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Preface

The theory of differential equations in abstract spaces is a fascinating
field with important applications to a number of areas of analysis and
other branches of mathematics. At the present time, there is no single book
that is self-contained and simple enough to appeal to the beginner.
Furthermore, if one desires to give a course so as to expose the student
to this branch of research, such a book becomes handy. This being the
motivation, the aim of our book is, in fact, to introduce the nonspecialist
to this elegant theory and powerful techniques. But for some familiarity
with the elements of functional analysis, all the important results used in
this book are carefully stated in the appendixes so that, for the most part,
no other references are needed. The required theory, from the calculus of
abstract functions and the theory of semigroups of operators, used in
connection with differential equations in Banach spaces is treated in detail.

We have tried to present the fundamental theory of differential equations
in Banach spaces: the first three chapters form an integrated whole
together with, perhaps, Sections 6.1 and 6.3 of Chapter 6. Chapter 4 is
devoted to the study of differential inequalities, mostly, in Hilbert spaces.
The theory developed in Chapter 5 is interesting in itself and could be

ix



X Preface

read independently. This also applies to Chapter 4. Throughout the book
we give a number of examples and applications to functional and partial
differential equations which help to illustrate the abstract results developed.
In most sections there are several problems with hints directly related to
the material in the text. The notes at the end of each chapter indicate the
sources which have been consulted and those whose ideas are developed.
Several references are also included for further study on the subject. We
hope that the reader who is familiar with the contents of this book will be
fully equipped to contribute to this field as well as read with ease the
current literature.
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Chapter 1

The Calculus of Abstract Functions

1.0. Introduction

In this preliminary chapter the reader will be familiarized with those
parts of the calculus of abstract functions that are essential in the study of
differential equations in Banach and Hilbert spaces. By an abstract function
we mean a function mapping an interval of the real line into a Banach space.
We begin by defining weak and strong continuity and differentiability of
abstract functions and prove a form of the mean value theorem for abstract
functions. Next we develop the Riemann integral for abstract functions and
those properties of this integral which are constantly used in the text. We
then outline abstract integrals of the Lebesgue type (Pettis and Bochner
integrals) and state some basic results. We also sketch the abstract Stieltjes
integral for functions mapping a Banach space into another Banach space.
Finally we treat in some detail the Gateaux and Fréchet differential of
functions mapping a Banach space into another Banach space.

1



2 1. The Calculus of Abstract Functions

1.1. Abstract Functions

Let X be a Banach space over the field of real numbers and for any
x € X, let | x] denote the norm of x. Let J be any interval of the real line R.
A function x:J— X is called an abstract function. A function x(¢) is said
to be continuous at the point t, € J, if lim,_,, [[x()—x (1)l = 0; if x:J > X
is continuous at each point of JJ, then we say that x is continuous on J and
we write x € C[J, X].

Abstract functions are in many ways reminiscent of ordinary functions.
For example, a continuous abstract function maps compact sets into
compact sets. Also, a continuous abstract function on a compact set is
uniformly continuous. These statements can be proved in the same way that
we prove them in a metric space.

An abstract function x(#) is said to be

(i) Lipschitz continuous on J with Lipschitz constant K if
[x(t) — x@l < K|t —ta], t, 1, €J;

(i1) uniformly Holder continuous on J with Holder constant K and
exponent B, if

lx(t) = xR < Klty =10, t,1,€d, 0<B<I.

It is clear that Lipschitz continuity implies Holder continuity (with f=1)
but the converse fails as the classical example x(t)=\ﬁ, K=1, =1,
shows. The (strong) derivative of x(¢) is defined by

xX'(t) = lirr}) [x(t+ A — x(O)]/At
At—

where the limit is taken in the strong sense, that is,

Alimo Ilx(t+h) — x(O}/h — x'(O)] = 0.
{—

The foregoing concepts of continuity and differentiability are defined in
the strong sense. The corresponding weak concepts are defined as follows.
Let X* denote the conjugate of X, that is, the space of all bounded linear
functionals on X. An abstract function x () is said to be weakly continuous
(weakly differentiable) at t =t, if for every ¢ € X*, the scalar function
¢ [x ()] is continuous (differentiable) at 7 = ¢,. In the sequel, limits shall be
understood in the strong sense unless we write w-lim to indicate that we are
taking the weak limit. Also continuity and differentiability shall be under-
stood in the strong sense unless otherwise specified.
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A family F= {x(#)} of abstract functions with domain [g, b] and range
in X is said to be equicontinuous if for every & > 0 there exists a 6 = d(e)
which depends only on ¢ such that for every ¢,,¢, € [a, b] with |t; —t,]| <,
|x(t;)—x(2,)| < e for all x e F.

The following form of the Ascoli-Arzela theorem for abstract functions
will be useful. Its proof is a special case of a more general theorem [63].

THEOREM [.1.1. Let F= {x(t)} be an equicontinuous family of functions
from [a,b] into X. Let {x,()},>., be a sequence in F such that for each
t, € [a, b] the set {x,(¢,):n> 1} is relatively compact in X. Then, there is
a subsequence {x,, (N}¥~, which is uniformly convergent on [a, b].

1.2. The Mean Value Theorem

For real-valued functions x(¢), the mean value theorem is written as an
equality
x(b) — x(a) = x'(c)(b—a), a<c<hb.
There is nothing similar to it as soon as x(f) is a vector-valued function as
one can see from the example x(¢)=(—1 +cost,sin¢) with a=0 and
b=2n.

For abstract functions the following form of the mean value theorem is
useful.

Theorem 1.2.1. If x e C[[a,b], X] and | x'(1)| < K, a<t < b, then
x(®) — x(@)| < K(b—a).

Proof: Choose a functional ¢ € X* such that |¢|| =1 and ¢ [x(b)—x(a)]
= ||x(b)—x(a)|. Such a choice of ¢ is possible in view of Appendix IIL.
Define the real-valued function f(#) = ¢ [x(r)]. Then

LAG+hm) —f(O]/h = ¢ Lx(t+h) — x(1)]1/h.

Since ¢ is a continuous linear functional and x’(r) exists, it follows that
J'(@) exists for a<t<b and f'(1) = ¢[x'(+)]. Hence, the classical mean
value theorem applies to f(¢) and consequently there exists a 7, such that

S —fla) = f(x)(b—a), a<t<b. (L.2.1)
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In view of (1.2.1) and the choice of ¢ we obtain

1x®) — x(a@)l| = ¢[x(b) — x(@)] = f'(r)(b—a) = ¢[x'(1)](b—a)
< I¥@I(b—a) < K(b—a)

and the proof is complete.

CoroLLARY 1.2.1. If xeC[[a,b],X] and x'(1)=0, a<t<b, then
x(t) = const,

ProBLEM 1.2.1. Let x € C[[a,b], X] and fe C[[a,b], R]. Assume that
x and f have derivatives on [a,b]— D where D is a denumerable set and
X" (O <f'(2), t € [a,6] — D. Then

Ix(5) — x@| < f(b) - fl@).

1.3. The Riemann Integral for Abstract Functions

Here we shall define the Riemann integral for abstract functions and
prove the fundamental theorem of calculus. We also define improper
integrals and discuss some properties which will be constantly used in this
book.

Let x:[a,b]— X be an abstract function. We denote the partition
(a=t, <ty <:-<t,=b) together with the points 7; (4, <7, <t;4,, i=
0,1,2,...,n—1) by n and set || = max; |t;, ,—¢;]. We form the Riemann
sum

n—1
S, = i;o (i1 — 1) x(7).

Iflim S, exists as {7| — 0 and defines an element /in X which is independent
of 7, then I is called the Riemann integral of the function x(¢) and is denoted
by

I= L bx(t) dr.

THeOREM 1.3.1. If x € C[[a,b], X], then the Riemann integral {3 x(r) dt
exists.

The proof of this theorem makes use of the facts that a continuous
function on a closed, bounded interval is uniformly continuous and that X
is complete. We shall omit the proof.
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Using the definition of Riemann integral one can easily verify the follow-
ing properties:

b a
@) f x()dt = —f x(t) dt
a b
provided that one of the integrals exist.
b c b
(ii) f x(ndt = f x() dt + f x(t) dt, a<c<b

provided that the integral on the left exists.
(iii) If x(¢) = x,, for all ¢ € [a, b], then

b
f XO dt = (b—a)xO.

(iv) If r=w(7) is an increasing continuous function on [a, ] with
a=w(a) and b = w(P), then

b 8
f x() dt= f x[w(@)]w'(z) dr

provided that the integral on the left exists.
(v) If xeC[[a,b], X], then

|

Indeed, from the definition of the Riemann sum we have

b b
f x(8) dt’ < f lx ()| dt.

n—1
IS4 <) ¥ i =1)x(x)

n—1
< i;0(1i+ =) Ix @I

and the result follows by taking limits as |z| —0 and the fact that ||x (9|
is continuous and hence integrable on [a, b].

THeOREM 1.3.2. If {x,(1)} is a sequence of continuous abstract functions
which converges uniformly to a necessarily continuous, abstract function
x(f) on the interval [a, 6], then

b b
lim | x,(0)dt = f x(t) dt.

n-® Jg
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Proof: We have

fbx"(t) dt — fbx(t) dt H < fb [|x,(&) — x (O]} dt
< max [x:(8) = x(D (b—a) > 0 as n— oo,
which proves the stated result. '
THeoreM 1.3.3. If x e C[[a, b], X], then
(d/dr) ftx(s) ds = x(2), a<t<b

Proof: Set y(t) = [ x(s)ds. Then, in view of the fact that x(¢) is uniformly
continuous on [a, b], we have

t+ h
1Dy (e+h) =y — x©)] = Uh f [x(s) — x()] ds

< max |x(s)—x@®| -0 as h-0
|s—t| < k|

and the proof is complete.

THEOREM 1.3.4. If the function x: [a, b] — X is continuously differentiable
on (a, b), then for any a, § € (a, b) the following formula is true:

fﬁx'(s) ds = x(f) — x().

Proof: By Theorem 1.3.3

(d/dt) [f!x'(s) ds — x(t):l =0, a<t<Bb

-

Hence

f’x’(s) ds — x(#) = const. (1.3.1)

For t = a we find the value of the const = — x(«) and the result follows by
setting ¢ = fin (1.3.1).

REMARK 1.3.1. In elementary calculus, if x is continuous on [a, b], then

fbx(t) dt = (b—a)x(¢)
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for some & € (a, b). This is not true for vector-valued continuous functions
x as we can see from the simple example x(f) = (cost,sint), a=0 and
b=nm.
Let x: [a, b) > X be an abstract function which is not defined at b < oo.
The improper integral |5 x(f)dt is defined as
b—¢
lim x(f) dr if b<

=0+ Ja

and as

M
lim x(t) dt if b=
Moo Ja
provided that the limit exists.
The following theorem which asserts that integration commutes with
closed operators (in particular, integration commutes with bounded
operators) will be used often.

THEOREM 1.3.5. Let 4 on D(A) be a closed operator in the Banach space X’
and x € C[[a,b), X] with b < oo. Suppose that x(r) € D(4), Ax(¢) is con-
tinuous on [a, b) and that the improper integrals

b b
f x(¢) dt and f Ax() dt

exist. Then

b b b
f x(t)dte D(A) and A f x(t)dt = f Ax(t) dt.

Proof: We shall prove the theorem when b < co. The case b = oo is left to
the reader. Set ¢ = b—¢ where ¢ > 0 is sufficiently small. For a partition « of
[a,b] we have

n—1

Y. x(@)(t; 1 — 1) € D(A)

i=0

S

and
n-1
Gn = 'Zo Ax @)ty — 1) = Afy.
In view of the hypotheses, as n— o0 and |n] >0

So fcx(t) dt and Af,, > chx(t) dt.
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Since A is a closed operator on D(A4), it follows that

fcx(t) dte D(4)  and Afcx(t) dt = chx(t) dr.

Setting ¢ = b—n""! in the previous result and using the definition of an

improper integral and the fact that A is closed, the desired result follows
upon taking limits as n — co.

ProBLEM 1.3.1. Define the rectangle
Ry = {(t,x)e Rx X:|t—1ty] <o, [x—xol < B}.
Let f: R, — X be a function continuous in ¢ for each fixed x
I/l <M, (Lx)eR,
and
1/t x) — (6, x| € Klxy—xall,  (6,x),(t,x;) € Ro.
Let o, B, K, M be positive constants such that aM < f. Then there exists
one and only one (strongly) continuously differentiable function x(f) such
that
dx(t)/dt = f[t,x(8)], [t—to] < a and x(ty) = xg.

[Hint: Use Theorems 1.3.3 and 1.3.4 and the successive approximations
t
xo(H) = xo,  xu(1) = Xo + f SIS, xa-1(8)]ds,  [t—to] < @
fo

Justify passing to the limit under the integral sign.]

1.4. Abstract Lebesgue Integrals

Here we shall outline the Bochner and Pettis integrals which are defined
relative to the strong and weak topology, respectively, on a Banach space X.
These integrals are of the Lebesgue type. Let us begin with some notions.

Let (€2, S, m) be a measure space. The function x: Q — X is said to be

(i) countably valuedin Q if it assumes at most a countable set of values
in X, assuming each value different from zero on a measurable set;

(ii) weakly measurable in Q if the scalar function ¢ [x(g)] is measur-
able for every ¢ € X'*;
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(iii) strongly measurable in Q if there exists a sequence {x,(6)}>., of
countably-valued functions (strongly) converging almost everywhere in Q
to x(o).

One can prove that in a separable space X the concepts of weak and
strong measurability coincide.

DEerINITION 1.4.1. A function x: Q— X is said to be Pettis integrable in Q
if for every Fe S there exists a vector x; € X such that for every ¢ € X'*

(xr) = fF ¢ [x(c)] dim (14.1)

where the integral in (1.4.1) is supposed to exist in the Lebesgue sense. By
definition

(P)fx(a) dm = xp.
It is not difficult to prove that in a reflexive space X the function x: Q - X

is Pettis integrable if and only if ¢[x(o)] is Lebesgue integrable in Q for
every ¢ € X*.

DEFINITION 1.4.2. A countably valued function x: Q — X iscalled Bochner
integrable in Q if ||x(o)| is Lebesgue integrable in €. By definition, for
every F
(B)f x(e)ydm = Y x;m(F; " F) (1.4.2)
F i1
where x;=x(o) foroe F,i=1,2,....

The Bochner integral for countably valued functions is well defined
since

[1x@nam = § 1m0 p.
F i=1

and so the series in (1.4.2) converges absolutely. It follows that

j| (B) L.\' (6) dm

< i x| m(F o F)

- U ff (o) dm.
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¢Uk@w4=¢[§ﬂﬂﬂﬁﬂ]

= 3 bGam(F )

Moreover

=f¢D@me
F

that is, the Pettis and Bochner integrals for countably valued functions
coincide.

DerFiNITION 1.4.3. A function x: Q— X is called Bochner integrable in Q
if there exists a sequence of countably valued, Bochner-integrable functions
x,(o) converging almost everywhere to x(g) and such that

lim f | x,(6) — x(o)| dm = 0. (14.3)
n—w® JOQ
By definition
(B) | x(6) dm = lim (B) | x,(o) dm. (14.4)
F n—w

We can establish that (1.4.3) is meaningful and that the Bochner integral
is independent of the particular sequence {x,(c¢)}. The following theorem
gives a necessary and sufficient condition for the existence of the Bochner
integral of the function x.

THEOREM 1.4.1.  The function x: Q — X is Bochner integrable if and only
if x (o) is strongly measurable and [ x(a)| is Lebesgue integrable in Q.

1.5. The Abstract Stieltjes Integral

Here we shall outline the abstract Stieltjes integral of a function
x: [a,b] = X with respect to a function y: [a,b]— Y. Let X, Y and Z be
three Banach spaces. A bilinear operator P: X' x Y — Z whose norm is less
than or equal to 1, that is, | P(x, y)|| < |x|| [y, is called a product operator.
We shall agree to write P(x,y)=xy. Let x: [a,b]—> X and y: [a,b]—> Y
be two bounded functions such that the product x(z)y(¢) € Z, for each
te[a,b] is linear in both x and y and |x()y(Of < x| Iy (for
example, x(#) = A(¢) is an operator with domain D[A(f)]>Y, or one of
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the functions x,y is a scalar function). We denote the partition
(a=ty<t, < <t,=b) together with the points 7; (/; <7; < t;4y, I =
0,1,...,n—1) by 7 and set |r| = max;|t;,  —t;|. We form the Stieltjes sum
n—1

Z x(@) (e ) — ()]

i=0

S, =

If the lim S, exists as |n| — 0 and defines an element / in Z independent of =,
then 7 is called the Stieltjes integral of the function x () by the function y(¢),
and is denoted by

b
f x(1) dy(1).

Notice that the Riemann integral of x (#) which we defined in Section 1.3 is
a special case of the Stieltjes integral, for the choice y(r)=1.

We first need to introduce the concept of total variation for abstract
functions. Consider the function y: [a,b] > X and the partition n:a=
ty<t; < - <t,=b. Form the sum

n—~1
V= ;) Iy (i s 1) = y (@I

The least upper bound of the set of all possible sums ¥V is called the
(strong) total variation of the function y(f) on the interval [a,b] and is
denoted by V.,2(p). If V,2(y) < o0, then y(¢) is called an abstract function
of bounded variation on [a, b]. From Theorem 1.2.1, it follows that, if y(¢)
has bounded derivative on [a, #], then it is of bounded variation on [a, b].

THEOREM 1.5.1. If x € C[[a,b], X] and y: [a,b] - Y is of bounded vari-
ation on [a, b], then the Stieltjes integral ij(t) dy (1) exists.

The proof of this theorem makes use of the uniform continuity of x(7)
on [a,b], the completeness of the space Z and the hypothesis that
Ix(@yOl < x| ly(®|. The details are left to the reader.

Most of the properties of the classical Stieltjes integral are also valid for
the abstract Stieltjes integral and can be varified directly from the definition.

ProBLEM 1.5.1. If xeC[[a,b],X] and y:[a,b]->Y is of bounded
variation on [a, b], then

b
sfhmwwum

< max (O V" Ly (0)].

b
fx@@m
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ProBLEM 1.5.2. If {x,()} is a sequence of continuous abstract functions
which converges uniformly to the necessarily continuous function x(z) on
the interval [a, &] and if y(¢) is of bounded variation on [a, &], then

b b
lim | x,(0)dy(®) = f x (1) dy(2).

n—+ o Jg

1.6. Gateaux and Fréchet Differentials

Let X and Y be real Banach spaces and f be a mapping from an open
set S of X into Y.

DerFmviTION 1.6.1.  If for a fixed point x € S and every point & € X the
lim [f(x+th) — f(x)]/t = &f(x, h)
t—0

exists, in the topology of Y, then the operator df(x, ) is called the Gateaux
differential of the function f at the point x in the direction A.

The Gateaux differential generalizes the concept of directional derivative
familiar in finite-dimensional spaces. (Actually, the existence of Gateaux
differential does not require a norm on X.) For a fixed x € S and 4 regarded
as a variable, the Gateaux differential defines a transformation from X
into Y. In the special case that f is linear df(x, k) =f(h). The example
f: R* > R defined by

fp) = X(x*+yY),  (6y)# (0,00 and  f(0,00=0

shows that df(x, 4) is not always linear in A. However, éf(x, h) is always
homogeneous in A. In fact, §f(x,0) = 0 and for 2 # 0, setting 7 = iz, we have

8f(x, k) = lim [f(x-+ 1hk) = f())1
= ’1}'}(‘,‘ Lf(x+1h) — f()])/1
= 18f(x, h).

ExaMPLE 1.6.1. If f: R"—> R where f(x)=f(x,, x;,...,x,) has continuous
partial derivatives with respect to each variable x;, then

of(x,h) = djdt [f(x+1h)),=o = 21[6f(x)/6xi] h;.
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A constant function has Gateaux differential equal to zero. The converse
is also true as we will see in Corollary 1.6.1. In a Hilbert space H, let
f+ H—> R, be given by f(x) = ||x||. Then
of(x, h) = (x, h)/|| x| for x #0.
Indeed
(lx+eall — Ixl)/e = (Ax 42kl — |x|2)/e(lx+ ekl + 1x])

= (20, )y + tNA1®)/(lx + el + [1x])
- (x,m/lx| as r-0.

If f: H—> R, is given by f(x)=(x,x), then clearly §f(x,h)=2(x,h).
Finally, if f: C[0, 1] > R defined by

1
ﬂn=Lgmﬁmm

where g, exists and is continuous with respect to s and x, then

1

gls,x(s) + th(s)] ds)

t=0

of(x,h) = (d/dt)(J:)

=f@mammnm
(4]

It is well known that the mean value theorem is not true for vector-valued
functions. However, it is true for functionals ¢: §— R where S is an open
set in X as the following theorem proves.

THEOREM 1.6.1. Let the Gateaux differential d¢(x,h) of a functional
¢: S— R exist for each point of a convex set ¥ < § (and any direction
in X'). Then for any pair of points x, x+ 4 € V there exists a number t € (0, 1)
such that

d(x+h) — d(x) = 6p(x+1h,h). (1.6.1)
Proof: Set F(t)= ¢(x+th). Then F: [0,1]— Rand
F'(r) = lim [¢(x+th+hAr) — ¢ (x+th)]/At
At—0

=op(x+thh), O<ir<I, (1.6.2)

which exists since x+theV for all re[0,1]. The classical mean value
theorem applied to F gives F(1)— F(0)= F'(zr) for some 7€(0,1) and
(1.6.1) follows.
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For functions f: S—Y which have Gateaux differentials the following
form of the mean value theorem is valid.

THEOREM 1.6.2. Let the Gateaux differential éf(x, #) of a function f: S—Y
exist at each point of a convex set V' < S (and any direction in X). Then
for any pair of points x, x+#4 € V there exists a number 7 € (0, 1) such that

1/ (x+h) = )N < 10f(x+7h, B)]. (1.6.3)

Proof: Let ¢ e X*. Define the functional ¢(x)= ¢[f(x)]. Then the
Gateaux differential of ¢ exists at each point in ¥ (and any direction in X).
In fact, since ¢p € X'*

[P (x+th) — d ()]t = $Lf(x+1th) — f()]/1
= ¢ [6f(x,M)] as -0,
In view of Theorem 1.6.1 there exists a point 7 € (0, 1) such that -
G(x+h) — P(x) = SP(x+1h,h)
= ¢[of(x+1h, h)]. (1.6.9)

If the vector f(x+h)—f(x) =0, then (1.6.3) is clearly valid. If f(x+h)—
S(x)# 0 for the pair of points (x, ), then we can choose the functional ¢
such that

L +h) —f()] = |fx+h) —f()]  and @]l =1
(Such a choice is possible by means of Appendix II1.) Then, using (1.6.4)

[fCe+h) =N = [ Lf(x+h) — f(0)]

= ¢ [6f(x+th,M]|
< [1f(x+zh, M| 14
< [0f(x+h, h)||

and the proof is complete.

Cororrary 1.6.1. If 6f(x, h) =0 for all points x in a convex set V < X
then f(x) = const on V.

As we have seen df(x,#) is not always linear in A. A set of sufficient
conditions, which guarantee the linearity in 4 of the Gateaux differential
df(x, h), is given in the following:
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PrROBLEM 1.6.1. Assume that

(i) Of(x,h) exists in a neighborhood of x, and is continuous in x at
the point x4;

(ii) 9f(xq, h) is continuous in 4 at the point A =0. Then, §f(x,h) is
linear in A.

[Hint: Use the homogeneity in 4 and (1.6.4) with ||¢|| = 1.]

DerFiNITION 1.6.2. If for a fixed point x € X the Gateaux differential
df(x, -) is a bounded linear operator mapping X into ¥, we write df(x, h) =
J'(x)h and f'(x) is called the Gateaux derivative of fat x. In the special case
Y= R, f'(x) is called the gradient of the functional fat the point x.

In a real Hilbert space H the gradient at the point x # 0 of the functional
S H— R, defined by f(x) = || x| is (x/|| x|, -) or simply x/| x||. If f: H—> R,
is given by f(x) = | x||%, then the gradient at any point x is 2(x, *) or simply
2x.

When the function f'has a Gateaux derivative at the point x, we say that
Jis G-differentiable at x. The function f'is called G-differentiable in a set
A < X if it is G-differentiable at every point of A.

From Definition 1.6.2. the Gateaux derivative f'(x) of the function
S S—Y, if it exists, is an element of B(X, Y) where B(X, Y) is the space of
bounded linear operators from X into Y.

A more satisfactory differential concept which requires a norm on X
(the Gateaux differential does not) is the following:

DErFINITION 1.6.3. Let f: S—Y be a function from an open set .S of the
Banach space X into the Banach space Y. If at a point x € S

Sx+h) — f(x) = L(x,h) + w(x, h), heX
where L(x, *): X > Y is a linear operator and
lim ||w(x, W)ll/[[A]l = O, (1.6.5)
{EdY
then L(x, h) is called the Fréchet differential of the function fat the point x
with increment h and w(x, h) is called the remainder of the differential. The

operator L(x,): X—Y is called the Fréchet derivative of f at x, and is
denoted by f"(x).

LemMA 1.6.1. The Fréchet differential of a function f at the point x, if it
exists, is unique.
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Proof: Let L(x,h) and L(x, k) be both Fréchet differentials of the function
fat the point x with remainders w(x, #) and W(x, h) respectively. Then

L(x,h) + w(x,h) = L(x,h) + w(x, h).
Therefore
1L Gx, By = LG, /AL = 1% (x, by = w(x, D)1/ |14l
< W MIIAL+ lwx, A/IAL - 0
as ||Af - 0.

Set Th = L(x,h)— L(x,h). Then T is a linear operator from X into Y such
that

lim [|Th]|/|A] = O.
=0

Hence, for every & > O there exists a 6 = d(¢) > 0 such that ||4|| < J implies
I Th|/||h]] <e. Observe that the vector v = dx/2| x| satisfies |v] < 8, there-
fore | Tv||/|lvll < € and using the definition of v we obtain || Tx| <e¢| x| for
any x € X and any ¢ > 0. From this it follows that 7' = 0. Otherwise, there
exists an xo € X such that Txy# 0. Then ||Tx,|| <¢|lxql =0 as ¢—0,
contradicting the hypothesis. Hence L(x, ) = LL(x, k) for all # € X and the
proof is complete.

When the function f has Fréchet derivative at the point x, we say that f
is F-differentiable at x. The function f is called F-differentiable in a set
A < X if it is F-differentiable at every point of 4.

Lemma 1.6.2. If the continuous function f: S — Y has Fréchet differential
L(xy,h) at the point x, € S, then L(xg,'): X—Y is a bounded linear
operator, that is, the Fréchet derivative f'(x,) of f at x, is an element of
B(X,Y). )

Proof: 1In view of the continuity of fand (1.6.5), it follows that for a given
& > O there exists a § € (0, 1) such that || 4| < J implies

I/ (xo+h) — flxo)ll < &/2
and .
I/(xo+h) — f(x0) — Lxo, W)l < (/2) 1141l < /2.
Hence, for || h|| <6
I L(xo, M < &/2 + | f(xo+h) — f(xa)l <&, (1.6.6)



1.6. Gateaux and Fréchet Differentials 17

which proves that L(x,, -) is bounded by 2¢/3. In fact, for an arbitrary
fi € X set h=68h/2 |1kl so that 4| < 8. By (1.6.6)and thelinearity of L(xo, 4)
in A, it follows that

&> | L(xo, Ml = IL(xo,88/2) D)
= (8/2) 1L (o, I/ A1,
which proves our assertion.
Lemma 1.6.3. If the Fréchet differential of the function fat x, exists then
the Gateaux differential exists at v, and they are equal.
Proof: From the definition of Fréchet differential we have
Slxo+ht) — flxo) = L(xg, ht) + w(xy, ht).

Thus, by the linearity of L(x, ) and the property of the remainder, we
obtain

0f (xo, h) = lirr; LfCxo+ht) = fxo))/t
-
= L(»"o, h)
and the proof is complete.
The converse of Lemma 1.6.3. is not always true. However, the following

is true:

ProBLEM 1.6.2. If the Gateaux derivative f'(x) exists in a neighborhood
N(x,) of the point x, and is continuous at v, then the Fréchet derivative
exists and is equal to f'(x). That is, a continuous Gateaux derivative is a
Fréchet derivative.

[Hint: Use the mean value theorem for Gateaux differentials.]

One can easily verify that in Examples 1.6.1 all the Gateaux differentials
are also Fréchet differentials. We shall prove this only for the first example
f: R"— R where f(x)=f(x,,~3,.....x,) has continuous partial derivatives
with respect to each variable x;. The claim is that for this function

L(x,h) = -an [37(x)/ox] ;.

Clearly, L(x,h) is linear in A. The continuity of the partial derivatives
implies that given ¢> 0, there exists a neighborhood N(x,d)={ye R":
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|y—x|| <&} such that y e N(x,6) and foranyi=1,2,...,n
lof(x)/0x; — of (»)/0x ]l < ¢/n. (1.6.7)
Define the unit vectors ¢; in the usual way, e¢; =(0,...,0,1,0,...,0) and for
h=(h,,h,,...,h,) define
go = (0,...,0) and g, = ) he, k=12,...n

Notice that
lgel < Al forall k=12,...,n
Then

n

‘f(X+h) S0 - 3 [ Caxd b

i=1

i=

< _; |f(x+9) — fix+gi-1) — [ (x)/0x;] hyl. (1.6.8)

i, [f(x+8) — f(x+i-1) — [Of(x)/ax ]

Employing the mean value theorem for functions of a single variable, there
exists a constant 7 such that

Sx+g) —f(x+gi-1) = (@1Ox)(x+g;- +Te) by, 0<t<h,
(1.6.9)

and

x+gi_, + 1e; € N(x,0) for |Ah|| < é.
From (1.6.9) and (1.6.7) we get

|f(x+9) — f(x+g:-1) — [of(x)/ox;T | < (e/n) |hy).

This together with (1.6.9) yields for ||A| < §

Sx+h) —f(x) — -Z. Lof(x)/ox]h;| < e|hl,
and (1.6.5) is valid. The claim is therefore established.

Much of the theory of ordinary derivatives can be generalized to Fréchet
derivatives. For example, the implicit function theorem and Taylor series
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have very satisfactory extensions (see [15, 28]). The following properties
can be established immediately from the definition:

() [f(x)] = ¢f"(x)
where c is a real constant;
(i1) 1) + 2] = fi'(x) + 2/ (%)

Next we establish the chain rule for Fréchet derivatives.

LemMma 1.6.4. Let X,Y,Z be three Banach spaces; 4 an open neighbor-
hood of xq € X, fe C[A4,Y], yo =f(xo); B an open neighborhood of y, in
Y and g e C[B,Z]. Assume that f is F-differentiable at x, and g is F-
differentiable at y,. Then the function h=gof (which is defined and
continuous in a neighborhood of x,) is F-differentiable at x,, and #'(x,) =
g’ (¥o)of'(xo) (Where g'(yo)of’(x,) is understood as the product of the
operators g'(¥o): Y= Z, f'(xg): X > Y).

Proof: From the hypotheses, given ¢ >0, 0 < ¢ <1, there exists a 6 >0
such that ||/#] < d and [j¢]| < J imply

S(xo+h) ~ flxo) = f'(xo)h + O, (h)
and
g(yot1) ~g(¥e) = g'(¥o)t + 0,(1)

where O, (W) <elh) and |0, ()] <elf|l. In view of Lemma 1.6.2 the
operators f'(x,) and g'(y,) are bounded and therefore there are constants
M and N such that

1f/(xo)l <M and  [|g’'(yo)l < N.
Also
1f'(xo)h+ O (W) < (M+1) A for |A] <.

Hence, for |A|| < 8/(M + 1), we have
1020/ (xo)h + O (W]l < ellf'(x)h + Oy (W) < e(M+1) Al
and

lg'(yo) O (W) < Nelihl.
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On the strength of these inequalities one can write
h(xo+h) = g[f(xo+h)]
= g[f(xo) + [ (x0)h + O, (A)]
=glyo+/'(xo)h + 0, (h)]
=g(y0) + 9 () Lf'(x0)h + O1 (W] + O [f'(x0) h + O, ()]
=g(yo) + 9'(¥o)f (xo) h + O5(|I4])) (1.6.10)
with
103 = 11g'(y0) O1(B) + O Lf " (x0)h + O (W]l
< Nel|lhll + e(M+1) ||A|
= (M+N+1)e|A|.
The identity (1.6.10) yields the desired result.

For F-differentiable functions Theorem 1.6.2. gives the following:

COROLLARY 1.6.2. Let fe C[S, Y] and F-differentiable at each point of
a convex set ¥ < S. Then for any pair of points x,x+heV

I/ Gx+h) = SOl < A oiltglllf’(xﬁh)ll- (1.6.11)

1.7. Notes

Most of the results of this chapter are taken from Vainberg [75] and Hille
and Phillips [28]. More details about Bochner integrals and abstract
functions can be found in Hille and Phillips [28]. The proof of Lemma
1.6.4 is due to Dieudonné [16]. For other mean value theorems used in
connection with differential equations the reader is referred to Aziz and
Diaz [5].



Chapter 2

Semigroups of Operators

2.0. Introduction

The evolution of a physical system in time is described by an initial value
problem of the form

dujdt = Au(f), t>=0 and u(0) = u, (2.0.1)

where 4: D(A4) - X is a linear operator with domain D(4) < X, X being a
Banach space, u: [0, 0)— X and u, € D(A4). Here 4 does not depend on
time. Physically this means that the underlying mechanism does not depend
on time. We shall use the initial value problem (2.0.1) to motivate the
theory of one-parameter semigroups of operators. Following the usage of
Hadamard one calls the problem well set if

21



22 2. Semigroups of Operators

(i) there is a unique solution to the problem for some given class of
initial data;
(ii) the solution varies continuously with the initial data.

These two requirements are reasonable to expect if (2.0.1) is to correspond
to a well-set physical experiment. The existence and uniqueness of the
solution is an affirmation of the principle of scientific determinism [28];
while the continuous dependence is an expression of the stability of the
solution.

Suppose that (2.0.1) is well set and let T(¢) map the solution u(s) at time s
to the solution u(¢+s5) at time ¢+s5. Since A does not depend on time, the
operator T'(¢) does not depend on s. The stability requirement implies that
T(¢) is a continuous operator on X. The solution u(t+7) at time 417 is
given by T(f+ 1) uy. At time 7 the solution is T(7) uy. Therefore taking this
as initial data ¢ units of time later, the solution becomes u(r+71) =
T([T(t)ug). From the uniqueness requirement and assuming that D(4)
is dense in X, we obtain the semigroup property

T(t+s) = T()T(s), t,s > 0.

Since the initial condition in (2.0.1) must be satisfied, we must have
lim,.q, T(t)ug = uy. In other words, the operators T(f) converge strongly
to the identity operator as t >0,

The foregoing discussion shows how the initial value problem (2.0.1),
when assumed to be well set, leads to the concept of one parameter semi-
group {T(r)}, t 20, of bounded linear operators on a Banach space X.
When the operator 4 in (2.0.1) is a matrix in R", the solution of (2.0.1) is
given by

u(t) = T(H)ug = exp(tA) uq.

By analogy with the matrix case we could expect that a semigroup {7(#)}
is, in some sense, an exponential function even when A is an unbounded
operator. A4 is called the infinitesimal generator of the semigroup {7(1)}
and in a sense, which will be made precise later, T(t) = exp(tA4), t = 0.

This chapter is therefore devoted to the exposition of the most basic
results of semigroup theory as developed by E. Hille, R. S. Phillips, and
K. Yosida. Several examples and problems are given to illustrate the
concepts and their applications to partial and functional differential
equations. The abstract Cauchy problem (2.0.1) and its corresponding non-
homogeneous problem is also carefully studied when A generates a strongly
continuous semigroup, as well as an analytic semigroup.
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2.1. Strongly Continuous Semigroups of Operators

DErINITION 2.1.1. A family {T(#)}, 0 < ¢ < o0, of bounded linear operators
mapping the Banach space X into X is called a strongly continuous semi-
group of operators if the following three conditions are satisfied:

@) T(t+s) = T T(s), t,s = 0;
(ii) TO)=1 (1 is the identity operator in X);

(iii) for each xe X, T(f)x is (strongly) continuous in ¢t on [0, o),
that is,

I T+A)x —T() x| — 0 as Ar— 0, t,t+ At = 0.

If in addition to the conditions (i), (ii) and (iii) the map ¢ — T(¢) is con-
tinuous in the uniform operator topology, that is, |T(t+Af)—T(1)] -0
for ¢, t+ At 2 0, then the family {7°(¢)}, r = 0, is called a uniformly continuous
semigroup in X. If the strongly continuous semigroup {7(¢)}, t > 0, satisfies
the property |T(#)l <1 for ¢ = 0, then it is called a contraction semigroup
in X.

We observe that the operators T(¢) and T(s) commute as a consequence
of (i). Property (ii) does not follow from (i), and T(#) x is also (strongly)
continuous in x for each 1 > 0.

ExampLE 2.1.1. Let A be a bounded linear operator in a Banach space X,
that is, any linear operator in a finite dimensional unitary space. Then the
series 3 ;2 o (A"/n') " converges in the uniform operatory topology, that is,
in the norm of B(X), for any real number ¢. In fact, set

S, = 3 (kY&
k=0

and observe that for m<n

18— Sall =

i (A"/k!)t"i < kziH(HAII"/k!)ItI" -0

k=m+1
as m,n — Q0.

So {S,} is a Cauchy sequence in the Banach space B(X) and consequently
it converges to an operator in B(X') which we denote by exp(t4). Now we
can easily verify that the family of bounded operators {exp(t4)}, 1> 0, isa
uniformly continuous semigroup in X. In addition we can show that

(d/dt)exp(tA) = Aexp(tA).
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ProBLEM 2.1.1. Let A be a bounded operator in the Banach space X.
Show that the Cauchy problem

dx/dt = Ax, t=20 and x(0) =x,e X

has the unique solution x(#) = exp(t4) x,. (For uniqueness see Theorem
2.1.2)

It is possible to show [18] that if {T'(#)}, ¢t = 0, is a uniformly continuous
semigroup of operators, then there exists a bounded linear operator 4 such
that T(¢) = exp(tA4), ¢ = 0. The operator A4 is given by the formula

A = lim [T(h)—-1]/h
h—0,
where the limit is taken in the uniform operator topology.

ExaMpPLE 2.1.2. In the Banach space X = C[0, 1] of continuous functions
with sup-norm, define the family of operators {7(¢)}, t = 0 by the formula

T()x(@) = xE/(1+1)), xeX, Le[0,1].

Then {T ()}, t =0, is a strongly continuous semigroup of operators in X.
Indeed

(i) T() T(s)x($) = T()x[&/(1+58)]
_ x( ¢/(1 +s8) )
1+ [£/(1+56)]
= x(¢/[1 + (t+5)¢D)
= T(t+5)x($);
(i) T©0)x() = x(&);

(i) IT¢+A)x —T@x| = oilégllx(é/[l + (t+AN<D)
—x[&/(1+15]] -0 as At - 0.

ExampLE 2.1.3. In the Banach space X = C[0, ) of continuous, bounded
functions on [0, co) with sup-norm, define the family of translation operators
{T(9)}, >0, by the formula

T()x(@&) = x(t+¢), xeX, £=20.

Then {T(¢)}, t >0, is a strongly continuous, contraction semigroup of
operators in X,
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ExaMPLE 2.1.4. Let 4 on D(A) be a self-adjoint operator in the Hilbert
space H. Assume that (4x, x) <O for x € D(A), that is, 4 is negative. Let
{E,;}, —o0 <4 < 0, be the resolution of the identity for the operator A.
Then E; =1 for A>0and Ax=[° 1dE; x for x € D(A).

Define the family of operators {7T()}, t > 0, by

0
THx = f exp (A1) dE; x, xeH.

This family of operators is a strongly continuous semigroup in H.

We shall now prove that the norm || T(¢)|| of the operators in a strongly
continuous semigroup grows slower than an exponential. For this we need
the concept of subadditive function and a lemma on subadditive functions.
A function w: [0, c0) — R is called subadditive if

w(t;+1,) € o) + o(t,), t,,t, = 0.

For example, the function w(¢)=log| T(r)|| for +=0 is a subadditive
function.

LemMa 2.1.1. Let w: [0, 0)— R be subadditive and bounded above on
each finite subinterval. Then the number wq = inf,. , w(¢)/t is finite or — oo
and wy =lim,_, 4 w(?)/t.

Proof: Let wy =inf,,,w(2)/t. Since w(r) is bounded above, w, is finite
or —co. Suppose that wy is finite. Given any 6 > w, there exists a 7, such
that w(ty)/to < 8. For any ¢ > 0, we can write

t=n(ty+r
where n(?) is an integer and 0 < r < t,. Then
o)/t = o[n(t)ty+rl/t
< [n(w(ty)+w(r)]/t

() w(r)
T [te+r/n(0)] !

Thus
lim supw(t)/t < w(ty)/ty < 6. (2.1.1)

11— ©

From the definition of w, it follows that

wo < lim infaw(#)/t. (2.1.2)

{— o
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The relations (2.1.1) and (2.1.2) yield the desired result.

THEOREM 2.1.1.  The limit
wo = }il{l(log 1T/t
exists. For each d > w, there exists a constant M, such that
T < Msexp(dr), > 0.
The number w, is called the rype of the semigroup.
Proof: Define the subadditive function
o) = logl T, t=0.

We first prove that the function || 7(7)| is bounded for 7 in a finite interval
[0, 1,]. If not, there exists a sequence t,— t* € [0, ¢,] for 1, € [0, 1,] such
that || 7(z,)l| > oo while | T(¢*)| is a finite number. For every x € X we
have T(1,) x —» T(t*)x as n— oo. Hence sup, || T(t,) x|| < oo for each x € X.
By the uniform boundedness principle (see Appendix VI) we conclude that
sup, || T(1,)ll < co, which is a contradiction. In view of Lemma 2.1.1, we
have that wqy =lim,_, , (log || T(#)||)/t exists and is a finite number or — co.
For any 6 > w, there is a t, such that

(logh T/t <o, 1= 1,.
Hence
ITOI < exp(dr), 1= 1.

In addition we know that ||7(¢r)| is bounded on [0,7,] and the result
follows.

2.2. The Infinitesimal Generator
Let {T(1)}, t = 0, be a strongly continuous semigroup of operators in the
Banach space X. For &> 0 we define the linear operator A4, by the formula
Apx = [T(h)x—x]/h, xeX.

Let D(A) be the set of all ,{e X for which the lim,_, A, x exists. Define
the operator 4 on D(A) by the relation

Ax = lim A,x, x € D(A).
h—0,
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DerINITION 2.2.1. The operator A with domain D(A) is called the
infinitesimal generator of the semigroup {7'(¢)}, t = 0. Given an operator A4
on D(A), we say that it generates a strongly continuous semigroup {7(7)},
t = 0 if A coincides with the infinitesimal generator of {T'(1)}, t = 0.

ProBLEM 2.2.1. Find the infinitesimal generators of the semigroups in
Examples 2.1.1-2.1.4.

[Answers: A; —&E(d/dE); (ddE); A.]

The following properties of the infinitesimal generator are very useful.

THEOREM 2.2.1. Let {T(1)}, t = 0 be a strongly continuous semigroup of
operators in the Banach space X and A its infinitesimal generator with
domain D(A). Then

(a) D(A)is a linear manifold in X and 4 on D(A) is a linear operator;
(b) if xe D(A), then T(t)x € D(A), 0 <t < o0, is (strongly) differen-
tiable in 7 and
dld)T(t)x = AT()x

T(HAx, t=0;

(c) if x € D(A), then

t
T(t)x—T(s)x=fT(u)Axdu, t,s = 0;

5

(d) if f(2) is a continuous real-valued function for ¢ > 0, then

1imh—1f'+hf(u) TwWxdu = fOTOx, xeX, t3=0;
h-0 t

(e) ftT(s)x dse D(A) and T()x = x+AftT(s)x ds,
0 0

xeX;

(f) the linear manifold D(A) is dense in X, and 4 on D(A) is a closed
operator.

Proof: (a) Follows directly from the definition.
(b) Since T'(t) and T'(h) commute, we have

A, T(x = T(t) A, x
- T(¢) Ax as h—-0,.
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Hence
T(t)x e D(A) and AT(t)x = T(1) Ax.

Next we will show that (d/dt)[T(1) x] = T(¢) Ax by showing that this is
true both for the left- and right-hand derivatives. Indeed

lim ([T(+h)x—T@®)x1/h — T(t) Ax) = lim [T(1) Ay x—T(t) Ax] = 0
h—0,

h—=0,

and

lim ([T(t+h)x—T()x]/h — T(t) Ax)
h—-0

= lim [T(+R) {(LT(~h) x=x)/~h) = 4x} + [T(+H)~T()] 4x] = 0.

(c) The abstract function y(¢) = T(t) x is differentiable by (b) and its
derivative T(¢) Ax is continuous in ¢. The conclusion follows from Theorem
1.3.4.

(d) The abstract function y(¢) = f(¢) T(¢) x is continuous in z. Set

t+¢&
FO = [y ds

t

Then
t+h
F'(0) = lim h"f y(s) ds.
h=0 t
On the other hand, by Theorem 1.3.3 we get
F'€) = y(t+9).

Hence
FO)=/OT@Hx

and the result follows by equating the values of F’(0).
(¢) LetxeXandt,h>0.Then,as h—0

A, f’T(s)x ds = h™! f‘[T(h+s)x — T(s)x] ds
o 0
= h! LH"T(s)x ds —h™? fotT(s)x ds

t+h A
=h"f T(s)xds—h"f T(s)xds
t 0

- T(x—-TO)x
=T{)x —x (from (d)).
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This proves that
t t
fT(s)x ds e D(A4) and AJ. T(s)xds = T($)x — x.
0 0

(f) From (d) x=1lim,_ ot ' [ T(s)xds for every x € X and from (e)
{6 T(s)xds e D(A) for every x e X. These two facts imply that D(A) is
dense in X. Finally we show that 4 on D(4) is a closed operator. Let
x, € D(A) with n=1,2,..., lim,_, ,x,=x and lim,_ , Ax,=y. We must

prove that x € D(A4) and that y = Ax. By (c) and the fact that T(s)Ax,—
T(s)y uniformly we get

T x — x = lim [T()x,—x,]

n— oo

t
lim f T(s)Ax, ds

n— o J0o

J;'T(s) p ds.

Because of this and (d) we have

t
lim 4,x = lim ¢~! f T(s)yds
0

1—-0, -0,

which proves that x e D(4) and Ax = y.
The proof of Theorem 2.2.1 is complete.

As an application of Theorem 2.2.1, we shall prove that the abstract
Cauchy problem

dx/dt = Ax, t 20 and x(0) = x5, x0€D() (22.1)
has a unique solution,
THEOREM 2.2.2. Let 4 on D(A) be the infinitesimal generator of a strongly
continuous semigroup {7°(#)}, = 0. Then the Cauchy problem (2.2.1) has

the unique solution

x(t) = T(t)x,, t=0.
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Proof: The existence is a consequence of Theorem 2.2.1(b). In fact
(d/dt)x(t) = (djdt) T(t) x,
= AT() x,
= Ax(1)
and

x(0) = T(0)xg = xy.

To prove uniqueness let y(f) be any solution of (2.2.1). Set F(s)=
T(t—s5)y(s).Since y(s) € D(A), it follows by Theorem 2.2.1 that the function
F(s) is (strongly) differentiable in s and

(d/ds)F(s) = —AT(@—s)y(s) + T(t—s5)y'(s)

—AT(t—5)y(s)+ T(t—s5)Ay(s) =0, 0<s<t

Hence F(s)=const for 0 <s < t. In particular F(0) = F(¢). Since F(0) =
T y©) =T()xo=x(t) and F(t)=TO)y(r)=y(?), the proof is com-
plete.

ProBLEM 2.2.2. If in addition to the hypotheses of Theorem 2.2.2 A
generates a contraction semigroup, prove that the norm |x(f)|| of the
solution of (2.2.1) is nonincreasing in ¢ for t > 0.

As a further application of Theorems 2.2.1 we may consider the non-
homogeneous Cauchy problem

dx/dt — Ax = f(1), t=0 and x(0) = x5, xo€D(A). (22.2)

THEOREM 2.2.3. Let 4 on D(A) be the infinitesimal generator of a strongly
continuous semigroup {T(1)}, t = 0. Let /- [0, o) = X be a (strongly) con-
tinuously differentiable function. Then the Cauchy problem (2.2.2) has the
unique solution

t
x(t) = T()xe+ f T(t—5)f(s) ds, t = 0. (2.2.3)
0
Proof: The uniqueness part of the proof is a consequence of Theorem

2.2.2. For the existence part it suffices to show that the function x(#) in
(2.2.3) has a (strong) derivative and satisfies (2.2.2). Obviously x(0) = x,.
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Define the function
1
o) = [ T(=76) ds

= f‘T(s)f(t—s) ds.
]

Since T'(¢) is bounded for each ¢ > 0 and f(s) is continuous, it follows from
Theorem 1.3.1 that the Riemann integral [§ T(s) f( —s)ds exists. We shall
first prove that g(¢) is (strongly) differentiable. In fact

Lg(t+h) —g()]/h = h™! J:MT(s)f(t-kh—s) ds—h~! J:T(s)f(t—s) ds
= L’T(s) [ft+h—s)—f(t—h)]/h ds
+h! J;HhT(s)f(t-kh-s) ds.
Hence g'(f) exists and

gt = ﬁ T()f (t—s) ds + T()f(0).

(Although this formula for g'(s) is not needed and only its existence is
required, it is of interest to compare it with the classical formula for g'(¢).)
On the other hand, for & > 0 we have

Lo +h)—g(O)1h = h“f’+hT(t+h-s)f(s) ds — h“f’T(t—s)f(s) ds
() 0
— [T —ITh L "T(—5)f(s) ds
t+h
+h! f T(t+h—s5)f(s) ds.

Since the limit on the left-hand side exists and also lim,,_.oj.:”' T(t+h—s)
x f(s)ds = f(1), it follows that lim, ., Ah (o T(t—s)f(s)ds exists and is
equal to A4 i T(t—s)f(s) ds. Hence

gt)=A J:T(t—s)f(s) ds + f(1).
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As a result of (2.2.3) we get
dx(t)fdt = AT(t)xy, + A flT(t—s)f(s) ds + f(2)
V]
= Ax(1) +f(0),

and the proof is complete.
REMARK 2.2.1. The conclusion of Theorem 2.2.3 remains valid if, instead

of assuming that f(z) is continuously differentiable, we assume that
f(t) e D(A) for all t > 0, and f(r) and Af(¢) are strongly continuous in ¢

Theorem 2.2.2 can be used to prove the following:
THEOREM 2.2.4. An operator A with domain D(4) dense in the Banach

space X can be the infinitesimal generator of at most one strongly con-
tinuous semigroup {7(s)}, 1 = 0.

Proof: Let {T(#)}, t=0, and {S(5)}, =0, be two strongly continuous
semigroups of operators in X having A as infinitesimal generator. Consider
the Cauchy problem (2.2.1). In view of Theorem 2.2.2 x(¢) = T(¢) x, and
y(t) = S(¢) x, are solutions of (2.2.1). By uniqueness, it follows that

T(t) xo = S(#) X, t>20, xyeD(A).

Since D(A) is dense in X and the operators 7(¢) and T(s) are bounded, we
conclude that
T(Hx = S()x, 120, xeX,

which is the desired result.

PrOBLEM 2.2.3. Solve the initial value problems
(i) [ou 0/ + el =0, 120, 0<¢<],

where lim,_, o u(&, 1) = x4 (&), uniformly in & for sufficiently smooth x,(¢);
(i) u(g,njor = ou(¢,njeg, 120, ¢£>0,

where lim,_ o u(&, ) = xo (&), uniformly in ¢ for sufficiently smooth x,(&).

[Hint: Use Problem 2.2.1 and Theorem 2.2.2.]

2.3. The Hille-Yosida—Phillips Theorem

Here we shall give a necessary and sufficient condition that an operator A4
with domain D(A) in the Banach space X is the generator of a strongly
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continuous semigroup {7(#)}, t = 0. Recall that the resolvent set p(A4) of A
consists of all complex numbers A for which (47— A) ™! exists as a bounded
operator with domain X. The set p(A) is an open set in the complex plane C.
The function R(4; A) = (1/—A)™", defined on p(A) is called the resolvent
of A and is an analytic function of A for / € p(A).

THEOREM 2.3.1. A necessary and sufficient condition that a closed operator
A with dense domain D(A) in the Banach space X be the infinitesimal
generator of a strongly continuous semigroup {7(¢)}, t = 0, is that there
exist real numbers M and w such that for every real number 4 > w

Aep(A) and IR(A; A)|| € M/(A—w)", n=12...
Proof: We first prove the sufficiency. Define the family of bounded
operators

B, = A[AR(A;4) — 1], A>w.

We shall construct the operator T(r) as the strong limit as 4 — oo of the
operator S,(¢) where S,(f) =exp(¢B,). For convenience we break up the
proof into a series of interesting claims.

Claim 1: The operators S,(t) are uniformly bounded for 4 sufficiently
large. In fact, using the Cauchy product of series, we have

S;() = z w

— n!
2\n n
- Z(’li) I:R(A,A)——]
o n!
< | [22RA; A M [1APREA; AT}
_Zo T T YR
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Consequently, we obtain

[1S:()I < exp(—4n) 20 (220 | R*(2; D]

< exp(—=An) i MA2D)"(A—w)~"In!
n=0

Mexp(— A exp[A2t/(A—w)]
= Mexp[itwf(A—w)].

Since Atw/(A—w)—>tw as A— o0, it follows that for a fixed w, >
1S: (D) € Mexp(tw,) for A sufficiently large.

Claim 2:
lim AR(A;A)x = x, x€eX.

A—®

Notice that
IAR(A; Al € M|i|/(A-w) > M as A - oo
and

HAR(L; A)Y < 2M for 1 sufficiently large.
Also for x € D(A)
IAR(A; A x—x| = |R(A; A) Ax|| < M/(A—w) || Ax)| = 0 as 1 —
and Claim 2 follows from Appendix VI.

Claim 3:
lim B, x = Ax, x € D(A).

A

This is evident from Claim 2, because

lim B, x = lim AR(1; A)Ax = Ax.
A— ®© A— ®©
Claim 4: For every t=0 and x € X we have that the lim,, S,;(t)x
exists and defines a bounded operator T(¢). Set R, = (Al - 4) ™' for A € p(A).
From Appendix VIII R; R, = R, R;. Therefore B, B, = B, B;. Since S,(1) =
2 (t"/n) B,", we then conclude that B, S;(r) = S,(1) B, for 4, u € p(A).
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By Theorem 1.3.4, we have for every x e X
S;(Ox—-S,(Hx = J:(d/ds) [S,(t—5)S,(s)x] ds
= J:[—Su(t—s)B‘, S,()+ S, (t—5)S,(s) B ] x ds

¢
- f 8,(t—5)S,(5)(B; — B,) x ds.
0
Using Claims 1 and 3, we obtain for x € D(A)

t
1S,()x — Su(D)x] < L Mexpl(t—s)w,] Mexp(sw,) | Byx — B, x| ds
= M?exp(tw,) |B;x — B,x| >0 as Apu— co.

Moreover, the convergence is uniform in every finite interval of ¢. This
together with Appendix VIII shows that there exists a bounded operator
T(¢) such that

lim S;($)x = T(H)x, xeX. 2.3.1)
A-

Clearly |[T(1)| < Mexp(tw,) and Claim 4 is established.

Claim 5: The family {T(¢)}, t >0, is a strongly continuous semigroup
in X.

Indeed, the properties (i) and (ii) of Definition 2.1.1 follow directly from
(2.3.1) and the fact that the operators S,(f) themselves satisfy these
properties. As the convergence (2.3.1) is uniform in every finite interval of 7,
the limit 7'(#) x is strongly continuous in ¢ for each x € X, and property (iii)
of semigroups is established.

To complete the proof of the sufficiency we only have to show that A4 is
the infinitesimal generator of {T(¢)}. Let B be the infinitesimal generator of
the semigroup {T(2)}, t = 0. We must prove that 4 = B. We first derive a
formula for the resolvent R(4; B) of the infinitesimal generator B of {T(r)}
where |[T()]] < Mexp(tw,) for t > 0.

Claim 6: Every 4> w, isin p(B) and

R(4;B)x = f exp(—A) T(®)x dt, xeX, A>w,. (232
0
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Consider the operator R(1) defined by

RN x = f exp(—A)T(d)x dt, xeX, A>w;. (23.3)
0

Since
lexp(=A) T < exp(—Air) Mexp(tw,)
= Mexp[-(A—w,)1],

the integral in (2.3.3) is absolutely convergent for 1> w, (in fact for
Re(1) > w,) and defines a bounded operator R(2) in X.
Observe that, for A1>0and xe X

B,R()x = [T(H) R(A) x — R(D) x1/h

=hp! fwexp(—/lt) T(t+h)xdt —h™! fmeXp(—lt) T(0)x d
o (]
= h"‘fwexl)[—l(s—h)] T(s)xds—h~! fwexp(—lt) T(0)x dt
B 0
= [exp(Ah)—1]/h f wexp(—lt) T(s)x dt
i\

—exp(AW)h! fh exp(=A)T(f)x dt.
0

Hence

lim B, R()x = R()x — x.

h-0,
This proves that R(1)x € D(B) and BR(1) x = AR(1) x—x, that is,
(AI-B)R(A)x = x, xelX, A>w,. 234

On the other hand, since B is a closed operator we have from Theorem
1.3.5 for any x € D(B)

BR(\)x = Bfwexp(—lt) T(t)x dt
0

= f cwexp( —At) T(t) Bx dt
0

= R(A) Bx.
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In view of (2.3.4) we then have
R(A)(AMI-B)x = x, xe D), 2> w,. (2.3.5)
The relations (2.3.4) and (2.3.5) prove Claim 6.

Claim 7: D(A)<= D(B) and Ax = Bx for x € D(A4). For x € X we have
the identity

S.(Hx—x= J;t(d/ds) [S,(s)x] ds

= f tSA(s) B, x ds. (2.3.6)
0

We would like to take limits as 2 — oo on both sides of (2.3.6). To this end
observe that for x € D(A)

[15:(5) By x — T(s) Ax|| < |Sa(I | Byx — Ax|| + [|[S;(s) — T(s)] Ax||
< Mexp(w, s) B, x — Ax|
+ 2Mexp(w, s)||Ax] - O as A - o0,

uniformly in S on every closed interval [0, 1]. We conclude that
t
T x—x = fT(s)Ax ds, x € D(A).
o
Hence

Bx = lim [T(t) x—x]/t

t—0,

t
lim ¢! j T(s)Ax ds
0

10,
= Ax,
and Claim 7 is proved.

Claim 8: D(B)< D(A). By Claim 6, we have p(4) n p(B) # &. Let
Ao € p(A) n p(B). Then by Claim 7

(A4I=B)D(A) = (Ao I—A) D(A)
=X
= (21— B) D(B).
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So if x; € D(B), there exists an x, € D(4) such that
(;uol—B)xa = ().0 I—B)Xﬁ.

Since Ao /— B is one to one, we obtain x; = x, € D(4) and the claim is
proved.

The proof of the sufficiency of Theorem 2.3.1 is therefore complete.
Next we prove there exist real numbers M and w such that
ITOI < Mexp(wr), t20.

As proved in Claim 6, every 2 > w is in p(4) and for A > w
R(A;A)x = f exp(—=A)T(t) x dt, xeX. 2.3.7)
0

From the resolvent formula (see Appendix VIII) one obtains
R(;A4)— R(u; A) = W= RE A RWp, A), Au> o
Consequently the analyticity of R(2; A) for 2 € p(A) yields
(d/d2) R(%; 4) = ‘1‘1_13 [R(4;4) — R(u; A/ —p)
= —R(1;A)%
It therefore follows by induction
@"/dimR(A; A) = (= )"n! R(A; )™, 2> w. (2.3.8)

On the other hand, differentiation with respect to A under the integral sign
of (2.3.7) is justifiable. In fact

(LR(A+h; A)— R(A; A)]/h) x
=h! J;w([exp(—ht) —1]/h) exp(=AT()x dt. (2.3.9)
Since
([exp(—ht) — 11/h) exp(—A) T(t)x — —texp(—AD T () x as h—0
and
|(Texp(—ht) — 11/h) exp(=2) T(D) x| < Mtexp[—(A—w—|h])1],
we can take limits as #— 0 is (2.3.9) getting

(dd3) R(; A)x = f C texp(=an T(1)x dr.
0
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Thus one easily gets after n steps

(@ /A" [R(A; A)x] = (-1)"f°°t"exp(-,u) TW)xd:, xeX, A> o
0
(2.3.10)
Comparing (2.3.8) and (2.3.10), there results
R A)" = [(n— 1)!]_1fwt"_lexp(—lt) T()xdt. (2.3.11)
0
Hence

IR(A; A" < M[(n— 1)!J;mt"'lexp[-(l—w)t] dt

= M/(A—-w)", A>w
and the proof is complete.
PROBLEM 2.3.1. Let A4 be a linear operator in X with domain D(A4) dense
in X. The following statements are equivalent:

(i) A generates a strongly continuous semigroup {7(¢)}, t = 0 such that
| T(2)|| < exp(wt) for some real number w;
(ii) there is a real number w such that for A > w

lep(4d) and  [R(L;A)| < (A-w)™
[Hint: Use Theorem 2.3.1 and the estimate | R(4; A)"| < [|[R(4; A)|".]

PrOBLEM 2.3.2. Prove Theorem 2.2.4 by utilizing formula (2.3.7).

PrOBLEM 2.3.3. For the semigroup of Example 2.1.3 show that
p(A) = {AeC: R(A) > 0}
and

R(A; Dx@®) = J;wexp(—ls)x(t+s) ds, R(A) > 0.

[Hint: Consider the general solution of the equation Ay —)’ = x.]

As an application of Theorem 2.3.1 we prove a uniqueness result for the
solutions of the abstract Cauchy problem

dx/dt = A(t) x, a<t<b; (2.3.12)
x{a) = x,, x, € D[A(a)]. (2.3.13)
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We need the following:
LemMMa 2.3.1. Let 4 on D(A) be the infinitesimal generator of a con-
traction semigroup. Then for each x € D(4)

lI+ed)x|| < ||lx|l + 0(e) as £—0,. (2.3.14)

Proof: By Theorem 2.3.1 and the hypothesis that 4 generates a con-
traction semigroup, it follows that (0, c0) = p(4) and J(AI—-A) ) <Ai™!
for A > 0. Hence, for e = A~ ! > 0 we have the estimate

lI—ed)™ | < 1, e>0. (2.3.15)
Observe that for x € D(4) and ¢ >0
(I+ed)x = (I+ed)(I—ed)(I—eA)"'x
= (I-e2AH)(I—cA) 'x
= (J—eA) 'x — 242 —ed) 'x
= (I—eA) 'x — eB, Ax (2.3.16)

where B,= A(I—e¢A) ' =(I—ed)"'—1 So ||B,| <2. For any y e D(A)
we have

1Byl = ledU—ed)™ 'yl
< ell4y] - 0.

From Appendix V1 it follows that for each x € X we have lim,_, B,x =0.
In view of (2.3.16) and (2.3.15) we have

IU+ed)x| < x| + & B, Ax]|
= |lx|l + O(e)
and the proof is complete.

THEOREM 2.3.2. Assume that

(i) foreacht e [a,b], the operator A4(¢) with domain D[4 (¢)] generates
a contraction semigroup in the Banach space X
(i) xeC[[a,b],X], x()e D[A(#)] and has a strongly continuous,
right derivative x,'(¢) such that
x,'(t)=A0Ox (), a<t<hb

Then |x(¢)| is nonincreasing in ¢ for t € [a, b].
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Proof: From the definition of x,'(f) we have
Ix(t+e) — [T+eAO]) x(t)]| = O(¢e) as £¢-0,.
This and Lemma 2.3.1 yield the inequality
Ix(r+e)ll < [[H+e4()]x @] + Ofe)
< llx() + 0.

Hence ||x(1)] .’ <0 for a <t<b. Since by hypothesis x(¢) is continuous,
the result follows.

CoROLLARY 2.3.1. Under the hypothesis (i) of Theorem 2.3.2 the abstract
Cauchy problem (2.3.12) and (2.3.13) has at most one solution on [a, b].

Proof: Let x,(t) and x,(z) be two solutions of the system (2.3.12) and
(2.3.13). Set x(#) = x, (#)—x,(¢). Then x'(r) = A(+) x(t) and x(a) =0. From
Theorem 2.3.2 |l.x(#)| is nonincreasing in ¢t. Since x(a) =0, it follows that
x (1) =0, and the proof is complete.

We shall present another application of Theorem 2.3.1. Let X =
Co(— 00, ) be the space of continuous complex-valued functions which
tend to zero at infinity. Consider the heat equation

oujot = 0%ujox? and u(0, x) = uy(x), -0 <X <®

Let D(A) be the class of functions y(x) with y and dy/dx continuously
differentiable and y, d?y/dx? in X. Define the operator 4 with domain
D(A) by

Ay = d¥yjdx?.
Clearly, D(A)is dense in X and A is a closed operator on D(A). A solution of
A=Ay = Ay — d*yjdx?

= Uy (x)

in D(A) can be obtained, by the method of variation of parameters, in the
form

y@) = @V [ expl-Valr=5)]uo(6) ds.
Using the integral representation of R(1;4) [18], it follows that
|R(A; A <i~! for 2> 0. Therefore 4 on D(A) generates a contraction
semigroup in X,
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2.4. Linear Autonomous Functional Differential Equations

The theory of strongly continuous semigroups finds an interesting
application in linear autonomous functional differential equations. Let
7> 0 be given. Let X = C[[—1,0], R"] denote the Banach space of con-
tinuous functions with domain [ —,0] and range in R” with the norm of
¢ € X defined by

ol = Sl(lp(olri)(S)l (I-I any norm in R").
Suppose that x € C[[—1, o), R"]. For any > 0, we shall let x, denote the
element of X defined by x,(s)=x(t+s) for —7<s<0. x, is called the
past history of x at r. Let L: X— R” be a continuous (and so bounded)
linear operator mapping X into R". By Riesz representation theorem (see
Appendix V), there exists an n x n matrix n(0), the elements of which are of
bounded variation such that

L(¢) = J‘_O [dn(8)] ¢ (0), deX (Stieltjes integral).

With this notation consider the linear autonomous functional differential
equation

x(f) = L(x,). (2.4.1)

It is known (see [42]) that for any ¢, € X, (2.4.1) has a unique solution with
initial function ¢, at f = ty, that is, the past history of the solution at ¢,
is ¢o. The solution is denoted by x (¢, ¢o) and satisfies (2.4.1) for all r > ¢,
If 15 =0, we usually set x(0, ¢g) = x(¢bo). For ¢ = 0 we define the operator
T(1): X - X by the relation T(r) ¢ = x,(¢) for ¢ € X.

THeoREM 2.4.1. (a) For each fixed t = O the operator T(¢) is linear and
bounded and for ¢ = 1, {T(¢)} is completely continuous (compact);
(b) the family {T(s)}, t = 0 is a strongly continuous semigroup on X;
(c) the infinitesimal generator 4 of this semigroup has for domain
D(A) the space C,[—1,0] of continuously differentiable functions on
[—17,0] with $(0—) = L(¢) and A = d/df on D(A), that is,

AP(0) = dp(0)/dd, —1<6<0 and AP(0—) = L().

Proof: (a) (i) T(1): X— X is linear. Let ¢,y € X and A, u be any two
scalars. Since L is linear, Ax(¢)+ ux () is a solution of (2.4.1) with initial



2.4. Linear Autonomous Functional Differential Equations 43

function J¢ +uy at 1 =0. By the uniqueness of solutions of (2.4.1) we
have the equality

x(2p+uyp) = Ax(9) + px(¥), 120

x(Ap+ ) = 2x(@) + px, (¥),

Hence

that is,
T((Ad+uy) = AT(D) ¢ + uT(@) Y.

(i) T(): X— X is bounded. Since L: X— R" is a continuous linear
operator it is also bounded, that is, there exists an />0 such that
|L(p) <1||@| for each ¢ € X. From the definition of T(¢) and x,(¢) it
follows that

T (@) = x(¢)(1+06)
and so integrating (2.4.1) we get for —t1<0<0

T PO = ¢ (t+0), t+0<0

=90+ |

1+

oL[T(s) ¢] ds, t+0=0.
It follows that
T @) < ol + LIIIT(SWII ds;

SO
nrm¢n<n¢w+ﬁhwummw.

From Gronwall’s inequality we conclude that
1T ol < expUnlel, 20, ¢eX.

Hence T(¢) is bounded by exp(/t).

(iii) T(r): X — Xfort = tiscompletely continuous. If S'is the closed unit
sphere S={¢ e X: |¢| <1}, we must show that the strong closure of
{T(r)S} is compact in the strong topology of X. It suffices to show that
{T(¢) S} is a family of uniformly bounded and equicontinuous functions on
[—7,0]. Indeed, let Yy =T(r)¢ for ¢peS. Then |yY|l=|T(¢| <
exp(/) ||| < exp(/r) which proves that the family {T(r)S} is uniformly
bounded. Next we show that the family of functions {7T(#)S} is equi-
continuous by showing that their derivatives are uniformly bounded on
[—1,0]. In fact, let y = T(t) ¢ for ¢ € S. Then

YO =TMO¢O) = x(9)(+0), -1<0<0.
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For ¢ > 7 we have t+0 > 0; therefore
¥(0) = %($)(+0) = Lx,+4(¢)]-
It follows that
WO = IL(T(¢+6) )|
<IT@+0) 4l
< lexp[I(t+0)] (ol
< lexp(lp),
which proves our assertion.
b) (@ T()T(s) = T(t+s), t,s 2 0.
We must show that for any ¢ € X,
TWT()¢ = T(+s)¢,  thatis  x,[x,($)] = X,4s(4),
which is true on the strength of uniqueness of (2.4.1).
(ii) T0)¢ = xo(¢) = ¢, peX, that is TO) =1L

(iii) For each ¢ € X we have that T(¢) ¢ is strongly continuous in ¢ for
t20. In fact

[T+ANG — T() 910 = [xrrald) — x(¢)]10
= x(@)(t+Ar+6) — x(¢)(£+6).

Therefore
1+ A+ 6

[nwmw—Tmm0=f LIT(s)$] ds,

t+6

t+0>0, Afsmall
= p(+At+0)— ¢p(t+0),
t+0 <0, Afsmall

=fﬂwmwn

0

t+0 =0, Ar> 0andsmall

= ¢(Ar) — ¢(0),
t+60 =0, At < 0and small.
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In any case, we conclude that | T(t+At) p— T(¢) ¢|| = 0 as At - 0.
(c) Let A be the infinitesimal generator of the semigroup {7'(¢)} with
domain D(A). Then

D(A4) = {¢peX: lim[T(t)p—¢]/t exists}.
Define also the set e
D={peX:¢peC[-1,0] with $©0-) = L(¢)}.
We must prove that D(4) = D. In fact, let ¢ € D. Then
([T d—d1/0)s — H(s)l
= |(Lx () () — ¢ ()]/1) — ¢ ()|
([ (t+5)—(5)1/t) — d(5)], t > 0andsmall, s<0
- {([x(¢)t—¢(0)]/t) — ¢(0)], s =0.

{r“f’“[é(é)—é(s)] dél, 5<0

)t“ﬁ(L[T(é)M—L(@) &, s=o.

In view of the continuity of ¢(¢) and Theorem 2.2.1(d) it follows that
¢ € D(A4). Conversely, let ¢ € D(A). Then the lim,_,, [T(¢)p—o]/t
exists in the topology of X. Observe that

[x.(9)s— P (s)]/1, t >0and small, s <0
[x()0—¢(®)]/r, s=0
{[¢(I+S)—¢(S)]/t, s<0

t“L'L[T(c)dﬂ & s=o.

([T ¢—¢l/ns = {

Therefore

lim ([T(N¢—l/n)s =

-0,

{ ¢'(S+), § < 0
L(¢), s=0.
So ¢ (s, ) exists and is continuous. It follows from [6] that ¢(s) exists and
is continuous. Also the function A¢ is continuous, and ¢ (0_) exists. Hence,
¢eD.

The proof is complete,
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Since T(r) will generally not be known, we hope to discuss most of the
properties of T(¢) by using only properties of the known operator A.
Recall that for any ¢ € D(A)

ddyT()¢ = AT() ¢
and therefore, the abstract Cauchy problem

dujdt = Au, t=0

u©0) = ¢, ¢ € D(A)

has the unique solution u(1) = T(1) ¢ = x,(¢) for t = 0.

We denote by ¢,(A4) the point spectrum of A, that is, all those values A
in the spectrum o (A) of A for which (1/— A) is not one to one. The points
2 in ¢,(A4) are called the eigenvalues of A, and any ¢ e X such that
(41— A) ¢ =0 is called an eigenvector corresponding to the eigenvalue A.
For a given 1 € 0,(A4) the generalized eigenspace of 2 is denoted by M, (4)
and is defined to be the smallest subspace of X containing all the elements
of X which belong to the null spaces N[(A/—A)*] with k=1,2,.... We
have the following:

THEOREM 2.4.2. Let 4 on D(A) be the infinitesimal generator of the
strongly continuous semigroup {7(¢)}, ¢+ =0 associated with the linear
autonomous functional differential equation (2.4.1). Then

(a) 0(A) = 0,(A) = {Ae C: detA(L) = 0} (2.4.2)
where A(2) = AI—{° [dn(0)] exp(16);

(b) the real parts of the eigenvalues of 4 are bounded above;

(c) M, (A) = N[(4-i1)], k some finite integer;

(d) X =N[(A= D@ R[(A—-iD"]

where R[(A—AI)¥] denotes the range of (A—Al)* and @ means the
direct sum.

Proof: (a) It suffices to show that the resolvent set p(A4) consists of all 4
except those which satisfy (2.4.2) and then show that any Z satisfying
(2.4.2) is in 6,(A4). By definition A € p(4) if and only if (4 —4l): D(A)—> X
is one to one and onto, and (4 —Al)"' € B(X). It follows that A e p(A4)
if and only if for every ¥ € X the equation

(A=2D)p = (2.4.3)
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has a unique solution ¢ € D(A4) that depends continuously upon . Since
any ¢ € D(A4) must be continuously differentiable and 4¢ = ¢, a solution
of (2.4.3) must satisfy the differential equation

$0)—29(0) =y, -1<0<0.

Hence
0
¢ (0) = exp(A0)b + J; exp[A (-1 (&) &L, -71<60<0. (244
But ¢ € D(A) implies

60 = L) = [ 10140,

Therefore

0 ]
2b+ (0) = f [dn(6)] [exp (10) b + f exp[A(0— 8] (&) de1.

Simplifying this expression, we obtain

0 6
AQ)b = -y () + f_ L exp[A(0-E)][dn(@]yY (L) dS.  (24.5)
In view of (2.4.4) and (2.4.5) we obtain
p(A) = {AeC:detA(4) # 0},

and if det A(1) # 0, there exists a nontrivial solution of (2.4.3) for y =0,
that is, 2 € o,(4).

(b) This can be proved as in Claim 6 of Theorem 2.3.1.

(c) and (d) Since det A(2) is an entire function of 4, it has zeros of finite
order. It follows from (2.4.4) and (2.4.5) that the resolvent function
(A1—- A)" ' hasa pole of order k at A = A, if 1, is a zero of det A (1) of order k.
Since 4 is a closed operator, (c) and (d) follow from [74].

The proof is complete.

From Theorem 2.4.2, we know that if 1 e o(A4), then M,(4) is finite
dimensional and M;(A4) = N(4—AI)* for some integer k. Since 4 com-
mutes with (4— AT), it follows that AM,(4) = M,(A).

Let (¢,* ¢, ..., d,4*) be a basis for M,(A4) and let B, be the restriction
of A to M,(A4). Then A®, = ¥, B,. The d xd matrix B, has 4 as its only
eigenvalue. Indeed if pu# 4 is an eigenvalue of B;, there exists a
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we N[(A—AI)*] such that B,w=puw. So (B,—ADw=(A—iADw=
(u—2)w. This implies that (4 —AI)*"'w =0 and inductively (u—A)w =0,
a contradiction. From the definition of A4 the relation A®, = @, B, implies
that "

@, (0) = ©,(0)exp(B,0), —-71<60<0.
Also, from Theorem 2.2.1(b), we obtain
T D, = ®,exp(B,1), t = 0.
Hence

[T(H®D;]10 = ®,(0)exp[B,(t+6)], —-1<80

A

0.

This relation can be used to define 7'(¢) on M, (A) for all values of # in R.
All these observations lead to the interesting conclusion that on generalized
eigenspaces (2.4.1) behaves essentially as an ordinary differential equation.
The decomposition of X into two subspaces invariant under 4 and T(¢)
can be used to introduce a coordinate system in X, which plays the role of
the Jordan canonical form in ordinary differential equations.

2.5. Analytic Semigroups

In the sequel we shall denote by {exp(—1tA4)} the strongly continuous
semigroup generated by — A. Here we shall introduce an important class
of semigroups, namely, strongly continuous semigroups {exp(—it4)}
which can, as functions of the parameter ¢, be continued analytically into
a sector of the complex plane C containing the positive t-axis. The symbol
S,, will denote the sector S, = {t € C: |argt| < w, t3#0}.

DEFINITION 2.5.1. A strongly continuous semigroup {exp(—tA)}, is
called an agnalytic semigroup if the following conditions are satisfied :

(i) exp(—1tA) can be continued analytically as a strongly continuous
semigroup into a sector S, for some w € (0, n/2);

(ii) for each t € S, the operators A exp(—tA4) and (d/dt)exp(—tA) are
in B(X) and

(d/dt)exp(—tA)x = — Aexp(—1A4)x, X€eX; 2.5.1)

(iii) for any 0 <& < w the operators exp(—tA4) and tA4exp(—tA) are
uniformly bounded in the sector S,_,, that is, there exists a constant
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K = K(¢) such that
lexp(—t4)| < K and  |Adexp(—tA)| < K/l1], teS

(2.5.2)
Analytic semigroups arise in parabolic partial differential equations
u, = —tu where 7 is a formal elliptic partial differential operator satisfying

the hypotheses of Garding’s inequality [19].

The following theorem gives sufficient conditions for an unbounded
operator — A to generate an analytic semigroup.

THEOREM 2.5.1. Assume that

(i) A isa closed operator with domain D(A4) dense in X;
(i) the resolvent set p(—A4) of —A contains the sector S+, for
some w € (0, n/2);
(iii) the resolvent functions of — A4 satisfies

|G+ A7 < M2, 7€ Siarayear (2.5.3)
where M is a constant independent of 4.

Then, — A4 generates a unique analytic semigroup {exp(—7A4)} with the
w of Definition 2.5.1 being the w of Theorem 2.5.1. In addition, for any
xe Xand 0 < e < w, we haveexp(—tA)x—>xast—>0withre S, _,.

Proof: We define exp(—1A) by the Dunford integral (see Appendix X)
exp(—1A4) = Qni)~ ! fexp(lt)(ﬂ+ A)~1di (2.5.4)
C

where C is a contour, running in p(—A4) and consisting of the ray
{z:argz=10, |z| <1} traversed inward from oo to exp(if) for some
0 € (n/2,(n/2)+ w), the circular arc from exp(if) to exp(—if) traversed in
the positive sense and the ray {z:argz=—0, |z| =1} traversed outward
from exp(—ifl) to co. In view of (2.5.3) the integral in (2.5.4) converges
absolutely and uniformly in any bounded closed subset of the sector
So—(x/2,y and is consequently analytic in S. The semigroup property follows
from the standard argument with Dunford integrals. In fact, if C’" denotes
any contour obtained from C by a slight shift to the right then

exp(—sA) = (Zni)“f exp(A'Y AT+ A" di, largs| < @ —e.
¢ (2.5.5)
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Multiplying (2.5.4) and (2.5.5) and using Fubini’s theorem and the resolvent
formula (see Appendix VIII) we get

exp(—tA)exp(—sA)
= (2ni)'2f f exp(At+As) AT+ A V(A I+ A~ didl
cJc
= (Zni)'zf f exp(At+2A's)(X =) AT+ A~ — (VI+A)" '] drdr.
cJe
Since C lies to the left of C’,
fexp (An/(A'=2)di =0,
c
f exp(A's)/(A'—A)yd\ = 2riexp(ls).
¢

Hence, using Fubini’s theorem

exp(—tA)exp(—s4) = ni)~! f exp[A(t+5)J(AI+ A)~ 1 dA
c

exp[—(r+s) 4],
proving the semigroup property for exp(—rtA4). From (2.5.4) it follows
that exp(—1tA4) is differentiable for r =0 and
(didtyexp(—tA) = 2ni)~! f Lexp(A)(AI+ A~ di e B(X).
C

From the identities 7 (A1/+A4) ™' = I— A(21+ A)™ ' and [cexp(4r)di = 0,and
the closeness of A4, we obtain

(d/dt)[exp(—tA)x] = —Qri)~! fCA exp(AN(AI+A) 'x di

= —Aexp(—1tA4)x, xeX.

To prove the uniform boundedness of exp(—zA4) and t4exp(—1tA4) we
change the integration variable from A to 2’ = 1|¢#| in (2.5.4) and denote by
C’ the new contour, that is, C’ =|f|C. In view of Cauchy’s theorem, the
contour C’ can be deformed into the contour C. Thus

exp(—14) = 2mi)~! ~Lexp CACNDILA 11y I+ A~ e " di,
tes,_,. (2.5.6)
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From (2.5.3)
LA NI+ AT < M|/|X|
and so
lexp(—tA)| < (M/ZH)fcleXp[l'(t/ItI)]l 171 1] =K(e).

Also, from (2.5.6) and the closeness of 4 we obtain

Aexp(—t4) = 2mi)~! fcexp[l’(t/ltl)] AL/ T+ AT Y|~ au

= (2m)~! LCXP LACNIDILA N D T+ A1 = X/l T)

x [/ T+A4]17 ™" dA

= (2mi)~! fCCXP LA — @ NDLA 1)) T+ A4171)
x [t]71 dA.
Hence
[Aexp(—tD| < K'(e)/l1].
To prove that exp(—74)x — x as 1t — 0 for t € S,,_, we note that, in view of

Cauchy’s theorem and Cauchy’s integral formula, for v € D(A)

[exp(—t4) —ITv = (2ri)~! f exp(AN[AI+A) ' =17 Tvdd
c
= — (2mi)~? f exp(AN(AT+A) " 'AvA~1 dA
c

- —Q2ni)~! f (M+A)"'Avi~'di = 0.
C
Since exp(—tA4) is bounded and the domain of A4 is dense in X, it follows
that

limexp(—t4)x = x, teS,_,.
t—0

Strong continuity at any ¢ then results from this and the semigroup property
exp(—tA)exp(—sA) =exp[—(t+s)A4]. Next we prove that — A is the
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infinitesimal generator of {exp(—14)}. Indeed, for x € D(A)
t
[exp(~t4)=11jrx = 17" [[exp(=s)x ds  — .
0

Hence the infinitesimal generator B of {exp(—tA)} satisfies D(B) > D(A)
and B = — 4 on D(A). The proof that D(B) = D(A) follows as in Claim 8
of Theorem 2.3.1. Finally, the uniqueness of exp(—t4) follows as in
Theorem 2.2.4.

The proof is therefore complete.

ProBLEM 2.5.1.  If the hypothesis (iii) of Theorem 2.5.1 is replaced by the
stronger condition

1AL+~ < M/(Al+p), 1eS, (2.5.7)

for some p > 0, then instead of (2.5.2) one can derive the stronger estimates
lexp(—t4) < Kexp(—SRes), | dexp(—t)| < (K/|t))exp(—3Re1)
where é is some positive number.

As an application of Theorem 2.5.1, we shall consider the abstract
Cauchy problem

duldt + Au = f(1), 0<1<T; (2.5.8)
u(0) = uy, ug € D(A) (2.5.9)

where the operator 4 generates an analytic semigroup. In Theorem 2.2.3
we assumed that f(¢) was strongly continuously differentiable but here,
where A4 generates an analytic semigroup, we can relax this hypothesis and
assume that f(r) is Holder continuous.

THEOREM 2.5.2. Assume that — A generates an analytic semigroup and
J(?) is uniformly Hélder continuous on [0, T]. Then the abstract Cauchy
problem (2.5.8) and (2.5.9) has the unique solution

t
u(f) = exp(—t4A)uy + f exp[—(t—s) A1 f(s) ds. (2.5.10)
o
If in addition, f{¢) is analytic in a domain containing (0, T'], the solution
u(t) is analytic at any e (0, T'].

Proof: It is easy to show (as in Theorem 2.2.2) that exp(—tA4)u, is the
unique solution of the homogeneous problem

duldt + Au =0 and u(0) = u,.
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Therefore, it suffices to prove that the function

w(t) = fo'exp[—(t—s)A]f(s) ds

satisfies (2.5.9) and (2.5.10) with u, = 0. We first write
0t = [ expL == A= ds + [ expl=(r=5)4110) .
Then, using the identity
Afotexp(—sA)xds = x —exp(—t4)x, x € X,

we can formally write

Aw(r) = L’A exp[— (1 —s5)AJ[f(s) /()] ds + f(t) — exp(— 1) f(1).
(2.5.11)

In view of the inequalities [|Aexp[—(r—s)A4]| <const(r—s)~! and
1£(s)—f(0)] < const(t—s)? for 0 < B <1, the integral in (2.5.11) is well
defined. Thus Aw(7) makes sense, and because A4 is closed we get

Aw(r) = 4 Ltexp[—(f—S)A] L/ (s)=f(D]) ds + f(1) — exp(—1A) f(0).
In order to construct dw(?)/dt we define the function
w.() = J:_Eexp[—(t—s)A]f(s) ds, ¢ > 0 and small. (2.5.12)
Clearly w (1) — w(t) as ¢ > 0,, uniformly on compact sets in (0, T']. Also

dw,(t)/dt = exp(—eAd)f(t—e) — f’—eA exp[—(t—s5)A]f(s) ds.
0
(2.5.13)

The integral in (2.5.13) exists since the operator Aexp[—(r—s)A4] is
bounded for 0 < s < r—e&. Employing again the Holder continuity of f(s)
as in (2.5.11), it is easy to verify that the integral in (2.5.13) converges to
Aw(r) uniformly on compact intervals on (0, T]. We have proved that

limw,(r) = w(®) and limdw, (8)/dt = f(t) — Aw(?)
bl £~0
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uniformly on compact intervals of (0, T]. From a well-known theorem of
calculus it follows that dw(¢)/dt exists and

dwldt = f(t) — Aw(2),

proving the first part of the theorem. Now if f(¢) is analytic in some domain
containing (0, 7], the function w,(#) in (2.5.12) is also analytic in some
neighborhood N of [g, 7] and dw,(1)/dt exists for t € N. Since w, (1) = w(¢)
uniformly on compact sets in A, it follows that w(#) is analytic for any
te(0,7].

The proof is complete.

2.6. Notes

Most of the results of this chapter concerning semigroups of operators
were obtained by E. Hille, K. Yosida and R. S. Phillips. The bible in semi-
group theory is still Hille and Phillips [28] where the reader is referred to
for more details on the subject. Lemma 2.3.1, Theorem 2.3.2, and Corollary
2.3.1 are due to Kato [30]. The results of Section 2.4 are due to Hale [27]
while Section 2.5 consists of the work by Yosida [787) and Hille and Phillips
[28]. See also Solomiak [66], Kato [33], Phillips [60], and Dunford and
Schwartz [18,19]. Several recent references and good examples will be
found in Friedman [23], Krein [35], Carroll [12], and the lecture notes
by Zaidman [79] and Goldstein [26].



Chapter 3

Linear Evolution Equations of the Parabolic Type:
Sobolevski-Tanabe Theory

3.0. Introduction

A detailed study of the time-dependent Cauchy problem
duldt + A(t)u = f(2), 0<¢t<T and u(@) =ueX (3.0.1)

forms the major content of this chapter. Here, for each ¢, the operator
— A(¢) generates an analytic semigroup. Since parabolic partial differential
equations can be realized in this form, (3.0.1) is said to be parabolic. We
prove the existence and uniqueness of a fundamental solution of the
evolution equation (the terminology after L. Schwarz)

dujdt + A()u = 0, O0<t<T
55
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as well as existence, uniqueness and differentiability of solutions of (3.0.1).
Section 3.8 deals with the asymptotic behavior of solutions of (3.0.1) when
T = 0.

3.1. Definitions and Hypotheses

Consider the evolution equation
dujdt + A(Hu = f(1), 0<t<T (3.1.1)
and the associated homogeneous equation
duldt + A(Du = 0, 0<t<T (3.1.2)

where the unknown u(¢) is a function u: [0, T] — X, from the real interval
[0, T] into a Banach space X. f: [0, 7] — X is a given function and for each
t such that 0< <7, A(t) is a given, closed, linear operator in X with
domain D[A(t)] = D, independent of ¢ and dense in X. The problem of
finding a solution u of the initial value problem

dujdt + ADu = (), 0<t<T; (3.1.3)
u@©) = uy,  Up€X (3.1.4)

is called an abstract Cauchy problem.

DerINITION 3.1.1.  An operator-valued function U(t,t) with values in
B(X), defined and strongly continuous jointly in t,7 for 0<t1<t<7T, is
called a fundamental solution of (3.1.2) if

(i) the partial derivative dU(t, T)/0t exists in the strong topology of X,
belongs to B(X) for 0 <t <¢< T, and is strongly continuous in ¢ for
0<t<t<T;

(i) the range of U(t, 1) is in D;

(iii) au(,v)jét+ AU, 1) =0, 0<1t<t<T (3.1.5)
and
U(t,7) = L (3.1.6)

U(t,7) is also called evolution operator, propagator, solution operator,
Green’s function, etc.
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DEerINITION 3.1.2. A function u: [0, T] — X is called a (strict) solution of
the abstract Cauchy problem (3.1.3)and (3.1.4) if u(r) is strongly continuous
on [0,T], strongly continuously differentiable on (0, 7], u(t)e D for
0 < t < T and u(r) satisfies the system (3.1.3) and (3.1.4).

DEeFINITION 3.1.3. A function «: [0, 7] — X is called a mild solution of
(3.1.3) and (3.1.4) if it admits the integral representation

u(t) = U, 0 uy + fIU(t,s)f(s) ds. 3.1.7)
o

It should be remarked that (3.1.7) need not give a solution of (3.1.3) and
(3.1.4) for every uy and f(¢). The existence of du/dt and A(t)u for (3.1.7)
can be proved only under certain assumptions on ug and f(1).

There are various known sufficient conditions for the existence of the
evolution operator U(z, 7). In practically all cases so far considered in the
literature — A(r) is assumed to be the infinitesimal generator of a strongly
continuous semigroup of bounded linear operators on X. In addition 4(r)
is assumed to depend on ¢ smoothly in some sense. Roughly speaking, there
are two important cases to be distinguished: the hyperbolic and the para-
bolic. In the hyperbolic case — A(¢) is, for each ¢, the infinitesimal generator
of a contraction semigroup. In the parabolic case — A(t) 1s, for each ¢, the
infinitesimal generator of an analytic semigroup. Actually, the two cases are
not mutually exclusive, and in many instances ‘‘parabolic’ is a stronger
notion than ‘‘hyperbolic.”

In this chapter we shall study the parabolic case and we shall refer the
reader to the fundamental paper of Kato {30] for the hyperbolic case. By S
we denote the set of all complex numbers A satisfying —0 <argi <0,
where 0 is a fixed angle with n/2 < 0 < 7. Throughout this chapter we shall
make constant use of the following hypotheses:

Hypothesis 1: For each g € [0, T] we have A (o) a closed operator in X
with domain D[A4(c)] = D independent of ¢ and dense in X.

Hypothesis 2: For each ¢ € [0, T], the resolvent set p[— A (6)] of — A(0)
contains S and

I+ A@]17 < C/A+(2),  2eS,

where C is a positive constant independent of / and o.
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Hypothesis 3: The bounded operator A(t)A4~'(s) is Holder continuous
in ¢ in the uniform operator topology for each fixed s, that is,

AN -A@IA7' Ol < Cli=1],  0<a<,

where C and a are positive constants independent of #,7, and s for
ogtt,s<T.

Hypothesis 4: The function f(t) is uniformly Holder continuous on [0, 7]:
I/(O—fl < Clt=sl!,  0<p<1, 0<4s5<T,
where C and f are positive constants independent of 7 and s.

Hypothesis 5:  The function f(¢) is k-times (strongly) continuously differ-
entiable on [0, 7], and /*“(t) is uniformly Holder continuous on [0, T],
that is,

/OO M) < Cle—slf,  0<p<1, 0<05<T,
where C and f§ are positive constants independent of ¢ and s.

Hypothesis 6. The operator A(r) with 0 <7 < Tis k-smooth in the follow-
ing sense: for each x € X the function A (¢+) A~ !(0) x has strongly continuous
derivatives

(dijd)y[A(N A1 0)x] = AV A™(0) x, 1l <j<k.

The operators A’(t)A~*(0)x with 1 <j <k, are uniformly bounded for
0<r<T, and

140 A7H0) - A@AT'O) < Clt—7)*, O<a<l,
where C and « are positive constants independent of rand 1 for0< 1,7 < T.

To study the asymptotic behavior of the solutions of the evolution
equation

dujdt + A(t)u = 0, O<t<w (3.1.8)
we shall need the following hypotheses:

Hypothesis 7:  Hypotheses 1-3 are satisfied for all 0 < T < oo with C and
o positive constants independent of 7. Furthermore

sup |A(HA™(@)] < . (3.1.9)

0<t,T<®
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Hypothesis 8: Hypothesis 4 is satisfied for 0< 1,5 < 0. Furthermore,
there exists an element f(o0) € X such that

Jlim 1/() — f(0)| = 0. (3.1.10)

Hypothesis 9:  There exists a closed operator 4 (o) with domain D and
with bounded inverse such that
lim [[4(f) — A(0)]A'(0)] = 0. 3.1.11)

t— 0

REMARK 3.1.1. Hypotheses | and 2 imply that, for each ¢ ¢[0,T],
— A(o) generates an analytic semigroup {exp[—tA4(0)]}, t = 0. From the
results of Section 2.5 we single out the following consequences which will
be often used in this chapter. There exist positive numbers § and C indepen-
dent of ¢ and ¢ such that for each ¢ € [0, T']

(d/dt)exp[—tA(c)] x = —A(c)exp[—tA(0)] x, xeX, t>0;

(3.1.12)
lexp[—tA(c)]|| € Cexp(—201), t>0; (3.1.13)
|4(a)exp[—tA (o)1l < Ct™'exp(—61), t > 0. (3.1.14)

In the remainder of this chapter, C will denote a generic constant, that is,
a constant independent of #,1,0,....

REMARK 3.1.2.  From Hypothesis 3, it follows, by taking s = t and using
the triangle inequality, that

l4(nA~'@l < C. (3.1.15)
Writing
A(m)exp[—14(0)] = A(x) 47 '(0) - A(0)exp[—14(0)]
and using (3.1.15) and (3.1.14), we obtain
lA(x)exp[—1A(0)]| < Ct™'exp(—01), t>0. (3.1.16)
For any positive integer n we may write
A(c)exp[—tA(@)]x = A(c)exp[~tn"'A(c)] - A(c)exp[—tn~ 1 A(c)]}x

(n factor), xeX.
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In fact, for xe X exp[—tn"'4(6)]xe D and A(s) commute with
exp[—tn~'A(0)] on D. We conclude that exp[ — 14 (6)] x € D(4") fort >0
and from (3.1.14) we obtain the useful estimate

|4 (o)exp[—tA(o)]] € Ct™"exp(—461), t>0. (3117

REMARK 3.1.3. Hypothesis 3 is equivalent to
Hypothesis 3':
AN —-A@1A' @I < Clt=7', O0<a<]l, 0<4t<T,

where C and « are positive constants independent of ¢ and t. In fact,
Hypothesis 3 implies Hypothesis 3’ and if Hypothesis 3’ is valid, we have,
using 3.1.15,

I[AM—=A@]A™' )] = I[AO)—-A(@]IA47'() - A A7 ()]
Clt—1*- C
Clt—1|*

A

and our assertion is established.

3.2. Statements of the Main Theorems and Some Heuristic Arguments

Here we shall state the main results that we plan to prove in this chapter.
We also present some heuristic arguments which will be substantiated in the
following sections under the strength of the given hypotheses.

THeEOREM 3.2.1. Let Hypotheses 1-3 be satisfied. Then the evolution
equation (3.1.2) has a unique fundamental solution U(¢, ).

THeEOREM 3.2.2. Let Hypotheses 1-4 be satisfied. Then the abstract Cauchy
problem (3.1.3) and (3.1.4) has the unique solution

u() = U(t,0)uy + f’U(t,s)f(s) ds. 3.2.0)
0

THEOREM 3.2.3. Let Hypotheses 1-3, 5, and 6 be satisfied. Then the
solution u(¢) of the abstract Cauchy problem (3.1.3) and (3.1.4) is (k+ 1)-
times (strongly) continuously differentiable on [e, 7] for any ¢ > 0.
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THEOREM 3.2.4. Let Hypotheses 7-9 be satisfied. Then any solution u(r)
of (3.1.8) converges to some element u(co) € D such that

A(o0)u(o0) = f(0). 3.2.2)
Moreover, du(t)/dt tends to 0 as t - co.

The following arguments, although without mathematical rigor, will
give us the guidelines which we should follow to prove the existence and
uniqueness Theorems 3.2.1 and 3.2.2. Since U(t,7) is the fundamental
solution of (3.1.2) and the function exp [ — (¢t — 1) A (1)] satisfies the operator
system

dvjdt + A(t)v =0 and v(t) =1,

it follows that the function v(r) = U(t, 1) —exp[— (¢t — 1) A(7)] must satisfy
the system

dvjdt + A(Hv = [A(1)—A(O)]exp[—(t—1)A(1)] and v(t) = 0.
(3.2.3)
But, from the variation of constants formula, the solution v () of system
(3.2.3) is given by
v(t) = J‘rU(t, sY[A(T)—A(s)]exp[—(s—1) A(1)] d5s.

Hence
U(t,7) = exp[—(t—1)4A(1)] + J‘tU(l,S)[A(T)—A(S)]

x exp[—(s—1)A4(7)] ds. 3.24)

We shall consider (3.2.4) as the defining relation for the unknown operator
U(t,7). This is an integral operator equation of the Volterra type (with
respect to 7). Applying the method of successive approximations the
solution of (3.2.4) is formally given by the series

Ui, ) = i U1 3.2.5)
k=0
where

Uo(t,7) = exp[—(t—1) A(7)]
and

Up(t,7) = f'uk_l(z,s) [A(t)— A(s)]exp[ — (s— ) A(z)] ds. (3.2.6)
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Set
¢,(1,7) = [A(1)—A()]exp[-(1—1)A(D)], (3.2.7)
brs, (1,7) = f'¢k(1,s)¢1(s, 7) ds, k=12,.., (3.2.8)
and T
D(1,7) = ’glqﬁk(t, 7). 3.2.9)
Hence, formally
O(1,7) = ¢, (t,7) + f:(b(r,s)qbl(s, ) ds. (3.2.10)

On the other hand, using Fubini’s theorem, one can show by induction
(provided that all make sense) that

Ut 1) = ftexp[—(t—s)A(s)] b (s, 1) ds, k=12,...

Hence, formally
U(t,7) = exp[—(t—1)A()] + f’exp[—(t—s)A(s)]Q(s, 7)ds. (3.2.11)

Our program is now clear. First, we will prove that the Volterra integral
equation (3.2.10) has a solution ®(t, 7). Second, the formula (3.2.11) gives
the desired fundamental solution of the evolution equation (3.1.2). Third,
using the Holder continuity of f(r) we shall prove that the integral in (3.2.1)
makes sense and (3.2.1) defines the unique solution of (3.1.3) and (3.1.4).
The proofs of the other theorems do not involve many complications.

3.3. Properties of the Semigroup {exp[ —A4(7)]}

In this section we shall establish a series of interesting lemmas and
estimates concerning the semigroup {exp[—t4(r)]} which will be uaseful
in the subsequent sections. Here we assume that Hypotheses 1-3 are
satisfied. The variables ¢,s,7,&,7,... are assumed in [0, T].

LemMa 3.3.1. For v € D, the following identities hold:
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@) (exp[—7A()] — exp[—7A()])v

- L expl—(r—&) AWILA(S)— AW A~ (s)

x exp[—EA(s)]A(s)v dé. 3.3.1)
(b) (exp[~2A4(7)] — exp[—s4(x)])v
= —ftexp[—éA (1)) A(t)v dé. (3.3.2)

Proof: (a) Define the function
F(§) = —exp[—(r—)A(0)]exp[-LA(s)]v, =2¢.
F is strongly differentiable with respect to & with derivative
F'(§) = —exp[—(z—8)A(1)]A()exp[—-CA(s)]v
+ exp[—(r—&)A(1)]A(s)exp[—{A(s)]v
= exp[— (=) A()][4(s)—A ()] exp[—EA(s)]v
= exp[— (1= AMI[A(s)— A()]A™'(s)
x exp[—¢A(s)]A(s)v. (3.3.3)

Since F’(¢) is continuous, (3.3.1) follows upon integrating (3.3.3) from 0
to 7 and using Theorem 1.3.4.
(b) Define the function

D(&) = exp[—<4(1)]v.
Then
D'(E) = —exp[—¢A(T)] A(D)v 3.34)
and ®'(¢) is continuous in &, Integrating (3.3.4) from s to ¢, (3.3.2) follows.
The identities (3.3.1) and (3.3.2) permit us to establish the following:

LemMA 3.3.2. The following inequalities hold:
(@) lexp[—7A(1)] — exp[—7A()]ll < Clt—s|"exp(—61); (3.3.5)

(b) [A4(&) (exp[—14(1)] — exp[tA(s)])]
< Ct7'|r—s|"exp(—91), 7> 0; (3.3.6)
© [4&) (exp[~1A(1)] — exp[—74()]) 4~ ')

< Clt—s|*exp(—67). 3.3.7)
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d l(exp[—7A ()] — exp[—sA(D)]) 4™ ' ()

< Clt—s|exp[—dmin(t, s)]; (3.3.8)
(e) |4 () (exp[—1A4(7)] — exp[—s4(1)]) A~ 2(7)|

< C|t—s|exp[—d min(r, s)]. (3.3.9)

Proof: (a) Let xe X. Then
(exp[—7A4()] — exp[—1A4(s)]) x
= (exp[—(z/2)4(N] — exp[~(¢/2) A(s)]) exp[ - (z/2) A (s)] X
+exp[—(1/2) A(D])(exp[— (1/2) A()] — exp[~(z/2) A (5)]) x
= (exp[—(z/2)A()] — exp[—(z/2) A(s)])exp [ —(z/2) A (s)] x
+ A()exp[—(z/2)4(1)]
x (exp[—(7/2) A(0] — exp[—(z/2) A()]) 4™ '(s) x
+exp[—(1/2) A(O][A (1)~ A()] A7 (s)exp[—(z/2) A(s)] x
— exp[—tA()I[A(D)—A()]A 7 (s)x
=1, +5L+1. (3.3.10)
Using (3.3.1) with » = exp[—(1/2) A(s)] for x € D we obtain

/2
I = J; exp[—(z/2~ ) A(MI[A(s)— A(D] A '(s)exp[—£A(s)]

x A(s)exp[—(z/2) A(s)] x d&.

In view of (3.1.13), Hypothesis 3, and (3.1.14) we get
T2
Il < J; Cexp[—9(r/2—&)]1 Cls~1|"exp(— &)
x C(z/2) " exp(—87/2) |l x|| d&
< Cls—1)*exp(—d1) | x]. (3.3.11)
Employing (3.3.1) with v = A~ (s)x € D we see that
7/2
I, = A(t)exp[—(f/2)A(t)]J; exp[—(r/2-{) 4 (1]

x [A(s)—AN] A (s)exp[—EA(s)] x dL.
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Because of (3.1.14), (3.1.13), and Hypothesis 3 it follows that

/2
I, < CexP(—51/2)(2/T)fO Cexp[—4(1/2-8)]

x Cls—t|*exp(—6&) x|l d¢
< Cls—t]*exp(—61) ||x]. (3.3.12)
Finally, in view of (3.1.13) and Hypothesis 3 we have
I3l < Cexp(—051/2) C|t—s|*Cexp(—9d1/2) ||x||
+ Cexp(—061) C|t—s|*| x|
= Cl|s—t|*exp(—61) | x]. (3.3.13)
From (3.3.10)-(3.3.13), we conclude that for every x e X
[(exp[—7A ()] — exp[—TA©Dx] < 1] + 11,1 + |75
< Clr=s|*exp(—=67) lIx|,

establishing the desired bound (3.3.5).
(b) Using the notation in (3.3.10), we notice that, for every x e X

A)(exp[—1A(1)] — exp[—1A4(s)]) x
=AL + AL + A4 ]L. 3.3.14)
Now

AT, = AQ@) A~ () A1) exp[ — (/) A ()]
T2
x L exp[ = (1/2— &) AW [A($)— AW A~ X(s)

x exp[—EA(s)] x d&
and on account of (3.1.15), (3.1.17) with n =2, (3.1.13) and Hypothesis 3,
we get

/2
14 12| < C(4C/T2)CXP(—5T/2)J; Cexp[—d(1/2—-¢)]

x Cls—1*exp(—8&)llx|| d&
(C/t?)exp(—d1)ls—1|*|| x| 7/2
Clt|t—s|"exp(—61) || x|l (3.3.15)
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Also

AL = AQ)exp[—(1/2)AMNI[A) — A()] A (s)exp[—(z/2) A(s)] x
— A exp[—TAOI[A(O)— A()]A7'(s)x;

therefore

14 I3l < (2C/7)exp(—07/2) Clt—s|* Cexp(—7/2) | x|
+ (C/D)|t =5 exp(=d7) | x]|
= (C/7)|t—s|*exp(—o1) | x| (3.3.16)
Finally
A© L = AO AT O A@(exp[—(2/2) A(D] — exp[—(x/2) A(5)])
x exp[—(r/2) A(s)] x
= AA (D1, (3.3.17)

where

1, = A(@D)(exp[(— 1/2) A(D] — exp[—(z/2) A(s)]) exp[— (1/2) A(s)] x
= (exp[—(1/2) A(1)] — exp[ - (z/2) A(s)]) A(s)exp[ - (/2) A (5)] x
+ [A(s)—A()]exp[—TA()]x
+ exp[—(1/2) A(N][A () — A(s)] exp[—(z/2) A(s)] x
=+ 1+ 1. (3.3.18)
It follows that
iZ6] = ILA(s)— A1 A (s) - A(s)exp[~A(s)] x|
< Clt=s|* - (Clryexp(—d1) x|
= (C/t)|t—s|*exp(— o) || x|l (3.3.19)
Also
14l = llexp[—(z/2) A(NI[A ()~ A(s)] A7 '(5) - A(s)exp[—(2/2) A(5)] x|
< Cexp(=061/2) Clt—s|*(2C/r) exp(—61/2) || x|l
= (C/1)|t—s|"exp(—07) ||x]. (3.3.20)
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To estimate I5 we use (3.3.1) with v = A(s)exp[—(7/2) A(s)] for xe D
(recall that for x € X we have exp[ —(z/2) A(s)] x € D(4?%)). We have

/2
Is = L exp[~(7/2=8) A(][A(s)— A(D] A7 (s)exp[— LA (s)] 4%(5)

x exp[—(t/2) A(s)] x d¢.
Hence

/2
175 < L Cexp[—6(1/2— )] Cls—1]* Cexp(— &)

x (4C/t*)exp(—d7/2)||x|| d¢
< (C/t) |t—s|*exp(—67) | x]. (3.3.21)
Using (3.3.17)-(3.3.21) we obtain
14 L1 < ClLLl
CA sl + el + 1151
(C/t) |t —s|*exp(—o7) x| (3.3.22)

In view of (3.3.14), (3.3.22), (3.3.15), and (3.3.16) the desired estimate
(3.3.6) follows.
(¢) Let xe X. Then

A@)(exp[—7A(1)] — exp[—7A(s)]) A~ (M) x
= A (exp[—(z/2)A(D)] — exp[—(z/2) A(s)]) exp[— (z/2) A (s)]

<
<

x A V) x
+ A exp[—(z/2) A(N](exp[—(z/2) A()] — exp[—(1/2) A(s)])
x A Y ) x

=J, +J,. (3.3.23)

Treating J, in the same way we treated /, in (b), we obtain
IJ:]l < Clt—s|*exp(=d7)|x]. (3.3.29)
Using (3.3.1) with v = 47 !(n) x € D, we see that

/2
Jy = A(C)CXP[—(T&MU)]L exp[—(/2—¢8)A(1)]

x [A(s)—AO]A7'(s)exp[—EA()] A() A () x dC.
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Hence
72
1]l < (Cl)exp(—67/2) L Cexpl—5(:/2—8)]
x Clt—s*Cexp(—5¢) C|jx| &

< Clt—s|*exp(—67) ||x|. (3.3.25)

By (3.3.23), (3.3.24), and (3.3.25) the inequality (3.3.7) follows.
(d) LetxeX. Thenv= A" '(4)x € D and (3.3.2) becomes

(exp[—14(1)] — exp[—sA4(D)]) A () x
= — ftexp[—éA ()] A@A™ () x d&.

Consequently
I(exp[—tA(x)] — exp[—sA4(D)]) 4™ () x|

[cew=scxiaz

<

< Clt—slexp[—dmin(t,5)] [|x]|

and (3.3.8) has been established.
(e) Let xe X. Then v = A~ 2(r)x € D and (3.3.2) reduces to

A(n) (exp[—14(D)] — exp[—s4(D)]) 4" *() x

- - f'A(n)exp[—cA(r)]A(r)A-Z(r)xdé
- —f’A(n)exp[—éA(r)]A"(r)xdc

-- f "Am) A () exp[ — EA(2)] x dE.

Hence
| 4(n) (exp[—tA(z)] — exp[—s4()]) A~ *(x) x|

f "CLC exp(—88)] x| de

<

< Clt—s|lexp[—dmin(z,s)] [l x|

and (3.3.9) has been established.
The proof of Lemma 3.3.2 is complete.
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ProBLEM 3.3.1. Show that the operator 4~ !(¢) is uniformly Hélder con-
tinuous on [0, T], that is,

A7) —A @) < Clt—1/, 0t T
[Hint: Use (2.3.7) with A =0 and (3.3.5).]
LeMMa 3.3.3. For t>¢>0, the operator-valued function A(f)exp

[—tA(s)] is uniformly continuous in the uniform operator topology,
jointly in all the variables ¢,7,5 € [0, T].

Proof: ForO0<t+At<T,e<t+Ar<7T,and 0 <s5+As< T we have the
identity

A(+ANexp[—(t+ A7) A(s+As] — A()exp[—TA(5)]
= [A(+AD) — AO)]A™ (s +As) - A(s+As)exp[—(t+ A7) A(s+ As)]
+ A(D)(exp[—AtA(s+As)] —exp[—0 - A(s+As)])
x A72(s+As) - A*(s+As)exp[—1A(s+As)]
+ A@) (exp[—tA(s+As)] — exp[—1A4(s)])
=L+, +1;. (3.3.26)
Hypothesis 3, together with (3.1.14), gives
1,1l < C|AH*Cl(t+At)exp[—d(t+AT1)]
< ClAg~ (3.3.27)
The relations (3.3.9) and (3.1.17), with n = 2, yield
11,1l < C|At|exp[—dmin(0,Ar)](C/t?)exp(— 1)
< C|A7]. (3.3.28)
Finally, from (3.3.6) we obtain
131 < (C/7)|As|* exp(—d7)
< ClAs|*.. (3.3.29)
In view of (3.3.26)—(3.3.29) the result follows.

LeMMA 3.3.4. The operator-valued function 4(t)exp[—1A4(s)] A~ (&) is
strongly continuous in X in all the variables ¢, 7, s, ¢ € [0, T].
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Proof: Because of the identity
A(Dexp[—14(] A7)
= AN A" (s)exp[—1A(s)] A(s) A~ (&), (3.3.30)

it suffices to show that the operator-valued functions A ()4~ '(s) and
A(s)A~ (&) are uniformly continuous in X and that the function
exp[—1A(s)] is strongly continuous in X. Notice that

A(+AD A" (s+As) — A(DA™(s)
= [A({t+AD) — AD)] A (s+As)
+ AN A (S)[A(s) — A(s+As)] A7 (s +As)
=J, +J,.

From Hypothesis 3 |J,| < C|A#*. Also (3.1.15) and Hypothesis 3 show
that ||J,]| < C|As|* and the uniform continuity of A()4~(s) follows.

Next we prove that the function exp[ — 74 (s)] is strongly continuous in X.
In fact

(exp[—(t+ A1) A(s+ As)] — exp[—1A4(5)])4~1(0)
= (exp[—(t+AT) A(s+ As)] — exp[— tA(s +As)]) A '(0)
+ (exp[—1A(s+As5)] ~ exp[—74(5)]) 47 1(0)
=1 +1,

From (3.3.8) |i/,]| < C|A7| and in view of (3.3.5) and the boundedness of
A~'(0) we have |I,|| < C|As]>. Hence, for each ve D the function
exp[— A(s)] v is continuous. Since by (3.1.13), exp[ —tA4(s)] is uniformly
bounded and D = X, it follows that exp[ —7A4(s)] is strongly continuous
in X. The proof is complete.

ProBLEM 3.3.2. For 0 <e<t+e<1<T, the operator-valued functions
(A@—-AO]exp[-(1-1)A(1)], [A@D)—-AD)]exp[-(—-1) 4],
exp[—(1—1)A(1)],  exp[-(1—1)4()]

are uniformly continuous in the uniform operator topology (that is, in the
norm of B(X)), jointly, in the variables  and 7.

[Hint: Use Lemma 3.3.3.]
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ProBLEM 3.3.3. For 0 <7 <1< 7, the operator-valued functions
exp[-(1—1)4(1)], exp[—-(1—1)4()],
[4(m)—A(N)]exp[—(1—1)A(1)]

are continuous in X, jointly, in the variables ¢ and .
[Hint: Writeexp[—(t—1)A4(1)] = A(t)exp[—(t—1) A ()] 4~ *(r) and use
Lemma 3.3.4.]

LEmMMA 3.3.5. For 0<t<t<1+At< T and any 5 € [0,a] the function
¢, (,7)=[A(x)—A ()] exp[ — (1 —1) A(7)] satisfies the inequality

Iy (24 A2,7) — ¢, (5, D < CU—1)"" ' (AD)* " exp[-6(t—1)].

(3.3.31)
Proof: Let us set
¢:(1,7) = [A(@)—A(O] A4~ (D) A(Dexp[—(1—1) A(1)].
Then as a result of Hypothesis 3 and (3.1.14), it follows that
I, 1) < Clt—1|*"'exp[—6(1—1)]. (3.3.32)

Notice that
J=¢,(+ALT)— ¢,(1,7)
=[A(1) — A+ An]Jexp[—(t+At—1)A(1)]
+ [A@~AN](exp[— (1 +A1=1) A(1)] — exp[— (1= 1) A(D)])

=J+J5.
By Hypothesis 3 and (3.1.16)
Il = 1L — AG+AD] AT (D A exp[—(1+ At —1) A(D)]]|
< CANY [Cl(t+ At—1)]exp[—6(t+ At—1)]
< CA* (t—1) 'exp[—6(1—1)] (3.3.33)

and
Mol = I[4(0)—4(n]47 ()
x (A(@)exp[~(t+Ar—1)4(1)] — A()exp[~(t—1) A(D])I
< CU—1y([C/t+ At—1)] exp[— (1 + Ar—1)]
+ C/(t—1)exp[—(1—1)])
< Ct—1) Yexp[-6(t—1)]. (3.3.34)
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On the other hand, for xe X
Jyx = —[A(@)—A(N](I—exp[—AtA()])exp[— (1 —7) A(z)] x

At
- —[A(r)—A(r)]A“(r)L exp[—E4 (1)1 4%(2)
x exp[—(—1)A(7)] x d&
and consequently
At
.0 < C(f—T)’J; Cexp(—88)[C/(t—1)*]exp[—(t—1)] d&

< C(t—1) 2 (ADexp[—6(t—1)]. (3.3.39)
The relations (3.3.34) and (3.3.35) show that
120 = 120~ 1,0
< Ct—-1)* DU Vexp[—5(l —a)(t—1)] (1 —T)@~ D"
x (At)*exp[—da(t—1)]

= C(t—1) YA exp[-6(t—1)]. (3.3.36)
Thus from (3.3.33) and (3.3.36) we derive
I < Ct—1)" YAty exp[—d(t—1)]. (3.3.37)

Moreover, from the definition of J and (3.3.32) there results the inequality
I/l < Ct=1)* exp[—8(t—1)]. (3.3.38)
In view of (3.3.38) and (3.3.37) we finally obtain
I = T g
< C(r—)"*™ D exp[— (On/a) (t—1)] C(1— )"~ /= (Aey* "
x exp([—d(a—n)/a](t—1))
= C(t—1)"" " (A “exp[-6(t-1)].

The proof is complete.

LemMA 3.3.6. The following estimates hold:

(a) 14(@) f‘exp[—(t—s)A(s)] ds|| < C. (3.3.39)
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(b) ||A(t).['_pexp[—(t—s)A(s)] ds| € C, p>0 (3.3.40)
Proof: (a) Set
F(t,f)x=A(I)J:exp[—(t—s)A(s)]x ds, xeD.
Then from (3.3.1) and Fubini’s theorem, one gets
F@i,7)x = A(t).[’exp[—(t—s)A(s)]x ds
¥ A(z)f[fexp[—(z—é)A(r)]
x [A(z)—A(s)]exp[—(c—s)A(s)xdc} ds
= ([ ~-exp[-(t—=)4()]) [1— fdn(t,s)x ds:l
+ 40 [ expl == 4]
x (L’m(r,s)x ds+ [16.:60-9- 6,691 x) @
+ 4 [ expL- (- AVILAD - A@TA™ O FE ) x .

We now use Hypothesis 3, (3.1.13), (3.1.14), (3.3.32), and (3.3.31) to
obtain, after some manipulations, the estimate

I %] < Clixll + € f o= &1 [ F(E, D) x| de.

We then have by Gronwall’s inequality
IF(no)xll < Clxl, xeD.

Since D is dense, the estimate (3.3.39) follows.
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(b) As the constant C does not depend on 7 and ¢, we get

HA ) f’_pexp[—(t—s)A ()] ds‘

= ”A(I)J”exp[—(t—s)A(s)] ds — A1) ‘[’_ exp[—(t—s5)A(s)] dsJ

< C

The proof is complete.

3.4. Existence of a Fundamental Solution

In this section we prove the existence of a fundamental solution for the
evolution equation (3.1.2) under Hypotheses 1-3 which we shall assume
without further mention. As we pointed out in the heuristic remarks in
Section 3.2, we will first show that the Volterra integral equation (3.2.10)
has a solution @ (¢, 7) and then prove that with this @ (¢, 7), formula (3.2.11)
gives a fundamental solution of (3.1.2).

LeMMA 3.4.1. The Volterra integral equation (3.2.10) has a solution
®(r,7) with 0 <7 <t < T given by (3.2.9) which is uniformly continuous,
in the topology of B(X), in t,7 for0<t<t—¢, 0 <e<t < T and satisfies
the estimate

@@, < Cle—z*7". (34.1)

Under the restriction (3.4.1) the solution ®(¢, 7) is unique and satisfies the
equation

o(t,7) = ¢, (t,7) + f’¢1(t, )P (s, 1) ds. 34.2)

Proof: From the results of Section 3.3, the kernel ¢, (¢, 1) of (3.2.10) is
uniformly continuous in (¢,7) in the uniform topology, provided that
t—1 2 ¢> 0, and satisfies the estimate (3.3.32). It follows by induction that
the function ¢, (¢, 7) defined by (3.2.8) is uniformly continuous in (¢,7) in
the uniform operator topology for 1 — 7 > ¢ and satisfies the estimate

I, DI < CHe—1|**7"/T'(ka) (3.4.3)

where I'(n) is the gamma function. Thus the integral (3.2.8) makes sense,
and the series (3.2.9) converges uniformly for r—7 > ¢ to a uniformly



3.4. Existence of a Fundamental Solution 75

continuous function ®(¢, 1) such that
@@ < Y Cr—1]" T (ka)
k=1

= Clt=1*"' ¥ C* ! |t—1**~ VT (ka)

k=1
< Clt—1]*~' ¥ (CT%* YT(ka)
k=1

< Clt=1f7,

in view of the fact that the last numerical series converges. On the strength
of (3.4.3), it follows that

f b0 ds = 3 f’¢k(t,s)¢1(s,r) ds

= 3 berr(t,0)
k=1

o, 1) — ¢, (1, 7).

Hence, ® (1, 1) satisfies (3.2.10) and the estimate (3.4.1). Let ®@,(z,7) and
®, (¢, 7) be two solutions of (3.2.10) satisfying (3.4.1). Then

1P, (1, 7) — (1, D) < frll¢1(t,5) =0, (1,9)] 1, (1,9)|l ds

which implies by Gronwall’s inequality
D, (t,7) = D,(2,7).

Finally we establish (3.4.2). Multiplying (3.2.10) on the left by ¢,(s,?)
and integrating from 7 to s, we get, using Fubini’s theorem,

f, $u (0D, 7) dr
= j;s(bl(s,t)d)l(t,f) dr + fd)l(s,t) U:q)(;,g)(pl(é’f) d{} dt

= ¢)2(S, T) + fS[LSQSl (S, [)(D(I, é) dtilqsl (és T) dé
Thus

Y(1,1) = fl¢>1(t,s)¢)(s,‘r) ds
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satisfies the equation

Y, 1) = ¢(t,7) + ~[‘t‘l‘(t,s)qSl(s,r) ds

and consequently, using the uniqueness of solution of (3.2.10),

¥(1,7) = gzqsk(r, ) = 0(,7) ~ $,(4,7).

Equation (3.4.2) is therefore established. The proof is complete.

Equation (3.4.2) and Lemma 3.3.5 can be used to prove the following
smoothness property of ®(¢, 7).

LEMMA 3.4.2. For0<t<1<t+At<T and any 5 e (0,a]

D@ +ALT) — D@D < CAN"(1—7) ! 3.4.4)
where the constant C depends on ».
Proof: From (3.4.2) it follows that

D(t+ALT) — O(1,7) = ¢, (t+ALT) — ¢, (1,7)

t+ At
+f ¢, (t+ALs)D(s,7) ds
t

+ fr[¢1(t+At, $) — ¢, (¢, )] D(s,7) ds. (3.4.5)

In view of (3.3.31), (3.3.32), and (3.4.1) we obtain

D+ AL T) — D(1,7)]
< C(t—1)"" (A1) exp[— (1 —1)]

+ fI+AlCexp[—6(t+At—s)] (t+At=s)y"Ys—1)* "L ds
+ ~[‘tC(t—s)"_l(At)“‘_"exp[—é(t—s)] (s=1)*"lds

< C@ny (=t

The proof is complete.
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PrOBLEM 3.4.1. ForO0<t<t<t+At<Tandanyne(0,a]
[[®@+ALT) —D(,7)]1A47 ()] < CAD"(t—1) (3.4.6)
where the constant C depends on .

[Hint: Use (3.4.2).]

The following lemma is the existence part of Theorem 3.2.1.

Lemma 3.4.3. The operator U(t, 1) defined by (3.2.11) is a fundamental
solution of (3.1.2).

Proof: From the results of Section 3.3 and Lemma 3.4.1 it follows that
the operator function U(z, 1) is uniformly continuous in the variables ¢, 7
for t> 7, and is strongly continuous when f > 7. It is also obvious that
U(z,7t) =1. Next, we shall prove that U(r,7) is strongly continuously
differentiable in ¢ for t > 7, that the range of U(¢,s) is in D, and that (3.1.5)
holds. Let t—72¢>0,0 < p <¢g, and x € X. Define

U,(t,1)x = exp[~(t—1)A(1)] x + fr_Pexp[—(t—s)A(s)](D(s, 7) x ds.

T

(3.4.7)
U,(t,1) is continuously differentiable in 7 and using (3.4.2) we get
oU,(t,t)xjdt = =A@ exp[—-(t—1)A(T)]x — A(1)
X f'_Pexp[—(t—s)A )] P(s, 1) x ds
+ f' ¢, (t,8)D(s,T)x ds
t—p
+exp[—pA(t—p)][@®(—p,7) — D1, 7)] x
+ (exp[—pA(t—p)] = ®(t, 1) x
=Ji+ o+ I3+ J+ Js. (3.4.8)

In view of (3.3.32), (3.4.1), and (3.4.4)

I3 < Cp*fe' lixll  and  [Jall < Cp* /' M |ix],

O<p<a t—1=¢
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so that J; and J, converge uniformly to zero as p —» 0. Also Js—0as p— 0,
uniformly with respect to r > t+ s, because exp[ —pA(r—p)] x> xas p—-0
and the function ®(z,7)x is uniformly continuous in (¢,7) for t =7 +e.
We now claim that J, converges as p—0, uniformly with respect to
1= t+¢&. Assuming this claim it then follows from Theorem 1.3.5 that
ftexp[—(1—$)A(s)]®(s,7)xdse D and as p—0

t
J; - —A(t)f exp[—(t—s)A(s)]D(s,7) x ds.
Hence U(t,7) x € D and as p — 0, we obtain from (3.4.8)
oU,(r, 7)ot - —A() U(t,T)x (3.4.9)
uniformly in (t,7) for = t+e. On the other hand, U,(,7)x > U(t, 1) x

uniformly in (¢, 7). Therefore by a standard argument, [dU (¢, t)/01] x exists,
is continuous in (¢, 7) for t > 7, and

[oU(,7)/dt]x = 1imdU,(1,1)/0t x
p—0
=—-A(NHU@, 1) x.

It remains to establish the claim. We write

A(r)f'_pexp[—(r—s)A(s)]cb(s, ) x ds
- A(z)f'—pexp[—(z—s)A(s)] [D(s, 7) — (1, 7)] x ds

+ A J”_pexp[—(t-—s)A(s)] ®(t,7)xds

=]l+]2‘

Because of (3.4.6) it suffices to prove the uniform convergence of /,. Since
®(7,7) x is continuous in ¢ for ¢t > 7+ ¢ it is enough to establish the uniform
convergence of the operator

t—p
A(t)f exp[—(t—s)A(s)] x ds, xeX. (3.4.10)
This is obvious for any x € D. Since D is dense in X and by Lemma 3.3.6,

the operator (3.4.10) is bounded and the final assertion follows. The proof
is complete.
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3.5. Uniqueness of the Fundamental Solution

In Lemma 3.4.3 we exhibited a fundamental solution U(¢,1) of (3.1.2),
namely, the operator defined by (3.2.11). In this section we shall complete
the proof of Theorem 3.2.1 by proving that (3.1.2) has a unique fundamental
solution. To this end it suffices to prove the following lemma:

LemMA 3.5.1. Let Hypotheses 1-3 be satisfied. Then for any u, € X and
any 1 € [0, T) the abstract Cauchy problem

dujdt + A()u = 0, t<t<T and u(r) =u, (3.5.1)

has the unique solution u(f) = U(t, 1) uy where U(¢,7) is any fundamental
solution of (3.1.2).

Assume that Lemma 3.5.1 has been established. Then if U,(¢,7) and
U,(t,7) are two fundamental solutions of (3.1.2), we should have that for
any uy € X the functions U, (1,7)u, and U,(t, t)u, are both solutions of
(3.5.1). Because of uniqueness it follows that U, (¢,t)ue = U, (1, 7) uy, and
consequently U, (¢,7) = U, (¢, 7).

The following two lemmas are needed in the proof of Lemma 3.5.1.

LemMa 3.5.2. For 0 <1< T the operators A(¢) are bounded and satisfy
hypotheses 1-3. Let fe C[[0, T], X]. Then the Cauchy problem

duldt + A(t)u = f(1), 1<t<T and u(x)=0 (3.5.2)

has a unique solution.

Proof: Let W(1,1) be a fundamental solution of (3.1.2) corresponding to
the bounded operators 4(¢). Then

u(t) = ~['W(t, $)f(s)ds

is a solution of (3.5.2) as one can verify by direct differentiation. To prove
uniqueness, suppose that f(r) = 0 in (3.5.2). Then any solution satisfies the
integral equation

u(t) = —ftA(s)u(s) ds.
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It follows that

Il < f YA luls)] ds

t
< Cf lu(s)|| ds, u(t) =0
and by Gronwall’s inequality «(f) = 0. The proof is complete.

Lemma 3.5.3. For any xe X, the function 4(¢) U(t,7)4~*(z)x is uni-
formly continuous in (f,7) for 0 <t <t < T. Moreover, for all (¢,7) with
0<rt<tgT

A UELDA™ (@I < C. (3.5.3)
Proof: Define the functions
Wt 1) = AU, 1)A™(7), 0<t<t<gT

and

F(s) = exp[—(t=5)A(0)] U(s,7) 4~ (2), T<s< L
Then, F(s) is continuously differentiable and

F'(s) = exp[—(t=5)A(D]A@ U(s,7) A" (1) x

—exp[—(t—=5)A(H)]AG) U(s,1) A7 (D) x
=exp[=(t—5) AN [A(D)— A UG, 1) A~ (1) x.

Multiplying both sides by A(?) and integrating the result with respect to s
from 7 to ¢, we obtain

Wit t)x = A@exp[— (-1 A(D)] A" (1) x
+ .[’A (Dexp[—(t—5)AMI[AN)— A U(s, 1) 4™ (r) x ds

= A(exp[-(t—D)AN]47 (D) x
+ L‘A(t) exp[—(t=5)ANI[A()~ A AT (W (s, 1) x ds

= 11 +Iz. (3.5.4)

By Lemma 3.3.4, I, is uniformly continuous in ¢, 7 for ¢ > 7. Since W(¢,7) x
is also uniformly continuous in (¢, 7) for t —7 > & > 0 it remains to show that
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I, converges uniformly to a limit as r—7 — 0. Notice that
[4@®yexp[—(t—)AMI[A(N) - A4 < C/(t—5)C(t—s)*
= C(t—s)*"' (3.55)
Also
1] = llexp[— (=) A(N] AN A7 (@) x|
< Clixl. (3.5.6)
Hence, from (3.5.4), (3.5.5), and (3.5.6), we obtain

t
W@, xl < Clxl + Cj (t=sy W, v x| ds,
‘and consequently

W@, x|l < Clixll, (3.5.7)
which proves (3.5.3). Now (3.5.5) and (3.5.7) show that

H
TARS f C(t—sy= 1 C x| ds

= C(t—1)|x|]| =0 as t—1-0,
uniformly in (¢, 7). The proof is complete.

Proof of Lemma 3.5.1: By Lemma 3.5.2, Lemma 3.5.1 is true if A(?) is
bounded for 0 < 7 < T. Clearly, U(#, ) u, is a solution of (3.5.1). We shall
prove the uniqueness result of Lemma 3.5.1 for the case of unbounded
operators A(f) by approximating (3.5.1) with the problems

dv/dt + A,()v =0 and v(t) = ug (3.5.8)
where A4, (7) is the bounded operator given by
A, (D) = ADOT+n" 4], n=12...

We shall first prove that for each n=1,2,... the operators A,(t) for
0 <1 < T satisfy Hypotheses 1-3. Moreover, the constants of Hypotheses
1-3 are independent of # and 1, 7. Clearly, A4,(¢) is bounded for each »n and
Hypothesis | is satisfied. To prove Hypothesis 2 observe that for A € S

A,(t) + A = (n+ D)) [nAf(n+ DT+ AWO]T+n"tA@D] .
Therefore

[A,()+ A" = (n+A)" ' T + [n?/(n+ 2)*] (A1) + [(ni/n+A]1)71
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is bounded and
ILA, ) +1171 < [n4+27" + [n+ 27 '[CI + 2/nl +12))]
< CI(1+]2)).

Thus, Hypothesis 2 is valid. Finally we shall verify Hypothesis 3’ which is
equivalent to Hypothesis 3. We have

A,(0A;7'(s) = A,(N[A7(9)+n""]

AU+ AW " A7 ) +n Y AOU+n" " A0)]?
U+n A0 P AWOA S + I = [I+n" Y A(0)] !

= I+ [+n " AN]  [A@N) A~ (s)—1].

Hence
ILAR (1) = A ()TAT SO < T+ AO1HILA@D = AE)]AT )]
< Clt—s|~
Next, let U,(¢,7) be the fundamental solution corresponding to
do/dt + A,()v = 0, 0<1r<T,

as it was constructed in Section 3.4.
Then

10,0 < €+ f’cncbn(s,r)n ds

t
<C+ Cf (s—1) " 'ds

<C (3.5.9)

where C is independent of n.

Let v,(¢) be the unique solution of (3.5.8) and »(¢) be any continuously
differentiable solution of (3.5.1). The function w,(f) = v(¢)—v,(t) satisfies
the equation

dwyldt + A,()w, = [4,(t)— A@D)]v() (3.5.10)
with
w,(1) = 0. (3.5.11)
By Lemma 3.5.2 it follows that

w, (1) = f’U,,(t,s) [A,(s)—A(s)]v(s)ds (3.5.12)
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is the unique solution of (3.5.10) and (3.5.11). We wish to show that
w,(1) >0 as n— oo, that is, lim, . _ v,(t) = v(r) which will imply that v(¢) is
unique as being the limit of the unique solutions v,(#) of (3.5.8). Asn— ©
the operators [A4,(s)—A(s)]A '(s) converge to zero, uniformly with
respect to 5. Indeed, they are uniformly bounded

I[4u()=AE1A7 @] = IU+n"' 4] = 1]
£C+1=C

and for any xe D

Il ()= A1 A7 () x| = |[+n""A()] ™ x—x]|
= 0~ [T+~ A(5)] " A(s) A7 1(0) A (0) x|
<n 'C[CIAQ)x|] -0 as n— oo,
uniformly with respect to s.

Taking x = A(s)v(s) which is continuous in s for 7 € s < T it follows from
(3.5.11) that w,(t)—»0 as n— co. Finally, let v(¢) be a solution of (3.5.1)
which is not necessarily continuously differentiable near ¢ =t. For any
7 < s < T, v(t) is continuously differentiable solution of (3.5.1) fors <t < T.
From the identity

Ut,s)v(s) = U(t,5) A~ (s) - A(s)v(s)

and Lemma 3.5.3 it follows that the solution U(¢, s) v(s) is also continuously
differentiable for s < t < T with U(s, s) v(s) = v(s). By the uniqueness result
we have proved so far we conclude that v(¢) = U(t, s) v(s). Taking limits as
s— 1 we get v(t) = U(¢, 7) uy. The proof is complete.

CoROLLARY 3.5.1. For 0 <s< 1< 1t< T the following identity holds:

Ui, tn)U(z,s) = U@, s). (3.5.13)

Proof: For any x € X, U(t,s)x is the unique solution of (3.1.2) through
(s, x). At time 7 this solution goes through (z, U(z, s) x). On the other hand,
U(t,7) U(z, s) x is the unique solution of (3.1.2) through (z, U(z,s) x) and
consequently coincides with U(¢,s) x. The proof is complete.

PRrROBLEM 3.5.1. Verify (3.2.4).
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3.6. Solution of the Abstract Cauchy Problem

The present section is devoted to the proof of Theorem 3.2.2, In Lemma
3.5.1 we proved that the homogeneous Cauchy problem (3.5.1) has the
unique solution U(t, 7) uy. Therefore (3.2.1) will have been established if we

prove that the function
!
W) = [ V) d
()
satisfies the Cauchy problem
dawldt + A(t)w = f(1), 0<t<T;
w(0) = 0.

We shall first prove the following lemmas:

LemMA 3.6.1. For 0 <7 <t < T the following estimates hold:

(a) 1U@7) —exp[- (=) A@]Il < Cle—1I%;
(b) lA@ LU D) —exp[— (=D A < Clt—7*77;
© 4@ U@l < Cle—7|™1

Proof: (a) We have, because of (3.2.11),

3.6.1)

(3.6.2)
(3.6.3)

(3.6.4)
(3.6.5)
(3.6.6)

U(t,7) —exp[—(t—) 4] = (exp[—(t—1) 4(7) — exp[— (1= 1) 4(1)])

+ f’exp [—(t—=5)A(s)]P(s,7) ds

=1, +1,.
To estimate I,, we use the relation (3.3.5) and get
Il < Cle—z|*exp[—d(t—1)]
< Clt—1)~

The inequality (3.1.13) together with (3.4.1) yields
t
I4,] < f Cexp[—6(t—s)]Clt—s|*" 1 ds

< Cle—1~

3.6.7)

(3.6.8)

(3.6.9)

The desired estimate (3.6.4) follows as a consequence of (3.6.7), (3.6.8),

and (3.6.9).
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(b) We have from (3.6.7)
AU, ) —exp[—(t—1)A(N]) = A1, + A(D) 1.
Using (3.3.6), we get

14O Ll < [C/t=1)]1t—7|*exp[—d(t—1)]

Clt—tf*~ . (3.6.10)

VAN

Notice that for xe X
A1, = f’A (t)exp[—(t—s5)A(s)][D(s,7) —D(t,T)] ds

+ A(1) (f’exp[—(t—s)A(s)] ds>(b(t, 7). (3.6.11)
In view of (3.1.16), (3.4.4), (3.3.39), and (3.4.1), we obtain for any € (0, «)

14 L] < f’[C/(t—S)] Clt—sy""(s—1)" " ds + C[C(t—1)*"]

< C(t—1r 1, (3.6.12)

and the inequality (3.6.5) is established.
(c) By (3.6.5) and (3.1.14), we get

< A exp[—(t-)A®]| + Clt—17*7!
< [C/t—D] + Clt—1]*7!
£ Clt—1)7 1,

4@ U@, 7)|

which proves (3.6.6).

LeEMMA 3.6.2. Forany xe X with0<t< T
A}£T+([U(t+At, H—TIJAN A" () x = —x. (3.6.13)
Proof: The function
F(s) = exp[—(t—s)A()] U(s, 1) y, yelX, 1<s<1t,

is continuously differentiable and

F'(s) = exp[—(t—s)A@OI[A@)—A()] U(s, ) p. (3.6.149)
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Integrating (3.6.14) from 7 to f, we obtain
U@, 1)y = exp[-(1=1) 4(1)]y
+ f:exp [—(@=5)ADO]I[A@D—-AS)] U(s, 1)y ds.
Setting y = A~ 1(¢) x, it follows that

(CU@+AL ) =T/ A A (D) x
= [(exp[—AtA(t+AN]) = D)/A] A~ (1) x

+(AD7! f’+A’exp[—(t+At—s)A(t+At)]

x [A(t+A) — A(s)]A™(s) - A U(s, ) A" () x ds

EJI +Jz.

By (3.1.13), Hypothesis 3, and (3.5.3), one gets

t+ At
12l < (A~ f CC(t+ At—s)* ds
H
< CAtY -0 as At —0,. (3.6.15)

On the other hand, since y € D, we have

At
exp[—AtAG@+AN]y —y = —f exp[—cA(t+AN] A+ ANy do.

o

and as a result

At
J, = —(An~! f exp[—ocA(+AN]A(+A)A" (D x do - —x
o

as At—0,.

The proof is therefore complete.

PROBLEM 3.6.1. Prove that for every x € X, [( U(t,5)xds € D.
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Now we are ready to show that (3.6.1) satisfies (3.6.2) and (3.6.3).
Utilizing (3.5.13) we formally obtain

[w(i+AD —w(D)]/At

t+ At 1
= (An™! f U(t+ AL s)f(s)ds — (A ™! J(; U(t, s)f(s) ds
0
t+ At
= (AH! f U(t+At,5)f(s) ds
+ (A f "LUG+At,s) — U, $)1fG) ds
0
1+ At
= (At)"f U(t+At,s)f(s) ds
+ ([U@t+At, 1) — T)/AY) f U, 5)f(s) ds
0
t+ At
= (At)'lf U(t+ AL s)f(s) ds
+([U(I+At, H— I:]/At)A_ l(t) [A ) J:U(t,s) [f(s)—f()] ds
+AQ) L (U(t,5) — exp[—(t—5) AWODS@) ds

+ [I—exp[—t4 (t)]]f(t)]. (3.6.16)
In obtaining (3.6.16) we have made use of the identity
Ltexp[—(t—S)A(t)] f(ds = —AT (O [I — exp[— 1A (OT] S®).

In view of Lemma 3.6.1, Problem 3.6.1, and Hypothesis 4 all the terms in
(3.6.16) make sense and consequently (3.6.16) is valid. Next, taking limits
on both sides as At — 0, and using Lemma 3.6.2 we conclude that dw(¢)/dt
exists and

dw(n)ldt = f(t) — A() L’U (1,9 [f(5)-f(N] ds

— AW f (U(t,5) — exp[ = (=) A()]) £0) ds
— [ = exp[(— 1AW S ). (3.6.17)
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Hence
dw(t)/dt = f(t) — A() J‘U(t, 5)f(s)ds
0
= f(t) = A w().

Finally, one can verify that all the terms in (3.6.17) are continuous functions
of t and consequently the solution w(r) of (3.6.2) and (3.6.3) is continuously
differentiable. The proof of Theorem 3.2.2 is therefore complete.

3.7. Differentiability of Solutions

In this section we shall prove Theorem 3.2.3 which asserts that under
Hypotheses 1-3, 5, and 6 the solution u(#) of the abstract Cauchy problem
(3.1.3) and (3.1.4) is (k + 1)-times (strongly) continuously differentiable on
[&, T] for any ¢ > 0. We need the following lemmas.

LemMma 3.7.1. Assume that Hypothesis 6 holds and that the operator
A(0) A !(¢) is bounded for each ¢ € [0, T]. Then for any x € X the function
A(0) A~ (¢) x has continuous derivatives

@A) [AO) AT (Ox]1 = AO[47'0]Vx, 1<j<k

Furthermore, the operators 4(0)[4~*()]¥ are uniformly bounded for
tef[0,T].

Proof: Set B(t) = A(t)A~'(0)and B,(t) = [B(t+h)— B(¢)]/h. Then B~ ()
=A(0)A~Y(t)and B(t+h)y— B(t)y = hB,(r)y where | B,(#)y|| < C, Cbeing
independent of . Multiplying both sides of this equation by B~ !(r) on the
left and taking y = B~ '(¢+h)x we obtain

B Y(t+hx—B '()x = —hB ') B,() B~ '(t+ M) x. (3.7.1)
From (3.7.1), we observe that
1B~ (t+h)x — B~'(O) x| < CIA[|B™ 't +h) I,
which proves that B~1(f) x is continuous and
(dldyB '(t)x = =B~ () B’ (1) B~ (1) x.

From this identity we see that the first k derivatives of B~ !'(H)x =
A(0) A~ (1) x exist, are continuous, and the operators 4(0)[4~ (1] are
uniformly bounded for 1 <j < k. The proof is complete.
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LEMMA 3.7.2. Let g(s) be a continuous function for 7 < s< 7. Then the
function [ U(t,5)g(s) ds is uniformly Holder continuous in r for t<r< T
with any exponent y € (0, 1).

Proof: Let ¢ be a (real) bounded linear functional and 0 < i < A. Employ-
ing the mean value theorem and (3.6.6) we notice that

|p[U(+h,5)x] — ¢[U(1,9)x]| < h|$p[(d/dr) U(t+h,s) x]|
RN Ix1l I(d/de) Ut +h, )]
Cligl llxll ale—s| =1,
This inequality implies that for 0 < h < [r—s|
WUt +h,s)— Ut,s)|| < ChY|t—s|". 3.7.2)

Now observe that for 0 < A< rt—7 with h< 1

<
<

f‘+hU(1+h,s)g(s) ds — f'U(t,s)g(s) ds

= f’+hU(1+h,s)g(s) ds — f’

"y

U(t,s)g(s) ds
h

t—h

+ f [U@+h,s)— U(t,s)]g(s) ds. 3.7.3)
After some computations the relations (3.7.3) and (3.7.2) yield the desired
conclusion.

Proof of Theorem 3.2.3: Let u(r) be the solution of (3.1.3) and (3.1.4). Set
u,() =[u(t+h)—u(r)]/h. By (3.1.3) it follows that forany O <t < t+h < T
du, (O)/dt + A uy (1) = (LA +h) = F(0)/h) — (LAt +h) — AO)/h)u(t+h).
Making use of formula (3.2.1), we find that for any 7 € (0, )

() = UG, ) 1y (5) + f "U,s)
x [(Lf(s+h) — F(s)1/h) — (LA(s-+H) — A(S))h)u(s-+H)] ds.

(3.7.4)

Clearly, [f(s+h)—f(s)]/h—f'(s) as h—0, uniformly with respect to
s e [t,t]. Moreover

([A(s+h) — A(s))/Mu(s+h)
= ([A(s+h)A71(0)— A(s) A~ (0))/h) A) A (s +h) A(s+h)u(s+h).
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Using Hypothesis 6, Lemma 3.7.1, and the uniform continuity of 4(#) u(s)
for e <t < T with ¢ > 0, we obtain

lim([A(s+h) — AES)Mu(s+h) = A'(S)u(s)
h=0

uniformly with respect to s e [1,]. (Here, A'(s) stands for A’(s)4~'(0)
- A(0).) Now taking limits as #— 0 in (3.7.4) we find

w(t) = Ut o)u'(t) + f 'U(r,s)[f’(s)—A’(s)u(s)] ds. (3.1.5)

In view of Lemma 3.7.2 the integral in (3.7.5) is uniformly Hélder con-
tinuous with any exponent y € (0, 1). Hence, the same is true for #'(¢) in
[z', T] for t' >1t. Since t is an arbitrary point in (0, 7], #'() is uniformly
Holder continuous (with exponent y) in [g, T] for any ¢ > 0. From (3.7.5)
and the results of Section 3.6 it follows that u'(¢) is continuously differentiable
in[7’,T] for any 7’ >1, and

d2u(t)jdr? + A du()jdt = /(1) — A'(D)u(t). (3.7.6)

Since 7 is an arbitrary point in (0, 7], 4"(¢) is continuous in every interval
[e, T] with £ > 0. Writing

A u(ty = A(HA™0)- AOYA™ () - A u(D)

and using Lemma 3.7.1 we see that 4’(+) u(#) is continuously differentiable.
Applying the same arguments as before we find that forany 0 <t <1< T

u' = v, u'(t) + fl U, s)[S7(s) — A"(s)u(s) — 2A4'(s)u’(s)] ds

where 4"(s)u(s) stands for
A'($)A™(0) - A u(s) = [A"(s)A™(O)I[A0) A ()] A(s)u(s).

Again from Lemma 3.7.2 the function u"(¢) is uniformly Holder continuous
in every interval [¢, T] for ¢ > 0. Hence u”(¢) exists, is continuous in every
interval [¢, T] and

U’ + AWu"(t) = =24 (OHu'(t)y — A"(Du(t) + ().
By induction, it now follows that
u(j+l)(,) + A(t)u‘f’(r) = _ji](‘l')A(j—l)(,) u(i)(t) +f(j)(t).
i=0\}]

The proof is complete.
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3.8. Asymptotic Behavior

In this section we shall investigate the behavior as 1 — oo of any solution
u(t) of (3.1.8). Our aim is to prove Theorem 3.2.4.

Proof of Theorem 3.2.4: Set
n(w) = sup [[4()—A()]A™ (). (3.8.1)

t>T1>2u
0<<

By Hypothesis 9 n(u) >0 as g —oco. From (3.8.1) and Hypothesis 3 we get
ILAM—A@IAT O] < CInw1%le—1*%, u<t<t, s>0
(3.8.2)

Recalling the notation of Section 3.2 and using (3.1.14) and (3.8.1) we
obtain fort>tzu=0

(6 DI < K[n()1%lt—1| ' *“Pexp[-(t—1)]  (3.8.3)
where K is a constant. Inductively, it follows that
lw (2, D)l
< (KIn(1)"* e — /271 [T (0/2)]* [T(ka/2)] " exp [ 6(1—1)].

(3.8.4)

Hence, for any 6 € (0, )

0@l < Cln(l%|e—< 7~ @Mexp[-0(:—1)], p<T<1,

(3.8.5)

where C is a generic constant independent of u. In the light of (3.1.13),
(3.1.14), (3.8.2), (3.8.3), and (3.8.5) one can establish the estimate

I@(+AL ) =0, D < CInI* (AN~ 1 =7~ exp[-0(r )],

Then, analogously to (3.6.4), (3.6.5), and (3.6.6) one obtains, for0 < < §
and ¢ > 1> u >0, the estimates

1U(t,7) — exp[—(t—1) A(D]]l

< Clrp()]”%(t—1)* exp[—0(1—1)] (3.8.6)
|4(O(U@,7) — exp[—(1—1) A(1)])]
< CH)]%(t—1)" 1t Dexp[—0(t—1)] 3.8.7)

lA U@ < Ct—1) " exp[-0(t—1)]. (3.8.8)
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We shall now prove that

dujdt - 0 as t— oo, (3.8.9)
We have

u(®) = U(t,u(t) + f’ U@, s)f(s)ds = U(t,t)u(t) + w(t) (3.8.10)

where

dwjdt = f(t) - ( f A U 5) L)~ f(1)] ds
4 [ f AWUQ,5) — expl — (1= ) A1) ds]f(z)

+ (I —exp[-(t—1)AO]S (t)>- (3.8.11)

Set
o) = sup [f(O—f(D).

t>t2u
0<s<

Then by our assumptions, é(u) —» 0 as u— oo and
1A=l < Cowt—si?, st > p (3.8.12)
By (3.8.12) and (3.8.8), we obtain, for t > u

f "A() UG, ) Lf(s) =/ ()] ds

< CL3 [ expL-00-9YL1-5)"C 1 ds
= CloWI* (3.8.13)

Since sup,, ¢ | (DI < o0, we get from (3.8.7) the estimate

U‘A (U, 5) — exp[—(t—5) A(1)]) ds]f(t)

In view of (3.8.13), (3.8.14), (3.1.13), and (3.8.11) we conclude that || dw/d!||
can be made arbitrarily small for ¢ sufficiently large. The same is also true
for ||(d/dt) U(t,t)u(t)ll. The claim (3.8.9) now follows from (3.8.10). By
(3.8.9) and (3.1.8) we get

—AQu@®+f() -0 as t— oo,

< Cln(w)]”%. (3.8.14)
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Since by hypothesis f(7) - f(0), it follows that
A()u(t) = A() A (1) - AW u(t) > f(o0)
and therefore
u(t) = A~ () A (o) u(t) » A~'(0)f(00) = u(c0).

The proof is complete.

3.9. Notes

The results of this chapter are due to Sobolevski [65] and Tanabe
[70, 71, 72, 73]. Here we follow very closely Sobolevski [65]. Section 3.8 is
the work of Tanabe [73]. For further results and applications the reader is
referred to Carroll [12], Friedman [23], and Kato [31]. For fractional
powers see also Sobolevski [65] and Friedman [23]. The case of hyperbolic
abstract Cauchy problems is treated in detail in the fundamental paper of
Kato [30].



Chapter 4

Evolution Inequalities

4.0. Introduction

We present, in this chapter, a number of results concerning with lower
bounds and uniqueness of solutions of evolution inequalities in a Hilbert
space. Employing the method of scalar differential inequalities and using
elementary methods, we first obtain lower bounds of solutions which are
then profitably used to prove various kinds of uniqueness results.

For clarity, we focus our attention in Section 4.1 on a special evolution
inequality with time independent evolution operator. After deriving quite
general lower bounds we prove, as applications, interesting uniqueness
results including a ‘“‘unique continuation at infinity” theorem. We also
deduce certain explicit lower bounds. In addition, we show that the solutions
verify some convexity-like inequalities which in turn lead to the derivation
oflower bounds. Section 4.2 deals with results of similar character. However,

94
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the evolution inequality considered here is rather general in many respects
and also offers a much wider range of applicability to partial differential
equations.

In Section 4.3 we give upper and lower bounds of solutions of a non-
linear evolution inequality and prove a very general uniqueness result for
such equations. In the entire discussion the operator 4 involved is assumed
to be either symmetric or self-adjoint or its resolvent satisfies a growth
condition. Finally, we study a parabolic partial differential inequality to
illustrate specifically the meaning of the assumptions and the results
obtained in this chapter.

4.1. Lower Bounds, Uniqueness, and Convexity (Special Results)

Let us consider the time independent evolution operator
Lu = — Au, " = ddt 4.1.1)

in a Hilbert space H with inner product (-, -) and norm |-||. We shall
assume that 4 on D(A)is a linear symmetric operator (generally unbounded)
in H, that is,

(Au,v) = (u, Av), u,v € D(A).

Let ¢: J— R, be a given measurable and locally bounded function defined
on an interval J of the real line. Consider the evolution inequality

[Lu@)] < ¢ u@l, tel. (4.1.2)
DEFINITION 4.1.1. A function u e C[J, H] is said to be a solution of the
evolution inequality (4.1.2) if
(i) u(t) e D(A), teld;

(ii) the strong derivative u'(r) exists and is piecewise continuous on J;
(iii) u(7) satisfies the inequality (4.1.2) for all t e J.

We pass now to our main results of this section.

THEOREM 4.1.1. Let 4 be a linear symmetric operator in H with domain
D(A). Let u(t) be a solution of (4.1.2) such that Au(r) is continuous for
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t € J. Then for t, 14 € J the following lower bounds are valid:

lu(ll = Jlu(o)l exr><—/11(t—to) - f[d)(é") +3(t—5) $*(s)] dS>,

(>t (4.1.3)

lu(@Ol = lluto)l eXp(-lz(to—t) - fto[tb(S) + 36— ¢*s)] dS>,
1<t 4.1.4)
where 4, and 2, are nonnegative constants depending on u(t,).
Proof: First assume that u(z) # 0 for t e J. Set
m(t) = [u@®I* and Q1) = (Au(®),u(®)/|u ()|

In view of (4.1.1) and the symmetry of 4 we have

m'(f) = ('), u(1)) + (u(0),u' (1))

= 2 Re(u'(1), u(?))
= 2(Au(t),u(1)) + 2 Re(Lu(t), u(?)). 4.1.5)
Hence
lm’(£) = 2Q (D) m(8)| < 2|Re(Lu(t),u(1))l. (4.1.6)

Using Schwarz’s inequality and (4.1.2) we get
|Re(Lu(t), u(®)| < $()m(2).
This together with (4.1.6) yields

Im'(t) =20 () m()] < 2¢()m(1),
which implies that

m'(t) = 2[Q(O)— ()] m(), teld, 4.1.7)

and
m'(®) < 2[Q (D) + ()] m(D), tel. (4.1.8)

Since A is symmetric and Au(t) is continuous in ¢

(d/dt)(Au(D), u(?)) = (Au'(),u(t)) + (Au(D), ' (1)).



4.1. Lower Bounds, Uniqueness, and Convexity (Special Results) 97

Indeed, from the definition of the derivative

d/d)(Au(n),u(r)) = II:ng [(Au(t+h), u(t+ ) — (Au(0), u(t))]/h
= lim[([Au(t+ 1) — Au(t)]/h, u(t+h))
h—0

+ (Au(0), [u(t+h) —u(®)1/h)]
= lim [(u(t+h) — u(t)/h, Au(t+h))
h—-0

+ (Au(),u(t+h) — u@)/h)]
= (W'(n), Au(D) + (Au (1), ' (1))
= (Au'(1), u(n)) + (Au (), u'(1)).
From this and (4.1.1) we see that
(d/dr) (Au(0), u (D) = (Au'(r), u(®)) + (Au(r), (1))
= (W' (1), Au()) + (Au(),u'(1))
= 2 Re(Au(t), u'(1))
= 2 Re(Au(r), Lu(r) + Au())
= 2| Au() + $Lu(@)II* = I Lu@)]?.  (4.1.9)
It follows, using (4.1.5) and (4.1.9), that (writing u for u(1))
Q'(t) = lul " *[21l Au+4Lull® — 3| Lu||*]
— [(Au,w)/u|*1[2(Au, u} + 2 Re(Lu,u)]
= Jlull "* 2 | Au+3Lul® |ull® — $IILu|? |ul® — 2[Re(Au++Lu, )]?

+ $[Re(Lu, u)]?). (4.1.10)
Using Schwarz’s inequality and (4.1.2) we get
Q'(1) = —4%(1),  tel. (4.1.11)

This implies that for ¢,¢5€ J

0() > 0(1o) —%f'qu(s) i, 131, @.1.12)

and

Q@ < Q1) + Jff"’qsz(s) ds, t s fo- 4.1.13)
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Now using (4.1.7) and (4.1.12) we obtain the differential inequality

m'(t) = ZI:Q(IO) — (1) — %f'¢2(s)ds:|m(1), t= .

Similarly, from (4.1.8) and (4.1.13) we have

m'(t) < 2|:Q(10) + ¢+ %f'°¢2(s) ds:lm(z), 1<ty

Integrating these inequalities we obtain

m(r) = m(to)eXP2[Q(fo)(1—fo) - f'[dJ(S) +3(1=5) ¢*(s)] dS],

1=t

and
m(ty) < m(r)eXp2[Q(fo)(fo—f) + ftDEdJ(S) + 1(s— 1) d*(s)] ds:|,

1< ty.

Since m (1) = ||lu(r)||?, extracting square roots, we derive

(DI = llu(to)l eXPI:Q(’o)(’_fo) - f'[d)(S) +3(t—=5)$*(s)] ds:l,

1= 1. (4.1.14)

and
lu(D = Nu(o)l exp[—Q(fo)(fo—f) - f’o [P(s) + 2 (s— D) @*(s)] dS],

1< 1. (4.1.15)

Setting /, = —min(0, Q(#y,)) and 1, =max(0,Q(,)) the desired lower
bounds follow. We have proved (4.1.3) and (4.1.4) assuming that u(r)#0
for t € J. If u(ty) = 0 these bounds are clearly valid. If u(#,) # 0, then u(r)
cannot vanish on J and the previous arguments are valid. Otherwise there
exists an interval with one end point ¢, say [t,,t,), such that u(f) # 0 on
[to, ) but u(t,)=0. Since (4.1.3) holds for all r € [t,, 1,) it follows by con-
tinuity that the bound holds also at t, contradicting the hypothesis that
u(ty) = 0. A similar argument, involving (4.1.4), is valid in case ¢, is a right-
end point of the above interval. The proof is complete.
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An interesting uniqueness result and some lower bounds which can be
deduced from Theorem 4.1.1 are collected in the next theorem. Here we
shall take J to be the nonnegative real line R, .

THEOREM 4.1.2.  Under the assumption of Theorem 4.1.1 with J= R,

(a) ifu(tyy=0forsometye R,,thenu(r)=00nR,;
(b) ifpeL,,[R,]forsomep,1<p< o0, then

lu@l = llultol exp[—u(t—to) — C(t—15)*~11/P], 121,20
() ifp(r) <K(+1), a=0, then

lu(@®l = lu(to)ll exp[—p(t—to) = Cr—1)*(t+1)*], 1> 15> 0;
(d) if ¢ is bounded on R, then

lu@l > lutio)lexpl —pt—to) — Cl1—10)],

where, in (b)-(d), x4 is a nonnegative constant depending on the solution
u and C is a nonnegative constant depending only on ¢.

Proof: (a) Assume that u(r) # 0. Then u(¢) is not identically zero in at
least one of the two intervals [0, 15) and (¢, 00). Suppose that u(r) is not
identically zero in the first interval [0, 7y). Then, there must exist a sub-
interval [1,,1,) with 0 < ¢, <t, <ty such that [Ju(r)]| >0for¢; <t<t;and
u(t,) = 0. Applying the estimate (4.1.3) with = 7, and ¢, replaced by ¢,, we
are lead to a contradiction. Hence u(f) =0 on [0, #5]. Similarly, using the
estimate (4.1.4) we obtain a contradiction unless u(f) = 0 on [¢,, c0). This
proves the uniqueness part of the theorem.
(b) Our assumption on ¢ implies by Holder’s inequality

! t (1/p) t 1-(1/p)
f(t—s)qﬁz(s) ds < [ f [$%(s) ds]":l [ f (r—s)"/("“’ds]

< DU, ptgn0) (1= 10)> 7P (4.1.16)
Also since ¢ is locally bounded and ¢ € L,,[R. ], we have

1
fqﬁ(s) ds < doll=1o), lo<t<to+1, @.1.17)
fo

where 1o = sup,, <,;<,,+1 ¢(¢) and

J;:qﬁ(s) ds

NDN L ptr0,0) (1= 20)" ~ /2P

“¢”sz[r°,oo)(t—’0)2_(1/p), t>to+ 1.

V/AN/A\
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This inequality together with (4.1.17), (4.1.16), and the estimate (4.1.3)
yields the desired lower bound with u=4,+4, and C={¢|l.,,(0u)t

HNL, tr000)-

(c) In this case, one easily gets
t
%f (t—s)P?(s) ds < 1K(t—to)* (1 +1)** (4.1.18)
fo
and

~rqb(s) ds < K(t—1)(t+1)* < K(t—1,)> (¢ +1)?*, r>ty+ 1.
(4.1.19)

As before, the inequalities (4.1.18), (4.1.19), (4.1.17), and the estimate
(4.1.3) yield the lower bound in (c) with u = 4, + 45 and C = 3K.
(d) Denoting by C, a bound of ¢ on [¢,, o) and using (4.1.3) we find

lul > luto)l exp[—2, (1—15) = Cy(t—to) — 3C(1—15)’]

and (c) is established with y =4, + C, and C=1C,2.
[(d) also follows from (c¢) with « =0.]

CoROLLARY 4.1.1.  Under the hypotheses of Theorem 4.1.1 any solution
of (4.1.2) is either identically zero on J or never vanishes on J.

ProBLEM 4.1.1. Utilize (4.1.4) to prove estimates on the solution on R_.

Let us next derive from Theorem 4.1.1 a global ‘“‘unique continuation at
infinity” result.

THEOREM 4.1.3. Let the hypotheses of Theorem 4.1.1 be satisfied with
J=Rand let ||¢||,f2[R] = N < o0. Assume that for some constant £ >0

lu(t)] = Olexp(—kt)] as - — o (4.1.20)

and for some ¢ >0
lu@®) = O[exp[—(k+N+¢)t]] as t — +oo. 4.1.21)

Then u(r)=0o0n R.

Proof: Let for some ty € R, ||u(ty)ll > 0. Then the estimates (4.1.14) and
(4.1.15) are valid and for convenience, we write them in the form
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luto)ll < Nlu(ll eXP[—Q(fo)(t—to) + f’[cb(S) +3(t=9)$*(s)] dSJ,

t= (4.1.22)
and

lu(to)ll < [u(n)] exp [Q(to)(to—t) + fo[cb (8) + (s~ 1) $*(5)] ds:,,

t < tg. (4.1.23)
From (4.1.23) and (4.1.20) we obtain, with C standing for a generic constant
lu(to)l < Cexp[—kt + QUo)(to—1) + N*%(to—1)% + $N (1o~ 1)]
< Cexp[—(k+Q(to) + IN)t + N%(1,—1)%], t < t,.
Since |u(ty)|| > 0, we conclude from the last inequality that
k+Q(to)+3IN = 0; (4.1.24)

otherwise as t - — oo we get a contradiction.
Similarly, from (4.1.22) and 4.1.21) we obtain

lu(to)| <€ Cexp[—(k+N+e) — Q1o)(1—15) + N%(t—15)"% + IN(1—1,)]
< Cexp[—(k+Q(to) +3IN+e)t + N7(t—15)"], 1=t
Since ||u(#y)] > 0, we conclude, as before, that
k+ Q@) +3IN+ex<0
which contradicts (4.1.24). The proof is complete.

It is evident from the proof that there is an analogous theorem with the
roles of t =00 and 1 = — oo interchanged.

The solutions of (4.1.2) satisfy some convexity-like inequalities which
can be used to derive lower bounds for the solutions.

THEOREM 4.1.4. Let the assumptions of Theorem 4.1.1 be satisfied. Let
[a, b] be a subinterval of J. Then any solution u(¢) of (4.1.2) satisfies the
convexity-like property

lu(® < Klu@]®~"C= u@)|“"70, a<t<b (4.1.25)
where K is a constant depending only on ¢.

Proof: 1fu(a)=0, then by Corollary 4.1.1 u(t) = 0 and (4.1.25) is trivially
true. Assume that u(a) # 0. From the same corollary it follows that u(#) # 0
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on [a, b]. Define

m(r) = 2logu()] - f o(s) ds

where v(s) = 2Re(Lu(r), u(t))/|u(t)|*>. Then, using (4.1.5), we obtain
m”"(1)=2Q'(r) and in view of (4.1.11) we get n"(1) = —p*(t) fora< t < b.
Consider the boundary value problem

() + ¢*(1) = 0, z(a) = m(a), z(b) = m(b). (4.1.26)

It is not difficult to verify that m(r) < z(t) for a <t < b, where z(¢) is the
solution of (4.1.26). Indeed setting A(t) = m(1)—z(t), we note that for
ast<b

K@) =m'(t)~z"(t) =0  and  h(a) = h(b) = 0.

Therefore A(t) is concave up on [a,b] and vanishes at the end points of
[a, b]. This implies that () <0 for a < t < b, and our assertion is true.
Let z, (1) and z,(¢) be the solutions of the boundary value problems

zy =0 and z.(a) = m(a), z,(b) = m(b)
and
Z+¢*()=0 and  z,(a) = z,(b) = O,
respectively. Then z(r) = z, (1) +z,(r) where
z,(H = m@b-t/(b—a) + mb)(t—a)/(b—a)

and

2,(t) = (b—a)™! |:(b— r)f’(s—a)d)z(s) ds + (1—a) fb(b—s)d)z(s) ds].

Notice that z,(r)<(b—a)[i¢*(s)ds and |o(r)] <2¢(1). From m(f) <
z, () +z,(1), it follows, after some manipulation, that
logllu()ll < [(b—0)/(b—a)]loglu(@)| + [(r—a)/(b—a)]log|ud)l + C

4.1.27)
where

b b
C = 2f o(s)ds + [(b—a)/Z]f () ds.

From (4.1.27) the desired inequality (4.1.25) follows with K =exp C. The
proof is complete.
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In the case of self-adjoint operator 4 one can use the resolution of the
identity associated with 4 to obtain the following convexity-like statement.

THEOREM 4.1.5. Let 4 be a self-adjoint operator in H with domain D(A4)
dense in H. Let u(f) be a solution of (4.1.2) on [a,b] and Au(t) be con-
tinuous on [a,b]. Assume that { ¢ (¢) dt < /2/4. Then

L@l < 22 |u(@| ="~ fu(p)| ¢~ /e=), (4.1.28)

Proof: Let {E,} be the resolution of the identity associated with 4 and
E = |7 dE; the projection operator in H associated with the positive part
of the spectrum of A. Let u=u(t) be the given solution. Set u, = Fu,
uy=(I—E)u, f=u'—Au, f, = Ef, and f, =(I—E)f. Then u,'—Au, =f,
and u,' — Au, =f,, so that

(dldr)(ui, u;) = 2Re(Au,u) + 2Re(foup), i=1,2
Since (Au,,u;) 2 0 and (Au,,u,;) <0, we obtain the inequalities

(d/dty(uy,uy) = 2Re(f,uy) and (dldty(uz, u;) < 2Re(f>, uy).
4.1.29)

Integrating the first inequality in (4.1.29) from ¢ to b and using the fact
[Re(fi, u)l < /il g | < WS full, we get

luy O = uy O = 2Reflb(f1(5),u1(5)) ds > —2.[bllf(S)II ()l ds.
Setting M = max, ., ., |lu(r)]|, there results the inequality
luy (D1 < Nuy (B + 2Mflbllf(5)|| ds. (4.1.30)
Similarly, from the second inequality in (4.1.29), we derive
luz (DI < Nz @) + 2M£I|f(S)Il ds. (4.1.31)

Adding (4.1.30) and (4.1.31) and remembering that «, and u, are orthogonal
vectors, one readily sees that

b
luI? < lluy@]? + llu, D)) + 2Mf /()| ds.  (4.1.32)
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Taking the maximum in both sides of (4.1.32) and using the inequality
2MN < (M]2)*+(J2N), it follows that

b 2
M? < luy @7 + llu (DI + (M?)[2 + 2<f 1A dS) .

Therefore

b 2
ril;%l}bllu(f)ll2 < 2(lu(@)® + lu@®))®) + 4(f llu'(s)— Au(s)]| dS) :

(4.1.33)

We now set w = exp(ar) u(f) with o real and notice that
Iw — (A+oeD)w| < exp(ot)||u’'— Aul.

Applying (4.1.33) with A4 replaced by 4 + 0], using (4.1.2), and the assump-
tion on ¢, we obtain

max [lexp(a)u(n)l|* < 2[llexp(oa)u(@)| + llexp(cb) u(®)]*]

asi<b

b 2
. 4( f lexp(as) b (s) u(s)| ds)

< 2[llexp(oa) u(a)||* + llexp(sb)u(b)||*]
+ 4 max |exp(at)u(t)|.

astsb

Hence
llexp(en) u(n)]* < 4llexp(oa)u(a)ll* + 4 |lexp(ab) u(b)]>.
Choose o so that the two terms on the right become equal, i.e.,
o = (b—a)”log(lu(@|/u(®I)
and the desired inequality (4.1.28) follows. The proof is complete.

Using the convexity-like inequality (4.1.28) one can obtain lower bounds
for the solution u(¢). This we state as

PrOBLEM 4.1.2. Assume that ¢ (7) is integrable on every finite interval of
R, . Starting with 1, =0 let 7, with n=1,2, ... be such that

f’" o) dt = V2/12
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andset?,,, —t,= p,. If there are only a finite number of such intervals, the
last has infinite length and the integral of ¢ over it does not exceed \ﬁ/l2.
Suppose that for some numbers C and K

n n C
Yot < K<1 + ij> ., n=12.
j=0 j=0
Then any solution u(f) of (4.1.2) with A4 self-adjoint, satisfies

lull = lu@)exp[ —u(t+DF1IB, 121,

where yt is a fixed constant, while f is a constant depending on the solution.
In particular

(i) ifpeLl,(R,)and 1 <p<2,then

lu()] = [u@)] exp{—p@+1)} B, 121
(i) if¢eL,(R,)and2<p<oo,then
lu@®ll = fu@exp{—p@+1)2"FPYp, 1> 1

(i) if ¢(r) < K(1+1) for C =0, then
[u(O] = [uO)f exp {—pu(r+1)**2} B, 121,

[Hint: Apply (4.1.28) with t=1;, a=1;_,, and b=1;,,. Set 6; = |lu(1))
and estimate (;—0;_,)/pj—.]

It is clear from Theorem 4.1.1 and the subsequent considerations that
finding an estimate for the function Q() is indeed essential. This has been
achieved in the case of a symmetric operator A, as the foregoing discussion
shows. We give below sufficient conditions which guarantee a similar
estimate when A is not symmetric.

THEOREM 4.1.6. Assume that for 2 sufficiently large, 2 € p(A4) and the
following conditions hold:

(i) lim AR(Z;4)x = x, xeH;

A @

(ii) I1AR(GA; Ay x|* = [1=2K/A]\x]3, / sufficiently large.

Then every solution u(z) of (4.1.2) satisfies the inequality

lu( = (u(to)l epr:—K(t—to) - ﬁqﬁ(S) dS]- (4.1.34)
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Proof: Set m(t) = |u(t))?. Then
m'(1) = 2Re(u'(2), u(1))
= 2Re(Au(t),u(r)) + 2 Re(Lu(1), u(t)). (4.1.35)
Observe that
JRCG:A)u = u+ 2~ Au+ 2" [AR(A, A) Au— Au]
=u+A""Au+ i7'R(A)

where by (i) we have R(4) = AR(4, A) Au— Au— 0 as 1 - 0.
We thus have

IARCG, Aull? = |ul? + 2~ '2Re(Au,u) + i~ ' 2Re(u, R(1)) + 27| Au|®
+ A722Re(Au, R(2)) + A7 2| R(M)2.
From this identity and (ii) we obtain
—2K|lul|* < 2Re(Au,u) + 2Re(u, R(D) + A7 || 4u|?
+ 7 '2Re(Au, R(D)) + A~ |R(D)|12 (4.1.36)
Since R(/) -0 as 4 — o0, it follows from (4.1.36) that
Re(Au(t), u(r)) = — Km(1).
This together with (4.1.35) and (4.1.2) implies that
m'(t) =2 =2[K+¢(0)Im(t)
which yields the desired inequality (4.1.34). The proof is complete.

We should remark that hypothesis (i) is satisfied if, for example, 4
generates a strongly continuous semigroup in H.

4.2. Lower Bounds, Uniqueness, and Convexity (General Results)

Consider the time dependent evolution operator
Lu=u—-AWu, "= dfdt 4.2.1)

in a Hilbert space H. We assume that A (¢) admits a decomposition of the
form

AWM) = A, () + S(A_(D+ A1), 6>0 (4.2.2)
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where A4 (7) is a linear symmetric operator over D[ A4 (¢)] while 4_'(¢) and
A’ (1) are linear skew symmetric over D[ A(1)].

Here we shall obtain results analogous to those of Section 4.1 for the
general evolution inequality

ILu() <® (,m@t),q(), tel 4.2.3)

where J is an interval on the real line R, 4 (f) admits the decomposition
4.2.2), m(t) = |u®||>+ P[u(r)] with P[u(z)] a nonnegative, nonlinear
functional defined on D[A(#)], ¢(r) = (A, (D) u(t),u(t)), and ®: Jx R, x
R—-R,.

The form of the inequality (4.2.3) will offer a wide range of applicability
of these results to partial differential equations, but we shall be mainly
concerned here with abstract inequalities.

DEFINITION 4.2.1. A function u € C[J, H] is said to be a solution of the
inequality (4.2.3) if

(i) u(t)e D[A(#)] for t € J and A(t)u(r) is continuous for t € J;
(ii) du(r)/dt exists and is continuous on J;
(iii) u(?) satisfies the inequality (4.2.3) for t € J.

We shall first obtain general lower bounds and two uniqueness theorems
for the solutions of (4.2.3) on the interval J of the real line R. We shall often
use the inequality m(t) = |u(s)||* which is valid since P[u(f)] = 0. We also
define Q (1) = q(1)/m(t) as long as m(¢t) # 0. For easy references we state the
following hypotheses:

Hypothesis 1: There exists a function ¢ e C[Jx R, R, ] such that for all
teJwithm()#0

@1, m(1),q(N] < m(0)*$[1,Q(N)].

Hypothesis 2: The functional P[u(#)] is differentiable with respect to ¢
and forall reJ

I(d/dr) PLu(D]l < 2c(6)ym(t)
where w e C[J, R, ].

Hypothesis 3: There exists functions ¢, e C[Jx R, R] with i=1,2,3
such that, for any solution u(r) of (4.2.3) with m(¢) # 0 and for any number
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6 such that 0 < 8 < %, the following estimates hold:
()  SRe(A,(Nu(®),A-"(Nu(®)
2 =omOY, (1, 00) = 8114, u(®) — 0(Hu@®|?;
(i) S1A-"Ou? < dIm@O) Y (1, Q) + S A (Hu() — QO u®)|?;
(ii) the function (A4 (D) u(?), u(r)) is differentiable on J and
(d/d) (A (D u(@), u(t)) — 2Re(A (DN u(),u'(r))
2 =m0y (1, 0(0) — 5[4, (u@) — Q) u@))|?.

It should be noticed that when A4 (¢) is symmetric then § = 0 and Hypotheses
3(i) and 3(ii) are automatically satisfied.

Hypothesis 4: There exists a function 8, e C[J x R, R] such that 8,(z, y)
is nondecreasing in y for each t € J and

2[y— (I)(t’y) - w(t)] = gl(tsy)’ t = tO? telJ.

Hypothesis 5:  There exists a function 8, € C[J x R, R] such that 0,(¢,y)
is nondecreasing in y for each ¢ € J and

2[y+q‘)(t,y)+w(t)] <()Z(I,y)a t< tO’ IEJ'
We define the function
w(t,y) = Y(t,y) + 2wy + (2-56)"" ¢*(1,y) (4.2.4)

where Y (t,y) = 26y, (t, )+ 6y, (¢, y)+¥5(t, ). We also denote by y,(?)
and y,(¢) the right minimal and the left maximal solution, respectively, of
the scalar initial value problem

yo=-wty) and  p(t) = Q) 4.25)

We now pass to our main result of this section.

THEOREM 4.2.1. Let u(t) be a solution of (4.2.3) and let ¢, be a point in J.
Then

(a) under Hypotheses 1-4 the following lower bound is valid:

t
m(t) = m(to)expf 0,(s,,(5)) ds, t=t,, teld;, (4.2.6)
to
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(b) under Hypotheses 1-3 and 5 the following lower bound is valid:
to
m(t) = m(ro)expf — 0,(s,y,(s)) ds, t<ty, ted. 42.7)
t

Proof: Suppose first that m(r) > 0 for all ¢t € J. Then, using the decompo-
sition (4.2.2) the symmetry of 4, and the skew symmetry of 4_" and 4_",
we obtain

(dldtym(t) = 2Re(u'(1), u(t)) + (d/dt) P(u(t))

= 20Q()m(1) + 2Re(Lu(t), u(r)) + (d/dt) P(u(1)). (4.2.8)

In view of Hypothesis | and (4.2.3) we have from (4.2.8)

\(d/dty m(1) — 2Q(1ym(r) — (djdt) P(u()] < 20(t, m(1), (1)) |u(r)]

< 20(5, QD) m(r). (4.2.9)

By (4.2.9) and Hypothesis 2 we are led to the inequalities
(@ldym(r) = 2[Q(1) — $(1,0(1) — (I m(),  teJ, (4.2.10)

and

(didnym(t) < 2[Q(D) + ¢(1, Q) + w(t)] m(1), teJ. (4.2.11)

Since A, (¢) u(t) is continuous in ¢t and A4, (¢) is symmetric, it is easily seen,
by taking the difference quotient and passing to the limit, that the function
(AL (D u(t), u(n)is differentiable and

(dldi) (A () u (@), u(t)) = (A4 (D) u(@), u(t)) + 2 Re(A (D u(r), u'(1))
(4.2.12)
where
(A (Y u(),u(n)) = (d]dt)(A (Y u(r),u(n) — 2Re(4 (D u(D), u'(1)).
It follows that (suppressing the variable ¢) and using (4.2.2)
dQ/dt = (A, u,u)/m — (Q/m)(d|dt) P(u)
+ 2/m)I4, ul®> — O*m + Re(A, u — Qu, Lu)]
+ (26/m)Re(A  u, A_'u) + (26/m)Re(A , u, A_"u)
=sLh+L+0L+1,+1s. (4.2.13)

We shall estimate the terms /; withi=1,...,5.
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From Hypothesis 3(iit) we get
I 2 —y3(1,0) — (8/m) | A+ u—Qul}>. (4.2.14)
By Hypothesis 2 we see that
I, 2 =210l w(1). (4.2.15)
Notice that
A+ u—Qul? = A, ull® = 2Q(A, u,u) + Q*|u))?
< 4, ul® = 20%m + @%m
= |4, ul|®> - Q’m. (4.2.16)

Next, using the arithmetic-geometric mean inequality on 2Re(A4, u—
Qu, Lu), we obtain, for any a >0

2Re(A,u— Qu,Lu) 2 — 2|4, u—Qul | Lul
> —ald,u—Qul* —a '\ Lu)?
> —alAd,u=Qu|* —(ma)$*(, Q). (4.2.17)
The estimates (4.2.16) and (4.2.17) yield
I 2 Q-a)mlA,u—Qu|?* —a '¢*(1, Q). (4.2.18)
In view of Hypothesis 3(i), it follows that
1y = =20, (1, Q) — 20/m) || A u—Qu|>. (4.2.19)
By Hypothesis 3(ii) and the skew symmetry of 4” one gets
02Re(A,u, A" u) = 6|2Re(A, u— Qu, A" u))
<O Ayu—Qu|* + 8|4 ul
< 260 A u—Quli* + dmyr, (1, Q)
which implies that
Iy = —(28/m) | A, u—Qu|?® — &y, (¢, Q). (4.2.20)
Using (4.2.14), (4.2.15), (4.2.18), (4.2.19), and (4.2.20) in (4.2.13) and
choosing a =2 — 354, we finally obtain
dQfdt 2 — (23, + 3, +¥3) — 210lw — (2-58)"' $*(1,Q),
that is, recalling (4.2.4)
dQfdt =z —w(t, Q). (4.2.21)
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The differential inequality (4.2.21) now yields [42]

o)y =y, (1, 1=ty tel, (4.2.22)
and

o) <y, (1), t<ty, tel. (4.2.23)

Now assume that Hypothesis 4 is satisfied. Then, using (4.2.10) and (4.2.22)
we get

(dldym(t) = 0,(t,y, ()m(1), t=1t,, tel,

from which the estimate (4.2.6) follows and (a) is proved. Similarly,
assuming that Hypothesis 5 is satisfied, we derive from (4.2.11) and (4.2.23)
the inequality

(djdym(t) < 0;(t,y,())m(n), 1< 1y, 1€,

from which the estimate (4.2.7) follows and (b) is proved.

We have established the desired lower bounds under the additional con-
dition that m(¢) > 0 for t e J. We shall now remove this assumption. If
m(ty) = O the estimates (4.2.6) and (4.2.7) are clearly valid. Now assume that
m(ty) > 0. We shall prove that m(t) > O for all ¢ € J and hence the previous
arguments are valid. Otherwise there exists an interval with one end point
to, say, [#q,1,), such that m(r) >0 on [1,, t,) but m(¢,)=0. Since (4.2.6)
holds for all 1 € [#,, ¢,) it follows by continuity that the same bound holds
also at ¢ =t, contradicting the hypothesis m(¢,) = 0. A similar argument,
involving (4.2.7) is valid in case f, is a right-end point of the above
interval. The proof is therefore complete.

A consequence of Theorem 4.2.1. is the following interesting uniqueness
result.

THeOREM 4.2.2. Under Hypotheses 1-5 for any solution u(r) of (4.2.3)
either m(t) >0 for all teJ or m(t)=0 on J. In the special case when
Plu(t)]=0, if u(ty) =0 for some t, € J, then u(f)=0on J.

Proof: 1t is clear from (4.2.6) and (4.2.7) that if m(#;) > O then m(t) >0
for all 1 € J. Next, assume that m(#,) = O for some ¢, € J. We shall prove
that m(r) =0 for all 1 e J. If not, then m(¢) is not identically zero in an
interval either to the left or to the right of ¢,. Suppose that this happens to
the left of t,. Then, there must exist a subinterval [¢,,7,) of J such that
m(t)>0 for t, <t <1, and m(s;) =0. Applying the estimate (4.2.6) with



112 4. Evolution Inequalities

t =1, and t, = t; we obtain a contradiction. Hence m(#) = 0 to the left of #,.
Similarly, using the estimate (4.2.7) we obtain a contradiction unless
u(t) = 0 to the right of ¢,. The proof is complete.

The following (unique continuation at infinity) theorem shows that the
solutions of (4.2.3) (actually n1(#)) cannot tend to zero too rapidly as ¢ — o
unless they are identically zero.

THEOREM 4.2.3. Let Hypotheses 1-5 be satisfied on the whole real line R
and u(¢) be a solution of (4.2.3). Assume that there exist constants &, /, N such
that k>0, />0, and N depends on the solution satisfying the order
relations

m(t) = Ofexp(—kt)] as - —oo, (4.2.24)
m(t) = Olexp[—(k+1)1]] as - + oo, (4.2.25)

expf’ —0:[s,yi(s)]ds = O[exp(=Nn]  as 1 +c0, (4.2.26)

to

and
to
expf 0,[s,y,(s)] ds = Ofexp(— Nt)] as t—- —oo. (4.2.27)
!

Then m(¢) = 0.

Proof: Let m(ty) > 0 for some ¢t,. Then the estimates (4.2.6) and (4.2.7)
are valid and for convenience we write them in the form

!
m(ty) < m(t)expf - 6,.[s,y,(s)] ds, t= 1, (4.2.28)
to
and
fo
m(ty) < m(r) expf 8,[s,y,(s)] ds, t<ty,. (4.2.29)
t

From (4.2.28), (4.2.25), and (4.2.26) we obtain, with C standing for a generic
constant, the inequality

m(ty) < Cexp[—(k+I1+N)f] as t— +oo.
Since m(ty) > 0, it is necessary that

k+I!/+N<O. (4.2.30)
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Similarly from (4.2.29), (4.2.24), and (4.2.27) we get
m(ty) € Cexp[—(k+N)1] as t— —o

and therefore k + N = 0 which contradicts (4.2.30) and the proof is com-
plete. It is evident from the proof that there is an analogous theorem with
the roles of t = o0 and t = — oo interchanged.
As an example we shall study the evolution inequality
dujdt — AW unl < [d1()m(r) + $2 (D a,(u(0), u())]*%,
teR 4.2.31)

where A4(#) admits the decomposition (4.2.2) in the Hilbert space H

T
m(t) = fu@)|? +f 20(s) lu(s)))* ds,

t

a, is a symmetric positive semidefinite, bilinear functional defined on
D[A(1)], ¢, and ¢, are nonnegative functions in L, (R), and w(r) a non-
negative continuous function on R. In addition we shall make the following
assumptions:

There exist nonnegative measurable functions o, y;, B;, and a; with
i=1,2,3 bounded on every closed finite subinterval of R such that for any
solution u(f) of (4.2.31) with m(t)# 0 and for any number & where
0<d <2/5 we have

Assumption 1:
SRe(A u, A_"u) = =0y, | A, ull lull — 8B, ul* — dat, a,(u, u).
Assumption 2:
SlA_"ull? < opx A ull llull + 8B, llull® + S @, (u, u).
Assumption 3: The function (A, () u(r), u(r)) is differentiable on J and
(Aru,u) = =y A ull lul = Bsllull® — x5 a,(u, u).
Assumption 4: 1f ¢, +o +a, +ay # 0, we shall assume that
—(Ayuu) = a,(u,u) — o ul?

First, our aim is to show that Hypotheses 1-5 of Theorem 4.2.1 are also
true for (4.2.31). Then we shall obtain explicit lower bounds for the solutions
of (4.2.31).
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If ¢, (¢) #£ 0 from Assumption 4 we get (suppressing ¢ and using the same
notation for g and Q as before)

[oym+ dra,(u,u)]” < [¢ym+ d,am — ¢,4q)"
< mil¢, + ¢,(0— Q)%  m#0.

Hence Hypothesis 1 is satisfied with
oLt Q) = [¢) + d2(a— D)) (4.2.32)

Notice also that because of Assumption 4 a—Q = 0. If ¢,(£)=0, then
¢(t,0)=¢,”. Hence in any case ¢(+,0) is given by (4.2.32). Clearly
Hypothesis 2 is satisfied with

T
PLu()] = f 20(5) |u(s)|? ds.

The proof that Hypothesis 3 is satisfied requires a trick.
Let 8 denote the angle between the vectors A, u and u in the Hilbert
space H. Then

|4, u—Qull* > |4, ul?sin®0
and
101 = m™ (A u,w) = m™" | A, ul u]l [cos 0.
From these inequalities we obtain, using the § of Assumptions 1-4
Oyill Ay ull lull = 8y; 14 ull lull (sin? & + cos* )
< 0y; A ull lull sin? 0 + 6y; 114, ull |[u] |cos 0|
< 0(iA 4 ull® + y |lul*)sin’ 6 + 6y,1QIm

< OlA u—Qul* + G2 +y10hm, =123
(4.2.33)

In view of Assumptions 1-4 and (4.2.33) we get, aslongas m(#) #0
(i) ORe(A,u,A_'u) = —8| A, u—Qu|?
= om(y;* +7,1Q1+ By —a, Q+axy);
(i) OllA—ull® < 8)| A, u—Qull* + dm(y,? +7, 101+ B, —a, Q +axy);
(i) (Ayuu) > =514, u—Qul® = dm(ys® +7;10|+ B3 +o3 O —oxaty).
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Therefore Hypothesis 3 is established with

¥i(1,Q) = 7% + 710l + Bi — 2,0 + aw;, i=123,
and
Y, Q) = — (200 + 30y +a3) Q + (287, + 072 +73) 10|
+ (287, 2+ 67,2 +73%) + (288, + B3+ B3) + a(28a, + da, +a3).
(4.2.34)
Next we shall verify Hypotheses 4 and 5. Since the function y—¢(t,y) =
y—[¢,+¢,(@—y)]” with y<a is increasing in y we could take for

0,(t,p) the function 2[ y— ¢ (1, y) — «2(r)]. However, a simpler function can
be chosen as follows:

y—1¢,+¢,(a—y)]" $,% = [¢,(a—y)]"
¢, — (¢2/2p) — p(a—y)

Zy-
2y -
(I+p)y — ¢, — (¢22p) —ap, p > 0.

Therefore one can take

0,(1,y) = 2[(1+p)y — ¢, — (¢2/2p) — 0p — W],

and Hypothesis 4 is satisfied.
Similarly

y+[di+d,(a—y)]% <y + ¢, % + [¢,(a—y)]"
Y+ &%+ ¢y2p + pla—y)
=(l=p)y+ &% + ¢,/2p + ap.
So for any 0 < p < 1 we may take
0,(t,y) = 2[(1=p)y + &1 + ¢2/2p + ap + @]

and Hypothesis 5 is satisfied.
From (4.2.4), (4.2.34), and (4.2.32) we get

w(t,y) = —A@)y + B() |yl + C(1) (4.2.35)

N A

where
A = 260, + day, + a3 + (2—58)" 19,
B() = 28y, + 6y, + 73 + 2w
C(t) = 26y, 2+8y,2+733) + (268, + 8B, + B3) + a(26a, +da, +a3)
+ (2—58)""(¢, +a¢,).
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Finally we must compute the solutions of (4.2.5). We first make the
observation that the solution of the equation y’'= Ay— B|y|—C with
y(to) = yo is given by the formula

t

y() = yo epr.t(A +B)ds — f |:C(s) exp J.t(A +B) df] ds

i

and therefore if y, <0 then y(#) <0 for t >ty and if y, =0, then y(r) 20
for 1 < 1.
Set

A, = min(0, () and A, = max(0, Q (%))
By what we have said above the solution y,*(¢) of the equation
Yy =Ay—-Blyl-C and y(o) =4, 21

is negative for ¢ = 1, and therefore is given by

v = A, expft’(A +B)ds — f’l:C(s)expf’(A + B) dé:l ds, L2t

From the theory of differential inequalities it follows that y, (1) = y,*(?)
and the estimate (4.2.6) takes an explicit form with y,(s) replaced by
Y *¥(0). Similarly, if y,*(¢) is the solution of the equation

y=Ay—Bly|-C and y(t))=4;, (<t
then y,*(¢) is positive for ¢ < ¢, and is given by

y.X@) = 4, expf’(A—B) ds — J;t[C(s)expft(A—B) dé;':] ds, t < tg.

o

Also y,*(#) = y,(¢) and the estimate (4.2.7) takes an explicit form with
y,(¢) replaced by y,*(#). The proof is complete.

The following two corollaries are with respect to the inequalities
dufdt — A@)u@l? < ¢, () |u@l* + 2 (1) a,(u(®), u(®)),
teR (4.2.36)

and

i

T
ldujdt — A(Ou®)? < qf)(t)[llu(t)ll2 + f w($)[u()]? dS}

te[0,T) (4.2.37)
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CorOLLARY 4.2.1. When 6 =0 (thatis, when 4 =A4,), w(1)=0,y,(1)=0,
i=1,2,3B:,(t)=a,(t)=0,i= 1,2, and under Assumptions 3 and 4 we have

dojdt = (a3 +3¢,)Q — (B3 +aaz+1d, +3ad,). (4.2.38)
This inequality follows directly from (4.2.35) and (4.2.21).

COROLLARY 4.2.2. When ¢, =0, 6 # 0 (for example, 6 =1/5), a =a, =
o, =03 =0, ¢, = ¢, and under the Assumptions 1-3

I+ B +2Cc(t) =0 (4.2.39)

where (1) =20(1), B(f) =%y, + 41y, +73+2w, and C(r) = %y, > + 1y, > +73)

+ @B+ 182+ B3) + 9.
This inequality follows directly from (4.2.35) and (4.2.21).

PrOBLEM 4.2.1. Assume that the hypotheses of Corollary 4.2.1 are satisfied.
Set I,(t)=a3+3¢, and I'|(t) = B3+ aa;+3¢p, +3ag,. Let m and A be
constants satisfying m > exp[ — [, I, (s) ds]and 2 = m| T ||, g, Let u(r) be
a solution of (4.2.36) for all real ¢t and assume that there exist positive
constants & and & such that

lu()l = Olexp(—k1)] as t—>—o0
and
lu(®)| = Ol(exp —[m?*k + (m*+ 1)\ +€]t)] as - +oo.
Then, u(£)=0.

[Hint: Use Corollary 4.2.1 and Theorem 4.2.1 and argue as in Theorem
4.1.3.]

PrOBLEM 4.2.2. Assume that the hypotheses of Corollary 4.2.2 are satisfied
and w(?) = 0. Establish lower bounds for the solutions of (4.2.37) analogous
to those of Theorem 4.1.2.

[Hint: Use Corollary 4.1.2 and Theorem 4.2.1.]

PrROBLEM 4.2.3. Assume that the hypotheses of Problem 4.2.2 are satisfied.
Set
y(t) = max 7() and B = max Bi(1).
i 1,2,3

i=1,2, i=
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We assume further that 7= oo and
7,18, ¢, € L,[0,0) and 1%y, t%¢, € L, [0, ).

Then the following convexity inequality holds for 0 <, <7<t < o0:

flrexp[ £ s 4y(r) dr] ds

firexp[ £ {3 4y(r) dr] ds

L exp[+[3,4y(r) dr] ds

] 1) =
+ loglu(r)l nexp[ %[5 4y(r)dr] ds

log [[u(D)ll < log[u(1o)l

+ K(t0)

where one takes everywhere the negative sign if ||u(?y)]] < || u(¢,)|l and the
positive sign if ||u(sy)]| = |lu(#,)]. Finally K(f) is a nonnegative bounded
function which depends only on y, §, and ¢, and K(t) » 0 as t - 0.

[Hint: Use Corollary 4.2.2.]

4.3. Approximate Solutions, Bounds, and Uniqueness

Let us consider the evolution inequality
u —A@u—fLwl < ¢ ul), " =dd 4.3.1)

in the Banach space X, where fe C[R, x X, X], ¢ e [R, xR,,R.,], and
for each re R, A(t) is a linear operator with domain D[A(t)] =D
independent of . We shall assume that for sufficiently small 4 >0, the
operators R[h, A())=[I-hA(1)]"! are well defined as bounded linear
operators on X and that

lim R[h, A(1)] x = x, xe X, 4.3.2)
h—-0,

The relation (4.3.2) is satisfied, if, for example, for each re R, A(¢)
generates a strongly continuous semigroup. Notice that the operator
R[h, A(1)]is not exactly the resolvent of 4(¢) but for sufficiently small 2 > 0,
the number 4~ is in the resolvent set of A (7).

DErFINITION 4.3.1. A solution u(t) of the evolution inequality (4.3.1) is a
strongly continuously differentiable function u: R, —» X with u(t) € D for
t e R, which satisfies (4.3.1) for all 1€ R, —S where S is a denumerable
subset of R, . If ¢p = ¢, then u(r) is said to be an e-approximate solution of the
evolution equation

v =AW u+ f(1,u). (4.3.3)
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THEOREM 4.3.1. Assume that
[RLA, AT x + B (1, 0| < x| + Ay (2, [ x]]) 4.3.4)

for all sufficiently small #>0 and all (t,x)e R, xX, where Y e
C[R, xR, R]. Let r(t,ty,ry) be the maximal solution of the scalar
differential equation

r=w(tr) and r(tg) =ro 20 4.3.5)

where w(t,r) = ¢ (t,r)+ (8, r) existing on [1,, o). Then any solution u(?)
of (4.3.1) satisfies the estimate

lu@Il < r(t, to,ro), t 21,
provided that ||u(to)| < ro.

Proof: Let u(t) be any solution of (4.3.1). Define m(r) = ||u(¢)||. For >0
and sufficiently small we have, using (4.3.4)

m(t+h) = llu@+m)| < llu(t+h) — RUh, AT ur) — A L1, u@®]]
+ m(t) + [, m()]. 4.3.6)
Observe that
R AW]u(t) = u() + hA@u(t) + h[R[A, AD]A@u() — A u(].
4.3.7)

In view of (4.3.1) and (4.3.2) the relations (4.3.6) and (4.3.7) lead to the
scalar differential inequality

D, m(t) < wlt,m(1)] and m(ty) € rg

which implies the desired upper bound.
One can prove an analogous result for lower bounds.

THEOREM 4.3.2. Assume that
IRLA, A()]x + (2, x)
=z x| = &y (e, 1x)), h sufficiently small, (f,x)eR, xX, (4.3.8)

where y e C[R, X R,, R]. Let p(t,1,, py) be the minimal solution of the
scalar differential equation

1

pl=—w(tp) and  p(t) =po 20
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existing on [t,, ), where w(t, p) = ¢ (f, p)+y(t, p). Then any solution
u(?) of (4.3.1) satisfies the estimate

lu@Ol = p(t,t0,p0)s 2 to,
provided that |[u(to)ll = po-

Proof: Defining m(f) = |u(®)| as before, it is easy to obtain the in-
equality

D_m(H) = —wlt,m(t)] and m(ty) = po

from which the stated estimate follows.

REMARK 4.3.1. For various choices of ¢ and s, Theorems 4.3.1 and 4.3.2
extend many known results of ordinary differential equations in R" to
abstract differential equations.

(i) Taking ¢ =¢ and ¥(s,r)=kr, where k is a positive constant,
Theorem 4.3.1 provides an upper estimate on the norm of e-approximate
solutions of (4.3.3), namely

lu@l < luo)l explk(t—10)] + (e/k)[explk(t—t0)]1—1], 121

while Theorem 4.3.2 yields the lower estimate

lu@)l = lu(to)llexpl—k(t—10)] + (e/k)[exp[—k(1—10)] = 1], 1= 1.

(ii) Suppose that ¢ =0 and that u(¢) is a solution of (4.3.3) existing to
the right of #,. Let Y (¢,r) = A(f) r where 1 € C[R,, R] then from Theorems
4.3.1 and 4.3.2 the following upper and lower bounds follow:

@l < uelexp [A0)ds 1> 1o,
and ’
WOl > lulexp [ -2y ds, 13 1o
If, on the other hand, ¥ (¢,r) = A(t)g(r), where g(r) > 0 for r > 0, then

Il < G“[G(nu(zo)n) 4 f ‘A(s) ds]

and

@) > G*[G(Mu(to)u) - f '2(s) ds]



4.3. Approximate Solutions, Bounds, and Uniqueness 121

where G(r)= [, ds/g(s) with ro>0. These bounds hold as long as
G(llu(to)) £ §% A(s) ds is in the domain of G~ 1.

PrOBLEM 4.3.1. Assume that

(i) foreachte R,, A(t)is the infinitesimal generator of a contraction
semigroup in X;

(ii) for(t,x)e R, x X, |lf(t, )| <g(]lx|),wherege C[R, xR,,R.];

(iii) r(t, 1y, ro) is the maximal solution of the scalar differential equation

r'=g(,r) and r(tg) =ro =20
existing on [#,, ).
If u(t) is any solution of (4.3.3) existing on [, o0) such that Ju(to)[| < ro,

then
luO < r(tt0,r0), 1 2 to.

Next we shall consider a general uniqueness result. For that purpose we
shall assume that f(z,0) = O so that (4.3.1) has the identically zero solution.
Here the functions ¢,y and w = ¢+ are not required to be defined at
t =0. We then have the following.

THEOREM 4.3.3. Let B(¢) be a positive continuous function on 0 < ¢ < o©
with B(0,) =0. Assume that w(z,0) = 0 and that the only solution r(t) of

r'=w(,r) 4.3.9)
existing on 0 < t < oo and satisfying
lim r(r)/B(t) = 0 (4.3.10)
t=0,

is the trivial solution. Then under the hypothesis (4.3.4) the only solution
u(t) of (4.3.1) satisfying the conditions u(0) = 0 and

limu(?)/B(t) = 0 4.3.11)
t—0

is the identically zero solution.

Proof: Let u(¢) be a solution of (4.3.1) satisfying (4.3.11). Define m(¢) =
[l#(8)]| and note that m(0) = 0. To prove the theorem we have to show that
m(t)=0on R,. Suppose, if possible, that m(c) > 0 for some ¢ > 0. Let r(¢)
be the minimal solution of (4.3.9) through (o, m(0)), existing on some
interval to the left of o. As far left of ¢ as r(¢) exists, it satisfies the inequality

r () < m). (4.3.12)
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To see that this is true, observe that
r=w(r)+e and r(o) = m(o) +¢ (4.3.13)

has solutions r(t, ) for all sufficiently small ¢ > 0, existing as far to the left
of o as r(t) exists and lim,_ o r(¢,£) = r(¢). Thus it is enough to prove that

r(t,e) < m(1) (4.3.14)

for sufficiently small ¢. If this inequality does not hold, let s be the least
upper bound of numbers t < ¢ for which (4.3.14) is false. Then it is easily
seen that

m(s) = r(s,¢) and D, m(s) = r'(s,¢)

which contradict the inequality D, m(t) < w[t, m(1)] obtained in the proof
of Theorem 4.3.1. Hence (4.3.12) is valid. Next we prove that r(¢) can be
continued up to t=0. If r(t,) =0 for some ¢,, such that, 0 <, < o the
continuation can be effected by defining r(#) =0 for 0 < ¢ < t,. Otherwise
(4.3.12) ensures the possibility of continuation. Since m(0) =0, we have
lim,_, r(1)=0and we define r(0) = 0. Now we have a nontrivial solution
of (4.3.9) on 0 < ¢ < o such that r(6) = m(6) and 0 < r(¢) < m(#). In view of
(4.3.11) we have

0 < lim r(1)/B()

-0+

< limm(()/B(@) =0

1—04+

which by hypothesis implies that r(¢) =0. This contradicts the fact that
r(c) = m(o) > 0 and the proof is complete.

ReMaArRK 4.3.2. If B(t) =t, Theorem 4.3.3 is an extension of Kamke’s
uniqueness theorem which includes as special cases Nagumo’s and Osgood’s
uniqueness conditions.

4.4. Application to Parabolic Equations
Let (7,x)=(t, x;, ..., X,) be a generic point of R x R". Set J; = 8/dx; and

d,=(04,...,0,). Let Q be a bounded domain of R” with sufficiently smooth
boundary such that

~fu(c?,.v)dx—f(a,-u)va’,\' =0, u,ve C,[Q,R], u,v =0 ondQ
Q Q
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(0Q is the boundary of Q.) We shall denote by I' the cylinder [0, T') x Q with
0 < T <+ 0. On I' we consider the parabolic operator ,— 4 where

A = Z aia,-j(f,x)aj + Z biai + C
iJj=1 i=1
is a second-order elliptic operator with real coefficients such that
(i) foreach (&,,&,,...,&,)e R* with k>0
Y @&l > kY &%
=1 i=1
(“) akj = ajkecl [I:,R]’ k,j = 1"”’ n,
¢,b;eC[TLR]), j=1,..,n;

M=

(iii) b=

a:b;, 2,b,8,ce C[T,R];

1

(iv) there exists a real number 44 such that for all (¢,x) e I’
c(t,x) —3b(t,x) < Aq.

Under the above hypotheses we shall indicate how the previous results
on abstract evolution inequalities apply to solutions of the inequality

6:u— Aullq) < () ullL,q) 4.4.1)

where we assume that we C,[[0,7],L,(Q)] for each te[0,T),
u(t,x) € C;(Q), and u(z,x) =0 on 9Q.

First we make the change of variables u = exp(Af)v with 1 > k+ 1,. Then
ve C,[[0,T),L,(Q)] for v(s,x)=0 on Q and v(t,x) e C,(Q) for each
t € [0, T). In addition v(t, x) satisfies the inequality

100 = (A=) 2] y0) € SO IV] Ly (4.4.2)

We shall prove that Assumptions 1-4 of Section 4.2 are satisfied for the
operator A —24,
Set

A, =Ag+c—13b~1 4" =L+13b, A’ =0

where 4o =37 ,;_,0;4;;0;and L =37_, b;0;. Herey, =, =0, =0, =03 =
¢, = 0 and therefore we need only verify Assumptions 2 and 3.

Let w(t,x) e D[A(#)] for each fixed ¢, te[0,T), w(t,x) e C,(Q), and
w(t,x) =0o0n 0Q for each t € [0, T). Then (4, w,w) = (Ayw, w)+(Cow, w)
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where Cy = c—34b— A1 < k. Hence

(4. w,w)| > k(-; 9wl + IIWIIZ)

and
||W||121,(n) = '21 6;wl? + wl?
< k_l I(A+ W,W)l
< k7 A wl (Iwl].
Also

lAZwl? < 21 Lw|l* + 2|1 3bw]?
< ChrOI4. wiliwl + O Iwl*]
= 0y, 1A, wil [wll + 8B, Iwl?

where (1) = sup, 37— [6;(t, x)|, B(f)=sup,|b(t,x)|, 8y,(1) = Cy(t), and
48, () = B(t). Assumption 2 is therefore satisfied.

Finally we shall verify Assumption 3. For u(t,x)e C,[[0, T), L, ()]
with u (¢, x) € C,(Q) and u(?, x) = 0 for x € 6Q we have, for each r e [0, T)

n

(djdry(A, u(®),u(r)) = =2 Y (a;;0;u,0;0,u) +2(Cou,d, u)
=1
— S (@) 0y, 0,u) + (3 Co)uy )
ij=1
= 2(A, u duldi)— S, ((2,ai;) 3, 0,u) + (3 Co) t, ).
i,j=1
Hence

[(d/dD) (A, u(r),u(®)) — 2(A 4 u,dufdt)] < C[T ()| Ay ull |ull + B(2)|ull*]

Sy A+ ull ull + By flull®.

Now one can apply the results of Section 4.2 to obtain lower bounds for the
solutions of (4.4.1).

PROBLEM 4.4.1. Let T= oo. Assume that y,, 85,73, 835, ¢ €L, [0,0) N
L (0, o) then for some u > 0 and any solution of (4.4.1)

fu(t, Il = |u(©, ) exp(—pp), >0
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[Hint: Use Problem 4.2.2.]

PrOBLEM 4.4.2, Let u be a solution of the parabolic equation

n

dufot — Y 8;[a;(x)0Ju+a(x)u =0 (4.4.3)
1

ij=
where a and the second partial derivatives of the g;; are continuous and
bounded in the closure of a domain Q in R". Let u be a solution of (4.4.3) on
Q with zero Dirichlet boundary conditions such that for some positive
constants C and § and for any real ¢

[u(-, DllLy < CexplBle].

Let U be a nonempty open subset of G. Assume that for any compact set
K in U there exist positive constants C; and &, depending on K, such that

luC-, Dl < Crexpl—(B+e)r], 20,
Then u=0on UxR.
[Hint: Use Problem 4.2.1 with m=1and 1=0.]

4.5. Notes

Theorems 4.1.1 and 4.1.2 are adapted from the work of Agmon and
Nirenberg [2, 3]. See also Ogawa [54]. Theorem 4.1.3 is essentially due to
Ogawa [55] and contains as a corollary Masuda’s theorem [49]. Theorem
4.1.4 is a very special case of an analogous result in [3]. The results of
Theorem 4.1.5 and Problem 4.1.2 are due to Agmon and Nirenberg [2].
Theorem 4.1.6 is adapted from Lakshmikantham [41]. All the results of
Section 4.2 are taken from the work of Ladas and Lakshmikantham [36]
which generalize and unify the corresponding results in [3] and [55]. For
the contents of Section 4.3 see Lakshmikantham [41]. Further results can
be found in Agmon and Nirenberg [3], Hurd [29], Ogawa [56] and
Zaidman [80]. The material concerning the application given in Section 4.4
is taken from Agmon [1]. For earlier studies on this subject see also Agmon
[1] and Lions [44].



Chapter 5

Nonlinear Differential Equations

5.0. Introduction

The contents of this chapter may perhaps be more interesting to those
readers who have the flavor of differential equations in Euclidean spaces,
since most of the information might, at first sight, appear not to apply to
partial differential equations and unbounded operators. None the less it is
here that the concept of monotonicity condition (Minty [51]) enters, out of
which has grown a tremendous interest in the study of nonlinear semi-
groups and monotone operators. We devote Section 6.2 of the next chapter
to the discussion of nonlinear semigroups where the importance of mono-
tone operators unfolds itself. This chapter as a whole may be considered as
developing the fundamental theory of nonlinear differential equations in
Banach spaces.

126
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We begin by giving some counterexamples to show that the classical
Peano’s existence theorem of differential equations in R", as well as the
“continuation of solutions” theorem, cannot in general be extended to
infinite-dimensional Banach spaces. We then offer a set of quite general
sufficient conditions, more general than the monotonicity condition, that
guarantee the existence and uniqueness of solutions of nonlinear abstract
Cauchy problems, demonstrating the uniqueness part by an application to
a parabolic partial differential equation. The purpose of Section 5.3 is to
develop the nonlinear variation of constants formula, analogous to
Alekseev’s result [4]. As a preparation, a treatment of uniqueness of
solutions and the continuity and differentiability with respect to initial
conditions is given. Section 5.4 illustrates that the variation of constants
formula is a convenient tool in studying the stability and asymptotic
behavior of constantly acting perturbations. In Section 5.5 Chaplygin’s
method is exploited to approximate the solution of a nonlinear differential
equation by a sequence of functions satisfying linear differential equations.
After presenting a set of sufficient conditions for the global continuation of
solutions of abstract Cauchy problems in Section 5.6 we extend the notion
of asymptotic equilibrium to equations in a Banach space obtaining as an
outcome an existence result for a terminal value Cauchy problem. Finally,
using the extension of Lyapunov’s second method, we consider in Section
5.7 several stability criteria of nonlinear evolution equations.

5.1. Counterexamples
Let X be a Banach space and f(z,u) be a mapping from [y, 7o +a]x X
into X. Consider the initial value problem
duldt = f(1,u), ty <t<t+a, (5.1.1)
u(ty) = uy, uy € X. (5.1.2)

DEerINITION 5.1.1. A function u: [#y, to,+a] — X is said to be a solution of
(5.1.1) with initial value ug at 1 =1t, if

(i) ue C[lte, to+al, X1;
(ii) u(to) = to;

(iii) u(?) is strongly differentiable in ¢ for 7y <t < ty+a and satisfies
(5.1.1) forty <t <ty +a.
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It is well known that in the case X = R", the n-dimensional Euclidean
space, the continuity of fin a neighborhood of (¢, ), alone, implies the
existence of a local solution of (5.1.1) and (5.1.2). This is the classical
Peano’s theorem. This theorem cannot be generalized to the infinite-
dimensional case. The following counterexample is known.

Consider the Banach space X = (c,) of real-valued sequences u = {£,}° ,
with lim,_, , &, =0 and norm |u| = sup,|&,|. Define the function f/: X > X
by

S = &5 +n7 1y, =& e X
The continuity of the real-valued function &% for ¢ > 0 and the definition

of the norm in X imply that the function f(u) is continuous for all u € X.
However, the initial value problem

du/dt = f(u), u(@ =0 (5.1.3)

has no solution in X. In fact if u(r) = {&,(1)}>, were a solution of (5.1.3)
the nth coordinate £,(z) should satisfy the scalar equation

&) =1, +n! (5.1.4)
and the initial condition

£,(0) = 0. (5.1.5)

From (5.1.4) &,(t) is strictly increasing in ¢ and in view of (5.1.5) &,(f) > 0
for 0 < t <t where 7 is sufficiently small. Then from (5.1.4)

énl(t) > én%(t)9 O<t<rt
which leads to

E (D) = 3, 0<r<rt

It is obvious now that no matter how small we choose 7 the sequence
{&,()}F., does not converge to zero as n— oo which contradicts the
hypothesis that u(t) is a solution of (5.1.3) and in particular u(r) € X.
A similar argument holds to the left of 1 = 0. Thus, although the function f
is continuous the initial value problem (5.1.3) has no solution in any open
interval containing ¢ = 0. At a first glance the preceding example seems to
depend strongly on the properties of X = (cy) which is not reflexive (see
[74]). However, another counterexample is known in a Hilbert space.
(A Hilbert space is always reflexive.) We state it as follows,
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ProsLEM 5.1.1. Let H be the Hilbert space of real-valued sequences
u= {2, with Ju|>=Y2, &2 Let P, be the projections given by
Pu=(Q,...,0,¢,;1,¢h12,...) wWith n=1,2,... and Pyu=u. For (t,u) e
R x H define

0, t<0
u, t=1
H POu=
Q=2"0P,u+ Qt—1)P,_,u,
ref27",27"% 1, n=12..;
(i) G@) =ulul~% u#0 and G(0) = O0;

(i) A = (&5, -0 and v=(271,272273% )
(iv) f(t,u) = G(P(NAW)) + P(t/2)vmax {0,47 " > — |lu|}.
Then f: Rx H— H is continuous but the initial value problem
duldt = f(t,u) and u() =0 (5.1.6)
has no solution in an open interval containing ¢t = 0.

[Hint: The continuity of f follows from the continuity of P. Then
assuming that (5.1.6) has a solution deduce a contradiction.]

REMARK 5.1.1. The reason that the classical proof of Peano’s theorem
fails in an infinite-dimensional Banach space is that the closed unit ball in a
Banach space is not necessarily compact. However, under the additional
hypothesis that the function f is (locally) Lipschizian we can prove the
(local) existence and uniqueness of solutions of (5.1.1) and (5.1.2).

THEOREM 5.1.1. Define the rectangle
Ro = {(,u)e RxX:|t—to| < o, [lu—uol < B}.

Let /2 R, — X be continuous in ¢ for each fixed u. Assume that || f(t, )| < M
for (t,u) € Ry and | f(t,u;)—f(t,u;)| < Kluy —u,|i for (,u,),(t,u) € Ro
where K and M are nonnegative constants. Let @ and f§ be positive constants
satisfying aM < B. Then there exists one and only one (strongly) con-
tinuously differentiable function u(¢) satisfying

du(t)/dt = f[t,u(®)], [t—to| € a 5.1.7)
and
u(ty) = up. (5.1.8)
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Proof: Ttis clear that the continuity in ¢ for each fixed v plus the Lipschitz
condition implies that f(z, ) is actually continuous in both variables. (In

fact || /(£ u) = ftgu) |l < WSy ) = [ u)ll + [ uy) =S, up)| <
Ky —uy| + 1| f(t, uy) —f(t5, uy)|.) We shall apply the classical method of
successive approximations. Define

ug(t) = ug

and
t
un (1) = g +ff[s,un_1(s)] ds,  li—to] < %,
fo

the integral being taken relative to the strong topology. One can establish
by induction that «,(7) is strongly continuous and that

lu, () —upll < B, ft—to| < a,
and also
lup(8) =ty (DI < MK" (1= 10]"/nY), n=12...

It follows that as n — oo u, (¢) converges uniformly in |t — ty| < « to a strongly
continuous function u(#). Hence, as n— oo

/0t up (D] = fL,u(O]] < Kllu, (1) — u ()] -0,

uniformly in |t —t4] < a. Using Theorem 1.3.2 we obtain

t t
u(t) = limu,(t) = ug + lim | f[s,u,_,(s))ds = uy + f SLs,u(s)] ds.
n— < n— o Jtg to
From this and Theorem 1.3.3 it is clear that u(¢) is continuously differen-
tiable and satisfies (5.1.7) and (5.1.8). Finally we prove the uniqueness.
Let u(#) and v(r) be two solutions of (5.1.7) and (5.1.8). Then

| t
I =) = f (/s u(s)] = /s 0(s)]) ds

< Kf'nu(s)—v(s)u ds

and by Gronwall’s inequality

lu()—v()] = 0.

The proof is therefore complete.

REMARK 5.1.2. If X is a Banach algebra (see Appendix II) over a field F
with unit e, the function f(¢,u) = au for a,u € X with fixed a satisfies the
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hypotheses of Theorem 5.1.1; therefore the Cauchy problem
du/dt = au and u0) =e

has a unique solution. This solution is given by
u(y = e+ ) (f"a"/n?)
n=1

and is taken as the definition of the exponential function exp(ta) in X.
Theorem 5.1.1 is a local result. In the case X = R" if fe C[[a, t,+d] x
X, X], not necessarily Lipschitzian, it is known that any solution u(s) of

dujdt = f(t,u) and u(ty) = uge X (5.1.9)

exists either on [f,, f5+a] or on [#y,8) with 0 < 6 < tg+a and [u(t)]| —»
as t— 4. If fe C{[to—a,a] x X, X], a similar result holds to the left of a.
These results no longer hold if the underlying space X is an infinite dimen-
sional Banach space.

We shall present a counterexample. Consider again the Banach space
X = (co) of real-valued sequences v = {£,};>, with lim,_, ¢, =0and norm
lu|l = sup,|&,|. Let e, € X be the vector (0,...,0,1,0,...) whose nth com-
ponent is 1 and all others are equal to zero. We now define a sequence of
functions f,: X —» X as follows: for u = {£,};2 € X, let

Jo@) = [28,4+26,1 1 — 11" (eps 1 —e0)

where [2&,+2&,, — 117 = max[0,2&,+2&,,.—1].

Clearly, for each n, the function £, () is continuous and Lipschitzian in u.
Also f,(u)=0 for |lul| <% and f,(u)=¢,,,—¢, for u=le,+(1—2)e,,,
where / is any real number. Let ¢, € C[[(n+1)""',n~ '], R, ] be a sequence
of functions such that

n-1

H(n+1)")=¢(n)=0 and f o, (dt =1, n=12,...

(n+1)-1

Define the function f: (— o0, 1) x X - X by
0, t <0, ue X,
o), 1< [(+D7'n7'], ueX.

One can now prove that the function f{(¢, u) is locally Lipschitzian in u and
continuous for all points (¢, #) with ¢ # 0. f'is also continuous at any point
(0,a) where a={a,};>, € X. In fact since lim,. ,a,=0, there exists an
index N such that |o,| <} for all n= N. Consider the ball B={ue X:

f(f,u)=[
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lu—al <3 Ifu={&}>, € B, then |£,| <} for all n> N and so f,(u) =0
for all n> N. Therefore, f(t,u) =0 for (¢,u) e [0, N~']x B which estab-
lishes our assertion. Next define the sequence of functions v,: [0,1] - X
forn=1,2,... by

€ +(e2—e,)J;l¢1(s) ds, I<rgl

0, t<3

v, () =

B O A R

0, te[0,1] = [(n+1)~1,n"1)
and also the function u: (0,1]— X by
u(t)y = Y, v,(0). (5.1.10)
1

The series (5.1.10) always makes sense for € (0, 1] because it has only a
finite number of nonzero terms. For e [(n+1)"',n') we have

u(t) = ey + (ensr—e1) f " 62(5) d. (5.1.11)

From (5.1.11) it results immediately that [|u(s)|| <1 for 0 < ¢ < 1, that u(s)
is differentiable for 0 << 1, and that

ll'(t) = - (en+ 1 _en) ¢n(t)

= —/f[u(®1 . ()
_f[t9u(t)]'

Clearly u(1) =e,.
Hence, we have established that u(z) satisfies the initial value problem
duldt = —f(t,u), O<t<i (5.1.12)
and
u(l) = e, (5.1.13)

with flu()| <1 for0<r< 1. However, u(r) does not tend to a limit as
t—0. In fact u(n~ ') = e, and e, does not have a limit as n— co.
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5.2. Existence and Uniqueness

In Section 5.1 we have seen that the mere continuity of fis not enough to
guarantee the existence of a solution of the initial value problem (5.1.1) and
(5.1.2) in an infinite-dimensional Banach space X. On the other hand, if fis
(locally) Lipschitzian in X, the existence and uniqueness of (local) solutions
is assured and the proof is identical with the proof given in R". First we
shall present a set of quite general conditions on f which guarantee that
the Cauchy problem

duldt = f(t,u), to<t<ty+a (5.2.1)
and
u(to) = uy (5.2.2)

is well posed, that is, solutions of (5.2.1) and (5.2.2) exist, are unique, and
depend continuously on their initial data.

THEOREM 5.2.1. Assume that
(i) feCllto,to+al x Sp. X]: S, = {ue X:|u—uy| < b}
and
I/, < M,  (u)e 1o, 1o +al x S;;
(i) there exists a functional ¥ € C{[t,, f,+4a] x S, x S,, R, ] such that
(a) V(t,u,v) > 0, u#v;
(b) V(t,u,v) = 0, u=uv;

(c) iflim,, V(t,u,v,) =0foreachte [t 1, +a], thenlim,_ , (u,—v,)

(d) V(t,u,v) is continuously Fréchet differentiable and
oV (t,u,v)[0t + [V (¢, -, v)[0u] f(t,u) + [OV (£, u, -)[0v] f(1,v) < O;

(e) for any positive number K the functions ¥V (t,u,v)/0t,
[oV(t,- v)/du] x, and [&V(t,u,-)/0v]x are continuous in (u,v) uniformly
for (t,u,v) € [ty, to+al x S, xS, and x € X with | x| < K.

Then (5.2.1) and (5.2.2) possesses a unique solution on [t, £, +a] where
o > 0 satisfies M < b. Moreover, the solution depends continuously on
(0, uo)-
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Proof: letA:ty<t, <---<t,=ty+abeasubdivision of [#, 1o+ a]. We
define the function ¢,: [#,, to+a] — X as follows:

¢A(t0) = uO’
t
80 = 860+ [ STs a0 ds
t-1
tk—l <t$tk, k= 1,2,...,".
It is clear from the definition that ¢,(t) is well defined on [t,, f+«] and
1oy
Palty—y) = ¢A(tk—2) + f SIs, dalti-2)] ds, k=23,..,n
ti_2

Hence

b)) = Galto) + f " s, dalto)] ds + - + f " s, alte_ )] ds

+ f C fLs Gt )] ds

i

Uo + f’fA(s) ds (5.2.3)

where the function f,: [#4, 1, +2] - X and
Jals) = fIs,0(1)], 1 <5< by
Notice that
O (1) =f(t,Pa(ti=1))y  liey <t < 1. (5.2.4)
In view of (5.2.3) and the definition of «
l@a(®)—upl < M(t—ty) £ Ma < b, Ly SIS 1+«

and therefore ¢, () € S, for 1, < t < to+a. Let A, A be two subdivisions of
[to, to+o] and ¢, (1), ¢5(¢) the corresponding functions. If ¢ is not a sub-
division point of either A or A,#,_, <t<t and i;_, <t<1, then (using
Lemma 1.6.4)

(d/dny(V'Lt, ¢a (D), $5(D])
= V[0t + (V[du) ¢, (1) + (3V]0v) $5'(1)
= V[0t + (Vo) ft, dalti-1)] + (V[00)f 11, da(F;-1)]
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= [oV/ot—oV]ot) + aV ot
+ [(@V/ou— oV |ou) + OV Joul f(t, ba(ti-1))
+ [(@V/ov—0aV [ov) + o7 [0v] £ (1, bz (F;~ 1)) (5.2.5)
where
ovior = (V[on)[1, pa(1), @3], V[t = (V[on)[t, balti—1), 5 (- 1)];
oV[ou = (oV/[ou)[t, -, a (D], oV ou = (@v/ou)(t, -, ¢x (- 1)1;
oV/ov = (OV]ov)[t, da(®), -], oV ]ov = (OV/ov)[t, da(ty1),- ]

In view of Hypothesis (ii)(e), for any & > 0 there exists a é > 0 such that if
we take |A| = max, (t,—t,—,) <dand |A| = max;(f;—1;_,) < then we have

ov/ot — o7 /ot < /3 (5.2.6)
(V/|0u— OV [au) fTt, da(te- )] < &/3 (5.2.7)
(@V/v— oV [ov) fT1, D5 (F;_ )] < &/3 (5.2.8)

and from Hypothesis (ii)(d)
av/ot + (V0w ft, dpalte- )1 + @F/00) [T, dz(F;- )] < 0. (5.2.9)
From (5.2.5) and the inequalities (5.2.6)-(5.2.9) it follows that
(d/an VL, ¢ (1), 6z ()]) < &. (5.2.10)
Integrating (5.2.10) from ¢, to ¢ and using Hypothesis (ii)(b), we obtain
VIt a0, da(1)] < e(t—1to)
< ea. (5.2.11)

The estimate (5.2.11) together with Hypotheses (ii)(a) and (ii)(b), and the
completeness of X implies that there exists a function u(f) such that

lim ¢,(¢) = u(y), te [ty to+a].
|A|—-0

Clearly u(r) € S,. Now, fix ¢ € [#,, o +a]. Since for each subdivision A there
exists a k such that #,_, <t < ¢ and

[falti-1)— sl < M(t—1,-y)
< M|Al

It follows that lims.o@a(ti—1) =u(). Then f[t,¢,(t_)]1=/a(t)~
fIt,u(®)] as |A] = 0. By the dominated convergence theorem and (5.2.3) we
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obtain
u(® = ug + ftf[s,u(s)] ds.

The existence part of Theorem 5.2.1 is proved.
To prove uniqueness, assume that u(f) and v(¢) are two solutions of
(5.2.1) and (5.2.2). Then from Hypothesis (ii)(d)

(dldnyVitu(@®),v(®)] = oV/ot + (OV/ow)u'(t) + (oV/ov)v' (1)
= oV/ot + (OV/ou) ft,u(r)] + (OV/ov)fIt,v ()] £ 0.
Integrating from ¢, to ¢ we get
VIt u(®,v(t)] — V[te, ug, 4o} <0

which on the strength of Hypotheses (ii)(b) and (ii)(a) yields u(f) = v(s).
Finally, we shall prove the continuous dependence of the solutions with
respect to initial conditions. Let u, () = u(t,ty,u,) and u,(t) = u(t,t,,uz)
be the solutions of (5.2.1) through (¢,,u,) and (,, u,), respectively. Then in
view of Hypothesis (ii)(d)

@dVitu,(6),u, ()1 <0
and integrating from ¢, to ¢
0 < V[tu, (), u ()] < VI[ty,up,uy (2] (5.2.12)
Let (¢,,u,)— (t;,u;). Since V and u, (¢) are continuous we get
VIt u,us(8)] = VIt uz,uy(t3)] = 0.

Taking limits on both sides of (5.2.12) as (t,,u;)—(¢5,u;) and using
Hypothesis (ii)(c) the desired result follows. The proof is complete.

An interesting special case of Theorem 5.2.1 in a Hilbert space is the
following:

COROLLARY 5.2.1. Let X be a Hilbert space and let Hypothesis (i) of
Theorem 5.2.1 be satisfied. Furthermore, assume that —f is a monotonic
function, that is, there exists a constant M such that

Re[f(t,u) — f(t,v),u—v] < M|u—v|?, to £t < tg+a, uvelX.
(5.2.13)

Then the conclusion of Theorem 5.2.1 is satisfied.
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Proof: Tt suffices to exhibit a functional V (¢, u, v) satisfying Hypothesis (ii)
of Theorem 5.2.1. In fact, set

V(t,u,v) = exp(—=2M1) u—v|?>.
Then from the results of Section 1.6 and the monotonicity of —f we obtain
oV (t,u,v)/0t + [OV (¢, -, v)/ul f(1,u) + [OV (s, u, -)/Ov] f(1,v)
= ~ Mexp(—2M1) |lu—v|* + 2exp(~2M1)Re(f(t,u),u—v)
— 2exp(—2MnRe(f(t,v),u~-0)
2exp(—2Mn[Re(f(t,u) — f(t,v),u—v) — M ||lu—v|*] € 0

and Hypothesis (ii)(d) is satisfied. Clearly all other conditions in (ji) are
satisfied and the proof is complete.

REMARK 5.2.1. Let X = R!. The function

1-Vu, u>0

1, u<o0

f(f,u)={

does not satisfy a Lipschitz condition but does satisfy the monotonicity
condition (5.2.13) with M = 0. On the other hand, the function

l+\/17, uz=z0

1, u<?0

Su) = {

does not satisfy the monotonicity condition (5.2.13) but there does exist a
functional V(r, u, v) satisfying all the conditions of Theorem 5.2.1. Indeed,
take

[Vu— o - log(1+u) + log(1+vo)]?, u>0, v>0

Vi) [Vu — log(1++/u) — 3012, >0, p<0

Luv) =
[4u — Vo + log(1+vD)]%, u<0, »>0
Hu—v)?, u<0, »<O.

Next we shall prove a general uniqueness theorem in a normed space X.
Let I = [t,,to+a] and for each 1 € I, let D(¢) be a subset of X. Define

D= {(t,u):tel and ue D(1)}.
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Consider the initial value problem
dujdt = f(1,u) (5.2.14)
u(to) = uo € D(to) (5.2.15)

where /> D — X. (fis not necessarily continuous.)

THEOREM 5.2.2. Assume that there exists a functional Ve C[Ix D x D, X]
satisfying Hypotheses (ii)(a), (ii)(b), and (ii)(d) of Theorem 5.2.1. Then
(5.2.14) and (5.2.15) has at most one solution. Furthermore, if hypothesis
(ii)(c) 1s satisfied, the solution depends continuously on the initial con-
ditions.

The proof'is identical with the uniqueness and the continuous dependence
proof of Theorem 5.2.1 and we shall omit it.

Finally we apply Theorem 5.2.2 to prove a known uniqueness result for
the solutions of a parabolic partial differential equation.

ExaMPLE 5.2.1. Consider the parabolic equation
oulot = d*ujox? + F(t,x,u) (5.2.16)

on a region bounded by t =14, t=ty+a, x=1,(1), and x = 4,(f) where
A.(0) and 2,(¢) are differentiable on I=[t,,1,+a] and 2,(t) < 2,(¢) for
t € I. The initial and boundary conditions are u=g(x) on ¢t =t,, u = h,(f)
onx=4,(t),and u=h,(#) on x = ,(r) where g, h, and k, are continuous,
and g[4,(te)] =h,(¢y) and g[A,(t5)] = h,(t;). Assume that for some
constant K

F(tyxaul) - F(’:XaUZ) < K(ul_u2)1 Uy > u,.

Then (5.2.16) has a unique solution. To prove this let X = L, (R). For each
t € I define D(?) to be the space of functions ¥ = #(x) € X which are con-
tinuous on [4,(r), 4,(s)], belong to C, on (4,(¢), 4,(#)), vanish outside
[2, (), 2,(2)], and take the values A, () and h,(¢) at x = A, (¢) and x = 4, (1),
respectively. For (¢,u) € I x D(t) define

f(t,u) = d*u(x))dx® + F(t, x, u).

Then, (5.2.16) together with the initial and boundary conditions is
equivalent to the initial value problem

dujdt = f(t,u) (5.2.17)
u(ty) = g (5.2.18)
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Define
Ax(1)
V(t,u,v) = exp(—2Kt)f |u(x)—v(x)|? dx. (5.2.19)
A4(e)

We shall now verify that the conditions of Theorem 5.2.2 are satisfied for
the system (5.2.17) and (5.2.18) and the choice (5.2.19) of the functional V.
In fact the conditions (ii) (a) and (ii) (c) are obvious. Let us verify Hypothesis
(i))(d). From (5.2.19) we have
av/ot + (oV/ow) f(1,u) + (8V/dv) f(t,v)
4:(0)
= —2Kexp(—2Kt)f lu(x)—v(x)|? dx
NG
+ exp(—2KD)(Ju[2, (0] = v[2, 11 25'(1) — [u[A, (0] = v[4, (D]}

x A4'(D)

Ax()
+ exp(—2K1) J; " 2[u(x)—v(x)1f(t, u) dx

A(8)

—exp(—2Kt)f 2{u(x)—v(x)f{t,v) dx
A4()
= Jl +J2+J3+J4

Since u[2;()] = v[2;()] = h;(¢) for i = 1, 2 it follows that J, = 0. From the
definition of f{¢, u) and an integration by parts we obtain

(1)

Jitdy = 2exp(—2K1)f [u(x) = 0] [+ /{1, x,0) =0, — [ (1, x,0)] dx
A

Aa()
= 2exp(—2K1) J; o [u(x)—o(x)] L, u)—f(t,0)] dx
As(1)

- 2exp(—2Kt)j lu,—v,|? dx
A0

A,(1)
< 2€=Xp(—2K’)_[1 " [ () —v (IS (L w) =11, v)] dx.

From these observations and the hypothesis on F we conclude that
Hypothesis (ii)(d) is valid and therefore (5.2.16) has at most one solution.

ProBLEM 5.2.1 (Nagumo-type uniqueness). Let H be a Hilbert space
and f: R, x H— H satisfy the condition

Re(f(t,u) — f(t,0),u~v) < (20)" u—v|?, t>0, uveH.
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Then the Cauchy problem
duldt = f(t,u) and u(0) = u, (5.2.20)
has at most one solution.

[Hint: If u(¢) and v(¢) are two solutions define m(¢) = u(H)—v(s)|* and
prove that m'(¢) < (2t) " 'm(r) with m(0) = 0 and m’(0) =0.]

PrOBLEM 5.2.2 (Osgood-type uniqueness). Letw: [0, c0)— R, bestrictly
increasing and such that w(0) = 0 and for each T'suchthat0 < T'< ©

lim Tds/w(s) = 0.
le]=0 Je
Assume that f: R, x H> Hand forallr>0and u,ve H
2Re(f(t,u — f(t,v),u—v) < w(|lu—2|?).
Then (5.2.20) has at most one solution.

[Hint: Set m(t) = |u(®)—v($)||*; then m'(1) < w[m(1)].]

PrOBLEM 5.2.3. Let X be a reflexive Banach space. Then the conclusion of
Theorem 5.2.1 remains valid if we replace the continuity of f by demi-
continuity (that is, f is continuous from [#,,% +a] x X with the strong
topology, into X with the weak topology) and differentiation is understood
in the weak sense.

[Hint: Establish that f} (r) converges weakly to fTt, ¢ (1)] as |A| - 0.]

PrOBLEM 5.2.4. Consider the nonlinear evolution equation
duldt = A(Q)u + f(t,u), ty<t<ty+a (5.2.21)

where the operators A(¢) satisfy Hypotheses 1-3 of Section 3.1. Assume
that the hypotheses (i) and (ii) of Theorem 5.2.1 are satisfied. Furthermore,
assume that f(z, ) is Holder continuous in ¢ and « and that for ,v € D and
te [ty to+al

LoV, -, v)/oul A u + [0V (t,u, -)/ov]A(Dv < 0.

Then, the evolution equation (5.2.21) has a mild solution, on [#y, t5+ o]
where 0 < a < g, through the point (¢y, 1) with u, € D.
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[Hint: Define as in Theorem 5.2.1 ¢,(t,) = uo and

$a(l) = Ut ty- ) Balte_y) + f '

Ii-

Ut,9)f s, UGs, t- )] ate—y) ds

for t,_, <t<t, where U is the fundamental solution constructed in
Section 3.4.]

5.3. Nonlinear Variation of Constants Formula

In this section, we consider the nonlinear abstract Cauchy problem
duldt = f(t,u) and u(ty) = u, (5.3.1)

where /2 R, x X — X is a given function and X a Banach space. Our aim is
to develop the variation of constants formula with respect to (5.3.1) and its
perturbation

dojdt = f(t,0) + F(t,v) and  v(tg) = vo (5.3.2)

where F: R, x X - X. As we shall see later, this result is a convenient tool
in discussing the properties of solutions of the perturbed system (5.3.2)
including the preservation of stability properties under constantly acting
perturbations. First, it is necessary to study the uniqueness of solutions,
their continuity and differentiability with respect to initial conditions
(1o, 4o), and to show that the Fréchet derivatives of the solutions u(, t, 4y)
of (5.3.1) with respect to initial values exist and satisfy the equation of
variation of (5.3.1) along the solution u(t, ty, #g). Our treatment rests on
the existence of an admissible functional in X, a mild one-sided estimate
of £, and the theory of scalar differential inequalities. By S(x,,r) we shall
denote the sphere {x e X: || x—x,| <r}. For a function f: R, x X— X the
Fréchet derivative with respect to x, if it exists, is denoted by £, (¢, -) and as
we have seen in Section 1.6 it belongs to B(X ). The notation w(h) = O(||A])
for h e X stands for a vector in X satisfying the condition
lim w(h)/||h| = 0.

la] =0

DEFINITION 5.3.1. A (nonlinear) continuous functional ®: X' — R, is said
to be admissible in X if the following conditions are satisfied:

() @@ >0, xeX, x#0 and ®0) =0;

@ii) if lim,_ o x, =0 for x, € X, then lim,_ , x, =0;
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(iii) there exists a mapping M: X x X > R such that M[x, 4] is con-
tinuous in A, uniformly with respect to x in any sphere S(x,,r), and
satisfying the properties

(@  O(x+h)—D(x) < M[x,h] + 0(||A]), x,he X,
(b) MIx, k] = M[x,k, 120, xheX;
© MIx,hy+h,] < MIx,h ]+ Mx,hy],  x,hy,hy € X.

ExaMpPLE 5.3.1. (i) The functional ®(x)=|x| is admissible in any
Banach space X with M [x, h] = ||A].
(i) The function ®(x)=3Y7_,|x;] is admissible in R" where for
X=(X1,..05Xp), h=C(hy,h5,...,h) € R".
n h;sgn x;, x; #0
MIx,h] = 3 M[x,h],  M[x,h] =
i=1 Ihili Xi = 0.
(iii) The functional ®(x) = (x, x) is admissible in any Hilbert space H
with M[x, h] = 2 Re(x, h).

The following lemma shows that the functional M[x, -] is bounded.
LeEmMA 5.3.1.  Let @ be an admissible functional in X. Then for any sphere
S = S(xy, r) there is a constant K(r) such that

IM[x,n]| < K(n)|Al, xe€8, helX.

Proof: 1In view of the continuity of M[x,A] in A, uniformly with respect
to x € S, and the fact that M[x,0] =0, it follows that, given £ > 0 there
exists a 8 = 8(g, r) such that || 4| < & implies |M [x, i]| < ¢ for all x € S. For
an arbitrary & set i = (8/||A]) 4. Then ||| = & and

|Mx, (/A A]| < e, xesS, heX (5.3.3)
Since
M{x, (/| A) A1 = (8/IA]) M[x, A], (534
it follows from (5.3.3) and (5.3.4) that
|M[x,h]| < (g/8)]A], xeS, helX

The proof is complete with K(r) = ¢/8.
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Consider the abstract Cauchy problem

u' = f(t,u), (5.3.5)
u(ty) = ug, (5.3.6)

and the scalar initial value problem
r'=g(,r), (5.3.7)
r(to) = ro, (5.3.8)

where 1 R, xX—>Xandg: R, xR, =R

In this section, we shall assume that /" and g are smooth enough to
guarantee the existence (not uniqueness) of solutions of (5.3.5) and (5.3.7)
for all t € R. Actually, local existence would suffice and our results can be
easily restated to hold locally. Of course the mere continuity of f will not
suffice even for local existence of solutions of (5.3.5). For existence theorems
the reader is to refer to Section 5.2.

A solution of (5.3.5) and (5.3.6) will be denoted by u(t,1g,u,). The
maximal solution of (5.3.7) and (5.3.8) will be denoted by r(t, t,, o).

We shall also assume, in this section, the existence of an admissible
functional @ in X satisfying the properties (i)(iii) of Definition 5.3.1.

For easy reference we state the following hypotheses.

Hypothesis 1:
M[x—y, f(t,)=f(t, »)] < g[1, ®(x—y)] (5.3.9)
forte R, and all x,y e X.

Hypothesis 2: The function f(z,x) has a continuous Fréchet derivative
Jx(t, x) with respect to x and

M[h, f.(t,2)h] < g[t, D(h)], t20, heX (5.3.10)
and all z in any sphere S(x,,r).

As we shall prove in Lemma 5.3.6, Hypothesis 2 implies Hypothesis 1.
First we shall prove that under Hypothesis 1 the system (5.3.5) and (5.3.6)
has a unique solution u(t, 15, uy) which depends continuously on the initial
conditions (14, u,) provided that the scalar initial value problem (5.3.7) and
(5.3.8) has these properties.

We need the following lemma. The symbol D, r(r) denotes the lower
right-Dini derivative of the function r(¢).
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LemMa 5.3.2. For any differentiable function x: R, — X the following
inequality holds:

D, ®o[x(0] < M[x(1),x' (1], teR,. (5.3.11)

Proof: From the definition of D, ®(¢), the admissibility of ® and lemma
5.3.1 we obtain

D, ®[x()] = fim inf h™! [D(x(1-+h) = D(x()]

= lim inf A= (@ [x(8) +hx' () + O (hD)] — ®[x()])

h-0,

< lim inf[A~ (M [x(8), hx'(8)] +O(h?)) + O(Ilhx'(2) + OH*)]))]

h-0,
< M[x(0),x'(1)] + lim inf M[x(#),0(h)]
h—0,
= M[x(),x'(D].
The proof is complete.

The following lemma is used to prove uniqueness.

LemMma 5.3.3.  Let Hypothesis 1 be satisfied. Assume that ®(u,—v,) < 1.
Then

d)[u(t, to, uo) - U(t, to,vo)] S r(t, to,rO), t > to- (5.3.12)

Proof: Let u(t) = u(t, to, o) and v(f) = v(t, 1y, vo) be solutions of (5.3.5)
through (to,4o) and (fo,v,) respectively and r(t,ty,ro) be the maximal
solution of (5.3.7) and (5.3.8). Define z(#) = u(t)—v(#). From Lemma 5.3.2
and Hypothesis 1 we obtain

D, d(z(1) < M[z(1),z'(1]
= M[u@) — v(®,fTt,u(] = fIt,0(1]]
<g(toEW®), 1=t
Also
D[z(ty)] = P(ug—vy) < 1o
From these inequalities and [42] the estimate (5.3.12) follows.

THEOREM 5.3.1. Let Hypothesis 1 be satisfied. Assume that r(¢, ¢y, 0) = 0.
Then the system (5.3.5) and (5.3.6) has a unique solution.
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Proof: Letu,(t)=u,(1,14,uy) and u, (1) = u, (1, t4, uy) be two solutions of
(5.3.5) and (5.3.6). It follows from (5.3.12) that

OLu, ()—u,(t)] < r(s,ty,ro) = 0.

Hence u, (¢) = u,(¢), for ¢ > t, and the proof is complete.

REMARK 5.3.1. As we mentioned in Example 5.3.1(iii1) the functional
®(x) = (x, x) isadmissible in any Hilbert space H with M [x, ] =2 Re(x, h).
In this case Hypothesis 1 with g(¢,r) = 2Mr reduces to the monotonicity
condition on fthat was used to prove existence and uniqueness of solutions
of (5.3.5) and (5.3.6) in Corollary 5.2.1.

Next, we prove the continuous dependence of solutions of (5.3.5) and
(5.3.6) with respect to the initial conditions.

THEOREM 5.3.2. Let Hypothesis 1 be satisfied. Assume that the maximal
solution of (5.3.7) and (5.3.8) depends continuously on (t,,r,) for each
(tg,ro) e Ry x R, and r(t,1,,0)=0, for ¢>1t,. Then u(t,t4,u,) depends
continuously on (¢, 4g).

Proof: Letu,(t)=u(t,t;,u,)and u,(t) = u(t, t,,u,) be solutions of (5.3.5)
through (¢,, u,) and (¢,, u,), respectively. Let ¢, > t,. Define

z(t) = u, () — u,(2).
From Lemma 5.3.2 and Hypothesis | we obtain
D, ®(z(n) < M[z(0), /(1]
= M[z(t),fTt,u, (0] — STt uz(D]]

<g@o[z(N]), t=21,. (5.3.13)
Also
Dz(t))] = ©Lu, —u(ty, t5,u5)]. (5.3.14)
From (5.3.13) and (5.3.14), it follows that
Oz(D] < r(t, by, @Luy —u(ty, t;,us)]). (5.3.15)

Since ®(x) is continuous in x, u(t, t,, u,) is continuous in ¢ and r(¢, ¢,,r,) is
by hypothesis continuous in (¢, r,), it follows from (5.3.15) that
lim @ [z(0)] < r[t, 15, P(u,—u,)]

11—t
Uy u;

= r(t,1,,0) = 0.
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Hence, from the definition of @

lim z(s) = 0
ti— 12
Uy u;

and the proof is complete.

Now we shall prove that under Hypothesis 2 and r(t,4,,0)=0 the
solutions u(t, ty, up) of (5.3.5) and (5.3.6) are continuously differentiable
with respect to initial conditions (fy,u,) and the Fréchet derivatives
(0/3ug) u(t, to, up) and (8/0to)u(t, ty, uy) exist and satisfy the equation of
variation of (5.3.5) along the solution u(t, ¢y, u,). From the existence and
continuity of f.(t,x) and from the mean value theorem for Fréchet
differentiable functions, it follows that f(r, x) is locally Lipschitzian in x,
and consequently the local existence of solutions of (5.3.5) and (5.3.6) is
secured. The following lemmas are needed.

Lemma 5.3.4. Let fe C[R, xS(xy,7r),X] and let f, (¢, x) exist and be
continuous for x € S(x,,r). Then for x;, x, € S(xg,r)and t =0

1
St x) —f(t,x3) = J;fx(t, sx; + (1=s8)x,)(x;—x,) ds. (5.3.16)

Proof: Define
F(s) = flt,sx; + (1—5)x,], 0<s< 1.

The convexity of S(x,,r) implies that F(s) is well defined. Using the chain
rule for Fréchet derivatives, we obtain

F'(s) = f.[t,sx; + (1 —s)x,](x; —x3). (5.3.17)

Since F(1) =f(t,x,) and F(0) =f{(¢t, x,) the result follows by integrating
(5.3.17) with respect to s from 0 to 1.

LemMma 5.3.5.  Let Hypothesis 2 be satisfied. Then

1
Ml:h,f fltsx, +(1—s)x,1h ds]
(4]
< gL, @A), t=0, h,xy, x5 € 5(X0, ). (5.3.18)

Proof: Let n:0=5,<s5,<---<s,=1 be any partition of [0,1]. From
the definition of Riemann integral for continuous abstract functions it
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follows that

flfx[t,sxl + (1 =s5)x,]hds = limI:Z Lltrix, + (1—1)x,]h Asjl
0 noo| i=0
(5.3.19)

where As;=s;,,—s;and 5, <7, < 8,4, fori=0,1,...,n—1.
From the continuity of M{x,A] in h (uniformly with respect to
x € S(xg,r)), (5.3.19), and Hypothesis 2 it follows that

M[h,flfx[t,sxl +(1=-9)x;]h ds]
0

n—

= lim MI:h Z fnx, + (- r,-)xz)hAs,-]

< lim Z AsiM[hf.(ttix, + (1—1)x,) H]

n— o j=

g(t, @ (h)) lim Z As; = g(t, @ (h)).

n—-»® j=0

The proof is complete,

LemMa 5.3.6. Hypothesis 2 implies Hypothesis 1.
Proof: In view of Lemmas (5.3.4) and (5.3.5) we have

1
M[x—p.f(t,x) - f(t,y)] = Mlix—y,fofx[t,sx +(1=9)yI(x—y) ds:l

< gt @(x—y)].
The proof is complete.

CorOLLARY 5.3.1. Let Hypothesis 2 be satisfied. Assume that the maximal
solution of (5.3.7) and (5.3.8) depends continuously on (#,,r,) for each
(to,ro) € R, x R, and r(1,1,,0) =0 for 1 > 1,. Then the solutions of (5.3.5)
and (5.3.6) exist locally, are unique, and depend continuously on initial
conditions.

THEOREM 5.3.3. Let Hypothesis 2 be satisfied. Assume that the maximal
solution of (5.3.7) through any point (¢, 0) is identically zero for ¢ > t,,.
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Then

(a) The Fréchet derivative (8/0ug)u(t, ty,uy) = U(t, ty, u) exists and
satisfies the operator equation

U' = fult,u(t,to,ug)]U,  t = t,, (5.3.20)
Ulty) = I; (5.3.21)

(b) the Fréchet derivative (0/0ty)u(t,ty, uy) =V(t,1,,u,) exists and
satisfies

V' = fut,ult, to,up))V,  t = to, (5.3.22)
V(to) = —f(to, uo)- (5.3.23)

Furthermore
V(t, tg,uy) = — UL, ty, uo) (2o, Up). (5.3.29)

Proof: (a) Sincef,(t,-)e C[JxS(up,r), B(X)],(5.3.20) and (5.3.21) has
a unique solution which we denote by U().
Define the function

z(t) = u(t, to,ug+h) — u(t, to,up) — U(H)h,
t 2 ty, ug,ugt+he Sug,r).
Then
D, ®(z()/I1Al)
< MLz@/llAlL, 2@/ 1Al
= M[z(O)/IAll, STt u(t, to, uo+ )] — fLt, u(t, to, uo)1/ 1l
—fult,u(t, to,uo+ W] UQ) AR ] (5.3.25)
From the Fréchet differentiability of f with respect to u € S(u,, r), we have
SItult, to, ug+m)] — fLt,u(t, to, uo)]
= fult,u(t, to, uo)1 [u(t, to, uo+h) — u(t, to, uo)]
+ O(llult, to,ug+h) — u(t, to, u)l)
= fult,u(t, to,uo)]1 [z()+ U(1) ]
+ O(Jlu(t, to, ug+h) — u(t, to, uol). (5.3.26)
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Set
w(h) = O(llu(t, to, ug+h) — u(t, to, uo)l).-
From (5.3.25) and (5.3.26) we obtain
D, ®(z@)/Ilhl) < M[z@)/IAl.£,[t u(t, to, uo)1 (1) I Al + c(W)/IIAll]
< Mz(@)/I1AN, £, L8 u(t, to, uo)1 z(8)/ 141 ]
+ Mz(O/|Al, () |A] ]
< g, @EW/IAD] + MIz@)/1Al, @®@/IAI] (5.3.27)

Next we shall prove that in any compact interval of ¢

||}'i”TOM[Z(t)/ IAll, o()/IiAl] = O. (5.3.28)
Define
m(1) = lu(t, to, uo+h) — u(t, to, uo)|. (5.3.29)

It follows that
D, m(t) < [[u'(t, to, uo+h) — u'(t, to, uo)l
= ||fTt, ut, to, uo+m] — fLt,u(t, to, up)]|l-
In view of Lemma 5.3.4 and the continuity of f we obtain from (5.3.29)
D,m() < Kym() (5.3.30)
where K, is a constant such that
4.2 < K,

for ¢in a compact interval I around ¢, and z being in the line segment joining
the solutions x (1, tg, xo) and x (¢, to, Xo + A). Also from (5.3.29)

m(to) = |l (5.3.31)
By (5.3.30) and (5.3.31) we obtain
m(t) < ||| exp Ky (t—1to)
< K, |A], tel (5.3.32)

where K, is a constant.
Let K, be a constant such that

U@l < Ky, tel (5.3.33)
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From the definition of z(¢), (5.3.32), and (5.3.33) we get
HzOI/Al < K, + Ky = K, tel, |h| sufficiently small. (5.3.34)
In view of Lemma 5.3.1 [which applies because of (5.3.34)] we have
Mz(@O/| Al oW/ I1RIT < Kllewo@®I/|IA]. (5.3.35)
Finally, from the definition of w (#) and (5.3.32) we obtain
loMIl/1A] < Kz o ®)|l/m(5)
= Ko/ lu(t, to,uo+h) — u(t, to,u)l =0 as h—0

and (5.3.28) has been established.
From (5.3.27) and (5.3.28) we obtain

D, ®(z(0)/IA]) < g[t, @(z(@)/141)] + O(1). (5.3.36)
Also
D (z(15)/||All) = O. (5.3.37)
In view of (5.3.36) and (5.3.37) it follows that
lim ®(z()/|k]) = r(¢,1,,0) = 0,

1A =0

Hence, from Definition 5.3.1
lim z(s)/||A] = O,
tAll—0
which proves that the Fréchet derivative (0/duqy)u(t, 1y, uo) exists and it is
equal to U(#). The proof of (a) is complete.
(b) Let U(r) be as in (a) the solution of (5.3.20) and (5.3.21). Define the
function

z(t) = u(t, to+hyug) — u(t, to, ug) + U@0) f(to, ug) h
Then as in (a)
D, ®(z(n/h) < M[z(n)/h,z'(1)/h]
M [z(O)/h, (STt u(t, to+h, ue)] — ft, u(t, to, uo)1)/h
+ Sl ult, 0, o)) U (D) f(to, uo)]
M[z()/h, 1,11, u(t, 10, u0)] 2(1)/h + w(h)/h]
M [z(O)/h. £, [t u(t, to,u0)](z2(1)/h)] + M[z(t)/h, w(h)/h]
< glt, @z()/h)] + O(1) as h—-0. (5.3.38)

It

A
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Also
@ (2(to)/h) = @ ([u(to, to+h, uo) ~uo1/h + f(to, us))
= O([u(to, to+h, up) — u(to+h, to+h,ug)1/h + f(to, o))
=0() as h-0. (5.3.39)

From (5.3.38), (5.3.39), and Lakshmikantham and Leela [42] it follows as
in (a) that
lim ®(z(£)/h) = r(t,1,,0) = 0.
h-0
Hence
lim z(8)/h = 0.

h—0,
which proves (b). In addition
(0/0to) u(t, to,ue) = — U(D)f(to, uo)

—(8/Bug) u(t, 1o, ug) flte, ug).

The proof is complete.

THEOREM 5.3.4. Under the hypotheses of Theorem 5.3.3 the following
formula holds:

1
u(t, ty, vo) — u(t, ty, tg) = f Ult, to,uy + s(vo— 1) (vo—up) ds.
° (5.3.40)

Proof: From Theorem 5.3.3 and the chain rule for abstract functions,
we have

(dlds)ult, to,uy + s(vo—ug)} = ULL, ty, ug + 5(vo — o)} (0o — ).
(5.3.41)

Integrating (5.3.41) from O to 1 with respect to s the desired result follows.
Now we shall establish the variation of constants formula with respect to
(5.3.5) aad (5.3.6) and its nonlinear perturbation

v = f(t,v) + F(t,v), (5.3.42)
v(ty) = vy (5.3.43)

where f, F: R, x X — X are smooth enough to guarantee the existence of
solutions of (5.3.42) and (5.3.43) for r>1t,. A solution of (5.3.42) and
(5.3.43) is denoted by v(1, ¢, vg).
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THEOREM 5.3.5. Let f, Fe C[R, x X; X] and let f satisfy Hypothesis 2.
Let u(t,to,uo) and v(t, 1,5, uy) be solutions of (5.3.5) and (5.3.42) through
(1o, ug), respectively. Then, for r > ¢,

v(t, to, ug) = u(t, to, ug) + ~“’U[t, 5,0(8, to, tg)] FLs,v(s, to, uo)] ds
° (5.3.44)
where
U(t, ty, up) = (8foug) u(t, ty, ug).

Proof: Write v(f) = v(t, ty, ug). Then, in view of Theorem 5.3.3
(d/ds)u[t,s,v(s)] = (0/0s)ult,s,v(s)] + (0/0v) u[t, s, v(s)]v'(s)
= —U[t,5,0(9)1f(s,v(s))
+ ULt 5, 0()1(fLs, v(s)] + F[s,v(s)])
Ult, s, v(s)] Fs, v(s)]. (5.3.45)

Since the right-hand side of (5.3.45) is continuous, we can integrate from
t, to t, obtaining the variation of constants formula (5.3.44).

5.4, Stability and Asymptotic Behavior

Let us consider the abstract differential equation
u = f(t,u) and u(ty) = ug (54.1)
and its perturbation
v = f(t,v) + F(t,v) and v(ty) = vg (5.4.2)

where f, Fe C[R, x S(p), X], S(p) being the sphere {ue X: ||u] <p} in
the Banach space X. We assume that the functions f and F are smooth
enough to ensure the existence of solutions u(t, ty, 4y) and v(t, ¢y, vg) of
(5.4.1) and (5.4.2), respectively, on [ty, c©0). When f(z,0) = 0, (5.4.1) has
the trivial solution. In this case we have the following.

DEerFINITION 54.1. The trivia1 solution of (5.4.1) is said to be

(i) stable if for every ¢ > 0 and ¢, € R, there exists a 6 > 0 such that
llugll < 0 implies ||u(t, to, uo)| < & for all 12 ¢y;

(i) asymptotically stable if it is stable and there exists a §, > 0 such
that ||ug|| < 8, implies lim,_, o, u(?, £y, 19) =0;
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(iit) uniformly stable in variation if for every ¢ >0 and ¢, € R, there
exists an M(g) > 0 such that |u,y| <& implies [|U(4, ty, )l < M (e) for all
t = t,, where U(t, ty, ug) is the solution of the variational equation (5.3.20)
and (5.3.21).

DEFINITION 5.4.2. Let A € B(X). The logarithmic norm of the operator A4
is defined by

ud) = hlir(? I+ hA|—1)/A. (5.4.3)

ProBLEM 5.4.1. Prove that the limit in (5.4.3) exists and satisfies the
properties

® (Al < (1411

(ii) w(oAd) = au(A), a2 0;
(iii) u(A+B) < p(4) + u(B);

(iv) lu(A)—pu(B)| < |A—B].

[Hint: The right Gateaux derivative of ||x|| exists in any Banach space.]

The following lemma which is interesting in itself is needed for further
considerations.

LEMMA 5.4.1. Let A(r) e B(X) for each t € R, and suppose that u(¢) is
the solution of

u = A)u and u(ty) = ug.
Then

el < lluoll eXp(ﬁ'u [4(s)] dS), 1> t. (5.4.4)

Proof: Define m(t) = ||u(?)|. Then, for small 4> 0,
m(t+h) —m() < u(@+hAOu@ — lu@| + &)
< (M+RAW] — Ym(t) + e(h)
where e(h)/h—0as h—0,. Hence
D,ym(@) < pu[A0OIm()  and  m(to) = lluoll
from which the estimate (5.4.4) follows.
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LeMMA 5.4.2. Let the hypotheses of Theorem 5.3.3 hold. Suppose further
that there exists a function « € C[R,, R] such that

plfi(tw] < a(),  (t,u)e Ry xS(p). (5.4.5)

Then for uy, vy € S(p) we have the estimates

t
lu(e, 2o, vo) — u(t, to, u)ll < |lvg—1upll exp[f a(s) ds:l, t=1,
fo (5.4.6)

and

“U(t’ t09 UO) - u(t’ t09 uO)"

t
< o0l epr a(s) ds]
to

+ f‘exp [f’a(é) dé:| | FLs,v(s, tg, vo)]1|l ds, t=1t,. (547

Proof: From Theorem 5.3.4 we have

1
u(t, to,v9) — u(t, to, ug) = f ULt, to, up + S(vo— o)1 (vo—uo) ds.
° (5.4.8)
By virtue of (5.4.5) and Lemma 5.4.1 it follows that

4
max [|U[t, tg, ug + s(vo—ug)]ll < expf o(s) ds.
0<s<l to

This and (5.4.8) yield (5.4.6).
Next, from Theorem 5.3.5 we have
U(t’ tO’ UO) - u(t, tO’ uO)
= u(t,to,v9) — u(t, 1y, Up)

+ fl Ult,s,0(s, to,00)] FLs, v(s, to,v0)] ds. (54.9)

Again, from Lemma 5.4.1
) t
max 1045005 10,0011 < exp [ 50 .
toSs<t 5

This, together with (5.4.6) and (5.4.9) yields the estimate (5.4.7). The proof
is complete.
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THEOREM 5.4.1. Assume that
(i) the hypotheses of Theorem 5.3.3 hold;
(ii) f(,0) =0, teR,;
(iii) the condition (5.4.5) holds with

t— 0

t
g = lim sup(t—to)"‘f a(s)ds < 0. (5.4.10)
to
Then the trivial solution of (5.4.1) is asymptotically stable.
Proof: The assumption (5.4.10) implies that
t
f a(s)ds < (6/2)(t—1t,), t sufficiently large.
to

Therefore

lim exp l:fla(s) ds] = 0. (54.11)

t—+ o
If we take v, = 0 in (5.4.6) we obtain
t
(2, 2o, up)ll < Nuoll expl:f a(s) ds:l-
ta
This and (5.4.11) yield the desired conclusion.

THEOREM 5.4.2. Assume that

(i) the hypotheses of Theorem 5.3.3 hold;

(ii) f(t,0) = F(1,0) = 0, teR,;
(iii) g <0,
(iv) |F@ o)l = O(vl) as v — 0 uniformly in ¢,

Then, the trivial solution of (5.4.2) is asymptotically stable.
Proof: Let € > 0 and sufficiently small. Then Hypothesis (iii) implies that

lim exp [e(t—to) + ~rot(s) ds] =0. (5.4.12)

t—+ 0

Hence, there exists a positive constant K such that

H
expl:e(t—-to) + f a(s) ds] < K, t21,. (5.4.13)
fo
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With the foregoing ¢ and because of Hypothesis (iv) there existsa § > Osuch
that ||v|| < & implies || F(z,v)|} < g|v]. Now for |lvy]| < /K and from (5.4.7)
with 4o =0 we obtain

o, 10, vo)ll < lloll CXP[I a(s) dS}

+e j 'exp[ f %(® d:] lo6s, tor o)l ds (5.4.14)

o

as long as |v(7,t5,0v0) <d. Multiplying both sides of (5.4.14) by
exp[—j':ooz(s) ds] and applying Gronwall’s inequality we get

lo(t, to, vl < llwoll [8(1 —lo) + ﬁta(S) ds:l (5.4.15)

o

as long as [[v(1, 10, v0)|| < 8. Now (5.4.15) shows that |v(t, ty, vo)]| <6 for
all r>1¢,. Otherwise there exists a T such that |v(T, ¢y, ve)| =38 and
lv(t, to, vo)ll < 6 for ty <t < T. Then from (5.4.15) and (5.4.13), we get the
contradiction

d<(@B/K)YK=6

which proves our claim. Thus (5.4.15) holds for all 7 > ¢, and this together
with (5.4.12) yields the desired conclusion.

THEOREM 5.4.3. Assume that
(i) the hypotheses of Theorem 5.3.3 are satisfied;
(ii) f(1,0) = 0, teR,;

(iii) the trivial solution of (5.4.1) is uniformly stable in variation;
(iv) given a>0 there exists a function A,e€ L;[0,0) such that
[F @ u)ll < 4,(0) for |Jull <o.

Then for every & > 0 there exists positive numbers § =d(g) and T = T(g)
such that [u,| < & implies ||v(¢, 1, 00)|| <efort=ty > T.

Proof: Lete> 0be given. Choose  and T'such that d < ¢, 2M(e)é < eand
[§ 2.(s) ds < e/2M (¢). Assume that |juy|| < and 1y > T. Using (5.3.40) with
vo = 0 and Hypothesis (iii) we get
lu(t, to,u)ll < lluoll M(e) < €/2, 1> t,.
We claim that
”U([, tO’uO)” <sg = tO-
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If this is not true, let ¢, >, be such that |ov(t,,?y,up)|| =¢ and
lo(t, to, ug)ll < & for to <t <t,. Then from (5.3.44)

]
e<egl2+ M(s)j 2.(s) ds < &
to

This contradiction proves the theorem.

5.5. Chaplygin’s Method

In this section we shall employ Chaplygin’s method to approximate the
solution of the differential system

u = f(t,u) (5.5.1)
u(0) = u, (5.5.2)
by a sequence of functions u,(f) which satisfy the linear systems

Ups 1 (1) = fL6u (D] + £ 08 ()] [t 4 1 () — 1y (1)] (5.5.3)
and
U, 1(0) = ug, n=20,1,2,.... (5.5.4)

The right-hand side of (5.5.3) is a linear approximation of f(¢, u). This is the
analog of Newton’s method applied to numerical equations and it was used
by Chaplygin for ordinary differential equations in R". Here f e C[[0, a] x
X, X] where a > 0 and X is a Banach space. We shall assume that for each ¢
the function f(¢,u) is Fréchet differentiable in u with F-derivative at the
point v € X denoted by £, (¢, v). Furthermore, we shall assume that f,(t,v)
is strongly continuous in (z, ) and

I£u(t,0) = £, W < g(t llo—wl),  v,weX re[0,a] (55.5)

where g € C[[0,a] x R, R, ] and g(¢,r) is nondecreasing in r.

If ug (¢) is a continuous function on [0, a) with u4(0) = u, then in view of
our hypotheses on f the system (5.5.3) and (5.5.4) with n =0 has a unique
solution u, (¢) which exists on [0,a]. In this way, one can construct a
sequence of functions {u,(?)}, n =0, 1,2, ... which satisfy (5.5.3) and (5.5.4)
on [0,a]. Now we can prove the following.

THEOREM 5.5.1.  Let f{(¢, u) satisfy (5.5.5) and suppose that ||u, ()| < M < ©
for 0 <t < aand all n. Then {u,(#)} is uniformly convergent on [0, a] to the
solution u(r) of the system (5.5.1) and (5.5.2).
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Proof: 1t follows from the continuity of f,(#,0) and from the principle of
uniform boundedness that

fouri 1/.(1,0) = N < 0.

The function z,(t) = u,, , (t)—u,(t) satisfies the system

z,/(6) = [t u, (D] + £.[t, u, (D] 2, ()
=Sty (O = Lol o (D] 2, () (5.3.6)
and
z,(0) = 0. (5.5.7)

We shall now prove the following estimates:

I = /T u, ()] = St uo s (0] = fulty -1 (D] 20— (D]

< gt N1za- (DD 12— 1 DIl (5.5.8)
and
I = || £,[Lu,(0] 2, < K|z, (5.5.9)
where
K=N+ r[r(}a;(g(t, M) < c0. (5.5.10)

To prove (5.5.8) we shall employ the mean value theorem. Let ¢ € X*
be a bounded real linear functional on X such that ||¢| = 1 and

I = (STt u,(D] = STt g1 (0] = £uTts thy - (D] 25— 1 ()
The real function
F@&) = o[/t up- 1 () + ELun(0) = u,- 1 (D])]
is differentiable in £ and
F'@Q) = ¢[fultstp-1 () + ELun (D) =11, 1 (D]) 2a- 1 (D]
Thus there exists a 7 € (0, 1) such that
F(1) - F(0) = F'(9),
that is
(ST uy (0] — STt uy- 1 (0]) = SLALL a1 () + 72,1 (D] 2,-, (D]
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Hence
11 = ¢[f;4[t’un—1(t) + Tzn—l(t)] zn—l(t) ""f;[h un—l(t)]zn—l(t)]
< ”f;:[t’ un—l(t) + Tzn—l(t)] zn—l(t) _-f;l[t’ un—l(t)] zn—l(t)”
< gt tlze- 1 (D 1za- 1 DI,
which proves (5.5.8). Next

1ALt O] < IAL8 u (D] = £u(8, 0] + 11.£(2, 0]

g(t, lu, () + max £, 0)
g, M)+ N

maxg(t, M)+ N = K,
[0,4)

<
<

<
<

which proves (5.5.9).
From (5.5.6)—(5.5.9) it follows that

lz, ()N < J;ICXP[K(I—S)]Q(S, 12— 1 (DI za- ()] ds.
On the other hand, |z,(¢)] < 2M. Hence
lza(OI < 2Mftexp [K(t—s)]1g(s,2M) ds. (5.5.11)
0

From (5.5.11) one establishes by induction that
Izl < 2M(FO" " /(n—=1)!, n=12,..

where F = Rexp Ra and R = max[K; max, ,,9(t,2M)].

From this estimate and the completeness of X we conclude that the
sequence {u,(¢)} converges uniformly on [0, 4] to a limit «(¢). In view of
(5.5.3) and (5.5.4) we obtain

Unsy (8) = 1o + J:(f Ls, 1y ()1 + SuLs, g ()] [t 4 1 (8) — 4 (5)]) ds
and passing to the limit
u(®) = up + J;f[s,u(s)] ds.

Hence u(¢) is a solution of the system (5.5.1) and (5.5.2). Since f,(¢,u) is
continuous the function f(#,u) is locally Lipschitzian and therefore the
system (5.5.1) and (5.5.2) has a unique solution. The proof is therefore
complete.
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The following theorem gives a satisfactory way to approximate the
solution u(¢) of (5.5.1) and (5.5.2).

THEOREM 5.5.2. Assume all the hypotheses of Theorem 5.5.1 and in
addition

lu,—u@| < w, (), 0<t<a

Define

W () = fo’exp[K(t—s)]g[s, w,(s)] ds, n=12,..

where K = sup;g 4, | /,(¢,0)|| + maxgg ., 9(t, M).
Then

lua () —u(@) < wo(®), n=12,...
Proof: Define
m,(8) = |u,(D—u@l, n=12,....
Observe that
[ () —u(®)) = [t up— 1 (O] + L1ttty (DT [0 () — st ()] — F L8, u(2)]

= Jultsupo (D] [ua () —u(D)]
/Uy (O = ST6 @O + L0 - (D) [ (1) — -, (D]

Replacing u,(f) by u(¢) in (5.5.8) and (5.5.9) we obtain

D_m, (1) < Km, () + g[t,m,_ () m,_,(2)
and
m,(0) = 0.

Hence
ma(t) < L XD LK(t—$))gL5, M 1 ()] M1 () d.

The desired result now follows by induction and the nondecreasing
character of g(t,u) in u.
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PrOBLEM 5.5.1. Develop Chaplygin’s method for the system
u = Au + f(t,u), 0<1<a, u(0) = uge D(A)

where A is the infinitesimal generator of a contraction semigroup and fis
as before.

[Hint: Consider the sequence {u,(#)} satisfying

U1 (1) = Auyy (1) + f(1,u, () + £u(t, 4y (D)) [t s () —u, (D],
0<r<a,

ul’l+1(0) = Up, uO(t) = Uy, 0 S t S a-]

5.6. Global Existence and Asymptotic Equilibrium

The last counterexample presented in Section 5.1 shows how badly the
solutions of an abstract Cauchy problem may behave in the case of an
infinite dimensional Banach space. Although the function f{(¢, u) is locally
Lipschitzian in v and continuous for all points (¢, ¥) we exhibited a solution
u(t) of (5.1.12) and (5.1.13) which exists on (0, 1] and is bounded, but u(¢),
contrary to the case in R", does not tend to a limit as ¢ — co. In this section
we shall impose a condition on f(¢, ) which rules out such a behavior and
which guarantees the global existence of solutions of the abstract Cauchy
problem

duldt = f(t,u), t=ty, (5.6.1)
and
u(ty) = uq (5.6.2)

where f: Jx X = X with J = [t,, 0) and X is a Banach space.

We shall assume, without further mention, that f(¢, ) is smooth enough
to assure local existence of solutions of (5.6.1) through any point in J x X.
For example, f(z, x) may be locally Lipschitzian in x as in the counter-
example or satisfy some monotonicity condition.

THEOREM 5.6.1. Assume that
() feC[JxX,X]and for all ({,u)e Jx X
I/l < g, llul); (5.6.3)
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(ii) geC[JxR,,R,] and g(t,r) is nondecreasing in r >0 for each
t € J, and the maximal solution r(z, 14, ry) of the scalar initial value problem
r=g(r) (5.6.4)
and
r(ty) =ro (5.6.5)
exists throughout J.

Then the largest interval of existence of any solution u(t, 1y, uy) of (5.6.1)
and (5.6.2) with |lug| < ro is J. In addition if r(z, 14,ro) is bounded on J
then the (strong) lim,_, ., u(#, 1o, 4) exists and is a (finite) vector in X.

Proof: Let u(t)=u(t, 1y, uy) be a solution of (5.6.1) and (5.6.2) with
lluoll < ro which exists on [1,, B) for 1, < f < co and such that the value of
B cannot be increased (as in the counterexample). Define m(r) = |lu(r)|| for
to < t < B. Then using (5.6.3) we obtain

D, m@t) < W' ()|

= |/, uM)I

<g(t,m@), to<t<p, (5.6.6)
and

m(to) = lluoll < ro. (5.6.7)

The inequalities (5.6.6) and (5.6.7) imply that
fluOl < r(), o <t <p, (5.6.8)

where r(f) = r(t, ty, ro) is the maximal solution of (5.6.4) and (5.6.5). Next
we shall establish that lim,.,,_ u(r) exists and is a vector in X. For any
t,,t, such that 1, < t, <1, < f we have

lu(t)—ultr)] = Hj:hf[s,u(S)] ds

< f " g5, u(s)l) ds

1

< f“g[s,r(s)] ds

1

= r(ty) —r(ty). (5.6.9)
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Since lim,_, z_ r(¢) exists and is finite, taking limits as ¢,,f, - f_ and using
Cauchy’s criterion for convergence, it follows from (5.6.9) that, lim,_,;_ u(f)
exists. We now define u(f) = lim,_5_ u(¢) and we consider (5.6.1) with u(f)
as the initial condition at t = . In view of the assumed local existence of
solution of (5.6.1) through any point in Jx X, it follows that u(f) can be
extended beyond f, contradicting our assumption. Hence, any solution of
(5.6.1) and (5.6.2) exists on [y, c0) and so (5.6.8) and (5.6.9) hold with
B = 00. Since r(t) is bounded and nondecreasing on J, it follows that
lim,_, , r(t) exists and is finite. This and the inequality (5.6.8) and (5.6.9)
with f = oo yield the last part of the theorem. The proof is complete.

REMARK 5.6.1. Replacing ¢t by —¢ a dual of Theorem 5.6.1 can be estab-
lished for the system

dujdt = f(t,u), t<tg, (5.6.10)
u(to) = up (5.6.11)

where f: Ix X— X and I = (— w0, t,]. Then under Hypotheses (i) and (ii)
of Theorem 5.6.1, with J replaced by I and g of (5.6.4) by —g, the con-
clusion of Theorem 5.6.1 is also true for the solutions of (5.6.10) and (5.6.11)
with the lim u(t, ty, y) now taken as t —» — oo. The intervals J and I above
can be replaced by any intervals [74,2,+a) and (¢, —a, ty] respectively.
Clearly the hypotheses of this remark are not satisfied by the counter-
example of Section 5.1.

DEFINITION 5.6.1. We say that (5.6.1) has asymptotic equilibrium if every
solution of (5.6.1) through any point (¢, u,) € J x X tends to a (finite) limit
£ e X as t - oo and conversely to every vector £ € X there exists a solution
of (5.6.1) which tends to & as t — 0.

When (5.6.1) has asymptotic equilibrium then it is asymptotically
equivalent to

dvjdt =0 (5.6.12)
in the sense that given a solution of (5.6.1) [of (5.6.12)] there exists a

solution of (5.6.12) [of (5.6.1)] such that their difference goes to zero as
t— 0.

The next theorem gives a set of sufficient conditions for (5.6.1) to have
asymptotic equilibrium.
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THEOREM 5.6.2. Assume that

(i) fe C[R, x X, X] and maps bounded sets into relatively compact
sets;

(ii) I/ < g@llul),  (L,u)e Ry xX;

(iii) ge C[R, xR,,R,], g(t,r) is nondecreasing in r =0 for each
te R, and for any (¢y,ry) € R, x R, the maximal solution r(¢,t,,r,) of
(5.6.4) and (5.6.5) is bounded on [1,, ).

Then (5.6.1) has asymptotic equilibrium.

Proof: Let u(t) be a solution of (5.6.1) through (¢,, u,). By Theorem 5.6.1
u(?) exists on [#,, ) and lim,, ,, u(¢) exists and is a vector £ € X. Notice
that in proving this part we do not use Hypothesis (i). Conversely, let £ € X.
We must construct a solution u(¢) of (5.6.1) which tends to £ as t — c0. The
proof of this is involved and we shall give it in several steps.

First, as a consequence of Hypothesis (iii) for every (5, 1) € R, X R,

f g(s,A) ds < 0. (5.6.13)
to
In fact, let 7(¢)=r(t,t,,2) be the maximal solution of (5.6.4) through
(2o, 2). Since 7(¢) is bounded and nondecreasing the lim,., , 7(¢) exists and
is a finite number 7, = 4. From

Fo > F() = A+ f'g[s,r(s)] ds

¢
= l+fg(s,l)ds
t

o

the condition (5.6.13) follows.
Next, consider the maximal solution r(t) = r (¢, ty, |£]]) of (5.6.4) through
(to, IE]). Set r, =lim,, ,, r(2, ty, |£]]). Choose T sufficiently large so that

f g(s,2rp)ds < r. (5.6.14)
T

This choice is possible because of (5.6.13).

Now, for each n=0,1,2,... construct the maximal solution r,(f) =
r(t, T+n, (&) of (5.6.4) through (T+n,|&f) and a solution u,(r)=
u(t, T+n,&)of (5.6.1) through (T+n,&). From Theorem 5.6.1 w,(t) exists
on [T+ n, o), it tends to a finite limit as t —» oo, and

lu, () < r,(2), T+n<t< . (5.6.15)
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We shall prove that u,(f) can be continued backward up to 7 and that
lu,(DI < 2r,, T<t<T+n (5.6.16)

Before we do this let R,(¢) = R, (t, T+n, ||£]) be the maximal solution
of the scalar equation

r o= —g(t,r) (5.6.17)

through (7T+n, {|£]}). We claim that R, (¢) exists on [T, T+ n]. To prove this
it suffices to show that R,(¢) remains bounded on [T, T+n]. If not, there
exist points ¢, and t, for T<t, <t, < T+n such that R, (¢,) =2r, and
R, (t))=r, withr, < R, (1) €2r, on [t,,¢,]. Then from (5.6.17), we have

Ru(ts) = Ro(t)) — f ® gLs, Ry(5)] d.
Thus '

fo = f " 905, Ry(s)] ds

1

t2
< f g(s,2r,) ds
t

< f g(s,2r,) ds
T

contradicting (5.6.14). Now an argument similar to that in the proof
of Theorem 5.6.1 (see also Remark 5.6.1) shows that u,(f) exists on
[T,T+n].

Next, we shall establish (5.6.16). If it were false, there should exist points
t3 and ¢, for T< 13 <ty < T+n such that ||u,(t3)] = 2ry, lu,(t)] =y,
and r, < ||uw,(#)] €2r, on[t3,f,]. Then from (5.6.1) we get

un(ta) = un(ts) + f * L5, ua(s)] ds.
Thus ’

Fo > 2 — f s, un(5)]1 ds

3

t4
= 2r, — f g(s,2r ) ds
ty

=2r, — f g(s,2r)ds > r,,
T

and this contradiction establishes (5.6.16).
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The solutions u,(¢) forn=0,1,2, ... are therefore defined on [T, o0) and
they are uniformly bounded by 2r . Since

luy' I = 1/t us (O]
s g(t, zrw),

the sequence {u,(?)} is equicontinuous on every bounded ¢ interval. We
shall now utilize Hypothesis (i) to apply the Ascoli-Arzela Theorem 1.1.1
to this sequence of abstract functions. From (5.6.1) and any fixed t* € [T, o0)

un(*) = up(T) + f FTs, uy(s)] ds.

In view of Hypothesis (i) and Carroll [12, pp. 138, 141-142], it follows
that the set of points {u,(r*)} for n >0 is relatively compact in X. Thus
there is a subsequence, which we still denote by {u,(r)}, that converges
uniformly on every bounded ¢ interval as n — co to a continuous function
u(e).

The function u(?) is the desired solution of (5.6.1) which converges to
£ as t — 0. In fact

un(t) = un(T) + f;f[s, un(s)] ds

and passing to the limit we see that u(¢) is a solution of (5.6.1). By the first
part of the proof of Theorem 5.6.2, lim,. . u(f) = u(co) exists. Since
lim,_, ,, u,(t) = u(¢) and u,(T+ n) =& we conclude that u(co) =¢. The proof
is complete.

REMARK 5.6.2. The second part of the proof of Theorem 5.6.2 shows
under Hypotheses (i), (ii), and (iii) of Theorem 5.6.2 the terminal value
Cauchy problem

dul/dt = f(t,u), and u(o) =¢
has a solution for every & € X.
PrOBLEM 5.6.1. Establish an asymptotic equilibrium result for (5.6.1) in

the case that the function g(r, «) is nonincreasing in ¥ and possibly not
defined for u =0.

[Hint: For the case X = R" see Ladas and Lakshmikantham [38].]
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5.7. Lyapunov Functions and Stability Criteria

Here we shall study the stability properties of the solutions of the non-
linear Cauchy problem

u = AWu+ f(t,u) and u(ty) = uge D[A(ty)] (5.7.1)

where fe C[R, x X, X] and for each r € R,, A(¢) is a linear operator in
X with time-varying domain D[A4(#)]. A solution of (5.7.1) is a strongly
differentiable function u(r) such that u(r) € D[A(r)] for each ¢>t, and
satisfies (5.7.1) for all ¢ > ¢,. We shall assume, without further mention, the
existence of solutions u(t, t5,uy) of (5.7.1), in the future. We shall also
assume that for each ¢t € R, and all 4 > 0 but sufficiently small, the operator
R[h,A(1)] =[I—hA(r)]" ' exists as a bounded operator defined on X,
and for each xe X

limR[A, A()]x = x. (5.7.2)
h-0

The following comparison theorem is basic in our discussion of stability
criteria.
THEOREM 5.7.1. Assume that
(i) VeC[R,xX,R,]and for (t,x,), (t,x,) e R, x X
WV, x,)=V(t,x2)l < L(Olx;— x| (5.7.3)

where L(¢) 2 0 and continuous on R, ;
(ii) there exists a function ge C[R, x R,, R] such that for each
(t,x)e R, xX

D, V(t,x) = lim suph™ ' {V(t+h, R[h, A())] x + hf(1,x)) = V(,x)]

h-0,
<glLV(Lx)l; (5.7.4)

(iii) for each (#y,ry) € R, x R, the maximal solution r(¢,1,,r,) of the
scalar initial value problem

r'=g(@,r) and r(ty) =rg (5.7.5)
exists in the future.
Then V(ty, up) < r¢ implies that

VIt u(t, to,up)] < r(t, to,ro)s t=t. (5.7.6)
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Proof: Let u(t)=u(t,to,uo) be any solution of (5.7.1) such that
V(to, Ug) € ro and r(t) = r(¢, ty, ro) is the maximal solution of (5.7.5). Define
the function m(¢) = V¢, u(t, to, up)]. Then

m(ty) < ry. (5.7.7)
Further, for A > 0 but sufficiently small we obtain, using (5.7.3)
m(t+h) —m@) < L@t+h) |u(t+h) — R[h, A(Du(®) — Af (1, u(@]l]

+ V[t+h Rh, AWOJu() + b {t,u(D] — VIt u()].
(5.17.8)

Since for every x € D(A(#)) we have R[h, A(D][I—hA(1)] x = x, it follows
that

R[h,AM]x + hf(t,x) = x + h[A()x + f(1, x)]
+ h[R(h, A(D)) A1) x — A(1) x].
This together with (5.7.8), implies that
m(t+h) — m(t) < L@+ |u(t+h) — ut) — h(A@u@) + 1L, u@OD)]

+ L+mh|R[A, AWD]A@u(@) — AOu@)]|

+ V(t+h, R, AODu(@) + KT, u()] = VIt,u@)].
We now use the relations (5.7.1), (5.7.2), and (5.7.4) to obtain

D, m(t) < glt,m(1)].

This and (5.7.7) yields the desired estimate (5.7.6). The proof is complete.

We list a few definitions concerning the stability of the trivial solution of
(5.7.1) which we assume to exist for this purpose.

DEFINITION 5.7.1. The trivial solution of (5.7.1) is said to be

S-1: equistable if, for each ¢>0 and t, € R,, there exists a positive
function § = d(¢,, €) that is continuous in ¢, for each ¢ such that [Juy] <
implies ||u(, 1, ug)|| <€ for t = ty;

S-2:  uniformly stable if S-1 holds with & being independent of ¢,;

S-3:  quasi-equi asymptotically stable if, for each ¢ > 0 and ¢, € R, there
exist positive numbers 8, = 0,(ty) and T = T(t5,¢€) such that [u| <6,
implies ||u(t, 1o, ug)l| <& fort=ty+T;
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S-4: quasi uniformly asymptotically stable if S-3 is satisfied with the
numbers J, and T independent of ¢,;

S-5:  equi-asymptotically stable if, S-1 and S-3 hold simultaneously;
S-6:  uniformly asymptotically stable if S-2 and S-4 hold simultaneously.

Let us assume that the scalar equation (5.7.5) possesses the trivial solution
also. Then we can define the corresponding stability concepts for the trivial
solution of (5.7.5). For example, the trivial solution of (5.7.5) is said to be

S-7':  equistable if, for each ¢>0 and 1y € R,, there exists a positive
function 6 = 6(#,, €) that is continuous in ¢, for each & such that ro <o
implies r(t, 1, ro) < € for t =ty where r(t, tg, ro) is the maximal solution of
(5.7.5). The concepts S-2'-S-6' are defined in a similar way.

We now present a result concerning the equiasymptotic stability of the
trivial solution of (5.7.1).

THEOREM 5.7.2. In addition to the hypotheses of Theorem 5.7.1 assume
that

i) f(,00=0,9(0)=0,and ¥(1,0)=0, forte R, ;

(i) there exists a function b: R, — R, such that b(r) is increasing in r
and

blxl) < V{(,x), (t,x)e R, x X, (5.7.9)
Then, S-5 implies S-5. More precisely, S-1" implies S-1 and S-3’ implies S-3.
Proof: Suppose that S-1' holds. Let ¢ > 0 and ¢, € R be given. Then there

exists a &, = J, (¢, &) < &, positive and continuous in ¢, for each ¢ such that
ro < 8, implies

r(t, to,ro) < b(e), >t (5.7.10)

Since V' (1, x) is continuous and V(z,0) =0, there exists a d =8(8,,t,) <,
such that [lug| < & implies ¥V (¢, 4o) < 8,. This é depends on ¢, and ¢ and is
continuous in t, for each ¢. We claim that this é is good for S-1, that is,
llugll < & implies flu(t, £y, uo)ll <& for t=1t, In fact from the relations
(5.7.9), (5.7.6), and (5.7.10) we get

b(”u(ta tO’ uO)”) S V[”u(ta ’o:”o)]
< r(t,10,64)
< b(e), t=ty.
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Since b(r) is nondecreasing in r
"u(t, fo’uo)” < £, t ? to-

Therefore, S-1 holds.

Next we shall prove that S-3’ implies S-3. Let e >0 and ¢, € R, be given.
On the strength of S-3’ there exist positive numbers 8, = d4(7;) and
T = T[tg, b(e)] = T(tg,¢) such that ry < J, implies

r(t,15,70) < b(e), t=2to+T. (5.7.11)

Since V(1y,x) is continuous and V(ty,0) =0, there exists a &, =
8o (10, 80) < 8o such that [lugl| < &, implies V(to,uy) < 9. We claim that
8, and T are good for S-3. In fact let |lu,| < 8, and 1 = #,+ T. Then from
(5.7.9), (5.7.6), and (5.7.11) we obtain

b(llu(e, to, up)ll) < V[t,u(t, to, uo)]
r(t, to, 50)

< b(e).

N A

Therefore

[lee(t, to, ull < &, tz 1+ T

The proof is complete.

PrOBLEM 5.7.1. In addition to the hypotheses of Theorem 5.7.1 assume
that there exists a function a: R, — R, such that a(r) is increasing in r and

V(,x) < a(x]),  (,x)e Ry x X. (5.7.12)

Then S-6’ implies S-6. More precisely, S-2’ implies S-2 and S-4’ implies S-4.
[(Hint: Using (5.7.11) the &’s can be chosen independent of ¢,.]

It is easy to state and prove various stability and boundedness criteria
analogous to the corresponding results in differential equations in
Euclidean spaces (see [42]). The main hypotheses in all these results are the
existence of a Lyapunov function V(t,x) satisfying the hypotheses of
Theorem 5.7.1 and, according to the goal, other conditions like (5.7.9),
(5.7.11), etc. Since most of the considerations are straightforward, we do
not attempt to go into details here.
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5.8. Notes

The counterexamples in Section 5.1 are taken from Dieudonné [15]
while the counterexample contained in Problem 5.1.1 is due to Yorke [77].
All the results of Section 5.2 are based on the work of Murakami [53];
see also Browder [10]. The nonlinear variations of constants formula and
the related material of Section 5.3 are due to Ladas, Ladde, and Lakshmi-
kantham [39]. Some of the ideas here stem from Mamedov [47] and
Sultanov [68]. Most of the material presented in Section 5.4 is new and is
analogous to the classical work in Lakshmikantham and Leela [42]. See
also Brauer [8] and Lumer and Phillips [46]. Section 5.5 consists of the
work of Mlak [52]. See Ladas and Lakshmikantham [37] for the material
covered in Section 5.6. The proof of the asymptotic equilibrium is fixed
rigorously here. Refer to analogous results in Lakshmikantham and Leela
[42] for clarification; see also Brauer [7]. For global existence for autono-
mous differential equations, see Martin [48]. For the stability criteria,
using Lyapunov functions, given in Section 5.7 see Lakshmikantham [40]
and Lakshmikantham and Leela [42], see also Pao [58], Pao and Vogt [59],
Rao and Tsokos [61], and Taam [69]. For further results on the subject
the reader is referred to Browder [11].



Chapter 6

Special Topics

6.0. Introduction

As the title of this chapter suggests, here we shall introduce the reader to
some topics that are of current interest. In Section 6.1 we present in a
simplified way some of the features of nonlinear semigroups and the study
of the abstract Cauchy problem

dufdt + Au =0, t>20, and u(0) = u,

where A4 is a maximal monotone (nonlinear) operator. Section 6.2 introduces
the study of delay differential equations in Banach spaces. Since the classical
counterpart, namely functional differential equations in finite dimensional
spaces, is being investigated at a rapid rate and much has been accom-
plished in this area we hope that the material of Section 6.2 will induce
further study. Here we have presented existence, uniqueness, bounds,

172
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continuous dependence, and continuation of solutions of general delay
differential equations, in a Banach space, of the form «’ = f(¢, u,). Finally
in Section 6.3 we discuss second order evolution equations and initiate the
study of oscillation theory for such equations in Hilbert spaces.

6.1. Nonlinear Semigroups and Differential Equations

Let X be a real or complex Banach space and S be a subset of X. The
notation “lim” (or “w-lim’’) means the strong limit (or the weak limit) in X.

DEFINITION 6.1.1. A nonlinear semigroup in S is a one-parameter family
of (possibly nonlinear) operators {7(¢)}, t = 0 from S into itself such that

(i) T0) =1, I'is the identity on S;

(ii) TOTES)x = TE+5)x, xes, ts=0.

The semigroup is called strongly continuous if for each xe S, T(f)x is
strongly continuous in ¢ = 0. The semigroup is a contraction semigroup if
for each ¢t = 0, T(¢) is a contraction mapping in S, that is

ITOx—TOyl < lx—yl, x,yeSs.

The strict infinitesimal generator A, of a nonlinear semigroup {7T(¥)} is
defined by

Aox = lim [T(h)x—x]/h
h—-0,

and its domain is the set of all x € S for which the foregoing limit exists in X.
The weak infinitesimal generator A' of {T(t)} is defined by
A'x = w— lim [T(hyx—x]/h
h—-0,

and its domain is the set of all x € S for which this w-limit exists in X.
In this section we shall study the nonlinear abstract Cauchy problem

U+ Au=20 and u(0) = uy, 6.1.1)

where A4 is a nonlinear operator with domain D(4) = X and uy € D(4).
The operator A will be assumed to be m-monotonic in the sense of
Definition 6.1.4.
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DEFINITION 6.1.2. A function u: [0, 00) — X is said to be a

(i) strong solution of (6.1.1) if it is strongly differentiable on [0, o)
and satisfies (6.1.1) on [0, 00);
(i) weak solution of (6.1.1) if it is weakly differentiable on [0, c0) and
satisfies (6.1.1) weakly on [0, o0);
(iii) mild solution of (6.1.1) if

t
u(®) = uy — f Au(s) ds, t=0,
4]
the integral being understood in the Bochner sense.

DEFINITION 6.1.3.  An operator 4 with domain D(A) and range R(4) in X
is said to be monotonic if

lx—y+a(dx=Ap)| = |x—-yl, x,yeD(4), a>0.

If A is monotonic, then (/+aA4)~! exists for every « >0 and is a con-
traction operator. Clearly (/4+«A) is one to one. Setting x = (/+a4) ™ 'u
and y = (I +aA) " 'v, it follows that

lu—v| = IT+ad)x — (I+ad)y|
= |x—y+a(dx—Ay)|
z llx=yl
= (I+ad) 'u — ([I+ad)"v| 6.1.2)

and our assertion is established.

DEFINITION 6.1.4. If 4 is monotonic and D(I+aA4)~! = X for every « > 0
then A is called m-monotonic.

In the remaining of this section we shall assume that X is a Hilbert space.
The following is the main result to be proved:

THEOREM 6.1.1. Let 4 on D(A) be m-monotonic in X, Then there exists a
unique, strongly continuous semigroup {7°(t)}, t = 0 on D(A) such that for
each uy, € D(A4) we have u(t) = T(t) u, a locally Lipschitz weak solution of
(6.1.1). Furthermore, T'(f) is a contraction semigroup having A4 as weak
infinitesimal generator, and for each u, € D(A)



6.1. Nonlinear Semigroups and Differential Equations 175

(a) T(?)uy is Lipschitz continuous on [0, o0);

(b) T(N)u, is weakly continuous weakly differentiable on [0, 00);

(c) T(H)u, is a mild solution of (6.1.1);

(d) T(Hug is a strong solution of (6.1.1) except perhaps at a countable
number of points;

(e) T(t)uy is jointly continuous in (¢, ug).

The proof of this theorem will be clear to the reader after a series of sixteen
interesting lemmas. The last part (e) is left as an exercise. The key idea
behind this proof is to approximate the operator A by a sequence {A4,} of
everywhere defined monotonic operators defined by 4, = A(I+n"14)7},
and then approximate the solution of (6.1.1) by the sequence {u,(r)} of
solutions of the approximating problem

u+A,u=0 and u(0) = uy € D(A).
Lemma 6.1.1. Let x,y € X. Then |x| < |x+ay| for every a >0 if and

only if Re(x,y)=20. In particular A4 is monotonic if and only if
Re(Ax— Ay, x—y) = 0.

Proof: Let Re(x,y) = 0. Then
lx+ayl? = lx|I? + 2a Re(x,y) + o || y||?
2.
[ x]|2. Then
20Re(x,p) +o?|ly)> 20, >0,

>
2>

Conversely, let {|x+ay||

which implies that Re(x,y) = 0.

LEMMA 6.1.2. Let x(t) be an X-valued function. If the weak derivative
x'(r) exists at t = s and || x(¢)]| is also differentiable at r = s, then

Ix (N 1x(s))" = Re(x'(s), x(s)). (6.1.3)
Proof: Since
Re(x (1) = x(5), x(5)) < (lx(] = x&) x()N,
it follows that
Re([x () —x(9)]/(t=5),x(s)) < [(IxDI = Ix©D/E=)]Ix), >

and

Re([x () —x ()1 ~5),x() = [(IxO—Ix&HD/E=D]IxHE, ¢ <
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Letting ¢ — s and using the fact that left and right derivatives are equal, the
desired result follows.

For an m-monotonic operator 4, we introduce the following sequences
of operators:

J,=(+n"'A)"' and A, =AJ,, n=12... (614)

Since the range of J, is D(A4), the operator A4, is well defined. Notice that
A, =n(I-J,). In fact

A, = AJ,
=n[(+n" A -1]U+n"t4)"?
=n(I-J,).

The operators 4, and J, are clearly defined everywhere on X.

LemMa 6.1.3. Let A be m-monotonic. Then the operators J, and 4, are
Lipschitz continuous, namely they satisfy

Iax—=Jpyll < llx—yl  and |4, x—A,y| < 2n|x—yl. (6.1.5

Proof: The first inequality is a special case of (6.1.2). To prove the second
inequality, observe that

4px— Ay = nlx=Jyx—y+Jpyll < nllx=yl +nlJ,x=J,yl

< 2n|x-y|.

LemMa 6.1.4. Let 4 be m-monotonic. Then for each n, 4, is monotonic
and

|Anull < |Aull,  ue D(4). (6.1.6)

Proof: To prove that 4, is monotonic, in view of Lemma 6.1.1, it suffices
to show that Re(4,x—A4,y,x—y) = 0. In fact

Re(Anx_Anyax—y) = nRe(X—JnX—J"*‘Jn}’aX—J’)
nllx—yl? — Re(Jyx—Jpp,x—y)]
nllx=yl* = 1y x=Juylt Ix—yI1 = 0.

A\
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Next, from (6.1.5) and for every u € D(A), we have
IAaul = nl(I=J,)ul

n|J,d+n" ' Ayu— J,u|

al(+n"Au—u|

Il Aull

A

and (6.1.6) is proved.

LemMma 6.1.5. lim,_ J,u = u for every u € D(A).
Proof: From (6.1.6)

Nu—=dnul = |d=J)ull = n" | Aul < n7'|Au >0 as - oo,

LeEmMA 6.1.6. Let A be m-monotonic in X.

(@) If u,e D(4) for n=1,2,..., lim,,  u,=u, and the ||Au,| are
bounded for all n, then u € D(A4) and w-lim,_, , Au, = Au;

(b) if x,eX, n=1,2,..., lim,,, x,=uelX, and the ||4,x,|| are
bounded for all n, then u e D(A4) and w-lim,_, , 4, x, = Au;

(c) w-lim A, u = Au, u e D(A).

n—

Proof: (a) Since |Au,| is a bounded sequence and X, being a Hilbert
space, is reflexive, there exists a subsequence 4w, which converges weakly
to a vector xe X as n' > o0. Let ve D(A). Then if |Au,| < C with
n=1,2,..., we have

Re(Av— Au,,v—u) = Re(Av— Au,,v—u,) + Re(Av— Au,., u, —u)
= Re(Av—Au,,u, —u)
Z — | Av—Auy| [uy —ul
= — (ll4v]l + C)lluy —ull.

Taking limits as n’'— o0 we obtain Re{(Av—x,v—u)>0. Using Lemma
6.1.1 with o =1 we get

lv—u+Av—x|| = |lv—ul, ve D(A). (6.1.7)
Take v =J,(u+x) =+ 4)" "(u+x) so that v € D(A) and
v+ Av = u+ x. (6.1.8)
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The relations (6.1.7) and (6.1.8) imply that u = v € D(A4). From (6.1.8) we
then see that x = w-lim,_, , Au, = Au. Since we could have started with
any subsequence of {u,} instead of {u,} itself, the foregoing resuit shows
that Au, converges weakly to Au.

(b) Setu,=J,x,e D(A). Let | 4,x,{ < C for all n. Then

I Au,|| = 147, x|
= |14, x,|
<C for all n.
Also
lu—upll = llu—=Jyx,l
= lu—x,+n""4,x,|
< fu=x,ll + 17 | Ay X,
< llu=x,l + C/n.

Therefore, lim,_, ,, 4, = u. The result of (a) is then applicable, proving that
ue D(A) and

Au = w-lim Au,

n—+ o

= w-lim 4j, x,

n— o

= w-lim4, x,.

n—w

(c) Set x,=u. Observe that
N Anxall = [ Apull < {Aul

and therefore (b) is applicable.
The proof is complete.

Since the operator A, is everywhere defined on X and uniformly Lipschitz
continuous, the following result is clear from Theorem 5.1.1.

LeEmmA 6.1.7. For each n=1,2,..., the approximating problem
W+ Au=0 and u0) = ug e D(A4) (6.1.9)

has a unique strongly continuously differentiable solution u,(f) on an
interval [0, d,) for some §, > 0.
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LeEMMA 6.1.8.  Ifu, () is the solution of (6.1.9) on [0, 3,), then the following
estimates hold:

(a) [l (D
®) w4k —u, ()]

Proof: Since u,(t) is continuously differentiable on [0, 4,), the function
X, () = u,(t+h)—u,(¢)is also continuously differentiable forO0 < ¢, t+ h < §,
and hence

(d/dr) |1, (1)1

”AuO”,
I Auo|l I,

0<t<é,;
0

AN/
N N

Lt+h <6,

2Re(x,'(), x,(0))
= — 2Re(A,uy(t+h) — A, u, (), u,[t+h) — u,(D]) < O

because A, is monotonic. Thus |x,(¢)]| is nonincreasing on [0,d,). In
particular

% (I < Jlx, (O]
Thus
lua(t+h) — u, (Ol < |y (h) — 0, (0)].
Dividing by & > 0 and taking limits as # — 0, we obtain
lu,' DN < Ny’ O = N Ayl < || Aug

which proves (a). The estimate (b) now follows from (a) and the mean value
Theorem 1.2.1.

A consequence of Lemmas 6.1.7 and 6.1.8 (b) is the following:

CoRrOLLARY 6.1.1. The approximating problem (6.1.9) has a unique
strongly continuously differentiable solution on [0, ).

Proof: Clearly it suffices to show that if u,(t) is a solution of (6.1.9) on
[0, 3,), then the lim,_, 5 _ u,(?) exists. In fact from Lemma 6.1.8

lun(t,) = u, (DI < (| Augll [t —22], 0<1ty, <6,
Taking limits as ¢,,¢, » 6,_ and using Cauchy’s criterion for convergence

our assertion follows.

LemMMa 6.1.9. The sequence {u, ()}, of solutions of (6.1.9) converges

n=1

strongly to a function u(#) and the convergence is uniform on any finite
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interval [0, T]. Furthermore
lu(t+h) — u@)| < |Auoll 1A, Lt+h=0 (6.1.10)
that is, u(¢) is Lipschitz continuous on [0, o).

Proof: Define x,,(t) =u,(t)—u,(t). Then from the monotonicity of A
and Lemma 6.1.8(a) we obtain

(d/d) | Xm ()12
= 2Re(xpm (1), Xum (1))
—2Re(Ayuy (1) — At (1), (1) — (1))
—2Re(AJ,u,(t)— AJ, u, (1), u, () —u, (1)
—2Re(AJ, u, (1) — AJ u, (£), J, 11, (£) — T 1, (1))
~2Re(A,u,(1)— A, (), u, (1) — T, () — U (1) + T 1 (1))
< —2Re(4,u,()— Apu,, (), n A u, () —m™ 14, u,.(D)
< 2[4, uy ()| + | A i (DI ][I A, 1, (DNl /114 || Ay i (£) 1] /r2]
< 4| Aug|?(n~ +m™Y). (6.1.11)

Integrating (6.1.11) from 0 to ¢ we derive
1%m DIl < 41 Augl*(n™'+m™ )1 >0 as nm— oo

uniformly for ¢ € [0, T']. The first part of Lemma 6.1.9 is thus established.
Now, set u(¢) = lim,,_, , 4,(#). By Lemma 6.1.8(b)

lus (2 +h) — u, (D] < [l Auoll 1Al
Taking limits as n — oo the relation (6.1.10) follows. The proof is complete.
LemMma 6.1.10. u(?) € D(A) for each t >0 and w-lim,_, , 4, u,(¢) = Au(t).
Furthermore, Au(f) is weakly continuous and ||Au ()| < || Auyl.

Proof: By Lemma 6.1.9 we have lim,_ ,u,(f) =u(¢) and by Lemma
6.1.8(a) we have ||A4,u,(?)|| < || Auy]. Now we apply Lemma 6.1.6(b) and
conclude that u(¢) € D(A) and w-lim,, , 4, u,(¢) = Au(t). This means that
lim,., . (A4, u,(1),y) = (Au(1), y) for each y € X, and

(4, u, (1), Au(D))] < 4, u, (D] | Au(®)]]
< |duol | Au@), ¥y = Au().
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Thus
|lim (A, u,(2), Au(®))| = [ Au(®)|?

n— @

< [ Auo| | Au (D)

which implies that
lAu()) < Augl.

To prove the weak continuity of 4u(¢), it suffices to show that if t, — ¢ as
k — o0, then w-lim,_ , Au(t) = Au(t). In fact lim,,  u(s,)=u(?) and
| Au(t )| < || Augll. From Lemma 6.1.1 it then follows that w-lim,_,
Au(t,) = Au(t) and the proof is complete.

LeMMA 6.1.11. u(?) is weakly continous weakly differentiable on [0, c0)
and is a weak solution of (6.1.1).
Proof: By Lemma 6.1.9 u(0) = lim,_, ,, u,(0) = u,. Since u,(?) is a strongly
continuously differentiable solution of (6.1.9), we have
t
(u,(0),v) = (ug,0) — f (4, u,(s),v) ds, ve X. 6.1.12)
V]

By Lemma 6.1.10
lim (A, u,(5),v) = (Au(t),v)

n—

and by Lemma 6.1.8
[(Anun (), 0)| < [ Aug|l o]l
Thus, the dominated convergence theorem applied to (6.1.12) yields

(u(0),v) = (up,v) — J:(Au(s), v) ds. (6.1.13)

In view of Lemma 6.1.10 the integrand in (6.1.13) is continuous. Hence
(u(),v) is continuously differentiable and
(d/dt)(u(t),v) = — (Au(s),v).
The proof is complete.
LEMMA 6.1.12. Let u(¢) and v(f) be two Lipschitz continuous weak
solutions of '+ Au =0 on [0, T). Then
lu@—vOI < [u@)—-v@)l, O0<r<T. (6.1.14)

In particular, (6.1.1) has exactly one locally Lipschitz weak solution.
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Proof: Set x(tf) = u(t)—v(f). The Lipschitz chatacter of u(¥) and v(¢)
implies that the function || x(¢)||? is absolutely continuous. This fact and
Lemma 6.1.2 imply that

Ix(OI? = Ix©O)* + J;’(d/ds) lx(s))|? ds
= |[x(0))1® + J;rz lx ()1l (d/ds) || x(s)|| ds
= x| + J;’2 Re(x'(s), x(s)) ds

= ||x(0)||% — 2Lr(Au(s)—Av(s),u(s)—v(s)) ds

< Ix©@%;

(6.1.4) follows. In particular, if #(0) = v(0), then u(¢) = v(t). The proof is
complete.

As a consequence of the parallelogram law in X, or by a direct argument,
one can prove the following.
LEMMaA 6.1.13. Let {x,} and {y,} be two sequences of vectors in X such that

lim ||x,| = lim ||y,|

n— o n— o

3 lim x4y, < ©

n— o

Then
lim ”Xn—yn” =0.

LemMa 6.1.14.  Au(t) is strongly continuous except possibly at a countable
number of points.

Proof: By Lemma 6.1.10 ||Au(t)|l < | Au(0){. In view of uniqueness one
can replace 0 by any ¢, <t proving that the function || Au(s)| is non-
increasing in t. Thus ||Au(¢)| is continuous except possibly at a countable
number of points. Let 7 be a point of continuity of || 4u(#)|| and let ¢, be a
sequence of points converging to f as k— c0. Set x, = Au(f) and y, =
Au(t,) forn=1,2,.... Then

lim || x,] = lim |y,

n— o

= | Au(@®)].
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Since Au(t) is weakly continuous, it also follows that

2|l Au(®)| < lim inf| Au(®)+ Au(z,)|

< lim sup || Au(f)+ Au(t,)||

< || Au(®| + lim || Au(z,)]|
= 2| 4u(d)].
Thus
lim | Au(?) + Au(t)] = 2| Au(@®)].

n— o

From Lemma 6.1.13 we then obtain

lim || Au(®) — Au(t,)|| = 0.

n— aw

Hence, Au(t) is continuous wherever || Au(t)| is continuous.

Lemma 6.1.15. The function u(t) is strongly differentiable except possibly
at a countable number of points. Moreover, at the points of strong
differentiability u(z) satisfies (6.1.1).

Proof: Let t be a point at which Au(r) is strongly differentiable. Using the
weak continuity of Au(#) we notice that

lu(t+h) — u(t) + hAu()|?
= (u(t+h) —u(@®) + hAu(®), u(t+h) — u(t) + hAu())

_ th(_Au(s)"‘Au(t)’ u(t+h) —u(t) —hAu(t)) ds
_ f’+hfl+h(_Au(S)+Au(t)’ _Au(r)+Au(t)) drds

< f o f " Auts) — Au ()] | Au(r) — Au(D)] dr ds
<e)?h?, eh)—-0 as h—0.
Thus
lu(t+h) —u(@®)/h + Au(t)| < e(h) = 0 as h—-0

and the result follows.
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LeEmMMA 6.1.16. The Lipschitz weak solution of (6.1.1) is also a mild
solution of (6.1.1).

Proof: Since A,u,(t) is strongly continuous, the values A4,u,(f) lie in a
separable closed linear subspace X, of X. Take, for example, X, to be the
strong closure of the subspace generated by {4, u,(r)} where r is a rational
number and n positive integer. Since w-lim,_ , A4,u,(t) = Au(f) and X, is
weakly closed, it follows from Royden [63] that Au(f) € X,. Thus the values
{Au(r)} are contained in the closed separable subspace X, of X. As Au(?) is
w-continuous, it is also w-measurable, and from the results of Section 1.4
Au(t) is strongly measurable. In the proof of Lemma 6.1.14 we have seen
that || Au(#)| is monotonic and, hence, Lebesgue integrable on every finite
interval [0, T]. By Theorem 1.4.1 the function Au() is Bochner integrable.
Since u(r) is a weak solution of (6.1.1), we have using Theorem 1.3.5

@(,7) = (40,) — L (Au(s),y) ds

— (o,3) - ( [RZ0 ds,y)
= (uo— f’Au(s) ds,y), yeX.
0

u(t) = uy — L,Au(s) ds.

Hence

The proof is complete.

ProBLEM 6.1.1. Complete the proof of Theorem 6.1.1.

[Hint: Forug, e D(A) define T(f) uy, = u(t) where u(r) is the weak solution
of (6.1.1).]

PrROBLEM 6.1.2. Let 4 on D(A) be monotonic in X. Show that (/+aA4) ™!
has domain X either for every o > 0 or for no « > 0.

[Hint: Observe that D[(I+aAd)™ '] = R(I+aAd) and R(I+ad)= X is
equivalent to R(a~'/+4) = X.]

PrOBLEM 6.1.3. Let 7(f)x = max(0,x—17) for x>0 and T(1)x = x for
x < 0. Prove that {T(s)} is a nonlinear contraction semigroup on R with
strict infinitesimal generator A, defined by 4ox = —1 for x>0 and
Agx =0 for x<0.
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6.2. Functional Differential Equations in Banach Spaces

Suppose T =0 is a given real number and X a Banach space with norm
[-. Let =C[[—1,0],X] denote the Banach space of continuous
functions mapping the interval [ —1,0] into X with the norm of ¢ € ¥
given by

¢l = max 01|¢(S)|l-

—TESE

If 1o € R, and x € C[[t,—1, o), X], then for any ¢ € [#,, ), we let x, € €
be defined by

x,(8) = x(t+5), -1<s5<0.
Let p > 0 be a given constant and let

C,={de%: ldlo < p}.
If "=d/dt and f: R, x C,— X is a given function, we say that the relation

x'@) = ft,x) 6.2.1)

is a functional differential equation of retarded type or simply a functional
differential equation.

DEerFINITION 6.2.1. A function x(t, ¢o) is said to be a solution of (6.2.1)
with the given initial function ¢ € C, at 1 = 1, = 0 if there exists a number
A > 0 such that

(i) x(ty, ¢o) is defined and (strongly) continuous on [fy—1,+ A4)
and x, (1, po) € C, for 1, <t <1,+ A;

(i) Xto (1o, 90) = do;

(iii) the (strong) derivative x’'(fo, o) of x(to,¢o) at ¢ exists for
t € [to, to+ A) and satisfies (6.2.1) for ¢ € [1y, 2o+ A).

When 1 =0, (6.2.1) reduces to an ordinary differential equation. As we
have seen in Section 5.1, mere continuity of fis not enough to guarantee the
existence of solutions. We shall present two existence theorems for solutions
of (6.2.1). In the first, the function fsatisfies a compactness condition, and
in the second, fsatisfies a Lipschitz condition.

THEOREM 6.2.1. Let fe C[[to,t0+a]lxC,,X]. Assume that f maps
bounded subsets of [#o,,+a]x C, into relatively compact subsets of X.
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Then given an initial function ¢, at ¢t =t,, such that ||¢ll, < p, there
exists a solution x(tq, o) of (6.2.1) on [to—1,to+a] where x>0 is
sufficiently small.

Proof: Since f maps the bounded set [#y,7;+4a] x C, into a relatively
compact set in X, there exists a positive constant M such that || f(1,d)| < M
for (1, ¢) € [to, 1o +a] x C,. Choose

o« = min{a, M~ '(p— | dollo)}- (6.2.2)
For n=1,2, ... we define the sequence of functions {x"(f)} by the relation
$o(—1), to—t—1<t<ty—1

x(f) = ¢0(t_10)9 lh—T<t< 1y (6.2.3)

?
$0(0) + j S,y ds, 1o <1<l +a
to

Clearly x"(¢) is well defined and
X" < p, h—T<t<ty+a, (n=12,..)
which implies
x"eC,, to Lt <tg+a, n=12 ... (6.2.4)
In fact x*(f) is well defined on [t,—t—n"!, t,+n "] and in this interval
X" DI < lidollo + M(1—1o)
< lgollo + Mo < p.

Using again (6.2.3) we can define x"(¢) in [1o+#n" 1, t,+2n~ '] and with the
same argument as above |x"(1)| < p for te[to+n"",t,+2n"]. After a
finite number of steps our assertion follows.

From (6.2.3) and (6.2.4) we have, for ¢,,t, € [t;—7, 1o+ o]

Ix"(t) = x"(t)| < M|t;—15]. (6.2.5)

Finally from the compactness of fand Carroll [12] it follows that for each
t* € [t,, o + o] the sequence {x"(+*)} is relatively compact. The last property
of the sequence {x"(¢)}, together with (6.2.4) and (6.2.5) and Ascoli-Arzela
Theorem 1.1.1, implies that the sequence {x"(¢)} contains a uniformly
convergent subsequence which we still denote by {x"(#)}. If x(¢) is the limit
of {x"(¢)} as n— o0, then because of the uniform convergence, {x,"} also
converges to x, for —t < s <0. Now taking limits as n— 0 in (6.2.3), we



6.2. Functional Differential Equations in Banach Spaces 187

conclude that x(¢) is the desired solution of (6.2.1) on [t,—71, 1o +a] with
initial function ¢ at ¢t = t,. The proof is complete.

THEOREM 6.2.2. Let fe C[[1y,75+a]x C,, X]. Assume that
“f(t’d)l)_f(t’d)Z)“ < K”¢1_¢2“07 te[’o,to+a]’ ¢1’¢2€Cp'

Then given an initial function ¢, at 1 =1, with |¢,llo < p there exists a
solution x(ty, ¢g) of (6.2.1) on [1y—7,10+a] where a >0 is sufficiently
small.

Proof: We shall employ the contraction mapping principle. In view of the
Lipschitz condition there exists a positive constant M such that
| f(t, )| < M for (¢, ¢) € {15, to+a] x C,. Choose

a = min{a, M~ ' (p—lidollo). 2K)™'}.

Let B=C[[t,—1,1,+a], X] be the space of continuous functions x from
[10—1,to+a] into X such that in addition x(f) = ¢o(t—1,) for to—1 <
t<tyand |x()| <p for 1o <t <ty+a. For x,y € B we define the distance
d(x,y) by

d(x,y) = max [x(®)-y@)l.

loSt<lota

Clearly B is a complete metric space. For x € B, define

¢0(t)s to -7 < 14 < to
Tx (1) = (6.2.6)

t
80+ [ foxyds,  w<r<tta
to
We have, in view of the choice of a,

ITx@l < ldollo + M < p.

Therefore T: B— B.
Next we shall prove that T is a contraction on B. In fact

AT Ty) < max | 1/(s,%) = f(s, )l ds

toSISto+a Jtg

!
<K f Ixs— ] ds
o

< Kod(x,y), Ko < 4.
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Hence, the mapping T defined by (6.2.6) has a fixed point x which clearly is
a solution of (6.2.1) on [, — 1, 1, + o] with initial function ¢, at t = ¢,. The
proof is complete.

We shall next consider a uniqueness theorem of Perron type and also
discuss the continuous dependence of solutions with respect to initial values.

THEOREM 6.2.3. Let fe C[[to,to+a)x C,, X] and for € [t,, 15+ a) with
$.yeC,

1/(, @) —f&, )l < g(t, o —Yllo) (6.2.7)

where g € C[[to, o+ a) x [0,2p), R, ]. Assume that r(¢) = 0 is the unique
solution of the scalar differential equation

r=g(@,r) and r(te) =ro =20 (6.2.8)
with ro = 0. Then there exists at most one solution of (6.2.1) on [#,, t,+a).

Proof: Suppose that there exist two solutions x (¢, ¢o) and y(¢g, o) of
(6.2.1) with the same initial function ¢, at ¢ = ¢,. Define

m(t) = [|x(to, o) (t) — ¥ (to, o) (Il
so that
my = |[x,(to, o) — ¥, (to, Po)ll.
Then, for ¢ € (ty, t, +a) and using (6.2.7), we obtain
D_m(1) < [1x'(to, $o) (1) — ¥ (to, $o) ()]l
= I/ [t x(t0, $0)] — fL1, ¥, (2o, $)]Il
< g(t, |myo). (6.2.9)
Notice that
my, = 0. (6.2.10)

The inequalities (6.2.9) and (6.2.10) and an application of a known result
(Lemma 6.1.1 in Lakshmikantham and Leela [42]) yield

X (f0, $0) (1) — ¥ (to, )N < r(1,2,0) =0,  re€[to,t0+a)
which implies that

x(IO’ ¢0)(t) = ,V(to’ ¢O)s te [IO’ t0+a)'

The proof is complete.
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THEOREM 6.2.4. Suppose that the assumptions of Theorem 6.2.3 hold.
Assume further the local existence of solutions of (6.2.1). If the solutions
r(t,1,,ro) of (6.2.8) depend continuously on the initial values (¢,, ry), then
the solutions x (¢, ¢o) of (6.2.1) are unique and depend continuously on
the initial values (¢, ¢).

Proof: Since uniqueness follows from Theorem 6.2.3, we prove the
continuous dependence. Let x(7,,¢,) and x(¢,,¢,) be the solutions of
(6.2.1) with initial functions ¢, at t=1t, and ¢, at t=1,, existing in
[t,,to+a) and {1,, t, + ), respectively. Let ¢, < ¢, <!, < ty+a and define

m(t) = ||x(t;, ) () — x(t3, $) (D, telty,to+a).
Then as in Theorem 6.2.3, we arrive at the differential inequality

D—m(t) S g(talmtlo)a te [t2’ t0+a)

and

Imlo = X, (t1, 1) — D2llo.

As before, we then get

m() < r(t 1y, 1x,(t, 00) —dall,  teltrto+a)  (6.2.11)

where r(t,1,,r,) denotes the maximal solution of (6.2.8). Let (r,, ¢,)—
(t,,¢,) in the respective topologies. Then since x,(¢,,¢,) is continuous
in ¢, we have x,,(t;,¢,)— ¢, —0. Using the continuity of r(s,1y,r,) in
(to, ro), we finally conclude from (6.2.11) that

lim m() = r(t,¢,,0) = 0.

1,1,

$2—-0.1
The proof is complete.

PROBLEM 6.2.]. State and prove a uniqueness result parallel to Kamke’s
uniqueness theorem.

{Hint: Refer to Theorem 6.2.4 in [42].]

DEFINITION 6.2.2. A function x(¢,, ¢, €) is said to be an g-approximate
solution of (6.2.1) for ¢ > ¢, with an initial function ¢ € C, at t = ¢, if

(i) x(t9, ¢o,¢) is defined and strongly continuous on [f,—1, o) and
x,(to, o, €) € C, for 1 = 1,



190 6. Special Topics

(in) x1o(to, @0, 8) = o3

(iii)  x(ty, Po,&) is (strongly) differentiable on [f,, ®©), except for an
atmost countable set S and satisfies

Ix’ (to, @0, (1) — fT1, X, (t, b0, &)IIl < &, tE[tg,0)=S. (6.2.12)

In the case where ¢ =0 and S is empty, Definition 6.2.2 coincides with
Definition 6.2.1.

ProOBLEM 6.2.2. Let fe C[R, xC,, X] and for (t,¢), (t,Y)e R, x C, we
have

1/(, ) = f(t, Wl < g(t, 119 —¥llo)

where ge C[R, x [0,2p), R,]. Assume that r(t,ty,r,) is the maximal
solution of

rr=g@ry+e +¢ and r(ty) =ro = 0.
Let x(tq, ¢o, &) and y(ty, Yo, €,) be €,- and ¢,-approximate solutions of
(6.2.1) such that ||¢o— o ll < ro- Then
“x(th ¢0a81)(t) - y(t’ l/’0’ 82)(’)“ S r(ta tO’ rO)a t 2 to-

In the special case, g(t,r) = Lr with L >0, we obtain the well-known
estimate

I (to, Po, 1) (1) — ¥ (o, Yo, €2) (Dl
< lldo—Wolloexp[L(t—1o)1[(e, +€2)/2] [exp[L(t—1o)] — 1],
t=t.
Following the proof of Theorem 5.6.1 and the foregoing discussion it is
not difficult to prove a global existence result for solutions of (6.2.1) and to

show that the (strong) limit of solutions, namely lim,_, ,, x (¢4, ¢o) (1), exists
and is a vector in X. This we leave as an exercise.

PROBLEM 6.2.3. Assume that

() feC[R, x%, X1and | f(1,p)l <g(t, [1¢llo) forall (1,¢) e R, x€;
(ii) geC[R, xR,,R,], g(t,r) is nondecreasing in r>0 for each
t € R,, and the maximal solution r(t, ¢4, ro) of (6.2.8) exists for t > 1,;
(iii) suppose the local existence of solutions of (6.2.1) through any
point (¢, ¢g) € R, X G.
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Then the largest interval of existence of any solution x(t,, ¢o) of (6.2.1)
with [[@ollo < 7o is [#o, ).

If in addition r(,ty,r,) is assumed to be bounded on [t,, co), then
lim, ., o, x (2o, $0)(?) exists and is a (finite) vector in X.

Let us conclude this section with the observation that a number of
results concerning bounds, stability, and asymptotic behavior of solutions
of functional differential equations in finite dimensional spaces (see
Lakshmikantham and Leela [42]) may easily be extended to (6.2.1) in the
light of the foregoing discussion.

6.3. Second-Order Evolution Equations

Consider the second-order abstract Cauchy problem
u'(t) = B*u(t), teR, (6.3.1)
u(0) = u, and u'0) = u,, (6.3.2)

where B is a linear closed operator with domain D(B) dense in the Banach
space X and u, and u, are given vectors in X,

DEFINITION 6.3.1. A function u: R— X is said to be a solution of (6.3.1)
and (6.3.2) if ue C,[R,X], u(t)e D(B?) for te R, and satisfies (6.3.1)
and (6.3.2).

Define the vector

Then the problem (6.3.1) and (6.3.2) formally becomes
U'(t)y = MU(), teR, (6.3.3)

U©) = U, (6.3.4)

where
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If M generates a strongly continuous semigroup (in a sense to be explained
later) then the problem (6.3.3) and (6.3.4) has the solutions

o I
u@ = exp{t(B2 0)} U,.

Let us first look at the special case that X coincides with the complex
numbers C and B2 is equal to a constant b € C with b # 0. Then

0 1)\? 1 0O
= p?
b 0 01
and therefore

0 1 f 0 1\"
expt? = —
P b 0 aso\pz 0/ n!

-3+ ¥

n=cven n=odd

h(1b) Lo b~ !sinh(1b) 01
= cosh(z + b~ " sinh (¢ .
0 1 b 0

The above considerations make plausible the expectation that B generates
a strongly continuous group {S(¢)} on X and if 0 € p(B), then M also
generates a strongly continuous group {7(#)} given by

t) = co h(tB t .J.
1 ( ) S ) ) + B sinh B) 2 ) 6.3 5)

where cosh(tB) = 1[S($)+ S(—1¢)] and sinh(¢tB) =3[S()—S(—1)].

Before we state and prove, with mathematical rigor, the above conjecture,
we need some notation. We denote by [D(B)]"~ the domain of B equipped
with the graph norm |-| where | f| = || Bf || + || /1| (or in the case of a Hilbert
space X |f12 = [ Bf |2+ 1/11%).

With the norm |-|, [D(B)]~ becomes a Banach (or a Hilbert) space.
Notice also that if Z and X are Banach (or Hilbert) spaces, then the space
Y = Z x X is also a Banach (or Hilbert) space provided that it is equipped

wlth [lle EMEIgy norm
2

= |/illz + I f2allx-
Y
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)

We now prove the following.

or

= I£ilz + ||f2”}2r)-

2
Y

THEOREM 6.3.1. Assume that B with domain D(B) generates a strongly
continuous group {S(#)} on X and that 0 € p(B). Then the operator

0 I
M:
B* 0

with domain D(M)= D(B?)x D(B) generates a strongly continuous
group {T(r)} on Y = [D(B)]™ x X given by (6.3.5) and 0 € p(M). Further-
more, the Cauchy problem (6.3.1) and (6.3.2) with u, € D(B?) and
u, € D(B) has a unique solution u(¢) with the additional property that

u'(tye D(B) for te R.
o)
g= €Y,
g2

Proof: For
cosh(tB)g, + B~ 'sinh(tB)g,
cosh(tB)g, + Bsinh(tB)g, .

set

T(ng = (

By the definition of ¥, it follows that
T():Y-Y.

By Theorem 2.1.1 (Chapter 2) there exist constants L and o such that
S € Lexp(w]|t]) for te R. Then forallge Y and te R

IT()glly = llcosh(tB) Bg, + sinh(1B)g,|

+ |lcosh(tB)g, + sinh(tB) B~ ' g,

+ |lcosh(tB)g, + sinh(¢B) By, |

Lexp(@|t)(1Bg, Il + g2l + 119, + 1B~ g3 + g1l + 1 Bg, 1)

<
< LQ+[B™ ' Dexp(elt)liglly.
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This proves that T: R— B(Y) and || T(-)|y is locally bounded. The group
property of {7} follows easily from the group property of {S}. Clearly,
T(0)=1 Next, let Dy=D(B?*)xD(B)>Y. D, is dense in Y because
D(B)isdensein X and D(B?)is dense in [D(B)]~. To see the last assertion,
let fe D(B). Since 0¢€ p(B), it follows that B[D(B?)] = D(B) is dense
in X. Choose f, € D(B?) such that || Bf,— Bf|| = 0 as n— c0. Then

a1 = I1Bfai=Bf | + I fa= /Il
< (I+IB ') IBf,—Bf| -0 as n— .

0 B™2
N= .
I 0

INglly = 1B™ gall + 1B g2l + llg1l
<A+IB7'lgly, ge?,

and hence N e B(Y). Notice that NMf = f for all fe D(M) and MNf=f
for all fe Y. Hence O € p(M) and M~ =N,

Next we show that the infinitesimal generator G of {T(1)} coincides
with M. Clearly G> M. Assume that D(M) & D(G). Then (since 0 € p(M)),
there exists an 4 € D(G) such that 2#0 and Gh=0. It follows that
T(t)h = hfor t € R, that is

cosh(1B)h, + B~ 'sinh(tB)h, = h,, (6.3.6)
sinh(tB) Bh, + cosh(tB)hy = h,. (6.3.7)

Define

Then

Differentiating (6.3.6) we obtain
sinh(zB) Bh, + cosh(tB)h, = 0. (6.3.8)

By (6.3.7) and (6.3.8) we get £, = 0. Then by (6.3.8) Bsinh(¢B) A, = 0 which
implies that sinh(zB)h, = 0. Taking its derivative at t =0 yields Bh, =0,
which in turn implies #, = 0. Hence A = 0. This contradiction shows that
G = M. The remaining part of the theorem follows from the results of
Section 2.2. The proof is complete.

Next we shall discuss informally some other simple ways to attack the
Cauchy problem (6.3.1) and (6.3.2) as well as some perturbed forms of the
same problem.
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Assume that B is a closed operator with domain D(B) dense in the
Banach space X. Let u(f) be a solution of (6.3.1) and (6.3.2) with the
additional property that u'(1) e D(B) for 1 € R and Bu'(¢) is continuous in ¢
for t € R. Then

(d/dt) Bu(t) = B(d/dt)u(t), teR. (6.3.9)
In fact ‘

!
u(@® = u©) + f u'(s) ds.
0
By Theorem 1.3.5, it follows that
t
Bu(t) = Bu(0) + f Bu'(s) ds. (6.3.10)
0

The identity (6.3.9) follows from (6.3.10) and Theorem 1.3.3 (Chapter 1).
From (6.3.1) we obtain (by using Theorem 1.3.5)

u'(t) = u'(0) + Lt u"(s) ds

t
=u, + Bf Bu(s) ds. (6.3.11)
0

Let v, be a vector in X satisfying u, = Bv, (this is possible if, for example,
0 € p(B) as in Theorem 6.3.1). Then (6.3.11) becomes

t
U@ = Bl:vl + f Bu(s) ds]. (6.3.12)
0
Set
!
v(t) =v, + f Bu(s) ds. (6.3.13)
0
From (6.3.12) and (6.3.13) we get
u' = By and v’ = Bu, (6.3.14)
Set
xX=u+v and y=u-—n. (6.3.15)

Then (6.3.14) yields
x' = Bx and y' = —By. (6.3.16)
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Each of the equations in (6.3.16) can be easily solved if, for example, B is
the infinitesimal generator of a strongly continuous group {S(r)} (as in
Theorem 6.3.1). All the foregoing steps are reversible and therefore we can
obtain the solution u(f) =3[x(t)+y(t)] of (6.3.1) and (6.3.2) by first
solving the simpler equations in (6.3.16). The above arguments give also
another proof to the last assertion of Theorem 6.3.1.

Next we consider the more general equation

u" = B(B+Q)u. 6.3.17)
Here the equations (6.3.14) will be replaced by
u' = Bv and v = (B+Q)u.
Using the transformations in (6.3.15) we obtain
x" = Bx + $0x + 3Qy
and
Yy = —By—10x - 10y.

Introducing the operators

§=(B 0) and §=}( ¢ Q)
0 -B -Q -0

in the space X x X and setting X = () we deduce the equation
% = (B+8)x

which can be treated by the previous methods.
Finally let us examine the nonhomogeneous equation

u' = B*u + f(¢) (6.3.18)

where f(¢) is a continuous function. Clearly this equation can be trans-
formed into

x' = Bx + B7f(1), (6.3.19)
y' = —By - B f(1). (6.3.20)

Assume, for example, that B generates a continuous group, 0 € p(B) and
that B~ ! f(¢) is (strongly) continuously differentiable on R. Then Theorem
2.2.3 (Chapter 2) applies to each of the equations (6.3.19) and (6.3.20). In
this way, the equation (6.3.18) is also solved.
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We shall conclude this chapter by initiating the study of oscillation
theory for second-order differential equations of the form

[(POUN]) +Q(u(®) =0, >0 (6.3.21)

where P(t) and Q(¢) are (generally) unbounded symmetric operators in a
Hilbert space H with time-varying domains D[ P(¢)] and D[Q(t)], respec-
tively. A solution u(t) of (6.3.21) is a continuous function u: [0, 0) > H
such that for +>0 we have u(t)e D[Q(?)], v'()e D[P(t)], QD) u(2)
continuous, P(#)u'(r) continuously differentiable, and (6.3.21) satisfied.
Here we shall assume, without further mention, the existence and unique-
ness of solutions of (6.3.21) for any pair of initial conditions u(t;) =
uge D{Q(t,)] and v'(ty) = u, € D[P(t,)] with t, = 0. A function v: [0, c0)
— H is called nonoscillatory if v(¢) vanishes at most once in [0, c0). We say
that the operator 4 with domain D(A) in H is strictly positive and we write
A >0 if and only if (4x, x) > 0 for any x € X with x # 0. We write 4 <0
when —4>0and 4 < Bwhen B—4>0.

In the sequel we shall present several nonoscillation results for (6.3.21)
and the simpler equation

'@+ Q(u(® =0, =0 (6.3.22)
THEOREM 6.3.2. Let P(t) > 0 and Q(¢) <0 for each ¢t > 0. Then every non-
trivial solution u(¢) of (6.3.21) is nonoscillatory.
Proof: We have
0 = ([PMu O] + QW u(@®),u(n)) = ([POLBT,u(®) + (2O u(®),u(®)).
Since Q(¢) > 0 it follows that
POU®Y,u@®) =0 (6.3.23)
with strict inequality when u(7) # 0. Define the function
F() = (P()u' (D), u(?)).
Then
F(0) = (PO O], u®) + (POU@U®) >0 (6.3.24)

with strict inequality if ||u(2)|| +{u'()|| # 0. Since u(¢r) #0, we do have
strict inequality in (6.3.23). Hence F(z) is strictly increasing in ¢. It follows
that F(¢) has at most one zero in [0, c0) and therefore u(¢) cannot vanish
more than once in [0, 00). This proves that u(7) is nonoscillatory.
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ProOBLEM 6.3.1. Let 12Q () < }I for ¢t > 0. Then every nontrivial solution
u(t) of (6.3.22) is nonoscillatory.

[Hint: Use the transformation u = t”» and Theorem 6.3.2:]

PROBLEM 6.32. Let S(¢) be a symmetric operator on H such that
SO+ S*H+0(N <0, =0
Then every nontrivial solution of (6.3.22) is nonoscillatory.

[Hint: Set F(£)=(u(t),u'(t))—(S(®)u(t),u(r)) and show that F'(s) is
strictly increasing.]

ProBLEM 6.3.3. Prove the converse of Problem 6.3.2 under the additional
condition that a solution U(t) of U"+ Q) U=0 is invertible for each
t=0.

[Hint: Take S() = U'(®)U'(1).]

PROBLEM 6.3.4. Let Q(r) be a self-adjoint operator on H and {E,(1)}5=%,,
be the resolution of the identity for Q(#). Define the projections

E(f) = f ’ dE,(f) and  E,(t) = I— E, ().

Set Q,(1) = E;(t) Q(¢t) with i = 1, 2. Then every nontrivial solution of (6.3.22)
is nonoscillatory if one of the following holds:

® Ay (1) < =3
(i) there exists a symmetric operator S(¢) such that
S'(t) + S¥) + A, (1) < 0.
[Hint: Use Problem 6.3.1 if (i) holds and Problem 6.3.2 when (ii) holds.]

PROBLEM 6.3.5. Let the symmetric operator Q in (6.3.22) be independent
of t and have a nonpositive eigenvalue 4. Then every nontrivial solution of
(6.3.22) is nonoscillatory.

[Hint: Let v be theeigenvector of Q correspondingto 1. Set F(f) = (u(r), v)
and show that F"+1F=0.]

PROBLEM 6.3.6. Let u(r) be a solution of (6.3.22) such that (u(t,), u'(2,)) is
real for some 1o > 0. Then (u(r), w'(?)) is real for each t > ,,.
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[Hint: Show that (u(?),u'(?)) = (1'(¢), u(?)) by showing that their deriva-
tives are equal.]

PROBLEM 6.3.7. Let u(¢) be a solution of (6.3.22) such that u(t) # 0 for
t > to and (u(ty), u'(t,)) is real. Assume that Q(f) < q(#)I for ¢t > t,. Then

lu@I” + g@lu@] = 0.
[Hint: Set

F@t) = (@' (0, u@)/(u(), u(®)), 12t
and show that F’+ F2+q(t) > 0. Notice that

o) = expf'F(S) ds = Jlu(@Ol/|lu(zo)l

!

and v"+¢q(H)v = 0.]

6.4. Notes

Section 6.1 presents a simplified version of the results of Kato [32]. For
further work in this area the reader is referred to the interesting papers of
Dorroh [17], Komura [34], Oharu [57], Mermin [50], Crandall and
Liggett [14], Webb [76], Crandall [13], and Brezis and Pazy [9].

The results of Section 6.2 are new in this form. Special cases were
previously considered by Mamedov [47] and Zamanov [81]. It remains an
open problem to prove an existence theorem for u’ = f(¢,u,) similar to
Theorem 5.2.1 (Chapter 5) in the text.

Theorem 6.3.1 is due to Goldstein [25]. See Krein [35] and Hille and
Phillips [28] with respect to the discussion following the proof of Theorem
6.3.1. For further results and examples see Fattorini {20], Goldstein [26],
and Krein [55]. For nonlinear second-order evolution equations refer to
Lions and Strauss [45], Strauss [67], and Raskin and Sobolevskii [62].
Higher-order evolution equations are treated in Fattorini [21, 22] and
Hille and Phillips [28]. Second-order evolution inequalities are studied in
Levine [43] and Agmon [1] where many examples are also given. The
nonoscillation results and problems given at the end of Section 6.3 are new.



Appendixes

The purpose of the following appendixes is to give a brief survey of those
concepts and results from the theory of functional analysis which are used
in the text or frequently used in the related literature. Although these
results, for the most part, are standard facts which can be found in any
book on the subject, we believe that their inclusion here will help the reader
who is not familiar with the subject. We also give references where the
proofs of the main results can be found.

Appendix I

Let E be a set. A distance on F is a mapping d of E x E into the set R of
real numbers, having the following properties:

(i) d(x,y) =20, x,yekE;

@ii) d(x,y) =0 if and only if x = y;
200
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@ii)) d(x,y) = d(y,x), x,yeE;
(iv) d(x,2) £ d(xq,y) +d(y,2), x,y,ze E (triangle inequality).

A metric space is a set E together with a given distance d on E.

In a metric space E, a Cauchy sequence is a sequence {x,} such that for
every ¢ > 0 there exists a positive integer N = N(g) such that p > N and
g = N imply d(x,, x,) <e.

A metric space E is called complete if any Cauchy sequence in E is
convergent to a point of E. The importance of complete spaces lies in the
fact that to prove that a sequence is convergent in such a space we need only
show it is a Cauchy sequence and we do not need to know in advance the
value of the limit of the sequence.

A subset D of E is called dense in E if D = X where D denotes the closure
of D.

A metric space F is said to be

(i) separable if there exists in FE an at most denumerable dense set
that is, there exists a subset {x,, x,, ...} of Ewhich is déense in F;
(i) compact if every open covering of E contains a finite number of
sets which is also a covering of E;
(iii) precompact (or totally bounded) if for every &> 0 there exists a
finite open covering of E by sets of diameter less than or equal to ¢ (that is,
for each ¢ > 0, E has an ¢-net).

Clearly if F is precompact, then it is also bounded. Also a compact
metric space is separable.

THEOREM (Simmons [69]). For a metric space E the following conditions
are equivalent:

(a) Eis compact;
(b) any infinite sequence of elements of E has a convergent subsequence;
(c) E is precompact and complete.

A subset 4 of E is said to be relatively compact if the closure 4 of A is

compact.

THEOREM (Simmons [64]). A continuous mapping f from a compact
metric space E into a metric space £’ is uniformly continuous.
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Appendix II

Let E be a linear space over the field of real or complex numbers. A norm
in E is a mapping x — || x| of E into the set R, of nonnegative real numbers
satisfying the following properties:

(i lx] =0 and |x]| =0, ifandonlyif x =0;
@) Ax] = |A =, xeE, A any scalar;
@i x+yl < =l + Iyl, x,ye E  (triangle inequality).

The vector space E together with a norm on E is called a normed linear space.

Let us remark here that in a finite dimensional linear space E all norms
are equivalent in the sense that if ||-||, and ||-|, are two norms in E, then
there exist nonnegative numbers a and b such that for every x € E

alxlly < llxflz < blixll,

If E is a normed linear space, then d(x,y)= ||[x—y| is a distance on E.
Under this distance, Eis a metric space and all the terminology and theorems
of metric spaces can also be stated for normed linear spaces.

THEOREM (Goldberg [24]). If E is a normed space whose unit sphere
S={xeE:|x|| <1} is totally bounded, then E is finite dimensional.

A Banach space is a normed linear space which is complete (under the
distance d(x,y) = | x—yl).

E is an algebra over the scalar field F if E is a linear space over F where
multiplication is also defined between the elements of E satisfying the
following properties:

(i) to every ordered pair x, y € E corresponds a unique element xy € E;

(ii) (x+y)z =xz+yz and x(y+z) = xy+ xz
(distributivity);

(iii) (xy)z = x (y2) (associativity);
(iv) axfy = afixy, x,yeE, a,BeF.

A unit element in E is a vector e € E such that ae = ea for every a € F.

A Banach algebra over Fis a set E which is an algebra as well as a Banach
space over F satisfying the additional property | xy| < [l x| || . If a Banach
algebra E has a unit element e, then (necessarily |lef = 1) we shall assume
that fje]] = 1.
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Let E be a linear space over the real or complex numbers. An inner
product on E is a scalar-valued function (-, ) on E x E with the following
properties:

)] (Ax,y) = A(x, ), x,y€E, A any scalar;
(i) x+y.2)=x2)+(,2), xyz€E;

(iii) () = (y,x), x,y€E;

(iv) (x,x) > 0, x #0, xeE.

A linear space E together with an inner product is called an inner-product
space (or a pre-Hilbert space).

An inner-product space is also a normed space with norm | x| = (x, x)*.

If E is an inner product space the following inequality called Schwarz’s
inequality holds:

1o < Ixfl iyl xyeE

with equality if and only if x and y are linearly dependent.

Let X and Y be normed linear spaces. An operator T: X — Y is called
linear if T(Ax+uy)=ATx+uTy for every x,y € X and any scalars 4, u.
The norm of the operator T is denoted by || 7|} and is defined by

ITI = sup I I/,
158

One can show that the above definition of the norm of T'is also equivalent
to

(Vi

sup || Tx||

xfl=1
Il

sup || Tx].

ERY

If |T|| <oo the T is called a bounded operator. Otherwise T is called
unbounded. Of course every linear transformation 7 on a finite dimensional
space X is bounded.

The set of all bounded operators from X into Y is denoted by B(X, Y).
If X =Y, we write B(X) instead of B(X, X).

If X is a normed linear space and Y is a Banach space, then B(X,Y)isa
Banach space with the norm of 7€ B(X, Y) being || T'||. It is easily seen that
B(X) is a Banach algebra with identity 7 (the identity operator) since by the
definition of the norm | TS| < || T| || S}.-
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THEOREM. If T: X —Y is a linear operator, then the following statements
are equivalent:

(a) T is continuous at the point x, € X;
(b) T is uniformly continuous on X;
(c) T is a bounded operator.

A linear functional ¢ on X is a linear map from X into the field of scalars
(real or complex numbers).

The conjugate space X* of the normed linear space X is the Banach space
of all bounded linear functionals on X. The norm of ¢ € X'* is defined by

[N/l xIl-

¢l = sup
15

A subset K of a linear space X over the real or complex numbers is called
convex if for every x and y in K, the set {Ax+(1—-1)y: 0< A< 1} is con-
tained in K.

A normed linear space X is called strictly convex if || x| = ||y| =r for
any r implies |x+y| < 2r unless x =y and uniformly convex if | x,|| <1,
[yall <1, and |x,+y,| =2 as n— 00 imply || x,—y,ll >0 as n— oo.

A subset M of a linear space X over the complex numbers C is called a
linear manifold if for every x,y € X and every 4, u € C we have Ax+puy e M.

A closed linear manifold of X is cailed a subspace.

The adjoint 7* of a linear operator T € B(X, Y) is the mapping from
Y* to X* defined by T*y* = y*T.

Let 7 be a linear (not necessarily a bounded) operator with domain
D(T) o H and range in the Hilbert space H. Assume that D(T) is dense
in H. Define D(T*)={ue H: there exists an fe H such that (v, Tv) =
(f, v) for each v € D(T')}. Since D(T) = H the fassociated with u is uniquely
determined. Define

T*u = f, ue D(T*).

The operator T* on D(T*) is called the adjoint of T on D(T).

The operator T on D(T) < H is called symmetric if (u, Tv) = (Tu,v) for
each u,v e D(T).

The operator T on D(T) < H is called self-adjoint if

(i) T is symmetric;
(i) D(T) = H;
(iii) T*=T.
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Let X and Y be normed linear spaces. Suppose that A4 is a linear operator
from X into Y. We say that A4 is compact or completely continuous if every
bounded set of X is mapped by A into a relatively compact set in Y.

Clearly a compact operator is bounded.

Appendix 11T

THEOREM (Simmons [64]) (Hahn-Banach). Let M be a subspace of
a normed linear space X and ¢, a bounded linear functional on M. Then
¢, can be extended to a linear functional ¢ defined on the whole space X
such that [|$]| = [|¢oll-

Some elementary but very useful consequences of the Hahn-Banach
theorem follow.

LEMMA 1. Let x,7# 0 be a vector in X. Then there exists a functional
¢ € X* such that

¢(xo) = xl  and o] = 1.

This lemma implies the existence of many nontrivial bounded functionals
on X.

Lemma 2. If ¢(x,) =0 for every ¢ € X*, then x, =0.

Appendix IV

RIESZ REPRESENTATION THEOREM. Let X = C[[a, 5], R"] be the Banach
space of continuous functions from [a, b] into R" with sup-norm. Let L be
a bounded linear functional mapping X into R". Then there exists an 1 xn
matrix 7(0) whose elements are of bounded variation such that for each
peX

b
L) = j [dn ()] $(0)

where the integral is a Stieltjes integral.
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Appendix V

Let X be a normed linear space. A linear operator 4 with domain
D(A) = X is said to be closed if whenever x, — x as n > o0, x, € D(A4), and
Ax,—y as n— o, then x € D(A4) and Ax =y.

CLOSED-GRAPH THEOREM (Goldberg [24]). A closed linear operator map-
ping a Banach space into a Banach space is bounded (and thus continuous).

Appendix VI

Let {T,};>,, T,e B(X) forn=1,2,... and T € B(X). We say that

(i) T,— T as n— oo in the strong topology if | T, x— Tx| = 0 for each
xeXasn—w;
(i) T,— T as n— oo in the uniform operator topology if |T,~T| -0
asn—o0;
(i) T,— T as n— oo in the weak topology if |¢p(T,x)— ¢ (Tx)| -0 for
every ¢ € X* and each xe X as n— o0.

Clearly, uniform convergence implies strong convergence which in turn
implies weak convergence.

UNIFORM BOUNDEDNESS PRINCIPLE (Dunford and Schwartz [18]) (Banach-
Steinhaus). Let X and Y be Banach spaces and let {T,},., be an indexed
set of bounded linear operators from X into Y. Then the following state-
ments are equivalent:

(@ sup IT.l < oo;
(b) sup [ Tox|| < 0, xeX;
ae€Ad
(c) sup |¢(T,x)| < o, xeX, ¢peY*
a€Ad

The following results are also very useful:

THEOREM (Dunford and Schwartz [18]). Let X and Y be Banach spaces
and let {T,},., be an indexed set of bounded linear operators from X
into Y. If for each xe X the set {T,x:axe A} is bounded, then
lim,_, 7, x = 0 uniformly for a € A.
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THEOREM (Dunford and Schwartz [18]). Let T,: X—Y be a sequence
of bounded linear operators from the Banach space X into the Banach
space Y. If lim,_, , 7, x exists for each x in a dense subset D of X and if for
each x € X the set {T,x} is bounded, then the limit Tx =lim,_.,7,x
exists for each x € X and T is a bounded linear operator.

Appendix VII

Let X be a normed linear space and X ** the conjugate of the Banach
space X*, The mapping J: X — X** defined by

Uxx)¢ = ¢(x), PeX*

is called the natural embedding of X into X**. If the range of Jy is all of
X** then X is called reflexive.
We mention the following facts (see Goldberg [24]):

(i) the natural embedding J: X — X** is a linear isometry;
(ii) the conjugate space of a separable reflexive space is separable;
(iii) a Banach space is reflexive if and only if its conjugate is reflexive;
(iv) a closed subspace of a reflexive space is reflexive;
(v) every bounded sequence in a reflexive space contains a weakly
convergent subsequence;
(vi) every Hilbert space is reflexive.

Appendix VIII

Let A be a linear operator (not necessarily bounded) with domain
D(A) = X and range in the Banach space X. The resolvent set of A is the set
of all complex numbers A for which (A7 — A) ™! exists as a bounded operator
with its domain being the whole Banach space X. The resolvent set of A4 is
denoted by p(A4) and is an open set in the complex plane C. If 1 € p(A), the
function R(A; 4) = (A\I— A)™ ! is called the resolvent function of A or simply
the resolvent of A and is an analytic function of 1€ p(A4). The spectrum
6 (A) of A is the complement of p(A4) in C and therefore is a closed set. If 4
is a bounded operator, then a(4) is a closed, bounded, and nonempty
subset of C. Moreover

suplo(4)| = lijlzo(llA"Il)”" < 4]
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For |2] > sup|o(A4)| the series

R(;A) = 3 v+
n=0

converges in the uniform operator topology. The number r(A4) = sup|o (A4)|
is called the spectral radius of A. Let o(A) be the spectrum of the linear
operator A: D(A) — X. We define the following:

(i) The point spectrum of A, 6,(A)={iea(A): AI—A is not 1:1}.
Any point in the point spectrum of A is called an eigenvalue of A. If 1 is
an eigenvalue of A then there exists a vector x € D(A4) for x # 0 such that
Ax = Ax. The vector x is called an eigenvector of A corresponding to the
eigenvalue A.

(i) The continuous spectrum of A, 6.(A)={Aec(4): A [—A is 1:1
and (A/— A) D(A) is dense in X but not equal to X}.

(iii) The residual spectrum of A, ¢,(A)={leo(A4): A\[—Ais 1:1 and
(AI— A) D(A) is not dense in A}.

Clearly 6,(4),0.(A), and o,(A4) are disjoint and
6(A) = 6,(4) v 6.(4) U a,(A).

If 4 is a closed operator and 4, is a pole of R(4; 4) of order m, then A,
is an eigenvalue of 4. Moreover

X = R[(AI-A" @ N[(A I-A)"]

where R[(A,/—A)"] and N[(Aq/—A)™] are the range and null space
respectively, of the operator (Ao, 1— A)™.
Let 4, u € p(A4); then we have the identity

(W= A)[R(A;A)— R(u; HI(AI—4) = (u-N) L

Multiplying both sides of this identity by R(1; A) from the right and by
R(u; A) from the left we get the so called resolvent formula

R(A;A4) — R(u;A) = (u—2) R(u; A)R(Z; A).
Dividing both sides by u— 2 and letting u — A we obtain
(d/d2) R(A; 4) = —[R(%; 4)]>.

We also remark that for 4, € p(4) we have R, R, = R, R,;.
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Appendix IX

Let A: X— X be a bounded operator on the Banach space X. By F(A)
we denote the family of all functions f which are analytic on some neighbor-
hood of 6(A4). The neighborhood need not be connected and can depend on
fe F(A). Let fe F(A) and let U be an open set whose boundary B consists
of a finite number of rectifiable closed Jordan curves, oriented in the
positive sense customary in the theory of complex variables. Suppose that
U 50(A) and that U u B is contained in the domain of analyticity of f.
Then the operator f(A) is defined by the equation

f(4) = 2ri)~! L F(D) R(L; A) di.

Since R(4;A) is analytic outside o(A4) and f(2) is analytic on U u B, it
follows (from Cauchy’s integral theorem) that f(A4) does not depend on U
(but does depend on f).

SPECTRAL MAPPING THEOREM (Dunford and Schwartz [18]). If fe F(A),
then f{o(A4)] = o [f(4)].

Appendix X

Let A be a closed operator (in general unbounded) with domain
D(A) « X and range in the Banach space X. F(A4) will denote the family of
all functions f which are analytic in some neighborhood of the spectrum
o(A) of A and also at infinity. Here we assume that p(A4) # . Fora € p(A4)
define the operator T=(4—al)~ ! € B(X). Then

T(A—al)x = x, x € D(A)
and
(A—al)Tx = x, xeX.

We shall define the operational calculus for 4 in terms of the operational
calculus of the bounded operator T. Define the mapping ®: C— C by

d() = (A—a)"' and @) = 0, D(c0) = 0.

THEOREM (Dunford and Schwartz [18]). If a € p(4), then
®[o(A4) v {0}] = o(T)
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and the relation ¢ (1) = f[® ()] determines a one-to-one correspondence
between fe F(A) and ¢ € F(T).

For fe F(4) we define f(4) = ¢(T) where ¢ e F(T) is given by
o) =f[07 (W]

THeoreM (Dunford and Schwartz [18]). If fe F(A4), then f(A) is in-
dependent of the choice of x e p(A4). Let U be an open set containing
o(A) whose boundary B consists of a finite number of Jordan arcs such
that f'is analytic on U u B. Let B have positive orientation with respect to
the (possibly unbounded) set U. Then

f(4) = f(eo) I+ 2mi)™* J;f(l)R(l;A) di.

Let H be a complex Hilbert space and M be a closed subspace of H. Let
M be the orthogonal complement of M in H, thatis, M, = {y e H: (x,y)
=0 for every xe M}. It follows that any vector z€ H can be written
uniquely as z=x+y where xe M and ye M,. The mapping P: H— H,
defined by taking Pz = x is called the orthogonal projection on M. Clearly
P is linear, P is idempotent (that is, P2 = P), the range of P is M, and the
null space of P is M. It is not difficult to show that a linear operator P is
an orthogonal projection if and only if P2 = P and P = P*.

THeorReM (Resolution of the identity) (see Dunford and Schwartz [19]).
Let 4 with domain D(A) be a self-adjoint operator in the Hilbert space H.
Then there exists a family of orthogonal projections {£(4)}, A € R such that

() A, <A, implies that E(4,) E(1,) = E(};) E(A)) = E(4,);

(b) E(A+¢) > E(1) (strongly) as ¢—0+;
(©) E(A)-0 (strongly) as A - —oo,
and

IXOEYI (strongly) as A — 4o0;
(d) A= f AdE(Y) (Stieltjes integral)

and

D(A) = {er:f "2 dIEQ)x|? < w}.
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