far more mate-
rial than can possibly be included in this brief outline of C#. Interested readers are
strongly encouraged to take a few moments to fully familiarize themselves with the
latest and greatest debugging tools that come with most recent version of Microsoft’s
Visual Studio IDE. Throwing exceptions and how to properly handle them will be
discussed later in this chapter.

1.6 Overview of the C# Language

The major organizational building blocks of the C# programming language are en-
tities called programs, types, members, namespaces, and assemblies. Project so-
lutions consist of several miscellaneous files that include program files containing
source code that may declare types containing members and these can all be orga-
nized into namespaces. Examples of members include fields, methods, properties
and events. Examples of types include classes and interfaces. Whenever C# pro-
grams are compiled, these and other essential files are all physically packaged into
assemblies having .exe or .dll as their file extensions depending on whether they are
implemented as applications or dynamically linked libraries.

An assembly that has a single unique entry point is called an application. When-
ever an application is started, the execution environment calls a designated method,
that is always named Main(), which marks the application’s entry point. This method
Main() can have any one of the following four specific signatures:

static void Main(string[] args) { }
static void Main() { }

static int Main(string[] args) { }
static int Main() { }

The static keyword indicates that you can access the method Main() directly with-
out first instantiating an object of your class. Normally, methods can be called only if
you have first instantiated an object, but static methods are special and can be called
without first having to create an object. If Main() requires an integer return value,
it is preceded by the modifier int and if no return value is required, it is preceded
by the modifier void. Integer return values are used as a return code for the runtime
environment. For example, console applications can return traditional result codes
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between 0 (success) and 16 (fatal error). If parameters are required to execute a pro-
gram, then a string array of arguments traditionally called args is used to hold the
command line arguments. More detailed descriptions on all of these topics will be
given later in this chapter.

It is possible to also have an assembly without an entry point. In that case, the
byte code of the assembly can be reused over and over again in other applications as
a referenced component. Visual Studio offers several ways for creating components.
One option is to compile the source code files directly into a dynamically linked
library file having a .dll file extension. Then any application that needs to use that
component simply adds a reference to the corresponding dll file and it becomes part
of the application’s private assembly. This is one way to create increasingly larger
software applications.

In general, programming languages are essentially nothing more than a collection
of instructions for the computer to perform a specific task. As such, each language
must follow a unique syntax that characterizes that particular language and any ac-
tions taken by a program must first be expressed using explicit statements. A state-
ment is a source code instruction directing the program to execute a certain action.
Certain punctuators are also often used to help demarcate the structure of a program.
In C#, for example, the semicolon ; is used to terminate a statement and also allows
statements to wrap multiple lines. In addition, delimiters { and } are used to group
multiple statements into what is called a statement block.

Comments strategically placed throughout the source code offer an important way
for programmers to record notes and document functionality details of specific sec-
tions of code. There are two different ways to produce source code documentation:
single-line and multi-line comments. A single-line comment begins with a double-
forward slash // and continues until the end of the line. A multi-line comment be-
gins with a /* and ends with a */ and can extend over many lines. Like all computer
languages, the C# language contains some keywords that are predefined reserved
identifiers that have special meanings to the compiler and therefore cannot be used
as identifiers in your program unless they include \@ as a prefix. For example, \
@struct is a legal identifier but struct is not because it is a reserved keyword. Table
1-2 contains a complete list of reserved keywords in C#.

1.6.1 Data Types

As a program is processed by a computer, its data must somehow be stored in mem-
ory. Data can be categorized either as a variable or as a constant. Constants do not
change value over the lifetime of a program whereas variable data items have named
locations in computer memory that can hold different values at different points in
time. Where (the stack or the heap) and how (by value or by reference) the data item
is stored in memory including how much memory is required by the data item and
what range of values are allowed to be stored in the data item all depend on the data
type of the item in question.

The .NET Framework provides a generic Object class so that every other class im-
plicitly inherits the System.Object class. This means that the Object class supports
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TABLE 1.2
Reserved keywords in C#

abstract double int readonly true
as else interface ref try

base enum internal return typeof
bool event is sbyte unit
break explicit lock sealed unlong
byte extern long set unchecked
case false namespace short unsafe
catch finally new sizeof ushort
char fixed null stackalloc using

checked float object static value
class for operator string virtual
const foreach out struct volatile

continue get override protected void
decimal goto params public while
default if private switch

delegate implicit protected this
do in public throw

all the other classes in the .NET Framework and is therefore the root base class for
every other class, including user-defined classes. Consequently, all types, predefined
and user-defined, reference types and value types, inherit directly or indirectly from
the Object class. Because all classes in the .NET Framework are derived from the
Object class, every method defined in the Object class is available in all objects in
the system and you can assign values of any type to variables of type Object. This
means that variables can also be thought of as objects that are instantiations of the
data type class to which they belong.

Data types in C# fall into four broad categories: value types, reference types, type-
parameter types and pointer types. Variables that are value types directly contain and
store their own data. In other words, value types simply hold a value. Reference
type variables contain only a reference to their actual data. That is, reference type
variables do not directly contain their data but instead they hold a memory address
that points to the memory location that stores their data. Type-parameter types are
associated with generics and pointer types store the memory address of their data but
not the actual data itself. Although reference types seem equivalent to pointer types,
the way C# handles each type is very different and will be further explained in the
sections that follow.

1.6.2 Value Types

Value type variables directly contain and store their data in a single segment of mem-
ory in a region called the stack. The stack can be abstractly thought of as an array
of memory that acts like a last-in-first-out (LIFO) data structure where data can only
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TABLE 1.3
List of Available Value Types in C#

Category Description
value types simple types signed integral: sbyte, short, int, long

unicode strings: string
unsigned integral: byte, ushort, uint, ulong
unicode characters: char
IEEE floating point: float, double
high-precision decimal: decimal
boolean: bool

enum types user-defined type
struct types user-defined type

be added to or deleted from the top of the stack. Placing a data item at the top of the
stack is called pushing the item onto the stack. Deleting an item from the top of the
stack is called popping the item from the stack. Because of these features, the heap is
often used to store temporary data. Value types can be further subdivided into simple
numeric types, and user-defined enum and struct types as shown in Table 1.3. The
C# compiler provides for 13 basic simple value types in the System namespace as
show in Table 1-4. The C# Data Type column lists the data type names you would
ordinarily use to declare data type variables in a C# program. These names are ac-
tually aliases for those much longer names listed in the column labeled System Type
found in the System namespace. For example, int is an alias for System.Int32 and
so on. The Size is the amount of memory in bytes that is taken up by the specific
data type. The Description gives a description of the data type. The Range gives
the range of allowed values of the data type. The default value is the value that is
automatically assigned by the default constructor to variables that are declared but
not explicitly initialized.

1.6.3 Reference Types

Reference type variables hold a memory address that points to the memory location
that stores their actual data. As such, reference types require two segments of mem-
ory upon declaration: The first segment contains the actual data and is allocated in
the region of memory called the heap. The second segment is allocated on the stack
but contains a reference (i.e. memory address) that points to the location in the heap
where the data is stored. Because of the way reference types are allocated in memory,
they are also referred to as objects in the sense that they are actually instantiations of
the data type class to which they belong.

The heap is another region of memory outside of what is allocated for the code
and stack during runtime and is used primarily for dynamically allocating and de-
allocating objects used by the program. The heap is used when the number and size
of objects needed by the program are not known ahead of time or when an object is
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TABLE 1.4
Pre-Defined Data Types in C#

C# Data System Size Description Range Default
Type Type (bytes) Value
byte Byte 1 unsigned byte 0 to 255 0
sbyte Sbyte 1 signed byte 128 to 127 0
short Int16 2 signed short 32,768 to 32,767 0
ushort UInt16 2 unsigned short 0 to 65,535 0
int Int32 4 signed integer 2,147,483,648 to 0

2,147,483,647
uint UInt32 4 unsigned integer 0 to 4,294,967,295 0
long Int64 8 signed long 9,223,372,036,854,775,808 0L

to
integer 9,223,372,036,854,775,807

ulong UInt64 8 unsigned long 0 to 0
integer 18,446,744,073,709,551,615

float Single 4 floating point 3.4 x 1038 to 0.0f
3.4 x 1038

double Double 8 double-precision 1.80 x 10308 to 0.0d
floating-point 1.8 x 10308

decimal Decimal 16 fixed precision -7.9 x 1028 to 0.0m
number 7.9 x 1028

char Char 2 unicode char u0000 to uFFFF 0
bool Boolean 1 boolean value False(0) and True(1) only 0

TABLE 1.5
List of Available Reference Types in C#

Category Description
Reference Types Class Types ultimate base class of all other types: object

unicode strings: string
user-defined types of the form: class

Interface Types user-defined types of the form: interface
Array Types single and multi-dimensional array types
Delegate Types user-defined types of the form: delegate
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too large to fit into a stack allocator. Therefore, the heap provides a somewhat more
stable data storage area as memory is allocated dynamically and the heap remains in
existence for the duration of a program. However, once your program stores items
in the heap, it cannot explicitly delete them. Instead, the IDE’s garbage collector
automatically cleans up orphaned heap objects when it determines that your code
will no longer need to access them. Consequently, this unique C# compiler feature
frees you from what in other programming languages such as C/C++, can be a very
tedious and error prone task. Although reference types in C# are similar to pointers in
C/C++, they are much easier to use in C# because all the hard work of keeping track
of memory allocation and de-allocation is automatically carried out by the IDE’s
garbage collector.

Unfortunately, both the value and reference types have their own advantages and
disadvantages. Memory allocation on the stack is faster than that on the heap. Hence
for small amounts of data, value type variables are recommended over reference type
variables. However, reference type variables are more efficient in handling large
amounts of data because they pass only the reference, not the entire data value as is
the case with value types which can then lead to a lot of extra overhead in memory.
By using a reference type instead, only the reference is copied rather than the entire
data object. With reference types it is also possible for two or more variables to
reference the same object and so it is possible for operations on one variable to affect
the object referenced by the other variable. With value types, the variables each have
their own copy of the data and so it is not possible for operations on one variable
to affect the other. C# reference types can be further subdivided into class types,
interface types, array types and delegate types as shown in Table 1.5.

1.6.4 Type-Parameter Types

Type-parameter types were introduced as part of a relatively new C# language feature
called generics which came about as a practical way to reduce the need to rewrite al-
gorithms for each data type. Now programmers can create generic classes, delegates,
interfaces and methods, postponing the declaration of data types until runtime. This
way more generalized code can be written making C# programs even more compact
and efficient. For example, consider a method called swap that can exchange the
value between two integer variables. Prior to the introduction of generics, the pro-
grammer would need to write additional swap methods for any other data types that
might also be needed in an application. With generics, the programmer now needs
only to write one generic swap method containing one or more type-parameters, usu-
ally denoted by <T>, that act like a placeholder for a real data type until the method
is called for use in the program. Thus, a generic swap method might look like this:

static void swap<T>(ref T var1, ref T var2)
{

T temp;
temp= var1;
var1=var2;
var=temp;

}
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To swap a pair of integers previously declared as variables i and j, one would just
substitute the data value identifier int for T and write:

swap<int>(ref i, ref j);

Likewise, to swap a pair of strings previously declared as variables x and y, one
would just substitute the data value identifier string for T and write:

swap<int>(ref i, ref j);

In the first instance, the type parameter T is replaced with a type int and in the second
instance it is replaced with a type string and in so doing, one method did the work of
two.

1.6.5 Pointer Types

As for pointer types it may come as a complete shock or wonderful news that, by
default, C# does not directly support pointer data types in order to maintain data type
safety and security. However, by using the unsafe reserved keyword, it is possible
to define a context in which pointers can be used. The pointer data type is rather
unique because instead of containing data, a pointer contains the memory address of
data. In the Common Language Runtime (CLR) layer, unsafe code is referred to as
unverifiable code. That is to say, unsafe code in C# is not necessarily dangerous; it
is simply code whose safety cannot be verified by the CLR. The CLR will therefore
only execute unsafe code if it is within a fully trusted assembly. Therefore, if you use
unsafe code in your C# programs, it is your responsibility to ensure that your code
does not introduce security risks or pointer errors. Consequently, pointer types are
very seldom used in C#.

1.6.6 Variable Declaration

Before you can use a variable, you must first declare and also initialize it to a spe-
cific value. The variable declaration defines the variable, gives the variable a name,
associates a data type with it and also allows the compiler to allocate memory for it.
The syntax for declaring and initializing a value type variable in C# is as follows:

type variableName;
variableName = value;

However, you can also declare and initialize a variable in a single step like this:

type variableName = value;

Since variables can also be thought of as objects that are instantiations of the data
type class to which they belong, if you declare a variable but fail to initialize it
to some specific value, a default initial value will automatically be assigned to the
variable by the type’s constructor when the variable is declared. A constructor is a
method that creates an instance of a class and the keyword new is used to call up
the default constructor. For example, the following three integer declarations of the
integer variable j are all equivalent:
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int j;
int j = 0;
int j = new int();

1.6.7 Constant Declaration

Constants can be declared and initialized as follows:

const type ConstantName = value;

1.6.8 Nullable Types

A nullable type is a data value type variable that can store a null value and is usually
used to indicate that the value of the variable is unknown. Since reference types can
store null values by default, only data value types can be declared nullable types.
Nullable types are declared by including a question mark (?) immediately after the
keyword for the value type like this: myValueType? myVariable; For example, for
integers you have: int? i; and this means that variable i can accept a all the values
that can be assigned to an int value type in addition to null. All the variables that
contain null are displayed as blanks.

1.6.9 Scope

The scope of an item such as a variable or a constant is the section of the program
where the item may be accessible by its name and is determined by where you declare
it in your code. If you attempt to refer to the item outside its scope, you will get a
build error message when you try to compile your code and you will not be able to
successfully run your program until you fix this problem. For example, variables
declared within a class, can be referred only by all the methods within the class
whereas variables declared within a method, can be referred only within the method.

1.6.10 Characters

Characters in C# are declared using the char type. Internally, a character occupies 2
bytes and is stored as a number using the 16-bit Unicode character encoding system
which allows one to represent characters of any language. In particular, the Unicode
character codes ranging from 0-127 also correspond with the ASCII character en-
coding [8] scheme. For example, the letter A has a ASCII code of 65 (decimal) = 41
in hexadecimal = \u0041 in Unicode. Therefore a char variable to hold the character
‘A’ can be declared in any one of the following equivalent ways:

char c = ’A’;
char c = ’\x0041’;
char c = ’\u0041’;
char c = (char)65;
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1.6.11 Strings

A string consists of a sequence of any characters from the Unicode character set [9]
including letters, numbers and even special characters such as *, # or &. Strings are
reference types and as such, a string variable holds a reference to a string object. The
keyword string is used to declare a string variable, and enclosing the text in double
quotes specifies the value of the string. For example,

//declares a string variable
string myString;

//declares and initializes a string variable
string myString= Hello ;

You can assign an empty string to a string meaning that the value of the string is
known but the string does not contain any characters: string myString="";. How-
ever, if the value of the string is unknown, then the string is called a null string and
is declared like this: string myString=null; You can also concatenate or append
strings using the + sign as shown here: string myString="Hello"+"there!";

When you declare and initialize a string, you are actually creating a string object
from the String class. As a result you can use the properties and methods of the
String class to manipulate string objects. Alternatively, you can also use the more
versatile StringBuilder objects from the StringBuilder class so that you can then
use the methods and properties from that class to work with strings.

When declaring a string variable certain characters sometimes cannot, for various
reasons, be included in the usual way. C# supports two different solutions to this
problem. The first approach is to use verbatim string literals. These are defined by
enclosing the required string within the characters \@"...". For example, in order to
declare a string variable named fn and assign it the text: C:\myfile.txt\ one could
write: string fn = @"C:\myfile.txt\";.

The second approach is to use something called an escape sequence which is the
technical term for special characters, alone or within a string that cannot be expressed
or interpreted literally. An escape sequence is characterized by a backslash followed
by a character having a special meaning. For example, the character for a new line
is given by ‘\n’ and the character for a backslash is written as ‘\\’. Consequently,
in order to declare a string variable named fn and assign it the text: C:\myfile.txt\
one could also now write: string fn = \"C:\\myfile.txt\\\". A complete list of
commonly used character escape sequences is given in Table 1.6.

1.6.12 Formatting of Output Data

Proper formatting of output data is very important in order to produce elegant and
readable results particularly when the output data is numeric. Output to the console
window on the screen is achieved by using the class System.Console which has two
output methods:

Console.Write(x);
Console.WriteLine(x);
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TABLE 1.6
The Most Common Escape Sequences

\’ - single quote, needed for character literals
\” - double quote, needed for string literals
\\ - backslash
\0 - Unicode character 0
\a - Alert (character 7)
\b - Backspace (character 8)
\f - Form feed (character 12)
\n - New line (character 10)
\r - Carriage return (character 13)
\t - Horizontal tab (character 9)
\v - Vertical quote (character 11)
\uxxxx - Unicode escape sequence for character with hex value xxxx
\xn[n][n][n] - Unicode escape sequence for character with hex value nnnn

(variable length version of \uxxxx)

The first method writes the value of x to the console window. The second method
also writes the value of x to the console window but then advances the cursor to the
next line. Both of these methods allow for formatted output of values and for this
purpose, a format string with placeholders for a variable number of argument values
are passed as parameters. The general format of a placeholder for strings in C# is as
follows:

{index[,width]:[format[precision]]}

where items that are enclosed by the square brackets [...] are optional, index = ar-
gument number (beginning with 0) that specifies which value is to be formatted, and
width = field width whose absolute value gives the minimum number of characters
in the resulting string. If width > 0, then string is right aligned (left padded). If
width < 0 then string is left aligned (right padded). format = formatting code (see
Table 1.7) and precision = number of decimal places (sometimes number of digits).
In addition, C# also allows for customized number formatting as shown in Table 1.8.

1.6.13 Type Conversion

Sometimes during the course of writing C# programs, it becomes necessary to con-
vert data from one data type to another. One way to achieve this objective is through
a process called casting. A cast is simply a way to force a value to a different data
type. C# provides two types of casting. Implicit casts are performed automatically
to convert from a less precise to a more precise data type. For example, a declaration
like float x = 2; implicitly converts the integer 2 to a float type so that it can be
properly assigned to the float variable x. Explicit casts are used to cast data from
a more precise to a less precise data type. The new data type is specified between
closed parentheses before the old variable to be converted into the new variable as
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TABLE 1.7
The Most Common Number Formating Codes

Code Description Example
d,D Decimal format -xxxxx
f,F Fixed point format -xxxxx.xx
n,N Number format -xx,xxx.xx
e,E Floating-point format -x.xxxE+xxx
x,X Hexadecimal format xxxx
c,C Currency format $xx,xxx.xx
p,P Percentage format x.xx%
g,G General format (default format)

TABLE 1.8
The Most Common Custom Number Formating Codes

Specifier Type Format Output Example
given input = 1234.56

0 zero placeholder 0:00.000 1234.560
# digit placeholder 0:#.## 1234.56
. decimal point placeholder 0:0.0 1234.6
, thousand separator 0:0,0 1,235
% percentage 0:0% 123456%

shown below:

new_variable = (DataType) old_variable;

Note that in casting from a more precise to a less precise data type some data infor-
mation may be lost if the less precise data type is not large enough to accommodate
the data type of the original value being casted. Consequently, the resulting value is
truncated rather than rounded. In addition, your program may also throw an excep-
tion at runtime if the range of allowed values in the new and less precise data type
variable does not fall within the bounds of the allowed data values from the original
expression. For example,

float x = 2.3;
short s = (short)x;

explicitly converts a float to a short data type truncating the 3 to yield a final value
of s=2. However, the following cast

int i = 32768;
short s = (short)i;

will cause the C# compiler to throw an exception because the data value 32768 ex-
ceeds the maximum allowed size of the short data type which is 32767. Finally, it’s
also important to remember that when applied to arithmetic expressions, the casting
is done before any other arithmetic operations are carried out.
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The as operator works similarly to a cast. The as keyword is used to cast an object
to a different data type. However, the type being cast to must be compatible with the
original type. The general format of using the as operator is as follows:

new_variable as DataType

Although using the as keyword is similar to a cast, it is not the same. If you use a
cast and there is a some kind of problem, an exception is thrown. With as, if there
is an error in changing the variable expression to the desired DataType, the variable
expression is set to the value of null and converted to the DataType anyway and no
exception is thrown. This feature makes using the as keyword safer than doing a
cast.

To check and see if a certain variable object is of a specified type, C# uses the is

keyword. The general format of using the is keyword is as follows:

(expression is DataType)

If the expression is compatible with the DataType, this returns true, otherwise it
returns false.

Another way to convert data from one data type to another is through the use of
the various static methods provided by the sealed System.Convert class. The general
format for using the Convert class to convert from one data type to another is:

Convert.method(value);

where method is the name of the conversion method you want to use and value

is the original data value you want to convert. The results of the conversion may
vary depending on the type of conversion being sought and, in some cases where
C# may not be able to perform the requested conversion, a runtime error exception
may be thrown. For example, say you have a string variable x declared and assigned
the value of 5: string x="5";. Then to convert x to some integer variable, say i,
one could write: int i = Convert.ToIn32(x);. The most commonly used static
methods of the Convert class are: ToDecimal(value), ToDouble(value), ToInt32(
value), ToChar(value), ToBool(value) and ToString(value) where the value is
the item that is converted to the specified data type.

The ToString([format]) method is a particularly useful since it allows you to
convert any value to a string and at the same time also format the resulting output
values using the codes described in tables 1-7 and 1-8. For example,

double price = 29.95;

//Make implicit call to ToString method
string msg1 = Price: + price;

//Displays output as: Price: 29.95
Console.WriteLine({0},msg1);

//Makes explicit call to ToString method
string msg2 = price.ToString( c );

//Displays output as: Price: 29.95
Console.WriteLine(Price: {0} ,msg2);
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You can also format numbers using the Format method of the String class. Since
this is a static method, you can access it directly from the String class without first
having to create an instance of that class. However, you must provide two arguments:
the first argument is a string literal containing the format specification for the value
to be formatted and the second argument is the value to be formatted. Using data
from the code snippet just described one can also write:

//Explicit use of the Format method of the String class
String msg3 = String.Format( {0:c} ,price);

//Displays output as: Price: $29.95
Console.WriteLine(Price: {0} ,msg3);

Conversely, the Parse() method allows you to convert a specified string value to
a specified data type value. For example,

float newprice = float.Parse(str2);

converts the contents of the string variable str2 to a float variable called newprice
having the value of 29.95.

Since the value of any data type can ultimately be treated as an object, it is also
possible to convert a value type to a reference type, and back again to a value type,
by using a process called boxing and unboxing, respectively. For example, in the
following code snippet, an int value type is converted to object type and back again
to an int value type.

int i=799;
object obj = I; //boxing
int j = (int) obj; //unboxing

Boxing and unboxing provides a way to convert between value types and reference
types by permitting any value of a value type to be converted to and from type object
and so value types can become objects on demand.

1.6.14 Reading Keyboard Input Data

To read keyboard input, use the .NET method ReadLine(); which always returns
the input value as a string object. If numeric data was entered, then it must first
be converted from the input string to the desired numeric value as shown in the
following example:

Console.Write("Type in an integer:");
string s = Console.ReadLine();
int i = Convert.ToInt32(s);
Console.WriteLine("You entered: {0}", i);

Alternatively, the code above can also be written as follows:

Console.Write("Type in an integer:");
int i = int.Parse(Console.ReadLine());
Console.WriteLine("You entered: {0}", i);
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TABLE 1.9
The Basic Arithmetic Operators

Type Operator Name Does what? Example
binary + addition adds two operands x + y;

binary - subtraction subtracts two operands x - y;

binary * multiplication multiplies two operands x * y;

binary / division divides two operands x / y;

binary % modulus returns remainder obtained x % y;

from dividing two operands
unary + positive sign returns value of operand +x;

unary - negative sign changes sign of operand -x;

unary ++ increment adds one to the operand x++; or
x = x + 1;

unary -- decrement subtracts one from the x--; or
operand x = x - 1;

1.6.15 Basic Expressions and Operators

Expressions are constructed from operands and operators. The operator of an ex-
pression indicates which operation to apply to the operands. The general format for
writing an expression is as follows:

assignmentVariable = operand1 operator operand2;

There are three kinds of operators that are widely used and they are: unary op-
erators, binary operators and conversion operators. Unary operators operate on one
operand whereas binary operators operated on two operands. A conversion operator
converts from a source type as indicated by the parameter type of the conversion
operator, to a target type, as indicated by the return type of the conversion operator.
Type casting, for example, provides a good illustration of using a conversion oper-
ator for practical applications. Unary and binary operators, however, require some
additional discussion and are listed in Table 1.9.

Arithmetic expressions are coded using arithmetic operators to indicate what oper-
ations are to be performed on the operands in an expression. Operands can be either
a literal or a variable. Increment and decrement operators can either precede or fol-
low a variable depending on whether you want the variable updated before (prefix)
or after (postfix) the expression is evaluated. The general behavior of increment and
decrement operators is summarized in Table 1.10 and is illustrated in the following
examples:

int i=0;
Console.WriteLine(i++); //Outputs 0 and i is now 1

int i=0;
Console.WriteLine(++i); //Outputs 1 and i is now 1

The assignment operator, =, is used for assigning a value, expression or another
variable to a variable. The simplest example of using the assignment operator is as
follows: variableName = expression;. The assignment operator can also be used
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TABLE 1.10
Increment and Decrement Operators

Expression Operation Interpretation
x = ++i; Preincrement i = i + 1;

x = i;

x = i++; Postincrement x = i;

i = i + 1;

x = --i; Predecrement i = i - 1;

x = i;

x = i--; Postdecrement x = i;

i = i - 1;

TABLE 1.11
Assignment Operators

Operator Name Example Equivalent to
= assignment x = value; x = value;

+= compound addition x += value; x = x + value;

-= compound subtraction x -= value; x = x - value;

*= compound multiplication x *= value; x = x * value;

/= compound division x /= value; x = x / value;

%= compound modulus x %= value; x = x % value;

in conjunction with the standard basic arithmetic expressions, including the modu-
lus operator, to write shorter and more compact expressions as described in Table
1.11. To avoid ambiguity in calculations involving multiple arithmetic expressions,
a specific order of precedence has been established as indicated in Table 1.12. Re-
lational or comparison operators are used to create Boolean expressions to compare
two operands and return a Boolean value. Table 1-13 lists the relational operators
available in C#.

Logical operators are used to perform both bit manipulation and to combine re-
lational operators in order to build a more elaborate logic or Boolean expression
whose final output is either true or false. Table 1-14 lists the logical operators that
are available in C#.

TABLE 1.12
Operator Order of Precedence

Type Operators Direction of Operation
unary + - ++ -- right to left
multiplicative * / % left to right
additive + - left to right
assignment = *= /= %= += -= right to left
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TABLE 1.13
Relational Operators Available in C#

Operator Description
> Greater than
>= Greater than or equal to
< Less than
<= Less than or equal to
== Equal to
!= Not equal to

TABLE 1.14
Logical Operators Available in C#

Operator Name Description
&& Conditional-AND Returns a true value only if both expressions

are true.
Only evaluates second expression if necessary.

|| Conditional-OR Returns a true value only if either expression
is true.
Only evaluates second expression if necessary.

& AND Returns a true value if both expressions are
true and it always evaluates second expression.

| OR Returns a true value if either expression is
true and it always evaluates second expression.

! NOT Reverses the value of the expression.

TABLE 1.15
Unambiguous Numeric Suffixes in
C#

C# Type Example
float float x = 2.0f;

double double y = 4.0d;

decimal decimal z = 7.0m;

uint uint I = 8u;

long ulong j = 9ul;

TABLE 1.16
Special Value Constants in C#

Special Value Double Constant Float Constant
NaN double.NaN float.NaN

+∞ double.PositiveInfinity float.PositiveInfinity

−∞ double.NegativeInfinity float.NegativeInfinity

-0 -0.0 -0.0f
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By default, the C# compiler infers a numeric literal to be either a double or an
integral type and so numeric suffixes sometimes must be added to explicitly define
the type of literal that is actually wanted. A list of the available numeric suffixes is
shown in Table 1.15. In addition, floats and doubles also have special values that
arise in certain operations. These special values are NaN (Not A Number), +∞, −∞,
and −0 and are summarized in Table 1.16.

1.6.16 Program Flow Mechanisms

C# has the following mechanisms to conditionally control the flow of program exe-
cution:

• Selection statements (if, switch)

• Loop sequences (for, while, do-while, foreach)

• Conditional Operator (? : )

To sum up, selection statements are used to select one of a number of possible
statements for execution based on the value of some expression. Example: if and
switch statements. Loop sequences are used to repeatedly execute a statement. Ex-
amples include the while, do, for and foreach statements. Conditional operators
provide a short way to write a simple if-else structure. In view of their usefulness,
all these program flow mechanisms are important enough to warrant a more detailed
discussion.

Selection Statements

The if-else statement allows you to select different actions based on results of
Boolean expressions. It is used to build conditional statements and takes on the
general format as shown below:

if (booleanExpression) {statements}
[else if (booleanExpression) {statements}]
...
[else {statements}]

The square brackets [] indicate that a clause is optional whereas the ellipsis (. . . ) in-
dicate that the preceding element can be repeated as many times as needed. If more
than one statement is used then you must enclose those statements within a block
using the brackets: {}.

The Switch statements allow you to select only one of the available choices from
among multiple choices. The general switch construct takes on the following format:

switch (expression)
{
case result1:

statement(s)
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break;

[case resultN:
statement(s)
break;]

. . .

[default:
statement(s)
break;]

}

where expression evaluates a result value that corresponds to one of the possible
listed case labels. The switch statement then transfers control to the corresponding
case label and a statement or a block of statements are processed provided the corre-
sponding value resultN is evaluated to be true. If control is not transferred to one of
the case labels, the code following the optional default label is executed. The break
statement exits the switch statement and must be included at the end of every case
block. If a case does not contain any statements, code execution will fall through to
the next label and default is an optional case to deal with any other case that is not
included in the list.

Loop Sequences

Loop sequences are used to repeat one or more statements a specific number of
times, until a specific condition is satisfied or go on indefinitely.

The for loop repeats an operation for as long as a specified Boolean condition is
satisfied and has the general form:

for ([initialization];[Boolean expression];[counter update];)
{

statement(s);
}

where initialization is the counter initialization statement, Boolean expression

is the condition to be satisfied during the processing of the loop, counter update

is the counter increment or decrement statement, and statement(s) is the statement
or block of statements to be repeated. for loops can be nested inside each other but
the counter variable must be unique to the loop to which it is assigned. for loops
are useful when you need to increment or decrement a counter that determines how
many times the loop is executed. The enclosing brackets [ ... ] indicate that these
features are optional.

The while loop is used to process a block of statement(s) for as long as a specified
Boolean condition is satisfied. In addition, the Boolean expression is tested before
the while loop is executed. The while loop construct has the following format:

while (Boolean expression)
{

statement(s);
}
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The do-while loop is used to process a block of statement(s) for as long as a
specified Boolean condition is satisfied. However, the Boolean expression is tested
after the do-while loop is executed and so the statement block is executed at least
once regardless of the result obtained from the Boolean expression. The do-while

loop construct has the following format:

do
{

statement(s);
}
while (Boolean expression);

The foreach statement iterates over each element in an enumerable object and has
the following general syntax:

foreach (type elementName in arrayName)
{

statement(s);
}

Fortunately, most of the types in C# and the .NET Framework that represent a set
or list of elements are enumerable. For example, to enumerate over the characters in
a string, one could write:

string s = Hello ;
foreach(char c in s)

Console.Write( {0} ,c);

As with everything, the foreach loops have a few restrictions. First, you cannot
access individual array elements but only the entire array. In addition, the foreach

loop allows read access only and so we cannot modify the array. To access and/or
modify individual array elements we must use the for loop as described earlier.

Conditional Operator

The expression “booleanExpression ? Statement_1: Statement_2;” provides
a short way to write a simple if-else construct where if booleanExpression is true
then do Statement_1 else do Statement_2. For example, the code below can be used
to calculate the sinc function.

static double sinc(double x)
{

return x != 0.0 ? Math.Sin(x)/x : 1.0;
}

1.6.17 Jump Statements

Jump statements are used to transfer control. The jump statements in C# are: break,
continue, goto, return and throw.
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The break statement is used to completely stop the execution of the remaining
items in the body of a while loop, a for loop, or a switch statement. Program con-
trol is then transferred to the statement that follows the loop.

The continue statement is used to jump back to the start of a loop thus forgoing
any additional remaining statements in the loop. Note that by using the continue

statement you can cause the counter to skip a certain value.

The goto statement transfers execution to another label within the statement block
and the general form is given by: goto statement-label; A label statement is just
a placeholder in a code block and is written with a colon suffix.

The return statement exits the method and must return an expression of the
method’s return type if the method is not void. The return statement can appear
anywhere in a method.

The throw statement throws an exception to indicate some kind of error has oc-
curred and will be discussed in more detail later in this chapter.

1.6.18 Arrays

An array is a fixed size, indexed collection of data elements of one specific data type.
Arrays are reference types and can be one or multi-dimensional. Its elements are
distinguished from the others by an index starting at 0 and going up to n− 1 where
n is called the size or length of the array. Arrays are declared in two steps. First,
the type of array is declared and a reference variable is created. Second, space is
allocated and fixed for the specified number of elements using the new operator. The
new operator automatically initializes the elements of an array to their default value,
which for example, is zero for all numeric types and null for all reference types.

The general syntax for declaring a one-dimensional array is:

arrayType[] arrayName;
arrayName = new arrayType[arrayLength];

These two steps are often combined into one step:

arrayType[] arrayName = new type[arrayLength];

And you refer to an element of an array by coding the array name followed by its
index in brackets as shown: arrayName[index];

In C#, arrays are objects (i.e. instances of a class named System.Array) and so
if you are unsure what type of data an array will contain, you can always declare
an array of object types so each element of the array can then contain data of any
type. In addition, since arrays are instances of the System.Array class, you can also
use the properties and methods of this class to work with your arrays. For example,
the length of an array can be easily found by looking at the value obtained from
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arrayName.Length; Likewise, you can also sort your array and even search for a
specific element in your array using the methods provided by the .NET Framework’s
Array Class.

It is also possible to create an array and assign values to it in one statement as
shown:

type[] arrayName = [new type[length]] {value1 [,value2]...};

The following shows three different ways to declare the same integer array and assign
three data elements to it:

int myInt = new[]{10,15,25};

int[] myInt = {10,15,25};

int[] myInt = new int[3];
myInt[0] = 10;
myInt[1] = 15;
myInt[2] = 25;

There are two ways to traverse through each and every element of an array. One
way is to use a for loop as shown in the following example:

int[] x = new int[10];
for (int i=0; i<x.Length; i++)
Console.WriteLine( x [ +i.ToString()+ ]={0} ,x[i].ToString());

The other way is to use the foreach loop where the previous example can be written
as:

int[] x = new int[10];
foreach (int i in x)
{
Console.WriteLine( x [ +i.ToString()+ ]={0} ,x[i].ToString());

}

There are times, however, when you do not want to traverse through each element
of an array but instead only through a selected number of elements. In that case you
cannot use the foreach loop but instead must use the for loop.

Arrays can also have 2 dimensions in which case they are called rectangular or
two-dimensional arrays. The syntax for declaring two-dimensional arrays are as
follows:

type[,] arrayName = new type[rowCount,columnCount];

and the syntax for referring to an element of a two-dimensional array is:

arrayName[rowIndex, columnIndex];

To extract the number of rows or columns in a two-dimensional array you need to
use the GetLength() method as shown below:

arrayName.GetLength(dimensionIndex);

where dimensionIndex = 0 for rows and dimensionIndex = 1 for columns.
C# also supports higher multi-dimensional arrays following the same kind of con-

structs. The number of dimensions of an array type, also known as the rank, is one
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plus the number of commas written between the square brackets of the array type.
An element type of an array can be any type, including an array type. An array with
elements of an array type is sometimes called a jagged array because the lengths of
the element arrays do not all have to be the same.

1.6.19 Enumerations

An enum type is a distinct user defined value type with a set of named constants
known as members of the enumeration. By default, an enumeration uses the int

type and sets the first constant to 0, the second constant to 1 and so on. Alternatively,
you can also specify your own data type and member values. The general syntax for
declaring an enumeration is:

enum EnumerationName [:type]
{

ConstantName1 [=value]
[,ConstantName2 [=value]]...

}

where the items enclosed by [...] are optional.
For example, enum Color {red, white, blue}; means that the complier maps

red=0, white=1 and blue=2 by default. However, the values of the enumeration
constants can also be specified explicitly as in the declaration:

enum Color:int {red=2, blue=5};

1.6.20 Structures

Struct types are data structures similar to classes in the sense that they can also con-
tain constructors, constants, fields, methods, properties, indexers, operators, events
and nested types. However, unlike classes which are reference types, structs are value
types and therefore require no heap allocation. Struct constructors are invoked with
the new operator but instead of dynamically allocating an object and returning a ref-
erence to it, a struct constructor simply returns the struct value itself, typically in a
temporary location on the stack, and this value is then copied as often as necessary.
When you declare a variable with a struct type, an instance of that structure is cre-
ated but values are not automatically assigned. Instead, a default constructor must
always be provided to initialize the structure members to their default values. Unlike
classes, structs cannot be inherited by other structs or by other classes. In addition,
structs cannot have an empty constructor.

The general syntax for declaring a structure is this:

[attributes] [modifiers] struct identifier [:intefaces]
{

structure members;
}

where the square brackets [], indicate that the listed item is optional. Attributes
provide additional declarative information. Modifiers may be new, public, protected,
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internal or private. The identifier is the variable name of the struct. Interfaces
provide a comma-separated list of the interfaces implemented by the struct.

Structs are particularly useful for small data structures that have value semantics.
The use of structs rather than classes for small data structures can make a significant
difference in the number of memory allocations an application performs. As for
limitations, copying an entire struct is typically less efficient than simply copying
an object reference. Therefore, assignment and parameter passing with structs can be
more memory expensive than with reference types. Also, except for using ref and out
parameters and since structs are value types, it is impossible to create references to
structs, and this potentially useful feature eliminates them from serious consideration
for use in a number of additional applications.

1.6.21 Exceptions

Exceptions are essentially runtime errors, such as attempting to divide by zero, which
can suddenly stop program execution unless they are handled properly. The handler
is a block of code that catches the exception, does something with it and then attempts
to continue with the program execution. If your code is not setup to catch exceptions
and accommodate handlers, the default handler is used and the program crashes. In
C#, an exception is an object of the class System.Exception which represents an
error during program execution. Since an exception is an object, it has properties
and methods and you can use these features to extract information with regards to
the kind of runtime error your code experienced. In its most general format, the
try-catch exception handler looks like this:

try
{

statement(s);
}
[catch(MostSpecificException [exceptionName])
{statement(s);}] ...
catch([LeastSpecificException [exceptionName]])
{statement(s);}

[finally {statement(s)}]

A catch block may be coded for each type of exception that may occur in the try
block. If more than one catch block is coded, you must code the catch blocks for
the most specific types of exceptions first. Since all exceptions are subclasses of
the Exception class, a catch block for the Exception class will also catch all types
of exceptions. A finally block can be added after all the catch blocks and the code
in this block is always executed whether or not an exception occurs. Consider the
following example:

try
{code statements;}
catch(OverFlowException) //a specific exception
{code statements;}
catch(Exception ex) //all other exceptions
{

//Display error message and error type
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//or do some other error handling here
Console.WriteLine(ex.Message + \n\ n +

ex.GetType().ToString() + \n\ n +
ex.StackTrace().ToString());

}
finally //this code runs whether or not an exception occurs
{code statements;}

The syntax for throwing an existing exception is: “throw exceptionName;”. For
example,

if (x == 0) throw ArithmeticException;

You can also throw customized exceptions specific to your own code. The syntax for
throwing a new exception is:

throw new ExceptionClass([message]);

For example,

if (x == 0) throw new Exception( x cannot have a value of 0 );

1.6.22 Classes

A class is a fundamental data structure whose role is very much like that of a
blueprint in that it contains all the necessary information and detailed instructions
for dynamically creating and manipulating any number of instances of the class it-
self, also known as objects. An object is said to be an instance of the class from
which it is created and the process of creating an object is called instantiation.

Classes are created using class declarations. A class declaration defines the char-
acteristics and members of a new class. It does not create an instance of the class
but creates the template from which class instances can be created. A class dec-
laration starts with a header that specifies the attributes and modifiers of the class,
the keyword class, the name of the class, the base class (if any) and the interfaces
implemented by the class (if any). The header is followed by the class body, which
consists of a list of member declarations written between the delimiters { and }. The
general syntax of a class declaration is given by:

[attributes] [modifier] class className [:base-list]
{

class members;
}

Attributes may provide additional declarative information. For example, class mem-
bers are either static members or instance members. Static members are associated
with classes and instance members, which are the default, are associated with objects
(instances of classes).

Optional access modifiers are used to specify the degree of accessibility of the
members declared by a class to other regions of the program. There are five possible
forms of accessibility and these are summarized in Table 1.17.

In addition, class members consist of data members and function members. Data
members store data associated with the class whereas function members execute

© 2010 by Taylor and Francis Group, LLC



Introduction 35

TABLE 1.17
Class Accessibility Options in C#

Accessibility Description
public Members are accessible to all other classes.
private Members are accessible only to the class in which

they have been defined.
protected Members are accessible only to the class in which

they have been defined and any derived classes.
internal Members are accessible by other classes in the same

assembly, but not by classes in other assemblies.
protected internal Members are accessible only to the current class,

derived classes, or classes in the current assembly.

code. Data members include fields and constants. Fields are variables declared
within a class. Constants contain values that never change throughout the life of
the program. Function members include methods, properties, constructors, destruc-
tors, operators, indexers, events and delegates. Methods are simply operations that
can be performed by an object. Properties refer to data values that are associated with
the creation or instantiation of particular objects. Constructors consist of a special
type of method that is always executed whenever an object is instantiated. Likewise,
Destructors consist of a special type of method that is always executed whenever an
object is destroyed. Operators are a special type of method that is executed for an-
other C# operator. Indexers allow you to store data in objects and later refer to them
by an index just like arrays. Events are signals to notify other objects that something
significant has taken place. Delegates are special types of objects that are used to
wire an event to a method. Indexers, delegates and events will be discussed later in
this chapter. Of all these, the most commonly used class members are just properties,
methods and constructors.

To create a user-defined class, you first need to add a class file to your project and
this is accomplished in the Visual Studio IDE by going to the menu bar on top of the
screen and clicking Project followed by Add Class. In the dialog box that pops up,
enter the name you want to call your new class and click the Add button. This action
will add a class file having the name of your choice to the Solution Explorer window.
The IDE will add the namespace and class blocks automatically to the class file you
just created.

Declaring a class does not create an object. A class is just an abstract description
of an object if it is ever instantiated by the class. Classes are reference types and
so variables of the class type require memory for both the reference to the data and
for the actual data itself. Consequently, instantiating an object is actually a two step
process. First, you declare a variable of the class type in order to allocate memory
to hold a reference to the object. Then you create the actual object by using the new

operator to invoke a constructor to initialize the instance and return a reference to the
instance of the class. Therefore, the syntax for creating an object in C# is as follows:
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ClassName ObjectVariable;
ObjectVariable = new ClassName([parameter list]);

Alternatively, you can also instantiate an object from a class in one line:

ClassName ObjectVariable = new ClassName([parameter list]);

The concept of inheritance allows you to create a new class based on an existing
class. The new class can use all the features of the original class marked with pro-
tected or greater access (except for constructors), it can override existing features,
it can extend existing features, or it can add its own features. The original class is
called the base or parent class. The new class, which was created by inheriting fea-
tures from the base class, is called the derived or the child class. To inherit from a
class, the following format is used:

class derived_class : base_class;

Calling a base method contained in a base class by a derived method contained in
a derived class is a very common programming practice. However, which method
gets called when both the base and the derived methods have the same name can be
a source of considerable confusion for both the programmer and the compiler. For-
tunately, virtual methods have been developed to resolve this ambiguity. A virtual
method enables you to call the method associated with the actual assigned type in-
stead of the one contained in the base class. A method is declared as virtual within
the base class and a deriving class must then indicate when the method is to be over-
ridden. This is done by using the override keyword when declaring the new method.
You can force a class to override a method by declaring the method in the base class
to be abstract. An abstract method is not given a body. Instead, derived classes are
expected to supply the body. Whenever a method is declared as abstract, so must the
class be declared as abstract. Abstract classes are created with the expectation that
other classes will be derived from them. To prevent inheritance from a class, you
need to use the sealed keyword when defining the class as sealed classes cannot be
inherited.

In some other object-oriented programming languages, such as C++, a class can
inherit more than one class and this feature is called multiple inheritance. In C#,
however, a class can inherit only one class. Nevertheless, C# provides the func-
tionality and benefits of multiple inheritance by enabling multiple interfaces to be
implemented instead. Although a class can inherit from only one other class, it can
implement multiple interfaces. In addition, structures cannot inherit from other struc-
tures or classes but they can, however, also implement different interfaces. One of
the benefits of implementing interfaces instead of inheriting from a class is that you
can implement more than one interface at a time and this feature allows you to do
a much cleaner version of multiple-inheritance than those available in other object
oriented programming languages.

An abstract class is a class that can be inherited by other classes but it cannot be
used to instantiate an object. An abstract method is a method that must be overridden
when inherited. An interface is like a pure abstract class in the sense that abstract
classes are classes that generally contain at least one abstract method. However,
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an interface differs from an abstract class in a number of ways. First, an interface
does not provide any implementation of code. Instead, a class that implements an
interface is also required to provide the implementation code. Second, within an
abstract class, some methods can be abstract, while others need not be. Within an
interface, however, all methods must be abstract. An interface also differs from a
class in that all of the members of an interface are assumed to be public. Therefore,
an interface is said to provide guidelines but not specific code implementation details.
In addition, interface members can only consist of virtual methods, properties, events
and indexers but not data members, constructors, destructors or static members. The
general declaration of an interface is:

[public] Interface IName
{

members;
}

where IName is the name of the interface and can be any name you chose. Tradition-
ally, however, interface names start with an I to indicate that this data structure is an
interface. To implement multiple interfaces, you just separate each interface with a
comma as shown:

Class myClass: IName1, IName2, ...
{

...
}

The general format for declaring a property within an interface is as follows:
[public] dataType name
{

get; // do not show additional code here
set; // do not show additional code here

}

and, like all members of an interface, is also assumed to be public. Finally, as with
classes, an interface can be derived from another interface and this inheritance of
interfaces is done in a similar manner to inheriting classes.

Constructors and Destructors

Whenever an object is instantiated, a constructor is called up to initialize the data
that makes up the object and this data defines the object’s state. Should a class
not provide its own constructor, an automatic internal default constructor is used
instead. A constructor is a special method within a class that gets automatically
called up whenever an instance of the class is created. Constructors usually perform
initialization or setup operations to help construct an object. If you do not provide
a user-defined constructor, C# automatically uses a default constructor that assigns
default values to all the variables in the newly instantiated object. Constructors can
be overloaded and you can write as many constructors for a class as you want as long
as their parameter lists are unique so as to not create ambiguity for the C# compiler.

To create a constructor, you must declare a public method with the same name
as the class name and it must not contain a return type. Within the constructor you
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initialize the instance variables and include any additional statements you want to
be executed when an object is instantiated from the class. To code a constructor
that has parameters, code a data type followed by the parameter name for each pa-
rameter within the parentheses that follow the class name. The method header for a
constructor has the following syntax:

public ClassName([parameter list])
{

Statement(s);
}

By contrast, a destructor is a special method within a class that gets automatically
called up whenever an instance of a class is destroyed. Most often, an instance of a
class is destroyed when it is no longer in use and the process is then automatically
handled by the IDE’s garbage collector. As with constructors, if you do not explicitly
create a destructor for a class, C# automatically provides one. To explicitly declare
a destructor, use an identifier that consists of a tilde (∼) followed by the class name
as shown here: ∼ ClassName(){ ... }. Destructors cannot have accessibility mod-
ifiers, be invoked explicitly, or take any parameters and they must have an empty
argument list. Consequently, destructors cannot be overloaded and a class can have
at most one destructor and like a constructor, a destructor has no return type.

Properties

A property is a class member that provides the means with which programmers can
interact with otherwise private data members of the same class. A property consists
of a named set of two matching methods called accessors. The set accessor is used
for assigning a value to the property and the get accessor is used to retrieve a value
from the property. A property does not allocate memory for data storage, it executes
code. By tradition, a property identifier has the same name as the field it manipulates,
except that the first letter is capitalized. Properties containing both a get and a set
accessor are called read/write properties. A property that only has a get accessor is
called a read-only property and a property that only has a set accessor is called a
write-only property. The general syntax for coding a property is:

modifier returnType propertyName
{

get { return something; }
set { something = value; }

}

Properties are often associated with fields. A common practice is to encapsulate a
field in a class by declaring it private and declaring a public property to give con-
trolled access to the field from outside the class. This technique ensures that data
will be used and changed only in the ways provided by your accessors.

Methods

A method is an encapsulated series of statements that carry out a specific computa-
tion or action. The signature of a method consists of the name of the method and the
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TABLE 1.18
Method Accessibility Options in C#

Accessibility Description
public Method accessibility is unlimited.
private Method is accessible only to the class in which

they have been defined.
protected Method is accessible only to the class in which

they have been defined and any derived classes.
internal Method is accessible by other classes in the same

assembly, but not by classes in other assemblies.
protected internal Method is accessible only to the current class,

derived classes, or classes in the current assembly.

number, modifiers and types of its parameters. The signature of a method must be
unique in the class in which the method is declared. The general syntax for coding a
method is

[attributes] [access modifier] returnType MethodName([parameterList])
{

statement(s);
}

As in the case with classes, method attributes may provide additional declarative
information. For example, methods are either static or non-static. Methods are non-
static by default and a non-static method is accessible only through objects instan-
tiated by the associated class. Static methods, however, can be called directly from
the corresponding class itself.

Optional access modifiers are used to specify the degree of accessibility of the
methods declared by a class to other regions of the program. There are five possible
forms of accessibility and these are summarized in Table 1.18.

A method can return at most one value to the method that calls it. The return
statement, which is the last statement within the method, causes a value to be sent
back to the calling method. To code a method that does not return data use the void

keyword. To code a method that returns data, code a return type in the method
declaration and code a return statement in the body of the method. The general
syntax for calling methods is as follows:

[this.]MethodName([parameterList])

The this keyword is optional and serves to indicate that the method being called
is in the current class. Items inside the parenthesis of a method heading are called
parameters or arguments. Some programmers prefer to make a significant distinc-
tion between parameters and arguments with parameters referring to items appearing
in the heading of a method and arguments referring to items sent into the method
through a method call.

Within the parentheses of a method, you can also code an optional parameter
list that contains one or more parameters, separated by commas, that allows data
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to be passed into and out of the method. Individual parameters must include both a
data type followed by an identifier variable name. The general syntax for individual
parameters in a parameter list is as follows:

[modifier] dataType variableName

There are four kinds of parameters: value parameters, reference parameters, output
parameters and parameter arrays. An optional modifier may be used to instruct
the compiler how to pass the particular parameter. Method parameter values can be
passed by value or by reference. By default, parameters are passed by value without
the need to specify any modifier.

If you pass a parameter by value, then only a copy of the parameter’s value is
passed into the calling method, not the actual variable itself. As a result, if a param-
eter variable is changed while inside a method, it has no effect on the corresponding
values of the variable outside the method. Therefore, passing parameters by value
also means that the original value of the parameter variables cannot be permanently
changed by the calling method. Consider the following example below illustrating
the effect of passing a parameter by value:

public static void Main()
{

int x = 10;
Console.WriteLine("Before x = {0}", x);
ChangeVarByValue(x);
Console.WriteLine("After x = {0}", x);

}

public static void ChangeVarByValue(int x)
{

x = 0;
}
OUTPUT:
Before x = 10
After x = 10

If instead you pass a parameter by reference, the passed parameter provides a
memory reference that points to the variable in the calling method and so the actual
parameter, not its copy, is effectively passed into the calling method. As a result,
if the called method changes the value of the parameter that was passed by refer-
ence, then the value of the variable in the calling method is also changed. Reference
parameters are declared like regular variables except for the ref modifier placed in
front of them as shown in the example below that illustrates the effect of passing a
parameter by reference:

public static void Main()
{

int x = 10;
Console.WriteLine("Before x = {0}", x);
ChangeVarByReference(ref x);
Console.WriteLine("After x = {0}", x);

}
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public static void ChangeVarByReference(ref int x)
{

x = 0;
}
OUTPUT:
Before x = 10
After x = 0

Output parameters are used to extract multiple return values back from a method.
Output parameters are declared with the out modifier and, like the variables preceded
with the ref modifier, are also passed by reference. However, output parameters do
not need to be assigned before going into a method but must be assigned before it
comes out of the method. Consider that following example that illustrates how output
parameters are extracted from a method:

public static void Main()
{

x=5;
int tot=0;
Console.WriteLine("The original number is {0}", x);
DoSum(x, out tot);
Console.WriteLine("The final sum is {0}", tot);

}

public static void DoSum(int x, out int total)
{

Console.WriteLine("Adding 7 to the number {0}", x);
total = x + 7;
return;

}

This produces the following output:

The original number is 5
Adding 7 to the number 5
The final sum is 12

Parameter arrays may be used if the number of parameters sent to a method is not
known in advance. You can declare a parameter array using the keyword params,
within the method header and then the method will be able to accept any number of
parameters. However, only one params keyword is permitted in a method declaration
and no additional parameters are permitted after the params keyword in a method
declaration. Since arrays are passed by reference and we have an array of parameters,
these too are passed by reference. For example, in the following method the passed
parameters could be any type such as strings or integers:

public static void Display(params Object[] things)
{

foreach(Object obj in things)
Console.WriteLine( {0} , obj);

}

Table 1-19 summarizes all the various modifier options that are available for passing
parameters into and out of methods.
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TABLE 1.19
Summary of Optional Parameter Modifiers in C#

Optional Parameter Modifier Passed By Variable must be assigned
none value going IN
ref reference going IN
out reference going OUT
params reference going IN

1.6.23 Indexers

An indexer enables you to use an index to set a value to or get a value from an
object. As with properties, the keywords get and set are used when defining an
indexer. Unlike properties, however, you are not retrieving a particular data member.
Instead, you are retrieving a value from the object itself. In addition, instead of
creating a name as you do with properties, the this keyword is used to refer to the
object instance and thus the object name itself is used later in the code. The general
format for defining an indexer is as follows:

public dataType this[ int index ]
{

get
{

// do whatever you want
return aValue; //that is of same type as dataType

}
set
{

// do whatever you want with a value of dataType but
// in general you should set a value within the class
// based on the index and the value they assign.

}
}

1.6.24 Overloading Methods, Constructors and Operators

Overloading is an important feature of object oriented programming because it pro-
vides alternative ways to perform the same kind of task. In addition, overloading is
also an excellent example of polymorphism because of its ability to act appropriately
depending on context.

Methods, constructors, and operators are all uniquely identified and characterized
by their signatures. The signature of a method, for example, consists of the name
of the method along with the type and kind (value, reference or output) of each
of its parameters. A method is said to be overloaded when multiple methods in
the same class have the same name but different signatures. Since constructors are
special methods within a class, they too can be overloaded just like you can overload
methods. In addition, most operators can also be overloaded so that they are then
able to perform customized functions on objects created from the class that defines
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them. However, you should overload only those operators that make sense for the
class.

Complex number operations provide excellent examples of all aspects of overload-
ing and will be discussed in greater detail later in this book. For now, overloading
methods can be illustrated in the simple example shown below where two methods
have the same identifier names but contain different signatures:

public int Add(int a, int b)
{

int sum = a + b;
return sum;

}

public string Add(string s1, string s2)
{

string msg = s1 + s2;
return msg;

}

Note that although both of these methods are called Add, they are used in different
context. The first method adds two integers whereas the second method adds (i.e.
concatenates) two strings by overloading the addition operator +.

1.6.25 Delegates

A delegate is an object that can hold a reference (i.e. memory address) to a method.
Methods that are referenced by a delegate may be either an instance method associ-
ated with an object or a static method associated with a class and, in addition, may
also originate from a struct. All that is required is that the return type and signature
of the method matches that of the delegate. However, before a method can be called
through a delegate, the delegate must first be declared and then properly referred to
the desired method. Consequently, the same delegate can be used to dynamically
invoke different methods at runtime by simply changing the memory address of the
method to which the delegate refers. In addition, delegates also support multicasting
which is the ability to create what is called an invocation list of different methods
that will be automatically called and processed in its entirety whenever the corre-
sponding delegate is invoked. Multicasting is accomplished by first instantiating a
delegate and then using the + or the += operator to add methods to its invocation list
as the examples below will illustrate. To remove a method from the invocation list,
the - or the -= operators may be used instead.

In essence, delegates make it possible to treat methods as entities that can be as-
signed to variables and passed as parameters. In all fairness, a delegate can be used to
call a method even though the method can be called directly. However, delegates are
very useful because sometimes you don’t always know in advance which methods
might be called into action at runtime. By granting your delegates the authority to
run the correct method(s) for you, one delegate can be used to call several different
methods. This is why delegates work so well in event-driven programs, where you
don’t always know in advance which event will occur first.
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When you define a delegate type, you identify what type of method the delegate
represents. To associate a delegate with a method, a delegate instance is defined
using the method name as the argument inside the parenthesis. The constructor for
a delegate always takes just one parameter because you are sending the name of one
method for the constructor to reference. When a delegate is used, it passes a method,
instead of data, as an argument. The general syntax for declaring a delegate is as
follows:

[modifier] delegate returnType DelegateName([parameter]);

There are three steps in defining and using delegates: Declaration, Instantiation and
Invocation. The following example illustrates these steps along with different ways
to work with delegate objects.

namespace DelegateExample
{

// Declaration
public delegate void myDelegate(string s);

class myClass
{

public void myMethod1(string s)
{

Console.WriteLine(s + " from instance method1\n");
}

public static void myMethod2(string s)
{

Console.WriteLine(s + " from static method2\n");
}

}

class Program
{

static void Main(string[] args)
{

//Example illustrating different ways to work with
//delegate objects

//(1) Working with instance methods.

//Instantiate a null delegate object called delObj1.
myDelegate delObj1 = null; //Delegate Instantiation

//Instantiate an object called myObj from myClass
//class.
myClass myObj = new myClass();

//Assign instance method myMethod1 to delegate
//object delObj1.
delObj1 = myObj.myMethod1;

//Use the delegate object delObj1 to pass some data
//to myMethod1.
delObj1("Hello"); //Invocation
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//(2) Working with static methods.

//Instantiate a null delegate object called delObj2.
myDelegate delObj2 = null; //Delegate Instantiation

//Assign static method myMethod2 to delegate object
//delObj2. Note that because myMethod2 is a static
//method, there is no need to first instantiate an
//object from myClass in order to then assign
//myMethod2 to delegage object delObj2.
delObj2 = myClass.myMethod2;

//Use the delegate object delObj2 to pass some
//data to myMethod2
delObj2("Greetings"); //Invocation

//(3) Working with instance and static methods to
//build an invocation list

//Create two delegate objects and directly assign
//them to their respective instance and static methods.

//Delegate instantiation
myDelegate delObj3=new myDelegate(myObj.myMethod1);
//and invocation
delObj3("Building invocation list, element 1");

//Delegate instantiation
myDelegate delObj4=new myDelegate(myClass.myMethod2);
//and invocation
delObj4("Building invocation list, element 2");

//Build an invocation list from these two
//delegate objects
myDelegate delObjTotal = delObj3 + delObj4;

//Process the invocation list with some data
delObjTotal("Processing entire invocation list.");

//Remove a method from invocation list
delObjTotal -= delObj4;

//Process remaining methods in invocation list
delObjTotal("Last message is");

//Alternate way to build invocation list
myDelegate delObj5 = null;
delObj5 += new myDelegate(myObj.myMethod1);
delObj5 += new myDelegate(myClass.myMethod2);

//Process total invocation list with some data
delObj5("bye...");

//Remove a method from invocation list
delObj5 -= myClass.myMethod2;
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//Process remaining methods in invocation list
delObj5("Final message is");

//Pause until user hits enter key
Console.ReadLine();

}
}

}

1.6.26 Events

Events are mechanisms that cause specific code to execute when some particular
action occurs in an application. One of the most common ways for events to be raised
in C# is from user interaction with control objects in a Windows Form. For example,
the simple action of clicking a button with the mouse can raise an event to notify
a Windows Form that one of its buttons was clicked. An underlying event handler
then responds to this event by performing some specific task. Objects can also raise
their own events. For example, the Timer object can be configured to raise its own
Timer event after a certain amount of time has elapsed. Events may also be raised
by the Windows operating system while in the process of running an application.
For example, whenever a section of an existing window gets obscured by another
window, the Windows operating system will raise an event. Then when the area of
the previously obscured window gets re-exposed, another event is raised to notify
Windows to repaint that particular area of the console screen. Finally, programmers
may also write their own custom events which may be raised directly from within
the C# application itself and be applied to a variety of purposes.

Event functionality in the .NET Framework is provided by three interrelated ele-
ments: a class that raises the event, an event delegate that connects the event with
its handler, and a class that captures the event and responds to it. The class that
raises the event is called the publisher or sender. Classes that capture the event and
respond to it are called the subscribers or receivers. In other words, the publisher de-
termines when an event is raised and the subscribers determine what action is taken
in response to the event. An event can have multiple subscribers and a subscriber can
handle multiple events from multiple publishers. Events that have no subscribers are
never raised.

When an event is raised, the publisher of an event does not know in advance which
subscriber will handle the event and so it is the responsibility of subscribers to reg-
ister or unregister themselves with the publisher of an event. An intermediary mech-
anism is therefore needed to interact between the code that raises the event in the
publisher and the code that executes a response to the event in the subscriber. Be-
cause of how they work, delegates provide the most ideally suited mechanism for
this kind of desired functionality. A delegate is a class that can hold a reference to a
method. Unlike other classes, a delegate class has a signature, and it can hold refer-
ences only to methods that match its signature. Although delegates have other uses,
the material contained in this section will primarily focus on their role in program-
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ming event driven applications.

To sum up, events therefore essentially work like this: any subscriber that has an
interest in a particular event registers a special method, called an event handler, with
the underlying delegate of the corresponding event publisher. Event handlers con-
tain code specifying what actions to take when the event occurs. By registering for a
particular event, the event handler simply gets added to the invocation list of the as-
sociated event delegate. Later, when the event is raised, the associated event delegate
is invoked and sequentially calls all the methods and their associated event handlers
that were previously added to its invocation list. Those readers who are familiar
with design patterns in object-oriented programming may notice that event coding
in C# follow the observer design pattern, also known as the publisher-subscriber
pattern [10]. This pattern defines a one-to-many dependency between objects so that
when one object changes state, all its dependents are notified and updated automati-
cally.

Successful implementation of a custom event in C# is a multi-step process that
requires some careful planning and a considerable amount of attention to detail.
However, by following a prescribed list of steps and well established guidelines as
described in greater detail below, implementing custom events in C# can actually
be a very straight forward pleasant endeavor instead of some harrowing or daunting
ordeal.

Step 1: EventArgs - Derive a class from System.EventArgs to hold the event-related
data.

In order to follow event publishing standards, any data that is sent by the publisher
of an event to all of its subscribers during the raising of that event is encapsulated as
properties of a derived class that is traditionally named EventNameEventArgs since it
inherits from the System.EventArgs base class. Actually, the EventNameEventArgs

name can be any legal identifier you want. However, using an identifier that begins
with your own event name and ends with EventArgs improves code readability and
makes it easier to remember the purpose for creating this class. Presumably this data
is also relevant to the occurrence of the event and subsequent event handling methods
can read these event arguments in order to learn more details about the event.

For completeness it should be pointed out that using the System.EventArgs class
or any subclass thereof, is not a strict technical requirement. Instead, the event del-
egate signature could very well just specify each parameter type and name. The
problem with this approach, however, is that such a signature ties the event publisher
with all of its subscribers and if you should ever need to modify any of these pa-
rameters in the future, then all the subscribers would have to be modified as well.
Consequently, it is highly recommended to encapsulate all event data into a single
derived class of the System.EventArgs base class since doing so significantly re-
duces the amount of additional work needed to make any future changes to the data
values that are passed to the event subscribers.

The general format of the derived class, EventNameEventArgs is as follows:
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public class EventNameEventArgs : System.EventArgs
{

//Provide code to handle data for the event arguments.
}

Step 2: Event Handler Define a delegate type that specifies the signature of the event
handler.

For each EventArgs subclass you created in Step 1 you must also create a match-
ing delegate event handler. You can create your own delegate event handler or use
one of the System.EventHandler delegates provided by the .NET Framework. If
you use the default System.EventArgs class instead of a subclass of it, there is no
need to declare your own delegate since you can then use the corresponding System.

EventHandler delegate. On the other hand, if you use a derived EventNameEventArgs
subclass then you need to create your own delegate and its declaration supplies the

signature of the delegate event handler. As before with EventNameEventArgs, your
delegate identifier can have any name you want. However, using a delegate iden-
tifier that begins with the event name prefix EventName and ends with the suffix
EventHandler improves code readability and also makes it easier to remember the
purpose of creating this delegate. In addition, all delegate event handlers must be of
type void in order for them to also be suitable for multicasting so that they can then
hold references to more than one event handling method. Delegates can therefore be
thought of as an event dispatcher for the class that raises the event by maintaining a
list of registered event handlers for the event. The general format of a delegate event
handler declaration is:

public delegate void EventNameEventHandler(object sender,
EventNameEventArgs e);

It should be noted that by convention event delegates in the .NET Framework
have two parameters, the source that raised the event [object sender] and the data for
the event [EventNameEventArgs e]. An instance of the EventNameEventHandler

delegate can now bind to any method that matches its signature.

Step 3: Define an event based on the delegate type declared in Step 2.

The event keyword is used to formally declare each event. There are two valid
event declaration syntax alternatives: the field-like syntax and the property-like syn-
tax. The field-like syntax is more commonly used in custom event implementations
where the number of events is small. The property-like syntax is recommended for
use in situations that involve a large number of events where perhaps only a few of
which are expected to be subscribed to at any given time. Using the property-like
syntax enables you to exert greater control over the registration and unregistration of
subscribers with their event handler delegates. In addition, the property-like syntax
follows good object-oriented coding practices by allowing one to encapsulate events
just like one can encapsulate private class members. However, the encapsulation of
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events is not a critical requirement and so creating events using the field-syntax is
both acceptable and easier to use.

Using the field-like syntax, the general format for declaring an event, EventName,
based on the delegate declared in Step 2, EventNameEventHandler, is as follows:

public event EventNameEventHandler EventName;

Here, the delegate for the event EventName is EventNameEventHandler, as de-
clared and specified earlier in Step 2. Using the property-like syntax, the general
format for declaring an event, named EventName, based on the delegate declared
in Step 2: EventNameEventHandler and using the accessors add and remove, is as
follows:

private event EventNameEventHandler privateEventName;
public event EventNameEventHandler EventName
{

add
{

//May add extra code here.
privateEventName += value;

}
remove
{

//May add extra code here.
privateEventName -= value;

}
}

The property-like syntax appears very similar to a typical property declaration
with the exception that the set of get and set blocks have been replaced with a set of
add and remove blocks. Instead of retrieving or setting the value of a private member
variable, the add and remove blocks add and remove incoming delegate instances to
or from the underlying event handler.

With either the field-like or the property-like syntax, the EventName is the name
of the event being declared and EventNameEventHandler is the name of the del-
egate that was created for this event. Together, this line of code uses the event
keyword to create an event instance named EventName that is a delegate of type
EventNameEventHandler.

Step 4: Create a protected virtual method in the publisher class that raises the event
declared in Step 3.

For each non static event in unsealed classes, the publisher class should include
a protected virtual method that is responsible for raising the event. After an event
has been defined, as it was done in Step 3, the publisher needs to raise the event.
Raising the event is generally a two step process. The first step is to check for the
existence of any subscribers. The second step is to raise the event only if there
is at least one subscriber in the invocation list of the event delegate. If there are
no subscribers, then the delegate will test to null. Since any unhandled exceptions
raised in event handling methods found in subscribers will be propagated back to the
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event publisher, the raising of events should be attempted only within the context
of a try/catch block. Prior to raising the event, you will need to have an instance
of your EventNameEventArgs subclass populated with event-specific data. If the
event contains or passes no data, then you should assign the event-related data to be
EventArgs.Empty.

protected virtual void OnEventName()
{

try
{

if (EventName != null)
{
EventNameEventArgs e = new EventNameEventArgs();
EventName(this, e);

}
}
catch
{

// Handle exceptions here
}

}

Step 5: Define a public method in the publisher class to run the protected, virtual
method declared in Step 4 when the event occurs.

One needs a method, such as OnEventName() discussed in step 4, that will be called
by the publisher when it raises the event. However, since this method is encapsulated
with a protected modifier in order to comply with good object-oriented programming
practices, one needs a way to publicly interact with this protected method. The
simplest way to do this is to have a publicly accessible method that calls on the
protected OnEventName() method such as:

public void RunOnEvent(()
{ OnEventName(); }

Step 6: In each subscriber class implement the corresponding event handler method
with the same signature as the publishers delegate defined in Step 2.

In order to subscribe to an event, one needs to build a subscriber class that is
distinct and independent from the publisher class. In each subscriber class that wants
to subscribe to an event in the publisher class, create an event handler method with
the same signature as the publishers event delegate. The general format for this event
handler method is like this:

public void EventNameEventHandler(object sender,EventNameEventArgs e)
{

//Add your code to process an event for a particular
//subscriber here.

}
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Step 7: Instantiate the publisher object. For non-static event handlers in subscriber
classes, also instantiate a subscriber object.

In order to subscribe to an event, the subscriber needs a reference to the object
publishing the event of interest. Therefore, the object publishing the event of inter-
est needs to be instantiated from the publisher class. Likewise, the instance event
handlers in the subscriber classes need to be referenced by the event delegate in the
publishing class. Therefore any object subscribing to the event of interest needs to be
instantiated from the subscriber class. For subscriber classes containing static event
handler methods, there is no need to first instantiate the subscriber object since you
can call the event method handler directly. The general format of carrying out this
step consists of introducing code that will look something like this:

publisherClass publisherObject = new publisherClass ();

for the publisher class and

subscriberClass subscriberObject = new subscriberClass();

for each subscriber class.

Step 8: Create a delegate object to the event and attach the event handler method to
the event.

Create an instance of the event handler of interest, passing the name of the event
handling method. Using the new keyword, instantiate the delegate in the same line
in which the delegate is attached to the event. The subscriber then registers its event
handler (delegate) instance with the publisher, like this:

publisherObject.EventName +=
new EventNameEventHandler(subscriberObject.

subscriberEventHandlerMethod);

or like this:

publisherObject.EventName += subscriberObject.
subscriberEventHandlerMethod;

where

• publisherObject is the reference to the object that will raise the event of
interest.

• The += operator is used to add the delegate instance to the invocation list of the
event handler in the publisher. Remember, multiple subscribers may register
with the event. Use the += operator to append the current subscriber to the
underlying delegate’s invocation list.

• EventNameEventHandler is a reference to the particular event handler dele-
gate.
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• Finally a call to subscriberObject.subscriberEventHandlerMethod supplies
the name of the method in the subscribing class that is to be called upon the
raising of the event.

Step 9: Unregister the subscriber event handling method from the event. (Optional)

When the subscriber no longer receives event notifications from the publisher,
you can unregister the subscriber from the event. However, this step is optional since
subscribers are automatically unregistered from publishers when the subscriber is
disposed. The general format to unregister an event is just like the ones shown in
step 8 but using -= instead of += .

publisherObject.EventName -= subscriberObject.
subscriberEventHandlerMethod;

A very simple code example illustrating how to implement events in C# following
these suggested guidelines is given below.

namespace NewEventExample
{
class Program
{
//STEP 1:
//Derive a class from EventArgs to hold event related data
public class myEventArgs : EventArgs
{

//Create some data to pass around in the event arguments
//eventCounter counts the number of events called.
public int eventCounter;

//eventHandlerCounter counts the number of event
//handlers called.
public static int eventHandlerCounter = 0;

}

//STEP 2:
//Define a delegate type that specifies the signature of
//the event handler.
public delegate void myEventHandler(object senderObj,myEventArgs e);

//Create an event publisher class
public class myPublisher
{

//Create a static event counter
static int count = 0;

//STEP 3:
//Define an event based on the delegate type
//"myEventHandler" declared in step 2
//(field-like version)
public event myEventHandler myEvent;
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//Define an event based on the delegate type
//"myEventHandler" declared in step 2
//(property-like version)
/*
private event myEventHandler myPrivateEvent;
public event myEventHandler myEvent
{
add { myPrivateEvent += value; }
remove { myPrivateEvent -= value; }

}
*/

//STEP 4:
//Define a protected virtual method that raises
//the event declared in step 3.
protected virtual void OnEvent()
{
//Before raising the event, make sure there is
//at least one registered subscriber for the event
try
{

if (myEvent != null)
{

//Populate the derived argument class with event
//specific data.
myEventArgs arg = new myEventArgs();

//Update the event counter and
arg.eventCounter = ++count;
Console.WriteLine("EVENT: {0}", arg.eventCounter);

//raise the event by calling the associated
//delegate to multicast every registered
//subscriber event handler method in its
//invocation list.
myEvent(this, arg);

}
}
catch
{

//Handle exceptions here
}

}

//STEP 5:
//Define a public method to run the protected, virtual
//method declared in Step 4 for when the event occurs.
public void RunOnEvent()
{
OnEvent();

}
}

//SubscriberA contains an instance event handler as well
//as a way to internally register and unregister for the
//event along with an event handler.
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public class SubscriberA
{

private myPublisher currPub;

public SubscriberA(myPublisher p)
{
currPub = p;

}

//STEP 6:
//In each subscriber class, create its own event
//handling method with the same signature as the
//publisher’s delegate.
public void SubscriberA_EventHandlerA(object senderObj,
myEventArgs e)
{
Console.WriteLine("Processing event handler in
SubscriberA (instance method)");

}

//STEP 8:
//Register the event
public void register()
{
currPub.myEvent += this.SubscriberA_EventHandlerA;

//Update event handler counter and display message on
//the screen.
myEventArgs.eventHandlerCounter++;
Console.WriteLine("\nRegistering SubscriberA. Event
handlers registered:{0}",myEventArgs.eventHandlerCounter);

}

//STEP 9:
//Unregister the event
public void unregister()
{
currPub.myEvent -= this.SubscriberA_EventHandlerA;

//Update event handler counter and display message on
//the screen.
myEventArgs.eventHandlerCounter--;
Console.WriteLine("\nUnregistering SubscriberA. Event
handlers registered:{0}",myEventArgs.eventHandlerCounter);

}
}

//SubscriberB contains an instance event handler.
//Registering and unregistering for the event must be
//done externally.
public class SubscriberB
{

//STEP 6:
//In each subscriber class, create its own event
//handling method with the same signature as the
//publisher’s delegate.
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public void SubscriberB_EventHandlerB(object senderObj,
myEventArgs e)
{
Console.WriteLine("Processing event handler in
SubscriberB (instance method)");

}
}

//SubscriberC contains a static handler for the event.
public class SubscriberC
{

//STEP 6:
//In each subscriber class, create its own event
//handling method with the same signature as the
//publisher’s delegate.
public static void SubscriberC_EventHandlerC(object
senderObj, myEventArgs e)
{
Console.WriteLine("Processing event handler in
SubscriberC (static method)");

}
}

public class MyClass
{

public static void Main()
{
//STEP 7:
//Instantiate the publisher object
myPublisher myPublisherObj = new myPublisher();

//STEP 7:
//Instantiate a subscriber object named subA
SubscriberA subA = new SubscriberA(myPublisherObj);

//STEP 7:
//Instantiate another subscriber object named subB
SubscriberB subB = new SubscriberB();

//STEP 8:
//Register subscriber object subA for the event
subA.register();

//STEP 8:
//Register subscriber object subB for the event either
//this way:
myPublisherObj.myEvent += subB.SubscriberB_EventHandlerB;
//or this way:
//myPublisherObj.myEvent += new
myEventHandler(subB.SubscriberB_EventHandlerB);

//Update event handler counter and display message on screen.
myEventArgs.eventHandlerCounter++;
Console.WriteLine("Registering SubscriberB. Event
handlers registered: {0}", myEventArgs.eventHandlerCounter);
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//STEP 8:
//Register event handler for subscriber class SubscriberC.
myPublisherObj.myEvent +=
SubscriberC.SubscriberC_EventHandlerC;

//Update event handler counter and display message on screen.
myEventArgs.eventHandlerCounter++;
Console.WriteLine("Registering SubscriberC. Event
handlers registered: {0}", myEventArgs.eventHandlerCounter);

//Raise an event for all the currently registered
//event handlers
Console.WriteLine("\nRaise event for all {0} currently
registered subscribers.\n", myEventArgs.eventHandlerCounter);
myPublisherObj.RunOnEvent();

//STEP 9:
//Unregister event handler for subscriber object subA
subA.unregister();

//STEP 9:
//Unregister event handler for SubscriberB object subB
myPublisherObj.myEvent -= subB.SubscriberB_EventHandlerB;

//Update event handler counter and display message on screen.
myEventArgs.eventHandlerCounter--;
Console.WriteLine("Unregistering SubscriberB. Event handlers
registered: {0}", myEventArgs.eventHandlerCounter);

//Raise an event for all currently registered event handlers
Console.WriteLine("\nRaise event for all {0} currently
registered subscribers.\n", myEventArgs.eventHandlerCounter);
myPublisherObj.RunOnEvent();

}
}

}

The resulting output of the code given above is as follows:

Registering SubscriberA. Event handlers registered: 1
Registering SubscriberB. Event handlers registered: 2
Registering SubscriberC. Event handlers registered: 3

Raise event for all 3 currently registered subscribers.

EVENT: 1
Processing event handler in SubscriberA (instance method)
Processing event handler in SubscriberB (instance method)
Processing event handler in SubscriberC (static method)

Unregistering SubscriberA. Event handlers registered: 2
Unregistering SubscriberB. Event handlers registered: 1

Raise event for all 1 currently registered subscribers.

EVENT: 2
Processing event handler in SubscriberC (static method)
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1.6.27 Collections

A collection is a set of similarly typed objects that are grouped together. Often,
closely related data can be handled more efficiently when grouped together into a col-
lection. Instead of writing separate code to handle each individual object, you can use
the same code to process all the elements of a collection at once. The .NET Frame-
work provides specialized collection classes for data storage and retrieval which are
defined as part of the System.Collections and the System.Collections.Generics

namespace. The latter contains contains interfaces and classes that define generic
collections which allow users to create strongly typed collections that provide bet-
ter type safety and performance than non-generic strongly typed collections such as
those found in the System.Collections. With typed collections you specify the data
type to be used in the collection that you instantiate and the resulting collection ob-
jects can then only store elements of the specified data type. By contrast, untyped
collections allow you to create collection objects without specifying the data type of
its elements. There are at least two drawbacks to this approach. First, sloppy man-
agement of data types in the elements of a collection can sometimes lead to runtime
errors. Second, handling elements in untyped collections may require a lot of type
casting which can slow down program performance.

The System.Collections classes can usually be categorized into three types:

• Commonly used collections come in both generic and non-generic versions
and consist of various well known data structures such as hash tables, queues,
stacks, dictionaries and lists.

• Bit collections are collections whose elements are bit flags. This topic will be
discussed later in this book in another chapter dedicated solely to bit manipu-
lation.

• Specialized collections which are collections for highly specific purposes.

Most collection classes derive from the following interfaces:

ICollection IComparer IDictionary

IEnumerable IList IDictionaryEnumerator

and their generic equivalents. In addition, some collection classes have sorting ca-
pabilities and most are indexed. All collections that directly or indirectly implement
either the ICollection interface or the ICollection generic interface share several
useful features in addition to methods that add, remove, or search elements. For
example, memory management is carried out automatically so that a collection can
dynamically expand in size as needed. This feature is very useful when the pro-
grammer does not know in advance how much memory space to set aside for data
allocation at the start of an application. Collection classes can also generate their
own enumerator which makes it easy to iterate through their elements. The enumer-
ator is an object that iterates through its associated collection. The lower bound of
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a collection is the index of its first element. All indexed collections in the System.

Collections namespace have a lower bound of zero. The capacity of a collection
is the number of elements it can contain. The count of a collection is the number of
elements it actually contains.

Objects of any type can be grouped into a single collection of the type Object
to take advantage of constructs that are inherent in the language. However, in a
collection of type Object, additional processing is done on the elements individually,
such as boxing and unboxing or conversions, which affect the performance of the
collection. Boxing and unboxing typically occur if storing or retrieving a value type
in a collection of type Object.

Choosing the best or most efficient collection class to use in the course of devel-
oping an application is a very important decision that most programmers need to
make since each collection class has its own functionality and its own limitations.
Fortunately, there are some useful well established guidelines that are very helpful
in making such decisions. These guidelines are briefly summarized below.

Problem:
You need a sequential list where the element is typically discarded after its value is
retrieved.

Suggested Solution:

• Use the Queue class or the Queue(T) generic class if you need first-in-first-out
(FIFO) behavior.

• Use the Stack class or the Stack(T) generic class if you need last-in-first-out
(LIFO) behavior.

Problem: You need to access the elements in a certain order, such as FIFO, LIFO or
random.

Suggested Solution:

• The Queue class and the Queue(T) generic class offer FIFO access.

• The Stack class and the Stack(T) generic class offer LIFO access.

• The LinkedList(T) generic class allows sequential access either from the
head to the tail or from the tail to the head.

• The rest of the collections offer random access.

Problem: You need to access each element by index.

Suggested Solution:

• The ArrayList and tringCollection classes and the List(T) generic class
offer access to their elements by the zero-based index of the element.
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• The Hashtable, SortedList, isDictionary, and stringDictionary classes,
along with both the Dictionary(TKey,TValue) and SortedDictionary(TKey

,TValue) generic classes offer access to their elements by the key of the ele-
ment.

• The NameObjectCollectionBase and NameValueCollection classes, as well
as the KeyedCollection(TKey,TItem) and SortedList(TKey,TValue) generic
classes offer access to their elements by either the zero-based index or the key
of the element.

Problem: You need each element to contain one value, a combination of one key and
one value, or a combination of one key and multiple values.

Suggested Solution:

• One value: Use any of the collections based on the List interface or the IList

(T) generic interface.

• One key and one value: Use any of the collections based on the IDictionary

interface or the IDictionary(TKey,TValue) generic interface.

• One value with embedded key: Use the KeyedCollection(TKey,TItem) generic
class.

• One key and multiple values: Use the ameValueCollection class.

Problem: You need to sort the elements differently from how they were entered.

Suggested Solution:

• The Hashtable class sorts its elements by their hash codes.

• The SortedList class, the ortedDictionary(TKey,TValue) and SortedList

(TKey,TValue) generic classes sort their elements by the key, based on imple-
mentations of the IComparer interface and the IComparer(T) generic interface.

• ArrayList provides a Sort method that takes an IComparer implementation as
a parameter. Its generic counterpart, the List(T) generic class, provides a Sort
method that takes an implementation of the IComparer(T) generic interface as
a parameter.

Problem: You need fast searches and retrieval of information.

Suggested Solution:

• The ListDictionary is faster than Hastable for small collections.

• The Dictionary(TKey,TValue) generic class provide faster lookup than the
SortedDictionary(TKey,TValue) generic class.
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Problem: You need collections that accept only strings.

Suggested Solution:

• The StringCollection and StringDictionary classes are in the System.

Collections.Specialized namespace. In addition, you can use any of the
generic collection classes in the System.Collections.Generic namespace as
strongly typed string collections by specifying the String class for their generic
type arguments.

Additional and more detailed information regarding the coding and implementa-
tion of the Collections and the Collections.Generics classes can be found in [11]
and [12] .

1.6.28 File Input/Output

Computer programs written for scientific and engineering applications often require
their output data to be written to a file for later processing or perhaps for plotting re-
sults on a graph. Sometimes scientific and engineering applications also need input
data to be read from a file. Whatever the case may be, the System.IO namespace pro-
vides several useful classes for managing both binary and text files. The abbreviation
IO is often used to denote input/output file operations. To handle IO file operations,
the .NET Framework uses the concept of streams. A stream is just a sequence of
bytes. Since a byte is 8 bits and a bit is either a 0 or a 1, a stream can be thought of as
just a sequence of zeros and ones arranged in some specific order. Streams involve
the following three operations:

• Streams can be read from. Reading is the transfer of data from a stream into a
data structure, such as an array of bytes.

• Streams can be written to. Writing is the transfer of data from a data structure
into a stream.

• Streams can support seeking. Seeking is the query and modifying of the cur-
rent position within a stream.

Consequently, to read and write text files you use text input or output streams
and to read and write binary files, you use input or output binary streams. In a text
file, data is stored as text characters or strings which can be very easily accessed and
manipulated by other programs. In binary files, data can be stored in a variety of data
types and, as a result, it can sometimes be difficult to access and manipulate unless
you have some prior detailed knowledge of how the data was originally written to
the file. Accordingly, for the purposes of the numerical applications contained in this
book, discussion of IO file operations will henceforth be directed only to text files
which can be more easily accessed by any computer regardless of any internal data
type specifics.

© 2010 by Taylor and Francis Group, LLC



Introduction 61

In order to write output to a file we first have to create an output stream of type
FileStream and attach a StreamWriter to it which, like Console, provides the meth-
ods Write and WriteLine. Likewise, in order to read input from a file we first have
to open a FileStream and attach a StreamReader to it which, like Console, pro-
vides the methods Read and ReadLine. Perhaps the best way to illustrate how all
these mechanisms work is through a simple file input/output manipulation example
as shown below. First, a public delegate is declared to store references to one or more
arbitrary functions of your choice. Since the number of data points is not known in
advance and in order to allow greater flexibility in choosing a data type, all data is
handled using a generic List collection structure instead of an array. The application
then simply generates a table of (x, f (x)) data values, writes these values to a file and
then reads these values from the file and then displays all of them out on the screen
again.
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.IO;

namespace FileIODemo
{

class Program
{

//Delegate to store references to some arbitrary
//function
public delegate double Function(double x);

public class ConstructFunctionTable
{
public void MakeXYTable(Function f, double startValue,

double endValue, double increment,
ref List<double> xv, ref List<double> yv)

{
//Print table headings
Console.WriteLine("x\tf(x)");
Console.WriteLine("-------------");

//Loop from the start to the end values of the
//(x,f(x)) table incrementing x with your value
//of choice. Calculate the corresponding function
//f(x) for each x value. Display results on the
//screen for reference.
for (double x=startValue; x<=endValue; x+=increment)
{

xv.Add(Convert.ToDouble(x));
yv.Add(Convert.ToDouble(f(x)));
Console.WriteLine(String.Format("{0:f}\t{1:f}",

x,f(x)));
}
Console.WriteLine("-------------");

}

public void SaveXYTable(string pathNfilename,
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ref List<double> xv, ref List<double> yv)
{

//Create a FileStream object and a StreamWriter object
//to write to a file specified by the variable
//pathNfilename.
FileStream fsWrite = new FileStream(pathNfilename,

FileMode.Create, FileAccess.Write);
StreamWriter sWriter = new StreamWriter(fsWrite);

//Specify the available data delimeter characters
char[] fileDelim = { ’,’, ’|’, ’\t’ };

//Find out how many (x,y) data points you have.
int xyCount = xv.Count;

//Loop through all the data points you have writing
//each of them to the text file referenced to by the
//StreamWriter object.
for (int i = 0; i < xyCount; i++)
{

sWriter.WriteLine(String.Format("{0:f}" +
fileDelim[2] + "{1:f}", xv[i], yv[i]));

}
//Close the file StreamWriter object.
sWriter.Close();

}

public void ReadXYTable(string pathNfilename,
ref List<double> xv, ref List<double> yv)

{
//Create a FileStream object and a StreamReader object
//to read from a file specified by the variable
//pathNfilename.
FileStream fsRead = new FileStream(pathNfilename,

FileMode.Open, FileAccess.Read);
StreamReader sReader = new StreamReader(fsRead);

//Specify the available data delimeter characters
char[] fileDelim = { ’,’, ’|’, ’\t’ };

//Declare a string array to hold incoming data read
//from file.
string[] fields;

//Read the first line of the file.
string xyDataline = sReader.ReadLine();

//If the first line of the file is not null, then
//process data otherwise close the file StreamReader
//object.
while (xyDataline != null)
{

//Using the delimeter of choice, split the incoming
//data into two fields: one for the x values and the
//other for the y values.
fields = xyDataline.Split(fileDelim[2]);
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//Store each value in its corresponding array.
xv.Add(Convert.ToDouble(fields[0]));
yv.Add(Convert.ToDouble(fields[1]));

//Read another line of data from the file.
xyDataline = sReader.ReadLine();

}

//Close the file StreamReader object.
sReader.Close();

}

static void Main(string[] args)
{

//Give a name to some arbitrary text file to hold the
//(x,f(x)) data
string fileName = "TestData.txt";

//and assign it to the path of the current default
//directory
string filePathNName =

Directory.GetCurrentDirectory().ToString()
+ "\\" + fileName;

//Note: The filename and path chosen here is arbitrary
//and these were selected only to illustrate the
//functionality of this example.

//Declare a couple of generic collections of doubles.
//Collections were chosen instead of arrays because we
//do not know in advance how many data points we have.
//Unlike arrays, collections do not have a fixed size
//but can expand in size dynamically. Generics were
//chosen to allow a flexible choice of data types.
List<double> xvalue = new List<double>();
List<double> yvalue = new List<double>();

//Create a function table object to run this example.
ConstructFunctionTable fcntable =

new ConstructFunctionTable();

//Create an (x,y=f(x)) table of sines running from 0
//to 2, incrementing by 0.25 and return result inside two
//collections xvalue, and yvalue.
Console.WriteLine("The original (x,y) data table:\n");
fcntable.MakeXYTable(Math.Sin, 0.0, 2.0, 0.25,

ref xvalue, ref yvalue);

//Write the data contained in collections xvalue and
//yvalue to the data text file described earlier.
Console.Write("\nSaving data to file " + fileName +

" please wait. ");
fcntable.SaveXYTable(filePathNName, ref xvalue,

ref yvalue);
Console.WriteLine("Done!");
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//Clear out the collections xvalue and yvalue to
//receive fresh data.
xvalue.Clear(); yvalue.Clear();

//Read the data contained in collections xvalue and
//yvalue from the data text file described earlier.
Console.Write("\nReading data from file " + fileName +

" please wait. ");
fcntable.ReadXYTable(filePathNName, ref xvalue,

ref yvalue);
Console.WriteLine("Done!");

//Display the data results just read on the screen
Console.WriteLine("\nData just read from file " +

fileName + "\n");
Console.WriteLine("x\tf(x)");
Console.WriteLine("-------------");
int xydataCount = xvalue.Count;
for (int i = 0; i < xydataCount; i++)
{

Console.WriteLine(String.Format("{0:f}\t{1:f}",
xvalue[i], yvalue[i]));

}

//Pause until user hits the ENTER key
Console.Write("\nPlease hit the ENTER key to terminate

this program");
Console.ReadLine();

}
}

}
}

The resulting output of the code given above is as follows:

The original (x,f(x)) data table:
x f(x)
------------
0.00 0.00
0.25 0.25
0.50 0.48
0.75 0.68
1.00 0.84
1.25 0.95
1.50 1.00
1.75 0.98
2.00 0.91

Saving data to file TestData.txt please wait. Done!
Reading data from file TestData.txt please wait. Done!
Data just read from file TestData.txt

x f(x)
------------
0.00 0.00
0.25 0.25
0.50 0.48
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0.75 0.68
1.00 0.84
1.25 0.95
1.50 1.00
1.75 0.98
2.00 0.91

1.6.29 Output Reliability, Accuracy and Precision

In any numeric calculation, one should always take into consideration the reliability,
accuracy and precision of the numerical methods used, the numerical values involved
and, of course, the results that are obtained. The concept of significant figures, or
digits, was developed years ago to formally evaluate the reliability of a numerical
value. The significant digits of a number are said to be those that can be used with
confidence and correspond to a certain number of digits plus one estimated digit.
Accuracy refers to how closely a calculated or measured value agrees with its actual
true value. Precision is the degree to which further measurements or calculations
yield the same or similar results. Thus, accuracy is the degree of veracity while
precision is the degree of reproducibility of either a set of measurements or a set
of calculated values. The results of a calculation or a measurement can be accurate
and precise, neither accurate nor precise, accurate but not precise, or precise but not
accurate. However, a measurement or a computation is said to be valid only if it
is both accurate and precise. Understandably, reliability, accuracy and precision are
particularly important issues to consider when using computers to perform numerical
calculations.

At the most rudimentary level, computers are limited to interpreting only two
states, 0 or 1, and this feature relates to the fact that the primary logic units that make
up digital computers are its on/off electronic components. As a result, computers use
the binary number system to store and perform numerical operations. In particular,
a 0 or 1 is called a bit, a set of 4 bits is called a nibble and a set of 8 bits consist of
a unit called a byte. Another unit called word consists of a fixed-sized group of bits
whose size depends on the particular computer’s internal hardware design. The exact
number of bits in a word is known as the word size or word length. Variables that
have been assigned to store numerical values are controlled by the programmer under
the options provided by the programming language being used. A variable can be
declared as an integer, in which case the binary point is fixed at the end of the word
length, or as a real, in which case the binary point is said to float across the word
length. The floating-point representation allows one to describe a broad range of
real numbers. For example, single precision, also known as floating-point numbers,
employ 32 bit (4 bytes) word lengths and are therefore capable of storing values rang-
ing anywhere from about −3.4x1038 to 3.4x1038. On the other hand, doubles, also
known as double precision numbers, employ 64 bit (8 bytes) word lengths and are
therefore capable of storing values anywhere from about −1.80x10308 to 1.8x10308.
Decimals take up 128 bits (16 bytes) and are therefore able to store values ranging
from about −7.9x1028 to 7.9x1028. The actual range of allowed values for variables
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of each numerical data type has already been displayed in Table 1.4 earlier in this
chapter and can all be actually directly computed using the following code:

Console.WriteLine("C# DATA TYPES");
Console.WriteLine("\n{0} \nsize = {1} byte,
range: [{2},{3}]", typeof(byte).ToString(),
sizeof(byte), byte.MinValue, byte.MaxValue);

Console.WriteLine("\n{0} \nsize = {1} byte,
range: [{2},{3}]", typeof(sbyte).ToString(),
sizeof(sbyte), sbyte.MinValue, sbyte.MaxValue);

Console.WriteLine("\n{0} \nsize = {1} bytes,
range: [{2},{3}]", typeof(Int16).ToString(),
sizeof(Int16), Int16.MinValue, Int16.MaxValue);

Console.WriteLine("\n{0} \nsize = {1} bytes,
range: [{2},{3}]", typeof(UInt16).ToString(),
sizeof(UInt16), UInt16.MinValue, UInt16.MaxValue);

Console.WriteLine("\n{0} \nsize = {1} bytes,
range: [{2},{3}]", typeof(Int32).ToString(),
sizeof(Int32), Int32.MinValue, Int32.MaxValue);

Console.WriteLine("\n{0} \nsize = {1} bytes,
range: [{2},{3}]", typeof(UInt32).ToString(),
sizeof(UInt32), UInt32.MinValue, UInt32.MaxValue);

Console.WriteLine("\n{0} \nsize = {1} bytes,
range: [{2},{3}]", typeof(Int64).ToString(),
sizeof(Int64), Int64.MinValue, Int64.MaxValue);

Console.WriteLine("\n{0} \nsize = {1} bytes,
range: [{2},{3}]", typeof(UInt64).ToString(),
sizeof(UInt64), UInt64.MinValue, UInt64.MaxValue);

Console.WriteLine("\n{0} \nsize = {1} bytes,
range: [{2:E},{3:E}]", typeof(Single).ToString(),
sizeof(Single), Single.MinValue, Single.MaxValue);

Console.WriteLine("\n{0} \nsize = {1} bytes,
range: [{2:E},{3:E}]", typeof(Double).ToString(),
sizeof(Double), Double.MinValue, Double.MaxValue);

Console.WriteLine("\n{0} \nsize = {1} bytes,
range: [{2:E},{3:E}]", typeof(Decimal).ToString(),
sizeof(Decimal), Decimal.MinValue, Decimal.MaxValue);

Console.WriteLine("\n{0} \nsize = {1} bytes,
range: [0x{2,4:X4},0x{3,4:X4}]",
typeof(Char).ToString(), sizeof(Char),
(int)Char.MinValue, (int)Char.MaxValue);

Console.WriteLine("\n{0} \nsize = {1} bytes,
range: [{2},{3}]", typeof(Char).ToString(),
sizeof(Char), (int)Char.MinValue,(int)Char.MaxValue);
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In general, floating-point calculations performed by a computer are particularly
prone to three major kinds of problems:

• An operation may be mathematically illegal, such as attempting to divide a
number by zero.

• An operation may be legal in principle but is not contextually supported by
the current programming format used to actually perform the desired calcula-
tion. A good example of this kind of problem occurs when an attempt is made
to calculate

√−1 using the internal method Math.Sqrt(-1), provided by the
.NET Framework, which was originally designed to only calculate the square
root of positive real numbers.

• An operation may be legal in principle, but the result may be impossible to
represent in the specified format because of an overflow or an underflow event.
A good example of this kind of problem arises when the numerical output is
so large that it is expressed either as NaN (i.e. not-a-number) or as infinity.
In either case, the actual numerical output may not be necessarily infinite or a
NaN but instead may be just too large for the computer to be able to physically
represent.

Although the relative errors involved in multiplication and division are often small,
there are situations where such errors may also be significant enough to have some
impact on the accuracy and precision of the results that are obtained. Other factors,
such as trying to access floating-point numbers beyond the range of their allowed
values, may lead to unwanted underflow and/or overflow problems for which there
are no quick fixes. When such underflow and/or overflow problems occur, floating-
point operations may return ±∞ or NaN as a way to indicate that the result obtained
was beyond the range of allowed values for variables of that specific data type. Un-
fortunately, once a series of operations generates a NaN, then everything else becomes
a NaN and so it’s better to try and find a way to prevent this problem from happening
in the first place.

One approach is to apply some mathematical trick to slightly modify the original
formula sufficiently enough in order for this problem to be completely eliminated or
at least have its impact be substantially minimized so that the calculation can then
proceed forward without too much additional worry or fuss. For example, in the
process of calculating some probabilities one often has to evaluate ratios of factorials
which can very easily and quickly become quite large. As a result, dividing two very
large numbers, such as U/V , in a careless way may create all kinds of overflow
and/or underflow problems. Instead, it may be more computationally prudent to first
take their individual logarithms, subtract them from each other and then exponentiate
the result as shown below:

U/V = exp(lnU − lnV )

Another important point to keep in mind when doing computer based floating-point
arithmetic is how the IEEE specifications for both the 32-bit float and the 64-bit
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double actually work. Although a float type is 32 bits wide, only 24 of these bits
are assigned to the mantissa and the rest to the exponent. Likewise, a double type
is 64 bits wide, but only 53 of these bits are assigned to the mantissa while the rest
are assigned to the exponent. As a result, at times some precision may be lost when
attempting to carry out certain arithmetic operations near the upper or lower regions
of the allowed range of floating-point data types.

Because of the physical limitations imposed by hardware, computers cannot cor-
rectly store irrational numbers, such as π or

√
2, or non-terminating rational num-

bers, such as 1/6, in floating-point format. In addition, the number of digits (or bits)
of precision also puts a limit on the number of rational numbers that can be repre-
sented exactly. Consequently, computers handle most numerical values only through
approximation schemes and, as a result, a certain amount of truncation and/or round-
off errors is often inadvertently introduced to some extent into numerical calcula-
tions [13].

Truncation errors arise as a result of using approximate instead of exact numerical
values. Round-off errors show up when numbers consisting of limited significant
figures are used to represent exact numerical values. Unfortunately, even small er-
rors introduced by floating-point calculations can sometimes eventually grow signif-
icantly large, particularly when mathematical algorithms are required to repeatedly
perform certain arithmetic operations. As a result, programs that require a lot of
number crunching can sometimes produce bugs that are very hard to find along with
misleading or even erroneous results. Because of these issues, naive use of floating-
point arithmetic can lead to many unwanted problems. For example, you can look
at a piece of code all day and it will seem completely correct because it would be
correct if the numbers in the computer were stored exactly as they are entered. Even
worse, you can add lots of Debug.WriteLine(...) statements throughout your pro-
gram to examine both final and intermediate values more closely only to be mislead
into thinking that everything is correct when in reality the computer may be inter-
preting things internally to be completely different. In order to better illustrate how
much trouble these seemingly harmless features can cause, consider the following
numerical examples consisting of some simple floating-point arithmetic operations.

float tenth = 0.1f;
float one = 1f;
float ten = 10f;

//Goal: Compute 1 - 0.1*10
Console.WriteLine("1 - (1/10)*10 = {0}",one-tenth*ten);
//Expected output: 0
//Actual output: 1.490116E-08 on 32-bit machines
//Actual output: 0 on 64-bit machines

//Goal: Compute 1.0 - 0.9
Console.WriteLine("1 - 0.9 = {0}",one-0.9f);
//Expected output: 0.1
//Actual output: 0.0999999999999996 on 32-bit machines
//Actual output: 0.1 on 64-bit machines

From just these simple numerical examples, it seems evident that the precision of
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the numerical output depends on whether you use a 32-bit or a 64-bit machine. How-
ever, since most personal computers today are 32-bit machines, great care must be
exercised when working with floating point numbers. Using floating point numbers
to control a for loop, may result in the loop stopping earlier or later than expected.
In addition, using an equality or inequality test to stop a while loop, may result in
the loop stopping earlier or later than expected. To avoid such problems, developers
are strongly advised to use integers for equality or inequality testing and to control
code structures involving loops.

From the examples we have just seen, one of the most troublesome and hard-to-
find bugs seems to appear in code that does equality testing. If you compare two
floating point numbers for equality, the binary representation of the numbers may
not be exactly equal even though you know, that by the numbers used, they should
be. For example, consider the following equality test that uses the numerical data of
the example just discussed.

if ( one - tenth*ten) == 0.0)
{...} //will always output false

Although the computed value for ten * onetenth - one = 1.490116×10−08 seems
close enough to 0.0 for most practical purposes, the computer will always give a false
test result when asked to compare whether 1.490116 x 10−08 is equal to 0.0. And
while there may be situations in which testing for equality using floating-point num-
bers is useful or even desirable and necessary, developers are strongly encouraged
to first double check their algorithms to see if they can be redesigned to avoid any
equality testing of floating-point numbers altogether. If that approach is not feasible,
then there is a considerable number of alternative options available to resolve or at
least lessen the effect of this floating-point problem on numerical calculations. Gold-
berg [13], for example, wrote an excellent, long and very detailed account of what
every programmer should know about floating-point arithmetic, particularly as it ap-
plies to IEEE standards. Dawson [14] wrote a much shorter but very excellent article
on this topic and offered some valuable practical advice for addressing and over-
coming these issues. Although Dawson’s article and proposed solution was directed
primarily towards C/C++ programmers, Ruegg [15] expanded on Dawson’s ideas
and also included a C# version of his code for doing floating-point equality testing.
For the convenience and benefit of my readers, I will just make a brief outline of the
highlights of these excellent articles.

When doing numerical comparisons, there are always two variables of interest:
the result along with its close companion, the expectedResult. Most programmers
will agree that writing code to do comparison of float-point numbers like this:

float result, expectedResult;
if (result == expectedResult) {...}

is considered bad practice that can lead to false and unwanted erroneous results. The
most popular solution commonly found in the literature regarding this problem is
to introduce a small tolerance factor in order to allow the comparison to take place
within a user specified range of values instead of just one specific number:
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float result, expectedResult, tolerance = ...;
if (Math.Abs(result - expectedResult) < tolerance) {...}

where Math.Abs() is an internal C# function that calculates the absolute value and
is described in more detail in the next chapter.

Dawson [14] points out that there are at least two problems with this approach.
First, a calculation of the absolute error Math.Abs(result-expectedResult) is not
very meaningful. For example, a calculated absolute error of 1.0 tells you very little.
If the actual result is 1000.0 then an error of 1.0 is wonderful. However, if the actual
result is 1.0 then an error of 0.1 is terrible. Second, since floating numbers have fixed
precision in computers, the calculated absolute error may turn out to be too small to
be accurately compared with the proposed tolerance factor. For example, consider a
calculation that has an expected answer of 10,000. Because floating point arithmetic
is imperfect, your calculated answer may be off by one or two least significant bits.
If you are using 4-byte floats and you are off by one in the least significant bit of your
result then instead of 10,000 you’ll get 10,000.000977. The difference between the
expected and actual result is therefore given by 0.000977. If you arbitrarily pick
a small tolerance factor of, say 0.00001, then doing a numerical comparison will
always give a false result even though the numbers are adjacent floats.

That is not to say that absolute error comparisons have no value at all. If the
range of the expected result is known, then checking for absolute error is simple and
effective. However, one needs to make sure that the absolute error value is larger
than the minimum representable difference for the range and type of float that is
being used. Because of these two major problems, it is often more informative and
useful to calculate the relative instead of the absolute error and to specify the relative
error as a percentage. Thus,

relativeError = Math.Abs(((result-expectedResult)/expectedResult));

Sometimes, however, we do not have an expected result but instead just have two
numbers that we want to compare and see if they are almost equal. Using the concept
of relative error just discussed, one way to implement this calculation in C# would
be to write something like this:

public static bool AlmostEqualRelative(float x,
float y, float maxRelativeError)

{
if (x == y)

return true;
float relativeError=Math.Abs(((x-y)/y));
if (relativeError <= maxRelativeError)

return true;
return false;

}

where the maxRelativeError parameter specifies what relative error we are willing to
tolerate. For example, if we want 99.999% accuracy then we should pass a maxRel-
ativeError of 0.00001.

Unfortunately, the function AlmostEqualRelative shown above has some prob-
lems that needs to be addressed. If x and y are both equal to zero then the step with
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the term relativeError given above will calculate 0.0/0.0. Since zero divided by
zero is undefined, 0.0/0.0 will give a NAN result. In turn, a NAN will never return true
on a ≤ comparison, and so this function will always return false if x and y are both
zero. As a result, the function AlmostEqualRelative is not a good reliable choice
for doing floating-point comparisons.

Another major source of trouble is that the function AlmostEqualRelative always
uses the second paramater as the divisor. As a result, the function call

AlmostEqualRelative(x,y,tolerance)

will very likely not give the same result as function call

AlmostEqualRelative(y,x,tolerance).

An improved version of the original function AlmostEqualRelativewould always
calculate the relative error by dividing the smaller by the larger number. One way to
implement this additional functionality in C# would be to write something like this:

public static bool AlmostEqualRelative2(float x,
float y, float maxRelativeError)

{
if (x == Double.NaN || y == Double.NaN)

return false; // per IEEE spec
if (x == y)

return true;
float relativeError;
if (Math.Abs(y) > Math.Abs(x))

relativeError = Math.Abs((x - y) / y);
else

relativeError = Math.Abs((x - y) / x);
if (relativeError <= maxRelativeError)

return true;
return false;

}

Unfortunately, this new and supposedly improved comparison function has been
found to behave poorly for numbers around zero. For example, the positive number
closest to zero and the negative number closest to zero are extremely close to each
other, yet this function will correctly calculate that they have a rather large relative
error. As a result, one needs to add an additional check for the maximum absolute
error in order to correctly account for numbers that are near zero but have opposite
signs. Then the new function would return true if either the absolute error or the
relative error were smaller than the input maximum values. One way to implement
this additional functionality in C# would be to write something like this:

public static bool AlmostEqualRelativeOrAbsolute(float x,
float y, float maxRelativeError, float maxAbsoluteError)
{

if (x == Double.NaN || y == Double.NaN)
return false; // per IEEE spec

if (Math.Abs(x - y) < maxAbsoluteError)
return true;

float relativeError=0.0;
if (Math.Abs(y) > Math.Abs(x))

© 2010 by Taylor and Francis Group, LLC



72 Numerical Methods, Algorithms and Tools in C#

relativeError = Math.Abs((x - y) / y);
else

relativeError = Math.Abs((x - y) / x);
if (relativeError <= maxRelativeError)

return true;
return false;

}

However, this newer and supposedly even better function still has some flaws and
limitations. Fortunately there is an alternate and far superior technique for com-
paring floating point numbers [14]. Most hardware implementations today use the
IEEE 754 standard [16] in which two ordered floating point numbers remain ordered
when interpreted as sign-magnitude integers. Therefore, floating-point numbers can
be compared, at least in principle, by casting them to integers and doing an integer
comparison. Using this method one can also obtain the next representable floating-
point number by converting to an integer and incrementing. However, when using
this method for doing comparison of floating-point numbers several technical de-
tails including special values such as infinity and NaN, subnormal numbers, twos-
complement integers, handling of +0 and −0, have to be considered. In addition,
this technique is less portable because it depends on soley IEEE-754 hardware spec-
ifications. Nevertheless, it is fast and reliable thus making it perhaps the best method
for doing floating-point comparisons available today.

To summarize, Dawson’s [14] approach, later expanded by Ruegg [15], was to
make floating-point comparisons on the bit level instead of on an actual numerical
level. Instead of choosing an arbitrary tolerance factor to make numerical compar-
isons, their technique centers around comparing values at the bit level which, in
addition to being more accurate, also makes good use of the reality of the limitations
imposed by hardware.
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The .NET Framework Math Class Library

2.1 Introduction

The .NET Framework Math Class Library [17] provides constants and static methods
for computing common mathematical functions consisting of real input and output
values. Therefore, it seems logical to begin this book of numerical methods in C#
with a brief review of all the available mathematical routines that are already part of
this library and also include some practical examples to better illustrate how these
routines may be used in actual applications. Similar methods for mathematical func-
tions capable of handling complex numbers will be discussed in a later chapter.

An important characteristic of the .NET Framework Math Class Library is that all
of its classes and data members are static. This means that one cannot instantiate an
object variable of the Math Class type. Instead, the members of a static class can
only be accessed by directly using the class name itself. In addition, the Math Class
Library is sealed and so it cannot be used for inheritance. Additional supplementary
material will be introduced as needed in order to both complement and expand on
the existing mathematical routines of this library.

2.2 The .NET Framework Math Class - Fields

2.2.1 The Math.PI and Math.E Fields

The Math.PI and Math.E fields are declared internally as:

public const double PI;
public const double E;

and represent the commonly used mathematical constants π and e respectively. The
constant π = 3.141592653 . . . is the ratio of the circumference of a circle to its di-
ameter and the constant e = 2.718281828 . . . represents the natural logarithmic base.
The following code snippet illustrates how these constants may be accessed.

Console.WriteLine("PI = {0}", Math.PI);
Console.WriteLine("E = {0}", Math.E);

73
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2.3 The .NET Framework Math Class - Methods

2.3.1 The Minimum and Maximum Methods

The .NET Framework Math Class Library provides two methods for comparing the
relative size of numbers. The Math.Min method returns the smaller of two numbers
whereas the Math.Max method returns the larger of two numbers. These methods are
declared internally as:

public static [type] Min([type] x, [type] y);
public static [type] Max([type] x, [type] y);

Both input parameters, x and y, along with the corresponding output are of the same
data type as specified by the label [type] which indicates that these methods can
both be overloaded with the following data types: byte, sbyte, int16, int32,

int64, decimal, double, single, uint16, uint32 and uint64. The following
code snippet demonstrates how to use both the Min and Max methods to return an
output and display the smaller or greater of two variables as indicated.

public static void MinMax_Example()
{

double x = 5.0, y = 10.0;
Console.WriteLine("The smaller of {0} and {1} is {2}.",

x,y,Math.Min(x,y));
Console.WriteLine("The greater of {0} and {1} is {2}.",

x,y,Math.Max(x,y));
}

2.3.2 The Power, Exponential and Logarithmic Methods

The general exponential function with a fixed real number base b > 1 and a real
number power x is the function expressed by the formula f (x) = bx. The number x
is called the exponent and the expression bx is known formally as the exponentiation
of b by x or the exponential of x with base b. It is also more commonly expressed
as “the xth power of b”, “b to the xth power” or “b to the power x”. The most
commonly used bases are the natural base e and the base 10. If the base equals
the Euler number e, then the exponential function is called the natural exponential
function and is expressed by f (x) = ex = exp(x).

The inverse of any exponential function, when it is well-defined, is called the
logarithmic function with base b and is denoted by logb. Thus logb bx = x. The
logarithm of a number to a given positive real number base is the power or exponent
to which the base must be raised in order to produce the number. By definition, the
logarithm of x to a base b is written as logb(x) or, if the base is implicit, as log(x).
Hence, for a number x, a base b and an exponent y, if x = by then y = logb(x).

The .NET Framework Math Class Library provides a complete set of methods for
calculating powers, exponentials and logarithms of real numbers. Similar methods
capable of handling complex numbers will be discussed in a later chapter.
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The Power method, Math.Pow(b,x), is used to calculate bx where b and x are both
real numbers. Both of these input variables along with the resulting output are of
type double. This method is declared internally as:

public static double Pow(double b, double x);

In particular, when the exponent x = 1/2 = 0.5 then bx = b1/2 =
√

b. This special
case of the Power method occurs often enough in applications that the .NET Frame-
work Math Class Library provides its own internal method, Math.Sqrt(x), for taking
the square root of a real number specified by the input parameter x. This method is
declared internally as:

public static double Sqrt(double x);

Both the input parameter, x, and the value returned by this method are of type double.
If x ≥ 0, this method returns the positive square root of x. If x < 0, then this method
returns NaN without throwing an exception. If x = NaN or if x = PositiveInfinity

then that value is returned instead.
When the base of interest, b, is the natural base e, then the expression ex is called

the exponential function. The method, Math.Exp(x), is used to raise e to a specific
power given by the input parameter x. This method is declared internally as:

public static double Exp(double x);

Note that both the input parameter x and the resulting output given by Math.Exp(x)

are of type double. If the input parameter x equals NaN or PositiveInfinity then
that value is returned instead without throwing an exception. However, if x equals
NegativeInfinity then 0.0 is returned as expected.

The inverse of the exponential function ex is the natural logarithm, or logarithm
to base e and is commonly written as ln(x) or log(x). The method Math.Log(x), is
used for calculating the natural base e logarithm of a number specified by the input
parameter x and is declared internally as:

public static double Log(double x);

If x > 0, then Math.Log(x) returns the natural logarithm of x. That is, ln(x) or
loge(x). If x = 0 then Math.Log(x) returns NegativeInfinity. If x < 0 then Math.

Log(x) returns NaN.
The method Math.Log(x) can also be overloaded to return the logarithm of a num-

ber in another base as specified by the input parameters x and newBase, respectively.
In this case, the method is declared internally as:

public static double Log(double x, double newBase);

If x > 0, and newBase ≥ 0 then Log(x, newBase) returns the logarithm of x in the
base newBase. That is, lognewBase x. If newBase < 0 then Log(x, newBase) returns
NaN. If x = 0 then Math.Log(x, newBase) returns NegativeInfinity. If x < 0 then
Math.Log(x, newBase) returns NaN.

Base 10 logarithmic calculations occurs frequently enough in applications that the
.NET Framework Math Class Library provides its own internal method for taking
the base 10 logarithm of a real number. The method Math.Log10(x), is used for
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calculating the base 10 logarithm of a number as specified by the input parameter x.
This method is declared internally as:

public static double Log10(double x);

If x > 0, then Math.Log10(x) returns the base 10 logarithm of x. That is, log10(x).
If x = 0 then Math.Log10(x) returns NegativeInfinity. If x < 0 then the method
Math.Log10(x) returns NaN.

The following code snippet illustrates the use of the power, exponential and loga-
rithmic methods that were just discussed.

public static void PowerExpLog_Example()
{

double b = 2.75, x = 3.25, newBase = 8.0;

Console.WriteLine("Exp({0}) = {1}",x,Math.Exp(x));
Console.WriteLine("Log({0}) = {1}\n",Math.Exp(x),

Math.Log(Math.Exp(x)));

Console.WriteLine("Pow({0},{1}) = {2}",b,x,Math.Pow(b, x));
Console.WriteLine("Log10({0})/Log10({1}) = {2}\n",
Math.Pow(b,x),b,Math.Log10(Math.Pow(b,x))/Math.Log10(b));

Console.WriteLine("Log{0}({1}) = {2}",newBase,x,
Math.Log(x,newBase));

Console.WriteLine("Pow({0},{1}) = {2}",newBase,
Math.Log(x,newBase),Math.Pow(newBase,Math.Log(x,newBase)));

}

2.3.3 Special Multiplication, Division and Remainder Methods

Sometimes when two 32-bit integers are multiplied together the final product will be
larger than the maximum allowed value that the 32-bit integer data type can hold.
Although one could go back and switch the variable declarations to that of another
data type that would be capable of accepting larger numbers, there may be one or
more compelling reasons for the variables being multiplied to retain their original
integer data type. As a result, the .NET Framework Math Class Library provides a
special method called Math.BigMul(x,y) that can be used for calculating the product
of two 32-bit integers and producing an output that is then expressed as a 64-bit
integer. This method is declared internally as:

public static long BigMul(int x, int y);

Similarly, the .NET Framework Math Class Library provides a special method,
Math.DivRem, for calculating the quotient of two integers returning any remainder in
an output parameter. The DivRem method can be overloaded and used for both 32-bit
and 64-bit integers and is declared internally as:

public static int DivRem(int x,int y,out int remainder);
public static long DivRem(long x,long y,out long remainder);
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Finally, the method, Math.IEEERemainder(x,y), returns only the remainder ob-
tained from the division of two specified numbers of type double. The return value
is also of type double. This method is declared internally as:

public static double IEEERemainder(double x,double y);

where the parameters x is the dividend and y is the divisor. This method actually
computes the expression x− yQ where Q = x/y is rounded to the nearest integer.
If Q falls halfway between two integers, then the even integer is returned. If the
expression x− yQ is zero, then the value +0 is returned if x > 0 otherwise the value
−0 is returned if x < 0. If y = 0, then NaN is returned.

The following example illustrates the use of BigMul, DivRem and IEERemainder

methods:

public static void MultDivRem_Example()
{

int int1 = Int32.MaxValue;
int int2 = Int32.MaxValue;
int intResult;
long longResult;
double divisor, doubleResult;

longResult=Math.BigMul(int1,int2);
Console.WriteLine("{0}*{1}={2}\n",int1,int2,longResult);

intResult=Math.DivRem(int1,2,out int2);
Console.WriteLine("{0}/{1}={2}, with a remainder of {3}.",int1,2,

intResult,int2);

String str="The IEEE remainder of {0:e}/{1:f} is {2:e}";
divisor=2.0;
doubleResult=Math.IEEERemainder(Double.MaxValue,divisor);
Console.WriteLine(str,Double.MaxValue,divisor,doubleResult);

divisor=3.0;
doubleResult=Math.IEEERemainder(Double.MaxValue,divisor);
Console.WriteLine(str,Double.MaxValue,divisor,doubleResult);

}

2.3.4 The Absolute Value Method

For any real number x the absolute value or modulus of x is denoted by |x| and is
defined as

|x| =
{

x if x ≥ 0

−x if x < 0

As can be seen from the above definition, the absolute value of x is always either pos-
itive or zero, but never negative. The .NET Framework Math Class Library provides
the method Math.Abs(x) that returns the absolute value of a number as specified by
the input parameter x. This method is declared internally as:

public static [type] Abs([type] x);
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The input parameter, x, and the return value are of the same data type as given by the
unspecified label [type] which indicates that this method can be overloaded with the
following data types: decimal, double, int16, int32, int64, sbyte, single.
If the input parameter x is equal to NegativeInfinity or PositiveInfinity, the
return value is PositiveInfinity. If the input parameter x is equal to NaN, the
return value is NaN. The following code snippet illustrates the use of the method
Math.Abs(x).

double x = -2.0;
Console.WriteLine("Before:{0,-5} After:{1,-5}",x,Math.Abs(x));

which will display the following output on the monitor screen:

Before: -2.0 After: 2.0

2.3.5 The Sign Method

The sign function is a mathematical function that extracts the sign of a real number.
To avoid confusion with the trigonometric sine function, this function is often called
the signum function after the Latin form of the word “sign”. The signum function of
a real number x is defined as follows:

sng(x) =

⎧⎪⎨
⎪⎩
−1 if x < 0

0 if x = 0

+1 if x > 0

The method, Math.Sign(x), returns a value indicating the sign of a number specified
by the input parameter x. This method is declared internally as:

public static int Sign([type] x);

The input parameter, x, is of a data type given by the label [type] which indicates
that this method can be overloaded with the following data types: int16, int32,

int64, sbyte, single, decimal, double. The following code snippet illustrates
the use of the Math.Sign(x) method:

string str = "The sign of {0} is {1}";
double x = 5.0, y = 0.0, z = -5.0;
Console.WriteLine(str, x, Math.Sign(x));
Console.WriteLine(str, y, Math.Sign(y));
Console.WriteLine(str, z, Math.Sign(z));

Output:
The sign of 5 is +1
The sign of 0 is 0
The sign of -5 is -1

2.3.6 Angular Units of Measurement

In order to provide a more thorough coverage of both the trigonometric and the hy-
perbolic functions, it is important to first review the various angular units of mea-

© 2010 by Taylor and Francis Group, LLC



The .NET Framework Math Class Library 79

surement that are available for use and, in addition, to also provide routines in C# for
converting values back and forth between them.

In elementary plane geometry, an angle is formally defined by two rays that in-
tersect at the same endpoint. The point where the two rays intersect is called the
vertex of the angle and the two rays themselves are called the sides of the angle. An
arbitrary angle, say θ , is then measured by first drawing a circular arc of length, say
s, that is centered at the vertex of the angle such that it intersects both of its sides.
Then the length of the arc s is divided by the radius r of the corresponding circle so
that the angle θ = s/r. Since they are defined as the ratio of lengths, angles are con-
sidered dimensionless. Nevertheless, there are several units used to measure angles,
the most common of which are the the radian and the degree.

The angle subtended at the center of a circle by an arc that is equal in length to
the radius of the circle is defined to be one radian. The degree, denoted by a small
superscript circle (◦) is 1/360 of a full circle. Therefore, one full circle is 360◦ or
2π radians, and one radian is 180◦/π degrees, or about 57.2958◦. The radian is the
preferred unit of angular measurement in the metric system and is abbreviated rad.
However, this symbol is often omitted in the literature because the radian is assumed
to be the default unit for angle measurement unless specifically stated otherwise. All
the trigonometric methods in the .NET Framework Math Class Library use the radian
as their default unit for angle measurement. The mathematical relationship between
radians and degrees is:

radians = (π/180)∗ degrees and degrees = (180/π)∗ radians

The corresponding conversion routines between degrees and radians is given by:

public static double ConvertDegreesToRadians(double degrees)
{

double radians = (Math.PI / 180.0) * degrees;
return (radians);

}

public static double ConvertRadiansToDegrees(double radians)
{

double degrees = (180.0 / Math.PI) * radians;
return (degrees);

}

A sign convention that has been universally adopted in mathematics is that angles
are positive if measured anti-clockwise, and negative if measured clockwise, from
a given reference line. If no line is specified, the reference line can be assumed to
be the x-axis in the Cartesian plane. Fractions of a degree may be written in normal
decimal notation, such as 2.523◦, or in the degree-minute-second unit system. The
minute of arc, also known as MOA, arcminute, or just minute, is 1/60 of a degree
and is denoted by a single prime (′) or the letter “M”. The second of arc, also known
as arcsecond, or second is 1/60 of a minute of arc or 1/3600 of a degree. It is
denoted by a double prime (′′) or the letter “S”. The following routine illustrates
how to convert an angle expressed in the DMS (degree-minute-second) format to its
corresponding value in the DD (Degree-Decimal) format.
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public static double DMStoDD(double DMSDeg, double DMSMin, double
DMSSec)

{
double DD = DMSDeg + (DMSMin/60.0) + (DMSSec/3600.0);
return DD;

}

Similarly, the following routine illustrates how to convert an angle expressed in
the DD (Degree-Decimal) format to its corresponding value in the DMS (Degree-
Minute-Second) format. Two potential outputs are given: one in the degree/min-
ute/second format and another in the traditional format of xx◦xx′xx′′.
public static void DDtoDMS(double DD, out double d,

out double m, out double s, out string strDMS)
{

//Extract the degree component
double deg = Math.Floor(DD);
DD -= deg;
DD *= 60;
//Extract the minute component
double min = Math.Floor(DD);
DD -= min;
DD *= 60;
//Extract the second component
double sec = Math.Round(DD);

d = deg;
m = min;
s = sec;

//Create padding character
char pad;
char.TryParse("0", out pad);

//Create degree/minute/second strings
string str_deg = deg.ToString();
string str_min = min.ToString().PadLeft(2, pad);
string str_sec = sec.ToString().PadLeft(2, pad);

//Append degree/minute/second strings together
strDMS = string.Format("{0}\xb0 {1}’ {2}\"", str_deg, str_min,

str_sec);
}

The grad is another unit of angular measurement in the metric system. However,
it is not widely used. The international standard symbol for this unit today is gon.
Other symbols used in the past include ”gr”, ”grd”, and ”g”, the latter sometimes
written as a superscript such as in 50g. The grad is a unit of plane angle, equivalent to
1/400 of a full circle and so one full circle is the equivalent of 400 grads. Therefore,
one grad equals 9/10 of a degree or π/200 of a radian. The following code snippet
contains routines in C# to convert between grads and degrees along with grads and
radians.
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public static double GradsToRadians(double grads)
{

double radians = (grads / 200.0) * Math.PI;
return (radians);

}

public static double RadiansToGrads(double radians)
{

double grads = (radians / Math.PI) * 200.0;
return (grads);

}

public static double DegreesToGrads(double degrees)
{

double grads = (degrees / 9.0) * 10.0;
return (grads);

}

public static double GradsToDegrees(double grads)
{

double degrees = (grads / 10.0) * 9.0;
return (degrees);

}

2.3.7 The Trigonometric Functions

The .NET Framework Math Class Library provides three methods for calculating the
basic three trigonometric functions: cosx, sinx and tanx. These methods are declared
internally as:

public static double Cos(double x);
public static double Sin(double x);
public static double Tan(double x);

The input parameter x must be in radians and is of type double. The output value
returned is the result calculated by the particular trigonometric function and is also
of type double. Similar methods for doing corresponding calculations using complex
numbers will be discussed in a later chapter. The other three remaining trigonomet-
ric functions, sec x, csc x and cot x, can be easily calculated from their standard
definitions as shown below:

sec x =
1

cosx
csc x =

1
sinx

cot x =
1

tanx

The domain and range of these six trigonometric functions are summarized in Table
2-1. Note that if x = NaN, NegativeInfinity or PositiveInfinity then these
methods will return NaN instead of throwing an exception. The following code snip-
pet illustrates the use of all six trigonometric functions:

public static double Sec(double x)
{

return (1.0 / Math.Cos(x));
}
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TABLE 2.1
Domain and Range of the Trigonometric Functions

Function Domain Range
cos x −∞ < x < +∞ −1 ≤ cosx ≤ +1
sin x −∞ < x < +∞ −1 ≤ sinx ≤ +1
tan x −∞ < x < +∞ except

x 	= ±π/2,±3π/2 . . . −∞ < tanx < +∞
sec x −∞ < x < +∞ except −∞ < sec x ≤−1 and

x 	= ±π/2,±3π/2 . . . 1 ≤ sec x < +∞
csc x −∞ < x < +∞ except −∞ < csc x ≤−1 and

x 	= 0,±π ,±2π . . . 1 ≤ csc x < +∞
cot x −∞ < x < +∞ except

x 	= 0,±π ,±2π . . . −∞ < cot x < +∞

public static double Csc(double x)
{

return (1.0 / Math.Sin(x));
}

public static double Cot(double x)
{

return (Math.Cos(x) / Math.Sin(x));
}

public static void TrigFunctions_Example()
{

for (double angleDEG=0.0; angleDEG<=360.0; angleDEG +=45.0)
{

double angleRAD = DegreesToRadians(angleDEG);
Console.WriteLine("Angle = {0}\xb0", angleDEG);
Console.WriteLine("cos({0}\xb0) = {1}",

angleDEG, Math.Cos(angleRAD));
Console.WriteLine("sin({0}\xb0) = {1}",

angleDEG, Math.Sin(angleRAD));
Console.WriteLine("tan({0}\xb0) = {1}",

angleDEG, Math.Tan(angleRAD));
Console.WriteLine("sec({0}\xb0) = {1}",

angleDEG, Sec(angleRAD));
Console.WriteLine("csc({0}\xb0) = {1}",

angleDEG, Csc(angleRAD));
Console.WriteLine("cot({0}\xb0) = {1}",

angleDEG, Cot(angleRAD));
}

}

2.3.8 The Inverse Trigonometric Functions

The .NET Framework Math Class Library provides three methods, ACos x, ASin x,
and ATan x, for calculating the corresponding inverses of the three basic trigonomet-
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ric functions that were just discussed. These methods are declared internally as:

public static double ACos(double x);
public static double ASin(double x);
public static double ATan(double x);

The other three remaining inverse trigonometric functions, ASec x, ACsc x and
ACot x, can be easily calculated from the ones provided by the .NET Framework
Math Class Library by taking advantage of some well known trigonometric identi-
ties [18] as shown below:

ASec x = ACos (
1
x
) ACsc x = ASin (

1
x
) ACot x = ATan (

1
x
)

The input parameter, x, and the values returned by these methods are all of type
double. However, because of the nature of these inverse functions, their domain and
range values have changed from those given in Table 2-1 and are now summarized
below.

Method: Math.ACos(x)
Input Parameter: A number x of type double such that −1 ≤ x ≤ 1 which represents
the cosine of an angle.
Return Value: An angle θ , measured in radians, such that 0 ≤ θ ≤ π and whose
cosine is the specified number x. If x < −1 or x > 1 then this method returns NaN

instead of throwing an exception.

Method: Math.ASin(x)
Input Parameter: A number x of type double such that −1 ≤ x ≤ 1 which represents
the sine of an angle.
Return Value: An angle θ , measured in radians, such that −π/2 ≤ θ ≤ π/2 and
whose sine is the specified number x. If x < −1 or x > 1 then this method returns
NaN instead of throwing an exception.

Method: Math.ATan(x)
Input Parameter: A number x of type double such that −∞ < x < +∞ which repre-
sents the tangent of an angle.
Return Value: An angle θ , measured in radians, such that −π/2 ≤ θ ≤ π/2 and
whose tangent is the specified number x. If x = NaN then this method returns a NaN

instead of throwing an exception. If x = −π/2, rounded to double precision, then
this method returns a NegativeInfinity. If x = +π/2, rounded to double precision,
then this method returns a PositiveInfinity.

Unfortunately, the one-argument arctangent function, ATan(x), does not distin-
guish between diametrically opposite directions thus making the actual angle that
it finds rather ambiguous. As a result, the .NET Framework Math Class Library
also provides a special two-argument method, called ATan2(y,x), for calculating the
arctangent function which takes into account the sign of the coordinate point (x,y)
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relative to the origin and places the angle in the correct quadrant. This means that
ATan2(y,x) effectively calculates the counterclockwise angle in radians between the
x-axis and the point (x,y) in a 2-dimensional Cartesian plane. The positive sign is for
counter-clockwise angles (upper half-plane, y > 0), and negative sign is for clock-
wise angles (lower half-plane, y < 0). Mathematically, the ATan2(y,x) method can
be derived from the ATan(x) by the following formula:

ATan2(y,x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

arctan( y
x ) x > 0

arctan( y
x )+ π y ≥ 0,x < 0

arctan( y
x )−π y < 0,x < 0

π
2 y > 0,x = 0

− π
2 y < 0,x = 0

undefined y = 0,x = 0

.

The ATan2(y,x) method provided by the .NET Framework Math Class Library is
declared internally as:

public static double ATan2(double y, double x);

Alternatively, one can also directly program the mathematical formula for ATan2(y,x)
that was just described calling it, say ATan2A(y,x), as follows:

public static double ATan2A(double y, double x)
{

if (x == 0.0)
{

if (y == 0.0) return double.NaN;
else return (Math.Sign(y) * (Math.PI/2.0));

}
else if (x < 0.0)
{

if (y < 0.0) return (-Math.PI + Math.Atan(y/x));
else return (Math.PI + Math.Atan(y/x));

}
else return (Math.Atan(y / x));

}

Regardless of the choice made, the domain and range of the ATan2(y,x) method is
summarized below.

Method: Math.ATan2(y,x) or ATan2A(y,x)
Input Parameter: The (x,y) coordinates of a point relative to the origin of a Cartesian
plane.
Return Value: An angle θ , measured in radians, such that −π ≤ θ ≤ π , and tanθ =
y/x, where (x,y) is a point in the Cartesian plane. That is, the return value is the an-
gle in the Cartesian plane formed by the x-axis, and a vector starting from the origin,
(0,0), and terminating at the point, (x,y) on the plane. Also,

• For (x,y) in quadrant 1, 0 < θ < π/2.
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• For (x,y) in quadrant 2, π/2 < θ < π .

• For (x,y) in quadrant 3, −π < θ < −π/2.

• For (x,y) in quadrant 4, −π/2 < θ < 0.

For points on the boundaries of the quadrants, the return value is the following:

• If y = 0 and x > 0, θ = 0.

• If y = 0 and x < 0, θ = π .

• If y > 0 and x = 0, θ = π/2.

• If y < 0 and x = 0, θ = −π/2.

As an aside observation, both the inverse functions ASin(x) and ACos(x) can also
be alternately expressed and programmed in terms of the inverse tangent function by
the trigonometric identities:

ASin2(x) =

⎧⎪⎪⎨
⎪⎪⎩

π
2 x = 1

− π
2 x = −1

arctan( x√
1−x2

) −1 < x < 1

public static double ASin2(double x)
{

if (x == 1.0) return (Math.PI/2.0);
else if (x == -1.0) return (-Math.PI/2.0);
else return (Math.Atan(x/Math.Sqrt(1.0-x*x)));

}

ACos2(x) =

⎧⎪⎪⎨
⎪⎪⎩

0 x = 1

π x = −1
π
2 − arctan( x√

1−x2
) −1 < x < 1

public static double ACos2(double x)
{

if (x == 1.0) return 0.0;
else if (x == -1.0) return Math.PI;
else return ((Math.PI/2.0)-Math.Atan(x/Math.Sqrt(1.0-x*x)));

}

Finally, the following code snippet shows one way to implement the remaining three
inverse trigonometric functions that were not provided by the .NET Framework Math
Class Library:
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public static double ASec(double x)
{

return Math.ACos(1.0 / x);
}

public static double ACsc(double x)
{

return Math.ASin(1.0 / x);
}

public static double ACot(double x)
{

return Math.ATan(1.0 / x);
}

2.3.9 The Hyperbolic Functions

The hyperbolic functions are related to the hyperbola in much the same way that
trigonometric functions are related to the unit circle. For example, the trigonometric
functions cosx and sin x are related to a circle of radius r because the circle

x2 + y2 = r2

can be expressed in parametric form by the equations:

x = r cos t, y = r sin t

Likewise, the hyperbolic functions sinhx and coshx are named that way because the
hyperbola

x2

a2 − y2

b2 = 1

can be expressed in parametric form by the equations:

x = acosht, y = bsinht

More formally, the basic fundamental hyperbolic functions sinhx and coshx are de-
fined as follows:

coshx =
ex + e−x

2
sinhx =

ex − e−x

2

where x is a real number. Methods for doing corresponding calculations using com-
plex numbers will be discussed in a later chapter.

The .NET Framework Math Class Library provides three methods for calculating
the hyperbolic functions: coshx, sinhx and tanhx. These three methods are declared
internally as:

public static double Cosh(double x);
public static double Sinh(double x);
public static double Tanh(double x);
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The input parameter x must be in radians and is of type double. The output value
returned is also of type double. For the hyperbolic cosine function, coshx, if the
input value is equal to either NegativeInfinity or PositiveInfinity, then ∞ is
returned without throwing an exception. If the input value is equal to NaN, then NaN

is returned also without throwing an exception. For the hyperbolic sine function,
sinhx, if the input value is equal to NegativeInfinity, PositiveInfinity, or NaN,
then that same value is returned without throwing an exception. For the hyperbolic
tangent function, tanhx, if the input value is equal to NegativeInfinity, then this
method returns a −1. If output value is equal to PositiveInfinity, then this method
returns a 1. If value is equal to NaN, then this method returns NaN without throwing
an exception. The remaining hyperbolic functions are then derived from sinhx and
coshx as follows:

tanhx =
sinhx
coshx

coth x =
1

tanhx
sech x =

1
coshx

csch x =
1

sinhx

The following code snippet illustrates the use of all six hyperbolic functions that
were just discussed.

public static double Sech(double x)
{

return (1.0 / Math.Cosh(x));
}

public static double Csch(double x)
{

return (1.0 / Math.Sinh(x));
}

public static double Coth(double x)
{

return (Math.Cosh(x) / Math.Sinh(x));
}

public static void HyperbolicFunctions_Example()
{

for (double deg=0.0; deg<=360.0; deg += 45.0)
{

double rad = DegreesToRadians(deg);
Console.WriteLine("Cosh({0}\xb0)={1}",deg,Math.Cosh(rad));
Console.WriteLine("Sinh({0}\xb0)={1}",deg,Math.Sinh(rad));
Console.WriteLine("Tanh({0}\xb0)={1}",deg,Math.Tanh(rad));
Console.WriteLine("Sech({0}\xb0)={1}",deg,Sech(rad));
Console.WriteLine("Csch({0}\xb0)={1}",deg,Csch(rad));
Console.WriteLine("Coth({0}\xb0)={1}",deg,Coth(rad));

}
}
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2.3.10 The Inverse Hyperbolic Functions

Unfortunately, the .NET Framework Math Class Library does not provide internal
support for calculating any of the inverse hyperbolic functions:

ACosh x, ASinh x, ATanh x, ASech x, ACsch x, ACoth x

Instead, these functions must all be manually coded directly from their analytical
expressions (e.g.,Abramowitz and Stegun [19]).

Asinh x = ln(x +
√

x2 + 1) where −∞ < x < +∞

Acosh x = ln(x +
√

x2 −1) where x ≥ 1

Atanh x =
1
2

ln
1 + x
1− x

where −1 < x < +1

Once these three inverse trigonometric functions have been obtained, the remaining
others can be easily calculated by using the following identities:

ACsch x = ASinh(
1

x
) where x 	= 0

ASech x = ACosh(
1

x
) where 0 < x ≤ 1

ACoth x = ATanh(
1

x
) where |x| > 1

The following code snippet illustrates the use of the six inverse hyperbolic functions.

public static double ASinh(double x)
{

return (Math.Log(x + Math.Sqrt(x * x + 1.0)));
}

public static double ACosh(double x)
{

return (Math.Log(x + Math.Sqrt((x * x) - 1.0)));
}

public static double ATanh(double x)
{

return (Math.Log((1.0 + x) / (1.0 - x)) / 2.0);
}

public static double ACoth(double x)
{

return (ATanh(1.0/x));
}
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public static double ASech(double x)
{

return (ACosh(1.0 / x));
}

public static double ACsch(double x)
{

return (ASinh(1.0 / x));
}

public static void InverseHyperbolicFunctions_Example()
{

for (double deg = 0.0; deg <= 360.0; deg += 45.0)
{

double rad = DegreesToRadians(deg);
Console.WriteLine("Angle = {0}\xb0", deg);
Console.WriteLine("ACosh({0})={1}\xb0",Math.Cosh(rad),

RadiansToDegrees(ACosh(Math.Cosh(rad))));
Console.WriteLine("ASinh({0}) = {1}\xb0",Math.Sinh(rad),

RadiansToDegrees(ASinh(Math.Sinh(rad))));
Console.WriteLine("ATanh({0}) = {1}\xb0",Math.Tanh(rad),

RadiansToDegrees(ATanh(Math.Tanh(rad))));
Console.WriteLine("ASech({0}) = {1}\xb0",Sech(rad),

RadiansToDegrees(ASech(Sech(rad))));
Console.WriteLine("ACsch({0}) = {1}\xb0",Csch(rad),

RadiansToDegrees(ACsch(Csch(rad))));
Console.WriteLine("ACoth({0}) = {1}\xb0",Coth(rad),

RadiansToDegrees(ACoth(Coth(rad))));
}

}

2.3.11 Rounding Off Numeric Data

The .NET Framework Math Class Library provides four internal methods for han-
dling the rounding of numerical data. The Ceiling and Floor functions, for exam-
ple, map real numbers to the next higher and next lower integers, respectively. The
Truncation function limits the number of digits to the right of the decimal point by
discarding the least significant ones. Finally, the Round function rounds a value to
the nearest integer or specified number of decimal places. Let us now examine each
of these functions more carefully.

The Ceiling Method

The Ceiling function of a real number x, denoted by 
x�, or ceil(x) or ceiling(x),
returns a value that is the smallest integer ≥ x. More formally,


x� = min{n ∈ Z | n ≥ x}

For example, ceiling(2.3) = 3, ceiling(2) = 2 and ceiling(-2.3) = -2.
The method Math.Ceiling([type] x) is provided by the .NET Framework Math

Class Library and may be overloaded to accommodate both decimal and double
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types as input and output values, respectively. The method then returns the largest
integer that is ≥ x. This method is declared internally as:

public static [type] Ceiling([type] x);

Note that in actuality this method returns a decimal or double type rather than an
expected integer type. If the input parameter x is equal to NaN, NegativeInfinity
or PositiveInfinity, then that value is returned instead without first throwing an
exception.

The Floor Method

The Floor function of a real number x, denoted by x�, or f loor(x) or int(x), returns
a value that is the largest integer ≤ x. More formally,

x� = max{n ∈ Z | n ≤ x}

For example, floor(2.9) = 2, floor(-2) = -2 and floor(-2.4) = -3.
The method Math.Floor([type] x) is provided by the .NET Framework Math

Class Library and may be overloaded to accommodate both decimal and double

types as input and output values, respectively. The method then returns the largest
integer that is ≤ x. This method is declared internally as:

public static [type] Floor([type] x);

Note that in actuality this method returns a decimal or double type rather than an
expected integer type. If the input parameter x is equal to NaN, NegativeInfinity
or PositiveInfinity, then that value is returned instead without first throwing an
exception. In addition, the function x−x�, which can also be written as x mod 1,
is called the fractional part of x. If x > 0, then the f loor(x) function is also known
as the integral part or integral value of x and is denoted as int(x).

The Truncation Method

The Truncation function simply retains the integral part of a number and discards
any remaining fractional digits. Whereas the Floor function rounds down and the
Ceiling function rounds up, the Truncation function rounds toward zero. Thus, the
Truncation function is like the Floor function for positive numbers, and like Ceiling
function for negative numbers.

The method Math.Truncate([type] x) is provided by the .NET Framework Math
Class Library and may be overloaded to accommodate both decimal and double

types as input and output values, respectively. The method then returns the inte-
gral part of a number specified by the input parameter x. This method is declared
internally as:

public static [type] Truncate([type] x);

The following code snippet illustrates how the Ceiling, Floor and Truncation
methods may be used in an application.
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double[] values = {7.03,7.64,0.12,-0.12,-7.1,-7.6 };
Console.WriteLine("Value Ceiling Floor Truncate\n");
foreach (double value in values)

Console.WriteLine("{0,5} {1,5} {2,8} {3,8}", value,
Math.Ceiling(value),Math.Floor(value),Math.Truncate(value));

Output:
Value Ceiling Floor Truncate
7.03 8 7 7
7.64 8 7 7
0.12 1 0 0

-0.12 0 -1 0
-7.1 -7 -8 -7
-7.6 -7 -8 -7

The Round Method

Because of the physical limitations imposed by hardware, computers cannot cor-
rectly store irrational numbers, such as π or

√
2, or non-terminating rational numbers

in floating-point format. In addition, the number of digits (or bits) of precision also
limits the amount of rational numbers that can be represented exactly. Instead, all
such numbers must at some point be approximated and adjusted to a rounded value.
Unfortunately, such small errors inadvertently introduced into floating-point arith-
metic can sometimes grow significantly large, particularly when mathematical algo-
rithms are required to repeatedly perform certain operations, and this can sometimes
produce misleading or even erroneous results. Because of these issues, naive use of
floating-point arithmetic can lead to many unwanted problems and the creation of
robust floating-point software can be quite a complicated undertaking. However, one
important step towards properly handling floating-point values is to first determine
how they will be rounded off.

The basic idea behind the concept of rounding off a numeric value is to somehow
systematically reduce the number of significant digits that it contains. Since there are
many ways of actually doing this, several different rounding algorithms, schemes or
modes have been developed and cataloged over the years [20]. Perhaps the easiest
of all these rounding algorithms is the one taught in elementary school which is
more commonly known as the Symmetric Arithmetic Rounding or Round-Half-Up.
It consists of the following steps:

• Decide which is the last digit to keep.

• Increase it by 1 if the next digit is 5 or more. This is called rounding up.

• Leave it the same if the next digit is 4 or less. This is called rounding down.

Unfortunately, in the process of standardizing the computer representation for binary
floating-point numbers, the IEEE chose to use the controversial Banker’s Rounding
Algorithm as their default rounding method to be implemented by all IEEE compli-
ant software compilers in the industry, including Visual Studio. With the Banker’s
Rounding Algorithm, the input value is rounded to the nearest even number and this
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can sometimes lead to unexpected results. For example, both 1.5 and 2.5 round to
2, and 3.5 and 4.5 both round to 4. As a result, programmers have had to write their
own rounding methods, such as RoundUp and RoundDown shown below, if they wanted
to use the more familiar Symmetric Arithmetic rounding algorithm just described.
public static double RoundUp(double x)
{

return Math.Floor(x + 0.5);
}

public static double RoundDown(double x)
{

double floorVal = Math.Floor(x);
if ((x - floorVal) > 0.5)
{

return (floorVal + 1.0);
}
else
{

return (floorVal);
}

}

This rather annoying issue was finally resolved with the release of the 2005 ver-
sion of Visual Studio. Now the .NET Framework Math Library provides a method
called Math.Round that can be overloaded in a number of different ways in order to
provide various rounding schemes. Alternative rounding schemes are useful when
the amount of error being introduced into a calculation must somehow be bounded.
Such applications usually involve multi-precision, floating-point and interval arith-
metic calculations. A comprehensive summary of the various rounding schemes that
are available with the Math.Round method is given below. Whatever method is even-
tually chosen, note that the allowed input data type, specified by [type], may be
either a decimal or a double.

Round(x) - Rounds the input numeric value x to the nearest integral value. The
method is declared internally as: public static [type] Round([type] x);. The
output returns a numeric value nearest to the parameter x. If the fractional com-
ponent of x is halfway between two integers, one of which is even and the other
odd, then the even number is returned. Note that the method returns a decimal or
a double rather than an integral type. This method throws an overflow exception if
the output result resides outside the respective ranges of the data type specified by
type. This rounding scheme minimizes rounding errors that result from consistently
rounding a midpoint value in a single direction. To control the type of rounding used
by the Round(x) method, use the method Round(x, MidpointRounding) overload
described later in this same chapter.

Round(x, n) - Rounds the input numeric value x to a specified number of decimal
places explicitly given by the other input parameter n. The method is declared inter-
nally as: public static [type] Round([type] x, int n);. The input parameter
n specifies the number of decimal places to round off the return value and ranges
from 0 to 28. If n< 0 or n> 28 then an argument-out-of-range exception is thrown.
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If n is zero, then an integer is returned. If the value of the first digit in x to the right
of the decimal position represented by the parameter n is 5, the digit in the decimals
position is rounded up if it is odd, or left unchanged if it is even. If the precision
of x < n, then x is returned unchanged. Note that the method returns a decimal or
a double rather than an integral type. This method throws an overflow exception if
the output result is outside the respective ranges of the data type specified by [type].
This rounding scheme minimizes rounding errors that result from consistently round-
ing a midpoint value in a single direction. To control the type of rounding used by
the Round(x,n) method, use the method Round(x,n, MidpointRounding) overload
described later in this same chapter.

Round(x, mode) - Rounds the input numeric value x to the nearest integral value.
The other input parameter, mode, specifies how to round the value x if it is midway
between two other numbers. The method is declared internally as:

public static [type] Round([type] x, MidpointRounding mode);

The output returns a numeric value nearest to the input parameter x. If x is halfway
between two numbers, one of which is even and the other odd, then the parameter
mode determines which of the two is returned. The mode parameter can have one of
two enumerated values: MidpointRounding.[ToEven] or .[AwayFromZero]. If the
mode parameter is set to .[ToEven], then if one’s digit is odd, it is changed to an even
digit. Otherwise it is left unchanged. If the precision of x is less than n, then x is
returned unchanged. If the mode parameter is set to .[AwayFromZero], then one’s
digit is always rounded up to the next digit. This is the most familiar Symmetric
Arithmetic rounding algorithm described earlier at the start of this section. Lastly,
this method can throw two exceptions. The Argument exception is returned if the
mode is not a valid value of either .[ToEven] or .[AwayFromZero]. An Overflow

exception is returned if the output result is outside the range of the specified [type]

data type.

Round(x, n, mode) - Rounds the input numeric value x to a specified number of
decimal places explicitly given by the second input parameter n. The third input
parameter, mode, specifies how to round the value x if it is midway between two
other numbers. The method is declared internally as:

public static [type] Round([type] x, int n, MidpointRounding mode);

The output returns a numeric value nearest to the input parameter x to a specified
precision given by the second input parameter n. If x is halfway between two num-
bers, one of which is even and the other odd, then the parameter mode determines
which of the two is returned. The mode parameter can have one of two enumerated
values: MidpointRounding.[ToEven] or .[AwayFromZero]. If the mode parameter is
set to ToEven, then if one’s digit is odd, it is changed to an even digit. Otherwise it
is left unchanged. This kind of rounding minimizes rounding errors that result from
consistently rounding a midpoint value in a single direction. If the mode parame-
ter is set to AwayFromZero, then one’s digit is always rounded up to the next digit.
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This is the most familiar Symmetric Arithmetic rounding algorithm described earlier
at the start of this section. Lastly, this method can also throw three exceptions. The
Argument-out-of-range exception is thrown if n < 0 or if n > 28. The Argument ex-
ception is thrown if the mode is not a valid value of either ToEven or AwayFromZero.
The Overflow exception is thrown if the output lies outside the range of the specified
[type] data type. The following code snippet illustrates how the rounding meth-
ods discussed: Round(x), Round(x, n), Round(x, mode), and Round(x, n, mode)

might be used in an actual application.

Console.WriteLine("Example of Using Method: Round(x)");
Console.WriteLine("Round(4.4)={0}",Math.Round(4.4));
Console.WriteLine("Round(4.5)={0}",Math.Round(4.5));
Console.WriteLine("Round(4.6)={0}",Math.Round(4.6));
Console.WriteLine("Round(-4.4)={0}",Math.Round(-4.4));
Console.WriteLine("Round(-4.5)={0}",Math.Round(-4.5));
Console.WriteLine("Round(-4.6)={0}\n",Math.Round(-4.6));

Console.WriteLine("Example of Using Method: Round(x,n)");
Console.WriteLine("Round(4.44,1)={0}",Math.Round(4.44,1));
Console.WriteLine("Round(4.45,1)={0}",Math.Round(4.45,1));
Console.WriteLine("Round(4.46,1)={0}",Math.Round(4.46,1));
Console.WriteLine("Round(-4.44,1)={0}",Math.Round(-4.44,1));
Console.WriteLine("Round(-4.45,1)={0}",Math.Round(-4.45,1));
Console.WriteLine("Round(-4.46,1)={0}\n",Math.Round(-4.46,1));

double result = 0.0;
double posValue = 3.45;
double negValue = -3.45;

Console.WriteLine("Example of Using Method: Round(x,n)");
// By default, round a positive and a negative value
// to the nearest even number.
// The precision of the result is 1 decimal place.

result = Math.Round(posValue,1);
Console.WriteLine("Math.Round({1,5},1)={0,4}",

result,posValue);
result = Math.Round(negValue,1);
Console.WriteLine("Math.Round({1,5},1)={0,4}\n",

result,negValue);

Console.WriteLine("Example of Using Method:
Round(x,n,mode)");

// Round a positive value to the nearest even number,
// then to the nearest number away from zero.
// The precision of the result is 1 decimal place.

result = Math.Round(posValue,1,MidpointRounding.ToEven);
Console.WriteLine("Math.Round({1,5},1,

MidpointRounding.ToEven)={0,4}",result,posValue);
result = Math.Round(posValue, 1,

MidpointRounding.AwayFromZero);
Console.WriteLine("Math.Round({1,5},1,

MidpointRounding.AwayFromZero)={0,4}\n",result,posValue);
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// Round a negative value to the nearest even number,
// then to the nearest number away from zero.
// The precision of the result is 1 decimal place.

result = Math.Round(negValue,1,
MidpointRounding.ToEven);

Console.WriteLine("Math.Round({1,5},1,
MidpointRounding.ToEven)={0,4}", result, negValue);

result = Math.Round(negValue,1,
MidpointRounding.AwayFromZero);

Console.WriteLine("Math.Round({1,5},1,
MidpointRounding.AwayFromZero)={0,4}", result, negValue);

result = Math.Round(1.5,MidpointRounding.AwayFromZero);
string s ="Math.Round(1.5,MidpointRounding.AwayFromZero)={0}"
Console.WriteLine(s, result);
result = Math.Round(2.5,MidpointRounding.AwayFromZero);
s = "Math.Round(2.5,MidpointRounding.AwayFromZero)={0}"
Console.WriteLine(s, result);

result = Math.Round(1.5, MidpointRounding.ToEven);
s = "Math.Round(1.5,MidpointRounding.ToEven)={0}";
Console.WriteLine(s, result);
result = Math.Round(2.5, MidpointRounding.ToEven);
s = "Math.Round(2.5,MidpointRounding.ToEven)={0}";
Console.WriteLine(s, result);

//Testing the RoundUp Method: output = 2
Console.WriteLine("RoundUp(1.5)={0}",RoundUp(1.5));
//Testing the RoundDown Method: output = 1
Console.WriteLine("RoundDown(1.5)={0}",RoundDown(1.5));

//Testing the RoundUp Method
Console.WriteLine("\n\nRoundUp(.4) = {0}", RoundUp(.4));
Console.WriteLine("RoundUp(.5) = {0}", RoundUp(.5));
Console.WriteLine("RoundUp(.6) = {0}", RoundUp(.6));
Console.WriteLine("RoundUp(1.4) = {0}", RoundUp(1.4));
Console.WriteLine("RoundUp(1.5) = {0}", RoundUp(1.5));
Console.WriteLine("RoundUp(1.6) = {0}", RoundUp(1.6));
Console.WriteLine("RoundUp(2.4) = {0}", RoundUp(2.4));
Console.WriteLine("RoundUp(2.5) = {0}", RoundUp(2.5));
Console.WriteLine("RoundUp(2.6) = {0}", RoundUp(2.6));

//Testing the RoundDown Method
Console.WriteLine("\nRoundDown(.4) = {0}", RoundDown(.4));
Console.WriteLine("RoundDown(.5) = {0}", RoundDown(.5));
Console.WriteLine("RoundDown(.6) = {0}", RoundDown(.6));
Console.WriteLine("RoundDown(1.4) = {0}", RoundDown(1.4));
Console.WriteLine("RoundDown(1.5) = {0}", RoundDown(1.5));
Console.WriteLine("RoundDown(1.6) = {0}", RoundDown(1.6));
Console.WriteLine("RoundDown(2.4) = {0}", RoundDown(2.4));
Console.WriteLine("RoundDown(2.5) = {0}", RoundDown(2.5));
Console.WriteLine("RoundDown(2.6) = {0}", RoundDown(2.6));
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Vectors and Matrices

3.1 Introduction

Vectors are so fundamental in mathematics, including the natural sciences and en-
gineering that this chapter hardly needs an introductory section on this topic [21].
However, in order to make a more complete presentation and also provide the req-
uisite background material for this chapter, the topic of vectors will be briefly sum-
marized before a suggested implementation of them in C# is given. Matrices are
also closely associated with vectors in the sense that an n-element single column or
single row matrix can be used to represent a vector in n-dimensional space. As a
result of this close relationship, the focus of this chapter is on developing both a real
number vector and a real number matrix library in C#. Their equivalent complex
number counterparts will be addressed in a later chapter that exclusively covers the
topic of complex numbers. To avoid issues inherent with floating number data types
that already have been discussed in Chapter 1, this vector and matrix library will be
developed using variables declared as double precision data types.

Vectors are used to represent any quantity that has both a magnitude and direction.
Vectors can be added, subtracted, multiplied by a number, and flipped around so that
their original direction is reversed. These operations obey the familiar algebraic laws
of commutativity, associativity, and distributivity. The sum of two vectors with the
same initial point can be found geometrically using the parallelogram law. Multi-
plication by a positive number, commonly called a scalar in this context, amounts
to changing the magnitude of the vector in the sense of stretching or compressing
it while maintaining its direction. Multiplication by negative numbers changes the
magnitude and reverses the vector’s direction. However, vector multiplication by an-
other vector is not uniquely defined. Instead, a number of different types of products,
such as the dot product, cross product, and tensor direct product can be defined for
pairs of vectors.

In mathematics, a matrix (plural matrices) is just a rectangular array of numbers
consisting of m rows and n columns [21].

Am,n =

⎛
⎜⎜⎜⎝

a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n
...

...
. . .

...
am,1 am,2 · · · am,n

⎞
⎟⎟⎟⎠
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The horizontal and vertical lines in a matrix are called rows and columns, respec-
tively. The numbers in the matrix are called its entries. To specify the size of a
matrix, a matrix with m rows and n columns is called an m×n matrix. Such a matrix
is said to have an order of m×n where m and n are called its dimensions. A matrix
where one of the dimensions equals one is also called a vector. Consequently, an
m×1 matrix (one column and m rows) is called a column matrix or column vector

�A =

⎛
⎜⎜⎜⎝

a1

a2
...

am

⎞
⎟⎟⎟⎠

and a 1×n matrix (one row and n columns) is called a row matrix or row vector

�A =
(
a1 a2 · · · an

)

3.2 A Real Number Vector Library in C#

The first order of business in developing a vector library in C# is deciding which data
value type to use for storing the vector information. The most natural compulsion for
developers working with an object-oriented programming language, such as C#, is to
think that just about everything should be described by a class only to be instantiated
later as an object upon which many additional wonderful things can be made to hap-
pen. Therefore, it might come as a complete surprise to some readers that my choice
of data type to implement vectors was a struct instead of a class. To answer this
question, we should perhaps take a moment to review the key differences between
these two very important data value types.

A struct is a value type created on the stack whereas a class is a reference type
created on the heap. This means that a variable of a struct type directly contains the
data whereas a variable of a class type, known as an object, contains only a reference
to the data. Using a value type instead of a reference type will result in fewer objects
on the managed heap, which in turn results in a lesser load for the garbage col-
lector, less frequent garbage collector cycles, and consequently better performance.
However, struct value types have their own drawbacks as well. Passing around a
variable of type struct is definitely costlier than passing around a reference type and
so a struct is therefore particularly useful only for small data structures that can be
conveniently implemented using value semantics where data assignment copies the
value instead of the reference. Microsoft recommends that a struct should be less
than 16 bytes. As a result, a struct is more suitable for representing lightweight
objects such as vectors.

The real vector struct will be called by RVectorin order to distinguish it from its
complex vector counterpart, CVector, which will be introduced in a later chapter that
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covers complex numbers exclusively. The two constructors should be able to create
an initialized vector of a given length (or size) as well as a vector converted from a
real double array.

public struct RVector : ICloneable
{

private int ndim;
private double[] vector;

public RVector(int ndim)
{

this.ndim = ndim;
this.vector = new double[ndim];
for (int i = 0; i < ndim; i++)
{

vector[i] = 0.0;
}

}

public RVector(double[] vector)
{

this.ndim = vector.Length;
this.vector = vector;

}

We are also going to need to define a number of operators and methods in the RVector
struct to handle the most common vector operations. First, we need an indexing

property in order to access the n-th element of a vector more easily just like the n-th
element of an array.

public double this[int i]
{

get
{

if (i < 0 || i > ndim)
{

throw new Exception("Requested vector index is out of
range!");

}
return vector[i];

}
set { vector[i] = value; }

}

We also need a method to read the size or dimension of a vector which is stored as a
private variable.

public int GetVectorSize
{

get { return ndim; }
}

We also need another method to clone this vector struct. This feature is used
to make clone copies of a particular vector if the need ever arises. The utility
SwapVectorEntries is for swapping vector entries if it is ever needed.
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public RVector Clone()
{

RVector v = new RVector(vector);
v.vector = (double[])vector.Clone();
return v;

}

object ICloneable.Clone()
{

return Clone();
}

public RVector SwapVectorEntries(int m, int n)
{

double temp = vector[m];
vector[m] = vector[n];
vector[n] = temp;
return new RVector(vector);

}

In addition, it would be very useful to be able to display the contents of our vector
struct in such a way that it can be more easily identified with the way vectors are
commonly written down in standard textbooks. For that we need to override the
default ToString method as shown in the following code.

public override string ToString()
{

string str = "(";
for (int i = 0; i < ndim - 1; i++)
{

str += vector[i].ToString() + ", ";
}
str += vector[ndim - 1].ToString() + ")";
return str;

}

Sometimes when using conditional statements in code, vectors need to be compared
with each other. The System.Object type provides a virtual method called Equals

designed to return a boolean type variable to indicate whether or not two objects
have the same value. Since an object’s value is an abstract concept, we need to
define explicitly what we mean for two vectors to be equal or not equal to each other.
Two vectors are said to be equal if they have the same magnitude and direction.
Mathematically, two vectors �A and �B are said to be equal if their coordinates are
equal to each other. Therefore,

�A =
(
a1,a2, · · · ,an

)
and �B =

(
b1,b2, · · · ,bn

)
are said to be equal to each other if and only if a1 = b1,a2 = b2, . . . ,an = bn. Check-
ing for equality in vectors can therefore be implemented as follows.

public override bool Equals(object obj)
{

return (obj is RVector) && this.Equals((RVector)obj);
}
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public bool Equals(RVector v)
{

return vector == v.vector;
}

public override int GetHashCode()
{

return vector.GetHashCode();
}

public static bool operator ==(RVector v1, RVector v2)
{

return v1.Equals(v2);
}

public static bool operator !=(RVector v1, RVector v2)
{

return !v1.Equals(v2);
}

We are now ready to start developing additional methods for carrying out more
explicit vector operations, such as vector addition and subtraction. Note that, because
of their very nature, vectors can only be added to or subtracted from other vectors.
In order to carry out vector addition and subtraction, it would be helpful to develop
methods to override their default ± mathematical operators as shown below. The
sum of vectors �A =

(
a1,a2, · · · ,an

)
and �B =

(
b1,b2, · · · ,bn

)
is given by

�A+�B =
(
a1 + b1,a2 + b2, · · · ,an + bn

)
and can be implemented in by

public static RVector operator +(RVector v)
{

return v;
}

public static RVector operator +(RVector v1, RVector v2)
{

RVector result = new RVector(v1.ndim);
for (int i = 0; i < v1.ndim; i++)
{

result[i] = v1[i] + v2[i];
}
return result;

}

The difference between vectors �A =
(
a1,a2, · · · ,an

)
and �B =

(
b1,b2, · · · ,bn

)
is given

by
�A−�B =

(
a1 −b1,a2 −b2, · · · ,an −bn

)
and can be implemented by
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public static RVector operator -(RVector v)
{

double[] result = new double[v.ndim];
for (int i = 0; i < v.ndim; i++)
{

result[i] = -v[i];
}
return new RVector(result);

}

public static RVector operator -(RVector v1, RVector v2)
{

RVector result = new RVector(v1.ndim);
for (int i = 0; i < v1.ndim; i++)
{

result[i] = v1[i] - v2[i];
}
return result;

}

A vector may also be multiplied, or re-scaled, by a real number r. In the context of
conventional vector algebra, these real numbers are often called scalars (from scale)
to distinguish them from vectors which have a sense of direction in addition to a
scalar magnitude. The operation of multiplying a vector by a scalar is called scalar
multiplication. The resulting vector is

r�A =
(
ra1,ra2, · · · ,ran

)
Geometrically, multiplying by a positive scalar r stretches a vector out by a factor of
r. Dividing a vector by a factor r is equivalent to multiplying it by the amount of 1/r,
Physically, this action has the effect of compressing the vector by a factor of 1/r. If
the scalar is a negative number, then the direction of the vector is reversed from its
original position. Although vectors can be divided by a scalar, the converse is not
true and a scalar that is divided by a vector is undefined.

public static RVector operator *(RVector v, double d)
{

RVector result = new RVector(v.ndim);
for (int i = 0; i < v.ndim; i++)
{

result[i] = v[i] * d;
}
return result;

}

public static RVector operator *(double d, RVector v)
{

RVector result = new RVector(v.ndim);
for (int i = 0; i < v.ndim; i++)
{

result[i] = d * v[i];
}
return result;

}
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public static RVector operator /(RVector v, double d)
{

RVector result = new RVector(v.ndim);
for (int i = 0; i < v.ndim; i++)
{

result[i] = v[i] / d;
}
return result;

}

public static RVector operator /(double d, RVector v)
{

RVector result = new RVector(v.ndim);
for (int i = 0; i < v.ndim; i++)
{

result[i] = v[i] / d;
}
return result;

}

Both vector multiplication and division by another vector requires more careful
consideration because such operations are defined very differently from those in-
volving scalar variables and are even given different names. For example, the dot
product of two vectors �A = (a1,a2, . . . ,an) and �B = (b1,b2, . . . ,bn) is defined by:

�A ·�B =
n

∑
i=1

aibi = a1b1 + a2b2 + · · ·+ anbn

The code for the dot product of two n-dimensional vectors can be expressed as shown
below.

public static double DotProduct(RVector v1, RVector v2)
{

double result = 0.0;
for (int i = 0; i < v1.ndim; i++)
{

result += v1[i] * v2[i];
}
return result;

}

The length or magnitude or norm of the vector �A is denoted by ‖�A‖ or, less com-
monly, by |�A|, which is not to be confused with the absolute value which is a scalar
norm. The length of the vector �A =

(
a1,a2, · · · ,an

)
can be computed with the Eu-

clidean norm
‖�A‖ =

√
a1

2 + a2
2 + a3

2 + . . .+ an
2

which happens to be equal to the square root of the dot product of the vector with
itself:

‖�A‖ =
√

�A ·�A.

The corresponding code for calculating both the norm and norm square of a vector
is shown below.
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public double GetNorm()
{

double result = 0.0;
for (int i = 0; i < ndim; i++)
{

result += vector[i] * vector[i];
}
return Math.Sqrt(result);

}

public double GetNormSquare()
{

double result = 0.0;
for (int i = 0; i < ndim; i++)
{

result += vector[i] * vector[i];
}
return result;

}

In three-dimensional Euclidean geometry, the dot product of two vectors, say �A and
�B, can also be expressed by the following expression

�A ·�B = ‖�A‖‖�B‖cosθ

where ‖�A‖ and ‖�B‖ denote the length of �A and �B, respectively, and θ is the angle
between them.

A unit vector is any vector with a length of one. Normally unit vectors are used
to simply indicate direction and are often indicated with a little hat on top of the
vector itself, such as â. In the three-dimensional Cartesian coordinate system, the
unit vectors are co-directional with the x, y, and z axes. In particular, the unit vectors
î, ĵ, and k̂ are said to form a standard orthonormal basis along the x, y, and z axes
respectively and a general three-dimensional vector �A can therefore be written as

�A = a1î+ a2 ĵ + a3k̂ = a1x̂+ a2ŷ+ a3ẑ = (a1,a2,a3)

where the unit vectors î, ĵ, and k̂ may also be expressed as

î =

⎡
⎣1

0
0

⎤
⎦ , ĵ =

⎡
⎣0

1
0

⎤
⎦ , k̂ =

⎡
⎣0

0
1

⎤
⎦

The additional notations (x̂, ŷ, ẑ), (x̂1, x̂2, x̂3), (êx, êy, êz), or (ê1, ê2, ê3), with or
without hat/caret, are also used, particularly in contexts where î, ĵ, k̂ might lead to
confusion with another quantity, such as the index symbols i, j, k, used to identify
an element of a set or an array or a sequence of variables.

A vector of arbitrary length can be divided by its own length to create a unit
vector. This process is known as normalizing a vector and after a vector, say �A,
gets normalized, it is usually rewritten with a little hat on top of it as shown here: Â.
Mathematically, to normalize a vector �A = (a1,a2,a3, . . . ,an), scale the vector by the
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reciprocal of its length ‖�A‖ thus obtaining the following expression.

Â =
�A
‖A‖

The corresponding code for normalizing a vector is given by

public void Normalize()
{

double norm = GetNorm();
if (norm == 0)
{

throw new Exception("Tried to normalize a vector with
norm of zero!");

}
for (int i = 0; i < ndim; i++)
{

vector[i] /= norm;
}

}

public RVector GetUnitVector()
{

RVector result = new RVector(vector);
result.Normalize();
return result;

}

The cross product, also called the vector product or outer product, is only mean-
ingful in three dimensions. The cross product differs from the dot product primarily
in that the result of the cross product of two vectors is also a vector. The cross
product, denoted by �A×�B, is a vector perpendicular to both �A and �B and is defined
as

�A×�B = ‖�A‖‖�B‖sin θ n̂

where θ is the measure of the angle between�A and �B, and n̂ is a unit vector perpendic-
ular to both �A and �B which completes a right-handed system. The right-handedness
constraint is necessary because there exists two unit vectors that are perpendicular to
both �A and �B, namely, n̂ and −n̂.

The cross product �A×�B is defined so that �A, �B, and �A×�B also becomes a right-
handed system. However, note that �A and �B are not necessarily orthogonal.

The cross product can be written as

�A×�B = (a2b3 −a3b2)î+(a3b1 −a1b3) ĵ +(a1b2 −a2b1)k̂

The definition of the cross product can also be represented by the determinant of a
matrix as shown below:

�A×�B = det

⎡
⎣ î ĵ k̂

a1 a2 a3

b1 b2 b3

⎤
⎦ = (a2b3 −a3b2)î+(a3b1 −a1b3) ĵ +(a1b2 −a2b1)k̂

The corresponding code for the cross product of two vectors is given by:
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public static RVector CrossProduct(RVector v1, RVector v2)
{

if (v1.ndim != 3)
{

throw new Exception("Vector v1 must be 3 dimensional!");
}
if (v2.ndim != 3)
{

throw new Exception("Vector v2 must be 3 dimensional!");
}
RVector result = new RVector(3);
result[0] = v1[1] * v2[2] - v1[2] * v2[1];
result[1] = v1[2] * v2[0] - v1[0] * v2[2];
result[2] = v1[0] * v2[1] - v1[1] * v2[0];
return result;

}
}

3.3 A Real Number Matrix Library in C#

Matrices, and more generally, linear algebra have many applications in mathematics,
the natural sciences and engineering [21]. Due to their widespread use, considerable
effort has been made to develop efficient methods for computing matrices both ef-
ficiently and effectively, particularly if the matrices are big. To this end, there are
several matrix decomposition methods, which express matrices as products of other
matrices, whose inverses, products etc. are easier to compute. As a result of their
usefulness in so many different disciplines, the remainder of this chapter will be fo-
cused on developing a set of tools for implementing a real number matrix in C#. The
equivalent complex number matrix counterparts will be addressed in a later chapter
that exclusively covers the topic of complex numbers. More advanced applications,
such as the solution of linear systems of algebraic equations or calculating eigenval-
ues and eigenvectors, will be deferred to yet a later chapter.

As briefly described in the introduction of this chapter, a matrix is simply a rect-
angular array of numbers consisting of m rows and n columns [21].

Am,n =

⎛
⎜⎜⎜⎝

a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n
...

...
. . .

...
am,1 am,2 · · · am,n

⎞
⎟⎟⎟⎠

The horizontal and vertical lines of a matrix are called rows and columns, respec-
tively. The numbers in the matrix are called its entries. To specify the size of a
matrix, a matrix with m rows and n columns is called an m× n matrix. Such a ma-
trix is said to have an order of m× n where m and n are called its dimensions. For
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convenience, the entries of a matrix A are often denoted by Ai, j where i and j rep-
resent the i-th row and j-th column. The matrix A itself can also be represented by
A = [ai, j]m×n.

A real matrix data structure can be constructed using a two-dimensional array, one
for rows and another one for columns. Although many matrices have equal number
of rows and columns which greatly simplifies calculations, this is not always the case
and we should therefore allow for the general possibility of having to declare matri-
ces accordingly. The matrix constructors below allow for the creation of a m× n
matrix object using two-dimensional double precision array. The first constructor
accepts integer values for nRows and nRows as input parameters and initializes all the
matrix entries to zero. The second constructor creates a matrix that holds a speci-
fied two-dimensional array with the size of the matrix being the same as that of the
dimensions of the array.

public struct RMatrix : ICloneable
{

private int nRows;
private int nCols;
private double[,] matrix;

public RMatrix(int nRows, int nRows)
{

this.nRows = nRows;
this.nCols = nCols;
this.matrix = new double[nRows, nCols];
for (int i = 0; i < nRows; i++)
{

for (int j = 0; j < nCols; j++)
{

matrix[i, j] = 0.0;
}

}
}

public RMatrix(double[,] matrix)
{

this.nRows = matrix.GetLength(0);
this.nCols = matrix.GetLength(1);
this.matrix = matrix;

}

public RMatrix(RMatrix m)
{

nRows = m.GetnRows;
nCols = m.GetnCols;
matrix = m.matrix;

}

A matrix whose entries are all equal to 1 is called the identity matrix and such
matrices are of particular importance in matrix theory. The identity matrix can be
implemented very easily as shown below.
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public RMatrix IdentityMatrix()
{

RMatrix m = new RMatrix(nRows, nCols);
for (int i = 0; i < nRows; i++)
{

for (int j = 0; j < nCols; j++)
{

if (i == j)
{

m[i, j] = 1;
}

}
}
return m;

}

As in the case with vectors, we also need to define an indexing property in order to
access the entries of the matrix object more easily by simply specifying the desired
row and column of interest. For example, if M denotes a matrix object then M[i, j] or
Mi, j denotes a matrix element consisting of the entry located at the i-th row and j-th
column of matrix M. This type of notation is very much like those found in standard
mathematical textbooks on this topic.

public double this[int m, int n]
{

get
{

if (m < 0 || m > nRows)
{

throw new Exception("m-th row is out of range!");
}
if (n < 0 || n > nCols)
{

throw new Exception("n-th col is out of range!");
}
return matrix[m, n];

}
set { matrix[m, n] = value; }

}

We also need a couple of properties to read the dimensions of the RMatrix which are
stored as a private variables.

public int GetnRows
{

get { return nRows; }
}

public int GetnCols
{

get { return nCols; }
}

We also need another method to clone this matrix struct. This feature is used to
make clone copies of a particular matrix if the need ever arises.
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public RMatrix Clone()
{

RMatrix m = new RMatrix(matrix);
m.matrix = (double[,])matrix.Clone();
return m;

}

object ICloneable.Clone()
{

return Clone();
}

As in the case with vectors, it would be nice to have a customized way to display
matrices on the computer screen so that they may then look like their counterparts
found in textbooks. This is accomplished by overriding the ToString() method.

public override string ToString()
{

string strMatrix = "(";
for (int i = 0; i < nRows; i++)
{

string str = "";
for (int j = 0; j < nCols - 1; j++)
{

str += matrix[i, j].ToString() + ", ";
}
str += matrix[i, nCols - 1].ToString();
if (i != nRows - 1 && i == 0)

strMatrix += str + "\n";
else if (i != nRows - 1 && i != 0)

strMatrix += " " + str + "\n";
else

strMatrix += " " + str + ")";
}
return strMatrix;

}

Sometimes when using conditional statements in code, matrices need to be com-
pared with each other. The System.Object type provides a virtual method called
Equals designed to return a boolean type variable to indicate whether or not two
objects have the same value. Since an object’s value is an abstract concept, we need
to define explicitly what we mean for two matrices to be equal or not equal to each
other. Mathematically, Two matrices A and B are said to be equal to each other if
and only if Ai, j = Bi, j for all i, j. Checking for equality in matrices can therefore be
implemented as follows.

public override bool Equals(object obj)
{

return (obj is RMatrix) && this.Equals((RMatrix)obj);
}
public bool Equals(RMatrix m)
{

return matrix == m.matrix;
}
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public override int GetHashCode()
{

return matrix.GetHashCode();
}

public static bool operator ==(RMatrix m1, RMatrix m2)
{

return m1.Equals(m2);
}

public static bool operator !=(RMatrix m1, RMatrix m2)
{

return !m1.Equals(m2);
}

We are now ready to start developing additional methods for carrying out more ex-
plicit matrix operations, such as matrix addition and subtraction. Note that, because
of their very nature, matrices can only be added to or subtracted from other matrices
provided both matrices have the same number of rows and columns. In order to carry
out matrix addition and subtraction, it would therefore be helpful to develop methods
to override the default ± mathematical operators as shown below.

The sum A + B of two m×n matrices A and B is calculated as shown below.

Ci, j = (A + B)i, j = Ai, j + Bi, j where 1 ≤ i ≤ m and 1 ≤ j ≤ n.

public static RMatrix operator +(RMatrix m)
{

return m;
}

public static RMatrix operator +(RMatrix m1, RMatrix m2)
{

if (!RMatrix.CompareDimension(m1, m2))
{

throw new Exception("The dimensions of two matrices must
be the same!");

}
RMatrix result = new RMatrix(m1.GetnRows, m1.GetnCols);
for (int i = 0; i < m1.GetnRows; i++)
{

for (int j = 0; j < m1.GetnCols; j++)
{

result[i, j] = m1[i, j] + m2[i, j];
}

}
return result;

}

Similarly, the difference A−B of two m×n matrices A and B is calculated as follows.

Ci, j = (A−B)i, j = Ai, j −Bi, j where 1 ≤ i ≤ m and 1 ≤ j ≤ n.
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public static RMatrix operator -(RMatrix m)
{

for (int i = 0; i < m.GetnRows; i++)
{

for (int j = 0; j < m.GetnCols; j++)
{

m[i, j] = -m[i, j];
}

}
return m;

}

public static RMatrix operator -(RMatrix m1, RMatrix m2)
{

if (!RMatrix.CompareDimension(m1, m2))
{

throw new Exception("The dimensions of two matrices must
be the same!");

}
RMatrix result = new RMatrix(m1.GetnRows, m1.GetnCols);
for (int i = 0; i < m1.GetnRows; i++)
{

for (int j = 0; j < m1.GetnCols; j++)
{

result[i, j] = m1[i, j] - m2[i, j];
}

}
return result;

}

Matrix multiplication comes in two forms. The scalar multiplication cA of a matrix
A and a number c is given by multiplying every entry of A by c:

cA = cAi, j = (cA)i, j

Although matrix division is not defined, you can still multiply a matrix by a fractional
scalar, such as 1/c, that can affect and contract every entry in the matrix.

(1/c)A = (1/c)Ai, j = ((1/c)A)i, j

public static RMatrix operator *(RMatrix m, double d)
{

RMatrix result = new RMatrix(m.GetnRows, m.GetnCols);
for (int i = 0; i < m.GetnRows; i++)
{

for (int j = 0; j < m.GetnCols; j++)
{

result[i, j] = m[i, j] * d;
}

}
return result;

}
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public static RMatrix operator *(double d, RMatrix m)
{

RMatrix result = new RMatrix(m.GetnRows, m.GetnCols);
for (int i = 0; i < m.GetnRows; i++)
{

for (int j = 0; j < m.GetnCols; j++)
{

result[i, j] = m[i, j] * d;
}

}
return result;

}

public static RMatrix operator /(RMatrix m, double d)
{

RMatrix result = new RMatrix(m.GetnRows, m.GetnCols);
for (int i = 0; i < m.GetnRows; i++)
{

for (int j = 0; j < m.GetnCols; j++)
{

result[i, j] = m[i, j] / d;
}

}
return result;

}

public static RMatrix operator /(double d, RMatrix m)
{

RMatrix result = new RMatrix(m.GetnRows, m.GetnCols);
for (int i = 0; i < m.GetnRows; i++)
{

for (int j = 0; j < m.GetnCols; j++)
{

result[i, j] = m[i, j] / d;
}

}
return result;

}

The second form of matrix multiplication is from multiplying two matrices to-
gether. The matrix product of two matrices A and B is just another matrix, say C,
where C = AB and whose entries are formally defined as follows. For A ∈ R

m×n,B ∈
R

n×p then (AB) ∈ R
m×p where

(C)i, j = (AB)i, j =
n

∑
k=1

Ai,kBk, j

for each pair i and j with 1 ≤ i ≤ m and 1 ≤ j ≤ p. Because of this definition, matrix
multiplication is not commutative which means AB 	= BA. Matrix multiplication can
be implemented as follows.
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public static RMatrix operator *(RMatrix m1, RMatrix m2)
{

if (m1.GetnCols != m2.GetnRows)
{

throw new Exception("The numbers of columns of the" +
" first matrix must be equal to the number of " +
" rows of the second matrix!");

}
double tmp;
RMatrix result = new RMatrix(m1.GetnRows, m2.GetnCols);
for (int i = 0; i < m1.GetnRows; i++)
{

for (int j = 0; j < m2.GetnCols; j++)
{

tmp = result[i, j];
for (int k = 0; k < result.GetnRows; k++)
{

tmp += m1[i, k] * m2[k, j];
}
result[i, j] = tmp;

}
}
return result;

}

Using matrix multiplication and treating vectors as n×1 matrices, the dot product
can also be written as:

A ·B = AT B

where AT denotes the transpose of the matrix A which is created by any one of the
following equivalent actions:

• Write the rows of A as the columns of AT

• Write the columns of A as the rows of AT

• Reflect A by its main diagonal (which starts from the top left) to obtain AT

In this specific case, since A is a column matrix, the transpose of A is a row matrix
or row vector (1× n matrix). More formally, the transpose of an m× n matrix A is
the n×m matrix

AT
i j = A ji for 1 ≤ i ≤ n, 1 ≤ j ≤ m

public RMatrix GetTranspose()
{

RMatrix m = this;
m.Transpose();
return m;

}

public void Transpose()
{

RMatrix m = new RMatrix(nCols, nRows);
for (int i = 0; i < nRows; i++)
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{
for (int j = 0; j < nCols; j++)
{

m[j, i] = matrix[i, j];
}

}
this = m;

}

The trace of an n×n square matrix A is defined to be the sum of the elements on
the main diagonal (the diagonal from the upper left to the lower right) of A so that it
can be expressed mathematically as

tr(A) = a11 + a22 + · · ·+ ann =
n

∑
i=1

aii

where ai, j represents the entry on the i-th row and j-th column of A. Equivalently,
the trace of a matrix is the sum of its eigenvalues, thus making it an invariant with
respect to a change of basis. The following implementation can be used to define the
trace of a linear operator in general.

public double GetTrace()
{

double sum_of_diag = 0.0;
for (int i = 0; i < nRows; i++)
{

if (i < nCols)
sum_of_diag += matrix[i, i];

}
return sum_of_diag;

}

In more advanced matrix calculations there are occasions where it may be neces-
sary to extract a vector from a row or a column of a matrix. Other situations may
require a swap of two rows or two columns of a matrix. The following methods
demonstrate how such operations may be carried out along with a few miscellaneous
matrix manipulation utilities that are self-explanatory.

public bool IsSquared()
{

if (nRows == nCols)
return true;

else
return false;

}

public static bool CompareDimension(RMatrix m1, RMatrix m2)
{

if (m1.GetnRows == m2.GetnRows && m1.GetnCols == m2.GetnCols)
return true;

else
return false;

}
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public RVector GetRowVector(int m)
{

if (m < 0 || m > nRows)
{

throw new Exception("m-th row is out of range!");
}
RVector RowVector = new RVector(nCols);
for (int i = 0; i < nCols; i++)
{

RowVector[i] = matrix[m, i];
}
return RowVector;

}

public RVector GetColVector(int n)
{

if (n < 0 || n > nCols)
{

throw new Exception("n-th col is out of range!");
}
RVector ColVector = new RVector(nRows);
for (int i = 0; i < nRows; i++)
{

ColVector[i] = matrix[i, n];
}
return ColVector;

}

public RMatrix ReplaceRow(RVector vec, int m)
{

if (m < 0 || m > nRows)
{

throw new Exception("m-th row is out of range!");
}
if (vec.GetVectorSize != nCols)
{

throw new Exception("Vector ndim is out of range!");
}
for (int i = 0; i < nCols; i++)
{

matrix[m, i] = vec[i];
}
return new RMatrix(matrix);

}

public RMatrix ReplaceCol(RVector vec, int n)
{

if (n < 0 || n > nCols)
{

throw new Exception("n-th col is out of range!");
}
if (vec.GetVectorSize != nRows)
{

throw new Exception("Vector ndim is out of range!");
}
for (int i = 0; i < nRows; i++)
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{
matrix[i, n] = vec[i];

}
return new RMatrix(matrix);

}

public RMatrix SwapMatrixRow(int m, int n)
{

double temp = 0.0;
for (int i = 0; i < nCols; i++)
{

temp = matrix[m, i];
matrix[m, i] = matrix[n, i];
matrix[n, i] = temp;

}
return new RMatrix(matrix);

}

public RMatrix SwapMatrixColumn(int m, int n)
{

double temp = 0.0;
for (int i = 0; i < nRows; i++)
{

temp = matrix[i, m];
matrix[i, m] = matrix[i, n];
matrix[i, n] = temp;

}
return new RMatrix(matrix);

}

In linear algebra, linear transformations can be represented by matrices. If T is a
linear transformation mapping R

n to R
m and�x is a column vector with n entries, then

T (�x) = A�x

for some m× n matrix A, is called the transformation matrix of T . Matrices allow
arbitrary linear transformations to be represented in a consistent format, suitable for
computation. For example, if one has a linear transformation T (x) in functional
form, it is easy to determine the transformation matrix A by simply transforming
each of the vectors of the standard basis by T and then inserting the results into the
columns of matrix A. In other words,

A =
[
T (ê1) T (�e2) · · · T (�en)

]
Most common geometric transformations that keep the origin fixed are linear, in-
cluding rotation, scaling, shearing, reflection, and orthogonal projection. If an affine
transformation is not a pure translation it keeps some point fixed, and that point can
be chosen as origin to make the transformation linear. For example, consider a ro-
tation in a two-dimensional Euclidean plane by an angle θ counterclockwise about
the origin. The functional form is x′ = x cosθ − y sin θ and y′ = x sinθ + y cosθ .
Written in matrix form, these equations become:[

x′
y′

]
=

[
cosθ −sinθ
sinθ cosθ

][
x
y

]
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The following code illustrates how to calculate the transform matrix in C#

public static RVector Transform(RMatrix mat, RVector vec)
{

RVector result = new RVector(vec.GetVectorSize);
if (!mat.IsSquared())
{

throw new Exception("The matrix must be squared!");
}
if (mat.GetnCols != vec.GetVectorSize)
{

throw new Exception("The ndim of the vector must be equal"
+ " to the number of cols of the matrix!");

}
for (int i = 0; i < mat.GetnRows; i++)
{

result[i] = 0.0;
for (int j = 0; j < mat.GetnCols; j++)
{

result[i] += mat[i, j] * vec[j];
}

}
return result;

}

public static RVector Transform(RVector vec, RMatrix mat)
{

RVector result = new RVector(vec.GetVectorSize);
if (!mat.IsSquared())
{

throw new Exception("The matrix must be squared!");
}
if (mat.GetnRows != vec.GetVectorSize)
{

throw new Exception("The ndim of the vector must be equal"
+ " to the number of rows of the matrix!");

}
for (int i = 0; i < mat.GetnRows; i++)
{

result[i] = 0.0;
for (int j = 0; j < mat.GetnCols; j++)
{

result[i] += vec[j] * mat[j, i];
}

}
return result;

}

public static RMatrix Transform(RVector v1, RVector v2)
{
if (v1.GetVectorSize != v2.GetVectorSize)
{
throw new Exception("The vectors must have the same ndim!");

}
RMatrix result = new RMatrix(v1.GetVectorSize,v1.GetVectorSize);
for (int i = 0; i < v1.GetVectorSize; i++)
{
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for (int j = 0; j < v1.GetVectorSize; j++)
{

result[j, i] = v1[i] * v2[j];
}

}
return result;

}

The determinant is an algebraic operation that transforms a square matrix A into a
scalar following a specific procedure that is described in more detail below. Deter-
minants are defined only for square matrices and can be generally expressed as

detA =

∣∣∣∣∣∣∣∣∣

a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n
...

...
. . .

...
an,1 an,2 · · · an,n

∣∣∣∣∣∣∣∣∣
A minor of a matrix A is the determinant of some smaller square matrix, cut down

from A by removing one or more of its rows and columns. More specifically, the Mi j

minor of an n×n square matrix A is defined as the determinant of the (n−1)×(n−1)
matrix formed by removing from A its i-th row and j-th column. A minor that is
formed by removing only one row and column from a square matrix A, Mi j, is called
a first minor. When two rows and columns are removed, it is called a second minor,
and so on. The (i, j)-th cofactor Ci j of a square matrix A is just (−1)i+ j times the
corresponding minor Mi j

Ci j = (−1)i+ jMi j

The cofactor matrix of A, or matrix of A cofactors, typically denoted as C, is defined
as the n× n matrix whose (i, j) entry is the (i, j) cofactor of A. The transpose of C
is called the adjoint of A. The adjoint matrix is therefore just the transpose matrix of
cofactors as shown below

A−1 =
1∣∣A∣∣ (Ci j)

T =
1∣∣A∣∣ (C ji) =

1∣∣A∣∣
⎛
⎜⎜⎜⎝

C11 C21 · · · Cn1

C12 C22 · · · Cn2
...

...
. . .

...
C1n C2n · · · Cnn

⎞
⎟⎟⎟⎠

where |A| is the determinant of A, Ci j is the matrix cofactor, and AT represents the
matrix transpose.

Adjoint matrices are used to compute the inverse of the square matrices. An n×n
square matrix A is called invertible or non-singular if there exists an n×n matrix B
such that

AB = BA = In

where In denotes the n× n identity matrix and the multiplication used is ordinary
matrix multiplication. If this is the case, then the matrix B is uniquely determined by
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A and is called the inverse of A, denoted by A−1 The determinant of a matrix A can
then be expressed very compactly in terms of the cofactor Ci j of matrix A as

|A| =
k

∑
i=1

ai jCi j

with no implied summation over j and where Ci j is the cofactor of ai j. This process
is called determinant expansion by minors.

Let A be an n× n matrix. Then Adj(A)A = det(A)I where Ad j(A) denotes the
adjoint of A, det(A) is the determinant, and I is the identity matrix. If det(A) is
invertible in R, then the inverse matrix of A is

A−1 =
1

det(A)
Adj(A).

As a simple example, the equation for calculating the inverse matrix of a general
2×2 matrix is given by

A−1 =
[

a b
c d

]−1

=
1

ad−bc

[
d −b

−c a

]

The code for performing all these operations on matrices and determinants is listed
below.

public static double Determinant(RMatrix mat)
{
double result = 0.0;
if (!mat.IsSquared())
{

throw new Exception("The matrix must be squared!");
}
if (mat.GetnRows == 1)

result = mat[0, 0];
else
{

for (int i = 0; i < mat.GetnRows; i++)
{

result += Math.Pow(-1, i) * mat[0, i] *
Determinant(RMatrix.Minor(mat, 0, i));

}
}
return result;

}

public static RMatrix Minor(RMatrix mat, int row, int col)
{
RMatrix mm = new RMatrix(mat.GetnRows-1,mat.GetnCols-1);
int ii = 0, jj = 0;
for (int i = 0; i < mat.GetnRows; i++)
{

if (i == row)
continue;
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jj = 0;
for (int j = 0; j < mat.GetnCols; j++)
{

if (j == col)
continue;

mm[ii, jj] = mat[i, j];
jj++;

}
ii++;

}
return mm;

}

public static RMatrix Adjoint(RMatrix mat)
{
if (!mat.IsSquared())
{

throw new Exception("The matrix must be squared!");
}
RMatrix ma = new RMatrix(mat.GetnRows, mat.GetnCols);
for (int i = 0; i < mat.GetnRows; i++)
{

for (int j = 0; j < mat.GetnCols; j++)
{

ma[i,j]=Math.Pow(-1,i+j)*(Determinant(Minor(mat,i,j)));
}

}
return ma.GetTranspose();

}

public static RMatrix Inverse(RMatrix mat)
{
if (Determinant(mat) == 0)
{

throw new Exception("Cannot inverse a matrix with a zero
determinant!");

}
return (Adjoint(mat) / Determinant(mat));

}
}
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4

Complex Numbers

4.1 Introduction

Complex numbers are often used not just in the field of pure or applied mathemat-
ics but also in a variety of scientific and engineering disciplines. First discovered
in the 16th century by the Italian mathematicians Girolanmo Cardano and Niccolo
Tartaglia, complex numbers were later refined by Rafael Bombelli who developed
the formal rules for their addition, subtraction, multiplication and division. In the
17th century, the French mathematician Rene Descartes introduced the term imagi-
nary to describe complex numbers. However, this terminology is just historical and
perhaps even misleading. There is nothing mystical or weird about complex num-
bers, and the so-called imaginary part is just an ordinary real number with specific
contextual meaning. In the 18th century, the famous Swiss mathematician Leonhard
Euler introduced both the special symbol i to represent

√−1 and also the famous
expression eiθ that now bears his name. However, the existence of complex numbers
was not fully accepted until Caspar Wessel and Jean-Robert Argand developed a ge-
ometrical interpretation for them around the year 1799. After languishing for years
in obscurity, most of these ideas were later rediscovered and popularized by the dis-
tinguished German mathematician Carl Friedrich Gauss in the 19th century. Gauss
not only made important additional contributions to the field of complex numbers
but was also the first one to use the term complex to describe these kinds of numbers
that include the

√−1. Afterwards, the theory of complex numbers advanced rapidly
and is widely used in several mathematical, scientific and engineering fields today.
Unfortunately, the present version of C# does not yet support an intrinsic complex
number data type along with its own set of internal library routines. Therefore, this
chapter was written to provide the reader with a comprehensive collection of numer-
ical routines in C# for working with complex numbers.

4.2 Fundamental Concepts

Complex numbers are usually represented by the symbol z and can be expressed in
any one of the following four formats [18]
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• Algebraically, as z = x + iy where both the real part x = Re(z) and the imagi-
nary part y = Im(z) are real numbers and the imaginary unit i =

√−1.

• Trigonometrically, in polar form as z = r cosθ + i r sin θ where, as displayed
in Figure 4.1, (x,y) and (r,θ ) are related by

x = r cosθ y = r cosθ r =
√

x2 + y2 and θ = arctan(
y

x
)

• Exponentially, as the exponential function z = reiθ with a real radius r and a
real phase angle θ as depicted in Figure 4.1.

• Graphically, as a coordinate (x,y) in a modified Cartesian plane with the real
part of the complex number represented by a displacement along the x-axis and
the imaginary part by a displacement along the y-axis as illustrated in Figure
4.1.

FIGURE 4.1
Geometric Representation of Complex Numbers

The argument of z, denoted by arg(z), is just another name used for representing the
angle θ which is multi-valued with a period of 2π . Thus, if θ is one value of arg(z),
the other values are given by arg(z) = θ + 2πn, where n is any integer. If r = 0, then
θ can be set to any real value. However, if r 	= 0, then in order to get a unique value,
θ must be limited to an interval of size 2π which is traditionally chosen as being
either the interval [0,2π) or (−π ,π ] depending on the convention used for taking the
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branch cut. As a result, one must keep track of the signs for both variables x and y in
order to correctly calculate the location and value of θ . Fortunately, many modern
programming languages, such as C#, avoid having to directly handle this problem by
simply using the atan2(y/x) function, which has separate arguments for both the x
and the y values. As a result, the output from the function atan2(y/x) consists of
a unique value within the interval (−π ,π ] and will be henceforth referred to as the
principal value of θ .

The absolute value or modulus of z is defined to be |z| = r =
√

x2 + y2. Graph-
ically, |z| represents the distance from the origin to the point (x,y) in the complex
plane.

The complex conjugate of a complex number is found by simply changing the sign
of the imaginary part. Thus, the conjugate of the complex number z = x + iy = reiθ

is expressed by z∗ = z = x− iy = re−iθ .
Two complex numbers are equal if and only if their real parts are equal and their

imaginary parts are equal. In other words, if the two complex numbers are written
as x1 + iy1 and x2 + iy2 with x1, y1, x2, y2 all reals, then they are equal if and only if
x1 = x2 and y1 = y2.

4.3 Complex Number Arithmetic

Complex numbers are said to form a field, known as the complex number field, which
is denoted by C. A field is an algebraic structure with addition, subtraction, multipli-
cation, and division operations that satisfy certain algebraic laws. In particular, this
means that complex numbers have

• An additive identity (“zero”), 0 + i0.

• A multiplicative identity (“one”), 1 + i0.

• An additive inverse for every complex number. The additive inverse of x + iy,
for example, is −x− iy.

• A multiplicative inverse (reciprocal) for every nonzero complex number. The

reciprocal of x+ iy, for example, is
1

x + iy
=

1

x + iy
∗ x− iy

x− iy
=

x

x2 + y2 +
− iy

x2 + y2

• Addition, subtraction, multiplication and division operations defined by for-
mally applying the associative, commutative and distributive laws of algebra,
together with the equation i2 = −1. Thus,

z1 ± z2 = (x1 + iy1)± (x2 + iy2) = (x1 ± x2)+ i(y1 ± y2)

z1 ∗ z2 = (x1 + iy1)∗ (x2 + iy2) = (x1x2 − y1y2)+ i(x1y2 + x2y1)

z1

z2
=

x1 + iy1

x2 + iy2
=

(x1 + iy1)(x2 − iy2)
(x2 + iy2)(x2 − iy2)

=
x1x2 + y1y2

x2
2 + y2

2

+ i(
− x1y2 + x2y1

x2
2 + y2

2

)
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Although the basic formulas for the addition, subtraction, multiplication and divi-
sion of complex numbers are mathematically correct as they have been written and
can be immediately applied to do numerical calculations, in actual practice there
are some additional important computational issues that merit some extra attention.
In some computers, for example, multiplication operations have been found to run
somewhat slower than those involving addition. As a result, Press et al. [22] have
proposed a slight rearrangement of the original multiplication formula in order to
allegedly make it run faster since it contains fewer multiplication steps

z1 ∗ z2 = (x1 + iy1)∗ (x2 + iy2) = (x1x2 − y1y2)+ i[(x1 + y1)(x2 + y2)− x1x2 − y1y2]

Midy and Yakolev [23], on the other hand, have pointed out that the existing for-
mulas for numerically calculating elementary functions of a complex number on a
computer are not always as reliable as one might expect particularly when handling
very small or very large numbers. For example, forgetting or ignoring the existence
of potential numeric underflows and/or overflows can sometimes lead to misleading
or even erroneous results. Consequently, some insightful numerical algorithms have
been proposed over the years to help prevent or at least minimize the chances for
such undesired problems from occurring during certain complex number operations.
Of these, perhaps the best known and most widely used algorithm is the one for
doing complex number division as proposed by Smith [24]

z1

z2
=

x1 + iy1

x2 + iy2
=

⎧⎪⎪⎨
⎪⎪⎩

[x1 + y1(y2/x2)]+ i[y1 − x1(y2/x2)]
x2 + y2(y2/x2)

if |x2| ≥ |y2|
[x1(x2/y2)+ y1)]+ i[y1(x2/y2)− x1]

x2(x2/y2)+ y2
if |x2| < |y2|

Unfortunately, small flaws involving unwanted underflows and/or overflows have
also reportedly been found with this algorithm. Although Stewart [25] has attempted
to correct this problem, Midy and Yakolev [23] later pointed out that this newer and
supposedly improved algorithm is not completely free from generating overflows ei-
ther and, in addition, non-renormalized underflows were not successfully addressed.
Nevertheless, applying the same general ideas of this scaling method to the formula
for the modulus of a complex number z will result in the following equations

|z| = |x + iy|= r =
√

x2 + y2 =

{
|x|√1 +(y/x)2 if |x| ≥ |y|
|y|

√
1 +(x/y)2 if |x| < |y|

Unfortunately, most if not all of these algorithms that have been devised to sup-
posedly handle potential numerical overflow and underflow problems in complex
number operations have eventually been found to be somewhat flawed in one way or
another. These problems arise primarily because computers are merely machines and
as such they have a limited capacity for handling real numbers whose actual range
of values is infinite. For example, irrational numbers like π , can only be approxi-
mated by a computer to a certain number of significant figures. In addition, as we
have seen in Chapter 1, some precision is also lost in doing numerical calculations
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because of the way numbers are stored in a computer. Although our numbering sys-
tem is base 10, computers use the binary system of base 2 to store and manipulate
numbers. This feature can occasionally lead to a loss of some precision during the
many conversions that ultimately may have to be done back and forth between the
two bases during the course of running an actual application. One should therefore
always proceed with great care and exercise caution when applying these and other
algorithms near extreme points that may generate numerical overflow and/or under-
flow. Aside from modifying numerical algorithms to improve their ability to handle
values near extreme or critical points as illustrated here, another perhaps riskier and
less desirable way to deal with this problem is to write code to catch and properly
handle all exceptions thrown by the compiler.

4.4 Elementary Functions of a Complex Number

Using the reference data published by Abramowitz and Stegun [19] and Thomp-
son [26], this section covers the standard elementary transcendental functions for
complex numbers including the exponential, trigonometric and hyperbolic functions
along with their corresponding inverses. As before, the focus will be on developing
a set of practical computational tools in C# for use in numerical applications.

4.4.1 Exponentials

By definition, the general exponential function with a fixed real number base b > 1
and a real number power x is the function expressed by the formula f (x) = bx. If the
base equals the Euler number e, then the exponential function is called the natural
exponential function and is expressed by f (x) = ex = exp(x). The basic rules used
in manipulating exponential functions of real numbers are well known and are given
by bx+y = bxby, bx−y = bx/by, b0 = 1, bxy = (bx)y, and b−x = 1/(bx).

The exponential function can also be defined on the complex plane in various
different, but nonetheless, equivalent forms. Some of these definitions mirror the
formulas for the real-valued exponential function and even retain a certain number
of important properties, such as ez+w = ezew, where z and w are complex numbers.
For practical numerical computational purposes, the exponential function, ez, where
z is a complex variable, can therefore be written as

ez = ex+iy = exeiy = ex(cosy + isiny)
= ex cosy + iex siny

4.4.2 Logarithms

In general, the inverse of any exponential function is a logarithmic function. The
logarithm of a number to a given positive real number base is the power or exponent
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to which the base must be raised in order to produce the number. By definition, the
logarithm of x to a base b is written as logb(x) or, if the base is implicit, as log(x).
Hence, for a number x, a base b and an exponent y, if x = by then y = logb(x).

The logarithm function can also be extended to include complex numbers in which
case it is simply the inverse of the corresponding complex exponential function. This
means that for the natural base e, the logarithm of a complex number z is a complex
number w such that if z = ew then w = logz. By writing z in polar form, z = reiθ ,
and taking the natural logarithm of both sides we obtain a general expression for the
complex logarithm of a complex number z as

log z = logr + i(θ + 2πn) where z 	= 0 and n = any integer.

Strictly speaking, for a function to have an inverse, it must map distinct arguments
with distinct values. Note, however, that the polar angle θ in the logarithmic ex-
pression above is ambiguous since any integral multiple of 2π could be added to
θ without changing the value of logz. Therefore, logz is both periodic and multi-
valued and so it does not have an inverse function in the standard sense. Likewise,
since ew+2πni = ew for any integer n, the complex exponential function ew is also
both periodic and multi-valued. Therefore, ew also does not have an inverse function
in the standard sense. Fortunately, there are two ways around this problem. One
approach is to view the logarithm as a function whose domain is not a region in the
complex plane, but a Riemann surface that covers the punctured complex plane in
an infinite-to-1 way. The other solution is to restrict the domain of the exponential
function to a region that does not contain any two numbers differing by an inte-
ger multiple of 2π . This approach naturally leads to the concept of branches. By
definition, a branch cut is a curve in the complex plane across which an analytic
multi-valued function is discontinuous. In order to work with single-valued complex
functions, it is customary to construct branch cuts in the complex plane where there
is a well-defined branch of the function in question. The principal branch is a func-
tion which selects one branch, or slice, of a multi-valued function from which one
obtains single, unique values which are more commonly known as principal values.
For complex logarithms, a branch cut, usually along the negative real axis, can limit
the imaginary part so it lies between −π and π . The principal branch of the complex
logarithmic function is often expressed with a capital letter Log(z) where n = 0 and
is given by

Log(z) = log r + i θ where z = r ei θ and −π < θ ≤ π

For practical numerical computational purposes, the principal logarithm function of
a complex number z = x + iy can be written as

Log(z) = ln(x + iy) = lnr + iθ

= (
1

2
) ln(x2 + y2)+ iarctan(

y

x
)
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4.4.3 Powers and Roots

Raising a complex number z to some integer power n means multiplying z by itself
repeatedly for a total of n times. The n-th power of a complex number z follows
directly from De Moivre’s Theorem and is given by

zn = (reiθ )n = rneinθ = rn cos(nθ )+ irnsin(nθ )

De Moivre’s Theorem also holds true for the ratio of two integers, say m and n. Thus,

zm/n = (reiθ )m/n = rm/neimθ/n

If m = 1, the formula above can also be used to extract the n-th root of z. More
formally, the n-th root of a complex number a ∈ C, satisfies the equation zn = a.
Since eiθ is periodic with a period of 2π then eiθ = ei(θ+2πk) and so the general
formula for the n-th root of z can be written as

z
1
n = (reiθ )

1
n = r

1
n exp(

i(θ + 2πk)
n

) where k ∈ {0,1,2, . . .n−1}

In addition, if m and n are both integers, then the usual properties for handling real
valued bases and exponents can also be extended to include the complex domain.
For example, zm+n = zmzn, zm−n = zm/zn, (zm)n = zmn, and z−n = 1/(zn).

On the other hand, raising a complex number z to the power of some other complex
number w is an ambiguous process because complex powers give rise to multi-valued
logarithmic functions. For example, writing zw as an exponential to the natural base
e gives the following expression

zw = ew log z = exp[w(logr + i(θ + 2πn))] where z 	= 0 and n = any integer

As before, a branch cut can be used to select a specific value. The most common
branch cut or principal value chosen corresponds to θ being confined to the interval
(−π ,π ]. Then in order to compute a numerical value for zw = u + iv we can express
z = x1 + iy1 and w = x2 + iy2 and show that

u = (x1
2 + y1

2)x2/2 exp(−y2 arctan(
y1

x1
))cos(

y2

2
ln(x1

2 + y1
2)+ x2 arctan(

y1

x1
))

v = (x1
2 + y1

2)x2/2 exp(−y2 arctan(
y1

x1
))sin(

y2

2
ln(x1

2 + y1
2)+ x2 arctan(

y1

x1
)

Unfortunately, some earlier identities used to manipulate powers and logarithms for
positive real numbers will fail when raising a complex number to the power of some
other complex number no matter how the complex power and complex logarithm are
defined. For example, the formula log(x)b = b logx holds whenever x is a positive
real number and b is a real number. But for the principal branch of the complex
logarithm function, one obtains the following inequality

iπ = log(−1) = log((−i)2) 	= 2log(−i) = 2(−iπ/2) = −iπ
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regardless of which branch of the logarithm is used. Similarly, it can be shown that
many other exponential properties for real numbers will fail when carelessly applied
to complex numbers. For example, if z, w and u are all complex numbers then

(ez)w 	= e(zw) and (zw)u 	= zu wu and (z/w)u 	= zu/wu

Although the square root of a complex number can be easily calculated using one
of the formulas described earlier, Press et al. [22] have published another formula
that is allegedly more computationally efficient and, in addition, is also better able to
handle potential undesired underflow and overflow problems.

√
z =

√
x + iy =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if w = 0

w+ i(
y

2w
) if w 	= 0, x ≥ 0

|y|
2w

+ iw if w 	= 0, x < 0, y ≥ 0

|y|
2w

− iw if w 	= 0, x < 0, y < 0

where

w =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if x = y = 0

√|x|
√

1 +
√

1 +(y/x)2

2
if |x| ≥ |y|

√|y|
√

|x/y|+√
1 +(x/y)2

2
if |x| < |y|

4.4.4 Trigonometric and Hyperbolic Functions

A computationally feasible version of the complex and hyperbolic functions can be
easily found by applying Euler’s formula to a general complex number z. Using
eiz = cosz + isinz, along with its corresponding conjugate e−iz = cosz− isinz, one
can solve for cosz and sin z to obtain

cosz =
eiz + e−iz

2
and sin z =

eiz − e−iz

2i

The hyperbolic cosine and hyperbolic sine functions of a complex number z are
analogously given by

coshz =
ez + e−z

2
and sinhz =

ez − e−z

2

Using these results, together with the following trigonometric addition formulas,

sin(x + y) = sinxcosy + cosxsiny

cos(x + y) = cosxcosy− sinxsiny
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one arrives at the following numerically computable expression for the two most
fundamental trigonometric functions of a general complex number z

sinz = sin(x + iy)
= sin(x)cos(iy)+ cos(x)sin(iy)
= sin(x)cosh(y)+ icos(x)sinh(y)
= −isinh(iz)

cosz = cos(x + iy)
= cos(x)cos(iy)− sin(x)sin(iy)
= cos(x)cosh(y)− isin(x)sinh(y)
= cosh(iz)

The remaining complex trigonometric functions then immediately follow as shown
below.

tanz =
sinz

cosz
=

sin(2x)+ isinh(2y)
cos(2x)+ cosh(2y)

cotz =
1

tanz
=

sin(2x)− isinh(2y)
cosh(2y)− cos(2x)

secz =
1

cosz
=

cos(x)cosh(y)+ isin(x)sinh(y)

cos2(x)+ sinh2(y)

cscz =
1

sinz
=

sin(x)cosh(y)− icos(x)sinh(y)

sin2(x)+ sinh2(y)

Similarly, using the above results along with the following hyperbolic addition for-
mulas

sinh(x + y) = sinhxcoshy + coshxsinhy

cosh(x + y) = coshxcoshy + sinhxsinhy

one arrives at the following numerically computable expression for the two most
fundamental hyperbolic functions of a general complex number z

sinhz = sinh(x + iy)
= sinh(x)cosh(iy)+ cosh(x)sinh(iy)
= sinh(x)cos(y)+ icosh(x)sin(y)
= −isin(iz)

coshz = cosh(x + iy)
= cosh(x)cosh(iy)+ sinh(x)sinh(iy)
= cosh(x)cos(y)+ isinh(x)sin(y)
= cos(iz)
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Likewise, the remaining complex hyperbolic functions then immediately follow as
shown below.

tanhz =
sinhz

coshz
=

sinh2x + isin2y

cosh2x + cos2y
= −i tan(iz)

cothz =
1

tanhz
=

sinh(2x)− isin(2y)
cosh(2x)− cos(2y)

= icot(iz)

sechz =
1

coshz
=

cosh(x)cos(y)− isinh(x)sin(y)

cos2(y)+ sinh2(x)
= sec(iz)

cschz =
1

sinhz
=

sinh(x)cos(y)− icosh(x)sin(y)

sin2(y)+ sinh2(x)
= icsc(iz)

4.4.5 Inverse Trigonometric and Hyperbolic Functions

To find analytical expressions for calculating the inverse of complex trigonometric
and hyperbolic functions one can either manually derive them or look them up in a
reliable reference book such as the one by Abramowitz and Stegun [19]. Fortunately,
the steps involved in deriving expressions for both the trigonometric and hyperbolic
inverse functions are very straight forward and pretty much follow a pattern which
can be extended and applied towards deriving all the remaining functions. For exam-
ple, consider finding an analytical expression for the inverse complex sine function.
Let both z and w be complex numbers so that w = arcsinz. By taking the sine of both
sides of this equality and expressing sinw in exponential form we have

z = sinw =
eiw − e−iw

2i

from which we can solve for eiw = iz+
√

1− z2 and then for w and thus finally arrive
at the following expression for the inverse sine function of a complex number z

arcsinz = −i ln(i z+
√

1− z2)

Similar derivations for the inverse cosine and tangent functions of a complex number
z yields

arccosz = −i ln(z+ i
√

1− z2)

arctanz = (
i

2
) ln(

i+ z

i− z
) where z 	= i
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Once these three inverse trigonometric functions have been obtained, the remaining
others can be easily calculated by using the following identities

arccscz = arcsin(
1

z
) = −i ln(

√
z2 −1+ i

z
)

arcsecz = arccos(
1

z
) = i ln(

√
1− z2 + 1

z
)

arccotz = arctan(
1

z
) =

i

2
ln(

z− i

z+ i
)

Inverse hyperbolic functions in the complex domain are defined analogously to
those in the real domain. Since all these functions may be expressed using complex
logarithms, they too are infinitely multi-valued. Therefore, their principal values are
obtained from the corresponding principal values of their logarithms. Following a
similar derivation process for the inverse trigonometric functions, the complex in-
verse hyperbolic functions can be shown to be

arcsinhz = ln(z+
√

z2 + 1)

arccoshz = ln(z+
√

z2 −1)

arctanhz =
1

2
ln(

1 + z

1− z
)

As before, once these three inverse hyperbolic functions have been obtained, the
remaining others can be easily calculated by using the following identities

arccschz = arcsinh(
1

z
) = ln(

√
z2 + 1+ 1

z
)

arcsechz = arccosh(
1

z
) = ln(

√
1− z2 + 1

z
)

arccothz = arctanh(
1

z
) =

1

2
ln(

z+ 1

z−1
)

As esthetically and appealing as these inverse trigonometric and hyperbolic func-
tions may look, they are in fact computationally intensive due to the several underly-
ing steps that must be undertaken by a computer to numerically evaluate them using
complex numbers. From a purely computational perspective, it would be much faster
and efficient to evaluate those functions by first expressing them directly in terms of
their real and complex components. This approach not only eliminates the steps
involved to convert complex numbers back and forth but also eliminates the com-
putational overhead in having to frequently call upon special procedures to handle
all the complex number arithmetic. Both Abramowitz and Stegun [19] and Thomp-
son [26] have published the analytical expressions needed to numerically calculate
these inverse trigonometric and hyperbolic functions for complex numbers in terms
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of their real and complex components. These functions are all listed below for ref-
erence and for later coding implementation in C#. Therefore, with z = x + iy we
have

arccosz = ±{arccosβ − isgn(y) ln[α +
√

α2 −1]}
arcsinz = ±{arcsinβ + isgn(y) ln[α +

√
α2 −1]}

arctanz = (
1

2
)arctan(

2y

1− x2 − y2)+ (
i

4
) ln[

x2 +(y + 1)2

x2 +(y−1)2] where z2 	= −1

arccoshz = ln[α +
√

α2 −1]+ isgn(y) arccosβ

arcsinhz = sgn(x)ln[α ′ +
√

α ′2 −1]− i arcsinβ ′

arctanhz = (
1

4
) ln[

(x + 1)2 + y2

(x−1)2 + y2]+ (
i

2
)arctan(

2y

1− x2 − y2) where y2 	= −1

where sgn(y) = sign of y, as defined in Chapter 2, and
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)
As before, once these inverse trigonometric and hyperbolic functions have been ob-
tained, the remaining ones can be easily calculated by using the identities for arccscz,
arcsecz, arccotz, arccschz, arcsechz, arccothz given earlier in this chapter.

4.5 A Complex Number Library in C#

The pages that follow contain the source code listing of a proposed numerical library
for handling both complex number arithmetic along with the other elementary math-
ematical functions in C# as described in this chapter. In some cases I have coded
multiple versions of the same function for two reasons. First, some functions can
be expressed using different formulas and this may have some impact on the time it
takes to run a particular function on a given computer. In the case where process-
ing time is of the essence, the reader might want to run timing experiments to see
what version runs faster on a particular computer. Second, it is to show how close
the coding can resemble the actual formulas. While this feature may be esthetically
pleasing to the eye, it also serves to illustrate the powerful features of object oriented
programming that comes with C#.
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/////////////////////////////////////////////////////
// The complex struct represents a complex number //
// of the general format z = x + iy where x = Re(z)//
// = real part and y = Im(z) = imaginary part. A //
// complex instance has public double-precision //
// floating point data members real and imag. //
/////////////////////////////////////////////////////
[Serializable]
public struct Complex
{

private double real;
private double imag;

public double Real
{

get {return(real);}
set {real = value;}

}

public double Imag
{

get {return (imag);}
set {imag = value;}

}

public Complex(double x, double y)
{

this.real = x;
this.imag = y;

}

public static implicit operator double(Complex z)
{

return z.real;
}

public static explicit operator Complex(double x)
{

return (new Complex(x,0.0));
}

public static Complex CZero = new Complex(0.0,0.0);
public static Complex COne = new Complex(1.0,0.0);
public static Complex i = new Complex(0.0, 1.0);
public static Complex CNaN = new Complex(double.NaN,double.NaN);
public static Complex CInfinity =

new Complex(double.PositiveInfinity,double.PositiveInfinity);

public bool IsCZero
{get {return ((real==0.0) && (imag==0.0));}}

public bool IsCOne
{get {return ((real==1.0) && (imag==0.0));}}
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public bool Isi
{get {return ((real==0.0) && (imag==1.0));}}

public bool IsCNaN
{get {return double.IsNaN(real) || double.IsNaN(imag);}}

public bool IsCInfinity
{get {return double.IsInfinity(real) ||

double.IsInfinity(imag);}}

public bool IsReal
{get {return (imag==0.0);}}

public bool IsImag
{get {return (real==0.0);}}

// Returns the argument of a complex number.
public static double CArg(Complex z)
{

return (Math.Atan2(z.imag,z.real));
}

// Returns the conjugate of a complex number z.
public static Complex CConj(Complex z)
{

return (new Complex(z.real,-z.imag));
}

// Returns the norm (or modulus) of a complex number.
public static double CNorm(Complex z)
{

return (Math.Sqrt((z.real*z.real) +
(z.imag*z.imag)));

}

// Returns the norm (or modulus) of a complex number
// avoiding potential overflow and/or underflow for
// very small or very large numbers.
public static double CNorm2(Complex z)
{

double x = z.real;
double y = z.imag;

if (Math.Abs(x) < Math.Abs(y))
{

return (Math.Abs(y)*Math.Sqrt(1.0+(x/y)*(x/y)));
}
else
{

return (Math.Abs(x)*Math.Sqrt(1.0+(y/x)*(y/x)));
}

}

// Returns the inverse of a complex number.
public static Complex Inv(Complex z)
{ return (1.0/z); }
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// Returns the real part of a complex number.
public static double Re(Complex z)
{

return (z.real);
}

// Returns the imaginary part of a complex number.
public static double Im(Complex z)
{

return (z.imag);
}

// Converts:(r,theta) ----> (x,y)
public static Complex FromPolarToXY(double r,double theta)
{
return (new Complex((r*Math.Cos(theta)),(r*Math.Sin(theta))));

}

// Converts: (x,y) ----> (r,theta)
public static Complex FromXYToPolar(Complex z)
{
return (new Complex(CNorm(z),CArg(z)));

}

// Returns the negation of a complex number.
public static Complex CNeg(Complex z)
{

return (-z);
}

// Returns the sum of two complex numbers z1 and z2.
public static Complex CAdd(Complex z1, Complex z2)
{

return (z1+z2);
}

// Returns the sum of a real with a complex number.
public static Complex CAdd(double x, Complex z)
{

return (x+z);
}

// Returns the sum of a complex with a real number.
public static Complex CAdd(Complex z, double x)
{

return (z+x);
}

// Returns the difference between two complex numbers.
public static Complex CSub(Complex z1, Complex z2)
{

return (z1-z2);
}
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// Returns the difference between a real and a complex number.
public static Complex CSub(double x, Complex z)
{

return (x-z);
}

// Returns the difference between a complex and a real number.
public static Complex CSub(Complex z, double x)
{

return (z-x);
}

// Returns the product between two complex numbers.
public static Complex CMult(Complex z1, Complex z2)
{

return (z1*z2);
}

// Returns the product of a real with a complex number.
public static Complex CMult(double x, Complex z)
{

return (x*z);
}

// Returns the product of a complex and a real number.
public static Complex CMult(Complex z, double x)
{

return (z*x);
}

// Returns the quotient of dividing two complex numbers.
public static Complex CDiv(Complex z1, Complex z2)
{

return (z1/z2);
}

// Returns the quotient of dividing a real by a complex number.
public static Complex CDiv(double x, Complex z)
{

return (x/z);
}

// Returns the quotient of dividing a complex by a real number.
public static Complex CDiv(Complex z, double x)
{

return (z/x);
}

// Returns the quotient of dividing two complex numbers
// avoiding potential underflow and/or overflow for
// very small or very large numbers
public static Complex CDiv2(Complex z1, Complex z2)
{

double x1 = z1.real; double y1 = z1.imag;
double x2 = z2.real; double y2 = z2.imag;
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Complex u;
double denom;

if (z2.IsCZero) return Complex.CInfinity;

if (Math.Abs(x2) < Math.Abs(y2))
{

denom = x2*(x2/y2)+y2;
u.real = (x1*(x2/y2)+y1)/denom;
u.imag = (y1*(x2/y2)-x1)/denom;

}
else
{

denom = x2+y2*(y2/x2);
u.real = (x1+y1*(y2/x2))/denom;
u.imag = (y1-x1*(y2/x2))/denom;

}
return u;

}

public static Complex operator +(Complex z)
{

return z;
}

public static Complex operator +(Complex z1,Complex z2)
{

return (new Complex(z1.real+z2.real,z1.imag+z2.imag));
}

// Returns the sum of a real number with a complex number.
public static Complex operator +(double x,Complex z)
{

return (new Complex(x+z.real,z.imag));
}

// Returns the sum of a complex number with a real number.
public static Complex operator +(Complex z,double x)
{

return (new Complex(z.real+x,z.imag));
}

// Returns the negation of a complex number.
public static Complex operator -(Complex z)
{

return (new Complex(-z.real,-z.imag));
}

// Returns the difference between two complex numbers.
public static Complex operator -(Complex z1,Complex z2)
{

return (new Complex(z1.real-z2.real,
z1.imag-z2.imag));

}
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// Returns the difference of a real with a complex number.
public static Complex operator -(double x,Complex z)
{

return (new Complex(x-z.real,-z.imag));
}

// Returns the difference of a complex with a real number.
public static Complex operator -(Complex z,double x)
{

return (new Complex(z.real-x,z.imag));
}

// Returns the product of two complex numbers z1 * z2.
public static Complex operator *(Complex z1,Complex z2)
{

double x = (z1.real*z2.real)-(z1.imag*z2.imag);
double y = (z1.real*z2.imag)+(z1.imag*z2.real);
return (new Complex(x,y));

}

// Returns the product of a real and a complex number.
public static Complex operator *(double x, Complex z)
{

return (new Complex(x*z.real,x*z.imag));
}

// Returns the product of a complex and a real number.
public static Complex operator *(Complex z,double x)
{

return (new Complex(z.real*x, z.imag*x));
}

// Returns the quotient of two complex numbers z1 / z2.
public static Complex operator /(Complex z1,Complex z2)
{
if (z2.IsCZero) return Complex.CInfinity;
double denom = (double)(Math.Pow(z2.real, 2.0) +

Math.Pow(z2.imag, 2.0));
double x = ((z1.real*z2.real)+(z1.imag*z2.imag))/denom;
double y = ((z1.imag*z2.real)-(z1.real*z2.imag))/denom;
return (new Complex(x,y));

}

// Returns the quotient of dividing a real by a complex number.
public static Complex operator /(double x,Complex z)
{
if (z.IsCZero) return Complex.CInfinity;
double denom = (double)(Math.Pow(z.real, 2.0) +

Math.Pow(z.imag, 2.0));
double re = (x*z.real)/denom;
double im = (0.0-(x*z.imag))/denom;
return (new Complex(re,im));

}
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// Returns the quotient of dividing a complex by a real number.
public static Complex operator /(Complex z,double x)
{

if (x==0.0) return Complex.CInfinity;
double re = z.real/x;
double im = z.imag/x;
return (new Complex(re,im));

}

// Tests for equality of two complex numbers.
public static bool operator ==(Complex z1,Complex z2)
{

return ((z1.real==z2.real) && (z1.imag==z2.imag));
}

// Tests for inequality of two complex numbers.
public static bool operator !=(Complex z1, Complex z2)
{

return (!(z1==z2));
}

// Tests for equality of between two complex numbers.
public override bool Equals(Object obj)
{

return ((obj is Complex) && (this == (Complex)obj));
}

// Returns an integer hash code for this complex number.
// If you override Equals, override GetHashCode too.
public override int GetHashCode()
{

//return this.ToString().GetHashCode();
return (real.GetHashCode() ˆ imag.GetHashCode());

}

// Returns a formatted string representation in
// the form z = x + iy for a complex number.
public override string ToString()
{

return (String.Format("{0} + {1}i", real, imag));
}

public static Complex CExp(Complex z)
{
double x = z.real;
double y = z.imag;
double expx = Math.Exp(x);
return (new Complex(expx*Math.Cos(y),expx*Math.Sin(y)));

}

// Logarithm of complex z to base e
public static Complex CLog(Complex z)
{

return (new Complex(Math.Log(Complex.CNorm(z)),
Math.Atan2(z.imag,z.real)));

}
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// Another version of logarithm of complex z to base e
public static Complex CLog2(Complex z)
{

double x = z.real;
double y = z.imag;
double re = 0.5*Math.Log(x*x + y*y);
double im = Math.Atan2(y,x);
return (new Complex(re,im));

}

// Logarithm of complex z to base 10
public static Complex CLog10(Complex z)
{

return (Complex.CLog(z)/Complex.CLog((Complex)10.0));
}

// Logarithm of complex z1 to complex base z2
public static Complex CLogb(Complex z1, Complex z2)
{

return (Complex.CLog(z1)/Complex.CLog(z2));
}

// Logarithm of real x to complex base z2
public static Complex CLogb(double x, Complex z2)
{

return (Complex.CLog((Complex)x)/Complex.CLog(z2));
}

// Logarithm of complex z1 to real base x
public static Complex CLogb(Complex z1, double x)
{

return (Complex.CLog(z1)/Complex.CLog((Complex)x));
}

// Complex z raised to the power of complex w
public static Complex CPow(Complex z, Complex w)
{

return (Complex.CExp(w*Complex.CLog(z)));
}

// Complex z raised to the power of complex w (ver 2)
public static Complex CPow2(Complex z, Complex w)
{
double x1 = z.real; double y1 = z.imag;
double x2 = w.real; double y2 = w.imag;

double r1 = Math.Sqrt(x1*x1 + y1*y1);
double theta1 = Math.Atan2(y1,x1);
double phi = theta1*x2 + y2*Math.Log(r1);

double re = Math.Pow(r1,x2)*Math.Exp(-theta1*y2)*Math.Cos(phi);
double im = Math.Pow(r1,x2)*Math.Exp(-theta1*y2)*Math.Sin(phi);

return (new Complex(re,im));
}
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// Complex z raised to the power of real x
public static Complex CPow(Complex z, double x)
{

return (Complex.CExp(x*Complex.CLog(z)));
}

// Complex z raised to the power of real x (ver 2)
public static Complex CPow2(Complex z, double x)
{

double x1 = z.real;
double y1 = z.imag;

double r1 = Math.Sqrt(x1*x1 + y1*y1);
double theta1 = Math.Atan2(y1,x1);
double phi = theta1*x;

double re = Math.Pow(r1,x)*Math.Cos(phi);
double im = Math.Pow(r1,x)*Math.Sin(phi);

return (new Complex(re, im));
}

// Real x raised to the power of complex z
public static Complex CPow(double x, Complex z)
{

return (Complex.CExp(z*Math.Log(x)));
}

// Real x raised to the power of complex z (ver 2)
public static Complex CPow2(double x, Complex w)
{

double x2 = w.real;
double y2 = w.imag;

double r1 = Math.Sqrt(x*x);
double theta1 = Math.Atan2(0.0,x);
double phi = theta1*x2 + y2*Math.Log(r1);

double re = Math.Pow(r1,x2)*Math.Cos(phi);
double im = Math.Pow(r1,x2)*Math.Sin(phi);

return (new Complex(re,im));
}

// Complex root w of complex number z
public static Complex CRoot(Complex z,Complex w)
{

return (Complex.CExp(Complex.CLog(z)/w));
}

// Real root x of complex number z
public static Complex CRoot(Complex z,double x)
{

return (Complex.CExp(Complex.CLog(z)/x));
}
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// Complex root z of real number x
public static Complex CRoot(double x,Complex z)
{

return (Complex.CExp(Math.Log(x)/z));
}

// Complex square root of complex number z
public static Complex CSqrt(Complex z)
{

return (Complex.CExp(Complex.CLog(z)/2.0));
}

// Complex sine of complex number z
public static Complex CSin(Complex z)
{
return ((Complex.CExp(i*z)-Complex.CExp(-i*z))/(2.0*i));

}

// Complex sine of complex number z (ver 2)
public static Complex CSin2(Complex z)
{

double x = z.real;
double y = z.imag;
double re = Math.Sin(x)*Math.Cosh(y);
double im = Math.Cos(x)*Math.Sinh(y);
return (new Complex(re,im));

}

// Complex cosine of complex number z
public static Complex CCos(Complex z)
{

return((Complex.CExp(i*z)+Complex.CExp(-i*z))/2.0);
}

// Complex cosine of complex number z (ver 2)
public static Complex CCos2(Complex z)
{

double x = z.real;
double y = z.imag;
double re = Math.Cos(x)*Math.Cosh(y);
double im = -Math.Sin(x)*Math.Sinh(y);
return (new Complex(re,im));

}

// Complex tangent of complex number z
public static Complex CTan(Complex z)
{

return (Complex.CSin(z)/Complex.CCos(z));
}

// Complex tangent of complex number z (ver 2)
public static Complex CTan2(Complex z)
{

double x2 = 2.0*z.real;
double y2 = 2.0*z.imag;
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double denom = Math.Cos(x2)+Math.Cosh(y2);
if (denom == 0.0) return Complex.CInfinity;
double re = Math.Sin(x2)/denom;
double im = Math.Sinh(y2)/denom;
return (new Complex(re,im));

}

// Complex cotangent of complex number z
public static Complex CCot(Complex z)
{

return (Complex.CCos(z)/Complex.CSin(z));
}

// Complex cotangent of complex number z (ver 2)
public static Complex CCot2(Complex z)
{

double x2 = 2.0*z.real;
double y2 = 2.0*z.imag;
double denom = Math.Cosh(y2)-Math.Cos(x2);
if (denom==0.0) return Complex.CInfinity;
double re = Math.Sin(x2)/denom;
double im = -Math.Sinh(y2)/denom;
return (new Complex(re,im));

}

// Complex secant of complex number z
public static Complex CSec(Complex z)
{

return (1.0/Complex.CCos(z));
}

// Complex secant of complex number z (ver 2)
public static Complex CSec2(Complex z)
{

double x = z.real;
double y = z.imag;

double denom = Math.Cos(x)*Math.Cos(x)+
Math.Sinh(y)*Math.Sinh(y);

if (denom == 0.0) return Complex.CInfinity;
double re = Math.Cos(x)*Math.Cosh(y)/denom;
double im = Math.Sin(x)*Math.Sinh(y)/denom;
return (new Complex(re,im));

}

// Complex cosecant of complex number z
public static Complex CCsc(Complex z)
{

return (1.0/Complex.CSin(z));
}

// Complex cosecant of complex number z (ver 2)
public static Complex CCsc2(Complex z)
{

double x = z.real;
double y = z.imag;
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double denom = Math.Sin(x)*Math.Sin(x)+
Math.Sinh(y)*Math.Sinh(y);

if (denom==0.0) return Complex.CInfinity;
double re = Math.Sin(x)*Math.Cosh(y)/denom;
double im = -Math.Cos(x)*Math.Sinh(y)/denom;
return (new Complex(re,im));

}

// Complex ArcSine of complex number z
public static Complex CArcSin(Complex z)
{
return (-i*Complex.CLog((i*z)+Complex.CSqrt(1.0-(z*z))));

}

// Complex ArcSine of complex number z (ver 2)
public static Complex CArcSin2(Complex z)
{

double x = z.real;
double y = z.imag;

double ysqd = y*y;
double rtpos = Math.Sqrt(Math.Pow(x+1.0,2.0)+ysqd);
double rtneg = Math.Sqrt(Math.Pow(x-1.0,2.0)+ysqd);
double alpha = 0.5*(rtpos+rtneg);
double beta = 0.5*(rtpos-rtneg);

double InvSinZRe = Math.Asin(beta);
double InvSinZIm = Math.Sign(y) *

Math.Log(alpha + Math.Sqrt(alpha*alpha-1.0));

return (new Complex(InvSinZRe, InvSinZIm));
}

// Complex ArcCosine of complex number z
public static Complex CArcCos(Complex z)
{

return(-i*Complex.CLog(z+i*Complex.CSqrt(1.0-(z*z))));
}

// Complex ArcCosine of complex number z (ver 2)
public static Complex CArcCos2(Complex z)
{

double x = z.real;
double y = z.imag;

double ysqd = y*y;
double rtpos = Math.Sqrt(Math.Pow(x+1.0,2.0)+ysqd);
double rtneg = Math.Sqrt(Math.Pow(x-1.0,2.0)+ysqd);
double alpha = 0.5*(rtpos+rtneg);
double beta = 0.5*(rtpos-rtneg);
double InvCosZRe = Math.Acos(beta);
double InvCosZIm = -Math.Sign(y) *

Math.Log(alpha + Math.Sqrt(alpha*alpha-1.0));

return (new Complex(InvCosZRe,InvCosZIm));
}
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// Complex ArcTangent of complex number z
public static Complex CArcTan(Complex z)
{
return ((i/2.0)*Complex.CLog((i+z)/(i-z)));

}

// Complex ArcTangent of complex number z (ver 2)
public static Complex CArcTan2(Complex z)
{
double x = z.real;
double y = z.imag;

double xsqd = x * x;
double ysqd = y * y;

double InvTanZRe=0.5*Math.Atan2(2.0*x,1.0-xsqd-ysqd);
double InvTanZIm=0.25*Math.Log((xsqd+
Math.Pow(y+1.0,2.0))/(xsqd+Math.Pow(y-1.0,2.0)));

return (new Complex(InvTanZRe,InvTanZIm));
}

// Complex ArcCotangent of complex number z
public static Complex CArcCot(Complex z)
{
return (Complex.CArcTan(1.0/z));

}

// Complex ArcCotangent of complex number z (ver 2)
public static Complex CArcCot2(Complex z)
{
return ((i/2.0)*(Complex.CLog((z-i)/(z+i))));

}

// Complex ArcSecant of complex number z
public static Complex CArcSec(Complex z)
{
return (Complex.CArcCos(1.0/z));

}

// Complex ArcSecant of complex number z (ver 2)
public static Complex CArcSec2(Complex z)
{
return (i*Complex.CLog((Complex.CSqrt(1.0-(z*z))+1.0)/z));

}

// Complex ArcCosecant of complex number z
public static Complex CArcCsc(Complex z)
{
return (Complex.CArcSin(1.0/z));

}

// Complex ArcCosecant of complex number z (ver 2)
public static Complex CArcCsc2(Complex z)
{ return (-i*Complex.CLog((Complex.CSqrt((z*z)-1.0)+i)/z)); }
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// hyperbolic sine of complex number z
public static Complex CSinh(Complex z)
{

return ((Complex.CExp(z)-Complex.CExp(-z))/2.0);
}

// Hyperbolic Sine of complex number z (ver 2)
public static Complex CSinh2(Complex z)
{

double x = z.real;
double y = z.imag;
double SinhZRe = Math.Sinh(x)*Math.Cos(y);
double SinhZIm = Math.Cosh(x)*Math.Sin(y);
return (new Complex(SinhZRe,SinhZIm));

}

// Complex Hyperbolic Sine
// of complex number z (ver 3)
public static Complex CSinh3(Complex z)
{

return (-i*Complex.CSin(i*z));
}

// Hyperbolic Cosine of complex number z
public static Complex CCosh(Complex z)
{

return ((Complex.CExp(z)+Complex.CExp(-z))/2.0);
}

// Hyperbolic Cosine of complex number z (ver 2)
public static Complex CCosh2(Complex z)
{

double x = z.real;
double y = z.imag;
double CoshZRe = Math.Cosh(x)*Math.Cos(y);
double CoshZIm = Math.Sinh(x)*Math.Sin(y);
return (new Complex(CoshZRe,CoshZIm));

}

// Hyperbolic Cosine of complex number z (ver 3)
public static Complex CCosh3(Complex z)
{

return (Complex.CCos(i*z));
}

// Complex Hyperbolic Tangent of complex number z
public static Complex CTanh(Complex z)
{

return (Complex.CSinh(z)/Complex.CCosh(z));
}

// Hyperbolic Tangent of complex number z (ver 2)
public static Complex CTanh2(Complex z)
{

double twox = 2.0*z.real;
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double twoy = 2.0*z.imag;
double denom = Math.Cosh(twox)+Math.Cos(twoy);

double TanhZRe = Math.Sinh(twox)/denom;
double TanhZIm = Math.Sin(twoy)/denom;
return (new Complex(TanhZRe,TanhZIm));

}

// Hyperbolic Tangent of complex number z (ver 3)
public static Complex CTanh3(Complex z)
{

return (-i*Complex.CTan(i*z));
}

// Hyperbolic Cotangent of complex number z
public static Complex CCoth(Complex z)
{

return (Complex.CCosh(z)/Complex.CSinh(z));
}

// Hyperbolic Cotangent of complex number z (ver 2)
public static Complex CCoth2(Complex z)
{

return (Complex.CCosh2(z)/Complex.CSinh2(z));
}

// Hyperbolic Cotangent of complex number z (ver 3)
public static Complex CCoth3(Complex z)
{

double twox = 2.0*z.real;
double twoy = 2.0*z.imag;
double denom = Math.Cosh(twox)-Math.Cos(twoy);

double CothZRe = Math.Sinh(twox)/denom;
double CothZIm = -Math.Sin(twoy)/denom;
return (new Complex(CothZRe,CothZIm));

}

// Hyperbolic Cotangent of complex number z (ver 4)
public static Complex CCoth4(Complex z)
{

return (i*Complex.CCot(i*z));
}

// Hyperbolic Secant of complex number z
public static Complex CSech(Complex z)
{

return (1.0/Complex.CCosh(z));
}

// Hyperbolic Secant of complex number z (ver 2)
public static Complex CSech2(Complex z)
{

return(1.0/Complex.CCosh2(z));
}
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// Hyperbolic Secant of complex number z (ver 3)
public static Complex CSech3(Complex z)
{

double CoshX = Math.Cosh(z.real);
double CosY = Math.Cos(z.imag);
double SinhX = Math.Sinh(z.real);
double SinY = Math.Sin(z.imag);

double denom = CosY*CosY+SinhX*SinhX;

double CSechZRe = (CoshX*CosY)/denom;
double CSechZIm = -(SinhX*SinY)/denom;
return (new Complex(CSechZRe,CSechZIm));

}

// Hyperbolic Secant of complex number z (ver 4)
public static Complex CSech4(Complex z)
{

return (Complex.CSec(i*z));
}

// Hyperbolic Cosecant of complex number z
public static Complex CCsch(Complex z)
{

return (1.0/Complex.CSinh(z));
}

// Hyperbolic Cosecant of complex number z (ver 2)
public static Complex CCsch2(Complex z)
{

return (1.0/Complex.CSinh2(z));
}

// Hyperbolic Cosecant of complex number z (ver 3)
public static Complex CCsch3(Complex z)
{

double CoshX = Math.Cosh(z.real);
double CosY = Math.Cos(z.imag);
double SinhX = Math.Sinh(z.real);
double SinY = Math.Sin(z.imag);

double denom = SinY*SinY+SinhX*SinhX;

double CSechZRe = (SinhX*CosY)/denom;
double CSechZIm = -(CoshX*SinY)/denom;
return (new Complex(CSechZRe, CSechZIm));

}

// Hyperbolic Cosecant of complex number z (ver 4)
public static Complex CCsch4(Complex z)
{

return (i*Complex.CCsc(i*z));
}
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// Inverse Hyperbolic Sine of complex number z
public static Complex CArcSinh(Complex z)
{

return (Complex.CLog(z+Complex.CSqrt((z*z)+1.0)));
}

// Inverse Hyperbolic Sine of complex number z (ver 2)
public static Complex CArcSinh2(Complex z)
{

double x = z.real;
double y = z.imag;

double xsqd = x*x;
double rtpos = Math.Sqrt(Math.Pow(y-1.0,2.0)+xsqd);
double rtneg = Math.Sqrt(Math.Pow(y+1.0,2.0)+xsqd);
double alphap = 0.5*(rtpos+rtneg);
double betap = 0.5*(rtpos-rtneg);

double InvSinhZRe = Math.Sign(x) *
Math.Log(alphap+Math.Sqrt(alphap*alphap-1));

double InvSinhZIm = -Math.Asin(betap);

return (new Complex(InvSinhZRe,InvSinhZIm));
}

// Inverse Hyperbolic Cosine of complex number z
public static Complex CArcCosh(Complex z)
{

return (Complex.CLog(z+Complex.CSqrt(z*z-1.0)));
}

// Inverse Hyperbolic Cosine of complex number z (ver 2)
public static Complex CArcCosh2(Complex z)
{

double x = z.real;
double y = z.imag;

double ysqd = y*y;
double rtpos = Math.Sqrt(Math.Pow(x+1.0,2.0)+ysqd);
double rtneg = Math.Sqrt(Math.Pow(x-1.0,2.0)+ysqd);
double alpha = 0.5*(rtpos+rtneg);
double beta = 0.5*(rtpos-rtneg);

double InvCoshZRe =
Math.Log(alpha+Math.Sqrt(alpha*alpha-1));

double InvCoshZIm = Math.Sign(y)*Math.Acos(beta);

return (new Complex(InvCoshZRe,InvCoshZIm));
}

// Inverse Hyperbolic Tangent of complex number z
public static Complex CArcTanh(Complex z)
{

return (0.5*Complex.CLog((1.0+z)/(1.0 -z)));
}

© 2010 by Taylor and Francis Group, LLC



150 Numerical Methods, Algorithms and Tools in C#

// Inverse Hyperbolic Tangent of complex number z (ver 2)
public static Complex CArcTanh2(Complex z)
{
double x = z.real;
double y = z.imag;
double xsqd = x*x;
double ysqd = y*y;

double InvTanhZRe = 0.25 * Math.Log((ysqd +
Math.Pow(x+1.0,2.0)) / (ysqd+Math.Pow(x-1.0,2.0)));

double InvTanhZIm = 0.5*Math.Atan2(2.0*y,1.0-xsqd-ysqd);

return (new Complex(InvTanhZRe,InvTanhZIm));
}

// Inverse Hyperbolic Cotangent of complex number z
public static Complex CArcCoth(Complex z)
{

return (Complex.CArcTanh(1.0/z));
}

// Inverse Hyperbolic Cotangent of complex number z (ver 2)
public static Complex CArcCoth2(Complex z)
{

return (0.5 * Complex.CLog((z+1.0)/(z-1.0)));
}

// Inverse Hyperbolic Secant of complex number z
public static Complex CArcSech(Complex z)
{

return (Complex.CArcCosh(1.0/z));
}

// Inverse Hyperbolic Secant of complex number z (ver 2)
public static Complex CArcSech2(Complex z)
{
return (Complex.CLog((1.0+Complex.CSqrt(1.0-(z*z)))/z));

}

// Inverse Hyperbolic Cosecant of complex number z
public static Complex CArcCsch(Complex z)
{

return (Complex.CArcSinh(1.0/z));
}

// Inverse Hyperbolic Cosecant of complex number z (ver 2)
public static Complex CArcCsch2(Complex z)
{ return (Complex.CLog((1.0+Complex.CSqrt(1.0+(z*z)))/z)); }

}
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4.6 A Complex Number Vector Library in C#

Following the same concepts introduced in an earlier chapter on the topic of real
number vectors, we can now extend those ideas to enable vector structures to handle
complex numbers. I will, however, omit repeating myself with a full blown account
of detailed explanations of the concepts involved. Instead, I will only point out the
major differences between the complex and the real number vector structures and
include a listing of the source code to illustrate the implementation of these new
concepts. The basic definitions and mathematical operations of complex vectors are
similar to those of real vectors. However, instead of using real numbers, we now use
complex numbers and the mathematical operations now all follow the well estab-
lished rules for complex numbers. Although the basic definitions and mathematical
operations of complex vectors are similar to those of real vectors, there is a minor
difference in the way that the dot product is handled. For two complex vectors, their
dot product is defined by taking the conjugate one of the two vectors and applying
the dot product formula as in the case of real number vectors.

public struct CVector : ICloneable
{

// Fields
private int ndim;
private Complex[] vector;

// Constructors
public CVector(int ndim)
{

this.ndim = ndim;
this.vector = new Complex[ndim];
for (int i = 0; i < ndim; i++)
{

vector[i] = Complex.CZero;
}

}

public CVector(Complex[] cv)
{

this.ndim = cv.Length;
this.vector = cv;

}

public Complex this[int i] //Indexers
{

get
{

if (i < 0 || i > ndim)
{ throw new Exception("i is out of range!"); }
return vector[i];

}
set { vector[i] = value; }

}
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// Accessors
public int GetCVectorSize
{

get { return ndim; }
}

// Override Methods
public override string ToString()
{

string str = "(";
for (int i = 0; i < ndim - 1; i++)
{

str += vector[i] + ", ";
}
str += vector[ndim - 1] + ")";
return str;

}

public override bool Equals(object obj)
{

return (obj is CVector) && this.Equals((CVector)obj);
}

public bool Equals(CVector cv)
{

return vector == cv.vector;
}

public override int GetHashCode()
{

return vector.GetHashCode();
}

public static bool operator ==(CVector v1,CVector v2)
{

return v1.Equals(v2);
}

public static bool operator !=(CVector v1,CVector v2)
{

return !v1.Equals(v2);
}

public static CVector operator +(CVector cv)
{

return cv;
}

public static CVector operator +(CVector v1,CVector v2)
{

CVector result = new CVector(v1.GetCVectorSize);
for (int i = 0; i < v1.GetCVectorSize; i++)
{ result[i] = v1[i] + v2[i]; }
return result;

}
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public static CVector operator +(CVector cv,double d)
{

CVector result = new CVector(cv.GetCVectorSize);
for (int i = 0; i < cv.GetCVectorSize; i++)
{

result[i] = cv[i] + d;
}
return result;

}

public static CVector operator +(double d,CVector cv)
{

CVector result = new CVector(cv.GetCVectorSize);
for (int i = 0; i < cv.GetCVectorSize; i++)
{

result[i] = cv[i] + d;
}
return result;

}

public static CVector operator +(CVector cv, Complex cn)
{

CVector result = new CVector(cv.GetCVectorSize);
for (int i = 0; i < cv.GetCVectorSize; i++)
{

result[i] = cv[i] + cn;
}
return result;

}

public static CVector operator +(Complex cn, CVector cv)
{

CVector result = new CVector(cv.GetCVectorSize);
for (int i = 0; i < cv.GetCVectorSize; i++)
{

result[i] = cv[i] + cn;
}
return result;

}

public static CVector operator -(CVector cv)
{

Complex[] result = new Complex[cv.GetCVectorSize];
for (int i = 0; i < cv.GetCVectorSize; i++)
{ result[i] = -cv[i]; }
return new CVector(result);

}

public static CVector operator -(CVector v1, CVector v2)
{

CVector result = new CVector(v1.GetCVectorSize);
for (int i = 0; i < v1.GetCVectorSize; i++)
{ result[i] = v1[i] - v2[i]; }
return result;

}
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public static CVector operator -(CVector cv, double d)
{

CVector result = new CVector(cv.GetCVectorSize);
for (int i = 0; i < cv.GetCVectorSize; i++)
{

result[i] = cv[i] - d;
}
return result;

}

public static CVector operator -(double d, CVector cv)
{

CVector result = new CVector(cv.GetCVectorSize);
for (int i = 0; i < cv.GetCVectorSize; i++)
{

result[i] = d - cv[i];
}
return result;

}

public static CVector operator -(CVector cv, Complex cn)
{

CVector result = new CVector(cv.GetCVectorSize);
for (int i = 0; i < cv.GetCVectorSize; i++)
{

result[i] = cv[i] - cn;
}
return result;

}

public static CVector operator -(Complex cn, CVector cv)
{

CVector result = new CVector(cv.GetCVectorSize);
for (int i = 0; i < cv.GetCVectorSize; i++)
{

result[i] = cn - cv[i];
}
return result;

}

public static CVector operator *(CVector cv, double d)
{

CVector result = new CVector(cv.GetCVectorSize);
for (int i = 0; i < cv.GetCVectorSize; i++)
{ result[i] = cv[i] * d; }
return result;

}

public static CVector operator *(double d, CVector cv)
{

CVector result = new CVector(cv.GetCVectorSize);
for (int i = 0; i < cv.GetCVectorSize; i++)
{ result[i] = d * cv[i]; }
return result;

}
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public static CVector operator *(CVector cv, Complex cn)
{

CVector result = new CVector(cv.GetCVectorSize);
for (int i = 0; i < cv.GetCVectorSize; i++)
{

result[i] = cv[i] * cn;
}
return result;

}

public static CVector operator *(Complex cn, CVector cv)
{

CVector result = new CVector(cv.GetCVectorSize);
for (int i = 0; i < cv.GetCVectorSize; i++)
{

result[i] = cn * cv[i];
}
return result;

}

public static CVector Product(CVector v1, CVector v2)
{

CVector result = new CVector(v1.GetCVectorSize);
for (int i = 0; i < v1.GetCVectorSize; i++)
{

result[i] = v1[i] * v2[i];
}
return result;

}

public static CVector operator /(CVector cv, double d)
{

CVector result = new CVector(cv.GetCVectorSize);
for (int i = 0; i < cv.GetCVectorSize; i++)
{

result[i] = cv[i] / d;
}
return result;

}

public static CVector operator /(double d, CVector cv)
{

CVector result = new CVector(cv.GetCVectorSize);
for (int i = 0; i < cv.GetCVectorSize; i++)
{ result[i] = d / cv[i]; }
return result;

}

public static CVector operator /(CVector cv, Complex cn)
{

CVector result = new CVector(cv.GetCVectorSize);
for (int i = 0; i < cv.GetCVectorSize; i++)
{ result[i] = cv[i] / cn; }
return result;

}

© 2010 by Taylor and Francis Group, LLC



156 Numerical Methods, Algorithms and Tools in C#

public static CVector operator /(Complex cn, CVector cv)
{

CVector result = new CVector(cv.GetCVectorSize);
for (int i = 0; i < cv.GetCVectorSize; i++)
{

result[i] = cn / cv[i];
}
return result;

}

// Makes a clone copy of a complex vector
public CVector Clone()
{

CVector cv = new CVector(vector);
cv.vector = (Complex[])vector.Clone();
return cv;

}

object ICloneable.Clone()
{

return Clone();
}

// Methods
// Calculates the dot product of a complex vector
public static Complex DotProduct(CVector v1, CVector v2)
{

Complex result = Complex.CZero;
for (int i = 0; i < v1.GetCVectorSize; i++)
{

result += CConj(v1[i]) * v2[i];
}
return result;

}

// Calculates the norm of a complex vector
public double GetNorm()
{

Complex result = Complex.CZero;
for (int i = 0; i < this.GetCVectorSize; i++)
{

result += CConj(vector[i]) * vector[i];
}
return Math.Sqrt(result.Real*result.Real +

result.Imag*result.Imag);
}

// Calculates the square of the norm of a complex vector
public double GetNormSquare()
{

Complex result = Complex.CZero;
for (int i = 0; i < this.GetCVectorSize; i++)
{ result += CConj(vector[i]) * vector[i]; }
return (result.Real*result.Real+result.Imag*result.Imag);

}
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// Normalizes a complex vector
public void Normalize()
{
double norm = GetNorm();
if (norm == 0)
{
throw new Exception("Normalized a vector with norm of zero!");

}
for (int i = 0; i < this.GetCVectorSize; i++)
{
vector[i] /= norm;

}
}

// Calculates the unit vector of a complex vector
public CVector GetUnitVector()
{

CVector result = new CVector(vector);
result.Normalize();
return result;

}

// Calculates the complex conjugate of a complex vector
public CVector GetConjugate()
{

for (int i = 0; i < this.GetCVectorSize; i++)
{

vector[i] = CConj(vector[i]);
}
return new CVector(vector);

}

// Swaps entries in a complex vector
public CVector SwapCVectorEntries(int m, int n)
{

Complex temp = vector[m];
vector[m] = vector[n];
vector[n] = temp;
return new CVector(vector);

}

// Calculates the cross product between two complex vectors
public static CVector CrossProduct(CVector v1, CVector v2)
{

if (v1.GetCVectorSize != 3)
{

throw new Exception("Vector v1 must be 3 dimensional!");
}
CVector result = new CVector(3);
result[0] = v1[1] * v2[2] - v1[2] * v2[1];
result[1] = v1[2] * v2[0] - v1[0] * v2[2];
result[2] = v1[0] * v2[1] - v1[1] * v2[0];
return result;

}
}
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4.7 A Complex Number Matrix Library in C#

Following the same concepts introduced in an earlier chapter on the topic of real
number matrices, we can now extend those ideas to enable matrix structures to handle
complex numbers. I will, however, omit repeating myself with a full blown account
of detailed explanations of the concepts involved. Instead, I will only point out the
major differences between the complex and the real number matrix structures and
include a listing of the source code to illustrate the implementation of these new
concepts. The basic definitions and mathematical operations of complex matrices
are similar to those of real matrices. However, instead of using real numbers, we
now use complex numbers and the mathematical operations now all follow the well
established rules for complex numbers.
public struct CMatrix : ICloneable
{

// Fields
private int nRows; private int nCols;
private Complex[,] matrix;

// Constructors
public CMatrix(int nRows, int nCols)
{

this.nRows = nRows; this.nCols = nCols;
this.matrix = new Complex[nRows, nCols];
for (int i = 0; i < nRows; i++)
{

for (int j = 0; j < nCols; j++)
{

matrix[i, j] = Complex.CZero;
}

}
}

public CMatrix(Complex[,] matrix)
{

this.nRows = matrix.GetLength(0);
this.nCols = matrix.GetLength(1);
this.matrix = matrix;

}

public CMatrix IdentityMatrix()
{

CMatrix m = new CMatrix(nRows, nCols);
for (int i = 0; i < nRows; i++)
{

for (int j = 0; j < nCols; j++)
{

if (i == j) { m[i, j] = new Complex(1, 0); }
}

}
return m;

}
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// Accessors
public int GetnRows
{ get { return nRows; } }

public int GetnCols
{ get { return nCols; } }

// Indexers
public Complex this[int m, int n]
{

get
{

if (m < 0 || m > nRows)
{

throw new Exception("m-th row is out of range!");
}
if (n < 0 || n > nCols)
{

throw new Exception("n-th col is out of range!");
}
return matrix[m, n];

}
set { matrix[m, n] = value; }

}
// Override Methods
public override string ToString()
{

string strMatrix = "(";
for (int i = 0; i < nRows; i++)
{

string str = "";
for (int j = 0; j < nCols - 1; j++)
{

str += matrix[i, j].ToString() + ", ";
}
str += matrix[i, nCols - 1].ToString();
if (i != nRows - 1 && i == 0)

strMatrix += str + "\n";
else if (i != nRows - 1 && i != 0)

strMatrix += " " + str + "\n";
else

strMatrix += " " + str + ")";
}
return strMatrix;

}

public override bool Equals(object obj)
{ return (obj is CMatrix) && this.Equals((CMatrix)obj); }

public bool Equals(CMatrix cm)
{ return matrix == cm.matrix; }

public override int GetHashCode()
{ return matrix.GetHashCode(); }
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public static bool operator ==(CMatrix cm1, CMatrix cm2)
{ return cm1.Equals(cm2); }

public static bool operator !=(CMatrix cm1, CMatrix cm2)
{ return !cm1.Equals(cm2); }

public static CMatrix operator +(CMatrix cm)
{ return cm; }

public static CMatrix operator +(CMatrix cm1, CMatrix cm2)
{

if (!CMatrix.CompareDimension(cm1, cm2))
{

throw new Exception("The dimensions of 2 matrices must be
the same!");

}
CMatrix result = new CMatrix(cm1.GetnRows, cm1.GetnCols);
for (int i = 0; i < cm1.GetnRows; i++)
{

for (int j = 0; j < cm1.GetnCols; j++)
{

result[i, j] = cm1[i, j] + cm2[i, j];
}

}
return result;

}

public static CMatrix operator +(CMatrix cm, Complex cn)
{

CMatrix result = new CMatrix(cm.GetnRows, cm.GetnCols);
for (int i = 0; i < cm.GetnRows; i++)
{

for (int j = 0; j < cm.GetnCols; j++)
{

result[i, j] = cm[i, j] + cn;
}

}
return result;

}

public static CMatrix operator +(Complex cn, CMatrix cm)
{

CMatrix result = new CMatrix(cm.GetnRows, cm.GetnCols);
for (int i = 0; i < cm.GetnRows; i++)
{

for (int j = 0; j < cm.GetnCols; j++)
{

result[i, j] = cm[i, j] + cn;
}

}
return result;

}
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public static CMatrix operator -(CMatrix cm)
{

for (int i = 0; i < cm.GetnRows; i++)
{

for (int j = 0; j < cm.GetnCols; j++)
{

cm[i, j] = -cm[i, j];
}

}
return cm;

}

public static CMatrix operator -(CMatrix cm1, CMatrix cm2)
{

if (!CMatrix.CompareDimension(cm1, cm2))
{

throw new Exception("The dimensions of two matrices must be
the same!");

}
CMatrix result = new CMatrix(cm1.GetnRows, cm1.GetnCols);
for (int i = 0; i < cm1.GetnRows; i++)
{

for (int j = 0; j < cm1.GetnCols; j++)
{

result[i, j] = cm1[i, j] - cm2[i, j];
}

}
return result;

}

public static CMatrix operator -(CMatrix cm, Complex cn)
{

CMatrix result = new CMatrix(cm.GetnRows, cm.GetnCols);
for (int i = 0; i < cm.GetnRows; i++)
{

for (int j = 0; j < cm.GetnCols; j++)
{

result[i, j] = cm[i, j] - cn;
}

}
return result;

}

public static CMatrix operator -(Complex cn, CMatrix cm)
{

CMatrix result = new CMatrix(cm.GetnRows, cm.GetnCols);
for (int i = 0; i < cm.GetnRows; i++)
{

for (int j = 0; j < cm.GetnCols; j++)
{

result[i, j] = cn - cm[i, j];
}

}
return result;

}
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public static CMatrix operator *(CMatrix cm, Complex cn)
{

CMatrix result = new CMatrix(cm.GetnRows, cm.GetnCols);
for (int i = 0; i < cm.GetnRows; i++)
{

for (int j = 0; j < cm.GetnCols; j++)
{

result[i, j] = cm[i, j] * cn;
}

}
return result;

}

public static CMatrix operator *(Complex cn, CMatrix cm)
{

CMatrix result = new CMatrix(cm.GetnRows, cm.GetnCols);
for (int i = 0; i < cm.GetnRows; i++)
{

for (int j = 0; j < cm.GetnCols; j++)
{

result[i, j] = cm[i, j] * cn;
}

}
return result;

}

public static CMatrix operator *(CMatrix cm1, CMatrix cm2)
{

if (cm1.GetnCols != cm2.GetnRows)
{

throw new Exception("# columns of the matrix 1 must = #
columns of the matrix 2");

}

Complex ctmp;
CMatrix result = new CMatrix(cm1.GetnRows, cm2.GetnCols);

for (int i = 0; i < cm1.GetnRows; i++)
{

for (int j = 0; j < cm2.GetnCols; j++)
{

ctmp = result[i, j];
for (int k = 0; k < result.GetnRows; k++)
{

ctmp += cm1[i, k] * cm2[k, j];
}
result[i, j] = ctmp;

}
}
return result;

}

public static CMatrix operator /(CMatrix cm, Complex cn)
{

CMatrix result = new CMatrix(cm.GetnRows, cm.GetnCols);
for (int i = 0; i < cm.GetnRows; i++)
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{
for (int j = 0; j < cm.GetnCols; j++)
{

result[i, j] = cm[i, j] / cn;
}

}
return result;

}

public static CMatrix operator /(Complex cn, CMatrix cm)
{

CMatrix result = new CMatrix(cm.GetnRows, cm.GetnCols);
for (int i = 0; i < cm.GetnRows; i++)
{

for (int j = 0; j < cm.GetnCols; j++)
{

result[i, j] = cm[i, j] / cn;
}

}
return result;

}

// Methods
// Checks for a square matrix where #rows = #cols
public bool IsSquared()
{

if (nRows == nCols)
return true;

else
return false;

}

// Compares the dimension of two complex matrices
public static bool CompareDimension(CMatrix cm1, CMatrix cm2)
{

if (cm1.GetnRows == cm2.GetnRows && cm1.GetnCols == cm2.
GetnCols)
return true;

else
return false;

}

// Makes a clone copy of a complex matrix
public CMatrix Clone()
{

CMatrix cm = new CMatrix(matrix);
cm.matrix = (Complex[,])matrix.Clone();
return cm;

}

object ICloneable.Clone()
{

return Clone();
}
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// Sets up a call to calculate the transpose of a complex matrix
public CMatrix GetTranspose()
{

CMatrix ct = this;
ct.Transpose();
return ct;

}

// Calculates the transpose of a complex matrix
public void Transpose()
{

CMatrix cm = new CMatrix(nCols, nRows);
for (int i = 0; i < nRows; i++)
{

for (int j = 0; j < nCols; j++)
{

cm[j, i] = matrix[i, j];
}

}
this = cm;

}

// Calculates the trace of a complex matrix
public Complex GetTrace()
{

Complex sum_of_diag = Complex.CZero;
for (int i = 0; i < nRows; i++)
{

for (int j = 0; j < nCols; j++)
{

if (i == j)
sum_of_diag += matrix[i, j];

}
}
return sum_of_diag;

}

// Extracts a row vector from a complex matrix at specified row
public CVector GetRowCVector(int m)
{

if (m < 0 || m > nRows)
{

throw new Exception("m-th row is out of range!");
}
CVector RowCVector = new CVector(nCols);
for (int i = 0; i < nCols; i++)
{

RowCVector[i] = matrix[m, i];
}
return RowCVector;

}

// Extracts a column vector from a complex matrix at a
// specified column
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public CVector GetColCVector(int m)
{

if (m < 0 || m > nCols)
{ throw new Exception("n-th col is out of range!"); }
CVector ColCVector = new CVector(nRows);
for (int i = 0; i < nRows; i++)
{

ColCVector[i] = matrix[i, m];
}
return ColCVector;

}

// Swaps specificed complex matrix row with another row
public CMatrix SwapCMatrixRow(int m, int n)
{

Complex ctemp = Complex.CZero;
for (int i = 0; i < nCols; i++)
{

ctemp = matrix[m, i];
matrix[m, i] = matrix[n, i];
matrix[n, i] = ctemp;

}
return new CMatrix(matrix);

}

// Swaps specificed complex matrix column with another column
public CMatrix SwapCMatrixColumn(int m, int n)
{

Complex ctemp = Complex.CZero;
for (int i = 0; i < nRows; i++)
{

ctemp = matrix[i, m];
matrix[i, m] = matrix[i, n];
matrix[i, n] = ctemp;

}
return new CMatrix(matrix);

}

// Calculates the transform of a complex matrix
public static CVector CTransform(CMatrix cm, CVector cv)
{
CVector result = new CVector(cv.GetCVectorSize);
if (!cm.IsSquared())
{throw new Exception("The matrix must be squared!");}
if (cm.GetnCols != cv.GetCVectorSize)
{throw new Exception("Vector size must = # rows in matrix");}
for (int i = 0; i < cm.GetnRows; i++)
{

result[i] = Complex.CZero;
for (int j = 0; j < cm.GetnCols; j++)
{

result[i] += cm[i, j] * cv[j];
}

}
return result;

}
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public static CVector CTransform(CVector cv, CMatrix cm)
{
CVector result = new CVector(cv.GetCVectorSize);
if (!cm.IsSquared())
{throw new Exception("The matrix must be squared!");}
if (cm.GetnRows != cv.GetCVectorSize)
{throw new Exception("Vector size must = # rows in matrix");}
for (int i = 0; i < cm.GetnRows; i++)
{

result[i] = Complex.CZero;
for (int j = 0; j < cm.GetnCols; j++)
{

result[i] += cv[j] * cm[j, i];
}

}
return result;

}

public static CMatrix CTransform(CVector cv1, CVector cv2)
{
if (cv1.GetCVectorSize != cv2.GetCVectorSize)
{throw new Exception("The vectors must have the same size!");}
CMatrix result = new CMatrix(cv1.GetCVectorSize,

cv1.GetCVectorSize);
for (int i = 0; i < cv1.GetCVectorSize; i++)
{

for (int j = 0; j < cv1.GetCVectorSize; j++)
{

result[j, i] = cv1[i] * cv2[j];
}

}
return result;

}

// Calculates the determinant of a complex matrix
public static Complex Determinant(CMatrix cm)
{
Complex result = new Complex(0.0, 0.0);
if (!cm.IsSquared())
{ throw new Exception("The matrix must be squared!"); }
if (cm.GetnRows == 1)

result = cm[0, 0];
else
{

for (int i = 0; i < cm.GetnRows; i++)
{

result +=
Math.Pow(-1,i)*cm[0,i]*Determinant(CMatrix.Minor(cm,0,i));

}
}
return result;

}

// Calculates the minor of a complex matrix at a specified row
// and column
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public static CMatrix Minor(CMatrix cm, int row, int col)
{

CMatrix cmm = new CMatrix(cm.GetnRows - 1, cm.GetnCols - 1);
int ii = 0, jj = 0;
for (int i = 0; i < cm.GetnRows; i++)
{

if (i == row) continue;
jj = 0;
for (int j = 0; j < cm.GetnCols; j++)
{

if (j == col) continue;
cmm[ii, jj] = cm[i, j];
jj++;

}
ii++;

}
return cmm;

}

// Calculates the adjoint of a complex matrix
public static CMatrix Adjoint(CMatrix cm)
{
if (!cm.IsSquared())
{

throw new Exception("The matrix must be squared!");
}
CMatrix ma = new CMatrix(cm.GetnRows, cm.GetnCols);
for (int i = 0; i < cm.GetnRows; i++)
{

for (int j = 0; j < cm.GetnCols; j++)
{

ma[i,j] = Math.Pow(-1,i+j)*(Determinant(Minor(cm,i,j)));
}

}
return ma.GetTranspose();

}

// Calculates the inverse of a complex matrix
public static CMatrix Inverse(CMatrix cm)
{
if (Determinant(cm) == new Complex(0, 0))
{

throw new Exception("Cannot inverse a matrix with 0
determinant!");

}
return (Adjoint(cm) / Determinant(cm));

}

// Replaces the n-th row of a complex matrix with
// contents of a complex vector
public CMatrix ReplaceCRow(CVector cv, int m)
{

if (m < 0 || m > nRows)
{

throw new Exception("m-th row is out of range!");
}
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if (cv.GetCVectorSize != nCols)
{

throw new Exception("Vector size is out of range!");
}
for (int i = 0; i < nCols; i++)
{

matrix[m, i] = cv[i];
}
return new CMatrix(matrix);

}

// Replaces the n-th column of a complex matrix with
// contents of a complex vector
public CMatrix ReplaceCCol(CVector cv, int n)
{

if (n < 0 || n > nCols)
{

throw new Exception("n-th col is out of range!");
}
if (cv.GetCVectorSize != nRows)
{

throw new Exception("Vector size is out of range!");
}
for (int i = 0; i < nRows; i++)
{

matrix[i, n] = cv[i];
}
return new CMatrix(matrix);

}
}

4.8 Generic vs. Non-Generic Coding

One of the main advantages of implementing generics is that data type information is
retained until runtime, thus making it possible to reduce code duplication of the same
data structure for different data types. Because of their rich mathematical structure,
scientific and engineering applications seem, at first, ideally well suited for apply-
ing generic data types. However, there are some additional significant issues that
arise when using generics for programming numerical applications that merit some
attention.

Unfortunately, at the time of this writing there are still some technical as well as
performance issues associated with the use of generics in C# for numerically inten-
sive computer calculations. As a result, feasibility and performance studies have
even been done on the suitability of using generics for scientific computing in var-
ious programming languages, including C#. In particular, Dragan and Watt [27]
have pointed out that the implementation of generics in current C# compilers must
be improved before generic coding methods can be used effectively in numerically
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intensive scientific and engineering applications. To illustrate a good example of the
major source of this problem, let’s start by examining a simple program. A generic
equivalent version of the complex number library that was just described might start
like this:

using System;
using System.Collections.Generic;

namespace GenericComplexNumberLibrary
{

public struct Complex<T> where T: struct
{

private T real;
private T imag;

public T Real
{
get { return real; }
set { real = value; }

}

public T Imag
{
get { return imag; }
set { imag = value; }

}

public Complex(T x, T y)
{
this.real = x;
this.imag = y;

}
}

class Program
{

static void Main(string[] args)
{
Complex<Int32> z = new Complex<Int32>(3, 7);
Console.WriteLine("z = {0} + i{1}", z.Real, z.Imag);
Console.ReadLine();

}
}

}

The code above compiles just fine and the output z = 3+ i7 will be displayed on the
monitor screen. However, if we continue to expand this library by adding a simple
generic function, such as the one for calculating the norm of a complex number:

public T CNorm
{

return Math.Sqrt( real * real + imag * imag );
}

then the program will no longer compile and an error message will be displayed on
the screen instead. This problem comes about because type parameters without any
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constraints are assumed to be of the System.Object type. As a result, the compiler
does not know how to perform arithmetic operations on two arbitrary objects. Ideally,
there should be some way to constrain the type parameter T so that it has the neces-
sary computational support for implementing at least the basic arithmetic operators
+, −, /, and ∗. Unfortunately, there currently exists no practical way to constrain
type parameters by requiring the existence of certain operators or methods. The only
way to constrain type parameters is by requiring the type to inherit a base class or to
implement an interface. Actually, there is one special case of a method constraint,
the new() constraint, which requires the existence of a parameterless constructor but
this is completely useless in this case. In addition, interface constraints are a bit lim-
ited because interfaces cannot contain static methods or operators. Nevertheless, an
interface for types that support all basic arithmetic operations might look like this:

interface IArithmetic<T>
{

T Add(T x);
T Subtract(T x);
T Multiply(T x);
T Divide(T x);

}

However, one has to also consider the existence of some types like System.String

which also support addition, but in a different context than the standard arithmetic
addition operation, and so this approach only serves to complicate matters further.
Nevertheless, one possible solution is to let the basic data types inherit an interface
for arithmetic operations, similar to the IComparable<T> interface constraint that is
used by the System.Collections.Generic namespace, and then wrap the basic data
types to make them support the required interface. A more radical approach involves
supporting method constraints instead of just interface constraints. However, this ap-
proach requires the programmer to specify the exact signature of the method desired.
Again, it’s impossible for the compiler to know in advance if the type given for T
in a constructed type or if at some point in the future it even supports the arithmetic
operators. As a result, a common technique is to externalize the operation from the
Complex<T> definition itself and then require the user of Complex<T> to provide code
for the particular desired arithmetic operation. Nash [28] provides some very nice
examples of using this technique. However, this approach requires writing quite a
lot of additional code which will, therefore, very likely result in undesired slower
performance. A quick search on the Internet at the time of this writing has revealed
that Microsoft seems to be aware of these problems and will likely provide some sort
of solution in a future release of their C# compiler.

© 2010 by Taylor and Francis Group, LLC



5

Sorting and Searching Algorithms

5.1 Introduction

The .NET Framework Class Library provides several classes, called collections, that
are used to store groups of related objects. Along with methods for organizing, stor-
ing and retrieving data, these classes also provide methods for sorting and searching
that require no additional programming and thus can substantially reduce application
development time. For example, the List<T> class is a generic class found in the
System.Collections.Generic namespace and the ArrayList class is found in the
System.Collections namespace. Both of these classes have properties that are very
similar to C# arrays and, in addition, also come with their own methods for perform-
ing efficient sorting and searching. However, one key advantage of using collection
classes over conventional arrays is that collections can dynamically grow and shrink
as their number of elements change. Arrays, on the other hand, do not automatically
adjust their size at runtime to accommodate changes in their initial number of alloted
elements unless the programmer manually codes in a new array or uses the array
class’s Resize method. With all these tools at our disposal, one may very well ques-
tion the wisdom of going through the effort of discussing the various different types
of sorting and searching algorithms. First, instead of just randomly choosing any
sorting or searching algorithm, it is important to have a basic general understanding
of how all these different algorithms actually work in order to make a good decision
about which algorithm to use in a particular application. After all, there is no known
ideal algorithm for either sorting or searching that meets all the requirements for
optimal speed and efficiency. As the size and type of input data changes, different
sorting and searching algorithms offer different degrees of strengths and weaknesses.
Furthermore, certain applications may require some type of sorting and/or searching
as part of their internal structure. As a result, at some point programmers may be
required to write their own custom set of sorting and/or searching routines instead of
simply relying on an unfamiliar canned version of one or more of these algorithms.
Finally, because of their importance, sorting and searching algorithms are also an
integral part of the standard curriculum for both elementary and advanced computer
science courses.

171
© 2010 by Taylor and Francis Group, LLC



172 Numerical Methods, Algorithms and Tools in C#

5.2 Sorting Algorithms

A sorting algorithm is essentially a recipe containing detailed computer code instruc-
tions for organizing the elements of a list into a well-defined numerical or alphabeti-
cal order. A list is an abstract concept consisting of a finite collection of fixed-length
entities that can be arranged either in random order or in an increasing or decreasing
sequential order. In practice, a list is usually expressed in the form of an array or a
more advanced data structure such as a linked list. Sorting is often used in conjunc-
tion with the processing of either experimentally measured or computer generated
data. In addition, sorting is sometimes used by other algorithms, such as search and
merge algorithms, whose own optimization require sorted lists to work correctly and
efficiently. Because of its frequent use in a wide range of engineering, mathematical
and scientific applications, sorting has attracted a lot of research interest going as far
back as to the earliest days of computing. Sorting often involves large volumes of
data and so research into this topic has primarily focused on developing increasingly
fast and efficient algorithms that strive to minimize both the computer processing
time involved and the amount of computer memory needed. Although many con-
sider sorting to be a solved problem, new interesting and useful sorting algorithms
are still being invented [29, 30] and so it is still very much a vibrant evolving subject
matter that is worth covering.

Since there exists a large number of sorting algorithms, there also exists a number
of important considerations that ought to be taken into account before selecting one
of these algorithms for use in a particular application. The various sorting algorithms
available today are often classified by a wide variety of different factors that among
which include their degree of computational complexity, their internal structure, their
stability, and their efficient use of computer resources. Whatever the case, the final
output from a sorting process must be either in a decreasing or increasing order
obtained by a permutation, or reordering, of the original input data.

Perhaps the primary parameter of interest used in evaluating the quality and effi-
ciency of sorting algorithms is their running time. After all, we live in a world where
time is money and most people just want everything done as quickly as possible.
Computational complexity refers to the theoretical calculation and estimation of the
worst, average and best running times required to sort a list of n records. The level of
complexity is usually expressed by the big-Oh notation which is just an abbreviation
for the phrase “of the order of”. The simplest sorting algorithms typically require a
running time that is proportional to n2 in order to sort n records and so their level
of complexity is expressed by O(n2). It can also be shown [31] that no algorithm
that sorts by comparing elements can perform any better than O(n logn) in the av-
erage or worst case. The ideal sorting algorithm, of course, would require only one
pass to sort a list of n records and so it would have an order of complexity given
by O(n). However, these figures are simply theoretical approximations. In practice,
the actual running time also depends on a host of other factors. For example, slight
modifications of the internal structure of some of these sorting algorithms by intro-
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ducing recursion where possible have sometimes led to substantial improvements in
their original running time [31, 32]. As a result, some sorting algorithms are either
recursive or non-recursive, while others, such as in the case of Merge sort, may con-
tain features from both. A recursive algorithm is an algorithm which calls itself with
increasingly smaller input values, and which obtains the result for the current input
by repeatedly applying operations to the returned value for the smaller input until a
final solution is finally obtained.

The internal structure of sorting algorithms is also an important factor in determin-
ing the effectiveness of its overall performance. Sorting algorithms can be broadly
classified as comparison and non-comparison based sorts to explicitly indicate how
the sorting is actually accomplished. The most common approach used for sorting is
called in-place, comparison based sort. In-place sorting means that, in order to save
memory, the algorithm does not allow for the use of any additional storage space
aside from that which has already been set aside for the items being sorted. Com-
parison based sorting means that in the sorting algorithm there exists a function for
comparing two elements, say x and y, from the input data list that can only tell if
x < y, x > y or x = y without providing any additional information. Sorting is then
attained by essentially comparing and then, if needed, swapping two elements at a
time following some clever scheme until the entire list is eventually sorted. Some of
the most well known comparison sorts include Quicksort, Heapsort, Mergesort, In-
trosort, Insertion sort, Selection sort and Bubble sort. Non-comparison based sorts,
on the other hand, are sorting algorithms that assume that one can extract some ordi-
nal information in the keys, and then use that information to improve the efficiency
of the algorithm itself. Some examples of non-comparison sort algorithms include
Radix sort, Counting sort and Bucket sort. However, some of the more advanced
sorting algorithms actually employ a combination of different sorting methods and
so grouping them in this manner is only meant to provide a helpful tool for remem-
bering how all these various algorithms operate internally.

Sorting can also be done on complex records consisting of several different fields
provided that at least one or more of the internal components is chosen to be the sort
key. Stable sorting maintains the relative order of records with equal sort keys. That
is, a sorting algorithm is said to be stable if whenever there are two records X and Y
with the same key and with X appearing before Y in the original list, X will appear
before Y in the sorted list. Otherwise the sorting is said to be unstable.

Advanced computer resources, such as those with multiple CPUs, may allow pro-
grammers to do parallel sorting with divide-and-conquer style algorithms which are
generally much faster than the traditional sequential sorting algorithms by comput-
ers with just a single CPU. However, parallel sorting requires the use of specialized
coding, such as threading, which may create additional unwanted problems that can
also potentially lead to an increase in development time. Although we usually want
the input data sorted, there may be times where we may just want access to a sorted
version of that data while keeping the original input data unsorted. Some sorting
algorithms naturally work in-place while other algorithms can provide a sorted copy
of the input data or at least a list of indexes which index the original items in a sorted
order.
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If the data to be sorted fits completely in computer memory, then the sorting
method is said to be internal otherwise it is said to be external. As expected, in-
ternal sorting is usually preferred as it tends to run much faster than external sorting.
However, if the amount of input data is very large so that it will not all fit inside the
available computer memory, then the slower external sorting may be required.

Also important to consider is the type of data structure that will be used for storing
and manipulating the input and output data. For example, sorting can be done on
lists, arrays or linked lists to name just a few. Although all these different data
structures can be used to sort data efficiently, some sorting algorithms work better
and more efficiently with certain specific data structures than with others.

Another important point to consider is whether the sorting will be done all at once
or in incremental steps. Sorting all the data at once may not always be possible or
even desirable. For example, if the input data is being collected over time, you may
want to periodically sort whatever data has been collected during each specified time
interval and then follow up with a final sort of all the individually collected data sets
at the end. Since the data sets are already partially sorted, the final sorting process
will generally be much faster than trying to sort the entire data set from scratch once
the input data stream has ended.

After considering all these various issues, it seems reasonable to conclude that
the ideal sorting algorithm would (1) be stable so that equal keys are not re-ordered,
(2) operate in place requiring only O(1) extra memory space, (3) have a worst case
O(n logn) key comparisons, (4) have a worst case O(n) swaps and (5) be adaptive so
that it can speed up to O(n) when the data is nearly sorted, inversely sorted or when
there are few unique keys to be sorted. Unfortunately, there is no ideal sorting algo-
rithm that meets all these requirements. Moreover, their individual behavior is not
necessarily a definitive deciding factor in choosing the best algorithm for use in a par-
ticular project. Instead, selecting the optimal sorting algorithm ultimately depends
on a complex combination of several additional factors that among which include
the initial state and the amount of data to be sorted. For example, some sorting al-
gorithms are better suited than others to handle different volumes of data. Also, the
initial input data may be completely random, partially or nearly sorted, completely
reversed or contain a number of unique keys. Consequently, all these features can
have a substantial impact on the actual running time of a sorting algorithm.

Quicksort [32] is perhaps the most popular sorting algorithm known to exist and it
only makes an average of O(n logn) comparisons to sort n elements. Unfortunately,
even this fast sorting algorithm has its own list of advantages and disadvantages.
As a result, many other sorting algorithms of various degrees of complexity and
efficiency have been discovered and analyzed. Therefore, it makes sense to develop
a firm understanding of the different sorting methods that are available including
their respective advantages and disadvantages. For completeness and pedagogical
purposes, the material covered in this chapter will include the basic highlights of not
just the most popular but also some of the other lesser known sorting algorithms.
Every algorithm discussed in this chapter will be immediately followed up by a code
snippet to illustrate its implementation in C#. A more complete coverage of all kinds
of algorithms can be found in Sedgewick [32], Knuth [33] or Cormen [31].
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5.3 Comparison Sorts

5.3.1 Bubble Sort

Bubble sort is perhaps the easiest and best known sorting algorithm because of its
intuitive and straightforward simplicity. Bubble sort works by stepping through the
entire list to be sorted while comparing two items at a time and swapping their po-
sitions if they are found to be in the wrong order. This process is repeated until no
swaps are needed thereby indicating that the list has been sorted. The algorithm gets
its name from the way smaller elements seem to bubble to the top of the list. In
fact, one of the many performance problems with the Bubble sort algorithm is the
so called rabbit-turtle effect where large values at the bottom of the list seem to bub-
ble up very quickly (rabbits) but small values at the top of the list seem to require
many passes before they sink to the bottom of the list (turtles). Another performance
problem with the Bubble sort algorithm is that it has an average and worst case com-
plexity of O(n2) and so it is generally highly inefficient, particularly for large data
sets. However, if the input data is already nearly sorted so that the algorithm needs
to make, say only 1 pass, then Bubble sort could also have a best case complexity
of just O(n). Because of all these issues, the Bubble sort algorithm is rarely used
in practice except in introductory computer science courses. Nevertheless, a basic
Bubble sort algorithm can be implemented in C# as shown below.

static void bubbleSort1(ref int[] x)
{

bool exchanges;
do
{

exchanges = false;
for (int i = 0; i < x.Length - 1; i++)
{

if (x[i] > x[i + 1])
{

// Exchange elements
int temp = x[i];
x[i] = x[i + 1];
x[i + 1] = temp;
exchanges = true;

}
}

} while (exchanges);
}

In spite of its inefficiency, the original Bubble sort algorithm has evolved in order
to help improve its performance. All these changes, however, still have one thing in
common in that the modified algorithm continues to compare only adjacent pairs of
elements and so these new variations of the algorithm still retain an undesired and
inefficient complexity of O(n2). One way to improve the running time of the Bubble
sort algorithm is to note that each inner loop is one shorter than the previous one
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because the largest items are being moved towards the end of the list. Given a list of
size n, the nth element will always be guaranteed to be in its proper place and so it
suffices to sort just the remaining n− 1 elements. Therefore, this slightly improved
version of Bubble sort makes a fixed number of passes over the list to be sorted and
can be implemented in C# as shown below.
static void bubbleSort2(ref int[] x)
{

for (int pass = 1; pass < x.Length - 1; pass++)
{

// Count how many times this next looop
// becomes shorter and shorter
for (int i = 0; i < x.Length - pass; i++)
{

if (x[i] > x[i + 1])
{

// Exchange elements
int temp = x[i];
x[i] = x[i + 1];
x[i + 1] = temp;

}
}

}
}

The basic concepts behind the two different versions of the Bubble sort algorithm that
have been presented so far may be combined together to form a still better algorithm.
In this new situation, the loop stops when there are no more swaps and also sorts a
smaller range of items with each iteration. A C# implementation of this variation of
the Bubble sort algorithm is given below.
static void bubbleSort3(ref int[] x)
{

bool exchanges;
int n = x.Length;
do
{

n--; // Make loop smaller each time.
// and assume this is last pass over array
exchanges = false;
for (int i = 0; i < x.Length-1; i++)
{

if (x[i] > x[i + 1])
{

// Exchange elements
int temp = x[i];
x[i] = x[i + 1];
x[i + 1] = temp;
exchanges = true;

}
}

} while (exchanges);
}

Another variation of the Bubble sort algorithm can be obtained by noticing that after
the first pass, it’s only necessary to sort the list from the position just below the
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first swap, since small values may move lower, to the position just before the last
swap, since largest values won’t move higher. Everything that was not swapped
must therefore be in the correct order. As a result, after each pass the upper and
lower bounds for the next pass are set from the positions of the first and last swaps
on the previous pass. Below is a C# implementation of this improved version of
the Bubble sort algorithm that, on each pass, looks only at the region of the list
where more swaps might be necessary. A C# implementation for this variation of the
Bubble sort algorithm is given below.

static void bubbleSortRange(ref int[] x)
{

int lowerBound = 0; // First position to compare.
int upperBound = x.Length-1; // First position NOT to compare.
int n = x.Length-1;

// Continue making passes while there is a potential exchange.
while (lowerBound <= upperBound)
{

// assume impossibly high index for low end.
int firstExchange = n;
// assume impossibly low index for high end.
int lastExchange = -1;

// Make a pass over the appropriate range.
for (int i=lowerBound; i<upperBound; i++)
{
if (x[i] > x[i+1])
{

// Exchange elements
int temp = x[i];
x[i] = x[i+1];
x[i+1] = temp;
// Remember first and last exchange indexes.
if (i<firstExchange)
{ // True only for first exchange.

firstExchange = i;
}
lastExchange = i;

}
}

//--- Prepare limits for next pass.
lowerBound = firstExchange-1;
if (lowerBound < 0)
{
lowerBound = 0;

}
upperBound = lastExchange;

}
}

© 2010 by Taylor and Francis Group, LLC



178 Numerical Methods, Algorithms and Tools in C#

5.3.2 Cocktail Sort

The Cocktail sort, also known as the Bi-directional Bubble sort, the Shaker sort,
the Ripple sort, the Shuttle sort, the Children sort and the Happy Hour sort, is just
another slightly improved variation of the fundamental Bubble sort algorithm. The
difference between the Cocktail and the Bubble sort algorithms is that instead of
repeatedly iterating through an input list from bottom to top, the Cocktail sort iterates
alternating from bottom to top and then from top to bottom. By performing bi-
directional iterations, the Cocktail sort can achieve a slightly better performance time
than the standard Bubble sort algorithm which only iterates through the input list in
one direction and therefore can only reposition items by one step per iteration. A C#
implementation of the Cocktail sort algorithm is given below.

static void CocktailSort(ref int[] x)
{

for (int k = x.Length - 1; k > 0; k--)
{

bool swapped = false;
for (int i = k; i > 0; i--)

if (x[i] < x[i - 1])
{

// swap
int temp = x[i];
x[i] = x[i - 1];
x[i - 1] = temp;
swapped = true;

}

for (int i = 0; i < k; i++)
if (x[i] > x[i + 1])
{

// swap
int temp = x[i];
x[i] = x[i + 1];
x[i + 1] = temp;
swapped = true;

}

if (!swapped)
break;

}
}

5.3.3 Odd-Even Sort

The Odd-Even sort algorithm works by comparing all odd and even indexed pairs
of adjacent items in the input list and, if a pair is found to be in the wrong order,
the items are then switched. The next step repeats this process for even and odd
indexed pairs of adjacent elements. This algorithm then alternates between odd/even
and even/odd steps until the list is completely sorted. A C# implementation of the
Odd-Even sort algorithm is given below.
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static void OddEvenSort(ref int[] x)
{

int temp;
for (int i = 0; i < x.Length/2; ++i)
{

for (int j = 0; j < x.Length-1; j += 2)
{

if (x[j] > x[j+ 1])
{

temp = x[j];
x[j] = x[j + 1];
x[j + 1] = temp;

}
}

for (int j = 1; j < x.Length-1; j += 2)
{

if (x[j] > x[j + 1])
{

temp = x[j];
x[j] = x[j + 1];
x[j + 1] = temp;

}
}

}
}

5.3.4 Comb Sort

The Comb sort algorithm [34] is basically just a modification of the Bubble sort algo-
rithm that exploits the concept of comparing and swapping items that are separated
by a gap instead of those adjacent to each other. Although Shell sort is also based
on this very same idea, it is a modification of Insertion sort instead of Bubble sort.
Comb sort works by iterating several times through the data while comparing pairs
of elements and swapping them if they are not in order with respect to each other.
The initial gap is usually set to be the size of the input list, but it is then divided by
a shrink factor at the end of every iteration until it finally reaches the value of 1 at
which point the comb algorithm actually turns into the Bubble sort algorithm for its
last pass.

As one might expect, the efficiency of Comb sort greatly depends on the value
chosen for the shrink factor. If the shrink factor value is chosen too small, it will
slow the algorithm down because then more comparisons must be made. If the shrink
factor is chosen too high, then not enough small values near the top end of the input
list will migrate down towards the bottom during the sorting process and this will
cause a slowdown towards the end when Comb sort turns into Bubble sort. In the
original article, the authors suggested the value of 1.3 as the ideal shrink factor and
noted that using this value will result in only three possible ways for the list of gaps
to end: (9,6,4,3,2,1),(10,7,5,3,2,1)or(11,8,6,4,3,2,1). Of these three possible
choices, only the last one was found to completely eliminate all the small values
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around the top of the input list before the gap becomes 1.

private static int newGap(int gap)
{

gap = gap * 10 / 13;
if(gap == 9 || gap == 10)

gap = 11;
if(gap < 1)

return 1;
return gap;

}

private static void CombSort(ref int[] x)
{

int gap = x.Length;
bool swapped;
do
{

swapped = false;
gap = newGap(gap);
for (int i = 0; i < (x.Length - gap); i++)
{

if(x[i] > x[i + gap])
{

swapped = true;
int temp = x[i];
x[i] = x[i + gap];
x[i + gap] = temp;

}
}

} while(gap > 1 || swapped);
}

5.3.5 Gnome Sort

The Gnome sort was originally developed by D. Grune [35] and is based on the
technique allegedly used by the standard Dutch garden Gnome to sort flower pots.
The Gnome sort algorithm works by comparing the current item with the previous
one. If they are in order then move on to the next item or stop if the end is reached.
If they are not in order, swap them and move to the previous item. If there is no
previous item, then move to the next item. The Gnome sort is a sorting algorithm
which is similar to insertion sort, except that moving an item to its proper place is
accomplished by a series of swaps, as in bubble sort. While conceptually simple
to understand, the Gnome sort has a complexity of O(n2) and is therefore also very
inefficient. However, in practice this sorting algorithm has allegedly been reported
to run as fast as Insertion sort. A C# implementation of the Gnome sort algorithm is
given below.

static void GnomeSort(ref int[] x)
{

int i = 0;
while (i < x.Length)
{
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if (i == 0 || x[i - 1] <= x[i]) i++;
else
{

int temp = x[i];
x[i] = x[i - 1];
x[--i] = temp;

}
}

}

5.3.6 Quicksort

Quicksort is arguably the fastest and most popular of all the sorting algorithms known
to exist today [32]. Developed in 1962 by C. Hoare [36], Quicksort makes an average
of O(n logn) comparisons to sort n items. Unfortunately and like all the other sort-
ing algorithms, Quicksort also has drawbacks. For example, Quicksort is not stable,
makes about O(n2) comparisons to sort n items in the worst case and, if not imple-
mented correctly, can perform very badly in certain situations. On average, however,
Quicksort is significantly faster in practice than almost any other O(n logn) sorting
algorithm.

Quicksort uses a divide-and-conquer method for sorting that starts by first parti-
tioning the input list into two parts. Each partition is then sorted independently by
recursively calling itself over and over again until the entire input list is sorted. Care-
ful selection of the pivot point during the partition process is critical to the success
or failure of the overall sorting process. Not surprisingly, a general strategy for par-
titioning the input list exists which, in most but not necessarily all cases, has proven
to be very successful. First, an arbitrary pivot point, sometimes also called the parti-
tioning point, is chosen. Then the list is reordered so that all the items which are less
than the partitioning point are placed before it and all the items which are greater
than the partitioning point are placed after it with equal values going either way. At
the completion of this step, the pivot point is now clearly in its final position. Finally,
recursively call in sequence this same algorithm to sort the list of items that are less
than the pivot point followed by the list of items that are greater than the pivot point.
Note that the base case of the recursion are lists of size zero or one, which are always
sorted and so by the time this point is reached, the entire input list will have also
been sorted. A C# implementation of the Quicksort algorithm is given below.

public static void QuickSort(ref int[] x)
{

qs(x, 0, x.Length - 1);
}

static void qs(int[] x, int left, int right)
{

int i, j;
int pivot, temp;

i = left;
j = right;
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pivot = x[(left + right) / 2];

do
{

while ((x[i] < pivot) && (i < right)) i++;
while ((pivot < x[j]) && (j > left)) j--;

if (i <= j)
{

temp = x[i];
x[i] = x[j];
x[j] = temp;
i++; j--;

}
} while (i <= j);

if (left < j) qs(x, left, j);
if (i < right) qs(x, i, right);

}

5.3.7 Insertion Sort

Conceptually, the Insertion sort algorithm works by first creating two list structures:
one to hold the input data and the other to store the output data. It then steps through
the input list reading each item and inserting it into its proper sorted position in
the output list. In practice, however, most implementations of the Insertion sort
algorithm use a memory saving in-place sort process that starts by dividing the input
array into two partitions: one partition for sorted values and another partition for
unsorted values. Initially, only the first element in the list belongs to the sorted
partition. Then the first element in the unsorted partition is picked up and inserted
into its appropriate position in the sorted partition. The actual insertion takes place
by moving the element that was picked up in the unsorted partition past the already
sorted elements and then repeatedly swapping it with the preceding element until it
is found to be in the appropriate position in the sorted partition. This process is then
repeated until all the elements in the unsorted partition have been assigned to their
new correct positions in the sorted partition. Although insertion sort is also of the
order O(n2) and is therefore considered inefficient, in actual practice it is faster than
either the Bubble or the Selection sort algorithms. As a result, Insertion sort is also
often used in conjunction with more sophisticated algorithms. A C# implementation
of the Insertion sort algorithm is given below.

static void InsertionSort(ref int[] x)
{

int n = x.Length-1;
int i, j, temp;

for (i = 1; i <= n; ++i)
{

temp = x[i];
for (j = i - 1; j >= 0; --j)
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{
if (temp < x[j]) x[j + 1] = x[j];
else break;

}
x[j + 1] = tmp;

}
}

5.3.8 Shell Sort

The Shell sort algorithm [37] is fundamentally an improvement of the Insertion sort
algorithm. The key concept behind the Shell sort algorithm is that it begins by com-
paring and swapping items that are distant rather than adjacent to each other. This
feature allows an item to take longer steps toward its expected final position. As
the algorithm loops through the entire input list, the gap between each item steadily
decreases until the items being compared and swapped are adjacent to each other.
The gap between the numbers being sorted on each pass through the data is called
an increment and the Shell sort algorithm is sometimes also called a Diminishing
Increment sort. The Shell sort algorithm is not to be confused with Comb sort. The
Comb sort algorithm is a modification of Bubble sort whereas Shell sort is a modifi-
cation of Insertion sort. The original proposed initial increment was n/2 where n is
the number of records being sorted. However, the resulting sequence . . .8,4,2,1 was
found not to be a good choice for gaps especially if n is a power of 2. As a result,
much research went into finding the best possible sequence of increments but, unfor-
tunately, to date the optimum sequence has not yet been found. However, Knuth [33]
has proposed an increment sequence that is generated by the following recurrence
relation:

i0 = 1, ik+1 = 3ik + 1, k = 0,1,2, . . .

and is regarded to produce the best increment sequence that is currently available for
use today. A C# implementation of the Shell sort algorithm is given below.

public static void ShellSort(ref int[] x)
{

int i, j, temp;
int increment = 3;

while (increment > 0)
{

for (i = 0; i < x.Length; i++)
{

j = i;
temp = x[i];

while ((j>=increment) && (x[j-increment]>temp))
{

x[j] = x[j-increment];
j = j-increment;

}

x[j] = temp;
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}

if (increment/2 != 0)
{

increment = increment/2;
}
else if (increment==1)
{

increment = 0;
}
else
{

increment = 1;
}

}
}

5.3.9 Selection Sort

Selection sort works by first finding the minimum value of the list to be sorted. It
then swaps that minimum value with the value found in the first position of the list.
It then finds the second smallest value in the list and then swaps it with the value in
the second position of the list. This process is continued until the entire list is sorted.
This algorithm is called Selection sort because it works by repeatedly selecting the
smallest remaining item of the list and then swapping it with the item in the corre-
sponding position of the list. In so doing, the list is effectively split into two parts:
one sublist of the items already sorted and another sublist of the items remaining
to be sorted. Unlike other sorting algorithms, the running time of selection sort is
not affected by the prior ordering of the list because it always performs the same
number of operations on a list of n records. Although Selection sort was originally
designed to improve the performance of Bubble sort, it also has a complexity of the
order of O(n2) making it inefficient for sorting large lists. However, in certain situa-
tions Selection sort has been shown to have some performance advantages over more
complicated and allegedly better sorting algorithms.

public static void SelectionSort(ref int[] x)
{

int i, j, min, temp;
for (i = 0; i < x.Length - 1; i++)
{

min = i;
for (j = i + 1; j < x.Length; j++)
{

if (x[j] < x[min])
{ min = j; }

}
temp = x[i];
x[i] = x[min];
x[min] = temp;

}
}
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5.3.10 Merge Sort

The Merge sort algorithm is based on a divide-and-conquer strategy. First, the data to
be sorted is divided into two halves. Next, each half is sorted independently and may
but need not be sorted recursively. Then the two sorted halves are merged together to
form the complete sorted sequence. Merge sort has a computed time complexity of
O(n log(n)) to sort n records and is therefore one of the optimal sorting algorithms
presently in existence. Below is a C# implementation of the Merge sort algorithm.
Unlike the other sort algorithms that can be called by passing just the input data
array, the merge sort algorithm is recursive and needs a kick start to get it going.
As a result, you need to pass not only the input data array to be sorted but also the
initial left and right pivot points, such as in the following function call example:
MergeSort(ref xArray, 0, xArray.Length - 1);

public static void MergeSort(ref int[] x, int left, int right)
{

if (left < right)
{

int middle = (left + right) / 2;
MergeSort(ref x, left, middle);
MergeSort(ref x, middle + 1, right);
Merge(ref x, left, middle, middle + 1, right);

}
}

public static void Merge(ref int[] x, int left, int middle, int
middle1, int right)

{
int oldPosition = left;
int size = right - left + 1;
int[] temp = new int[size];
int i = 0;

while (left <= middle && middle1 <= right)
{

if (x[left] <= x[middle1])
temp[i++] = x[left++];

else
temp[i++] = x[middle1++];

}
if (left > middle)

for (int j = middle1; j <= right; j++)
temp[i++] = x[middle1++];

else
for (int j = left; j <= middle; j++)

temp[i++] = x[left++];
Array.Copy(temp, 0, x, oldPosition, size);

}
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5.3.11 Bucket Sort

Bucket sorting in C# consists of taking an array of elements that have some sort of
numeric value. Each element is stored in a conceptual bucket, using the value as an
index. When the bucket is emptied, the result will be a sorted list in order. The space
requirements for n elements is n and the running time can be characterized as O(n)
since elements are directly being stored in a bucket. However, one must be careful to
account for the possibility of duplicate elements. This means that the bucket cannot
directly store just values because there would be no way to tell exactly how many of
each value there is. The solution is to make the bucket an array of List<> items. That
way elements are added to a list at index i. The Bucket sort algorithm can therefore
be summarized as follows.

• Find the maximum and minimum values in the array.

• Initialize a bucket array of List<> elements with the size given by maxValue-

minValue+1.

• Move elements in array to the bucket.

• Write the bucket out, in order, to the original array.

As is, the original version of the Bucket sort algorithm contains some minor flaws
which can fortunately be easily fixed. In practice, for example, some buckets may go
completely unused and thus waste some valuable computer resources. One way to
avoid this problem is avoid initializing buckets unless it is actually necessary. This
can be easily accomplished by first checking to see if a bucket is null before ac-
tually initializing it. The second improvement, is to use a LinkedList instead of
List. Although this gives only a slight improvement in speed, it is an improvement
nonetheless. In any event, a C# implementation of the Bucket sort algorithm is pre-
sented below.

public static void BucketSort(ref int[] x)
{

//Verify input
if (x == null || x.Length <= 1)

return;

//Find the maximum and minimum values in the array
int maxValue = x[0];
int minValue = x[0];

for (int i = 1; i < x.Length; i++)
{

if (x[i] > maxValue)
maxValue = x[i];

if (x[i] < minValue)
minValue = x[i];

}

//Create a temporary "bucket" to store the values in order
//each value will be stored in its corresponding index

© 2010 by Taylor and Francis Group, LLC



Sorting and Searching Algorithms 187

//scooting everything over to the left as much as possible.
LinkedList<int>[] bucket =

new LinkedList<int>[maxValue-minValue+1];

//Move items to bucket
for (int i = 0; i < x.Length; i++)
{

if (bucket[x[i] - minValue] == null)
bucket[x[i] - minValue] = new LinkedList<int>();

bucket[x[i] - minValue].AddLast(x[i]);
}

//Move items in the bucket back into the
//original array in order
int k = 0; //index for original array
for (int i = 0; i < bucket.Length; i++)
{

if (bucket[i] != null)
{

//start add head of linked list
LinkedListNode<int> node = bucket[i].First;

while (node != null)
{

//get value of current linked node
x[k] = node.Value;
//move to next linked node
node = node.Next;
k++;

}
}

}
}

5.3.12 Heap Sort

Heapsort is an in-place, comparison-based sorting algorithm that has the advantage
of a worst-case O(n logn) runtime. Heapsort begins by building a heap out of the
data set, and then removing the largest item and placing it at the end of the sorted
array. After removing the largest item, it reconstructs the heap and removes the
largest remaining item and places it in the next open position from the end of the
sorted array. This is repeated until there are no items left in the heap and the sorted
array is full. A C# implementation of the Heap sort algorithm is presented below.

public static void Heapsort(ref int[] x)
{

int i;
int temp;
int n = x.Length;

for (i = (n/2)-1; i >= 0; i--)
{ siftDown(ref x, i, n); }
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for (i = n-1; i >= 1; i--)
{

temp = x[0];
x[0] = x[i];
x[i] = temp;
siftDown(ref x, 0, i-1);

}
}

public static void siftDown(ref int[] x,int root,int bottom)
{

bool done = false;
int maxChild;
int temp;

while ((root * 2 <= bottom) && (!done))
{

if (root * 2 == bottom)
maxChild = root * 2;

else if (x[root * 2] > x[root * 2 + 1])
maxChild = root * 2;

else
maxChild = root * 2 + 1;

if (x[root] < x[maxChild])
{

temp = x[root];
x[root] = x[maxChild];
x[maxChild] = temp;
root = maxChild;

}
else
{

done = true;
}

}
}

5.4 Count Sort

The idea underlying the Count sort algorithm is that each key data can indirectly
work an initial index for itself. The routine parses the original array determining its
minimum and maximum value, then builds a temporary array with one element for
each possible value of the key. The routine parses the original array again, this time
counting the occurrences of each distinct value. After this step, it is very easy to
evaluate where each value has to go in the definitive, sorted array, and this can be
accomplished in the third step. A C# implementation of the count sort algorithm is
presented below.
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public static void Count_Sort(ref int[] x)
{

try
{

int i = 0;
int k = FindMax(x);

// output array holds the sorted output
int[] output = new int[x.Length];

// provides temperarory storage
int[] temp = new int[k + 1];
for (i = 0; i < k + 1; i++)
{

temp[i] = 0;
}

for (i = 0; i < x.Length; i++)
{

temp[x[i]] = temp[x[i]] + 1;
}

for (i = 1; i < k + 1; i++)
{

temp[i] = temp[i] + temp[i - 1];
}

for (i = x.Length - 1; i >= 0; i--)
{

output[temp[x[i]] - 1] = x[i];
temp[x[i]] = temp[x[i]] - 1;

}

for (i = 0; i < x.Length; i++)
{

x[i] = output[i];
}

}

catch (System.Exception e)
{

Console.WriteLine(e.ToString());
Console.ReadLine();

}
}

5.5 Radix Sort

Radix sort can be used to sort items that are identified by unique keys. Every key is a
string or number, and radix sort sorts these keys in some particular lexicographic-like
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order.
Radix sort sorts integers by processing individual digits. Since most computers

internally represent their data as binary numbers, this arrangement works out rather
well. Radix sorts are classified as either least significant digit (LSD) radix sorts
or most significant digit (MSD) radix sorts. LSD radix sorts process the integer
representations starting from the least significant digit and move towards the most
significant digit. MSD radix sorts work the other way around.

A least significant digit, LSD, radix sort is a fast stable sorting algorithm which
can be used to sort keys in lexicographic order. Keys may be a string of characters, or
numerical digits in a given radix. The processing of the keys begins at the least sig-
nificant digit (i.e. the rightmost digit), and proceeds to the most significant digit (i.e.,
the leftmost digit). The sequence in which digits are processed by a least significant
digit LSD radix sort is the opposite of the sequence in which digits are processed by
a most significant digit MSD radix sort. A radix sort algorithm works as follows:

• Take the least significant digit (or group of bits) of each key.

• Sort the list of elements based on that digit, but keep the order of elements
with the same digit.

• Repeat the sort with each more significant digit.

The sort in step 2 is usually done using bucket sort or counting sort, which are ef-
ficient in this case since there are usually only a small number of digits. A C#
implementation of the radix sort algorithm is presented below.

//RadixSort takes an array and the number of bits used as
//the key in each iteration.
public static void RadixSort(ref int[] x, int bits)
{

//Use an array of the same size as the original array
//to store the result of each iteration.
int[] b = new int[x.Length];
int[] b_orig = b;

//Mask is the bitmask used to extract the sort key.
//We start with the bits least significant bits and
//left-shift it the same amount at each iteration.
//When all the bits are shifted out of the word, we are done
int rshift = 0;
for (int mask = ˜(-1 << bits); mask != 0; mask <<= bits, rshift +=

bits)
{

//An array is needed to store the count for each key value.
int[] cntarray = new int[1 << bits];

//Count each key value
for (int p = 0; p < x.Length; ++p)
{
int key = (x[p] & mask) >> rshift;
++cntarray[key];

}
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//Sum up how many elements there are with lower
//key values, for each key.
for (int i = 1; i < cntarray.Length; ++i)

cntarray[i] += cntarray[i - 1];

//The values in cntarray are used as indexes
//for storing the values in b. b will then be
//completely sorted on this iteration’s key.
//Elements with the same key value are stored
//in their original internal order.
for (int p = x.Length - 1; p >= 0; --p)
{

int key = (x[p] & mask) >> rshift;
--cntarray[key];
b[cntarray[key]] = x[p];

}

//Swap the a and b references, so that the
//next iteration works on the current b,
//which is now partially sorted.
int[] temp = b; b = x; x = temp;

}
}

5.6 Search Algorithms

Search algorithms comprise a very important set of tools in computer programming.
Like sorting algorithms, there are many types of search algorithms from which to
choose from. For example, tree search algorithms are the heart of searching tech-
niques for structured data. These algorithms search trees of nodes, whether the
tree is explicit or implicit. The basic principle is that a node is taken from a data
structure, and then its successors are examined and added to the data structure ac-
cordingly. Then by manipulating the data structure, the tree is explored in different
orders. For instance, level by level (breadth-first search) or reaching a leaf node
first and backtracking (depth-first search). Other examples of tree-searches include
iterative-deepening search, depth-limited search, bidirectional search, and uniform-
cost search. The efficiency of a tree search, compared to other search methods, is
highly dependent upon the number and structure of nodes in relation to the number
of items on that node. In addition, many of the problems in graph theory can be
solved using graph traversal algorithms, such as Dijkstra’s algorithm, Kruskal’s al-
gorithm, the nearest neighbor algorithm, and Prim’s algorithm. These can be seen as
extensions of the tree-search algorithms.

List search algorithms, however, are perhaps the most basic kind of search algo-
rithm. The goal is to find one element of a set by some key that perhaps contains
other information related to the key. The simplest such algorithm is linear search,
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which simply examines each element of the list in order. It has a running time in the
order of O(n), where n is the number of items in the list and can be used directly
on any unprocessed list. A more sophisticated list search algorithm is binary search
which runs in O(logn) time. This timing is significantly better than linear search for
large lists of data, but it requires that the list be sorted before searching and also be
random access. With a best-case complexity of O(log(logn)), interpolation search is
better than binary search for large sorted lists with fairly even distributions but has a
worst-case running time of O(n). The remainder of this chapter will focus on these
three most important list search algorithms and how they may be implemented in C#.

5.6.1 Linear Search

Linear search is a search algorithm, also known as sequential search, that is suitable
for searching a list of data for a particular value. It operates by checking every
element of a list one at a time in sequence until a match is found. Linear search runs
in O(n). If the data are distributed randomly, the expected number of comparisons
that will be necessary is: ⎧⎨

⎩
n, k = 0
n + 1
k + 1

, 1 ≤ k ≤ n

where n is the number of elements in the list and k is the number of times that the
value being searched for appears in the list. The best case is that the value is equal
to the first element tested, in which case only 1 comparison is needed. The worst
case is that the value is not in the list, or it appears only once at the end of the list, in
which case n comparisons are needed. The simplicity of the linear search means that
if just a few elements are to be searched it is less trouble than more complex methods
that require preparation such as sorting the list to be searched or more complex data
structures, especially when entries may be subject to frequent revision. Another
possibility is when certain values are much more likely to be searched for than others
and it can be arranged that such values will be amongst the first considered in the list.
In any event, an implementation of the linear search algorithm in C# is shown below.

public int LinearSearch(ref int[] x, int valueToFind)
{

for (int i=0; i<x.Length; i++)
{

if (valueToFind == x[i])
{

return i;
}

}
return -1;

}
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5.6.2 Binary Search

The Binary search algorithm is a technique for locating a particular value in a sorted
list. The method makes progressively better guesses, and closes in on the location of
the sought value by selecting the middle element in the span which, because the list
is in sorted order, is the median value, comparing its value to the target value, and
determining if it is greater than, less than, or equal to the target value. A guessed
index whose value turns out to be too high becomes the new upper bound of the
span, and if its value is too low that index becomes the new lower bound. Only the
sign of the difference is inspected. There is no attempt at an interpolation search
based on the size of the difference. Pursuing this strategy iteratively, the method
reduces the search span by a factor of two each time, and soon finds the target value
or else determines that it is not in the list at all. A binary search is an example of a
dichotomic divide and conquer search algorithm.
public static int BinSearch(ref int[] x, int searchValue)
{

// Returns index of searchValue in sorted input data
// array x, or -1 if searchValue is not found
int left = 0;
int right = x.Length;
return binarySearch(ref x, searchValue, left, right);

}

private static int binarySearch(ref int[] x,int searchValue,int left,
int right)

{
if (right < left) return -1;

int mid = (left + right) >> 1;
if (searchValue > x[mid])
{
return binarySearch(ref x, searchValue, mid + 1, right);

}
else if (searchValue < x[mid])
{
return binarySearch(ref x, searchValue, left, mid - 1);

}
else return mid;

}

5.6.3 Interpolation Search

Interpolation search is an algorithm for searching a sorted array by estimating the
next position to check based on a linear interpolation of the search key and the val-
ues at the ends of the search interval. In each search step it calculates where in
the remaining search space the sought item might be based on the key values at the
bounds of the search space and the value of the sought key, usually via a linear inter-
polation. The key value actually found at this estimated position is then compared to
the key value being sought. If it is not equal, then depending on the comparison, the
remaining search space is reduced to the part before or after the estimated position.
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This method works only if calculations on the size of differences between key values
are sensible.

public static int InterpolationSearch(ref int[] x, int searchValue)
{

// Returns index of searchValue in sorted input data
// array x, or -1 if searchValue is not found
int low = 0;
int mid;
int high = x.Length - 1;

while (x[low] < searchValue && x[high] >= searchValue)
{
mid=low+((searchValue-x[low])*(high-low))/(x[high]-x[low]);
if (x[mid] < searchValue)

low = mid + 1;
else if (x[mid] > searchValue)

high = mid - 1;
else

return mid;
}
if (x[low] == searchValue)

return low;
else

return -1; // Not found
}

5.6.4 Searching for the Maximum and Minimum Values

Computer programs are often asked to search an array, or through some other data
structure, for the maximum or minimum values. The following code illustrates how
to search through an array for maximum or minimum values. Of course, you can
always use the built-in methods provided by the .NET Framework Math Library:
Math.Max() and Math.Min(). Nevertheless, a simple implementation of the algo-
rithms for finding the maximum and minimum values of an integer array is given
below. It can be easily adapted to accommodate other data types.

public static int FindMax(int[] x)
{

int max = x[0];
for (int i = 1; i < x.Length; i++)
{ if (x[i] > max) max = x[i]; }
return max;

}

public static int FindMin(int[] x)
{

int min = x[0];
for (int i = 1; i < x.Length; i++)
{ if (x[i] < min) min = x[i]; }
return min;

}
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5.6.5 Searching for the N-th Largest or M-th Smallest Value

Finding the n-th largest or the m-th smallest value in an array is a bit more challeng-
ing, especially if the input array is unsorted and we desire to preserve its original
order. Press et al. [22], for example, provide a rather long and fancy routine in C++
that reportedly does all these things without disturbing the order of the original input
array. My approach, which is listed below, may not be the fastest or most optimal
but its logic flow is perhaps much easier to follow. First, we copy the original input
array into a temporary array. This way we can preserve the original order of the
input array while working with the temporary array. Then it is simply a matter of
sorting the data in the temporary array and returning the n-th largest or m-th smallest
element. It’s that simple. As an alternate way to solve this problem, I also present
an entirely different method that resembles that of an incomplete selection sort. The
code below illustrates how both of these methods may be implemented in C#.

public static int NthLargest1(int[] array, int n)
{

//Copy input data array into a temporary array
//so that original array is unchanged
int[] tempArray = new int[array.Length];
array.CopyTo(tempArray, 0);
//Sort the temporary array
QuickSort(ref tempArray);
//Return the n-th largest value in the sorted array
return tempArray[tempArray.Length - n];

}

public static int NthLargest2(int[] array, int k)
{

int maxIndex;
int maxValue;
//Copy input data array into a temporary array
//so that original array is unchanged
int[] tempArray = new int[array.Length];
array.CopyTo(tempArray, 0);

for (int i = 0; i < k; i++)
{

maxIndex = i;
maxValue = tempArray[i];
for (int j = i + 1; j < tempArray.Length; j++)
{

// if we’ve located a higher value
if (tempArray[j] > maxValue)
{ // capture it

maxIndex = j;
maxValue = tempArray[j];

}
}
Swap(ref tempArray[i], ref tempArray[maxIndex]);

}
return tempArray[k - 1];

}
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public static int MthSmallest1(int[] array, int m)
{

//Copy input data array into a temporary array
//so that original array is unchanged
int[] tempArray = new int[array.Length];
array.CopyTo(tempArray, 0);
//Sort the temporary array
QuickSort(ref tempArray);
//Return the m-th smallest value in the sorted array
return tempArray[m - 1];

}

public static int MthSmallest2(int[] array, int m)
{

int minIndex;
int minValue;
//Copy input data array into a temporary array
//so that original array is unchanged
int[] tempArray = new int[array.Length];
array.CopyTo(tempArray, 0);

for (int i = 0; i < m; i++)
{

minIndex = i;
minValue = tempArray[i];
for (int j = i + 1; j < array.Length; j++)
{

if (tempArray[j] < minValue)
{ // capture it

minIndex = j;
minValue = tempArray[j];

}
}
Swap(ref tempArray[i], ref tempArray[minIndex]);

}
return tempArray[m - 1];

}

5.6.6 Some Useful Utilities

We end this chapter with a brief collection of useful utilities for quickly determining
whether an array is sorted or not and if it is sorted, whether it is sorted in an ascending
or a descending order. Routines are given for both integer and string arrays and can
be easily adopted to other data types.

// Determines if int array is sorted from 0 -> Max
public static bool IsSorted(int[] arr)
{

for (int i = 1; i < arr.Length; i++)
{

if (arr[i - 1] > arr[i]) return false;
}
return true;

}
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// Determines if string array is sorted from A -> Z
public static bool IsSorted(string[] arr)
{

for (int i = 1; i < arr.Length; i++)
{

if (arr[i - 1].CompareTo(arr[i]) > 0) return false;
}
return true;

}

// Determines if int array is sorted from Max -> 0
public static bool IsSortedDescending(int[] arr)
{

for (int i = arr.Length - 2; i >= 0; i--)
{

if (arr[i] < arr[i + 1]) return false;
}
return true;

}

// Determines if string array is sorted from Z -> A
public static bool IsSortedDescending(string[] arr)
{

for (int i = arr.Length - 2; i >= 0; i--)
{

if (arr[i].CompareTo(arr[i + 1]) < 0) return false;
}
return true;

}

As mentioned in Chapter 1, the .NET Framework provides a generic collection
class called List<> with sizes that can be adjusted dynamically and other desirable
features that are not available to its conventional array data structure. However,
through the use of some built-in methods, it is possible to convert between one data
structure and the other. The examples shown below illustrate how.

Console.WriteLine("\n\nTesting Conversion from List to Array\n");
List<string> myList = new List<string>();
myList.Add("duck");
myList.Add("bunny");
myList.Add("goose");
myList.Add("chipmunk");
myList.Add("dove");
string[] myString = myList.ToArray();
foreach (string s in myString)

Console.WriteLine(s);

Console.WriteLine("\n\nTesting Conversion from Array to List\n");
string[] str =
new string[] {"duck","bunny","goose","chipmunk","dove"};
List<string> myOtherList = new List<string>(str);
myOtherList = str.ToList();
foreach (string s in myOtherList)

Console.WriteLine(s);
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Bits and Bytes

6.1 Introduction

Programming computers to interact with the physical world is perhaps one of the
most challenging, exciting and important tasks which programmers are sometimes
asked to do. Typical computer interfacing projects in either the engineering or sci-
entific laboratory often involve the development of software applications capable of
controlling physical equipment by passing data to and from hardware devices. How-
ever, the successful development and deployment of such ambitious and exciting
computer applications often require a deeper understanding and knowledge of both
hardware features and more advanced software concepts. Although a full discussion
of the hardware aspects of computer interfacing is beyond the scope of this book
and actually merits an entirely new book exclusively dedicated to that topic, there
are some important related software concepts that deserve some attention. Conse-
quently, this chapter will focus on the topic of bit manipulation, bitwise operations
and other related software issues that make such innovative computer applications
possible. As with all the other chapters in this book, my focus will be largely on
developing practical examples of how one might apply some of these advanced but
basic concepts to the development of effective software applications.

6.2 Numeric Systems

A numeric system is a conceptual tool for thinking about numbers and expressing
them in a consistent manner by using arbitrary symbols. The earliest and perhaps
most primitive of these is called the unary numeric system where every natural num-
ber is represented by a corresponding symbol, usually a slash. Today, the most com-
monly used numeric system consists of Hindu-Arabic symbols which were origi-
nally developed around the 5th century A.D. Because humans have ten fingers, this
numeric system uses ten basic symbols called digits, 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9
which when grouped together form the well known decimal number system we have
today. Therefore, working in a base 10 numeric system and using what has come to
be known as the place-value notation, one can use the position of a digit to signify the
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power of ten by which the digit is to be multiplied and added to construct a particular
number. For example, 507 = 5x102 + 0x101 + 7x100. In this context, the numeral
101 can be interpreted as the decimal numeral for one hundred and one, the binary
numeral for 5, or some other numerical value depending on the numeric base being
used.

The electronic components of modern computers function only in two possible
states of either high or low voltages. Denoting high voltages by 1 and low voltages
by 0 leads to the entire set of binary digits and, as a result, the binary number sys-
tem was adopted long ago to handle all aspects of computer hardware design and
software development. Collectively, these binary digits are called bits and can be
grouped together into groups of 4 (nibble), 8 (byte), 16 (word), 32 (dword) or even
64 (qword) bits. Generally speaking, a word is a term for the natural unit of data used
by a particular computer design. A word is simply a fixed-sized group of bits that
are handled together by the machine. The number of bits in a word (the word size
or word length) is an important characteristic of a computer architecture. Modern
computers usually have a word size of 16, 32, or 64 bits. In any event, it would be
useful to develop some routines in C# to convert numerical values back and forth
between all these different numerical bases.

In a positional-based numeric system, where b is a positive natural number also
known as the radix or base, there are a total of b fundamental symbols (or digits)
corresponding to the first b natural numbers including zero. Therefore, if b is the
base, one can write any number in the numeral system of base b by expressing it in
the following generalized format: anbn + an−1bn−1 + an−2bn−2 + · · ·+ a0b0 which
then yields the enumerated digits anan−1an−2 · · ·a0 in a descending order. The digits
are natural numbers between 0 and b− 1, inclusive. Unless implied by context and
in order to avoid ambiguity when handling different numeric bases, numbers without
any subscripts are traditionally considered to be decimals. Numbers meant to rep-
resent numeric values in other bases are followed by a subscript added to the lower
right side of the number. Thus in the example given above, it would be considered
better practice to specify the base being used right alongside the number as shown:
1012 = 510. By introducing a dot called the radix point to split the digits into two
groups, one can also write fractions in the positional system. For example, the base-2
numeral 10.112 = 1x21 +0x20+1x2−1+1x2−2 = 2.7510. Therefore if b is a positive
integer greater than 1, any number x in the base b system with n digits to the left of
the radix point and m digits to the right of the radix point can be uniquely expressed
in the following format [38]:

x = (anan−1 · · ·a1a0.a−1a−2a−3 · · ·a−m)b =
n

∑
k=−m

akbk

where ai is a non-negative integer, called a digit, that is less than b.
There is a very simple algorithm that can be used to construct the base b expansion

of a number x and thus convert numerical values between different bases. In this
algorithm, the integer and fractional parts of a number are each converted separately
and then the results are added up. Let us consider the integer part of the number to be
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converted first. The basic idea in a nutshell is to start out by dividing the number to be
converted by the base thus obtaining an initial quotient along with a remainder. Then
repeatedly divide each subsequent quotient by the base until one obtains a quotient
that is equal to zero. The remainder values are then set in the corresponding digit
position.

The algorithm to calculate the fractional part is a little more challenging. First,
multiply the fractional part of the number by the base in order to shift the radix point
to the right by 1. If the result is greater than or equal to 1, keep only the integer part
assigning it to the corresponding digit and discard the value left of the radix point.
If the result is less than 1 assign the corresponding digit the value of 0. Repeat this
process until the input fractional number value reaches 0. Unfortunately, there are
situations where this algorithm may not terminate. For example, if you try to convert
0.3 to base 2, you will end up in an infinite loop. Fortunately, since 0.3 is rational,
there will be a repeated set of digits and so with careful coding, you can stop the
loop once you see a set of digits repeat. For irrational numbers where the loop is
infinite, you can choose to terminate the loop after a certain number of values have
been calculated.

Unfortunately, the .NET Framework does not provide specific routines for directly
converting numerical values between different bases and so one has to program this
function from scratch. The following code snippet contains one possible solution
for converting unsigned positive integer values between different bases ranging any-
where from 2 to 36. The maximum base value of 36 allows for the use of all possible
unique digits that can be formed using the standard numeric digits from 0 to 9 fol-
lowed by the 26 letters of the alphabet from A to Z. The base conversion program
provided below actually consists of a two step process in order to minimize small
numerical errors from slowly creeping into the conversion calculations. First, the
input numerical value is converted from its original base to its equivalent value in
base 10. Then that value in base 10 is converted to the equivalent value in the desired
target base. This code can be immediately improved in at least two ways. First, by
adding functionality to accept both unsigned and signed integer values. Second, by
adding functionality to enable it to accept fractional non-integer data values. These
two suggested improvements will be left as an exercise for the reader.
public static string ConvertToBase(string number, int start_base, int

end_base)
{

long base10 = ConvertToBase10(number, start_base);
string result = ConvertFromBase10(base10, end_base);
return result;

}

public static long ConvertToBase10(string number, int start_base)
{

if (start_base == 10) return Convert.ToInt64(number);
if (start_base < 2 || start_base > 36) return 0;

char[] CharDataArray = number.ToCharArray();
int i = CharDataArray.Length - 1;
int j = start_base;
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int k = 0;
long result = 0;

foreach (char c in CharDataArray)
{

if (char.IsNumber(c))
k = int.Parse(c.ToString());
else

k = Convert.ToInt32(c) - 55;
result += k * (Convert.ToInt64(Math.Pow(j, i)));
i--;

}
return result;

}

public static string ConvertFromBase10(long number, int end_base)
{

if (end_base == 10) return number.ToString();
if (end_base < 2 || end_base > 36) return "";

long quotient = number;
long remainder;
string result = "";

while (quotient >= end_base)
{

remainder = quotient % end_base;
quotient = quotient / end_base;

if (remainder < 10)
result = remainder.ToString() + result;

else
result = Convert.ToChar(remainder + 55).ToString() + result;

}

if (quotient < 10)
result = quotient.ToString() + result;

else
result = Convert.ToChar(quotient + 55).ToString() + result;

return result;
}

6.3 Bit Manipulation and Bitwise Operators

Computers represent data internally as sequences of bits and computer hardware
process data as bits or groups of bits. Each bit can assume either the value 1 or the
value 0 and a sequence of 8 bits is said to form a byte. Note that a byte is also the
standard storage unit for a variable of data type byte. Other data types require larger
number of bytes for storage.
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In referencing specific bits within a binary number, it is common to assign a bit
index number to each bit. The bit index number starts at 0 and is incremented by
one for each subsequent bit position up to one less than the total number of bits.
Therefore, an n-bit number would be written as an−1an−2 · · ·a1a0 where the least
significant bit (lsb) is the right-most bit position, a0, and the most significant bit (msb)
is the left-most bit position, an−1, in a binary integer. Similarly, the corresponding
acronyms LSB and MSB, all in uppercase letters, stand for Least Significant Byte and
Most Significant Byte, repectively.

Data can be stored in memory in one of two ways. In the Big Endian scheme,
the most significant byte is stored in the smallest or lowest memory address whereas
in the Little Endian configuration, the least significant byte is stored in the smallest
or lowest memory address. As a memory aid to remember the difference between
these two configuration directions, recall that if the least significant byte is stored
first you have Little Endian and if the most significant byte is stored first, you have
Big Endian. This property is particularly important when writing data to or reading
data from files and when sending or receiving data over a network. Computers whose
endianess differ from each other will see data in reverse order which will not make
any sense. The BitConverter class, which will be covered later in this chapter, has
an IsLittleEndian field that returns boolean value indicating whether the particular
computer uses the Little Endian or the Big Endian configuration.

bool le = BitConverter.IsLittleEndian;

Although impressive, computers are nonetheless still primitive machines that can
only differentiate between two states, 0 or 1, and, in addition, numbers can be stored
only up to a limited number of digits. Accordingly, it was left to hardware design-
ers to figure out a clever way for computers to handle negative numbers effectively.
Recalling that in C# integer data types can be either signed or unsigned, the msb can
also be used to indicate the sign of a signed binary number in one or two’s comple-
ment notation where a msb of 1 means a negative number and a msb of 0 means a
positive number. The method of complements is just a mathematical technique that
was devised in order to subtract one number from another using only the addition of
positive numbers.

The concept behind numerical complement scheme can be briefly explained as
follows. The radix complement of an n digit number y in radix b is, by definition,
bn−y. Adding this to some other number x where x ≤ y results in the value x+bn−y
or x− y + bn which is always greater than bn. Thus, by subtracting bn from this
total, we obtain x − y + bn − bn or just x− y, which is the desired result. In the
decimal numbering system, the radix complement is called the ten’s complement
and the diminished radix complement is called the nines’ complement. In the binary
numbering system, the radix complement is called the two’s complement and the
diminished radix complement is called the ones’ complement.

Since bn −1 = bn −1n = (b−1)(bn−1 +bn−2 + · · ·+b+1) = (b−1)bn−1 + ...+
(b−1), we observe that (bn−1) is the just the digit b−1 repeated n times. Therefore,
the radix complement bn − y is most easily obtained by adding 1 to the diminished
radix complement, (bn −1)− y. That is, bn − y = (bn −1)− y + 1. The diminished
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radix complement of a number y is found by subtracting each digit in y from b−1.
Finally, adding 1 to obtain the radix complement can be done separately, but is most
often combined with the addition of x and the complement of y. Any overflows in
the total number of digits for a given radix, are simply discarded. The following two
examples should illustrate the ideas behind this algorithm that was just described.

Consider the following decimal subtraction example: 873− 218 where here x =
873 and y = 218. To subtract a decimal number y from another number x using the
method of complements, the ten’s complement of y (nines’ complement plus 1) is
added to x. Typically, the nines’ complement of y is first obtained by determining the
complement of each digit. The complement of a decimal digit in the nines’ comple-
ment system is the number that must be added to it to produce 9. The complement
of 3 is 6, the complement of 7 is 2, and so on. Therefore,

873 (x)
+ 781 (complement of y)
+ 1 (to get the ten’s complement of y)
=====
1655

The first 1 digit is then dropped, giving 655, the correct answer. If the subtrahend
has fewer digits than the minuend, leading zeros must be added which will become
leading nines when the nines’ complement is taken. For example, 48032− 391 =
48032 + 99608 + 1 = 147641. Dropping the left-most 1 gives the correct answer:
47641. The method of complements is especially useful in binary (radix 2) since the
ones’ complement is very easily obtained by just inverting each bit. Adding 1 to get
the two’s complement can be done by simulating a carry into the least significant bit.
For example:

01100100 (x, equals decimal 100)
- 00010110 (y, equals decimal 22)

becomes the sum:

01100100 (x)
+ 11101001 (ones’ complement of y)
+ 1 (to get the two’s complement)
==========
101001110

Dropping the initial 1 gives the answer: 01001110.
The method of complements normally assumes that the operands are positive and

that y ≤ x. But what happens if x < y? In that case, there will not be a 1 digit
to discard after the addition since x − y + bn will be less than bn. For example,
185− 329 = 185 + 670 + 1 = 856 which is obviously the wrong answer since we
were expecting the result to be −144. However, 856 just happens to be the 10’s
complement of 144. Therefore, if x < y then in order to obtain the final correct result
one needs to add an additional step and complement the result if there is no carry out
of the most significant digit.

In C#, the bitwise operators can manipulate individual bits stored in variables
consisting of the following data types: sbyte, byte, char, short, ushort, int, uint,
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TABLE 6.1
Results of combining individual bits with the bitwise AND,
OR and XOR operators.

Bit 1 Bit 2 Bit 1 & Bit 2 Bit 1 | Bit 2 Bit 1 ˆ Bit 2
0 0 0 0 0
0 1 0 1 1
1 0 0 1 1
1 1 1 1 0

long and ulong. The operators bitwise AND (&), bitwise inclusive OR (|), and bit-
wise exclusive OR (ˆ) or XOR, operate similarly to their logical counterparts except
that their bitwise versions operate on the level of bits. The actual functionality of
each of these operators on individual bits is summarized in Table 6.1. In addition,
the left-shift << operator shifts the bits of its left operand to the left by the number
of bits specified in its right operand. The rightmost bits are replaced with 0s and any
1s shifted to the left are lost. The right-shift >> operator shifts the bits of its left
operand to the right by the number of bits specified in its right operand. 0s replace
the vacated bits on the left side if the number is positive and 1s replace the vacated
bits if the number is negative. Any 1s shifted off to the right are lost.

As for negative numbers, for bits shifted to the left, regardless of sign, and for
bits shifted to the right where the value is either unsigned or signed but positive,
vacated bits are filled with 0s. However, for signed numbers that are negative, most
compilers will attempt to preserve the negative sign of the value and so in a right
shift, the vacated bits are replaced with 1s instead of with 0s. However, if you have
a negative signed number and you want to make sure the left-most bits are replaced
with 0s instead of 1s, you can AND with a mask containing 0s in the vacated bits
and 1s in the other bits following the shift right operation as shown:

int negvalue = -1;
negvalue = negvalue >> numbitsToShift & 0xF

Note that this way of coding immediately places 0s on the left number of bits as
specified by the variable numbitsToShift indicating how many bits to the right the
negative value has been right-shifted. Although you can use more than one bit shift
operation in a single expression, readers are cautioned that shift operations can pro-
duce undefined results if the bits to be shifted in either direction exceed the total
number of allowed bits for the particular data type being used.

Note that since each bit represents a successively higher power of 2, shifting bits to
the right has the effect of dividing a value by 2 for each bit shift. Conversely, shifting
to the left has the effect of multiplying a value by 2 for each bit shift. These bit
shifting features can sometimes provide us with not just an alternate or fancy way for
computers to carry out some calculations but they also help increase the computation
speed since fewer steps are then actually needed. For example, consider the problem
of converting decimal numbers to their equivalent binary, octal and hexadecimal
counterparts. In order to convert a number of base 10 to binary, we need to divide

© 2010 by Taylor and Francis Group, LLC



206 Numerical Methods, Algorithms and Tools in C#

by 2 or simply shift the bitwise representation of that number by 1 bit. Likewise,
in order to convert to octal, we need to shift the bitwise representation of the target
number by 3 bits. As for conversion to hexadecimals, we need to shift by 4 bits
and so on. The method DecToBinOctOrHex, shown below, illustrates this idea. This
method is also overloaded in order to accommodate both both positive and negative
values of int32 and double data types. In addition, in the case of numerical values
of double data types, the base conversion routines now allow for the inclusion of
fractional parts of a numerical value.

public static string DecToBinOctOrHex(int number, int baseval)
{

int n, bitcounter, bitstoshift, startbit;
string digit = "0123456789ABCDEF";

switch (baseval)
{

case 2:
startbit = 31;
bitstoshift = 1;
break;

case 8:
startbit = 30;
bitstoshift = 3;
break;

case 16:
startbit = 28;
bitstoshift = 4;
break;

default:
startbit = 0;
bitstoshift = 0;
break;

}

StringBuilder output = new StringBuilder();

for (bitcounter = startbit, n = number; bitcounter >= 0;
bitcounter -= bitstoshift)

{
output.Append(digit[(n >> bitcounter) & (baseval - 1)]);

}
return output.ToString();

}

public static string DecToBinOctOrHex(double number, int baseval)
{

int n, bitcounter, bitstoshift, startbit;
string digit = "0123456789ABCDEF";

switch (baseval)
{

case 2:
startbit = 31;
bitstoshift = 1;
break;
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case 8:
startbit = 30;
bitstoshift = 3;
break;

case 16:
startbit = 28;
bitstoshift = 4;
break;

default:
startbit = 0;
bitstoshift = 0;
break;

}

StringBuilder output = new StringBuilder();

for (bitcounter = startbit, n = (int)Math.Truncate(number);
bitcounter >= 0; bitcounter -= bitstoshift)

{
output.Append(digit[(n >> bitcounter) & (baseval - 1)]);

}
output.Append(".");
for (int i = 0; i < 12; i++)
{

number = (number - Math.Floor(number)) * baseval;
output.Append(digit[(int)Math.Truncate(number)]);

}
return output.ToString();

}

//SIMPLE DRIVER PROGRAM TO TEST CODE
//Convert integer to binary
int intdata = 28;
string msg = "Integer {0} in decimal = {1} in binary.\n";
Console.WriteLine(msg, intdata, DecToBinOctOrHex(intdata,2));
intdata = -28;
Console.WriteLine(msg, intdata, DecToBinOctOrHex(intdata,2));

//Convert double to binary
double dbldata = 3.141592653589793;
msg = "Double {0} in decimal = \n{1} in binary.\n";
Console.WriteLine(msg, dbldata, DecToBinOctOrHex(dbldata,2));
dbldata = -3.141592653589793;
Console.WriteLine(msg, dbldata, DecToBinOctOrHex(dbldata,2));

//Convert integer to octal
intdata = 28;
msg = "Integer {0} in decimal = {1} in octal.\n";
Console.WriteLine(msg, intdata, DecToBinOctOrHex(intdata,8));
intdata = -28;
Console.WriteLine(msg, intdata, DecToBinOctOrHex(intdata,8));

//Convert double to octal
dbldata = 3.141592653589793;
msg = "Double {0} in decimal = {1} in octal.\n";
Console.WriteLine(msg, dbldata, DecToBinOctOrHex(dbldata,8));
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dbldata = -3.141592653589793;
Console.WriteLine(msg, dbldata, DecToBinOctOrHex(dbldata,8));

//Convert integer to hexadecimal
intdata = 28;
msg = "Integer {0} in decimal = {1} in hexadecmal.\n";
Console.WriteLine(msg, intdata, DecToBinOctOrHex(intdata,16));
intdata = -28;
Console.WriteLine(msg, intdata, DecToBinOctOrHex(intdata,16));

//Convert double to hexadecimal
dbldata = 3.141592653589793;
msg = "Double {0} in decimal = {1} in hexadecmal.\n";
Console.WriteLine(msg, dbldata, DecToBinOctOrHex(dbldata,16));
dbldata = -3.141592653589793;
Console.WriteLine(msg, dbldata, DecToBinOctOrHex(dbldata,16));

OUTPUT:

Integer 28 in decimal =
00000000000000000000000000011100 in binary.

Integer -28 in decimal =
11111111111111111111111111100100 in binary.

Double 3.14159265358979 in decimal =
00000000000000000000000000000011.001001000011 in binary.

Double -3.14159265358979 in decimal =
11111111111111111111111111111101.110110111100 in binary.

Integer 28 in decimal = 00000000034 in binary.

Integer -28 in decimal = 77777777744 in binary.

Double 3.14159265358979 in decimal =
00000000003.110375524210 in octal.

Double -3.14159265358979 in decimal =
77777777775.667402253567 in octal.

Integer 28 in decimal = 0000001C in hexadecmal.

Integer -28 in decimal = FFFFFFE4 in hexadecmal.

Double 3.14159265358979 in decimal =
00000003.243F6A8885A3 in hexadecmal.

Double -3.14159265358979 in decimal =
FFFFFFFD.DBC095777A5D in hexadecmal.

The bitwise complement operator ∼ sets all 0 bits in its operand to 1 and all 1 bits
in its operand to 0. That is, ∼ 0 = 1 and ∼ 1 = 0. This process, as explained earlier
in this section, is also known as taking the one’s complement of the value. Larger
sets of bits are likewise individually changed to their complementary counterpart as
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shown in this example: ∼ 01011 = 10100.
With the exception of the complement operator, each bitwise operator also has a

corresponding assignment operator. Thus &= is the bitwise AND assignment oper-
ator, |= is the bitwise inclusive OR assignment operator, ˆ= is the bitwise exclusive
OR assignment operator , <<= is the left-shift assignment operator, and >>= is
the right-shift assignment operator.

Masks are simply values that may be used in conjunction with bitwise operators to
manipulate specific bits. To set a bit means to make the value of the bit 1. To clear a
bit means to make the value of the bit 0. Masks can be used to turn specific bits on or
off, toggle bits or determine the value of one or more specific bits. Masks allow one
to essentially ignore certain bits, whose values we may not know or even care about,
while at the same time altering or ascertaining the values of target bits. These fea-
tures are particularly useful in developing computer interfacing applications where
it may be desired to set, reset, toggle or test both incoming or outgoing blocks of
individual bits. The following paragraphs contain a series of brief descriptions along
with ready-to-use C# code recipes for fiddling around with bit values.

TURNING DESIGNATED BITS ON: num |= MASK Recall that X OR 1 = 1 and X
OR 0 = X . Therefore, to turn one or more designated bits in a value on and leave the
rest unchanged, we OR the value with a mask that has a 1 in the target bit locations
and 0s everywhere else. This process is also referred to as setting bits. To have
the 5th bit in a byte always turned on, for example, a mask containing the value
00001000 is created and then ORed with the input data bits as shown:

10011101 10010101
OR 00001000 00001000 (mask byte)
= 10011101 10011101

TURNING DESIGNATED BITS OFF: num &= MASK Recall that X AND 0 = 0 and
X AND 1 = 1 only if X = 1. Therefore, to clear one or more designated bits in a
value and leave the rest unchanged, we AND the value with either (1) a mask that
has 0s in the bit or bits we want to turn off and 1s in all the other bits or, (2) the
complement of the mask that has 1s in the bit we want to turn off and 0s in all other
bits. This process is also referred to as clearing bits. To have the 5th bit in a byte
always turned off, for example, a mask containing the value 00001000 is created and
then ANDed with the input data bits as shown:

10011101 10010101
AND 11110111 11110111 (mask byte)

= 10010101 10010101

TURNING OFF ALL BITS IN A NUMBER: num ˆ= num Recall that the exclusive
OR operator makes a bit-by-bit comparison between two integer values and, for each
bit position, yields a 1 if one of the bits is 1 and the other is 0. The result is 0 if both
bits are 0s or both are 1s. Therefore you can turn all bits in a number off by XORing
the number with itself. Of course, you could also do the same thing by assigning 0
to the variable but doing it this way is both instructive and far more fun. Therefore,
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in the spirit of the examples just described we can turn clear all the bits of some byte
value, say 10011101 by XORing it with itself as shown:

10011101
XOR 10011101

= 00000000

TOGGLING BITS: num ˆ= MASK By toggling a bit, we mean turning it off if it is on
and vice versa. You can use the XOR operator and a mask to toggle one or more
bits. Bits corresponding to 1s in the mask are toggled and those corresponding to 0s
in the mask are left unchanged. However, if you want to toggle all bits at once, then
just use the complement operator. Consider the following example that illustrates
this idea:

10011001
XOR 11011010 (byte mask)

= 01000011

DETERMINING IF ONE OR MORE BITS ARE ON: if (num & MASK==MASK) To
determine whether one or more bits in a variable or constant are turned on, we AND
with a mask that contains 1s in the bits we want to look at and 0s in the other bits.
Then we check to see whether the resulting value is equal to the mask. Bits that
are ANDed with 0s yield 0s, as in the mask. If the target bits in the number being
checked are 1s, so that ANDing with 1 yields 1s as in the mask, the result of if (num

& MASK == MASK) will be true if the target bits all are on and false if one or more is
off. Consider the results contained in the following example:

10011101 11011111
AND 11010111 11010111 (mask byte)

= 10010101 (false) 11010111 (true)

ASCERTAINING THE VALUE OF SEVERAL BITS AT ONCE: num & MASK To
ascertain the value of several specific contiguous bits, all of which are low-order
bits, you AND with a mask that has 0s in the bits you are not interested in and 1s
in those you are. Consider ANDing some arbitrary input byte value with the mask
0x7 = 00000111 which has bits 0-2 on and the rest off. This will zero out bits 3-7
and leave bits 0-2 in their original settings, thus isolading the value they contain as
shown in the following example:

10011101
AND 00000111 (mask byte)

= 00000101

The following listing contains source code to illustrate and expand on the ideas and
basic material for bitwise manipulation and operations just described above.
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// Converts an int value into its 32 bit binary representation
public static string DisplayBits(int value,int nBitsToDisplay)
{

int mask = 1 << nBitsToDisplay - 1;
StringBuilder output = new StringBuilder();

// Get each bit, add space every 8 bits
// for display formatting
for (int bitcounter = 1; bitcounter<=nBitsToDisplay;bitcounter++)
{

// Append 0 or 1 depending on result of masking
output.Append((value & mask) == 0 ? "0" : "1");
// Shift left so that mask will find bit of
// next digit during next iteration of loop
value <<= 1;

if (bitcounter % 8 == 0) output.Append(" ");
}
return output.ToString();

}

//Returns value with the mask bits set
public static int setBits(int value, int mask)
{

return value | mask;
}

//Returns value with the all the bits set except the mask bits
public static int setBitsExcept(int value, int mask)
{

return value | ˜mask;
}

//Returns true if any of the bits in mask is set in value
public static bool isAnyBitSet(int value, int mask)
{

return (value & mask) != 0;
}

//Returns true if all the bits in mask are set in value
public static bool areAllBitsSet(int value, int mask)
{

return (value & mask) == mask;
}

//Flips bit at position n
public static int BitFlip(int value, int n)
{

return ((value) ˆ (1 << (n)));
}

//Toggles bit according to mask
public static void BitToggle(int value, int mask)
{

mask ˆ= value;
}
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//Returns value with the nth bit set
public static int setBitByPos(int value, int bitNumber)
{

return value | (1 << bitNumber);
}

//Returns true if value has the the nth bit set
public static bool isBitSetByPos(int value, int bitNumber)
{

return (value & (1 << bitNumber)) != 0;
}

//Returns value with the mask bits set or cleared depending
//on the value of set.
public static int setBits(int value, int mask, int bSet)
{

return bSet != 0? setBits(value,mask):clearBits(value,mask);
}

//Returns value with the mask bits cleared
public static int clearBits(int value, int mask)
{

return value & ˜mask;
}

//Returns true if all the bits in mask are cleared in value
public static bool areAllBitsClear(int value, int mask)
{

return (value & mask) == 0;
}

//Returns value with all the bits cleared except the mask bits
public static int clearBitsExcept(int value, int mask)
{

return value & mask;
}

//Returns value with the nth bit cleared
public static int clearBitByPos(int value, int bitNumber)
{

return value & ˜(1 << bitNumber);
}

//Returns true if value has the the nth bit cleared
public static bool isBitClearByPos(int value, int bitNumber)
{

return isBitSetByPos(value, bitNumber) == false;
}

//Returns value with add bits set and the remove bits cleared
public static int setClearBits(int value,int add,int remove)
{

return (value | add) & ˜remove;
}
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//Returns the one’s complement of an input int value
public static int OnesComplement(int value)
{

return (˜value);
}

//Returns the two’s complement of an input int value
public static int TwosComplement(intvalue)
{

return (˜value + 1);
}

// Driver Program with examples bitwise operations
int a = 0x005A; // in binary = 0000 0000 0101 1010
int b = 0x3C5A; // in binary = 0011 1100 0101 1010

Console.WriteLine("a = {0} = \t{1}",a,DisplayBits(a,16));
Console.WriteLine("b = {0} = \t{1}\n",b,DisplayBits(b,16));

Console.WriteLine("a & b = {0:x} = \t{1}", a & b,
DisplayBits(a & b,16));

Console.WriteLine("a | b = {0:x} = \t{1}", a | b,
DisplayBits(a | b,16));

Console.WriteLine("a ˆ b = {0:x} = \t{1}", a ˆ b,
DisplayBits(a ˆ b,16));

Console.WriteLine("˜a = {0:x} = {1}\n",˜a,DisplayBits(˜a,16));

Console.WriteLine("a>>1 = {0} = \t{1}", a >> 1,
DisplayBits(a >> 1,16));

Console.WriteLine("a>>5 = {0} = \t{1}\n", a >> 5,
DisplayBits(a >> 5,16));

Console.WriteLine("a<<1 = {0} = \t{1}", a << 1,
DisplayBits(a << 1,16));

Console.WriteLine("a<<5 = {0} = \t{1}\n", a << 5,
DisplayBits(a << 5,16));

Console.WriteLine("Ones complement of {0}\n = {1}\n",
DisplayBits(a,16), DisplayBits(OnesComplement(a),16));

Console.WriteLine("Twos complement of {0}\n = {1}",
DisplayBits(a,16), DisplayBits(TwosComplement(a),16));

Console.WriteLine("Twos Complement of {0} in decimal
format = {1}", a, TwosComplement(a));

Typical engineering and scientific programming projects sometimes require the
development of software applications that can physically control laboratory equip-
ment by passing data to and from hardware devices. As a result, programmers may
find themselves needing to convert a built-in data type into an array of bytes. For
example, some hardware device might require an integer value, but that value must
be sent one byte at a time. The reverse situation can also occur where data is re-
ceived as an ordered sequence of bytes that then needs to be converted back into one
of the built-in data types before it can be interpreted, stored or analyzed. Fortunately,
the .NET Framework provides the BitConverter class which contains many useful
features especially designed for converting values of some particular data type into
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their corresponding byte arrays where individual bits can then be easily accessed and
manipulated. Conversely, BitConverter also provides features designed specifically
for converting byte arrays back into values corresponding to their respective data
type. Together, these features provide an arsenal of excellent software tools for most
bit twiddling and hardware device interfacing needs.

Nevertheless, some words of caution are also needed here. Although their names
may be closely related, the BitConverter class should not be confused with the
Convert class which contains methods designed for converting variables of one data
type to another. In addition, although the BitConverter class provides a convenient
set of tools for converting most basic value types to and from byte arrays, the decimal
data type is an exception in which case you have to use a System.IO.MemoryStream

object as the following two methods illustrate.

// Create a byte array from a decimal numeric value.
public static byte[] DecimalToByteArray(decimal src)
{

// Create a MemoryStream as a buffer to hold the binary data.
using (MemoryStream stream = new MemoryStream())
{

// Create a BinaryWriter to write binary data to the stream.
using (BinaryWriter writer = new BinaryWriter(stream))
{

// Write the decimal to the BinaryWriter/MemoryStream.
writer.Write(src);

// Return the byte representation of the decimal.
return stream.ToArray();

}
}

}

// Create a decimal numeric value from a byte array.
public static decimal ByteArrayToDecimal(byte[] src)
{

// Create a MemoryStream containing the byte array.
using (MemoryStream stream = new MemoryStream(src))
{

// Create a BinaryReader to read the decimal from the stream.
using (BinaryReader reader = new BinaryReader(stream))
{

// Read and return the decimal from the
// BinaryReader/MemoryStream.
return reader.ReadDecimal();

}
}

}

Together with the two special methods for converting decimal data type values to
and from byte arrays that were just described above, the following code examples
illustrate the use of a few BitConverter class methods for various different data
types.
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//Convert an int to a byte array and display
byte[] b = null;
b = BitConverter.GetBytes(3678);
Console.WriteLine(BitConverter.ToString(b));
OUTPUT: 5E-0E-00-00

//Convert a byte array to an int and display
byte[] b = null;
b = BitConverter.GetBytes(3678);
Console.WriteLine(BitConverter.ToInt32(b,0));
OUTPUT: 3678

//Convert different data types to byte array
//and convert byte array back
string formatter = "{0,10}{1,10}{2,25}";
double aDoubl = 3.1415;
float aSingl = 137.5F;
long aLong = 123456789;
int anInt = 9732;
short aShort = 25;
char aChar = ’M’;
bool aBool = true;
decimal aDec = 842.696m;

//Convert given data values into corresponding byte arrays
byte[] byteArrDouble = BitConverter.GetBytes(aDoubl);
byte[] byteArrSingl = BitConverter.GetBytes(aSingl);
byte[] byteArrLong = BitConverter.GetBytes(aLong);
byte[] byteArrInt = BitConverter.GetBytes(anInt);
byte[] byteArrShort = BitConverter.GetBytes(aShort);
byte[] byteArrChar = BitConverter.GetBytes(aChar);
byte[] byteArrBool = BitConverter.GetBytes(aBool);
byte[] byteArrDecimal = DecimalToByteArray(aDec);

//Convert byte arrays values back into data values
double valueDbl = BitConverter.ToDouble(byteArrDouble,0);
Single valueSingl = BitConverter.ToSingle(byteArrSingl,0);
long valueLong = BitConverter.ToInt64(byteArrLong,0);
int valueInt = BitConverter.ToInt32(byteArrInt,0);
short valueShort = BitConverter.ToInt16(byteArrShort,0);
char valueChar = BitConverter.ToChar(byteArrChar,0);
bool valueBool = BitConverter.ToBoolean(byteArrBool,0);
decimal valueDecimal = ByteArrayToDecimal(byteArrDecimal);

Console.WriteLine(
"Example of using methods in the BitConverter\n" +
"class to convert values of specified data\n" +
"types into corresponding byte arrays\n");
Console.WriteLine(formatter,"Data Type","Value","Byte Array");
Console.WriteLine(formatter,"--------","--------","--------");
Console.WriteLine(formatter,"Double", aDoubl,
BitConverter.ToString(byteArrDouble));
Console.WriteLine(formatter, "Single", aSingl,
BitConverter.ToString(byteArrSingl));
Console.WriteLine(formatter, "Long", aLong,
BitConverter.ToString(byteArrLong));
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Console.WriteLine(formatter, "Int", anInt,
BitConverter.ToString(byteArrInt));
Console.WriteLine(formatter, "Short", aShort,
BitConverter.ToString(byteArrShort));
Console.WriteLine(formatter, "Char", aChar,
BitConverter.ToString(byteArrChar));
Console.WriteLine(formatter, "bool", aBool,
BitConverter.ToString(byteArrBool));
Console.WriteLine(formatter, "Decimal", aDec,
BitConverter.ToString(byteArrDecimal));

Console.WriteLine(
"\n\n Example of using methods in the BitConverter class\n" +
"to convert byte arrays back to values of a\n" +
"corresponding specified data type\n");
formatter = "{0,25}{1,15}{2,15}";
Console.WriteLine(formatter,"Byte Array","Value","Data Type");
Console.WriteLine(formatter,"-------","---------","--------");
Console.WriteLine(formatter,
BitConverter.ToString(byteArrDouble), valueDbl, "Double");
Console.WriteLine(formatter,
BitConverter.ToString(byteArrSingl),valueSingl,"Single");
Console.WriteLine(formatter,
BitConverter.ToString(byteArrLong),valueLong,"Long");
Console.WriteLine(formatter,
BitConverter.ToString(byteArrInt),valueInt,"Int");
Console.WriteLine(formatter,
BitConverter.ToString(byteArrShort),valueShort,"Short");
Console.WriteLine(formatter,
BitConverter.ToString(byteArrChar),valueChar,"Char");
Console.WriteLine(formatter,
BitConverter.ToString(byteArrBool),valueBool,"Boolean");
Console.WriteLine(formatter,
BitConverter.ToString(byteArrDecimal),valueDecimal,"Decimal");

OUTPUT:

Example of using methods in the BitConverter class to
convert values of specified data types into
corresponding byte arrays

Data Type Value Byte Array
------------------ ----------

Double 3.1415 6F-12-83-C0-CA-21-09-40
Single 137.5 00-80-09-43
Long 123456789 15-CD-5B-07-00-00-00-00
Int 9732 04-26-00-00

Short 25 19-00
Char M 4D-00
Bool True 01

Decimal 842.696 C8-DB-0C-00-00-00-00-00
-00-00-00-00-00-00-03-00

Example of using methods in the BitConverter class to
convert byte arrays back to values of a corresponding
specified data type
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Byte Array Value Data Type
-------- ---------- ----------

6F-12-83-C0-CA-21-09-40 3.1415 Double
00-80-09-43 137.5 Single

15-CD-5B-07-00-00-00-00 123456789 Long
04-26-00-00 9732 Int

19-00 25 Short
4D-00 M Char

01 True Boolean
C8-DB-0C-00-00-00-00-00 842.696 Decimal

-00-00-00-00-00-00-03-00

In general, a bit array, also known as a bitmap or a bitset, is simply an array data
structure specifically designed to compactly store individual bits or Boolean values.
Accordingly, the .NET Framework provides a very useful class, called BitArray,
to manage compact arrays of bit values. This class comes loaded with a very nice
collection of methods especially designed to facilitate not just bitwise operations
but also various other aspects of bit manipulation. For example, the BitArray class
constructor can be overloaded to accommodate boolean, bit and also byte arrays and
these arrays are dynamically re-sizable. In addition, it is more memory efficient than
both a simple array of bool or a generic List of bool because it uses only one bit for
each element, whereas the bool type uses one byte for each element.

The BitVector32 class is similar to the BitArray class in that it can also hold
a packed array of Boolean values, one per bit. However, the BitVector32 class is
limited to only 32 bit elements and, because it is stack based, it is also faster than the
BitArray class. In addition, the BitVector32 class can store a set of small integers
that take up at most 32 consecutive bits and is therefore very useful with bit-coded
fields, such as those encountered when passing data to and from hardware devices.

A full, complete and updated description of all the features of the BitArray, the
BitVector32 and the BitConverter classes can be found at the MSDN Microsoft
website [39] and so it is pointless to repeat all that information here. Instead, the
following code snippet is meant to illustrate a few of the basic features of BitArray
class methods. Additional examples will be provided later in this chapter as they are
needed.

//Create a 10 element array of bits
BitArray bits = new BitArray(10);
//and a dynamic array of bytes.
byte[] byteArrInt32;
//Initialize bits array
for (int i = 0; i < bits.Length; i += 2)
{

bits[i] = true;
}
foreach (bool bit in bits)
{

//Display original contents of BitArray
Console.WriteLine(bit);
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//Convert original contents of BitArray from
//boolean to corresponding integer values and display
Console.WriteLine(Convert.ToInt32(bit));

//Convert bit data into an array of bytes and display
byteArrInt32 = BitConverter.GetBytes(bit);
Console.WriteLine(BitConverter.ToString(byteArrInt32));

}

There is a common but potentially serious source of error that may come up at
runtime if we fail to properly consider numeric representations and their effect on
conversion operations. Petrusha [40] has posted an excellent article on Microsoft’s
BCL Team Blog website that not only addresses this problem but also suggests some
solutions. As a result, I have streamlined and summarized the key points of that
article below for the convenience and benefit of my readers. This problem seems to
surface most clearly when we convert the hexadecimal or octal string representation
of a numeric value, that should be out of range of its target data type, back to its initial
data type. For example, in running the following code, we would ordinarily expect to
have an OverflowException thrown upon incrementing the upper range of a signed
integer value by one, followed by a call to the Convert.ToString method to convert
this integer value to its hexadecimal string representation before finally calling the
Convert.ToInt32 method to convert the string back to an integer. The code snippet
that follows illustrates this problem.

const int HEXADECIMAL = 16;
//Generate a number that it is out of range of the Int32 type.
long number = (long)int.MaxValue + 1;
//Convert the number to its hexadecimal string equivalent.
string numericString = Convert.ToString(number,HEXADECIMAL);
//Convert the number back to an integer.
//An OverflowException is expected but it is not thrown.
try
{

int targetNumber = Convert.ToInt32(numericString, HEXADECIMAL);
Console.WriteLine("0x{0} is equivalent to {1}.",

numericString, targetNumber);
}
catch (OverflowException)
{

Console.WriteLine("0x{0} is out of the range of the Int32
data type.", numericString);

}

Instead of generating the expected OverflowException, this code produces what is
apparently an erroneous result: 0x80000000 is equivalent to -2147483648. The
source of this problem becomes immediately apparent if we examine the binary
rather than the decimal or hexadecimal representations of this numeric operation.
Starting with Int32.MaxValue = 01111111111111111111111111111111we see that
every bit is set except for the last one, also known as the sign bit. Since this bit is not
set, it indicates that the value is positive. By incrementing Int32.MaxValue by 1, we
must assign the resulting output to a variable of data type Int64 in order to prevent
exceeding the bounds of the Int32 data type and causing an OverflowException to

© 2010 by Taylor and Francis Group, LLC



Bits and Bytes 219

be thrown. This action clears bit 0 through 30 and sets bit 31. Bits 32 through 62
remain unset and the sign bit in positiong 63 is set to 0 indicating that the resulting
value is positive. However, since leading zeros are always dropped from the non-
decimal string representations of numeric vlaues, the call to Convert.ToString(value,
toBase) produces a binary string whose length reverts back to 32. Therefore, the
unexpected output produced by the code above appears to be caused by two different
programming errors. First, we inadvertently allowed the string representation of a
64-bit signed integer value to be interpreted as the string representation of a 32-bit
signed integer value. Second, by ignoring how signed and unsigned integers are rep-
resented, we have allowed a positive integer to be misinterpreted as a signed negative
integer.

Although conversions can still produce overflows at run time, the C# compiler
enforces type safety by prohibiting implicit narrowing conversions. This constraint
means that, in order to successfully compile code that performs a narrowing con-
version, the programmer must explicitly use a C# casting operator. In our original
example, by converting a numeric value to its string representation and then convert-
ing it back to a numeric value, we have bypassed the safeguards implemented by the
C# compiler to inform us of the potential for experiencing data loss in a narrowing
conversion. Therefore, it is up to programmers to be aware of and properly han-
dle exceptions that may potentially be thrown by narrowing conversions. A much
improved version of the original C# code correcting this problem is given below:

const int HEXADECIMAL = 16;
// Increment number so that it is out of range of the int type
long number = (long)int.MaxValue + 1;
// Convert the number to its hexadecimal string equivalent.
string numericString = Convert.ToString(number,HEXADECIMAL);
// Convert the number back to a long integer.
long targetNumber=Convert.ToInt64(numericString,HEXADECIMAL);
Console.WriteLine("0x{0} is equivalent to {1}.",

numericString, targetNumber);

The second source of error in our initial example is that we neglected to consider
the effect that numeric representations have on conversion operations. Although this
is a common source of errors in many programs and the C# compiler does provide
some safeguards against data loss in narrowing conversions, there are no safeguards
provided by the C# compiler when the programmer chooses to work directly with
binary, octal or hexadecimal data either as a sequence of bits or with non-decimal
string representation of numeric values. Actually this is true of any platform and
is not limited to Microsoft Windows or the .NET Framework. Consequently, pro-
grammers need to be particularly cautious when writing code that performs bitwise
operations and always make sure that both operands share the same binary represen-
tation. In addition, programmers also need to be especially careful when converting
the string representation of a number to its numeric equivalent to always ensure that
the numeric string representation is of the type expected by the conversion method
or operator. Our initial example produced unexpected results because we passed the
string representation of what turned out to be an unsigned 32-bit integer to a conver-
sion method, Convert.ToInt32(value,fromBase), that expected the value parame-
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ter to be the string representation of a signed 32-bit integer.
A clearer illustration of the kind of problems that may be encountered when work-

ing with binary values that have different numeric representations can perhaps be
more easily seen when performing some bitwise operation on integers with differ-
ent signs. Consider for example, the case of calculating the result of performing a
bitwise AND operation on 16 and -3, i.e. 16 & -3, which produces the rather un-
expected result of 16 when run by the C# compiler. This result reflects the fact that
the .NET Framework uses twos complement representation for negative integers and
absolute magnitude representation for positive integers. However, one’s complement
representation is also in use by some platforms. The following C# code snippet can
be incorporated into a larger software application and used to determine the actual
complement representation method in use by a particular platform.

public class BinaryUtil
{

public static bool IsTwosComplement()
{

return Convert.ToSByte("FF", 16) == -1;
}

public static bool IsOnesComplement()
{

return Convert.ToSByte("FE", 16) == -1;
}

}

Performing the AND operation with integers that have different signs then requires
that we use a common method to represent their values. The most common method is
a sign and magnitude representation, which uses a variable to store the absolute value
of a number and a separate Boolean variable to store its sign. Using this method of
representation, we can define the AND operation as follows:

public static int PerformBitwiseAND(int operand1,int operand2)
{

// Set flag if a parameter is negative.
bool sign1 = Math.Sign(operand1) == -1;
bool sign2 = Math.Sign(operand2) == -1;

// Convert two’s complement to its absolute magnitude.
if (sign1)

operand1 = ˜operand1 + 1;
if (sign2)

operand2 = ˜operand2 + 1;

if (sign1 & sign2)
return -1 * (operand1 & operand2);

else
return operand1 & operand2;

}

Likewise, we can define the OR bitwise operation for integers of different signs as
follows:
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public static int PerformBitwiseOR(int operand1,int operand2)
{

// Set flag if a parameter is negative.
bool sign1 = Math.Sign(operand1) == -1;
bool sign2 = Math.Sign(operand2) == -1;

// Convert two’s complement to its absolute magnitude.
if (sign1)

operand1 = ˜operand1 + 1;
if (sign2)

operand2 = ˜operand2 + 1;
if (sign1 & sign2)

return -1 * (operand1 | operand2);
else

return operand1 | operand2;
}

Similarly, we can define the XOR bitwise operation for integers of different signs as
follows:

public static int PerformBitwiseXOR(int operand1,int operand2)
{

// Set flag if a parameter is negative.
bool sign1 = Math.Sign(operand1) == -1;
bool sign2 = Math.Sign(operand2) == -1;

// Convert two’s complement to its absolute magnitude.
if (sign1)

operand1 = ˜operand1 + 1;
if (sign2)

operand2 = ˜operand2 + 1;
if (sign1 & sign2)

return -1 * (operand1 ˆ operand2);
else

return operand1 ˆ operand2;
}

Finally, as for the issues raised when converting the string representation of a non-
decimal number to a numeric value, the root of the problem seems to be that at the
time of its creation, the string representation of a number is effectively disassociated
from its underlying numeric value thus making it virtually impossible to determine
the sign of that numeric string representation when it is converted back to a number.
Nevertheless, that problem of restoring a non-decimal value from its string repre-
sentation can be resolved by defining a structure that includes a field to indicate the
sign of the decimal value. For example, the following structure includes a Boolean
field, Negative, that is set to true when the numeric value from which a non-decimal
string representation is derived is negative. It also includes a Value field that stores
the non-decimal string representation of a number.

struct NumericString
{

public bool Negative;
public string Value;

}
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By storing a sign flag together with the string representation of a non-decimal num-
ber, the tight coupling between the string representation of a number and its sign can
be preserved. This feature is particularly useful if the string is later converted back
to a numeric value. For example, the following code defines a static method named
ConvertToSignedInteger that takes a single parameter (an instance of the Numeric-
String structure defined previously) and returns an integer.

public static int ConvertToSignedInteger(NumericString stringValue)
{

// Convert the string to an Int32.
try
{

int number = Convert.ToInt32(stringValue.Value, 16);
// Throw an exception if sign flag is positive but
// the number is interpreted as negative.
if ((!stringValue.Negative) && ((number & 0x80000000) ==

0x80000000))
throw new OverflowException(String.Format("0x{0}
cannot be converted to an Int32.",stringValue.Value));

else
return number;

}
// Handle legitimate overflow exceptions.
catch (OverflowException e)
{

throw new OverflowException(String.Format("0x{0} cannot
be converted to an Int32.",stringValue.Value),e);

}
}

As the reader may remember, the initial code example returned an erroneous result
when we incremented Int32.MaxValue by 1, converted it to a hexadecimal string, and
then converted the string back to an integer value. However, by using the Numeric-
String structure and the ConvertToSignedInteger method just described, the output
result is an OverflowException and the signs of numbers are correctly handled as
illustrated in the following code:

public static void Main()
{

// Define a number.
Int64 number = (long)Int32.MaxValue + 1;
// Define its hexadecimal string representation.
NumericString stringValue;
stringValue.Value = Convert.ToString(number, 16);
stringValue.Negative = (Math.Sign(number) < 0);
ShowConversionResult(stringValue);
NumericString stringValue2;
stringValue2.Value = Convert.ToString(Int32.MaxValue, 16);
stringValue2.Negative = Math.Sign(Int32.MaxValue) < 0;
ShowConversionResult(stringValue2);
NumericString stringValue3;
stringValue3.Value = Convert.ToString(-16, 16);
stringValue3.Negative = Math.Sign(-16) < 0;
ShowConversionResult(stringValue3);

}
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private static void ShowConversionResult(NumericString stringValue)
{

try
{

Console.WriteLine(ConversionLibrary.ConvertToSignedInteger(
stringValue).ToString("N0"));

}
catch (OverflowException e)
{

Console.WriteLine("{0}: {1}", e.GetType().Name, e.Message);
}

}

OUTPUT:
OverflowException: 0x80000000 cannot be converted to an Int32.
2,147,483,647
-16

6.4 Assorted Bits and Bytes

Developing fast, accurate and reliable code for handling bitwise operations is an
important topic in both scientific and engineering software applications, particularly
for those encountered when passing data to and from computer hardware devices. It
seems therefore appropriate to end this chapter with a collection of bit manipulation
routines aimed at providing my readers with a substantial set of tools which they can
customize to fit their own individual needs. I will not pretend to have invented any of
these bit handling recipes or tricks that follow. In fact, some are considered general
knowledge and have been well known in the industry for years after having existed in
one form or another in the more established C/C++ computer languages [41, 42, 43].
However, with the increasing popularity of C#, I felt it was important to collect as
many of these bit handling recipes as possible and then lay them down into one
cohesive unit, like this book, which can serve as a reliable reference source for my
readers for years to come.

CIRCULAR SHIFT or BITWISE ROTATION: A circular shift or bitwise rotation is
a bitwise operation that shifts all bits of its operand so that the vacant bit positions
are not filled in with zeros but instead are filled with the bits that are shifted out
of the sequence. For example, when we rotate bits left, we shift them off the right
end of the value and reinsert them on the left. When we rotate bits right, we shift
them off the left end of the value and reinsert them on the right. For example, if the
original number is 0x2345 then a circular shift to the left by 4 bits gives 0x5234 and
a circular shift to the right by 4 bits = 0x3452. Before introducing the actual bit shift
routines, we must first come up with a way to determine which bits will be impacted
upon rotation. This is accomplished by using a mask to preserve the bits which will
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be rotated. Then the left or right rotation is performed and finally, the bits are added
back into their proper location. The following routine can be used to mask off the
bits which will be rotated out of the variable.

enum RotateDirection {LEFT,RIGHT};

private static int CalcRotationMask(int bitstorotate, int direction)
{

//Returns the mask for masking out the bits which will be
//displaced in RotateBits

int c;
int mask = 0;
const int maxbits = 32;

if (bitstorotate == 0) return 0;

c = Int32.MinValue;
//c = 0x80000000 in hex or
//c = 10000000000000000000000000000000 in binary
mask = (c >> bitstorotate);
if (direction == (int)RotateDirection.LEFT)
{

mask = (c >> (maxbits - bitstorotate));
mask = ˜mask;

}
else

mask = (c >> bitstorotate);
return mask;

}

private static int RotateBits(int value, int bitstorotate,
int sizet, int direction)

{
//value = value to be rotated
//bitstorotate = number of bits to rotate
//sizet = size of the resultant value (8, 16, or 32)
//returns the value rotated left/right by the number
//of bitstorotate bits

int tmprslt =0;
int mask=0;
int target=0;
const int maxbits = 32;

bitstorotate %= sizet;

// perform the actual rotatation depending on direction
if (direction == (int)RotateDirection.LEFT)
{

target = value;
// determine which bits will be impacted by the rotate
mask = CalcRotationMask(bitstorotate, direction);
// save off the bits which will be impacted
tmprslt = value & mask;
// perform the actual rotatation depending on direction
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target = (value >> bitstorotate);
// now rotate the saved off bits so they are in their
// proper place
tmprslt <<= (sizet - bitstorotate);

}
else if (direction == (int)RotateDirection.RIGHT)
{

// determine which bits will be impacted by the rotate
mask = CalcRotationMask(bitstorotate, direction);
// shift mask into the correct place
mask >>= (maxbits - sizet);
// save off the bits which will be affected
tmprslt = value & mask;
// perform the actual rotatation depending on direction
target = (value << bitstorotate);
// now shift the saved off bits
tmprslt >>= (sizet - bitstorotate);

}

// add the rotated bits back into their proper location)
target |= tmprslt;

// and return the result
return target;

}

Test Program:
int a = 0x2345;
Console.WriteLine("Original Number To Test: "+DisplayBits(a,16));
Console.WriteLine("Rotate LEFT by 4 bits: " +
DisplayBits(RotateBits(a,4,16,(int)RotateDirection.LEFT),16));
Console.WriteLine("Rotate RIGHT by 4 bits: " +
DisplayBits(RotateBits(a,4,16,(int)RotateDirection.RIGHT),16));

OUTPUT:
Original Number To Test: 00100011 01000101
Rotate LEFT by 4 bits: 01010010 00110100
Rotate RIGHT by 4 bits: 00110100 01010010

EXTRACTING HIGH/LOW WORD OF A NUMBER: Suppose you have a 32 bit
integer value that contains information that you would like to extract from both its
upper and lower 16 bits. By ANDing the number to another number with all of the
high word set to 1, you zero out all of the low word bits leaving the high word intact.
Similarly, by ANDing the number to another number with all of the low word set to
1, you zero out all the high word bits leaving the low word bits intact. The following
code illustrates this kind of operation.

public static int GetHighWord(int value)
{ return (value & (0xFFFF << 16)); }

public static int GetLowWord(int value)
{ return (value & 0x0000FFFF); }
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EXTRACTING HIGH/LOW BYTE OF A NUMBER: Although the methods pre-
sented above just accept 32 bit integer values, you can overload the methods above
to also accept any other data types that you may require. For example, if you need
to acquire the low or high byte of a 16-bit integer you can use the same tactics that
were discussed above but in the slightly adjusted manner as shown below.

public static short GetHighByte(short shortValue)
{

return (short)(shortValue & (0xFF << 8));
}

public static short GetLowByte(short shortValue)
{

return (short)(shortValue & (short)0xFF);
}

MISCELLANEOUS BIT MANIPULATION UTILITIES: The following collection
of bit manipulation routines is supposed to be pretty much self explanatory and is
meant to provide a set of tools from which parts can be extracted according to indi-
vidual needs.

//Returns x with the n bits that begin at position
//p inverted leaving the others bits unchanged.
private static uint Invert(uint x, int p, int n)
{

return x ˆ (˜(˜0U << n) << p);
}

// Reverse the bits in a single byte
public static byte ReverseBitsInAByte(byte inByte)
{

byte result = 0x00;
byte mask = 0x00;

for (mask = 0x80; Convert.ToInt32(mask) > 0; mask >>= 1)
{

result >>= 1;
byte tempbyte = (byte)(inByte & mask);
if (tempbyte != 0x00)

result |= 0x80;
}
return (result);

}

//Reverses the byte order in an int value (version 1)
public static int reverseBytes1(int value)
{

int b1 = (value >> 0) & 0xff;
int b2 = (value >> 8) & 0xff;
int b3 = (value >> 16) & 0xff;
int b4 = (value >> 24) & 0xff;
return b1 << 24 | b2 << 16 | b3 << 8 | b4 << 0;

}

© 2010 by Taylor and Francis Group, LLC



Bits and Bytes 227

//Reverses the byte order in an int value (version 2)
public static int reverseBytes2(int value)
{

Byte[] bytes = BitConverter.GetBytes(value);
Array.Reverse(bytes);
return BitConverter.ToInt32(bytes, 0);

}

//Reverses the bit order in an int value
public static int reverseBits(int value)
{

int n = 0;
int i;
// loop through all the bits
for (i = 0; i < 32; i++)
{

// add bit from value to 1 bit left shifted variable
n = (n << 1) + (value & 1);
// right shift bits by 1
value >>= 1;

}
return n;

}

public static string ExtractHexDigits(string input)
{

// Removes any characters that are not digits (like @)
Regex isHexDigit =
new Regex("[abcdefABCDEF\\d]+", RegexOptions.Compiled);
string newnum = "";
foreach (char c in input)
{

if (isHexDigit.IsMatch(c.ToString()))
newnum += c.ToString();

}
return newnum;

}

//Puts a string into a byte array
public static byte[] StringToByteArr(string str)
{
System.Text.ASCIIEncoding encoding=new System.Text.ASCIIEncoding();
return encoding.GetBytes(str);

}

public static int FindPatternInsideBitArray(byte[] ba,string pattern)
{

//Finds bit patterns inside a bit array
int temp = 0;
StringBuilder sb = new StringBuilder(8 * ba.Length);
foreach (byte b in ba)
{

temp = int.Parse(Convert.ToString(b, 2));
sb.Append(temp.ToString("00000000"));

}
string bitArray = sb.ToString()
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//Console.WriteLine("bitArray is {0}", bitArray);
//Console.WriteLine("pattern is {0}\n", pattern);
int index = bitArray.IndexOf(pattern);
return index;

}

public static string ConvertHexValuesToASCII(string HexValue)
{

//Converts input data in hex values to readable characters
string StrValue = "";
while (HexValue.Length > 0)
{
// Use ToChar() to convert each ASCII value
// (two hex digits) to the actual character
StrValue += System.Convert.ToChar(
System.Convert.ToUInt32(HexValue.Substring(0,2),16)).ToString();
// Remove from the hex object the converted value
HexValue = HexValue.Substring(2, HexValue.Length - 2);

}
return StrValue;

}

public static String ConvertASCIIValuesToHEX(string ASCIIValue)
{
StringBuilder sBuffer = new StringBuilder();
for (int i = 0; i < ASCIIValue.Length; i++)
{
sBuffer.Append(Convert.ToInt32(ASCIIValue[i]).ToString("x"));

}
return sBuffer.ToString().ToUpper();

}

Finally, here’s one last handy little utility to have. It returns the radix of the given
number.

//Returns the radix of the given number. For example:
//1st radix of 79981 is 1, 2nd radix of 79981 is 8
public static int getRadix(int number, int radix)
{

return (int)(number/Math.Pow(10,radix-1)) % 10;
}
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Interpolation

7.1 Introduction

As part of the intricate process of analyzing experimental data, one often has to plot
the observed data points on a graph in order to determine whether some kind of math-
ematical relationship exists that can describe the observed results. The data points
are usually plotted as a discrete set of N ordered pairs: (x0,y0),(x1,y1), . . . ,(xN ,yN)
such that x0 < x1 < · · · < xN . Often the points are equally spaced but that is not al-
ways necessarily true. In any event, we know the value of the function yi = f (xi) at
each data point but we don’t have a general analytic expression for f (x) that would
allow us to calculate values at an arbitrary point (x,y). It would thus be highly desir-
able to be able to accurately estimate f (x) for arbitrary x. In some cases, this process
will also allow us to draw a smooth curve through, and perhaps even beyond, the
given set of data points. If the desired x value lies between the smallest and largest
values of the given set of points (xi,yi), then the process is called interpolation. If
x being sought is outside that given range, then the process is called extrapolation
and the results are much less reliable, as many former stock market analysts can very
likely attest.

Good interpolation methods should be able to provide their own error estimate.
However, flawless error estimates do not really exist. For example, we could have
a function that, for no apparent reason, suddenly takes off and oscillates wildly be-
tween any two tabulated points. Because of this possibility, interpolation schemes
always presumes some degree of smoothness for the interpolated function. In ad-
dition, most practical interpolation schemes start at a nearby point and, as more
information from other points is incorporated, then add a sequence of hopefully de-
creasing corrections. If the interpolation process goes well without any unpleasant
surprises leading to incorrect results, then the last correction will be the smallest and
can be used as an informal, though not rigorous, bound on the error. The number of
points (minus one) used in an interpolation scheme is called the order of the inter-
polation. However, increasing the order does not necessarily increase the accuracy,
especially in polynomial interpolation. In any event, the goal of this chapter is to
briefly describe how the most popular interpolation schemes work and then provide
C# routines to illustrate their use in practical applications.

229
© 2010 by Taylor and Francis Group, LLC



230 Numerical Methods, Algorithms and Tools in C#

7.2 Linear Interpolation

Linear interpolation is perhaps the easiest interpolation method to understand and to
implement. With this method any two points, denoted by (x0,y0) and (x1,y1), are
simply joined together by a straight line segment. The desired interpolation point,
denoted by (x,y) and lying between (x0,y0) and (x1,y1), should therefore lie on this
same line segment. The slope between either (x0,y0) and (x,y) or between (x,y) and
(x1,y1) should therefore be equal to the slope between (x0,y0) and (x1,y1). Setting
any of these two slopes equal to each other and solving for the unknown y = f (x)
given x will provide us with the desired result. More formally, suppose we have a
finite set S of ordered pairs (x1,y1), . . . ,(xn,yn) of real numbers such that x1 < x2 <
· · · < xn. The linear interpolation function of S is a real-valued function f defined on
[x1,xn] such that, for i = 1, . . . ,n−1 we have

f (x) = yi +
yi+1 − yi

xi+1 − xi
(x− xi) where x ∈ [xi,xi+1]

The implementation of this linear interpolation scheme is given below. The first
routine calculates single point linear interpolation whereas the second routine calcu-
lates multiple point linear interpolation.

public static double LinearInterpolation(double[] x, double[] y,
double xval)

{
double yval = 0.0;
for (int i = 0; i < x.Length - 1; i++)
{

if (xval >= x[i] && xval < x[i+1])
{

yval = y[i]+(xval-x[i])*(y[i+1]-y[i])/(x[i+1]-x[i]);
}

}
return yval;

}

public static double[] LinearInterpolation(double[] x,double[] y,
double[] xvals)

{
double[] yvals = new double[xvals.Length];
for (int i = 0; i < xvals.Length; i++)

yvals[i] = LinearInterpolation(x, y, xvals[i]);
return yvals;

}

static void TestLinear()
{

double[] xdata = new double[] { 1, 3, 5, 7, 9 };
double[] ydata = new double[] { 2, 6, 10, 14, 18 };
double[] x = new double[] { 2, 4, 6, 8 };
double[] y = LinearInterpolation(xdata, ydata, x);
RVector xvec = new RVector(x);
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RVector yvec = new RVector(y);
Console.Clear();
Console.WriteLine("Running Linear Interpolation Test\n\n");
Console.WriteLine(" x = " + xvec.ToString());
Console.WriteLine(" y = " + yvec.ToString() + "\n\n");
Console.WriteLine("Press ENTER key to continue...");
Console.ReadLine();

}

OUTPUT: Running Linear Interpolation Test
x = (2, 4, 6, 8)
y = (4, 8, 12, 16)

7.3 Bilinear Interpolation

The bilinear interpolation scheme is just an extension of the linear interpolation
method for interpolating functions of two variables, z = f (x,y), on a rectangular
grid. Bilinear interpolation uses four vertex values, one on each edge of a rectan-
gular cell, in order to obtain an approximate value anywhere inside that same cell.
The key idea is to perform linear interpolation first in one direction, and then again
in the other direction. For example, suppose that we want to get an estimate of
the value at the point (x,y), and the vertices of a rectangular cell are located at
zi,i = f (xi,yi), zi,i+1 = f (xi,yi+1), zi+1,i = f (xi+1,yi), and zi+1,i+1 = f (xi+1,yi+1).
We first do linear interpolation in the x-direction which gives

f (x,yi) =
xi+1 − x
xi+1 − xi

f (xi,yi)+
x− xi

xi+1 − xi
f (xi+1,yi)

f (x,yi+1) =
xi+1 − x
xi+1 − xi

f (xi,yi+1)+
x− xi

xi+1 − xi
f (xi+1,yi+1)

Then we proceed by interpolating in the y-direction.

f (x,y) =
yi+1 − y
yi+1 − yi

f (x,yi)+
y− yi

yi+1 − yi
f (x,yi+1).

Combining these three equations results in the desired estimate for z = f (x,y)

f (x,y) =
(xi+1 − x)(yi+1 − y)
(xi+1 − xi)(yi+1 − yi)

f (xi,yi)+
(x− xi)(yi+1 − y)

(xi+1 − xi)(yi+1 − yi)
f (xi+1,yi)

+
(xi+1 − x)(y− yi)

(xi+1 − xi)(yi+1 − yi)
f (xi,yi+1)+

(x− xi)(y− yi)
(xi+1 − xi)(yi+1 − yi)

f (xi+1,yi+1)

The most striking feature of this bilinear interpolation equation for obtaining the
function value f (x,y) at the point (x,y) is that we essentially end up with a polyno-
mial with four coefficients with powers of both x and y no greater than 1:

f (x,y) = p0 + p1x + p2y + p3xy
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Since these four coefficients are determined by four values, zi,i,zi,i+1,zi+1,i,zi+1,i+1,
they are uniquely determined by the given data. This feature indicates that a com-
parable procedure of first interpolating along the y-axis and then interpolating the
results in the x-direction will give the same unique result. In addition, we can see
that the term bilinear comes from the process of linear interpolation twice in one
direction and then once in the perpendicular direction and not from the formula for
f (x,y) which involves the non-linear term xy.

The implementation in C# of this bilinear interpolation scheme is given below.
The first routine calculates single point bilinear interpolation, whereas the second
routine calculates multiple point bilinear interpolation.

public static double BilinearInterpolation(double[] x, double[] y,
double[,] z, double xval, double yval)

{
double zval = 0.0;
for (int i = 0; i < x.Length - 1; i++)
{
for (int j = 0; j < y.Length - 1; j++)
{
if (xval>=x[i] && xval<x[i+1] && yval>=y[j] && yval<y[j+1])
{

zval=z[i,j]*(x[i+1]-xval)*(y[j+1]-yval)/(x[i+1]-x[i])/(y[j+1]-y[j]) +
z[i+1,j]*(xval-x[i])*(y[j+1]-yval)/(x[i+1]-x[i])/(y[j+1]-y[j]) +
z[i,j+1]*(x[i+1]-xval)*(yval-y[j])/(x[i+1]-x[i])/(y[j+1]-y[j]) +
z[i+1,j+1]*(xval-x[i])*(yval-y[j])/(x[i+1]-x[i])/(y[j+1]-y[j]);

}
}

}
return zval;

}

public static double[] BilinearInterpolation(double[] x, double[] y,
double[,] z, double[] xvals, double[] yvals)

{
double[] zvals = new double[xvals.Length];
for (int i = 0; i < xvals.Length; i++)

zvals[i] = BilinearInterpolation(x,y,z,xvals[i],yvals[i]);
return zvals;

}

static void TestBilinear()
{

double[] xdata = new double[] { 0, 2 };
double[] ydata = new double[] { 0, 2 };
double[,] zdata = new double[,] { { 0, 20 }, { 20, 10 } };
double[] x = new double[18];
double[] y = new double[18];
RMatrix z = new RMatrix(18, 18);
for (int i = 0; i < 9; i++)
{

x[i] = (i + 2.0) / 20.0;
y[i] = (i + 2.0) / 20.0;

}
RVector xvec = new RVector(x);
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RVector yvec = new RVector(y);

for (int i = 0; i < 18; i++)
{
for (int j = 0; j < 18; j++)
{

z[i,j]=BilinearInterpolation(xdata,ydata,zdata,x[i],y[j]);
}

}
Console.Clear();
Console.WriteLine("Running Bilinear Interpolation Test\n\n");
Console.WriteLine("x = " + xvec.ToString());
Console.WriteLine("y = " + yvec.ToString());
Console.WriteLine("\nResults z = \n" + z.ToString() + "\n\n");
Console.WriteLine("Press ENTER key to continue...");
Console.ReadLine();

}

OUTPUT: Running Bilinear Interpolation Test

x = (0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5,
0, 0, 0, 0, 0, 0, 0, 0, 0)

y = (0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5,
0, 0, 0, 0, 0, 0, 0, 0, 0)

Results z =
(1.925, 2.3875, 2.85, 3.3125, 3.775, 4.2375, 4.7, 5.1625, 5.625,

1, 1, 1, 1, 1, 1, 1, 1, 1
2.3875, 2.83125, 3.275, 3.71875, 4.1625, 4.60625, 5.05, 5.49375,

5.9375, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5
2.85, 3.275, 3.7, 4.125, 4.55, 4.975, 5.4, 5.825, 6.25, 2, 2, 2,

2, 2, 2, 2, 2, 2
3.3125, 3.71875, 4.125, 4.53125, 4.9375, 5.34375, 5.75, 6.15625,

6.5625, 2.5, 2.5, 2.5, 2.5, 2.5, 2.5, 2.5, 2.5, 2.5
3.775, 4.1625, 4.55, 4.9375, 5.325, 5.7125, 6.1, 6.4875, 6.875,

3, 3, 3, 3, 3, 3, 3, 3, 3
4.2375, 4.60625, 4.975, 5.34375, 5.7125, 6.08125, 6.45, 6.81875,

7.1875, 3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 3.5
4.7, 5.05, 5.4, 5.75, 6.1, 6.45, 6.8, 7.15, 7.5, 4, 4, 4, 4, 4,

4, 4, 4, 4
5.1625, 5.49375, 5.825, 6.15625, 6.4875, 6.81875, 7.15, 7.48125,

7.8125, 4.5, 4.5, 4.5, 4.5, 4.5, 4.5, 4.5, 4.5, 4.5
5.625, 5.9375, 6.25, 6.5625, 6.875, 7.1875, 7.5, 7.8125, 8.125,

5, 5, 5, 5, 5, 5, 5, 5, 5
1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0
1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0
1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0
1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0
1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0
1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0
1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0
1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0
1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0)
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7.4 Polynomial Interpolation

Unfortunately, linear interpolation has some major drawbacks and is therefore not
sufficiently well suited for use in all types of interpolation calculations, particularly
when one seeks a smoother and more accurate fit of the individual data points. The
most obvious and intuitive way to improve on the linear interpolation scheme is
to replace the linear function with a polynomial of higher degree. The main idea
behind polynomial interpolation is that given n + 1 discrete data points there exits a
unique smooth and infinitely differentiable polynomial of order n that goes through
all those data points. Also, a polynomial of lower order is not generally possible and
a polynomial of higher order is not unique.

However, polynomial interpolation also has some disadvantages which require
some attention. For example, calculating the interpolating polynomial can be com-
putationally expensive compared to linear interpolation. More importantly, in some
cases, particularly with high degree polynomials near the endpoints, polynomial in-
terpolation may not always be as accurate as one might hope or expect. This problem
arises when the data points used to calculate the polynomial are somewhat distant
from the interpolating point of interest. In such cases, the resulting higher-order
polynomial, with its additional constrained points, tends to oscillate wildly between
the tabulated values. In the end, this oscillation may have no relation at all to the be-
havior of the true fitting function and can thus lead to misleading or even completely
erroneous results. Consequently, unless there is solid evidence that the interpolating
function is close in form to the actual true function, it is a good idea to be cautious
about high-order interpolation. In fact, Press et al. [22] enthusiastically recommend
doing polynomial interpolations with no more than 3 or 4 points but frowns on those
having as much as 5 or 6 points, and strongly discourages going any higher unless
errors are closely monitored.

In spite of there being some significant shortcomings every now and then, the
polynomial interpolation techniques discussed here still have enough desirable fea-
tures provided one monitors their behavior properly, especially near the endpoints.
In general, polynomial interpolation assumes that the data points are in some sense
correct and lie on an underlying but unknown curve, and the goal is to be able to
estimate the values of the curve at any position between the known points.

7.4.1 Lagrange Interpolation

Lagrange polynomial interpolation is an old popular interpolation method used to ap-
proximate a function f (x) at an arbitrary point x which can be fitted for both equally
and unequally spaced data. In a nutshell, given a set of n + 1 data points

(x0,y0),(x1,y1), . . . ,(xn,yn)
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where no two xi are the same, the interpolation polynomial in the Lagrange form is
a linear combination

y = f (x) =
n

∑
i=0

�i(x) f (xi)

where

�i(x) =
n

∏
j=0, j 	=i

x− x j

xi − x j
=

(x− x0)
(xi − x0)

· · · (x− xi−1)
(xi − xi−1)

(x− xi+1)
(xi − xi+1)

· · · (x− xn)
(xi − xn)

.

From this last expression we see that �i(x) is an n-th order polynomial with zeros at
all of the sample points except for the n-th one.

The implementation in C# of this Lagrange interpolation scheme is given below.
The first routine calculates single point Lagrange interpolation whereas the second
routine calculates multiple point Lagrange interpolation.

public static double LagrangeInterpolation(double[] x, double[] y,
double xval)

{
double yval = 0.0;
double Products = y[0];
for (int i = 0; i < x.Length; i++)
{

Products = y[i];
for (int j = 0; j < x.Length; j++)
{

if (i != j)
{

Products *= (xval-x[j]) / (x[i]-x[j]);
}

}
yval += Products;

}
return yval;

}

public static double[] LagrangeInterpolation(double[] x, double[] y,
double[] xvals)

{
double[] yvals = new double[xvals.Length];
for (int i = 0; i < xvals.Length; i++)

yvals[i] = LagrangeInterpolation(x, y, xvals[i]);
return yvals;

}

static void TestLagrangian()
{

double[] xdata = new double[5] { 2, 4, 6, 8, 10 };
double[] ydata = new double[5] { 2, 8, 18, 32, 50 };
double[] x = new double[3] { 5.0, 7.0, 3.0 };

double[] y = LagrangeInterpolation(xdata, ydata, x);
RVector xvec = new RVector(x);
RVector yvec = new RVector(y);
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Console.Clear();
Console.WriteLine("Running Lagrangian Interpolation Test\n\n");
Console.WriteLine(" x = " + xvec.ToString());
Console.WriteLine(" y = " + yvec.ToString() + "\n\n");
Console.WriteLine("Press ENTER key to continue...");
Console.ReadLine();

}

OUTPUT: Running Lagrangian Interpolation Test
x = (5, 7, 3)
y = (12.5, 24.5, 4.5)

Unfortunately, the Lagrange polynomial interpolation method is widely regarded
as being of mainly theoretical instead of practical interest, as reference to almost any
numerical analysis textbook will reveal. Acton [44], for example, goes even further
claiming that Lagrangian interpolation should be praised for its analytic utility and
beauty but deplored for actual numerical practice. A short list highlighting a few of
its main disadvantages include

• Each evaluation of f (x) requires a complete computation of all the terms in the
interpolation formula which means doing another O(n2) additions and multi-
plications.

• Adding a new data point (xN+1,yN+1) requires a complete computation of all
the terms of the interpolation formula.

• Sometimes the computation may be unstable particularly near the endpoints.

However, other authors, such as Salzer [45], Werner [46] and Winrich [47] have
noted that certain variants of the Lagrange formula are indeed useful in practice.
As it turns out, the Lagrange representation of the interpolating polynomial can be
rewritten in two more computationally attractive forms: a barycentric modified La-
grange form and a modified Lagrange form.

7.4.2 Barycentric Interpolation

Barycentric interpolation is a variant of Lagrange polynomial interpolation that is
both fast and stable. As such, it is rapidly becoming the preferred method for doing
practical calculations involving polynomial interpolation. Using the quantity

�(x) = (x− x0)(x− x1) · · · (x− xn)

we can rewrite the Lagrange basis polynomials as

�i(x) =
�(x)

x− xi

1

∏n
j=0, j 	=i(xi − x j)

or, by defining the barycentric weight functions

wi =
1

∏n
j=0, j 	=i(xi − x j)
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we can simply write

�i(x) = �(x)
wi

x− xi

which is commonly referred to as the first form of the barycentric interpolation for-
mula.
The advantage of this representation is that the interpolation polynomial may now be
evaluated as

y = f (x) = �(x)
n

∑
i=0

wi

x− xi
f (xi)

which, if the weights wi have been pre-computed, requires only O(n) operations as
opposed to O(n2) for evaluating the Lagrange basis polynomials �i(x) individually.

The barycentric interpolation formula can also easily be updated to incorporate a
new node xn+1 by dividing each of the wi, i = 0 . . .n by (xi−xn +1) and constructing
the new wn+1 as above.

We can further simplify the first form by first considering the barycentric interpo-
lation of the constant function g(x) ≡ 1:

g(x) = �(x)
n

∑
i=0

wi

x− xi

Dividing L(x) by g(x) does not modify the interpolation, yet yields

y = f (x) =
∑n

i=0
wi

x−xi
f (xi)

∑n
i=0

wi
x−xi

which is referred to as the second form or true form of the barycentric interpolation
formula. This second form has the advantage, that �(x) need not be evaluated for
each evaluation of f (x).
The implementation in C# of this barycentric interpolation scheme is given below.
The first routine calculates single point barycentric interpolation whereas the second
routine calculates multiple point barycentric interpolation.

public static double BarycentricInterpolation(double[] x, double[] y,
double xval)

{
double product;
double deltaX;
double bc1 = 0;
double bc2 = 0;

int size = x.Length;
double[] weights = new double[size];

for (int i = 0; i < size; i++)
{

product = 1;
for (int j = 0; j < size; j++)
{

if (i != j)
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{
product *= (x[i] - x[j]);
weights[i] = 1.0 / product;

}
}

}

for (int i = 0; i < size; i++)
{

deltaX = weights[i] / (xval - x[i]);
bc1 += y[i] * deltaX;
bc2 += deltaX;

}
return bc1 / bc2;

}

public static double[] BarycentricInterpolation(double[] x, double[]
y, double[] xvals)

{
double[] yvals = new double[xvals.Length];
for (int i = 0; i < xvals.Length; i++)

yvals[i] = BarycentricInterpolation(x, y, xvals[i]);
return yvals;

}

static void TestBarycentric()
{

double[] xdata = new double[] { 0, 4, 8, 12, 16 };
double[] ydata = new double[] { 0, 8, 32, 72, 128 };
double[] x = new double[] { 2, 6, 10, 14 };
double[] y = BarycentricInterpolation(xdata, ydata, x);
RVector xvec = new RVector(x);
RVector yvec = new RVector(y);
Console.Clear();
Console.WriteLine("Running Barycentric Interpolation Test\n\n");
Console.WriteLine(" x = " + xvec.ToString());
Console.WriteLine(" y = " + yvec.ToString() + "\n\n");
Console.WriteLine("Press ENTER key to continue...");
Console.ReadLine();

}

OUTPUT: Running Barycentric Interpolation Test
x = (2, 6, 10, 14)
y = (2, 18, 50, 98)

7.4.3 Newton’s Divided Differences Interpolation

In general, if you have n+1 data points {(x0,y0),(x1,y1), . . . ,(xn,yn)} then Newton’s
interpolation polynomial can be written as

Pn(x) =
n

∑
k=0

aknk(x)

= a0 + a1(x− x0)+ a2(x− x0)(x− x1)
+ . . .+ an(x− x0)(x− x1) · · · (x− xn−1)
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where the statement that p(x) interpolates the given set of data points means that
Pn(xi) = f (xi), ∀i = 0, . . . ,n.

The Newton basis polynomial function, nk(x), is defined by:

nk(x) =
k−1

∏
i=0

(x− xi) = (x− x0)(x− x1) · · · (x− xk−1), k = 1, . . . ,n.

and the first few terms of nk(x) are given by

n0(x) = 1
n1(x) = (x− x0)
n2(x) = (x− x0)(x− x1)
n3(x) = (x− x0)(x− x1)(x− x2)

...
...

nn(x) = (x− x0)(x− x1) · · · (x− xn−1)

Newton’s interpolation polynomial, Pn(x), of degree n evaluated at x0, gives:

Pn(x0) =
n

∑
k=0

aknk(x0) = a0 = f (x0) = f [x0]

Using the following notation to denote the i-th order divided difference

f [xi] = f (xi), ∀i = 0, . . . ,n

we see that f [x0] is called the zero-order divided difference.
Similarly, Newton’s interpolation polynomial, Pn(x), of degree n evaluated at x1,

gives

Pn(x1) =
n

∑
k=0

aknk(x1)

= a0 + a1(x1 − x0)
= f [x0]+ a1(x1 − x0)
= f [x1]

from which we can extract the first order divided difference

a1 =
f [x1]− f [x0]

x1 − x0
= f [x0,x1]

where f [x0,x1] is called the first order divided difference.
Likewise, Newton’s interpolation polynomial, Pn(x), of degree n evaluated at x2,

gives

Pn(x2) =
n

∑
k=0

aknk(x2)

= a0 + a1(x2 − x0)+ a2(x2 − x0)(x2 − x1)
= f [x0]+ f [x0,x1](x2 − x0)+ a2(x2 − x0)(x2 − x1)
= f [x2]
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from which we can solve for a2 giving

a2(x2 − x0)(x2 − x1) = f [x2]− f [x0]− f [x0,x1](x2 − x0)

a2 =
f [x2]− f [x0]− f [x0,x1](x2 − x0)

(x2 − x0)(x2 − x1)

a2 =
f [x2]− f [x0]

(x2 − x0)(x2 − x1)
− f [x0,x1]

x2 − x1

a2 =
f [x0,x2]− f [x0,x1]

x2 − x1

where f [x0,x1,x2] is called the second order divided difference.
In general, we obtain:

ak =
f [x1, . . . ,xk]− f [x0, . . . ,xk−1]

xk − x0
= f [x0, . . . ,xk]

where f [x0, . . . ,xk] is thus called a kth-order divided difference.
In practice, when we want to determine, say the third order divided difference f [x0,x1,x2,x3],
we need the following quantities⎡

⎢⎢⎣
x0 f [x0]
x1 f [x1] f [x0,x1]
x2 f [x2] f [x1,x2] f [x0,x1,x2]
x3 f [x3] f [x2,x3] f [x1,x2,x3] f [x0,x1,x2,x3]

⎤
⎥⎥⎦

Hence

f [x0,x1,x2,x3] =
f [x1,x2,x3]− f [x0,x1,x2]

x3 − x0

Finally, Newtons interpolation polynomial of degree n is obtained via the successive
divided differences as shown below

Pn(x) = f [x0]+
n

∑
k=1

f [x0, . . . ,xk]nk(x)

The implementation in C# of Newton’s divided difference interpolation scheme is
given below. The first routine calculates single point Newton’s divided difference
interpolation whereas the second routine calculates multiple point Newton’s divided
difference interpolation.

public static double NewtonDividedDifferenceInterpolation(double[] x,
double[] y, double xval)

{
double yval;
int size = x.Length;
double[] tarray = new double[size];
for (int i = 0; i < size; i++)
{

tarray[i] = y[i];
}
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for (int i = 0; i < size - 1; i++)
{

for (int j = size - 1; j > i; j--)
{
tarray[j]=(tarray[j-1]-tarray[j])/(x[j-1-i]-x[j]);

}
}

yval = tarray[size - 1];

for (int i = size - 2; i >= 0; i--)
{

yval = tarray[i] + (xval-x[i])*yval;
}
return yval;

}

public static double[] NewtonDividedDifferenceInterpolation(double[]
x, double[] y, double[] xvals)

{
double[] yvals = new double[xvals.Length];
for (int i = 0; i < xvals.Length; i++)

yvals[i]=NewtonDividedDifferenceInterpolation(x,y,xvals[i]);
return yvals;

}

static void TestNewtonDividedDifference()
{

double[] xdata = new double[] { 50, 60, 70, 80, 90 };
double[] ydata = new double[] { 75.0, 150.0, 200.0, 225.0, 250.0

};
double[] x = new double[] { 55, 65, 75, 85 };
double[] y = NewtonDividedDifferenceInterpolation(xdata, ydata, x

);
RVector xvec = new RVector(x);
RVector yvec = new RVector(y);
Console.Clear();
Console.WriteLine("Running Newton Divided Difference

Interpolation Test\n\n");
Console.WriteLine(" x = " + xvec.ToString());
Console.WriteLine(" y = " + yvec.ToString() + "\n\n");
Console.WriteLine("Press ENTER key to continue...");
Console.ReadLine();

}

OUTPUT: Running Newton Divided Difference Interpolation Test
x = (55, 65, 75, 85)
y = (114.6484375, 178.7109375, 214.6484375, 234.9609375)
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7.5 Cubic Spline Interpolation

Arbitrary functions on closed intervals may be approximated by the use of various
different kinds of polynomials. However, because of the oscillatory nature of high-
degree polynomials and the property that a small fluctuation over a small portion of
the interval of interest can at times induce large fluctuations over the entire range,
makes this method sometimes unreliable. An alternative approach is to divide the
desired interval into a collection of subintervals and construct a different approxi-
mating polynomial on each subinterval. Approximation by functions of the this type
is called piecewise-polynomial approximation.

The simplest piecewise-polynomial approximation is piecewise-linear interpola-
tion which consists of joining a set of data points (x0,y0), . . . ,(xn,yn) by a series of
straight lines. Unfortunately, this approach often results in no differentiability at the
endpoints of the subintervals, which, in a geometrical context, means that the in-
terpolating function is not smooth. Since physical conditions may at times require
smoothness, the approximating function must therefore be made to be continuously
differentiable.

The most common piecewise-polynomial approximation on an interval [x0,xn]
uses cubic polynomials between each successive pair of nodes and is called cubic
spline interpolation. A general cubic polynomial consists of four constant coeffi-
cients and so there is sufficient flexibility in a cubic spline procedure to ensure that
the interpolant is not only continuously differentiable on the interval, but also has a
continuous second derivative. These coefficients bend the line just enough so that it
passes through each of the data points without generating unwanted wild oscillations
or breaks in continuity. Cubic splines are the most popular procedure for polynomial
interpolation because they produce an interpolated function that is both smooth and
continuous through the second derivative. The basic idea behind using a cubic spline
is to fit a piecewise function of the form

S(x) =

⎧⎪⎪⎨
⎪⎪⎩

S1(x), x ∈ [x1,x2)
S2(x), x ∈ [x2,x3)

· · ·
Sn−1(x), x ∈ [xn−1,xn)

where Si(x) is a third degree polynomial with coefficients ai,bi,ci and di defined by

Si(x) = ai +bi(x−xi)+ci(x−xi)2 +di(x−xi)3 for x∈ [xi,xi+1] and i = 1,2, . . . ,n−1

More formally, given a function f (x) defined on an interval [a,b] and a set of nodes
a = x0 < x1 < .. . < xn = b, a cubic spline interpolant S(x) for f (x) is a function that
satisfies the following conditions:

(a) S(x) is a cubic polynomial, denoted by Si(x), on the subinterval [xi,xi+1] for
each i = 0,1, . . . ,n−1.
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(b) Si(xi) = f (xi) and Si(xi+1) = f (xi+1) for each i = 0,1, . . . ,n−1.

(c) Si+1(xi+1) = Si(xi+1) for each i = 0,1, . . . ,n−2.

(d) S′i+1(xi+1) = S′i(xi+1) for each i = 0,1, . . . ,n−2.

(e) S′′i+1(xi+1) = S′′i (xi+1) for each i = 0,1, . . . ,n−2.

(f) and one of the following set of boundary conditions is also satisfied:

S′′(x0) = S′′(xn) = 0 (free or natural boundary)

S′(x0) = f ′(x0) and S′(xn) = f ′(xn) (clamped boundary)

To construct the cubic spline polynomial for a given function f (x), the conditions
(a)-(f) given above are simply applied to the cubic polynomials

Si(x) = ai + bi(x− xi)+ ci(x− xi)2 + di(x− xi)3 for each i = 0,1, . . . ,n−1.

Since Si(xi) = ai = f (xi), condition (c) can be applied to obtain

ai+1 = Si+1(xi+1) = Si(xi+1) = ai + bi(xi+1 − xi)+ ci(xi+1 − xi)2 + di(xi+1 − xi)3

for each i = 0,1, . . . ,n− 2. Since the terms xi+1 − xi are used repeatedly in this
derivation, it is convenient to define hi = xi+1 − xi for each i = 0,1, . . . ,n−1. If we
also define an = f (xn) then the equation

ai+1 = ai + bihi + cih
2
i + dih

3
i

holds for each i = 0,1, . . . ,n−1.
In a similar way, bn = S′(xn) and observe that

S′i(x) = bi + 2ci(x− xi)+ 3di(x− xi)2

implies that S′i(xi) = bi for each i = 0,1, . . . ,n−1. Applying condition (d) gives

bi+1 = bi + 2cihi + 3dih
2
i

for each i = 0,1, . . . ,n−1.
Another relationship between the coefficients of Si can be obtained by observing

that S′′(xn) = 2cn and applying condition (e). Then, for each i = 0,1, . . . ,n− 1 we
have

ci+1 = ci + 3dihi

Solving for di and substituting this value into the equations for ai+1 and bi+1 gives,
for each i = 0,1, . . . ,n−1, the new equations

ai+1 = ai + bihi +
h2

i

3
(2ci + ci+1)

and
bi+1 = bi + hi(ci + ci+1)
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The final relationship involving the coefficients is obtained by solving the previous
two equations above, first for bi,

bi =
1

hi
(ai+1 −ai)−

hi

3
(2ci + ci+1)

and then, with a reduction of the index, for bi−1 which gives

bi−1 =
1

hi−1
(ai −ai−1)−

hi−1

3
(2ci−1 + ci)

Substituting these values into the equation derived from the earlier equation for bi+1,

bi+1 = bi + hi(ci + ci+1)

with the index reduced by one, gives the linear system of equations:

hi−1ci−1 + 2(hi−1 + hi)ci + hici+1 =
3

hi
(ai+1 −ai)−

3

hi−1
(ai −ai−1)

for each i = 1,2, . . . ,n−1. This system involves only the {ci}n
i=0 as unknowns since

the values of {hi}n−1
i=0 and {ai}n

i=0 are given, respectively, by the spacing of the nodes
{xi}n

i=0 and the values of f (x) at the nodes. Once the values of {ci}n
i=0 are de-

termined, it is a simple matter to find the remainder of the constants {bi}n−1
i=0 and

{di}n−1
i=0 from the relationships derived above and then construct the cubic polynomi-

als {Si(x)}n−1
i=0 .

7.5.1 Natural Cubic Splines

The natural cubic splines satisfy the condition: S′′(x0 = a) = S′′(xn = b) = 0. This
means that S′′(xn)/2 = cn = 0 and that S′′(x0) = 2c0 +6d0(x0−x0) = 0 so that c0 = 0.
The two equations c0 = 0 and cn = 0 together with the linear system of equations

hi−1ci−1 + 2(hi−1 + hi)ci + hici+1 =
3

hi
(ai+1 −ai)−

3

hi−1
(ai −ai−1)

derived earlier produce a linear system described by the matrices Ax = b where A is
the (n + 1)× (n + 1) matrix

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 . . . . . . 0
h0 2(h0 + h1) h1 0 . . . 0
0 h1 2(h1 + h2) h2 0 . . . 0
...

. . .
. . .

. . .
...

...
0 0 . . . hn−2 2(hn−2 + hn−1) hn−1

0 0 0 . . . 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

and b and x are vectors given by
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b =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
3

h1
(a2 −a1)−

3

h0
(a1 −a0)

...
3

hn−1
(an −an−1)−

3

hn−2
(an−1 −an−2)

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and x =

⎛
⎜⎜⎜⎝

c0

c1
...

cn

⎞
⎟⎟⎟⎠

The C# implementation below constructs the cubic spline interpolant S(x) for the
function f (x), defined at the numbers x0 < x1 < .. . < xn satisfying the natural bound-
ary conditions S′′(x0) = S′′(xn) = 0.

public static void NaturalCubicSpline(double[] x, double[] y, double
xvalue)

{
int i, j, m;
double S = 0.0;
double delta = 0.0;

int n = 4; //max number of coefficients: A,B,C,D for cubic spline

double[] A = new double[n + 1];
double[] B = new double[n + 1];
double[] C = new double[n + 1];
double[] D = new double[n + 1];
double[] H = new double[n + 1];
double[] XA = new double[n + 1];
double[] XL = new double[n + 1];
double[] XU = new double[n + 1];
double[] XZ = new double[n + 1];

for (i = 0; i < n; i++) A[i] = y[i];

m = n - 1;
for (i = 0; i <= m; i++)

H[i] = x[i + 1] - x[i];

for (i = 1; i <= m; i++)
XA[i] = 3 * (A[i+1] * H[i-1] - A[i] * (x[i+1] - x[i-1]) +

A[i-1] * H[i]) / (H[i] * H[i-1]);

XL[0] = 1; XU[0] = 0; XZ[0] = 0;
for (i = 1; i <= m; i++)
{

XL[i] = 2 * (x[i + 1] - x[i - 1]) - H[i - 1] * XU[i - 1];
XU[i] = H[i] / XL[i];
XZ[i] = (XA[i] - H[i - 1] * XZ[i - 1]) / XL[i];

}
XL[n] = 1; XZ[n] = 0; C[n] = 0;

for (i = 0; i <= m; i++)
{
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j = m - i;
C[j] = XZ[j] - XU[j] * C[j + 1];
B[j] = (A[j+1] - A[j]) / H[j] - H[j] * (C[j+1] + 2*C[j])/3;
D[j] = (C[j + 1] - C[j]) / (3 * H[j]);

}

Console.WriteLine("\n\nTesting natural cubic splines");
Console.WriteLine("Input data stored in (x[i],y[i]).

Value to interpolate = {0}\n", xvalue);
Console.WriteLine("i\t"+"x[i]\t"+"y[i]\t"+"A[i]\t"+"B[i]\t"+

"C[i]\t"+"D[i]\n");
for (i = 0; i < n; i++)
{

Console.WriteLine(i.ToString() + "\t" + x[i].ToString("0.0000") +
"\t" + y[i].ToString("0.0000") + "\t" + A[i].ToString("0.0000") +
"\t" + B[i].ToString("0.0000") + "\t" + C[i].ToString("0.0000") +
"\t" + D[i].ToString("0.0000") + "\n");

}

for (i = 0; i <= m; i++)
{
if (xvalue >= x[i] && xvalue < x[i + 1])
{

delta = xvalue - x[i];
S = A[i]+B[i]*delta+C[i]*delta*delta+D[i]*delta*delta*delta;
Console.WriteLine("Interpolated x value=f({0})={1}\n",xvalue,S);

}
}

}

public static void NaturalCubicSplineTest()
{

int size = 26;
double[] xdata = new double[size];
double[] ydata = new double[size];

xdata[0] = 0.1;
xdata[1] = 0.2;
xdata[2] = 0.3;
xdata[3] = 0.4;

ydata[0] = -0.62049958;
ydata[1] = -0.28398668;
ydata[2] = 0.00660095;
ydata[3] = 0.24842440;

NaturalCubicSpline(xdata, ydata, 0.25);
Console.ReadLine();

}

static void Main(string[] args)
{

NaturalCubicSplineTest();
}
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OUTPUT: Testing natural cubic splines
Input data stored in (x[i],y[i]). Value to interpolate = 0.25

i x[i] y[i] A[i] B[i] C[i] D[i]

0 0.1000 -0.6205 -0.6205 3.4370 0.0000 -7.1897
1 0.2000 -0.2840 -0.2840 3.2213 -2.1569 -9.9769
2 0.3000 0.0066 0.0066 2.4906 -5.1500 44.2584
3 0.4000 0.2484 0.2484 2.7884 8.1275 6.7729

Interpolated x value = f(0.25) = -0.129559271569149

7.5.2 Clamped Cubic Splines

Clamped cubic splines satisfy the condition: S′(x0) = f ′(x0) and S′(xn) = f ′(xn).
Since S′(a) = f ′(a) = S′(x0) = b then by the equation

bi =
1

hi
(ai+1 −ai)−

hi

3
(2ci + ci+1)

which was derived earlier and now with i = 0 implies

f ′(a) =
1

h0
(a1 −a0)−

h0

3
(2c0 − c1)

As a result,

2h0c0 + h0c1 =
3

h0
(a1 −a0)−3 f ′(a)

Similarly, f ′(b) = bn = bn−1 + hn−1(cn−1 + cn) and by this same equation above
for bi but now with i = n−1 implies that

f ′(b)=
an −an−1

hn−1
− hn−1

3
(2cn−1+cn)+hn−1(cn−1 +cn)=

an −an−1

hn−1
+

hn−1

3
(cn−1+2cn)

and so

hn−1cn−1 + 2hn−1cn = 3 f ′(b)− 3

hn−1
(an −an−1)

Then the system of linear equations

hi−1ci−1 + 2(hi−1 + hi)ci + hici+1 =
3

hi
(ai+1 −ai)−

3

hi−1
(ai −ai−1)

derived earlier together with

2h0c0 + h0c1 =
3

h0
(a1 −a0)−3 f ′(a)

and

hn−1cn−1 + 2hn−1cn = 3 f ′(b)− 3

hn−1
(an −an−1)
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determine a linear system of the form Ax = b where now

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2h0 h0 0 . . . . . . 0
h0 2(h0 + h1) h1 0 . . . 0
0 h1 2(h1 + h2) h2 0 . . . 0
...

. . .
. . .

. . .
...

...
0 0 . . . hn−2 2(hn−2 + hn−1) hn−1

0 0 0 . . . hn−1 2hn−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

and b and x are vectors given by

b =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3

h0
(a1 −a0)−3 f ′(a)

3

h1
(a2 −a1)−

3

h0
(a1 −a0)

...
3

hn−1
(an −an−1)−

3

hn−2
(an−1 −an−2)

3 f ′(b)− 3

hn−1
(an −an−1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and x =

⎛
⎜⎜⎜⎝

c0

c1
...

cn

⎞
⎟⎟⎟⎠

The C# implementation below constructs the cubic spline interpolant S(x) for the
function f (x), defined at the numbers x0 < x1 < .. . < xn satisfying the clamped
boundary conditions S′(x0) = f ′(x0) and S′(xn) = f ′(xn).

public static void ClampedCubicSpline(double[] x, double[] y, double
fp0, double fpn, double xvalue)

{
int i, j, m;
double S = 0.0;
double delta = 0.0;

int n = 4; //max number of coefficients: A,B,C,D for cubic spline

double[] A = new double[n + 1];
double[] B = new double[n + 1];
double[] C = new double[n + 1];
double[] D = new double[n + 1];
double[] H = new double[n + 1];
double[] XA = new double[n + 1];
double[] XL = new double[n + 1];
double[] XU = new double[n + 1];
double[] XZ = new double[n + 1];

for (i = 0; i < n; i++) A[i] = y[i];

m = n - 1;
for (i = 0; i <= m; i++)

H[i] = x[i + 1] - x[i];
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XA[0] = 3 * (A[1] - A[0]) / H[0] - 3 * fp0;
XA[n] = 3 * fpn - 3 * (A[n] - A[n - 1]) / H[n - 1];

for (i = 1; i <= m; i++)
XA[i]=3*(A[i+1]*H[i-1]-A[i]*(x[i+1]-x[i-1]) +

A[i-1]*H[i])/(H[i]*H[i-1]);

XL[0] = 2 * H[0]; XU[0] = 0.5; XZ[0] = XA[0] / XL[0];
for (i = 1; i <= m; i++)
{

XL[i] = 2 * (x[i+1] - x[i-1]) - H[i-1] * XU[i-1];
XU[i] = H[i] / XL[i];
XZ[i] = (XA[i] - H[i - 1] * XZ[i - 1]) / XL[i];

}
XL[n] = H[n - 1] * (2 - XU[n - 1]);
XZ[n] = (XA[n] - H[n - 1] * XZ[n - 1]) / XL[n];
C[n] = XZ[n];

for (i = 1; i <= n; i++)
{

j = n - i;
C[j] = XZ[j]-XU[j]*C[j+1];
B[j] = (A[j+1]-A[j])/H[j]-H[j]*(C[j+1] + 2*C[j])/3;
D[j] = (C[j+1]-C[j])/(3*H[j]);

}

Console.WriteLine("\n\nTesting clamped cubic splines");
Console.WriteLine("Input data stored in (x[i],y[i]). Value to

interpolate = {0}\n", xvalue);
Console.WriteLine("i\t"+"x[i]\t"+"y[i]\t"+"A[i]\t"+"B[i]\t"+"C[i]\t

"+"D[i]\n");
for (i = 0; i < n; i++)
{

Console.WriteLine(i.ToString()+"\t"+x[i].ToString("0.0000") +
"\t"+y[i].ToString("0.0000")+"\t"+A[i].ToString("0.0000")+
"\t" + B[i].ToString("0.0000")+"\t"+C[i].ToString("0.0000")+
"\t"+D[i].ToString("0.0000")+"\n");

}

for (i = 0; i <= m; i++)
{
if (xvalue >= x[i] && xvalue < x[i + 1])
{

delta = xvalue - x[i];
S = A[i]+B[i]*delta+C[i]*delta*delta+D[i]*delta*delta*delta;
Console.WriteLine("Interpolated x value=f({0})={1}\n",xvalue,S);

}
}

}

public static void ClampedCubicSplineTest()
{

int size = 26;
double[] xdata = new double[size];
double[] ydata = new double[size];

© 2010 by Taylor and Francis Group, LLC



250 Numerical Methods, Algorithms and Tools in C#

xdata[0] = 0;
xdata[1] = 1;
xdata[2] = 2;
xdata[3] = 3;

ydata[0] = 1;
ydata[1] = 2.718281828;
ydata[2] = 7.389056099;
ydata[3] = 20.08553692;

double fp_0 = 1.0;
double fp_n = 20.0855369;

ClampedCubicSpline(xdata, ydata, fp_0, fp_n, 2.0);
Console.ReadLine();

}

static void Main(string[] args)
{

ClampedCubicSplineTest();
}

OUTPUT: Testing clamped cubic splines
Input data stored in (x[i],y[i]). Value to interpolate = 2

i x[i] y[i] A[i] B[i] C[i] D[i]

0 0.0000 1.0000 1.0000 1.0000 0.1958 0.5225
1 1.0000 2.7183 2.7183 2.9591 1.7633 -0.0515
2 2.0000 7.3891 7.3891 6.3310 1.6087 4.7569
3 3.0000 20.0855 20.0855 23.8189 15.8792 3.3904

Interpolated x value = f(2) = 7.389056099

static void Main(string[] args)
{

TestLinear();
TestBilinear();
TestLagrangian();
TestBarycentric();
TestNewtonDividedDifference();
NaturalCubicSplineTest();
ClampedCubicSplineTest();

}
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Linear Equations

8.1 Introduction

Linear equations, including their theory and various methods of solution, have many
applications in both pure and applied mathematics, the natural sciences, and engi-
neering [48]. In image processing, for example, digital images are displayed on the
screen by a fairly large number of tiny little squares called pixels which store critical
information about tiny individual picture elements. This information in turn can be
treated as an array of numbers called a matrix which assigns a whole number to each
pixel. For example, in the case of a 256× 256 pixel gray scale image, the image is
stored as a 256×256 matrix, with each element of the matrix being a whole number
ranging from 0 for black to 256 for white. One can then use some linear algebra
techniques to manipulate and enhance the image and also compress it for storage.

A general system of m linear equations with n unknowns can be written as

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2

...
...

...
...

am1x1 + am2x2 + · · ·+ amnxn = bm.

Here x1,x2, . . . ,xn are the unknowns, a11,a12, . . . ,amn are the coefficients of the sys-
tem, and b1,b2, . . . ,bm are the constant terms. The coefficients and unknowns can
be integers, real or complex numbers. One very popular and useful approach is to
take each unknown as a weight for a column vector in a linear combination as shown
below.

x1

⎡
⎢⎢⎢⎣

a11

a21
...

am1

⎤
⎥⎥⎥⎦+ x2

⎡
⎢⎢⎢⎣

a12

a22
...

am2

⎤
⎥⎥⎥⎦+ · · ·+ xn

⎡
⎢⎢⎢⎣

a1n

a2n
...

amn

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

b1

b2
...

bm

⎤
⎥⎥⎥⎦

This method allows all the language and theory of vector spaces to be brought to bear.
For example, the collection of all possible linear combinations of the vectors on the
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left-hand side is called their span, and the equations have a solution just when the
right-hand vector is within that span. If every vector within that span has exactly one
expression as a linear combination of the given left-hand vectors, then any solution
is unique. In any event, the span has a basis of linearly independent vectors that do
guarantee exactly one expression and the number of vectors in that basis, also known
as its dimension, cannot be larger than m or n, but it can be smaller. This is important
because if we have m independent vectors then a solution is guaranteed regardless of
the right-hand side. Otherwise it is not guaranteed.

The vector equation is equivalent to a matrix equation of the form Ax = b where A
is an m×n matrix, x is a column vector with n entries, and b is a column vector with
m entries.

A =

⎡
⎢⎢⎢⎣

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

⎤
⎥⎥⎥⎦ , x =

⎡
⎢⎢⎢⎣

x1

x2
...

xn

⎤
⎥⎥⎥⎦ , b =

⎡
⎢⎢⎢⎣

b1

b2
...

bm

⎤
⎥⎥⎥⎦

The number of vectors in a basis for the span is now expressed as the rank of the
matrix. A solution of a linear system is an assignment of values to the variables
x1,x2, . . . ,xn such that each of the equations is satisfied. The set of all possible so-
lutions is called the solution set. A linear system may behave in any one of three
possible ways:

• The system has infinitely many solutions.

• The system has a single unique solution.

• The system has no solutions.

In general, the behavior of a linear system is determined by the relationship between
the number of equations and the number of unknowns:

• Usually, a system with fewer equations than unknowns has infinitely many
solutions.

• Usually, a system with the same number of equations and unknowns has a
single unique solution.

• Usually, a system with more equations than unknowns has no solution.

In the first case, the dimension of the solution set is usually equal to n−m, where n
is the number of variables and m is the number of equations. The equations of a linear
system are consistent if they possess a common solution, and inconsistent otherwise.
When the equations are inconsistent, it is possible to derive a contradiction from the
equations, such as in the statement that 0 = 1. The equations of a linear system are
independent if none of the equations can be derived algebraically from the others.
When the equations are independent, each equation contains new information about
the variables, and removing any of the equations increases the size of the solution
set. Two linear systems using the same set of variables are equivalent if each of
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the equations in the second system can be derived algebraically from the equations
in the first system, and vice-versa. Equivalent systems convey precisely the same
information about the values of the variables. In particular, two linear systems are
equivalent if and only if they have the same solution set. When the solution set is
finite, it is usually described in set notation. However, it can be difficult to describe
a set with infinite solutions. Typically, some of the variables are designated as free,
or independent, or as parameters, meaning that they are allowed to take any value,
while the remaining variables are dependent on the values of the free variables.

The simplest, but perhaps also the longest and most tedious, method for solving a
system of linear equations is to repeatedly eliminate variables. This method can be
summarized as follows:

• In the first equation, solve for the one of the variables in terms of the others.

• Plug this expression into the remaining equations. This yields a system of
equations with one less equation and one less unknown.

• Continue until you have reduced the system to a single linear equation.

• Solve this equation, and then back-substitute until the entire solution is found.

8.2 Gaussian Elimination

Gaussian elimination is an efficient algorithm for solving systems of linear equations,
producing both the solution of the equations and the inverse of the coefficient matrix.
Elementary row operations are used to reduce a matrix to row echelon form. An
extension of this algorithm, Gauss-Jordan elimination, reduces the matrix further to
reduced row echelon form. However, Gaussian elimination alone is sufficient for
many applications [48]. A matrix is said to be in row-echelon form if it satisfies the
following two conditions: (1) Each row contains only zeros until the first non-zero
element, which must be 1. (2) As the rows are followed from top to bottom, the first
non-zero element, also called the leading coefficient or pivot, occurs further to the
right than in the previous row above it. A matrix is in reduced row echelon form, also
called row canonical form, if it satisfies all the conditions above and, in addition, if
every leading coefficient is 1 and the only nonzero entry in its column. That is, the
entries above and below the first 1 in each row must all be 0.

The process of Gaussian elimination has two parts. The first part, called forward
elimination, reduces a given system to either triangular or echelon form, or results
in a degenerate equation meaning that the system has no solution. This step is ac-
complished through the use of elementary row operations. The second part uses
back substitution to find the solution of the system of equations. Stated equivalently
for matrix formalism, the first part reduces a matrix to row echelon form using el-
ementary row operations while the second part simplifies it even further to reduced
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row echelon form, or row canonical form. Another point of view, which turns out
to be very useful to analyze the algorithm, is that Gaussian elimination computes a
matrix decomposition. The three elementary row operations used in Gaussian elim-
ination, multiplying rows, switching rows, and adding multiples of rows to other
rows, amount to multiplying the original matrix with invertible matrices from the
left. The first part of the algorithm computes an LU decomposition, while the sec-
ond part writes the original matrix as the product of a uniquely determined invertible
matrix and a uniquely determined reduced row-echelon matrix.

In summary, Gaussian Elimination is considered the workhorse of computational
methods for the solution of a system of linear equations. Gaussian Elimination con-
sists of a systematic application of elementary row operations to a system of linear
equations in order to convert it to upper triangular form. Once the coefficient matrix
is in upper triangular form, we use back substitution to find a solution. The general
procedure for Gaussian Elimination can be summarized in the following steps:

• Write the augmented matrix for the system of linear equations.

• Use elementary row operations on the augmented matrix [A|b] to transform A
into upper triangular form. If a zero is located on the diagonal, switch the rows
until a nonzero is in that place. If you are unable to do so, then stop because
the system has either infinite or no solutions.

• Use back substitution to find the solution of the problem.

8.3 Gauss-Jordan Elimination

Gauss-Jordan Elimination is a variant of Gaussian Elimination. Again, we are trans-
forming the coefficient matrix into another matrix that is much easier to solve, and
the system represented by the new augmented matrix has the same solution set as
the original system of linear equations. In Gauss-Jordan Elimination, the goal is to
produce a triangular matrix of coefficients with all zero elements below the principal
diagonal. The general procedure for Gauss-Jordan Elimination can be summarized
in the following three steps:

• Write the augmented matrix for the system of linear equations.

• Use elementary row operations on the augmented matrix [A|b] to transform A
into diagonal form. If a zero or a very small number is located on the diagonal,
switch the rows until a nonzero is in that place. If you are unable to do so, then
stop because the system has either infinite or no solutions.

• By dividing the diagonal element and the right-hand-side element in each row
by the diagonal element in that row, make each diagonal element equal to one.
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The following code illustrates the Gauss-Jordan elimination process in more detail.

const double epsilon = 1.0e-500;
// Gauss-Jordan elimination to solve Ax = b for x
public static RVector GaussJordan(RMatrix A, RVector b)
{

Triangulate(A, b);
int bSize = b.GetVectorSize;
RVector x = new RVector(bSize);
for (int i = bSize - 1; i >= 0; i--)
{

double Aii = A[i, i];
if (Math.Abs(Aii) < epsilon)
throw new Exception("Diagonal element is too small!");

x[i] = (b[i]-RVector.DotProduct(A.GetRowVector(i),x))/Aii;
}
return x;

}

// Triangulate matrix A
private static void Triangulate(RMatrix A, RVector b)
{

int nRows = A.GetnRows;
for (int i = 0; i < nRows - 1; i++)
{

double diagonalElement = pivotGaussJordan(A, b, i);
if (Math.Abs(diagonalElement) < epsilon)
throw new Exception("Diagonal element is too small!");

for (int j = i + 1; j < nRows; j++)
{
double w = A[j, i] / diagonalElement;
for (int k = i + 1; k < nRows; k++)
{

A[j, k] -= w * A[i, k];
}
b[j] -= w * b[i];

}
}

}

private static double pivotGaussJordan(RMatrix A, RVector b, int q)
{

int bSize = b.GetVectorSize;
int c = q;
double d = 0.0;
for (int j = q; j < bSize; j++)
{

double w = Math.Abs(A[j, q]);
if (w > d)
{

d = w;
c = j;

}
}
if (c > q)
{

A.SwapMatrixRow(q, c);
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b.SwapVectorEntries(q, c);
}
return A[q, q];

}

static void TestGaussJordan()
{

RMatrix A =
new RMatrix(new double[3,3] {{2,4,-6 },{6,-4,2 },{4,2,6}});

RVector b = new RVector(new double[3] {6,-2,4});
RVector x = GaussJordan(A, b);
Console.WriteLine("Solution x = {0}",x);

}

static void Main(string[] args)
{

TestGaussJordan();
Console.ReadLine();

}

OUTPUT: Solving A x = b for x
Solution x=(0.476190476190476,1.19047619047619,-0.0476190476190476)

8.4 LU Decomposition

A matrix decomposition is a factorization of a matrix into some canonical form. A
triangular matrix is a special kind of square matrix where the entries either below
or above the main diagonal are zero. There are many different kinds of matrix de-
compositions and each of these finds use among a particular class of problems. In
particular, LU decomposition gives an algorithm to decompose any invertible matrix
A into a normed lower triangular matrix L and an upper triangular matrix U so that
A = LU . Therefore, given a matrix equation

Ax = LUx = b

we want to solve the equation for a given A and b. This can be done in two logical
steps:

• First, we solve the equation Ly = b for y

• Second, we solve the equation Ux = y for x

where L and U are lower and upper triangular matrices of the same size, respectively.
This means that L has only zeros above the diagonal and U has only zeros below the
diagonal. For a 3×3 matrix, this becomes:⎡

⎣a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤
⎦ =

⎡
⎣l11 0 0

l21 l22 0
l31 l32 l33

⎤
⎦
⎡
⎣u11 u12 u13

0 u22 u23

0 0 u33

⎤
⎦
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Note that in both cases we have triangular matrices, lower and upper, which can be
solved directly using forward and backward substitution without using the Gaussian
elimination process. However, we need this process or its equivalent to compute the
LU decomposition itself. Thus the LU decomposition is computationally efficient
only when we have to solve a matrix equation multiple times for different b. It is
faster in this case to do an LU decomposition of the matrix A once and then solve
the triangular matrices for the different b, than to use Gaussian elimination each
time. The Doolittle method sets the lower diagonal elements of L to 1 and the Crout
method sets the upper diagonal elements of U to 1. This chapter uses the Crout
method to perform the LU decomposition. The following code illustrates the LU
decomposition process in more detail.

// LU decomposition using the Crout algorithm with pivoting
public static double LUCrout(RMatrix A, RVector b)
{

LUDecompose(A);
return LUSubstitute(A, b);

}

private static void LUDecompose(RMatrix matrix)
{

int nRows = matrix.GetnRows;
for (int i = 0; i < nRows; i++)
{

for (int j = 0; j < nRows; j++)
{
double w = matrix[i, j];
for (int k = 0; k < Math.Min(i, j); k++)
{

w -= matrix[i, k] * matrix[k, j];
}
if (j > i)
{

double s = matrix[i, i];
if (Math.Abs(w) < epsilon)

throw new Exception("Diagonal element is too small!");
w /= s;

}
matrix[i, j] = w;

}
}

}

private static double LUSubstitute(RMatrix matrix, RVector vec)
{

int size = vec.GetVectorSize;
double det = 1.0;
for (int i = 0; i < size; i++)
{

double w = vec[i];
for (int j = 0; j < i; j++)
{
w -= matrix[i, j] * vec[j];

}
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double p = matrix[i, i];
if (Math.Abs(w) < epsilon)
throw new Exception("Diagonal element is too small!");

w /= p;
vec[i] = w;
det *= matrix[i, i];

}
for (int i = size - 1; i >= 0; i--)
{

double s = vec[i];
for (int j = i + 1; j < size; j++)
{
s -= matrix[i, j] * vec[j];

}
vec[i] = s;

}
return det;

}

static void TestLU()
{

RMatrix A = new RMatrix(new double[3,3]
{{2,4,-6},{6,-4,2},{4,2,6}});

RVector b = new RVector(new double[3] {4,4,8});
RMatrix Anew = A.Clone();
RMatrix Bnew = A.Clone();
double d = LUCrout(A,b);
RMatrix inv = LUInverse(Anew);
Console.WriteLine("\nInverse of A = \n {0}", (inv));
Console.WriteLine("\nSolution of the equations Ax = b is x={0}",b);
Console.WriteLine("\nDeterminant of A = {0}", d);
Console.WriteLine("\nTest Inverse: A*Inverse = \n {0}",Bnew*inv);

}

static void Main(string[] args)
{

TestLU(); Console.ReadLine();
}

OUTPUT:
Inverse of A =
(0.0833333333333333, 0.107142857142857, 0.0476190476190476
0.0833333333333333, -0.107142857142857, 0.119047619047619
-0.0833333333333333, -0.0357142857142857, 0.0952380952380952)

Solution of the equations Ax = b is
x = (1.14285714285714, 0.857142857142857, 0.285714285714286)

Determinant of A = -336

Test Inverse: A*Inverse =
(1, 0, 0
-1.38777878078145E-16, 1, 0
-5.55111512312578E-17, 0, 1)
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Note that the matrices L and U can be used to compute the determinant of the
matrix A very quickly, because det(A) = det(L)det(U) and the determinant of a tri-
angular matrix is simply the product of its diagonal entries. In particular, if L is a
unit triangular matrix, then

det(A) = detLU = det(L)det(U) = detL =
n

∏
i=1

Lii

The matrices L and U can therefore be used to calculate the inverse matrix of A by:

A−1 = U−1L−1

Computer implementations that invert matrices, as shown below, sometimes use this
approach.

//LU Matrix Inverse
public static RMatrix LUInverse(RMatrix matrix)
{

int nRows = matrix.GetnRows;
RMatrix u = matrix.IdentityMatrix();
LUDecompose(matrix);
RVector uv = new RVector(nRows);
for (int i = 0; i < nRows; i++)
{

uv = u.GetRowVector(i);
LUSubstitute(matrix, uv);
u.ReplaceRow(uv, i);

}
RMatrix inverse = u.GetTranspose();
return inverse;

}

8.5 Iteration Methods

An iterative method attempts to solve a problem, such as an equation or system
of equations, by finding successive approximations to the solution starting from an
initial guess. This approach is in contrast to direct methods, which attempt to solve
a problem by a finite sequence of operations, and, in the absence of rounding errors,
could deliver an exact solution.

8.5.1 Gauss-Jacobi Iteration

The Jacobi method is an algorithm in linear algebra for determining the solutions
of a system of linear equations with largest absolute values in each row and column
dominated by the diagonal element. Each diagonal element is solved for, and an
approximate value plugged in. The process is then iterated until it converges. This
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algorithm is a stripped-down version of the Jacobi transformation method of matrix
diagonalization.

We seek the solution to a set of linear equations, written in matrix form as

Ax = b

Let A = D + (L+U), where D, L, and U represent the diagonal, lower triangular,
and upper triangular parts of the coefficient matrix A. Then the equation above can
be rephrased as:

Dx +(L+U)x = b

If aii 	= 0 for each i then we can solve directly for x using the equation.

x = D−1 [b− (L+U)x]

By iterative rule, the definition of the Jacobi method can be expressed as:

x(k+1) = D−1
[
b− (L+U)x(k)

]
where k is the iteration count. Often an element-based approach is used so that:

x(k+1)
i =

1
aii

(
bi −∑

j 	=i

ai jx
(k)
j

)
where i = 1,2, . . . ,n

Note that the computation of x(k+1)
i requires an element in x(k) except itself. The

method will always converge if the matrix A is strictly or irreducibly diagonally
dominant. Strict row diagonal dominance means that for each row, the absolute
value of the diagonal term is greater than the sum of absolute values of other terms

|aii| > ∑
i	= j

∣∣ai j
∣∣

The Jacobi method sometimes converges even if this condition is not satisfied. It is
necessary, however, that the diagonal terms in the matrix are greater in magnitude
than the other terms. Thus, two parameters can be used to control the number of
iterations: one is a tolerance factor imposed by this convergence condition and the
other is the maximum number of iterations imposed by the user. Failure to properly
set any of these factors can result in an infinite or nearly infinite loop or the program
may terminate early thus yielding a false or erroneous result.

// Gauss-Jacobi method
public static RVector GaussJacobi(RMatrix A, RVector b, int

MaxIterations, double tolerance)
{

int bSize = b.GetVectorSize;
RVector x = new RVector(bSize);
for (int nIteration=0; nIteration<MaxIterations;nIteration++)
{

RVector xOld = x.Clone();
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for (int i = 0; i < bSize; i++)
{
double entry = b[i];
double diagonal = A[i, i];
if (Math.Abs(diagonal) < epsilon)

throw new Exception("Diagonal element is too small!");
for (int j = 0; j < bSize; j++)
{

if (j != i)
{

entry -= A[i, j] * xOld[j];
}

}
x[i] = entry / diagonal;

}
RVector dx = x - xOld;
if (dx.GetNorm() < tolerance)
{
return x;

}
}
return x;

}

static void TestGaussJacobiIteration()
{

RMatrix A =
new RMatrix(new double[3, 3] {{4,0,1},{0,3,2},{1,2,4}});

RVector b = new RVector(new double[3] {2,1,3} );
RMatrix A1 = A.Clone();
RVector b1 = b.Clone();

RVector x = GaussJacobi(A, b, 10, 1.0e-4);
Console.WriteLine("\nSolution from the Gauss-Jacobi iteration:");
Console.WriteLine(" x[0] = {0}", x[0]);
Console.WriteLine(" x[1] = {0}", x[1]);
Console.WriteLine(" x[2] = {0}", x[2]);

}

static void Main(string[] args)
{

TestGaussJacobiIteration();
Console.ReadLine();

}

OUTPUT: Solution from the Gauss-Jacobi iteration:
x[0] = 0.310397736820174
x[1] = -0.17227270181287
x[2] = 0.751248669722443

8.5.2 Gauss-Seidel Iteration

The Gauss-Seidel method is a technique used to solve a linear system of equations
which is actually an improved version of the Jacobi method. The goal of the Gauss-
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Seidel method is to find a solution to a set of linear equations, expressed in matrix
terms as

Ax = b

The Gauss-Seidel iteration is expressed by

x(k+1) = (D+ L)−1
(

b−Ux(k)
)

where A = D + L +U . The matrices D, L, and U represent the diagonal, strictly
lower triangular, and strictly upper triangular parts of the coefficient matrix A and k
is the iteration count. This matrix expression is mainly used to analyze the method.

This time, however, we cannot overwrite x(k)
i with x(k+1)

i , as that value will be needed
by the rest of the computation. This is the most meaningful difference between the
Jacobi and Gauss-Seidel methods. Instead, the minimum amount of storage is two
vectors of size n.

When implementing the Gauss-Seidel method, an explicit entry-by-entry approach
is used:

x(k+1)
i =

1
aii

(
bi −∑

j<i
ai jx

(k+1)
j −∑

j>i
ai jx

(k)
j

)
where i = 1,2, . . . ,n

Note that the computation of x(k+1)
i uses only those elements of x(k+1) that have

already been computed and only those elements of x(k) that have yet to be advanced to
iteration k+1. This means that no additional storage is required, and the computation
can be done in place so that x(k+1) replaces x(k). While this might seem like a rather
minor concern, for large systems it is unlikely that every iteration can be stored.
Thus, unlike the Jacobi method, this process does not have to do any vector copying
should one want to use only one storage vector. The iteration is generally continued
until the changes made by an iteration are below some tolerance factor.

Gauss-Seidel is guaranteed to converge for an arbitrary symmetric positive definite
matrix A. If A is unsymmetric, it will always converge if the matrix A is strictly or
irreducibly diagonally dominant. Strict row diagonal dominance means that for each
row, the absolute value of the diagonal term is greater than the sum of absolute values
of other terms:

|aii| > ∑
i	= j

∣∣ai j
∣∣.

The Gauss-Seidel method sometimes converges even if this condition is not satisfied.
It is necessary, however, that the diagonal terms in the matrix are greater in magni-
tude than the other terms. The following code illustrates the Gauss-Seidel iteration
process in more detail.

// Gauss-Seidel method
public static RVector GaussSeidel(RMatrix A, RVector b, int

MaxIterations, double tolerance)
{

int size = b.GetVectorSize;
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RVector x = new RVector(size);
for (int nIteration = 0; nIteration < MaxIterations; nIteration++)
{

RVector xOld = x.Clone();
for (int i = 0; i < size; i++)
{
double entry = b[i];
double diagonal = A[i, i];
if (Math.Abs(diagonal) < epsilon)

throw new Exception("Diagonal element is too small!");
for (int j = 0; j < i; j++)
{

entry -= A[i, j] * x[j];
}
for (int j = i + 1; j < size; j++)
{

entry -= A[i, j] * xOld[j];
}

x[i] = entry / diagonal;
}
RVector dx = x - xOld;
if (dx.GetNorm() < tolerance)
{ return x; }

}
}
return x;

}

static void TestGaussSeidelIteration()
{

RMatrix A = new RMatrix(new double[3, 3]
{{4,0,1},{0,3,2},{1,2,4}});

RVector b = new RVector(new double[3] {2,1,3});
RMatrix A1 = A.Clone();
RVector b1 = b.Clone();

RVector x1 = GaussSeidel(A1, b1, 10, 1.0e-4);
Console.WriteLine("\n Solution from the Gauss-Seidel iteration:");
Console.WriteLine(" x1[0] = {0}", x1[0]);
Console.WriteLine(" x1[1] = {0}", x1[1]);
Console.WriteLine(" x1[2] = {0}", x1[2]);

}

static void Main(string[] args)
{

TestGaussSeidelIteration();
Console.ReadLine();

}

OUTPUT: Solution from the Gauss-Seidel iteration:
x1[0] = 0.310390073145789
x1[1] = -0.172293138277897
x1[2] = 0.758549050852501
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8.6 Eigenvalues and Jacobi’s Algorithm

In general, an n-dimensional vector x is called an eigenvector of a square n×n matrix
A if and only if it satisfies the following linear equation

Ax = λ x

where λ is a scalar referred to as the eigenvalue corresponding to x. The equation
above can be rewritten as

Ax−λ Ix = 0

where I is the identity matrix. This equation can be rearranged to

(A−λ I)x = 0

If there exists an inverse (A− λ I)−1 then both sides can be left multiplied by the
inverse to obtain the trivial solution: x = 0. Thus we require there to be no inverse
by assuming from linear algebra that the determinant equals zero:

det(A−λ I) = 0

The determinant requirement is called the characteristic equation of A, and the left-
hand side is called the characteristic polynomial. The roots λi for i = 0,1,2, . . . are
called the eigenvalues of the matrix A and the solution x where (A− λiI)x = 0 are
known as the eigenvectors of matrix A.

From the matrix equations shown above, the calculation of both eigenvalues and
eigenvectors at first appears to be a conceptually simple process. However, in prac-
tice the actual calculation of eigenvalues and eigenvectors is a fairly complicated
business, especially for very large matrices, and remains a very active area of re-
search. There are many numerical methods available for calculating eigenvalues but
they often come with a substantial number of restrictions and limitations as to the
size and kind of matrices that a particular method can be successfully applied [22].

The Jacobi eigenvalue algorithm is a numerical procedure for calculating all the
eigenvalues and eigenvectors of a real symmetric matrix. Moreover, it is a reliable
method that produces uniformly accurate results. For matrices of order up to 10×10,
the algorithm is competitive with more sophisticated ones. If speed is not a major
consideration, it is quite acceptable for matrices up to order 20× 20. A solution
is guaranteed for all real symmetric matrices when Jacobi’s method is used. This
limitation is not severe since many practical problems of applied mathematics and
engineering involve symmetric matrices. From a theoretical viewpoint, the method
also embodies techniques that are found in more sophisticated algorithms. For peda-
gogical and practical purposes, it is therefore worthwhile to investigate the details of
Jacobi’s method.

The idea behind Jacobi’s eigenvalue algorithm is conceptually simple. From linear
algebra, it is an established fact that all eigenvalues of a real symmetric matrix A are
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real [22]. As a result, there exists a real orthogonal matrix S such that S−1AS is a
diagonal matrix D. As D and A are similar matrices, the diagonal elements of D are
therefore also the eigenvalues of A. However, the computation of matrix S is not a
simple task. It is obtained by a series of orthogonal transformations S1S2, . . . ,Sn as
discussed below.

Let |ai j| be the largest element among the off-diagonal elements of A. We con-
struct an orthogonal matrix S1 whose elements are defined as

si j = −sinθ , s ji = sinθ , sii = cosθ , s j j = cosθ

All other off-diagonal elements are zero and all other diagonal elements are unity.
Therefore, S1 is of the form

S1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0 · · · 0 · · · 0
0 1 · · · 0 · · · 0 · · · 0
...

...
...

...
...

0 0 · · · cosθ · · · −sinθ · · · 0
...

...
...

...
...

0 0 · · · sinθ · · · cosθ · · · 0
...

...
...

...
...

0 0 · · · 0 · · · 0 · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where cosθ , −sinθ , sinθ , and cosθ are at positions (i, i), (i, j), ( j, i), and ( j, j)
respectively.

Let A1 =
[

aii ai j

a ji a j j

]
be a sub-matrix of A formed by the elements aii,ai j,a ji, and

a j j. To reduce A1 to a diagonal matrix, an orthogonal transformation is applied

which is defined as S1 =
[

cosθ −sinθ
sinθ cosθ

]
, where θ is an unknown quantity and it will

be selected in such a way that A1 becomes diagonal. Now,

S
−1
1 A1S1 =

[
cosθ sinθ
−sinθ cosθ

][
aii ai j

a ji a j j

][
cosθ −sinθ
sinθ cosθ

]

=
[

aii cos2 θ + ai j sin2θ + a j j sin2 θ (a j j −aii)sin θ cosθ + ai j cos2θ
(a j j −aii)sinθ cosθ + ai j cos2θ aii sin2 θ −ai j sin2θ + a j j cos2 θ

]

This matrix becomes a diagonal matrix if (a j j − aii)sin θ cosθ + ai j cos2θ = 0.
That is, if

tan2θ =
2ai j

aii −a j j

The value of θ can then be obtained from the following relation

θ =
1

2
tan−1

(
2ai j

aii −a j j

)
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This expression gives four values of θ , but to get the smallest rotation, θ should lie
in the region given by −π/4 ≤ θ ≤ π/4. This equation is valid for all i, j such that
aii 	= a j j. If aii = a j j then

θ =

⎧⎪⎨
⎪⎩

π
4

if ai j > 0

−π
4

if ai j < 0

Therefore, the off-diagonal elements si j and s ji of S
−1
1 A1S1 vanish and the diagonal

elements are modified. The first diagonal matrix is obtained by computing D1 =
S−1

1 A1S1. In the next step, the largest off-diagonal element is selected from the matrix
D1 and the above process is repeated to generate another orthogonal matrix S2 to
compute D2. That is,

D2 = S−1
2 D1S2 = S−1

2 (S−1
1 AS1)S2 = (S1S2)−1A(S1S2)

In this way, a series of two-dimensional rotations are performed. At the end of a k
transformations the matrix Dk is obtained as

Dk = (S1S2 · · ·Sk)−1A(S1S2 · · ·Sk) = S−1AS

where S = S1S2 · · ·Sk.
As k → ∞, Dk tends to a diagonal matrix. The diagonal elements of Dk are the

eigenvalues and the columns of S are the corresponding eigenvectors.
Unfortunately, like all eigenvalue algorithms, the Jacobi algorithm also has a

drawback. The elements which are transfered to zero during the diagonalization
process may not necessarily remain zero during subsequent rotations. Therefore
the value of θ must be periodically verified for its accuracy by checking whether
|sin2 θ + cos2 θ −1| remains sufficiently small.

Below is an implementation of the Jacobi eigenvalue algorithm in C#. A 4×4
symmetric matrix was used as input data for testing. The results are subsequently
displayed.

public static void JacobiEigenValVec(double[,] a, int maxsize, int n,
double epsilon, out double[,] eigenval, out double[,] eigenvec)

{
int i, j, p, q, flag;
double[,] d = new double[maxsize, maxsize];
double[,] s = new double[maxsize, maxsize];
double[,] s1 = new double[maxsize, maxsize];
double[,] s1t = new double[maxsize, maxsize];
double[,] temp = new double[maxsize, maxsize];
double theta, max;

//Initialization of matrix d and s
for (i = 1; i <= n; i++)
{

for (j = 1; j <= n; j++)
{
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d[i, j] = a[i, j];
s[i, j] = 0.0;

}
}
for (i = 1; i <= n; i++) s[i, i] = 1.0;

do
{

flag = 0;
//Find largest off-diagonal element
i = 1;
j = 2;
max = Math.Abs(d[1, 2]);
for (p = 1; p <= n; p++)
{

for (q = 1; q <= n; q++)
{

if (p != q) //off diagonal element
{

if (max < Math.Abs(d[p, q]))
{

max = Math.Abs(d[p, q]);
i = p;
j = q;

}
}

}
}

if (d[i, i] == d[j, j])
{

if (d[i, j] > 0) theta = Math.PI / 4.0;
else theta = -Math.PI / 4.0;

}
else
{

theta = 0.5*Math.Atan(2.0*d[i,j]/(d[i,i]-d[j,j]));
}

//Construction of the matrix s1 and s1t
for (p = 1; p <= n; p++)
{

for (q = 1; q <= n; q++)
{

s1[p, q] = 0.0;
s1t[p, q] = 0.0;

}
}

for (p = 1; p <= n; p++)
{

s1[p, p] = 1.0;
s1t[p, p] = 1.0;

}

s1[i, i] = Math.Cos(theta); s1[j, j] = s1[i, i];
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s1[j, i] = Math.Sin(theta); s1[i, j] = -s1[j, i];
s1t[i, i] = s1[i, i]; s1t[j, j] = s1[j, j];
s1t[i, j] = s1[j, i]; s1t[j, i] = s1[i, j];

//Product of s1t and d
for (i = 1; i <= n; i++)
{

for (j = 1; j <= n; j++)
{

temp[i, j] = 0.0;
for (p = 1; p <= n; p++)

temp[i, j] += s1t[i, p] * d[p, j];
}

}

//Product of temp and s1: d = s1t * d * s1
for (i = 1; i <= n; i++)
{

for (j = 1; j <= n; j++)
{

d[i, j] = 0.0;
for (p = 1; p <= n; p++)

d[i, j] += temp[i, p] * s1[p, j];
}

}

//Product of s and s1: s = s*s1
for (i = 1; i <= n; i++)
{

for (j = 1; j <= n; j++)
{

temp[i, j] = 0.0;
for (p = 1; p <= n; p++)

temp[i, j] += s[i, p] * s1[p, j];
}

}

for (i = 1; i <= n; i++)
{

for (j = 1; j <= n; j++)
{

s[i, j] = temp[i, j];
}

}

//check to see if d is a diagonal matrix
for (i = 1; i <= n; i++)
{

for (j = 1; j <= n; j++)
{

if (i != j)
if (Math.Abs(d[i, j]) > epsilon)

flag = 1;
}

}

© 2010 by Taylor and Francis Group, LLC



Linear Equations 269

} while (flag == 1);
//copy results to output matrices
eigenval = d;
eigenvec = s;

}

public static void TestingJacobiEigenValVec()
{

int nCol = 4; //size of input 4x4 matrix
int maxMatrixSize = 10; //max matrix size
double Epsilon = 1.0e-04; //tolerance check if close enough to 0.
double[,] A = new double[maxMatrixSize,maxMatrixSize];
double[,] Eigenvalues = new double[maxMatrixSize,maxMatrixSize];
double[,] Eigenvectors = new double[maxMatrixSize,maxMatrixSize];

A[1, 1] = 1; A[1, 2] = 2; A[1, 3] = 3; A[1, 4] = 4;
A[2, 1] = 2; A[2, 2] =-3; A[2, 3] = 3; A[2, 4] = 4;
A[3, 1] = 3; A[3, 2] = 3; A[3, 3] = 4; A[3, 4] = 5;
A[4, 1] = 4; A[4, 2] = 4; A[4, 3] = 5; A[4, 4] = 0;

Console.WriteLine("\n\nTesting Jacobi’s Method For Finding
Eigenvalues and Eigenvectors\n");

Console.WriteLine("The input matrix is given by\n");
for (int i = 1; i <= nCol; i++)
{

for (int j = 1; j <= nCol; j++)
{
if (j != nCol)

Console.Write(A[i, j].ToString("0.000000") + "\t");
else

Console.WriteLine(A[i, j].ToString("0.000000"));
}

}

//Calculate eigenvalues and eigenvectors using Jacobi method
JacobiEigenValVec(A, maxMatrixSize, nCol, Epsilon, out Eigenvalues,

out Eigenvectors);

//Output results
Console.WriteLine("\nThe eigenvalues are:\n");
for (int i = 1; i <= nCol; i++)
{ Console.WriteLine(Eigenvalues[i, i].ToString("0.00000")); }

Console.WriteLine("\nThe corresponding eigenvectors are\n");
for (int j = 1; j <= nCol; j++)
{

for (int i = 1; i <= nCol; i++)
{
if (i != nCol)
Console.Write(Eigenvectors[i, j].ToString("0.00000")+"\t\t");

else
Console.WriteLine(Eigenvectors[i, j].ToString("0.00000"));

}
}

}
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static void Main(string[] args)
{

TestingJacobiEigenValVec();
Console.ReadLine();

}

OUTPUT:
Testing Jacobi’s Method For Finding Eigenvalues and Eigenvectors

The input matrix is given by

1.000000 2.000000 3.000000 4.000000
2.000000 -3.000000 3.000000 4.000000
3.000000 3.000000 4.000000 5.000000
4.000000 4.000000 5.000000 0.000000

The eigenvalues are:

-0.73369
-5.88321
11.78254
-3.16564

The corresponding eigenvectors are

0.74263 0.04635 -0.65234 0.14421
0.13467 0.74460 0.06235 -0.65081
0.43846 0.33395 0.64097 0.53422

-0.48797 0.57611 -0.39965 0.51987
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Nonlinear Equations

9.1 Introduction

Nonlinear equations are of particular interest in mathematics, engineering and the
natural sciences because many physical phenomena are inherently nonlinear in na-
ture. Predicting future weather events is an excellent example of a nonlinear sys-
tem. Here, simple changes in one part of the system can produce complex effects
throughout other parts of the system. Other examples of nonlinear systems include
the NavierStokes differential equations in fluid dynamics, the LotkaVolterra equa-
tions in biology, and the BlackScholes partial differential equation in finance. Non-
linear systems can also give rise to some other interesting physical phenomena such
as chaos. Unfortunately, most nonlinear equations are so difficult to solve that they
cannot be solved analytically but instead can only be solved by numerical approxi-
mations [22].

In general, nonlinear systems can be classified into three broad categories:

• Indeterministic systems where the behavior of a system cannot be predicted

• Multistabilistic systems where solutions alternate between two or more exclu-
sive states

• Aperiodic oscillatory systems, also known as chaotic systems, where solutions
do not repeat values after some unspecified period

In mathematics, a linear function (or map) f (x) is one which satisfies the following
properties:

• Additivity, f (x + y) = f (x) + f (y)

• Homogeneity, f (αx) = α f (x)

where α is just a scalar constant. A function f (x) that does not satisfy the crite-
ria for linear functions as listed above is said to be nonlinear. The most common
types of nonlinear equations may include polynomial, transcendental, exponential,
logarithmic, trigonometric, hyperbolic equations or some combination thereof.

Many nonlinear root finding problems involve finding one or more values of x that
satisfy one of the following three basic forms of equations:
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• f (x) = 0

• g(x) = C → f (x) = g(x)−C = 0

• g(x) = h(x) → f (x) = g(x)−h(x) = 0

As difficult and intimidating as some nonlinear equations may appear, it sometimes
very helpful to think of them in graphical terms before attempting to solve them. For
example, solutions to equations of the form f (x) = 0 can be seen as places where the
graph of f (x) crosses or touches the x axis. Similarly, solutions to equations of the
form f (x) = g(x) can be seen as places where the graphs of f (x) and g(x) intersect.
Fortunately, most nonlinear equations can be solved through repeated iteration of
some approximated expression until an answer is achieved to the desired degree of
accuracy or tolerance.

The most popular nonlinear root finding algorithms use bracketing methods to
arrive at approximate solutions and so it seems logical to start by briefly describing
what they are and how they work. A root is said to be bracketed in the interval given
by a ≤ x ≤ b if f (a) and f (b) have opposite signs so that f (a) f (b) < 0. In that case
and if the function is continuous, then at least one root must lie in that interval. If
the function is discontinuous but bounded, then instead of a root, there might be a
step discontinuity that crosses zero. In such cases, the behavior is indistinguishable
from the case of a continuous function whose zero crossing occurs somewhere in
that interval. Only for functions with singularities, such as in the case for

f (x) =
1

x− c

is there a possibility that a bracketed root is not really there. With all these basic con-
cepts in mind, let us start this chapter which covers the topic of nonlinear equations.

9.2 Linear Incremental Method

The linear incremental method is perhaps the simplest incremental procedure that
does not use any iteration. After making an initial guess of the value of a suspected
root and evaluating the function at that point, another point is selected slightly higher
or lower than the initial point and the function is evaluated again at that new point.
If there is a change in the sign of the evaluated functions, then there must be a root
between the last two points and the result is then calculated by doing a linear inter-
polation of the points to extract the approximate value of the root. The success of
this method depends on guessing an initial value that is close enough to the actual
root and choosing a step size Δx that is small enough to avoid skipping over roots.
The outline of the linear incremental method algorithm is shown below.
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• Pick a starting point xn and a step size Δx such that the next point can be found
by simply adding Δx to xn as shown here: xn+1 = xn +Δx. Use a positive Δx if
you want to search in the positive +x direction, and a negative Δx if you want
to search in the negative −x direction.

• Using xn+1 = xn + Δx, calculate f (xn) and f (xn+1) = f (xn + Δx).

• If f (xn) f (xn+1) < 0, indicating that the sign of f (x) has changed while step-
ping from xn to xn+1, then there must be a root of f (x) in the interval (xn,xn+1).
The solution x is then approximated by a linear interpolation

x = xn+1 −
f (xn+1)Δx

f (xn+1)− f (xn+1 −Δx)

• If f (xn) f (xn+1) > 0, then the sign of f (xn) did not change in stepping from xn

to xn+1. As a result, calculate the location of the next point: xn+1 = xn + Δx
and repeat the process.

Unfortunately, the incremental search method has some important drawbacks to keep
in mind:

• It only finds real-valued roots of f (x). It cannot find complex roots of polyno-
mials.

• It only finds roots where f (x) crosses the x axis. It cannot find roots where
f (x) is tangent to the x axis.

• It may be fooled by singularities in f (x), such as in the tangent and cotangent
functions.

• If the step size Δx is too large, it may miss closely-spaced roots by skipping
over them.

In spite of these limitations, the incremental search method is a good method to
get started in learning to handle problems involving nonlinear equations. The code
below shows how one might implement the incremental search method for solving
nonlinear equations in C#.

//Used in all nonlinear root finding examples
public delegate double Function(double x);

//Used in all nonlinear root finding examples
static double F(double x)
{

return x*x*x - 5.0*x + 3.0;
}

public static double LinearIncrementalSearch(Function f, double
xstart, double deltaX, int nMaxInc)

{
double x = xstart;
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double fstart = f(xstart);
double fx = fstart;
double fProd = 0;
for (int i = 0; i < nMaxInc; i++)
{

x = xstart + i * deltaX;
fx = f(x);
fProd = fstart * fx;
if (fProd < 0)

break;
}
if (fProd > 0)

throw new Exception("Solution not found!");
else
{

return x = x - (deltaX*fx)/(fx - f(x-deltaX));
}

}

static void Main(string[] args)
{

Console.WriteLine("\nTesting Testing Linear Incremental Method\n");
double deltaX = 0.01;
int n = 500;
double x = -4.0;
for (int i = 1; i <= 3; i++)
{

x = LinearIncrementalSearch(F, x, deltaX, n);
Console.WriteLine("\nSolution " + i.ToString() + " = " + x.

ToString());
Console.WriteLine("Solution confirmation: f(x) = " + F(x).

ToString());
}
Console.ReadLine();

}

OUTPUT:
Testing Linear Incremental Method
Solution 1 = -2.49085929901792
Solution confirmation: f(x) = 5.87591228651263E-05
Solution 2 = 0.656630398082894
Solution confirmation: f(x) = -3.69431091167272E-05
Solution 3 = 1.83422345770804
Solution confirmation: f(x) = -0.000100472251910233

9.3 Bisection Method

Suppose f (x) is a continuous function and that we want to solve the equation f (x) =
0. The bisection method starts by selecting two points a and b such that f (a) and
f (b) have opposite signs so that f (a) f (b) < 0. By the intermediate value theorem, if
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f (a) and f (b) have opposite signs then f (x) must have at least one root in the inter-
val [a,b]. If we then divide the interval [a,b] in half, we end up with two possibilities.
Either the interval [a,(a+b)/2] has opposite signs: f (a) f ((a+b)/2) < 0, or the in-
terval [(a+b)/2,b] has opposite signs: f ((a+b)/2) f (b) < 0. If both intervals have
opposite signs, then the initial interval chosen was too big and we need to go back
to the beginning of this process and select a smaller interval closer to the location
where there might be a root. The bisection algorithm is then applied recursively to
each new sub-interval where the sign change occurs until a solution is found up to
the desired accuracy or, as it is sometimes called, a tolerance factor is reached.

If we let an and bn be the endpoints at the n-th iteration such that a1 = a and b1 = b
and let rn be the n-th approximate solution then the number of iterations n that is
required to obtain an error smaller than some tolerance factor ε can be estimated by
noting that

bn −an =
b−a

2(n−1)

and that rn is defined by

rn =
an + bn

2
In order for the error to be < ε ,

|rn − r| ≤ (bn −an)
2

=
b−a

2n < ε.

Taking the natural logarithm of both sides then gives

−n ln2 < lnε − ln(b−a)

from which we can solve for n

n >
ln(b−a)− lnε

ln2

The code below shows how one might implement the bisection method for solving
nonlinear equations in C#.

public static double Bisection(Function f, double a, double b, double
epsilon)

{
double x1 = a; double x2 = b;
double fb = f(b);
while (Math.Abs(x2-x1) > epsilon)
{

double midpt = 0.5*(x1+x2);
if (fb*f(midpt) > 0)

x2 = midpt;
else

x1 = midpt;
}
return x2-(x2-x1)*f(x2)/(f(x2)-f(x1));

}
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static void Main(string[] args)
{

Console.WriteLine("\n\n Testing Bisection Method\n");
x = Bisection(F, 1.0, 2.0, 0.0001);
Console.WriteLine("Solution from bisection method:"+x.ToString());
Console.WriteLine("Solution confirmation:f(x) ="+F(x).ToString());
Console.ReadLine();

}

OUTPUT:
Testing Bisection Method
Solution from the bisection method: 1.83422345770804
Solution confirmation: f(x) = -3.74249431445151E-09

9.4 The Secant Method

To improve the slow convergence of the bisection method, the secant method as-
sumes that the function is approximately linear in the local region of interest and
uses the zero-crossing of the line connecting the limits of the interval as the new
reference point. The next iteration starts from evaluating the function at the new ref-
erence point which is then used to form another line. This process is repeated until
the root is found. Note that the secant method retains only the most recent estimate,
and so the root does not necessarily remain bracketed. Since the secant method does
not always bracket the root, the algorithm may not converge for functions that are not
sufficiently smooth. The recurrence relation for the secant method can be derived as
follows.

Given xn−1 and xn, we construct the line through the points (xn−1, f (xn−1)) and
(xn, f (xn)). Note that this line is a secant or chord of the graph of the function f (x).
In point-slope form, the secant line can be defined as

y− f (xn) =
f (xn)− f (xn−1)

xn − xn−1
(x− xn)

We now choose xn+1 to be the root of this line. Then the equation above can be
written as

f (xn)+
f (xn)− f (xn−1)

xn − xn−1
(xn+1 − xn) = 0.

Solving this last equation for xn+1 then gives the recurrence relation for the secant
method

xn+1 = xn − f (xn)
xn − xn−1

f (xn)− f (xn−1)
The code below shows how one might implement the secant method for solving
nonlinear equations in C#.
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public static double SecantMethod(Function f, double a, double b,
double epsilon)

{
double x1 = a;
double x2 = b;
double fb = f(b);
while (Math.Abs(f(x2)) > epsilon)
{

double mpoint = x2-(x2-x1)*fb/(fb-f(x1));
x1 = x2;
x2 = mpoint;
fb = f(x2);

}
return x2;

}

static void Main(string[] args)
{

Console.WriteLine("\n\n Testing Secant Method\n");
x = SecantMethod(F, 1.0, 1.5, 0.0001);
Console.WriteLine("Solution from the secant method:"+x.ToString());
Console.WriteLine("Solution confirmation:f(x) = "+F(x).ToString());
Console.ReadLine();

}

OUTPUT:
Testing Secant Method
Solution from the secant method: 1.83424298458486
Solution confirmation: f(x) = -1.01728863288741E-06

9.5 False Positioning Method

Similar to the secant method, the false position method also uses a straight line to
approximate the function f (x) in the local region of interest. The only difference
between these two methods is that the secant method keeps the most recent two
estimates, while the false position method retains the most recent estimate and the
next recent one which has an opposite sign in the function value.

Like the bisection method, the false position method starts with two points a0 and
b0 such that f (a0) and f (b0) are of opposite signs, which implies by the intermediate
value theorem that the function f (x) has a root in the interval [a0,b0]. The method
proceeds by producing a sequence of shrinking intervals [an,bn] that all contain a
root of f (x). The recurrence relation for the false positioning method can therefore
be calculated as follows. Given an and bn, we construct the line through the points
(an, f (an)) and (bn, f (bn)). Note that this line is a secant or chord of the graph of the
function f (x). In point-slope form, it can be defined as

y− f (bn) =
f (bn)− f (an)

bn −an
(x−bn)

© 2010 by Taylor and Francis Group, LLC



278 Numerical Methods, Algorithms and Tools in C#

We now choose cn to be the root of this line so that x = cn when y = 0 and so the
equation above reduces to

f (bn)+
f (bn)− f (an)

bn −an
(cn −bn) = 0

Solving this equation for cn gives the required recurrence relation

cn =
f (bn)an − f (an)bn

f (bn)− f (an)

Note that cn is the root of the secant line through (an, f (an)) and (bn, f (bn)). If f (an)
and f (cn) have the same sign, then we set an+1 = cn and bn+1 = bn, otherwise we
set an+1 = an and bn+1 = cn. This process is repeated until the root is approximated
sufficiently well. The above formula is also used in the secant method, but the secant
method always retains the last two computed points, while the false position method
retains two points which certainly bracket a root. On the other hand, the only differ-
ence between the false positioning method and the bisection method is that the latter
uses cn = (an + bn)/2. The code below shows how one might implement the false
positioning method for solving nonlinear equations in C#.

public static double FalsePositionMethod(Function f, double a, double
b, double epsilon)

{
double x1 = a;
double x2 = b;
double fb = f(b);
while (Math.Abs(x2 - x1) > epsilon)
{

double xpoint = x2-(x2-x1)*f(x2)/(f(x2)-f(x1));
if (fb * f(xpoint) > 0)

x2 = xpoint;
else

x1 = xpoint;
if (Math.Abs(f(xpoint)) < epsilon)

break;
}
return x2-(x2-x1)*f(x2)/(f(x2)-f(x1));

}

static void Main(string[] args)
{

Console.WriteLine("\n\n Testing False Position Method\n");
x = FalsePositionMethod(F, 1.0, 2.0, 0.0001);
Console.WriteLine("Solution from false pos. method:"+x.ToString());
Console.WriteLine("Solution confirmation: f(x)="+F(x).ToString());
Console.ReadLine();

}

OUTPUT:
False Position Method
Solution from the false position method: 1.83424212554915
Solution confirmation: f(x) =-5.39264722032584E-06
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9.6 Fixed Point Iteration

By definition, a fixed point of a function is a point that is mapped to itself by the
function. In other words, x is said to be a fixed point of the function f (x) if and only
if f (x) = x. A fixed point is therefore not the same thing as a root of the equation
f (x) = 0 but rather, it is a solution of the equation f (x) = x. Geometrically, the fixed
points of a function f (x) are the points of intersection of the curve y = f (x) with the
line y = x.

Iteration is an important concept in computer science. As the name suggests,
iteration is a process that repeats itself until an answer is achieved to the desired
degree of accuracy or tolerance.

The fixed point iteration method is therefore a technique for calculating roots by
computing fixed points of iterated functions.

This method can be applied towards finding roots of nonlinear functions as follow.
First, take your nonlinear equation f (x) = 0 and convert it algebraically into the form
x = g(x). Then starting with an initial guess of x0, iterate through the equation

xi+1 = g(xi) where n = 0,1,2, . . .

until some convergence criterion is met. Typical convergence criteria can include
fixing apriori the maximum total number of iterations that is to be performed or
testing the condition |xi+1 −g(xi)| ≤ ε at each iteration until it meets some tolerance
limit ε that was also set apriori. The code below shows how one might implement
the fixed point iteration method for solving nonlinear equations in C#.

static double Ffixpt(double x)
{

//Setup for test case: xˆ2 + 2x - 35 = 0
//Test function = sqrt(35 - 2x)
return Math.Sqrt(35.0-2.0*x);

}

public static double FixedPointMethod(Function f, double x0, double
epsilon, int nMaxIter)

{
double x1 = x0; double x2 = x0;
double currEpsilon = 0.0;
for (int i = 0; i < nMaxIter; i++)
{

x2 = f(x1);
currEpsilon = Math.Abs(x1 - x2);
x1 = x2;
if (currEpsilon < epsilon)

break;
}
if (currEpsilon > epsilon)
{ throw new Exception("Solution not found!"); }
return x1;

}
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static void Main(string[] args)
{
Console.WriteLine("\n\n Testing Fixed Point Method\n");
double tol = 0.0001;
n = 10000;
double x0 = 1.6;
x = FixedPointMethod(Ffixpt, x0, tol, n);
Console.WriteLine("Solution from fixed point method:"+x.ToString());
Console.WriteLine("Expected solution = 5.00");
Console.ReadLine();

}

OUTPUT:
Testing Fixed Point Method
Solution from the fixed point method: 4.99999172934641
Expected solution = 5.00

9.7 Newton-Raphson Method

Newton’s method, also known as the Newton-Raphson method, is a root-finding al-
gorithm that uses the first few terms of the Taylor series of a function f (x) in the
vicinity of a suspected root. This method can converge remarkably quickly, espe-
cially if the iteration begins sufficiently close to the actual root. Unfortunately, when
iteration begins far from the actual root, Newton’s method can also easily lead one
astray with little warning. Successful implementation of this method therefore re-
quires the user to first make a reasonably good initial estimate of the actual root.

Newton’s method can be easily derived by using a Taylor series to expand f (x)
about the point x = x0 + ε as shown below.

f (x0 + ε) = f (x0)+ f ′(x0)ε +
1

2
f ′′(x0)ε2 + . . .

Keeping terms only up to first order results in the following approximation.

f (x0 + ε) ≈ f (x0)+ f ′(x0)ε

This expression can be used to estimate the amount of offset ε needed to land closer
to the root starting from an initial guess x0. Setting f (x0 + ε) = 0 and solving the
equation above for ε = ε0 gives

ε0 = − f (x0)
f ′(x0)

which is the first-order adjustment to the root’s position. By letting x1 = x0 + ε0,
calculating a new ε1, and so on, the process can be repeated until it converges to a
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fixed point, which is precisely a root, using

εn = − f (xn)
f ′(xn)

Unfortunately, this procedure can be unstable near a horizontal asymptote or a local
extremum. However, with a good initial choice of the root’s suspected position, the
algorithm can be applied iteratively to obtain

xn+1 = xn −
f (xn)
f ′(xn)

where n = 1,2,3, . . .

The error εn+1 after the (n + 1)st iteration can be shown to be approximately given
by

εn+1 = εn +(xn+1 − xn) = εn −
f (xn)
f ′(xn)

≈− f ′′(xn−1)
2 f ′(xn−1)

ε2
n

Therefore, when the Newton method converges, it does so quadratically. The code
below shows how one might implement the Newton-Raphson method for solving
nonlinear equations in C#.

static double F1(double x)
{ return Math.Sin(x) - x*x*x*x; }
static double F1prime(double x)
{ return Math.Cos(x) - 4.0*x*x*x; }

public static double NewtonRaphsonMethod(Function f, Function fprime,
double x0, double epsilon)

{
double f0 = f(x0);
double x = x0;
while (Math.Abs(f(x)) > epsilon)
{

x -= f0 / fprime(x);
f0 = f(x);

}
return x;

}

static void Main(string[] args)
{

Console.WriteLine("\n\nTesting Testing Newton-Raphson Method\n");
double x = NewtonRaphsonMethod(F1, F1prime, 1.0, 0.0001);
Console.WriteLine("Solution Newton-Raphson method:"+x.ToString());
Console.WriteLine("Solution confirmation:f(x)="+F1(x).ToString());
Console.ReadLine();

}

OUTPUT: Testing Newton-Raphson Method
Solution from the Newton-Raphson method: 0.949616692330961
Solution confirmation: f(x) = -1.02824210257424E-08
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Random Numbers

10.1 Introduction

Random numbers, sometimes also referred to as random variables, are simply num-
bers chosen by chance so that there are no correlations of any kind between suc-
cessive values. As logical and deterministic machines, computers are unable to
generate pure random numbers but must instead rely on some kind of mathemat-
ical algorithm which only gives the illusion of generating random numbers. Al-
though some algorithms for generating random numbers have a very large periodic-
ity, they are all flawed to some extent and eventually will start repeating their output
sequence all over again. Consequently, computer-generated random numbers are
sometimes called pseudo-random numbers to distinguish them from pure random
numbers which are usually extracted as bit sequences from the output of natural
unpredictable physical processes such as radioactive decay or lightning strikes. A
pure random variable can therefore be thought of as a function mapping the sample
space of a random process to the real numbers. On the other hand, pseudo-random
numbers are generated by computers through the use of special algorithms called
pseudo-random number generators, often abbreviated as PRNG or RNG.

Traditionally, the term random numbers applies to pseudo-random numbers that
arise from a uniform distribution whereas random variates applies to pseudo-random
numbers generated from some other distribution. However, Gentle [49] points out
that these two terms along with the additional term random deviates can all be used
interchangeably. Regardless of the terminology that is ultimately used, high-quality
random numbers are very important in a wide range of mathematical, statistical, en-
gineering and scientific applications. For example, computer simulation of physical
processes use random numbers to study system behavior under different scenarios in
a virtual environment that mimics real-world conditions. Such studies often lead to
significant improvements and optimization of system performance. Reliable sources
of random numbers with statistical properties indistinguishable from true random
numbers are therefore a fundamental necessity for successfully carrying out such
tasks. In addition, computational resources for obtaining true random numbers from
naturally occurring physical processes will also be provided later on in this chapter.

A random number generator is a computational or physical device designed to
generate a sequence of numbers or symbols that lack any visible or detectable pat-
tern and thus appear to be truly random in nature. Due to a very high demand for
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random numbers, many different methods for generating them have appeared and
these methods may vary greatly as to how unpredictable or statistically random they
are and how quickly they can be produced. Most programming languages, including
C#, have a built-in pseudo-random number generator, often abbreviated as RNG or
PRNG, which is good enough for low-keyed relatively simple everyday applications.
However, such RNGs are often inadequate for use in more serious applications such
as cryptography or Monte Carlo simulations. This is because all the algorithms that
have been developed for producing random numbers will eventually start repeating
themselves after a certain amount of cycles and thus will produce a noticeable nu-
merical pattern. Although a detailed discussion of what makes a RNG really good is
beyond the scope of this chapter, it suffices to say that a good RNG should at least
satisfy the following criteria:

• Good distribution. The points should be distributed according to what one
would expect from a truly random distribution. Furthermore a pseudo-random
number generator should not introduce artificial correlations between succes-
sively generated points.

• Long period. Both pseudo-random and quasi-random generators always have a
period, after which they begin to generate the same sequence of numbers over
again. To avoid undesired correlations one should in any practical calculation
not come anywhere near exhausting the period.

• Repeatability. For testing and development, it may be necessary to repeat
a calculation with exactly the same random numbers as in the previous run.
Furthermore the generator should allow the possibility to repeat a part of a job
without doing the whole thing. This requires the ability to store the state of a
generator.

• Long disjoint subsequences. For large problems it is extremely convenient
to be able to perform independent subsimulations whose results can later be
combined assuming statistical independence.

• Portability. This means not only that the code should be portable but that it
should generate exactly the same sequence of numbers on different machines.

• Efficiency. The generation of the pseudo-random numbers should not be too
time-consuming. Almost all generators can be implemented in a reasonably
efficient way.

10.2 The C# Built-In Random Number Generator

The .NET Framework has implemented a uniform built-in pseudo-random number
generator in the System.Random() class. These pseudo-random numbers, from now
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on referred to simply as random numbers, are chosen with equal probability from
a finite set of allowed int32 values. The current implementation of the Random()

class is based on Knuth’s subtractive random number generator algorithm [50] which
has an alleged period of about 232. This period is usually considered good enough
for most practical applications but is definitely not recommended for cryptography
or other applications that require a substantial degree of security such as password
generation or encrypted telecommunications.

The random number generator provided by the .NET Framework starts from a seed
value and can be overloaded in two different ways. By default, the parameterless con-
structor of the Random() class uses the computer’s internal system clock to generate
its own seed value whereas the parameterized constructor can accept specific seed
values from within the allowed range of Int32 integers. Because the system clock is
continuously changing in value, using a parameterless constructor will therefore ini-
tiate a different randomized numerical sequence every time it is called up. However,
since the clock has finite resolution, using the parameterless constructor to create
different Random() objects in close succession can create random number genera-
tors that produce identical randomized numerical sequences. This problem can be
avoided by creating one Random() object to generate many random numbers over
time, instead of repeatedly creating several new Random() objects to generate one
random number at a time. However, some of these features of the random number
generator can sometimes be useful. For example, if you want to repeat the same
sequence of numbers, you can set the seed state during instantiation by passing the
same integer value to the constructor.

Once this Random() object has been created we can call the Next() method to
produce a random number. The Next() method can be overloaded in three different
ways. Without any input parameters, the Next() method returns a random number
anywhere from 0 to the maximum value of int32.Max which is 2,147,483,647. The
Next(int32) method returns a nonnegative random number from 0 to the Int32

integer value specified by the single input parameter. Lastly, the Next(Int32,Int32

) method returns a random number from anywhere within the allowed Int32 integer
range specified by the two input parameters.

The Random.NextBytes() method fills the elements of a specified array of bytes
with random bytes selected anywhere from 0 to 255. Therefore, the Random() class
can also be used to populate a byte array with random bytes.

Finally, the Random.NextDouble() method is not overloaded and only returns a
double-precision floating point from the interval [0,1]. However, by properly adjust-
ing the call to the Random.NextDouble() method this way

a + (b - a)*rnd.NextDouble();

where rnd is an object of the Random() class, we can obtain random numbers from
anywhere within the numerical interval specified by [a,b). Some actual examples
are listed below in order to illustrate the implementation of all these ideas.
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static void TestRNG()
{

int seed = 234;
int min = -55;
int max = 25;

Console.WriteLine("Testing 6 random int32 from 0 to int32.MAX");
Random randObj1 = new Random(seed);
for (int j = 0; j < 6; j++)

Console.Write("{0,11} ", randObj1.Next());

Console.WriteLine("Testing 6 random int32 from 0 to 25");
Random randObj2 = new Random(seed);
for (int j = 0; j < 6; j++)

Console.Write("{0,11} ", randObj2.Next(max));

Console.WriteLine("Testing 6 random int32 from -55 to 25");
Random randObj3 = new Random(seed);
for (int j = 0; j < 6; j++)

Console.Write("{0,11} ", randObj3.Next(min, max));

Console.WriteLine("Testing 5 random bytes: 0 to 255");
Random randObj4 = new Random();
Byte[] b = new Byte[10];
randObj4.NextBytes(b);
Console.WriteLine("The Random bytes are: ");
for (int i = 0; i < 10; i++)
{

Console.Write(i);
Console.Write(":");
Console.WriteLine(b[i]);

}

Console.WriteLine("Testing 6 random doubles from 0 to 1");
Random randObj5 = new Random(seed);
for (int j = 0; j < 6; j++)
Console.WriteLine("{0,11} ",randObj5.NextDouble());

Console.WriteLine("Testing 6 random doubles from -55 to 25");
Random randObj6 = new Random(seed);
for (int j = 0; j < 6; j++)
Console.WriteLine("{0,11}",(min+(max-min)*randObj6.NextDouble()));

}

A useful application of the random number generator class is a utility that pertains
to generating passwords that can contain random letters or characters in addition to
random numbers. Since random numbers are generated by default, we must create
a new method that will contain this functionality. The implementation of a random
password generator is given below.

static string CreateRandomPassword(int passwordLength)
{

string allowedChars =
"abcdefghijkmnopqrstuvwxyzABCDEFGHJKLMNOPQRSTUVWXYZ0123456789";
char[] chars = new char[passwordLength];
Random rd = new Random();
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for (int i = 0; i < passwordLength; i++)
{

chars[i] = allowedChars[rd.Next(0,allowedChars.Length)];
}
return new string(chars);

}

static void TestRandomPassword()
{
Console.WriteLine("Testing for generation of random passwords");
for (int i = 0; i < 6; i++)
{

Console.WriteLine("Password {0}={1}",i,CreateRandomPassword(10));
Thread.Sleep(2000);

}
Console.ReadLine();

}

Microsoft also provides an encryption class, called RNGCryptoServiceProvider, for
use in developing secure applications, including allegedly secure random number
generators. However, at the time of this writing there was considerable debate over
the Internet as to the level of security that this class actually is capable of providing.
Since technology advances so rapidly, you might want to double check the current
reports on this topic when you read this to see what the current security level status
of this is really like. In any event, below are two additional examples illustrating the
use of this Microsoft encryption class.

public static void BetterRandomString()
{

// create a stronger hash code using RNGCryptoServiceProvider
byte[] random = new byte[64];
RNGCryptoServiceProvider rng = new RNGCryptoServiceProvider();
// populate with random bytes
rng.GetBytes(random);
// convert random bytes to string
string randomBase64 = Convert.ToBase64String(random);
// display
Console.WriteLine("Random string: {0}\r\n ",randomBase64);

}

public static string CreateRandomEncryptedPassword(int PasswordLen)
{

String allowedChars =
"abcdefghijkmnopqrstuvwxyzABCDEFGHJKLMNOPQRSTUVWXYZ0123456789";
Byte[] randomBytes = new Byte[PasswordLen];
RNGCryptoServiceProvider rng = new RNGCryptoServiceProvider();
rng.GetBytes(randomBytes);
char[] chars = new char[PasswordLen];
int allowedCharCount = allowedChars.Length;
for (int i = 0; i < PasswordLen; i++)
{
chars[i] = allowedChars[(int)randomBytes[i]%allowedCharCount];

}
return new string(chars);

}
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static void TestRandomEncryptedPassword()
{

for (int i = 0; i < 6; i++)
{

Console.WriteLine("Encrypted Password {0} = {1}",
i, CreateRandomEncryptedPassword(10));

Thread.Sleep(2000);
}
Console.ReadLine();

}

By default, the random number methods within the Random() class generate num-
bers with replacement. This means that a particular random number may get gener-
ated repeatedly. If you do not want a set of randomly generated numbers to contain
any duplication of elements, you need to code the process of generating random
numbers accordingly. There are a number of ways to obtain a list of unique random
numbers containing no repetition. For pedagogical reasons, I thought it would be
instructive to present at least three different methods to generate random numbers
having no duplicate values.

In the first and perhaps simplest method, you can just put the values you want
randomized (numbers, strings, objects,. . .) in an array and then shuffle the array by
randomly exchanging the array elements. This procedure, using the Knuth-Fisher-
Yates shuffle algorithm, will produce a randomized list of unique numerical values
as illustrated in the example below.

static int[] UniqueRandom1(int max)
{

Random rand = new Random();
int[] array = new int[max];

// Initialize the array to integers from 0 to max
for (int i = 0; i < array.Length; i++)

{ array[i] = i; }

for (int i = array.Length - 1; i > 0; i--)
{

int randomPosition = rand.Next(i+1);
int temp = array[i];
array[i] = array[randomPosition];
array[randomPosition] = temp;

}
return array;

}

static void TestUniqueRandom1()
{

int size = 15;
int[] myData = UniqueRandom1(size);
Console.WriteLine("Testing unique random numbers version 1\n");
for (int i = 0; i < myData.Length; i++)

{ Console.WriteLine("myData[{0}] = {1}", i, myData[i]); }
}
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As an alternate method for obtaining a list of unique random numbers you can also
start by first creating an ArrayList object to hold the numbers. Next, generate a ran-
dom number within range of the desired values and add this number to the list. Then
loop repeatedly generating another random numbers and checking whether each of
them is already contained in the list. If the number is not found in the list, then add
that number to the list. Otherwise, if the number is found in the list then ignore it
and get another random number. Repeat this process until the list has been com-
pletely filled. The random numbers left in the list should all be unique without any
repetition. The code below implements this idea.

static ArrayList UniqueRandom2(int max)
{

// Create an ArrayList object that will hold the numbers
ArrayList lstNumbers = new ArrayList();
// Create an object from the Random() class that
// will be used to generate random numbers
Random rndNumber = new Random();

// Get a random number between 0 and the max requested value
int number = rndNumber.Next(0, max);
// Add this first random number to the list
lstNumbers.Add(number);
// Setup a number counter to keep track of the
// numbers being added to the list
int count = 0;
do // Repeatedly...
{

// generate a random number between 0 and the max
number = rndNumber.Next(0, max);

// If the newly generated number in not yet in the list...
if (!lstNumbers.Contains(number))
{
lstNumbers.Add(number); // ... add it
count++; // and increase the counter

}
} while (count <= max);
// Once the list is built, return it
return lstNumbers;

}

static void TestUniqueRandom2()
{

const int Total = 15;
ArrayList lstNumbers = UniqueRandom2(Total);

for (int i = 0; i < lstNumbers.Count; i++)
Console.WriteLine("x[{0}] = {1}", i, lstNumbers[i]);

Console.ReadLine();
}

As a final, but perhaps much subtler, example of a method for obtaining a list of
unique random numbers consider the following algorithm and its subsequent imple-
mentation shown below. First, a generic list is created and loaded with the values
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you want randomized (numbers, strings, objects,. . .). Individual elements from this
list are then randomly selected and added to another list. After an element has been
selected and added to the second list, it is removed from the original list so that it
cannot be selected again. This process is repeated until there are no more elements
to select from in the original list. An implementation of this algorithm in C# is given
below.

public static List<int> GetUniqueRandomList(int size)
{

List<int> list = new List<int>();
Random randomGenerator = new Random();

List<int> range = new List<int>();
for (int i = 0; i < size; i++)

range.Add(i);

while (range.Count > 0)
{

int item = range[randomGenerator.Next(range.Count)];
list.Add(item);
range.Remove(item);

}
return list;

}

static void TestUniqueRandom3()
{

List<int> iList = new List<int>();
iList = GetUniqueRandomList(15);

foreach (int i in iList)
{

Console.WriteLine(i);
}
Console.ReadLine();

}

10.3 Other Random Number Generators

There are many different types of random number generators [51] but the Linear
Congruential Generator (LCG) represents one of the oldest and best-known pseu-
dorandom number generator algorithms [50]. The linear congruential generator is
defined by the recurrence relation:

Xn+1 = (aXn + c) mod m

where Xn is the sequence of pseudorandom values, m > 0 is called the modulus, a
where 0 < a < m is called the multiplier, c where 0 ≤ c < m is called the increment,
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and X0 where 0 ≤ X0 < m is called the seed or start value. Together these values
specify the LCG. The period of the LCG is at most m, and largely depends on the
value chosen for the other variables. The LCG will have a full period if and only if
c and m are relatively prime, a− 1 is divisible by all prime factors of m and a− 1
is a multiple of 4 if m is a multiple of 4. While capable of producing decent pseu-
dorandom numbers, LCGs are extremely sensitive to the choice of the coefficients c,
m, and a. The most efficient linear congruent generators, including the one built into
Visual C#, reportedly have an m equal to a power of 2, most often around m = 232.

Perhaps the most famous and controversial one of all the random number gener-
ators is the Mersenne Twister published in 1998 by Matsumoto and Nishimura [52,
53], which has a reportedly proven period of 219937−1. In practice, however, there is
little reason to use anything larger as most applications do not require 219937 unique
combinations (219937 ≈ 4.3×106001). Nevertheless, the Mersenne Twister algorithm
has received some criticism in the computer science field. Critics claim that while
the Mersenne Twister is good at generating random numbers, it is not very elegant
and is overly complex to implement. As an alternative to the Mersenne Twister, crit-
ics have proposed a simpler complementary multiply-with-carry generator [54] with
an alleged period of 1033000 which claims to be significantly faster and maintains
better or equal randomness. In any event, a C# implementation of the Mersenne
Twister random number generator algorithm is given below along with sample code
to demonstrate how to use it. Those readers wishing to learn more about how this
algorithm works are referred to the original paper [52]. Those readers looking for an
alternative to either the Visual C# or the Mersenne Twister random number gener-
ators are referred to another website [55] that maintains a very good list of random
number generators including code in C/C++ and Fortran that can be downloaded
directly to your computer.

public class MersenneTwister
{

// Class MersenneTwister generates random numbers
// from a uniform distribution using the Mersenne
// Twister algorithm.
private const int N = 624;
private const int M = 397;
private const uint MATRIX_A = 0x9908b0dfU;
private const uint UPPER_MASK = 0x80000000U;
private const uint LOWER_MASK = 0x7fffffffU;
private const int MAX_RAND_INT = 0x7fffffff;
private uint[] mag01 = {0x0U, MATRIX_A};
private uint[] mt = new uint[N];
private int mti = N+1;

public MersenneTwister()
{ init_genrand( (uint)DateTime.Now.Millisecond); }

public MersenneTwister( int seed )
{
init_genrand( (uint)seed );

}
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public MersenneTwister( int[] init )
{
uint[] initArray = new uint[init.Length];
for ( int i = 0; i < init.Length; ++i )

initArray[i] = (uint)init[i];
init_by_array( initArray, (uint)initArray.Length);

}

public static int MaxRandomInt
{ get { return 0x7fffffff; } }

public int Next()
{ return genrand_int31(); }

public int Next( int maxValue )
{ return Next( 0, maxValue ); }

public int Next( int minValue, int maxValue )
{
if ( minValue > maxValue )
{

int tmp = maxValue;
maxValue = minValue;
minValue = tmp;

}
return (int)(Math.Floor((maxValue-minValue+1)*genrand_real1()+

minValue));
}

public float NextFloat()
{ return (float) genrand_real2(); }

public float NextFloat( bool includeOne )
{
if ( includeOne )
{

return (float) genrand_real1();
}
return (float) genrand_real2();

}

public float NextFloatPositive()
{ return (float) genrand_real3(); }

public double NextDouble()
{ return genrand_real2(); }

public double NextDouble( bool includeOne )
{
if ( includeOne )
{

return genrand_real1();
}
return genrand_real2();

}
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public double NextDoublePositive()
{ return genrand_real3(); }

public double Next53BitRes()
{ return genrand_res53(); }

public void Initialize()
{ init_genrand((uint)DateTime.Now.Millisecond); }

public void Initialize( int seed )
{ init_genrand( (uint)seed ); }

public void Initialize( int[] init )
{
uint[] initArray = new uint[init.Length];
for ( int i = 0; i < init.Length; ++i )

initArray[i] = (uint)init[i];
init_by_array( initArray, (uint)initArray.Length );

}

private void init_genrand( uint s)
{
mt[0]= s & 0xffffffffU;
for (mti=1; mti<N; mti++)
{

mt[mti] =
(uint)(1812433253U*(mt[mti-1]ˆ(mt[mti-1]>>30))+mti);

mt[mti] &= 0xffffffffU;
}

}

private void init_by_array(uint[] init_key, uint key_length)
{
int i, j, k;
init_genrand(19650218U);
i=1; j=0;
k = (int)(N>key_length ? N : key_length);
for (; k>0; k--)
{

mt[i] = (uint)((uint)(mt[i]ˆ((mt[i-1]ˆ(mt[i-1]>>30))*1664525U
))+init_key[j]+j);

mt[i] &= 0xffffffffU;
i++; j++;
if (i>=N) { mt[0] = mt[N-1]; i=1; }
if (j>=key_length) j=0;

}
for (k=N-1; k>0; k--)
{

mt[i] = (uint)((uint)(mt[i] ˆ ((mt[i-1] ˆ (mt[i-1] >> 30)) *
1566083941U))- i);

mt[i] &= 0xffffffffU;
i++;
if (i>=N) { mt[0] = mt[N-1]; i=1; }

}
mt[0] = 0x80000000U;

}
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uint genrand_int32()
{
uint y;
if (mti >= N)
{

int kk;
if (mti == N+1)

init_genrand(5489U);
for (kk=0;kk<N-M;kk++)
{

y = (mt[kk]&UPPER_MASK)|(mt[kk+1]&LOWER_MASK);
mt[kk] = mt[kk+M] ˆ (y >> 1) ˆ mag01[y & 0x1U];

}
for (;kk<N-1;kk++)
{

y = (mt[kk]&UPPER_MASK)|(mt[kk+1]&LOWER_MASK);
mt[kk] = mt[kk+(M-N)] ˆ (y >> 1) ˆ mag01[y & 0x1U];

}
y = (mt[N-1]&UPPER_MASK)|(mt[0]&LOWER_MASK);
mt[N-1] = mt[M-1] ˆ (y >> 1) ˆ mag01[y & 0x1U];
mti = 0;

}
y = mt[mti++];
y ˆ= (y >> 11);
y ˆ= (y << 7) & 0x9d2c5680U;
y ˆ= (y << 15) & 0xefc60000U;
y ˆ= (y >> 18);
return y;

}

private int genrand_int31()
{ return (int)(genrand_int32()>>1); }

double genrand_real1()
{ return genrand_int32()*(1.0/4294967295.0); }

double genrand_real2()
{ return genrand_int32()*(1.0/4294967296.0); }

double genrand_real3()
{return (((double)genrand_int32())+0.5)*(1.0/4294967296.0);}

double genrand_res53()
{
uint a=genrand_int32()>>5, b=genrand_int32()>>6;
return(a*67108864.0+b)*(1.0/9007199254740992.0);

}
}

static void TestMersenneTwister()
{

MersenneTwister randGen = new MersenneTwister();
Console.WriteLine( "100 uniform random integers in [0,{0}]:",

MersenneTwister.MaxRandomInt);
int i;
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for (i = 0; i < 100; ++i)
{

Console.Write("{0} ",randGen.Next());
if ( i%5 == 4 ) Console.WriteLine("");

}

Console.WriteLine("100 uniform random doubles in [0,1]:");
for ( i = 0; i < 100; ++i )
{

Console.Write("{0} ",randGen.NextDouble().ToString("F8"));
if ( i%5 == 4 ) Console.WriteLine("");

}
Console.WriteLine("Press ENTER to quit");
Console.ReadLine();

}

10.4 True Random Number Generators

As we have seen, C# comes with its own built-in pseudo-random number generator
that has an alleged period of about 232 which is adequate for most practical but
non-critically secure applications. More recently, however, far more robust pseudo-
random number generators have been developed. The most prominent among these
are perhaps the Mersienne Twister [52, 53] with an alleged period of 219937 −1 and
the multiply-with-carry generator [54] with an reported period of about 1033000. With
such huge periods, these pseudo-random number generators have been very useful
in a wide range of advanced applications, such as encrypted telecommunications,
where security issues are a major concern.

True random numbers, however, can only be obtained from observing and record-
ing naturally occurring random physical phenomena. As a result, a few websites
with links and interfaces to certain natural events have appeared on the Internet and
can therefore generate true random numbers for us. At the time of this writing, I have
compiled a list of some of these websites below and included a brief description of
the nature with which they can collect true random numbers from naturally occurring
physical events.

• Fourmilab is located in Switzerland [56] and offers free genuine random num-
bers by timing successive pairs of radioactive decays detected by a Geiger-
Müller tube interfaced to a computer. Because of the radioactive nature of
these random numbers, they call them Hot Bits. Since the HotBits generation
hardware produces data at a modest rate of about 100 bytes per second, re-
quests are filled from an inventory of pre-built HotBits. You order up your
serving of HotBits by filling out a request form on their webpage and speci-
fying how many random bytes you want and in which format you would like
them delivered. Your request is relayed to the HotBits server, which flashes
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the random bytes back to you over the Web. An alternative to downloading
HotBits for later use is also provided by their downloadable software package
in Java called randomX. A program developed with randomX can select from
a variety of pseudo-random sequence generators or genuine random data from
HotBits, obtained on demand across the Internet.

• LavaRnd [57] is located in Sunnyvale, California U.S.A. and offers a random
number generator that works by measuring noise from a CCD camera such as
an inexpensive webcam. The CCD is enclosed in a light-proof container, and
operated at a high gain. The resulting images are not perfectly black and in-
stead contain some noise. The LavaRnd system takes noisy data from the CCD
and runs it through an algorithm called the Digital Blender to produce data that
is more uniformly random and which you can download free of charge directly
from their website.

• Araneus Information Systems [58] is a company located in Finland that sells
a random number generating electronic device, called Alea I, that fits directly
into the USB port of your computer. The Alea I uses a reverse biased semi-
conductor junction to generate wide-band Gaussian white noise. This noise
is amplified and digitized using an analog-to-digital converter. The raw out-
put bits from the A/D converter are then further processed by an embedded
microprocessor to combine the entropy from multiple samples into each final
random bit and remove any bias caused by imperfections in the noise source
and A/D converter.

• Quantis [59] is a physical random number generator that was developed at the
University of Geneva, Switzerland. This device works by exploiting the ran-
domness of an elementary quantum optics process. Photons, better known as
light particles, are sent one by one onto a semi-transparent mirror and detected.
The exclusive events, reflection and transmission, are associated to either 0 or
1 bit values. Users can download batches of random numbers directly from
their website. The operation of Quantis is continuously monitored to ensure
immediate detection of a failure and disabling of the random bit stream.

• Located in Zagreb, Croatia, the Quantum Random Bit Generator [60] is a fast
non-deterministic random number, actually bit, generator whose randomness
relies on intrinsic randomness of the quantum physical process of photonic
emission in semiconductors and subsequent detection by photoelectric effect.
In this process photons are detected at random, one by one independently of
each other. Timing information of detected photons is used to generate random
binary digits or bits which, of course, can then easily be converted to numbers.
The unique feature of this method is that it uses only one photon detector to
produce both zeros and ones which results in a very small bias and high immu-
nity to components variation and aging. Furthermore, detection of individual
photons is made by a photo-multiplier tube (PMT). Compared to solid state
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photon detectors the PMT’s have drastically superior signal to noise perfor-
mance and much lower probability generating after-pulses which could be a
source of unwanted correlations.

• RANDOM.ORG [61], located in Dublin, Ireland, offers true random numbers
free of charge to anyone on the Internet. The randomness comes from measur-
ing atmospheric noise. Because of the high demand for this service, they keep
track of your IP address and users are limited to download only a certain num-
ber of random bits per month. However, more bits can be purchased for cash
if so desired. This organization has very graciously provided the public with a
nice detailed information page to guide their clients on how to write computer
programs to interface directly to their server through Hyper-Text Transfer Pro-
tocol (HTTP). There is also the HTTP client archive, which contains clients
that other people have written. An example of a C# HTTP interface applica-
tion to request a download of some true random numbers from their website is
given below.

// Add these extra Microsoft .NET Framework Class
// Library namespaces to the top of your program page

using System.IO;
using System.Net;

//Returns an array of random integers
//between two numbers, both inclusive

public static int[] GetRandomInts(int min,int max,int trials)
{
//Build the url string to www.random.org
string url="http://www.random.org/integers/?num="+trials.ToString();
url += "&min=" + min.ToString();
url += "&max=" + max.ToString();
url += "&col=1&base=10&format=html&rnd=new";

string data = DownloadData(url);

if (data != string.Empty)
{
//Parse the data
string startMarker="<pre class="+’"’+"data"+’"’+">";
int j = data.IndexOf(startMarker);
if (j != -1)
{

int k = data.IndexOf("</pre>", j);
if (k != -1)
{
string intString =
data.Substring(j+startMarker.Length,k-j-startMarker.Length);
intString = intString.Trim();

//Read each line
List<int> integers = new List<int>();
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StringReader readLines = new StringReader(intString);
while (readLines.Peek() != -1)
{

integers.Add(int.Parse(readLines.ReadLine()));
}
return integers.ToArray();
}

}
}
return new int[] { -1 };

}

//Connects to URL to download data
private static string DownloadData(string url)
{

try
{

//Get a data stream from the url
WebRequest req = WebRequest.Create(url);
WebResponse response = req.GetResponse();
Stream stream = response.GetResponseStream();

//Download in chuncks
byte[] buffer = new byte[1024];

//Get Total Size
int dataLength = (int)response.ContentLength;

//Download to memory
//Note: adjust the streams here to download
//directly to the hard drive
MemoryStream memStream = new MemoryStream();
while (true)
{
//Try to read the data
int bytesRead = stream.Read(buffer,0,buffer.Length);

if (bytesRead == 0) break;
else memStream.Write(buffer,0,bytesRead);

}

//Convert the downloaded stream to a byte array
string downloadedData =
System.Text.ASCIIEncoding.ASCII.GetString(memStream.ToArray());

//Clean up
stream.Close();
memStream.Close();

return downloadedData;
}
catch (Exception)
{

return string.Empty;
}

}
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//Sample driver program for testing purposes only
static void Main(string[] args)
{

//Sets up amount of random numbers to download
int NToDownload = 10;
int min = 10; //Sets up the range of values
int max = 100;
string numberArray = "";
Console.WriteLine("\nAttempting to download true random numbers

from RANDOM.ORG server. Please wait..");
//Download numbers into integer array
int[] randomNumbers = GetRandomInts(min, max, NToDownload);
foreach (int rnd in randomNumbers)
{

numberArray += rnd.ToString() + Environment.NewLine;
}
Console.WriteLine(numberArray);
Console.WriteLine("\nDone!");
Console.ReadLine();

}

10.5 Random Variate Generation Methods

Studies have shown that a significant number of naturally occurring physical phe-
nomena tend to follow some particular type of probability distribution [49]. For
example, nuclear decay of atoms can be modeled using the Poisson distribution.
Consequently, in order to effectively model the behavior of many physical systems
in the laboratory, it would be highly desirable to program computers to generate
random variates according to specific probability distributions. Although there are
many different methods for carrying out such calculations [49], some may be more
computationally efficient than others. Regardless of the method chosen, it would be
pedagogically prudent to start this section by first reviewing a few useful and well
known fundamental concepts from the theory of probability and statistics including
the four most popular methods for generating random variates according to specific
probability distributions. This material is followed by a set of short summaries and
C# code implementations of these methods for the most common probability distri-
butions.

A probability distribution is a statistical function that describes the range of all
possible values that a random variable can attain and the probability that the value of
the random variable is within a measurable subset of that range. Random variables,
along with their associated probability distributions can be classified as being either
discrete or continuous.

A discrete random variable is one which can take on only a countable number of
distinct positive integral values. Conversely, if a random variable can take only a
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finite number of distinct values, then it must be discrete. For example, if you toss a
coin, you are going to get either heads or tails, but never something like 1.254374
heads. The probability function for discrete random variables is called the proba-
bility mass function (PMF) fX (x) and gives the probability that a discrete random
variable X in some well defined sample space is exactly equal to some specific value
x. That is, suppose that X : S → R is a discrete random variable defined in a sam-
ple space S that is mapped onto the set of real numbers R. Then the probability
mass function fX (x) for X is defined as fX (x) = P(X = x). Consequently, fX (x) = 0
for all x /∈ X(S). Therefore, the probability distribution, P(x), of a discrete random
variable is simply a list of probabilities associated with each of its possible values.
More formally, a discrete probability distribution, P(x), is a function that satisfies the
following properties:

• The probability that a discrete random variable x can take a specific value xi is
given by P(xi) where i = 1,2, . . . ,∞

• 0 ≤ P(xi) ≤ 1 for all discrete xi.

• ∑∞
i=1 P(xi) = 1.

As a result, a function that allows negative values or values greater than one is not
a discrete probability distribution function. The condition that the sum of all the
probabilities that a discrete random variable x can take equals one means that at least
one of the possible values that x can take has to occur.

A continuous random variable is one which can take on an infinite number of
possible values. Continuous random variables are usually measurements expressed
as real numbers. Typical examples include height, weight, or the time required to
run a mile. The probability function for continuous random variables is called the
probability density function (PDF) f (x) and describes the probability density at each
point in the associated sample space S. The probability of a random variable falling
within a given set is therefore given by the integral of the PDF over that set. Since
a continuous probability function is defined for an infinite number of points over
a continuous interval, the measurement of probability at any single point in that
interval is always zero. Instead, continuous probabilities are measured over intervals,
not single points and the area under the curve between two distinct points therefore
defines the probability for that interval. More formally, the probability distribution,
P(x), of a continuous random variable X is a function that satisfies the following
properties:

• The probability that a random variable X is between two points a and b is given
by: P(a ≤ X ≤ b) =

∫ b
a f (x)dx.

• 0 ≤ P(X) ≤ 1 for all real X .

• The integral of the probability function is one, i.e.
∫+∞
−∞ f (x)dx = 1.

Note that a PMF differs from a PDF in that the values of a PDF, defined only for
continuous random variables, are not individual probabilities. Instead, it is the inte-
gral of a PDF over a range of possible values that gives the probability of the random
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variable falling within that range. In addition, not every probability distribution has
a density function. The distributions of discrete random variables, for example, do
not.

All random variables, whether they are discrete or continuous, have a cumulative
distribution function (CDF) FX(x), which gives the probability that a random variable
X is less than or equal to x, for every value x. More formally, for every real number
x, the CDF of X is given by FX(x) = P(X ≤ x). If X is a discrete random variable,
then it attains values x1,x2, . . . with corresponding probabilities P(x1),P(x2), . . . so
that the CDF FX(x) can be written as:

FX(x) = P(X ≤ x) = ∑
xi≤x

P(X = xi) = ∑
xi≤x

P(xi)

However, if X is a continuous random variable with a corresponding continuous PDF
f (x) then the CDF FX(x) can be written as:

FX(x) = P(X ≤ x) =
∫ x

−∞
f (t)dt

where t is just a dummy variable used for integration purposes. As a result, the CDF
for discrete random variables is the sum of its discrete probabilities whereas the CDF
for continuous random variables is the integral of its probability density function. For
continuous variables, the CDF FX(x), and PDF f (x), are therefore related by

f (x) =
d

dx
FX(x) so that p[a ≤ X ≤ b] =

∫ b

a
f (x)dx = FX(b)−FX(a)

Other important statistical functions of interest include the mean, variance and
standard deviation. The mean or expected value of a probability distribution is given
by

x̄ = E(x) =
n

∑
i=1

pi xi =
∫ ∞

−∞
x f (x)dx

where summation is used for discrete distributions and integration is used for con-
tinuous distributions respectively. The quantity (x − x̄)2 represents the square of
distance between x and its mean x̄. The expected value of this quantity is called the
variance of x and is given by

σ2 = Var(x) = E((x− x̄)2) =
n

∑
i=1

pi (x− x̄)2 =
∫ ∞

−∞
(x− x̄)2 f (x)dx

The square root of the variance is called the standard deviation and is denoted by σ .
A possible implementation of these basic three statistical functions in C# using raw,
discrete data values is shown below.

public static void stats(double[] data, out double mean, out double
variance, out double sigma)

{
double sum = 0.0;
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mean = 0.0;
variance = 0.0;
sigma = 0.0;

for (int i = 0; i < data.Length; i++)
{

sum += data[i];
}
mean = sum / data.Length;

for (int i = 0; i < data.Length; i++)
{

variance += Math.Pow(data[i] - mean, 2);
}
variance /= data.Length;
sigma = Math.Sqrt(variance);
return;

}

static void TestBasicStats()
{
//Generate 10000 random points following a normal distribution
//with the following parameters:
int nPoints = 10000; double mu = 2.0; double sigma = 0.5;
double[] randObj = NextNormal(mu, sigma, nPoints);

//Calculate the basic statistical functions:
//mean, variance and standard deviation.
double mean = 0.0, variance = 0.0, CalcSigma = 0.0;
stats(randObj, out mean, out variance, out CalcSigma);

Console.WriteLine("\nTesting Stats Using a Normal Distribution");
Console.WriteLine("\nInput parameters: number of points = 10,000,

mu = 2.0, sigma = 0.5");
Console.WriteLine("\nResults (calculated):\n");
Console.WriteLine("Mean={0}",Math.Round(mean, 4));
Console.WriteLine("Variance={0}",Math.Round(variance, 4));
Console.WriteLine("Standard Deviation={0}",Math.Round(CalcSigma,4));
Console.WriteLine("\nResults (expected):\n");
Console.WriteLine("Mean={0}",Math.Round(mu, 4));
Console.WriteLine("Variance={0}",Math.Round(sigma*sigma,4));
Console.WriteLine("Standard Deviation={0}",Math.Round(sigma,4));
Console.WriteLine("\nPress ENTER key to continue...");
Console.ReadLine();
Console.Clear();

}

Output:

Testing Basic Stats Using a Normal Distribution
Input parameters: number of points = 10,000, mu = 2.0, sigma = 0.5

Results (calculated): Results (expected):
Mean = 1.9958 Mean = 2
Variance = 0.246 Variance = 0.25
Standard Deviation = 0.496 Standard Deviation = 0.5
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The uniform distribution over the unit interval [0,1] is usually the default distribu-
tion generated by pseudorandom numbers in a computer. Its PDF is given by

f (x) =

{
1 if 0 ≤ x ≤ 1

0 otherwise

This distribution is usually denoted by u[0,1]. More generally, the notation u[a,b] is
used to denote the absolutely continuous uniform distribution over the interval [a,b].
The uniform distribution is particularly convenient because there are many simple
techniques to transform uniform samples into samples from other distributions of
interest. The basic idea is to first generate a random variate uniformly distributed on
u[0,1]. Then, by using an appropriate transformation procedure, convert this random
variate obtained to one from the desired distribution. Since probability distributions
can be discrete or continuous, any transformation procedure must also account for
the proper handling of discrete and continuous variables.

The four most common methods for generating univariate random variables are:

1. the inverse transform method,

2. the acceptance-rejection method,

3. the composition method, and

4. the convolution method.

Inverse transform sampling, also known as the inverse probability integral trans-
form or the inverse transformation method, is a method for sampling random num-
bers from any probability distribution provided its CDF can be analytically or nu-
merically inverted. Because of this limitation, for some probability distributions this
method may be computationally expensive, impractical or even impossible to imple-
ment in practice. Nevertheless, the inverse transform method has been successfully
applied to generate random variates from many important probability distributions
and so it merits considerable attention.

Suppose X is a discrete random variable with a PMF given by

X =

⎧⎪⎨
⎪⎩

x1, with probability p1

x2, with probability p2

x3, with probability p3

where p1 + p2 + p3 = 1. We would like to generate a value of X and we can do this
by using our uniform distribution generator u[0,1]:

1. Generate u[0,1].

2. Set

X =

⎧⎪⎨
⎪⎩

x1, if 0 ≤ u ≤ p1

x2, if p1 < u ≤ p1 + p2

x3, if p1 + p2 < u ≤ 1
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We can check that this result is correct by making the observation that

P(X = x1) = P(0 ≤ u ≤ p1) = p1

since u is a random variate drawn from the uniform distribution u[0,1]. The same
conclusion holds true for P(X = x2) and P(X = x3).

More generally, if X is a discrete random variable and can take on n distinct values
x1 < x2 < .. . < xn with

P(X = xi) = pi for i = 1,2, . . . ,n

then to generate a sample value of X we

1. Generate u[0,1].

2. Set X = x j if ∑ j−1
i=1 pi < u ≤ ∑ j

i=1 pi

3. or equivalently, set X = x j if FX(x j−1) < u ≤ FX(x j).

Example: Suppose that X belongs to a geometric distribution with probability of
success parameter p, q = 1− p and with a PMF given by

P(X = i) = p(1− p)i−1

where i ≥ 1. The CDF of the random variable is given by

F(i) = P(X ≤ i)
= 1−P(X > i)
= 1−P( first i trials are failures )

= 1−qi

Set X = j if

F( j−1)≤ u[0,1] < F( j) ⇔ 1−q j−1 ≤ u < 1−q j

⇔ q j < 1−u ≤ q j−1

Therefore,

X = min{ j |q j < 1−u}
= min{ j | j log(q) < log(1−u)}

= min{ j | j >
log(1−u)

log(q)
}

= min{ j | j >
log(u)

log(1− p)
} where 0 < u ≤ 1.0

= 
 log(u)
log(1− p)

�
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where 
x� is the smallest integer larger than x.
The general procedure for sampling variates from a distribution of continuous

random variables is perhaps more easily understood if we first consider the resulting
implications of the following theorem and its associated corollary.

Theorem: Consider a continuous random variable X with a CDF given by FX(x).
Define a new variable Y = FX(x). Then Y ∼ u[0,1].
Proof:

FY (y) = P(Y ≤ y) by the definition of a CDF

= P(FX(x) ≤ y) since Y = FX(x)

= P(X ≤ F−1
X (y)) since FX(x) is monotone

= FX(F−1
X (y)) = y from which f (y) =

dF

dy
= 1 and therefore Y ∼ u[0,1].

Corollary: Let u ∼ u[0,1]. Define a random variable X = F−1(u) where F is a CDF.
Then F is the CDF of X .

Proof: FX(x) = P(X ≤ x) = P(F−1(u) ≤ x) = P(u ≤ F(x)) = F(x).

Given any continuous random variable X with a CDF FX(x), then the variable u =
FX(x) is uniformly distributed between 0 and 1. Therefore, X can be obtained by first
generating u[0,1] and then computing X = F−1(u) provided that the inverse function
F−1 exists. If X is a continuous random variable, then the following algorithm can
be used to generate a sample value of X .

1. Generate u[0,1].

2. Set X = x if FX(x) = u. That is, set X = F−1
X (u).

Proof:

P(X ≤ x) = P(F−1
X (u) ≤ x)

= P(u ≤ FX(x))
= FX(x)

If F−1
X does not exist, then we need to use a slightly different algorithm as shown

below.

1. Generate u[0,1].

2. Set X = min{x : FX(x) ≥ u}

Note that this last algorithm works for both discrete and continuous random variables
or mixtures of the two.
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Example: Consider the Weibull distribution which has a PDF given by

f (x) =
a

b

(
x

b

)a−1

exp

[
−
(

x

b

)a]

After calculating its corresponding CDF, then F−1(u) is that value of X for which
1−e−(x/b)a

= u. Solving for x, we obtain x = b(− log(1−u))1/a. For u∼ u[0,1], u is
uniform when u−1 is uniform and therefore we may also write x = b(− log(u))1/a.

Rejection sampling, sometimes also called the acceptance-rejection method, is an
alternative method for sampling random numbers from a specific probability distri-
bution that may be used when the CDF cannot be inverted analytically. If a numerical
constant value c can be found such that f (x) ≤ cg(x) for all x, then we can use g(x)
to obtain a sample from f (x) and then claim that the value X has a PDF given by
f (x). The algorithm below demonstrates how this procedure may be implemented.

1. Generate a Y random variate having a PDF given by g(Y ).

2. Generate a random number from the uniform distribution u[0,1].

3. If u ≤ f (Y )
cg(Y )

then set X = Y and stop, otherwise return to step 1.

Proof: We first define B to be the event that Y has been accepted in a loop: u≤ f (Y )
cg(Y )

.

The goal is to show that P(X ≤ x) = FX(x). First observe that

P(X ≤ x) = P(Y ≤ x|B) =
P((Y ≤ x)∩B)

P(B)

From our definition of event B and since lim
x→∞

P(X ≤ x) = 1 we can then write

P(B) = P

(
u ≤ f (Y )

cg(Y )

)
=

1

c

The numerator P((Y ≤ x)∩B) can be simplified further as shown below.

P((Y ≤ x)∩B) =
∫ ∞

−∞
P((Y ≤ x)∩B|Y = y)g(y)dy

=
∫ ∞

−∞
P((Y ≤ x)∩

(
u ≤ f (Y )

cg(Y )

)
|Y = y)g(y)dy

=
∫ x

−∞
P

(
u ≤ f (y)

cg(y)

)
g(y)dy =

∫ x

−∞

f (y)
c

dy =
FX(x)

c

Therefore, P(X ≤ x) = FX(x), as required.
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Note that the efficiency of the rejection technique depends upon the function g(x)
and how closely it envelopes f (x). If there is a large area between cg(x) and f (x)
then a large percentage of random variates generated in steps 1 and 2 are wasted and
rejected. Also, if the generation of random variates with g(x) is particularly difficult
then this method may not be very efficient. Although c should be chosen to be as
small as possible, in many applications c is hard to compute and one often ends up
choosing c conservatively large thereby resulting in very high computational costs.

Example: Consider generating a random variable having a PDF given by

f (x) = 20x(1− x)3 where 0 < x < 1

by applying the acceptance-rejection method with g(x) = 1 where 0 < x < 1. To
determine the constant c such that f (x)/g(x) ≤ c, we use calculus to determine the
maximum value of f (x)/g(x) = 20x(1− x)3. Differentiation of this quantity yields

d
dx

[
f (x)
g(x)

]
= 20((1− x)3 −3x(1− x)2)

Setting this quantity equal to 0 shows that the maximal value is attained when x =
1/4, and thus

f (x)
g(x)

≤ 20

(
1

4

)(
3

4

)3

=
135

64
= c

Hence, [
f (x)

cg(x)

]
=

256

27
x(1− x)3

which leads to the following acceptance-rejection algorithm

1. Generate two random numbers, u1 and u2 from the uniform distribution u[0,1].

2. If u2 ≤
256

27
u1(1−u1)3 then set X = u1 and stop. Otherwise return to step 1.

The acceptance-rejection method for discrete random variables can be deduced in
an analogous fashion. Suppose we have an efficient method for generating a random
variable having a PMF given by {gi, i ≥ 0}. We can use this PMF as the basis for
generating random numbers from another more complex distribution having a PMF
given by { fi, i ≥ 0}. Let c be a constant such that

fi

gi
≤ c for all i such that fi 	= 0.

Then the following algorithm can be used for generating a random variable X having
a PMF given by fi = P(X = i).

1. Generate a Y random variate having a PMF given by gi.
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2. Generate a random number from the uniform distribution u[0,1].

3. If u ≤ fY
cgY

then set X = Y and stop, otherwise return to step 1.

The proof of this algorithm is analogous to the one given earlier for the acceptance-
rejection method for continuous random variables and is therefore left as an exercise
for the reader.

The composition sampling method is another scheme for generating random de-
viates from a specific probability distribution. In this technique, the PDF or PMF is
expressed as a probability mixture of properly selected density functions. Suppose
that X has a CDF given by FX(x) and we wish to simulate a value of X . Often the
CDF can be expressed as a weighted sum of n other CDFs as shown below.

FX(x) =
n

∑
j=1

p j Fj(x)

where the individual Fj(x) terms are also CDFs, p j ≥ 0 for all j, and ∑n
j=1 p j = 1.

Equivalently, if the density functions fX (x) exist, we can also write

fX (x) =
n

∑
j=1

p j f j(x)

The number of CDF functions n can be finite or infinite. The idea is that n CDFs
can be composed together to form the desired CDF thus giving the name to this
technique. Another approach is to have the desired CDF decomposed into several
other CDFs. In that case, this method is called the decomposition sampling method.

To generate X variates using the composition method we

1. Generate I that is distributed on the non-negative integers so that P(I = j) = p j.

2. If I = j, the simulate Yj from Fj.

3. Set X = Yj.

The claim is that X now has the desired distribution.

Proof:

P(X ≤ x) =
n

∑
j=1

P(X ≤ x|I = j)P(I = j)

=
n

∑
j=1

P(Yj ≤ x)P(I = j)

=
n

∑
j=1

Fj(x)p j

= FX(x)
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The convolution sampling method provides another method for obtaining random
deviates from a specific probability distribution. Suppose that X can be expressed as
the sum of m random variables y1,y2, . . . ,ym so that

X = y1 + y2 + . . .+ ym

where yi ∼ Fi and are all independent. Then the following algorithm can be used for
generating a random variable X .

1. Generate m random numbers u1,u2, . . . ,um on the interval [0,1].

2. Apply the inverse transform method: yi = F−1
i ui.

3. Set X = ∑m
i=1 yi.

In this case, X can be generated by simply generating m random variates yi and then
summing them.

For example, if X is a sum of two random variables y1 and y2, then the densities of
X can be calculated analytically by a convolution of the PDFs of y1 and y2. This is the
reason why this method is called convolution sampling even though no convolution
is actually required to generate the random variates.

Lastly, some distributions have special characteristics which allow their variates
to be generated using algorithms specifically customized for them. Such algorithms
are classified under the technique called characterization sampling. Examples of
calculating random variates using this method tend to be rather unusual, bizarre and
otherwise not at all obvious. For example, it can be shown that the ratio of two unit
normal variates is a Cauchy (0,1) variate. It can also be shown that the ath smallest
number in a sequence of a+b+u(0,1) uniform variates has a beta(a,b) distribution.

After reviewing all these different methods for generating random variates from
specific probability distributions, it is natural to ask which one is the best overall
method to use. This is not a trivial question and there is no short simple answer.
Instead, only general guidelines have been developed. If the CDF is easily invert-
ible, then the inverse transformation method is the best choice. Otherwise, if either
the CDF or PDF can be expressed as a sum of the other CDFs or PDFs, then the
composition method can be used. If the variate can be expressed as a sum of other
variates, use the convolution method. The characterization method can be used if
the distribution has some known properties that can be exploited for random vari-
ate generation. Finally, if the PDF is such that a majorizing function can be found,
then use the rejection method. If all else fails, you can always use empirical inverse
transformation by numerically computing the distribution function.

10.6 Histograms

Working with probability distributions typically involves handling large amounts of
data. As a result, it is often very helpful to see such data plotted on a graph in order
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to potentially identify underlying patterns or detect trends. However, plotting every
available data point may not always be desirable or even feasible. Consequently,
histograms were developed as a plotting tool to help simplify matters.

In a general sense, a histogram is an approximate graphical representation of the
shape of a frequency distribution by means of rectangles whose widths represent
class intervals and whose areas are proportional to the corresponding frequencies.
A histogram is therefore just a graphical display of tabulated frequencies showing a
count of the data points falling within various ranges. The groups of data are formally
called classes, but in the context of a histogram they are also known as bins because
one can think of them as containers that accumulate data and fill up at a rate equal
to the frequency of that data class. In short, histograms are basically useful data
summaries that convey the following information listed below.

• The general shape of the frequency distribution (normal, chi-square, etc.).

• Symmetry of the distribution and whether it is skewed.

• Modality - unimodal, bimodal, or multimodal.

The shape of the distribution conveys important information such as the probability
distribution of the data. In cases in which the distribution is known, a histogram
that does not fit the distribution may provide clues about a process and measurement
problem. The shape of the histogram sometimes is particularly sensitive to the num-
ber of bins. If the bins are too wide, important information might get omitted. On the
other hand, if the bins are too narrow, what may appear to be meaningful informa-
tion really may be due to random variations in the data that show up because of the
small number of data points in a bin. Different bin sizes can therefore reveal different
features of the data. Because of the importance of this step, a considerable amount
of research effort has been made to find a fast and reliable method for calculating
appropriate bin sizes [62, 63].

Unfortunately no magic bullet-proof formula has yet been found for figuring out
the best way to calculate the number of bins. The usual approach to determine
whether the bin width is set to an appropriate size has been through the well es-
tablished scientific method of trial-and-error. In other words, different bin widths
should be tried and the results compared to determine the sensitivity of the histogram
shape with respect to bin size. However, as a general rule-of-thumb, bin widths are
typically selected so that there are between 5 and 20 groups of data, but the actual
appropriate number depends on the situation. In addition, a mathematical formula
has also evolved to help people get started in their search for the optimal bin width
to use in calculating a histogram. If h represents the suggested bin width of a dataset
X consisting of values given by X = x1,x2, . . . ,xN then the number of bins k can be
roughly estimated by

k =
⌈

maxX −minX
h

⌉
where the braces indicate the ceiling function. Note that the histogram of the fre-
quency distribution can be easily converted to a probability distribution by dividing
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the tally in each group by the total number of data points to give the relative fre-
quency. The following C# code illustrates one way to calculate a basic frequency
histogram of a random set of data points as indicated [64].

public static double[] makeHistogram(double[] data,double min,double
max,int nBins)

{
double[] Histogram = new double[nBins];
double BinWidth = (max - min) / nBins;
for (int i = 0; i < nBins; i++)
{

int nCounts = 0;
for (int j = 0; j < data.Length; j++)
{

if (data[j] >= min+(i)*BinWidth && data[j]<min+(i+1)*BinWidth)
{

nCounts++;
}

}
Histogram[i] = nCounts;

}
return Histogram;

}

public static double[] makeHistogram(double[] data, int nBins)
{

double[] Histogram = new double[nBins];
for (int i = 0; i < nBins; i++)
{

int nCounts = 0;
for (int j = 0; j < data.Length; j++)
{
if (data[j] == i)
{

nCounts++;
}

}
Histogram[i] = nCounts;

}
return Histogram;

}

public static double dataMax(double[] data)
{

double max = data[0];
for (int i = 1; i < data.Length; i++)
{ max = Math.Max(max, data[i]); }
return max;

}
public static double dataMin(double[] data)
{

double min = data[0];
for (int i = 1; i < data.Length; i++)
{ min = Math.Min(min, data[i]); }
return min;

}
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10.7 Random Variate Generation

After reviewing some of the most important fundamental concepts pertaining to the
topic of this chapter, we are now ready to look at some examples of how to sample
variates from the most common probability distributions. Since both the formulas
and corresponding derivations that follow can be easily found in almost any introduc-
tory textbook, we will simply quote the results and then focus more of our attention
on how to implement them in C#. For practical reasons the internal random number
generator provided by C# was chosen as our default source for random numbers. If
the quality of randomness is an important consideration, then one can easily upgrade
to a more robust random number generator. Accordingly, one must first remember
to instantiate an object from the Random number generator class as in the example
shown below.

private static Random randObj = new Random();

Once an object of the random number class has been instantiated, one needs to re-
place its associated default Next() method with a customized version of it specifi-
cally designed to generate the desired probability distribution. In the examples that
follow, the customized Next() method for each probability distribution has been
overloaded in order to allow calculations for both single as well as multi-value array
entries.

To evaluate the quality of the random variate generation algorithms for a particu-
lar probability distribution, a small standardized test routine was created capable of
producing 10,000 random data points which are subsequently normalized on a scale
from 0 to 100% and then spread into a histogram data structure consisting of 20 bins.
The resulting output was then plotted directly onto the computer screen using stars,
“*”, to represent a certain number of data points contained in each bin. In order to
enhance the evaluation of the resulting output even further, both the generated and
the calculated probability distribution values are enclosed by brackets, [...], and
displayed on the screen for each bin.

10.7.1 Discrete Distributions

Bernoulli Distribution

The Bernoulli distribution, named after the Swiss mathematician Jacob Bernoulli, is
perhaps the simplest discrete distribution. A Bernoulli trial is an experiment whose
outcome is random and can be one of only two possible results, success or failure.
A Bernoulli variate can therefore take only two values, which are usually denoted as
x = 0 (failure) and x = 1 (success). The Bernoulli distribution can be used only if the
trials are independent and identical so that the probability of success in each trial is
given by p and is not affected or influenced by the outcomes of any past trials. The
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key characteristics of the Bernoulli distribution are summarized below [65, 66, 49].

Parameters: p = probability of success in a trial, 0 ≤ p ≤ 1

PMF: f (x) =

{
px(1− p)1−x for x = 0,1

0 otherwise

Using the inverse transformation method, Bernoulli variates can be created by first
generating u ∼ u(0,1). Then if u ≤ p, return 0 else return 1. This process is repeated
until the desired number of Bernoulli variates has been obtained. An implementation
of this procedure in C# is given below along with the resulting output.

public static double BernoulliPMF(int x, double p)
{

if ((x == 0) || (x == 1))
return (Math.Pow(p, x) * Math.Pow(1 - p, 1 - x));

else
return 0.0;

}

public static double[] BernoulliPMF(int[] x, double p)
{

double[] tempArr = new double[x.Length];
for (int i = 0; i < x.Length; i++)
{

tempArr[i] = BernoulliPMF(x[i], p);
}
return tempArr;

}

public static double NextBernoulli(double p)
{

if (randObj.NextDouble() <= p)
return 1.0;

else
return 0.0;

}

public static double[] NextBernoulli(int nLen, double p)
{

double[] tempArr = new double[nLen];
for (int i = 0; i < nLen; i++)
{

tempArr[i] = NextBernoulli(p);
}
return tempArr;

}
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static void TestBernoulli()
{

int nBins = 20;
int nPoints = 10000;
double probSuccess = 0.60;
double displayScaleFactor = 500.0;

double[] randObj = NextBernoulli(nPoints, probSuccess);
double[] HistogramValues = makeHistogram(randObj, nBins);
double[] xdata = new double[nBins];
double[] ydata = new double[nBins];
double[] yCalcDistribution = new double[nBins];
for (int i = 0; i < nBins; i++)
{

xdata[i] = i;
ydata[i] = (double)HistogramValues[i];
yCalcDistribution[i] = BernoulliPMF(i, probSuccess);

}

double ydataMax = dataMax(ydata);
double yCalcDistributionMax = dataMax(yCalcDistribution);

Console.WriteLine("\nTesting the Bernoulli Probability
Distribution");

Console.WriteLine("\nKey: Bin number = *****... [random distrib.]
[calculated distrib.]\n");

for (int i = 0; i < nBins; i++)
{

Console.Write("Bin {0,2:n0} = ", i + 1);
for (int j = 0; j < (Math.Round(ydata[i]*displayScaleFactor /

nBins / ydataMax, 0)); j++) Console.Write("*");
Console.WriteLine(" [{0}] [{1}]",Math.Round(ydata[i]*100.0 /

ydataMax,0),Math.Round(yCalcDistribution[i]*100.0 /
yCalcDistributionMax,0));

}
Console.WriteLine("\nPress ENTER key to continue...");
Console.ReadLine();
Console.Clear();

}

Results: Bernoulli Probability Distribution (p = 0.60)
Key: Bin number = *****... [random distrib.] [calculated distrib.]

Bin 0 = ***************** [68] [67]
Bin 1 = ************************* [100] [100]
Bin 2 = [0] [0]
Bin 3 = [0] [0]
Bin 4 = [0] [0]
Bin 5 = [0] [0]
Bin 6 = [0] [0]
.
.
.
Bin 18 = [0] [0]
Bin 19 = [0] [0]
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Binomial Distribution

The binomial distribution is a discrete probability distribution that is used to model
the number of successes in a sequence of n independent and identical Bernoulli trials
assuming that each trial has probability p of success. Such an experiment is also
called a Bernoulli experiment or Bernoulli trial. Actually, when n = 1 the binomial
distribution is a Bernoulli distribution. The key characteristics of the binomial dis-
tribution are summarized below [65, 66, 49].

Parameters: p = probability of success in a trial, 0 ≤ p ≤ 1

n = number of trials, n ≥ 0

PMF: f (x) =

⎧⎨
⎩

n!
x!(n− x)!

px(1− p)n−x for x = 0,1,2, . . . ,n

0 otherwise

Binomial variates can be generated using a composition method that is based on the
observation that the sum of n Bernoulli variates has a binomial distribution.

1. Generate n random numbers u1,u2, . . . ,un on the interval [0,1].

2. Return the number of random numbers that are less than p.

The following code shown below illustrates how the binomial probability distribution
may be implemented in C#. Note that the Gamma function is provided in Chapter 14,
which focuses on the topic of special functions. The factorial n! of an integer n is
related to the Γ() function by n! = Γ(n + 1).

public static double BinomialPMF(int x, int n, double p)
{

return Gamma(n+1)*Math.Pow(p,x)*Math.Pow(1-p,n-x)/Gamma(x+1)/
Gamma(n-x+1);

}

public static double[] BinomialPMF(int[] x, int n, double p)
{

double[] tempArr = new double[x.Length];
for (int i = 0; i < x.Length; i++)
{ tempArr[i] = BinomialPMF(x[i], n, p); }
return tempArr;

}

public static double NextBinomial(int n, double p)
{

double total = 0.0;
for (int i = 0; i < n; i++)
{

if (randObj.NextDouble() < p)
{ total++; }

}
return total;

}
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public static double[] NextBinomial(int n, double p, int nLen)
{

double[] tempArr = new double[nLen];
for (int i = 0; i < nLen; i++)
{

tempArr[i] = NextBinomial(n, p);
}
return tempArr;

}

static void TestBinomial()
{

int nBins = 20;
int nTrials = 10;
int nPoints = 10000;
double probSuccess = 0.60;
double displayScaleFactor = 500.0;

double[] randObj = NextBinomial(nTrials, probSuccess, nPoints);
double[] HistogramValues = makeHistogram(randObj, nBins);
double[] xdata = new double[nBins];
double[] ydata = new double[nBins];
double[] yCalcDistribution = new double[nBins];

for (int i = 0; i < nTrials; i++)
{

xdata[i] = i;
ydata[i] = (double)HistogramValues[i];
yCalcDistribution[i] = BinomialPMF(i, nTrials, probSuccess);

}

double ydataMax = dataMax(ydata);
double yCalcDistributionMax = dataMax(yCalcDistribution);

Console.WriteLine("\nTesting the Binomial Probability
Distribution");

Console.WriteLine("\nKey: Bin number = *****... [random distrib.]
[calculated distrib.]\n");

for (int i = 0; i < nBins; i++)
{

Console.Write("Bin {0,2:n0} = ", i + 1);
for (int j = 0; j < (Math.Round(ydata[i]*displayScaleFactor /

nBins / ydataMax, 0)); j++) Console.Write("*");
Console.WriteLine(" [{0}] [{1}]",Math.Round(ydata[i]*100.0 /

ydataMax,0),Math.Round(yCalcDistribution[i]*100.0 /
yCalcDistributionMax,0));

}
Console.WriteLine("\nPress ENTER key to continue...");
Console.ReadLine(); Console.Clear();

}
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Results: Binomial Probability Distribution
Key: Bin number = *****... [random distrib.] [calculated distrib.]

Bin 0 = [0] [0]
Bin 1 = [1] [1]
Bin 2 = * [5] [4]
Bin 3 = **** [17] [17]
Bin 4 = *********** [45] [44]
Bin 5 = ******************** [80] [80]
Bin 6 = ************************* [100] [100]
Bin 7 = ********************** [88] [86]
Bin 8 = ************* [50] [48]
Bin 9 = **** [17] [16]
Bin 10 = [0] [0]
Bin 11 = [0] [0]
Bin 12 = [0] [0]
Bin 13 = [0] [0]
Bin 14 = [0] [0]
Bin 15 = [0] [0]
Bin 16 = [0] [0]
Bin 17 = [0] [0]
Bin 18 = [0] [0]
Bin 19 = [0] [0]

Geometric Distribution

The geometric distribution is a discrete probability distribution obtained from the
number of Bernoulli trials needed to get one success. In other words, suppose that a
random experiment has two possible outcomes, success with probability p and fail-
ure with probability q = 1− p. The experiment is repeated until a success happens.
The number of trials before the success is a random variable x with density func-
tion given by the PMF of the geometric distribution whose key characteristics are
summarized below [65, 66, 49].

Parameters: p = probability of success in a trial, 0 ≤ p ≤ 1

PMF: f (x) =

{
p(1− p)x−1 for x = 1,2,3, . . .

0 otherwise

Equivalently, if the probability of success on each trial is p, then the probability that
there are x failures before the first success is

PMF: f (x) =

{
p(1− p)x for x = 0,1,2,3, . . .

0 otherwise

Both of these distributions are referred to as a geometric probability distribution.
As derived earlier in this chapter, geometric variates can be generated using the

inverse transform method which leads to the formula

X = 
 log(u)
log(1− p)

�
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Geometric variates can also be generated using the following alternate algorithm [65].

Initialize X ← 0, u ∼ u[0,1]
start loop: while u < p
X ← X + 1
u ∼ u[0,1]
end loop: return X

The following code shown below illustrates how the binomial probability distri-
bution may be implemented in C#.

public static double GeometricPMF(int x, double p)
{

if (x >= 1)
return (p * Math.Pow(1 - p, x - 1));

else
return 0.0;

}

public static double[] GeometricPMF(int[] x, double p)
{

double[] tempArr = new double[x.Length];
for (int i = 0; i < x.Length; i++)
{

tempArr[i] = GeometricPMF(x[i], p);
}
return tempArr;

}

public static double NextGeometric(double p)
{
return Math.Ceiling(Math.Log(randObj.NextDouble())/Math.Log(1.0-p));

}

public static double NextGeometric2(double p)
{

//Alternate method for calculating geometric random variates
double rn = 1.0;
for (; randObj.NextDouble() >= p; rn++) { }
return rn;

}

public static double[] NextGeometric(int nLen, double p)
{

double[] tempArr = new double[nLen];
for (int i = 0; i < nLen; i++)
{

tempArr[i] = NextGeometric(p);
}
return tempArr;

}
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static void TestGeometric()
{

int nBins = 20;
int nPoints = 10000;
double probSuccess = 0.60;
double displayScaleFactor = 500.0;

double[] randObj = NextGeometric(nPoints, probSuccess);
double[] HistogramValues = makeHistogram(randObj, nBins);
double[] xdata = new double[nBins];
double[] ydata = new double[nBins];
double[] yCalcDistribution = new double[nBins];
for (int i = 0; i < nBins; i++)
{

xdata[i] = i;
ydata[i] = (double)HistogramValues[i];
yCalcDistribution[i] = GeometricPMF(i, probSuccess);

}

double ydataMax = dataMax(ydata);
double yCalcDistributionMax = dataMax(yCalcDistribution);

Console.WriteLine("\nTesting the Geometric Probability Distribution
");

Console.WriteLine("\nKey: Bin number = *****... [random distrib.] [
calculated distrib.]\n");

for (int i = 0; i < nBins; i++)
{

Console.Write("Bin {0,2:n0} = ", i);
for (int j = 0; j < (Math.Round(ydata[i]*displayScaleFactor /
nBins / ydataMax, 0)); j++) Console.Write("*");
Console.WriteLine(" [{0}] [{1}]",Math.Round(ydata[i]*100.0 /

ydataMax,0),Math.Round(yCalcDistribution[i]*100.0 /
yCalcDistributionMax,0));

}
Console.WriteLine("\nPress ENTER key to continue...");
Console.ReadLine(); Console.Clear();

}

Results: Geometric Probability Distribution
Key: Bin number = *****... [random distrib.] [calculated distrib.]

Bin 0 = [0] [0]
Bin 1 = ************************* [100] [100]
Bin 2 = ********** [41] [40]
Bin 3 = **** [16] [16]
Bin 4 = ** [6] [6]
Bin 5 = * [2] [3]
Bin 6 = [1] [1]
Bin 7 = [0] [0]
Bin 8 = [0] [0]
.
.
.
Bin 18 = [0] [0]
Bin 19 = [0] [0]
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Negative Binomial Distribution

The negative binomial distribution is a discrete probability distribution that arises
in calculating the number of trials, x, needed to get a fixed non-random number
of successes, r, in a Bernoulli process where each trial has a success probability
p. Therefore, the PMF for this distribution calculates the probability that the r-th
success occurs on the x-th trial. The key characteristics of the negative binomial
distribution are summarized below [65, 66, 49].

Parameters: p = probability of success, 0 ≤ p ≤ 1

r = integer number of successes, r > 0

x = integer number of Bernoulli trials to obtain x successes, x ≥ 1

PMF: f (x) =

⎧⎨
⎩

Γ(r + x)
Γ(r)Γ(x + 1)

px (1− p)r for x = 0,1,2,3, . . .

0 otherwise

Negative binomial random variates may be calculated using of the following algo-
rithm [65]:

1. Generate y from a gamma distribution with parameters r and p/(1− p).

2. Generate X from a Poisson distribution with parameter y. Now X is negative
binomial with parameters p and r.

The following code shown below illustrates how the negative binomial probability
distribution may be implemented in C#.

public static double NegativeBinomialPMF(int r, double p, int x)
{

return (Gamma(r + x) / Gamma(r) / Gamma(x + 1)) * Math.Pow(p, r)
* Math.Pow(1 - p, x);

}

public static double[] NegativeBinomialPMF(int r, double p, int[] x)
{

double[] tempArr = new double[x.Length];
for (int i = 0; i < x.Length; i++)
{

tempArr[i] = NegativeBinomialPMF(r, p, x[i]);
}
return tempArr;

}

public static double NextNegativeBinomial(int r, double p, int x)
{

double y = NextGamma(r, (p / (1.0 - p)));
return NextPoisson(y);

}
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public static double[] NextNegativeBinomial(int r, double p, int x,
int nLen)

{
double[] tempArr = new double[nLen];
for (int i = 0; i < nLen; i++)
{

tempArr[i] = NextNegativeBinomial(r, p, x);
}
return tempArr;

}

static void TestNegativeBinomial()
{

int nBins = 20;
int nPoints = 10000;
double pVal = 0.5;
int rVal = 10;
int xVal = 10;
double displayScaleFactor = 500.0;

double[] randObj = NextNegativeBinomial(rVal,pVal,xVal,nPoints);
double[] HistogramValues = makeHistogram(randObj, nBins);
double[] xdata = new double[nBins];
double[] ydata = new double[nBins];
double[] yCalcDistribution = new double[nBins];
for (int i = 0; i < nBins; i++)
{

xdata[i] = i;
ydata[i] = (double)HistogramValues[i];
yCalcDistribution[i] = NegativeBinomialPMF(rVal,pVal,i);

}

double ydataMax = dataMax(ydata);
double yCalcDistributionMax = dataMax(yCalcDistribution);

Console.WriteLine("\nTesting the Negative Binomial Probability
Distribution");

Console.WriteLine("\nKey: Bin number = *****... [random distrib.]
[calculated distrib.]\n");

for (int i = 0; i < nBins; i++)
{

Console.Write("Bin {0,2:n0} = ", i + 1);
for (int j = 0; j < (Math.Round(ydata[i]*displayScaleFactor /

nBins / ydataMax, 0)); j++) Console.Write("*");
Console.WriteLine(" [{0}] [{1}]",Math.Round(ydata[i]*100.0 /

ydataMax,0),Math.Round(yCalcDistribution[i]*100.0 /
yCalcDistributionMax,0));

}
Console.WriteLine("\nPress ENTER key to continue...");
Console.ReadLine();
Console.Clear();

}
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Results: Negative Binomial Probability Distribution
Key: Bin number = *****... [random distrib.] [calculated distrib.]

Bin 0 = [1] [1]
Bin 1 = * [4] [5]
Bin 2 = *** [13] [14]
Bin 3 = ******* [28] [29]
Bin 4 = ************ [49] [47]
Bin 5 = ***************** [70] [66]
Bin 6 = ******************* [78] [82]
Bin 7 = ************************* [99] [94]
Bin 8 = ************************* [100] [100]
Bin 9 = ************************* [100] [100]
Bin 10 = ********************** [89] [95]
Bin 11 = ********************* [84] [86]
Bin 12 = ******************* [76] [76]
Bin 13 = *************** [61] [64]
Bin 14 = ************** [57] [53]
Bin 15 = ********** [41] [42]
Bin 16 = ******** [34] [33]
Bin 17 = ****** [24] [25]
Bin 18 = **** [16] [19]
Bin 19 = *** [12] [14]

Poisson Distribution

The Poisson distribution is a discrete probability distribution that expresses the prob-
ability of a number of events occurring within a fixed period of time if these events
occur with a known average rate and are independent of the elapsed time since the
last event. The Poisson distribution can also be used in modeling the number of
events in other specified intervals such as distance, area or volume. The key charac-
teristics of the Poisson distribution are summarized below [65, 66, 49].

Parameters: x = number of event occurrences, x ≥ 0

λ = mean number of event occurrences during the given interval, λ > 0

PMF: f (x) =

⎧⎨
⎩

λ x e−λ

x!
for x = 0,1,2,3, . . .

0 otherwise

Poisson random variates may be calculated in a number of different ways [65, 66,
49]. For example, by using the Poisson PMF

P(X = xi) = pi =
λ i e−λ

i!

we can easily derive a recursive relation

pi+1 = e−λ λ i+1

(i+ 1)!
=

λ
i+ 1

e−λ λ i

i!
=

λ
i+ 1

pi
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which leads to the following algorithm:

Initialize: i ← 0, w ← e−λ , p0 ← w and u ∼ u[0,1]
start loop: while (w ≤ u)

pi+1 ←
λ

i+ 1
pi

w ← w+ v
i ← i+ 1
end loop: return i.

A second algorithm, due to Knuth [67], is outlined below.

Initialize: Let L ← e−λ , k ← 0, p ← 1
do: k ← k + 1
Generate uniform random number u ∼ [0,1] and let p ← p×u
while p > L
return k-1.

A third method, proposed by Kemp [68], is given below.

Initialize: Let w ← e−λ , i ← 0, u ∼ u[0,1]
start loop: while (u > w)
u ← u−w
i ← i+ 1
w ← w∗λ/i
end loop: return i

The following code illustrates how the Poisson probability distribution along with
these three algorithms for generating Poisson random variates may be implemented
in C#.

public static double PoissonPMF(int x, double lambda)
{

return Math.Exp(-lambda) * Math.Pow(lambda, x) / Gamma(x + 1);
}

public static double[] PoissonPMF(int[] x, double lambda)
{

double[] tempArray = new double[x.Length];
for (int i = 0; i < x.Length; i++)
{

tempArray[i] = PoissonPMF(x[i], lambda);
}
return tempArray;

}
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public static double NextPoisson(double lambda)
{

//Using the recursive algorithm
int i = 0;
double w = Math.Exp(-lambda);
double v = w;
double u = randObj.NextDouble();
while (w <= u)
{

v = v * (lambda / (double)(i + 1));
w = w + v;
i = i + 1;

}
return i;

}

public static double NextPoisson2(double lambda)
{

//Using algorithm proposed by Knuth
//see http://en.wikipedia.org/wiki/Poisson_distribution
int k = 0;
double p = 1.0;
double L = Math.Exp(-lambda);
do
{

k++;
p *= randObj.NextDouble();

} while (p >= L);
return k - 1;

}

public static double NextPoisson3(double lambda)
{

//Using algorithm proposed by Kemp (1981)
int i = 0;
double w = Math.Exp(-lambda);
double u = randObj.NextDouble();
while (u > w)
{

u = u - w;
i = i + 1;
w = w * lambda / i;

}
return i;

}

public static double[] NextPoisson(double lambda, int nLength)
{

double[] tempArr = new double[nLength];
for (int i = 0; i < nLength; i++)
{

tempArr[i] = NextPoisson(lambda);
}
return tempArr;

}
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static void TestPoisson()
{

int nBins = 20; int nPoints = 10000;
double lambdaValue = 4.0; double displayScaleFactor = 500.0;
double[] randObj = NextPoisson(lambdaValue, nPoints);
double[] HistogramValues = makeHistogram(randObj, nBins);
double[] xdata = new double[nBins];
double[] ydata = new double[nBins];
double[] yCalcDistribution = new double[nBins];
for (int i = 0; i < nBins; i++)
{

xdata[i] = i;
ydata[i] = (double)HistogramValues[i];
yCalcDistribution[i] = PoissonPMF(i, lambdaValue);

}
double ydataMax = dataMax(ydata);
double yCalcDistributionMax = dataMax(yCalcDistribution);
Console.WriteLine("\nTesting the Poisson Probability

Distribution");
Console.WriteLine("\nKey: Bin number = *****... [random distrib.]

[calculated distrib.]\n");
for (int i = 0; i < nBins; i++)
{

Console.Write("Bin {0,2:n0} = ", i + 1);
for (int j = 0; j < (Math.Round(ydata[i]*displayScaleFactor /

nBins / ydataMax, 0)); j++) Console.Write("*");
Console.WriteLine(" [{0}] [{1}]",Math.Round(ydata[i]*100.0 /

ydataMax,0),Math.Round(yCalcDistribution[i]*100.0 /
yCalcDistributionMax,0));

}
Console.ReadLine(); Console.Clear();

}

Results: Poisson Probability Distribution
Key: Bin number = *****... [random distrib.] [calculated distrib.]

Bin 0 = ** [10] [9]
Bin 1 = ********* [37] [37]
Bin 2 = ******************* [76] [75]
Bin 3 = ************************* [99] [100]
Bin 4 = ************************* [100] [100]
Bin 5 = ******************** [80] [80]
Bin 6 = ************* [53] [53]
Bin 7 = ******* [30] [30]
Bin 8 = **** [15] [15]
Bin 9 = ** [6] [7]
Bin 10 = * [3] [3]
Bin 11 = [1] [1]
Bin 12 = [0] [0]
Bin 13 = [0] [0]
Bin 14 = [0] [0]
Bin 15 = [0] [0]
Bin 16 = [0] [0]
Bin 17 = [0] [0]
Bin 18 = [0] [0]
Bin 19 = [0] [0]
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Uniform Distribution (discrete)

The discrete uniform distribution is a discrete probability distribution that can be
characterized by saying that all values of a finite set of possible values are equally
probable. If a random variable has any one of n possible values x1,x2, . . . ,xn that are
equally probable, then it is a discrete uniform distribution with the probability of any
outcome P(xi) = 1/n. The key characteristics of the discrete uniform distribution are
summarized below [65, 66, 49].

Parameters: a = lower limit; a > 0

b = upper limit; b > a

PMF: f (x) =

⎧⎨
⎩

1
b−a + 1

if a ≤ x ≤ b

0 otherwise

The following code illustrates how the discrete uniform probability distribution
may be implemented in C#.

public static double UniformDiscretePMF(double x, double a,
double b)

{
if ((x >= a) && (x < b))

return (1.0 / (b - a + 1));
else

return 0.0;
}

public static double[] UniformDiscretePMF(double[] x, double a,
double b)

{
double[] tempArr = new double[x.Length];
for (int i = 0; i < x.Length; i++)
{ tempArr[i] = UniformDiscretePMF(x[i], a, b); }
return tempArr;

}

public static double NextUniformDiscrete(double a, double b)
{

return Math.Floor((a + (b - a + 1) * randObj.NextDouble()));
}

public static double[] NextUniformDiscrete(int nLen, double a,
double b)

{
double[] tempArr = new double[nLen];
for (int i = 0; i < nLen; i++)
{

tempArr[i] = NextUniformDiscrete(a, b);
}
return tempArr;

}
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static void TestUniformDiscrete()
{

int nBins = 20; int nPoints = 10000; double xmin = 0.0;
double xmax = 20.0; double a = 5.0; double b = 15.0;
double displayScaleFactor = 500.0;
double[] randObj=NextUniformDiscrete(nPoints,a,b);
double[] HistogramValues=makeHistogram(randObj,xmin,xmax,nBins);
double[] xdata = new double[nBins];
double[] ydata = new double[nBins];
double[] yCalcDistribution = new double[nBins];
for (int i = 0; i < nBins; i++)
{

xdata[i] = i;
ydata[i] = (double)HistogramValues[i];
yCalcDistribution[i] = UniformDiscretePMF(i, a, b);

}
double ydataMax = dataMax(ydata);
double yCalcDistributionMax = dataMax(yCalcDistribution);
Console.WriteLine("\nTesting the Uniform (Discrete) Probability

Distribution");
Console.WriteLine("\nKey: Bin number = *****... [random distrib.]

[calculated distrib.]\n");
for (int i = 0; i < nBins; i++)
{

Console.Write("Bin {0,2:n0} = ", i + 1);
for (int j = 0; j < (Math.Round(ydata[i]*displayScaleFactor /

nBins / ydataMax, 0)); j++) Console.Write("*");
Console.WriteLine(" [{0}] [{1}]",Math.Round(ydata[i]*100.0 /

ydataMax,0),Math.Round(yCalcDistribution[i]*100.0 /
yCalcDistributionMax,0));

}
}

Results: Uniform (Discrete) Probability Distribution
Key: Bin number = *****... [random distrib.] [calculated distrib.]

Bin 0 = [0] [0]
Bin 1 = [0] [0]
Bin 2 = [0] [0]
Bin 3 = [0] [0]
Bin 4 = [0] [0]
Bin 5 = ************************ [96] [100]
Bin 6 = ************************* [99] [100]
Bin 7 = ************************ [97] [100]
Bin 8 = ************************ [98] [100]
Bin 9 = ************************* [100] [100]
Bin 10 = ************************ [96] [100]
Bin 11 = *********************** [91] [100]
Bin 12 = ************************ [95] [100]
Bin 13 = *********************** [93] [100]
Bin 14 = *********************** [93] [100]
Bin 15 = ************************ [97] [0]
Bin 16 = [0] [0]
Bin 17 = [0] [0]
Bin 18 = [0] [0]
Bin 19 = [0] [0]
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10.7.2 Continuous Distributions

Beta Distribution

Beta distributions are used extensively in Bayesian statistics. Bayesian inference is a
statistical inference in which evidence or observations are used to update or to infer
the probability that a hypothesis may be true. The name “Bayesian” comes from the
frequent use of Bayes’ theorem in the inference process. The beta distribution can
also be used to model events which are constrained to take place within an interval
defined by a minimum and maximum value. For this reason, the beta distribution is
used extensively in project management control systems to describe and model the
time for the completion of a task.

The beta distribution is a family of continuous probability distributions defined
on the interval [0,1] and parameterized by two positive shape parameters, typically
denoted by a and b. The formulas derived for the default interval [0,1] can be easily
extended to a more general interval [xmin,xmax] by making the following substitution

x− xmin

xmax − xmin

for x. The key characteristics of the beta distribution are summarized below [65].

Parameters: a > 0, b > 0

PDF: f (x) =

⎧⎪⎨
⎪⎩

xa−1(1− x)b−1

β (a,b)
if 0 ≤ x ≤ 1

0 otherwise

where the β (a,b) =
∫ 1

0
xa−1(1− x)b−1dx =

Γ(a)Γ(b)
Γ(a + b)

.

Beta distribution random variates can be generated in number of ways [66]. For
example, it can be shown that one beta random variable can be derived from two
gamma random variables. Suppose that G1 and G2 are independently distributed
with G1 = G(a,1) and G2 = G(b,1). Then X = G1/(G1 +G2) has a beta distribution
with parameters a and b. The following code illustrates how the beta probability
density distribution may be implemented in C#.

public static double BetaPDF(double x, double a, double b)
{

return Math.Pow(x, a - 1) * Math.Pow(1 - x, b - 1) / Beta(a, b);
}

public static double[] BetaPDF(double[] x, double a, double b)
{

double[] tempArray = new double[x.Length];
for (int i = 0; i < x.Length; i++)
{ tempArray[i] = BetaPDF(x[i], a, b); }
return tempArray;

}
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public static double NextBeta(int a, int b)
{

double gamma1 = NextGamma(a, 1);
double gamma2 = NextGamma(b, 1);
return gamma1 / (gamma1 + gamma2);

}

public static double[] NextBeta(int a, int b, int nLength)
{

double[] tempArr = new double[nLength];
for (int i = 0; i < nLength; i++)
{ tempArr[i] = NextBeta(a, b); }
return tempArr;

}

static void TestBeta()
{

int nBins = 20;
int nPoints = 10000;
double xmin = 0.0;
double xmax = 1.0;
double aVal = 2.0;
double bVal = 5.0;
double displayScaleFactor = 500.0;

double[] randObj=NextBeta((int)aVal,(int)bVal,nPoints);
double[] HistogramValues=makeHistogram(randObj,xmin,xmax,nBins);
double[] xdata = new double[nBins];
double[] ydata = new double[nBins];
double[] yCalcDistribution = new double[nBins];
for (int i = 0; i < nBins; i++)
{

xdata[i] = xmin + (i + 0.5) * (xmax - xmin) / nBins;
ydata[i] = (double)HistogramValues[i];
yCalcDistribution[i] = BetaPDF(xdata[i], aVal, bVal);

}

double ydataMax = dataMax(ydata);
double yCalcDistributionMax = dataMax(yCalcDistribution);

Console.WriteLine("\nTesting the Beta Probability Distribution");
Console.WriteLine("\nKey: Bin number = *****... [random distrib.]

[calculated distrib.]\n");
for (int i = 0; i < nBins; i++)
{

Console.Write("Bin {0,2:n0} = ", i + 1);
for (int j = 0; j < (Math.Round(ydata[i]*displayScaleFactor /

nBins / ydataMax, 0)); j++) Console.Write("*");
Console.WriteLine(" [{0}] [{1}]",Math.Round(ydata[i]*100.0 /

ydataMax,0),Math.Round(yCalcDistribution[i]*100.0 /
yCalcDistributionMax,0));

}
Console.WriteLine("\nPress ENTER key to continue...");
Console.ReadLine(); Console.Clear();

}
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Results: Beta Probability Distribution
Key: Bin number = *****... [random distrib.] [calculated distrib.]

Bin 0 = ****** [25] [28]
Bin 1 = ***************** [67] [68]
Bin 2 = *********************** [92] [90]
Bin 3 = ************************* [99] [100]
Bin 4 = ************************* [100] [100]
Bin 5 = ********************** [89] [94]
Bin 6 = ******************** [82] [83]
Bin 7 = ***************** [67] [70]
Bin 8 = ************** [57] [57]
Bin 9 = *********** [42] [44]
Bin 10 = ******* [29] [33]
Bin 11 = ****** [25] [23]
Bin 12 = **** [17] [15]
Bin 13 = *** [11] [9]
Bin 14 = * [6] [5]
Bin 15 = [2] [2]
Bin 16 = [1] [1]
Bin 17 = [0] [0]
Bin 18 = [0] [0]
Bin 19 = [0] [0]

Beta Prime Distribution

A beta prime distribution is a probability distribution defined for x > 0 with two
parameters, a and b, having the following characteristics [65, 66, 49]:

Parameters: a > 0, b > 0

PDF: f (x) =

⎧⎪⎨
⎪⎩

xa−1 (1 + x)−a−b

β (a,b)
if x > 0

0 otherwise

This distribution is also known as the beta distribution of the second kind, in contrast
to the related beta distribution. Random variates following a beta prime distribution
can be generated very easily from their corresponding variates of the beta distribu-
tion: Xbeta prime = Xbeta/(1−Xbeta). The following code illustrates how the beta
prime probability density distribution may be implemented in C#.

public static double BetaPrimePDF(double x,double a,double b)
{

return Math.Pow(x,a-1) * Math.Pow(1+x,-a-b) / Beta(a,b);
}
public static double[] BetaPrimePDF(double[] x,double a,double b)
{

double[] tempArray = new double[x.Length];
for (int i = 0; i < x.Length; i++)
{ tempArray[i] = BetaPDF(x[i], a, b); }
return tempArray;

}
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public static double NextBetaPrime(int a, int b)
{

double betaVariate = NextBeta(a, b);
return betaVariate / (1.0 - betaVariate);

}

public static double[] NextBetaPrime(int a,int b,int nLen)
{

double[] tempArr = new double[nLen];
for (int i = 0; i < nLen; i++)
{

tempArr[i] = NextBetaPrime(a, b);
}
return tempArr;

}

static void TestBetaPrime()
{

int nBins = 20;
int nPoints = 10000;
double xmin = 0.0; double xmax = 1.0;
int aVal = 3; int bVal = 6;
double displayScaleFactor = 500.0;
double[] randObj = NextBetaPrime(aVal, bVal, nPoints);
double[] HistogramValues=makeHistogram(randObj,xmin,xmax,nBins);
double[] xdata = new double[nBins];
double[] ydata = new double[nBins];
double[] yCalcDistribution = new double[nBins];
for (int i = 0; i < nBins; i++)
{

xdata[i] = xmin + (i+0.5) * (xmax-xmin)/nBins;
ydata[i] = (double)HistogramValues[i];
yCalcDistribution[i] = BetaPrimePDF(xdata[i],aVal,bVal);

}
double ydataMax = dataMax(ydata);
double yCalcDistributionMax = dataMax(yCalcDistribution);
Console.WriteLine("\nTesting the Beta Prime Probability

Distribution");
Console.WriteLine("\nKey: Bin number = *****... [random distrib.]

[calculated distrib.]\n");
for (int i = 0; i < nBins; i++)
{

Console.Write("Bin {0,2:n0} = ", i + 1);
for (int j = 0; j < (Math.Round(ydata[i]*displayScaleFactor /

nBins / ydataMax, 0)); j++) Console.Write("*");
Console.WriteLine(" [{0}] [{1}]",Math.Round(ydata[i]*100.0 /

ydataMax,0),Math.Round(yCalcDistribution[i]*100.0 /
yCalcDistributionMax,0));

}
Console.WriteLine("\nPress ENTER key to continue...");
Console.ReadLine();
Console.Clear();

}
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Results: Beta Prime Probability Distribution
Key: Bin number = *****... [random distrib.] [calculated distrib.]

Bin 0 = ** [8] [6]
Bin 1 = ********* [37] [35]
Bin 2 = ************** [55] [64]
Bin 3 = ********************* [83] [84]
Bin 4 = ********************** [87] [96]
Bin 5 = ************************* [100] [100]
Bin 6 = ********************** [88] [99]
Bin 7 = ********************** [87] [94]
Bin 8 = ******************** [81] [88]
Bin 9 = ****************** [73] [80]
Bin 10 = ******************* [75] [73]
Bin 11 = *************** [58] [65]
Bin 12 = ************** [57] [58]
Bin 13 = ************ [46] [52]
Bin 14 = ********** [42] [46]
Bin 15 = ********** [40] [40]
Bin 16 = ********* [37] [36]
Bin 17 = ******** [30] [31]
Bin 18 = ****** [25] [28]
Bin 19 = ****** [24] [24]

Cauchy Distribution

The Cauchy distribution, also referred to as the Lorentz distribution, the Breit-Wigner
distribution, or the Lorentzian function, is a continuous probability distribution most
closely associated with the study of resonance behavior. In physics, resonance is the
tendency of a system to oscillate at a larger amplitude at certain frequencies than at
others. These are known as the system’s resonance frequencies. At resonance fre-
quencies, even small periodic driving forces can produce large amplitude vibrations.
Resonance phenomena has been observed to occur with all types of vibrations or
waves. For example, there is mechanical resonance, acoustic resonance, electromag-
netic resonance, nuclear magnetic resonance (NMR), electron spin resonance (ESR)
and resonance of quantum wave functions. Resonant systems can be used to generate
vibrations of a specific frequency, such as in the case of musical instruments, or pick
out specific frequencies from a complex vibration containing many frequencies. The
key characteristics of the Cauchy distribution are summarized below [65, 66, 49].

Parameters: a > 0, b > 0

Range: −∞ < x < ∞

PDF: f (x) =
1

πb
[
1 +

(
x−a

b

)2
] =

b
π [b2 +(x−a)2]

where a is the scale parameter that specifies the location of the resonance peak of the
distribution and b specifies the half width at the half maximum.

Random variates from a Cauchy distribution can be generated using the inversion
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transformation method and are given by the following formula [65, 66, 49]:

X = a + b[tan(πu[0,1]−0.5)]

where u[0,1] is a random variate drawn from the uniform distribution. The following
code illustrates how the Cauchy distribution may be implemented in C#.

public static double CauchyPDF(double x, double a, double b)
{

return b / (Math.PI * (b * b + (x - a) * (x - a)));
}

public static double[] CauchyPDF(double[] x, double a, double b)
{

double[] tempArr = new double[x.Length];
for (int i = 0; i < x.Length; i++)
{ tempArr[i] = CauchyPDF(x[i], a, b); }
return tempArr;

}

public static double NextCauchy(double a, double b)
{

return a + b * (Math.Tan(Math.PI * randObj.NextDouble() - 0.5));
}

public static double[] NextCauchy(double a, double b, int nLength)
{

double[] tempArr = new double[nLength];
for (int i = 0; i < nLength; i++)
{ tempArr[i] = NextCauchy(a, b); }
return tempArr;

}

static void TestCauchy()
{

int nBins = 20;
int nPoints = 10000;
double xmin = -5;
double xmax = 5;
double aVal = 0.0;
double bVal = 0.5;
double displayScaleFactor = 500.0;
double[] randObj = NextCauchy(aVal, bVal, nPoints);
double[] HistogramValues=makeHistogram(randObj,xmin,xmax,nBins);
double[] xdata = new double[nBins];
double[] ydata = new double[nBins];
double[] yCalcDistribution = new double[nBins];
for (int i = 0; i < nBins; i++)
{

xdata[i] = xmin + (i + 0.5) * (xmax - xmin) / nBins;
ydata[i] = HistogramValues[i];
yCalcDistribution[i] = CauchyPDF(xdata[i], aVal, bVal);

}
double ydataMax = dataMax(ydata);
double yCalcDistributionMax = dataMax(yCalcDistribution);
Console.WriteLine("\nTesting the Cauchy Probability Distribution");
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Console.WriteLine("\nKey: Bin number = *****... [random distrib.] [
calculated distrib.]\n");

for (int i = 0; i < nBins; i++)
{

Console.Write("Bin {0,2:n0} = ", i + 1);
for (int j = 0; j < (Math.Round(ydata[i]*displayScaleFactor /

nBins / ydataMax, 0)); j++) Console.Write("*");
Console.WriteLine(" [{0}] [{1}]",Math.Round(ydata[i]*100.0 /

ydataMax,0),Math.Round(yCalcDistribution[i]*100.0 /
yCalcDistributionMax,0));

}
Console.WriteLine("\nPress ENTER key to continue...");
Console.ReadLine(); Console.Clear();

}

Results: Cauchy Probability Distribution
Key: Bin number = *****... [random distrib.] [calculated distrib.]

Bin 0 = [1] [1]
Bin 1 = [2] [2]
Bin 2 = * [3] [2]
Bin 3 = * [3] [3]
Bin 4 = * [4] [4]
Bin 5 = * [6] [6]
Bin 6 = ** [9] [9]
Bin 7 = **** [18] [17]
Bin 8 = ********** [39] [38]
Bin 9 = ************************* [99] [100]
Bin 10 = ************************* [100] [100]
Bin 11 = ********** [39] [38]
Bin 12 = **** [18] [17]
Bin 13 = *** [11] [9]
Bin 14 = ** [7] [6]
Bin 15 = * [4] [4]
Bin 16 = * [3] [3]
Bin 17 = [2] [2]
Bin 18 = [1] [2]
Bin 19 = [1] [1]

Chi Distribution

If Xi are n independent, normally distributed, random variables with means μi and
standard deviations σi, then the statistic

Z =

√√√√ k

∑
i=1

(
Xi − μi

σi

)2

is distributed according to the χ distribution with n degrees of freedom (i.e. the
number of Xi). The most familiar example is perhaps the Maxwell distribution of
normalized molecular speeds which is a χ distribution with 3 degrees of freedom.
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The key characteristics of the χ distribution are summarized below [65, 66, 49].

Parameters: n = degrees of freedom, n must be a positive integer

PDF: f (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

2

(
n

2

)n/2

xn−1 exp

[
−
(

n

2σ2 x2

)]

Γ

(
n

2

)
σn

for 0 ≤ x < ∞

0 otherwise

Random variates from a χ distribution can be generated from the inverted CDF of
the distribution and are given by the following formula [65, 66, 49]:

χ(n,σ) =

√
χ2(n,σ)

n

The following code illustrates how the χ distribution may be implemented in C#.

public static double ChiPDF(double x, int n)
{

double gamma = Gamma(n / 2.0);
double exp = Math.Exp(-n * x * x / 2.0);
return 2.0 * Math.Pow(n / 2.0, n / 2) * Math.Pow(x, n - 1) * exp

/ Math.Pow(2, n / 2) / gamma;
}

public static double[] ChiPDF(double[] x, int n)
{

double[] tempArr = new double[x.Length];
for (int i = 0; i < x.Length; i++)
{

tempArr[i] = ChiPDF(x[i], n);
}
return tempArr;

}

public static double ChiPDF(double x, int n, double sigma)
{

double gamma = Gamma(n / 2.0);
double exp = Math.Exp(-n * x * x / 2.0 / sigma / sigma);
return 2.0 * Math.Pow(n / 2.0, n / 2) * Math.Pow(x, n - 1) * exp

/ Math.Pow(2, n / 2) / gamma / Math.Pow(sigma, n);
}

public static double[] ChiPDF(double[] x, int n, double sigma)
{

double[] tempArr = new double[x.Length];
for (int i = 0; i < x.Length; i++)
{ tempArr[i] = ChiPDF(x[i], n, sigma); }
return tempArr;

}
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public static double NextChi(int n)
{

return Math.Sqrt(NextChiSquare(n) / n);
}

public static double[] NextChi(int n, int nLen)
{

double[] tempArr = new double[nLen];
for (int i = 0; i < nLen; i++)
{

tempArr[i] = NextChi(n);
}
return tempArr;

}

public static double NextChi(int n, double sigma)
{

return Math.Sqrt(NextChiSquare(n, sigma) / n);
}

public static double[] NextChi(int n, double sigma, int nLen)
{

double[] tempArr = new double[nLen];
for (int i = 0; i < nLen; i++)
{ tempArr[i] = NextChi(n, sigma); }
return tempArr;

}

Note: The driver routine for the chi distribution is listed
together with the chi-square distribution.

Results: Chi Probability Distribution
Key: Bin number = *****... [random distrib.] [calculated distrib.]

Bin 0 = ******** [30] [29]
Bin 1 = ******************* [75] [77]
Bin 2 = ************************* [100] [100]
Bin 3 = ************************ [98] [96]
Bin 4 = ****************** [73] [75]
Bin 5 = ************* [50] [49]
Bin 6 = ******* [28] [27]
Bin 7 = *** [13] [13]
Bin 8 = * [6] [5]
Bin 9 = [1] [2]
Bin 10 = [1] [1]
Bin 11 = [0] [0]
Bin 12 = [0] [0]
Bin 13 = [0] [0]
Bin 14 = [0] [0]
Bin 15 = [0] [0]
Bin 16 = [0] [0]
Bin 17 = [0] [0]
Bin 18 = [0] [0]
Bin 19 = [0] [0]
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Chi-Square Distribution

The χ2 distribution is one of the most widely used theoretical probability distri-
butions in inferential statistics. It is useful because under reasonable assumptions,
easily calculated quantities can be proven to have distributions that approximate to
the χ2 distribution if the null hypothesis is true. The null hypothesis describes in a
formal way some aspect of the statistical behavior of a set of data and this description
is treated as valid unless the actual behavior of the data contradicts this assumption.
The key characteristics of the χ2 distribution are summarized below [65, 66, 49].

Parameters: n = degrees of freedom, n must be a positive integer

PDF: f (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

xn/2−1 exp

[
−
(

n

2σ2 x2

)]

2n/2Γ

(
n

2

)
σn

for 0 ≤ x < ∞

0 otherwise

Random variates from a χ2 distribution can be generated from the inverted CDF of
the distribution and are given by the following formula [65, 66, 49]:

χ2(n,σ) =
n

∑
i=1

[
Ni(0,σ2)

]2

where Ni(0,σ2) is the normal random distribution. The following code illustrates
how the χ2 distribution may be implemented in C#.

public static double ChiSquarePDF(double x, int n)
{

double gamma = Gamma(n / 2.0);
double exp = Math.Exp(-x / 2.0);
return Math.Pow(x, n / 2 - 1) * exp / Math.Pow(2, n / 2) / gamma;

}

public static double[] ChiSquarePDF(double[] x, int n)
{

double[] tempArr = new double[x.Length];
for (int i = 0; i < x.Length; i++)
{

tempArr[i] = ChiSquarePDF(x[i], n);
}
return tempArr;

}

public static double ChiSquarePDF(double x, int n, double sigma)
{

double gamma = Gamma(n / 2.0);
double exp = Math.Exp(-x / 2.0 / sigma / sigma);
return Math.Pow(x, n / 2 - 1) * exp / Math.Pow(2, n / 2) / gamma

/ Math.Pow(sigma, n);
}
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public static double[] ChiSquarePDF(double[] x, int n, double sigma)
{

double[] tempArr = new double[x.Length];
for (int i = 0; i < x.Length; i++)
{

tempArr[i] = ChiSquarePDF(x[i], n, sigma);
}
return tempArr;

}

public static double NextChiSquare(int n)
{

double sum = 0.0;
for (int i = 0; i < n; i++)
{

sum += Math.Pow(NextNormal(0, 1), 2);
}
return sum;

}

public static double[] NextChiSquare(int n, int nLen)
{

double[] tempArr = new double[nLen];
for (int i = 0; i < nLen; i++)
{

tempArr[i] = NextChiSquare(n);
}
return tempArr;

}

public static double NextChiSquare(int n, double sigma)
{

double sum = 0.0;
for (int i = 0; i < n; i++)
{

sum += Math.Pow(NextNormal(0, sigma * sigma), 2);
}
return sum;

}

public static double[] NextChiSquare(int n, double sigma, int nLen)
{

double[] tempArr = new double[nLen];
for (int i = 0; i < nLen; i++)
{

tempArr[i] = NextChiSquare(n, sigma);
}
return tempArr;

}

static void TestChiChiSquare()
{

int nBins = 20;
int nPoints = 10000;
double xmin = 0;
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double xmax = 5;
double sigma = 1.0;
int nVal = 2;
double displayScaleFactor = 500.0;

double[] randChi = NextChi(nVal, sigma, nPoints);
double[] randChiSquare = NextChiSquare(nVal, sigma, nPoints);
double[] RandomDistributionValuesChi =

makeHistogram(randChi, xmin, xmax, nBins);
double[] RandomDistributionValuesChiSquare =

makeHistogram(randChiSquare, xmin, xmax, nBins);
double[] xdata = new double[nBins];
double[] ydataChi = new double[nBins];
double[] ydataChiSquare = new double[nBins];
double[] yChiCalcDistribution = new double[nBins];
double[] yChiSquareCalcDistribution = new double[nBins];

for (int i = 0; i < nBins; i++)
{

xdata[i] = xmin + (i+0.5) * (xmax-xmin) / nBins;
ydataChi[i]=(double)RandomDistributionValuesChi[i];
ydataChiSquare[i]=(double)RandomDistributionValuesChiSquare[i];
yChiCalcDistribution[i]=ChiPDF(xdata[i], nVal, sigma);
yChiSquareCalcDistribution[i]=ChiSquarePDF(xdata[i],nVal,sigma);

}

double ydataChiMax = dataMax(ydataChi);
double yChiCalcDistributionMax = dataMax(yChiCalcDistribution);

double ydataChiSquareMax = dataMax(ydataChiSquare);
double yChiSquareCalcDistributionMax =

dataMax(yChiSquareCalcDistribution);

Console.WriteLine("\nTesting the Chi Probability Distribution");
Console.WriteLine("\nKey: Bin number = *****... [random distrib.]

[calculated distrib.]\n");
for (int i = 0; i < nBins; i++)
{

Console.Write("Bin {0,2:n0} = ", i + 1);
for (int j = 0; j < (Math.Round(ydataChi[i] *

displayScaleFactor/nBins/ydataChiMax,0));j++)
Console.Write("*");

Console.WriteLine(" [{0}] [{1}]", Math.Round(ydataChi[i] *
100.0 / ydataChiMax, 0), Math.Round(yChiCalcDistribution[i] *
100.0 / yChiCalcDistributionMax, 0));

}

Console.WriteLine("\nTesting the Chi-Square Probability
Distribution");

Console.WriteLine("\nKey: Bin number = *****... [random distrib.]
[calculated distrib.]\n");

for (int i = 0; i < nBins; i++)
{

Console.Write("Bin {0,2:n0} = ", i + 1);
for (int j = 0; j < (Math.Round(ydataChiSquare[i] *

displayScaleFactor/nBins/ydataChiSquareMax,0));j++)

© 2010 by Taylor and Francis Group, LLC



340 Numerical Methods, Algorithms and Tools in C#

Console.Write("*");
Console.WriteLine(" [{0}] [{1}]", Math.Round(ydataChiSquare[i] *

100.0 / ydataChiSquareMax, 0),
Math.Round(yChiSquareCalcDistribution[i] *
100.0 / yChiSquareCalcDistributionMax, 0));

}
Console.WriteLine("\nPress ENTER key to continue...");
Console.ReadLine(); Console.Clear();

}

Results: Chi Square Probability Distribution
Key: Bin number = *****... [random distrib.] [calculated distrib.]

Bin 0 = ************************* [100] [100]
Bin 1 = ********************** [87] [88]
Bin 2 = ******************* [76] [78]
Bin 3 = ***************** [67] [69]
Bin 4 = *************** [58] [61]
Bin 5 = ************* [52] [54]
Bin 6 = ************ [47] [47]
Bin 7 = ********** [39] [42]
Bin 8 = ********** [39] [37]
Bin 9 = ******** [31] [32]
Bin 10 = ******* [29] [29]
Bin 11 = ****** [23] [25]
Bin 12 = ***** [21] [22]
Bin 13 = **** [18] [20]
Bin 14 = ***** [18] [17]
Bin 15 = **** [15] [15]
Bin 16 = **** [15] [14]
Bin 17 = *** [12] [12]
Bin 18 = ** [10] [11]
Bin 19 = ** [9] [9]

Erlang Distribution

The Erlang distribution is a special case of the gamma distribution where the shape
parameter is a positive integer. It represents the sum of a series of exponential dis-
tributions. The distribution resulted from work done by the Danish mathematician
Agner Erlang who was a pioneer in the application of statistical methods to the anal-
ysis of telephone networks. The distribution was derived to model the total waiting
time associated with a queue of requests on a telephone exchange. Today, the Erlang
distribution is commonly used in queueing models as an extension of the exponen-
tial distribution. The key characteristics of the Erlang distribution are summarized
below [65, 66, 49].

Parameters: a = scale parameter, a > 0

m = shape parameter, m is a positive integer

PDF: f (x) =

⎧⎪⎨
⎪⎩

xm−1e−x/a

(m−1)!am where 0 ≤ x < ∞

0 otherwise
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Erlang distribution random variates can be generated using the following equation.

X = −a
m

∏
i=1

ui

The code below illustrates how the Erlang distribution may be implemented in C#.

public static double ErlangPDF(double x, double a, int b)
{

if (x >= 0.0)
return (Math.Pow(x,b-1)*Math.Exp(-x/a))/(Gamma(b)*Math.Pow(a,b));

else
return 0.0;

}

public static double[] ErlangPDF(double[] x, double a, int b)
{

double[] tempArr = new double[x.Length];
for (int i = 0; i < x.Length; i++)
{

tempArr[i] = ErlangPDF(x[i], a, b);
}
return tempArr;

}

public static double NextErlang(double a, int b)
{

double product = 1.0;
for (int i = 0; i < b; i++)
{

product *= randObj.NextDouble();
}
return (-a) * Math.Log(product);

}

public static double[] NextErlang(double a, int b, int nLen)
{

double[] tempArr = new double[nLen];
for (int i = 0; i < nLen; i++)
{

tempArr[i] = NextErlang(a,b);
}
return tempArr;

}

static void TestErlang()
{

int nBins = 20;
int nPoints = 10000;
double xmin = 0;
double xmax = 4;
double aVal = 1.0;
int bVal = 1;
double displayScaleFactor = 500.0;

double[] randObj = NextErlang(aVal, bVal, nPoints);
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double[] HistogramValues=makeHistogram(randObj,xmin,xmax,nBins);
double[] xdata = new double[nBins];
double[] ydata = new double[nBins];

double[] yCalcDistribution = new double[nBins];
for (int i = 0; i < nBins; i++)
{

xdata[i] = xmin + (i + 0.5) * (xmax - xmin) / nBins;
ydata[i] = (double)HistogramValues[i];
yCalcDistribution[i] = ErlangPDF(xdata[i], aVal, bVal);

}
double ydataMax = dataMax(ydata);
double yCalcDistributionMax = dataMax(yCalcDistribution);
Console.WriteLine("\nTesting the Erlang Distribution");
Console.WriteLine("\nKey: Bin number = *****... [random distrib.]

[calculated distrib.]\n");
for (int i = 0; i < nBins; i++)
{

Console.Write("Bin {0,2:n0} = ", i + 1);
for (int j = 0; j < (Math.Round(ydata[i]*displayScaleFactor /

nBins / ydataMax, 0)); j++) Console.Write("*");
Console.WriteLine(" [{0}] [{1}]",Math.Round(ydata[i]*100.0 /

ydataMax,0),Math.Round(yCalcDistribution[i]*100.0 /
yCalcDistributionMax,0));

}
Console.WriteLine("\nPress ENTER key to continue...");
Console.ReadLine(); Console.Clear();

}

Results: Erlang Probability Distribution
Key: Bin number = *****... [random distrib.] [calculated distrib.]

Bin 0 = ************************* [100] [100]
Bin 1 = ********************** [88] [82]
Bin 2 = ****************** [72] [67]
Bin 3 = ************** [56] [55]
Bin 4 = *********** [46] [45]
Bin 5 = ********** [39] [37]
Bin 6 = ******** [32] [30]
Bin 7 = ****** [25] [25]
Bin 8 = ***** [21] [20]
Bin 9 = ***** [19] [17]
Bin 10 = **** [16] [14]
Bin 11 = *** [12] [11]
Bin 12 = ** [9] [9]
Bin 13 = ** [8] [7]
Bin 14 = ** [7] [6]
Bin 15 = * [5] [5]
Bin 16 = * [4] [4]
Bin 17 = * [3] [3]
Bin 18 = * [2] [3]
Bin 19 = * [2] [2]
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Exponential Distribution

The exponential distribution occurs naturally when describing the lengths of the
inter-arrival times in a homogeneous Poisson process. A Poisson process is the
stochastic process in which events occur continuously and independently of one an-
other. A well-known example is radioactive decay of atoms. The key characteristics
of the exponential distribution are summarized below [65, 66, 49].

Parameters: a > 0

PDF: f (x) =

{
a e−ax if x ≥ 0

0 if x < 0

Random variates X from the exponential distribution can be generated using the
inversion transform method which results in the formula shown below.

X = −1

a
logu

where u ∼ u[0,1] is a random variate drawn from the uniform distribution. The code
below illustrates how the exponential distribution may be implemented in C#.

public static double ExponentialPDF(double x, double a)
{

return a * Math.Exp(-a * x);
}

public static double[] ExponentialPDF(double[] x, double a)
{

double[] tempArr = new double[x.Length];
for (int i = 0; i < x.Length; i++)
{ tempArr[i] = ExponentialPDF(x[i], a); }
return tempArr;

}

public static double NextExponential(double a)
{

return -Math.Log(randObj.NextDouble()) / a;
}

public static double[] NextExponential(double a, int nLen)
{

double[] tempArr = new double[nLen];
for (int i = 0; i < nLen; i++)
{ tempArr[i] = NextExponential(a); }
return tempArr;

}

static void TestExponential()
{

int nBins = 20;
int nPoints = 10000;
double xmin = 0.0; double xmax = 4.0;
double alphaVal = 1.5;
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double displayScaleFactor = 500.0;
double[] randObj = NextExponential(alphaVal, nPoints);
double[] HistogramValues =

makeHistogram(randObj, xmin, xmax, nBins);
double[] xdata = new double[nBins];
double[] ydata = new double[nBins];
double[] yCalcDistribution = new double[nBins];
for (int i = 0; i < nBins; i++)
{

xdata[i] = xmin + (i + 0.5) * (xmax - xmin) / nBins;
ydata[i] = (double)HistogramValues[i];
yCalcDistribution[i]=ExponentialPDF(xdata[i],alphaVal);

}
double ydataMax = dataMax(ydata);
double yCalcDistributionMax = dataMax(yCalcDistribution);
Console.WriteLine("\nTesting the Exponential Probability

Distribution");
Console.WriteLine("\nKey: Bin number = *****... [random distrib.]

[calculated distrib.]\n");
for (int i = 0; i < nBins; i++)
{

Console.Write("Bin {0,2:n0} = ", i + 1);
for (int j = 0; j < (Math.Round(ydata[i]*displayScaleFactor /

nBins / ydataMax, 0)); j++) Console.Write("*");
Console.WriteLine(" [{0}] [{1}]",Math.Round(ydata[i]*100.0 /

ydataMax,0),Math.Round(yCalcDistribution[i]*100.0 /
yCalcDistributionMax,0));

}
Console.WriteLine("\nPress ENTER key to continue...");
Console.ReadLine();
Console.Clear();

}

Results: Exponential Probability Distribution
Key: Bin number = *****... [random distrib.] [calculated distrib.]

Bin 0 = ************************* [100] [100]
Bin 1 = ****************** [73] [74]
Bin 2 = ************* [54] [55]
Bin 3 = ********** [40] [41]
Bin 4 = ******** [31] [30]
Bin 5 = ***** [20] [22]
Bin 6 = **** [16] [17]
Bin 7 = *** [12] [12]
Bin 8 = ** [10] [9]
Bin 9 = ** [7] [7]
Bin 10 = * [4] [5]
Bin 11 = * [3] [4]
Bin 12 = * [3] [3]
Bin 13 = [2] [2]
Bin 14 = [2] [1]
Bin 15 = [1] [1]
Bin 16 = [1] [1]
Bin 17 = [1] [1]
Bin 18 = [1] [0]
Bin 19 = [0] [0]
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Extreme Value Distribution

Extreme value theory is a branch of statistics responsible for studying extreme de-
viations from the median of probability distributions. Consequently, extreme value
theory is important for assessing risk for highly unusual events, such as 100-year
floods. Extreme value distributions are usually considered to comprise of the follow-
ing three families:

Type 1: Gumbel-type distributions.
Type 2: Frechet-type distributions.
Type 3: Weibull-type distributions.

The key characteristics of the extreme value distribution of type 1 (Gumbel-type)
are summarized below [66].

Parameters: −∞ < μ < ∞, σ > 0

Range: −∞ < x < ∞

PDF: f (x) =
1

σ
exp(−x− μ

σ
)exp(−exp(−x− μ

σ
))

Given a random variate u drawn from the uniform distribution u(0,1], the variate

X = μ −σ log(− log(u))

has a Gumbel distribution with parameters μ and σ . The following code illustrates
how the extreme value distribution (Gumbel-type) may be implemented in C#.

public static double ExtremeValuePDF(double x,double mu,double sigma)
{

double w = (x-mu)/sigma;
return (1.0/sigma) * Math.Exp(-w) * Math.Exp(-Math.Exp(-w));

}

public static double[] ExtremeValuePDF(double[] x,double mu,double
sigma)

{
double[] tempArr = new double[x.Length];
for (int i = 0; i < x.Length; i++)
{

tempArr[i] = ExtremeValuePDF(x[i], mu, sigma);
}
return tempArr;

}

public static double NextExtremeValue(double mu, double sigma)
{

return (mu - sigma*Math.Log(-Math.Log(randObj.NextDouble())));
}
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public static double[] NextExtremeValue(double mu, double sigma, int
nLen)

{
double[] tempArr = new double[nLen];
for (int i = 0; i < nLen; i++)
{

tempArr[i] = NextExtremeValue(mu,sigma);
}
return tempArr;

}

static void TestExtremeValue()
{

int nBins = 20;
int nPoints = 10000;
double xmin =-4;
double xmax = 8;
double muVal = 1.0;
double sigmaVal = 0.750;
double displayScaleFactor = 500.0;

double[] randObj=NextExtremeValue(muVal,sigmaVal, nPoints);
double[] HistogramValues=makeHistogram(randObj,xmin,xmax,nBins);
double[] xdata = new double[nBins];
double[] ydata = new double[nBins];

double[] yCalcDistribution = new double[nBins];
for (int i = 0; i < nBins; i++)
{
xdata[i] = xmin + (i + 0.5) * (xmax - xmin) / nBins;
ydata[i] = (double)HistogramValues[i];
yCalcDistribution[i]=ExtremeValuePDF(xdata[i],muVal,sigmaVal);

}

double ydataMax = dataMax(ydata);
double yCalcDistributionMax = dataMax(yCalcDistribution);

Console.WriteLine("\nTesting the Extreme Value Probability
Distribution");

Console.WriteLine("\nKey: Bin number = *****... [random distrib.]
[calculated distrib.]\n");

for (int i = 0; i < nBins; i++)
{

Console.Write("Bin {0,2:n0} = ", i + 1);
for (int j = 0; j < (Math.Round(ydata[i]*displayScaleFactor /

nBins / ydataMax, 0)); j++) Console.Write("*");
Console.WriteLine(" [{0}] [{1}]",Math.Round(ydata[i]*100.0 /

ydataMax,0),Math.Round(yCalcDistribution[i]*100.0 /
yCalcDistributionMax,0));

}
Console.WriteLine("\nPress ENTER key to continue...");
Console.ReadLine();
Console.Clear();

}
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Results: Extreme Value Probability Distribution
Key: Bin number = *****... [random distrib.] [calculated distrib.]

Bin 0 = [0] [0]
Bin 1 = [0] [0]
Bin 2 = [0] [0]
Bin 3 = [0] [0]
Bin 4 = [0] [0]
Bin 5 = [0] [0]
Bin 6 = **** [17] [16]
Bin 7 = ******************* [77] [76]
Bin 8 = ************************* [100] [100]
Bin 9 = ****************** [73] [73]
Bin 10 = ********** [40] [41]
Bin 11 = ***** [20] [20]
Bin 12 = ** [10] [9]
Bin 13 = * [5] [4]
Bin 14 = * [2] [2]
Bin 15 = [1] [1]
Bin 16 = [0] [0]
Bin 17 = [0] [0]
Bin 18 = [0] [0]
Bin 19 = [0] [0]

Gamma Distribution

The gamma distribution is essentially a generalization of the Erlang distribution.
Like the exponential and Erlang distributions, the gamma distribution is also used
in the modeling of some queueing networks. The key characteristics of the gamma
distribution are summarized below [65, 66, 49].

Parameters: a > 0, b > 0

PDF: f (x) =

⎧⎪⎨
⎪⎩

ab xb−1e−a x

Γ(b)
if 0 ≤ x < ∞

0 if x < 0

Given a random variate u drawn from the uniform distribution u[0,1], the variate

X = −1

a

b

∑
i=1

log ui

has a gamma distribution with parameters a and b. The code below illustrates how
the gamma distribution may be implemented in C#.

public static double GammaPDF(double x, int b, double a)
{

return Math.Pow(a,b)*Math.Pow(x,b-1)*Math.Exp(-a*x)/Gamma(b);
}
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public static double[] GammaPDF(double[] x, int b, double a)
{

double[] tempArray = new double[x.Length];
for (int i = 0; i < x.Length; i++)
{

tempArray[i] = GammaPDF(x[i], b, a);
}
return tempArray;

}

public static double NextGamma(int b, double a)
{

double temp = 0.0;
for (int i = 0; i < b; i++)
{

temp += -Math.Log(randObj.NextDouble()) / a;
}
return temp;

}

public static double[] NextGamma(int b, double a, int nLen)
{

double[] tempArr = new double[nLen];
for (int i = 0; i < nLen; i++)
{

tempArr[i] = NextGamma(b, a);
}
return tempArr;

}

static void TestGamma()
{

int nBins = 20; int nPoints = 10000;
double xmin = 0.0; double xmax = 15.0;
double aVal = 0.6; int bVal = 2;
double displayScaleFactor = 500.0;
double[] randObj = NextGamma(bVal, aVal, nPoints);
double[] HistogramValues =

makeHistogram(randObj, xmin, xmax, nBins);
double[] xdata = new double[nBins];
double[] ydata = new double[nBins];
double[] yCalcDistribution = new double[nBins];
for (int i = 0; i < nBins; i++)
{

xdata[i] = xmin + (i + 0.5) * (xmax - xmin) / nBins;
ydata[i] = (double)HistogramValues[i];
yCalcDistribution[i] = GammaPDF(xdata[i], bVal, aVal);

}
double ydataMax = dataMax(ydata);
double yCalcDistributionMax = dataMax(yCalcDistribution);
Console.WriteLine("\nTesting the Gamma Probability Distribution");
Console.WriteLine("\nKey: Bin number = *****... [random distrib.] [

calculated distrib.]\n");
for (int i = 0; i < nBins; i++)
{

Console.Write("Bin {0,2:n0} = ", i + 1);
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for (int j = 0; j < (Math.Round(ydata[i]*displayScaleFactor /
nBins / ydataMax, 0)); j++) Console.Write("*");

Console.WriteLine(" [{0}] [{1}]",Math.Round(ydata[i]*100.0 /
ydataMax,0),Math.Round(yCalcDistribution[i]*100.0 /
yCalcDistributionMax,0));

}
Console.WriteLine("\nPress ENTER key to continue...");
Console.ReadLine(); Console.Clear();

}

Results: Gamma Probability Distribution
Key: Bin number = *****... [random distrib.] [calculated distrib.]

Bin 0 = ************ [48] [49]
Bin 1 = ************************ [95] [94]
Bin 2 = ************************* [100] [100]
Bin 3 = ************************ [95] [89]
Bin 4 = ******************* [78] [73]
Bin 5 = ************** [55] [57]
Bin 6 = *********** [46] [43]
Bin 7 = ******** [30] [32]
Bin 8 = ****** [24] [23]
Bin 9 = **** [17] [16]
Bin 10 = *** [13] [11]
Bin 11 = ** [8] [8]
Bin 12 = ** [6] [6]
Bin 13 = * [3] [4]
Bin 14 = * [2] [3]
Bin 15 = [2] [2]
Bin 16 = [1] [1]
Bin 17 = [1] [1]
Bin 18 = [1] [1]
Bin 19 = [0] [0]

Laplace Distribution

The Laplace distribution is a continuous probability distribution consisting of two
exponential distributions, one positive and one negative. A major distinguishing
feature of the Laplace distribution is that it has significantly longer tails compared
to the normal distribution. In recent years the Laplace distribution has been applied
in various disciplines such as communications, economics, engineering and finance.
The key characteristics of the Laplace distribution are summarized below [65, 66,
49].

Parameters: μ > 0, b > 0

Range: −∞ < x < ∞

PDF: f (x) =
1
2b

exp

(
−|x− μ |

b

)
=

1
2b

{
exp

(− μ−x
b

)
if x < μ

exp
(− x−μ

b

)
if x ≥ μ

The inverse transform method can be used to obtain equations for generating ran-
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dom variates X from the Laplace distribution. The results are shown below.

X =

{
μ + b log (2u) for u ≤ 0.5

μ −b log (2(1−u)) for u > 0.5

where u∼ u[0,1] is a random variate drawn from uniform distribution. The following
code illustrates how the Laplace distribution may be implemented in C#.

public static double LaplacePDF(double x, double sigma)
{

double coef = Math.Sqrt(2.0) / sigma;
return 0.5 * coef * Math.Exp(-coef * Math.Abs(x));

}

public static double[] LaplacePDF(double[] x, double sigma)
{

double[] tempArr = new double[x.Length];
for (int i = 0; i < x.Length; i++)
{

tempArr[i] = LaplacePDF(x[i], sigma);
}
return tempArr;

}

public static double NextLaplace(double sigma)
{

double coef = sigma / Math.Sqrt(2.0);
double u = randObj.NextDouble();
if ((u > 0.0) && (u < 0.5))

return coef * Math.Log(2.0 * u);
else if ((u >= 0.5) && (u < 1.0))

return coef * Math.Log(1.0 / (2.0 * (1.0 - u)));
else return 0.0;

}

public static double[] NextLaplace(double sigma, int nLen)
{

double[] tempArr = new double[nLen];
for (int i = 0; i < nLen; i++)
{

tempArr[i] = NextLaplace(sigma);
}
return tempArr;

}

static void TestLaplace()
{

int nBins = 20;
int nPoints = 10000;
double xmin = -5.0;
double xmax = 5.0;
double sigmaVal = 2.0;
double displayScaleFactor = 500.0;

double[] randObj = NextLaplace(sigmaVal, nPoints);
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double[] HistogramValues =
makeHistogram(randObj, xmin, xmax, nBins);

double[] xdata = new double[nBins];
double[] ydata = new double[nBins];

double[] yCalcDistribution = new double[nBins];
for (int i = 0; i < nBins; i++)
{

xdata[i] = xmin + (i + 0.5) * (xmax - xmin) / nBins;
ydata[i] = (double)HistogramValues[i];
yCalcDistribution[i] = LaplacePDF(xdata[i], sigmaVal);

}
double ydataMax = dataMax(ydata);
double yCalcDistributionMax = dataMax(yCalcDistribution);
Console.WriteLine("\nTesting the Laplace Distribution");
Console.WriteLine("\nKey: Bin number = *****... [random distrib.]

[calculated distrib.]\n");
for (int i = 0; i < nBins; i++)
{
Console.Write("Bin {0,2:n0} = ", i + 1);
for (int j = 0; j < (Math.Round(ydata[i]*displayScaleFactor /

nBins / ydataMax, 0)); j++) Console.Write("*");
Console.WriteLine(" [{0}] [{1}]",Math.Round(ydata[i]*100.0 /

ydataMax,0),Math.Round(yCalcDistribution[i]*100.0 /
yCalcDistributionMax,0));

}
Console.WriteLine("\nPress ENTER key to continue...");
Console.ReadLine();
Console.Clear();

}

Results: Laplace Probability Distribution
Key: Bin number = *****... [random distrib.] [calculated distrib.]

Bin 0 = * [5] [4]
Bin 1 = * [5] [6]
Bin 2 = ** [8] [8]
Bin 3 = *** [12] [12]
Bin 4 = **** [17] [17]
Bin 5 = ****** [24] [24]
Bin 6 = ********* [38] [35]
Bin 7 = ************ [47] [49]
Bin 8 = ***************** [68] [70]
Bin 9 = *********************** [93] [98]
Bin 10 = ************************* [99] [100]
Bin 11 = ****************** [71] [70]
Bin 12 = ************ [49] [49]
Bin 13 = ******** [33] [35]
Bin 14 = ****** [26] [24]
Bin 15 = **** [17] [17]
Bin 16 = *** [13] [12]
Bin 17 = ** [8] [8]
Bin 18 = * [5] [6]
Bin 19 = * [4] [4]
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Logistic Distribution

The logistic distribution has been extensively applied to many different disciplines.
In biology, for example, it has been used to model how certain population species
grow in competition. In epidemiology, it has been use to model the spreading of
epidemics. The key characteristics of the logistic distribution are summarized be-
low [66].

Parameters: −∞ < a < ∞ and b > 0

Range: −∞ < x < ∞

PDF: f (x) =
exp(

x−a

b
)

b

(
1 + exp(

x−a

b
)

)2

Using the inverse transform method we may obtain an equation for generating ran-
dom variates X from the logistic distribution as shown below.

X = a + b log

(
u

1−u

)

where u is a random variate drawn from the uniform distribution u[0,1]. The follow-
ing code illustrates how the logistic distribution may be implemented in C#.

public static double LogisticPDF(double x, double b, double a)
{
return Math.Exp(-(x-a)/b)/(b*Math.Pow((1.0+Math.Exp(-(x-a)/b)),2.0));
}

public static double[] LogisticPDF(double[] x,double b,double a)
{

double[] tempArr = new double[x.Length];
for (int i = 0; i < x.Length; i++)
{ tempArr[i] = LogisticPDF(x[i], b, a); }
return tempArr;

}

public static double NextLogistic(double b, double a)
{

double u = randObj.NextDouble();
return a + b * Math.Log(u / (1 - u));

}

public static double[] NextLogistic(double b, double a, int nLen)
{

double[] tempArr = new double[nLen];
for (int i = 0; i < nLen; i++)
{ tempArr[i] = NextLogistic(b,a); }
return tempArr;

}
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static void TestLogistic()
{

int nBins = 20; int nPoints = 10000; double xmin = -5;
double xmax = 15; double aVal = 2.0; double bVal = 1.0;
double displayScaleFactor = 500.0;
double[] randObj = NextLogistic(bVal,aVal,nPoints);
double[] HistogramValues = makeHistogram(randObj,xmin,xmax,nBins);
double[] xdata = new double[nBins];
double[] ydata = new double[nBins];
double[] yCalcDistribution = new double[nBins];
for (int i = 0; i < nBins; i++)
{

xdata[i] = xmin + (i + 0.5) * (xmax - xmin) / nBins;
ydata[i] = (double)HistogramValues[i];
yCalcDistribution[i] = LogisticPDF(xdata[i], bVal, aVal);

}
double ydataMax = dataMax(ydata);
double yCalcDistributionMax = dataMax(yCalcDistribution);
Console.WriteLine("\nTesting the Logistic Probability Distribution"

);
Console.WriteLine("\nKey: Bin number = *****... [random distrib.] [

calculated distrib.]\n");
for (int i = 0; i < nBins; i++)
{

Console.Write("Bin {0,2:n0} = ", i + 1);
for (int j = 0; j < (Math.Round(ydata[i]*displayScaleFactor /

nBins / ydataMax, 0)); j++) Console.Write("*");
Console.WriteLine(" [{0}] [{1}]",Math.Round(ydata[i]*100.0 /

ydataMax,0),Math.Round(yCalcDistribution[i]*100.0 /
yCalcDistributionMax,0));

}
}

Results: Logistic Probability Distribution
Key: Bin number = *****... [random distrib.] [calculated distrib.]
Bin 0 = [1] [1]
Bin 1 = [2] [2]
Bin 2 = * [5] [5]
Bin 3 = *** [12] [12]
Bin 4 = ******* [30] [30]
Bin 5 = *************** [62] [63]
Bin 6 = ************************* [100] [100]
Bin 7 = ************************ [96] [100]
Bin 8 = **************** [65] [63]
Bin 9 = ******** [30] [30]
Bin 10 = *** [13] [12]
Bin 11 = * [5] [5]
Bin 12 = [1] [2]
Bin 13 = [1] [1]
Bin 14 = [0] [0]
Bin 15 = [0] [0]
Bin 16 = [0] [0]
Bin 17 = [0] [0]
Bin 18 = [0] [0]
Bin 19 = [0] [0]
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Lognormal Distribution

The lognormal distribution is commonly used to model the lives of units whose fail-
ure modes are of a fatigue-stress nature. Since this includes most, if not all, mechan-
ical systems, the lognormal distribution can have widespread application. The key
characteristics of the lognormal distribution are summarized below [66].

Parameters: μ > 0 and σ > 0

PDF: f (x) =

⎧⎨
⎩

1

σx
√

2π
e−(logx−μ)2/2σ 2

if 0 ≤ x < ∞

0 otherwise

Given a random variate N(0,1) drawn from the normal distribution with 0 mean and
1 standard deviation, then the variate

X = eμ+σN(0,1)

has a lognormal distribution with parameters μ and σ . The following code illustrates
how the lognormal distribution may be implemented in C#.

public static double LognormalPDF(double x, double mu, double sigma)
{

double x1, x2;
if (x > 0.0)
{

x1 = 1.0/(sigma*x*Math.Sqrt(2.0*Math.PI));
x2 = (Math.Log(x)-mu)*(Math.Log(x)-mu)/(2.0*sigma*sigma);
return x1*Math.Exp(-x2);

}
else

return 0.0;
}

public static double[] LognormalPDF(double[] x, double mu, double
sigma)

{
double[] tempArr = new double[x.Length];
for (int i = 0; i < x.Length; i++)
{

tempArr[i] = LognormalPDF(x[i], mu, sigma);
}
return tempArr;

}

public static double NextLognormal(double mu, double sigma)
{

return Math.Exp(mu + sigma * NextNormal(0.0, 1.0));
}
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public static double[] NextLognormal(double mu, double sigma, int
nLen)

{
double[] tempArr = new double[nLen];
for (int i = 0; i < nLen; i++)
{

tempArr[i] = NextLognormal(mu, sigma);
}
return tempArr;

}

static void TestLognormal()
{

int nBins = 20;
int nPoints = 10000;
double xmin = 0.0;
double xmax = 5.0;
double mu = 0.0;
double sigma =0.5;
double displayScaleFactor = 500.0;

double[] randObj = NextLognormal(mu, sigma, nPoints);
double[] HistogramValues =

makeHistogram(randObj, xmin, xmax, nBins);
double[] xdata = new double[nBins];
double[] ydata = new double[nBins];

double[] yCalcDistribution = new double[nBins];
for (int i = 0; i < nBins; i++)
{

xdata[i] = xmin + (i + 0.5) * (xmax - xmin) / nBins;
ydata[i] = (double)HistogramValues[i];
yCalcDistribution[i]=LognormalPDF(xdata[i],mu,sigma);

}

double ydataMax = dataMax(ydata);
double yCalcDistributionMax = dataMax(yCalcDistribution);

Console.WriteLine("\nTesting the Lognormal Probability
Distribution");

Console.WriteLine("\nKey: Bin number = *****... [random distrib.]
[calculated distrib.]\n");

for (int i = 0; i < nBins; i++)
{

Console.Write("Bin {0,2:n0} = ", i + 1);
for (int j = 0; j < (Math.Round(ydata[i]*displayScaleFactor /

nBins / ydataMax, 0)); j++) Console.Write("*");
Console.WriteLine(" [{0}] [{1}]",Math.Round(ydata[i]*100.0 /

ydataMax,0),Math.Round(yCalcDistribution[i]*100.0 /
yCalcDistributionMax,0));

}
Console.WriteLine("\nPress ENTER key to continue...");
Console.ReadLine(); Console.Clear();

}
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Results: Lognormal Probability Distribution
Key: Bin number = *****... [random distrib.] [calculated distrib.]

Bin 0 = [1] [0]
Bin 1 = ********* [35] [35]
Bin 2 = *********************** [94] [93]
Bin 3 = ************************* [100] [100]
Bin 4 = ******************** [81] [78]
Bin 5 = ************* [53] [54]
Bin 6 = ********* [34] [35]
Bin 7 = ****** [23] [22]
Bin 8 = *** [13] [14]
Bin 9 = ** [9] [9]
Bin 10 = ** [6] [5]
Bin 11 = * [3] [3]
Bin 12 = * [2] [2]
Bin 13 = [1] [1]
Bin 14 = [1] [1]
Bin 15 = [1] [1]
Bin 16 = [0] [0]
Bin 17 = [0] [0]
Bin 18 = [0] [0]
Bin 19 = [0] [0]

Normal Distribution

The normal or Gaussian distribution is a continuous probability distribution that is
often used to describe, at least approximately, any variable or data that tends to clus-
ter around some mean or average value. The normal distribution is characterized by
two parameters: its mean value μ and its standard deviation σ . The graph of the as-
sociated probability density function is bell-shaped, with a peak at the mean, and is
known as the Gaussian function or bell curve. The key characteristics of the normal
distribution are summarized below [65, 66, 49].

Parameters: μ = mean

σ = standard deviation, σ > 0

Range: −∞ < x < ∞

PDF: f (x) =
1

σ
√

2π
e−(x−μ)2/2σ 2

There are several methods available for calculating random variates from a normal
distribution. However, not all of them are optimized for speed. The Box-Muller
transform, for example, is a well known method for generating pairs of independent
random numbers that are characterized by a normal distribution. Suppose u1 and u2

are independent random variables drawn from a uniform distribution u[0,1]. Then
by applying the Box-Muller transform

X0 =
√
−2logu1 cos(2πu2)

Y0 =
√
−2logu1 sin(2πu2)
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it can be shown that X0 and Y0 are independent random variables with a normal distri-
bution. However, having to calculate a lot of logarithms and trigonometric functions
can become computationally expensive for large data samples.

The Marsaglia polar method provides a somewhat faster and more efficient way for
generating a pair of independent standard normal random variables. This algorithm
works by choosing random points (x,y) in the square −1 < x < 1, −1 < y < 1 until
s = x2 + y2 < 1 and then returning the required pair of normal random variables as

X0 = x
√

−2log(s)/s

Y0 = y
√
−2log(s)/s

The following code illustrates how the normal probability density distribution may
be implemented in C# [65, 66, 49]:.

public static double NormalPDF(double x, double mu, double sigma)
{

double x1 = 1 / sigma / Math.Sqrt(2 * Math.PI);
double x2 = (x - mu) * (x - mu) / (2 * sigma * sigma);
return x1 * Math.Exp(-x2);

}

public static double[] NormalPDF(double[] x, double mu, double sigma)
{

double[] tempArr = new double[x.Length];
for (int i = 0; i < x.Length; i++)
{

tempArr[i] = NormalPDF(x[i], mu, sigma);
}
return tempArr;

}

public static double NextNormal(double mu, double sigma)
{

double x = 2.0 * randObj.NextDouble() - 1.0;
double y = 2.0 * randObj.NextDouble() - 1.0;
double s = x * x + y * y;

while (s > 1.0)
{

x = 2.0 * randObj.NextDouble() - 1.0;
y = 2.0 * randObj.NextDouble() - 1.0;
s = x * x + y * y;

}

double xGaussian = Math.Sqrt(-2.0*Math.Log(s)/s)*x*sigma+mu;
double yGaussian = Math.Sqrt(-2.0*Math.Log(s)/s)*y*sigma+mu;

return xGaussian;
}
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public static double[] NextNormal(double mu, double sigma, int nLen)
{

double[] tempArr = new double[nLen];
for (int i = 0; i < nLen; i++)
{

tempArr[i] = NextNormal(mu, sigma);
}
return tempArr;

}

static void TestNormal()
{

int nBins = 20;
int nPoints = 10000;
double xmin = 0.0;
double xmax = 4.0;
double mu = 2.0;
double sigma = 0.5;
double displayScaleFactor = 500.0;

double[] randObj = NextNormal(mu, sigma, nPoints);
double[] HistogramValues =

makeHistogram(randObj, xmin, xmax, nBins);
double[] xdata = new double[nBins];
double[] ydata = new double[nBins];

double[] yCalcDistribution = new double[nBins];
for (int i = 0; i < nBins; i++)
{

xdata[i] = xmin + (i + 0.5) * (xmax - xmin) / nBins;
ydata[i] = (double)HistogramValues[i];
yCalcDistribution[i] = NormalPDF(xdata[i], mu, sigma);

}

double ydataMax = dataMax(ydata);
double yCalcDistributionMax = dataMax(yCalcDistribution);

Console.WriteLine("\nTesting the Normal Probability Distribution");
Console.WriteLine("\nKey: Bin number = *****... [random distrib.] [

calculated distrib.]\n");

for (int i = 0; i < nBins; i++)
{

Console.Write("Bin {0,2:n0} = ", i + 1);
for (int j = 0; j < (Math.Round(ydata[i]*displayScaleFactor /

nBins / ydataMax, 0)); j++) Console.Write("*");
Console.WriteLine(" [{0}] [{1}]",Math.Round(ydata[i]*100.0 /

ydataMax,0),Math.Round(yCalcDistribution[i]*100.0 /
yCalcDistributionMax,0));

}
Console.WriteLine("\nPress ENTER key to continue...");
Console.ReadLine();
Console.Clear();

}
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Results: Normal (Gaussian) Probability Distribution
Key: Bin number = *****... [random distrib.] [calculated distrib.]

Bin 0 = [0] [0]
Bin 1 = [0] [0]
Bin 2 = [1] [1]
Bin 3 = * [3] [3]
Bin 4 = ** [7] [9]
Bin 5 = ***** [20] [20]
Bin 6 = ********* [38] [38]
Bin 7 = *************** [60] [62]
Bin 8 = ********************** [87] [85]
Bin 9 = ************************* [100] [100]
Bin 10 = ************************* [99] [100]
Bin 11 = ********************* [83] [85]
Bin 12 = *************** [59] [62]
Bin 13 = ********** [39] [38]
Bin 14 = ***** [21] [20]
Bin 15 = ** [8] [9]
Bin 16 = * [4] [3]
Bin 17 = [1] [1]
Bin 18 = [1] [0]
Bin 19 = [0] [0]

Pareto Distribution

The Pareto distribution is a power law probability distribution that coincides with
social, scientific, geophysical, actuarial, and many other types of observable phe-
nomena. Outside the field of economics it is at times also referred to as the Bradford
distribution. The Pareto distribution was originally used to describe the allocation of
wealth among individuals since it seemed to show rather well the way that a larger
portion of the wealth of any society is owned by a smaller percentage of the people
in that society. The key characteristics of the Pareto distribution are summarized
below [66].

Parameters: a > 0, b > 0

PDF: f (x) =

{
bab x−b−1 if a ≤ x < ∞
0 otherwise

An equation for generating random variates X from the Pareto probability distribu-
tion may be obtained by applying the inverse transform method to the corresponding
PDF which leads to the following result below.

X = au−1/b

where u ∼ u[0,1] is a random variate drawn from the uniform distribution. The
following code illustrates how the Pareto distribution may be implemented in C#.
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public static double ParetoPDF(double x, double a, double b)
{

if (x > a)
return b * Math.Pow(a, b) * Math.Pow(x, -b - 1.0);

else
return 0.0;

}

public static double[] ParetoPDF(double[] x, double a, double b)
{

double[] tempArr = new double[x.Length];
for (int i = 0; i < x.Length; i++)
{ tempArr[i] = ParetoPDF(x[i], a, b); }
return tempArr;

}

public static double NextPareto(double a, double b)
{

return a * Math.Pow(randObj.NextDouble(), -1.0 / b);
}

public static double[] NextPareto(double a, double b, int nLen)
{

double[] tempArr = new double[nLen];
for (int i = 0; i < nLen; i++)
{ tempArr[i] = NextPareto(a,b); }
return tempArr;

}

static void TestPareto()
{

int nBins = 20; int nPoints = 10000; double xmin = 0.0;
double xmax = 5.0; double bVal = 1.0; double aVal = 1.0;
double displayScaleFactor = 500.0;
double[] randObj = NextPareto(aVal, bVal, nPoints);
double[] HistogramValues = makeHistogram(randObj, xmin, xmax,

nBins);
double[] xdata = new double[nBins];
double[] ydata = new double[nBins];
double[] yCalcDistribution = new double[nBins];
for (int i = 0; i < nBins; i++)
{

xdata[i] = xmin + (i + 0.5) * (xmax - xmin) / nBins;
ydata[i] = (double)HistogramValues[i];
yCalcDistribution[i] = ParetoPDF(xdata[i], aVal, bVal);

}
double ydataMax = dataMax(ydata);
double yCalcDistributionMax = dataMax(yCalcDistribution);
Console.WriteLine("\nTesting Pareto Probability Distribution");
Console.WriteLine("\nKey: Bin number = *****... [random distrib.]

[calculated distrib.]\n");
for (int i = 0; i < nBins; i++)
{
Console.Write("Bin {0,2:n0} = ", i + 1);
for (int j = 0; j < (Math.Round(ydata[i]*displayScaleFactor /

nBins / ydataMax, 0)); j++) Console.Write("*");
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Console.WriteLine(" [{0}] [{1}]",Math.Round(ydata[i]*100.0 /
ydataMax,0),Math.Round(yCalcDistribution[i]*100.0 /
yCalcDistributionMax,0));

}
}

Results: Pareto Probability Distribution
Key: Bin number = *****... [random distrib.] [calculated distrib.]

Bin 0 = [0] [0]
Bin 1 = [0] [0]
Bin 2 = [0] [0]
Bin 3 = [0] [0]
Bin 4 = ************************* [100] [100]
Bin 5 = **************** [65] [67]
Bin 6 = ************ [48] [48]
Bin 7 = ********* [37] [36]
Bin 8 = ******* [28] [28]
Bin 9 = ****** [23] [22]
Bin 10 = **** [18] [18]
Bin 11 = **** [17] [15]
Bin 12 = *** [14] [13]
Bin 13 = *** [11] [11]
Bin 14 = ** [10] [10]
Bin 15 = ** [8] [8]
Bin 16 = ** [8] [7]
Bin 17 = ** [7] [7]
Bin 18 = * [5] [6]
Bin 19 = * [5] [5]

Rayleigh Distribution

The Rayleigh distribution is a continuous probability distribution which can arise
when a two-dimensional vector has elements that are normally distributed, are un-
correlated, and have equal variance. The vector’s magnitude is then said to have a
Rayleigh distribution. The key characteristics of the Rayleigh distribution are sum-
marized below [65, 66, 49].

Parameters: σ > 0

PDF: f (x) =

⎧⎨
⎩

x
σ2 exp

(−x2

2σ2

)
if 0 ≤ x < ∞

0 otherwise

An equation for generating random variates X from the Rayleigh probability distribu-
tion may be obtained by applying the inverse transform method to the corresponding
PDF which leads to the following result below.

X = σ
√
−2log(u)

where u ∼ u(0,1] is a random variate drawn from the uniform distribution. The
following code illustrates how the Rayleigh distribution may be implemented in C#.
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public static double RayleighPDF(double x, double sigma)
{

if (x >= 0.0)
return (x/sigma/sigma) * Math.Exp(-x*x/2.0/sigma/sigma);

else
return 0.0;

}

public static double[] RayleighPDF(double[] x, double sigma)
{

double[] tempArr = new double[x.Length];
for (int i = 0; i < x.Length; i++)
{ tempArr[i] = RayleighPDF(x[i], sigma); }
return tempArr;

}

public static double NextRayleigh(double sigma)
{

double u = randObj.NextDouble();
if (u != 0.0)

return sigma * Math.Sqrt(-2.0 * Math.Log(u));
else

return double.NaN;
}

public static double[] NextRayleigh(double sigma, int nLen)
{

double[] tempArr = new double[nLen];
for (int i = 0; i < nLen; i++)
{ tempArr[i] = NextRayleigh(sigma); }
return tempArr;

}

static void TestRayleigh()
{

int nBins=20; int nPoints=10000; double xmin=0; double xmax=4;
double sigma = 0.5; double displayScaleFactor = 500.0;
double[] randObj = NextRayleigh(sigma, nPoints);
double[] HistogramValues =

makeHistogram(randObj, xmin, xmax, nBins);
double[] xdata = new double[nBins];
double[] ydata = new double[nBins];
double[] yCalcDistribution = new double[nBins];
for (int i = 0; i < nBins; i++)
{

xdata[i] = xmin + (i + 0.5) * (xmax - xmin) / nBins;
ydata[i] = (double)HistogramValues[i];
yCalcDistribution[i] = RayleighPDF(xdata[i], sigma);

}
double ydataMax = dataMax(ydata);
double yCalcDistributionMax = dataMax(yCalcDistribution);
Console.WriteLine("\nTesting the Rayleigh Probability

Distribution");
Console.WriteLine("\nKey: Bin number = *****... [random distrib.]

[calculated distrib.]\n");
for (int i = 0; i < nBins; i++)
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{
Console.Write("Bin {0,2:n0} = ", i + 1);
for (int j = 0; j < (Math.Round(ydata[i]*displayScaleFactor /

nBins / ydataMax, 0)); j++) Console.Write("*");
Console.WriteLine(" [{0}] [{1}]",Math.Round(ydata[i]*100.0 /

ydataMax,0),Math.Round(yCalcDistribution[i]*100.0 /
yCalcDistributionMax,0));

}
}

Results: Rayleigh Probability Distribution
Key: Bin number = *****... [random distrib.] [calculated distrib.]
Bin 0 = ******** [32] [32]
Bin 1 = ********************* [83] [83]
Bin 2 = ************************* [100] [100]
Bin 3 = ********************* [84] [87]
Bin 4 = ************** [57] [59]
Bin 5 = ******** [32] [32]
Bin 6 = **** [14] [15]
Bin 7 = * [6] [5]
Bin 8 = [2] [2]
Bin 9 = [0] [0]
Bin 10 = [0] [0]
Bin 11 = [0] [0]
Bin 12 = [0] [0]
Bin 13 = [0] [0]
Bin 14 = [0] [0]
Bin 15 = [0] [0]
Bin 16 = [0] [0]
Bin 17 = [0] [0]
Bin 18 = [0] [0]
Bin 19 = [0] [0]

Student-t Distribution

The student’s t-distribution, also known as just the t-distribution, is a probability
distribution that arises when estimating the mean of a normally distributed popu-
lation when the sample size is small and the population of the standard deviation
is unknown and has to be estimated from the data. When we speak of a specific
t-distribution, we have to specify the degrees of freedom as there is a different t-
distribution for each sample size. The t-distribution curves are symmetric and bell-
shaped like the normal distribution and have their peak at 0. However, the spread is
more than that of the standard normal distribution. The larger the degrees of freedom,
the closer the t-distribution is to the normal distribution. The key characteristics of
the student-t distribution are summarized below [65, 66, 49].

Parameters: n > 0

Range: −∞ < x < ∞

PDF: f (x) =
Γ((n + 1)/2)

Γ(1/2)
√

nΓ(n/2)

(
1 +

x2

n

)−(n+1)/2
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where the parameter n is the degrees of freedom and Γ is the gamma function.
Random variates X from the student’s t-distribution can be obtained by the follow-

ing equation below.

X =
N(0,1)
χ(n,1)

where N(0,1) is a random variate drawn from the normal distribution with σ = 1 and
μ = 0 and χ(n,1) is a random variate drawn from the χ distribution with n degrees
of freedom and σ = 1. The following code illustrates how the student’s t-distribution
may be implemented in C#.

public static double StudentTPDF(double x, int n)
{

double gamma1 = Gamma((n + 1.0) / 2.0);
double gamma2 = Gamma(1.0 / 2.0);
double gamma3 = Gamma(n / 2.0);
return Math.Pow(n,-0.5)*Math.Pow(1+x*x/n,-(n+1)/2) *

gamma1/gamma2/gamma3;
}

public static double[] StudentTPDF(double[] x, int n)
{

double[] tempArr = new double[x.Length];
for (int i = 0; i < x.Length; i++)
{ tempArr[i] = StudentTPDF(x[i], n); }
return tempArr;

}

public static double NextStudentT(int n)
{

return NextNormal(0, 1) / NextChi(n);
}

public static double[] NextStudentT(int n, int nLen)
{

double[] tempArr = new double[nLen];
for (int i = 0; i < nLen; i++)
{ tempArr[i] = NextStudentT(n); }
return tempArr;

}

static void TestStudentT()
{

int nBins = 20; int nPoints = 10000;
double xmin = -7.0; double xmax = 7.0; int nVal = 5;
double displayScaleFactor = 500.0;
double[] randObj = NextStudentT(nVal, nPoints);
double[] HistogramValues =

makeHistogram(randObj, xmin, xmax, nBins);
double[] xdata = new double[nBins];
double[] ydata = new double[nBins];
double[] yCalcDistribution = new double[nBins];
for (int i = 0; i < nBins; i++)
{

xdata[i] = xmin + (i + 0.5) * (xmax - xmin) / nBins;
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ydata[i] = HistogramValues[i];
yCalcDistribution[i] = StudentTPDF(xdata[i], nVal);

}
double ydataMax = dataMax(ydata);
double yCalcDistributionMax = dataMax(yCalcDistribution);
Console.WriteLine("\nTesting the Student-T Probability

Distribution");
Console.WriteLine("\nKey: Bin number = *****... [random distrib.]

[calculated distrib.]\n");
for (int i = 0; i < nBins; i++)
{
Console.Write("Bin {0,2:n0} = ", i + 1);
for (int j = 0; j < (Math.Round(ydata[i]*displayScaleFactor /

nBins / ydataMax, 0)); j++) Console.Write("*");
Console.WriteLine(" [{0}] [{1}]",Math.Round(ydata[i]*100.0 /

ydataMax,0),Math.Round(yCalcDistribution[i]*100.0 /
yCalcDistributionMax,0));

}
}

Results: Student-T Probability Distribution
Key: Bin number = *****... [random distrib.] [calculated distrib.]

Bin 0 = [0] [0]
Bin 1 = [0] [0]
Bin 2 = [0] [0]
Bin 3 = [1] [1]
Bin 4 = [2] [2]
Bin 5 = * [4] [4]
Bin 6 = *** [11] [10]
Bin 7 = ******* [27] [26]
Bin 8 = *************** [61] [59]
Bin 9 = ************************* [99] [100]
Bin 10 = ************************* [100] [100]
Bin 11 = *************** [60] [59]
Bin 12 = ******* [28] [26]
Bin 13 = ** [10] [10]
Bin 14 = * [4] [4]
Bin 15 = [2] [2]
Bin 16 = [1] [1]
Bin 17 = [0] [0]
Bin 18 = [0] [0]
Bin 19 = [0] [0]

Triangular Distribution

The triangular distribution is typically used as a subjective description of a popu-
lation for which there is only a limited amount of sample data. It is based on a
knowledge of the minimum and maximum values and an inspired guess as to what
the modal value might be. Despite being a simplistic description of a population, the
triangular distribution is a very useful tool for modeling processes where the relation-
ship between variables is known, but data is scarce possibly because of the high cost
of collection. Because of these unique features, the triangular distribution is often
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used in business decision making, particularly in simulations. In addition, the trian-
gular distribution is also widely used in project planning and management to model
events which take place within an interval defined only by a minimum and maxi-
mum value. The key characteristics of the triangular distribution are summarized
below [65, 66, 49].

Parameters: a where −∞ < a < ∞
b where b > a

c where a ≤ c ≤ b

Range: a ≤ x ≤ b

PDF: f (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2(x−a)
(b−a)(c−a)

for a ≤ x ≤ c

2(b− x)
(b−a)(b− c)

for c ≤ x ≤ b

0 otherwise

An equation for generating random variates X from the triangular probability dis-
tribution may be obtained by applying the inverse transform method to the corre-
sponding PDF which leads to the following result below.

u=u[0,1]
if u <= (mode - min) / (max - min) then

X = min + sqrt(u * (max - min) * (mode - min))
else

X = max - sqrt((1 - u) * (max - min) * (max - mode))
end if

The following code shows how the triangular distribution may be implemented in
C#.

public static double TriangularPMF(double a, double b, double c,
double x)

{
if ((a <= x) && (x <= c))
{ return 2.0 * (x - a) / (b - a) / (c - a); }
else if ((c <= x) && (x <= b))
{ return 2.0 * (b - x) / (b - a) / (b - c); }
else return 0.0;

}

public static double[] TriangularPMF(double a, double b, double c,
int[] x)

{
double[] tempArr = new double[x.Length];
for (int i = 0; i < x.Length; i++)
{ tempArr[i] = TriangularPMF(a, b, c, x[i]); }
return tempArr;

}
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public static double NextTriangular(double a, double b, double c)
{

double u = randObj.NextDouble();
if (u <= ((c - a) / (b - a)))
{

return a + Math.Sqrt(u) * Math.Sqrt((c - a) * (b - a));
}
else
{

return b - Math.Sqrt(u * (b - a) - (c - a)) * (b - c);
}

}

public static double[] NextTriangular(double a, double b, double c,
int nLen)

{
double[] tempArr = new double[nLen];
for (int i = 0; i < nLen; i++)
{

tempArr[i] = NextTriangular(a, b, c);
}
return tempArr;

}

static void TestTriangular()
{

int nBins = 20;
int nPoints = 10000;
double aVal = 0.0;
double bVal = 50;
double cVal = 100;
double displayScaleFactor = 500.0;

double[] randObj = NextTriangular(aVal, bVal, cVal, nPoints);
double[] HistogramValues = makeHistogram(randObj,

dataMin(randObj), dataMax(randObj), nBins);
double[] xdata = new double[nBins];
double[] ydata = new double[nBins];
double[] yCalcDistribution = new double[nBins];
for (int i = 0; i < nBins; i++)
{

xdata[i] = i;
ydata[i] = (double)HistogramValues[i];
yCalcDistribution[i] = TriangularPMF(aVal, bVal, cVal, i);

}

double ydataMax = dataMax(ydata);
double yCalcDistributionMax = dataMax(yCalcDistribution);

Console.WriteLine("\nTesting the Triangular Probability
Distribution");

Console.WriteLine("\nKey: Bin number = *****... [random distrib.]
[calculated distrib.]\n");

for (int i = 0; i < nBins; i++)
{
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Console.Write("Bin {0,2:n0} = ", i + 1);
for (int j = 0; j < (Math.Round(ydata[i]*displayScaleFactor /

nBins / ydataMax, 0)); j++) Console.Write("*");
Console.WriteLine(" [{0}] [{1}]",Math.Round(ydata[i]*100.0 /

ydataMax,0),Math.Round(yCalcDistribution[i]*100.0 /
yCalcDistributionMax,0));

}
Console.WriteLine("\nPress ENTER key to continue...");
Console.ReadLine();
Console.Clear();

}

Results: Triangular Probability Distribution
Key: Bin number = *****... [random distrib.] [calculated distrib.]

Bin 0 = * [2] [0]
Bin 1 = ** [9] [5]
Bin 2 = **** [15] [11]
Bin 3 = **** [15] [16]
Bin 4 = ***** [21] [21]
Bin 5 = ******** [31] [26]
Bin 6 = ********* [35] [32]
Bin 7 = ********** [40] [37]
Bin 8 = *********** [43] [42]
Bin 9 = ************* [50] [47]
Bin 10 = ************** [56] [53]
Bin 11 = ************** [58] [58]
Bin 12 = ***************** [66] [63]
Bin 13 = ***************** [69] [68]
Bin 14 = ******************* [76] [74]
Bin 15 = ******************* [75] [79]
Bin 16 = ********************** [88] [84]
Bin 17 = *********************** [91] [89]
Bin 18 = ************************* [99] [95]
Bin 19 = ************************* [100] [100]

Uniform Distribution (continuous)

A uniform distribution is one for which the probability of occurrence is the same
for all values of x. It is sometimes also called a rectangular distribution. The u[a,b]
distribution has constant probability density between a and b, and 0 probability den-
sity elsewhere. The key characteristics of the continuous uniform distribution are
summarized below [65, 66, 49].

Parameters: a = lower limit

b = upper limit, b > a

PDF: f (x) =

⎧⎨
⎩

1
b−a

for a ≤ x ≤ b

0 otherwise

An equation for generating random variates X from the continuous uniform prob-
ability distribution may be obtained by applying the inverse transform method to the
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corresponding PDF which leads to the following simple equation:

X = (a +(b−a)∗ u[0,1])

The code below illustrates how the continuous uniform probability distribution may
be implemented in C#.

public static double UniformContinuousPDF(double x,double a,double b)
{

if ((x >= a) && (x < b))
return (1.0 / (b - a));

else
return 0.0;

}

public static double[] UniformContinuousPDF(double[] x, double a,
double b)

{
double[] tempArr = new double[x.Length];
for (int i = 0; i < x.Length; i++)
{ tempArr[i] = UniformContinuousPDF(x[i], a, b); }
return tempArr;

}

public static double NextUniformContinuous(double a, double b)
{

return (a + (b - a) * randObj.NextDouble());
}

public static double[] NextUniformContinuous(int nLen, double a,
double b)

{
double[] tempArr = new double[nLen];
for (int i = 0; i < nLen; i++)
{ tempArr[i] = NextUniformContinuous(a, b); }
return tempArr;

}

static void TestUniformContinuous()
{

int nBins = 20; int nPoints = 10000; double xmin = 0.0;
double xmax = 20.0; double a = 5.0; double b = 15.0;
double displayScaleFactor = 500.0;
double[] randObj = NextUniformContinuous(nPoints, a, b);
double[] HistogramValues=makeHistogram(randObj,xmin,xmax,nBins);
double[] xdata = new double[nBins];
double[] ydata = new double[nBins];
double[] yCalcDistribution = new double[nBins];
for (int i = 0; i < nBins; i++)
{

xdata[i] = i;
ydata[i] = (double)HistogramValues[i];
yCalcDistribution[i] = UniformContinuousPDF(i, a, b);

}
double ydataMax = dataMax(ydata);
double yCalcDistributionMax = dataMax(yCalcDistribution);
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Console.WriteLine("\nTesting the Uniform (Continuous) Probability
Distribution");

Console.WriteLine("\nKey: Bin number = *****... [random distrib.]
[calculated distrib.]\n");

for (int i = 0; i < nBins; i++)
{
Console.Write("Bin {0,2:n0} = ", i + 1);
for (int j = 0; j < (Math.Round(ydata[i]*displayScaleFactor /

nBins / ydataMax, 0)); j++) Console.Write("*");
Console.WriteLine(" [{0}] [{1}]",Math.Round(ydata[i]*100.0 /

ydataMax,0),Math.Round(yCalcDistribution[i]*100.0 /
yCalcDistributionMax,0));

}
}

Results: Uniform (Continuous) Probability Distribution
Key: Bin number = *****... [random distrib.] [calculated distrib.]
Bin 0 = [0] [0]
Bin 1 = [0] [0]
Bin 2 = [0] [0]
Bin 3 = [0] [0]
Bin 4 = [0] [0]
Bin 5 = *********************** [91] [100]
Bin 6 = ********************** [88] [100]
Bin 7 = *********************** [94] [100]
Bin 8 = ************************ [94] [100]
Bin 9 = *********************** [90] [100]
Bin 10 = ********************* [85] [100]
Bin 11 = *********************** [92] [100]
Bin 12 = ************************* [100] [100]
Bin 13 = ************************ [95] [100]
Bin 14 = ********************** [89] [100]
Bin 15 = [0] [0]
Bin 16 = [0] [0]
Bin 17 = [0] [0]
Bin 18 = [0] [0]
Bin 19 = [0] [0]

Weibull Distribution

The Weibull distribution is a very useful probability distribution that is widely used in
many different disciplines. For example, the Weibull distribution is one of the most
widely used probability distributions in reliability engineering, survival analysis, and
weather forecasting to name a few. The key characteristics of the Weibull distribution
are summarized below [65, 66, 49].

Parameters: a = scale parameter, a > 0

b = shape parameter, b > 0

PDF: f (x) =

⎧⎪⎨
⎪⎩

a

b

(
x

b

)a−1

exp

[
−
(

x

b

)a]
for 0 ≤ x < ∞

0 otherwise

© 2010 by Taylor and Francis Group, LLC



Random Numbers 371

As shown earlier in this chapter, random variates X from the Weibull distribution
may be obtained by applying the inverse transform method to the corresponding
PDF which results in the equation below.

x = b(− log(1−u))1/a

The following code illustrates how the Weibull distribution may be implemented in
C#.

public static double WeibullPDF(double x, double a, double b)
{

if (x > 0.0)
return (a/b)*Math.Pow(x/b,a-1)*Math.Exp(-Math.Pow(x/b,a));

else
return 0.0;

}

public static double[] WeibullPDF(double[] x, double a, double b)
{

double[] tempArr = new double[x.Length];
for (int i = 0; i < x.Length; i++)
{ tempArr[i] = WeibullPDF(x[i], a, b); }
return tempArr;

}

public static double NextWeibull(double a, double b)
{

return b*Math.Pow(-Math.Log(randObj.NextDouble()),1.0/a);
}

public static double[] NextWeibull(double a, double b, int nLen)
{

double[] tempArr = new double[nLen];
for (int i = 0; i < nLen; i++)
{ tempArr[i] = NextWeibull(a,b); }
return tempArr;

}

static void TestWeibull()
{

int nBins = 20; int nPoints = 10000; double xmin = 0.0;
double xmax = 4.0; double aVal = 2.0; double bVal = 1.0;
double displayScaleFactor = 500.0;
double[] randObj = NextWeibull(aVal,bVal,nPoints);
double[] HistogramValues =

makeHistogram(randObj, xmin, xmax, nBins);
double[] xdata = new double[nBins];
double[] ydata = new double[nBins];
double[] yCalcDistribution = new double[nBins];
for (int i = 0; i < nBins; i++)
{

xdata[i] = xmin + (i + 0.5) * (xmax - xmin) / nBins;
ydata[i] = (double)HistogramValues[i];
yCalcDistribution[i] = WeibullPDF(xdata[i],aVal,bVal);

}
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double ydataMax = dataMax(ydata);
double yCalcDistributionMax = dataMax(yCalcDistribution);
Console.WriteLine("\nTesting the Weibull Distribution");
Console.WriteLine("\nKey: Bin number = *****... [random distrib.]

[calculated distrib.]\n");
for (int i = 0; i < nBins; i++)
{
Console.Write("Bin {0,2:n0} = ", i + 1);
for (int j = 0; j < (Math.Round(ydata[i]*displayScaleFactor /

nBins / ydataMax, 0)); j++) Console.Write("*");
Console.WriteLine(" [{0}] [{1}]",Math.Round(ydata[i]*100.0 /

ydataMax,0),Math.Round(yCalcDistribution[i]*100.0 /
yCalcDistributionMax,0));

}
}

Results: Weibull Probability Distribution
Key: Bin number = *****... [random distrib.] [calculated distrib.]

Bin 0 = ****** [22] [23]
Bin 1 = *************** [61] [64]
Bin 2 = ********************* [84] [91]
Bin 3 = ************************* [100] [100]
Bin 4 = ********************** [90] [93]
Bin 5 = ****************** [73] [76]
Bin 6 = ************* [51] [56]
Bin 7 = ********* [35] [37]
Bin 8 = ***** [21] [22]
Bin 9 = *** [11] [12]
Bin 10 = * [6] [6]
Bin 11 = * [2] [3]
Bin 12 = [1] [1]
Bin 13 = [0] [0]
Bin 14 = [0] [0]
Bin 15 = [0] [0]
Bin 16 = [0] [0]
Bin 17 = [0] [0]
Bin 18 = [0] [0]
Bin 19 = [0] [0]

10.8 Shuffling Algorithms

Shuffling is usually associated with a procedure used to randomize a deck of playing
cards to provide an element of chance in card games. However, in computer science,
shuffling is equivalent to generating a random permutation of a given array. There
are two basic algorithms for doing this, both popularized by Donald Knuth [50]. The
first method starts by assigning a unique random number to each array element. The
array is then sorted in order of its random numbers. Since each array element has a
unique random number assigned to it, this will generate a random permutation of the

© 2010 by Taylor and Francis Group, LLC



Random Numbers 373

given array. The second algorithm, generally known as the Knuth shuffle or Fisher-
Yates shuffle, runs in linear time and is used to shuffle an array in random order. The
algorithm loops through each item in the array, generates a random number between
0 and the array length, then assigns the array item to a randomly generated array
position. An implementation of the Fisher-Yates algorithm is given below. Note
that this method essentially generates a random integer array containing n unique
elements.

//Does a random permutation on a one-dimensional input array
//with input array and number of permutations chosen by the user.
public static int[] RandomPermutation(int[] numbers, int n)
{

//Exchange each entry of the one-dimensional array with
//another entry located at a random position in the array.
for (int i = numbers.Length - 1; i > 0; i--)
{

int randomPosition = randObj.Next(i + 1);
int temp = numbers[i];
numbers[i] = numbers[randomPosition];
numbers[randomPosition] = temp;

}
return numbers;

}

public static void TestRandomPermutation()
{

//Setup a simple one-dimensional array for testing permutations
int arraySize = 6;

Console.WriteLine("Testing random permutation of array with {0}
elements\n", arraySize);

int[] arrayTest = new int[arraySize];
for (int i = 0; i < arraySize; i++)
{

arrayTest[i] = i;
}
//and display this one-dimensional array on the screen
Console.WriteLine("Original input array configuration\n");
foreach (int j in arrayTest) Console.Write("{0} ", j);
Console.WriteLine("\n\n");

//Do some arbitrary number of random permutations on the input
array

int nPermutations = 4;
Console.WriteLine("Results after performing {0} random

permutations of original input array\n", nPermutations);
int k = 0;
do
{

int[] x = RandomPermutation(arrayTest, arraySize);
foreach (int d in x) Console.Write("{0} ", d);
Console.WriteLine("\n");
k++;

} while (k < nPermutations);
}
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Results: Testing random permutation of array with 6 elements

Original input array configuration
0 1 2 3 4 5

Results after performing 4 random permutations of the
original input array

4 5 2 3 1 0
2 4 0 1 5 3
3 5 0 2 1 4
1 4 3 2 0 5

In more advanced applications, such as those found in some optimization algo-
rithms discussed in Chapter 18, it may be desired to perform small perturbations on
individual random elements of a randomly permuted array. In other words, first you
generate a random array containing n unique elements using the Fisher-Yates algo-
rithm RandomPermutation(int n) just described. Then randomly select an element
of this array and add a small perturbation on it. The value of this small perturba-
tion is, of course, also randomly selected from some desired probability distribution.
As with most randomized algorithms of this type, there are many different ways to
do this. One approach illustrated below is to first input a given data array and then
use the RandomPermutation(int n) algorithm to produce a randomized integer ar-
ray containing unique integers ranging from 0 to the length of the input data array
thereby in essence really obtaining a randomized auxiliary array of the indices of the
input data array. Then by selecting any value from this integer array and assigning it
as the index of the input data array you will be essentially randomly selecting a sin-
gle element of the input array and all that is left to do is then add a small perturbation
value to it as shown in the code below.

//Does a random permutation on a one-dimensional input array
//with a default initialized array and an abitrary number of
//permutations as chosen by the user.
public static int[] RandomPermutation(int n)
{

//Create an array of size specified by nSize
int[] numbers = new int[n];
//to hold the numbers 0,1,2,...,n
for (int i = 0; i < numbers.Length; i++)
{ numbers[i] = i; }
//Exchange each entry of the array with another
//entry located at a random position in the array.
for (int i = numbers.Length - 1; i > 0; i--)
{

int randomPosition = randObj.Next(i + 1);
int temp = numbers[i];
numbers[i] = numbers[randomPosition];
numbers[randomPosition] = temp;

}
return numbers;

}
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public static double[] RandomPerturbation(double[] data)
{

//Randomize the positions of all input data array indices
int[] randomizedIndicesArray = RandomPermutation(data.Length);
//then just pick one arbitrary position and add a little
//amount of perturbation to it. The normal distribution was
//chosen arbitrarily. You can substitute another probablity
//distribution in its place if so desired.
data[randomizedIndicesArray[0]] += NextNormal(0, 1) / 100.0;
return data;

}

public static void TestRandomPertubation()
{

//Testing perturbations of entries in a simple one-dimensional
array

int arraySize = 6;
int nPerturbations = 5;
Console.WriteLine("Testing {0} perturbation(s) on array with {0}

elements\n", nPerturbations, arraySize);

double[] arrayTest = new double[arraySize];
for (int i = 0; i < arraySize; i++)
{

arrayTest[i] = i;
}
//and display this one-dimensional array on the screen
Console.WriteLine("Original input array configuration\n");
foreach (double j in arrayTest)

Console.Write("{0} ", j);
Console.WriteLine("\n\n");

Console.WriteLine("Results after performing {0} random
perturbations of original input array\n", nPerturbations);

//Then perturb the input data array a number of times
int k = 0;
do
{

//Initialize input data array
for (int i = 0; i < arraySize; i++)
{

arrayTest[i] = i;
}
//and then perturb it
double[] y = RandomPerturbation(arrayTest);
//and print the output results
foreach (double c in y)

Console.Write("{0} ", c);
Console.WriteLine("\n");
k++;

} while (k < nPerturbations);
Console.WriteLine("\n\nPress ENTER key to continue...");
Console.ReadLine();
Console.Clear();

}
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Results: Testing 5 perturbation(s) on array with 5 elements

Original input array configuration
0 1 2 3 4 5

Results after performing 5 random perturbations of the
original input array

0 1 1.99827856404656 3 4 5
0 1 2 3 4.00305070207981 5
-0.00393216947134168 1 2 3 4 5
0 1 2 2.98306053420896 4 5
0 1 2 2.98561781323784 4 5

10.9 Adding Random Noise to Data

The motivation behind adding random noise to data is very simple. Computer sim-
ulations of naturally occurring physical phenomena often yield idealized results that
may approximate but do not necessarily reflect the actual raw data very accurately.
There are two basic approaches to solve or at least minimize this problem. The first
method is to work with the raw input data to try and match it to the output data
generated by the computer. However, this technique may not always be feasible and
sometimes may also prove itself to be impractical. The second approach is to do the
complete opposite and try to get the output data generated by the computer to match
the raw input data. Therefore, it would be useful to develop a reliable method for
adding random noise to data values.

The proposed routine for undertaking this task, AddNoise(data, magnitude), is
quite simple. It accepts an array containing the data values to be processed and a
variable specifying the magnitude of the noise to be randomly added to those in-
put array values. Inside this routine a random number generator produces random
numbers between −1 and 1 which is then multiplied by the desired magnitude value
before being added back to the input array. The output consists of an array contining
the new modified values.

In support of this process a few auxiliary functions have also been introduced
with the intention of facilitating the overall coding process of computing a function
between two specific minimum and maximum values. The first routine merely cal-
culates the function value for one point. The second routine is just an overloaded
version of the first routine and was designed to process a full array of data points
at once. The third routine is also an overloaded version of the first and allows the
user to generate an array of data points of arbitrary size and arbitrary range from an
arbitrary function. All these routines along with a driver program to illustrate how
these tools may be applied to add random noise to data is given below.
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//Purpose: Add random noise to data

//General function routine to process a single data point by
//some user supplied function. In this example, f(x) = 2x.
public static double f(double x)
{

return 2 * x;
}

//General routine to process an array of data points provided
//by some arbitrary function.
public static double[] f(double[] x)
{

double[] tempArr = new double[x.Length];
for (int i = 0; i < x.Length; i++)
{

tempArr[i] = f(x[i]);
}
return tempArr;

}

//General routine for calculating a grid of n points (n > 1)
//between a set of minimum and maximum values. It the evaluates
//the user supplied function f(x) at each of those points.
public static void f(int n, double xLeft, double xRight,

out double[] x, out double[] y)
{

double dx = (xRight - xLeft) / (n - 1);

double[] xtemp = new double[n];
double[] ytemp = new double[n];

for (int i = 0; i < n; i++)
{

xtemp[i] = xLeft + i * dx;
ytemp[i] = f(xtemp[i]);

}

x = xtemp;
y = ytemp;

}

//Adds random noise between -magtitude and +magnitude to the data
//in array data[]. Random data source can be easily changed to
//whatever distribution desired.
public static double[] AddNoise(double[] data, double magnitude)
{

for (int i = 0; i < data.Length; i++)
{

//Get a random number between -1 and 1
double r = 1.0 - 2.0 * randObj.NextDouble();
data[i] = data[i] + magnitude * r;

}
return data;

}
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//Driver routine to test adding random noise to data
public static void TestAddRandomNoiseToData()
{

Console.WriteLine("Results: Add Random Noise Algorithm\n");
int n = 20; //Number of grid points
double xLeft = -5.0; //Leftmost starting point
double xRight = 5.0; //Rightmost ending point
double[] x = new double[n];
double[] y = new double[n];
//Create the data arrays
f(n, xLeft, xRight, out x, out y);
Console.WriteLine("Data BEFORE adding noise\n");
Console.WriteLine("x values\t y values\n");
for (int i = 0; i < n; i++)

Console.WriteLine("{0} \t\t {1}", Math.Round(x[i],3),
Math.Round(y[i],3));

double[] y_noisy = new double[n];
//Magnitude was purposely made very large for this example
double noise_magnitude = 10.0;
//Add some random noise to the data array just created
y_noisy = AddNoise(y, noise_magnitude);
Console.WriteLine("\n\nData AFTER adding noise\n");
Console.WriteLine("x values\t y values\n");
for (int i = 0; i < n; i++)

Console.WriteLine("{0} \t\t {1}", Math.Round(x[i], 3),
Math.Round(y_noisy[i], 3));

}

Results: Testing the Add Random Noise Algorithm

Data BEFORE adding noise Data AFTER adding noise
x values y values x values y values
-5 -10 -5 -11.051
-4.474 -8.947 -4.474 -14.38
-3.947 -7.895 -3.947 -3.398
-3.421 -6.842 -3.421 -6.477
-2.895 -5.789 -2.895 -15.179
-2.368 -4.737 -2.368 -6.888
-1.842 -3.684 -1.842 -4.344
-1.316 -2.632 -1.316 -3.759
-0.789 -1.579 -0.789 -0.048
-0.263 -0.526 -0.263 -9.02
0.263 0.526 0.263 8.445
0.789 1.579 0.789 3.461
1.316 2.632 1.316 9.477
1.842 3.684 1.842 -2.221
2.368 4.737 2.368 12.112
2.895 5.789 2.895 14.464
3.421 6.842 3.421 10.112
3.947 7.895 3.947 1.132
4.474 8.947 4.474 3.356
5 10 5 18.495
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10.10 Removing Random Noise from Data

The concept of removing random noise from data, better known as data smoothing,
is not one that meets with universal approval and is often the subject of vigorous
debate. For valid least-squares fitting, data smoothing is neither desirable nor per-
missible. However, there are cases where smoothing may be beneficial to some
extent. Generally speaking, if rigorously valid results are not required, but rather an
averaged estimate of the distribution, smoothing may help obtain reasonably good
rough estimates. The secrets of smoothing data are the subject of the very sophis-
ticated field of filtering and choosing the most optimal filter to use can be a rather
tricky and lengthy process. Consequently, we shall examine only the most basic fil-
tering method that is neither the most efficient nor the most effective. However, it is
adequate enough and easy to understand for many situations of interest.

The justification usually made for data smoothing is that one is measuring a vari-
able that is both slowly changing and is also corrupted by random noise. Under such
conditions, it can sometimes be useful to replace each data point by some kind of
local average of the surrounding data points. Since nearby data points measure very
nearly the same underlying value, averaging can reduce the level of noise without
significantly biasing or adversely affecting the original data. The simplest approach
is therefore to create a new array of data points where each point is the average of its
neighbors from the original array: Xnew[i] = (xold[i− 1]+ xold[i]+ xold[i + 1])/3.
This three-point averaging technique is an example of what is called a moving aver-
age.

Unfortunately there are some major issues associated with this kind of approach.
First, there is no reason why such an average should be restricted to just three neigh-
boring points. The most practical solution is to make the width of the averaging
neighborhood an input variable to the procedure. The only restriction to make is
that the number of points used must be odd, since otherwise we would have to use a
different number of neighbors to the right than we do to the left of the points. The
second important issue to consider is what to do about the endpoints of the array
since taking an average of the neighboring points at that location might entail han-
dling points that lie beyond the scope of the original input array. Just how many such
points exist obviously depend on the chosen width of the averaging neighborhood.
Possible solutions to this problem include making up values for such non-existent
points, assigning the value of 0 to those points, setting them all equal to the bor-
der points of the original array, or perhaps not using them at all. However, such
approaches are effectively making up data which is rather distasteful and unethical.
Another more plausible solution, and the one which we will use, is to simply take a
smaller average of the endpoints of the array: Xnew[0] = (xold[0]+xold[1])/2. This
way the actual endpoint is still a simple average of its neighbors.

The actual approach used here is to create variable width average by using a nested
loop, so that instead of averaging only three neighboring points, we can average
a number of points determined at the time of program execution. The auxiliary

© 2010 by Taylor and Francis Group, LLC



380 Numerical Methods, Algorithms and Tools in C#

variables start and stop control the limits of the inner loop. The auxiliary functions
FirstIndex and LastIndex are used to calculate the necessary values of start and
stop for any particular value of i. The code below illustrates how all these ideas
may be implemented in C#.

//Purpose: Filter random noise from data

//Returns the index <= i at which signal values can start to
//contribute to the filtered value of data element i.
public static int FirstIndex(int i, int width)
{

if (i >= width / 2)
return (i - width / 2);

else
return 0;

}

//Returns the index >= i beyond which signal values cease to
//contribute to the filtered value of data element i.
public static int LastIndex(int i, int width, int size)
{

if (i + width / 2 < size)
return (i + width / 2);

else
return (size - 1);

}

//Filters the input signal using a moving average algorithm
//of specified width. The width must be odd.
public static double[] MovingAverage(double[] RoughData, int width)
{

double[] y = new double[RoughData.Length];
if (width % 2 == 0)
{

Console.WriteLine("Error: The width must be odd.");
return y;

}

for (int i = 0; i < RoughData.Length; i++)
{

y[i] = 0.0;
int start = FirstIndex(i, width);
int stop = LastIndex(i, width, RoughData.Length);

for (int j = start; j <= stop; j++)
{

y[i] = y[i] + RoughData[j];
}
y[i] = y[i] / (stop - start + 1);

}
return y;

}
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//Driver routine to test filtering random noise from data
//using a moving average algorithm.
private static void TestRemoveRandomNoiseFromData()
{

double[] RoughData =
new double[] { 75.475, 75.600, 75.100, 73.525, 73.275,
73.325, 73.225, 74.350, 73.600, 74.475, 75.975, 76.850,
77.525, 78.200, 79.225, 78.850, 76.225, 76.850, 76.725, 76.100};

Console.WriteLine("Results: Data Filtering Algorithm\n");

Console.WriteLine("Rough Data\n");
for (int i = 0; i < RoughData.Length; i++)

Console.WriteLine("{0}", Math.Round(RoughData[i], 3));

//Width of filter
int width = 5;

//Array to hold the filtered data
double[] SmoothData = new double[RoughData.Length];

//Calculate the filtered data values using a moving average
//algorithm of the specified rough data and filter width.
SmoothData = MovingAverage(RoughData, width);

//Display the results on the screen or save the results
//to a file right here.
Console.WriteLine("\n\nSmoothed Data\n");
for (int i = 0; i < RoughData.Length; i++)

Console.WriteLine("{0}", Math.Round(SmoothData[i], 3));
Console.WriteLine("\nPress ENTER key to continue...");
Console.ReadLine(); Console.Clear();

}

Results: Data Filter Algorithm
Rough Data Filtered Data
75.475 75.392
75.6 74.925
75.1 74.595
73.525 74.165
73.275 73.69
73.325 73.54
73.225 73.555
74.35 73.795
73.6 74.325
74.475 75.05
75.975 75.685
76.85 76.605
77.525 77.555
78.2 78.13
79.225 78.005
78.85 77.87
76.225 77.575
76.85 76.95
76.725 76.475
76.1 76.558
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Numerical Differentiation

11.1 Introduction

Numerical differentiation is a technique that seeks to find an estimate of the numeri-
cal value of a derivative at a point of some given function using only values from the
function and perhaps other information but without using the analytical form of the
function itself which may not even be known. More formally, for a given function
y = f (x) we seek to calculate the derivatives of f (x) defined on a discrete finite set
of grid points (x0,x1,x2, . . . ,xN). It is assumed that the only data available for this
calculation are the exact values of the function at the data points: (xi,yi = f (xi)), and
that the derivatives are sought only at the discrete finite set of data points (xi,yi).

Calculating derivatives numerically is generally not greeted with much enthusi-
asm among mathematicians. This is primarily due to a lack of very precise numer-
ical methods within which to carry out precise derivative calculations. In addition,
higher precision calculations often require increasingly more data points which may
not always be directly available. Nevertheless, there are two basic approaches to
calculating numerical derivatives. The finite difference formalism allows us to cal-
culate both first and higher order derivatives of a function using only discrete sets of
adjacent data points called a grid. This method also uses a Taylor series expansion
which has the additional advantage of also providing some estimate of the amount of
error inevitably incurred in such calculations. With the finite difference method, the
higher number of data points you use and the closer they are to each other, the better
the precision of the results. The second approach allows discrete data points to be
generated at uneven intervals of x and involves approximating the function locally
using polynomial interpolation followed by polynomial differentiation.

11.2 Finite Difference Formulas

Assuming that we have an equidistant grid, meaning that the distance between adja-
cent points Δx = h is constant, there are three ways to calculate differences:

Forward :Δx = xi+1 − xi Backward :Δx = xi − xi−1 and Central :Δx = xi+1 − xi−1

383
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The finite difference approximations for the derivatives of f (x) is based on the for-
ward and backward Taylor series expansions of f (x) about x as shown below [69,
70]:

f (x + h) = f (x)+ h f ′(x)+
h2

2!
f ′′(x)+

h3

3!
f ′′′(x)+ · · ·+ hn

n!
f (n)(x)+ Rn(x)

f (x−h) = f (x)−h f ′(x)+
h2

2!
f ′′(x)− h3

3!
f ′′′(x)+ · · ·+ hn

n!
f (n)(x)+ Rn(x)

f (x + 2h) = f (x)+ (2h) f ′(x)+
(2h)2

2!
f ′′(x)+

(2h)3

3!
f ′′′(x)+ · · ·+ (2h)n

n!
f (n)(x)+ Rn(x)

f (x−2h) = f (x)− (2h) f ′(x)+
(2h)2

2!
f ′′(x)− (2h)3

3!
f ′′′(x)+ · · ·+ (2h)n

n!
f (n)(x)+ Rn(x)

where Rn(x) is a remainder term and h = Δx. In addition, by adding and subtracting
the equations above we can obtain the sums and differences of the Taylor series
expansion as shown below.

f (x + h)+ f (x−h) = 2 f (x)+ h2 f ′′(x)+
h4

12
f (4)(x)+ · · ·

f (x + h)− f (x−h) = 2h f ′(x)+
h3

3
f (3)(x)+ · · ·

f (x + 2h)+ f (x + 2h)= 2 f (x)+ 4h2 f ′′(x)+
4h4

3
f (4)(x)+ · · ·

f (x + 2h)− f (x + 2h)= 4h f ′(x)+
8h3

3
f (3)(x)+ · · ·

The intuitive but rather naive and ultimately wrong approach is then to start trun-
cating terms of order h2 and higher in order to obtain the following first order ap-
proximation for the derivative of f (x):

f ′(x) ≈ f (x + h)− f (x)
h

This problem can be exacerbated even further by carrying on derivations in a similar
manner for higher order derivatives. Unfortunately, this rather simplistic approach
to approximating numerical derivatives yields very inaccurate results because of a
large inherent truncation error in the order of O(h). Instead, by retaining increasingly
higher order terms in the Taylor series expansion of f (x), we can obtain increasingly
accurate results for calculating numerical derivatives of f (x) to any chosen order
and desired degree of precision. The common practice, however, is to use truncation
errors at least in the order of O(h2).

As these derivations are long and tedious, I will simply list the final results here
and refer those who are interested in the gritty details to seek them in just about any
textbook on numerical analysis [69, 70].
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11.2.1 Forward Difference Method

The finite forward difference differentiation formulas, where Δx = h = xi+1 − xi, of
order O(h2) are given by:

f ′(x) ≈ −3 f (x)+ 4 f (x + h)− f (x + 2h)
2h

f ′′(x) ≈ 2 f (x)−5 f (x + h)+ 4 f (x + 2h)− f (x +3h)
h2

f (3)(x) ≈ −5 f (x)+ 18 f (x + h)−24 f (x + 2h)+14 f (x + 3h)−3 f (x + 4h)
2h3

f (4)(x) ≈ 3 f (x)−14 f (x + h)+ 26 f (x + 2h)−24 f (x +3h)+11 f (x + 4h)−2 f (x + 5h)
h4

The implementation for these forward difference formulas in C# is given below
and includes methods for approximating numerical derivatives for both an analyt-
ical function f (x) and for an array of (xi,yi) of data values.

public static double DerivativeForward1(Function f,double x,double h)
{

h=(h==0)?0.01:h;
return (-3*f(x) + 4*f(x+h) - f(x+2*h))/2/h;

}

public static double DerivativeForward1(double[] y,int i,double h)
{

if (y==null || y.Length<3 || i<0 || i > y.Length-3 || h==0)
return double.NaN;

return (-3*y[i] + 4*y[i+1] - y[i+2])/2/h;
}

public static double DerivativeForward2(Function f,double x,double h)
{

h=(h==0)?0.01:h;
return (2*f(x) - 5*f(x+h) + 4*f(x+2*h) - f(x+3*h))/h/h;

}

public static double DerivativeForward2(double[] y,int i,double h)
{

if (y==null || y.Length<4 || i<0 || i>y.Length-4 || h==0)
return double.NaN;

return (2*y[i] - 5*y[i+1] + 4*y[i+2] - y[i+3])/h/h;
}

public static double DerivativeForward3(Function f,double x,double h)
{

h=(h==0)?0.01:h;
return (-5*f(x) + 18*f(x+h) - 24*f(x+2*h) + 14*f(x+3*h) -

3*f(x+4*h))/2/h/h/h;
}
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public static double DerivativeForward3(double[] y,int i,double h)
{

if (y==null || y.Length<5 || i<0 || i>y.Length-5 || h==0)
return double.NaN;

return (-5*y[i] + 18*y[i+1] - 24*y[i+2] + 14*y[i+3] -
3*y[i+4])/2/h/h/h;

}

public static double DerivativeForward4(Function f,double x,double h)
{

h=(h==0)?0.01:h;
return (3*f(x) - 14*f(x+h) + 26*f(x+2*h) - 24*f(x+3*h) +

11*f(x+4*h) - 2*f(x+5*h))/h/h/h/h;
}

public static double DerivativeForward4(double[] y,int i,double h)
{
if (y==null || y.Length<6 || i<0 || i>y.Length-6 || h==0)

return double.NaN;
return (3*y[i] - 14*y[i+1] + 26*y[i+2] - 24*y[i+3] + 11*y[i+4]

- 2*y[i+5])/h/h/h/h;
}

To test the forward difference method for calculating numerical derivative values I
used the test function f (x) = cos x and calculated derivatives at the point x = 0.3 as
shown below.

public delegate double Function(double x);

static double f1(double x)
{

return Math.Cos(x);
}

static void Main(string[] args)
{

Console.WriteLine("Using the FORWARD difference method
and function: f(x) = cos(x)\n");

double dy = DerivativeForward1(f1, 0.3, h);
Console.WriteLine(" f’(x) = " + dy.ToString());
dy = DerivativeForward2(f1, 0.3, h);
Console.WriteLine(" f’’(x) = " + dy.ToString());
dy = DerivativeForward3(f1, 0.3, h);
Console.WriteLine(" f’’’(x) = " + dy.ToString());
dy = DerivativeForward4(f1, 0.3, h);
Console.WriteLine(" f’’’’(x) = " + dy.ToString());

// Calculate derivatives using just array values at x=3:
Console.WriteLine("\nDerivatives using just array values:\n");
double h = 0.1;
double[] y=new double[10];
for (int i = 0; i < 10; i++)

y[i] = f1(i * h);
dy = DerivativeForward1(y, 3, h);
Console.WriteLine(" y’ = " + dy.ToString());
dy = DerivativeForward2(y, 3, h);
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Console.WriteLine(" y’’ = " + dy.ToString());
dy = DerivativeForward3(y, 3, h);
Console.WriteLine(" y’’’ = " + dy.ToString());
dy = DerivativeForward4(y, 3, h);
Console.WriteLine(" y’’’’ = " + dy.ToString());

}

OUTPUT:

Using the FORWARD difference method and the function
f(x) = cos(x) to calculate derivatives at x = 0.3

f’(0.3) = -0.296740266278253
f’’(0.3) = -0.963735911140073
f’’’(0.3) = 0.303003968494142
f’’’’(0.3) = 0.980440888838086

Derivatives using just array values. Since h=0.1 then
the point x=0.3 is equivalent to i=3.

y’(0.3) = -0.296740266278253
y’’(0.3) = -0.963735911140073
y’’’(0.3) = 0.303003968494142
y’’’’(0.3) = 0.980440888820322

11.2.2 Backward Difference Method

The finite backward difference differentiation formulas, where Δx = h = xi−xi−1, of
order O(h2) are given by

f ′(x) ≈ 3 f (x)−4 f (x−h)+ f (x−2h)
2h

f ′′(x) ≈ 2 f (x)−5 f (x−h)+ 4 f (x−2h)− f (x−3h)
h2

f (3)(x) ≈ 5 f (x)−18 f (x−h)+ 24 f (x−2h)−14 f (x−3h)+3 f (x−4h)
2h3

f (4)(x) ≈ 3 f (x)−14 f (x−h)+ 26 f (x−2h)−24 f (x−3h)+11 f (x−4h)−2 f (x−5h)
h4

The implementation for these backward difference formulas in C# is given below
and includes methods for approximating numerical derivatives for both an analytical
function f (x) and for an array of (xi,yi) of data values.

public static double DerivativeBackward1(Function f, double x,
double h)

{
h=(h==0)?0.01:h;
return (3*f(x) - 4*f(x-h) + f(x-2*h))/2/h;

}
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public static double DerivativeBackward1(double[] y, int i,
double h)

{
if (y==null || y.Length<3 || i<0 || i<3 || h==0)

return double.NaN;
return (3*y[i] - 4*y[i-1] + y[i-2])/2/h;

}

public static double DerivativeBackward2(Function f, double x,
double h)

{
h=(h==0)?0.01:h;
return (2*f(x) - 5*f(x-h) + 4*f(x-2*h) - f(x-3*h))/h/h;

}

public static double DerivativeBackward2(double[] y,int i,
double h)

{
if (y==null || y.Length<4 || i<0 || i<4 || h==0)

return double.NaN;
return (2*y[i] - 5*y[i-1] + 4*y[i-2] - y[i-3])/h/h;

}

public static double DerivativeBackward3(Function f, double x,
double h)

{
h=(h==0)?0.01:h;
return (5*f(x) - 18*f(x-h) + 24*f(x-2*h) - 14*f(x-3*h)

+ 3*f(x-4*h))/2/h/h/h;
}

public static double DerivativeBackward3(double[] y, int i,
double h)

{
if (y==null || y.Length<5 || i<0 || i<5 || h==0)

return double.NaN;
return (5*y[i] - 18*y[i-1] + 24*y[i-2] - 14*y[i-3]

+ 3*y[i-4])/2/h/h/h;
}

public static double DerivativeBackward4(Function f, double x,
double h)

{
h=(h==0)?0.01:h;
return (3*f(x) - 14*f(x-h) + 26*f(x-2*h) - 24*f(x-3*h) +

11*f(x-4*h) - 2*f(x-5*h))/h/h/h/h;
}

public static double DerivativeBackward4(double[] y, int i,
double h)

{
if (y==null || y.Length<6 || i<0 || i<6 || h==0)

return double.NaN;
return (3*y[i] - 14*y[i-1] + 26*y[i-2] - 24*y[i-3] +

11*y[i-4] - 2*y[i-5])/h/h/h/h;
}
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To test the backward difference method for calculating numerical derivative values I
used the test function f (x) = cos x and calculated derivatives at the point x = 0.7 as
shown below.

public delegate double Function(double x);

static double f1(double x)
{

return Math.Cos(x);
}

static void Main(string[] args)
{

// Calculate derivatives using f(x) = cos(x) at x=0.7:
Console.WriteLine("\nUsing the BACKWARD difference method\n");
double dy = DerivativeBackward1(f1, 0.7, h);
Console.WriteLine(" f’(x) = " + dy.ToString());
dy = DerivativeBackward2(f1, 0.7, h);
Console.WriteLine(" f’’(x) = " + dy.ToString());
dy = DerivativeBackward3(f1, 0.7, h);
Console.WriteLine(" f’’’(x) = " + dy.ToString());
dy = DerivativeBackward4(f1, 0.7, h);
Console.WriteLine(" f’’’’(x) = " + dy.ToString());
// Calculate derivatives for array values at i = 7:
Console.WriteLine("\nDerivatives for array values:\n");
double h = 0.1;
double[] y = new double[10];
for (int i = 0; i < 10; i++)

y[i] = f1(i * h);
dy = DerivativeBackward1(y, 7, h);
Console.WriteLine(" y’ = " + dy.ToString());
dy = DerivativeBackward2(y, 7, h);
Console.WriteLine(" y’’ = " + dy.ToString());
dy = DerivativeBackward3(y, 7, h);
Console.WriteLine(" y’’’ = " + dy.ToString());
dy = DerivativeBackward4(y, 7, h);
Console.WriteLine(" y’’’’ = " + dy.ToString());

}

OUTPUT:
Using the BACKWARD difference method and the function
f(x) = cos(x) to calculate derivatives at x = 0.7

f’(0.7) = -0.646166679474376
f’’(0.7) = -0.772444642080838
f’’’(0.7) = 0.653452376802477
f’’’’(0.7) = 0.789308976041347

Derivatives for array values. Since h=0.1 then
the point x=0.7 is equivalent to i=7.

y’(0.7) = -0.646166679474374
y’’(0.7) = -0.772444642080794
y’’’(0.7) = 0.653452376804253
y’’’’(0.7) = 0.789308976023584
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11.2.3 Central Difference Method

The finite central difference differentiation formulas, where Δx = h = xi+1 − xi−1, of
order O(h2) are given by

f ′(x) ≈ f (x + h)− f (x−h)
2h

f ′′(x) ≈ f (x−h)−2 f (x)+ f (x + h)
h2

f (3)(x) ≈ − f (x−2h)+ 2 f (x−h)−2 f (x + h)+ f (x + 2h)
2h3

f (4)(x) ≈ f (x−2h)−4 f (x−h)+ 6 f (x)−4 f (x + h)+ f (x +2h)
h4

The implementation for these central difference formulas in C# is given below and in-
cludes methods for approximating numerical derivatives for both an analytical func-
tion f (x) and for an array of (xi,yi) of data values.

public static double DerivativeCentral1(Function f,double x,double h)
{

h=(h==0)?0.01:h;
return (f(x+h) - f(x-h))/2/h;

}

public static double DerivativeCentral1(double[] y,int i,double h)
{

if (y==null || y.Length<3 || i<1 || i>y.Length-2 || h==0)
return double.NaN;

return (y[i+1] - y[i-1])/2/h;
}

public static double DerivativeCentral2(Function f,double x,double h)
{

h=(h==0)?0.01:h;
return (f(x-h) - 2*f(x) + f(x+h))/h/h;

}

public static double DerivativeCentral2(double[] y,int i,double h)
{

if (y==null || y.Length<3 || i<1 || i>y.Length-2 || h==0)
return double.NaN;

return (y[i-1] - 2*y[i] + y[i+1])/h/h;
}

public static double DerivativeCentral3(Function f,double x,double h)
{

h=(h==0)?0.01:h;
return (-f(x-2*h) + 2*f(x-h) - 2*f(x+h) + f(x+2*h))/2/h/h/h;

}
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public static double DerivativeCentral3(double[] y,int i,double h)
{

if (y==null || y.Length<5 || i<2 || i>y.Length-3 || h==0)
return double.NaN;

return (-y[i-2] + 2*y[i-1] - 2*y[i+1] + y[i+2])/2/h/h/h;
}

public static double DerivativeCentral4(Function f,double x,double h)
{

h=(h==0)?0.01:h;
return (f(x-2*h)-4*f(x-h)+6*f(x)-4*f(x+h)+f(x+2*h))/h/h/h/h;

}

public static double DerivativeCentral4(double[] y,int i,double h)
{

if (y==null || y.Length<5 || i<2 || i >y.Length-3 || h==0)
return double.NaN;

return (y[i-2] - 4*y[i-1] + 6*y[i] - 4*y[i+1]
+ y[i+2])/h/h/h/h;

}

To test the central difference method for calculating numerical derivative values I
used the test function f (x) = cos x and calculated derivatives at the point x = 0.5 as
shown below.

public delegate double Function(double x);
static double f1(double x)
{ return Math.Cos(x); }

static void Main(string[] args)
{

// Calculate derivatives using f(x) = cos(x) at x=0.5:
Console.WriteLine("\nUsing the CENTRAL difference method\n");
double dy = DerivativeCentral1(f1, 0.5, h);
Console.WriteLine(" f’(x) = " + dy.ToString());
dy = DerivativeCentral2(f1, 0.5, h);
Console.WriteLine(" f’’(x) = " + dy.ToString());
dy = DerivativeCentral3(f1, 0.5, h);
Console.WriteLine(" f’’’(x) = " + dy.ToString());
dy = DerivativeCentral4(f1, 0.5, h);
Console.WriteLine(" f’’’’(x) = " + dy.ToString());
// Calculate derivatives for array values at i = 5:
Console.WriteLine("\nDerivatives for array values:\n");
double h = 0.1;
double[] y = new double[10];
for (int i = 0; i < 10; i++)

y[i] = f1(i * h);
dy = DerivativeCentral1(y, 5, h);
Console.WriteLine(" y’ = " + dy.ToString());
dy = DerivativeCentral2(y, 5, h);
Console.WriteLine(" y’’ = " + dy.ToString());
dy = DerivativeCentral3(y, 5, h);
Console.WriteLine(" y’’’ = " + dy.ToString());
dy = DerivativeCentral4(y, 5, h);
Console.WriteLine(" y’’’’ = " + dy.ToString());

}
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OUTPUT:

Using the CENTRAL difference method and the function
f(x) = cos(x) to calculate derivatives at x = 0.5

f’(x) = -0.478626895466034
f’’(x) = -0.876851486818209
f’’’(x) = 0.478228172648032
f’’’’(x) = 0.876121020770837

Derivatives for array values. Since h=0.1 then
the point x=0.5 is equivalent to i=5.

y’ = -0.478626895466034
y’’ = -0.87685148681822
y’’’ = 0.478228172648087
y’’’’ = 0.876121020774168

11.2.4 Improved Central Difference Method

The finite difference methods presented so far for calculating the first four derivatives
of a function f (x) have an estimated precision in the order of O(h2). By using
more terms in the Taylor series expansion of the original f (x) as described at the
beginning of this chapter, it is possible to calculate derivatives with increasingly
improved precision albeit at a cost of larger and messier equations. For example,
using the central difference method with an estimated precision in the order of O(h4),
the first four derivatives of a function f (x) are given by [70]:

f ′(x) ≈ f (x−2h)−8 f (x−h)+ 8 f (x + h)− f (x + 2h)
12h

f ′′(x) ≈ − f (x−2h)+ 16 f (x−h)−30 f (x)+ 16 f (x +h)− f (x +2h)
12h2

f (3)(x) ≈ f (x−3h)−8 f (x−2h)+ 13 f (x−h)−13 f (x + h)+8 f (x +2h)− f (x + 3h)
8h3

f (4)(x) ≈ − f (x−3h)+ 12 f (x−2h)−39 f (x−h)+56 f (x)−39 f (x + h)
6h4

+
12 f (x + 2h)− f (x + 3h)

6h4

The implementation for the higher order, O(h4), difference formulas in C# is given
below and includes methods for approximating numerical derivatives for both an
analytical function f (x) and for an array of (xi,yi) of data values.
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public static double DerivativeOh4Central1(Function f, double x,
double h)

{
h=(h==0)?0.01:h;
return (f(x-2*h) - 8*f(x-h) + 8*f(x+h) - f(x+2*h))/12/h;

}

public static double DerivativeOh4Central1(double[] y, int i,
double h)

{
if (y==null || y.Length<5 || i<2 || i>y.Length-3 || h==0)

return double.NaN;
return (y[i-2] - 8*y[i-1] + 8*y[i+1] - y[i+2])/12/h;

}

public static double DerivativeOh4Central2(Function f, double x,
double h)

{
h=(h==0)?0.01:h;
return (-f(x-2*h)+16*f(x-h)-30*f(x)+16*f(x+h)-f(x+2*h))/12/h/h;

}

public static double DerivativeOh4Central2(double[] y, int i,
double h)

{
if (y==null || y.Length<5 || i<2 || i>y.Length-3 || h==0)

return double.NaN;
return (-y[i-2]+16*y[i-1]-30*y[i]+16*y[i+1]-y[i+2])/12/h/h;

}

public static double DerivativeOh4Central3(Function f, double x,
double h)

{
h=(h==0)?0.01:h;
return (f(x-3*h) - 8*f(x-2*h) + 13*f(x-h) - 13*f(x+h)

+ 8*f(x+2*h) - f(x+3*h))/8/h/h/h;
}

public static double DerivativeOh4Central3(double[] y, int i,
double h)

{
if (y==null || y.Length<7 || i<3 || i>y.Length-4 || h==0)

return double.NaN;
return (y[i-3] - 8*y[i-2] + 13*y[i-1] - 13*y[i+1]

+ 8*y[i+2] - y[i+3])/8/h/h/h;
}

public static double DerivativeOh4Central4(Function f, double x,
double h)

{
h=(h==0)?0.01:h;
return (-f(x-3*h) + 12*f(x-2*h) - 39*f(x-h) + 56*f(x)

- 39*f(x+h) + 12*f(x+2*h) - f(x+3*h))/6/h/h/h/h;
}
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public static double DerivativeOh4Central4(double[] y, int i,
double h)

{
if (y==null || y.Length<7 || i<3 || i>y.Length-4 || h==0)

return double.NaN;
return (-y[i-3] + 12*y[i-2] - 39*y[i-1] + 56*y[i]

- 39*y[i+1] + 12*y[i+2] - y[i+3])/6/h/h/h/h;
}

To test the improved central method for calculating numerical derivative values I
used the test function f (x) = cos x and calculated derivatives at the point x = 0.5 as
shown below.

public delegate double Function(double x);
static double f1(double x)
{ return Math.Cos(x); }

static void Main(string[] args)
{

// Calculate derivatives using f(x) = cos(x) at x=0.5:
Console.WriteLine("\nUsing the O(hˆ4)CENTRAL difference method\n");
double dy = DerivativeOh4Central1(f1, 0.5, h);
Console.WriteLine(" f’(x) = " + dy.ToString());
dy = DerivativeOh4Central2(f1, 0.5, h);
Console.WriteLine(" f’’(x) = " + dy.ToString());
dy = DerivativeOh4Central3(f1, 0.5, h);
Console.WriteLine(" f’’’(x) = " + dy.ToString());
dy = DerivativeOh4Central4(f1, 0.5, h);
Console.WriteLine(" f’’’’(x) = " + dy.ToString());
// Calculate derivatives for array values at i = 5:
Console.WriteLine("\nDerivatives for array values:\n");
double h = 0.1;
double[] y = new double[10];
for (int i = 0; i < 10; i++)

y[i] = f1(i * h);
dy = DerivativeOh4Central1(y, 5, h);
Console.WriteLine(" y’ = " + dy.ToString());
dy = DerivativeOh4Central2(y, 5, h);
Console.WriteLine(" y’’ = " + dy.ToString());
dy = DerivativeOh4Central3(y, 5, h);
Console.WriteLine(" y’’’ = " + dy.ToString());
dy = DerivativeOh4Central4(y, 5, h);
Console.WriteLine(" y’’’’ = " + dy.ToString());
// Analytic results:
Console.WriteLine("\nAnalytic results:\n");
dy = -Math.Sin(0.5);
Console.WriteLine(" y’ = " + dy.ToString());
dy = -Math.Cos(0.5);
Console.WriteLine(" y’’ = " + dy.ToString());
dy = Math.Sin(0.5);
Console.WriteLine(" y’’’ = " + dy.ToString());
dy = Math.Cos(0.5);
Console.WriteLine(" y’’’’ = " + dy.ToString());

}
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OUTPUT:
Using the O(hˆ4) CENTRAL difference method and the function
f(x) = cos(x) to calculate derivatives at x = 0.5

f’(0.5) = -0.479423942420447
f’’(0.5) = -0.877581587668858
f’’’(0.5) = 0.47942274710315
f’’’’(0.5) = 0.877580006044357

Derivatives for array values. Since h=0.1 then
the point x=0.5 is equivalent to i=5.

y’(0.5) = -0.479423942420448
y’’(0.5) = -0.877581587668872
y’’’(0.5) = 0.479422747103261
y’’’’(0.5) = 0.8775800060562

Analytic results for comparision:

y’(0.5) = -0.479425538604203
y’’(0.5) = -0.877582561890373
y’’’(0.5) = 0.479425538604203
y’’’’(0.5) = 0.877582561890373

11.3 Richardson Extrapolation

Richardson extrapolation is a sequence acceleration method used to improve the rate
of convergence of a sequence. It is named after Lewis Fry Richardson, who intro-
duced the technique in the early 20th century. Practical applications of Richardson
extrapolation include Romberg integration, which applies Richardson extrapolation
to the trapezoidal rule, and the Bulirsch-Stoer algorithm for solving ordinary differ-
ential equations [69, 70].

Suppose that A(h) is an estimation of order hn for A so that A = limh→0 A(h). In
other words, A−A(h) = anhn +O(hm), an 	= 0, m > n. By repeating this calculation
with h = th we obtain A−A(th) = an(th)n +O((th)m). Using these two equations to
eliminate the coefficient an and solving for A we eventually arrive at the following
expression.

A =
tnA(h)−A(th)

tn −1

which is called the Richardson extrapolation formula. In practice, t is usually set to
t = 1/2 in which case the above expression becomes

A =
2n A(h/2)−A(h)

2n −1

which gives an estimate of order hm for A with m > n.
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Since the derivatives are calculated in the order of O(h2) using the finite differ-
ence methods, then for our purposes n = 2 and the Richardson extrapolation formula
reduces to

A =
4A(h/2)−A(h)

3
The implementation of the Richardson extrapolation method in the calculation of
numerical derivatives using the finite difference methods described earlier in this
chapter for both an analytical function f (x) and for an array of (xi,yi) of data values
is illustrated below.

public static double DerivativeRichardson1(Function f, double x,
double h, string flag)

{
double result = double.NaN;
switch (flag)
{

case "Backward":
result = (4 * DerivativeBackward1(f, x, h / 2) -

DerivativeBackward1(f, x, h)) / 3;
break;
case "Forward":

result = (4 * DerivativeForward1(f, x, h / 2) -
DerivativeForward1(f, x, h)) / 3;

break;
case "Central":

result = (4 * DerivativeCentral1(f, x, h / 2) -
DerivativeCentral1(f, x, h)) / 3;

break;
default:

result = double.NaN;
break;

}
return result;

}

public static double DerivativeRichardson1(double[] y, int i,
double h, string flag)

{
double result = double.NaN;
switch (flag)
{

case "Backward":
result = (4 * DerivativeBackward1(y, i, h / 2) -

DerivativeBackward1(y, i, h)) / 3;
break;

case "Forward":
result = (4 * DerivativeForward1(y, i, h / 2) -

DerivativeForward1(y, i, h)) / 3;
break;

case "Central":
result = (4 * DerivativeCentral1(y, i, h / 2) -

DerivativeCentral1(y, i, h)) / 3;
break;

default:
result = double.NaN;
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break;
}
return result;

}

public static double DerivativeRichardson2(Function f, double x,
double h, string flag)

{
double result = double.NaN;
switch (flag)
{

case "Backward":
result = (4 * DerivativeBackward2(f, x, h / 2) -

DerivativeBackward2(f, x, h)) / 3;
break;

case "Forward":
result = (4 * DerivativeForward2(f, x, h / 2) -

DerivativeForward2(f, x, h)) / 3;
break;

case "Central":
result = (4 * DerivativeCentral2(f, x, h / 2) -

DerivativeCentral2(f, x, h)) / 3;
break;

default:
result = double.NaN;
break;

}
return result;

}

public static double DerivativeRichardson2(double[] y, int i, double
h, string flag)

{
double result = double.NaN;
switch (flag)
{

case "Backward":
result = (4 * DerivativeBackward2(y, i, h / 2) -

DerivativeBackward2(y, i, h)) / 3;
break;

case "Forward":
result = (4 * DerivativeForward2(y, i, h / 2) -

DerivativeForward2(y, i, h)) / 3;
break;

case "Central":
result = (4 * DerivativeCentral2(y, i, h / 2) -

DerivativeCentral2(y, i, h)) / 3;
break;

default:
result = double.NaN;
break;

}
return result;

}
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public static double DerivativeRichardson3(Function f, double x,
double h, string flag)

{
double result = double.NaN;
switch (flag)
{

case "Backward":
result = (4 * DerivativeBackward3(f, x, h / 2) -

DerivativeBackward3(f, x, h)) / 3;
break;

case "Forward":
result = (4 * DerivativeForward3(f, x, h / 2) -

DerivativeForward3(f, x, h)) / 3;
break;

case "Central":
result = (4 * DerivativeCentral3(f, x, h / 2) -

DerivativeCentral3(f, x, h)) / 3;
break;

default:
result = double.NaN;
break;

}
return result;

}

public static double DerivativeRichardson3(double[] y, int i, double
h, string flag)

{
double result = double.NaN;
switch (flag)
{

case "Backward":
result = (4 * DerivativeBackward3(y, i, h / 2) -

DerivativeBackward3(y, i, h)) / 3;
break;

case "Forward":
result = (4 * DerivativeForward3(y, i, h / 2) -

DerivativeForward3(y, i, h)) / 3;
break;

case "Central":
result = (4 * DerivativeCentral3(y, i, h / 2) -

DerivativeCentral3(y, i, h)) / 3;
break;

default:
result = double.NaN;
break;

}
return result;

}

public static double DerivativeRichardson4(Function f, double x,
double h, string flag)

{
double result = double.NaN;
switch (flag)
{
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case "Backward":
result = (4 * DerivativeBackward4(f, x, h/2) -

DerivativeBackward4(f, x, h)) / 3;
break;

case "Forward":
result = (4 * DerivativeForward4(f, x, h/2) -

DerivativeForward4(f, x, h)) / 3;
break;

case "Central":
result = (4 * DerivativeCentral4(f, x, h/2) -

DerivativeCentral4(f, x, h)) / 3;
break;

default:
result = double.NaN;
break;

}
return result;

}

public static double DerivativeRichardson4(double[] y, int i, double
h, string flag)

{
double result = double.NaN;
switch (flag)
{

case "Backward":
result = (4 * DerivativeBackward4(y, i, h / 2) -

DerivativeBackward4(y, i, h)) / 3;
break;

case "Forward":
result = (4 * DerivativeForward4(y, i, h / 2) -

DerivativeForward4(y, i, h)) / 3;
break;

case "Central":
result = (4 * DerivativeCentral4(y, i, h / 2) -

DerivativeCentral4(y, i, h)) / 3;
break;

default:
result = double.NaN;
break;

}
return result;

}
//Testing the Richardson Extrapolation Method:
public delegate double Function(double x);
//Test function: f(x) = xˆ3 + eˆx
static double f2(double x)
{

return x * x * x + Math.Exp(x);
}

static void Main(string[] args)
{

double h = 0.1;
double x = 0.5;
Console.WriteLine("Testing Richardson’s Method\n");
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Console.WriteLine("Function used: f(x) = xˆ3 + eˆx\n");
Console.WriteLine("KEY:\n");
Console.WriteLine("f[n]exact = f’exact,f’’exact,... f’’’’exact\n");
Console.WriteLine("central[n] = 1st derivative using central method

, etc\n");
Console.WriteLine("richardson[n] = 1st deriv using Richardson

method, etc\n");

Console.WriteLine("Results:\n");
double f1exact = 3 * x * x + Math.Exp(x); //f’(x)
double central1 = DerivativeCentral1(f2, x, h);
double richardson1 = DerivativeRichardson1(f2, x, h, "Central");
Console.WriteLine(" f1exact = {0,11:n8}, central1 = {1,11:n8},
richardson1 = {2,11:n8}", f1exact, central1, richardson1);

double f2exact = 6 * x + Math.Exp(x); //f’’(x)
double central2 = DerivativeCentral2(f2, x, h);
double richardson2 = DerivativeRichardson2(f2, x, h, "Central");
Console.WriteLine(" f2exact = {0,11:n8}, central2 = {1,11:n8},
richardson2 = {2,11:n8}", f2exact, central2, richardson2);

double f3exact = 6 + Math.Exp(x); //f’’’(x)
double central3 = DerivativeCentral3(f2, x, h);
double richardson3 = DerivativeRichardson3(f2, x, h, "Central");
Console.WriteLine(" f3exact = {0,11:n8}, central3 = {1,11:n8},
richardson3 = {2,11:n8}", f3exact, central3, richardson3);

double f4exact = Math.Exp(x); //f’’’’(x)
double central4 = DerivativeCentral4(f2, x, h);
double richardson4 = DerivativeRichardson4(f2, x, h, "Central");
Console.WriteLine(" f4exact = {0,11:n8}, central4 = {1,11:n8},
richardson4 = {2,11:n8}", f4exact, central4, richardson4);

}

OUTPUT:
Testing Richardson’s Method. Function used: f(x) = xˆ3 + eˆx
KEY: f[n]exact = f’exact, f’’exact, ... f’’’’exact
central[n] = 1st derivative using central method, etc
richardson[n] = 1st derivative using Richardson method, etc

Results:
f1exact = 2.39872127, central1 = 2.41147051, richardson1 =

2.39872093
f2exact = 4.64872127, central2 = 4.65009566, richardson2 =

4.64872116
f3exact = 7.64872127, central3 = 7.65284720, richardson3 =

7.64872024
f4exact = 1.64872127, central4 = 1.65147120, richardson4 =

1.64872075
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11.4 Derivatives by Polynomial Interpolation

The finite difference formulas have been derived under the assumption that the data
points are equally spaced and adjacent to each other. When this is not possible and
the data points are unevenly spaced, then polynomial interpolation provides an al-
ternate way for calculating numerical derivatives. The basic idea behind using this
method is to approximate the derivative of f (x) by calculating the derivative of the in-
terpolating polynomial. Although other polynomials such as the Laguerre, Hermite
or cubic splines may also be used in conjunction with this method, the Lagrange
polynomials were chosen to demonstrate this algorithm here because they are sta-
ble, continuous, well known, easy to use and have an established track record for
conducting reliable interpolation calculations. As before with the Taylor series ex-
pansion, the more points we use, the greater the precision of the calculated results.
Unfortunately, it also follows that the more points we use, the longer and messier the
equations become. In order to reach some kind of a compromise and generate results
that fall within a reasonable amount of precision while maintaining the complexity of
the equations at a somewhat manageable level, the examples that follow below were
chosen using a three-point Lagrange polynomial. While similar derivations using
higher order Lagrange polynomials are certainly possible, such industrious under-
taking will be left as an exercise for my readers. In any event, the equations for the
three-point Lagrange polynomial interpolation method along with its accompanying
first and second derivatives are given as follows:

f (x) =
(x− xi)(x− xi+1)

(xi−1 − xi)(xi−1 − xi+1)
f (xi−1)+

(x− xi−1)(x− xi+1)
(xi − xi−1)(xi − xi+1)

f (xi)

+
(x− xi−1)(x− xi)

(xi+1 − xi−1)(xi+1 − xi)
f (xi+1)

The first and second derivatives can be found by directly differentiating the above
equation:

f ′(x) =
(2x− xi− xi+1)

(xi−1 − xi)(xi−1 − xi+1)
f (xi−1)+

(2x− xi−1 − xi+1)
(xi − xi−1)(xi − xi+1)

f (xi)

+
(2x− xi−1− xi)

(xi+1 − xi−1)(xi+1 − xi)
f (xi+1)

f ′′(x) =
2

(xi−1 − xi)(xi−1 − xi+1)
f (xi−1)+

2

(xi − xi−1)(xi − xi+1)
f (xi)

+
2

(xi+1 − xi−1)(xi+1 − xi)
f (xi+1)

The implementation of these equations in the calculation of numerical derivatives
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using the finite difference methods described earlier in this chapter for both an ana-
lytical function f (x) and for an array of (xi,yi) of data values is illustrated below.

public static double DerivativeByInterpolation0(double[] x,
double[] y, double xval)

{
double result = double.NaN;
int n = y.Length;
for (int i = 1; i < n-1; i++)
{

if (xval > x[i-1] && xval < x[i+1])
{
result = y[i-1]*(xval-x[i])*(xval-x[i+1])/((x[i-1]-x[i])*
(x[i-1]-x[i+1]))+y[i]*(xval-x[i-1])*(xval-x[i+1])/((x[i]-
x[i-1])*(x[i]-x[i+1]))+y[i+1]*(xval-x[i-1])*(xval-x[i])/

((x[i+1]-x[i-1])*(x[i+1]-x[i]));
}

}
return result;

}

public static double DerivativeByInterpolation1(double[] x,
double[] y, double xval)

{
double result = double.NaN;
int n = y.Length;
for (int i = 1; i < n-1; i++)
{

if (xval > x[i-1] && xval < x[i+1])
{
result = y[i-1]*(2*xval-x[i]-x[i+1])/((x[i-1]-x[i])*
(x[i-1]-x[i+1]))+y[i]*(2*xval-x[i-1]-x[i+1])/((x[i]-x[i-1])*
(x[i]-x[i+1]))+y[i+1]*(2*xval-x[i-1]-x[i])/((x[i+1]-x[i-1])*
(x[i+1]-x[i]));

}
}
return result;

}

public static double DerivativeByInterpolation2(double[] x,
double[] y, double xval)

{
double result = double.NaN;
int n = y.Length;
for (int i = 1; i < n-1; i++)
{

if (xval > x[i-1] && xval < x[i+1])
{
result = y[i-1]*2/((x[i-1]-x[i])*(x[i-1]-x[i+1])) +
y[i]*2 /((x[i]-x[i-1])*(x[i]-x[i+1])) +
y[i+1]*2 /((x[i+1]-x[i-1])*(x[i+1]-x[i]));

}
return result;

}
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//Testing the Derivative by Interpolating Polynomial Method:

static void Main(string[] args)
{

Console.WriteLine("\n\nTesting Derivatives by Polynomial
Interpolation Method\n");

double x = 3.8;
double[] xa = new double[] {2.0,2.1,2.3,2.6,2.7,4.0};
double[] ya = new double[]

{3.2332,3.1634,2.7220,2.1635,-2.0829,-2.6365};
double y0 = DerivativeByInterpolation0(xa,ya,x);
double y1 = DerivativeByInterpolation1(xa,ya,x);
double y2 = DerivativeByInterpolation2(xa,ya,x);
Console.WriteLine("y={0:n6}\ny’={1:n6}\ny’’={2:n6}\n",y0,y1,y2);

}

OUTPUT:

Testing Derivatives by Polynomial Interpolation Method

y = -9.157326
y’ = 26.598681
y’’ = 60.054505
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Numerical Integration

12.1 Introduction

Numerical integration constitutes a broad family of algorithms for calculating the nu-
merical value of a definite integral and is also a much more accurate procedure than
numerical differentiation. Numerical integration aspires to solve the basic problem
of computing an approximate numerical solution to a general definite integral of the
form ∫ b

a
f (x)dx

If f (x) is a smooth well-behaved function, integrated over a small number of dimen-
sions and the limits of integration are bounded, there are many excellent methods to
approximate the integral with excellent precision.

Motivation to perform numerical integration originates from two sources. First,
the function f (x) to be integrated may be too complex or even impossible to be
evaluated analytically. Second, the function f (x) could be described only by an
array of numbers (x, f (x)) so that a numerical approximation may be the only way
to evaluate its integral over some given range of values.

Numerical integration methods can be divided into three broad categories: Newton-
Cotes formulas, Gaussian quadrature and Monte Carlo methods. The Newton-Cotes
formulas are characterized by smooth, equally spaced data points (x, f (x)) where
f (x) is either known or can be easily evaluated. The Trapezoidal and Simpson’s
methods, for example, are perhaps the two best known methods, belonging to this
group of formulas, for numerically calculating integrals based on evaluating the in-
tegrand at equally spaced points. Alternatively, if the data points (x, f (x)) are not
equally spaced and f (x) is difficult to evaluate directly then there are other methods,
better known as Gaussian quadrature, which require fewer evaluations of the inte-
grand and are better suited for performing the integration. Monte-Carlo integration,
on the other hand, is a relatively recent technique compared to all these others and is
usually reserved for evaluating a numerical approximation of the most difficult inte-
grals which usually cannot be evaluated by any other means. The rise in popularity
of Monte Carlo methods is most likely due to significant improvements in computer
technology over the last few years.

405
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12.2 Newton-Cotes Formulas

The central idea behind most formulas for numerically evaluating the integral

I( f ) =
∫ b

a
f (x)dx

is to replace f (x) by an approximating function whose integral can then be more
easily evaluated. This approximating function is often chosen to be an interpolating
polynomial because polynomial integration is very easy to do.

The Newton-Cotes technique consists of a very useful and straightforward family
of numerical integration formulas that use the Lagrange polynomials as their source
of interpolating polynomial to approximate f (x). To integrate a function f (x) over
some interval [a,b], first divide it into n equal parts such that xi = x0 + ih where
h = (xn − x0)/n = (b−a)/n for i = 0,1,2, . . . ,n.

Assuming that the value of a function f (xi) is known at equally spaced points xi,
for i = 0,1,2, . . . ,n, then the closed Newton-Cotes formula of degree n is given by

∫ b

a
f (x)dx ≈

n

∑
i=0

wi f (xi)

where the wi are called weights and are derived from the Lagrange basis polynomi-
als. This means they depend only on the xi and not on the function f (x) itself. If
L(x) represents the interpolation polynomial in the Lagrange form for the given data
points (x0, f (x0)), . . . ,(xn, f (xn)), then we can approximate the general integral I( f )
given above by

∫ b

a
f (x)dx ≈

∫ b

a
L(x)dx =

∫ b

a

n

∑
i=0

f (xi) li(x)dx =
n

∑
i=0

f (xi)
∫ b

a
li(x)dx︸ ︷︷ ︸
wi

.

The open Newton-Cotes formula of degree n is stated as

∫ b

a
f (x)dx ≈

n−1

∑
i=1

wi f (xi)

12.2.1 Rectangle Method

The rectangle method partitions the integrating interval [a,b] into n equal subinter-
vals [xi,xi+1], for i = 0,1, . . . ,n all with width h = (b− a)/n. Then the area of the
rectangle over [xi,xi+1] is given by h f (xi) = h f (a + ih) and the total area of the n
rectangle panels is

∫ b

a
f (x)dx ≈ h

n−1

∑
i=0

f (a + ih)+ O(h2)
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where O(h2) is an approximate expression for the error term [22]. The rectangle
method is perhaps the simplest of all the known integration methods. However, its
accuracy highly depends on how large n is. As n gets larger, this approximation
gets more accurate. In fact, this computation is the spirit of the definition of the
Riemann integral and the limit of this approximation as n → ∞ is defined and equal
to

∫ b
a f (x)dx if this Riemann integral is defined. The C# code to evaluate integrals

by the rectangular method is given below. The first routine assumes that the inte-
grand f (x) is known and can be expressed analytically whereas the second routine
assumes that f (x) is only known through a finite set of data points (xi, f (xi)) where
i = 0,1,2, . . . ,n.

public delegate double Function(double x);
public static double Rectangular(Function f,double a,double b,int n)
{

double sum = 0.0;
double h = (b - a) / n ;
for (int i = 0; i < n ; i++)
{

sum += h * f(a + i * h);
}
return sum;

}

public static double Rectangular(double[] y,double a,double b,int n)
{

double sum = 0.0;
double h = (b - a) / n;
for (int i = 0; i < n; i++)
{

sum += h * y[i];
}
return sum;

}

static double df(double x) { return Math.Cos(x); }
static double f(double x) { return Math.Sin(x); }

static void TestRectangular()
{

int n = 1000;
double result; double a = 0.0; double b = 1.0;

result = f(b) - f(a);
Console.WriteLine("Analytic result ="+result.ToString());

result = Rectangular(df, a, b, n);
Console.WriteLine("Result using function ="+result.ToString());

double[] y = new double[n];
double h = (b - a) / (n - 1);
for (int i = 0; i < n; i++)
{

double x = i * h;
y[i] = df(x);
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}
result = Rectangular(y, a, b, n);
Console.WriteLine("Result using data array ="+result.ToString());

}
OUTPUT: Testing Rectangular method for integral(df(x)) = f(x)
where f(x) = sin(x), df(x) = cos(x) and a=0 to b=1.

Analytic result = 0.841470984807897
Result using function = 0.84170076353238
Result using data array = 0.841399594783247

12.2.2 Midpoint Method

The midpoint method tends to be more accurate than the rectangle method for a finite
number n. The key idea is to make the midpoint of the subintervals [xi,xi+1] intersect
f (x) so that we then have

∫ b

a
f (x)dx ≈ h

n−1

∑
i=0

f (a +(i+ 0.5)h)+ O(h2)

where O(h2) is an approximate expression for the error term [22]. The C# code
to evaluate integrals by the rectangular method is given below. The first routine
assumes that the integrand f (x) is known and can be expressed analytically whereas
the second routine assumes that f (x) is only known through a finite set of data points
(xi, f (xi)) where i = 0,1,2, . . . ,n.

public delegate double Function(double x);
public static double MidpointMethod(Function f, double a, double b,

int n)
{

double sum = 0.0;
double h = (b - a) / n;
for (int i = 0; i < n; i++)
{

sum += h * f(a + (i + 0.5) * h);
}
return sum;

}

public static double MidpointMethod(double[] y, double a, double b,
int n)

{
double sum = 0.0;
double h = (b - a) / (n - 1);
for (int i = 0; i < (n - 1); i++)
{

sum += h * 0.5 * (y[i] + y[i + 1]);
}
return sum;

}
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static double df(double x) { return Math.Cos(x); }
static double f(double x) { return Math.Sin(x); }

static void TestMidpointMethod()
{

int n = 1000;
double result; double a = 0.0; double b = 1.0;

result = f(b) - f(a);
Console.WriteLine("Analytic result ="+result.ToString());

result = MidpointMethod(df, a, b, n);
Console.WriteLine("Result using function ="+result.ToString());

double[] y = new double[n];
double h = (b - a) / (n - 1);
for (int i = 0; i < n; i++)
{

double x = i * h;
y[i] = df(x);

}
result = MidpointMethod(y, a, b, n);
Console.WriteLine("Result using data array ="+result.ToString());

}
OUTPUT: Testing Midpoint method for integral(df(x)) = f(x)
where f(x) = sin(x), df(x) = cos(x) and a=0 to b=1.

Analytic result = 0.841470984807897
Result using function = 0.841471019869188
Result using data array = 0.841470914544858

12.2.3 Trapezoidal Method

The trapezoidal rule assumes that f (x) is nearly linear in the interval [a,b] and can
therefore be approximated by a linear interpolating polynomial of the form

f (x) ≈ f (a)
(x−b)
(a−b)

+ f (b)
(x−a)
(b−a)

so that

∫ b

a
f (x)dx ≈

∫ b

a
[ f (a)

(x−b)
(a−b)

+ f (b)
(x−a)
(b−a)

]dx ≈ (b−a)[
f (a)+ f (b)

2
]

To improve on this approximation for when f (x) is not a linear function on [a,b],
break the interval [a,b] into n smaller subintervals such that xi = x0 + ih where h =
(xn − x0)/n = (b− a)/n for i = 0,1,2, . . . ,n. Then add up the areas of all these
smaller strips to obtain an approximate value of the integral as shown below.

∫ b

a
f (x)dx≈ h

2

n

∑
i=0

[ f (xi)+ f (xi+1)] =
h

2

n

∑
i=0

[ f (x0 + ih)+ f (x0+(i+1)h)]+O(h3 f (2)(x))
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Here the error term, O(h3 f (2)(x)), signifies that the true answer differs from the es-
timate by an amount that is the product of some numerical coefficient times h3 times
the value of the function’s second derivative somewhere in the interval of integra-
tion [22].

The C# code to evaluate integrals by the trapezoidal rule is given below. The first
routine assumes that the integrand f (x) is known and can be expressed analytically
whereas the second routine assumes that f (x) is only known through a finite set of
data points (xi, f (xi)) where i = 0,1,2, . . . ,n.

public delegate double Function(double x);
public static double Trapezoidal(Function f,double a,double b,int n)
{

double sum = 0.0;
double h = (b - a) / n;
for (int i = 0; i < n; i++)
{

sum += 0.5 * h * (f(a + i * h) + f(a + (i + 1) * h));
}
return sum;

}

public static double Trapezoidal(double[] y,double a,double b,int n)
{

double sum = 0.0;
double h = (b - a) / (n-1);
for (int i = 0; i < (n-1); i++)
{

sum += 0.5 * h * (y[i] + y[i + 1]);
}
return sum;

}

static double df(double x) { return Math.Cos(x); }
static double f(double x) { return Math.Sin(x); }

static void TestTrapezoidal()
{

int n = 1000;
double result;
double a = 0.0;
double b = 1.0;

result = f(b) - f(a);
Console.WriteLine("Analytic result ="+result.ToString());

result = Trapezoidal(df, a, b, n);
Console.WriteLine("Result using function="+result.ToString());

double[] y = new double[n];
double h = (b-a) / (n-1);
for (int i = 0; i < n; i++)
{

double x = i * h;
y[i] = df(x);

}
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result = Trapezoidal(y, a, b, n);
Console.WriteLine("Result using data array ="+result.ToString());

}

OUTPUT: Testing Trapezoidal method for integral(df(x)) = f(x)
where f(x) = sin(x), df(x) = cos(x) and a=0 to b=1.

Analytic result = 0.841470984807897
Result using function = 0.841470914685314
Result using data array = 0.841470914544858

12.2.4 Simpson’s Method

The trapezoidal method described in the last section relies on approximating the inte-
grand by a straight line. A better approximation can perhaps be obtained by approx-
imating the integrand with a nonlinear function that can be easily integrated. One
class of such methods, called Simpson’s rules or Simpson’s methods, uses quadratic
(Simpson’s 1/3 method) and cubic (Simpson’s 3/8 method) polynomials to approx-
imate the integrand.

Simpson’s 1/3 Method

In this method, a quadratic second-order polynomial is used to approximate the in-
tegrand. The coefficients of a quadratic polynomial can be determined from three
points. For an integral over the domain [a,b], the three points used are the two end-
points x1 = a,x3 = b and the midpoint x2 = (a+b)/2. The polynomial can be written
in the form P(x) = α +β (x− x1)+ γ(x− x1)(x− x2) where α , β and γ are unknown
constants evaluated from the condition that the polynomial passes through the points
P(x1) = f (x1), P(x2) = f (x2) and P(x3) = f (x3). These three conditions yield

α = f (x1), β = [ f (x2)− f (x1)]/(x2 − x1) and γ =
f (x3)−2 f (x2)+ f (x1)

2h2

Therefore the integral I =
∫ b

a f (x)dx can be integrated over the interval [a,b] giving

I =
∫ b

a
f (x)dx ≈

∫ x3

x1

P(x)dx ≈ h
3

[
f (a)+ 4 f

(
a + b

2

)
+ f (b)

]

In the composite Simpson’s 1/3 method, the interval [a,b] is divided into n subin-
tervals of equal width h where h = (b− a)/n. Since three points are needed for
defining a quadratic polynomial, the Simpson’s 1/3 method is applied to two adja-
cent subintervals at a time. Consequently, the whole interval has to be divided into
an even number of subintervals. Applying the last equation for I given above over
two adjacent subintervals [xi−1,xi] and [xi,xi+1] gives

Ii =
∫ i+1

i−1
f (x)dx ≈ h

3

[
f (xi−1)+ 4 f (xi)+ f (xi+1)

]
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where h = xi+1 − xi = xi − xi−1. By collecting similar terms, the right side of the last
equation can be simplified to give the general equation for the composite Simpson’s
1/3 method for equally spaced subintervals

I =
∫ b

a
f (x)dx ≈ ∑ Ii ≈

h

3

[
f (a)+ 4

n

∑
i=2,4,6,...

f (xi)+ 2
n−1

∑
j=3,5,7,...

f (x j)+ f (b)
]

where h = (b−a)/n and the approximate expression for the error term is O(h5 f 4(x)).

Simpson’s 3/8 Method

The derivation for Simpson’s 3/8 method is quite similar to that of Simpson’s 1/3
method except that now a cubic third order polynomial is used instead to approximate
the integrand. Consequently, the details of the derivation will be left as an exercise
for the reader. The final result is given by the following equation, more commonly
known as Simpson’s 3/8 method

I =
∫ b

a
f (x)dx ≈ 3h

8

[
f (a)+ 3

n−1

∑
i=2,5,8,...

[ f (xi)+ f (xi+1)]+ 2
n−2

∑
j=4,7,10,...

f (x j)+ f (b)
]

where h = (b−a)/n and the approximate expression for the error term is O(h5 f 4(x)).
Note that the subintervals must be equally spaced and the number of subintervals
within [a,b] must be divisible by 3. Since Simpson’s 1/3 method is only valid for an
even number of subintervals, and Simpson’s 3/8 method is only valid for a number of
subintervals that is divisible by 3, a combination of both can be used for integration
when there are any odd number of intervals. Such combined implementation in
C# of Simpson’s 1/3 and 3/8 methods is given below where xi = a + ih for i =
0,1, . . . ,n with h = (b− a)/n and x0 = a and xn = b. The first routine assumes that
the integrand f (x) is known and can be expressed analytically whereas the second
routine assumes that f (x) is only known through a finite set of data points (xi, f (xi))
where i = 0,1,2, . . . ,n.

public delegate double Function(double x);
public static double Simpson(Function f,double a,double b,int n)
{

if (n < 3) return double.NaN; //Need at least 3 points
double sum = 0.0;
double h = (b - a) / n;
if (n % 2 != 0)
{

for (int i = 0; i < n - 1; i += 2)
{

sum += h*(f(a+i*h)+4*f(a+(i+1)*h)+f(a+(i+2)*h))/3;
}

}
else
{

sum = 3*h*(f(a)+3*f(a+h)+3*f(a+2*h)+f(a+3*h))/8;
for (int i = 3; i < n - 1; i += 2)
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{
sum += h*(f(a+i*h)+4*f(a+(i+1)*h)+f(a+(i+2)*h))/3;

}
}
return sum;

}

public static double Simpson(double[] y,double a,double b,int n)
{

double h = (b - a) / n;
//Need at least 3 points
if (n < 3 || h == 0) return double.NaN;

double sum = 0.0;
if (n % 2 != 0)
{

for (int i = 0; i < n - 1; i += 2)
{

sum += h * (y[i] + 4 * y[i + 1] + y[i + 2]) / 3;
}

}
else
{

sum = 3 * h * (y[0] + 3 * y[1] + 3 * y[2] + y[3]) / 8;
for (int i = 3; i < n - 1; i += 2)
{

sum += h * (y[i] + 4 * y[i + 1] + y[i + 2]) / 3;
}

}
return sum;

}

static double df(double x) { return Math.Cos(x); }
static double f(double x) { return Math.Sin(x); }

static void TestSimpson()
{

int n = 1000;
double result;

result = f(1) - f(0);
Console.WriteLine("Analytic result = "+result.ToString());

result = Simpson(df, 0, 1, n);
Console.WriteLine("Result using function = "+result.ToString());

double[] ya = new double[n];
double h = 1.0 / (n - 1);
for (int i = 0; i < n; i++)
{

double x = i * h;
ya[i] = df(x);

}
result = Simpson(ya, h);
Console.WriteLine("Result using data array = "+result.ToString());

}
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OUTPUT: Testing Simpson method for integral(df(x)) = f(x)
where f(x) = sin(x), df(x) = cos(x) and a=0 to b=1.

Analytic result = 0.841470984807897
Result using function = 0.841470984807901
Result using data array = 0.841470984807901

12.3 Romberg Integration

Romberg’s integration method consists of essentially applying Richardson extrapo-
lation, described in Chapter 11, repeatedly on the trapezoidal rule. Consequently,
this method evaluates the integrand only at equally spaced points. The integrand
should also have continuous derivatives even though fairly good results have also
been reported if only a few derivatives exist [22]. Romberg’s integration method can
be defined inductively as follows [69]

R(1,1) =
1
2
(b−a)( f (a)+ f (b))

...

R(n,1) =
1
2

[
R(n−1,1)+ hn−1

2n−2

∑
k=1

f (a +(2k−1)hn)

]

...

R(n,m) = R(n,m−1)+
1

4m−1 −1
(R(n,m−1)−R(n−1,m−1))

R(n,m) =
1

4m−1 −1
(4m−1R(n,m−1)−R(n−1,m−1))

where n ≥ 2, m ≥ 2 and hn = b−a
2n−1 . Note that the first extrapolation R(n,1) is equiv-

alent to the trapezoidal rule with 2n−1 + 1 points. Also, the second extrapolation,
R(n,2), is equivalent to Simpson’s rule with 2n−1 +1 points and so on. By the recur-
sion formula for R(n,m) given above, we can write

R(2,2) =
4

3
R(2,1)− 1

3
R(1,1)

from which we can then express the results in an array of the following format

[
R(1,1)
R(2,1) R(2,2)

]

© 2010 by Taylor and Francis Group, LLC



Numerical Integration 415

For higher order terms, this matrix format can be generalized to look like this⎡
⎢⎢⎢⎢⎢⎣

R(1,1)
R(2,1) R(2,2)
R(3,1) R(3,2) R(3,3)

...
...

...
. . .

R(i,1) R(i,2) R(i,3) · · · R(i, i)

⎤
⎥⎥⎥⎥⎥⎦

from which we see that the latest and greatest approximation to the integral is always
the last diagonal term R(i, i) of the array. As a result, this process can be continued
until the difference between two successive diagonal terms becomes smaller than
some given tolerance factor. The implementation of Romberg’s method in C# is
given below. Note that this method assumes that the integrand f (x) is known and
can be expressed analytically.

public delegate double Function(double x);
public static double RombergIntegration(Function f, double a, double

b, int maxIterations, double tolerance)
{

int n = 2;
double h = b - a;
double sum = 0.0;
int j = 0;
double[,] R = new double[maxIterations, maxIterations];

R[1,1] = h*(f(a)+f(b))/2.0;
h = h / 2;
R[2,1] = R[1,1]/2 + h*f(a+h);
R[2,2] = (4*R[2,1]-R[1,1])/3;
for (j = 3; j <= maxIterations; j++)
{

n = 2 * n;
h = h / 2;
sum = 0.0;
for (int k = 1; k <= n; k += 2)
{

sum += f(a + k*h);
}
R[j,1] = R[j-1,1]/2 + h*sum;
double factor = 4.0;
for (int k = 2; k <= j; k++)
{

R[j,k] = (factor*R[j,k-1]-R[j-1,k-1])/(factor-1);
factor = factor*4.0;

}
if (Math.Abs(R[j,j]-R[j,j-1]) < tolerance*Math.Abs(R[j,j]))
{

sum = R[j,j];
return sum;

}
}
sum = R[n, n];
return sum;

}
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static double df(double x) { return Math.Cos(x); }
static double f(double x) { return Math.Sin(x); }

static void TestRomberg()
{

double result = f(1) - f(0);
Console.WriteLine("Analytic result = "+result.ToString());

result = RombergIntegration(df, 0, 1, 10, 1e-10);
Console.WriteLine("Result from Romberg’s method = {0}",result);

}

OUTPUT: Testing Romberg’s Method for integral(df(x)) = f(x)
where f(x) = sin(x), df(x) = cos(x) and a=0 to b=1.

Analytic result = 0.841470984807897
Result from Romberg’s method = 0.841470984807879

12.4 Gaussian Quadrature Methods

The numerical methods examined so far for calculating I( f ) were based on inte-
grating linear and quadratic polynomials and the resulting formulas were applied on
subdivisions of ever smaller subintervals. In this section we consider another numer-
ical method, often called Gaussian quadrature, that is based on the exact integration
of polynomials of increasingly higher degree where no subdivision of the integration
interval is necessary. Instead, we now have the freedom to choose the points at which
we can evaluate the function values and this feature can lead to greater accuracy in
evaluating the integral. In addition, the integral can now also contain singularities as
long as they are integrable.

Gaussian integration formulas have the same general appearance as the Newton-
Cotes formula

I( f ) =
∫ b

a
f (x)dx ≈

n

∑
i=0

wi f (xi)+ Ri(x)

However, the main difference between them is in the way that the weights wi and xi

are determined. In Newton-Cotes integration, the data points must be equally spaced
in the interval [a,b] which means that their locations are predetermined. By contrast,
in Gaussian integration the locations of the points and weights are chosen so that the
above equation yields an exact integral if f (x) is a polynomial of degree 2n + 1 or
less. This means that we can now write

In( f ) =
n

∑
i=0

wi f (xi)+ Ri(x)
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and also require that the nodes (x0,x1, · · · ,xn) and weights (w0,w1, · · · ,wn) be chosen
so that In( f ) = I( f ) for all polynomials f (x) of as large a degree as possible. The
Ri(x) is just an expression for the error term.

The sequence of formulas In( f ) is called the Gaussian numerical integration method.
From its definition, In( f ) uses n nodes and is exact for all polynomials of degree
≤ 2n + 1. Given an integrand over [a,b]

I( f ) =
∫ b

a
f (x)dx

we can introduce the linear change of variables

x =
b + a + t(b−a)

2
where −1 ≤ t ≤ 1

thus transforming the integral to

I( f ) =
b−a

2

∫ 1

−1
F(t)dt where F(t) = f

(
b + a + t(b−a)

2

)

The motivation for carrying out such a change of variables will be apparent later
when we start using various different polynomials for doing integrations for which it
can be shown that the nodes (x0,x1, · · · ,xn) are the zeros of the given polynomial of
degree n on the interval [−1,1]. We can therefore summarize Gaussian integration
with the following general formula

I( f ) =
∫ b

a
f (x)dx =

b−a

2

∫ 1

−1
f

(
b + a + x(b−a)

2

)
dx

≈ b−a

2

n−1

∑
i=0

wi f

(
b + a + xi(b−a)

2

)
+ Ri(x)

12.4.1 Gauss-Legendre Integration

Before we can calculate the integral of some function f (x) using the Gauss-Legendre
integration method and the general formula just derived above, we must first calcu-
late the values for the nodes (x0,x1, · · · ,xn) and the corresponding weights wi(x) of
the Legendre polynomial of degree n on the interval [−1,1]. The nodes are simply
the roots of the Legendre polynomials and the weights are given by the formula [19]

wi(x) =
2(x− x2

i )
(n + 1)2[Pn−1(x)]2

where Pn(x) indicates the Legendre polynomial of degree n.
Calculating the roots and weights of a Legendre polynomial is not a trivial mat-

ter [71, 72]. However, once that is accomplished and the values are stored in arrays,
then computing the numerical values of the integral of some function f (x) becomes
a very straight forward process. The code below illustrates one way to calculate the
roots and weights of a Legendre polynomial of order n.
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public static void LegendreNodesWeights(int n, out double[] x, out
double[] w)

{
double c, d, p1, p2, p3, dp;

x = new double[n];
w = new double[n];

for (int i = 0; i < (n + 1) / 2; i++)
{

c = Math.Cos(Math.PI * (4*i+3)/(4*n+2));
do
{

p2 = 0;
p3 = 1;
for (int j = 0; j < n; j++)
{

p1 = p2;
p2 = p3;
p3 = ((2*j+1)*c*p2-j*p1)/(j+1);

}
dp = n * (c*p3-p2)/(c*c-1);
d = c;
c -= p3 / dp;

}
while (Math.Abs(c-d) > 1e-12);
x[i] = c;
x[n - 1 - i] = -c;
w[i] = 2*(1-x[i]*x[i])/(n+1)/(n+1)/Legendre(x[i],n+1)/

Legendre(x[i],n+1);
w[n - 1 - i] = w[i];

}
}

Once the values for the roots and weights of a Legendre polynomial have been calcu-
lated to the desired order n, then the integral of some function f (x) may be computed
using the Gauss-Legendre integration method as shown below.

public delegate double Function(double x);
public static double GaussLegendre(Function f, double a, double b,

int n)
{

double[] x, w;
LegendreNodesWeights(n, out x, out w);

double sum = 0.0;
for (int i = 0; i < n; i++)
{

sum += 0.5*(b-a)*w[i]*f(0.5*(a+b)+0.5*(b-a)*x[i]);
}
return sum;

}

static double f2(double x) { return Math.Exp(-x*x); }

© 2010 by Taylor and Francis Group, LLC



Numerical Integration 419

static void TestGaussLegendre()
{

Console.WriteLine("\nResult from Gauss-Legendre method:\n");
double result;
for (int n = 1; n < 9; n++)
{

result = GaussLegendre(f2, 1, 2, n);
Console.WriteLine(" n = {0},result = {1}",n,result);

}
}

OUTPUT: Result from Gauss-Legendre method

n = 1, result = 0.0592870638160487
n = 2, result = 0.0555691307729124
n = 3, result = 0.0430050989135099
n = 4, result = 0.0351891808008212
n = 5, result = 0.0297682119097792
n = 6, result = 0.0257888176077846
n = 7, result = 0.0227458498569105
n = 8, result = 0.0203447098938804

12.4.2 Gauss-Hermite Integration

Before we can calculate the integral of some function f (x) using the Gauss-Hermite
integration method and the general formula derived earlier in this section, we must
first calculate the values for the nodes (x0,x1, · · · ,xn) and the corresponding weights
wi(x) of the Hermite polynomial of degree n on the interval [−1,1]. The nodes
are simply the roots of the Hermite polynomials and the weights are given by the
formula [19]

wi(x) =
2n+1n!

√
π

[Hn+1(xi)]2

where Hn(x) indicates the Hermite polynomial of degree n.
Calculating the roots and weights of a Hermite polynomial is not a trivial mat-

ter [71, 72]. However, once that is accomplished and the values are stored in arrays,
then computing the numerical values of the integral of some function f (x) becomes
a very straight forward process. The code below illustrates one way to calculate the
roots and weights of a Hermite polynomial of order n.

public static void HermiteNodesWeights(int n, out double[] x, out
double[] w)

{
double c = 0.0;
double d, p1, p2, p3, dp;

x = new double[n];
w = new double[n];
for (int i = 0; i < (n + 1) / 2; i++)
{

if (i == 0)
{
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c = Math.Sqrt(2*n+1)-1.85575*Math.Pow(2*n+1,-((double)(1)
/(double)(6)));

}
else
{

if (i == 1)
{

c = c-1.14*Math.Pow(n,0.426)/c;
}
else
{

if (i == 2)
{

c = 1.86*c-0.86*x[0];
}
else
{

if (i == 3)
{

c = 1.91*c-0.91*x[1];
}
else
{

c = 2*c-x[i-2];
}

}
}

}
do
{

p2 = 0;
p3 = Math.Pow(Math.PI, -0.25);
for (int j = 0; j < n; j++)
{

p1 = p2;
p2 = p3;
p3 = p2*c*Math.Sqrt((double)(2)/((double)(j+1))) -

p1*Math.Sqrt((double)(j)/((double)(j+1)));
}
dp = Math.Sqrt(2 * n) * p2;
d = c;
c -= p3 / dp;

}
while (Math.Abs(c - d) > 1e-12);
x[i] = c;
w[i] = Math.Pow(2,n+1)*Gamma(n + 1)*Math.Sqrt(Math.PI) /

Hermite(x[i],n+1)/Hermite(x[i],n+1);
x[n - 1 - i] = -x[i];
w[n - 1 - i] = w[i];

}
}

Once the values for the roots and weights of a Hermite polynomial have been calcu-
lated to the desired order n, then the integral of some desired function f (x) may be
computed using the Gauss-Hermite integration method as shown below.
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public delegate double Function(double x);
public static double GaussHermite(Function f, int n)
{

double[] x, w;
HermiteNodesWeights(n, out x, out w);

double sum = 0.0;
for (int i = 0; i < n; i++)
{

sum += w[i] * f(x[i]);
}
return sum;

}

static double f4(double x) { return (1 - x * x) * Math.Exp(x); }

static void TestGaussHermite()
{

Console.WriteLine("\nResult from Gauss-Hermit method:\n");
double result;
for (int n = 1; n < 9; n++)
{

result = GaussHermite(f4, n);
Console.WriteLine(" n = {0},result = {1}",n,result);

}
}

OUTPUT: Result from Gauss-Hermit method

n = 1, result = 1.77245385090552
n = 2, result = 1.11717042753117
n = 3, result = 0.635553156861587
n = 4, result = 0.573344494209991
n = 5, result = 0.569162593585641
n = 6, result = 0.568975365834694
n = 7, result = 0.568969118057079
n = 8, result = 0.568968952329356

12.4.3 Gauss-Leguerre Integration

Before we can calculate the integral of some function f (x) using the Gauss-Leguerre
integration method and the general formula derived earlier in this section, we must
first calculate the values for the nodes (x0,x1, · · · ,xn) and the corresponding weights
wi(x) of the Leguerre polynomial of degree n on the interval [−1,1]. The nodes
are simply the roots of the Leguerre polynomials and the weights are given by the
formula [19]

wi(x) =
xi

(n + 1)2[Ln+1(xi)]2

where Ln(x) indicates the Leguerre polynomial of degree n.
Calculating the roots and weights of a Leguerre polynomial is not a trivial mat-

ter [71, 72]. However, once that is accomplished and the values are stored in arrays,
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then computing the numerical values of the integral of some function f (x) becomes
a very straight forward process. The code below illustrates one way to calculate the
roots and weights of a Leguerre polynomial of order n.

public static void LaguerreNodesWeights(int n, out double[] x, out
double[] w)

{
double c = 0.0;
double d, p1, p2, p3, dp;

x = new double[n];
w = new double[n];
for (int i = 0; i < n; i++)
{

if (i == 0)
{

c = 3 / (1 + 2.4 * n);
}
else
{

if (i == 1)
{

c += 15 / (1 + 2.5 * n);
}
else
{

c += (1+2.55*(i-1))/(1.9*(i-1))*(c-x[i-2]);
}

}
do
{

p2 = 0;
p3 = 1;
for (int j = 0; j < n; j++)
{

p1 = p2;
p2 = p3;
p3 = ((-c+2*j+1)*p2-j*p1)/(j+1);

}
dp = (n * p3 - n * p2) / c;
d = c;
c = c - p3 / dp;

}
while (Math.Abs(c - d) > 1e-12);
x[i]=c;
w[i]=x[i]/(n+1)/(n+1)/Laguerre(x[i],n+1)/Laguerre(x[i],n+1);

}
}

Once the values for the roots and weights of a Leguerre polynomial have been calcu-
lated to the desired order n, then the integral of some desired function f (x) may be
computed using the Gauss-Leguerre integration method as shown below.
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public delegate double Function(double x);
public static double GaussLaguerre(Function f, int n)
{

double[] x, w;
LaguerreNodesWeights(n, out x, out w);

double sum = 0.0;
for (int i = 0; i < n; i++)
{

sum += w[i] * f(x[i]);
}
return sum;

}

static double f3(double x) { return Math.Sin(x); }

static void TestGaussLaguerre()
{

Console.WriteLine("\nResult from Gauss-Laguerre method:\n");
double result;
for (int n = 1; n < 9; n++)
{

result = GaussLaguerre(f3, n);
Console.WriteLine(" n = {0}, result = {1}", n, result);

}
}

OUTPUT: Result from Gauss-Laguerre method

n = 1, result = 0.841470984807897
n = 2, result = 0.432459454679844
n = 3, result = 0.496029827480564
n = 4, result = 0.504879279460199
n = 5, result = 0.498903320956064
n = 6, result = 0.500049474797677
n = 7, result = 0.500038911994668
n = 8, result = 0.4999877537353

12.4.4 Gauss-Chebyshev Integration

Before we can calculate the integral of some function f (x) using the Gauss-Chebyshev
integration method and the general formula derived earlier in this section, we must
first calculate the values for the nodes (x0,x1, · · · ,xn) and the corresponding weights
wi(x) of the Chebyshev polynomial of degree n on the interval [−1,1]. The nodes
are simply the roots of the Chebyshev polynomials and the weights are given by the
formula [19]

xi = cos

[
(2i+ 1)π

2n

]
where i = 0,1,2, · · · ,n−1

wi(x) =
π
n

where i = 0,1,2, · · · ,n−1
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Unlike its predecessors, calculating the roots and weights of a Chebyshev polynomial
for the simplest case in the interval [−1,1] is a trivial matter [71, 72] and so then
the integral of some desired function f (x) may be computed quite easily using the
Gauss-Chebyshev integration method as shown below.

public delegate double Function(double x);
public static double GaussChebyshev(Function f, int n)
{

double x;
double w = Math.PI / n;

double sum = 0.0;
for (int i = 0; i < n; i++)
{

x = Math.Cos(Math.PI * (i + 0.5)/n);
sum += f(x);

}
return sum * w;

}

static double f5(double x) { return (1 - x * x) * Math.Exp(x); }
static void TestChebyshev()
{

Console.WriteLine("\nResult from Gauss-Chebyshev method:\n");
double result;
for (int n = 1; n < 9; n++)
{

result = GaussChebyshev(f5, n);
Console.WriteLine(" n = {0}, result = {1}", n, result);

}
}

OUTPUT: Result from Gauss-Chebyshev method
n = 1, result = 3.14159265358979
n = 2, result = 1.98013302639538
n = 3, result = 1.77972865341803
n = 4, result = 1.77553470182922
n = 5, result = 1.77549984480925
n = 6, result = 1.77549968964298
n = 7, result = 1.775499689213
n = 8, result = 1.77549968921218

12.5 Multiple Integration

Multiple integration can be thought of as simply an extension of the one-dimensional
integration methods discussed so far. For example, a double integral can be evaluated
by means of two successive applications of one of the techniques presented above for
a one-dimensional integral. In the following example consider using Simpson’s 1/3
rule for n = 2. Then a double integral having the general format
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∫ b

a

∫ d

c
f (x,y)dxdy

can be numerically evaluated by considering a two-dimensional rectangular grid with
dimensions given by a < x < b and c < y < d divided into M×L rectangles with sides

hx =
b−a

M

hy =
d− c

L

where M and L are multiples of n = 2. Then the subarea

Ai j =
∫ yn( j+1)

yn( j−1)

dy
∫ xn(i+1)

xn(i−1)

f (x,y)dy

can be evaluated by integrating along x and then along y according to the formula

Ai j ≈
hx

3
(g j−1 + 4g j + g j+1)

where

g j ≈
hy

3
( fi−1, j + 4 fi, j + fi+1, j)

Substituting the equation for g j into the equation for Ai j we obtain

Ai j ≈
hx hy

9
[( fi+1, j+1 + fi+1, j−1 + fi−1, j+1 + fi−1, j−1)

+ 4( fi, j+1 + fi, j−1 + fi+1, j + fi−1, j)+ 16 fi, j]

Finally, summing up the value of Ai j in all subareas gives

I =
M/n

∑
i=1

L/n

∑
j=1

Ai j

The method presented above for the numerical evaluation of double integrals can
also be analogously extended to the numerical evaluation of triple integrals. To eval-
uate ∫ b

a

∫ d

c

∫ f

e
f (x,y,z)dxdydz

using Simpson’s 1/3 rule for n = 2, the cubic region a < x < b and c < y < d and
e < z < f is divided into M×L×P smaller cubic regions of sides

hx =
b−a

M

hy =
d − c

L

hz =
f − e

P
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where M, L and P are multiples of n = 2. Now the subvolume Ai, j,k is evaluated by
integrating along x to obtain

g j,k ≈
hx

3
( fi+1, j,k + 4 fi, j,k + fi−1, j,k)

then along y to obtain

gk ≈
hy

3
(g j+1,k + 4g j,k + g j−1,k)

and finally along z to obtain

Ai, j,k ≈
hz

3
(gk+1 + 4gk + gk−1)

Combining these three last equations together results in a huge messy final equation
for Ai, j,k given by

Ai j ≈
hx hy hz

27
[( fi−1, j−1,k+1 + 4 fi−1, j,k+1 + fi−1, j+1,k+1)

+ (4 fi, j−1,k+1 + 16 fi, j,k+1 + 4 fi, j+1,k+1)
+ ( fi+1, j−1,k+1 + 4 fi+1, j,k+1 + fi+1, j+1,k+1)
+ (4 fi−1, j−1,k + 16 fi−1, j,k + 4 fi−1, j+1,k)
+ (16 fi, j−1,k + 64 fi, j,k + 16 fi, j+1,k)
+ (4 fi+1, j−1,k + 16 fi+1, j,k + 4 fi+1, j+1,k)
+ ( fi−1, j−1,k−1 + 4 fi−1, j,k−1 + fi−1, j+1,k−1)
+ (4 fi, j−1,k−1 + 16 fi, j,k−1 + 4 fi, j+1,k−1)
+ ( fi+1, j−1,k−1 + 4 fi+1, j,k−1 + fi+1, j+1,k−1)]

Finally, summing up the value of Ai, j,k in all subareas now gives

I =
M/n

∑
i=1

L/n

∑
j=1

P/n

∑
k=1

Ai, j,k

Perhaps the most obvious conclusion that can be drawn from these results for the
numerical evaluation of double and triple integrals is that the equations become in-
creasingly messier as the dimensionality of the integrals increase. Fortunately, there
are other numerical methods, such as Monte Carlo, that can be used to numerically
evaluate higher order integrals.

12.6 Monte Carlo Methods

Monte Carlo methods were first developed in the 1940s as a method for estimat-
ing integrals that could not be evaluated analytically. Although many sophisticated
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techniques are now included under the category of Monte Carlo methods, the presen-
tation given here will be limited to just a very brief introduction of this topic in order
to illustrate how Monte Carlo methods may be used as an alternative technique for
obtaining numerical approximations of integrals and especially those integrals which
cannot be solved analytically or by some other means [73].

12.6.1 Monte Carlo Integration

One of the many applications of Monte Carlo methods is the numerical evaluation of
definite integrals. Consider the one dimensional integral

I =
∫ b

a
f (x)dx

By application of the mean value theorem of calculus, an estimate of the integral
I can be obtained by

I ≈ (b−a)〈 f 〉
where 〈 f 〉 denotes the mean value of f (x) over the interval a ≤ x ≤ b. In the limit
of a large number of points N, IN can be shown to approximate the exact value given
by I. If points are selected at random over the interval [a,b], then the Monte Carlo
estimate of the integral can be approximated by

IN ≈ (b−a)〈 f 〉 ≈ (b−a)
N

N

∑
i=1

f (xi)+ O

(
1√
N

)

where 〈 f 〉 denotes the mean value of f over the set of sampled points {xi}. By the
central limit theorem, the set of all possible sums over different {xi} will have a
Gaussian distribution. The standard deviation σN of the different values of IN is a
measure of the uncertainty in the integral’s value and is given by

σN =

√√√√√√ 1

N
∑N

i=1 f (xi)2 −
(

1

N
∑N

i=1 f (xi)

)2

N −1

The probability that I is within IN ±σN is ≈ 0.68 and the probability of being with
2σN is ≈ 0.95. This error decays as 1/

√
N independent of the dimensionality of the

integral, unlike grid based methods which have a strong dimensional dependence.
The accuracy of the Monte Carlo method can be enhanced by using information

about the function. For example, if g(x)≈ f (x) and if we can integrate g(x), then we
can write

I =
∫ b

a
f (x)dx =

∫ b

a

f (x)
g(x)

g(x)dx =
∫ −1(b)

y−1(a)

f (x)
g(x)

dy

where y(x) =
∫ x g(t)dt. So instead of uniformly sampling x to integrate f (x) we can

uniformly sample y and integrate f (x)/g(x). This technique is known as importance

© 2010 by Taylor and Francis Group, LLC



428 Numerical Methods, Algorithms and Tools in C#

sampling and has the effect of placing a large number of sample points where the
function is large, thus yielding a better estimate of the integral.

Consider the following very simple example,
∫ 1

0 x2dx = 1/3 = 0.3333 . . . that was
designed to illustrate the ideas discussed so far for using Monte Carlo methods to
numerically evaluate an integral.
// An example of integration with direct Monte
// Carlo scheme with integrand f(x) = x*x from 0 to 1.

public static void MonteCarloIntegrationDemo()
{

Console.WriteLine("Monte Carlo Integration Example");
Console.WriteLine("Integrating function f(x)=x*x from 0 to 1\n");
Random rand = new Random();
int nPts = 1000000;
double s0 = 0;
double sigma = 0;
double x = 0.0;
double fcn;
for (int i = 0; i < nPts; ++i)
{

x = rand.NextDouble();
fcn = x * x;
s0 += fcn;
sigma += fcn * fcn;

}
s0 /= nPts;
sigma /= nPts;
sigma = Math.Sqrt(Math.Abs(sigma - s0 * s0) / nPts);
Console.WriteLine("Analytical result = 0.3333333....333");
Console.WriteLine("Integral result = " + s0 + " +- " + sigma);

}

OUTPUT: Monte Carlo Integration Example
Integrating function f(x) = x * x from 0 to 1

Analytical result = 0.3333333....333
Integral result = 0.332668255235276 +- 0.000297724348776569

In many real-world applications of the Monte Carlo method, there will be a need to
generate a random sample from a distribution that is either very complex or perhaps
even unknown. When simpler methods for generating a random sample do not work,
there are many alternative sampling techniques of various levels of difficulty that can
sometimes be helpful.

12.6.2 The Metropolis Algorithm

The Metropolis algorithm [74] essentially generates a random walk of points dis-
tributed according to a required probability distribution. From an initial position
in phase or configuration space, a proposed move is generated and the move either
accepted or rejected according to the Metropolis algorithm. By taking a sufficient
number of trial steps all of phase space is explored and the Metropolis algorithm en-
sures that the points are distributed according to the required probability distribution.
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The Metropolis algorithm may be derived by considering the probability density,
ρ at two points in configuration space X and X ′. Configuration space is specified by
the integration variables and limits. For one dimensional integration, X = {x} for
x ∈ [a,b]. Averaged over many trial steps, the average number of samples at X and
X ′ should be equal, ρ(X) = ρ(X ′).

The probability for a trial move from X to X ′ is defined by T (X → X ′) and we
require

T (X → X ′) = T (X ′ → X)

If the probability of accepting a move from X to X ′ is P(X → X ′) then the total
probability of accepting a move from X to X ′ is P(X → X ′)T (X → X ′). Therefore,
at equilibrium

ρ(X)P(X → X ′)T (X → X ′) = ρ(X ′)P(X ′ → X)T (X ′ → X) .

The Metropolis algorithm corresponds to choosing

P(X → X ′) = min

{
1,

ρ(X ′)
ρ(X)

}
.

For the Metropolis algorithm to be valid, it is essential that the random walk is
ergodic, that is any point X ′ in configuration space may be reached from any other
point X . In some applications of the Metropolis algorithm, parts of configuration
space may be difficult to reach. Long simulations or a modification of the algorithm
are then necessary. Many methods have been developed to cope with this slowing
down, but for the applications presented here the Metropolis algorithm has been
found both adequate and sufficient for the problems investigated.

In order to demonstrate the power of the Metropolis algorithm and also directly
compare the results obtained with those from straight random sampling which was
calculated earlier, let us again embrace our very simple example where f (x) = x2

so that
∫ 1

0 f (x)dx = 1/3 = 0.3333 . . .. However, this time let us apply the concepts
behind importance sampling and the metropolis algorithm. First we need to obtain
some weighted distribution function w(x).∫ 1

0
f (x)dx =

∫ 1

0
w(x)g(x)dx

We can choose a distribution function w(x) such that

w(x) =
1

C
(exp(x2)−1)

and obtain a normalization constant

C =
∫ 1

0
(exp(x2)−1)dx = 0.46265167

Therefore, the corresponding function g(x) is

g(x) =
f (x)
g(x)

=
0.46265167 x2

exp(x2)−1
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Although it may look like we are trying to calculate a very simple integral by the
hardest method possible, we should keep in mind that it is a Monte Carlo calcula-
tion involving sampling data instead of an analytical evaluation of the integral. The
following code in C# illustrates the methods and ideas we have discussed so far.

public static void MetropolisAlgorithmDemo()
{

Console.WriteLine("Metropolis Integration Algorithm Example");
Console.WriteLine("Integrating function f(x)=x*x from 0 to 1\n");
int nsize = 100000;
int nskip = 15;
int ntotal = nsize * nskip;
int neq = 10000;
int iaccept = 0;
double x, w, h = 0.4, z = 0.46265167;
Random r = new Random();

x = r.NextDouble();
w = weight(x);
for (int i = 0; i < neq; ++i)
{

double rand = r.NextDouble();
Metropolis(ref x, ref h, ref r, ref iaccept, ref w);

}

double s0 = 0; double ds = 0; iaccept = 0;
for (int i = 0; i < ntotal; ++i)
{

double rand = r.NextDouble();
Metropolis(ref x, ref h, ref r, ref iaccept, ref w);

if (i % nskip == 0)
{

double f = g(x);
s0 += f;
ds += f * f;

}
}
s0 /= nsize; ds /= nsize;
ds = Math.Sqrt(Math.Abs(ds - s0 * s0) / nsize);
s0 *= z;
ds *= z;
double accept = 100.0 * iaccept / ntotal;
Console.WriteLine("Analytical result = 0.3333333....333");
Console.WriteLine("Integral result = " + s0 + " +- " + ds);
Console.WriteLine("Acceptance rate = " + accept + "%");

}

public static void Metropolis(ref double x, ref double h, ref Random
rand, ref int iaccept, ref double w)

{
double xold = x;
x = x + 2 * h * (rand.NextDouble() - 0.5);
if ((x < 0) || (x > 1)) x = xold;
else
{
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double wnew = weight(x);
if (wnew > w * rand.NextDouble())
{

w = wnew;
++iaccept;

}
else x = xold;

}
}

public static double weight(double x) { return Math.Exp(x*x)-1; }
public static double g(double x) { return x*x/(Math.Exp(x*x)-1); }

OUTPUT: Metropolis Integration Algorithm Example
Integrating function f(x) = x * x from 0 to 1

Analytical result = 0.3333333....333
Integral result = 0.333222846428068 +- 0.000151405466715815
Acceptance rate = 49.5926666666667%

12.7 Convolution Integrals

Convolution is an important mathematical concept and a useful tool in the area of
linear systems theory, particularly in image and signal processing applications. In
image processing, for example, convolution can be used as a filter to change the
characteristics of the image, sharpen the edges, blur the image or remove the high
or low frequency noise. In signal processing, on the other hand, convolution is a
method of describing how any linear system h[n] acts on any input x[n] to generate
the corresponding output y[n]. Convolution can also be used to suppress unwanted
portions of the signal or to separate the signal into different parts. More specifi-
cally, the output y[n] is said to be the convolution of the input signal x[n] with the
characteristic system response function h[n] and is written as y[n] = h[n]∗ x[n].

In general, the continuous convolution of two functions, say h(x) and g(x), is
defined by the convolution integral [75]

y(x) = h(x)∗ g(x) =
∫ +∞

−∞
h(α)g(α −β )dα

It can be easily shown that h(x)∗g(x)= g(x)∗h(x), which means that the convolution
operation is commutative, meaning that we can therefore also write

∫ +∞

−∞
h(α)g(α −β )dα =

∫ +∞

−∞
h(α −β )g(α)dα

Using the rectangle method for approximating integrals, the convolution integral
above may be approximated by
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y(x) = h(x)∗ g(x) =
∫ +∞

−∞
h(α)g(α −β )dα ≈

∞

∑
j=−∞

h[ j] g[i− j]Δα

where Δα is just a scaling factor more commonly known as the sampling interval.
In practice we cannot store arrays or vectors of infinite length, but rather treat all of
the entries outside of our finite length vectors as if they were 0. Generally speaking,
our convolution integrals may therefore be approximated by the summation of the
product of a pair of discrete (but displaced) values and then have the final result
multiplied by some scaling factor.

By definition, if x[n] is an N-point digital signal running from 0 to N − 1, and
h[n] is a M-point signal running from 0 to M −1, the convolution of the two signals
y[n] = x[n] ∗ h[n] is an N + M − 1 point signal running from 0 to N + M − 2, given
by [76]

y[i] =
M−1

∑
j=0

h[ j] x[i− j]

This equation is called the convolution sum and allows each point in the output signal
to be calculated independently of all other points in the output signal. x[n] is called
the input signal, h[n] is called the response and y[n] is called the output signal. Since
it can be easily shown that h[n] ∗ x[n] = x[n] ∗ h[n], there are two ways to calculate
the above sum. The input side algorithm loops through each sample in the input
signal whereas the output side algorithm loops through each sample in the output
signal. The code below illustrates how these two methods of calculating the discrete
convolution of two signals may be implemented in C#.

public static double[] Convolution1(double[] x, double[] h)
{

//Uses the input side algorithm

double[] y = new double[x.Length + h.Length - 1];

for (int i = 0; i < y.Length; i++)
{
y[i] = 0.0;

}

for (int i = 0; i < x.Length; i++)
{

for (int j = 0; j < h.Length; j++)
{

y[i+j] = y[i+j] + x[i] * h[j];
}

}
return y;

}
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public static double[] Convolution2(double[] x, double[] h)
{

//Uses the output side algorithm

double[] y = new double[x.Length + h.Length - 1];

for (int i = 0; i < y.Length; i++)
{

y[i] = 0.0;
for (int j = 0; j < h.Length; j++)
{

if ((i - j) < 0) continue;
if ((i - j) > (x.Length - 1)) continue;
y[i] = y[i] + h[j] * x[i - j];

}
}
return y;

}

As an example to demonstrate how to numerically calculate the convolution of two
discrete signals and the equivalence of the results obtained from two methods given
above, consider calculating the convolution of the following two input signals, x[n] =
2,2,3,3,4 and h[n] = 1,1,2 as shown below.

static void Main(string[] args)
{

double[] x = { 2, 2, 3, 3, 4 };
double[] h = { 1, 1, 2 };

double[] y = new double[x.Length + h.Length - 1];

y = Convolution1(x, h);

for (int i = 0; i < y.Length; i++)
{

Console.WriteLine("y[{0}] = {1}", i, y[i]);
}

y = Convolution2(x, h);

for (int i = 0; i < y.Length; i++)
{

Console.WriteLine("y[{0}] = {1}", i, y[i]);
}

Console.WriteLine("Expected 2 4 9 10 13 10 8");
Console.ReadLine();

}

OUTPUT (Convolution1): 2 4 9 10 13 10 8
OUTPUT (Convolution2): 2 4 9 10 13 10 8

Note how the output of these convolution calculations match exactly as expected.
Finally, let us also look at a simple practical example of calculating the convolution

of two square wave signals that can be described mathematically by the following
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expressions

g(x) =

{
1 0 ≤ x < 1

0 elsewhere
and h(x) =

{
1 1 ≤ x < 2

0 elsewhere

Their convolution can be calculated as shown below.

y(x) = h(x)∗ g(x) =
∫ 0

−∞
0 dτ +

∫ x

0
1 dτ +

∫ 1

x−1
1 dτ +

∫ +∞

1
0 dτ

=

{
x 0 ≤ x < 1

2− x 1 ≤ x < 2

These results seem to indicate that the convolution of two square wave pulses will
produce a triangular shaped pulse, the size of which depends on the scaling factor of
the convolution integral described earlier. The coding of this example in C# is given
below.

static void Main(string[] args)
{

double[] x = { 0, 1, 1, 0, 0};
double[] h = { 0, 0, 0, 1, 1, 0, 0 };

double[] y = new double[x.Length + h.Length - 1];

y = Convolution1(x, h);
for (int i = 0; i < y.Length; i++)
{

Console.WriteLine("y[{0}] = {1}", i, y[i]);
}

y = Convolution2(x, h);
for (int i = 0; i < y.Length; i++)
{

Console.WriteLine("y[{0}] = {1}", i, y[i]);
}

Console.WriteLine("Expected 2 4 9 10 13 10 8");
Console.ReadLine();

}

OUTPUT (Convolution1): 0 0 0 1 2 1 0 0 0 0
OUTPUT (Convolution2): 0 0 0 1 2 1 0 0 0 0

As expected, the convolution of two square wave pulses does produce a triangular
shaped pulse. Choosing a more suitable scaling factor, if any, is left for the reader.
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Statistical Functions

13.1 Introduction

Statistics is a vast subfield of mathematics pertaining to the collection, analysis, in-
terpretation and presentation of data. In addition, it provides the mathematical tools
necessary for the prediction and forecasting of future outcomes of random events
based on the collection, analysis and interpretation of data. As a result, statistics is
used by a wide variety of disciplines that includes not only the natural sciences and
engineering, but also the social sciences and the humanities.

Statistics can be further subdivided into two broad categories, applied and the-
oretical, that focus on different aspects of this particular discipline. In descriptive
statistics, for example, methods are used to summarize or describe a set of data.
Inferential statistics studies patterns in the data which may be modeled in a way
that accounts for randomness and uncertainty in observations. These models are
then used to draw inferences about the process or population under study. Together
descriptive and inferential statistics comprise a subfield of statistics called applied
statistics. Mathematical statistics, on the other hand, is concerned with studying the
rigorous theoretical aspects of the subject.

Given that there are already many excellent books on the subject [77, 64] and that
statistics consists of an enormous amount of material, the focus of this chapter will
be limited to developing just the essential software tools in C# needed to organize
and analyze data using basic descriptive statistics.

13.2 Some Useful Tools

In statistics, a population consists of the entire set of all possible entities from which
statistical inferences are to be drawn. For practical reasons, however, a smaller subset
of the population, based on a random sample, is usually taken to be analyzed instead.
If the sample is representative of the population, inferences and conclusions made
from the sample can be extended to include the population as a whole.

Before doing any statistical calculations using C#, one must first decide what kind
of data structure to use for storing the values drawn from a random sample. Al-
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though arrays are usually chosen for such a task, the .NET Framework also provides
the System.Collections namespace which contains interfaces and classes that de-
fine various collections of objects, such as lists, queues, bit arrays, hash tables and
dictionaries.

When working with data sets there is always some possibility that some entries
may have undesired problems that, if left unchecked, could potentially halt the exe-
cution of the program by throwing some kind of exception. For example, large data
sets collected during some long laboratory experiment may have some random NaN

entries due to malfunctioning equipment. These entries may then go undetected until
data is later analyzed and scrutinized more carefully. However, by then it may be too
late as the NaN entry may cause the program to crash by throwing an exception thus
leaving the user to then try and manually locate and fix the source of the problem. As
a result, once the sample data has been collected and stored in an array, it would be
nice to be able to verify that the data values in the array are indeed clean without any
unwanted entries before doing any further processing. Moreover, it would be even
nicer if those unwanted entries could also be automatically fixed without any manual
intervention by the user. The following two routines were designed to do just that.
The first one checks for the existence of some unwanted entry, such as NaN, in the in-
put data set and returns a boolean variable. The second routine not only searches for
an unwanted entry, but if one is found, the offending entry is then promptly removed
from the input data set. Note that with slight modifications in the code shown below,
these routines can be adapted to search for and remove any other type of unwanted
data entries.

//Tests for existence of unwanted NaN values in a data set
public static bool NaNTest(double[] x)
{

for (int i = 0; i < x.Length; i++)
{

if (Double.IsNaN(x[i]))
{

return true;
}

}
return false;

}

//Removes all NaN values that may be found in a data set
public static double[] NaNDelete(double[] x)
{

int n = 0;
for (int i = 0; i < x.Length; i++)
{

if (Double.IsNaN(x[i]))
{ n++; }

}
double[] removed = new double[x.Length - n];
int index = 0;
for (int i = 0; i < x.Length; i++)
{

if (!Double.IsNaN(x[i]))
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{
removed[index] = x[i];
index++;

}
}
return removed;

}

In the course of doing statistical calculations there may be times where one may
desire to run some special test on the data values while preserving the integrity of the
original data set. Perhaps the most common way of doing this is to simply make an
extra copy of your data file thereby creating a second file that is expendable for you
to mess with. Another way for you to do this is to have your code copy the contents
of your original data array into some other expendable data array which you can then
use for whatever purpose you want. However, the .NET Framework provides a far
more elegant way of doing all of this while at the same time using far less overhead.
The clone method creates a shallow copy of the array that copies only the elements
of the array, whether they are reference types or value types, but does not copy the
objects that the references refer to. The references in the new array point to the same
objects that the references in the original array point to. As a result, you end up only
messing with pointers to the data but not the actual data itself. Unlike C or C++ where
you had to keep careful track of pointers and what they were pointing to, C# does
all the hard work with pointers internally and seamlessly for you. In contrast, a deep
copy of an array copies the entire data elements and everything directly or indirectly
referenced by the elements. This action creates a lot of undesired overhead which
can be somewhat problematic particularly when working with large data sets. As a
result, the following code snippet illustrates how to apply the clone method to sort
the contents of an array. For simplicity, I’m using the built-in sorting routine found
in array data structures instead of one of the other fancier ones described in an earlier
chapter in this book on the topic of sorting and searching.

//Returns a cloned sorted copy of a data array
enum SortOrder { Ascending, Descending };
static double[] Sort(double[] x,SortOrder order)
{

return SortNoClone((double[])x.Clone(),order);
}

static double[] Sort(double[] x)
{

return SortNoClone((double[])x.Clone(),SortOrder.Ascending);
}

static double[] SortNoClone(double[] x,SortOrder order)
{

Array.Sort(x);
if (order == SortOrder.Descending)
{ Array.Reverse(x); }
return x;

}
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13.3 Basic Statistical Functions

13.3.1 Mean and Weighted Mean

In statistics, the central tendency of a data set refers to calculating the middle or
expected value of the data set. There are many different descriptive methods that
can be chosen as a measurement of the central tendency of a data set but the most
common one of these is known as the arithmetic mean. The arithmetic mean is
calculated by adding up all the elements of the data array and then dividing the result
by the total number of elements in the array as shown in the equation and code
snippet that follows.

x =
1
N

N

∑
i=1

xi

public static double Mean(double[] data)
{

double total = 0.0d;
for (int i = 0; i < data.Length; i++)
{

total += data[i];
}
return (total/data.Length);

}

It is important to remember that the mean can also refer to the expected value of
a randomly selected variable from a data set which, by the way, is also called the
population mean. As a result, there exists some confusion with regards to using
the proper and correct terminology and this has led some people to claim that the
mean value of a data set is equivalent to calculating its average. This is technically
incorrect if the mean is taken to be the arithmetic mean as there are different types
of averages: the mean, median, and mode as well as different types of mean.

For example, if one wants to combine average values from samples of the same
population with different sample sizes, the weighed arithmetic mean is usually used.
The weighed mean is similar to an arithmetic mean, where instead of each of the
data points contributing equally to the final result, some data points contribute more
than others. If all the weights are equal, then the weighed mean is the same as the
arithmetic mean. In general, if a set of weights w1, · · · ,wN is associated to a set of
data points given by x1, · · · ,xN , then the weighed arithmetic mean is defined by

x = ∑N
i=1 wi · xi

∑N
i=1 wi

The weights wi represent the bounds of the partial sample. In other applications
they represent a measure for the reliability of the influence upon the mean by the
respective weighed values. Note that the arithmetic mean is the special case where
all weights are equal to 1.

© 2010 by Taylor and Francis Group, LLC



Statistical Functions 439

public static double WeightedMean(double[] x, double[] weights)
{

if (x.Length != weights.Length)
{

throw new Exception("Data and Weight
arrays are not the same size");

}
double numerator = 0.0d;
double denominator = 0.0d;
for (int i = 0; i < x.Length; i++)
{

numerator += x[i] * weights[i];
denominator += weights[i];

}
return numerator / denominator;

}

13.3.2 Geometric and Weighted Geometric Mean

The geometric mean is just another type of mean which measures the central ten-
dency or typical value of a set of numbers. It is similar to the arithmetic mean except
that instead of adding the set of numbers and then dividing the sum by the count of
numbers in the set, n, the numbers are multiplied and then the nth root of the result-
ing product is taken. Note that the input data values xi must be both non-zero and
positive.

x =

(
N

∏
i=1

xi

)1/N

public static double GeometricMean(double[] data)
{

if (data.Length == 0)
{

throw new Exception("Geometric Mean requires
at least one value in the data.");

}
double product = 1.0;
for (int i = 0; i < data.Length; i++)
{

product *= data[i];
}
return Math.Pow(product,(1.0/data.Length));

}

If a set of weights w1, · · · ,wN is associated to the dataset x1, · · · ,xN , then the weighed
geometric mean is defined by

x =

(
N

∏
i=1

xwi
i

)1/∑N
i=1 wi

= exp

(
∑N

i=1 wi lnxi

∑N
i=1 wi

)

Note that for the weighed geometric mean, the geometric mean is the special case
where all weights are equal to 1.
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public static double WeighedGeometricMean(double[] x,
double[] weights)

{
if (x.Length != weights.Length)
{

throw new Exception("Data and Weight
arrays are not the same size");

}
double product = 1.0;
double wtotal = 0.0;
for (int i = 0; i < x.Length; i++)
{

product += weights[i] * Math.Log(x[i]);
wtotal += weights[i];

}
return Math.Exp(product / wtotal);

}

13.3.3 Harmonic and Weighted Harmonic Mean

The harmonic mean is yet another type of mean which measures the central tendency
or typical value of a set of numbers. It is useful for sets of numbers which are defined
in relation to some unit or in situations when the average of rates is desired.

x =
N(

∑N
i=1

1
xi

)

public static double HarmonicMean(double[] x)
{

double total = 0.0d;
for (int i = 0; i < x.Length; i++)
{

total += 1.0d / x[i];
}
return x.Length/total;

}

If a set of weights w1, · · · ,wn is associated to the dataset x1, · · · ,xn, then the weighed
harmonic mean is defined by

x = ∑N
i=1 wi(

∑N
i=1

wi
xi

)
Note that for the weighed harmonic mean, the harmonic mean is the special case
where all weights are equal to 1.

public static double WeighedHarmonicMean(double[] x,double[] weights)
{

if (x.Length != weights.Length)
{

throw new Exception("Data and Weight
arrays are not the same size");
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}
double xtotal = 0.0d;
double ytotal = 0.0d;
for (int i = 0; i < x.Length; i++)
{

xtotal += (weights[i]/x[i]);
ytotal += weights[i];

}
return ytotal/xtotal;

}

13.3.4 Truncated Mean

The truncated mean or trimmed mean is a statistical measure of central tendency,
much like the mean and median. However, it involves the calculation of the mean
after discarding given parts of a probability distribution or sample at the high and
low end, and typically discarding an equal amount on both ends. In the example
that follows, TruncatedMean() calculates the mean of a data set after the specified
truncation by discarding a certain percentage of the lowest and highest values of the
input data array and then computing the mean of the remaining values. For example,
a mean truncated by 10% is computed by discarding the lower and higher 5% of the
values and taking the mean of the remaining values. TruncatedMean() takes both the
input data array and the truncation parameter trcValue, which is a value between 0.0
and 1.0.

public static double TruncatedMean(double[] x, double trcValue)
{

int remove = (int)Math.Floor((trcValue * x.Length) / 2.0);
if (remove == 0)
{

return Mean(x);
}
if (remove == x.Length)
{

return Median(x);
}
double[] sorted = Sort(x,SortOrder.Ascending);
double sum = 0.0d;
int count = 0;
for (int i = remove; i < (sorted.Length - remove); i++)
{

sum += sorted[i];
count++;

}
return sum / count;

}

13.3.5 Root Mean Square

The quadratic mean, more commonly known as the root mean square (abbreviated
RMS or rms) is a statistical measure of the magnitude of a varying quantity and
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is especially useful when variates are both positive and negative. The RMS of a
collection of n values {x1,x2, . . . ,xn} is given by

xrms =

√
1
N

N

∑
i=1

x2
i =

√
x2

1 + x2
2 + · · ·+ x2

N

N
.

and the C# code for calculating the RMS of a data set stored in an array is given by

public static double RMS(double[] x)
{

double sum = 0.0d;
for (int i = 0; i < x.Length; i++)
{

sum += (x[i] * x[i]);
}
return Math.Sqrt(sum / x.Length);

}

13.3.6 Median, Range and Mode

As for the median, it essentially measures the middle position of a frequency distri-
bution for a data set. More formally, consider a sample of n variates x1, · · · ,xN . If
we reorder them so that Y1 < Y2 < · · · < YN , then Yi is called the ith order statistic.
Special cases include the minimum

Y1 = min(x1, · · · ,xN) and the maximum YN = max(x1, · · · ,xN)

Important functions of order statistics also include the statistical range

R = YN −Y1 and the midrange MR =
1

2
(Y1 +YN)

The median of a set of numbers is simply the value where half the numbers are less
than the median and half the numbers are more than the median. If the count of
numbers is odd the mid point is used if the count of numbers is even the average of
the two values around the midpoint is used. Given the notation just described, we
can therefore express a general equation for calculating the median as

x =

⎧⎨
⎩

Y((N+1)/2) if N is odd
1

2
(YN/2 +Y1+N/2) if N is even
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public static double Range(double[] x)
{

double[] sorted = Sort(x);
return (sorted[sorted.Length]-sorted[0]);

}

public static double MidRange(double[] x)
{

double[] sorted = Sort(x);
return 0.5 * (sorted[sorted.Length]+sorted[0]);

}

public static double Median(double[] x)
{

double[] sorted = Sort(x);
double position = 0.5*(sorted.Length-1);
int lower = (int)System.Math.Floor(position);
int upper = (int)System.Math.Ceiling(position);
if (lower == upper)
{

return sorted[lower];
}
return sorted[lower] + ((position-lower) *

(sorted[upper] - sorted[lower]));
}

The mode of a data sample is the element that occurs most often in the collection.
Like the statistical mean and the median, the mode is just another way of obtaining
important information about a random variable or a population in a single quantity.
In general, the mode is different from mean and median, and may be very different
for strongly skewed distributions. In addition, the mode is not necessarily unique,
since the same maximum frequency may be attained at different values.

public static double Mode(double[] x)
{

int[] counts = new int[x.Length];
double[] temp = new double[x.Length];
int index = 0;
for (int i = 0; i < x.Length; i++)
{

int found = Array.IndexOf(temp,x[i],0,index);
if (found >= 0)
{
// already seen
counts[found]++;

}
else
{
// new value
temp[index] = x[i];
counts[index] = 1;
index++;

}
}
int maxValue = 0;
int maxIndex = 0;
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for (int i = 0; i < index; i++)
{

if (counts[i] > maxValue)
{
maxValue = counts[i];
maxIndex = i;

}
}
return temp[maxIndex];

}

13.3.7 Mean Deviation

In statistics, the term deviation is used to indicate a measurement of the difference
between the observed value and the mean. The sign of deviation, either positive or
negative, indicates whether the observation is larger than or smaller than the mean.
The magnitude of the deviation value is a measure of how different an observation
is from the mean. One of the features of the mean is that the sum of the deviations
across the entire set of all observations is always zero. The average deviation is cal-
culated using the absolute value of the actual deviation and it is the sum of absolute
values of the deviations divided by the number of observations.

d =
1
N

N

∑
i=1

|xi − x|

In practice, however, the standard deviation is used more frequently and will be
addressed in greater detail later on in this chapter. Nevertheless, the C# code for
calculating the average deviation of a sample population whose data is stored in an
array is presented below.

public static double MeanDeviation(double[] x)
{

double sum = 0.0d;
for (int i = 0; i < x.Length; i++)
{

sum += x[i];
}
double mean = sum / x.Length;
sum = 0.0d;
for (int i = 0; i < x.Length; i++)
{

sum += Math.Abs(x[i] - mean);
}
return (sum / x.Length);

}

13.3.8 Mean Deviation of the Mean

A closely related statistical function is the median absolute deviation (MAD) of the
mean which calculates the median of the absolute deviations from the mean and
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offers a measure of the variability of a univariate sample. For a univariate data set
x1,x2, · · · ,xn, the MAD is defined as

MAD = mediani
( ∣∣xi −median j(x j)

∣∣ )
In other words, starting with the deviations from the data’s median, the MAD is
the median of their absolute values. The median absolute deviation is a measure of
statistical dispersion. It is a more robust estimator of scale than the sample variance
or standard deviation. In addition, it exists for some statistical distributions which
may not have a mean or variance.

public static double MedianDeviationOfTheMean(double[] x)
{

double sum = 0.0d;
for (int i = 0; i < x.Length; i++)
{

sum += x[i];
}
double mean = sum / x.Length;
double[] means = new double[x.Length];
for (int i = 0; i < means.Length; i++)
{

means[i] = Math.Abs(x[i] - mean);
}
return Median(means);

}

13.3.9 Mean Deviation of the Median

Another closely related statistical function is the median of the absolute deviations
from the median. This function is similar to MAD except that it calculates the median
deviation of the median instead of the median deviation of the mean. The proposed
C# code for calculating the median deviation of the median is shown below.

public static double MedianDeviationOfTheMedian(double[] x)
{

double median = Median(x);
double[] medians = new double[x.Length];
for (int i = 0; i < medians.Length; i++)
{

medians[i] = Math.Abs(x[i]-median);
}
return Median(medians);

}

13.3.10 Variance and Standard Deviation

The expected value of a random variable, E(x), is defined to be its mean value,
x̄. Unfortunately, the expected value of a random variable does not provide any
indication of how all the other data values of the sample are dispersed. As a result,
the concepts of both variance and standard deviation have been introduced in order
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to provide a measurement of the dispersion for a set of values taken by a random
variable. The variance of a sample is calculated by averaging the squared distance
of its possible values from its mean value. Whereas the mean is a way to describe
the location of a distribution, the variance is a way to capture its scale or degree of
being spread out. The standard deviation is defined to be the positive square root
of the variance and so it is not uncommon to find the variance denoted by σ2 while
the standard deviation is denoted by σ . If x is a random variable having an expected
value E(x) = x, the variance Var(x) = σ2 of x is defined by

Var(x) = σ2 =
1
N

N

∑
i=1

(xi − x)2

where x̄ is the population mean.
As an alternative way to measure dispersion about a mean value, the standard

deviation is perhaps the most commonly used method for measuring statistical dis-
persion. A low standard deviation indicates that the data is clustered around the
mean, whereas a high standard deviation indicates that the data is widely spread with
significantly higher/lower figures than the mean. The standard deviation of a dis-
crete random variable is the root-mean-square (RMS) deviation of its values from
the mean. If the random variable X takes on N values x1, · · · ,xN which are real
numbers with equal probability, then its standard deviation σ is described by the
following formula:

σ =

√
1
N

N

∑
i=1

(xi − x)2

where x̄ is the arithmetic mean of the values x1, · · · ,xN as described earlier in this
chapter.

In the real world, though, finding the standard deviation of an entire population
is unrealistic except in certain cases where every member of a population is able to
be sampled. As a result, when only a sample of data from a population is available,
the population standard deviation can be estimated by a slightly modified standard
deviation of the sample. In most cases, however, the standard deviation is estimated
by examining a random sample taken from the population. Using the definition given
above for a data set and applying it to a small or moderately-sized sample results in
an estimate that tends to be somewhat too low. As a result, the most commonly used
formula for σ is an adjusted version, called the sample standard deviation, which is
defined by

σ =

√
1

N −1

N

∑
i=1

(xi − x)2

where x1,x2, · · · ,xN is the sample and x̄ is the mean of the sample. The denominator
N −1 is the number of degrees of freedom in the sample which, in statistics, is used
to describe the number of values in the final calculation of a statistic that are free to
vary. Standard deviation calculations where the term N−1 is used are said to produce
an unbiased statistic, otherwise it is called a biased statistic. An unbiased statistic is
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one which, if applied in all possible circumstances, would yield an equal number of
values above and below the mean statistic. An unbiased statistic is usually preferred
since it tends to avoid both underestimating and overestimating results. The C# code
shown below can be specified to produce both biased and unbiased calculations of
variance and standard deviation.

enum BiasType { Biased, Unbiased };
static double Variance(double[] data, BiasType type)
{

double sum = 0.0d;
for (int i = 0; i < data.Length; i++)
{

sum += data[i];
}
double mean = sum / data.Length;
sum = 0.0d;
for (int i = 0; i < data.Length; i++)
{

sum += Math.Pow((data[i] - mean), 2);
}
double variance;
if (type == BiasType.Biased)
{

variance = sum / data.Length;
}
else
{

variance = sum / (data.Length - 1);
}
return variance;

}

public static double StandardDeviation(double[] data)
{

return Math.Sqrt(Variance(data, BiasType.Unbiased));
}

static double StandardDeviation(double[] data, BiasType btype)
{

return Math.Sqrt(Variance(data,btype));
}

13.3.11 Moments About the Mean

In statistics, the kth central moment μk about the mean of a real valued random
variable x is defined as

μk = E(x−E(x))k =
1
N

N

∑
i=1

(xi − x)k

where E(x) is the expected value of x.
The first few central moments have familiar and intuitive interpretations. The first

central moment is equal to zero. The second central moment about the mean is
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called the variance. The third central moment is called the skewness. The fourth
central moment is called the kurtosis. Beyond that, it is just called the kth moment.
The proposed C# code for calculating the central moment of a specified order k is
shown below.

public static double CentralMoment(double[] data, int k)
{

double sum = 0.0d;
for (int i = 0; i < data.Length; i++)
{

sum += data[i];
}
double mean = sum/data.Length;
sum = 0.0d;
for (int i = 0; i < data.Length; i++)
{

sum += Math.Pow((data[i]-mean),k);
}
return sum/data.Length;;

}

13.3.12 Skewness

Skewness is a measure of the degree of asymmetry of a distribution. It is also asso-
ciated with the normalized form of the third central moment μ3 of a distribution. For
a sample of N values the sample skewness is given by the formula

g1 =
1
N ∑N

i=1(xi − x)3( 1
N ∑N

i=1(xi − x)2
)3/2

If the left tail (tail at small end of the distribution) is longer than the right tail (tail at
the large end of the distribution), the function is said to have negative skewness. If
the reverse is true, it has positive skewness. If the two are equal, it has zero skewness.
As with the variance and standard deviation calculations which are associated with
the normalized form of the second central moment μ2 of a distribution, the skewness
calculation also depends on whether it is biased or unbiased. The C# code below
calculates the skewness of the given data, according to the specified bias type.

static double Skewness(double[] data, BiasType type)
{

if (data.Length < 3)
{

throw new Exception("Skewness requires
at least three elements.");

}
// Calculate Mean
double sum = 0.0d;
for (int i = 0; i < data.Length; i++)
{

sum += data[i];
}
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double mean = sum / data.Length;
// Third and second moments
double second = 0.0d;
double third = 0.0d;
double deviation;
for (int i = 0; i < data.Length; i++)
{

deviation = data[i] - mean;
second += (deviation * deviation);
third += Math.Pow(deviation, 3);

}
// Standardized moment
double variance;
if (type == BiasType.Biased)
{

variance = second / data.Length;
}
else
{

variance = second / (data.Length - 1);
}
double standardizedMoment=third/Math.Pow(Math.Sqrt(variance),3);
// Skewness
double d = (double)data.Length;
double skewness;
if (type == BiasType.Unbiased)
{

skewness = (d/((d-1)*(d-2)))*standardizedMoment;
}
else
{

skewness = standardizedMoment / d;
}
return skewness;

}

13.3.13 Kurtosis

Kurtosis measures the degree of the peakedness of a distribution of real-valued ran-
dom variables. It is also associated with the normalized form of the fourth central
moment μ4 of a distribution. For a sample of N values the sample kurtosis is given
by the formula

g2 =
1
N ∑N

i=1(xi − x)4( 1
N ∑N

i=1(xi − x)2
)2 −3

Higher kurtosis means more of the variance is due to infrequent extreme deviations,
as opposed to frequent modestly-sized deviations. A high kurtosis distribution has
a sharper peak and longer, fatter tails, while a low kurtosis distribution has a more
rounded peak and shorter thinner tails. As with the variance and standard deviation
calculations which are associated with the normalized form of the second central
moment μ2 of a distribution, the kurtosis calculation also depends on whether it is
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biased or unbiased. The C# code below calculates the skewness of the given data,
according to the specified bias type.

static double Kurtosis(double[] data, BiasType type)
{

if (data.Length < 4)
{
throw new Exception("Kurtosis requires at least four elements");

}
// Mean
double sum = 0.0d;
for (int i = 0; i < data.Length; i++)
{
sum += data[i];

}
double mean = sum / data.Length;

// Fourth and second moments
double second = 0.0d;
double fourth = 0.0d;
double deviation;
for (int i = 0; i < data.Length; i++)
{
deviation = data[i] - mean;
second += (deviation * deviation);
fourth += Math.Pow(deviation, 4);

}

// Standardized moment
double variance;
if (type == BiasType.Biased)
{
variance = second / data.Length;

}
else
{
variance = second / (data.Length - 1);

}
double standardizedMoment=fourth/(variance*variance);

// Kurtosis
double d = (double)data.Length;
double kurtosis;
if (type == BiasType.Unbiased)
{
double term1 = d*(d+1);
double term2 = (d-1)*(d-2)*(d-3);
double term3 = (3*(d-1)*(d-1))/((d-2)*(d-3));
kurtosis = ((term1/term2)*standardizedMoment)-term3;

}
else
{
kurtosis = (standardizedMoment/d)-3;

}
return kurtosis;

}
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13.3.14 Covariance and Correlation

Covariance provides a measure of the strength of the correlation between two or more
sets of random variates. The covariance between two real-valued random variables
X and Y , each with sample size N, and expected values E(X) = μX and E(Y ) = μY

is defined as

Cov(X ,Y ) = E((X − μX)(Y − μY )) =
1
N

N

∑
i=1

(xi − x)(yi − y)

where E is the expected value operator. For uncorrelated variates, Cov(X ,Y ) = 0.
However, if the variables are correlated in some way, then their covariance will be
nonzero. In fact, if cov(X ,Y ) > 0, then Y tends to increase as X increases, and if
cov(X ,Y ) < 0, then Y tends to decrease as X increases. Note that while statistically
independent variables are always uncorrelated, the converse is not necessarily true.
In the special case of X = Y , Cov(X ,X) can be easily shown to reduce to σ2

X and so
the covariance reduces to the usual variance σ2

X = Var(X). This motivates the use of
the symbol σXY = Cov(X ,Y ), which then provides a consistent way of denoting the
variance as σXX = σ2

X where σX is the standard deviation. Consequently, the derived
quantity

Cor(X ,Y ) =
Cov(X ,Y )

σX σY
=

σXY

σX σY

The C# code for calculating covariance is shown below.

static double Covariance(double[] data1, double[] data2,
BiasType type)

{
if (data1.Length != data2.Length)
{
throw new Exception("The two data sets being tested

are of different sizes");
}
if (data1.Length == 0)
{
throw new Exception("Data in covariance method has zero length");

}
// Sum
double sum1 = 0.0d;
double sum2 = 0.0d;
for (int i = 0; i < data1.Length; i++)
{

sum1 += data1[i];
sum2 += data2[i];

}

// Mean
double mean1 = sum1 / data1.Length;
double mean2 = sum2 / data2.Length;

// Covariance
double total = 0.0d;
for (int i = 0; i < data1.Length; i++)
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{
total += ((data1[i] - mean1) * (data2[i] - mean2));

}
if (type == BiasType.Biased)
{

return total / data1.Length;
}
else
{

return total / (data1.Length - 1);
}

}

The C# code for calculating correlation is shown below.

static double Correlation(double[] data1, double[] data2)
{

if (data1.Length != data2.Length)
{

throw new Exception("The two data sets being
tested are of different sizes");

}
if (data1.Length == 0)
{

throw new Exception("Data in correlation
method has zero length.");

}
if (data1.Length == 1)
{

throw new Exception("Single data point
is insufficient for correlation.");

}
// Sum
double sum1 = 0.0d;
double sum2 = 0.0d;
for (int i = 0; i < data1.Length; i++)
{

sum1 += data1[i];
sum2 += data2[i];

}
// Mean
double mean1 = sum1 / data1.Length;
double mean2 = sum2 / data2.Length;
// Covariance
double total = 0.0d;
for (int i = 0; i < data1.Length; i++)
{
total += ((data1[i] - mean1) * (data2[i] - mean2));

}
double covariance = total / data1.Length;
// Standard deviation
sum1 = 0.0d;
sum2 = 0.0d;
for (int i = 0; i < data1.Length; i++)
{

sum1 += ((data1[i] - mean1) * (data1[i] - mean1));
sum2 += ((data2[i] - mean2) * (data2[i] - mean2));
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}
double stdev1 = Math.Sqrt(sum1 / data1.Length);
double stdev2 = Math.Sqrt(sum2 / data2.Length);
if ((stdev1 * stdev2) == 0)
{
throw new Exception("One of the standard deviations is zero");

}
return (covariance / (stdev1 * stdev2));

}

13.3.15 Miscellaneous Utilities

Some statistical calculations, such as those to determine percentiles or ranks, often
require running some supplementary calculations on the side in support of extracting
the desired information. As a result, the following self-explanatory utility routines
are listed below in support of further examples to be described later.

//Calculates the minimum value in the given data set
public static double MinValue(double[] data)
{

double minimum = data[0];
double d;

for (int i = 1; i < data.Length; i++)
{

d = data[i];
if ( d < minimum )
{

minimum = d;
}

}
return minimum;

}

//Calculates the minimum absolute value in the given data set
public static double MinAbsValue(double[] data)
{

double minimum = Math.Abs(data[0]);
double d;

for (int i = 1; i < data.Length; i++)
{

d = Math.Abs(data[i]);
if ( d < minimum )
{

minimum = d;
}

}
return minimum;

}

© 2010 by Taylor and Francis Group, LLC



454 Numerical Methods, Algorithms and Tools in C#

//Calculates the index of the minimum value in a data set
public static int MinIndex(double[] data)
{

double minimum = Double.MaxValue;
int index = -1;
double d;

for (int i = 0; i < data.Length; i++)
{

d = data[i];
if (d < minimum)
{

index = i;
minimum = d;

}
}
return index;

}

//Calculates the index of the minimum absolute value in a data set
public static int MinAbsIndex(double[] data)
{

double minimum = Double.MaxValue;
int index = -1;
double d;

for (int i = 0; i < data.Length; i++)
{

d = Math.Abs(data[i]);
if ( d < minimum )
{

index = i;
minimum = d;

}
}
return index;

}

//Calculates the maximum value in the given data set
public static double MaxValue(double[] data)
{

double maximum = data[0];
double d;

for (int i = 1; i < data.Length; i++)
{

d = data[i];
if (d > maximum)
{

maximum = d;
}

}
return maximum;

}
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//Calculates the maximum absolute value in the given data set
public static double MaxAbsValue(double[] data)
{

double maximum = Math.Abs( data[0] );
double d;

for (int i = 1; i < data.Length; i++)
{

d = Math.Abs( data[i] );
if (d > maximum)
{

maximum = d;
}

}
return maximum;

}

//Calculates the index of the maximum value in the given data set
public static int MaxIndex(double[] data)
{

double maximum = Double.MinValue;
int index = -1;
double d;

for (int i = 0; i < data.Length; i++)
{

d = data[i];
if (d > maximum)
{

index = i;
maximum = d;

}
}
return index;

}

//Calculates the index of the maximum absolute value in the
//given data set
public static int MaxAbsIndex(double[] data)
{

double maximum = Double.MinValue;
int index = -1;
double d;

for (int i = 0; i < data.Length; i++)
{

d = Math.Abs(data[i]);
if (d > maximum)
{

index = i;
maximum = d;

}
}
return index;

}
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//Returns the number of elements contained in a data set
public static int Count(double[] data)
{

return data.Length;
}

//Calculates the sum of the elements in the given data set
public static double Sum(double[] data)
{

double sum = 0.0d;
for (int i = 0; i < data.Length; i++)
{

sum += data[i];
}
return sum;

}

13.3.16 Percentiles and Rank

A percentile is the value of a variable below which a certain percent of observations
fall. So the 20th percentile is the value below which 20 percent of the observations
may be found. The routine that follows, Percentile(), calculates the value at the
nth percentile of the elements in a data set, where 0 ≤ n ≤ 1.

public static double Percentile(double[] data, double n)
{

if ((n < 0) || (n > 1))
{
throw new Exception("Percentile must be between zero and one");

}
if (n == 0)
{
return MinValue(data);

}
if (n == 1.0)
{
return MaxValue(data);

}
double[] sorted = Sort(data);
double position = n * (sorted.Length - 1);
int lower = (int)Math.Floor(position);
int upper = (int)Math.Ceiling(position);
if (lower == upper)
{
return sorted[lower];

}
return sorted[lower] +

((position-lower)*(sorted[upper]-sorted[lower]));
}

The routine that follows, PercentileRank(), calculates the percentile in which a
given value would fall, if it were in the given data set.
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public static double PercentileRank(double[] data,double val)
{

double[] sorted = Sort(data);
if (val < sorted[0])
{

return 0.0;
}
if (val > sorted[sorted.Length-1])
{

return 1.0;
}
int[] bounds = Bounds(sorted,0,sorted.Length-1,val);
int lower = bounds[0];
int upper = bounds[1];
if (val == sorted[lower])
{

return ((double)lower) / (sorted.Length-1);
}
else if (val == sorted[upper])
{

return (lower + 1.0d) / (sorted.Length-1);
}
//Interpolate between bound percentiles.
return (lower+((val-sorted[lower]) /

(sorted[upper]-sorted[lower])))/(sorted.Length-1);
}

// Assumes sorted ascending.
private static int[] Bounds(double[] data, int lower,

int upper, double val)
{

if (upper == (lower + 1))
{

int[] bounds = new int[2];
bounds[0] = lower;
bounds[1] = upper;
return bounds;

}
int mid = (lower + upper) / 2;
if (val <= data[mid])
{

return Bounds(data, lower, mid, val);
}
else
{

return Bounds(data, mid, upper, val);
}

}

As a practical example to better illustrate how one might apply the statistical func-
tions in C# presented in this chapter, I chose to analyze an array of 20 randomly
chosen data points between 0 and 10. The results are presented below along with the
C# source code that was used to create them.
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static void Main(string[] args)
{

int nPoints = 20;
double magnitude = 10.0;
double[] ydata = new double[nPoints];
double[] xdata = new double[nPoints];

for (int i = 0; i < ydata.Length; i++)
{

ydata[i] = magnitude * randObj.NextDouble();
xdata[i] = ydata[i];
Console.WriteLine("{0}", Math.Round(ydata[i],2));

}

double[] weights = new double[] { 1.0, 2.0, 3.0, 4.0, 5.0,
6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0,
16.0, 17.0, 18.0, 19.0, 20.0 };

Console.WriteLine("\n\nStatistical Tests Summary\n");

Console.WriteLine("Mean = {0}", Mean(ydata));
Console.WriteLine("Weighted Mean = {0}",

WeightedMean(ydata, weights));
Console.WriteLine("Geometric Mean = {0}",

GeometricMean(ydata));
Console.WriteLine("Weighed Geometric Mean = {0}",

WeighedGeometricMean(ydata, weights));
Console.WriteLine("Harmonic Mean = {0}", HarmonicMean(ydata));
Console.WriteLine("Weighed Harmonic Mean = {0}",

WeighedHarmonicMean(ydata, weights));
Console.WriteLine("Truncated Mean = {0}",

TruncatedMean(ydata, 2.0));
Console.WriteLine("RMS = {0}", RMS(ydata));
Console.WriteLine("Range = {0}", Range(ydata));
Console.WriteLine("Mid Range = {0}", MidRange(ydata));
Console.WriteLine("Median = {0}", Median(ydata));
Console.WriteLine("Mode = {0}", Mode(ydata));
Console.WriteLine("Mean Deviation = {0}",

MeanDeviation(ydata));
Console.WriteLine("Median Deviation Of The Mean = {0}",

MedianDeviationOfTheMean(ydata));
Console.WriteLine("Median Deviation Of The Median = {0}",

MedianDeviationOfTheMedian(ydata));
Console.WriteLine("Variance (biased) = {0}", Variance(ydata,

BiasType.Biased));
Console.WriteLine("Variance (unbiased) = {0}", Variance(ydata,

BiasType.Unbiased));
Console.WriteLine("Standard Deviation = {0}",

StandardDeviation(ydata));
Console.WriteLine("Central Moment = {0}",

CentralMoment(ydata, 2));
Console.WriteLine("Skewness (biased) = {0}",

Skewness(ydata, BiasType.Biased));
Console.WriteLine("Skewness (unbiased) = {0}",

Skewness(ydata, BiasType.Unbiased));
Console.WriteLine("Kurtosis (biased) = {0}",
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Kurtosis(ydata, BiasType.Biased));
Console.WriteLine("Kurtosis (unbiased) = {0}",

Kurtosis(ydata, BiasType.Unbiased));
Console.WriteLine("Covariance (biased) = {0}",

Covariance(ydata, xdata, BiasType.Biased));
Console.WriteLine("Covariance (unbiased) = {0}",

Covariance(ydata, xdata, BiasType.Unbiased));
Console.WriteLine("Correlation = {0}", Correlation(ydata, ydata));
Console.WriteLine("MinValue = {0}", MinValue(ydata));
Console.WriteLine("MinAbsValue = {0}", MinAbsValue(ydata));
Console.WriteLine("MinIndex = {0}", MinIndex(ydata));
Console.WriteLine("MinAbsIndex = {0}", MinAbsIndex(ydata));
Console.WriteLine("MaxValue = {0}", MaxValue(ydata));
Console.WriteLine("MaxAbsValue = {0}", MaxAbsValue(ydata));
Console.WriteLine("MaxIndex = {0}", MaxIndex(ydata));
Console.WriteLine("MaxAbsIndex = {0}", MaxAbsIndex(ydata));
Console.WriteLine("Count = {0}", Count(ydata));
Console.WriteLine("Sum = {0}", Sum(ydata));
Console.WriteLine("Percentile = {0}", Percentile(ydata, 0.25));
Console.WriteLine("Percentile Rank = {0}",

PercentileRank(ydata, 10.0));
Console.WriteLine("\nPress ENTER key to continue...");
Console.ReadLine();

}

OUTPUT: Statistical Tests for Chapter 13
Input Data: 20 random numbers between 0 and 10

5.64
5.49
4.82
8.1
6.01
4.84
2.15
9.99
1.13
8.63
1.79
0.1
6.65
3.68
3.62
9.7
9.68
6.27
3.43
4.04
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Statistical Tests Summary

Mean = 5.28713731411245
Weighted Mean = 5.26448884501154
Geometric Mean = 3.96252438735796
Weighed Geometric Mean = 3.86297096047409
Harmonic Mean = 1.31327759771638
Weighed Harmonic Mean = 1.20013376376921
Truncated Mean = 5.16260406009974
RMS = 5.99864039745514
Range = 9.8953838739057
Mid Range = 5.04349275959818
Median = 5.16260406009974
Mode = 5.63562247698923
Mean Deviation = 2.3281402181965
Median Deviation Of The Mean = 1.76548644353891
Median Deviation Of The Median = 1.6409531895262
Variance (biased) = 8.02986563970048
Variance (unbiased) = 8.45249014705314
Standard Deviation = 2.9073166575131
Central Moment = 8.02986563970048
Skewness (biased) = 0.0780457942200665
Skewness (unbiased) = 0.0845218117489187
Kurtosis (biased) = -0.880587253499232
Kurtosis (unbiased) = -0.775667693288213
Covariance (biased) = 8.02986563970048
Covariance (unbiased) = 8.45249014705314
Correlation = 1
MinValue = 0.095800822645333
MinAbsValue = 0.095800822645333
MinIndex = 11
MinAbsIndex = 11
MaxValue = 9.99118469655103
MaxAbsValue = 9.99118469655103
MaxIndex = 7
MaxAbsIndex = 7
Count = 20
Sum = 105.742746282249
Percentile = 3.56974738001346
Percentile Rank = 1
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Special Functions

14.1 Introduction

There is really nothing exceptional about special functions other than the fact that
they originate outside the familiar collection of functions, such as trigonometric and
exponential functions, which are usually found in elementary mathematics. Instead,
special functions arise naturally in many areas of more advanced mathematics, the
natural sciences and engineering [19]. Some special functions are defined explicitly
while others originate from the solution of specific equations that were developed to
explain certain physical phenomena. This chapter will therefore focus its attention
on ways to implement special functions in C#.

14.2 Factorials

Factorials are not really special functions in the traditional sense but since some spe-
cial functions contain factorials as part of their mathematical expression, factorials
can therefore be considered important enough to be included in this chapter on spe-
cial functions. In mathematics, the factorial of a non-negative integer n, denoted by
n!, is the product of all positive integers less than or equal to n. The factorial function
is formally defined by

n! =
n

∏
k=1

k ∀n ∈ N

or recursively defined by

n! =

{
n ≤ 1 1

n > 1 n(n−1)!
∀n ∈ N.

Both of the above definitions incorporate the instance 0! = 1.
Implementing n! in C# is a bit tricky since even small integer values, such as

n > 12, will quickly throw a numerical overflow exception. Even calculating n! by
recursion works well only for small values of n. As n increases in value, calculating
n! by recursion becomes increasingly slower.
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//Calculates the factorial n! using recursion
public static double Factorial(double number)
{

double Result;
if (number < 0)
{

throw new Exception("Input value must be > 0");
}
if (number == 0.0) Result = 1; //0! = 1
else
//Recursively call the Factorial function
Result = (number * Factorial(number - 1));
return Result;

}

A much better approach to calculating n! is to first calculate the natural logarithm of
n! and then take the natural exponent of the result so that we finally end up with the
more efficient expression n! = exp(lnn!). The following C# code implements this
improved method for calculating n!. Now one is able to calculate n! to as high as
170!≈ 7.25741561530799E+306 before a numerical overflow exception is thrown.
Unfortunately, because of the physical hardware limitations for handling very large
numbers, computers can only provide approximate results for calculating factorials
for n > 23. In addition, this new method for calculating n! runs much faster if you
just use simple table lookups for n <= 23 and so using the formula n! = exp(lnn!)
is recommended only for values n > 23. In any event, the C# code for calculating n!
using n! = exp(lnn!) with the requirement of n ≤ 170 is given below.

private static readonly double[] factorialLookup =
{

1.0,
1.0,
2.0,
6.0,
24.0,
120.0,
720.0,
5040.0,
40320.0,
362880.0,
3628800.0,
39916800.0,
479001600.0,
6227020800.0,
87178291200.0,
1307674368000.0,
20922789888000.0,
355687428096000.0,
6402373705728000.0,
121645100408832000.0,
2432902008176640000.0,
51090942171709440000.0,
1124000727777607680000.0,
25852016738884976640000.0

};
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//Calculates n! using a lookup table up to n < 24
//For n > 24, it calculates n! = exp(Ln(n!))
public static double Factorial(int n)
{

if (n < 0)
{

throw new Exception("Input value must be a > 0");
}
else if (n < 24)
{

return factorialLookup[n];
}
else
{

return Math.Floor(System.Math.Exp(FactorialLn(n))+0.5);
}

}

public static double FactorialLn(int n)
{

if (n < 0)
{

throw new Exception("Input value must be > 0");
}
else
{

return GammaLn(n+1.0);
}

}

static void Main(string[] args) //Testing of n!
{

try
{

Console.WriteLine("Factorial(5) = {0}", Factorial(5));
Console.WriteLine("Factorial(-5) = {0}", Factorial(-5));
Console.ReadLine();

}
catch(Exception ex)
{

Console.WriteLine("Fatal error: " + ex.Message);
}

}
OUTPUT:
Factorial(5) = 120
Factorial(-5) = Fatal error: Input value must be > 0
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14.3 Combinations and Permutations

Combinatorics is the branch of mathematics studying the enumeration, combination,
and permutation of sets of elements and the mathematical relations that characterize
their properties. Mathematicians sometimes use the term combinatorics to refer to
a larger subset of discrete mathematics that includes graph theory. In addition to
applications in pure and applied mathematics, engineering and the physical sciences,
combinatorial mathematics has also many useful applications in computer science,
particularly in the study of data structures and network design and analysis. More
recently, concepts involving combinations and permutations of sets of elements have
also found many important applications in the area of software testing.

14.3.1 Combinations

A combination is an unordered collection of distinct elements, usually of a prescribed
size and taken from a given set. The number of k combinations that can be chosen
from n elements is given by the binomial coefficient, known as the choose function:

nCk =
(

n
k

)
=

n!
k!(n− k)!

The C# code to calculate this value is given by

public static double Combination(int n, int k)
{
if ((n < 0 || k < 0) || (n < k))
throw new Exception("Input value must be > 0");

//Cleans up round off error for small values of n and k
return Math.Floor(0.5+(Math.Exp(FactorialLn(n)-

FactorialLn(k)-FactorialLn(n-k))));
}

While the number of k combinations that can be chosen from n elements of a set is
an important piece of data to have, it would be even more useful if we could have the
computer generate in lexicographical order what all these combinations might actu-
ally look like. The lexicographic or lexicographical order, also known as dictionary
order, alphabetic order or lexicographic product, is a natural order structure of the
Cartesian product of two ordered sets. Given two partially ordered sets A and B, the
lexicographical order on the Cartesian product A×B is defined as (a,b) = (a′,b′) if
and only if a < a′ or (a = a′ and b = b′).

A mathematical combination lends itself nicely to implementation as a class. Since
a mathematical combination represents a subset of k items selected from a set of in-
tegers from 0 through n− 1, you need to store those values as well as an array to
hold the combinations individual integer values. The letters n and k are often used
in mathematical literature related to combinations and permutations and so we will
also use them here. The class combinationlex given below is heavily commented
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and as such, it is quite self explanatory. A simple demonstration is also provided
along with its accompanying output where the computer is asked to generate all the
possible combinations of a set of 6 letters ABCDEF taken 3 at a time. The code can
also be easily adapted for use with various other data types such as numbers, binary
digits, words and so forth.

public class combinationlex
{

private long n = 0;
private long k = 0;
private long[] combarray = null;

//Accessors to private variables
public long N
{

get { return n; }
set { n = value; }

}

public long K
{

get { return k; }
set { k = value; }

}

public long[] combArray
{

get { return combarray; }
set { combarray = value; }

}

//Constructor
public combinationlex(long n, long k)
{

// Both n and k must be positive
if (n < 0 || k < 0)

throw new Exception("Negative argument in constructor");
// Assign n, k and combarray their initial default values
this.n = n;
this.k = k;
this.combArray = new long[k];
for (long i = 0; i < k; ++i)

this.combarray[i] = i;
}

public double Chose(int n, int k)
{

if ((n < 0 || k < 0) || (n < k))
throw new Exception("Input value must be > 0");

//Cleans up round off error for small values of n and k
return Math.Floor(0.5 + (Math.Exp(FactorialLn(n) -

FactorialLn(k) - FactorialLn(n - k))));
}
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public combinationlex next()
{

//Check to see if you are at the last combination element
//and if so, return a null
if (this.combArray[0] == this.n - this.k) return null;

//Create a combination object to hold the result
combinationlex result = new combinationlex(this.n, this.k);

//Copy the combination array data to the combination
//object that holds the result
for (long i = 0; i < this.k; ++i)

result.combArray[i] = this.combArray[i];

//Find the rightmost atom to be incremented
//Use an index to start at the last rightmost position within
//the array and work towards the left (decrementing) until
//you find a false result to the condition
//result.combArray[rIndex] == this.n - this.k + rIndex
//or hit the start of the array
long rIndex;
for (rIndex = this.k - 1; rIndex > 0 &&

result.combArray[rIndex]==this.n-this.k+rIndex; --rIndex);

//Increment atom at that position
++result.combArray[rIndex];

//Then increment every atom to the right of that atom as well
for (long j = rIndex; j < this.k - 1; ++j)

result.combArray[j + 1] = result.combArray[j] + 1;

//and return the result
return result;

}
}

static void Main(string[] args)
{

string[] dataArray = new string[] {"A","B","C","D","E","F"};
int n = dataArray.Length;
int k = 3;

Console.WriteLine("Input data array = {A,B,C,D,E,F}");
Console.WriteLine("Generating all lexicographical combinations

for a set of " + dataArray.Length.ToString() +
" elements taken " + k.ToString() + " at a time.\n");

//Create a combination object to hold the data
combinationlex combObj = new combinationlex(n, k);
//and a string array to hold the current combination results
string[] currComb = new string[n];

long combCount = (long)combObj.Chose(n, k);
Console.WriteLine("There are " + combCount + " possible

combinations for a set of " + dataArray.Length.ToString() +
" elements taken " + k.ToString() + " at a time and those
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combinations are:\n");

//Loop through all possible combinations printing out
//all possible combination results
int i = 0;
while (combObj != null)
{

string[] result = new string[combObj.K];
for (long j = 0; j < result.Length; ++j)

currComb[j] = dataArray[combObj.combArray[j]];

Console.Write("[" + i + "] ");
for (long m = 0; m < result.Length; ++m)
{

Console.Write(currComb[m] + " ");
}
Console.WriteLine();
combObj = combObj.next();
++i;

}
}

OUTPUT: Input data array = {A,B,C,D,E,F}
Find all lexicographical combinations for a set of 6 elements taken 3
at a time. There are 20 possible combinations those combinations are:
[00] A B C
[01] A B D
[02] A B E
[03] A B F
[04] A C D
[05] A C E
[06] A C F
[07] A D E
[08] A D F
[09] A E F
[10] B C D
[11] B C E
[12] B C F
[13] B D E
[14] B D F
[15] B E F
[16] C D E
[17] C D F
[18] C E F
[19] D E F

14.3.2 Permutations

In mathematics, the term permutation is used with different but closely related mean-
ings that largely depends on context. The common underlying concept is that per-
mutation relates to the notion of mapping the elements of a set to other elements of
the same set by exchanging or permuting the elements of the set. In order to avoid
ambiguity here, permutation will be defined as a sequence containing each element
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from a finite set once, and only once. The concept of sequence is distinct from that
of a set, in that the elements of a sequence appear in some well defined order. In
contrast, the elements in a set have no specific order. For example, (1, 2, 3) and (3, 2,
1) denote different sequences and also denote different ways to display the elements
of the same set.

The number of distinct r permutations that can be extracted from n elements is
given by the following expression

P(n,r) =n Pr =
n!

(n− r)!

Note that for the case where r = n, we have P(n,r) = n!. The C# code to calculate
this value is given below. Note that direct calculation of n! can lead very quickly
to a numeric overflow for the variable n. However, using the notion that x = eln x, a
little trick is used that instead calculates the natural logarithm of n! followed by the
exponentiation of the result.

public static double Permutation(int n, int r)
{
if ((n < 0 || r < 0) || (n < r))
throw new Exception("Input value must be > 0");

//Cleans up round off error for small values of n and k
return Math.Floor(0.5+(Math.Exp(FactorialLn(n)-FactorialLn(n-r))));

}

There are many ways to list all permutations of a set of some given length n. The
most natural approach builds permutations of growing length successively starting
with the shortest one. For example, a one element set, say {1}, has only one trivial
permutation: {1}. In a two element set, say {1 2}, the additional element {2} can be
appended to the permutation of {1} in either one of two ways: on the left and on the
right. Thus we get two possible permutations: {1 2} and {2 1}. Similarly, in a set of
three elements we obtain: {3 1 2, 1 3 2, 1 2 3} and {3 2 1, 2 3 1, 2 1 3} and so on.

The method just described is simple and appeals directly to the definition of a
permutation without resorting to any fancy tricks. It has a drawback, though. You
must compute a whole pyramid of permutations shorter than the ones you need.
However, the Johnson-Trotter algorithm [78, 79] offers a clever and efficient way to
directly generate permutations of the required length without first having to compute
all the shorter permutations that precede it.

The Johnson-Trotter algorithm is set up with the idea that only one set of neigh-
bors needs to swap positions and that there need only be one swap to generate the
next permutation. To accommodate this, there needs to be an extra data element
added: direction of mobility. That is, the direction of the swap. This direction is ei-
ther left or right, but is initialized to the left. An integer is said to be mobile if, in the
direction of its mobility, the nearest integer is less than the current integer. Note that
if an integer is to the far left and its mobility is to the left, it is not mobile. Similarly,
if an integer is to the far right and its mobility is to the right, it is also not mobile.
The following implementation of the Johnson-Trotter algorithm was translated into
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C# from a Java version of the same algorithm published by Sedgewick [80] who re-
portedly translated it from a C version of the algorithm published by Ruskey [81].
McCaffrey [82] has also recently published a somewhat different version of this al-
gorithm. With slight modifications, which are left as an exercise for the reader, this
algorithm can be adapted for use with characters, strings, bits or bytes.

public static void Permutation(int N)
{

int[] p = new int[N]; // permutation
int[] pi = new int[N]; // inverse permutation
int[] dir = new int[N]; // direction = +1 or -1
for (int i = 0; i < N; i++)
{

dir[i] = -1;
p[i] = i;
pi[i] = i;

}
Permutation(0, p, pi, dir);

}

public static void Permutation(int n, int[] p, int[] pi, int[] dir)
{

// base case - print out permutation
if (n >= p.Length)
{

for (int i = 0; i < p.Length; i++)
Console.Write(p[i]);

Console.Write("\n");
return;

}

// swap
Permutation(n + 1, p, pi, dir);
for (int i = 0; i <= n - 1; i++)
{

int z = p[pi[n] + dir[n]];
p[pi[n]] = z;
p[pi[n] + dir[n]] = n;
pi[z] = pi[n];
pi[n] = pi[n] + dir[n];
Permutation(n + 1, p, pi, dir);

}
dir[n] = -dir[n];

}

static void Main(string[] args)
{

Console.WriteLine("\nTesting lexicographical permutation for 3
elements");

Permutation(3);
Console.WriteLine("\n\nTesting lexicographical permutation for 4

elements");
Permutation(4);

}
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Testing lexicographical permutation for 3 elements
012
021
201
210
120
102

Testing lexicographical permutation for 4 elements
0123
0132
0312
3012
3021
0321
0231
0213
2013
2031
2301
3201
3210
2310
2130
2103
1203
1230
1320
3120
3102
1302
1032
1023

14.4 Gamma Function

The gamma function was first introduced by the Swiss mathematician Leonhard Eu-
ler in 1729 while attempting to generalize the factorial to non-integer values. As a
result, the gamma function is now sometimes also called the Euler integral of the
second kind. In a nutshell, the gamma function, Γ(z), is merely a generalization of
the factorial function z! to include both complex and positive real numbers. For a
complex number z with a positive real part, the gamma function is defined by

Γ(z) =
∫ ∞

0
tz−1e−t dt

where tz−1 is interpreted as e(z−1)logt if z is not an integer. If the real part of the
complex number z is positive so that (Re[z] > 0), then the integral above can be
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shown to converge. Using integration by parts, it can be shown that the gamma
function satisfies the recurence relation

Γ(z+ 1) = zΓ(z)

In addition, when the argument z is an integer, the gamma function can be shown to
reduce to the familiar factorial function n! offset by 1:

Γ(n + 1) = n!

There is a variety of methods for calculating the gamma function Γ(z) numerically
but perhaps the most popular one seems to be the approximation first derived by
Lanczos [83] in 1964. The result, as formulated by Press et al. [22] is that for certain
choices of rational γ and integer N, for certain coefficients c1,c2, · · · ,cN and for z > 0
the gamma function can be very well approximated by the following expression

Γ(z+ 1) = (z+ γ + 0.5)z+0.5e−(z+γ+0.5)
√

2π

[
c0 +

c1

z+ 1
+

c2

z+ 2
+ · · ·+ cN

z+ N
+ ε

]

The error term is parameterized by ε . For N = 14, and a certain set of c’s and γ
Press et al. [22] report an error of |ε|< 10−15 which should be good enough for most
numerical projects. To avoid obtaining overflows for even small input values, Press
et al. [22] also suggest implementing the natural logarithm of the gamma function,
that is ln[Γ(x)], instead of Γ(x) directly. Then, as in the case of factorials, the actual
gamma function can be calculated by Γ(x) = exp(lnΓ(x)).
public static double GammaLn(double x)
{

if (x <= 0) throw
new Exception("Input value must be > 0");

double[] coef = new double[14]
{57.1562356658629235,
-59.5979603554754912,
14.1360979747417471,
-0.491913816097620199,
0.339946499848118887E-4,
0.465236289270485756E-4,

-0.983744753048795646E-4,
0.158088703224912494E-3,

-0.210264441724104883E-3,
0.217439618115212643E-3,

-0.164318106536763890E-3,
0.844182239838527433E-4,

-0.261908384015814087E-4,
0.368991826595316234E-5};

double denominator = x;
double series = 0.999999999999997092;
double temp = x + 5.24218750000000000;
temp = (x + 0.5) * Math.Log(temp) - temp;
for (int j = 0; j < 14; j++)
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series += coef[j] / ++denominator;
return (temp+Math.Log(2.5066282746310005*series/x));

}

public static double Gamma(double x)
{

if (x <= 0) throw
new Exception("Input value must be > 0");
return Math.Exp(GammaLn(x));

}

14.5 Beta Function

The beta function, also called the Euler integral of the first kind, is a special function
defined by

β (x,y) =
∫ 1

0
tx−1(1− t)y−1 dt =

Γ(x)Γ(y)
Γ(x + y)

for Re(x),Re(y) > 0. The C# code for the beta function is given by

public static double Beta(double x, double y)
{

if ((x <= 0) || (y <= 0)) throw
new Exception("Input values must both be > 0");

return Math.Exp(GammaLn(x)+GammaLn(y)-GammaLn(x+y));
}

14.6 Error Function

The error function, also called the Gauss error function, is a special function defined
as

erf(x) =
2√
π

∫ x

0
e−t2

dt

The complementary error function, denoted by er f c, is defined in terms of the error
function as

erfc(x) = 1− erf(x) =
2√
π

∫ ∞

x
e−t2

dt

Although there are several different methods for numerically calculating the error
function, Press et al. [22] have described a particularly elegant and allegedly faster
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technique that takes advantage of an approximation of the form

erfc(x) ≈ t exp[−x2 +P(t)] where t =
2

2 + x

and P(t) is a polynomial for 0 ≤ t < 1 that can be found by using Chebyshev meth-
ods. The code below represents a translation into C# from Press’s original C++ code
and seems to work quite well as expected.
static double erf(double x)
{

if (x >= 0)
return 1.0 - ErfcCheb(x);

else
return ErfcCheb(-x) - 1.0;

}

static double erfc(double x)
{

if (x >= 0)
return ErfcCheb(x);

else
return 2.0 - ErfcCheb(-x);

}

private static double ErfcCheb(double x)
{

int j;
double tmp;
double d = 0.0;
double dd = 0.0;
const int ncoef = 28;

if (x < 0.0) throw new Exception("ErfcCheb requires nonnegative
argument");

double[] coef = new double[ncoef]{-1.3026537197817094,
6.4196979235649026e-1, 1.9476473204185836e-2,
-9.561514786808631e-3, -9.46595344482036e-4,
3.66839497852761e-4, 4.2523324806907e-5,
-2.0278578112534e-5, -1.624290004647e-6,
1.303655835580e-6, 1.5626441722e-8, -8.5238095915e-8,
6.529054439e-9, 5.059343495e-9, -9.91364156e-10,
-2.27365122e-10, 9.6467911e-11, 2.394038e-12,
-6.886027e-12, 8.94487e-13, 3.13092e-13,
-1.12708e-13, 3.81e-16, 7.106e-15, -1.523e-15,
-9.4e-17, 1.21e-16, -2.8e-17};
double t = 2.0/(2.0+x);
double ty = 4.0 * t - 2.0;
for (j=ncoef-1;j>0;j--)
{

tmp = d;
d = ty*d - dd + coef[j];
dd = tmp;

}
return t*Math.Exp(-x*x + 0.5*(coef[0]+ty*d)-dd);

}
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14.7 Sine and Cosine Integral Functions

The trigonometric integrals consist of a family of integrals which involve trigono-
metric functions that are also expressible as a family of infinite series expansions as
shown below.

Si(x) =
∫ x

0

sin t
t

dt =
∞

∑
n=0

(−1)nx2n+1

(2n + 1)(2n + 1)!

Ci(x) =
∫ x

0

1− cost
t

dt = γ + lnx +
∞

∑
n=1

(−1)nx2n

2n(2n)!

where γ is called the Euler constant and equals

γ = lim
n→∞

[(
n

∑
k=1

1
k

)
− ln(n)

]
= −

∫ ∞

0
e−x lnxdx = 0.57721566490153286060 · · ·

The implementation of these integral functions in C# is quite straight forward as
shown below.

public static double Si(double x)
{

double sum = 0.0;
double t = 0.0;
const double epsilon = 1.0E-10;
int n = 0;
do
{

t=Math.Pow(-1,n)*Math.Pow(x,2*n+1)/(2*n+1)/Gamma(2*n+2);
sum += t;
n++;

}
while (Math.Abs(t) > epsilon);
return sum;

}

public static double Ci(double x)
{

double sum = 0.0;
double t = 0.0;
const double epsilon = 1.0E-10;
int n = 1;
do
{

t=Math.Pow(-1,n)*Math.Pow(x,2*n)/(2*n)/Gamma(2*n+1);
sum += t;
n++;

}
while (Math.Abs(t) > epsilon);
return 0.57721566490153286060 + Math.Log(x) + sum;

}
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14.8 Laguerre Polynomials

The Laguerre polynomials arise from solutions of the Laguerre’s second-order linear
differential equation

x
d2y
dx2 +(1− x)

dy
dx

+ ny = 0

The Laguerre differential equation has nonsingular solutions only if n is a non-
negative integer. These polynomials, usually denoted L0,L1, · · · ,Ln, are a polyno-
mial sequence which may be defined by the Rodrigues’ formula

Ln(x) =
ex

n!
dn

dxn

(
e−xxn)

It is possible to also define the Laguerre polynomials recursively. Starting with the
first three Laguerre polynomials

L0(x) = 1

L1(x) = 1− x

L2(x) =
1

2
(x2 −4x + 2)

...

it can be shown that the following recurrence relation holds for any n + 1

Ln+1(x) =
1

n + 1
((2n + 1− x)Ln(x)−nLn−1(x)) .

The following code illustrates how one might go about implementing Laguerre poly-
nomials in C#.

public static double Laguerre(double x, int deg)
{

double L0 = 1.0; double L1 = 1.0 - x;
double L2 = (x*x - 4*x + 2.0)/2.0;
int n = 1;
if (deg < 0)
throw new Exception("Bad Laguerre polynomial: deg < 0");

if (deg == 0) return L0;
else if (deg == 1) return L1;
else
{

while (n < deg)
{

L2 = ((2.0*n + 1.0 - x)*L1 - n*L0)/(n+1);
L0 = L1; L1 = L2; n++;

}
return L2;

}
}
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14.9 Hermite Polynomials

The Hermite polynomials arise from the solution of the Hermite second-order linear
differential equation

d2y
dx2 −2x

dy
dx

+ 2ny = 0

and are explicitly given by the general formula

Hn(x) = (−1)nex2 dn

dxn e−x2

The first three Hermite polynomials are

H0(x) = 1

H1(x) = 2x

H2(x) = 4x2 −2

...

In addition, the Hermite polynomials satisfy the following recursion equation

Hn+1(x) = 2xHn(x)−2nHn−1(x)

The following code illustrates how one might go about implementing Hermite poly-
nomials in C#.

public static double Hermite(double x, int deg)
{

double H0 = 1.0;
double H1 = 2*x;
double H2 = 4*x*x - 2;
int n = 1;
if (deg < 0)

throw new Exception("Bad Hermite polynomial: deg < 0");
if (deg == 0)

return H0;
else if (deg == 1)

return H1;
else
{

while (n < deg)
{

H2 = 2.0*x*H1 - 2.0*n*H0;
H0 = H1;
H1 = H2;
n++;

}
return H2;

}
}
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14.10 Chebyshev Polynomials

The Chebyshev polynomials of the first kind arise from the solution of the Chebyshev
second order linear differential equation

(1− x2)
d2y
dx2 − x

dy
dx

+ n2y = 0

and are generated by the recurrence relation

Tn+1(x) = 2xTn(x)−Tn−1(x)

where n = 1,2, . . .. The first few Chebyshev polynomials of the first kind are given
by

T0(x) = 1

T1(x) = x

T2(x) = 2x2 −1

T3(x) = 4x3 −3x
...

Alternatively, the Chebyshev polynomials of the first kind can also be expressed by
the trigonometric identity

Tn(cos(θ )) = cos(nθ )

where n = 1,2, . . .. The following code illustrates how one might go about imple-
menting Chebyshev polynomials of the first kind in C#.

public static double ChebyshevT(double x, int deg)
{

double T0 = 1.0; double T1 = x;
double T2 = 2.0*x*x - 1.0;
int n = 1;
if (deg < 0)

throw new Exception("Bad Chebyshev polynomial: deg < 0");
if (deg == 0)

return T0;
else if (deg == 1)

return T1;
else
{

while (n < deg)
{

T2 = 2.0*x*T1 - T0;
T0 = T1; T1 = T2; n++;

}
return T2;

}
}
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The Chebyshev polynomials of the second kind arise from the solution of the Cheby-
shev second order linear differential equation

(1− x2)
d2y
dx2 −3x

dy
dx

+ n(n + 2)y = 0

and are generated by the recurrence relation

Un+1(x) = 2xUn(x)−Un−1(x)

where n = 1,2, . . .. The first few Chebyshev polynomials of the second kind are
given by

U0(x) = 1

U1(x) = 2x

U2(x) = 4x2 −1

U3(x) = 8x3 −4x
...

Alternatively, the Chebyshev polynomials of the second kind can also be expressed
by the trigonometric identity

Un(cos(θ )) =
sin((n + 1)θ )

sinθ
where n = 1,2, . . .. The following code illustrates how one might go about imple-
menting Chebyshev polynomials of the second kind in C#.

public static double ChebyshevU(double x, int deg)
{

double U0 = 1.0;
double U1 = 2.0*x;
double U2 = 4*x*x - 1.0;
int n = 1;
if (deg < 0)

throw new Exception("Bad Chebyshev polynomial: deg < 0");
if (deg == 0)

return U0;
else if (deg == 1)
return U1;
else
{

while (n < deg)
{

U2 = 2.0*x*U1 - U0;
U0 = U1;
U1 = U2;
n++;

}
return U2;

}
}
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14.11 Legendre Polynomials

The Legendre polynomials arise from the solution of the Legendre second order
linear differential equation

d
dx

[
(1− x2)

d
dx

Pn(x)
]

+ n(n + 1)Pn(x) = 0

and are generated by the general expression

Pn(x) =
1

2nn!

(
d
dx

)n

(x2 −1)n

Equivalently, the Legendre polynomials may also be generated by the recurrence
relation

Pn+1(x) = 2xPn(x)−Pn−1(x)− [xPn(x)−Pn−1(x)]/(n + 1)

where n = 1,2,3, . . .. The first few Legendre polynomials are given by

P0(x) = 1

P1(x) = x

P2(x) =
1
2
(3x2 −1)

P3(x) =
1
2
(5x3 −3x)

...

The following code illustrates how one might go about implementing Legendre poly-
nomials in C#.

public static double Legendre(double x, int deg)
{

double P0 = 1.0; double P1 = x;
double P2 = (3.0*x*x - 1)/2.0; int n = 1;
if (deg < 0)

throw new Exception("Bad Hermite polynomial: deg < 0");
if (deg == 0) return P0;
else if (deg == 1) return P1;
else
{

while (n < deg)
{

P2 = 2.0*x*P1 - P0 - (x*P1-P0)/(deg+1);
P0 = P1; P1 = P2; n++;

}
return P2;

}
}
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14.12 Bessel Functions

Bessel functions arise from the canonical solutions y(x) of Bessel’s differential equa-
tion

x2 d2y
dx2 + x

dy
dx

+(x2 −α2)y = 0

for an arbitrary real or complex number α which is referred to as the order of the
Bessel function. The most common and important special case is where α is an
integer. Since this is a second-order differential equation, there must be two lin-
early independent solutions. Bessel functions of the first kind, denoted as Jα(x), are
solutions of Bessel’s differential equation that are finite at the origin (x = 0) for non-
negative integer α , and diverge as x approaches zero for negative non-integer α . It is
possible to define Bessel functions of the first kind by their Taylor series expansion
around x = 0:

Jα(x) =
∞

∑
n=0

(−1)n

n!Γ(n + α + 1)

( x
2

)2n+α

public static double BesselJ(double x, double a)
{

double sum = 0.0;
double t = 0.0;
const double epsilon = 1.0E-10;
int n = 0;
do
{
t = Math.Pow(-1,n)*Math.Pow(0.5*x,2*n+a)/Gamma(n+1)/Gamma(n+a+1);
sum += t;
n++;

}
while (Math.Abs(t) > epsilon);
return sum;

}

Bessel functions of the second kind, denoted by Yα(x), are also solutions of the
Bessel differential equation. They are singular (infinite) at the origin (x = 0). Yα(x)
is sometimes also called the Neumann function, and is occasionally denoted instead
by Nα(x). For non-integer α , Bessel functions of the second kind are related to Jα(x)
by

Yα(x) =
Jα(x)cos(απ)− J−α(x)

sin(απ)
.

public static double BesselY(double x, double a)
{

return (BesselJ(x,a)*Math.Cos(a*Math.PI) -
BesselJ(x,-a))/Math.Sin(a*Math.PI);

}
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The spherical Bessel functions, jn(x) and yn(x) arise in the context of solving
the Helmholtz partial differential equation ∇2A + k2A = 0 in spherical coordinates.
These alternate ways of expressing Bessel functions appear often enough in scien-
tific and engineering numerical applications that they also merit some attention here.
When solving the Helmholtz equation in spherical coordinates by separation of vari-
ables, the radial equation has the form

x2 d2y
dx2 + 2x

dy
dx

+[x2 −n(n + 1)]y = 0.

The two linearly independent solutions to this equation are called the spherical Bessel
functions jn(x) and yn(x), and are related to the ordinary Bessel functions Jn and Yn

by the following expressions

jn(x) =
√

π
2x

Jn+1/2(x)

yn(x) =
√

π
2x

Yn+1/2(x)

Accordingly, their implementations in C# are shown below.

public static double Besselj(double x, double a)
{

if (x == 0.0)
throw new Exception("Attempted division by zero.");

return Math.Sqrt(Math.PI/2.0/x) * BesselJ(x,a+0.5);
}

public static double Bessely(double x, double a)
{

if (x == 0.0)
throw new Exception("Attempted division by zero.");

return Math.Sqrt(Math.PI/2.0/x) * BesselY(x,a+0.5);
}
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Curve Fitting Methods

15.1 Introduction

Proper analysis of empirical data is arguably one of the most important tasks that both
scientists and engineers are routinely asked to do. While a computer usually records
and analyzes the data obtained from an experiment, it is ultimately up to people to
program the computer and eventually interpret the results. Typical data collected
from experiments usually contain a lot of inexact and noisy values which arise from
both random and systematic errors. Random errors arise from natural limitations of
making physical measurements whereas systematic errors arise from blunders in the
measuring process. Either way, statistical methods of various levels of difficulty and
sophistication must be used to properly extract information and interpret empirical
results.

The ultimate goal of doing data analysis is to represent empirical data using a
model based on mathematical equations that can best describe the physical phe-
nomena under study. Therefore, one needs a good understanding of the underlying
physics, chemistry, electronics, and other properties of a problem in order to choose
or develop the most appropriate model and interpretation possible. No graphing or
analysis software can pick a model for the given data. Instead, such software can
only help to differentiate between models. However, once a model is picked, one
can then do a rough but quick assessment of its suitability by plotting the data. In
order to have some confidence in selecting a model and interpreting the results, at
least some agreement is needed between the empirical data and the expected values
predicted by the model. For example, if the model is supposed to represent expo-
nential growth and the data points are monotonically decreasing, then the model is
obviously wrong.

With the correct model, one can determine important characteristics of the data,
such as the rate of change anywhere on the curve (first derivative), the local minimum
and maximum points of the function (zeros of the first derivative), and the area under
the curve (integral). Therefore, one important goal of empirical data analysis is to
find the best set of parameter values of either a linear or nonlinear equation that most
closely matches the data. When this happens, the expression obtained is said to be
the best fit function to those data points.

483
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15.2 Least Squares Fit

The least squares method was first described by the famous German mathematician
Carl Friedrich Gauss around 1794 and is still perhaps the most popular curve fitting
procedure. The best fit in the least-squares sense is that instance of the model for
which the sum of squared residuals has its least value, a residual being the difference
between an observed value and the value given by the model. The sum of the squares
of the offsets is used, instead of the absolute values of the actual offset, because this
allows the residuals to be treated as a continuous differentiable quantity. However,
because squares of the offsets are used, outlying points can have a disproportionate
effect on the fit, a property which may or may not be desirable depending on the
problem at hand.

A general equation for least squares fitting can be derived by assuming we have
a data set consisting of n data points: (xi,yi) where i = 0,1,2, . . . ,n−1 and xi is an
independent variable and yi is a dependent variable. A general model function for n
data points can then be defined by [84]

f (x;a) = f (x;a0,a1,a2, . . . ,an−1)

where a0,a1,a2, . . . ,an−1 are variable parameters. The objective is to find those pa-
rameter values for which the model best fits the data. The form of the actual model
function is determined ahead of time and is usually based on the theory associated
with the experiment for which the data is being taken. The least squares method
defines best as when the sum, S, of squared residuals

S =
n

∑
i=0

r2
i

is a minimum. A residual is defined as the difference between the values of the
dependent variable yi and the predicted values from the estimated model function
f (xi,a),

ri = yi − f (xi,a)

Least squares problems fall into two categories, linear and nonlinear. The linear
least squares problem has a closed form solution, but the nonlinear problem does not
and is usually solved by iterative refinement where at each iteration the system is
approximated by a linear one, so the core calculation is similar in both cases.

The minimum of the sum of squares is found by setting the gradient of S to zero.
Since the model contains n parameters there are 0,1,2, . . . ,n−1 gradient equations.

∂S
∂a j

= 2
n

∑
i=0

ri
∂ ri

∂a j
= 0, j = 0, . . . ,n−1

and since ri = yi − f (xi,a) the gradient equations become

∂S
∂a j

= −2
n

∑
i=0

∂ f (xi,a)
∂a j

ri = 0, j = 0, . . . ,n−1
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15.2.1 Straight-Line Fit

The simplest least squares problem consists of finding the best fit equation to a
straight line. Using the slope-intercept form of a straight line, y = mx + b, we can
immediately identify the coefficients as a0 = b = y-intercept and a1 = m = slope so
that the model function becomes f (x,a) = a0 + a1x or equivalently, y = mx + b. We
can therefore calculate the sum of the squares of the residuals S as

S(m,b) =
n

∑
i=0

[yi − f (xi;a)]2 =
n

∑
i=0

[yi −bi−mixi]2

The minimum of the sum of squares is found by setting the gradient of S to zero:
∂S
∂b = 0 and ∂S

∂m = 0 from which we obtain the following set of equations

nb +

(
n

∑
i=0

xi

)
m =

n

∑
i=0

yi

(
n

∑
i=0

xi

)
b +

(
n

∑
i=0

x2
i

)
m =

n

∑
i=0

xiyi

which can be written in matrix form as[
n ∑n

i=0 xi

∑n
i=0 xi ∑n

i=0 x2
i

][
b
m

]
=

[
∑n

i=0 yi

∑n
i=0 xiyi

]

from which we can solve for b and m to give

b =

(
∑n

i=0 x2
i

)
(∑n

i=0 yi)− (∑n
i=0 xi) (∑n

i=0 xiyi)

n∑n
i=0 x2

i − (∑n
i=0 xi)2

m =
n∑n

i=0 xiyi − (∑n
i=0 xi)(∑n

i=0 yi)

n∑n
i=0 x2

i − (∑n
i=0 xi)2

These equations can be further simplified by recognizing and substituting the expres-
sions for the mean values of x and y as

x =
1

n

n

∑
i=0

xi and y =
1

n

n

∑
i=0

yi

from which we finally obtain

b =
1

n

(
n

∑
i=0

yi −m
n

∑
i=0

xi

)
= y−mx and m =

∑n
i=0 yi(xi − x)

∑n
i=0 xi(xi − x)

Implementations in C# of these two sets of best-fit formulas are given below. The
LeastSquaresBestFitLine1 algorithm follows the more compact version, whereas
the LeastSquaresBestFitLine2 follows the longer and more traditional version of
the two equations. An example illustrating how both of these algorithms may be
implemented follows immediately below and includes the results from a sample set
of data points.
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public static double[] LeastSquaresBestFitLine1(double[] x,double[]y)
{

//Calculates equation of best-fit line using shortcuts
int n = x.Length;
double xMean = 0.0;
double yMean = 0.0;
double numeratorSum = 0.0;
double denominatorSum = 0.0;
double bestfitYintercept = 0.0;
double bestfitSlope = 0.0;
double sigma = 0.0;
double sumOfResidualsSquared = 0.0;

//Calculates the mean values for x and y arrays
for (int i = 0; i < n; i++)
{

xMean += x[i] / n;
yMean += y[i] / n;

}

//Calculates the numerator and denominator for best-fit slope
for (int i = 0; i < n; i++)
{

numeratorSum += y[i] * (x[i] - xMean);
denominatorSum += x[i] * (x[i] - xMean);

}

//Calculate the best-fit slope and y-intercept
bestfitSlope = numeratorSum / denominatorSum;
bestfitYintercept = yMean - xMean * bestfitSlope;

//Calculate the best-fit standard deviation
for (int i = 0; i < n; i++)
{
sumOfResidualsSquared +=

(y[i]-bestfitYintercept-bestfitSlope*x[i]) *
(y[i]-bestfitYintercept-bestfitSlope*x[i]);

}
sigma = Math.Sqrt(sumOfResidualsSquared/(n-2));
return new double[] { bestfitYintercept, bestfitSlope, sigma };

}

public static double[] LeastSquaresBestFitLine2(double[] x,double[]y)
{

//Calculates equation of best-fit line using sums
int n = x.Length;
double xSum = 0.0;
double ySum = 0.0;
double xySum = 0.0;
double xSqrSum = 0.0;
double denominator = 0.0;
double bNumerator = 0.0;
double mNumerator = 0.0;
double bestfitYintercept = 0.0;
double bestfitSlope = 0.0;
double sigma = 0.0;
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double sumOfResidualsSquared = 0.0;

//calculate sums
for (int i = 0; i < n; i++)
{

xSum += x[i];
ySum += y[i];
xySum += x[i] * y[i];
xSqrSum += x[i] * x[i];

}

denominator = n * xSqrSum - xSum * xSum;
bNumerator = xSqrSum * ySum - xSum * xySum;
mNumerator = n * xySum - xSum * ySum;

//calculate best-fit y-intercept
bestfitYintercept = bNumerator / denominator;

//calculate best-fit slope
bestfitSlope = mNumerator / denominator;

//calculate best-fit standard deviation
for (int i = 0; i < n; i++)
{
sumOfResidualsSquared +=

(y[i]-bestfitYintercept-bestfitSlope*x[i]) *
(y[i]-bestfitYintercept-bestfitSlope*x[i]);

}
sigma = Math.Sqrt(sumOfResidualsSquared/(n-2));
return new double[] {bestfitYintercept,bestfitSlope,sigma};

}

private static void TestLeastSquaresBestFitLine()
{

double[] xdata = new double[] {2.0,3.0,4.0,5.0,6.0,7.0 };
double[] ydata = new double[] {2.9,4.7,6.3,8.4,10.5,12.5};
double[] results1 = LeastSquaresBestFitLine1(xdata,ydata);
double[] results2 = LeastSquaresBestFitLine2(xdata,ydata);

Console.WriteLine("Testing straight line best-fit method \n");
Console.WriteLine("Results1: (compact version)");
Console.WriteLine("Best-fit y-intercept = {0}", results1[0]);
Console.WriteLine("Best-fit slope = {0}", results1[1]);
Console.WriteLine("Best-fit sigma = {0}", results1[2]);
Console.WriteLine("Equation for best-fit line:
y = mx + b = {0}x + {1}\n", results1[1], results1[0]);

Console.WriteLine("Results2: (traditional version)");
Console.WriteLine("Best-fit y-intercept = {0}", results2[0]);
Console.WriteLine("Best-fit slope = {0}", results2[1]);
Console.WriteLine("Best-fit sigma = {0}", results2[2]);
Console.WriteLine("Equation for best-fit line:
y = mx + b = {0}x + {1}", results2[1], results2[0]);

Console.ReadLine();
}
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RESULTS:

Testing straight line best-fit method

Results1: (compact version)
Best-fit y-intercept = -1.12857142857143
Best-fit slope = 1.92857142857143
Best-fit sigma = 0.190862703084106
Equation for best-fit line:
y = mx + b = 1.92857142857143x + -1.12857142857143

Results2: (traditional version)
Best-fit y-intercept = -1.12857142857143
Best-fit slope = 1.92857142857143
Best-fit sigma = 0.190862703084105
Equation for best-fit line:
y = mx + b = 1.92857142857143x + -1.12857142857143

15.3 Weighted Least Squares Fit

The general expressions for a least squares fit have been derived based on the implicit
assumption that the errors are uncorrelated with each other and with the independent
variables. In other words, the derivation for least squares fit was made under the
assumption that all errors have the same significance. There are situations, however,
where the confidence in the accuracy of the data values may vary from point to point
meaning that the measurements are still uncorrelated but have different uncertainties.
For example, there may be some errors that are more important than others or perhaps
there might be some kind of unexpected drift in the precision of the measurements
being taken due to undetected or spontaneously occurring equipment malfunction.
In order to take these factors into consideration, a modified approach needs to be
adopted where a weight factor is introduced for each data point. The general expres-
sion for the sum of squares of the the residuals is then given by

S =
n

∑
i=0

wir
2
i =

n

∑
i=0

wi[yi − f (xi,a)]2

The minimum of the weighted sum of squares is found by setting the gradient of S
to zero which leads to the following expressions:

−2
n

∑
i=0

wi
∂ f (xi,a)

∂a j
ri = 0, j = 0,1,2, . . . ,n−1

15.3.1 Weighted Straight-Line Fit

Finding the best fit straight-line equation to a set of weighted data points (xi,yi)
with corresponding weights wi follows immediately in an analogous fashion to the
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derivation given earlier for a straight-line fit. The weighted sum of squares S of the
residuals is now

S(m,b) =
n

∑
i=0

wi[yi − f (xi;a)]2 =
n

∑
i=0

wi[yi −bi−mixi]2

The minimum of the weighted sum of squares is found by setting the gradient of S
to zero: ∂S

∂b = 0 and ∂S
∂m = 0 from which we obtain the following set of equations

(
n

∑
i=0

wi

)
b +

(
n

∑
i=0

wixi

)
m =

n

∑
i=0

wiyi

(
n

∑
i=0

wixi

)
b +

(
n

∑
i=0

wix
2
i

)
m =

n

∑
i=0

wixiyi

which can be written in matrix form as[
∑n

i=0 wi ∑n
i=0 wixi

∑n
i=0 wixi ∑n

i=0 wix2
i

][
b
m

]
=

[
∑n

i=0 wiyi

∑n
i=0 wixiyi

]

from which we can solve for b and m to give

b =

(
∑n

i=0 wix2
i

)
(∑n

i=0 wiyi)− (∑n
i=0 wixi)(∑n

i=0 wixiyi)

(∑n
i=0 wi)

(
∑n

i=0 wix2
i

)− (∑n
i=0 wixi)2

m =
(∑n

i=0 wi)∑n
i=0 wixiyi − (∑n

i=0 wixi)(∑n
i=0 wiyi)

(∑n
i=0 wi)

(
∑n

i=0 wix2
i

)− (∑n
i=0 wixi)

2

which can also be expressed as

b = yw −mxw and m =
∑n

i=0 wiyi(x− xw)
∑n

i=0 wixi(xi − xw)

where the weighted average of x and y are given by

xw =
∑n

i=0 wixi

∑n
i=0 wi

and yw =
∑n

i=0 wiyi

∑n
i=0 wi

Implementations in C# of these two sets of best-fit formulas are given below. The
LeastSquaresWeightedBestFitLine1 algorithm follows the more compact version,
whereas the LeastSquaresWeightedBestFitLine2 follows the longer and more tra-
ditional version of the two equations. An example illustrating how both of these
algorithms may be implemented follows immediately below and includes the results
from a sample set of data points.
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public static double[] LeastSquaresWeightedBestFitLine1(double[] x,
double[] y, double[] w)

{
//Calculates equation of best-fit line using short cuts
int n = x.Length;
double wxMean = 0.0;
double wyMean = 0.0;
double wSum = 0.0;
double wnumeratorSum = 0.0;
double wdenominatorSum = 0.0;
double bestfitYintercept = 0.0;
double bestfitSlope = 0.0;
double sigma = 0.0;
double sumOfResidualsSquared = 0.0;

//Calculates the sum of the weights w[i]
for (int i = 0; i < n; i++)
{ wSum += w[i]; }

//Calculates the mean values for x and y arrays
for (int i = 0; i < n; i++)
{

wxMean += w[i] * x[i] / wSum;
wyMean += w[i] * y[i] / wSum;

}

//Calculates the numerator and denominator for best-fit slope
for (int i = 0; i < n; i++)
{

wnumeratorSum += w[i] * y[i] * (x[i] - wxMean);
wdenominatorSum += w[i] * x[i] * (x[i] - wxMean);

}

//Calculate the best-fit slope and y-intercept
bestfitSlope = wnumeratorSum / wdenominatorSum;
bestfitYintercept = wyMean - wxMean * bestfitSlope;

//Calculate the best-fit standard deviation
for (int i = 0; i < n; i++)
{

sumOfResidualsSquared +=
w[i]*(y[i]-bestfitYintercept-bestfitSlope*x[i]) *

(y[i]-bestfitYintercept-bestfitSlope*x[i]);
}
sigma = Math.Sqrt(sumOfResidualsSquared / (n - 2));
return new double[] { bestfitYintercept, bestfitSlope, sigma };

}

public static double[] LeastSquaresWeightedBestFitLine2(double[] x,
double[] y, double[] w)

{
//Calculates equation of best-fit line using sums
int n = x.Length;
double wSum = 0.0;
double wxSum = 0.0;
double wySum = 0.0;
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double wxySum = 0.0;
double wxSqrSum = 0.0;
double denominator = 0.0;
double bNumerator = 0.0;
double mNumerator = 0.0;
double bestfitYintercept = 0.0;
double bestfitSlope = 0.0;
double sigma = 0.0;
double sumOfResidualsSquared = 0.0;

//calculate sums
for (int i = 0; i < n; i++)
{

wSum += w[i];
wxSum += w[i]*x[i];
wySum += w[i]*y[i];
wxySum += w[i]*x[i] * y[i];
wxSqrSum += w[i]* x[i] * x[i];

}

denominator = wSum * wxSqrSum - wxSum * wxSum;
bNumerator = wxSqrSum * wySum - wxSum * wxySum;
mNumerator = wSum * wxySum - wxSum * wySum;

//calculate best-fit y-intercept
bestfitYintercept = bNumerator / denominator;

//calculate best-fit slope
bestfitSlope = mNumerator / denominator;

//calculate best-fit standard deviation
for (int i = 0; i < n; i++)
{

sumOfResidualsSquared +=
w[i]*(y[i]-bestfitYintercept-bestfitSlope*x[i]) *

(y[i]-bestfitYintercept-bestfitSlope*x[i]);
}
sigma = Math.Sqrt(sumOfResidualsSquared / (n - 2));
return new double[] { bestfitYintercept, bestfitSlope, sigma };

}

private static void TestLeastSquaresWeightedBestFitLine()
{

double[] xdata = new double[] { 0.0, 2.0, 4.0, 6.0 };
double[] ydata = new double[] { 10.0, 15.0, 18.0, 25.0 };
double[] weights = new double[] { 1.0, 5.0, 10.0, 1.0 };
double[] results1 =

LeastSquaresWeightedBestFitLine1(xdata, ydata, weights);
double[] results2 =

LeastSquaresWeightedBestFitLine2(xdata, ydata, weights);
Console.WriteLine("Testing weighed straight line best-fit method");
Console.WriteLine("Results1: (compact version)");
Console.WriteLine("Best-fit y-intercept = {0}", results1[0]);
Console.WriteLine("Best-fit slope = {0}", results1[1]);
Console.WriteLine("Best-fit sigma = {0}", results1[2]);
Console.WriteLine("Equation for weighted best-fit line:
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y = mx + b = {0}x + {1}\n", results1[1], results1[0]);
Console.WriteLine("Results2: (traditional version)");
Console.WriteLine("Best-fit y-intercept = {0}", results2[0]);
Console.WriteLine("Best-fit slope = {0}", results2[1]);
Console.WriteLine("Best-fit sigma = {0}", results2[2]);
Console.WriteLine("Equation for weighted best-fit line:

y = mx + b = {0}x + {1}", results2[1], results2[0]);
Console.ReadLine();

}

RESULTS:

Testing weighted straight line best-fit method

Results1: (compact version)
Best-fit y-intercept = 10.2985074626866
Best-fit slope = 2.05223880597015
Best-fit sigma = 1.78967609395506
Equation for weighted best-fit line:
y = mx + b = 2.05223880597015x + 10.2985074626866

Results2: (traditional version)
Best-fit y-intercept = 10.2985074626866
Best-fit slope = 2.05223880597015
Best-fit sigma = 1.78967609395506
Equation for weighted best-fit line:
y = mx + b = 2.05223880597015x + 10.2985074626866

15.4 Linear Regression

In general, regression analysis refers to a collection of techniques for the modeling
and analyzing of numerical data consisting of a dependent variable and one or more
independent variables. The dependent variable in the regression equation is modeled
as a function of the independent variables, and any corresponding parameters. The
parameters are estimated so as to give a best fit of the data and are usually evaluated
by using the least squares method. More advanced techniques of regression analy-
sis, which are beyond the scope of this book, can be used for prediction, including
forecasting of time-series data, inference, hypothesis testing, and modeling of causal
relationships.

Linear regression is a form of regression analysis in which the relationship be-
tween one or more independent variables and another variable, called the dependent
variable, is modeled by a least squares function, called a linear regression equation.
This function is a linear combination of one or more model parameters, called re-
gression coefficients. A linear regression equation with one independent variable
represents a straight line when the predicted, or dependent variable from the regres-
sion equation, is plotted against the independent variable. However, note that linear
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does not refer to this straight line, but rather to the way in which the regression
coefficients occur in the regression equation.

The primary application of linear least squares is in data fitting. Given a set of
n data points x0,x1, . . . ,xn−1 of an independent variables where xi may be scalar or
vector quantities, and given a model function y = f (x,a), with m−1 parameters a =
(a0,a1, . . . ,am), it is desired to find the parameters a j such that the model function
best fits the data. In linear least squares, linearity is meant to be with respect to
parameters a j, so

f (x,a) =
m

∑
j=0

a j f j(x)

where the functions f j(x) may be nonlinear with respect to the variable x. Ide-
ally, the model function fits the data exactly, so yi = f (xi,a) = ∑m

j=0 a j f j(xi) for
all i = 0,1, . . . ,n−1. This is usually not possible in practice, as there are often more
data points than there are parameters to be determined. The typical approach that
is usually chosen is to find the minimal possible value of the sum of squares of the
residuals ri(a) = yi − f (xi,a), (i = 0,1, . . . ,n) so as to minimize the function

S(a) =
n

∑
i=0

r2
i (a)

After substituting for ri and then for f , this minimization problem becomes the
quadratic minimization problem above with Xi j = f j(xi), and the best fit can be found
by solving the normal equations.

S is minimized when its gradient with respect to each parameter is equal to zero.
The elements of the gradient vector are the partial derivatives of S with respect to the
parameters:

∂S
∂ak

= 2
n

∑
i=0

ri
∂ ri

∂ak
= 0

Since ri = yi − f (xi,a) = yi −∑m
j=0 Xi ja j, the partial derivatives are

∂ ri

∂ak
=

∂
∂ak

(yi −
m

∑
j=0

Xi ja j) = −Xik

Substitution of the expressions for the residuals and the derivatives into the gradient
equations gives

∂S
∂ak

= 2
n

∑
i=0

(yi −
m

∑
j=0

Xi ja j)(−Xik) = 0

Upon some rearrangement, we arrive at the normal equations

m

∑
j=0

n

∑
i=0

Xi jXika j =
n

∑
i=0

Xikyi
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Since Xi j = f j(xi), we can simplify the expressions above even further to read

m

∑
j=0

n

∑
i=0

f j(xi) fk(xi)a j =
n

∑
i=0

fk(xi)yi

The above expression can be rewritten in a more compact matrix form by recognizing
the matrix elements written as

Fjk =
n

∑
i=0

f j(xi) fk(xi) and Bk =
n

∑
i=0

fk(xi)yi

so that

m

∑
j=0

FjkA j = Bk or more simply FA = B and therefore, A = F−1B

The implementation of linear regression in C# is now a very straight forward pro-
cess. First, we need to define a delegate function to act as our model function that
takes a double variable x as its input parameter. Then we construct a public static
method, called LinearRegression, that returns a RVector object whose components
are the coefficients of a user supplied set of basis functions. Contained inside the
LinearRegression method, are the coefficient RMatrix F and RVector B. The equa-
tion A = F−1B is then solved using the GaussJordan method discussed in Chapter 8.
Also included is a calculation of the standard deviation in order to provide us with a
rough estimation of the error.

public delegate double ModelFunction(double x);

public static RVector LinearRegression(double[] x, double[] y,
ModelFunction[] f, out double sigma)

{
//m = number of data points
int m = f.Length;
RMatrix Fmatrix = new RMatrix(m, m);
RVector Bvector = new RVector(m);
// n = number of linear terms in the regression equation
int n = x.Length;

//Calculate the B vector entries
for (int k = 0; k < m; k++)
{

Bvector[k] = 0.0;
for (int i = 0; i < n; i++)
{ Bvector[k] += f[k](x[i]) * y[i]; }

}

//Calculate the F matrix entries
for (int j = 0; j < m; j++)
{

for (int k = 0; k < m; k++)
{

Fmatrix[j, k] = 0.0;
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for (int i = 0; i < n; i++)
{ Fmatrix[j, k] += f[j](x[i]) * f[k](x[i]); }

}
}

// FA = B so A = Fˆ{-1}B
RVector Avector = GaussJordan(Fmatrix, Bvector);

// Calculate the standard deviation to estimate error
double sumOfResidualsSquared = 0.0;
for (int i = 0; i < n; i++)
{

double sum = 0.0;
for (int j = 0; j < m; j++)
{ sum += Avector[j] * f[j](x[i]); }
sumOfResidualsSquared += (y[i] - sum) * (y[i] - sum);

}
sigma = Math.Sqrt(sumOfResidualsSquared / (n - m));
return Avector;

}

private static double f0(double x) {return 1.0;}
private static double f1(double x) {return x;}
private static double f2(double x) {return x * x;}
private static double f3(double x) {return x * x * x;}

private static void TestLinearRegression()
{

Console.WriteLine("Testing Linear Regression Fit for basis");
Console.WriteLine("function of a polynomial of order 3\n");
double[] x = new double[] { 0, 1, 2, 3, 4, 5 };
double[] y = new double[] { 4, 2, 8, 8, 6, 4 };
double sigma = 0.0;
ModelFunction[] f = new ModelFunction[] { f0, f1, f2, f3 };
RVector results = LinearRegression(x, y, f, out sigma);
Console.WriteLine("Order of polynomial m = 3:

A0 + A1*x + A2*xˆ2 + A3*xˆ3 where");
Console.WriteLine("A0 = {0}", results[0]);
Console.WriteLine("A1 = {0}", results[1]);
Console.WriteLine("A2 = {0}", results[2]);
Console.WriteLine("A3 = {0}", results[3]);
Console.WriteLine("Standard deviation = {0}\n\n", sigma);

}

RESULTS:

Testing Linear Regression Fit for a set of basis
functions consisting of a polynomial of order 3

Order of polynomial m = 3: A0 + A1*x + A2*xˆ2 + A3*xˆ3 where
A0 = 3.34920634920648
A1 = -0.351851851852306
A2 = 1.3730158730161
A3 = -0.259259259259288
Standard deviation = 2.31626409657434
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15.4.1 Polynomial Fit

The linear regression algorithm, discussed in the previous section, is a general algo-
rithm for finding best fits to a given set of data points provided we can specify a set of
appropriate basis functions and linear parameters under which the prescribed calcu-
lations can take place. For example, a polynomial fit is just a special case of the more
general linear regression method where the basis functions are now given by f j(x) =
x j and j = 0,1,2, . . . ,n−1 while the linear coefficients are given by a0,a1, ...an−1 so
that in general the model function is given by f (x) = a0+a1x+a2x2 + . . .+an−1xn−1.
In this case, the matrix F and vector B in the normal function are given by

Fjk =
n

∑
i=0

x j+k
i and Bk =

n

∑
i=0

xk
i yi

An implementation of the polynomial fit in C# can then be written down as shown
below.

public static RVector PolynomialFit(double[] x, double[] y, int m,
out double sigma)

{
//m = number of data points which in this case
//for polynomials = order or degree of polynomial P_m(x)
m++; //minor adjust
RMatrix Fmatrix = new RMatrix(m, m);
RVector Bvector = new RVector(m);
// n = number of linear terms in the regression equation
int n = x.Length;

//Calculate the B vector entries
for (int k = 0; k < m; k++)
{

Bvector[k] = 0.0;
for (int i = 0; i < n; i++)
{ Bvector[k] += Math.Pow(x[i], k) * y[i]; }

}

//Calculate the F matrix entries
for (int j = 0; j < m; j++)
{

for (int k = 0; k < m; k++)
{

Fmatrix[j, k] = 0.0;
for (int i = 0; i < n; i++)
{ Fmatrix[j, k] += Math.Pow(x[i], j + k); }

}
}

// FA = B so A = Fˆ{-1}B
RVector Avector = GaussJordan(Fmatrix, Bvector);

// Calculate the standard deviation to estimate error
double sumOfResidualsSquared = 0.0;
for (int i = 0; i < n; i++)
{

© 2010 by Taylor and Francis Group, LLC



Curve Fitting Methods 497

double sum = 0.0;
for (int j = 0; j < m; j++)
{ sum += Avector[j] * Math.Pow(x[i], j); }
sumOfResidualsSquared += (y[i] - sum) * (y[i] - sum);

}
sigma = Math.Sqrt(sumOfResidualsSquared / (n - m));
return Avector;

}

private static void TestPolynomialFit()
{

Console.WriteLine("Testing Polynomial Fit");
Console.WriteLine("using an actual polynomial of order 3");
double[] x = new double[] { 0, 1, 2, 3, 4, 5 };
double[] y = new double[] { 4, 2, 8, 8, 6, 4 };
int polynomialOrder = 3;
double sigma = 0.0;
RVector results=PolynomialFit(x,y,polynomialOrder,out sigma);
Console.WriteLine("Order of polynomial m = 3:

A0 + A1*x + A2*xˆ2 + A3*xˆ3 where");
Console.WriteLine("A0 = {0}", results[0]);
Console.WriteLine("A1 = {0}", results[1]);
Console.WriteLine("A2 = {0}", results[2]);
Console.WriteLine("A3 = {0}", results[3]);
Console.WriteLine("Standard deviation = {0}\n\n", sigma);

}

RESULTS:

Testing Polynomial Fit
using an actual polynomial of order 3

Order of polynomial m = 3: A0 + A1*x + A2*xˆ2 + A3*xˆ3 where
A0 = 3.34920634920648
A1 = -0.351851851852306
A2 = 1.3730158730161
A3 = -0.259259259259288
Standard deviation = 2.31626409657434

15.4.2 Exponential Fit

In an exponential function fit, the model function f (x) takes on the general form:
f (x) = y = aecx. Since the coefficients a and c are nonlinear, we cannot directly
apply the linear regression methods discussed earlier in this chapter. However, by
taking the natural logarithm of both sides, we get lny = cx + lna which has the
general form of the slope-intercept equation of a straight line: Y = mx + b where
slope = m = c and y-intercept = b = lna. Therefore, by using (xi, lnyi) instead of
(xi,yi), the linear regression methods described in this chapter can now also be used
to obtain the best fit solution of exponential functions.

With a sufficiently large number of data points, an argument can be made for
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calculating exponential fits with weights. In this scenario, the fit function becomes

F(x) = ln( f (x)) = ln(aecx) = lna + cx

The residuals of the logarithm fit are then given by

Ri = lnyi − lnF(xi) = lnyi − lna− cxi

The residuals ri used in fitting the original data are given by

ri = yi − f (xi) = yi −aecx

Combining these two equations for ri and Ri yields

Ri = ln

(
1− ri

yi

)

In the limit where ri << yi we can use a Taylor series expansion to approximate Ri ≈
ri/yi. As a result, in minimizing ∑n

i=0 R2
i , we must introduce a weight factor 1/yi.

Therefore, we need to apply the weights wi = yi when fitting the model function to
the data points (xi, ln yi). An implementation of an exponential fit in C# can therefore
be done as shown below.

private static void TestExponentialFit()
{

Console.WriteLine("Testing Exponential Fit");
Console.WriteLine(" Original equation: y = a eˆ{cx}");
Console.WriteLine("Linearized equation: ln(y) = cx + ln(a)\n");
Console.WriteLine("which has the form: Y=mx+b of a straight line");
double[] x = new double[] { 1, 2, 3, 4, 5 };
double[] y = new double[] { 3.5, 6.2, 9.5, 15.3, 20.4 };
double[] logy = new double[]

{1.25276,1.82455,2.25129,2.72785,3.01553};

double[] results = LeastSquaresBestFitLine1(x, logy);
Console.WriteLine("Results without weights, just (x,ln(y)): ");
Console.WriteLine("Best-fit y-intercept b=ln(a)= {0}",results[0]);
Console.WriteLine("Best-fit slope = m = c ={0}", results[1]);
Console.WriteLine("Best-fit sigma = {0}", results[2]);
Console.WriteLine("Equation for weighted best-fit exponential:");
Console.WriteLine("y = a eˆ(cx) = {0}exp({1}x)\n",

Math.Exp(results[0]),results[1]);

double[] resultsWt = LeastSquaresWeightedBestFitLine1(x, logy, y);
Console.WriteLine("Results with weights w=y. Calc (x,ln(y),w)):");
Console.WriteLine("Best-fit y-intercept b=ln(a)={0}",resultsWt[0]);
Console.WriteLine("Best-fit slope = m = c = {0}",resultsWt[1]);
Console.WriteLine("Best-fit sigma = {0}",resultsWt[2]);
Console.WriteLine("Equation for weighted best-fit exponential:");
Console.WriteLine("y = a eˆ(cx) = {0}exp({1}x)\n",

Math.Exp(resultsWt[0]),resultsWt[1]);
Console.ReadLine();

}
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RESULTS:
Testing Exponential Fit
Original equation: y = a eˆ{cx}
Linearized equation: ln(y) = cx + ln(a)
which is in the form: Y = mx + b for a straight line

Results without weights, just (x,ln(y)):
Best-fit y-intercept b = ln(a) = 0.885744
Best-fit slope = m = c =0.442884
Best-fit sigma = 0.0857772094051406
Equation for weighted best-fit exponential:
y = a eˆ(cx) = 2.4247877626437exp(0.442884x)

Results with weights w = y. Calc (x,ln(y),w)):
Best-fit y-intercept b = ln(a)= 0.971492075896069
Best-fit slope = m = c = 0.419085390333843
Best-fit sigma = 0.0979232048349948
Equation for weighted best-fit exponential:
y = a eˆ(cx) = 2.64188341057344exp(0.419085390333843x)

Other types of model functions which are nonlinear in nature can sometimes also
be artificially linearized so that we may then apply the linear regression methods in-
troduced in this chapter in order to obtain a best fit solution to a set of corresponding
data points. For example, consider the another model function f (x) that takes on the
form

f (x) = y = axc

By taking the logarithm of both sides, we get lny = c lnx + lna which is in the
intercept-slope form of an equation for a straight line Y = mX + b where Y = lny,
X = lnx, slope = m = c and y-intercept b = lna.

As a final example of data linearization, consider the nonlinear model function
given by

f (x) = y =
1

a + cx

This nonlinear equation can be converted to linear form by substituting Y = 1/y in
which case we obtain Y = cx + a which is in the intercept-slope form of an equation
for a straight line Y = mx + b where Y = 1/y, slope = m = c and y-intercept b = a.

15.5 The χ2 Test for Goodness of Fit

There are two types of χ2 tests:

1. The χ2 test for goodness of fit establishes whether or not an observed fre-
quency distribution differs from a theoretical distribution. In other words, the
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χ2 test for goodness of fit compares the expected and observed values to deter-
mine how well an experimenter’s predictions fit the data or how well a statis-
tical model fits a set of observations. Such measures can be used in statistical
hypothesis testing such as to test for normality of residuals, or to test whether
two samples are drawn from identical distributions.

2. The χ2 test for independence assesses whether paired observations on two
variables are independent from each other. In other words, the χ2 for indepen-
dence is used to determine how independent two variables of a sample really
are. In this context independence means that the two variables are not related.

Data used in a χ2 test must

1. be randomly drawn from the population

2. be reported in raw counts of frequency

3. have independently measured variables

4. have observed frequencies which are not too small, and

5. be mutually exclusive.

The first step in the chi-square test is to calculate the chi-square statistic. The chi-
square statistic is calculated by finding the difference between each observed and
theoretical frequencies for each possible outcome, squaring them, dividing each by
the theoretical frequency, and taking the sum of the results. To calculate frequency,
the results of any repeated measurements are first grouped in k bins, where k =
1,2, . . . ,n. Let Ok denote the number of results observed in bin k, based on some
assumed distribution. Let Ek be the expected number of measurements in bin k.
Then the value of the χ2 test statistic is given by

χ2 =
n

∑
k=1

(Ok −Ek)2

Ek

In actual practice, the values for Ok are obtained from a histogram of the observed
frequency values. If n measurements, xk, are made of the quantity x, we can trun-
cate the data to a common least count and group the observations into frequencies
of identical observations to make a histogram. Let us assume that k runs from 1
to n so there are n possible different values of xk and let us call the frequency of
observations, or number of counts in each histogram bin, h(xk) for each different
measured value of xk. If the probability for observing the value xk in any random
measurement is denoted by P(xk), then the expected number of such observations is
E(xk) = nP(xk) where n is the total number of bins contained in the corresponding
frequency histogram. Using Ok = h(xk) then χ2 can also be expressed as

χ2 =
n

∑
k=1

[h(xk)−nP(xk)]2

nP(xk)
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If χ2 = 0 then the agreement between the expected and observed distributions is
perfect. That is, Ok = Ek for all bins k, a situation most unlikely to occur. If χ2 >>
n, which physically means that χ2 is significantly greater than the total number of
bins, then the observed and expected numbers differ significantly and the agreement
between Ok and Ek is unacceptable and we reject the assumed distribution. If χ2 ≤ n
then the observed and expected distributions agree about as well as can be expected.

To illustrate the use of the chi-square statistic, I chose to generate 2000 randomly
drawn data points that supposedly follow a binomial distribution and then compare
the result against another set of 2000 data points calculated directly from the bino-
mial distribution. The frequency histogram used to distribute the data consists of a
total of 20 bins. The C# code to carry out this calculation is presented below where
I also utilized C# code from Chapters 10 and 14 on random probability distributions
and special functions, respectively. Because of the randomness of the calculations, a
slightly different χ2 is obtained each time the program runs. For completeness, the
result for a reduced χ2 is also given. The reduced χ2 is just the regular χ2 divided
by the number of degrees of freedom of the experiment. The number of degrees of
freedom is just the number of sample frequencies minus the number of constraints
or parameters in the experiment. In the example below, a frequency histogram was
created containing 20 bins and so the number of degrees of freedom is 20. The num-
ber of constraints or parameters is 1. The resulting χ2 = 19.913, or equivalently, the
reduced χ2 value of 1.04807 supports the hypothesis that the observed data is indeed
comparable to the expected data.

private static void TestChiSquareStatistic()
{

int nBins = 20; //number of bins for histogram
int nPoints = 2000; //number of data points

//Create an array of 2000 random data points
//that supposedly follow a binomial distribution
double[] RandomData = NextBinomial(20, 0.5, nPoints);

//Distribute the 2000 random data points into a
//histogram consisting of 20 bins
double[] RandomDistributionValues=makeHistogram(RandomData,nBins);

//Setup arrays to hold data
double[] xdata = new double[nBins];
double[] ydata = new double[nBins];

double[] Observed = new double[nBins];
double[] Expected = new double[nBins];

double[] ydistribution = new double[nBins];

//Assign random data and binomial distribution data
//to their proper arrays
for (int i = 0; i < nBins; i++)
{

xdata[i] = i;
ydata[i] = (double)RandomDistributionValues[i];
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ydistribution[i] = BinomialPDF(i, 20, 0.5);
}

//Calculate the normalization factor
double normalizationFactor = dataMax(ydata)/dataMax(ydistribution);

//Assign observed and expected data arrays and adjust
//the expected data array by the normalization factor
for (int i = 0; i < nBins; i++)
{

Observed[i] = ydata[i];
Expected[i] = ydistribution[i] * normalizationFactor;

}

//Calculate the number of degrees of freedom
int NDegreesOfFreedom = nBins - 1;

//Calculate chi-square value
double chi_square = 0.0;
for (int i = 0; i < nBins; i++)
{

chi_square += ((Observed[i] - Expected[i]) * (Observed[i] -
Expected[i])) / (Expected[i]);

}

Console.WriteLine("\nChi-Square Statistic Test\n");
Console.WriteLine("A random sample of 2000 points supposedly ");
Console.WriteLine("following a Binomial Distribution is ");
Console.WriteLine("compared against a set of calculated ");
Console.WriteLine("binomial distribution values using the ");
Console.WriteLine("chi-square statistic. ");
Console.WriteLine("Frequency histogram used has 20 bins.");
Console.WriteLine("Results: ");
Console.WriteLine("chi-square = {0}", chi_square);
Console.WriteLine("Reduced chi-square = {0}", chi_square/

NDegreesOfFreedom);
Console.ReadLine();

}

OUTPUT:
A random sample of 2000 points supposedly following a Binomial
Distribution is compared against a set of calculated binomial
distribution values using the chi-square statistic.
Frequency histogram used has 20 bins.
Results:

chi-square = 19.913500568919
Reduced chi-square = 1.04807897731153
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Ordinary Differential Equations

16.1 Introduction

Differential equations consist of a broad field of study in pure and applied mathe-
matics, the natural sciences and engineering. All of these disciplines are concerned
with the properties of differential equations of various types. For example, pure
mathematics focuses on the existence and uniqueness of solutions, while applied
mathematics emphasizes the rigorous justification of the methods for approximating
solutions. Moreover, differential equations play an important role in modeling virtu-
ally every physical, technical, or biological process, from celestial motion to bridge
design, to interactions between neurons. In general, differential equations may be
broken down into several categories:

• An ordinary differential equation (ODE) is a differential equation in which the
unknown function is a function of a single independent variable.

• A partial differential equation (PDE) is a differential equation in which the
unknown function is a function of multiple independent variables and their
partial derivatives.

• A delay differential equation (DDE) is a differential equation in which the
derivative of the unknown function at a certain time is given in terms of the
values of the function at previous times.

• A stochastic differential equation (SDE) is a differential equation in which one
or more of the terms is a stochastic process, thus resulting in a solution which
is itself a stochastic process.

• A differential algebraic equation (DAE) is a differential equation comprising
differential and algebraic terms, given in implicit form.

Each of these categories can be divided into linear and nonlinear sub-categories. A
differential equation is said to be linear if the dependent variable and all its deriva-
tives appear to the power 1 and there are no products or functions of the dependent
variable. Otherwise the differential equation is said to be nonlinear. Unfortunately
and with a few exceptions, most differential equations of interest that originate from
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describing or modeling natural phenomena and other real-life problems are not al-
ways directly solvable or have nice closed form analytic solutions and therefore can-
not be solved exactly. Instead, such solutions can only be approximated using nu-
merical methods. As a result, the contents of this chapter will focus on the most
popular and fundamental numerical methods for solving differential equations and
illustrate how these methods may be coded in C#.

In mathematics, an ordinary differential equation is a relation that contains func-
tions of only one independent variable, and one or more of its derivatives with respect
to that variable. A simple example is Newton’s second law of motion, which leads
to the differential equation

m
d2x(t)

dt2 = F(x(t))

for the motion of a particle of mass m. In general, the force F depends upon the
position of the particle x(t) at time t, and thus the unknown function x(t) appears
on both sides of the differential equation, as is indicated in the notation F(x(t)).
Ordinary differential equations are distinguished from partial differential equations,
which involve partial derivatives of several variables and will be addressed to some
extent in the next chapter.

When a differential equation of order n has the form

F
(

x,y,y′,y′′, . . . , y(n)
)

= 0

it is called an implicit differential equation whereas the form

F
(

x,y,y′,y′′, . . . , y(n−1)
)

= y(n)

is called an explicit differential equation.

A boundary value problem (BVP) is an ordinary differential equation together
with a set of additional restraints, called the boundary condition, which has values
assigned on the physical boundary of the domain in which the problem is specified. A
solution to a boundary value problem is a solution to the differential equation which
also satisfies the boundary conditions. An initial value problem (IVP) is an ordinary
differential equation together with specified value, called the initial condition, of the
unknown function at a given point in the domain of the solution. A more mathemat-
ical way to picture the difference between an initial value problem and a boundary
value problem is that an initial value problem has all of the conditions specified at
the same value of the independent variable in the equation whereas a boundary value
problem has conditions specified at the extremes of the independent variable. A ma-
jor difference between IVPs and BVPs is that there may be an issue of existence and
uniqueness.
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16.2 Euler Method

The Euler method, named after the famous Swiss mathematician Leonhard Euler, is
a first order numerical procedure for solving ordinary differential equations with a
given initial value. It is the most basic kind of explicit method for numerical integra-
tion of ordinary differential equations. The Euler method seeks to approximate the
solution of the initial value problem

y′(x) = f (x,y(x)) where y(x0) = y0

by using the first two terms of the Taylor expansion of y(x) about x = x0, which
represents the linear approximation around the point (x0,y(x0))

y(x) ≈ y(x0)+
y′(x0)

1!
(x− x0)+

y′′(x0)
2!

(x− x0)2 +
y3(x0)

3!
(x− x0)3 + · · ·

By truncating the series after two terms, we obtain the approximation

y(x) ≈ y(x0)+ y′(x0)(x− x0)

By setting h = x− x0 and observing that y′(x0) = f (x0,y(x0)) = f (x0,y0) we then
obtain the expression

y(x0 + h)≈ y0 + f (x0,y0)h

which is the first step in the Euler approximation method. Proceeding in a similar
manner, the equations can be further generalized for the n and n + 1 term to read

xn+1 = xn + h

yn+1 = yn + f (xn,yn)h

The Euler method is explicit, meaning that the solution yn+1 is an explicit function
of yi for i ≤ n. An implementation of the Euler method in C# is given below. For
flexibility we again defined a general delegate function f (x,y) so that users may
then input any function they choose. This version of the Euler algorithm takes the
delegate function f , the initial values x0 and y0, the increment h along the x-axis
and the point position x where we want to calculate a solution as input parameters.
For testing purposes, I chose the differential equation given by y′ = y cos(x) with the
initial condition x0 = 0 and y0 = 1 for which the exact solution is easily calculated
to be y = exp(sin(x)). In order to compare differences in the output of additional
upcoming solution methods, these same test equations and initial conditions were
also used unless indicated otherwise.

public delegate double Function(double x, double y);

static double f(double x, double y)
{ return y*Math.Cos(x); }
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public static double ODE_Euler(Function f, double x0,
double y0, double h, double x)

{
double xnew, ynew, result = double.NaN;
if (x <= x0) result = y0;
else if (x > x0)
{

do
{

if (h > x - x0) h = x - x0;
ynew = y0 + f(x0, y0) * h;
xnew = x0 + h;
x0 = xnew;
y0 = ynew;

} while (x0 < x);
result = ynew;

}
return result;

}

static void TestEuler()
{
double h = 0.001;
double x0 = 0.0;
double y0 = 1.0;
Console.WriteLine("\n Results from Euler’s method with h={0}\n",h);
double result = y0;
for (int i = 0; i < 11; i++)
{

double x = 0.1 * i;
result = ODE_Euler(f, x0, result, h, x);
double exact = Math.Exp(Math.Sin(x));
if (i % 5 == 0)
Console.WriteLine("x={0:n1},y={1:e12},exact={2:e12}",x,result,

exact);
x0 = x;

}
}

Results from Euler’s method with h = 0.001
x = 0.0, y = 1.000000000000e+000, exact = 1.000000000000e+000
x = 0.5, y = 1.614873480863e+000, exact = 1.615146296442e+000
x = 1.0, y = 2.319466352295e+000, exact = 2.319776824716e+000

16.3 Runge-Kutta Methods

The Runge-Kutta methods are an important family of implicit and explicit itera-
tive methods for approximating solutions of ordinary differential equations. These
techniques were developed around the year 1900 by the German mathematicians C.
Runge and M.W. Kutta and offer a more precise alternative to using Euler’s method,
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which can sometimes produce significant truncation errors and is also prone to nu-
merical instabilities.

16.3.1 Second-Order Runge-Kutta Method

The second-order Runge-Kutta method is derived by taking one additional term in
the Taylor series expansion of y(x) before truncating the remaining terms. As with
the Euler method we begin by seeking an approximate solution to the initial value
problem

y′(x) = f (x,y(x)) where y(x0) = y0

However, instead of taking just the first two terms of the Taylor expansion of y(x)
about x = x0

y(x) ≈ y(x0)+
y′(x0)

1!
(x− x0)+

y′′(x0)
2!

(x− x0)2 +
y3(x0)

3!
(x− x0)3 + · · ·

we now truncate the series after three terms, and thus retain the following terms

y(x) ≈ y(x0)+ y′(x0)(x− x0)+
y′′(x0)

2!
(x− x0)2

which can also be written as

yn+1 ≈ yn + f (xn,yn)h +
1
2!

f ′(xn,yn)h2

In addition, we do one more thing. The main reason that Euler’s method has such
a large truncation error per step is that in evolving the solution from xn to xn+1 the
method only evaluates derivatives at the beginning of the interval, xn. The method is
therefore very asymmetric with respect to the beginning and the end of the interval.
We can construct a more symmetric integration method by making a Euler-like trial
step to the midpoint of the interval, and then taking the values of both x and y at the
midpoint to make the real step across the interval. To be more exact, we introduce
two parameters k1 and k2 such that

k1 = f (xn,yn)h

k2 = f (xn +
1

2
h,yn +

1

2
k1)h

yn+1 = yn + k2 + O(h3)

where this symmetrization cancels out the first-order error, making the method second-
order. Because of the way this method is derived, the Euler method is also known
as the first-order Runge-Kutta method. The implementation of this second-order
Runge-Kutta method in C# is given below.

public delegate double Function(double x, double y);
static double f(double x, double y)
{ return y*Math.Cos(x); }
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public static double ODE_RungeKutta2(Function f, double x0,
double y0, double h, double x)

{
double xnew, ynew, k1, k2, result = double.NaN;
if (x == x0) result = y0;
else if (x > x0)
{

do
{

if (h > x - x0) h = x - x0;
k1 = h * f(x0, y0);
k2 = h * f(x0 + 0.5 * h, y0 + 0.5 * k1);
ynew = y0 + k2;
xnew = x0 + h;
x0 = xnew;
y0 = ynew;

} while (x0 < x);
result = ynew;

}
return result;

}

static void TestRungeKutta2()
{

double h = 0.001;
double x0 = 0.0;
double y0 = 1.0;
Console.WriteLine("\nResults from the 2nd-order Runge-Kutta method

with h={0}\n",h);
double result = y0;
for (int i = 0; i < 11; i++)
{

double x = 0.1 * i;
result = ODE_RungeKutta2(f, x0, result, h, x);
double exact = Math.Exp(Math.Sin(x));
if (i % 5 == 0)
Console.WriteLine("x={0:n1},y={1:e12},exact={2:e12}",x,result,

exact);
x0 = x;

}
}

Results from the 2nd-order Runge-Kutta method with h = 0.001
x = 0.0, y = 1.000000000000e+000, exact = 1.000000000000e+000
x = 0.5, y = 1.615146255938e+000, exact = 1.615146296442e+000
x = 1.0, y = 2.319776862722e+000, exact = 2.319776824716e+000

16.3.2 Fourth-Order Runge-Kutta Method

Although the second-order Runge-Kutta method provides better precision than Eu-
ler’s method, it is not used that much in practice. Instead, because of the greater
accuracy and precision that can be obtained, the fourth-order Runge-Kutta method
is the preferred numerical method of choice for numerically approximating the so-
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lutions of first-order differential equations. The derivation concepts are the same
as before, except that we now take more terms in the Taylor series expansion of
y(x) about x = x0. Since retaining more terms in series expansion only makes the
derivation steps longer and more tedious, the fourth-order Runge-Kutta method can
be summarized by the following equations.

k1 = f (xn,yn)h

k2 = f (xn +
1

2
h,yn +

1

2
k1)h

k3 = f (xn +
1

2
h,yn +

1

2
k2)h

k4 = f (xn + h,yn + k3)h

yn+1 = yn +
1

6
(k1 + 2k2 + 2k3 + k4)+ O(h5)

Note that the next value yn+1 is determined by the present value yn plus the product
of the size of the interval h and an average of four slopes with greater weight being
given to the slopes at the midpoint. The implementation of the fourth-order Runge-
Kutta method in C# is given below.

public delegate double Function(double x, double y);

static double f(double x, double y)
{ return y*Math.Cos(x); }

public static double ODE_RungeKutta4(Function f, double x0,
double y0, double h, double x)

{
double xnew, ynew, k1, k2, k3, k4, result = double.NaN;
if (x == x0) result = y0;
else if (x > x0)
{

do
{

if (h > x - x0) h = x - x0;
k1 = h * f(x0, y0);
k2 = h * f(x0 + 0.5 * h, y0 + 0.5 * k1);
k3 = h * f(x0 + 0.5 * h, y0 + 0.5 * k2);
k4 = h * f(x0 + h, y0 + k3);
ynew = y0 + (k1 + 2 * k2 + 2 * k3 + k4) / 6;
xnew = x0 + h;
x0 = xnew;
y0 = ynew;

}while (x0 < x);
result = ynew;

}
return result;

}
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static void TestRungeKutta4()
{

double h = 0.001; double x0 = 0.0; double y0 = 1.0;
Console.WriteLine("\n Results from the 4th-order Runge-Kutta method

with h={0}\n",h);
double result = y0;
for (int i = 0; i < 11; i++)
{

double x = 0.1 * i;
result = ODE_RungeKutta4(f, x0, result, h, x);
double exact = Math.Exp(Math.Sin(x));
if (i % 5 == 0)
Console.WriteLine(" x={0:n1},y={1:e12},exact={2:e12}",x,result,

exact);
x0 = x;

}
}

Results from the 4th-order Runge-Kutta method with h = 0.001
x = 0.0, y = 1.000000000000e+000, exact = 1.000000000000e+000
x = 0.5, y = 1.615146296442e+000, exact = 1.615146296442e+000
x = 1.0, y = 2.319776824716e+000, exact = 2.319776824716e+000

16.3.3 Runge-Kutta-Fehlberg Method

The optimum Runge-Kutta method of a particular order is the one whose truncation
error is minimum. In order to obtain more accurate and precise results, one could
conceivably continue to calculate and extract increasingly higher order formulations
of the Runge-Kutta method. The major drawback to this approach, however, is that
the number of both equations and terms to keep track of dramatically increases mak-
ing the process long and tedious which inevitably can also easily lead to calculation
errors. In addition, keeping track of truncation errors can quickly become an even
more daunting ordeal. Because of these issues, the Runge-Kutta-Fehlberg method
incorporates an adaptive procedure where an estimate of the truncation error is cal-
culated at each step and then the step size h is automatically adjusted to keep the
calculation error within prescribed limits. At each step, the Runge-Kutta-Fehlberg
method works by calculating and comparing two estimates of the solution. If the two
results are in close agreement, the calculated approximation is accepted. However, if
the results do not agree within the prescribed accuracy, the step size is reduced. If the
step sizes agree by more significant digits than is required, the step size is increased.

The Runge-Kutta-Fehlberg method uses a Runge-Kutta method with a local trun-
cation error of order five [69],

y(5)
n+1 = yn +

16

135
k1 +

6656

12825
k3 +

28561

56430
k4 −

9

50
k5 +

2

55
k6

to estimate the local error in a Runge-Kutta method of order four given by

y(4)
n+1 = yn +

25

216
k1 +

1408

2565
k3 +

2197

4104
k4 −

1

5
k5
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where the coefficient equations are given by [69]:

k1 = f (xn,yn)h

k2 = f (xn +
1

4
h,yn +

1

4
k1)h

k3 = f (xn +
3

8
h,yn +

3

32
k1 +

9

32
k2)h

k4 = f (xn +
12

13
h,yn +

1932

2197
k1 −

7200

2197
k2 +

7296

2197
k3)h

k5 = f (xn + h,yn +
439

216
k1 −8k2 +

3680

513
k3 −

845

4104
k4)h

k6 = f (xn +
1

2
h,yn −

8

27
k1 + 2k2 −

3544

2565
k3 +

1859

4104
k4 −

11

40
k5)h

This method has the advantage that only six evaluations of f are required per step.
Arbitrary Runge-Kutta methods of orders four and five used together require at least
four evaluations of f for the fourth order method and an additional six for the fifth
order method, for a total of at least ten functional evaluations.

The optimal step size s is determined by simply multiplying the scaling factor s
by the current step size h where the scaling factor s is given by [69]:

s =

(
tolerance

2 × error

)1/4

where tolerance is the specified error control tolerance parameter and error is the
truncation error inherent with this method given by [69]

error =
1

h

∣∣∣y(5)
n+1 − y(4)

n+1

∣∣∣ =
1

h

∣∣∣∣∣ 1

360
k1 −

128

4275
k3 −

2197

75240
k4 +

1

50
k5 +

2

55
k6

∣∣∣∣∣
The implementation of the Runge-Kutta-Fehlberg method in C# is given below.

public delegate double Function(double x, double y);

static double f(double x, double y)
{ return y*Math.Cos(x); }

public static double ODE_RungeKuttaFehlberg(Function f, double x0,
double y0, double x, double h, double tolerance)

{
double xnew, ynew, hnew, k1, k2, k3, k4, k5, k6;
double hmin = 0.0001;
double hmax = 0.5;
if (h > hmax) h = hmax;
if (h < hmin) h = hmin;
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while (x0 < x)
{

k1 = h * f(x0,y0);
k2 = h * f(x0+0.25*h,y0+0.25*k1);
k3 = h * f(x0+3*h/8,y0 + 3*k1/32 + 9*k2/32);
k4 = h * f(x0+12*h/13,y0+1932*k1/2197 - 7200*k2/2197 + 7296*

k3/2197);
k5 = h * f(x0+h,y0+439*k1/216 - 8*k2 + 3680*k3/513 - 845*k4

/4104);
k6 = h * f(x0+0.5*h,y0 - 8*k1/27 + 2*k2 - 3544*k3/2565 +

1859*k4/4104 - 11*k5/40);
double error = Math.Abs(k1/360 - 128*k3/4275 - 2197*k4/75240

+ k5/50 + 2*k6/55)/h;
double s = Math.Pow(0.5*tolerance/error,0.25);
if (error < tolerance)
{

ynew = y0 + 25*k1/216 + 1408*k3/2565 + 2197*k4/4104 -
0.2*k5;

xnew = x0 + h;
x0 = xnew;
y0 = ynew;

}
if (s < 0.1) s = 0.1;
if (s > 4) s = 4;
hnew = h*s;
h = hnew;
if (h > hmax) h = hmax;
if (h < hmin) h = hmin;
if (h > x - x0) h = x - x0;

} return y0;
}

static void TestRungeKuttaFehlberg()
{

double h = 0.2;
double x0 = 0.0;
double y0 = 1.0;
Console.WriteLine("\n Results from the 4th-order Runge-Kutta-

Fehlberg method with h = {0}\n", h);
double result = y0;
for (int i = 0; i < 11; i++)
{

double x = 0.1 * i;
result = ODE_RungeKuttaFehlberg(f, x0, result, x, h, 1e-8);
double exact = Math.Exp(Math.Sin(x));
if (i%5==0)
Console.WriteLine(" x = {0:n1}, y = {1:e12}, exact = {2:e12}"

, x, result, exact);
x0 = x;

}
}

Results from the 4th-order Runge-Kutta-Fehlberg method with h = 0.2
x = 0.0, y = 1.000000000000e+000, exact = 1.000000000000e+000
x = 0.5, y = 1.615146299180e+000, exact = 1.615146296442e+000
x = 1.0, y = 2.319776827547e+000, exact = 2.319776824716e+000
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16.4 Coupled Differential Equations

The methods for solving differential equations discussed so far apply only to single
first-order differential equations. However, some physical phenomena can only be
modeled by using either higher order or coupled differential equations. Fortunately,
higher order differential equations can always be transformed into a coupled system
of first-order equations by using the clever trick of expanding higher-order deriva-
tives into a series of first-order equations. For example, a spring-mass system can be
modeled to include damping by the following second-order differential equation:

d2x
dt2 +

b
m

dx
dt

+ ω2x = 0

where k is the spring constant, ω is the oscillating frequency and b is the damping
coefficient. Since the velocity v = dx

dt , the equation of motion above can be re-written
in terms of two coupled first-order differential equations as follows:

dv
dt

= − b
m

v−ω2x

dx
dt

= v

Since higher order differential equations can be simplified down to coupled first-
order equations this way, it would be prudent to develop some kind of systematic
numerical method for solving coupled first-order differential equations. There are
many approaches to solving this kind of problem. One possibility, for example, is
to use vector data structures, as described in Chapter 3, to hold and manipulate the
contents of the coupled equations. However, that kind of approach can sometimes
obscure much of the beautiful mathematics that is present behind the scenes and
in the end produce such a compact solution that can often be difficult to follow or
understand. Instead, I thought it would be more pedagogically useful to work through
an example from scratch so that users can perhaps really understand and appreciate
the entire solution process so that in the end, the method can be easily expanded to
include the solution of more difficult examples.

Instead of using the well known equations of motion for a damped spring-mass
system as given above, whose solutions can be easily found in many physics text-
books, let us explore the equations of motion of something more exotic like a Lorenz
oscillator. These equations were first introduced by Edward Lorenz in 1963 who de-
rived them from the simplified equations of convection rolls arising in the equations
describing the atmosphere and so these equations also have important implications
for climate and weather prediction. The Lorenz oscillator is a 3-dimensional dynam-
ical system that exhibits chaotic flow and is noted for its distinctive characteristic
lemniscate shape. The state of such a chaotic dynamical system has been found to
evolve over time in a complex, non-repeating pattern. The equations of motion of
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Lorenz oscillators are given by [85]:

dx
dt

= σ(y− x)

dy
dt

= x(ρ − z)− y

dz
dt

= xy−β z

where σ is called the Prandtl number and ρ is called the Rayleigh number. All σ , ρ
and β are > 0, and usually σ = 10, β = 8/3 and ρ is varied. The system exhibits
chaotic behavior for ρ = 28 but displays knotted periodic orbits for other values of
ρ . Using these values for the constants σ , ρ and β we can write our differential
equations in C# as follows:

static double dx(double x, double y, double z)
{

return 10.0 * (y - x);
}

static double dy(double x, double y, double z)
{

return x * (28.0 - z) - y;
}

static double dz(double x, double y, double z)
{

return x * y - 8.0 * z / 3.0;
}

Next, we are faced with the decision of choosing which numerical method to use
for solving the Lorenz first-order differential equations given above. Although the
4th order Runge-Kutta method reportedly gives more accurate results, for the pur-
poses of this example and to keep everything as simple as possible, the Euler method
is good enough and is displayed below. The resulting output follows. For illustrative
purposes and in order to keep the output size within reasonable limits, I am only
displaying part of the actual output. The rest can be seen by running the appropriate
sample program that comes with this book.

static void TestEulerCoupledODE()
{

double x = 0.0, y = 5.0, z = 10.0; //initial conditions
double dt = 0.001; //step size
int maxnSteps = 100; //max number of steps

for (int i = 0; i < maxnSteps; i++)
{

double xnew = x + dx(x, y, z) * dt;
double ynew = y + dy(x, y, z) * dt;
double znew = z + dz(x, y, z) * dt;
x = xnew;
y = ynew;
z = znew;
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Console.WriteLine("x={0:n1},y={1:e12},z={2:e12}",x,y,z);
}

}

Results from a Lorenz coupled ODE using Euler’s method

x = 0.1, y = 4.995000000000e+000, z = 9.973333333333e+000
x = 0.1, y = 4.990906333333e+000, z = 9.946987527778e+000
x = 0.1, y = 4.987710799090e+000, z = 9.920958573339e+000
x = 0.2, y = 4.985405377378e+000, z = 9.895242683344e+000
x = 0.2, y = 4.983982228306e+000, z = 9.869836288041e+000
x = 0.3, y = 4.983433690899e+000, z = 9.844736028443e+000
x = 0.3, y = 4.983752281946e+000, z = 9.819938750427e+000
x = 0.4, y = 4.984930694779e+000, z = 9.795441499071e+000
x = 0.4, y = 4.986961798001e+000, z = 9.771241513228e+000
x = 0.5, y = 4.989838634163e+000, z = 9.747336220314e+000
x = 0.5, y = 4.993554418379e+000, z = 9.723723231326e+000
x = 0.6, y = 4.998102536914e+000, z = 9.700400336064e+000
x = 0.6, y = 5.003476545714e+000, z = 9.677365498561e+000
x = 0.7, y = 5.009670168909e+000, z = 9.654616852711e+000
x = 0.7, y = 5.016677297277e+000, z = 9.632152698087e+000
x = 0.7, y = 5.024491986673e+000, z = 9.609971495948e+000
x = 0.8, y = 5.033108456436e+000, z = 9.588071865420e+000
x = 0.8, y = 5.042521087762e+000, z = 9.566452579865e+000
x = 0.9, y = 5.052724422059e+000, z = 9.545112563400e+000
x = 0.9, y = 5.063713159272e+000, z = 9.524050887597e+000
x = 1.0, y = 5.075482156201e+000, z = 9.503266768333e+000
x = 1.0, y = 5.088026424784e+000, z = 9.482759562794e+000
x = 1.0, y = 5.101341130377e+000, z = 9.462528766633e+000
x = 1.1, y = 5.115421590013e+000, z = 9.442574011265e+000
x = 1.1, y = 5.130263270651e+000, z = 9.422895061309e+000
x = 1.2, y = 5.145861787406e+000, z = 9.403491812163e+000
x = 1.2, y = 5.162212901779e+000, z = 9.384364287709e+000
x = 1.2, y = 5.179312519867e+000, z = 9.365512638150e+000
x = 1.3, y = 5.197156690569e+000, z = 9.346937137963e+000
x = 1.3, y = 5.215741603785e+000, z = 9.328638183980e+000
x = 1.4, y = 5.235063588605e+000, z = 9.310616293585e+000
x = 1.4, y = 5.255119111492e+000, z = 9.292872103013e+000
x = 1.4, y = 5.275904774463e+000, z = 9.275406365777e+000
x = 1.5, y = 5.297417313257e+000, z = 9.258219951182e+000
x = 1.5, y = 5.319653595506e+000, z = 9.241313842957e+000
x = 1.5, y = 5.342610618895e+000, z = 9.224689137981e+000
x = 1.6, y = 5.366285509324e+000, z = 9.208347045105e+000
x = 1.6, y = 5.390675519058e+000, z = 9.192288884071e+000
x = 1.7, y = 5.415778024881e+000, z = 9.176516084523e+000
x = 1.7, y = 5.441590526237e+000, z = 9.161030185108e+000
x = 1.7, y = 5.468110643379e+000, z = 9.145832832661e+000
x = 1.8, y = 5.495336115502e+000, z = 9.130925781472e+000
x = 1.8, y = 5.523264798876e+000, z = 9.116310892648e+000
x = 1.8, y = 5.551894664981e+000, z = 9.101990133536e+000
x = 1.9, y = 5.581223798625e+000, z = 9.087965577239e+000
x = 1.9, y = 5.611250396068e+000, z = 9.074239402197e+000
x = 2.0, y = 5.641972763137e+000, z = 9.060813891852e+000
x = 2.0, y = 5.673389313330e+000, z = 9.047691434372e+000
x = 2.0, y = 5.705498565926e+000, z = 9.034874522456e+000
... ... ...
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Partial Differential Equations

17.1 Introduction

Partial differential equations, often abbreviated by the acronym PDE, are equations
consisting of two or more independent variables and any partial derivatives with re-
spect to those variables. The order of a partial differential equation is the order of
the highest derivative involved. Many physical phenomena can be modeled using
these types of equations and so PDEs play a very important role in many scien-
tific and engineering applications. Although many PDEs can be solved analytically,
most are often so complex that their solutions can only be approximated numerically.
However, the numerical treatment of partial differential equations is, by itself, a vast
subject easily meriting an entire book of its own. As a result, the intent of this chap-
ter is to provide readers with the briefest possible but hopefully useful introduction
and also illustrate how these elementary concepts may be coded in C#. Before doing
that, however, let us briefly review some fundamental PDE concepts.

A first-order partial differential equation with n-independent variables has the gen-
eral form

F

(
x1,x2, . . . ,xn,w,

∂w
∂x1

,
∂w
∂x2

, . . . ,
∂w
∂xn

)
= 0

where w = w(x1,x2, . . . ,xn) is the unknown function and F(. . .) is a given function.
A second-order nonlinear partial differential equation with two independent vari-

ables x and y has the general form

F

(
x,y,w,

∂w
∂x

,
∂w
∂y

,
∂ 2w
∂x2 ,

∂ 2w
∂x∂y

,
∂ 2w
∂y2

)
= 0

where w = w(x,y) is the unknown function and F(. . . ) is a given function.
A second-order semi-linear partial differential equation with two independent vari-

ables x and y has the form

a(x,y)
∂ 2w
∂x2 + 2b(x,y)

∂ 2w
∂x∂y

+ c(x,y)
∂ 2w
∂y2 = F

(
x,y,w,

∂w
∂x

,
∂w
∂x

)

Given a point (x,y), the semi-linear partial differential equation above is said to be

parabolic if b2 −ac = 0
hyperbolic if b2 −ac > 0
elliptic if b2 −ac < 0

517
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at this point.
Due to the complexity of partial differential equations there are many different

methods for solving them and a generalized list of the most popular methods include
the following:

• The finite difference method is perhaps the easiest known technique for numer-
ically solving PDEs and so it is often the first method chosen. The basic idea is
to have functions be represented by their values at certain grid points and also
have any partial derivatives be approximated through differences in these val-
ues. One disadvantage of this method is that it becomes quite complex when
solving PDEs on irregular domains. In addition, it is not always easy to fol-
low through and find solutions to the difference equations that result, evaluate
their stability or establish their convergence especially for PDEs with variable
coefficients or PDEs which are non-linear.

• The finite element method is arguably the most popular method for solving var-
ious PDEs. Compared to other methods, it has a well established mathematical
theory for solving many PDEs even over complex domains. The solution ap-
proach is based either on eliminating the differential equation completely, as
in the case of steady state problems, or rendering the PDE into an approxi-
mating system of ordinary differential equations, which are then numerically
integrated using standard techniques such as Euler’s method or Runge-Kutta.

• The boundary element method is used to solve those PDEs which can be for-
mulated as integral equations. An integral equation is an equation in which
an unknown function appears under an integral sign. The boundary element
method attempts to use the given boundary conditions to fit boundary values
into the integral equation, rather than values throughout the space defined by
the PDE. Conceptually, the boundary element method can be thought of as a
finite element method over the modeled surface instead of over the modeled
physical domain. Hence the boundary element method is often more efficient
than other methods in terms of computational resources for problems when
the surface-to-volume ratio is small. However, boundary element formulations
typically yield fully populated matrices, which can increase both storage re-
quirements and subsequent computation time. In addition, not many problems,
such as non-linear problems, can be can be written as integral equations and
this limits the applicability of the boundary element method to solve PDEs.

• The finite volume method is another technique for solving PDEs by represent-
ing and evaluating partial differential equations as algebraic equations. Simi-
lar to the finite difference method, values are calculated at discrete places on
a meshed geometry. The finite volume refers to the small volume surrounding
each node point on a mesh. In the finite volume method, volume integrals in a
partial differential equation that contain a divergence term are converted to sur-
face integrals, using the divergence theorem. These terms are then evaluated
as fluxes at the surfaces of each finite volume.
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• Spectral methods take advantage of the underlying periodicity properties of
some PDEs by writing the solution as a Fourier series and then substituting this
series back into the PDE to get a system of ordinary differential equations in
the time-dependent coefficients of the trigonometric terms in the series. Then
a time-stepping method is used to solve those ODEs.

• The meshless or meshfree method is a relatively recent technique that was de-
veloped for solving PDEs. This method gets rid of the tedious meshing and
re-meshing of the entire modeled domain and directly uses the geometry of
the simulated object for calculations. A goal of meshfree methods is to facili-
tate the simulation of increasingly demanding problems that require the ability
to treat large deformations, advanced materials, complex geometry, nonlinear
material behavior, discontinuities and singularities.

• The method of lines is a technique for solving partial differential equations
where all but one variable is discretized. The resulting semi-discrete problem
is a set of ordinary differential equations or differential algebraic equations
that is then integrated.

• Domain decomposition methods solve a boundary value problems by splitting
them into smaller boundary value problems on subdomains and iterating to
coordinate the solution between the subdomains. The problems on the subdo-
mains are independent, which makes domain decomposition methods suitable
for parallel computing.

• Multigrid methods in numerical analysis are a group of algorithms for solving
differential equations using a hierarchy of discretizations. The idea is similar
to extrapolation between coarser and finer grids. The typical application for
multigrid is in the numerical solution of elliptic partial differential equations
in two or more dimensions.

Because of the huge volume of material comprising each of these techniques, we
will further narrow our objectives and instead limit our attention to arguably the
most popular numerical method of them all, the finite difference method, and see
how that method can be applied to solving parabolic, hyperbolic, and elliptic par-
tial differential equations. Unlike most other numerical methods which eventually
can be summarized and sometimes even be generalized into nice compact cohesive
units, numerical solutions of partial differential equations using the finite differences
method tend to be a rather lengthy and messy process to code thereby making it nec-
essary to customize the implementation of each method to fit a particular problem.
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17.2 The Finite Difference Method

The finite difference method is a procedure used to obtain approximate numerical
solutions of a partial differential equation by discretizing the continuous physical
domain (x,y) into a discrete finite difference grid (xi,yi) where the xy plane is par-
titioned into equally spaced grid lines parallel to the coordinate axes and defined by
step sizes h and k given by

Δx = h =
xn − x0

n
and Δy = k =

ym − y0

m

where n and m are integers. This means that an arbitrary point (xi,yi) can be specified
by

xi = x0 + ih for i =0,1,2, . . . ,n−1

y j = y0 + jk for j=0,1,2, . . . ,m−1

The lines x = xi and y = yi are called grid lines and their intersections are called the
mesh points of the grid. To simplify notation, the value of some arbitrary function
f (x,y) at some mesh point (xi,y j) is sometimes denoted by f (xi,y j)= f (ih, jk) = fi j .
The exact individual partial derivatives in the PDE are then approximated by alge-
braic finite difference approximations where for each mesh point in the interior of
the grid (xi,y j), a Taylor series expansion is used in the variable x about xi to gen-
erate the first and second order derivatives. Generally, there are three different ways
to do this: A forward finite difference is an expression of the form f (x + h)− f (x)
where, depending on the application, the spacing h may be variable or held constant.
Similarly, a backward difference is given by f (x)− f (x−h). Lastly, a central differ-
ence is given by f (x + 1

2 h)− f (x− 1
2 h). Then the finite difference approximations

are substituted back into the partial differential equation to obtain an algebraic finite
difference equation which can then be solved for the dependent variable. The equa-
tions below summarize the results of doing a Taylor series approximation on the first
and second order derivatives for each case [69].

(
∂u

∂x

)
i, j

≈ ui+1, j −ui, j

h
+ O(h) (forward difference approximation)

≈ ui, j −ui−1, j

h
+ O(h) (backward difference approximation)

≈ ui+1, j −ui−1, j

2h
+ O(h2) (central difference approximation)
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(
∂u

∂y

)
i, j

≈ ui, j+1 −ui, j

k
+ O(k) (forward difference approximation)

≈ ui, j −ui, j−1

k
+ O(k) (backward difference approximation)

≈ ui, j+1 −ui, j−1

2k
+ O(k2) (central difference approximation)

and(
∂ 2u

∂x2

)
i, j

≈ ui+1, j −2ui, j + ui−1, j

h2 + O(h2) (central difference approximation)

(
∂ 2u

∂y2

)
i, j

≈ ui, j+1 −2ui, j + ui, j−1

k2 + O(k2) (central difference approximation)

17.3 Parabolic Partial Differential Equations

The heat equation is an important second-order linear partial differential equation
that describes the distribution of heat or variation in temperature in a given region
over time. It is also an excellent example of a parabolic partial differential equation
and arises from the theoretical analysis of empirical data obtained from the study of
a natural physical phenomena. The heat equation is characterized by a time variable
t and by the function u(x,y,z,t) consisting of three spatial variables (x,y,z). In three-
dimensional Cartesian coordinates, the heat equation takes the form

∂u
∂ t

−α2
(

∂ 2u
∂x2 +

∂ 2u
∂y2 +

∂ 2u
∂ z2

)
= 0 or equivalently,

∂u
∂ t

−α2∇2u = 0

where ∇2 is called the Laplacian and α2 is a constant. For pedagogical purposes,
however, we can start by studying the solution methods to a simpler one dimensional
equation and later expand the procedure to include more dimensions as needed. For
example, a one dimensional heat equation is adequate for modeling how heat prop-
agates over time down a steel rod and can thus be useful in a number of practical
engineering applications.

In general, parabolic partial differential equations have the form

∂u

∂ t
(x,t)−α2 ∂ 2u

∂x2(x, t) = 0 where 0 < x < L, t > 0

and are subject to some boundary condition like u(0, t) = u(L, t) = 0, where t > 0
and some initial conditions like u(x,0) = f (x), where 0 ≤ x ≤ L. This equation and
its method of solution can be easily extended to include more dimensions as needed.
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The first step in the process of numerically solving parabolic partial differential
equations using the finite difference method is to create a mesh of grid points along
the (x,t) plane. First, select an integer m > 0 and define a spatial step size h = L/m.
Then select a time step size k. The grid points are then given by (xi,t j), where xi = ih
for i = 0,1,2, . . . ,m and t j = jk for j = 0,1,2, . . ..

The parabolic partial differential equation given above implies that at the interior
grid point (xi,t j) for each i = 1,2, . . . ,m−1 and j = 1,2, . . . we have

∂u

∂ t
(xi, t j)−α2 ∂ 2u

∂x2(xi, t j) = 0

At this point we may be tempted to continue by selecting any one of the available
three finite difference methods: forward, backward or central. However, Burden
and Faires [69] point out that making a careless selection of which finite difference
method to use can sometimes lead to undesired unstable or conditionally stable so-
lutions. A better unconditionally stable solution requires a more thorough analysis
of all three finite difference methods and, as such, it is beyond the scope of this
book. Issacson and Keller [86], for example, provide a more complete theoretical
treatment of stability issues in the solution of partial differential equations. As it
turns out, using the backward difference method will result in a much more desired
implicit solution that is unconditionally stable.

Using the backward difference approximation along with the results for approx-
imating the first and second partial derivative by using a Taylor series expansion
as given in section 17.2, we can then write the above general parabolic differential
equation as

wi, j −wi, j−1

k
−α2 wi+1, j −2wi, j + wi−1, j

h2 = 0

for each i = 1,2, . . . ,m−1 and j = 1,2, . . . and where wi, j approximates u(xi,t j).

By letting λ = α2 k

h2, we can re-arrange the previous equation for wi, j in the fol-

lowing format:

(1 + 2λ )wi, j −λ wi+1, j −λ wi−1, j = wi, j−1

for each i = 1,2, . . . ,m− 1 and j = 1,2, . . .. Using the knowledge from the initial
conditions that wi,0 = f (xi) for each i = 1,2, . . . ,m−1 and wm, j = w0, j = 0 for each
j = 1,2, . . . this backward difference method leads to the following matrix represen-
tation: Aw( j) = w( j−1) for each i = 1,2, . . . or more explicitly as:

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

(1 + 2λ ) −λ 0 . . . 0 0
−λ (1 + 2λ ) −λ 0 . . . 0

...
. . .

. . .
. . . 0 0

0 . . . −λ (1 + 2λ ) −λ 0
0 0 . . . −λ (1 + 2λ ) −λ
0 0 0 . . . −λ (1 + 2λ )

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

w1, j

w2, j
...

wm−1, j

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

w1, j−1

w2, j−1
...

wm−1, j−1

⎞
⎟⎟⎟⎠
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Therefore, we just need to solve a system of linear equations to obtain w( j) from
w( j−1). Since λ > 0, in addition to being tridiagonal, the matrix A is also positive
definite and strictly diagonally dominant.

The implementation in C# of the backward difference method for solving the heat
equation that follows seeks to approximate the solution to the standard parabolic
partial differential equation of the form

∂u

∂ t
(x, t)−α2 ∂ 2u

∂x2(x, t) = 0

where 0 < x < 1, 0 < t < T and subject to the boundary conditions u(0,t) = u(1,t) =
0 and the initial conditions u(x,0)= f (x) = sin(π x). Note that for stopping purposes,
a bound T is given for the variable t. The results for a system where h = 0.1, k = 0.01,
0 < x < 1 is given below. For convenience and for comparison with the calculated
output values, the actual solution is given by u(x, t) = e−π2t sin(πx).
static double functionX(double x)
{ return Math.Sin(Math.PI * x); }

static void Solving_Heat_PDE()
{

/*
* Solution to the Heat PDE by Backward-Difference Algorithm
*
* Goal: To approximate the solution to the parabolic
* PDE subject to the boundary conditions:
* u(0,t) = u(l,t) = 0, 0 < t < T = max t,
* and the initial conditions u(x,0) = F(x), 0 <= x <= l:
* Input: endpoint l; max time T; constant alpha; integers m,N.
* Output: approximations W(I,J) to u(x(I),t(J)) for each
* I = 1, ..., m-1 and J = 1, ..., N.
*/

double[] W, L, U, Z, ActualSolution;
double FT, FX, alpha, H, K, lambda, T, X;
int N, M, M1, M2, N1, I1, I, J;
W = new double[25]; L = new double[25];
U = new double[25]; Z = new double[25];
ActualSolution = new double[25];
FX = 1; //These input parameters values
FT = 0.5; //are set by the user and may
alpha = 1; //be varied accordingly
M = 10;
N = 50;

//Initialize variables with input parameter values
M1 = M - 1;
M2 = M - 2;
N1 = N - 1;
H = FX / M;
K = FT / N;
lambda = alpha * alpha * K / (H * H);
for (I = 1; I <= M1; I++) W[I - 1] = functionX(I * H);
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/* Solve the tridiagonal linear system */
L[0] = 1.0 + 2.0 * lambda;
U[0] = -lambda / L[0];
for (I = 2; I <= M2; I++)
{

L[I - 1] = 1.0 + 2.0 * lambda + lambda * U[I - 2];
U[I - 1] = -lambda / L[I - 1];

}
L[M1 - 1] = 1.0 + 2.0 * lambda + lambda * U[M2 - 1];
for (J = 1; J <= N; J++)
{

T = J * K;
Z[0] = W[0] / L[0];
for (I = 2; I <= M1; I++)
Z[I - 1] = (W[I - 1] + lambda * Z[I - 2]) / L[I - 1];

W[M1 - 1] = Z[M1 - 1];
for (I1 = 1; I1 <= M2; I1++)
{
I = M2 - I1 + 1;
W[I - 1] = Z[I - 1] - U[I - 1] * W[I];

}
}
Console.WriteLine("Solution of a Parabolic (Heat) Partial

Differential Equation");
Console.WriteLine("using the backward-difference algorithm and

user defined parameters\n");

Console.WriteLine("I\tX(I)\t\tW(X(I)," + FT + ")
\tActual Solution\n");

for (I = 1; I <= M1; I++)
{

X = I * H;
ActualSolution[I] = Math.Exp(-Math.PI * Math.PI * 0.5)*

Math.Sin(Math.PI * X);
Console.WriteLine(I.ToString() + "\t" +

X.ToString("0.000000000") + "\t" +
W[I - 1].ToString("0.000000000") +
"\t" + ActualSolution[I].ToString("0.000000000"));

}
Console.ReadLine();

}

OUTPUT: Solution of a Parabolic (Heat) Partial Differential Equation
using the backward-difference algorithm and user defined parameters

I X(I) W(X(I),0.5) Actual Solution

1 0.100000000 0.002898017 0.002222414
2 0.200000000 0.005512355 0.004227283
3 0.300000000 0.007587106 0.005818356
4 0.400000000 0.008919178 0.006839888
5 0.500000000 0.009378179 0.007191883
6 0.600000000 0.008919178 0.006839888
7 0.700000000 0.007587106 0.005818356
8 0.800000000 0.005512355 0.004227283
9 0.900000000 0.002898017 0.002222414
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17.3.1 The Crank-Nicolson Method

The Crank-Nicolson method is another numerically stable finite difference method
used for numerically solving parabolic partial differential equations. The Crank-
Nicolson method is based on central difference in space, and the trapezoidal rule
in time, giving second-order convergence in time. Equivalently, it is the average
of the forward and backward Euler methods in time. Using the general form of
the parabolic differential equation then the resulting difference equation can be ex-
pressed by [69]:

wi, j+1 −wi, j

k
− α2

2

[
wi+1, j + 2wi, j + wi−1, j

h2 − wi+1, j+1 −2wi, j+1 + wi−1, j+1

h2

]
= 0

for each i = 1,2, . . . ,m−1 and j = 0,1,2, . . . and where wi, j approximates u(xi,t j).
This resulting finite difference equation can also be expressed in matrix form as

Aw( j+1) = Bw( j) for each j = 0,1,2, . . . where λ = α2 k

h2 as before and

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(1 + λ ) −λ
2

0 . . . 0 0

−λ
2

(1 + λ ) −λ
2

0 . . . 0
...

. . .
. . .

. . . 0 0

0 . . . −λ
2

(1 + λ ) −λ
2

0

0 0 . . . −λ
2

(1 + λ ) −λ
2

0 0 0 . . . −λ
2

(1 + λ )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(1−λ )
λ
2

0 . . . 0 0

λ
2

(1−λ )
λ
2

0 . . . 0

...
. . .

. . .
. . . 0 0

0 . . .
λ
2

(1−λ )
λ
2

0

0 0 . . .
λ
2

(1−λ )
λ
2

0 0 0 . . .
λ
2

(1−λ )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

From these results we see that the matrix A is once again positive definite, strictly
diagonally dominant and nonsingular. As a result, we can easily calculate w( j+1)

from w( j) for each j = 0,1,2, . . .. The implementation in C# of the Crank-Nicolson
algorithm below solves the exact same parabolic partial differential equation as in the
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last example for the heat equation. This was purposely done in order to compare the
output results from both methods to see how close they are to each other. A proof that
the Crank-Nicolson method is unconditionally stable can be found in Issacson and
Keller [86]. For convenience and for comparison with the calculated output values,
the actual solution is given by u(x, t) = e−π2t sin(πx).

/*
* Solution to the Heat PDE by Crank-Nicolson Algorithm
*
* Goal: To approximate the solution of the parabolic
* PDE subject to the boundary conditions
* u(0,t) = u(l,t) = 0, 0 < t < T = max t
* and the initial conditions u(x,0) = F(x), 0 <= x <= l:
* Input: endpoint l; maximum time T; constant alpha; integers m,N:
* Output: approximations W(I,J) to u(x(I),t(J)) for each
* I = 1,..., m-1 and J = 1,..., N.
*/

static void Solving_Heat_PDE_by_CrankNicolson_Algorithm()
{

double[] V, L, U, ActualSolution, Z;
double FT, FX, alpha, H, K, lambda, T, X;
int N, M, M1, M2, I1, I, J;

V = new double[25]; L = new double[25];
U = new double[25]; Z = new double[25];
ActualSolution = new double[25];

FX = 1; //These input parameters values
FT = 0.5; //are set by the user and may
alpha = 1; //be varied accordingly
M = 10;
N = 50;

//Initialize variables with input parameter values
M1 = M - 1;
M2 = M - 2;
H = FX / M;
K = FT / N;
lambda = alpha * alpha * K / (H * H);
V[M - 1] = 0.0;
for (I = 1; I <= M1; I++) V[I - 1] = functionX(I * H);

/* Solve the tridiagonal linear system */
L[0] = 1.0 + lambda;
U[0] = -lambda / (2.0 * L[0]);
for (I = 2; I <= M2; I++)
{

L[I - 1] = 1.0 + lambda + lambda * U[I - 2] / 2.0;
U[I - 1] = -lambda / (2.0 * L[I - 1]);

}
L[M1 - 1] = 1.0 + lambda + 0.5 * lambda * U[M2 - 1];
for (J = 1; J <= N; J++)
{

T = J * K;
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Z[0] = ((1.0 - lambda) * V[0] + lambda * V[1] / 2.0) / L[0];
for (I = 2; I <= M1; I++)

Z[I - 1] = ((1.0 - lambda) * V[I - 1] + 0.5 * lambda *
(V[I] + V[I - 2] + Z[I - 2])) / L[I - 1];

V[M1 - 1] = Z[M1 - 1];
for (I1 = 1; I1 <= M2; I1++)
{

I = M2 - I1 + 1;
V[I - 1] = Z[I - 1] - U[I - 1] * V[I];

}
}
Console.WriteLine("Solution of a Parabolic (Heat) Partial

Differential Equation");
Console.WriteLine("using the Crank-Nicolson Method and user

defined parameters\n");
Console.WriteLine("I\tX(I)\t\tW(X(I),"

+ FT + ")\tActual Solution\n");
for (I = 1; I <= M1; I++)
{

X = I * H;
ActualSolution[I] = Math.Exp(-Math.PI * Math.PI * 0.5) *

Math.Sin(Math.PI * X);
Console.WriteLine(I.ToString() + "\t" +

X.ToString("0.000000000") + "\t" +
V[I - 1].ToString("0.000000000") + "\t" +
ActualSolution[I].ToString("0.000000000"));

}
Console.ReadLine();

OUTPUT: Solution of a Parabolic (Heat) Partial Differential Equation
using the Crank-Nicolson Method and user defined parameters

I X(I) W(X(I),0.5) Actual Solution

1 0.100000000 0.002305123 0.002222414
2 0.200000000 0.004384605 0.004227283
3 0.300000000 0.006034891 0.005818356
4 0.400000000 0.007094440 0.006839888
5 0.500000000 0.007459536 0.007191883
6 0.600000000 0.007094440 0.006839888
7 0.700000000 0.006034891 0.005818356
8 0.800000000 0.004384605 0.004227283
9 0.900000000 0.002305123 0.002222414

17.4 Hyperbolic Partial Differential Equations

The wave equation is an important second-order linear partial differential equation
that can be used to describe the propagation of a variety of waves, such as sound
waves, light waves and water waves over time. It is also an excellent example of
a hyperbolic partial differential equation and arises from the theoretical analysis of
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empirical data obtained from studying wave phenomena in diverse disciplines such
as acoustics, electromagnetics, and fluid dynamics. The wave equation is character-
ized by the function u(x,y,z,t) consisting of three spatial variables (x,y,z) and a time
variable t. In three-dimensional Cartesian coordinates, the wave equation takes the
form

∂ 2u
∂ t2 −α2

(
∂ 2u
∂x2 +

∂ 2u
∂y2 +

∂ 2u
∂ z2

)
= 0 or equivalently,

∂ 2u
∂ t2 − c2∇2u = 0

where ∇2 is the Laplacian and α2 is a fixed constant equal to the propagation speed
of the wave. As before, we can start by studying the solution methods to a simpler
one dimensional version of the equation and later expand the procedure to include
more dimensions as needed.

In general, hyperbolic partial differential equations have the form

∂ 2u

∂ t2 (x,t)−α2 ∂ 2u

∂x2(x, t) = 0 where 0 < x < L, t > 0

and are subject to some boundary condition like u(0, t) = u(L, t) = 0, where t > 0

and some initial conditions like u(x,0) = f (x), and
∂u

∂ t
(x,0) = g(x) for 0 ≤ x ≤ L

where α is a constant. As before, we start by selecting an integer m > 0 and a time
step size k > 0. With h = L/m, the mesh points (xi, t j) are defined by xi = ih for
i = 0,1,2, . . . ,m and t j = jk for j = 0,1,2, . . .. At any interior mesh point (xi,t j), the
wave equation becomes

∂ 2u

∂ t2 (xi, t j)−α2 ∂ 2u

∂x2(xi, t j) = 0

Applying the centered difference method along with the results for approximating
the first and second partial derivatives using a Taylor series expansion as described
in section 17.2, we can then write the general hyperbolic differential equation given
above as

wi, j+1 −2wi, j + wi, j−1

k2 −α2 wi+1, j −2wi, j + wi−1, j

h2 = 0

for each i = 1,2, . . . ,m−1 and j = 1,2, . . . and where wi, j approximates u(xi, t j). If
λ = αk/h, we can write the difference equation as

wi, j+1 −2wi, j + wi, j−1 −λ 2wi+1, j + 2λ 2wi, j −λ 2wi−1, j = 0

and solve for wi, j+1, the most advanced time step approximation, to obtain

wi, j+1 = 2(1−λ 2)wi, j + λ 2(wi+1, j + wi−1, j)−wi, j−1

where i = 1,2, . . . ,m−1 and j = 1,2, . . .. The boundary conditions give

w0, j = wm, j = 0 for each j = 1,2, . . .
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and the initial conditions implies

wi,0 = f (xi) for each i = 1,2, . . . ,m−1

Expressing this set of equations in matrix form gives

⎛
⎜⎜⎜⎝

w1, j+1

w2, j+1
...

wm−1, j+1

⎞
⎟⎟⎟⎠=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2(1−λ 2) λ 2 0 . . . 0 0
λ 2 2(1−λ 2) λ 2 0 . . . 0
...

. . .
. . .

. . . 0 0
0 . . . λ 2 2(1−λ 2) λ 2 0
0 0 . . . λ 2 2(1−λ 2) λ 2

0 0 0 . . . λ 2 2(1−λ 2)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

w1, j

w2, j
...

wm−1, j

⎞
⎟⎟⎟⎠

−

⎛
⎜⎜⎜⎝

w1, j−1

w2, j−1
...

wm−1, j−1

⎞
⎟⎟⎟⎠

The equation for wi, j+1 and for the boundary conditions imply that the ( j + 1)st
time step requires values from the jth and the ( j−1)st time steps. This produces a
minor starting problem because the values for j = 0 are given by the initial condition
wi,0 = f (xi) but values for j = 1 which are needed to compute wi,2 must be obtained
from the other initial condition

∂u

∂ t
(x,0) = g(x) for 0 ≤ x ≤ L

One approach is to replace
∂u

∂ t
(x,0) by a forward difference approximation

∂u

∂ t
(xi,0) ≈ u(xi, t1)−u(xi,0)

k
+ O(k)

Solving for u(xi,t1) gives

u(xi,t1) ≈ u(xi,0)+ k
∂u

∂ t
(xi,0)+ O(k2) = u(xi,0)+ kg(xi)+ O(k2)

As a result, wi,1 ≈ wi,0 + kg(xi) for each i = 1,2, . . . ,m− 1 gives an approximation
only up to an error in the order of O(k). Seeking a better approximation to u(xi,0)
consider expanding u(x,t1) in a Taylor series about t = 0

u(xi,t1) ≈ u(xi,0)+ k
∂u

∂ t
(xi,0)+

k2

2

∂ 2u

∂ t2 (xi,0)+
k3

6

∂ 3u

∂ t3 (xi,0)+ . . .

If f ′′ exists then

∂ 2u

∂ t2 (xi,0) = α2 ∂ 2u

∂x2(xi,0) = α2 d2 f

dx2 (xi) = α2 f ′′(xi)
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So that

u(xi,ti) ≈ u(xi,0)+ kg(xi)+
α2k2

2
f ′′(xi)+

k3

6

∂ 3u

∂ t3 (xi,0)+ . . .

producing an approximation with an error estimated to be in order of O(k3). That is,

u(xi,ti) ≈ u(xi,0)+ kg(xi)+
α2k2

2
f ′′(xi)+ O(k3)

Using the finite central difference differentiation formulas from Chapter 11, we can
write

f ′′(xi) ≈
f (xi+1)−2 f (xi)+ f (xi−1)

h2 + O(h2)

we now obtain

u(xi,ti) ≈ u(xi,0)+ kg(xi)+
α2k2

2h2 [ f (xi+1)−2 f (xi)+ f (xi−1)]+ . . .

By letting λ = (kα/h) this last expression can be written as

u(xi,ti) ≈ u(xi,0)+ kg(xi)+
λ 2

2
[ f (xi+1)−2 f (xi)+ f (xi−1)]+ . . .

u(xi,ti) ≈ (1−λ 2) f (xi)+
λ 2

2
f (xi+1)+

λ 2

2
f (xi−1)+ kg(xi)+ . . .

Thus the difference equation

ui,1 ≈ (1−λ 2) f (xi)+
λ 2

2
f (xi+1)+

λ 2

2
f (xi−1)+ kg(xi)+ . . .

can be used to find wi,1 for each i = 1,2, . . . ,m−1.
The implementation in C# of the numerical solution of the wave equation that fol-

lows seeks to approximate the solution to the standard hyperbolic partial differential
equation

∂ 2u

∂ t2 (x, t)−α2 ∂ 2u

∂x2(x, t) = 0

where 0 < x < 1, 0 < t < T and subject to the boundary conditions u(0,t) = u(1,t) =

0 and the initial conditions u(x,0) = f (x) = sin(π x), where 0≤ x ≤ 1 and
∂u

∂ t
(x,0) =

0, where 0 ≤ x ≤ 1. The finite difference algorithm used in this example with m =
10,T = 1, and N = 20, which implies that h = 0.1,k = 0.05, and λ = 1. The output
of the results immediately follows the listing of the code and is for wi,N for i =
0,1,2, . . . ,10. For convenience and for comparison with the calculated output values,
the actual solution is given by u(x, t) = sin(πx)cos(2πt).
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/*
* Solution to the Wave PDE by finite difference method
* Goal: To approximate the solution of the hyperbolic
* PDE subject to the boundary conditions
* u(0,t) = u(l,t) = 0, 0 < t < T = max t
* and the initial conditions
* u(x,0) = F(x) and Du(x,0)/Dt = G(x), 0 <= x <= l:
* Input: endpoint l; maximum time T; constant alpha; integers m,N.
* Output: approximations W(I,J) to u(x(I),t(J)) for each
* I = 0, ..., m and J=0,...,N.
*/

static double fx(double x)
{ return Math.Sin(Math.PI * x); }

static double gx(double x)
{ return 0.0; }

static void Solving_Wave_PDE_byBackward_Diff()
{

double[,] W;
double[] ActualSolution;
double FT, FX, alpha, H, K, lambda, X;
int M1, M2, N1, N2, I, J;
W = new double[51, 51];
ActualSolution = new double[51];

FX = 1; //These input parameters values
FT = 1; //are set by the user and may
alpha = 2; //be varied accordingly
int M = 10;
int N = 20;

//Initialize variables with input parameter values
M1 = M + 1;
M2 = M - 1;
N1 = N + 1;
N2 = N - 1;
H = FX / M;
K = FT / N;
lambda = alpha * K / H;
for (J = 2; J <= N1; J++)
{

W[0, J - 1] = 0.0;
W[M1 - 1, J - 1] = 0.0;

}
W[0, 0] = fx(0.0);
W[M1 - 1, 0] = fx(FX);
for (I = 2; I <= M; I++)
{

W[I - 1, 0] = fx(H * (I - 1.0));
W[I - 1, 1] = (1.0 - lambda * lambda) * fx(H * (I - 1.0))

+ lambda * lambda * (fx(I * H)
+ fx(H * (I - 2.0))) / 2.0 + K * gx(H * (I - 1.0));

}
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for (J = 2; J <= N; J++)
{

for (I = 2; I <= M; I++)
{

W[I - 1, J] = 2.0 * (1.0 - lambda * lambda) *
W[I - 1, J - 1] + lambda * lambda *
(W[I, J - 1] + W[I - 2, J - 1]) - W[I - 1, J - 2];

}
}
Console.WriteLine("Solution of a Hyperbolic (Wave) Partial

Differential Equation");
Console.WriteLine("using the Finite-Difference Method and

user defined parameters\n");
Console.WriteLine("I\tX(I)\t\tW(X(I),"+FT+")\tActual Solution\n");
for (I = 1; I <= M1; I++)
{

X = (I - 1) * H;
ActualSolution[I] = Math.Sin(Math.PI * X) *

Math.Cos(2.0 * Math.PI * 1.0);
Console.WriteLine(I.ToString() + "\t" +

X.ToString("0.000000000") + "\t" +
W[I - 1, N1 - 1].ToString("0.000000000") +
"\t" + ActualSolution[I].ToString("0.000000000"));

}
Console.ReadLine();

}

OUTPUT:

Solution of a Hyperbolic (Wave) Partial Differential Equation
using the Finite-Difference Method and user defined parameters

I X(I) W(X(I),1) Actual Solution

1 0.000000000 0.000000000 0.000000000
2 0.100000000 0.309016994 0.309016994
3 0.200000000 0.587785252 0.587785252
4 0.300000000 0.809016994 0.809016994
5 0.400000000 0.951056516 0.951056516
6 0.500000000 1.000000000 1.000000000
7 0.600000000 0.951056516 0.951056516
8 0.700000000 0.809016994 0.809016994
9 0.800000000 0.587785252 0.587785252
10 0.900000000 0.309016994 0.309016994
11 1.000000000 0.000000000 0.000000000

17.5 Elliptic Partial Differential Equations

Poisson’s equation is an important second-order partial differential equation with
many practical applications in both science and engineering. It is also an excellent
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example of an elliptic partial differential equation and arises from the theoretical
analysis of empirical data obtained from studying natural physical phenomena, par-
ticularly in the fields of electromagnetism, astronomy, and fluid dynamics, because
of its ability to describe the behavior of electric, gravitational and fluid potentials.
Poisson’s equation is characterized by the function u(x,y,z) consisting of three spa-
tial variables (x,y,z). In three-dimensional Cartesian coordinates, Poisson’s equation
takes the form

∂ 2u
∂x2 +

∂ 2u
∂y2 +

∂ 2u
∂ z2 = f (x,y,z) or equivalently, ∇2u(x,y,z) = f (x,y,z)

where ∇2 is called the Laplacian. The function f (x,y,z) depends on the context
under which the equation is being used. For example, in electrostatics, f (x,y,z) =
ρ(x,y,z)/ε0, where ρ(x,y,z) is the charge distribution and ε0 is a constant called the
permittivity of free space and relates to a material’s ability to transmit or “permit”
an electric field. In the event that f (x,y,z) = 0, we have what is known as Laplace’s
equation. In this section we will use the finite differences method to obtain numerical
solutions to the two-dimensional elliptic partial differential equation given by

∇2u(x,y) ≡ ∂ 2u
∂x2 +

∂ 2u
∂y2 = f (x,y,z)

on a 2D-grid given by R = (x,y) bounded by a < x < b and c < y < d with bound-
ary conditions specified by u(x,y) = g(x,y). Such solutions cover a wide range of
practical problems and the method can be easily extended to 3D grids if so desired.

As usual, the first step is to choose integers n and m and define step sizes h =
(b− a)/n and k = (d − c)/m. This partitions the interval [a,b] into n equal parts of
width h and the interval [c,d] into m equal parts of width k. Each mesh point (xi,y j)
in the interior of the grid can be specified by

xi = x0 + ih for i =0,1,2, . . . ,n−1

y j = y0 + jk for j=0,1,2, . . . ,m−1

Following the strategy described in section 17.2, we then use the Taylor series in the
variable x about xi and in the variable y about yi to obtain the centered difference
formulas given by (

∂ 2u

∂x2

)
i, j

≈ ui+1, j −2ui, j + ui−1, j

h2 + O(h2)

(
∂ 2u

∂y2

)
i, j

≈ ui, j+1 −2ui, j + ui, j−1

k2 + O(k2)

Using these formulas allows us to express the Poisson equation at the mesh points
(xi,y j) as

ui+1, j −2ui, j + ui−1, j

h2 +
ui, j+1 −2ui, j + ui, j−1

k2 = f (xi,y j)+ O(h2)+ O(k2)
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for each i = 1,2, . . . ,n− 1 and j = 1,2, . . . ,m− 1 and the boundary conditions can
be expressed by

u(x0,y j) = g(x0,y j) and u(xn,y j) = g(xn,y j) for each j = 0,1,2, . . . ,m

u(xi,y0) = g(xi,y0) and u(xi,ym) = g(xi,ym) for each i = 1,2, . . . ,n−1

After some simplification, and using wi, j to approximate u(xi,y j) the equations above
reduce to

2

⎡
⎣(h

k

)2

+ 1

⎤
⎦wi, j − (wi+1, j + wi−1, j)−

(
h

k

)2

(wi, j+1 + wi, j−1) = −h2 f (xi,y j)

for each i = 1,2, . . . ,n−1 and j = 1,2, . . . ,m−1 and

w0, j = g(x0,y j) and wn, j = g(xn,y j) for each j = 0,1,2, . . . ,m

wi,0 = g(xi,y0) and wi,m = g(xi,ym) for each i = 1,2, . . . ,n−1

If we use the information from the boundary conditions at all points (xi,y j) adjacent
to a boundary mesh point, we have an (n−1)(m−1)× (n−1)(m−1) linear system
with the unknowns being the approximations wi, j to u(xi,y j) at the interior mesh
points. Such linear systems, usually in symmetric-block tridiagonal form, can then
be solved by some well known method like Gaussian elimination or Gauss-Seidel
iteration.

The implementation in C# of the numerical solution of the Poisson equation that
follows is based on the following data and boundary conditions:

∂ 2u
∂x2 +

∂ 2u
∂y2 = xey

where 0 < x < 2, 0 < y < 1 and subject to the boundary conditions

u(0,y) = 0 and u(2,y) = 2ey where 0 ≤ y ≤ 1

u(x,0) = x and u(x,1) = xe where 0 ≤ x ≤ 2

The linear system is solved using the Gauss-Seidel iteration method discussed in
Chapter 8 with a the stopping criterion of∣∣∣w(l)

i, j −w(l−1)
i, j

∣∣∣≤ 10−10

for each i = 1,2,3,4,5 and j = 1,2,3,4. Under these conditions, the iteration max-
imum value was set to 100 but after 61 iterations it stopped because by then it had
achieved the stopping criterion value of 10−10 as stated above. The finite difference
algorithm is used in this example with n = 6,m = 5. The output of the results imme-
diately follows the listing of the code. For convenience and for comparison with the
calculated output values, the actual solution is given by u(x, t) = xey.
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static double funcx(double x, double y)
{ return x * Math.Exp(y); }

static double gx(double x, double y)
{ return x * Math.Exp(y); }

static void Solving_Poisson_PDE_byFiniteDiff()
{

/* Solution to the Poisson PDE by finite difference method
* Goal: To approximate the solution of the Elliptic PDE
* DEL(u) = F(x,y), a <= x <= b, c <= y <= d,
* subject to the boundary conditions
* u(x,y) = G(x,y)
* if x = a or x = b for c <= y <= d,
* if y = c or y = d for a <= x <= b
* Input: endpoints a, b, c, d; integers m, n; tolerance TOL;
* maximum number of iterations M
* Output: approximations W(I,J) to u(X(I),Y(J)) for each
* I = 1,..., n-1 and J=1,..., m-1 or a message that the
* maximum number of iterations was exceeded.
*/

double[,] W, ActualSolution;
double[] X, Y;
double TOL, A, B, C, D, H, K, lambda, mu, Z, E;
int I, J, M, N, NN, M1, M2, N1, N2, L, LL;
bool OK;
W = new double[26, 26];
ActualSolution = new double[26, 26];
X = new double[26]; Y = new double[26];

A = 0.0; //These input parameters values
B = 2.0; //are set by the user and may
C = 0.0; //be varied accordingly
D = 1.0;
TOL = 1.0E-10;
NN = 100;
M = 5;
N = 6;
//Initialize variables with input parameter values
M1 = M - 1; M2 = M - 2; N1 = N - 1; N2 = N - 2;
H = (B - A) / N; K = (D - C) / M;
// Construct mesh points
for (I = 0; I <= N; I++) X[I] = A + I * H;
for (J = 0; J <= M; J++) Y[J] = C + J * K;
for (I = 1; I <= N1; I++)
{

W[I, 0] = gx(X[I], Y[0]);
W[I, M] = gx(X[I], Y[M]);

}
for (J = 0; J <= M; J++)
{

W[0, J] = gx(X[0], Y[J]);
W[N, J] = gx(X[N], Y[J]);

}
for (I = 1; I <= N1; I++)

for (J = 1; J <= M1; J++) W[I, J] = 0.0;
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lambda = H * H / (K * K);
mu = 2.0 * (1.0 + lambda);
L = 1;
OK = false;
/* Z is a new value of W(I,J) to be used in computing
the norm of the error E used in place of NORM */

/* Perform Gauss-Seidel iterations */
while ((L <= NN) && (!OK))
{

Z = (-H * H * funcx(X[1], Y[M1]) + gx(A, Y[M1]) +
lambda * gx(X[1], D) + lambda * W[1, M2] + W[2, M1])/mu;
E = Math.Abs(W[1, M1] - Z);
W[1, M1] = Z;
for (I = 2; I <= N2; I++)
{

Z = (-H*H*funcx(X[I],Y[M1])+lambda*gx(X[I],D)
+ W[I-1,M1]+W[I+1,M1]+lambda*W[I, M2])/mu;

if (Math.Abs(W[I,M1]-Z) > E) E = Math.Abs(W[I M1]-Z);
W[I, M1] = Z;

}
Z = (-H * H * funcx(X[N1], Y[M1]) + gx(B, Y[M1]) +

lambda*gx(X[N1],D)+W[N2,M1]+lambda*W[N1,M2])/mu;
if (Math.Abs(W[N1,M1]-Z) > E) E = Math.Abs(W[N1,M1]-Z);
W[N1, M1] = Z;
for (LL = 2; LL <= M2; LL++)
{

J = M2 - LL + 2;
Z = (-H*H*funcx(X[1],Y[J])+gx(A,Y[J]) +

lambda * W[1,J+1]+lambda*W[1,J-1]+W[2,J])/mu;
if (Math.Abs(W[1,J]-Z) > E) E = Math.Abs(W[1,J]-Z);
W[1, J] = Z;
for (I = 2; I <= N2; I++)
{

Z = (-H*H*funcx(X[I],Y[J])+W[I-1,J] +
lambda*W[I,J+1]+lambda*W[I,J-1]+W[I+1,J])/mu;

if (Math.Abs(W[I,J]-Z) > E) E = Math.Abs(W[I,J]-Z);
W[I, J] = Z;

}
Z = (-H*H*funcx(X[N1],Y[J])+gx(B,Y[J])+W[N2,J] +

lambda*W[N1,J+1]+lambda*W[N1,J-1])/mu;
if (Math.Abs(W[N1,J]-Z) > E) E = Math.Abs(W[N1,J]-Z);
W[N1, J] = Z;

}
Z = (-H*H*funcx(X[1],Y[1])+lambda*gx(X[1],C) +

gx(A,Y[1])+lambda*W[1,2]+W[2,1])/mu;
if (Math.Abs(W[1,1]-Z) > E) E = Math.Abs(W[1,1]-Z);
W[1, 1] = Z;
for (I = 2; I <= N2; I++)
{

Z = (-H*H*funcx(X[I],Y[1])+lambda*gx(X[I],C) +
W[I+1,1]+W[I-1,1]+lambda*W[I,2])/mu;

if (Math.Abs(W[I,1]-Z) > E) E = Math.Abs(W[I,1]-Z);
W[I, 1] = Z;

}
Z = (-H*H*funcx(X[N1],Y[1])+lambda*gx(X[N1],C) +

gx(B,Y[1])+W[N2,1]+lambda*W[N1,2])/mu;
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if (Math.Abs(W[N1,1]-Z) > E) E = Math.Abs(W[N1,1]-Z);
W[N1, 1] = Z;
if (E <= TOL)
{

Console.WriteLine("Solution of a Elliptic (Poisson) Partial
Differential Equation");

Console.WriteLine("using the Finite-Difference Method and
user defined parameters\n");

Console.WriteLine("I\tJ\tX(I)\t\t\tY(I)\tW(I,J)\t\
tActualSolution(I,J)\n");

for (I = 1; I <= N1; I++)
{
for (J = 1; J <= M1; J++)
{

ActualSolution[I,J] = X[I] * Math.Exp(Y[J]);
Console.WriteLine(I + "\t" + J + "\t" + X[I].ToString("

0.000000000") + "\t" + Y[J].ToString("0.000000000")
+ "\t" + W[I, J].ToString("0.000000000") + "\t" +

ActualSolution[I, J].ToString("0.000000000"));
}
Console.WriteLine("Convergence occurred on iteration

number " + L + "\n");
}
OK = true;

}
else

L++;
}

if (L > NN)
Console.WriteLine("Method fails after iteration number "+NN+"\n");
Console.ReadLine();

}

OUTPUT:
Solution of a Elliptic (Poisson) Partial Differential Equation
using the Finite-Difference Method and user defined parameters

I J X(I) Y(I) W(I,J) ActualSolution(I,J)

1 1 0.333333333 0.200000000 0.407264617 0.407134253
1 2 0.333333333 0.400000000 0.497483246 0.497274899
1 3 0.333333333 0.600000000 0.607596080 0.607372933
1 4 0.333333333 0.800000000 0.742007065 0.741846976
Convergence occurred on iteration number 61

2 1 0.666666667 0.200000000 0.814523750 0.814268505
2 2 0.666666667 0.400000000 0.994957575 0.994549798
2 3 0.666666667 0.600000000 1.215183178 1.214745867
2 4 0.666666667 0.800000000 1.484008537 1.483693952
Convergence occurred on iteration number 61

3 1 1.000000000 0.200000000 1.221766210 1.221402758
3 2 1.000000000 0.400000000 1.492404725 1.491824698
3 3 1.000000000 0.600000000 1.822742714 1.822118800
3 4 1.000000000 0.800000000 2.225992702 2.225540928
Convergence occurred on iteration number 61
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4 1 1.333333333 0.200000000 1.628963687 1.628537011
4 2 1.333333333 0.400000000 1.989778303 1.989099597
4 3 1.333333333 0.600000000 2.430226561 2.429491734
4 4 1.333333333 0.800000000 2.967928255 2.967387905
Convergence occurred on iteration number 61

5 1 1.666666667 0.200000000 2.036042323 2.035671264
5 2 1.666666667 0.400000000 2.486958389 2.486374496
5 3 1.666666667 0.600000000 3.037505503 3.036864667
5 4 1.666666667 0.800000000 3.709724067 3.709234881
Convergence occurred on iteration number 61

Control of approximation errors is central to the calculation of a numerical solu-
tion of acceptable accuracy. In the preceding examples, this control of errors can be
accomplished in three ways:

1. The number of grid points can be varied. Since in the numerical analysis
literature, the grid spacing is often given the symbol h, systematic variation of
the grid spacing to investigate accuracy is usually termed h refinement.

2. The order of the approximation can be varied. In general, if the approxima-
tion is of order O(hp), it is termed p-th order. The symbol p is frequently
used in the numerical analysis literature, and varying the order p to investigate
accuracy is referred to as p refinement.

3. The discretization errors can possibly be estimated and where the error is con-
sidered too large, the numerical algorithm can automatically insert grid points.
Beyond that, the grid spacing does not have to be uniform. That is, h does not
have to remain constant throughout the numerical solution, and the numeri-
cal algorithm can automatically vary the spacing to concentrate the grid points
where they are needed to achieve acceptable accuracy. This form of refinement
is termed usually r refinement.

The preceding numerical solutions were developed using basic finite differences.
However, many other approaches to approximating derivatives in PDEs have been
developed and used. Among these are finite elements, finite volumes, weighted
residuals, collocation, Galerkin and spectral methods. Each of these methods has
advantages and disadvantages, often according to the characteristics of the problem
of interest starting with the parabolic, hyperbolic and elliptic geometric classifica-
tions. Thus, an extensive literature for the numerical solution of PDEs is available,
and we have only presented here a few basic concepts and examples.
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Optimization Methods

18.1 Introduction

Optimization is the mathematical discipline concerned with finding the values of
n-variables (x1,x2,x3, . . . ,xn) that minimize or maximize some objective function,
possibly subject to constraints. Optimization problems are made up of three basic
ingredients:

1. An objective function which we want to minimize or maximize. Almost all
optimization problems have a single objective function. The two interesting
exceptions are:

• No objective function. In some cases, such as the design of integrated
circuit layouts, the goal is to find a set of variables that satisfies the con-
straints of the model. The user does not particularly want to optimize
anything so there is no reason to define an objective function. This type
of problems is usually called a feasibility problem.

• Multiple objective functions. Ideally the user would like to optimize a
number of different objectives at once. In the panel design problem, for
example, it would be nice to minimize weight and maximize strength si-
multaneously. In practice, however, different objectives may not be com-
patible and, in addition, the variables that optimize one objective may be
far from optimal for the others. Problems with multiple objectives are
therefore reformulated as single-objective problems by either forming a
weighted combination of the different objectives or else replacing some
of the objectives by constraints.

2. A set of unknowns or variables which affect the value of the objective function.
Having variables are absolutely essential. If there are no variables, we cannot
define the objective function and the problem constraints.

3. A set of constraints that allow the unknowns to take on certain values but
exclude others. Constraints are not essential. In fact, the field of unconstrained
optimization is a large and important one for which a lot of algorithms and
software are available.

In general, optimization problems can be divided into three basic groups:
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1. Continuous optimization, in which all the variables are allowed to take values
from subintervals of the real line. Here you can also distinguish between two
types of continuous optimization:

• Unconstrained optimization, which is concerned with the practical com-
putational task of finding minima or maxima of functions of one, sev-
eral or even millions of variables. Here, the appropriate computational
method to use depends crucially on the nature of the function being op-
timized, the nature of the variables, as well as the number of variables.

• Constrained optimization. Here you can also distinguish between several
types of constrained optimization:

(a) Nonlinearly constrained optimization where the general constrained
optimization problem is to minimize a nonlinear function subject to
nonlinear constraints.

(b) Bound-constrained optimization where the parameters that describe
physical quantities may be constrained to lie in a given range.

(c) Quadratic programming where problems involve minimization of a
quadratic function subject to linear constraints.

(d) Linear programming where the goal is to minimize a linear objective
function of continuous real variables, subject to linear constraints.
The simplex and the interior-point Methods are the two most com-
monly used approaches to this kind of problem.

(e) Semidefinite programming which is essentially an ordinary linear
program where the constraint is replaced by a semidefinite con-
straint.

(f) Stochastic programming where future events are taken into consid-
eration as random variables but with constraints.

(g) Network programming problems which arise, as the name indicates,
in applications that can be represented as the flow of a commodity
in a network and can also be linear or non-linear.

2. Discrete optimization, in which you require some or all of the variables to have
integer values. Here you can also distinguish between two types of discrete
optimization:

• Integer programming. In many applications, such as the fixed-charge
network flow problem and the famous traveling salesman problem, the
solution of an optimization problem makes sense only if certain of the
unknowns are integers.

• Stochastic programming. It is often assumed that the data for the given
problem are known accurately. However, for many actual problems, the
data may not be known accurately for a variety of reasons. For example,
it might be due to simple measurement error or perhaps some data repre-
sent information about the future and so it simply cannot be known with
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certainty. The fundamental idea behind stochastic linear programming
is the concept of recourse. Recourse is the ability to take corrective ac-
tion after a random event has taken place. Therefore, data may be either
known with certainty or, as in the case for future events, be stochastic or,
in other words, are simply random.

3. Multi-objective optimization, where you would like to simultaneously opti-
mize a number of different objectives. Most realistic optimization problems,
particularly those in design, require the simultaneous optimization of more
than one objective function. In these and most other cases, it is unlikely that
the different objectives would be optimized by the same alternative parame-
ter choices. Hence, some trade-off between the criteria is usually needed to
ensure a satisfactory results.

18.2 Gradient Descent Method

The gradient or steepest descent method is an optimization algorithm for finding the
local minimum value of multi-dimensional functions f (x1,x2, . . . ,xn). Although this
method presumes that the gradient of the target function exists and can be calculated,
there are cases where the function and therefore its gradient is not known explicitly.
In such situations you can still construct the derivatives numerically from the two-
point or three-point formulas and thus obtain an approximate value for the gradient.
To find a local minimum of a function f (x1,x2, . . . ,xn) using the gradient descent
method, one starts by making an approximate guess as to where the minimum value
is located followed up by a series of iterative steps proportional to the negative of the
gradient of the function at that point until some tolerance value is obtained. If the
iterative steps are taken proportional to the positive value of the gradient, one then
approaches a local maximum of that function and the procedure is then known as the
gradient ascent method instead.

Gradient descent is based on the observation that if the real-valued function G(x)
is defined and differentiable in a neighborhood of a point xa, then G(x) decreases
fastest if one goes from xa in the direction of the negative gradient of G at xa,−∇G(xa).
It follows that, if

xb = xa −α∇G(xa)

for α > 0 for a small enough number, then G(xa) ≥ G(xb). With this observation in
mind, one starts with a guess x0 for a local minimum of G, and then considers the
sequence x0,x1,x2, . . . such that

xn+1 = xn −αn∇G(xn), n ≥ 0

We then have
G(x0) ≥ G(x1) ≥ G(x2) ≥ ·· · ≥ G(xn)
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so hopefully the sequence (xn) converges to the desired local minimum. Note that
the value of the step size α is allowed to change at every iteration.

The code below shows an implementation of this gradient descent method for the
function f (x,y) = (x− 1)2e−y2

+ y(y + 2)e−2x2
around x = 0.1 and y = −1. Note

that the spacing in the two point formula for the derivative is reduced by a factor of
2 after each iteration, and so is the step size in case of overshooting.

// Using the steepest-descent method to search
// for minimum values of a multi-variable function

public static void steepestDescent(double[] x, double alpha, double
tolerance)

{
int n = x.Length; //Size of input array
double h = 1e-6; //Tolerance factor
double g0 = g(x); //Initial estimate of result

//Calculate initial gradient
double[] fi = new double[n];
fi = GradG(x, h);

//Calculate initial norm
double DelG = 0;
for (int i = 0; i < n; ++i)

DelG += fi[i] * fi[i];
DelG = Math.Sqrt(DelG);

double b = alpha / DelG;

//Iterate until value is <= tolerance limit
while (DelG > tolerance)
{

//Calculate next value
for (int i = 0; i < n; ++i)

x[i] -= b * fi[i];
h /= 2;

fi = GradG(x, h); //Calculate next gradient

//Calculate next norm
DelG = 0;
for (int i = 0; i < n; ++i)

DelG += fi[i] * fi[i];
DelG = Math.Sqrt(DelG);

b = alpha / DelG;

//Calculate next value
double g1 = g(x);

//Adjust parameter
if (g1 > g0) alpha /= 2;
else g0 = g1;

}
}
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// Provides a rough calculation of gradient g(x).
public static double[] GradG(double[] x, double h)
{

int n = x.Length;
double[] z = new double[n];
double[] y = (double[]) x.Clone();
double g0 = g(x);
for (int i=0; i<n; ++i)
{

y[i] += h;
z[i] = (g(y)-g0)/h;

}
return z;

}

// Method to provide function g(x).
public static double g(double[] x)
{

return (x[0]-1)*(x[0]-1)*Math.Exp(-x[1]*x[1]) +
x[1]*(x[1]+2)*Math.Exp(-2*x[0]*x[0]);

}

static void Main(string[] args)
{

double tolerance = 1e-6;
double alpha = 0.1;
double[] x = new double[2];
x[0] = 0.1; //Initial guesses
x[1] = -1; //of location of minimums
steepestDescent(x, alpha, tolerance);
Console.WriteLine("Testing steepest descent method\n");
Console.WriteLine("The minimum is at x[0] = " + x[0] +", x[1] = "

+x[1]);
Console.ReadLine();

}
OUTPUT: The minimum is at x[0] = 0.107478502308767

and x[1] = -1.22316879147114

The program above finds a minimum at x ≈ 0.107355 and y ≈−1.223376. This is a
very simple but not a very efficient method. Like many other optimization methods,
it simply converges to a local minimum near the starting point without providing
any further information on the nature of the local minimum that was found. The
search for a global minimum or maximum of a multi-variable function is actually
a non-trivial process, especially when the function contains a significant number of
minima or maxima, and searching for better and more reliable optimization methods
is still very much an area of active research. For example, the bi-conjugate gradient
method, the pre-conditioned conjugate gradient method and the nonlinear conjugate
gradient method were all derived from the standard gradient method just discussed.
In the last few decades, several advanced methods have been introduced for handling
function optimization. However, because of the amount of material involved, only
the simplex, simulated annealing and the genetic algorithm methods will be briefly
discussed in the last sections of this chapter.
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18.3 Linear Programming

Linear programming, sometimes also known as linear optimization, is a technique
for optimizing a linear objective function f (x1,x2, . . . ,xn), subject to linear equality
and linear inequality constraints. Informally, linear programming determines the
way to achieve the best outcome, such as maximum profit or lowest cost, in a given
mathematical model having a list of requirements represented as linear equations.
A linear programming problem may be defined as the problem of maximizing or
minimizing a linear function subject to linear constraints. The constraints may be
equalities or inequalities.

Many practical problems in operations research can be expressed as linear pro-
gramming problems. Certain special cases of linear programming, such as network
flow problems and multi-commodity flow problems are considered important enough
to have generated much research on specialized algorithms for their solution. A
number of algorithms for other types of optimization problems work by solving lin-
ear programming problems as sub-problems. Historically, ideas from linear pro-
gramming have inspired many of the central concepts of optimization theory, such
as duality, decomposition, and the importance of convexity and its generalizations.
Likewise, linear programming is heavily used in microeconomics and company man-
agement, such as planning, production, transportation, technology and other issues.
Although modern management issues are ever-changing, most companies would like
to maximize profits or minimize costs with limited resources. Therefore, many prac-
tical real-world problems can be expressed as linear programming problems.

The simplex method is a systematic algorithm for generating and testing candidate
solutions to a real-valued linear function of the form

f (x1,x2, . . . ,xn) = c1x1 + c2x2 + · · ·+ cn xn =
n

∑
j=1

c j x j

which, in addition, is also subject to linear constraints. The linear programming
problem is usually expressed in what is said to be the standard form as:

maximize: ∑n
j=1 c j x j

subject to: ∑n
j=1 ai j x j ≤ bi where i = 1,2, . . . ,m < n and x j ≥ 0 where j = 1,2, . . . ,n

Here, the coefficients c j represent the respective weights, or costs, of the variables x j.
The coefficients of the system of equations are represented by ai j, and any constant
values in the system of equations are combined on the right-hand side of the inequal-
ity in the variables b j. In the standard form of the problem there are n variables and
m constraints, not counting the n non-negativity constraints.

The method uses the geometrical concept of a simplex, which is a polytope of
N + 1 vertices in N dimensions: a line segment in one dimension, a triangle in two
dimensions, a tetrahedron in three-dimensional space and so forth. A system of linear
inequalities defines a polytope as a feasible region. The simplex algorithm begins by
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finding a basic feasible solution at a starting vertex and then moves along the edges
of the polytope until it reaches the vertex of the optimum solution.

Linear programming problems must be converted into augmented form before
being solved by the simplex algorithm. This form introduces non-negative slack
variables, adding no cost to the solution, to replace inequalities with equalities in the
constraints. The problem can then be re-written in the following form:

maximize: ∑n
j=1 c j x j

subject to: ∑n
j=1 ai j x j = bi where (i = 1,2, . . . ,m) and x j ≥ 0 where ( j = 1,2, . . . ,n)

or in matrix notation as

maximize: C X

subject to: AX = B and X ≥ 0

where the matrix A has m rows and n + m columns with the last m columns forming
an identity matrix. The vector x is of length n + m, and the column b is of length
m. Finding a feasible solution in the augmented form corresponds to setting n of the
m+ n variables (n original and m slack) to 0. We call such a setting of the variables
a basic solution. The m variables which are purposely set to 0 are called the non-
basic variables. We can then solve for the remaining n constraints, called the basic
variables, which will be uniquely determined, while remaining careful not to step out
of the feasible region.

Solving this problem then involves finding solutions to the set of equations sat-
isfying the given constraints. Searching for possible solution begins at an arbitrary
corner of the solution set. At each iteration, the simplex method selects the variable
that will produce the largest change towards the optimal minimum or maximum so-
lution. That variable replaces one of its fellow variables which is restricting it most
severely, thus moving the current best found value to a different corner of the solution
set and closer to the final solution. In addition, the simplex method can determine if
no solution actually exists. This algorithm belongs to a general class of algorithms
usually called greedy since it selects the best choice at each iteration without needing
information from previous or future iterations.

Once a solution to the linear program has been found, successive improvements
are made to the solution. In particular, one of the non-basic variables, with a value of
zero, is chosen to be increased so that the value of the cost function, ∑n

j=1 c j x j, de-
creases. That variable is then increased, maintaining the equality of all the equations
while keeping the other non-basic variables at zero, until one of the basic nonzero
variables is reduced to zero and thus removed from the basis. At this point, a new
solution has been determined at a different corner of the solution set. The process
is then repeated with a new variable becoming basic as another becomes non-basic.
Eventually, one of three things will happen. First, a solution may occur where no
non-basic variable will decrease the cost, in which case the current solution is said
to be the optimal solution. Second, a non-basic variable might increase to infinity
without causing a basic-variable to become zero, resulting in an unbounded solution.
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Finally, no solution may actually exist and the simplex method must abort. As is
common for research in linear programming, the possibility that the simplex method
might return to a previously visited corner will not be considered here.

18.3.1 The Revised Simplex Method

In 1954 Dantzig and Orchard-Hay [87] published an improved version of his original
simplex algorithm, called the revised simplex method, to provide a more efficient way
to solve linear programming problems. The revised simplex method describes linear
programs as matrix entities and presents the simplex method as a series of linear
algebra computations designed to exploit the fact that in many practical applications
the coefficient matrix ai j is very sparse meaning that most of its elements are equal to
zero. As before, we start by expressing the linear programming problem in standard
form

maximize: ∑n
j=1 c j x j

subject to: ∑n
j=1 ai j x j ≤ bi where i = 1,2, . . . ,m < n and x j ≥ 0 where j = 1,2, . . . ,n

After introducing the slack variables xn+1,xn+2, . . .xn+m the original problem can be
re-expressed as

maximize: ∑n
j=1 c j x j

subject to: ∑n
j=1 ai j x j = bi where (i = 1,2, . . . ,m) and x j ≥ 0 where ( j = 1,2, . . . ,n)

or in matrix notation as

maximize: C X

subject to: AX ≤ B and X ≥ 0

The matrix A has m rows and n + m columns with the last m columns forming an
identity matrix. The vector X is of length n + m and the column B is of length m.
A basic feasible solution X∗ partitions X into XB (m basic variables) and XN (n non-
basic variables). This corresponds to the partition of matrix A into AB and AN , and
C into CB and CN . Each iteration of the revised simplex method can be described as
follows [87] [88] [89]:

Step 1: Solve the system yAB = CB.

Step 2: Choose any column α of AN such that yα is less than the corresponding
component of CN . If such a column does not exist, then the current solution is
optimal.

Step 3: Solve the system ABβ = α .

Step 4: Find the largest d such that X∗
B − dβ ≥ 0. If no such d is found, then the

problem is unbounded, otherwise at least one component of X∗
B − dβ will be

equal to zero and the corresponding variable leaves the basis.
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Step 5: Set the entering variable to be d. Replace the values of the basic variables
X∗

B by X∗
B − dβ . Replace the leaving column of AB by entering column, and

replace the leaving variable by the entering variable.

An implementation in C# of the just described revised simplex algorithm that was
originally published in Pascal by Syslo et al. [88] and later translated into Java by
Lau [90] is provided below. The procedure parameters can be described as follows.
The maximize boolean variable controls whether the objective function is to be max-
imized or minimized. n = number of variables, including the slack variables. m =
number of constraints. a[i,j] where i = 1,2, . . . ,m and j = 1,2, . . . ,n contains the
coefficients of the constraints. a[0,j] contains the coefficients of the objective func-
tion. The right hand side of the constraints are given by a[i][0]. The other elements
of the matrix A are not required as input. Upon exit, a[0,0] contains the optimal
value of the objective function and a[i][0] contains the optimal value of the basic
variable basicvar[i] for i = 1,2, . . . ,m. epsilon is just the tolerance value below
which values can be assumed to essentially be zero. If there is no feasible solution
then basicvar[m+1] > 0 otherwise it is equal to zero. If the problem has no finite
solution then basicvar[m+2] > 0 otherwise basicvar[m+2] = 0. basicvar[i] is
the basic variable in the optimal solution for i = 1,2, . . . ,m.

public static void revisedSimplex(bool maximize, int n, int m,
double[,] a, double epsilon, int[] basicvar)
{

int i, j, k, m2, p, idx = 0;
double[] objcoeff = new double[n + 1];
double[] varsum = new double[n + 1];
double[] optbasicval = new double[m + 3];
double[] aux = new double[m + 3];
double[,] work = new double[m + 3, m + 3];
double part, sum;
bool infeasible, unbound, abort, outres, iterate;

if (maximize)
for (j = 1; j <= n; j++)
a[0, j] = -a[0, j];

infeasible = false;
unbound = false;
m2 = m + 2;
p = m + 2;
outres = true;
k = m + 1;
for (j = 1; j <= n; j++)
{

objcoeff[j] = a[0, j];
sum = 0.0;
for (i = 1; i <= m; i++)
sum -= a[i, j];

varsum[j] = sum;
}
sum = 0.0;
for (i = 1; i <= m; i++)
{

basicvar[i] = n + i;
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optbasicval[i] = a[i, 0];
sum -= a[i, 0];

}
optbasicval[k] = 0.0;
optbasicval[m2] = sum;
for (i = 1; i <= m2; i++)
{

for (j = 1; j <= m2; j++)
work[i, j] = 0.0;

work[i, i] = 1.0;
}
iterate = true;
do
{

if ((optbasicval[m2] >= -epsilon) && outres)
{
outres = false;
p = m + 1;

}
part = 0.0;
for (j = 1; j <= n; j++)
{
sum = work[p,m+1] * objcoeff[j] + work[p,m+2] * varsum[j];
for (i = 1; i <= m; i++)

sum += work[p, i] * a[i, j];
if (part > sum)
{

part = sum;
k = j;

}
}
if (part > -epsilon)
{
iterate = false;
if (outres)

infeasible = true;
else

a[0, 0] = -optbasicval[p];
}
else
{
for (i = 1; i <= p; i++)
{

sum = work[i,m+1] * objcoeff[k] + work[i,m+2] * varsum[k];
for (j = 1; j <= m; j++)

sum += work[i, j] * a[j, k];
aux[i] = sum;

}
abort = true;
for (i = 1; i <= m; i++)

if (aux[i] >= epsilon)
{

sum = optbasicval[i] / aux[i];
if (abort || (sum < part))
{
part = sum;
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idx = i;
}
abort = false;

}
if (abort)
{

unbound = true;
iterate = false;

}
else
{

basicvar[idx] = k;
sum = 1.0 / aux[idx];
for (j = 1; j <= m; j++)

work[idx, j] *= sum;
i = ((idx == 1) ? 2 : 1);
do
{

sum = aux[i];
optbasicval[i] -= part * sum;
for (j = 1; j <= m; j++)
work[i, j] -= work[idx, j] * sum;

i += ((i == idx - 1) ? 2 : 1);
} while (i <= p);
optbasicval[idx] = part;

}
}

} while (iterate);
// return results
basicvar[m + 1] = (infeasible ? 1 : 0);
basicvar[m + 2] = (unbound ? 1 : 0);
for (i = 1; i <= m; i++)

a[i, 0] = optbasicval[i];
if (maximize)
{

for (j = 1; j <= n; j++)
a[0, j] = -a[0, j];

a[0, 0] = -a[0, 0];
}

}

The test problem for the dual simplex method was chosen to be

Maximize : 5x1 + 5x2 + 3x3 = 0

Subject to:

x1+3x2 + x3+x4 =3

−x1 +3x3 + x5 =2

2x1− x2 +2x3 +x6 =4

2x1+3x2 − x3 +x7 =2

x1, x2, x3, x4, x5, x6, x7 ≥0

The corresponding driver program in C# for the test problem above is given below.
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static void Main(string[] args)
{

int n = 7;
int m = 4;
double eps = 1.0e-5;
int[] basicvar = new int[m + 3];
double[,] a = {{0, 5, 5, 3, 0, 0, 0, 0},

{3, 1, 3, 1, 1, 0, 0, 0},
{2, -1, 0, 3, 0, 1, 0, 0},
{4, 2, -1, 2, 0, 0, 1, 0},
{2, 2, 3, -1, 0, 0, 0, 1}};

revisedSimplex(true, n, m, a, eps, basicvar);

Console.WriteLine("Testing the revised simplex algorithm\n");
if (basicvar[m + 1] > 0)

Console.WriteLine("No feasible solution.");
else
{

if (basicvar[m + 2] > 0)
Console.WriteLine("Objective function is unbound.");

else
{
Console.WriteLine("Optimal solution found. \n\nBasic variable

Value");
for (int i = 1; i <= m; i++)

Console.WriteLine("{0,10}\t {1,-10}", basicvar[i], a[i, 0]);
Console.WriteLine("\nOptimal value of the objective function =

{0}", a[0, 0]);
}
Console.ReadLine();

}
}
OUTPUT:
Optimal solution found.
Basic Variable Value

3 1.03448275862069
1 1.10344827586207
4 0.034482758620631
2 0.275862068965517

The optimal value of the objective function = 10

18.4 Simulated Annealing Method

As its name implies, the Simulated Annealing (SA) algorithm is a global optimiza-
tion method that exploits an analogy between the way in which a metal cools and
freezes into a minimum energy crystalline structure, through a physical process
called the annealing, and the search for a good approximation to the global mini-
mum of a given function in a large search space. If you heat a solid past its melting
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point and then cool it, the final structural properties of the solid depend on the rate of
cooling. If the liquid is cooled slowly enough, large crystals will be formed. How-
ever, if the liquid is cooled too quickly then the crystal structure will likely have
imperfections. This algorithm simulates the cooling process by gradually lowering
the temperature of the system until it converges to a steady, frozen state. The sim-
ulated annealing algorithm offers a major advantage over some other global search
methods by its ability to avoid becoming trapped at some undesired local minima.
This is accomplished by using a random search strategy that not only accepts changes
that decrease the objective function f but also some changes that increase it.

The internal details of this algorithm can be conceptually visualized by a geo-
graphical landscape such as that of a mountain range, containing two directional
parameters: along the North-South and East-West directions. Finding the minimum
of a function then becomes equivalent to finding the lowest valley in this terrain. The
way that this algorithm approaches this problem is conceptually similar to a super
bouncing ball that can bounce over mountains from valley to valley. The algorithm
starts at a high temperature, where the temperature is just a conceptual parameter
that mimics the effect of a fast moving particle in a hot object. This feature allows
the ball to bounce over any mountain and have access to any valley. As the temper-
ature of the ball drops, it can no longer bounce as high and so it tends to settle and
become trapped in relatively smaller valleys. The mountain range can be physically
described by a cost function and the two directional parameters can be character-
ized by probability distributions since they can generate possible valleys or states to
explore. We can also define another distribution, called the acceptance distribution,
which depends on the difference between cost functions of the present generated val-
ley currently being explored and the last saved lowest cost valley. The acceptance
distribution is then used to probabilistically decide whether to stay in a new lower
valley or to bounce out of it. Both the generating and acceptance distributions depend
on current temperature of the system.

More specifically, the simulated annealing algorithm starts by generating an initial
solution, either randomly or heuristically constructed, and by initializing a parameter
analogous to the temperature parameter T . Starting from an initial point, the algo-
rithm takes a step and the objective function f is evaluated. The algorithm uses two
combined search strategies: random walk and iterative improvement. When mini-
mizing a function, any downhill step is accepted and the process repeats from this
new point. However, there’s also a probability given by P = e−Δ/T , where Δ is the
change in the value of the objective function and T is a control parameter called the
temperature, that an uphill step may also be accepted. This feature allows the algo-
rithm to escape from potential local minima. As the optimization process proceeds,
the length of the steps decline and the algorithm eventually closes in on the global
minimum. However, most large optimization problems have many local minima and
this optimization algorithm may also end up trapped in a local minimum. To get
out of a local minimum, repeat this calculation process using a higher cost function.
Since the algorithm starts with a high temperature, a new state with a larger cost will
have a higher probability of being accepted. The simulated annealing algorithm can
be summarized by the following general steps.
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Initialization:
Start algorithm by entering some initial guess
as to what the solution values might be.
Call this the current_solution, temperature
and calculate the current_cost value
Loop
{

new_state
calculate new_cost
if (current_cost - new_cost) <= 0 then

current_state = new_state
else
{

if exp((current_cost - new_cost)/temperature ) > random(0,1)
{

accept
current_state = new_state

}
else

reject
}
decrease the temperature
if stop_criterion has been met then stop
otherwise loop around one more time.

}

Note that there are two major processes that take place in the simulated anneal-
ing algorithm. First, for each temperature, the simulated annealing algorithm runs
through a number of cycles predetermined by the programmer. As a cycle runs, the
inputs are randomized and only randomizations which produce a better-suited set of
inputs are retained. Once the specified number of cycles have been completed, the
temperature is lowered and a check is made to determine whether or not the tem-
perature has reached its lowest allowed value. If the temperature’s lowest allowed
value has not been reached, then another cycle of randomizations will take place.
However, if the temperature is lower than the lowest temperature allowed, then the
simulated annealing algorithm terminates.

At the core of the simulated annealing algorithm is the randomization of the input
values. This randomization is ultimately what causes simulated annealing to alter
the input values that the algorithm is seeking to minimize. However, there is no spe-
cific method defined by the simulated annealing algorithm for how to randomize the
inputs. Instead, the exact nature by which this is done often depends upon the nature
of the problem being solved. The randomization process must often be customized
and adjusted accordingly for different types of problems.

The simulated annealing example provided below is meant to illustrate how this
algorithm may be applied to finding the global minimum of multi-variable functions.
The study of simulated annealing algorithms is still a very active and rapidly evolving
field. New research results in this area are frequently being published indicating that
fresh innovative ideas are routinely being introduced into existing implementations
of this algorithm.
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public delegate double MultiFunction(RVector x);

public static RVector Anneal(MultiFunction f, double[] x,
double TMin, int nMaxIterations)

{
//Set the initial "temperature" value of the system
double T0 = 1.0;

//Set the temperature variable equal to the given
//initial temperature value of the system
double T = T0;

//Calculate the initial function value with the
//given input configuration array
double f0 = f(new RVector(x));
double f1 = 0.0;
double Deltaf = 0.0;
double[] xCurrentState;
int j = 0;

//Loop until the current "temperature" is less than some
//user supplied minimum threshold temperature.
do
{

j++;
int i = 0; //Iteration counter
//Loop until the iteration counter is < than some
//minimum tolerance value specified by user
while (i < nMaxIterations)
{
i++;
//Generate a random perturbation of the configuration array
//This method is given in chapter 10 which covers the topic
//of random numbers and random distributions
xCurrentState = RandomPerturbation((double[])x.Clone());

//and update the target function with this new perturbed value
//of the configuration array
f1 = f(new RVector(xCurrentState));

//Calculate the difference between the new and old function
//values using the current and the previous perturbed
//configuration array values.
Deltaf = f1 - f0;

//If this difference is < 0 update the previous configuration
//and function values with the current ones otherwise anneal
//the current difference in function values with the current
//temperature, compare the result with a random value and
//update the previous configuration and function values with
//the current ones only if the random value is < than the
//annealed value.
if (Deltaf < 0)
{

x = xCurrentState;
f0 = f1;
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}
else
{

if (Math.Exp(-Deltaf / T) > rand.NextDouble())
{

x = xCurrentState;
f0 = f1;

}
}

}
//Decrease the system temperature value
T *= Math.Pow(0.9, j);

}
while (TMin < T);
//Return the latest configuration value
return new RVector(x);

}

To test the simulated annealing algorithm, I chose the two-dimensional Rosebrock
function:

f (x,y) = (1− x)2 + 100(y− x2)2

which has a known global minimum at f (1,1) = 0 and the one-dimensional function

f (x) = |x|+ sin(x)

which has a known global minimum at f (0) = 0. The implementation of these test
functions along with the corresponding output is given below:

static void SimulatedAnnealingTest()
{

//Create input array with initial guesses
double[] xydata1 = new double[] {1.5, 0.5};
//Run the simulated annealing algorithm on initial guess
RVector result1 = Anneal(f1, xydata1, 1e-15, 20000);
//Print out result and function value
Console.WriteLine("\nf(x_min,y_min) = f({0},{1}) = {2}\n\n",

result1[0], result1[1], f1(result1).ToString());

//Create input array with initial guesses
double[] xydata2 = new double[] { 8.0 };
//Run the simulated annealing algorithm on initial guess
RVector result2 = Anneal(f2, xydata2, 1e-15, 20000);
//Print out result and function value
Console.WriteLine("\nf(x_min) = f({0}) = {1}",

result2[0], f2(result2).ToString());
}
OUTPUT:
Simulated Annealing Test

TEST 1: Rosebrock function f(x,y) = (1-x)ˆ2 + 100(y-xˆ2)ˆ2
with known global minimums at f(1,1) = 0

Initial guess (x_0,y_0) = (1.5,0.5)
Running simulated annealing algorithm...please wait
Results obtained from simulated annealing algorithm:
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f(x_min,y_min) =
f(0.998616928946903,0.997235306943664) = 1.91290705226745E-06

TEST 2: f(x) = |x| + sin(x)
with known global minimum at f(0) = 0

Initial guess (x_0) = (8)
Running simulated annealing algorithm...please wait
Results obtained from simulated annealing algorithm:

f(x_min) = f(1.75698543884312E-05) = 9.03967113836945E-16

18.5 Genetic Algorithms

Genetic algorithms belong to a general class of optimization algorithms called evolu-
tionary algorithms. Evolutionary algorithms consist of a broad field of study whose
primary focus is on finding optimization techniques implementing mechanisms in-
spired by biological evolution such as inheritance, mutation, selection, crossover,
reproduction, natural selection and survival of the fittest. There are many kinds of
optimization, but generally speaking optimization is the process of modifying a sys-
tem to make some aspect of it work more efficiently or use fewer resources. For
instance, a computer program may be optimized so that it executes more rapidly, or
is capable of operating with less memory resources. In mathematics, optimization is
a very important ongoing research topic that covers many additional subfields. A ge-
netic algorithm (GA) is a technique used in computing to find exact or approximate
solutions to optimization and search problems.

A genetic algorithm starts with a random set of solutions, represented by chromo-
somes, called a population. Solutions from one population are then taken and used
to form a new population. This action is motivated by a hope that the new popula-
tion will yield better results than the old one. Solutions which are selected to form
new populations are called offspring and are selected according to their fitness which
means that the more suitable they are, the more chances they have to reproduce. This
process is repeated until some condition, such as the population size or improvement
of the best solution, is satisfied. The following outline gives a brief summary of the
key steps in the genetic algorithm procedure.

1. [Start] Generate a random population of n chromosomes. In other words, start
by generating a set of random guesses to suitable solutions for the problem.

2. [Fitness] Evaluate the fitness function f (x) of each chromosome x in the pop-
ulation. In other words, check to see how close your initial guesses are to a
solution of the problem.
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3. [New population] Create a new population by repeating the following steps
until the new population is complete.

(a) [Selection] Select two parent chromosomes from a population according
to their fitness. The better the fitness, the bigger the chances of being
selected.

(b) [Crossover] With a crossover probability cross over the parents to form
a new set of offspring, also known as children. If no crossover was per-
formed, the offspring are an exact copy of the parents.

(c) [Mutation] With a mutation probability mutate new offspring at each po-
sition in a chromosome.

(d) [Accepting] Place the new offspring in a new population.

4. [Replace] Use the newly generated population for a further run of the algo-
rithm.

5. [Test] If the end condition is satisfied, stop, and return the best solution in the
current population.

6. [Loop] Otherwise go to step 2 and repeat this process.

The outline of a basic genetic algorithm presented above is actually very general.
There are many things that can be implemented differently in various scenarios and
problems. For example, the first question to address is how to create chromosomes
and what type of encoding to use. The chromosome should in some way contain
information about the solution which it represents. The most common way of en-
coding a chromosome is to use a binary string. Each chromosome has one binary
string and each bit in this string can represent some characteristic of the solution.
Sometimes the whole string can represent a number. Regardless of the choice that is
ultimately made, there are many different ways of encoding a chromosome and how
to go about doing this depends mainly on the problem to be solved.

After deciding on what encoding scheme to use, one then needs to decide on
how to make a suitable crossover. Crossover selects genes from parent chromo-
somes and creates a new offspring. The simplest way to accomplish this is to choose
some crossover point at random so that everything before this point copies from the
first parent to the second parent and then everything after a crossover point copies
just from the second parent. However, there are also many other ways to make a
crossover. Crossovers can be rather complicated and often depends on the encod-
ing of the chromosome. Selecting a good crossover method for a specific problem
can significantly improve the performance time of the genetic algorithm. After a
crossover is performed, mutation takes place. This is to help prevent solutions in a
given population from falling into a local minimum of the solved problem. Mutation
randomly changes some of the new offspring. For binary encoding, for example, we
can switch a few randomly chosen bits from 1 to 0 or from 0 to 1. Mutation depends
on both the encoding and the crossover.
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Genetic algorithms have two critical parameters: crossover probability and muta-
tion probability. Crossover probability indicates how often a crossover will be per-
formed. If there is no crossover, then the offspring are an exact copy of the parents.
If there is a crossover, then the offspring are made from parts of the parents’ chromo-
some. If the crossover probability is 100%, then all the resulting offspring are made
by the crossover. If it is 0%, then a whole new generation is made from the exact
copies of chromosomes from the old population. However, this does not mean that
the new generation is the same. A crossover is made with the hope that a new set of
chromosomes will contain the good parts of the old chromosomes so that perhaps the
new chromosomes will be better. However, it is a good idea to also let at least some
part of the population survive to the next generation. Mutation probability indicates
how often the parts of the chromosome will be mutated. If there is no mutation, then
the offspring are taken after the crossover without any change. If mutation is per-
formed, then part of chromosome is changed. If mutation probability is 100%, then
the whole chromosome is changed, if it is 0%, nothing is changed. Mutation is made
in order to prevent the genetic algorithm from also falling into local minimums.

Another important parameter is the population size. Population size indicates how
many chromosomes are in one generation of the population. If there are too few
chromosomes, genetic algorithms have few possibilities to perform crossovers and
only a small part of the search space is explored. On the other hand, if there are too
many chromosomes, the genetic algorithm slows down. Research has shown that
after some limit, which depends mainly on encoding and the problem, it is no longer
useful to increase the population size because it does not make solving the problem
any faster.

Chromosomes are then selected from the population to be parents to the crossover.
The question is how to select these chromosomes. According to Darwin’s theory of
evolution, the best chromosomes should survive and create new offspring. There are
many methods on how to select the best chromosomes. Some examples include the
roulette wheel selection, Boltzman selection, tournament selection, rank selection,
steady state selection and so on. In the roulette wheel method, for example, the
parents are selected according to their fitness. The better the chromosomes are, the
more chances they have to be selected. Rank selection first ranks the population and
then every chromosome receives a fitness score from this ranking. When creating
a new population by crossover and mutation, there is always a chance that we will
lose the best chromosome. Elitism is the name of a method, which first copies the
best chromosome, or a few of the best chromosomes, to a new population leaving
the rest to be done in the more traditional way. Elitism can very rapidly increase
performance of GA because it prevents losing the best found solution.

In spite of enjoying a considerable amount of praise and success, it is important
to remember that a genetic algorithm does not provide a magic bullet solution to all
minimization or maximization problems. In many cases other algorithms are faster
and more practical. However, for problems with a large parameter space and where
the problem itself can be easily specified, genetic algorithms can be an appropriate
method to arrive at a solution which would otherwise seem daunting if not perhaps
impossible to find.
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Genetic algorithms are still a very rapidly evolving field and new research results
in this area are frequently published, indicating that there is always room for im-
provements in the existing implementations of the algorithm. The simplest case of
applying genetic algorithms to optimize functions refers to the study of problems in
which one seeks to minimize or maximize a real function by systematically choos-
ing the values of real or integer variables from within an allowed set. The example
provided below is meant only to illustrate a basic application of a genetic algorithm
to the simplest kind of optimization problem and it is very reasonable to expect that
improvements can be made to the code. The test function used is given by:

f (x,y) = 15xy(1− x)(1− y)sin(πx)sin(πy)

which has a known global maximum at f (0,0). The initial parameters used for
starting the genetic algorithm were crossover= 80%, mutation= 5%, population size
= 100, generation size = 2000 and chromosome size = 2.

public delegate double GAFunction(double[] values);
private static Random rand = new Random();

//A Genetic Algorithm class
public class GA
{

public double MutationRate;
public double CrossoverRate;
public int ChromosomeLength;
public int PopulationSize;
public int GenerationSize;
public double TotalFitness;
public bool Elitism;
private ArrayList CurrentGenerationList;
private ArrayList NextGenerationList;
private ArrayList FitnessList;
static private GAFunction getFitness;
public GAFunction FitnessFunction
{

get { return getFitness; }
set { getFitness = value; }

}

//Constructor with user specified crossover rate,
//mutation rate, population size, generation size
//and chromosome length.

public GA(double XoverRate, double mutRate, int popSize,
int genSize, int ChromLength)

{
Elitism = false;
MutationRate = mutRate;
CrossoverRate = XoverRate;
PopulationSize = popSize;
GenerationSize = genSize;
ChromosomeLength = ChromLength;

}
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//Method which launches the GA into execution mode.

public void LaunchGA()
{

//Create the arrays to hold the fitness,
//current and next generation lists
FitnessList = new ArrayList();
CurrentGenerationList = new ArrayList(GenerationSize);
NextGenerationList = new ArrayList(GenerationSize);
//and initilize the mutation rate.
Chromosome.ChromosomeMutationRate = MutationRate;

//Create the initial chromosome population by repeatedly
//calling the user supplied fitness function
for (int i = 0; i < PopulationSize; i++)
{
Chromosome g = new Chromosome(ChromosomeLength, true);
CurrentGenerationList.Add(g);

}
//Rank the initial chromosome population
RankPopulation();

//Loop through the entire generation size creating
//and evaluating generations of new chromosomes.
for (int i = 0; i < GenerationSize; i++)
{
CreateNextGeneration();
RankPopulation();

}
}

//After ranking all the chromosomes by fitness, use a
//"roulette wheel" selection method that allocates a large
//probability of being selected to those chromosomes with the
//highest fitness. That is, preference in the selection process
//is biased towards those chromosomes exhibiting highest fitness.

private int RouletteSelection()
{

double randomFitness = rand.NextDouble() * TotalFitness;
int idx = -1;
int mid;
int first = 0;
int last = PopulationSize - 1;
mid = (last - first) / 2;
while (idx == -1 && first <= last)
{
if (randomFitness < (double)FitnessList[mid])
{ last = mid; }
else if (randomFitness > (double)FitnessList[mid])
{ first = mid; }
mid = (first + last) / 2;
if ((last - first) == 1) idx = last;

}
return idx;

}
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// Rank population and then sort it in order of fitness.

private void RankPopulation()
{

TotalFitness = 0;
for (int i = 0; i < PopulationSize; i++)
{
Chromosome g = ((Chromosome)CurrentGenerationList[i]);
g.ChromosomeFitness = FitnessFunction(g.ChromosomeGenes);
TotalFitness += g.ChromosomeFitness;

}
CurrentGenerationList.Sort(new ChromosomeComparer());
double fitness = 0.0;
FitnessList.Clear();
for (int i = 0; i < PopulationSize; i++)
{
fitness += ((Chromosome)CurrentGenerationList[i]).

ChromosomeFitness;
FitnessList.Add((double)fitness);

}
}

//Create a new generation of chromosomes. There are many
//different ways to do this. The basic idea used here is
//to first check to see if the elitist flag has been set.
//If so, then copy the chromosomes from this generation
//to the next before looping through the entire chromosome
//population spawning and mutating children. Finally, if the
//elitism flag has been set, then copy the best chromosomes
//to the new population.

private void CreateNextGeneration()
{

NextGenerationList.Clear();
Chromosome g = null;
if (Elitism)
g = (Chromosome)CurrentGenerationList[PopulationSize - 1];

for (int i = 0; i < PopulationSize; i += 2)
{
int pidx1 = RouletteSelection();
int pidx2 = RouletteSelection();
Chromosome parent1, parent2, child1, child2;
parent1 = ((Chromosome)CurrentGenerationList[pidx1]);
parent2 = ((Chromosome)CurrentGenerationList[pidx2]);

if (rand.NextDouble() < CrossoverRate)
{ parent1.Crossover(ref parent2, out child1, out child2); }
else
{

child1 = parent1;
child2 = parent2;

}
child1.Mutate();
child2.Mutate();
NextGenerationList.Add(child1);
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NextGenerationList.Add(child2);
}
if (Elitism && g != null) NextGenerationList[0] = g;
CurrentGenerationList.Clear();
for (int i = 0; i < PopulationSize; i++)
CurrentGenerationList.Add(NextGenerationList[i]);

}

//Extract the best values based on fitness from the current
//generation. Since the ranking process already sorted the
//latest current generation list, just pluck out the best
//values from the current generation list.

public void GetBestValues(out double[] values, out double fitness)
{

Chromosome g=((Chromosome)CurrentGenerationList[PopulationSize
-1]);

values = new double[g.ChromosomeLength];
g.ExtractChromosomeValues(ref values);
fitness = (double)g.ChromosomeFitness;

}
}

public class Chromosome
{

public double[] ChromosomeGenes;
public int ChromosomeLength;
public double ChromosomeFitness;
public static double ChromosomeMutationRate;

//Chromosome class constructor
//Actual functionality is to set up an array
//called ChromosomeGenes and depending on the
//boolean flag createGenes, it may or may not
//fill this array with random values from 0 to 1
//up to some specified ChromosomeLength

public Chromosome(int length, bool createGenes)
{

ChromosomeLength = length;
ChromosomeGenes = new double[length];
if (createGenes)
{
for (int i = 0; i < ChromosomeLength; i++)

ChromosomeGenes[i] = rand.NextDouble();
}

}

//Creates two offspring children using a single crossover point.
//The basic idea is to first pick a random position, create two
//children and then swap their genes starting from the randomly
//picked position point.

public void Crossover(ref Chromosome Chromosome2, out Chromosome
child1, out Chromosome child2)

{
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int position=(int)(rand.NextDouble()*(double)ChromosomeLength);
child1 = new Chromosome(ChromosomeLength, false);
child2 = new Chromosome(ChromosomeLength, false);
for (int i = 0; i < ChromosomeLength; i++)
{
if (i < position)
{

child1.ChromosomeGenes[i] = ChromosomeGenes[i];
child2.ChromosomeGenes[i] = Chromosome2.ChromosomeGenes[i];

}
else
{

child1.ChromosomeGenes[i] = Chromosome2.ChromosomeGenes[i];
child2.ChromosomeGenes[i] = ChromosomeGenes[i];

}
}

}

//Mutates the chromosome genes by randomly switching them around
public void Mutate()
{

for (int position = 0; position < ChromosomeLength; position++)
{
if (rand.NextDouble() < ChromosomeMutationRate)

ChromosomeGenes[position] =
(ChromosomeGenes[position] + rand.NextDouble()) / 2.0;

}
}

//Extracts the chromosome values
public void ExtractChromosomeValues(ref double[] values)
{

for (int i = 0; i < ChromosomeLength; i++)
values[i] = ChromosomeGenes[i];

}
}

//Compares two chromosomes by their fitness values
public sealed class ChromosomeComparer : IComparer
{

public int Compare(object x, object y)
{

if (!(x is Chromosome) || !(y is Chromosome))
throw new ArgumentException("Not of type Chromosome");

if (((Chromosome)x).ChromosomeFitness >
((Chromosome)y).ChromosomeFitness)

return 1;
else if (((Chromosome)x).ChromosomeFitness ==

((Chromosome)y).ChromosomeFitness)
return 0;

else
return -1;

}
}
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public static double GenAlgTestFcn(double[] values)
{
if (values.GetLength(0) != 2)

throw new Exception("should only have 2 args");
double x = values[0]; double y = values[1];
return (15*x*y*(1-x)*(1-y)*Math.Sin(Math.PI*x)*Math.Sin(Math.PI*y));

}

public static void GeneticAlgorithmTest()
{
GA ga = new GA(0.8, 0.05, 100, 2000, 2);
ga.FitnessFunction = new GAFunction(GenAlgTestFcn);
ga.Elitism = true;
ga.LaunchGA();

double[] values; double fitness;
ga.GetBestValues(out values, out fitness);

Console.WriteLine("Calculated max values are: \nx_max = {0}
\ny_max = {1}\n",values[0],values[1]);

Console.WriteLine("f(x_max,y_max) = f({0},{1}) = {2}", values[0],
values[1], fitness);

Console.WriteLine("\nPress ENTER to terminate program");
Console.ReadLine();

}

OUTPUT:
Finding global optimum values to the function:

f(x,y) = 15xy(1-x)(1-y)sin(pi*x)sin(pi*y)

by using a genetic algorithm with initial parameters:

Crossover =80%
Mutation =5%
Population size =100
Generations =2000
Chromosome size =2

Actual max values are: x_max = 0.5 and y_max = 0.5

Calculated max values are:
x_max = 0.500085205730929
y_max = 0.500116775161641

f(x_max,y_max) =
f(0.500085205730929,0.500116775161641) = 0.937499824963427

To further illustrate the power of genetic algorithms and how they have to be indi-
vidually designed and constructed before they can be applied to solve specific prob-
lems, consider an example where we want to evolve a random string into a particular
unknown target string supplied by the user at runtime. Since there are only a finite
number of ASCII characters to check, one could conceivably write a program to loop
through the entire set of all the available ASCII characters while attempting to indi-
vidually match them against each character in the target string. As of date, there are
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a total of 128 ASCII characters, of whom 33 are non-printable and 94 are printable
characters. This means that for every character in the target string we have to check
at most 94 times to see if it matches one of the printable ASCII characters. As a re-
sult, even for a relatively short word like “bunny”, which contains just 5 characters,
we need to do at most 94×5 or 470 comparison checks. Therefore, the cost of using
larger target strings can quickly escalate and slow down the computer time needed
to find a correct character-by-character match and ultimately a complete solution to
this problem.

Genetic algorithms, however, can significantly cut down the cost and time needed
to solve this problem. While the basic ideas behind genetic algorithms remain the
same, the gritty details differ considerably from problem to problem and must there-
fore be worked out individually in every situation. For example, in the string match-
ing problem just introduced above, the genetic algorithm starts by making random
guesses as to what the solution is. Then for each guess the genetic algorithm re-
ceives back one piece of very useful information in the form of a “fitness” value of
the string. Therefore how we define the fitness function to calculate a fitness value
for the string is a crucial piece of information in determining how well the genetic
algorithm will work. Ultimately we would like to have the fitness function embody
the idea of “survival of the fittest” in order to remain within the guidelines of genetic
algorithms.

For the case of breeding correct strings, it is natural to define “fitness” to be the
percentage of correct letters in each guess. This fitness measure is fine for short
phrases, but problematic for long phrases because as we increase the length of the
target phrase, the fitness difference between two phrases that differ by one correct
letter becomes vanishingly small which could trigger pre-mature termination of the
algorithm thereby yielding false results. Another important issue to consider is how
the offspring selection is made. There are several ways one could imagine going
about doing this. As a first approximation, we could allow only the fittest 50% of
the population to reproduce. Unfortunately, this approach has the downside of not
permitting much exploration in the DNA search space. After all, unfit individuals
may still have some novel genes to contribute to the gene pool, so we don’t want to
discard genetic diversity too hastily. A much better approach is to use the normal-
ized fitness scores as a sort of roulette wheel as described earlier in this section. This
way, every individual has a chance of being selected with a probability equal to that
of its fitness just like in nature. With the above scheme, we can now randomly select
individuals to reproduce for the next generation. The actual “mating” can also mean
several things. However, in the simplest case we perform an operation that is similar
to a real-world occurrence called crossover. When two strings are crossed, the result
is two new strings, each of which contains part of the genetic material of the parents.
First, a random crossover point is chosen. At that point in both strings the genetic
material from the left side of one parent is spliced to the material from the right side
of the other parent. A second child can be produced by swapping and pairing the
other sides. In this way, portions of the genetic material from two fit individuals can
be merged so as to potentially produce even more viable offspring. Although some
crossovers can also produce less fit individuals, this minor setback usually lasts only

© 2010 by Taylor and Francis Group, LLC



Optimization Methods 565

a single generation before the law of survival of the fittest tends to again favor sur-
vival for only the fittest offspring. Another important consideration is the mutation
operator. Once again we do not want to apply the mutation operator to every member
of the population, so we randomly select which offspring gets mutated genes. Muta-
tion allows for entirely new genetic material to enter the population, which can yield
tremendous rewards if the mutation is favorable. However, it is usually the case that
mutations are detrimental and so is makes sense to allow mutation only for a small
percentage of the population. These ideas are all taken into consideration in the C#
implementation of the final genetic algorithm example below. Here the user is asked
to enter a target search word or phrase and then a randomized string is made to evolve
to the target string using the help of a genetic algorithm.

public class strChromosome
{

public char[] Value;
public int Fitness;

//Constructor
public strChromosome(int size)
{

Value = new char[size];
Fitness = 0;

}

//Gets a random character from the available
//range of ASCII character values
public void RandomValue(Random rand)
{

for (int j = 0; j < Value.Length; j++)
{

Value[j] = (char)((126 * rand.NextDouble()) + 32);
}

}

//Calcultes the fitness value by comparing the difference
//between target and current string values using their
//ASCII character values one by one.
public void CalculateFitness(char[] target)
{

int fitness = 0;
for (int j = 0; j < Value.Length; j++)
{

fitness += Math.Abs(Value[j] - target[j]);
}
Fitness = fitness;

}
}

public class strGA
{

public double elitismRate = 0.10;
public double mutationRate = 0.25;
public string targetWord;
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public int maxGenerations;
public int maxPopulationPerGeneration;
public List<strChromosome> Population;
public List<strChromosome> NextGeneration;

public void LaunchGA()
{

//Target string to find
char[] target = targetWord.ToCharArray();
//Size of string to find
int targetSize = target.Length;

//Instantiate result object to hold results
GASearchResult result = new GASearchResult();

//Initialize Population and nextGeneration lists
Population = new

List<strChromosome>(maxPopulationPerGeneration);
NextGeneration =

new List<strChromosome>(maxPopulationPerGeneration);

//Generate Initial population
GenerateInitialPopulation(targetSize,

maxPopulationPerGeneration);

//Print headings
Console.WriteLine("\nString Value\tFitness Value\tGeneration

Number\n");
//Loop to process each generation
for (int generationCounter = 0;

generationCounter < maxGenerations; generationCounter++)
{

//Calculate fitness
CalculateFitness(target);

//Extract best values so far
result.Best = GetBest();
result.GenerationNumber = generationCounter;
Console.WriteLine("{0}\t\t{1}\t\t{2}",

new String(result.Best.Value), result.Best.Fitness,
result.GenerationNumber);

//Get current best results and check them against
//target value. If they are equal, then stop
if (result.Best.Fitness == 0) break;

//Mate population
MatePopulation(targetSize, maxPopulationPerGeneration,

elitismRate, mutationRate);

//and swap them
SwapPopulation();

}
Console.WriteLine("\nFINAL BEST RESULTS:");
Console.WriteLine("{0}\t\t{1}\t\t{2}", new

String(result.Best.Value), result.Best.Fitness,
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result.GenerationNumber);
}

private void GenerateInitialPopulation(int targetSize,
int maxPopulationPerGeneration)

{
for (int i = 0; i < maxPopulationPerGeneration; i++)
{

strChromosome c = new strChromosome(targetSize);
c.RandomValue(rand);
Population.Add(c);

}
}

private void CalculateFitness(char[] target)
{

foreach (strChromosome c in Population)
{ c.CalculateFitness(target); }

}

private strChromosome GetBest()
{

strChromosome best = null;
foreach (strChromosome c in Population)
{

if (best == null)
{

best = c;
continue;

}
if (c.Fitness < best.Fitness) best = c;

}
return best;

}

private void MatePopulation(int targetSize,
int maxPopulationPerGeneration,
double elitismRate, double mutationRate)

{
int elitSize=(int)(maxPopulationPerGeneration*elitismRate);
Elitism(elitSize);
for (int i = elitSize; i < maxPopulationPerGeneration; i++)
{

NextGeneration.Add(new strChromosome(targetSize));
int i1=(int)(rand.NextDouble()*maxPopulationPerGeneration);
int i2=(int)(rand.NextDouble()*maxPopulationPerGeneration);
int spos =(int)(rand.NextDouble()*targetSize);
NextGeneration[i].Value =
(new String(Population[i1].Value).Substring(0,spos)

+ new String(Population[i2].Value).Substring(spos,
targetSize - spos)).ToCharArray();

if (rand.NextDouble() < mutationRate)
Mutate(NextGeneration[i], targetSize, rand);

}
}
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private void Mutate(strChromosome Chromosome, int targetSize,
Random rand)

{
int ipos = (int)(rand.NextDouble() * targetSize);
int mutantGene = (int)(rand.NextDouble()*126)+32;
Chromosome.Value[ipos] = (char)mutantGene;

}

private void Elitism(int elitSize)
{

Population.Sort(new CompareByFitness());
for (int i = 0; i < elitSize; i++)
{ NextGeneration.Add(Population[i]); }

}

private void SwapPopulation()
{

Population.Clear();
foreach (strChromosome c in NextGeneration)
{ Population.Add(c); }
NextGeneration.Clear();

}
}

public class CompareByFitness : IComparer<strChromosome>
{

//Compares two string chromosome objects by their fitness values
public int Compare(strChromosome obj1,strChromosome obj2)
{

return obj1.Fitness.CompareTo(obj2.Fitness);
}

}

public class GASearchResult
{

public strChromosome Best;
public int GenerationNumber;

}

public static void GeneticAlgorithmStringSearchTest()
{

Console.WriteLine("Testing a genetic algorithm to search
a random string for a target value.\n");

Console.Write("Enter a target string:");
string targetString = Convert.ToString(Console.ReadLine());

strGA ga = new strGA();
ga.targetWord = targetString;
ga.maxGenerations = 180;
ga.maxPopulationPerGeneration = 30000;
ga.LaunchGA();

Console.WriteLine("\nPress ENTER to terminate program");
Console.ReadLine();

}
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Testing a genetic algorithm to search a random
string for a target value.

String Value Fitness Value Generation Number
evfcz 24 0
evfcz 24 1
atpe- 19 2
bwnpm 16 3
bwnpm 16 4
bznkx 9 5
axnkx 8 6
axnkx 8 7
drpny 7 8
cunnx 2 9
cunnx 2 10
cunnx 2 11
cunnx 2 12
cunnx 2 13
cunnx 2 14
cunnx 2 15
cunnz 2 16
cunnx 2 17
bunnx 1 18
bumny 1 19
bunnx 1 20
bumny 1 21
cunny 1 22
bunny 0 23

FINAL BEST RESULTS:
bunny 0 23
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