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The theory of differential equations in abstract spaces is a fascinating 
field with important applications to a number of areas of analysis and 
other branches of mathematics. At the present time, there is no single book 
that is self-contained and simple enough to appeal to the beginner. 
Furthermore, if one desires to give a course so as to expose the student 
to this branch of research, such a book becomes handy. This being the 
motivation, the aim of our book is, in fact, to introduce the nonspecialist 
to this elegant theory and powerful techniques. But for some familiarity 
with the elements of functional analysis, all the important results used in 
this book are carefully stated in the appendixes so that, for the most part, 
no other references are needed. The required theory, from the calculus of 
abstract functions and the theory of semigroups of operators, used in 
connection with differential equations in Banach spaces is treated in detail. 

We have tried to present the fundamental theory of differential equations 
in Banach spaces: the first three chapters form an integrated whole 
together with, perhaps, Sections 6.1 and 6.3 of Chapter 6. Chapter 4 is 
devoted to the study of differential inequalities, mostly, in Hilbert spaces. 
The theory developed in Chapter 5 is interesting in itself and could be 

ix 
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read independently. This also applies to Chapter 4. Throughout the book 
we give a number of examples and applications to functional and partial 
differential equations which help to illustrate the abstract results developed. 
In most sections there are several problems with hints directly related to 
the material in the text. The notes at the end of each chapter indicate the 
sources which have been consulted and those whose ideas are developed. 
Several references are also included for further study on the subject. We 
hope that the reader who is familiar with the contents of this book will be 
fully equipped to contribute to this field as well as read with ease the 
current literature. 
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Chapter 1 

The Calculus of Abstract Functions 

1.0. Introduction 

In this preliminary chapter the reader will be familiarized with those 
parts of the calculus of abstract functions that are essential in the study of 
differential equations in Banach and Hilbert spaces. By an abstract function 
we mean a function mapping an interval of the real line into a Banach space. 
We begin by defining weak and strong continuity and differentiability of 
abstract functions and prove a form of the mean value theorem for abstract 
functions. Next we develop the Riemann integral for abstract functions and 
those properties of this integral which are constantly used in the text. We 
then outline abstract integrals of the Lebesgue type (Pettis and Bochner 
integrals) and state some basic results. We also sketch the abstract Stieltjes 
integral for functions mapping a Banach space into another Banach space. 
Finally we treat in some detail the Gateaux and Frtchet differential of 
functions mapping a Banach space into another Banach space. 

1 



2 1. The Calculus of Abstract Functions 

1.1. Abstract Functions 

Let X be a Banach space over the field of real numbers and for any 
x E X, let IlxII denote the norm of x .  Let J be any interval of the real line R. 
A function x: J +  X is called an absrracr function. A function x( t )  is said 
to be continuous at the point to E J,  if lim,,,, ~~x(r)-x( fo) I l  = 0; if x : J +  X 
is continuous at each point of J, then we say that x is continuous on J and 
we write x E C [ J ,  X I .  

Abstract functions are in many ways reminiscent of ordinary functions. 
For example, a continuous abstract function maps compact sets into 
compact sets. Also, a continuous abstract function on a compact set is 
uniformly continuous. These statements can be proved in the same way that 
we prove them in a metric space. 

An abstract function x ( t )  is said to be 

(i) Lipschitz continuous on J with Lipschitz constant K if 

Ilx(t,> - x(t,)II G Klf,-f,I, t , ,  t2  E J ;  

(ii) uniformly Holder continuous on J with Holder constant K and 
exponent P, if 

Ilx(t,) - x(r,)ll G KItl-t21/1, f , ,  tz  E J,  0 < P G 1 . 
It is clear that Lipschitz continuity implies Holder continuity (with P = 1) 
but the converse fails as the classical example x ( t )  = 8, K = 1, P = 3, 
shows, The (strong) derivative of x ( t )  is defined by 

x’( t )  = lim [ x ( t + A t )  - x ( t ) ] / A t  
A t 4 0  

where the limit is taken in the strong sense, that is, 

lim II[x(t+h) - x ( t ) ] / h  - x’(t)ll = 0 .  
Af-0  

The foregoing concepts of continuity and differentiability are defined in 
the srrong sense. The corresponding weak concepts are defined as follows. 
Let X* denote the conjugate of X, that is, the space of all bounded linear 
functionals on X. An abstract function x ( t )  is said to be weakly continuous 
(weakly diflerenriable) at t = t o  if for every 4 E X * ,  the scalar function 
C#I [ ~ ( t ) ]  is continuous (differentiable) at t = to. In  the sequel, limits shall be 
understood in the strong sense unless we write w-lim to indicate that we are 
taking the weak limit. Also continuity and differentiability shall be under- 
stood in the strong sense unless otherwise specified. 
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A family F =  { x ( t ) }  of abstract functions with domain [a ,b]  and range 
in X is said to be equicontinuous if for every E > 0 there exists a 6 = B ( E )  
which depends only on E such that for every t , ,  f 2  E [a,b] with It, - t,l < 6 ,  
Ix(f,)-x(tZ)I c E for all x E F. 

The following form of the Ascoli-Arzela theorem for abstract functions 
will be useful. Its proof is a special case of a more general theorem [63].  

THEOREM 1.1.1. Let F = { x ( t ) }  be an equicontinuous family of functions 
from [a, b] into A’. Let { x , , ( t ) } ~ = l  be a sequence in F such that for each 
t ,  E [a, b] the set { x , , ( t , ) : n  2 l }  is relatively compact in X .  Then, there is 
a subsequence { x n k ( f ) } P =  which is uniformly convergent on [a, 61. 

1.2. The Mean Value Theorem 

For real-valued functions x( t ) ,  the mean value theorem is written as an 
equality 

x(b )  - x(a )  = X’(C)(b-U), a < c < b. 

There is nothing similar to it as soon as x ( t )  is a vector-valued function as 
one can see from the example x(r )  = (- 1 + cos t ,  sin t )  with a = 0 and 
b = 2n. 

For abstract functions the following form of the mean value theorem is 
useful. 

THEOREM 1.2.1. If x E C[ [a ,  61, X I  and Ilx’(t)II < K, a < t < b, then 

Ilx(b) - x(a)ll < K(b-a) .  

Proof: Choose a functional 4 E X *  such that 11411 = 1 and q5 [ x ( b ) - x ( a ) ]  
= ~ ~ x ( b ) - x ( a ) ~ / .  Such a choice of 4 is possible in view of Appendix 111. 
Define the real-valued function f ( t )  = 4 [ ~ ( t ) ] .  Then 

Lm+W - f ( t ) l lh  = 4Cx(t+h) - x( t ) l /h .  

Since 4 is a continuous linear functional and x’(t)  exists, it follows that 
f ’ ( t )  exists for a < r < b and f ’ ( t )  = 4 [ ~ ’ ( t ) ] .  Hence, the classical mean 
value theorem applies to f ( t )  and consequently there exists a T, such that 

f(b) - f ( a )  = f ’ ( ~ ) ( b - a ) ,  a < z < 6. (1.2.1) 
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In view of (1.2.1) and the choice of 4 we obtain 

Ilx(b) - x(a)ll = 4Cx(b) - x ( 4 l  = f ’ ( W - a )  = 4[Xf(T)l(b-4 

< IIxf(z)ll (b-a)  < K(b-a)  

and the proof is complete. 

COROLLARY 1.2.1. If x E C[[a, 61, X I  and x’(t) = 0, a < r -= b, then 
x ( t )  = const. 

PROBLEM 1.2.1. Let x~C[[a,b] ,X] and fEC[[a,b],R]. Assume that 
x and f have derivatives on [a, b] - D where D is a denumerable set and 
Ilx’(t)II <f’ ( t ) ,  t E [a, b] - D. Then 

Ilx(b) - x(4ll G f(b) -f(4.  

1.3. The Riemann Integral for Abstract Functions 

Here we shall define the Riemann integral for abstract functions and 
prove the fundamental theorem of calculus. We also define improper 
integrals and discuss some properties which will be constantly used in this 
book. 

Let x:[a,b]-+X be an abstract function. We denote the partition 
(a = to < r l  < < t, = 6) together with the points zi (ti < T~ < ri+ 1, i = 

0,1,2,  ..., n-1) by n and set In1 =maxiIri+,-ri) .  We form the Riemann 
sum 

n- 1 

i = O  
s n  = C (ti+ 1 - ti) x(ri). 

If lim S, exists as 1x1 -, 0 and defines an element Zin X which is independent 
of n, then Z is called the Riemann integral of the function x(t) and is denoted 
by 

b 

Z = x(t) dr. 

THEOREM 1.3.1. 
exists. 

If x E C[[a,b], X I ,  then the Riemann integral Jtx(r) dt 

The proof of this theorem makes use of the facts that a continuous 
function on a closed, bounded interval is uniformly continuous and that X 
is complete. We shall omit the proof. 
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Using the definition of Riemann integral one can easily verify the follow- 

l b x ( t )  dt = - x ( t )  dr 

ing properties : 

0)  sbll 
provided that one of the integrals exist. 

(ii) l b x ( t )  dt = l x ( t )  dt + i b x ( f )  dt, a < c c b 

provided that the integral on the left exists. 
(iii) If x ( t )  = xo for all t E [a, 61, then 

l x o  dt = ( b - a ) x o .  

(iv) If t = w(r)  is an increasing continuous function on [cr,P] with 
a = w(a)  and b = w(P), then 

syb x ( t )  dt= I ’ x [ w ( r ) ]  ~ ’ ( r )  dr 

provided that the integral on the left exists. 
(v) If x E C [[a,  b] ,  XI, then 

Indeed, from the definition of the Riemann sum we have 
n -  1 

IIS~II G I (  i=O c ( f i + l - f i ) X ( T i ) l l  

< C (ti+ 1 - t i )  IIx(ri)II 
n-  1 

i= 0 

and the result follows by taking limits as 1x1 -0 and the fact that Ilx(t)II 
is continuous and hence integrable on [a, b ] .  

THEOREM 1.3.2. If {xn(t)} is a sequence of continuous abstract functions 
which converges uniformly to a necessarily continuous, abstract function 
x ( t )  on the interval [a ,b] ,  then 

lim Ibxn(r)  dt = x ( t )  dt. 
b 

n-t 00 
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THEOREM 1.3.3. If x ~ C [ [ a , b ] , X ] ,  then 

(d/dt) X ( S )  ds = ~ ( t ) ,  u < t < b. s.’ 
Proofi 
continuous on [a,b],  we have 

Set y ( t )  = JLx(s)ds. Then, in view of the fact that x ( t )  is uniformly 

< max Ilx(s) - x(t)II -, 0 as h + 0 
I s - f lG  Ihl 

and the proof is complete. 

THEOREM 1.3.4. 
on (a, b), then for any a, p E (a, 6) the following formula is true : 

If the function x :  [a, b] -, Xis continuously differentiable 

L’x’(s) ds = x(B) - x(a).  

Proof: B y  Theorem 1.3.3 

(dldt) [ / ‘x ‘ (s )  ds - x ( t )  = 0, a < t < B.  
a I. 

Hence 

l x ’ ( s )  ds - x( t )  = const. (1.3.1) 

For t = a we find the value of the const = - x ( a )  and the result follows by 
setting t = B in (1.3.1). 

REMARK 1.3.1. In elementary calculus, if x is continuous on [a,b], then 

l x ( t )  dt = (b-a)x(<)  
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for some ( E (a, b). This is not true for vector-valued continuous functions 
x as we can see from the simple example x ( t )  = (cost, sin t), a = 0 and 
b = n. 

Let x :  [a, 6) + X be an abstract function which is not defined at b < co. 
The improper integral jf: x ( t )  dt is defined as 

lim l - i ( t )  dt if b < 00 
&-+O+ 

and as 

lim l M x ( t )  dt if b = 00 
M-r m 

provided that the limit exists. 
The following theorem which asserts that integration commutes with 

closed operators (in particular, integration commutes with bounded 
operators) will be used often. 

THEOREM 1.3.5. Let A on D ( A )  be a closed operator in the Banach space X 
and x E C[[a ,  b), A'] with b < co. Suppose that x ( t )  E D(A) ,  Ax(t)  is con- 
tinuous on [a, b) and that the improper integrals 

l x ( t )  dt and p x ( t )  dt 

exist. Then 

l x ( t )  dt E D ( A )  and A 

Proofi We shall prove the theorem when b < co. The case b = 00 is left to 
the reader. Set c = b - E where E > 0 is sufficiently small. For a partition n of 
[a, b] we have 

n- 1 

i = O  
f. C x(ri)(ti+l-ti)ED(A) 

and 
n-  1 

i= 0 
g, = 1 Ax(zi)(ti+,-ti) = Af.. 

In view of the hypotheses, as n -+ 00 and 1x1 -+ 0 

f. + l x ( t )  dt and Af. k x ( t )  dt. 
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Since A is a closed operator on D ( A ) ,  it follows that 

l ' x ( r ) d t  ED@) and A 

Setting c = b-n- '  in the previous result and using the definition of an 
improper integral and the fact that A is closed, the desired result follows 
upon taking limits as n -, 00. 

PROBLEM 1.3.1. Define the rectangle 

Ro = { ( ? , x ) E  R X X :  It-foI  < a, I I x - x O I I  < p}.  
Let f: R, + X be a function continuous in t for each fixed x 

Ilf(4x)ll < M ,  (4x1  E Ro 

and 

I I f ( t ,xl)  -f(t,xz)ll < ~ I I X 1 - x z I I 3  ( t ,x l ) , ( t ,XZ)  E Ro.  

Let a, p, K ,  M be positive constants such that crM < p. Then there exists 
one and only one (strongly) continuously differentiable function x ( t )  such 
that 

dx(t)/dt = f [ r , x ( t ) ] ,  Jt-toI < x and x( to )  = x o .  

[Hint: Use Theorems 1.3.3 and 1.3.4 and the successive approximations 

xo(t) = xo, xn(t> = xo + J>s,xn-r(s)l ds, 1t - t01  < a. 

Justify passing to the limit under the integral sign.] 

1.4. Abstract Lebesgue Integrals 

Here we shall outline the Bochner and Pettis integrals which are defined 
relative to the strong and weak topology, respectively, on a Banach space X .  
These integrals are of the Lebesgue type. Let us begin with some notions. 

Let (a, S, m)  be a measure space. The function x :  R -, X is said to be 

countably valued in R if it assumes at most a countable set of values 

weakly measurable in R if the scalar function c$[x(a)] is measur- 

(i) 

(ii) 
in X ,  assuming each value different from zero on a measurable set; 

able for every I$ E X * ;  
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(iii) strongly measurable in R if there exists a sequence {.~~(a)}:=~ of 
countably-valued functions (strongly) converging almost everywhere in  R 
to x(a). 

One can prove that in a separable space X the concepts of weak and 
strong measurability coincide. 

DEFINITION I .4.1. A function x: R + X is said to be Pettis integrable in R 
if for every F E S there exists a vector xJ E X such that for every 4 E X *  

4 ( x F )  = IF4 [x(a)l dm (1.4.1) 

where the integral in (1.4.1) is supposed to exist in the Lebesgue sense. By 
definition 

(P)/x(a) dm = x F .  

It is not difficult to prove that in a reflexive space X the function s: R + X 
is Pettis integrable if and only if +[x(a)] is Lebesgue integrable in R for 
every 4 E X * .  

DEFINITION 1.4.2. A countably valued function s: R +  X iscalled Bochner 
integrable in R if Ils(a)ll is Lebesgue integrable in R. By definition, for 
every F 

00 

( B ) /  x(a) dm = 2 .rim(Fi n F )  (1.4.2) 
F i =  I 

where xi  = x(a) for a E Fi, i = 1,2,. .. . 

since 
The Bochner integral for countably valued functions is well defined 

and so the series in (1.4.2) converges absolutely. I t  follows that 
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Moreover 

that is, the Pettis and Bochner integrals for countably valued functions 
coincide. 

DEFINITION 1.4.3. A function x :  R --+ X is called Bochner integrable in R 
if there exists a sequence of countably valued, Bochner-integrable functions 
x,(a) converging almost everywhere to x(a) and such that 

lim /aIlxn(a) - x(a)II dm = 0. (1.4.3) 
n- m 

By definition 

(B)/x(u) dm = lim (B) x,(a) dm. 
F n- m s (1.4.4) 

We can establish that (1.4.3) is meaningful and that the Bochner integral 
is independent of the particular sequence {x,,(a)}. The following theorem 
gives a necessary and sufficient condition for the existence of the Bochner 
integral of the function x. 

THEOREM 1.4. I .  The function x: R -+ X is Bochner integrable if and only 
if x(a) is strongly measurable and Ilx(a)ll is Lebesgue integrable in R. 

1.5. The Abstract Stieltjes Integral 

Here we shall outline the abstract Stieltjes integral of a function 
x: [a, b] -+ X with respect to a function y :  [a, b] -+ Y. Let X ,  Y and 2 be 
three Banach spaces. A bilinear operator P :  X x  Y-+ Z whose norm is less 
than or equal to 1, that is, IIP(x,y)II < llxll Ilyll, is called aproduct operator. 
We shall agree to write P ( x , y )  = xy. Let x: [a, b] -+ X and y :  [a, b] -+ Y 
be two bounded functions such that the product x ( t ) y ( t ) E Z ,  for each 
t E [a, b] is linear in both x and y and Ilx(t)y(t)ll < Ilx(t)ll Ily(r)ll (for 
example, x( t )  = A ( t )  is an operator with domain D [ A  ( t ) ]  3 Y,  or one of 
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the functions x,y is a scalar function). We denote the partition 
(a = to < I ,  < ... < t, = b) together with the points T~ ( t i  < 7i < t i+  ,, i = 
0,1, .. ., n-  1) by n and set In1 = maxi Iti+ -ti!. We form the Stieltjes sum 

If the lim S, exists as In1 -, 0 and defines an element l i n  2 independent of n, 
then l i s  called the Stieltjes integral of the function x ( t )  by the function y ( t ) ,  
and is denoted by 

L x ( t )  dY(t). 

Notice that the Riemann integral of x ( t )  which we defined in Section 1.3 is 
a special case of the Stieltjes integral, for the choice,y(r) = t .  

We first need to introduce the concept of total variation for abstract 
functions. Consider the function y :  [a,  b] 4 X and the partition n: a = 

to -= t ,  < < t ,  = b. Form the sum 
n- 1 

i= 0 
I/ = C IIY(ti+l) - Y(ti)II. 

The least upper bound of the set of all possible sums V is called the 
(strong) total variation of the function y ( t )  on the interval [a,b] and is 
denoted by V,b(y). If V,b(y) < 03, then y ( t )  is called an abstract function 
of bounded variation on [a,b]. From Theorem 1.2.1, it follows that, ify(r) 
has bounded derivative on [a,  b], then it is of bounded variation on [a,  61. 

THEOREM 1.5.1. 
ation on [a, b], then the Stieltjes integral f%x( t )dy( t )  exists. 

If x E C[[a,b], X I  and y :  [a,b] + Y is of bounded vari- 

The proof of this theorem makes use of the uniform continuity of x ( t )  
on [a ,b] ,  the completeness of the space 2 and the hypothesis that 
Ilx(r)y(t)ll < Ilx(t)ll Ily(t)ll. The details are left to the reader. 

Most of the properties of the classical Stieltjes integral are also valid for 
the abstract Stieltjes integral and can be varified directly from the definition. 

PROBLEM 1.5.1. If x E C[[a,b], 
variation on [a ,  61, then 

X I  and y :  [a,  b] + Y is of bounded 
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PROBLEM 1.5.2. If {x , ( t ) }  is a sequence of continuous abstract functions 
which converges uniformly to the necessarily continuous function x( t )  on 
the interval [a ,  61 and if y( t )  is of bounded variation on [a, 61, then 

n-1 co 

1.6. Gateaux and Frkchet Differentials 

Let X and Y be real Banach spaces and f be a mapping from an open 
set S of X into Y .  

DEFINITION 1.6.1. If for a fixed point x E S and every point h E X the 

lim [ f ( x  + rh) - f ( x ) ] / t  = Sf (x ,  h) 

exists, in the topology of Y, then the operator 6f(x ,  h)  is called the Gateaux 
differential of the function f at the point x in the direction h. 

The Gateaux differential generalizes the concept of directional derivative 
familiar in finite-dimensional spaces. (Actually, the existence of Gateaux 
differential does not require a norm on X.)  For a fixed x E Sand h regarded 
as a variable, the Gateaux differential defines a transformation from X 
into Y.  In the special case that f is linear Sf(x,h) =f(h) .  The example 
f: R2 + R defined by 

r-0 

f ( x , y )  = x3 / (x2  + y 2 ) ,  ( x , ~ )  z (0,o) and f(0,O) = 0 

shows that Sf(x ,h)  is not always linear in h.  However, 6f(x ,h)  is always 
homogeneous in h. In fact, 6f(x, 0) = 0 and for 1. # 0, setting I = i t ,  we have 

Sf(x,Ih) = lim[f(x+tM) - f ( x ) ] / t  

= i, lim [ f ( x  + Ih) - f ( x ) ] / I  

r-0 

1-0 

= A6f(x,h). 

EXAMPLE 1.6.1. 
partial derivatives with respect to each variable x i ,  then 

Iff: R " + R  where f ( x )  = f(xIrx2, ..., x,) has continuous 

n 

6f (x ,h )  = d/dt Lf(x+th)],=O = C [af(x)/axiIhi- 
i =  1 
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A constant function has Gateaux differential equal to zero. The converse 
is also true as we will see in Corollary 1.6.1. In a Hilbert space H ,  let 
f: H - ,  R ,  be given byf(x) = IIxII. Then 

6f(x,h) = (x,h)/llxII for x # 0. 
Indeed 

(Ilx+thll - llxll)/t = (Ilx+thll2 - Ilxll’)/t(llx+thII + Ilxll) 

= (2(x,h) + ~Ilh1I2)/(IIX+~hII + Ilxll) 
-, (x,h)/l\xll as t --f 0. 

If f: H + R ,  is given by f(x) = (x, x), then clearly 6f(x, h)  = 2(x, h).  
Finally, iff: C [0, 13 -+ R defined by 

where gx exists and is continuous with respect to s and x, then 

6f (x ,h )  = (d/dt) g[s,x(s) + tlz(s)] ds (6’ 
I 

= s, g x  cs, x(s)I h(s)  ds. 

It is well known that the mean value theorem is not true for vector-valued 
functions. However, it is true for functionals 4 :  S-t R where S is an open 
set in X as the following theorem proves. 

THEOREM 1.6.1. Let the Gateaux differential 6 4 ( x , h )  of a functional 
4 :  S--f R exist for each point of a convex set V c S (and any direction 
in X ) .  Then for any pair of points x , x + h  E Vthere exists a number z E (0, 1) 
such that 

4(x+h) - 4(x) = 6 4 ( x + r h , h ) .  (1.6.1) 

Set F ( t )  = 4(x+ th).  Then F :  [0, 11 + R and Proof: 

F’( t )  = lim [4(x+th+hAt) - q5(x+th)]/At 
At-0  

= &$(.y+th,h), 0 < I < 1 ,  (1.6.2) 

which exists since x+ rh E V for all t E [0, 13. The classical mean value 
theorem applied to F gives F( 1)-  F(0)  = F’(r)  for some r E (0,l)  and 
(1.6.1) follows. 
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For functions f: S - ,  Y which have Gateaux differentials the following 
form of the mean value theorem is valid. 

THEOREM 1.6.2. Let the Gateaux differential 6f (x ,  h)  of a functionf: S +  Y 
exist at each point of a convex set V c S (and any direction in X ) .  Then 
for any pair of points x, s + h  E V there exists a number r E (0,l)  such that 

I l f (x+4 -f(,y>II G 116f(x+rh,h)ll. ( I  .6.3) 

Proof: Let 4 E X * .  Define the functional 6(x) = $[f(.~)]. Then the 
Gateaux differential of 6 exists at each point in V (and any direction in X ) .  
In fact, since 4 E X *  

[ 6 (S + rh) - 6 (x)]/t = 4 [ f ( x  + rh) - f(x)]/t 

-+ 4[6f(x,h)] as t + 0. 

In view of Theorem 1.6.1 there exists a point T E (0,l)  such that 

$(.+A) - 6(x) = &$(x+rh,h) 

= 4J[df(x+sh,h)]. (1.6.4) 

I f  the vectorf(s+h)-f(s) =0,  then (1.6.3) is clearly valid. Iff(x+h)- 
f ( s ) #  0 for the pair of points (x, h), then we can choose the functional 4 
such that 

4 C f ( x + h >  -f(.y>l = Ilf(x+h> -f(X>II and 1 1 $ 1 1  = 1. 

(Such a choice is possible by means of Appendix 111.) Then, using (1.6.4) 

1m.y + - f(x) II = I4 [f(x + h)  - f(4l I 

= I4 Cdf(x + rh, 41 I 
G II @-(x + r k  II II 4J II 
< 11af(x+Th,h)ll 

and the proof is complete. 

COROLLARY 1.6.1. I f  6f(x ,  h)  = 0 for all points x in a convex set V c X 
thenf(x) = const on V .  

As we have seen 6 f ( x , h )  is not always linear in h. A set of sufficient 
conditions, which guarantee the linearity in h of the Gateaux differential 
6f(x, h), is given in the following: 
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PROBLEM 1.6.1. Assume that 

(i) 6f(x,h) exists in a neighborhood of x, and is continuous in x at 
the point x,; 

(ii) 6f(x, ,  h) is continuous in h at the point h = 0. Then, 6f(x, h)  is 
linear in h. 

[Hint: Use the homogeneity in h and (1.6.4) with 11411 = 1.1 

DEFINITION 1.6.2. If  for a fixed point x E X the Gateaux differential 
6f(x ,  .) is a bounded linear operator mapping X into Y, we write 6f(x ,  h)  = 
f ’ ( x ) h  andf’(x) is called the Gateaux derivative offat x. In the special case 
Y = R,f’(x) is called the gradient of the functionalfat the point x. 

In a real Hilbert space H the gradient at the point x # 0 of the functional 
f: H +  R, defined byf(x) = llxll is ( x / l ~ x ~ ~ ,  - )  or simply x/llxll. Iff: H - ,  R, 
is given byf(x) = Ilxll’, then the gradient at any point x is 2(x, - )  or simply 
2x. 

When the functionfhas a Gateaux derivative at the point x ,  we say that 
f i s  G-differentiable at x. The functionfis called G-differentiable in a set 
A c X if it is G-differentiable at every point of A .  

From Definition 1.6.2. the Gateaux derivative f‘(x) of the function 
fi S-+ Y ,  if it exists, is an element of B ( X ,  Y )  where B ( X ,  Y )  is the space of 
bounded linear operators from X into Y. 

A more satisfactory differential concept which requires a norm on X 
(the Gateaux differential does not) is the following: 

DEFINITION 1.6.3. 
Banach space X into the Banach space Y.  If at a point x E S 

h E X 

Let f: S-+ Y be a function from an open set S of the 

f(x+h) - f ( x )  = L(x,h) + w(x,h) ,  

where L(x,  .): A’-+ Y is a linear operator and 
lim l l w ~ ~ ~ ~ ~ l l / l l ~ l l  = 0, (1.6.5) 

then L(x, h)  is called the FrPchet diflerential of the function f at the point x 
with increment h and M~(x, h)  is called the remainder of the differential. The 
operator L(x, .): X - ,  Y is called the FrPchet derivative of f  at x, and is 
denoted by f’(x). 

Ilhll+O 

LEMMA 1.6.1. 
exists, is unique. 

The Frtchet differential of a functionfat the point x ,  if it 
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Proof: 
f a t  the point x with remainders w(s, h) and G(x, h) respectively. Then 

Let L ( x ,  h) and z(x, h)  be both FrCchet differentials of the function 

L(x ,h )  + w(x ,h )  = Z ( x , h )  + G(x,h) .  

Therefore 

IIL(x,h) - hh) l l / l l h l l  = IlwGh) - ~ ( x ~ ~ ) l l / l l ~ l l  
G l l ~ ~ x , ~ ~ l l / l l ~ l l  + I I W ( ~ , h > l l / l l h l l  + 0 

as llhll + 0. 

Set Th = L ( x ,  h ) -  z(x, h). Then T is a linear operator from X into Y such 
that 

lim llThll/llhll = 0. 

Hence, for every E > 0 there exists a 6 = B ( E )  > 0 such that llhll < 6 implies 
IIThIl/llhll < E .  Observe that the vector u = 6x/211x11 satisfies llull < 6, there- 
fore 11 Tull/llull < E and using the definition of u we obtain 11 Txll < E  llxll for 
any x E X and any E > 0. From this it follows that T = 0. Otherwise, there 
exists an xo E X such that Txo# 0. Then )I TxoII G E llxoII + O  as E + O ,  
contradicting the hypothesis. Hence L ( s ,  h)  = LL(x ,  h)  for all h E X and the 
proof is complete. 

When the function f has Frtchet derivative at the point s, we say that f 
is F-differentiable at x. The function f is called F-differentiable in a set 
A c X if it is F-differentiable at every point of A .  

llh/1+0 

LEMMA 1.6.2. If the continuous function$ S +  Y has Frtchet differential 
L(xo ,h )  at the point xo E S, then L(xo,  .): X-+ Y is a bounded linear 
operator, that is, the Frtchet derivativef’(x,) o f f a t  xo is an element of 

Proof: In  view of the continuity offand (1.6.5), it follows that for a given 
E > 0 there exists a 6 E (0,l)  such that llhll < 6 implies 

B ( X ,  Y ) .  

Ilf(xo+h) -f(xo)ll < 4 2  
and 

Ilf(xo+h) - f (xo)  - J!4xo,h)II < (E/2)llhll 42. 

Hence, for llhll < 6 

ll~(x0,h)Il < 4 2  + Ilf(xo+h) -f(xo>II < 8 ,  (1.6.6) 
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which proves that L(.vo, .) is bounded by 246.  In fact, for an arbitrary 
I; E Xset h = 6h/2l lh\ l  so that llhll < 6. By(l.6.6)andthelinearityofL(so,h) 
in h, it follows that 

E > l l ~ ( * ~ o , ~ ) l l  = l l ~ ( - ~ o ? ~ m l ~  1l)Il 
= (6/2) l l~( -vo,  ~ ) 1 1 / 1 1 ~ 1 1 ~  

which proves our assertion. 

LEMMA 1.6.3. 
the Gateaux differential exists at  so and they are equal. 

Proof: 

If the Frechet differential of the functionfat xo exists then 

From the definition of Frechet differential we have 

f (xo+ht)  - f ( x o )  = L ( ~ , , h r )  + w(.v0,hr). 

Thus, by the linearity of L ( r ,  .) and the property of the remainder, we 
obtain 

6f(xo, h)  = lim [ f ( xo  + / I ! )  -.f(.vo)]/t 
1-0 

= L(.Y,,h) 

and the proof is complete. 

is true: 
The converse of Lemma 1.6.3. is not always true. However, the following 

PROBLEM 1.6.2. If the Gateaux derivative f ' ( x )  exists in a neighborhood 
N(.uo) of the point .yo and is continuous at so, then the Frtchet derivative 
exists and is equal tof'(x). That is, a continuous Gateaux derivative is a 
Frechet derivative. 

[Hint: Use the mean value theorem for Gateaux differentials.] 

One can easily verify that in Examples I .6.1 all the Gateaux differentials 
are also Frechet differentials. We shall prove this only for the first example 
f': R" -+ R where f(.v) = f ( s , ,  x2,. ..,.I-,) has continuous partial derivatives 
with respect t o  each variable xi. The claim is that for this function 

Clearly, L(.v,h) is 
implies that given 

n 

i =  I 
L ( x ,  h)  = c [af(.Y)/axJ hi. 

linear in h. The continuity of the 
E > 0, there exists a neighborhood 

partial derivatives 
N ( x , ~ )  = { y  E R": 
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Ily-xll <6} such that y ~ N ( x , 6 )  and for any i =  1,2, ..., n 
laf(x>/a-ri - af(~)/d*ri l  I < &/n* (1.6.7) 

Define the unit vectors ei in the usual way, ei = (0, ..., 0, l,O, ..., 0) and for 
h =(hl ,hz ,  ..., h,,) define 

k 
g o = ( o  ,..., 0) and g k = x h i e i ,  k = 1 , 2  ,..., n. 

i= I 

Notice that 

llgkll < llhll for all k = 1,2, ..., n. 
Then 

1 f ( x  + h) - f(x> - f ~ a f ( x ) / a x i ~  hi I 
i =  I 

= I $ c f ( x  + gi) - f (x  + gi - 1 )  - C V ( ~ ) / ~ X ~ I  hi1 I 
i =  I 

Employing the mean value theorem for functions of a single variable, there 
exists a constant t such that 

f ( x + g i )  - f( .u+gi-l)  = (af/axi)(x+gi_,+rei)hi,  0 < T < hk, 

(1.6.9) 

and 

x + gi- + rei E N ( x ,  S )  for llhll < 6. 

From (1.6.9) and (1.6.7) we get 

If(x+gi) - f (x+gi -  1) - Caf(x)/axil hi1 < ( ~ / n )  Ihil. 

This together with (1.6.9) yields for llhll < 6 

lf(x+h) - f ( x >  - ~af (x>/ax lh i  I < E I I ~ I I ,  
i= I 

and (1.6.5) is valid. The claim is therefore established. 
Much of the theory of ordinary derivatives can be generalized to FrCchet 

derivatives. For example, the implicit function theorem and Taylor series 
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have very satisfactory extensions (see [ 15,281). The following properties 
can be established immediately from the definition: 

(0 CCf(X)l’ = C f W  

where c is a real constant; 

(ii) V1(4 +f2(x)I’ = fi’(X) +f,’(x). 

Next we establish the chain rule for Frtchet derivatives. 

LEMMA 1.6.4. Let A‘, Y,Z be three Banach spaces; A an open neighbor- 
hood of xo E X , ~ E  C [ A ,  Y ] ,  y o  = f ( x o ) ;  B an open neighborhood of yo in 
Y and g E C [B,  Z ] .  Assume that f is F-differentiable at xo and g is F- 
differentiable at yo. Then the function h = g o f  (which is defined and 
continuous in a neighborhood of xo) is F-differentiable at xo, and h’(xo) = 
g’ (yo )  o f ’ ( x o )  (where g’(yo) o f ’ ( x o )  is understood as the product of the 
operators g’(yo): Y+Z, f ’ ( xo ) :  X +  Y) .  

Proof: 
such that ((hl( i 6 and Iltll < 6 imply 

From the hypotheses, given E > 0, 0 < E < 1, there exists a 6 > 0 

Mxo + h) - f ( X 0 )  = f ’ (x0)  h + 0 1 (A) 

and 

where IlO,(h)Il G ~ l l h )  and IlO,(t)ll < E l l t l l .  In view of Lemma 1.6.2 the 
operators f ’ (xo )  and g‘(yo) are bounded and therefore there are constants 
M and N such that 

and 
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On the strength of these inequalities one can write 

h (xo + h) = 9 C f ( X 0  + h)l 
= 9 C f ( X 0 )  + f ’ (x0 )  h + 0 1 (h)l 
= 9 [Yo +f’(xo) h + 01 (41 
= 9 ( Y o )  + S’(Y0) Lf‘(X0) h + 0, (41 + 0, Cf’(xo)h + 0 1  (41 
= 9(Yo)  + s’(ro>f’(xo)h + O,(llhll) (1.6.10) 

with 

IlO,(h)ll = Ilg’(Yo>O,(~> + o,Lf’(xo)h + Ol(h)lll 

G NE llhll + E(M+ 1) llhll 

= ( M + N + ~ ) E I ~ ~ I I .  

The identity (1.6.10) yields the desired result. 
For F-differentiable functions Theorem 1.6.2. gives the following: 

COROLLARY 1.6.2. 
a convex set V c S.  Then for any pair of points x, x+ h E V 

Let YE C [ S ,  Y ]  and F-differentiable at each point of 

Ilf(x+h) -f(x)ll < llhll SUP Ilf‘(x+WII. (1.6.11) 
O c r <  1 

1.7. Notes 

Most of the results of this chapter are taken from Vainberg [75] and Hille 
and Phillips [28]. More details about Bochner integrals and abstract 
functions can be found in Hille and Phillips [28]. The proof of Lemma 
1.6.4 is due to Dieudonne [16]. For other mean value theorems used in 
connection with differential equations the reader is referred to Aziz and 
Diaz [S]. 



Chapter 2 

Semigroups of Operators 

2.0. Introduction 

The evolution of a physical system in time is described by an initial value 
problem of the form 

duldt = Au(t),  t 0 and u(0) = uo (2.0.1) 

where A : D ( A )  -+ X is a linear operator with domain D ( A )  c X ,  X being a 
Banach space, u :  [O, c o ) + X  and u,, E D ( A ) .  Here A does not depend on 
time. Physically this means that the underlying mechanism does not depend 
on time. We shall use the initial value problem (2.0.1) to motivate the 
theory of one-parameter semigroups of operators. Following the usage of 
Hadamard one calls the problem well set if 

21 
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(i) there is a unique solution to the problem for some given class of 

(ii) the solution varies continuously with the initial data. 
initial data; 

These two requirements are reasonable to expect if (2.0.1) is to correspond 
to a well-set physical experiment. The existence and uniqueness of the 
solution is an affirmation of the principle oj' scientific determinism [28] ; 
while the continuous dependence is an expression of the stability of the 
solution. 

Suppose that (2.0.1) is well set and let T ( t )  map the solution u(s) at time s 
to the solution u(r+s) at time t + s .  Since A does not depend on time, the 
operator T(r) does not depend on s. The stability requirement implies that 
T(r) is a continuous operator on X .  The solution u ( t  + r )  at time t + r is 
given by T(t  + r )  uo. At time r the solution is T ( r )  uo. Therefore taking this 
as initial data t units of time later, the solution becomes u( t+r )  = 

T ( r ) [ T ( r )  uO].  From the uniqueness requirement and assuming that D ( A )  
is dense in A', we obtain the semigroup property 

T(t+s) = T(t )  T(s), t , s  > 0. 

Since the initial condition in (2.0.1) must be satisfied, we must have 
lim,,,, T(r)uo = uo. I n  other words, the operators T( t )  converge strongly 
to the identity operator as t + 0,. 

The foregoing discussion shows how the initial value problem (2.0. I), 
when assumed to be well set, leads to the concept of one parameter semi- 
group { T(r)} ,  t 2 0, of bounded linear operators on a Banach space A'. 
When the operator A in (2.0.1) is a matrix in R", the solution of (2.0.1) is 
given by 

u(t )  = T(t)uo = exp(tA)u,. 

By analogy with the matrix case we could expect that a semigroup { T ( t ) }  
is, in some sense, an exponential function even when A is an unbounded 
operator. A is called the infinitesimal generator of the semigroup { T ( t ) }  
and in a sense, which will be made precise later, T( t )  = exp(rA), t 2 0. 

This chapter is therefore devoted to the exposition of the most basic 
results of semigroup theory as developed by E. Hille, R. S. Phillips, and 
K. Yosida. Several examples and problems are given to illustrate the 
concepts and their applications to partial and functional differential 
equations. The abstract Cauchy problem (2.0.1) and its corresponding non- 
homogeneous problem is also carefully studied when A generates a strongly 
continuous semigroup, as well as an analytic semigroup. 
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2.1. Strongly Continuous Semigroups of Operators 

DEFINITION 2.1.1. A family { T(t ) } ,  0 < t c 00, of bounded linear operators 
mapping the Banach space X into X is called a strongly continuous semi- 
group of operators if the following three conditions are satisfied: 

(9  T(r+s) = T(t )  T(s), r , s  2 0; 

(ii) 

(iii) for each x E X ,  T(r)x is (strongly) continuous in r on [0,  a), 
that is, 

T(0) = I ( I  is the identity operator in X ) ;  

IIT(t+At)x - T(t)xll --f 0 as At + 0, t , t  + At 2 0. 

If in addition to the conditions (i), (ii) and (iii) the map t + T(t )  is con- 
tinuous in the uniform operator topology, that is, 11 T ( t + A t ) -  T(t)II -0 
for t ,  t + At 2 0, then the family { T( t ) } ,  t 2 0, is called a unSformZy continuous 
semigroup in X .  If the strongly continuous semigroup { T ( t ) } ,  t 2 0, satisfies 
the property 1 1  T(t)II < 1 for t 2 0, then it is called a contraction semigroup 
in X .  

We observe that the operators T(t)  and T(s) commute as a consequence 
of (i). Property (ii) does not follow from (i), and T ( t ) x  is also (strongly) 
continuous in x for each t 2 0. 

EXAMPLE 2.1.1. Let A be a bounded linear operator in a Banach space X ,  
that is, any linear operator in a finite dimensional unitary space. Then the 
series x;= ,, (A"/n!)  t" converges in the uniform operatory topology, that is, 
in  the norm of B ( X ) ,  for any real number t .  In fact, set 

" 

and observe that for m c n 

as m , n  + 00. 

So {S,,}  is a Cauchy sequence in the Banach space B ( X )  and consequently 
it converges to an operator in B ( X )  which we denote by exp(tA). Now we 
can easily verify that the family of bounded operators {exp(tA)}, t 2 0, is a 
uniformly continuous semigroup in X .  In addition we can show that 

(d/dt)exp(tA) = A exp(tA). 
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PROBLEM 2.1.1. 
Show that the Cauchy problem 

Let A be a bounded operator in the Banach space X .  

dx/dt = Ax, t 2 0 and x(0) = xo E X 

has the unique solution x(t) = exp(tA)x,. (For uniqueness see Theorem 

It is possible to show [18] that if { T( t ) } ,  t 2 0, is a uniformly continuous 
semigroup of operators, then there exists a bounded linear operator A such 
that T(r) = exp(tA), t 2 0. The operator A is given by the formula 

A = lim [T(h)-Z]/h 

2.1.2.) 

h - 0 ,  

where the limit is taken in the uniform operator topology. 

EXAMPLE 2.1.2. In the Banach space X = C [0,1] of continuous functions 
with sup-norm, define the family of operators { T ( t ) } ,  t 2 0 by the formula 

W ) x ( t )  = XCt/(l + t o 1 9  x E X ,  t E [0,11. 

Then {T(r)} ,  t 2 0, is a strongly continuous semigroup of operators in X .  
Indeed 

0) T(t )  T(s) x(t) = T(t)  x Ct/(l+ st>l 

- x [</( 1 + t<)]1 + 0 as At -, 0. 

EXAMPLE 2.1.3. In the Banach space X = C [0, CO) of continuous, bounded 
functions on [0,03) with sup-norm, define the family of translation operators 
{T(t)},  t 2 0, by the formula 

T ( t ) x ( t )  = x(t+t), x € X ,  t 2 0. 

Then {T( t ) } ,  t 2 0, is a strongly continuous, contraction semigroup of 
operators in X .  
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EXAMPLE 2.1.4. Let A on D ( A )  be a self-adjoint operator in the Hilbert 
space H .  Assume that (As ,  x )  Q 0 for s E D ( A ) ,  that is, A is negative. Let 
{ E k } ,  - co < I < co, be the resolution of the identity for the operator A. 
Then EA = I  for A > 0 and A x  = ,AdE,s for .YE D ( A ) .  

Define the family of operators { T( t ) } ,  t 2 0, by 
0 

T ( t ) x  = exp(Ir) dEAx,  .Y E H .  1- m 

This family of operators is a strongly continuous semigroup in H .  
We shall now prove that the norm II T(t)ll of the operators in a strongly 

continuous semigroup grows slower than an exponential. For this we need 
the concept of subadditive function and a lemma on subadditive functions. 
A function o: [0, 00) -+ R is called subadditive if 

o ( t l  + t , )  G o ( t l )  + o(t,), t , ,  t ,  2 0. 

For example, the function w(r)  = log I1 T(t)ll for t 2 0 is a subadditive 
function. 

LEMMA 2.1.1. Let o: [0, co) -+ R be subadditive and bounded above on 
each finite subinterval. Then the number oo = inf,,,o(t)/t is finite or - 00 

and wo = lim,+ , o( t ) / t .  

Proof: Let oo = inf,,,o(t)/t. Since o(t) is bounded above, ojo is finite 
or - co. Suppose that wo is finite. Given any 6 > oo there exists a to such 
that o(to)/ to < 6. For any t 2 0, we can write 

t = n(t) to  + r 

where n(t) is an integer and 0 < r < to. Then 

o ( t ) / t  = o [ n ( t ) t o + r ] / t  

Cn(0 (3 ( t o )  + w (r)l/t 

Thus 

From the definition of coo it follows that 

(2.1.1) 

(2.1.2) oo G lim info(t)/r. 
I+ m 
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The relations (2.1.1) and (2.1.2) yield the desired result. 

THEOREM 2.1.1. The limit 

0 0  = lim (1% II T(t)ll)/t 
I-+ m 

exists. For each 6 > coo there exists a constant M ,  such that 

II T(r)II < M,exp(dr), t 2 0. 

The number coo is called the type of the semigroup. 

Proof: Define the subadditive function 

o ( t )  = log 11 T(t)ll, t 2 0. 

We first prove that the function I( T(t)ll is bounded for t in a finite interval 
[0, to] .  If not, there exists a sequence t ,  ---f t* E [0, to] for t,, E [0, to] such 
that IIT(t,,)ll ---f co while 11 T(r*)ll is a finite number. For every s E X we 
have T(t,,)s-, T ( t * ) x  as n-+ 00. Hence sup. IIT(t,,)xll < 00 for each x E X. 
By the uniform boundedness principle (see Appendix VI) we conclude that 
supn IIT(t,,)II -= co, which is a contradiction. In  view of Lemma 2.1.1, we 
have that w0 = (log I( T(t)ll)/t exists and is a finite number or - co. 
For any 6 > coo there is a to such that 

(log II T(t>ll)lt < 6, 

llT(t)ll < exp(60, 

t 2 t o  * 

Hence 

t 2 t o .  

In addition we know that IIT(t)ll is bounded on [ O , t o ]  and the result 
follows. 

2.2. The Infinitesimal Generator 

Let { T(t ) } ,  t 2 0, be a strongly continuous semigroup of operators in the 
Banach space X .  For h > 0 we define the linear operator A, by the formula 

A , x  = [T(h)x-x] /h ,  x E x. 
Let D(A) be the set of all x E X for which the lim,,,+ A, ,s  exists. Define 
the operator A on D ( A )  by the relation 

Ax = lim Ahx, X E  D ( A ) .  
/I-0, 
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DEFINITION 2.2.1. The operator A with domain D ( A )  is called the 
injnitesiinal generator of the semigroup { T ( t ) } ,  t 2 0. Given an operator A 
on D ( A ) ,  we say that it generates a strongly continuous semigroup { T(r)} ,  
t 2 0 if A coincides with the infinitesimal generator of { T ( t ) } ,  t 2 0. 

PROBLEM 2.2.1. 
Examples 2.1.1-2.1.4. 

[Answers: A ;  - t z (d /d t ) ;  (d /d t ) ;  A . ]  

Find the infinitesimal generators of the semigroups in 

The following properties of the infinitesimal generator are very useful. 

THEOREM 2.2.1. Let { T ( t ) } ,  t 2 0 be a strongly continuous semigroup of 
operators in the Banach space X and A its infinitesimal generator with 
domain D ( A ) .  Then 

(a) D ( A )  is a linear manifold in X and A on D ( A )  is a linear operator; 
(b) if s E D ( A ) ,  then T ( t ) x  E D ( A ) ,  0 < t < co, is (strongly) differen- 

tiable in t and 
(d/dt) T( t )  ,Y = A T( t )  x 

= T ( t ) A x ,  r 2 0; 

(c) if x E D(A) ,  then 

T( t )x  - T(s)x  = T(u)Ax  du, t , s  2 0; l' 
(d) iff(t) is a continuous real-valued function for t 2 0, then 

limh-1 J'+'f(u)  ~ ( u ) x  du = f ( r )  T ( t ) x ,  x E X ,  t 2 0 ;  
h+O 

(e) L T ( s ) x d s e D ( A )  and T( t )x  = x + A T(s)xds,  sb 
X E X ;  

(f) 
operator. 

Proof: (a) Follows directly from the definition. 
(b) Since T(t)  and T(h)  commute, we have 

the linear manifold D ( A )  is dense in X, and A on D ( A )  is a closed 

A,, T ( t ) x  = T( t )A , ,x  

+ T( t )Ax  as h + 0,. 
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Hence 
T ( t ) x  E D ( A )  and A T ( t ) x  = T( t )Ax .  

Next we will show that (d /d t ) [T( t )x ]  = T ( t ) A x  by showing that this is 
true both for the left- and right-hand derivatives. Indeed 

Iim ( [ T ( t + h ) x - T ( t ) x ] / h  - T(r )Ax)  = lim [T(t)AhX-T(r)Ax] = 0 
h - 0 ,  h - 0 ,  

and 

lim ( [ T ( t + h ) x - T ( t ) x ] / h  - T ( t ) A x )  
h+O- 

= lim [ ~ ( t + h ) { ( [ T ( - h ) x - X I / - h ) - A x }  + [ ~ ( t + h ) - ~ ( t ) ] ~ x ]  = 0. 

(c) The abstract function y ( t )  = T ( t ) x  is differentiable by (b) and its 
derivative T( t )Ax  is continuous in t .  The conclusion follows from Theorem 
1.3.4. 

(d) The abstract function y ( t )  = f ( t )  T ( t ) x  is continuous in r.  Set 

h+O_ 

Then 
t + h  

F'(0) = limh-' J1 y(s) ds. 
h-0  

On the other hand, by Theorem 1.3.3 we get 

Hence 

and the result follows by equating the values of F'(0). 
(e) Let x E X and t ,  h > 0. Then, as h --* 0 

-+ T ( t ) x  - T ( 0 ) x  

= T ( t ) x  - x (from (d)). 



2.2. The Infinitesimal Generator 29 

This proves that 

l T ( s ) x  ds E D ( A )  and 

From (d) x = limr+o r - ' ! ;  T(s)xds for every x E X and from (e) 
1; T ( s ) s d s  E D ( A )  for every x E X .  These two facts imply that D ( A )  is 
dense in X .  Finally we show that A on D ( A )  is a closed operator. Let 
x,  E D ( A )  with n = 1,2, .  .., x, = x and limn+m Ax,  = y .  We must 
prove that x E D ( A )  and that y = A x .  By (c) and the fact that T(s)Ax,+  
T(s )y  uniformly we get 

A T(s)x  ds = T(t )x  - x .  sut 
(f) 

T(r)x - x = lim [T( t )x , -x , ]  

= lim L T ( s ) A x ,  ds 

= k ( s ) y  ds. 

n- m 

n- m 

Because of this and (d) we have 

lim A , x  = lim t-' l T ( s ) y  ds 

= T(O)Y = Y ,  

f 4 0 +  r+o+ 

which proves that x E D ( A )  and A x  =y.  
The proof of Theorem 2.2.1 is complete. 

As an application of Theorem 2.2.1, we shall prove that the abstract 
Cauchy problem 

d.r/dt = A x ,  r 2 0 and s(0) = xo, xo E D ( A )  (2.2.1) 

has a unique solution. 

THEOREM 2.2.2. Let A on D ( A )  be the infinitesimal generator of a strongly 
continuous semigroup { T(t)} ,  t 2 0. Then the Cauchy problem (2.2.1) has 
the unique solution 

x ( t )  = T(r)xo,  t 2 0. 
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Proof: The existence is a consequence of Theorem 2.2.l(b). In fact 

(d/dt)x(t) = (d/dt) T( t )x ,  

= A T ( t ) x ,  

= A x ( t )  

and 

x(0) = T(O)x ,  = xo. 

To prove uniqueness let y ( t )  be any solution of (2.2.1). Set F(s )  = 

T(t-s)y(s) .  Sincey(s) E D ( A ) ,  it follows by Theorem 2.2.1 that the function 
F(s)  is (strongly) differentiable in s and 

(d/ds)F(s) = - A T @ - s ) y ( s )  + T(t-s)y’(s) 

= - A T ( t - s ) y ( s )  + T ( t - s ) A y ( s )  = 0, 0 G s G t .  

Hence F ( s )  = const for 0 < s < 1.  In particular F(0)  = F(t ) .  Since F(0) = 

T(r)y(O) = T(t).uo = x ( t )  and F ( t )  = T(O)y(r) =y(r) ,  the proof is com- 
plete. 

PROBLEM 2.2.2. If in addition to the hypotheses of Theorem 2.2.2 A 
generates a contraction semigroup, prove that the norm Ils(t)ll of the 
solution of (2.2.1) is nonincreasing in t for t 2 0. 

As a further application of Theorems 2.2.1 we may consider the non- 
homogeneous Cauchy problem 

dx/dt - A s  = f ( r ) ,  t 2 0 and x(0) = .yo, xo E D ( A ) .  (2.2.2) 

THEOREM 2.2.3. Let A on D ( A )  be the infinitesimal generator of a strongly 
continuous semigroup { T ( t ) } ,  t 2 0. L e t 8  [0, co) + X be a (strongly) con- 
tinuously differentiable function. Then the Cauchy problem (2.2.2) has the 
unique solution 

s ( t )  = T(t)s,. + T(r-s ) j ( s )  ds, t 2 0. (2.2.3) 

Proof: The uniqueness part of the proof is a consequence of Theorem 
2.2.2. For the existence part it suffices to show that the function x ( t )  in 
(2.2.3) has a (strong) derivative and satisfies (2.2.2). Obviously x(0) = xo. 
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Define the function 
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= p ( s ) f ( t  - s) ds. 

Since T(t )  is bounded for each t 2 0 andf'(s) is continuous, it follows from 
Theorem 1.3.1 that the Riemann integral Ji T(s) f ( t  -s)ds exists. We shall 
first prove that g(r) is (strongly) differentiable. In fact 

f +  h 

[g(t + h) - g(r)]/h = h-  I T(s)J(t + h - s) ds - h-  1 T(s)f(t -s) ds sb 
= f i s )  Lf(t + h - s) - f ( t  - h)-J/h ds 

g'(t) = sO;(s)Y(r-s)  ds + T(t)f(O). 

+ h-' L f i h T ( s ) f ( t + h - s )  ds. 

Hence g'(t) exists and 

(Although this formula for g'(t) is not needed and only its existence is 
required, it is of interest to compare it with the classical formula for g'(t).) 

On the other hand, for h > 0 we have 

= [ T(h) - Z]/h T(t - s)f(s) ds so' 

Since the limit on the left-hand side exists and also limh,o~:'h T(t+h-s) 
x f ( s ) d s  =f (r ) ,  it follows that limh+o+ Ahyo T(t-s)f(s)ds exists and is 
equal to A Jb T(t  -s)f(s) ds. Hence 

g'(t) = A J T( t -s ) f ( s )  ds + f ( r ) .  
0 
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As a result of (2.2.3) we get 

dx(t)/dt = AT(r )x ,  + A T(r-s ) f ( s )  ds + f ( r )  

= AxW +m, 
and the proof is complete. 

REMARK 2.2.1. The conclusion of Theorem 2.2.3 remains valid if, instead 
of assuming that f ( f )  is continuously differentiable, we assume that 
f ( r )  E D ( A )  for all r 2 0, andf'(r) and Af(r)  are strongly continuous in t .  

Theorem 2.2.2 can be used to prove the following: 

THEOREM 2.2.4. An operator A with domain D ( A )  dense in the Banach 
space X can be the infinitesimal generator of at most one strongly con- 
tinuous semigroup { T(t ) } ,  t 2 0. 

Proof: Let {T( t ) } ,  f 2 0, and { S ( t ) } ,  t 2 0, be two strongly continuous 
semigroups of operators in X having A as infinitesimal generator. Consider 
the Cauchy problem (2.2.1). In view of Theorem 2.2.2 x(r) = T ( t ) x ,  and 
y ( t )  = S(r)x, are solutions of (2.2.1). By uniqueness, it follows that 

T ( t ) x ,  = S(t)x, ,  t 2 0, X ,  E D ( A ) .  

Since D ( A )  is dense in X and the operators T ( f )  and T(s)  are bounded, we 
conclude that 

T(r)x = S(r )x ,  r 2 0, x E X ,  

which is the desired result. 

PROBLEM 2.2.3. Solve the initial value problems 

(i) 

(ii) du(t ,  t ) /dt  = Wt, t)/d<, t 2 0, t 2 0, 

[Wt, t)/dtl + t2 du(t ,  t)/dt = 0, t 2 0, 0 < t < 1, 

where lim,,,u(t, t )  = xo(t), uniformly in < for sufficiently smooth ~ ~ ( 5 ) ;  

where Iimt+, u(( ,  t )  = x0(t), uniformly in 5 for sufficiently smooth xo(t). 

[Hint: Use Problem 2.2.1 and Theorem 2.2.2.1 

2.3. The Hille-Yosida-Phillips Theorem 

Here we shall give a necessary and sufficient condition that an operator A 
with domain D ( A )  in the Banach space X is the generator of a strongly 
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continuous semigroup { T(r)},  t >, 0. Recall that the resolvent set p ( A )  of A 
consists of all complex numbers A for which (AZ-A)-' exists as a bounded 
operator with domain X .  The set p ( A )  is an open set in the complex plane C. 
The function R(E.; A )  = ( I J - A ) - ' ,  defined on p ( A )  is called the resolvent 
o f  A and is an analytic function of A for 2 E p ( A ) .  

THEOREM 2.3. I .  A necessary and sufficient condition that a closed operator 
A with dense domain D(A) in the Banach space X be the infinitesimal 
generator of a strongly continuous semigroup { T(t)} ,  t 2 0, is that there 
exist real numbers M and w such that for every real number A > w 

A e p ( A )  and llR(A;A)'ll < M@.-w)", n = 1,2 ,.... 

Proofi We first prove the suficiency. Define the family of bounded 
operators 

B, = A[AR(A;A) - Z], E. > W .  

We shall construct the operator T(r) as the strong limit as A+ 00 of the 
operator S,( t )  where SA(t)  = exp(rB,). For convenience we break up the 
proof into a series of interesting claims. 

Claim I :  The operators S,( t )  are uniformly bounded for A sufficiently 
large. In fact, using the Cauchy product of series, we have 

m 
(-At)' 

m 

n! 
n = O  n=O 
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Consequently, we obtain 

= Mexp( - At)  exp [i12r/(A- o)] 

= Mexp[Ato/(A-a)]. 

Since i.tw/(l.-W)+to as lL-+ co, it follows that for a fixed o1 > o 
)IS, ( ?>I1  < Mexp(tw,) for i. sufficiently large. 

Claim 2: 

l imAR(A;A)x=x, X E X .  
A+ m 

Notice that 

lIl.R(A;A)l/ < Mlj.l/(lL-w) -+ M as A -, 00 

and 

I\AR(I.;A)JJ < 2M for A sufficiently large. 

and Claim 2 follows from Appendix VI. 

Claim 3: 

lim B,x = Ax, x E D ( A ) .  
1- m 

This is evident from Claim 2, because 

lim B,x  = lim I R ( i . ; A ) A x  = Ax. 
1- m 1- m 

Claim 4: For every t 2 0 and x E X we have that the lim,+m S,( t )x  
exists and defines a bounded operator T(t ) .  Set R, = (U- A ) -  for il E p ( A ) .  
From Appendix VIIl R, R,, = R,, R,. Therefore B, B,, = B,, B,. Since S,(t) = 

x:=o(t"/n!) B,", we then conclude that B,,S,(r) = S,(t)  B,, for A , p  E p ( A ) .  
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By Theorem 1.3.4, we have for every x E X 
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Using Claims 1 and 3, we obtain for x E D ( A )  

r i  

= M2exp(to,)  I I B , ~  - B,xll*+ 0 as A,p  -, 00. 

Moreover, the convergence is uniform in every finite interval of t .  This 
together with Appendix VIII shows that there exists a bounded operator 
T(r) such that 

lim S, ( t )x  = T( t )x ,  x E X .  (2.3.1) 
A- w 

Clearly IIT(r)ll < Mexp(to,) and Claim 4 is established. 

Claim 5:  The family {T( t ) } ,  t > 0, is a strongly continuous semigroup 
in X .  

Indeed, the properties (i) and (ii) of Definition 2.1.1 follow directly from 
(2.3.1) and the fact that the operators SA(t) themselves satisfy these 
properties. As the convergence (2.3.1) is uniform in every finite interval oft ,  
the limit T(r )x  is strongly continuous in t for each x E X ,  and property (iii) 
of semigroups is established. 

To complete the proof of the sufficiency we only have to show that A is 
the infinitesimal generator of { T ( t ) } .  Let B be the infinitesimal generator of 
the semigroup { T ( t ) } ,  t > 0. We must prove that A = B. We first derive a 
formula for the resolvent R ( I ;  B )  of the infinitesimal generator B of { T(t ) }  
where IIT(t)ll < Mexp(to,) for t 2 0. 

Claim 6: Every I > o1 is in p ( B )  and 

R ( I ;  B ) x  = exp(-At) T ( t ) x  dr, x E X ,  A > 0,. (2.3.2) Som 
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Consider the operator R(1) defined by 
r m  

R(1)x = J ~-exp(-;lt)T(t)xdt, X E X ,  1 > ol. (2.3.3) 
0 

Since 

Ilexp(-lt) T(t)II < exp(-lr)Mexp(to,) 

= Mexp [ - (1 - ol) t ] ,  

the integral in (2.3.3) is absolutely convergent for l > w l  (in fact for 
Re(l) > ol) and defines a bounded operator R ( I )  in X. 

Observe that, for h > 0 and x E X 

BhR(l)X = [T(h)R(I)X - R(A)X]/h 

= h-'kmexp(-lt)T(r+h)xdt- h-I Som exp(-It)T(t)xdt 

= h - l ~ m e x p [ - I ( s - h ) ] T ( s ) x d s - h - l  kW exp(-lt)T(t)x dt 

= [exp(Ih)- l]/h lmexp(- l t )  T(r)x dt 

- exp( Ih )h - ' I  exp(-Ar)T(r)xdt. 

Hence 

lim &R(L)x = R(1)x  - x. 
h-0 ,  

This proves that R ( I ) x  E D ( B )  and BR(1)x = I R ( I ) x - x ,  that is, 

(U-B)R(A)x = x, x E X, A > w1. (2.3.4) 

On the other hand, since B is a closed operator we have from Theorem 
1.3.5 for any x E D ( B )  

BR(1)x = BCexp(-ht)T(t)x dt 

= Jomexp(-it) T(t)Bx dt 

= R(1)Bx. 
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In view of (2.3.4) we then have 

R(I)(IZ-B)x = X ,  x E D(A) ,  I > 01. (2.3.5) 

The relations (2.3.4) and (2.3.5) prove Claim 6. 

Claim 7: 
the identity 

D ( A )  c D ( B )  and Ax = Bx for x E D(A) .  For x E X we have 

ds 

= PA (s) B, x ds. (2.3.6) 

We would like to take limits as 3, + 03 on both sides of (2.3.6). To this end 
observe that for x E D ( A )  

IIS,(s)B,x - W A X 1 1  < IIS,(s)II IIB,x - Axll + IICSAW - T(s)lAxll 

< Mexp(o,s) IIB,x- Axll 

+ 2Mexp(ol s) llAxll + 0 as A + co, 

uniformly in S on every closed interval [0, t ] .  We conclude that 

T(t)x-x = T(s)Axds, x E D(A).  sb 
Hence 

Bx = lim [T(t)x-x]/t 
1-0, 

= lim t - I  l T ( s ) A x  ds 
1-10, 

= AX, 

and Claim 7 is proved. 

Claim 8: 
I ,  E p(A)  n p ( B ) .  Then by Claim 7 

D ( B )  c D ( A ) .  By Claim 6, we have p ( A )  n p(B) # 0. Let 

(&Z-B)D(A) = (AoZ-A)D(A) 

= ( n o  z- B) D(B).  

= x  
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So if xs E D(B) ,  there exists an x, E D ( A )  such that 

(Ro I- B) X, = (A0 I- B )  xB. 

Since A,, I -  B is one to one, we obtain xB = x, E D ( A )  and the claim is 
proved. 

The proof of the sufficiency of Theorem 2.3.1 is therefore complete. 

Next we prove there exist real numbers M and o such that 

IIT(t)II < Mexp(ot), t 2 0. 

As proved in Claim 6, every 1. > o is in p (A) and for I > o 
r m  

From the resolvent formula (see Appendix VIII) one obtains 

R ( i . ; A )  - R ( p ; A )  = ( p - I ) R ( L ; A ) R ( p , A ) ,  I , p  > 0. 

Consequently the analyticity of R ( 2 ;  A )  for 1. E p ( A )  yields 

( d / d . ) R ( i - ; A )  = lim[R(I;A) - R ( p ; A ) ] / ( I - p )  
P - 1  

= -R(A;A)’ .  

It therefore follows by induction 

(d“/di.”)R(I; A )  = (-  l)”n! R ( 2 ;  A)””, I > o. (2.3.8) 

On the other hand, differentiation with respect to i. under the integral sign 
of (2.3.7) is justifiable. In fact 

( [R(%+h;  A )  - R ( I ;  A ) ] / h ) x  

= h-’ lw([exp(-h-t) - l]/h) exp(-At) T( t )x  dt. (2.3.9) 

Since 

([exp(-At)- l]/h)exp(-Rt)T(t)x -+ - - t  exp(-I,t)T(r)x as h -+ 0 
and 

Il([exp(-hr)- l]/h)exp(-It)T(r)xll < Mtexp[-(I-w-Ihl)r], 

we can take limits as h + 0 is (2.3.9) getting 

(d/di.) R ( I ;  A ) x  = - t exp( - At) T( t )x  dt. 
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Thus one easily gets after n steps 

(d"/dI")[R(I;A)x] = (-1)" r"exp(-lt)T(t)xdt, X E X ,  I > o. 

(2.3.10) 
Comparing (2.3.8) and (2.3. lo), there results 

la 
R(I;A)" = [ ( n - I ) ! ] - '  t"-'exp(-At)T(t)xdt. (2.3.11) 

/ow 

Hence 

llR(A;A)"ll < M/(n-l)!  tn-lexp[-(I-o)t]dt r 
= M/(I-o)" ,  I > 0 

and the proof is complete. 

PROBLEM 2.3.1. 
in X .  The following statements are equivalent: 

11 T(t)ll < exp(ot) for some real number o; 

Let A be a linear operator in X with domain D ( A )  dense 

(i) A generates a strongly continuous semigroup { T( t ) } ,  t 2 0 such that 

(ii) there is a real number o such that for I > w 
1 I e p ( A )  and IIR(I;A)II < ( I - o ) -  . 

[Hint: Use Theorem 2.3.1 and the estimate llR(A;A)"ll < IIR(%;A)ll".] 

PROBLEM 2.3.2. Prove Theorem 2.2.4 by utilizing formula (2.3.7). 

PROBLEM 2.3.3. For the semigroup of Example 2.1.3 show that 

p ( A )  = {A E C: R(I) > 0} 
and 

R(I;A)x(t)  = exp(-Is)x(t+s)ds, R(I) > 0. Som 
[Hint: 

solutions of the abstract Cauchy problem 

Consider the general solution of the equation Iy-y' = x.] 

As an application of Theorem 2.3.1 we prove a uniqueness result for the 

dx/dt = A(t)x, u < t < b;  (2.3.12) 

x ( 4  = x,, xa E DCA(41. (2.3.13) 
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We need the following: 

LEMMA 2.3.1. 
traction semigroup. Then for each x E D ( A )  

Let A on D ( A )  be the infinitesimal generator of a con- 

l I ( I+~A)x l l  < llxll + O ( E )  as e 0, .  (2.3.14) 

Proof: By Theorem 2.3.1 and the hypothesis that A generates a con- 
traction semigroup, it follows that (0, co) c p ( A )  and / /(AI-A)- ' / l  < A-' 
for I > 0. Hence, for E = I - '  > 0 we have the estimate 

II(z-&A)-1I( < 1,  & > 0. (2.3.15) 

Observe that for x E D ( A )  and E > 0 

( Z + E A ) X  = (z+&A)(z-&A)(z-&A)-'X 

= (z-&ZA2)(z-&A)-1X 

= ( z - & A ) - I X  - &2A*(z-&A)-1X 

= ( z - & A ) - l x  - &B&AX (2.3.16) 

where Be = A ( I - & A ) - l  = (Z-&A)-'-Z. So IIB,II < 2. For any y E D ( A )  
we have 

llB&Yll = l l&A(I--4-1Yl l  
< EIIAYll + 0. 

From Appendix VI it follows that for each x E X we have lim,,,+ B,x = 0. 
In view of (2.3.16) and (2.3.15) we have 

II(I+&A)XIl G llxll + EIlBEAxll 

= llxll + O(&) 
and the proof is complete. 

THEOREM 2.3.2. Assume that 

(i) for each t E [a ,  b],  the operator A ( t )  with domain D [ A  ( t ) ]  generates 

(ii) x E C [ [a ,  b],  X I ,  x ( t )  E D [ A  ( t ) ]  and has a strongly continuous, 
a contraction semigroup in the Banach space X ;  

right derivative x + ' ( t )  such that 

x+' ( t )  = A ( t ) x ( t ) ,  a G t G 6. 

Then Ilx(t)ll is nonincreasing in t for t E [a ,b] .  
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Proof: From the definition of X + ’ ( Z )  we have 

I l x ( r + ~ )  - [I+~A(t)].u(t)ll = O(E)  as E -+ 0,. 

This and Lemma 2.3.1 yield the inequality 

Il-u(t+E)II s IICI+EA(t)l.y(t)ll + O(E) 

G IlX(t>ll + O(E). 

Hence Ils(t)ll+’ < 0 for a < t < b. Since by hypothesis x ( t )  is continuous, 
the result follows. 

COROLLARY 2.3.1. Under the hypothesis (i)  of Theorem 2.3.2 the abstract 
Cauchy problem (2.3.12) and (2.3.13) has at most one solution on [a, b]. 

Proof: Let x l ( t )  and .u2(t) be two solutions of the system (2.3.12) and 
(2.3.13). Set x ( t )  = x I  ( 2 ) - x 2 ( t ) .  Then x ’ ( r )  = A ( r ) . u ( t )  and s(a)  = 0. From 
Theorem 2.3.2 Ilx(t)ll is nonincreasing in 1.  Since .u(a) = 0, it follows that 
x(t) = 0, and the proof is complete. 

We shall present another application of Theorem 2.3.1. Let X = 
C,( - co, co) be the space of continuous complex-valued functions which 
tend to zero at infinity. Consider the heat equation 

d u p t  = d2u/d.u2 and u ( 0 , ~ )  = u,(.u), -co < x -= 00 

Let D(A)  be the class of functions y ( s )  with y and dy/d.u continuously 
differentiable and y ,  d2y/d.u2 in X .  Define the operator A with domain 

A y  = d2y/dX2. 

Clearly, D ( A )  is dense in Xand A is a closed operator on D ( A ) .  A solution of 

D ( A )  by 

(AI-A)y = Ay - d2y/d,v2 

= U O W  

in D ( A )  can be obtained, by the method of variation of parameters, in the 
form 

y(x) = (2 \6 ) - ’  exp[-fi(x-s)]u,(s)ds. 

Using the integral representation of R ( A ; A )  [18], it follows that 
IIR(,t; A ) ] [  < i- ’  for 2 > 0. Therefore A on D ( A )  generates a contraction 
semigroup in X .  

spm 
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2.4. Linear Autonomous Functional Differential Equations 

The theory of strongly continuous semigroups finds an interesting 
application in linear autonomous functional differential equations. Let 
r > 0 be given. Let X =  C [ [ - r , O ] ,  R"] denote the Banach space of con- 
tinuous functions with domain [ - r , O ]  and range in R" with the norm of 
4 E X defined by 

11411 = sup I+(s)l ( 1 . 1  any norm in R"). 

Suppose that s E C [  [ - r ,  a), R"]. For any t > 0, we shall let x, denote the 
element of X defined by s,(s) = x ( t + s )  for - r  < s < 0. s, is called the 
past history of x at t .  Let L :  X - +  R" be a continuous (and so bounded) 
linear operator mapping X into R". By Riesz representation theorem (see 
Appendix IV), there exists an n x n matrix n(O), the elements of which are of 
bounded variation such that 

- r < s < O  

~ ( 4 )  = [dn(e)] 4(0), 4 E x (Stieltjes integral). 

With this notation consider the linear autonomous functional differential 
equation 

i ( t )  = L(x,).  (2.4.1) 

It is known (see [42]) that for any 4o E X, (2.4.1) has a unique solution with 
initial function 4o at t = to,  that is, the past history of the solution at to 
is 40. The solution is denoted by .u(to, 40) and satisfies (2.4.1) for all t 3 to. 
I f  to = 0, we usually set x(0, 40) = ~ ( 4 ~ ) .  For t 2 0 we define the operator 
T ( t ) :  X A X  by the relation T ( t ) 4  = x,(4) for 4 E X .  

THEOREM 2.4.1. (a) 
bounded and for t > r ,  { T ( t ) }  is completely continuous (compact); 

For each fixed t > 0 the operator T( t )  is linear and 

the family { T ( t ) } ,  t 2 0 is a strongly continuous semigroup on X; 
the infinitesimal generator A of this semigroup has for domain 

D ( A )  the space C ,  [ - r,O] of continuously differentiable functions on 
[ - s , O ]  with $(O-) = L ( 4 )  and A = d/dO on D(A),  that is, 

(b) 
(c) 

A + ( @  = &(@/do,  - r  < 8 ,< 0 and A $ ( O - )  = L ( 4 ) .  

Proof: (a) ( i )  T( t ) :  X +  X is linear. Let 4, I) E X and I., p be any two 
scalars. Since L is linear, Ax(+)+px($) is a solution of (2.4.1) with initial 
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function 2 4 + p $  at t = 0. By the uniqueness of solutions of (2.4.1) we 
have the equality 

Hence 

that is, 

x(&b+p$) = Ax(4) + ptx($>, t 2 0. 

XI (14 +&I = ~4 (4 )  + P X I  ($)7 

W ) ( A 4 + P $ )  = A m 4  + PTW$. 

(ii) T( t ) :  X - +  X is bounded. Since L :  X +  R" is a continuous linear 
operator it is also bounded, that is, there exists an / > O  such that 
IL(4)I < /11411 for each 4 E X. From the definition of T(t )  and xI(4) it 
follows that 

T ( 0 4 ( 8 )  = .(4)(t+Q 

T(t )  4(@ = 4(t+@, t + e < o  

t + e 2 0. 

and so integrating (2.4.1) we get for - T < 0 < 0 

= 4(0)  + / ' + ' L [ T ( ~ ) ~ I  ds, 

IW)4(8)1 < 11411 + l '~ l IT (s )4 l l  0 ds; 

0 

It follows that 

so 

From Gronwall's inequality we conclude that 

IIW)4ll < exput) 11411, t 2 0, 4 EX. 
Hence T( t )  is bounded by exp(/t). 

T( t ) :  X+ Xfor t 2 ~iscompletelycontinuous. If Sis  the closedunit 
sphere S =  { 4  E X :  11411 < l} ,  we must show that the strong closure of 
{ T ( t )  S }  is compact in the strong topology of X .  It suffices to show that 
{ T(r) S }  is a family of uniformly bounded and equicontinuous functions on 
[ - T , o ] .  Indeed, let $ = T ( t ) 4  for 4 E S.  Then 1 1 $ 1 1  = IIT(t)f#Jll < 
exp(/t) 11411 < exp(/t) which proves that the family { T ( t ) S }  is uniformly 
bounded. Next we show that the family of functions { T ( t ) S }  is equi- 
continuous by showing that their derivatives are uniformly bounded on 
[ -r,O]. In fact, let $ = T(r)$ for 4 E S. Then 

(iii) 

$(el = T(t)4(e)  = x(+)(t+e), - -T G e < 0. 
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For t > z we have t + 8 > 0; therefore 

= m(4>0+8) = LCXt+,(4)1.  

It follows that 

I&(0>l = IL(T(t+8)4)I 

G lIIT(t+8)4II 

G 

G I exp(W, 

exp Cl(t + 811 II 4 II 

which proves our assertion. 

(b) (9 T(t)  T(s) = T(t+s) ,  t ,s 2 0. 

We must show that for any 4 E A', 
T( t )T( s )4  = W + s ) 4 ,  that is xtCx,(4)l = xt+,(4), 

which is true on the strength of uniqueness of (2.4.1). 

(ii) T(0) 4 = xo(4) = 4, 4 E A', that is T(0) = I .  

(iii) For each 4 E X we have that T ( f )  4 is strongly continuous in t for 
t 0. In fact 

[ T ( t  + A t )  4 - T(t)  41 = [xt+At(4> - xt(4)1 
= X ( 4 ) ( t + A t + e )  - x(+)(t+o). 

Therefore 

t + 8 > 0, At small 

= 4 ( t + A t + 8 )  - +( t+0) ,  

t + 8 < 0, At small 

t + 0 = 0, At > 0 and small 

= $(At) - 4(0)Y 

t + 8 = 0, At < 0 and small. 
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In any case, we conclude that 11 T(t+  At)  4 - T ( f )  411 + 0 as At -, 0. 

domain D(A) .  Then 
(c) Let A be the infinitesimal generator of the semigroup {T(r)} with 

D ( A )  = { 4  E X :  lim [T(r)+-4]/t exists}. 
I+O+ 

Define also the set 

6 = { 4  E X :  4 E C1 [-.r,O] with $(O-) = L($)}. 

We must prove that D ( A )  = 6. In fact, let 4 E 6. Then 

I(CT(t)4-4llOs - 

= I ([XI (4) (s) - 4 (s)l/r) - 4 (41 

( C X ( 4 )  t-4(0>llt) - d(O>l, 
I([4(t+s)-q5(s)]/t) - d(s)l, t > 0 and small, s < 0 

s = 0. 

In view of the continuity of d(C) and Theorem 2.2.l(d) it follows that 
4 E D ( A ) .  Conversely, let 6, E D ( A ) .  Then the lim,,,+ [T( t )$-4] / t  
exists in the topology of A'. Observe that 

Therefore 
s < o  

L(b) ,  s = 0. 
lim ([T(r)4-$]/t)s = 
1+0+ 

So d(s+) exists and is continuous. It follows from [6] that $(s) exists and 
is continuous. Also the function A 4  is continuous, and d(O-) exists. Hence, 
4 € 6 .  

The proof is complete. 
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Since T(r) will generally not be known, we hope to discuss most of the 
properties of T(r) by using only properties of the known operator A .  
Recall that for any 4 E D ( A )  

( d l 4  W) 4 = A 4 
and therefore, the abstract Cauchy problem 

duldt = Au, t > 0 

40) = 4,  4 E D ( A )  

has the unique solution u(r )  = T ( t ) 4  = x,(4) for t 2 0. 
We denote by a,(A) the point spectrum of A ,  that is, all those values II  

in the spectrum a ( A )  of A for which (21-A) is not one to one. The points 
1. in a,(A) are called the eigenvalues of A ,  and any  EX such that 
(1.1- A )  4 = 0 is called an eigenvector corresponding to the eigenvalue 2. 
For a given 1. E a , (A)  the generalized eigenspace of i. is denoted by M,(A) 
and is defined to be the smallest subspace of X containing all the elements 
of X which belong to the null spaces N[(i .Z-A)k]  with k = 1,2, ... . We 
have the following: 

THEOREM 2.4.2. Let A on D ( A )  be the infinitesimal generator of the 
strongly continuous semigroup { T(r)} ,  r 2 0 associated with the linear 
autonomous functional differential equation (2.4.1). Then 

a ( A )  = a,(A) = {A E C :  detA(1) = 0} (2.4.2) (a) 
where A(),) = 21-SO,[dn(O)]exp(28); 

(b) the real parts of the eigenvalues of A are bounded above; 
(c) M , ( A )  = N [ ( A - j . l ) ' ] ,  k some finite integer; 

( 4  X = N [ ( A - i . l ) k  0 R [ ( A - i J ) k ]  

where R [ ( A - 2 1 ) k ]  denotes the range of (A-AZ)k  and 0 means the 
direct sum. 

Proqfl (a) I t  suffices to show that the resolvent set p ( A )  consists of all II  
except those which satisfy (2.4.2) and then show that any i. satisfying 
(2.4.2) is in .,,(A). By definition 1 E p ( A )  if and only if ( A  -1.1): D ( A )  -+ X 
is one to one and onto, and ( A  - I I Z ) - '  E B ( X ) .  It follows that II  E p ( A )  
if and only if for every t+b E X the equation 

( A  - R1) 4 = Ifb (2.4.3) 
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has a unique solution 4 E D ( A )  that depends continuously upon $. Since 
any 4 E D ( A )  must be continuously differentiable and A+ = 4, a solution 
of (2.4.3) must satisfy the differential equation 

Hence 

But 4 E D ( A )  implies 

Therefore 

Simplifying this expression, we obtain 

In view of (2.4.4) and (2.4.5) we obtain 

p(A)  = {A E C :  detA(I) # 0}, 

and if det A(A) # 0, there exists a nontrivial solution of (2.4.3) for $ = 0, 
that is, I. E a,(A). 

(b) This can be proved as in Claim 6 of Theorem 2.3.1. 
(c) and (d) Since det A(2) is an entire function of A, it has zeros of finite 

order. It follows from (2.4.4) and (2.4.5) that the resolvent function 
(1.1- A ) -  has a pole of order k at A = A,, if A. is a zero of det A(A) of order k .  
Since A is a closed operator, (c) and (d) follow from [74]. 

The proof is complete. 

From Theorem 2.4.2, we know that if 1 + ~ a ( A ) ,  then M,(A)  is finite 
dimensional and M,(A)  = N ( A  for some integer k. Since A com- 
mutes with ( A  it follows that A M , ( A )  c M,(A) .  

Let (4, ’ ,  42A, ..., 4,,’) be a basis for M , ( A )  and let B, be the restriction 
of A to M , ( A ) .  Then A@, = (DAB,. The d x  d matrix B, has A as its only 
eigenvalue. Indeed if p # A is an eigenvalue of B,, there exists a 
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w E N[(A-AZ)k]  such that B, w = pw. So (B,-AZ) w = (A-AZ) w = 
(p - A) w. This implies that ( A  - w = 0 and inductively (p -A) w = 0, 
a contradiction. From the definition of A the relation A@,  = @, B, implies 
that 

@,(e) = @,(O)exp(B,O), - -T G e G 0. 

Also, from Theorem 2.2.l(b), we obtain 

T(t )@,  = @,exp(B,t), t 2 0. 

Hence 

[ ~ ( t ) @ , - ~ e  = @,(O)exp[B,(t+8)], - 7  G e G 0. 

This relation can be used to define T ( t )  on M , ( A )  for all values of in R.  
All these observations lead to the interesting conclusion that on generalized 
eigenspaces (2.4.1) behaves essentially as an ordinary differential equation. 
The decomposition of X into two subspaces invariant under A and T(t )  
can be used to introduce a coordinate system in X ,  which plays the role of 
the Jordan canonical form in ordinary differential equations. 

2.5. Analytic Semigroups 

In the sequel we shall denote by {exp( - t A ) }  the strongly continuous 
semigroup generated by - A .  Here we shall introduce an important class 
of semigroups, namely, strongly continuous semigroups {exp( - t A ) }  
which can, as functions of the parameter t ,  be continued analytically into 
a sector of the complex plane C containing the positive t-axis. The symbol 
S,  will denote the sector S,  = { r  E C :  largtl c w, t # O}. 

DEFINITION 2.5.1. A strongly continuous semigroup {exp( - t A ) } ,  is 
called an analytic semigroup if the following conditions are satisfied: 

(i) exp( - t A )  can be continued analytically as a strongly continuous 
semigroup into a sector S, for some w E (0,742); 

(ii) for each t E S, the operators A exp( - t A )  and (d/dr) exp( - t A )  are 
in B ( X )  and 

(d/dt)exp(-tA)x = -Aexp(-tA)x, X E  X ;  (2.5.1) 

(iii) for any 0 c E < o the operators exp( - tA)  and tA  exp( - t A )  are 
uniformly bounded in the sector S,-,, that is, there exists a constant 
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K = K ( E )  such that 

Ilexp(-rA)JI < K and IIAexp(-tA)II < K/lzl, t E S , - , .  

(2.5.2) 

Analytic semigroups arise in parabolic partial differential equations 
u, = -TU where T is a formal elliptic partial differential operator satisfying 
the hypotheses of Carding's inequality [ 191. 

The following theorem gives sufficient conditions for an unbounded 
operator - A  to generate an analytic semigroup. 

THEOREM 2.5.1. Assume that 

(i) A is a closed operator with domain D ( A )  dense in X ;  
(ii) the resolvent set p ( - A )  of - A  contains the sector Stn,2)+m for 

(iii) the resolvent functions of - A  satisfies 
some o E (O,n/2) ; 

IIW+A)-'II < M i l 4 ,  2 E q n / 2 ) + o ,  (2.5.3) 

where M is a constant independent of A. 

Then, - A  generates a unique analytic semigroup {exp( - [ A ) }  with the 
o of Definition 2.5.1 being the o of Theorem 2.5.1. In addition, for any 
x E X and 0 < E < o, we have exp( - t A ) s + x  as t + O  with f E S,-z. 

Proofi We define exp( - tA)  by the Dunford integral (see Appendix X) 

exp(-tA) = (2ni)-' exp(Rt)(AI+A)-' di. (2.5.4) 

where C is a contour, running in p ( - A )  and consisting of the ray 
{ z :  argz = 0, IzJ < I }  traversed inward from co to exp(i8) for some 
0 E (n/2,(7~/2)+0), the circular arc from exp(i0) to exp(-i0) traversed in 
the positive sense and the ray { z :  argz = -0, IzI 2 I }  traversed outward 
from exp( - i0) to 00. In view of (2.5.3) the integral in (2.5.4) converges 
absolutely and uniformly in any bounded closed subset of the sector 

and is consequently analytic in S.  The semigroup property follows 
from the standard argument with Dunford integrals. In fact, if C' denotes 
any contour obtained from C by a slight shift to the right then 

Jc 

exp(-sA) = (27ci)-' exp(2's)(R'I+A)-' dl.', largsl < o - E. Jc, (2.5.5) 
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Multiplying (2.5.4) and (2.5.5) and using Fubini's theorem and the resolvent 
formula (see Appendix VIII) we get 

exp( - t A )  exp ( - sA) 

exp(Ar+A's)(AI+A)-' ( l . 'I+A)-'  dAdA' 

= ( 2 7 ~ i ) - ~ s  1 exp(l.t+l.'s)(i.'-i.)-'[(E.I+A)-' - (R'I+A)- ' ]  dAdA'. 
c C' 

Since C lies to  the left of C', 

/;xp (At)/(A' -A) dA = 0, 

/c,exp(Afs)/(l.' -A) dA' = 27ciexp(As). 

Hence, using Fubini's theorem ,. 
exp ( - t A) exp ( - sA) = (274 - ' exp [ I .  (t + s)] (AZ+ A) - ' dA 

J C  

= exp[-(t+s)A], 

proving the semigroup property for exp(-tA). From (2.5.4) it follows 
that exp( - t A )  is differentiable for t = 0 and 

(d/dt)exp(-tA) = (2ni)-' Aexp(i.t)(l.I+A)-' dlb E B ( X ) .  s, 
Fromtheidentitiesi(l.I+A)-' =I- A ( l . I + A ) - '  andS,exp(i,t)dA = 0,and 
the closeness of A, we obtain 

(d/dt) [exp( - t A ) x ]  = -(2ni)-' A exp(At)(AI+A)-'x dl. s, 
= -Aexp(-tA)x, X E X .  

To prove the uniform boundedness of exp( - t A )  and tA exp( - t A )  we 
change the integration variable from A to 1.' = 2 l r l  in (2.5.4) and denote by 
C' the new contour, that is, C'=ItlC. In view of Cauchy's theorem, the 
contour C' can be deformed into the contour C. Thus 

exp( - rA)  = (2x9- ' exp [l.'(t/ltl)] [ (A ' / l t l )  I+ A ] - '  (11 -' I dA', 

t E su-e. (2.5.6) 
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From (2.5.3) 
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and so 

A exp(-tA) = (2ni)-' exp[A'(t/ltl)] A [(A'/ltl)Z+A]-'Itl-' dA' 
J C  

n 

x [(A'/~t~)Z+A]-'~tl- '  dA 

= (2ni)-1 ~cexPCA'(t/ltl)l (1 - ~ ~ ' / l ~ l ~ c ~ ~ ' / l ~ l ~ ~ + ~ l - l ~  

x 1 t I - I  dA. 

Hence 

IIAexp(-tA)Il G W > / l t l .  

To prove that exp( - tA)x + x as f + 0 for t E Su-e we note that, in view of 
Cauchy's theorem and Cauchy's integral formula, for u E D ( A )  

[exp(-tA) - I] u = (2ni)-' exp(At)[(RI+A)-' - A-'] u dA Sc 
exp(Ar)(AZ+A)-'AuA-' dA 

Since exp(-rA) is bounded and the domain of A is dense in X ,  it follows 
that 

lim exp(-tA)x = x, t E Sm-e. 
1-0 

Strong continuity a t  any t then results from this and the semigroup property 
e x p ( - t A ) e x p ( - s A ) = e x p [ - ( t + s ) A ] .  Next we prove that - A  is the 
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infinitesimal generator of {exp( - t A ) } .  Indeed, for x E D ( A )  

[exp(-tA)-Z]/tx = -f-' exp(-sA)xds -+ -Ax. sb 
Hence the infinitesimal generator B of {exp( - t A ) }  satisfies D ( B )  r> D ( A )  
and B = - A  on D(A) .  The proof that D ( B )  = D ( A )  follows as in Claim 8 
of Theorem 2.3.1. Finally, the uniqueness of exp(-rA) follows as in 
Theorem 2.2.4. 

The proof is therefore complete. 

PROBLEM 2.5.1. 
stronger condition 

If the hypothesis (iii) of Theorem 2.5.1 is replaced by the 

II(AZ+A)-'II < M/(lAl +A,  A E s, (2.5.7) 

for somep > 0, then instead of (2.5.2) one can derive the stronger estimates 
I(exp( - tA)II < Kexp( - 6 Re t ) ,  IJA exp( - tA)II < (K/ltJ)exp( - 6 Re t )  
where 6 is some positive number. 

As an application of Theorem 2.5.1, we shall consider the abstract 
Cauchy problem 

(2.5.8) 

u(0) = uo, 240 E D ( A )  (2.5.9) 

where the operator A generates an analytic semigroup. In Theorem 2.2.3 
we assumed that f ( t )  was strongly continuously differentiable but here, 
where A generates an analytic semigroup, we can relax this hypothesis and 
assume thatf(t) is Holder continuous. 

du/dt + AU = f(t), 0 < t < T; 

THEOREM 2.5.2. Assume that - A  generates an analytic semigroup and 
f ( t )  is uniformly Holder continuous on [0, TI. Then the abstract Cauchy 
problem (2.5.8) and (2.5.9) has the unique solution 

f l  

u ( t )  = exp(-tA)u, + exp[-(t-s)A]f(s)ds. (2.5.10) Jo 
If in addition, f(t) is analytic in a domain containing (0, TI,  the solution 
u ( t )  is analytic at any t E (0, TI. 

Proof: It is easy to show (as in Theorem 2.2.2) that exp(-rA)uo is the 
unique solution of the homogeneous problem 

du/dt + Au = 0 and u(0) = uo. 
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Therefore, i t  suffices to prove that the function 

w ( t )  = exp[-(t-s)A]f(s)ds 

satisfies (2.5.9) and (2.5.10) with uo = 0. We first write 
l 

Then, using the identity 

A exp(-sA)sds = x-exp(- tA)x,  X E X ,  L 
we can formally write 

A w ( t )  = AexpC-(f-s)A] Lf(s)-f(t)] ds + f ( r )  - exp(-tA)f(t). 

(2.5.1 1) 

In view of the inequalities IIAexp[-(t-s)A]II < const(t-s)-’ and 
llf(s)-f(t)\l < const(t-s)P for 0 < p < 1, the integral in (2.5.11) is well 
defined. Thus A w ( t )  makes sense, and because A is closed we get 

l 

sb A w ( t )  = A exp[-(2-s)A] [f(s)-f(t)] ds + f ( r )  - exp(-tA)f(t). 

In  order to construct dw(t)/dt  we define the function 
I - &  

~ ‘ , ( t )  = expC-(t-s)A]f(s) ds, E > 0 and small. (2.5.12) 

Clearly M-,(t)+ n * ( t )  as E - + O + ,  uniformly on compact sets in (0, TI.  Also 

dw,(t)/dt = exp(-EA)f(t--E) - Aexp[-(t-s)A]f(s) ds. 

(2.5.13) 

The integral in (2.5.13) exists since the operator Aexp[-(t-s)A] is 
bounded for 0 < s < t - E .  Employing again the Holder continuity of f(s) 
as in (2.5.1 l), it is easy to verify that the integral in (2.5.13) converges to 
A w ( t )  uniformly on compact intervals on (0, TI.  We have proved that 

l-‘ 

Jim wE(t )  = w ( t )  and limdw,(t)/dt = f ( t )  - A w ( t )  
E’O E‘O 
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uniformly on compact intervals of (0, TI .  From a well-known theorem of 
calculus it follows that dw(t)/dt exists and 

dw/dt = f ( t )  - Aw(t ) ,  

proving the first part of the theorem. Now iff(r) is analytic in some domain 
containing (0, TI, the function w,(t)  in (2.5.12) is also analytic in some 
neighborhood N of [E, T3 and dw,(t)/dt exists for t E N .  Since w,(r) + w ( t )  
uniformly on compact sets in N ,  it follows that w ( t )  is analytic for any 
t E (0, TI. 

The proof is complete. 

2.6. Notes 

Most of the results of this chapter concerning semigroups of operators 
were obtained by E. Hille, K. Yosida and R. S. Phillips. The bible in semi- 
group theory is still Hille and Phillips [28] where the reader is referred to 
for more details on the subject. Lemma 2.3.1, Theorem 2.3.2, and Corollary 
2.3.1 are due to Kato [30]. The results of Section 2.4 are due to Hale [27] 
while Section 2.5 consists of the work by Yosida [78] and Hille and Phillips 
[28]. See also Solomiak [66], Kato [33], Phillips [60], and Dunford and 
Schwartz [18,19]. Several recent references and good examples will be 
found in Friedman [23], Krein [35], Carroll [12], and the lecture notes 
by Zaidman [79] and Goldstein [26]. 



Chapter 3 

Linear Evolution Equations of the Parabolic Type : 
Sobolevski-Tanabe Theory 

3.0. Introduction 

A detailed study of the time-dependent Cauchy problem 

du/dt + A ( t ) u  =f(t), 0 < t < T and u(0) = uo E X (3.0.1) 

forms the major content of this chapter. Here, for each t ,  the operator 
- A  ( t )  generates an analytic semigroup. Since parabolic partial differential 
equations can be realized in this form, (3.0.1) is said to be parabolic. We 
prove the existence and uniqueness of a fundamental solution of the 
evolution equation (the terminology after L. Schwarz) 

d u / d t + A ( t ) u  = 0, 

55 

0 < t < T 
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as well as existence, uniqueness and differentiability of solutions of (3.0.1). 
Section 3.8 deals with the asymptotic behavior of solutions of (3.0.1) when 
T =  00. 

3.1. Definitions and Hypotheses 

Consider the evolution equation 

du/dt + A ( t ) u  = f ( t ) ,  0 < t < T (3.1.1) 

and the associated homogeneous equation 

duldt + A ( t ) u  = 0, 0 < t < T (3.1.2) 

where the unknown u( t )  is a function u :  [0, T ]  --f X ,  from the real interval 
[O, T ]  into a Banach space X.f’: [0, T ]  +Xis  a given function and for each 
t such that 0 < t < T, A ( t )  is a given, closed, linear operator in X with 
domain D [ A ( t ) ]  = D, independent of t and dense in X .  The problem of 
finding a solution u of the initial value problem 

du/dt + A ( t )  u = f ( t ) ,  0 < t < T ;  (3.1.3) 

u(0) = uo, U O E X  (3.1.4) 

is called an abstract Cauchy problem. 

DEFINITION 3.1.1. An operator-valued function U(t ,  T) with values in 
B ( X ) ,  defined and strongly continuous jointly in t ,  T for 0 < T < t < T, is 
called a fundamental solution of (3.1.2) i f  

(i) the partial derivative dU(t,  T)/& exists in the strong topology of X ,  
belongs to B ( X )  for 0 < T < t < T, and is strongly continuous in t for 
0 < T < t < T ;  

(ii) the range of U ( t ,  T) is in D ;  

(iii) d U ( t ,  r ) p t  + A ( 2 )  U ( t ,  T) = 0, 0 < T -= t < T (3.1.5) 

and 

U ( T , T )  = 1. (3.1.6) 

U(t ,  T) is also called evolution operator, propagator, solution operator, 
Green’s function, etc. 
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DEmmioN 3.1.2. A function u :  [0, T] 4 X is called a (strict) solution of 
the abstract Cauchy problem (3.1.3) and (3.1.4) if u ( t )  is strongly continuous 
on [0, TI,  strongly continuously differentiable on (0, T I ,  u ( t )  E D for 
0 -= t < T and u ( t )  satisfies the system (3.1.3) and (3.1.4). 

DEFINITION 3.1.3. 
(3.1.3) and (3. I .4) if it admits the integral representation 

A function u :  [0, T ]  + X is called a mild solution of 

u ( t )  = U(t,0)LIO + (3.1.7) 

It should be remarked that (3.1.7) need not give a solution of (3.1.3) and 
(3.1.4) for every uo andf’(t). The existence of h / d t  and A(t)u for (3.1.7) 
can be proved only under certain assumptions on uo andf(t). 

There are various known sufficient conditions for the existence of the 
evolution operator U ( t ,  T). In  practically all cases so far considered in the 
literature -A([) is assumed to be the infinitesimal generator of a strongly 
continuous semigroup of bounded linear operators on X. In  addition A ( / )  
is assumed to depend on t smoothly in some sense. Roughly speaking. there 
are two important cases to be distinguished: the hyperbolic and the para- 
bolic. In  the hyperbolic case - A ( 1 )  is, for each t ,  the infinitesimal generator 
of a contraction semigroup. I n  the parabolic case - A ( / )  is, for each t ,  the 
infinitesimal generator of an analytic semigroup. Actually, the two cases are 
not mutually exclusive, and in many instances “parabolic” is a stronger 
notion than “hyperbolic.” 

In this chapter we shall study the parabolic case and we shall refer the 
reader to the fundamental paper of Kato [30] for the hyperbolic case. By S 
we denote the set of all complex numbers i. satisfying -0  < argi. < 0, 
where 0 is a fixed angle with 71/2 < 0 < II. Throughout this chapter we shall 
make constant use of the following hypotheses: 

Hypothesis 1: 
with domain D[A(o)] = D independent of a and dense in X .  

Hypothesis 2: 
contains S and 

For each a E [0, T ]  we have A(a) a closed operator in X 

For each a E [0, T I ,  the resolvent set p [ - A (a)] of - A  (a) 

where C is a positive constant independent of i. and a. 
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Hypothesis 3: The bounded operator A ( t ) A - ' ( s )  is Holder continuous 
in t in the uniform operator topology for each fixed s, that is, 

~l[A(t)-A(T)]A-'(s)ll < Clt-71Z, 0 < (Y < 1, 

where C and (Y are positive constants independent of t , ~ ,  and s for 
O <  t , r , s< T. 

Hypothesis 4: The functionf(t) is uniformly Holder continuous on [0, T I :  

IIf(f)-f(s>Il < Clt-sl', 0 < p < 1, 0 < t , s  < T ,  

where C and /I are positive constants independent o f t  and s. 

H,~pothesis 5: The function f(t) is k-times (strongly) continuously differ- 
entiable on [0, T I ,  and f " ) ( t )  is uniformly Holder continuous on [0, TI ,  
that is, 

Il f (k)( t ) - f (k)(s) l l  < Clr-slP, 0 < p < 1, 0 G t , s  < T ,  

where C and p are positive constants independent o f t  and s. 

Hypothesis 6:  The operator A ( t )  with 0 < t < T is k-smooth in the follow- 
ing sense: for each s E Xthe  function A ( t ) A - ' ( 0 ) x  has strongly continuous 
derivatives 

(d' /dtj)[A(t)A-'(O).u] = A ( j ) ( t ) ~ - ' ( O ) x ,  1 < , j  < k. 

The operators A(j)(t)A-'(O).r with 1 < j  < k ,  are uniformly bounded for 
O G t < T , a n d  

~ ~ ~ ( ~ ) ( t ) ~ - ' ( o )  - A ~ ( T ) A - ' ( ~ ) I ~  < c l r - T l z ,  o < (Y < 1 ,  

where C and (Y are positive constants independent o f t  and T for 0 < t ,  T < T. 

To study the asymptotic behavior of the solutions of the evolution 
equation 

du/dr + A ( t ) u  = 0, 0 < f < co (3.1.8) 

we shall need the following hypotheses: 

Hypothesis 7: 
ct positive constants independent of T. Furthermore 

Hypotheses 1-3 are satisfied for all 0 < T < co with C and 

sup ~ ~ A ( t ) A - 1 ( T ) ~ l  < 03. (3.1.9) 
O < f ,  T I C  rn 
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Hypothesis 8: 
there exists an elementf(co) E X such that 

Hypothesis 4 is satisfied for 0 < f ,  s < a. Furthermore, 

(3.1.10) 

Hypothesis 9: There exists a closed operator A ( a )  with domain D and 
with bounded inverse such that 

lim 11 [ A  ( t )  - A (oo)] A - '(0)II = 0. (3.1.1 1) 
I -  m 

REMARK 3.1.1. Hypotheses 1 and 2 imply that, for each a E [0, 7'1, 
- A ( a )  generates an analytic semigroup {exp[ - t A ( a ) ] } ,  t 2 0. From the 
results of Section 2.5 we single out the following consequences which will 
be often used in this chapter. There exist positive numbers 6 and C indepen- 
dent o f t  and a such that for each a E [0, T ]  

(d /d t )  exp [ - t A  (a)] x = - A  (a) exp [ - t A  (a)] s, x E X ,  t > 0 ;  
(3.1.1 2) 

IIexp c- (a)] II G Cexp( - w, t > 0; (3.1.1 3) 

I \~(a)exp[- tA(a)] \ \  G Ct- 'exp(-6t) ,  t > 0. (3.1.14) 

In the remainder of this chapter, C will denote a generic constant, that is, 
a constant independent of t , ~ , a ,  ... . 

REMARK 3.1.2. 
the triangle inequality, that 

From Hypothesis 3, it follows, by taking s = T and using 

(3.1 . 1 5 )  \ \A(t)A-'(T)\ \  < c. 
Writing 

A ( T )  exp [ - tA  (a)] = A (T) A - (a) . A (a) exp [ - t A  (a)] 

and using (3.1.15) and (3.1.14), we obtain 

llA(~)exp[-tA(a)]ll < Ct-'exp(-dt), t > 0. (3.1.16) 

For any positive integer n we may write 

A"(a)exp [ - tA  (a)] x = A (a) exp [ - tn-I.4 (a)] ... A (a) exp [ - t n - ' A  (o)]x 

(n factor), x E X .  
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In fact, for x E X exp[-tn-'A(a)]x E D and A(a) commute with 
exp [ - tn- ' A  (a)] on D. We conclude that exp [ - tA (a)] x E D(A") for t > 0 
and from (3.1.14) we obtain the useful estimate 

IIA"(o)exp[-tA(a)]II < Ct-"exp(-&), t > 0. (3.1.17) 

REMARK 3.1.3. 

Hypothesis 3': 

Hypothesis 3 is equivalent to 

~ ~ [ A ( ~ ) - ~ ( T ) ] A - ' ( ~ ) ~ ~  < Clt-Tl', 0 < ~1 < 1, 0 < t,T < T, 

where C and u are positive constants independent of t and T. In fact, 
Hypothesis 3 implies Hypothesis 3' and if Hypothesis 3' is valid, we have, 
using 3.1.15, 

II CA @)-A (.)I A - %)I1 = II CA ( 0 - A  (TI1 A - '(TI * A - '(411 
< Clt--ZIU * c 
= Clt-Tl" 

and our assertion is established. 

3.2. Statements of the Main Theorems and Some Heuristic Arguments 

Here we shall state the main results that we plan to prove in this chapter. 
We also present some heuristic arguments which will be substantiated in the 
following sections under the strength of the given hypotheses. 

THEOREM 3.2.1. Let Hypotheses 1-3 be satisfied. Then the evolution 
equation (3.1.2) has a unique fundamental solution U ( t ,  7). 

THEOREM 3.2.2. Let Hypotheses 1-4 be satisfied. Then the abstract Cauchy 
problem (3.1.3) and (3.1.4) has the unique solution 

u(t) = U(t,O)u, + U(t , s ) f ( s )  ds. (3.2.1) 6' 
THEOREM 3.2.3. Let Hypotheses 1-3, 5, and 6 be satisfied. Then the 
solution u(t) of the abstract Cauchy problem (3.1.3) and (3.1.4) is (k+ 1)- 
times (strongly) continuously differentiable on [ E ,  TI for any E > 0. 
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THEOREM 3.2.4. 
of (3.1.8) converges to some element u(00) E D such that 

Let Hypotheses 7-9 be satisfied. Then any solution u ( t )  

(3.2.2) A (a) u ( a )  = f(a).  

Moreover, du(t)/dt tends to 0 as I + a. 

The following arguments, although without mathematical rigor, will 
give us the guidelines which we should follow to prove the existence and 
uniqueness Theorems 3.2.1 and 3.2.2. Since U(r,r) is the fundamental 
solution of (3.1.2) and the function exp [ - ( t  - T )  A (r)] satisfies the operator 
system 

du/dt + A ( T ) v  = 0 and V ( T )  = I ,  

it follows that the function u ( t )  = U ( t ,  T )  - exp [ - ( t  - T ) A  (r)] must satisfy 
the system 

du/dt + A ( t ) v  = [ A ( r ) - A ( t ) ] e x p [ - ( t - ~ ) A ( ~ ) ]  and U ( T )  = 0. 
(3.2.3) 

But, from the variation of constants formula, the solution v ( t )  of system 
(3.2.3) is given by 

u ( t )  = U ( t , s ) [ A  ( r ) -  A (s)] exp[ - ( s - t ) A  ( T ) ]  ds. I' 
Hence 

U ( t ,  T )  = exp [ - (r- .r)A (T)] + U ( t ,  s) [ A  ( 5 )  - A  (s)] 

(3.2.4) 

We shall consider (3.2.4) as the defining relation for the unknown operator 
U ( t , s ) .  This is an integral operator equation of the Volterra type (with 
respect to 5).  Applying the method of successive approximations the 
solution of (3.2.4) is formally given by the series 

u(t, T )  = C U k ( t ,  r )  

I' 
x exp[-(s-r)A(r)] ds. 

m 

(3.2.5) 
k = O  

where 
Uo(t , r )  = exp[-(t-r)A(r)] 

and 

c 'k  - 1 (I, S )  [ A  ( 5 )  - A (S)] exp [ - ( S  - T )  A (T)] ds. (3.2.6) 
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and 

(3.2.9) 

Hence, formally 

@ ( f , T )  = 4i(t ,r)  + @ ( f 3 s ) 4 1 ( s , 7 ) d s .  (3.2.10) 

On the other hand, using Fubini’s theorem, one can show by induction 
(provided that all make sense) that 

s,’ 

u k ( f , T )  = e X p [ - ( f - s ) A ( s ) ] 4 k ( S , 7 ) d s ,  k = 1,2 ,.... I‘ 
Hence, formally 

U ( / , T )  = exp[-(f-~)A(/)]  + exp[-(f-s)A(s)]@(s,r) ds. (3.2.11) 

Our program is now clear. First, we will prove that the Volterra integral 
equation (3.2.10) has a solution @(/, 7 ) .  Second, the formula (3.2.1 1) gives 
the desired fundamental solution of the evolution equation (3.1.2). Third, 
using the Holder continuity off(t) we shall prove that the integral in (3.2.1) 
makes sense and (3.2.1) defines the unique solution of (3.1.3) and (3.1.4). 
The proofs of the other theorems do not involve many complications. 

1’ 

3.3. Properties of the Semigroup {exp[ - zA (.)I) 

In this section we shall establish a series of interesting lemmas and 
estimates concerning the semigroup {exp[ - fA(r)]} which will be C ; ~ Z ~ U I  
in the subsequent sections. Here we assume that Hypotheses 1-3 are 
satisfied. The variables t,s, 5, c, 4 ,... are assumed in [0, 7‘1. 

LEMMA 3.3.1. For u E D, the following identities hold: 
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(a) (exp [ - rA(t)]  - exp [ - rA(s)]) u 

x exp [ - < A  (s)] A (s) v d t .  

(exp [ - tA  (z)] - exp [ - sA (T)]) u (b) 

= - l 'exp [ - <A (r)] A (z) v dt. 

Proof: (a) Define the function 

(3.3.1) 

(3.3.2) 

F(<) = - e x p C - ( r - t ) A ( t ) l e x p C - t A ( s ) l u ,  z 2 t. 
F is strongly differentiable with respect to < with derivative 

F ' ( 8  = - exp c- (T- < ) A  (01 A ( t )  exp c - (41 
+ exp c- ( r  - t> A (01 A (s) exp c - tA ( 4 3  ?J 

= exp c - ( r  - 5)  A (01 [ A  (s) - A  (211 exp I: - tA (s>l 0 
= exp [ - (T - < ) A  ( t )]  [ A  (s)- A ( t )]  A - '(s) 

x exp [ - ( A  (s)] A (s) u. (3.3.3) 

Since F'(<) is continuous, (3.3.1) follows upon integrating (3.3.3) from 0 
to T and using Theorem 1.3.4. 

(b) Define the function 

W) = exp c - t A  (213 0. 

W(<) = - exp [ - t A ( t ) ]  A (z) u 

Then 
(3.3.4) 

and W(<)  is continuous in <. Integrating (3.3.4) from s to t ,  (3.3.2) follows. 

The identities (3.3.1) and (3.3.2) permit us to establish the following: 
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x A (s) exp [ - ( ~ / 2 )  A (s)] x d t .  

In view of (3.1.13), Hypothesis 3, and (3.1.14) we get 

111,11 < f 2 ~ e x p  c - 6(.r/2 - 01 CIS- tlaexp( - ~ t )  

x c(r/2)-'exp(-6t/2)1lxll d t  

< CIS- tla exp( - 6z) llxll. (3.3.1 1) 

Employing (3.3.1) with u = A - ' ( s ) x  E D we see that 

x [ A ( s ) - A ( r ) ] A - ' ( s ) e x p [ - t A ( s ) ] x  dt.  
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Because of (3.1.14), (3.1.13), and Hypothesis 3 it follows that 

x Cls-tlaexp(-65)Il-ull d( 

< CIS- t l a  exp( - 65)  llxll. 

Finally, in view of (3.1.13) and Hypothesis 3 we have 

[I 1, 11 < C exp ( - 67/2) C I t - $1' Cexp( - &/2) llxll 
+ Cexp(-6~)CIt-sl"Ilxll 

= C I S -  f l a  exp( - 65)  llsll. 

From (3.3.10)-(3.3.13), we conclude that for every x E X 

Il(exPC-7A(t)l - exPC-7A(s>l).~ll < I I I I I I  + 111211 + 111311 
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(3.3.12) 

(3.3.13) 

establishing the desired bound (3.3.5). 
(b) Using the notation in (3.3. lo), we notice that, for every x E X 

A (T)(exp c - TA (01 - exp c - TA ( s ) l )x  

= A ( 0 1 ,  + A(5)12 + A ( 0 1 3 .  (3.3.14) 

Now 

A (5 )  1, = A ( 5 ) A  - ' ( 0  4 0  exp c - ( r / 2 ) A  (01 

x exPC-5A(s)lx& 

and on account of (3.1.15), (3.1.17) with n = 2, (3.1.13) and Hypothesis 3, 
we get 
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where 

Also 
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To estimate I, we use (3.3.1) with u = A(s)exp[-(r/2)A(s)] for X E D  
(recall that for x E X we have exp C - (r/2)A (s)] x E D(A2) ) .  We have 

I, = g', exp c - (T/2 - t) A (01 [ A  (4 - A (41 A - I(s) exp c - CA ( d l  A 2 ( 4  

x exp [ - (2/2) A (s)] x d t .  

Hence 

1 1 1 ,  11 < / * "~exp  [ - ~ ( t / 2  - <>I CIS- tlaCexp( - SC) 
0 

x (4C/T2)exP(-W2) llxll dt 
< (C/T) It-Slaexp(-6T) IIxII. (3.3.21) 

Using (3.3.17)-(3.3.21) we obtain 

llA(C)I111 G CllI411 

C(IIZ,II + I I I6 I I  + IlI,II) 
< (C/T)It-slaexp(-6T)llXll .  (3.3.22) 

In view of (3.3.14), (3.3.22), (3.3.19, and (3.3.16) the desired estimate 
(3.3.6) follows. 

(c) Let x E X. Then 

A (t)(exp c - T A  (01 - exp c - TA (s)l)A -l(v) x 

= A (0 (exP [ - (T/2) A ( t ) ]  - exP [ - (T/2) A (s)]) exP c - (T/2) A (s)] 

x A - l ( q ) x  

+ A (t) exp c - (T/2) A (GI (exp c - (T/2)A (01 - exp c - (r/2) A (311) 
x A - I ( q ) x  

= J ,  + J , .  (3.3.23) 

Treating J ,  in the same way we treated I ,  in (b), we obtain 

IIJ, II G Clt--sl"exP(-W IIxII. (3.3.24) 

Using (3.3.1) with u = A - ' ( q ) x  E D, we see that 
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Hence 

1 1 J 2 1 1  < (C/t)exp(-6r/2) cexpC-~(t/2-5)1 

x Clt-slaCexp(-6r)Cllxll dt 

sd" 
< C(t-s("exp(-6z) (Ix((. (3.3.25) 

By (3.3.23), (3.3.24), and (3.3.25) the inequality (3.3.7) follows. 
(d) Let x E X .  Then u = A - ' ( q ) x  E D and (3.3.2) becomes 

(exp C - tA  (z)] - exp [ - sA (t)]) A - ' (q)  x 

= - ~ ' e x p C - t . 4 ( . ) ] A ( r ) A - ' ( q ) ~ d ~ .  

Consequently 

< Clt-sl exp [ - 6 min(t,s)] llxll 

and (3.3.8) has been established. 
(e) Let x E X .  Then u = A-' (z )x  E D and (3.3.2) reduces to 

A ( r ] )  (exp [ - rA (t)] - exp [ - sA (t)]) A - '(t) x 

= - I" ( r ] )  exp c - (T)I A (4 A -"TI x d5 

= - p ( q )  exp c - 5A (41 A - '(7) x d5 

= -I' A (r1)A - ' (4  exp 1 - <A (.>I x d5. 

Hence 
IIA(r])(exPC-tA(r)l - exPc-sA(.r)l)A-Z(r)xll 

and (3.3.9) has been established. 
The proof of Lemma 3.3.2 is complete. 
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PROBLEM 3.3.1. 
tinuous on [0, TI,  that is, 

Show that the operator A -  ' ( t )  is uniformly Holder con- 

~ ~ ~ - ' ( f ) - ~ - l ( T ) ~ ~  < Clf-Tl', 0 < f , T  < T. 

[Hint: Use (2.3.7) with 2 = 0 and (3.3.5).] 

LEMMA 3.3.3. For T 2 E > 0, the operator-valued function A (t) exp 
[ - T A  (s)] is uniformly continuous in the uniform operator topology, 
jointly in all the variables t, T, s E [0, TI. 

Proof: 
identity 

For 0 < t +At < T, E < r + A T  < T, and 0 < s+As < T we have the 

A ( t + A t )  exp [ - ( T +  Ar)A (s+As] - A (t) exp [ -TA (s)] 

= [A (t + At) - A (t)] A -  ' (s+ As) . A (s+ As) exp [ - (T + AT) A (s + As)] 

+ A(t)(exp[-ArA(s+As)] - exp[-0. A(s+As)]) 

x A - 2  (s+ As) . A2(s+  As) exp [ - TA (s+ As)] 

+ A (t) (exp [ - TA (s+ As)] - exp [ - T A  (s)]) 

= I ,  + z2 + 13. (3.3.26) 

Hypothesis 3, together with (3.1.14), gives 

111,II < ClAt/" C/(T + AT) exp [ - 6 ( T  + AT)] 
< ClAtl". (3.3.27) 

The relations (3.3.9) and (3.1.17), with n = 2, yield 

lllzll < CIATI exp[-Smin(o,Ar)] (C/r2)exp(-6r) 

< CIATI. (3.3.28) 

Finally, from (3.3.6) we obtain 

IlZ311 < (C/T) IAsl"exP(-~T) 
< ClAsl".- (3.3.29) 

In view of (3.3.26)-(3.3.29) the result follows. 

LEMMA 3.3.4. 
strongly continuous in X in all the variables t ,  T ,  s, t E [0, TI. 

The operator-valued function A ( I )  exp [ - T A  (s)] A - ' ( c )  is 
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Proof: Because of the identity 

A (1) exp c- TA 011 A - '(<) 

= A ( t )  A -  '(s) exp [ - r A  (s)] A (s) A - '(t), (3.3.30) 

it suffices to show that the operator-valued functions A ( t ) A  -'(s) and 
A ( s ) A - ' ( < )  are uniformly continuous in X and that the function 
exp [ - T A  (s)] is strongly continuous in X .  Notice that 

A ( t  + Ar) A - (s+ As) - A ( t ) A  - '(s) 

= [A(t+At) - A(t)]A-'(s+As) 

+ A ( t ) A  - '(s) [ A  (3) - A (s+As)] A-'(s+As) 

= J ,  + 5 2 .  

From Hypothesis 3 JIJ,II < CIAfl'. Also (3.1.15) and Hypothesis 3 show 
that llJ,II < ClAsl" and the uniform continuity of A ( t ) A - ' ( s )  follows. 

Next we prove that the function exp [ - T A  (s)] is strongly continuous in X .  
In fact 

(exp[-(s+As)A(s+As)] - exp[-rA(s)l)A-'(O) 

= (eXp [ - ( T  + AT) A (S+ AS)] - exp [ - TA (s+As)])A- ' (0)  

+ (exp [ - r A  (s+ As)] - exp [ - r A  (s)I)A-'(O) 

= I ,  + z2. 

From (3.3.8) IIZ, II Q ClArl and in view of (3.3.5) and the boundedness of 
A-'(O) we have )II,I) Q CIAsl". Hence, for each V E D  the function 
exp [ - A (s)] v is continuous. Since by (3.1.13), exp [ - T A  (s)] is uniformly 
bounded and = X ,  it follows that exp [ - r A  (s)] is strongly continuous 
in X .  The proof is complete. 

PROBLEM 3.3.2. For 0 < E < r + E < t < T,  the operator-valued functions 

[ A  ( 5 )  - A  (?>I exp C -  ( t -  T ) A  (5)1, 

exp [- ( t  - T ) A  (TI], 

[ A  ( r )  - A (01 exp C -  ( t -  r ) A  (01, 

exp C- ( t  - T) A (r)] 

are uniformly continuous in the uniform operator topology (that is, in the 
norm of B ( X ) ) ,  jointly, in the variables t and T .  

[Hint: Use Lemma 3.3.3.1 
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PROBLEM 3.3.3. For 0 <r < f < T, the operator-valued functions 

exp 1- ( t  - 7 ) A  (TN, exp C - ( t  - 7 ) A  (01, 

(7) - A wi ~ X P  c - ( t  - 7 )  A ~i 
are continuous in A', jointly, in the variables t and r. 

[Hint : Write exp [ - (t - s)  A (r)] = A ( 5 )  exp [ - (t - r )  A (r)] A- ' ( r )  and use 
Lemma 3.3.4.1 

LEMMA 3.3.5. 
41(t,r) = [ A ( r ) - A ( r ) ] e x p [ - ( t - r ) A ( r ) ]  satisfies the inequality 

For 0 < 7  < t < t+Ar < T and any q E [0, a] the function 

I141(t+At,.r) - 41(t,r)II < C(t-r)"-l(AfY-vexp[-d(t-~)]. 

(3.3.31) 
Proofi Let us set 

4 I ( t ,  r )  = [A (7)  - A  (t)] A - (7)  A (7)  exp [ - ( t  - 7 )  A ( T ) ] .  

Then as a result of Hypothesis 3 and (3.1.14), it follows that 

I141(t,~)II < c ~ t - ~ ~ ~ - ' e x p [ - d ( t - r ) ] .  (3.3.32) 
Notice that 

J = @l(t+At,r)  - 4l( t , t )  

= [ A  ( t )  - A ( r  + At)] exp [ - ( t +  At-z)A ( r ) ]  

+ [A (5 ) -  A (t)] (exp [ - ( t +  At-T)A (r)]  - exp [ -(t - r ) A  (41) 
= J ,  + J 2 .  

By Hypothesis 3 and (3.1.16) 

l l J l  II = II [ A  ( t )  - A (t+A?)] A - ' ( t ) A  ( t )  exp [ - ( t+ At  - r )A  (711 II 
< C(Aty [C/( t  + A t  - r)] exp C - 6 ( t  + At- T ) ]  

< C(Aty(t- r ) - l  exp [ - d( t  - T ) ]  (3.3.33) 
and 

1152 II = II [ A  (5 ) -  A (111 A - l ( 4  
x (A (7) exp [ -(t+At - r ) A  (r)] - A (7)  exp [ - ( t - r ) A  (r)l)ll 

+ C/(t - r )  exp [ - 6 (t - T)]) 
< C(t  - r>r ( [ C / ( t  + At - r)] exp [ - 6 ( t  + At- r)] 

< c(t-7Y-l exp[-6(t-r)]. (3.3.34) 
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On the other hand, for x E X 

J2 x = - [ A ( t ) -  A (t)] (I-exp[ - AtA(r)])exp [ - (t - r ) A  (41 x 

= - [ A  (t) - A  ( t ) ] A -  ' ( T )  exp [ -<A (T)] A2(r )  suAt 
x exp[-(t-r)A(~)]x d< 

and consequently 

llJ211 < C(t-7)" C e ~ p ( - 6 t ) [ C / ( r - t ) ~ ] e x p [ - b ( t - r ) ]  dr 

(3.3.35) 

l' 
< C ( ~ - T ) " - ~  (At)exp [ -6(r -T)]. 

The relations (3.3.34) and (3.3.35) show that 

llJ2ll = IIJ2111-a llJ211" 

< c(t- t ) ( a -  1) (1  - a )  exp [ - 6(  1 - a)(t - T)] (t - T ) ( ' - ~ ) '  

x (At>" exp [ - 6a(t- t)] 

= c(t - T) - '(At)" exp [ - 6 ( t  - T ) ]  . (3.3.36) 

Thus from (3.3.33) and (3.3.36) we derive 

IlJll < C ( t - r ) - 1 ( A t > " e x p [ - 6 ( r - t ) ] .  (3.3.37) 

Moreover, from the definition of J and (3.3.32) there results the inequality 

1 1 ~ 1 1  < c(t-z)"-l exp[-6(t-~)]. (3.3.38) 

In view of (3.3.38) and (3.3.37) we finally obtain 

llJll = l lJ l [* /a  l l J p - * ) / a  

< C(t  - T ) * ( ~ -  ' ) I a  exp [ - (6r]/a) (t - r)] C(t  - r)(*-*)/' (At)"-* 

x exp(C - 6 (a - dbl ( t  - .c>) 

= C(t  -t)*-'(At)"-"exp[ - 6 ( t  -41. 
The proof is complete. 

LEMMA 3.3.6. The following estimates hold: 
f l  



3.3. Properties of the Semigroup {exp[ - tA(r)]}  73 

(b) I ~ A ( ~ ) l ' - ~ e x p [ - ( t - s ) A ( s ) ]  dsll < C, p > 0 (3.3.40) 
T 

Proofi (a) Set 

F(r,T)X = A(r) exp[-(t-s)A(s)]x ds. x E D. l 
Then from (3.3.1) and Fubini's theorem, one gets 

F(t,r)x = A ( t )  exp[-(t-s)A(s)]xds 1' 

x [ A ( t ) - A ( s ) ] e x p [ - ( t - s ) A ( s ) x  d t  ds 1 
= ( I -  exp[-(t-r)A(r)]) I- f#ll(t,s)xds [ I' 1 

We now use Hypothesis 3, (3.1.13), (3.1.14), (3.3.32), and (3.3.31) to 
obtain, after some manipulations, the estimate 

We then have by Gronwall's inequality 

Since D is dense, the estimate (3.3.39) follows. 
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(b) As the constant C does not depend on 7 and t ,  we get 

< c. 
The proof is complete. 

3.4. Existence of a Fundamental Solution 

In  this section we prove the existence of a fundamental solution for the 
evolution equation (3.1.2) under Hypotheses 1-3 which we shall assume 
without further mention. As we pointed out in the heuristic remarks in 
Section 3.2, we will first show that the Volterra integral equation (3.2.10) 
has a solution @ ( t ,  7 )  and then prove that with this @(?, r), formula (3.2.11) 
gives a fundamental solution of (3.1.2). 

LEMMA 3.4.1. The Volterra integral equation (3.2.10) has a solution 
@ ( t ,  7 )  with 0 < 7 < t < T given by (3.2.9) which is uniformly continuous, 
in the topology of B ( X ) ,  in t ,  7 for 0 < 7 < t - E ,  0 < E < t < T and satisfies 
the estimate 

II@(?,7)11 < c1t-71=-1. (3.4.1) 

Under the restriction (3.4.1) the solution @ ( t ,  7 )  is unique and satisfies the 
equation 

W , r )  = 4 1 0 9 7 )  + 4 , ( t , s ) @ ( s , r ) d s .  (3.4.2) 

Proof: From the results of Section 3.3, the kernel $ ] ( t , r )  of (3.2.10) is 
uniformly continuous in ( r ,  7 )  in the uniform topology, provided that 
1-7  2 E > 0, and satisfies the estimate (3.3.32). It follows by induction that 
the function &(tr7) defined by (3.2.8) is uniformly continuous in ( t , 7 )  in 
the uniform operator topology for t - 7 2 E and satisfies the estimate 

I' 

I I ~ ~ ( ~ , T ) I I  < ~ ~ i t - 7 1 ~ a - ~ / r ( w  (3.4.3) 

where T(n)  is the gamma function. Thus the integral (3.2.8) makes sense, 
and the series (3.2.9) converges uniformly for t - 7  3 E t o  a uniformly 
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continuous function @ ( t ,  7 )  such that 

m 

m 

G c l t - ~ ~ ~ - ~  C (cz-')k-lp-(ka) 

< cIt-Ty-1, 

k =  1 

in view of the fact that the last numerical series converges. On the strength 
of (3.4.3), it follows that 

= @ ( t ,  7 )  - 41 ( 4  7) .  

Hence, @ ( t , 7 )  satisfies (3.2.10) and the estimate (3.4.1). Let Q l ( t , 7 )  and 
a2(t, 7 )  be two solutions of (3.2.10) satisfying (3.4.1). Then 

which implies by Gronwall's inequality 

( t ,  7 )  = 0 2  ( t ,  z). 

Finally we establish (3.4.2). Multiplying (3.2.10) on the left by dl(s,t) 
and integrating from 7 to  s, we get, using Fubini's theorem, 
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satisfies the equation 

( t ,  7) = 42 ( t ,  7) + l v  (1, s) 41 (s, 7) ds 

and consequently, using the uniqueness of solution of (3.2. lo), 

Equation (3.4.2) is therefore established. The proof is complete. 

smoothness property of @ ( t ,  7). 
Equation (3.4.2) and Lemma 3.3.5 can be used to prove the following 

LEMMA 3.4.2. For 0 < T  -= t < t + A t  < T and any q E (O,.] 

II@(t+At,r) - @(t,T)11 < C(Ar)"-q(t-r)v- l  (3.4.4) 

where the constant C depends on q. 

Proofi From (3.4.2) it follows that 

@ ( t + A r , r )  - @(t,r)  = & ( t + A t , t )  - & ( t , ~ )  

+ i'+A'41 ( t  + At, s) @(s, T) ds 

+ L f [ 4 , ( f + A r , s )  - 41(t,s)]@(s,~) ds. (3.4.5) 

In view of (3.3.31), (3.3.32), and (3.4.1) we obtain 

ll@(t+At,.r) - @(t,.r)ll 

< C(t - z)"--' (At)"-" exp [ - 6 ( t  - r)]  

+ C exp [ - 6 ( t  + Al - s)] ( t  + At - s)" - ' (s - 7)" - ds 

+ ( r C ( t - s ) n -  ' exp [ - 6 ( t  -s)] (s- 7)"- ' ds 

The proof is complete. 
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PROBLEM 3.4.1. For 0 <T < t < r+At  < T and any q E (0, c?] 

II[@(t+At,r)  - @ ( t , ~ ) ] A - ' ( ~ ) l l  < C(At>ll-"(t-7)" (3.4.6) 

where the constant C depends on q. 

[Hint: Use (3.4.2).] 

The following lemma is the existence part of Theorem 3.2.1. 

LEMMA 3.4.3. 
solution of (3.1.2). 

The operator U ( t , 7 )  defined by (3.2.11) is a fundamental 

Proof: From the results of Section 3.3 and Lemma 3.4.1 it follows that 
the operator function U ( t ,  T )  is uniformly continuous in the variables t ,  T 

for t > T ,  and is strongly continuous when t 2 T .  It is also obvious that 
U ( T ,  r )  = I .  Next, we shall prove that U ( t ,  T )  is strongly continuously 
differentiable in t for t > T ,  that the range of U(r, S) is in D, and that (3.1.5) 
holds. Let t--5 2 E > 0,O < p < E ,  and x E X .  Define 

U,>(f ,  r )  X = eXp [ - ( f  - T ) A  ( T ) ]  X + eXp [ - ( f  - S ) A  (S)] @(S,T)X dS. 1'- (3.4.7) 

U,,(t, T )  is continuously differentiable in t and using (3.4.2) we get 

aUp(f, T ) X / d t  = - A  ( t )  eXp [ - ( f  - T )  A ( T ) ]  X - A ( t )  

In view of (3.3.32), (3.4.1), and (3.4.4) 
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so that J3 and J4 converge uniformly to zero as p + 0. Also J ,  + 0 as p -+ 0, 
uniformly with respect to t 2 T + s, because exp [ - p A  ( t  - p)]  x -+ x as p -+ 0 
and the function @ ( t , ~ ) x  is uniformly continuous in ( t , r )  for t 2 T + E .  

We now claim that J2 converges as p+O,  uniformly with respect to 
t 2 T + E .  Assuming this claim it then follows from Theorem 1.3.5 that 
~ ~ e x p [ - ( t - s ) A ( s > ] @ ( s , ~ ) . u d s € D  and as p - 0  

5, + - A  ( t )  exp [ - ( t  - s ) A  (s)] @(s, T ) X  ds. Lt 
Hence U ( t ,  T )  x E D and as p -+ 0, we obtain from (3.4.8) 

aU,(t,r)/dt -+ - A ( t ) U ( t , r ) x  (3.4.9) 

uniformly in ( t , r )  for t 2 T + E .  On the other hand, U , ( t , r ) x  -+ U ( t , r ) x  
uniformly in ( t ,  T ) .  Therefore by a standard argument, [dU( t ,  7) /dr ]  x exists, 
is continuous in ( t ,  T )  for t > T ,  and 

[aU( t ,  r)/dr] x = lim aU,,(t, T ) / &  x 
P-+O 

= - A ( r )  U ( t , r ) x .  

It remains to establish the claim. We write 

A ( t )  /'-'exp[ - ( t  - s ) A  (s)] @(s, T ) X  ds 
T 

= A (1) J . exp [ - ( t - s ) A  (s)] [@(s, r )  - @(t, r ) ]  x ds 
r 

+ A ( t )  1' -,ex p [ - ( t  - s) A (s)] @ ( t ,  T )  x ds 
r 

= I ,  + 12.  

Because of (3.4.6) it suffices to prove the uniform convergence of I , .  Since 
@ ( t ,  T ) X  is continuous in r for t 2 T + &  it is enough to establish the uniform 
convergence of the operator 

A ( t )  j'-'exp [ - ( t  - s ) ~  (s)] x ds, x E X .  (3.4.10) 

This is obvious for any x E D. Since D is dense in X and by Lemma 3.3.6, 
the operator (3.4. lo) is bounded and the final assertion follows. The proof 
is complete. 

r 
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3.5. Uniqueness of the Fundamental Solution 

I n  Lemma 3.4.3 we exhibited a fundamental solution U ( ~ , T )  of (3.1.2), 
namely, the operator defined by (3.2.1 1). In  this section we shall complete 
the proof of Theorem 3.2.1 by proving that (3.1.2) has a unique fundamental 
solution. To this end it suffices to prove the following lemma: 

LEMMA 3.5.1. 
any T E [0, T )  the abstract Cauchy problem 

Let Hypotheses 1-3 be satisfied. Then for any uo E X and 

du/dt + A ( t ) u  = 0, T < f < T and U ( T )  = uo (3.5.1) 

has the unique solution u ( t )  = U ( t ,  T )  uo where U ( t ,  T )  is any fundamental 
solution of (3.1.2). 

Assume that Lemma 3.5.1 has been established. Then if U , ( ~ , T )  and 
U ,  ( t ,  T )  are two fundamental solutions of (3.1.2), we should have that for 
any uo E X the functions U ,  ( t ,  T )  uo and U2 ( t ,  T )  uo are both solutions of 
(3.5.1). Because of uniqueness it follows that U ,  ( t ,  T )  uo = U,( t ,  T )  uo, and 
consequently U ,  ( t ,  T )  = U, ( t ,  T ) .  

The following two lemmas are needed in the proof of Lemma 3.5.1. 

LEMMA 3.5.2. 
hypotheses 1-3. Let!€ C[[O, T ] , X ] .  Then the Cauchy problem 

For 0 < t < T the operators A ( r )  are bounded and satisfy 

du/dt + A ( t ) u  =f(t), T < t < T and U ( T )  = 0 (3.5.2) 

has a unique solution. 

Proof: 
the bounded operators A ( r ) .  Then 

Let W(t , t )  be a fundamental solution of (3.1.2) corresponding to 

u ( t )  = W(t , s ) f ( s )  ds I' 
is a solution of (3.5.2) as one can verify by direct differentiation. To prove 
uniqueness, suppose thatf(r) = 0 in (3.5.2). Then any solution satisfies the 
integral equation 
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< C/'llu(~)lI 7 ds, 4~) = 0 

and by Gronwall's inequality u ( t )  = 0. The proof is complete. 

LEMMA 3.5.3. For any X E  X ,  the function A ( t )  U( t ,T )A- ' (T)x  is uni- 
formly continuous in ( t ,  T )  for 0 < T c t < T. Moreover, for all ( t ,  t )  with 
O < z < t < T  

IIA(t) u(tJ)A-'(T)Il < c. (3.5.3) 

Proof: Define the functions 

w ( f , T )  = A ( f ) u ( t , T ) A - ' ( T ) ,  0 < T < f < T 

and 

F(s)  = exp[-(t-s)A(t)] U ( S , T ) , ~ - ' ( T ) ,  T < s < t .  

Then, F(s)  is continuously differentiable and 

F'(s )  = exp [ - ( t - s )  A (t)] A ( t )  U(s ,  T ) A - ' ( T ) x  

- exp [ - ( t  - s ) A  (t)] A (s) U(S ,T)A  - ' ( 2 )  x 

= exp [ - ( t - s ) A  ( t ) ]  [ A  ( t )  - A (s)] U(s,  T ) A -  ' ( T ) x .  

Multiplying both sides by A ( t )  and integrating the result with respect to s 
from T to t ,  we obtain 

w(f ,  T) X = A ( f )  eXp [ - ( f  - 5 )  A ( f ) ]  A - ' ( T )  X 

ff 

+ J7 A ( t )  exp [ - ( t  - s) A (t)] [ A  ( t )  - A (s)] U(s, T )  A - ' ( T )  x ds 

= I ,  + z,. (3.5.4) 

By Lemma 3.3.4, I ,  is uniformly continuous in t ,  T for t > T .  Since W(t,  T )  x 
is also uniformly continuous in ( t ,  T )  for t -  T 2 E > 0 it remains to show that 
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Z2 converges uniformly to a limit as t -  T --f 0. Notice that 

< Cllxll. 

Hence, from (3.5.4), (3.5.5), and (3.5.6), we obtain 

and consequently 

I I W T > x l l  < Cllxll, 

which proves (3.5.3). Now (3.5.5) and (3.5.7) show that 

Ilz2ll ,< C(t-sY-'Cllxll ds I' 
= C(t-s)OIllxll + 0 as I - T --f 0, 

uniformly in ( t ,  5). The proof is complete. 

(3.5.6) 

(3.5.7) 

Proof of Lemma 3.5.1: By Lemma 3.5.2, Lemma 3.5.1 is true if A ( r )  is 
bounded for 0 < t < T. Clearly, U ( t ,  T )  uo is a solution of (3.5.1). We shall 
prove the uniqueness result of Lemma 3.5.1 for the case of unbounded 
operators A ( t )  by approximating (3.5.1) with the problems 

du/dt + A,( t )u  = 0 and U ( T )  = uo (3.5.8) 

where A , ( t )  is the bounded operator given by 

A,( t )  = A ( r ) [ z + n - ' A ( r ) ] - ' ,  n = 1,2 ).... 
We shall first prove that for each n = 1,2, ... the operators A , ( f )  for 
0 < t < T satisfy Hypotheses 1-3. Moreover, the constants of Hypotheses 
1-3 are independent of n and t ,  T .  Clearly, A , ( [ )  is bounded for each n and 
Hypothesis 1 is satisfied. To prove Hypothesis 2 observe that for 1. E S 

A , @ )  + AZ = (n+A)/(n)[nA/(n+A)Z+ A ( r ) ]  [ z + n - ' A ( t ) l - ' .  

[ A , ( t ) + i J ] - '  = (n+A)-'Z + [ n 2 / ( n + i . ) 2 ] ( A ( t )  + [(nA/n+A)-JZ)-' 

Therefore 
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is bounded and 

I I [ A , , ( ~ ) + I ] - ' I I  < In+;./-' + l n + % - ' [ C / ( l l  +;./nl+lRl)] 

< C/(l + 14). 
Thus, Hypothesis 2 is valid. Finally we shall verify Hypothesis 3' which is 
equivalent to Hypothesis 3. We have 

A,,(r)A;'(s)  = ~ , , ( r ) [ ~ - ' ( s ) + n - ' ]  

= A ( t )  [ I + n -  ' A ( r ) ] - '  A -  '(3) + n-' A ( t )  [ ~ + n -  ~ ( t ) ] - '  

= [ I + n - ' A  

= I +  [ r+n- 'A( t ) ] - '  [ A ( t ) ~ - l ( s ) - ~ ] .  
A ( t ) A - l ( s )  + I - [~+n-' A (r)]-' 

Hence 

IICAn(t)-An(s>IA,'(s)II G II[I+n-'A(t)I-'II IICA(t)-A(s>IA-'(s)II 

G Clt-sl". 

Next, let U,,(r, T )  be the fundamental solution corresponding to  

duldr + A, , ( t )v  = 0, 0 < t < T ,  

as it was constructed in Section 3.4. 
Then 

l l U n ( t ~ T ) l l  G C +  ~ C l I Q n ( s ~ . ) I I  ds 

< C +  C ( s - ~ y - '  ds 

< C  (3.5.9) 
I' 

where C is independent of n. 
Let u, ( r )  be the unique solution of (3.5.8) and u ( t )  be any continuously 

differentiable solution of (3.5.1). The function w, ( t )  = v ( t ) -  v,,(r) satisfies 
the equation 

dw,,/dt + A,,(t)w-,, = [A,,(r)-A(t)]u(t) (3.5.10) 
with 

M',,(T) = 0. (3.5. 

By Lemma 3.5.2 it follows that 

wn (0 = U,, 0, s) [A,, (s) - A (s)] 4 s )  ds (3.5. I' 
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is the unique solution of (3.5.10) and (3.5.11). We wish to show that 
w,( t )  + 0 as n --f 03, that is, limn+- u,( t )  = u ( t )  which will imply that v ( t )  is 
unique as being the limit of the unique solutions u , ( t )  of (3.5.8). As n -+ co 
the operators [A , ( s ) -  A (s)] A - ' ( s )  converge to zero, uniformly with 
respect to s. Indeed, they are uniformly bounded 

II CAn(s)-  A (s)I A - '(s)II = II [ I +  n- ' A  (811 - ' - I I I  
< C + l = C  

and for any x E D 

II[A,(s)- A (s)] A - '(s)xII = 11 [ z + n -  ' A  (s)]- 1 x-xII 

= 11 n - ' [ I  + n - ' A  (s)] -"A (s) A - '(0) A (0) x 11 
< n - ' c [ C I I ~ ( O ) x l l ]  -+ 0 as n -, co, 

uniformly with respect to s. 

Taking x = A (s) u ( s )  which is continuous in s for T < s < T it follows from 
(3.5.11) that w,(t)+O as n-+co. Finally, let u ( t )  be a solution of (3.5.1) 
which is not necessarily continuously differentiable near t = 7.  For any 
T -= s < T, u ( t )  is continuously differentiable solution of (3.5.1) for s < r < T. 
From the identity 

U ( t , S ) U ( S )  = U ( t , s ) A - l ( s )  * A(s)u(s) 

and Lemma 3.5.3 it follows that the solution U(t ,s)u(s)  is also continuously 
differentiable for s < t < T with U(s,  s) u ( s )  = u(s) .  By the uniqueness result 
we have proved so far we conclude that u ( t )  = U(t , s )u ( s ) .  Taking limits as 
s+ T we get u ( t )  = U ( t ,  T )  uo. The proof is complete. 

COROLLARY 3.5.1. For 0 < s < T < t < T the following identity holds: 

U(t ,  T )  U ( r ,  s )  = U ( t ,  s). (3.5.1 3) 

Proofi For any x E X ,  U ( t ,  s)x is the unique solution of (3.1.2) through 
(s, x). At time T this solution goes through ( T ,  U ( T ,  s ) ~ ) .  On the other hand, 
U ( t , r )  U ( r , s ) x  is the unique solution of (3.1.2) through ( T ,  U ( T , S ) X )  and 
consequently coincides with U ( t ,  s) x. The proof is complete. 

PROBLEM 3.5.1. Verify (3.2.4). 
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3.6. Solution of the Abstract Cauchy Problem 

The present section is devoted to the proof of Theorem 3.2.2. In Lemma 
3.5.1 we proved that the homogeneous Cauchy problem (3.5.1) has the 
unique solution U ( t ,  T) u,,. Therefore (3.2.1) will have been established if we 
prove that the function 

w ( t )  = U(t , s ) f ( s )  ds (3.6.1) l 
satisfies the Cauchy problem 

dw/dt + A(t)w = f ( t ) ,  0 < t < T; (3.6.2) 

w(0)  = 0. (3.6.3) 

We shall first prove the following lemmas: 

LEMMA 3.6.1. For 0 < T < t < T the following estimates hold: 

(a) IIU(t,r) - exp[-(t-t)A(t)llI < Clt--tl"; (3.6.4) 

(b) (3.6.5) llA(t) [ U ( t ,  T) - exp[-(t-r)A(t)]II < Clt -TI"-' ; 

( 4  llA(t) U(t,T)II < Clt-Tl-'. (3.6.6) 

Proof: (a) We have, because of (3.2.1 l), 

U(r,r) - exp[-(t-r)A(t)] = (exp[-(t-z)A(~) - exp[-(t-z)A(t)]) 

+ l e x p  [ - ( t  - s) A (s)] (s, 7) ds 

= I, + I,. (3.6.7) 

To estimate I,, we use the relation (3.3.5) and get 

II I ,  II < C It - TI" exp [ - 6 ( t  - T)] 
< Clt-zl". 

The inequality (3.1.13) together with (3.4.1) yields 

(3.6.8) 

ll~,ll < / t ~ e x p [ - ~ ( t - s ) l  T ~ l t - s l a - 1  ds 

< Clt-zl". (3.6.9) 

The desired estimate (3.6.4) follows as a consequence of (3.6.7), (3.6.8), 
and (3.6.9). 
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(b) We have from (3.6.7) 

A (t)  (U(r, 5)  - exp [ - (t  - T )  A ( t ) ] )  = A (t)  1, + A ( t )  Z, . 
Using (3.3.6), we get 

Notice that for x E X 

A ( t )  1, = l f A  (t)exp[ - ( t  - s ) A  ( s ) ]  [@(s, T )  - @ ( t ,  z ) ]  ds 

+ A (r)(Jfexp[ - ( t  - s )A(s ) ]  ds (3.6.1 1) 
7 

In view of (3.1.16), (3.4.4), (3.3.39), and (3.4.1), we obtain for any r]  E (0, ct) 

< c(f-T>a-', (3.6.12) 

and the inequality (3.6.5) is established. 
(c) By (3.6.5) and (3.1.14), we get 

11-4 0) U ( t ,  d11 < II A ( t )  exp C-  ( t  - T ) A  ( t )]  II + Clt - T I a -  ' 
f [c/(f-T)] + C(f-Tl'-' 

< CIf-Tl-', 

which proves (3.6.6). 

LEMMA 3.6.2. For any x E X with 0 < t < T 

lim ( [ U ( t + A t ,  t )  - I ] / A t ) A - ' ( t ) x  = - x .  (3.6.13) 
Ar-Of 

Proof: The function 

F(s)  = exp[-(t-s)A(t)] U(s ,r )y ,  y E X ,  T < s < t ,  

is continuously differentiable and 

F'(s) = exp[-(t-s)A(t)] [ A ( t ) - A ( s ) ]  V(s , r )y .  (3.6.14) 



86 3. Linear Evolution Equations of the Parabolic Type 

Integrating (3.6.14) from T to f ,  we obtain 

Setting y = A - ' ( t ) x ,  it follows that 

([U(f+At, t) - I]/At)A-'(t)x 

= [(exp[-AfA(f+At)] - Z)/At]A-'(r)x 

+ (At)-' LiiAtexp [ - (f + Af - s ) A  (t+At)] 

x [A(t+At)-A(s)]A-'(s) * A ( s ) U ( s , t ) A - ' ( t ) x d s  

= J1 + 5 2 .  

By (3.1.13), Hypothesis 3, and (3.5.3), one gets 

(3.6.15) 

On the other hand, since y E D, we have 

exp[-AtA(t+Ar)]y - y = - e x p [ - a A ( f + A t ) ] A ( t + A r ) y d a .  P' 
and as a result 

Af 
J ,  = - ( A r ) - ' i  e x p [ - a A ( r + A t ) ] A ( r + A r ) A - ' ( t ) x  do + --.Y 

as A t - 0 , .  

The proof is therefore complete. 

PROBLEM 3.6.1. Prove that for every x E X ,  yo U(r,s)xds E D. 
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Now we are ready to show that (3.6.1) satisfies (3.6.2) and (3.6.3). 
Utilizing (3.5.13) we formally obtain 

[w(t+At) - w(t)]/At 

= (At)-' L''*U(t+At,s)f(s) ds - (At)-' U(r,s)f(s)  ds s,' 
= (At)- ' J'"*U(t +At, s)f(s) ds 

+ ( A t ) -  [ U ( t +  At, s) - U(t ,  s ) ] f ( s )  ds 

= (At)-' ~'"'U(t+At,s)f(s) ds 

+ ([U(t+At, t) - Z]/At) U ( t , s ) f ( s )  ds s,' 
= (At)-' J'"'U(t+At,s)f(s) rls 

+ ( [ U ( t + A t , t ) - Z ] / A t ) A - ' ( t )  A ( t )  U ( t , S ) L f ( S ) - f ( f ) ]  ds " 

+ [I - exp c - tA  (t)l lm] 
In obtaining (3.6.16) we have made use of the identity 

(3.6.16) 

In view of Lemma 3.6.1, Problem 3.6.1, and Hypothesis 4 all the terms in 
(3.6.16) make sense and consequently (3.6.16) is valid. Next, taking limits 
on both sides as At -, 0, and using Lemma 3.6.2 we conclude that dw(t)/dt 
exists and 

dw(t)/dr = f ( t )  - A 0) 1' U(f ,  s) CS(s) -fWl ds 
0 

- A ( t ) / ' ( U ( t , s )  0 - expC-(t-s)A(t)I)f(t) ds 

- [ I  - exp C( - tA  <t)ll f(0.  (3.6.17) 
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dw(t)/dt = f(t) - A ( t )  U( t ,  s)f(s) ds l 
= f ( t )  - A ( t )  w ( t ) .  

Finally, one can verify that all the terms in (3.6.17) are continuous functions 
o f t  and consequently the solution w ( t )  of (3.6.2) and (3.6.3) is continuously 
differentiable. The proof of Theorem 3.2.2 is therefore complete. 

3.7. Differentiability of Solutions 

In this section we shall prove Theorem 3.2.3 which asserts that under 
Hypotheses 1-3, 5 ,  and 6 the solution u ( t )  of the abstract Cauchy problem 
(3.1.3) and (3.1.4) is (k  + 1)-times (strongly) continuously differentiable on 
[ E ,  T ]  for any E > 0. We need the following lemmas. 

LEMMA 3.7.1. Assume that Hypothesis 6 holds and that the operator 
A (O)A-'(r) is bounded for each t E [O, TI .  Then for any x E X the function 
A (0) A -  ' ( 2 )  x has continuous derivatives 

(dj /dt j )[A(O)A- ' ( t )x]  = A ( 0 )  [A- ' ( t ) ] ( j )x ,  1 < j < k .  

Furthermore, the operators A (0) [ A  - ' ( t )]")  are uniformly bounded for 
t E [0, TI.  

Proof: SetB(t) = A(t)A-'(0)and Bh(t) = [B(t+h)-B(t)] /h .ThenB- ' ( t )  
=~(O)A- ' ( t )and  ~ ( t + h ) y - ~ ( t ) y = h ~ , ( t ) y w h e r e  Il&(t)yll < C, Cbeing 
independent of h. Multiplying both sides of this equation by B -  ' ( t )  on the 
left and taking y = B -  ' ( t  + h)x  we obtain 

B - ' ( f + h ) x -  B - ' ( t ) x  = - h e - ' ( t ) B h ( f ) B - ' ( t + h ) x .  (3.7.1) 

From (3.7.1), we observe that 

I (B- ' ( t+h)x  - B-'(t)xll  < Clhl JIB-'(t+h) 11, 
which proves that B - ' ( t ) x  is continuous and 

(d/dt) B -  ' ( t )  x = - B -  ' ( t )  B'(r) B -  ' ( t )  x. 

From this identity we see that the first k derivatives of B - ' ( t ) x  = 

A ( 0 ) A - ' ( t ) x  exist, are continuous, and the operators A(O)[A-'(t)]"' are 
uniformly bounded for 1 < j  < k .  The proof is complete. 
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LEMMA 3.7.2. Let g ( s )  be a continuous function for r < s < T. Then the 
function s i  U(t , s )g(s )  ds is uniformly Holder continuous in t for r < t < T 
with any exponent y E (0,l). 

Proof: Let + be a (real) bounded linear functional and 0 < f i  < h.  Employ- 
ing the mean value theorem and (3.6.6) we notice that 

I4[U( t+h,s )s l  - 4CU(t,S)X]I < hI+[(d/dt) U(t+fi,S)X]I 

G h 1 1 + 1 1  ll4l Il(d/dt) W+fi,s)II 

G Cll+ll Ilxllhlt-sl-'. 

This inequality implies that for 0 < h < I t -s l  

(3.7.2) 

Now observe that for 0 < h < t - r with h < 1 

= J I ' ~ h u ( f + h , S ) g ( s ) d s  - ll h U ( t , s ) g ( s ) d s  

+ l - h [ U ( t + h , s )  - U ( t , s ) ] g ( s )  ds. (3.7.3) 

After some computations the relations (3.7.3) and (3.7.2) yield the desired 
conclusion. 

Proof of' Theorem 3.2.3: Let u ( t )  be the solution of (3.1.3) and (3.1.4). Set 
u h ( t )  = [u(r+h)-u(t)]/h.  By (3.1.3) it follows that for any 0 < t < t + h  G T 

Making use of formula (3.2. I), we find that for any r E (0, t )  
d U h ( t ) / d t  + A ( r ) u h ( t )  = ( [ f ( t + h )  - f ( t ) l / h ) - ( [A( t+h) -  A( t ) l /h )u( t+h) .  

u h ( t )  = u( t , r )uh( r )  + lu( t ,s)  

x ". f (s+h> -f(s)l/h) - (CA(s+h) - A(s) l /h)u(s+h)l  ds. 
(3.7.4) 

Clearly, [ f ( s + h )  - f ( s ) ] /h  + f ' ( s )  as h + 0, uniformly with respect to 
s E [r,  t ] .  Moreover 

(CA(s+h) - A(s) l /h)u(s+h) 

= ( [ A  (s+ h) A - ' (0)  - A (s) A - '(O)]/h) A (0) A - 1(s + h) A (s+ h) u(s+ h).  
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Using Hypothesis 6 ,  Lemma 3.7.1, and the uniform continuity of A ( t )u( t )  
for E < t < T with E > 0, we obtain 

lim([A(s+h) - A(s ) ] /h )u ( s+h)  = A’(s)u(s)  
h - 0  

uniformly with respect to s E [T, t ] .  (Here, A’(s) stands for A’ (s )A- ’ (0 )  
. A  (0).) Now taking limits as h 4 0 in (3.7.4) we find 

u’(t) = U ( ~ , T ) U ’ ( T )  + U ( t , s ) [ f ’ ( s )  - A’(s)u(s)]  ds. (3.7.5) 

In  view of Lemma 3.7.2 the integral in (3.7.5) is uniformly Holder con- 
tinuous with any exponent y E (0, I ) .  Hence, the same is true for u‘(t) in 
[T’ ,  T ]  for T’ > T .  Since T is an arbitrary point in (0, T I ,  u’(t) is uniformly 
Holder continuous (with exponent y )  in [ E ,  T ]  for any E > 0. From (3.7.5) 
and the results of Section 3.6 it follows that u’(t) is continuously differentiable 
in [T’ ,  T ]  for any T’ > T ,  and 

d 2 ~ i ( t ) / d t 2  + A ( t )  du(t)/di = f ’ ( r )  - A’(r)  u(t) .  (3.7.6) 

Since T is an arbitrary point in (0, T I ,  u”(t) is continuous in every interval 
[ E ,  T ]  with E > 0. Writing 

1’ 

A’ ( t )u ( t )  = A ‘ ( t ) A - ’ ( O ) .  A ( O ) A - ’ ( t ) .  A ( t ) u ( t )  

and using Lemma 3.7.1 we see that A ’ ( t )  u ( t )  is continuously differentiable. 
Applying the same arguments as before we find that for any 0 < z < t < T 

U ” ( t )  = U ( t , T ) U ” ( T )  + U(t,S)[f”(S)- A”(s)U(S)-2Af(s)U’(S)] d.5 I‘ 
where A”(s)  u ( s )  stands for 

A”(s) A - ‘ (0)  . A (0)  u(s) = [A”(s)  A - I ( O ) ]  [ A  (0) A - ‘(s)] A (s) u (s). 

Again from Lemma 3.7.2 the function u”(t) is uniformly Holder continuous 
in every interval [ E ,  T ]  for E > 0. Hence u”’(/) exists, is continuous in every 
interval [ E ,  T ]  and 

u”’(t) + A ( t ) u ” ( t )  = -2A’(t)u’(t) - A ” ( t ) u ( t )  + f ” ( r ) .  

By induction, it now follows that 

The proof is complete. 
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3.8. Asymptotic Behavior 

In this section we shall investigate the behavior as t -, co of any solution 
u( t )  of (3.1.8). Our aim is to prove Theorem 3.2.4. 

Proof of Theorem 3.2.4: Set 

V ( P )  = SUP IICA(t)-A(T)IA-’(s)ll. (3.8.1) 

By Hypothesis 9 q ( p )  4 0  as p -,a. From (3.8.1) and Hypothesis 3 we get 

f > r Z g  
O s s <  m 

~ ~ [ ~ ( ~ ) - ~ ( T ) ] ~ - ’ ( ~ ) ~ ~  < C[q(p)]%It-Tl“/’, p < T < f ,  S > 0. 

(3.8.2) 

Recalling the notation of Section 3.2 and using (3.1.14) and (3.8.1) we 
obtain for t > T  2 p 2 0 

1141 ( t ,  T ) I I  < ~ [ q  (p)]” It - T I  - + ( “ I 2 )  exp [ - 6 ( t  - T)] (3.8.3) 

where K is a constant. Inductively, it follows that 

I14k(f, T ) l l  
[r [r(k~t/2)] - exp [ - 6 (t - T)]. (ka /2) -1  < (KCv(P)l)”k 1t-d 

(3.8.4) 
Hence, for any 0 E (0,6) 

11 @ ( t ,  T )  1) < c [ q  (p)]’ It - 51 -[‘ -(a’2)’ exp[-B(t-~)], p < T < t ,  

(3.8.5) 

where C is a generic constant independent of p. In the light of (3.1.13), 
(3.1.14), (3.8.2), (3.8.3), and (3.8.5) one can establish the estimate 

/I@ ( t  + At,  T )  - @ ( t ,  T )  11 < c [q (p)]” It - TId- exp [ - e( t  - T ) ] .  

Then, analogously to (3.6.4), (3.6.5), and (3.6.6) one obtains, for 0 < 0 < 6 
and t > T > p 2 0, the estimates 

II U(r, T )  - exp c - ( t  - 4 A (01 II 

I I A ( t ) ( W  7 )  - exPC-(t-T)A(t)l)ll 

< C [ q ( p ) ] %  ( t  - ~)cl/’ exp [ - e(t - T)] (3.8.6) 

< c[q (p)]” ( f  - T ) -  +(“”) eXp [ - e(f - T ) ]  

II A ( t )  u(t, T )  11 < C(r - T ) -  exp [ - 8 ( r  - T ) ] .  

(3.8.7) 

(3.8.8) 
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We shall now prove that 

du/dt + 0 as t -+ 03. (3.8.9) 

We have 

u(t )  = U ( ~ , T ) U ( T )  + U(t , s ) f ( s )  ds = U ( ~ , T ) U ( T )  + w(r)  (3.8.10) I‘ 
where 

(3.8.11) 

Ilf(s)-f(t)ll < C6(p)It-slP/2, s , t  > p. (3.8.12) 

By (3.8.12) and (3.8.8), we obtain, for z > p 

J r  

= C[S@)]’/i. 

Since sup,>o Ilf(t)II < co, we get from (3.8.7) the estimate 

(3.8.13) 

In view of (3.8.13), (3.8.14), (3.1.13), and (3.8.11) we conclude that IIdw/dtll 
can be made arbitrarily small for t sufficiently large. The same is also true 
for II(d/dt) U(r,T)u(T)II. The claim (3.8.9) now follows from (3,8.10). By 
(3.8.9) and (3.1.8) we get 

- A ( t ) u ( t )  +f(t) --t 0 as t + 00. 
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Since by hypothesisf(t) +f(oo), it follows that 

A ( c o ) u ( t )  = A ( m ) A - ' ( t ) .  A ( t ) u ( r )  +f(Co) 

and therefore 

u ( r )  = A- ' (m)A(oo)u( t )  + A-'(o3)f(m) = u(o3). 

The proof is complete. 

3.9. Notes 

The results of this chapter are due to Sobolevski [65] and Tanabe 
[70, 71, 72, 731. Here we follow very closely Sobolevski [65]. Section 3.8 is 
the work of Tanabe [73]. For further results and applications the reader is 
referred to Carroll [12], Friedman [23], and Kato [31]. For fractional 
powers see also Sobolevski [65] and Friedman [23]. The case of hyperbolic 
abstract Cauchy problems is treated in detail in the fundamental paper of 
Kato [30]. 



Chapter 4 

Evolution Inequalities 

4.0. Introduction 

We present, in this chapter, a number of results concerning with lower 
bounds and uniqueness of solutions of evolution inequalities in a Hilbert 
space. Employing the method of scalar differential inequalities and using 
elementary methods, we first obtain lower bounds of solutions which are 
then profitably used to prove various kinds of uniqueness results. 

For clarity, we focus our attention in Section 4.1 on a special evolution 
inequality with time independent evolution operator. After deriving quite 
general lower bounds we prove, as applications, interesting uniqueness 
results including a “unique continuation at infinity” theorem. We also 
deduce certain explicit lower bounds. In addition, we show that the solutions 
verify some convexity-like inequalities which in turn lead to the derivation 
oflower bounds. Section 4.2 deals with results of similar character. However, 

94 
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the evolution inequality considered here is rather general in many respects 
and also offers a much wider range of applicability to partial differential 
equations. 

In Section 4.3 we give upper and lower bounds of solutions of a non- 
linear evolution inequality and prove a very general uniqueness result for 
such equations. In the entire discussion the operator A involved is assumed 
to be either symmetric or self-adjoint or its resolvent satisfies a growth 
condition. Finally, we study a parabolic partial differential inequality to 
illustrate specifically the meaning of the assumptions and the results 
obtained in this chapter. 

4.1. Lower Bounds, Uniqueness, and Convexity (Special Results) 

Let us consider the time independent evolution operator 

LU = U' - Au, ' = d/dt (4.1.1) 

in a Hilbert space H with inner product (., .) and norm ( 1 . 1 1 .  We shall 
assume that A on D ( A )  is a linear symmetric operator (generally unbounded) 
in H,  that is, 

(Au, u)  = (u, Au), U, u E D(A) .  

Let 4 :  J-+ R, be a given measurable and locally bounded function defined 
on an interval J of the real line. Consider the evolution inequality 

I I W O l l  G 4(t>ll u(t)ll, t E J.  (4.1.2) 

DEFINITION 4.1.1. 
evolution inequality (4.1.2) if 

A function u E C [ J ,  H ]  is said to be a solution of the 

(i) u ( t )  E D ( A ) ,  t E J ;  

(ii) the strong derivative u'(t) exists and is piecewise continuous on J ;  
(iii) u ( t )  satisfies the inequality (4.1.2) for all t E J .  

We pass now to our main results of this section. 

THEOREM 4.1.1. Let A be a linear symmetric operator in H with domain 
D ( A ) .  Let u( t )  be a solution of (4.1.2) such that A u ( t )  is continuous for 
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t E J .  Then for t ,  to E J the following lower bounds are valid: 

t 2 to  (4.1.3) 

I < to (4.1.4) 

where I ,  and I., are nonnegative constants depending on u(to).  

Proof: First assume that u ( t )  # 0 for t E J .  Set 

m(t> = Ilu(Ol12 and Q<O = ( A u ( 0 ,  u(0)lllu(t)l12. 

In view of (4.1.1) and the symmetry of A we have 

m'(0 = (u'(t>, 4 t ) )  + (u (0, W)) 
= 2 Re(u'(t), u(t)) 

= 2(Au(t), u ( t ) )  + 2 Re(Lu(t), u(t)) .  (4.1.5) 

Hence 

Im'(t) - 2Q(t)m(t)l G 2IRe(Lu(t),u(t))l. (4.1.6) 

Using Schwarz's inequality and (4.1.2) we get 

IRe(Lu(t), uW)l < d( t )m( t ) .  

This together with (4.1.6) yields 

Im'(t> - 2Q(t)m(t)l G 24(t)m(t), 

which implies that 

m'(0 > 2 [Q (0 - 4 (01 m (0, t E J ,  (4.1.7) 

and 

m'(t) < 2 [Q ( t )  + 4 ( t ) ]  m ( t ) ,  t E J .  (4.1.8) 

Since A is symmetric and Au(t )  is continuous in t 

( d / W 4 u ( O 7  4 0 )  = (Au'W, + (Au(t) ,u'(t)) .  
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Indeed, from the definition of the derivative 

(d/dr)(Au(t),u(t)) = lim[(Au(t+h), u( t+h) )  - ( A u ( t ) ,  u ( t ) ) ] / h  
11-0 

= lim[([Au(t+h) - A u ( t ) ] / k , u ( t + h ) )  
h+O 

and 
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Now using (4.1.7) and (4.1.12) we obtain the differential inequality 

Similarly, from (4.1.8) and (4. I .  13) we have 

Integrating these inequalities we obtain 

t < t o .  

Since m ( t )  = Ilu(t)l12, extracting square roots, we derive 

t 2 t o .  (4.1.14) 

and 

t < to .  (4.1.15) 

Setting I . ,  = - min(0, Q(to ) )  and I , ,  = max(0, Q(to ) )  the desired lower 
bounds follow. We have proved (4.1.3) and (4.1.4) assuming that u ( t )  # 0 
for t E J .  If u( to )  = 0 these bounds are clearly valid. If u( to )  # 0, then u ( t )  
cannot vanish on J and the previous arguments are valid. Otherwise there 
exists an interval with one end point to,  say [to, t , ) ,  such that u ( t )  # 0 on 
[ t o ,  t , )  but u ( t , )  = 0. Since (4.1.3) holds for all t E [to,  t , )  it follows by con- 
tinuity that the bound holds also at t ,  contradicting the hypothesis that 
u ( t l )  = 0. A similar argument, involving (4.1.4), is valid in case to is a right- 
end point of the above interval. The proof is complete. 
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An interesting uniqueness result and some lower bounds which can be 
deduced from Theorem 4.1.1 are collected in the next theorem. Here we 
shall take J to be the nonnegative real line R,.  

THEOREM 4.1.2. Under the assumption of Theorem 4.1.1 with J = R, 

(a) if ~ ( 2 , )  = 0 for some to E R,,  then u( t )  = 0 on R, ; 

(b) if 4 E L2p[R+] for somep, 1 < p  < 00, then 

Ilu(t)ll 2 Ilu(toII exp[-Cc(t-to) - C(t-ro)2-(1/p)], 

Ilu(t)ll 2 llu(to)ll eXp[-Cc(t-to) - c(t-to)2(r+1)2z], 

t 2 to 2 0 ;  

t 2 to 3 0 ;  

(c) if 4( t )  < K ( t +  ly, a 2  0, then 

(d) if 4 is bounded on R,, then 

Ilu(t>ll 2 Ilu(to>ll exPC-P(t-to) - c(t-to)’l, 

where, in (b)-(d), p is a nonnegative constant depending on the solution 
u and C is a nonnegative constant depending only on 4. 
Proof: (a) Assume that u ( t )  f 0. Then u ( t )  is not identically zero in at  
least one of the two intervals [0, to)  and (to, 00). Suppose that u(r )  is not 
identically zero in the first interval [0, to). Then, there must exist a sub- 
interval [ t , ,  t 2 )  with 0 < t ,  < t ,  < to such that Ilu(t)ll > 0 for t ,  < t < t ,  and 
u ( t , )  = 0. Applying the estimate (4.1.3) with t = t ,  and to replaced by t , ,  we 
are lead to a contradiction. Hence u ( t )  = 0 on [0, to]. Similarly, using the 
estimate (4.1.4) we obtain a contradiction unless u ( t )  = 0 on [ to,  00). This 
proves the uniqueness part of the theorem. 

(b) Our assumption on 4 implies by Holder’s inequality 

(4.1.16) 

Also since 4 is locally bounded and 4 E L,,[R,], we have 
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This inequality together with (4.1.17), (4.1.16), and the estimate (4.1.3) 
yields the desired lower bound with p = A, +ILo and C = I14 IIL2p10,m)+ 
3 I1411f.2p[to,m). 

(c) In this case, one easily gets 

f S I ( f - s ) @ ( s )  ds G +K( t - ro )2 ( t+  1)” (4.1.18) 
I0  

and 

(4.1.19) 

As before, the inequalities (4.1.18), (4.1.19), (4.1.17), and the estimate 
(4.1.3) yield the lower bound in (c) with p = A ,  +Ao and C = 3K. 

Denoting by C ,  a bound of 4 on [to, co) and using (4.1.3) we find (d) 

Ilu(t>ll 2 Ilu(t0)ll expC-4 ( t - f o )  - C,(t--o) - ac,2(t-~0)21 
and (c) is established with p = A ,  + C ,  and C = frC12. 
[(d) also follows from (c) with CI = 0.1 

COROLLARY 4.1.1. 
of (4.1.2) is either identically zero on J or never vanishes on J .  

Under the hypotheses of Theorem 4.1.1 any solution 

PROBLEM 4.1.1. Utilize (4.1.4) to prove estimates on the solution on R -  . 
Let us next derive from Theorem 4.1.1 a global “unique continuation at 

infinity” result. 

THEOREM 4.1.3. 
J = R and let I Ic j I I&,  = N c co. Assume that for some constant k > 0 

Let the hypotheses of Theorem 4.1.1 be satisfied with 

Ilu(t)ll = O[exp(-kt)] as t -+ - co (4.1.20) 

and for some E > 0 

Ilu(t)ll = O[exp[-(k+N+~)r]] as t -+ +a. (4.1.21) 

Then u ( t )  = 0 on R.  

Proofi 
(4.1.15) are valid and for convenience, we write them in the form 

Let for some to E R ,  Ilu(to)ll > 0. Then the estimates (4.1.14) and 
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t 2 to 

and 
(4.1.22) 

t < t o .  (4.1.23) 

From (4.1.23) and (4.1.20) we obtain, with C standing for a generic constant 

Ilu(fo)ll d Cexp[-kt + Q ( r o ) ( t o - r )  + N”(r,- t )”  + +N(ro-r) ]  

f < to .  d Cexp[-(k+Q(t,) + + N ) t  + N ” ( r , - t ) % ] ,  

Since ~ ~ u ( r o ) ~ ~  > 0, we conclude from the last inequality that 

k + Q(ro) + +N z 0; 

Similarly, from (4.1.22) and 4.1.21) we obtain 

(4.1.24) 

otherwise as t -, - co we get a contradiction. 

Ilu(to)ll d Cexp[-(k+N+E) - Q(to)(r-ro) + N 5 ( t - t 0 ) %  + + N ( t - t o ) ]  

d Cexp[-(k+Q(t,)++N+E)r + N1/2(t-r0)1/2], t 2 t o .  

Since Ilu(to)ll > 0, we conclude, as before, that 

k + Q ( t o ) + + N + ~  < 0 

which contradicts (4.1.24). The proof is complete. 

roles of t = 00 and r = - co interchanged. 

can be used to derive lower bounds for the solutions. 

It is evident from the proof that there is an analogous theorem with the 

The solutions of (4.1.2) satisfy some convexity-like inequalities which 

THEOREM 4.1.4. Let the assumptions of Theorem 4.1.1 be satisfied. Let 
[a, b] be a subinterval of J .  Then any solution u(r )  of (4.1.2) satisfies the 
convexity-like property 

Ilu(r)ll d K l ] u ( ~ ) l l ( ~ - ‘ ) ~ ( ~ - ~ )  llu(b)ll(f-o)’(h-o), a d t < b (4.1.25) 

where K is a constant depending only on 4. 
Proof: If .(a) = 0, then by Corollary 4.1.1 u ( t )  = 0 and (4.1.25) is trivially 
true. Assume that u(a) # 0. From the same corollary it follows that u( r )  # 0 
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on [a,b]. Define 

m(t)  = 2logIlu(t)ll - v(s )ds  

where u ( s )  = 2 Re(Lu( t ) ,u( t ) ) / l /u( t ) j12 .  Then, using (4.1.5), we obtain 
m”(t) = 2Q’(t) and in view of (4.1.11) we get in”(t)  2 - 42(t)  for a < t < b. 
Consider the boundary value problem 

s,’ 

~ ” ( t )  + +’(f)  = 0, Z ( U )  = )??(a), ~ ( b )  = m(6). (4.1.26) 

It is not difficult to verify that m ( t )  < z ( t )  for a < t < 6, where z ( t )  is the 
solution of (4.1.26). Indeed setting h ( t )  = m( t ) - z ( t ) ,  we note that for 
a < t < b  

l?”(t) = m”(t) - z”(t) B 0 and h(a)  = h(b) = 0. 

Therefore h( t )  is concave up on [a,b] and vanishes at the end points of 
[a, 61. This implies that h ( t )  < 0 for a < t < b, and our assertion is true. 

Let z1 ( 1 )  and z 2 ( t )  be the solutions of the boundary value problems 

z’,’ = 0 and z l ( a )  = m(a), z,(b) = m(b) 

and 

z; + 4’(t) = 0 and z2(a)  = z,(h) = 0, 

respectively. Then z ( t )  = z I  ( t ) + z 2 ( t )  where 

ZI ( t )  = m(a)(b- t ) / (h-a)  + m(b)( / -a) /@-a)  

and 

Z 2 ( ? )  = (b -a ) - l  ( b - t )  ( s - a ) $ 2 ( s ) d s +  ( t -a )  (b-s)$P(s)ds . [ L‘ Lb 1 

b h 

c = 2 f 4(s)  cls + [(b-a)/2] f 42(s) ds. 
Ju J u  

From (4.1.27) the desired inequality (4.1.25) follows with K = exp C. The 
proof is complete. 
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In the case of self-adjoint operator A one can use the resolution of the 
identity associated with A to obtain the following convexity-like statement. 

THEOREM 4.1.5. Let A be a self-adjoint operator in H with domain D ( A )  
dense in H .  Let u(r)  be a solution of (4.1.2) on [a,b] and A u ( t )  be con- 
tinuous on [a,  61. Assume that J: 4(r) dt < $/4. Then 

Ilu(t)ll G 2 &IIu(a) l l (b- t ) ' (b-o)  11 u(b) 11 ( t  - a ) / @  - a ) .  (4.1.28) 

Proof: Let {E, , }  be the resolution of the identity associated with A and 
E = J," dE,, the projection operator in H associated with the positive part 
of the spectrum of A .  Let u = u ( t )  be the given solution. Set u1 = Eu, 
u2 = ( I - E ) u ,  f = u'-Au,  f l  = Ef, and f 2  = ( I - E ) f .  Then u I ' - A u 1  =fl 
and u2'- A M ,  = f2, so that 

Since ( A u , ,  u l )  3 0 and (Au,, u2) < 0, we obtain the inequalities 

( d / d W , ,  ul) 2 2 ReCf,, ul> and ( d / 4 ( u 2 ,  u2) < 2 Re(f2, u2).  
(4.1.29) 

Integrating the first inequality in (4.1.29) from t to b and using the fact 
IRe(f17u1)l G I l f I I I  llu1II < l l f l l  IIuII, we get 

Setting M = rnax,.,., Ilu(t)ll, there results the inequality 

Similarly, from the second inequality in (4.1.29), we derive 

Adding (4.1.30) and (4.1.3 1)  and remembering that u ,  and u2 are orthogonal 
vectors, one readily sees that 
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Taking the maximum in both sides of (4.1.32) and using the inequality 
2MN < (M/k/?)2 +(@A’)’, it follows that 

Hence 

IIexp(at)u(OII2 < 4 IIexp(aa)u(a>I12 + 4 I/exp(0b)u(b)I12. 

fJ = @-a)- ’  log(l l~(~)l l / l l~(~)II)  

Choose a so that the two terms on the right become equal, i.e., 

and the desired inequality (4.1.28) follows. The proof is complete. 

for the solution u(t) .  This we state as 
Using the convexity-like inequality (4.1.28) one can obtain lower bounds 

PROBLEM 4.1.2. 
R,. Starting with to = 0 let t, with n = 1,2, ... be such that 

Assume that 4 ( t )  is integrable on every finite interval of 
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and set t , ,  , - t,, = p,. I f  there are only a finite number of such intervals, the 
last has infinite length and the integral of 4 over it does not exceed f l / l 2 .  
Suppose that for some numbers C and K 

Then any solution u ( t )  of (4.1.2) with A self-adjoint, satisfies 

Ilu(t>ll 2 Ilu(0)ll exPC-P(t+ l>c+l lB',  2 1, 

where 11 is a fixed constant, while B is a constant depending on the solution. 
In particular 

(i) if 4 E L,(R+)  and 1 < p  < 2, then 

Ilu(t>ll 2 lIu(0)ll exP{-P(r+ 1)) B', 

Ilu(t)ll B Ilu(O)exp{-p(t+ 1)2-(2ip)}pt, 

Ilu(t)ll B I lu(0) l lexp{-~~(t+~)2C+2}pt ,  

t B t , ;  

(ii) if 4 E L,(R+) and 2 < p  < co, then 

t B 1 , ;  

r B 1,.  

[Hint: Apply (4.1.28) with t = t j ,  a = r j -  and b = ti+]. Set aj = Ilu(tj)ll 
and estimate (aj-aj- I ) / p j -  .] 

I t  is clear from Theorem 4.1.1 and the subsequent considerations that 
finding an estimate for the function Q ( t )  is indeed essential. This has been 
achieved in the case of a symmetric operator A,  as the foregoing discussion 
shows. We give below sufficient conditions which guarantee a similar 
estimate when A is not symmetric. 

(iii) if 4( t )  < K(1+ t)' for C 2 0, then 

THEOREM 4.1.6. 
following conditions hold: 

Assume that for E. sufficiently large, i. E p ( A )  and the 

lim ELR(%; A ) s  = s, .YE H ;  
1- m 

(i) 

(ii) I12R(~L;A)xI12 B [ I  -2K/A] 1 1 . 1 - 1 1 ~ ,  i. sufficiently large. 

Then every solution u ( t )  of (4.1.2) satisfies the inequality 

Ilu(t>ll B Ilu(to)ll exp 
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Proof: Set m ( t )  = llu(t)1I2. Then 

id(?) = 2 Re(d(?),u(?)) 

= 2 Re(Au(t),u(t)) + 2 Re(Lu(t),u(t)). (4.1.35) 

Observe that 

I .R( i . ;A)u = u + i . - ' A u  + i . - - ' [ I . R ( R , A ) A u - A u ]  

= u + i . - ' ~ u + i , - ' R ( i . )  

whereby(i)we havei?( i . ) - i .R(I . ,A)Au-Au~OasI- ,oO.  
We thus have 

~ ~ i . R ( i . , A ) ~ ~ ~ ~ 2  = + i.-'2Re(Au,u) + i4-'2Re(u,R(i.)) + I.-211Au1\2 

+ IL-22Re(Au,a(i.)) + X 2  l\R(I.)\l2. 

From this identity and (ii) we obtain 

-2KIIul12 < 2Re(Au,u) + 2Re(u,R(A)) + A-' IIAul12 

+ ? . - I 2  Re(Au,R(A)) + A-' l/R(I.)l12. (4.1.36) 

Since (2) --t 0 as i. -+ co, it follows from (4.1.36) that 

Re(Au(r),u(t)) 2 - K m ( t ) .  

This together with (4.1.35) and (4.1.2) implies that 

m'(t)  b - 2 CK+ 4 (01 m (0 

which yields the desired inequality (4.1.34). The proof is complete. 

generates a strongly continuous semigroup in H. 
We should remark that hypothesis (i) is satisfied if, for example, A 

4.2. Lower Bounds, Uniqueness, and Convexity (General Results) 

Consider the time dependent evolution operator 

Lu = U' - A ( t ) u ,  ' = d/dt (4.2.1) 

in a Hilbert space H .  We assume that A ( t )  admits a decomposition of the 
form 

A(1) = A+(1)  + 6 ( A - ' ( ? ) + A : ( l ) ) ,  6 2 0 (4.2.2) 
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where A + ( t )  is a linear symmetric operator over D [ A  ( t ) ]  while A - ’ ( r )  and 
A”r) are linear skew symmetric over D[A( t ) ] .  

Here we shall obtain results analogous to those of Section 4.1 for the 
general evolution inequality 

I IWt)I l  <@ ( t ,m(t) ,q( t ) ) ,  tE J (4.2.3) 

where J is an interval on the real line R,  A ( r )  admits the decomposition 
(4.2.2), m ( t )  = Ilu(t)l12+ P [ u ( t ) ]  with P[u(r)] a nonnegative, nonlinear 
functional defined on D[A(t )] ,  q ( t )  = ( A + ( t ) u ( t ) , u ( t ) ) ,  and @: J x R +  x 
R +  R,. 

The form of the inequality (4.2.3) will offer a wide range of applicability 
of these results to partial differential equations, but we shall be mainly 
concerned here with abstract inequalities. 

DEFINITION 4.2.1. 
inequality (4.2.3) if 

A function u E C [ J ,  H ]  is said to be a solution of the 

(i) u( r )  E D [ A  ( t ) ]  for t E J and A ( t ) u ( t )  is continuous for t E J ;  
(ii) du(r)/dt exists and is continuous on J ;  

(iii) u ( t )  satisfies the inequality (4.2.3) for t E J .  

We shall first obtain general lower bounds and two uniqueness theorems 
for the solutions of (4.2.3) on the interval J of the real line R.  We shall often 
use the inequality m ( t )  2 Ilu(t)l12 which is valid since P[u(r)] 2 0. We also 
define Q ( r )  = q( t ) /m( t )  as long as m ( t )  # 0. For easy references we state the 
following hypotheses: 

Hyporhesis 1:  
t E J with m(t )  # 0 

There exists a function 4 E C [ J  x R, R,] such that for all 

@Ct,m(t>,q(t)l G m(t)%Ct, Q(t>l. 
Hypothesis 2: 
and for all t E J 

The functional P[u( t ) ]  is differentiable with respect to t 

l ( 44  PCu(t)Il G 2(N)m(t) 

where w E C [ J ,  R,]. 

Hypothesis 3: There exists functions $i E C [ J  x R, R]  with i = 1,2,3 
such that, for any solution u ( t )  of (4.2.3) with m(t )  # 0 and for any number 
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w ( t , y )  = $( t ,y )  + 2~(t )Iy l  + (2-56)-'4'(t7y) (4.2.4) 

where $ ( t , y )  = 2 6 $ , ( t , y ) + 6 $ , ( t , y ) + $ 3 ( f , y ) .  We also denote by y l ( r )  
and y ,  ( t )  the right minimal and the left maximal solution, respectively, of 
the scalar initial value problem 

y' = -w( t , y )  and y ( t o )  = Q(ro). (4.2.5) 

We now pass to our main result of this section. 

THEOREM 4.2.1. 
Then 

Let u ( t )  be a solution of (4.2.3) and let to be a point in J .  

(a) under Hypotheses 1-4 the following lower bound is valid: 

m(t)  2 m(t,)exp O1(s,yl(s))ds, r 2 t o ,  r E  J ;  (4.2.6) 
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(b) under Hypotheses 1-3 and 5 the following lower bound is valid: 
t o  

m ( t )  2 ,n(to)exp/ - O,(s,y,(s))ds, r < t o ,  t E J .  (4.2.7) 

Proof: Suppose first that m ( t )  > 0 for all t E J .  Then, using the decompo- 
sition (4.2.2) the symmetry of A +  and the skew symmetry of A _ '  and A _ " ,  
we obtain 

t 

(d /d t )m( t )  = 2Re(u'(t),u(t)) + (d/dt)P(u(r))  

= 2Q(t)m(t) + 2Re(Lu(t), u ( f ) )  + (d/dt) P ( u ( f ) ) .  (4.2.8) 

In view of Hypothesis 1 and (4.2.3) we have from (4.2.8) 

I(d/c/t)nz(t) - 2Q(t)n?(t) - (d/dl)P(u(t))l < 2@(f7m(rhq(f))  Ilu(t>ll 

< 24(r, Q(r))m(t).  (4.2.9) 

By (4.2.9) and Hypothesis 2 we are led to  the inequalities 

(d /dt )m(t )  2 2[Q(t) - +(t,Q(t)) - w ( t ) ] m ( t ) ,  t E J ,  (4.2.10) 
and 

(d/dr)r77(t) < 2[Q(t) + 4(r, Q(t)) + w ( t ) ] m ( t ) ,  t E J .  (4.2.11) 

Since A + ( t )  u ( t )  is continuous in t and A + ( t )  is symmetric, it is easily seen, 
by taking the difference quotient and passing to the limit, that the function 
( A  + ( t )  u(t) ,  u( t ) )  is differentiable and 

( c / / d ) ( A  +( t )u ( t ) ,  ~(1) )  = ( A + ( t ) u ( t ) ,  u ( t ) )  + 2 Re(A+(t)u(t), u'( t ) )  
(4.2.12) 

where 

( A + ( t ) u ( t ) , u ( t ) )  = ( d / d t ) ( ~ + ( r ) ~ ( t ) , u ( t ) )  - 2 Re(A+(t)u(t),u'(t)). 
It follows that (suppressing the variable f )  and using (4.2.2) 

dQ/dt = ( A  + u, u)/m - ( Q / t ~ > ( d / d f )  P ( u )  

+ (2//??) [ IIA + u(I2 - Q2nz + Re(A + u - Qu, Lu)] 

+ (26/n?) Re(A + u, A - 'u) + (%/I??) Re(A + u, A -"u) 

= I ,  + 12 + 1 3  + 14 + I , .  (4.2.13) 

We shall estimate the terms Ii with i = 1, . . ., 5 .  
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From Hypothesis 3(iii) we get 

11 3 - $3 (f, Q )  - (6/m> II A + u - Pull ’. (4.2.14) 

By Hypothesis 2 we see that 

1 2  >, - 2 l Q l ~ ( t ) .  (4.2.15) 
Notice that 

IIA+u-Qu112 = IIA+uIl2 - 2 Q ( A + u , u ) +  Q211ul12 

< ( IA+u( ( ’  - 2Q2tn + Q2m 

= 1 1  A + uIJ ’ - Q2/~1.  (4.2.16) 

Next, using the arithmetic-geometric mean inequality on 2 Re(A + u-  
Qu, Lu), we obtain, for any a > 0 

2 Re ( A  + u - Qu, Lu) 3 - 2 1 1  A + u - Qull 11 Lull 

>, -a ) IA+u-@1) ’  - u - ~ J J L u ~ ~ ~  

3 - u ~ ~ A + u - Q u ~ ~ ~  - (/?7/~)4’(t, Q). (4.2.17) 

The estimates (4.2.16) and (4.2.17) yield 

I 3  >, (2-0)//)1 \ \ A +  u-Qu~~’  - Q). (4.2.18) 

In view of Hypothesis 3(i), it follows that 

I1 >, -26$,(t ,Q) - (26/t??)IIA+u-Q~ll’. (4.2.19) 

By Hypothesis 3(ii) and the skew symmetry of A’: one gets 

612Re(A+u,A’lu)l = 612Re(A+u- Qu,A’lu)l 

d 611A+u-Qul12 + 61lA’lull 

G 2611A+u-Q412 + dm$Z(t,Q) 
which implies that 

I ,  3 -(26//??)llA+11-QuIl’ - 6$2( t ,Q) .  (4.2.20) 

Using (4.2.14), (4.2.15), (4.2.18), (4.2.19), and (4.2.20) in (4.2.13) and 
choosing a =2-56, we finally obtain 

dQpr 3 - ( 2 6 4 ,  + + $3)  - 2 I Q I  (O - (2 - 56)-’ + ’ ( t .  Q ) ,  

that is, recalling (4.2.4) 
dQ/dt 2 - w(t, Q). (4.2.21) 
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The differential inequality (4.2.21) now yields [42] 

Q ( t )  >, yi(t), t 3 t o ,  ~ E J ,  (4.2.22) 

and 

Q ( t )  G y,(t), t G t o ,  t E J .  (4.2.23) 

Now assume that Hypothesis 4 is satisfied. Then, using (4.2.10) and (4.2.22) 
we get 

(d/dt)m(O 2 el (t,yl (t>)m(t), >, to,  t E J ,  

from which the estimate (4.2.6) follows and (a) is proved. Similarly, 
assuming that Hypothesis 5 is satisfied, we derive from (4.2.1 1) and (4.2.23) 
the inequality 

(clldt)m(t) G e , ( t ,~ , ( t ) )m( f ) ,  t G t o ,  t E J,  

from which the estimate (4.2.7) follows and (b) is proved. 
We have established the desired lower bounds under the additional con- 

dition that m( t )  > 0 for t E J .  We shall now remove this assumption. If 
m(to)  = 0 the estimates (4.2.6) and (4.2.7) are clearly valid. Now assume that 
m(to)  > 0. We shall prove that m(t )  > 0 for all t E Jand  hence the previous 
arguments are valid. Otherwise there exists an interval with one end point 
to, say, [to, z,), such that m( t )  > 0 on [to,  I , )  but m(r , )  = 0. Since (4.2.6) 
holds for all t E [ to,  t , )  it follows by continuity that the same bound holds 
also at t = t ,  contradicting the hypothesis m ( t l )  = 0. A similar argument, 
involving (4.2.7) is valid in case to is a right-end point of the above 
interval. The proof is therefore complete. 

A consequence of Theorem 4.2.1. is the following interesting uniqueness 
result. 

THEOREM 4.2.2. Under Hypotheses 1-5 for any solution u(r)  of (4.2.3) 
either n7(t) > 0 for all t E J or m ( t )  E 0 on J.  In the special case when 
P[u( t ) ]  E 0, if u(to)  = 0 for some to E J ,  then u ( t )  E 0 on J .  

Proof: I t  is clear from (4.2.6) and (4.2.7) that if m(to)  > 0 then m(t) > 0 
for all t E J .  Next, assume that m ( t o )  = 0 for some to E J .  We shall prove 
that n7(t )=O for all t E J .  If  not, then m ( t )  is not identically zero in an 
interval either to the left or to the right of to. Suppose that this happens to 
the left of to. Then, there must exist a subinterval [ t , ,  t 2 )  of J such that 
m(t) > 0 for f ,  < t < t ,  and m(t2)  = 0. Applying the estimate (4.2.6) with 
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t = t ,  and to = t ,  we obtain a contradiction. Hence m ( f )  = 0 to the left of to. 

Similarly, using the estimate (4.2.7) we obtain a contradiction unless 
u(r)  = 0 to the right of to .  The proof is complete. 

The following (unique continuation at infinity) theorem shows that the 
solutions of (4.2.3) (actually ni(r)) cannot tend to zero too rapidly as t + co 
unless they are identically zero. 

THEOREM 4.2.3. Let Hypotheses 1-5 be satisfied on the whole real line R 
and u( t )  bea solution of(4.2.3). Assume that there exist constants k,  I ,  Nsuch 
that k 2 0, I > 0, and N depends on the solution satisfying the order 
relations 

m(t) = O[exp(-kt)] as t + -co, (4.2.24) 

m(t) = O[exp[-(k+I)t]] as t -+ +a, (4.2.25) 

as t -+ +co, (4.2.26) explof  - 0 ,  [s,yl(s)] ds = O[exp(-Nt)] 

and 

exp / “ 0 2  [s,y, (s)] ds = O[exp( - N t ) ]  as t -+ - co. (4.2.27) 
f 

Then m(t) = 0. 

Proof: 
are valid and for convenience we write them in the form 

Let m(?,) > 0 for some to. Then the estimates (4.2.6) and (4.2.7) 

m(to) < m(t)exp - 8, [s ,y ,  (s)] ds, t 2 to (4.2.28) l 
lo 

and 

mO0) < m(t) exp e2 Cs,y2(s)l ds, t G t o .  (4.2.29) 

From (4.2.28), (4.2.25), and (4.2.26) we obtain, with C standing for a generic 
constant, the inequality 

Since m(to)  > 0, it is necessary that 

k + I +  N G 0. (4.2.30) 
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Similarly from (4.2.29), (4.2.24), and (4.2.27) we get 

m(to) < Cexp[-(k+N)t] as t + -co 

and therefore /<+ N 2 0 which contradicts (4.2.30) and the proof is com- 
plete. It is evident from the proof that there is an analogous theorem with 
the roles o f t  = co and t = - co interchanged. 

As an example we shall study the evolution inequality 

IIWdr - A(t)u(t)l/ < [A(t)m(t)  + ~z(t>a,(u(t) ,u(t))l%, 
r E  R (4.2.31) 

where A ( t )  admits the decomposition (4.2.2) in the Hilbert space H 

m(0 = Ilu(0ll2 + JT2w(s) Ilu(s)I12 ds, 

a, is a symmetric positive semidefinite, bilinear functional defined on 
D[A(t)], (PI  and (P2 are nonnegative functions in L,(R), and cu(t) a non- 
negative continuous function on R. In addition we shall make the following 
assumptions: 

There exist nonnegative measurable functions a, yi, pi, and ri with 
i = I ,  2,3 bounded on every closed finite subinterval of R such that for any 
solution u(t) of (4.2.31) with m(t) # 0 and for any number 6 where 
0 < 6 < 215 we have 

Assumption I :  

6Re(A+u,A-’u) 2 -6~lIIA+ull llull  PI IIu1I2 -6a,ar(u,u). 

Assumption 2: 

611A-”ul12 G 6Y2IIA+ull llull + 6P211ul12 + 6r2at (44 .  

(A+u,u)  2 -6Y,IIA+ull llull -P311ullZ -g3a , (u ,u) .  

Assumption 3: The function ( A  + (t) u(t), u(t)) is differentiable on J and 

Assumption 4: If 42 + a ,  + a2 +a3  f 0, we shall assume that 

- ( A  + U ,  U )  2 a,(u, u)  - IIuIIz. 

First, our aim is to show that Hypotheses 1-5 of Theorem 4.2.1 are also 
true for (4.2.31). Then we shall obtain explicit lower bounds for the solutions 
of (4.2.31). 
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If 42 ( t )  f 0 from Assumption 4 we get (suppressing t and using the same 
notation for q and Q as before) 

C41m+42a,(u,u)l% < [41m+42am-42s l% 
< m”[+l  + 42(u-Q)]%, m # 0. 

Hence Hypothesis 1 is satisfied with 

4Ct,Q> = C4i + 4z(a-Q)1”. (4.2.32) 

Notice also that because of Assumption 4 a-Q 20. If 42(t )  =O, then 
4(r, Q) = 41”. Hence in any case 4(?,  Q )  is given by (4.2.32). Clearly 
Hypothesis 2 is satisfied with 

The proof that Hypothesis 3 is satisfied requires a trick. 

space H .  Then 
Let 0 denote the angle between the vectors A +  u and u in the Hilbert 

IIA + u - Qull’ 2 1IA + u1I2 sin2 0 

IQI = m - ‘ I ( A + u , u ) l  = m - l  IIA+ull llull lcos0l. 

and 

From these inequalities we obtain, using the 6 of Assumptions 1-4 

In view of Assumptions 1 4  and (4.2.33) we get, as long as m(t )  # 0 
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Therefore Hypothesis 3 is established with 

and 
$i ( t ,  Q) = yi2 + Yi l Q l  + pi - a, Q + a q ,  i = 1,2,3, 

$(t,Q) = -(26ai+6a2+a3)Q + ( ~ ~ Y ~ + ~ Y Z + Y ~ I Q I  

+ ( 2 6 ~ , ’ + 6 ~ 2 ~ + ~ 3 ~ )  + (26p1 +6p2+83) + ~r(26~r1 +6~2+c~3) .  
(4.2.34) 

Next we shall verify Hypotheses 4 and 5. Since the function ~ - 4 ( t , y )  = 
~ - [ 4 , + 6 ~ ( a - y ) ] %  with y ,<a  is increasing in y we could take for 
0, ( t , y )  the function 2[y- 6( t ,y ) -w( t ) ] .  However, a simpler function can 
be chosen as follows: 

Y - r 4 1 + 4 2 ( ~ - Y ) I %  2 Y - 41% - [42(~-Y)ll/’ 
3 Y - 41% - (4,/2P) - P ( U - Y )  

= (1 +P)Y - 41% - (4212P) - up, p > 0. 

Therefore one can take 

ol(4.Y) = 2C(1 +P>Y - 41% - (4,/2P) - VJ - 01, 
and Hypothesis 4 is satisfied. 

Similarly 

Y + [ 4 I + 4 2 ( ~ - Y Y ) l %  Y + 41% + C42(a-Y)11/2 

Y + 41% 42/2P P(a-Y)  

= ( I  - p ) y  + (j1% + &/2p + up. 

0 2 ( t , Y )  = 2C(l-P)Y + 41% + 42/2P + u p  + 01 
So for any 0 < p < 1 we may take 

and Hypothesis 5 is satisfied. 
From (4.2.4), (4.2.34), and (4.2.32) we get 

W ( t > Y )  = -A(OY + B(t)lYl + C ( 4  (4.2.35) 
where 

A ( f )  = 26a1 4- 6Cr2 + GI3 4- (2-56)-’42 

B ( t )  = 267, + 6y,  + y3 + 2m 

C ( t )  = (26~1~+6y2’+y3~) + ( B p i  +Sp2+p3) + a(26a,+6c~~+a3)  
(2- 56)-’(41 +c1$z). 
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Finally we must compute the solutions of (4.2.5). We first make the 
observation that the solution of the equation y' = Ay- Blyl-  C with 
y( to)  = y o  is given by the formula 

and therefore if yo < 0 then y ( t )  < 0 for t 2 to and if yo 2 0, then y ( t )  2 0 
for t < to. 

Set 
A1 = min(0, Q(to)) and A 2  = max(0, Q(to)). 

By what we have said above the solution yl* ( t )  of the equation 

y' = A y  - Blyl - C and y ( t o )  = A,, t 2 to 

is negative for t 2 to and therefore is given by 

From the theory of differential inequalities it follows that y ,  ( t )  >y,*( t )  
and the estimate (4.2.6) takes an explicit form with y ,  ( t )  replaced by 
y l * ( t ) .  Similarly, ify2*(t) is the solution of the equation 

y' = A y -  Blyl - C and y ( t , ) = A 2 ,  t < to, 

then y2*( t )  is positive for t < to and is given by 

Also y2*( t )  3 y 2 ( f )  and the estimate (4.2.7) takes an explicit form with 
y 2 ( t )  replaced by y2*(t) .  The proof is complete. 

The following two corollaries are with respect to the inequalities 

Ilduldt-A(t)u(t)ll2 G 41(t)II~(f)l12 + 4 2 ( t > a , ( W , u ( t ) ) ,  

t E R  (4.2.36) 

and 
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COROLLARY 4.2.1. When 6 = 0 (that is, when A = A +), w(t )  = 0, y i ( t )  = 0, 
i = I ,  2,3, P i ( t )  = a,( [ )  = 0, i = 1,2, and under Assumptions 3 and 4 we have 

dQldt 2 (a3 + + 4 2 )  Q - ( P 3  + aa3 + M I  + ib4.d. (4.2.38) 

This inequality follows directly from (4.2.35) and (4.2.21). 

COROLLARY 4.2.2. 
a2 = a3 = 0, 

When 42 = 0, 6 # 0 (for example, 6 = 1/5), a =  a,  = 

= 4, and under the Assumptions 1-3 

f ( t )  + B(t)Il(t)l + 2C(t) = 0 (4.2.39) 

where !(t)=2Q(f), B(t)=+yl++y2+y3+20~,  and C ( t ) = + y , 2 + : y 2 2 + y 3 )  

+(3Pl+!d?2+P3)+ 42. 
This inequality follows directly from (4.2.35) and (4.2.21). 

PROBLEM 4.2.1. Assume that the hypotheses of Corollary 4.2.1 are satisfied. 
Set r2(t) = a3 +f42  and rl (t) = P3 +aa3 ++#, ++a#2. Let m and A be 
constants satisfying m 2 exp[ -& r2(s) ds] and 1. = m (Irl I IL ICR) .  Let u ( t )  be 
a solution of (4.2.36) for all real t and assume that there exist positive 
constants k and E such that 

I l W l  = “xP(-kt)l as 
and 

Ilu(t)ll = O[(exp - [m2k + (m2 + 1) 1, + E ]  

Then, u( t )  E 0. 

[Hint: 
4.1.3.1 

Use Corollary 4.2.1 and Theorem 4.2. 

f + - W  

and argue as in Theorem 

PROBLEM 4.2.2. Assume that the hypotheses of Corollary 4.2.2 are satisfied 
and w ( t )  = 0. Establish lower bounds for the solutions of(4.2.37) analogous 
to those of Theorem 4.1.2. 

[Hint: Use Corollary 4.1.2 and Theorem 4.2.1 .] 

PROBLEM 4.2.3. 
Set 

Assume that the hypotheses of Problem 4.2.2 are satisfied. 

y ( t )  = max y i ( t )  and p = max pi( t ) ,  
i= 1,2,3 i =  1,2,3 
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We assume further that T = 03 and 

y, rp, 41 E L ,  [0, co) and 

Then the following convexity inequality holds for 0 < to < t < t ,  < 00 : 

r”y, t”4, E L, [0, co). 

where one takes everywhere the negative sign if Ilu(to)ll < 11 u(t,)ll and the 
positive sign if Ilu(t,)ll 2 ~ ~ ~ ( t , ) ~ ~ .  Finally K ( t )  is a nonnegative bounded 
function which depends only on y ,  p, and 41 and K ( r )  -0 as t -+ 00. 

[Hint: Use Corollary 4.2.2.1 

4.3. Approximate Solutions, Bounds, and Uniqueness 

Let us consider the evolution inequality 

Ilu’ - A ( t ) u  - . f ( t ,  u)ll < 4(t,  Ilull), ’ = d/dt (4.3.1) 

in the Banach space X, wherefE C [ R ,  x X ,  X I ,  4 E [ R ,  x R,, R,],  and 
for each t E R ,  A ( t )  is a linear operator with domain D [ A ( t ) ]  = D 
independent of t .  We shall assume that for sufficiently small h > 0, the 
operators R[h,  A ( t ) ]  = [ I - - I ? A ( t ) ] - ’  are well defined as bounded linear 
operators on X and that 

lim R [ h , A ( t ) ] s  = x, x E X. (4.3.2) 

The relation (4.3.2) is satisfied, if, for example, for each t E  R ,  A ( t )  
generates a strongly continuous semigroup. Notice that the operator 
R [ h ,  A ( [ ) ]  is not exactly the resolvent of A ( t )  but for sufficiently small h > 0, 
the number It- is in the resolvent set of A ( t ) .  

h - 0 ,  

DEFINITION 4.3.1. A solution u ( t )  of the evolution inequality (4.3.1) is a 
strongly continuously differentiable function u :  R ,  -+ X with u ( t )  E D for 
t E R ,  which satisfies (4.3.1) for all t E R ,  - S  where S is a denumerable 
subset of R,. I f  d, = E ,  then ~ ( 2 )  is said to be an E-appro.uiniate solution of the 
evolution equation 

u’ = A(r )u  + f ( t , U ) .  (4.3.3) 
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THEOREM 4.3.1. Assume that 

IIRCh,A(t)l-r + hf(f,.u)II < llxll + W ( t 7  Ilxll) (4.3.4) 

for all sufficiently small h > 0 and all ( t , s )  E R ,  x X ,  where $ E 
C [ R +  x R,, R] .  Let r ( t , t , , r , )  be the maximal solution of the scalar 
differential equation 

r’ = w ( t , r )  and r ( tO)  = r,, 2 0 (4.3.5) 

where ~ ( t ,  r )  = d ( t ,  r ) +  $ ( t ,  r )  existing on [to, a). Then any solution u ( t )  
of (4.3.1) satisfies the estimate 

Ilu(t)ll < r ( t , tO , rO) ,  t 2 t o ,  

provided that Ilu(to)ll < ro. 

Proof: Let u( t )  be any solution of (4.3.1). Define m(t)  = Ilu(t)ll. For h > 0 
and sufficiently small we have, using (4.3.4) 

jn(t+h) = Ilu(t+h)ll < Ilu(r+h) - R[h,A(r) lu( t )  - hfCt,u(t)lII 

+ m(t )  + h$ [ t ,  m(t)] .  (4.3.6) 

Observe that 

R [ h , A ( r ) ] u ( t )  = u ( t )  + k A ( r ) u ( t )  + h [ R [ h , A ( t ) ] A ( r ) u ( t )  - A ( t ) u ( r ) ] .  

(4.3.7) 

In  view of (4.3.1) and (4.3.2) the relations (4.3.6) and (4.3.7) lead to the 
scalar differential inequality 

D , m ( t )  < w[t,m(r)] and m(to) < ro 

which implies the desired upper bound. 
One can prove an analogous result for lower bounds. 

THEOREM 4.3.2. Assume that 

I1 R Ck A (01 x + h?U, .>I1 
3 Il.rII - /?$( t ,  Ilsll), h sufficiently small, ( t ,x)  E R ,  x X ,  (4.3.8) 

where $ E C [ R +  x R,, R ] .  Let p ( t ,  to,po) be the minimal solution of the 
scalar differential equation 

p’ = - w ( t , p )  and p(t,) = po 2 0 



120 4. Evolution Inequalities 

existing on [ to ,  a), where w(t ,  p )  = + ( f ,  p ) + $ ( t ,  p ) .  Then any solution 
u ( t )  of (4.3.1) satisfies the estimate 

IIu(t>ll 2 P( t , tO ,PO) ,  t 2 t o ,  

provided that Ilu(to)II 2 po. 

Proof: 
equality 

Defining m(t)  = IIu(t)ll as before, it is easy to obtain the in- 

D - m ( t )  2 -w[t,m(t)] and m(to) 2 po 

from which the stated estimate follows. 

REMARK 4.3.1. For various choices of 4 and $, Theorems 4.3.1 and 4.3.2 
extend many known results of ordinary differential equations in R" to  
abstract differential equations. 

Taking 4 = E and $ ( t , r )  = kr, where k is a positive constant, 
Theorem 4.3.1 provides an upper estimate on the norm of &-approximate 
solutions of (4.3.3), namely 

(i) 

IluWll G Ilu(t0)lI expCk(t--to)l + (E/k)[exPCk(t-to)l - 1 1 9  

Ilu(t)ll 2 Ilu(to)ll expC-k(t-t0)l + (&/k)[expC-W-t0)l - 11, 

t 2 to  

while Theorem 4.3.2 yields the lower estimate 

t 2 to .  

(ii) Suppose that 4 = 0 and that u( t )  is a solution of (4.3.3) existing to 
the right of to.  Let $ ( r ,  r) = i . ( f ) r  where I E C [ R , ,  R] then from Theorems 
4.3.1 and 4.3.2 the following upper and lower bounds follow: 

IIu(t)II G Ilu(t0)lI exp S'W t 2 t o ,  
10 

and 

Ilu(t)ll 2 Ilu(to>ll e x p j t  - A($> ds, t 2 to .  
10 

If, on the other hand, $ ( t , r )  = A(r)g(r), where g ( r )  > 0 for r > 0, then 

and 
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where G ( r )  =s:,ds/g(s) with ro > 0. These bounds hold as long as 
G ( l l u ( t , ) l l ) f ~ ~ , A ( s )  ds is in the domain of G - ' .  

PROBLEM 4.3.1. Assume that 

semigroup in A'; 
(i) for each f E R , ,  A ( t )  is the infinitesimal generator of a contraction 

( 4  for(t,x) E R +  x Ilf(r,x)ll =Zg(f, II.~II),whereg E CCR, x R + ,  R , ] ;  
(iii) r ( t ,  to, ro) is the maximal solution of the scalar differential equation 

r' = g ( t , r )  and r( to)  = ro 2 0 

existing on [to, 00). 

then 
If u ( r )  is any solution of (4.3.3) existing on [ to ,  00) such that IIu(to)ll < ro, 

IIu(t)ll < r ( t ,  t o ,  ro), t 2 t o  * 

Next we shall consider a general uniqueness result. For that purpose we 
shall assume thatf(t,O) = 0 so that (4.3.1) has the identically zero solution. 
Here the functions 4, $ and M' = 4 + $ are not required to be defined at 
t = 0. We then have the following. 

THEOREM 4.3.3. 
with B(0,) = 0. Assume that .*(t,O) = 0 and that the only solution r ( t )  of 

Let B ( t )  be a positive continuous function on 0 < t < 00 

r' = w( t , r )  (4.3.9) 

existing on 0 < t c co and satisfying 

lim r (r ) /B( t )  = 0 
f -O+  

(4.3.10) 

is the trivial solution. Then under the hypothesis (4.3.4) the only solution 
u( t )  of (4.3.1) satisfying the conditions u(0) = 0 and 

limu(r)/B(r) = 0 
t -0 

(4.3.1 1) 

is the identically zero solution. 

Proof: Let u( t )  be a solution of (4.3.1) satisfying (4.3.1 1) .  Define m(t)  = 
Ilu(t)ll and note that m(0) = 0. To prove the theorem we have to show that 
m(t) = 0 on R , .  Suppose, if possible, that m(a) > 0 for some a > 0. Let r ( t )  
be the minimal solution of (4.3.9) through (u,m(a)), existing on some 
interval to the left of a. As far left of a as r ( t )  exists, it satisfies the inequality 

r ( t )  < m(t). (4.3.12) 
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To see that this is true, observe that 

r ’  = rc ( t , r )  + E and r ( a )  = m(a) + E (4.3.13) 

has solutions r ( t ,  E )  for all sufficiently small E > 0, existing as far to the left 
of a as r ( t )  exists and lim8+o r ( t ,  E )  = r ( t ) .  Thus it is enough to prove that 

r ( l ,E)  < m(t )  (4.3.14) 

for sufficiently small E .  If this inequality does not hold, let s be the least 
upper bound of numbers t < a for which (4.3.14) is false. Then it is easily 
seen that 

m(s)  = r ( s , E )  and D+m(s)  2 r’(s,E) 

which contradict the inequality D ,  m(t )  ,< w[t, m ( t ) ]  obtained in the proof 
of Theorem 4.3.1. Hence (4.3.12) is valid. Next we prove that r ( t )  can be 
continued up to t = 0. If r ( t l )  = 0 for some t , ,  such that, 0 < t l  < a the 
continuation can be effected by defining r ( t )  5 0 for 0 < t < t , .  Otherwise 
(4.3.12) ensures the possibility of continuation. Since m(0) = 0, we have 
lim,,,+ r ( t )  = 0 and we define r ( 0 )  = 0. Now we have a nontrivial solution 
of (4.3.9) on 0 < t < a such that r(a) = m(a) and 0 < r ( t )  i m(t) .  In view of 
(4.3.1 1) we have 

0 < lim r(r) /B(t)  
I - O t  

< lim m(t ) /B( t )  = 0 
1+0+ 

which by hypothesis implies that r ( t )  = 0. This contradicts the fact that 
r(a) = m(a) > 0 and the proof is complete. 

REMARK 4.3.2. If B ( t )  = t ,  Theorem 4.3.3 is an extension of Kamke’s 
uniqueness theorem which includes as special cases Nagumo’s and Osgood’s 
uniqueness conditions. 

4.4. Application to Parabolic Equations 

Let (2, x) = ( t ,  x,, .. ., x,,) be a generic point of R x R”. Set di = d/dx, and 
8, = (dl, ..., 8”). Let R be a bounded domain of R” with sufficiently smooth 
boundary such that 
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(SR is the boundary of R.) We shall denote by r the cylinder [0, T )  x R with 
0 G T -= + 00. On r we consider the parabolic operator 8, - A  where 

n 

A = c diaij(t,x)dj + bidi + c 
i , j=  1 i= I 

is a second-order elliptic operator with real coefficients such that 

(i) for each (tl, t2, ..., 5,) E R" with k > 0 

(ii) akj  = ajk E C ,  [i?,R], k , j  = 1, ..., n, 

c , b j ~ C [ T , R ] ,  . j  = 1 ,..., n ;  
n 

(iii) b = Sibi ,  S,b,d,c E C [ r , R ] ;  

(iv) there exists a real number I., such that for all (r,x) E r 
i =  1 

c ( t . x )  - $b(r,x) G 1,. 

Under the above hypotheses we shall indicate how the previous results 
on abstract evolution inequalities apply to solutions of the inequality 

l l d t ~ - A ~ l l L 2 ( * )  G 4 w  IIuIIL2(f2) (4.4.1) 

where we assume that u E C ,  [[0, TI ,  L2(R)] for each t E [0, T) ,  
u( t ,  x) E C,(n), and u(t ,  x) = 0 on dR. 

First we make the change of variables u = exp(1t)u with 13 k + l , .  Then 
u E C ,  [[0, T ) ,  L,(R)] for u ( r , x )  = 0 on at2 and u ( t , x )  E C,(n)  for each 
t E [0, T).  In addition u ( r ,  x) satisfies the inequality 

I l 4 v  - ( A  - 4 4 L z ( * )  G 4(t)  II~IILz(n,. (4.4.2) 

We shall prove that Assumptions 1 4  of Section 4.2 are satisfied for the 
operator A - 1. 

Set 

A ,  = A ,  + c - +b - I., 6A" = L + $b, A_'  = 0 

w h e r e A o = ~ ~ , j = , d i a i j S j a n d L = ~ : l = , b i d i . H e r e y ,  = P I  = a 1  = a 2 = a 3 =  
4, = 0 and therefore we need only verify Assumptions 2 and 3. 

Let w( t ,  x) E D [ A  ( r ) ]  for each fixed t ,  t E LO, T),  w(t .  x )  E C,  (a), and 
w ( t ,  x) = 0 on dR for each t B [0, T ) .  Then ( A  + w, w) = ( A ,  w, w) + (C, w, w) 
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where Co = c - +b - A < k. Hence 
/ n  \ 

and 

Also 

IIA”l12 < 211Lwl12 + 2113bw112 

< ~ C ~ ( ~ ) l l ~ + w I l  Ilwll + P(t)lIwl121 
3 d Y 2  IIA+ wII llwll + w 2  llw112 

where = sup,C1=, Ibi(t,x)l, B(t>  = supx16(t,x)l2, 8y2( t )  = Cy(t), and 
dP2( t )  = P(t ) .  Assumption 2 is therefore satisfied. 

Finally we shall verify Assumption 3. For u ( t , x )  E C, “0, T), L2(Q)]  
with u( t ,  x) E C2 (a) and u( t ,  x) = 0 for x E asZ we have, for each t E [0, T )  

n 

(d/dt)(A+u(t) ,u( t ) )  = -2  c (aijaju,aia,U) + 2 ( c 0 u , a + 4  
i,j= 1 

= 2 ( A  + U, du/dt) - 

Hence 

i ( d / d t ) ( ~ + m W  - 2 @ + ~ W t ) i  G c c w i i A + U i i  IIUII + w)i iui i2i  
= 873 l lA+ 4 ll4 + P 3  IIUI12. 

Now one can apply the results of Section 4.2 to obtain lower bounds for the 
solutions of (4.4.1). 

PROBLEM 4.4.1. Let T = co. Assume that y z ,  P2, y3 ,  P3,  4 E L,  [O,  co) n 
L ,  (0, co) then for some p > 0 and any solution of (4.4.1) 

Ilu(t, .)I1 > 1140, ->I1 exP(-Pt), t ’ 0. 
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[Hint: Use Problem 4.2.2.1 

PROBLEM 4.4.2. Let u be a solution of the parabolic equation 
n 

i,j= 1 
a u p t  - c ai[Uij(X)aj]u + u(x)u = 0 (4.4.3) 

where a and the second partial derivatives of the aij are continuous and 
bounded in the closure of a domain R in R". Let u be a solution of (4.4.3) on 
R with zero Dirichlet boundary conditions such that for some positive 
constants C and fi and for any real t 

Let U be a nonempty open subset of G.  Assume that for any compact set 
K in U there exist positive constants C ,  and E ,  depending on K, such that 

Ilu(., " K )  < c1 exp[-(fi+4tl ,  2 0. 

T h e n i i E Q o n  U x R .  

[Hint: Use Problem 4.2.1 with m = 1 and A = 0.1 

4.5. Notes 

Theorems 4.1.1 and 4.1.2 are adapted from the work of Agmon and 
Nirenberg [2,3]. See also Ogawa [54]. Theorem 4.1.3 is essentially due to 
Ogawa [55] and contains as a corollary Masuda's theorem [49]. Theorem 
4.1.4 is a very special case of an analogous result in [3]. The results of 
Theorem 4.1.5 and Problem 4.1.2 are due to Agmon and Nirenberg [2]. 
Theorem 4.1.6 is adapted from Lakshmikantham [41]. All the results of 
Section 4.2 are taken from the work of Ladas and Lakshmikantham [36] 
which generalize and unify the corresponding results in [3] and [55]. For 
the contents of Section 4.3 see Lakshmikantham [41]. Further results can 
be found in Agmon and Nirenberg [3], Hurd [29], Ogawa [56] and 
Zaidman [SO]. The material concerning the application given in Section 4.4 
is taken from Agmon [l]. For earlier studies on this subject see also Agmon 
[l] and Lions [44]. 



Chapter 5 

Nonlinear Differential Equations 

5.0. Introduction 

The contents of this chapter may perhaps be more interesting to those 
readers who have the flavor of differential equations in Euclidean spaces, 
since most of the information might, at first sight, appear not to apply to 
partial differential equations and unbounded operators. None the less it is 
here that the concept of monotonicity condition (Minty [Sl]) enters, out of 
which has grown a tremendous interest in the study of nonlinear semi- 
groups and monotone operators. We devote Section 6.2 of the next chapter 
to the discussion of nonlinear semigroups where the importance of mono- 
tone operators unfolds itself. This chapter as a whole may be considered as 
developing the fundamental theory of nonlinear differential equations in 
Banach spaces. 

126 
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We begin by giving some counterexamples to show that the classical 
Peano’s existence theorem of differential equations in R”, as well as the 
“continuation of solutions” theorem, cannot in general be extended to 
infinite-dimensional Banach spaces. We then offer a set of quite general 
sufficient conditions, more general than the monotonicity condition, that 
guarantee the existence and uniqueness of solutions of nonlinear abstract 
Cauchy problems, demonstrating the uniqueness part by an application to 
a parabolic partial differential equation. The purpose of Section 5.3 is to 
develop the nonlinear variation of constants formula, analogous to 
Alekseev’s result [4]. As a preparation, a treatment of uniqueness of 
solutions and the continuity and differentiability with respect to initial 
conditions is given. Section 5.4 illustrates that the variation of constants 
formula is a convenient tool in studying the stability and asymptotic 
behavior of constantly acting perturbations. In Section 5.5 Chaplygin’s 
method is exploited to approximate the solution of a nonlinear differential 
equation by a sequence of functions satisfying linear differential equations. 
After presenting a set of sufficient conditions for the global continuation of 
solutions of abstract Cauchy problems in Section 5.6 we extend the notion 
of asymptotic equilibrium to equations in a Banach space obtaining as an 
outcome an existence result for a terminal value Cauchy problem. Finally, 
using the extension of Lyapunov’s second method, we consider in Section 
5.7 several stability criteria of nonlinear evolution equations. 

5.1. Counterexamples 

Let X be a Banach space andf(t, u) be a mapping from [to, to+u] x X 

(5.1.1) 

into X .  Consider the initial value problem 

du/dt = f ( t ,  u), to  < t < t + U, 

u(to) = uo, uo E X .  (5.1.2) 

DEFINITION 5.1.1. 
(5.1.1) with initial value uo at t = to if 

A function u :  [ to,  to +a] + X is said to be a solution of 

6) U E  C“to,to+al,X]; 

(ii) u 0 o )  = uo; 

(iii) u ( t )  is strongly differentiable in t for to < t < to+a and satisfies 
(5.1.1) for to < t < to+u. 



128 5. Nonlinear Differential Equations 

It is well known that in the case X =  R”, the n-dimensional Euclidean 
space, the continuity off in a neighborhood of (to, uo), alone, implies the 
existence of a local solution of (5.1.1) and (5.1.2). This is the classical 
Peano’s theorem. This theorem cannot be generalized to the infinite- 
dimensional case. The following counterexample is known. 

Consider the Banach space X = (co) of real-valued sequences u = {<,,},“= 
with t,, = 0 and norm llull = sup,, It,J. Define the functionf: X +  X 
by 

f(u) = {ItnI”+n-’>.“=1, u = {tn}F=I EX. 

The continuity of the real-valued function t” for l >  0 and the definition 
of the norm in X imply that the functionf(u) is continuous for all u E X .  
However, the initial value problem 

du/dt =J(u), ~ ( 0 )  = 0 (5.1.3) 

has no solution in X .  In fact if u(t )  = {t,,(t)}F= were a solution of (5.1.3) 
the nth coordinate t,(t) should satisfy the scalar equation 

t,,’(r) = It,,(t)l” + t 2 - l  (5.1.4) 

and the initial condition 

t n ( 0 )  = 0. (5.1.5) 

From (5.1.4) & ( t )  is strictly increasing in t and in view of (5.1.5) c , ( t )  > 0 
for 0 < t < T where T is sufficiently small. Then from (5.1.4) 

t,,’(t) > l.”(t), 

t&) > t t 2 ,  O < t < T .  

0 < t < 5 

which leads to 

It is obvious now that no matter how small we choose T the sequence 
{c,,(t)},“= does not converge to zero as n + 00 which contradicts the 
hypothesis that u( t )  is a solution of (5.1.3) and in particular u(t )  E X .  
A similar argument holds to the left o f t  = 0. Thus, although the functionf 
is continuous the initial value problem (5.1.3) has no solution in any open 
interval containing t = 0. At a first glance the preceding example seems to 
depend strongly on the properties of X =  (co) which is not reflexive (see 
[74]). However, another counterexample is known in a Hilbert space. 
(A Hilbert space is always reflexive.) We state it as follows. 
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PROBLEM 5.1.1. Let H be the Hilbert space of real-valued sequences 
u =  {t,}F=, with llull' =CF=l t,'. Let P ,  be the projections given by 
P,u = (0, ..., 0, &,+ c,,+', ...) with n = 1,2, ... and P,u  = u. For ( t ,  u)  E 
R x H define 

(0, t < O  

u, t > l  

(2-2"t)Pnu + (2"t-1)Pn-,u, I (i) P ( t ) u  = 

t E [2-",2-"+'], n = 1,2, ...; I 
(ii) G ( u )  = uIIuII-%, u # 0 and G(0) = 0; 

(iii) A ( u )  = (It1[, 15'1, ...) and u = (2-1,2-2,2-3,  ...); 

(iv) f ( t , u )  = G ( P ( r ) A ( u ) )  + P ( t / 2 ) u m a ~ { 0 , 4 - ~ t ~  - Ilull}. 

T h e n 8  R x H - ,  H is continuous but the initial value problem 

du/dt = f ( r ,u)  and u(0)  = 0 (5.1.6) 
has no solution in an open interval containing t = 0. 

[Hint: 
assuming that (5.1.6) has a solution deduce a contradiction.] 

The continuity o f f  follows from the continuity of P. Then 

REMARK 5.1.1. The reason that the classical proof of Peano's theorem 
fails in an infinite-dimensional Banach space is that the closed unit  ball in a 
Banach space is not necessarily compact. However, under the additional 
hypothesis that the function f is (locally) Lipschizian we can prove the 
(local) existence and uniqueness of solutions of (5. I .  1) and (5.1.2). 

THEOREM 5.1.1. Define the rectangle 

Ro = { ( t , u ) E  R X  X :  I t - t o l  < c(, I(u-uOII < p} .  
Letf: R ,  + X be continuous in t for each fixed u. Assume that IIf(t, zd)II < M 

where K and Mare nonnegative constants. Let C( and p be positive constants 
satisfying crM < p. Then there exists one and only one (strongly) con- 
tinuously differentiable function u( t )  satisfying 

du(t)/dt =f[r,u(t)l, It--,l < C( (5.1.7) 
and 

u(t,) = 24,. (5.1.8) 

for ( 1 ~ 4  E Ro and llAr&-f(f,~2)ll < Kllu, -u21/ for ( f . u l ) , ( t , u 2 )  E Ro 
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Proof: It is clear that the continuity in t for each fixed u plus the Lipschitz 
condition implies that f(t, u) is actually continuous in both variables. (In 

Kllu, -u211 + Ilf(tl,u2)-f(tz, uz)ll.) We shall apply the classical method of 
successive approximations. Define 

fact Ilf(t,,u,) - f ( t z 3 u 2 ) l l  I l f ( r l 3 u l )  -f(tl?u2)Il  + I l f ( ~ l , ~ z ) - J ’ ( ~ 2 , ~ Z ) l l  < 

uo(0 = uo 

and 

u,,(t) = uo + fCs,u,-,(s>l ds, It-t0l < a, 1: 
the integral being taken relative to the strong topology. One can establish 
by induction that u,(t) is strongly continuous and that 

llufl(t)-uoll Q A 

~ l ~ f l ( t ) - u f l - l ( t ) l ~  < ~ ~ ~ - I ( l t - t , l ~ / ~ ! ) ,  

I t - - o l  < a, 

and also 

t~ = 1,2, ... , 

It follows that as n --f 00 u,(t) converges uniformly in It - t,1 Q cy to a strongly 
continuous function ~ ( 2 ) .  Hence, as n + 00 

IIfCt, ufl(t)l - fCt ,  u(t)IlI Q KIIu,(t) - u(t)ll + 0, 

uniformly in It - ?,I d a. Using Theorem 1.3.2 we obtain 

u(r) = lim u,(t) = 11, + lim 
n- 30 f l -  co 

From this and Theorem 1.3.3 it is clear that u ( t )  is continuously differen- 
tiable and satisfies (5.1.7) and (5.1.8). Finally we prove the uniqueness. 
Let u ( t )  and u ( t )  be two solutions of (5. I .7) and (5.1 .S). Then 

and by Gronwall’s inequality 

The proof is therefore complete. 

REMARK 5.1.2. If X is a Banach algebra (see Appendix 11) over a field F 
with unit, e, the function f(t, u)  = au for a,u E X with fixed a satisfies the 
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hypotheses of Theorem 5.1.1 ; therefore the Cauchy problem 

du/dt = au and u(0) = e 

has a unique solution. This solution is given by 
m 

u( t )  = e + C (tna"/n!) 
n =  I 

and is taken as the definition of the exponential function exp(ta) in X .  

X, XI, not necessarily Lipschitzian, it is known that any solution u( t )  of 
Theorem 5.1.1 is a local result. In  the case X =  R" iff E C[ [a ,  t ,+a ]  x 

du/dt = f ( t ,  u) and u(t,)  = u, E X (5.1.9) 

exists either on [r,, t ,+a ]  or on [ to ,  6) with 0 < 6 < t,+a and Ilu(t)ll 00 

as t -, 6. I f f '€  C [[to - a, a] x X, XI, a similar result holds to the left of a. 
These results no longer hold if the underlying space X is an infinite dimen- 
sional Banach space. 

We shall present a counterexample. Consider again the Banach space 
X = (c,) of real-valued sequences u = {<,,},"= with <, = 0 and norm 
llull = supnlt,l. Let e, E X be the vector (0, ..., 0 , 1 , 0 ,  ...) whose nth com- 
ponent is 1 and all others are equal to zero. We now define a sequence of 
functionsf,: X-, X as follows: for u = {tk}km, E X, let 

fn(u> = P t n  + 2 t n +  1 - 11 + (en+ 1 -en) 

where [2<, + 2 tn+  I - 11' = max [0,25, + 2<,+ - 11.  
Clearly, for each n, the functionf,(u) is continuous and Lipschitzian in u. 

Alsofi(u)=O for llull <*  andf,(u)=e,+,-en for u = A e , , + ( l - ~ b ) e , , + l  
where 1. is any real number. Let 4,, E C [ [ ( n +  l ) - ' , n - ' ] ,  R + ]  be a sequence 
of functions such that 

4 ( ( n +  l ) - ' )  = d ( n - ' )  = 0 

Define the functionf: (- 0 0 , l )  x X +  X by 

4,(t) dt = 1 ,  n = 1,2, ... . L1 and 

One can now prove that the functionf(t, u) is locally Lipschitzian in u and 
continuous for all points ( t ,  u )  with t # 0. f is also continuous at any point 
(0,a) where a = {u,,}:= I E X. In  fact since a, = 0, there exists an 
index N such that Ic1,1 < & for all n 2 N .  Consider the ball B = { u  E X :  
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~ ~ u - a ~ ~ < ~ .  Ifu={<n}."=lEB, then J ~ , , l < + f o r a l l n > N a n d s o f , ( u ) = O  
for all n >, N .  Therefore, f ( t ,  u)  = 0 for ( t ,  u) E [O, N -  '1 x B which estab- 
lishes our assertion. Next define the sequence of functions u,: [0,1] + X 
for n = 1,2, ... by 

and also the function u:  (0,1] + X by 

(5.1.10) 

The series (5.1.10) always makes sense for t E (0,1] because it has only a 
finite number of nonzero terms. For t E [(n+ l)-', n-') we have 

n-1 

u ( 0  = e n + ( e n + l - e n ) ~  4 n ( s ) d s -  (5.1.1 1) 

From (5.1.11) it results immediately that Ilu(t)ll < 1 for 0 < t < 1, that u ( t )  
is differentiable for 0 < t < 1, and that 

u'(t) = - (en + 1 - en) 4 n  ( t )  

= - f n  cu (01 4 n W  
= -fCt, 24 (01. 

Clearly u(1) = e l .  
Hence, we have established that u ( t )  satisfies the initial value problem 

(5.1 . 1 2) du/dt = - f ( t , u ) ,  0 < t < 1 
and 

u(1) = el (5.1.1 3) 

with 'IIu(t)ll < 1 forO<t< 1. However, u ( t )  does not tend to a limit as 
t + 0. In fact u(n-  ') = en and en does not have a limit as n + 00. 
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5.2. Existence and Uniqueness 

In  Section 5.1 we have seen that the mere continuity offis not enough to 
guarantee the existence of a solution of the initial value problem (5.1.1) and 
(5.1.2) in an infinite-dimensional Banach space X. On the other hand, iffis 
(locally) Lipschitzian in X ,  the existence and uniqueness of (local) solutions 
is assured and the proof is identical with the proof given in R". First we 
shall present a set of quite general conditions on f which guarantee that 
the Cauchy problem 

(5.2.1) du/dt = f(t,u), to G t G to + a 

and 

4tO) = uo (5.2.2) 

is wellposed, that is, solutions of (5.2.1) and (5.2.2) exist, are unique, and 
depend continuously on their initial data. 

THEOREM 5.2.1. Assume that 

(i) fEC[[to,to+a] x sb,x]; sb = {uEX: I [u-uOI I  < b} 

and 

Ilf(t, u>II G M ,  ( t , u )  E [to,  to + a1 x sb; 

(ii) there exists a functional V E C [ [ t o ,  to + a] x sb x sb, R , ]  such that 
(a) V(t, u, u )  > 0, u # u ;  

(b) V(t,u,u) = 0, u = u ;  

(c) iflimn+m V(t,u,,u,)=OforeachtE [to,to+a], thenlim,,,(u,-on) 
= 0; 

(d) V(t, u, u )  is continuously Frkchet differentiable and 

aV(r, u, u ) / d t  + [aV(t, ., u)/dulf(r, U) + [ W t ,  u, .)/dulf(t, u )  G 0 ;  

(e) for any positive number K the functions aV(t,u,u)/at, 
[dV(t,  . u)/du] x, and [ W ( r ,  u, . ) / a u ]  x are continuous in (u, u )  uniformly 
for ( t ,  u, u )  E [to, to+u] x sb x sb and x E X with llxll G K.  

Then (5.2.1) and (5.2.2) possesses a unique solution on [to, to + a] where 
a >  0 satisfies aM < b. Moreover, the solution depends continuously on 
(to, uo). 
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Proof: Let A:  to < t ,  < ... < t, = to + a be a subdivision of [to, to +a]. We 
define the function 4A: [to, to +cr] -+ X as follows: 

4 A ( t O )  = uO 9 

4 A ( t )  = 4 A ( f k -  1) + f C s ,  4 A ( f k -  1 1 1  ds? 1,: L 

f k - 1  < t < f k ,  k = 1,2 ,..., n. 

It is clear from the definition that ( b A ( t )  is well defined on [ f o ,  f o + c t ]  and 

Hence 

+ lk: , f L S 9  (bA(fk  - 1 1 1  ds 

U O  + J f f A ( s )  ds 
l o  

where the function fA : [to,  r, + r] -+ X and 

(5.2.3) 

Notice that 

= f ( t , 4 A ( f k - 1 ) ) ,  r k - l  < < t k .  (5.2.4) 

In view of (5.2.3) and the definition of u 

I 1 4 A ( r ) - u o I I  < M(t-10) < MU < 6, 10 < t < f o  

and therefore 4A(t) E S,, for to < t < to +a. Let A, n be two subdivisions of 
[to, ro+a] and q5A(t),q5x(t) the corresponding functions. If t is not a sub- 
division point of either A or & t k -  < t < tk and T i -  < t < Ti ,  then (using 
Lemma 1.6.4) 

(d/dt)(V[r,  4 A ( t ) ?  4&(t>1) 
= dV/dt + (dV/du) dA'(t) + (dV/dU) f&'(t) 

= J V / d r  + ( Jv /au ) f [ t ,  4 A ( t k  - 1 1 1  + (dv/au)ffCr? $a(lj- I)] 
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= [av/at-aP/at] + av/a t  
+ [(av/au-av/du) + aP/au]f(t, 4A(tk- 1)) 

+ [(av/au-aP/au) + aP/au]f(t, 4&<?j- 1)) (5.2.5) 
where 

av/at = (av/at) Cf, 4 A ( t ) ,  4A(r)1, av/at  = (av/at)[t, 4A(fk- l), 4 A ( ? j -  1)1; 
a v p u  = (av/au)[t ,  .,&(t)], aB/au = (av/au)[r, .,(b&(fj-l)]; 

dv/du = (av/av) [ t ,  4 A ( t ) ,  ' 1 7  aP/au = ( d v / d u ) [ t ,  +A(fk- l),.]. 

In view of Hypothesis (ii)(e), for any E > 0 there exists a 6 > 0 such that if 
wetakeIA1 -maXk(tk-tk-l)<Bandlal =maxj(?j-ij-l)<Bthenwehave 

avlat - aP/at < &/3 (5.2.6) 

(av/au-aP/au)f[t, 4A(tk- 1)1 < E / 3  (5.2.7) 

(av/au-aP/au)f[t,~a(?j-,)] < 4 3  (5.2.8) 

and from Hypothesis (ii)(d) 

aP/df + ( d P / a u ) f [ f ,  4A(tk- I)] + ( a v / d u ) f [ t ,  4a(?j- I)] < 0. (5.2.9) 

From (5.2.5) and the inequalities (5.2.6)-(5.2.9) it follows that 

(d/dt)(v[ t ,  4A(t)9 4a(t)1) < (5.2.10) 

Integrating (5.2.10) from to to t and using Hypothesis (ii)(b), we obtain 

v[t, 4A(t),4&(f)1 G E ( t - f O )  

< &a. (5.2.1 1) 

The estimate (5.2.11) together with Hypotheses ($(a) and (ii)(b), and the 
completeness of X implies that there exists a function u ( t )  such that 

lim 4A(t) = u(t) ,  
IA1-0 

Clearly u ( t )  E S,. Now, fix t E [ to ,  to+cr]. Since for each subdivision A there 
exists a k such that 1,- < t < f k  and 

t E [ to ,  to+a]. 

14A(tk- 1)- 4 A ( t ) l  G M ( t  - tk- 1) 

< MIAI. 

It follows that l iml~l+o&~(fk-  1 )  = u(f). Then f [ f ,  4A(fk- I)] = f A ( f ) +  

f [ t ,  u( t )]  as 1A1+ 0. By the dominated convergence theorem and (5.2.3) we 
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u(t )  = uo + f [ s , u ( s ) ]  ds. I: 
The existence part of Theorem 5.2.1 is proved. 

(5.2.1) and (5.2.2). Then from Hypothesis (ii)(d) 
To prove uniqueness, assume that u( t )  and u ( t )  are two solutions of 

( d / d t ) V [ t ,  u(t) ,  u ( t ) ]  = avpt + (av/au)u'(t)  + (av/au)u'(t) 

= av/at + (av/au)j-[t, 401 + (av/au>f[r, v( t ) l  G 0. 

W ,  u ( 0 , 4 t ) l  - Wo, uo, uO1 < 0 

Integrating from to to t we get 

which on the strength of Hypotheses (ii)(b) and ($(a) yields u( t )  = u( t ) .  
Finally, we shall prove the continuous dependence of the solutions with 
respect to initial conditions. Let u1 ( t )  = u( t ,  t , ,  ul)  and u,(t)  = u( t ,  t , ,  u,) 
be the solutions of (5.2.1) through (tl ,  u , )  and ( t , ,  u2), respectively. Then in 
view of Hypothesis (ii)(d) 

(d/dt)VCt, u,(t),  u,(t)l < 0 

and integrating from t ,  to t 

0 < VCt, u1 ( t ) ,  u2 (01 G VCtl, U I ,  u2 (tl)l.  (5.2.12) 

Let ( r  I ,  u , )  + ( t2 ,  u2). Since V and u2 ( t )  are continuous we get 

U t l , u l , u , ( f l ) l  + V C t Z , U 2 , U 2 ( f , ) I  = 0. 

Taking limits on both sides of (5.2.12) as ( t l , u l ) - + ( t 2 , u 2 )  and using 
Hypothesis (ii)(c) the desired result follows. The proof is complete. 

An interesting special case of Theorem 5.2.1 in a Hilbert space is the 
following: 

COROLLARY 5.2.1. Let X be a Hilbert space and let Hypothesis (i) of 
Theorem 5.2.1 be satisfied. Furthermore, assume that - f is a monotonic 
function, that is, there exists a constant M such that 

Re[f(?,u) - f ( t , u ) , u - u ]  < M ~ ( U - U ( ( ~ ,  to < t < to + a, u,u E X .  

(5.2.13) 

Then the conclusion of Theorem 5.2.1 is satisfied. 
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Pro08 It sufices to exhibit a functional V(t ,  u, v) satisfying Hypothesis (ii) 
of Theorem 5.2.1. In fact, set 

V(t ,  u, u) = exp( - 2Mt) IIu - uII ’. 
Then from the results of Section 1.6 and the monotonicity of - f we obtain 

d V t ,  u, W t  + C d W ,  * ,  u)/dulf(r. u> + C d W ,  u, . )/dvlf(t, u )  

= - Mexp( - 2Mr) 11 u - uII + 2 exp( - 2Mt) Re(f(r, u), u - u )  

- 2 exp( - 2Mt) Re(f(t, u),  u - u )  

= 2exp(-2Mt)[Re(f(t,u)-f(t,v),u-u) - Mllu-u1I2] < 0 

and Hypothesis (ii)(d) is satisfied. Clearly all other conditions in (ii) are 
satisfied and the proof is complete. 

REMARK 5.2.1. Let X =  R’.  The function 

(:-”. u < o  u 2 0  

{:9+Ji7 u < o  u 2 0  

SO, u) = 

does not satisfy a Lipschitz condition but does satisfy the monotonicity 
condition (5.2.13) with M = 0. On the other hand, the function 

f ( t ,  u)  = 

does not satisfy the monotonicity condition (5.2.13) but there does exist a 
functional V( t ,  u, v )  satisfying all the conditions of Theorem 5.2.1. Indeed, 
take 

2 0, u 2 0 [JU - JU - log( 1 + JU) + log( 1 + JU)]’, 
[JU - log(1 +JU) - 3uI2 ,  

[+u - & + log(1 +VG)-j2, 
V ( t ,  u, u)  = 

u 2 0 ,  u < o  

u < o ,  v 2 0  

U C O ,  v < o .  

Next we shall prove a general uniqueness theorem in a normed space X. 
Let I = [to, to + a] and for each t E I ,  let D(t )  be a subset of A’. Define 

D = {(t,u): t E Z and u E D(t ) } ,  
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Consider the initial value problem 

du/dt = f ( t ,  u) (5.2.14) 

4 f O )  = uo E W o )  (5.2.1 5) 

where f: D -, X .  (fis  not necessarily continuous.) 

THEOREM 5.2.2. Assume that there exists a functional V E C [ I x  D x D, X ]  
satisfying Hypotheses @)(a), (ii)(b), and (ii)(d) of Theorem 5.2.1. Then 
(5.2.14) and (5.2.15) has at most one solution. Furthermore, if hypothesis 
(ii) (c) is satisfied, the solution depends continuously on the initial con- 
ditions. 

The proof is identical with the uniqueness and the continuous dependence 
proof of Theorem 5.2.1 and we shall omit it. 

the solutions of a parabolic partial differential equation. 
Finally we apply Theorem 5.2.2 to prove a known uniqueness result for 

EXAMPLE 5.2.1. Consider the parabolic equation 

au/at = a Z U / a X 2  + F( t , x ,u )  (5.2.16) 

on a region bounded by f = to, t = ro+a, x = I ,  ( t ) ,  and x = 12(r) where 
( 1 )  and & ( t )  are differentiable on I =  [to, to+u] and 2, ( t )  < 2 z ( r )  for 

t E I .  The initial and boundary conditions are u = g ( x )  on t = to, u = h,  ( t )  
on x = i., ( t ) ,  and u = hz ( t )  on s = ) . , ( t )  where g , h ,  and h2 are continuous, 
and g[i. ,  ( r , ) ]  = h,  ( to )  and g[ , i2 ( tO) ]  = hz( tO) .  Assume that for some 
constant K 

F(t ,  x, ul)  - F ( t ,  x,  ~ 2 )  < K(u1 -uZ),  ~1 > ~2 I 

Then (5.2.16) has a unique solution. To prove this let X =  L2(R) .  For each 
f E I define D ( t )  to be the space of functions u = u(x )  E X which are con- 
tinuous on [I., ( t ) ,  )., ( t ) ] ,  belong to C ,  on (I., ( t ) ,  A,(t)), vanish outside 
[i., ( t ) ,  I . , ( r ) ] ,  and take the values h ,  ( t )  and h 2 ( t )  at x = I ,  ( t )  and x = l z ( t ) ,  
respectively. For ( r ,  u) E I x D ( t )  define 

.f(t, U) = d2u(x ) /dx2  + ~ ( t ,  x, u). 

Then, (5.2.16) together with the initial and boundary conditions is 
equivalent to the initial value problem 

du/dr = f ( t ,  U) (5.2.17) 

4 t O )  = 9 (5.2.18) 
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Define 

We shall now verify that the conditions of Theorem 5.2.2 are satisfied for 
the system (5.2.17) and (5.2.18) and the choice (5.2.19) of the functional V.  
In fact the conditions @)(a) and (ii)(c) are obvious. Let us verify Hypothesis 
(ii)(d). From (5.2.19) we have 

av/at + (dV/du) f ( t ,  u)  + (dV/du>f(r ,  u) 

&(I)  

- exp ( - 2 ~ t )  J 2 [u (x )  - u (x) f ( t ,  u) dx 
dl(t) 

zz J ,  + 52 + 53 + 54. 
Since u [ i L i ( t ) ]  = ~ [ l . ~ ( t ) ]  = h,( t )  for i = 1,2 it follows that J2 = 0. From the 
definition off(t, u)  and an integration by parts we obtain 

5, +J4 = 2exp(-2Kr)/ [u(x)-u(x)] [ ~ x x + f ( t , ~ , u ) - - x x - f ( r , x , u ) ]  dx 
d2W 

d l ( 0  

From these observations and the hypothesis on F we conclude that 
Hypothesis (ii)(d) is valid and therefore (5.2.16) has at most one solution. 

PROBLEM 5.2.1 (Nagumo-type uniqueness). Let H be a Hilbert space 
and$ R, x H - ,  H satisfy the condition 

Re(f(t,u)-f(t,u),u-u) < (2t)-'llu-v1l2, r > 0, U , U E  H. 
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Then the Cauchy problem 

du/dt = f ( t ,  u) and u(0) = uo (5.2.20) 

has at  most one solution. 

[Hint: If u( t )  and v ( t )  are two solutions define m(t)  = Ilu(t)-u(t)l12 and 
prove that m'(t) < (2t)-'m(t) with m(0) = 0 and m'(0) = 0.1 

PROBLEM 5.2.2 (Osgood-type uniqueness). 
increasing and such that w(0)  = 0 and for each T such that 0 < T < co 

Let w: [0, co) + R, be strictly 

lim i*c is /w(s)  = oo. 
b1-d 

Assume that$ R ,  x H - +  Hand  for all t > 0 and u, u E H 

2Re(f(r,u-f(t,u>,u-u) < w(llu-ul12). 

Then (5.2.20) has at  most one solution. 

[Hint: Set m(t )  = Ilu(t)-v(t)l12; then m'(t) < w[m(r)] . ]  

PROBLEM 5.2.3. Let X be a reflexive Banach space. Then the conclusion of 
Theorem 5.2.1 remains valid if we replace the continuity of f  by demi- 
continuity (that is, f is continuous from [to, to+a]  x X with the strong 
topology, into X with the weak topology) and differentiation is understood 
in the weak sense. 

[Hint: Establish thatfa(t) converges weakly tof[t, + ( t > ]  as 1A1 +O.] 

PROBLEM 5.2.4. Consider the nonlinear evolution equation 

to < t < to + a du/dt = A ( t ) u  + f ( t , u ) ,  (5.2.21) 

where the operators A ( t )  satisfy Hypotheses 1-3 of Section 3.1. Assume 
that the hypotheses (i) and (ii) of Theorem 5.2.1 are satisfied. Furthermore, 
assume thatf(t, u) is Holder continuous in t and u and that for u, u E D and 
t E [ t o ,  t o  +a1 

[dV(t, . , v)/du] A ( t )  u + [dV(t, u, . ) /dv]  A (1) u < 0. 

Then, the evolution equation (5.2.21) has a mild solution, on [to,  fo+a]  
where 0 < a < a, through the point (to, uo) with uo E D. 
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[Hint: Define as in Theorem 5.2.1 4 A ( t o )  = uo and 

4 A ( l )  = u ( t ? r k - l ) 4 A ( t k - l )  + i:-,u(r,s)f[s, u ( s ? r k - l ) 1 4 A ( t k - l )  ds 

for r k - l  < t < tk where U is the fundamental solution constructed in 
Section 3.4.1 

5.3. Nonlinear Variation of Constants Formula 

In this section, we consider the nonlinear abstract Cauchy problem 

du/dt = f(t, u) and u(to) = uo (5.3.1) 

where8 R ,  x X +  X is a given function and X a Banach space. Our aim is 
to develop the variation of constants formula with respect to (5.3.1) and its 
perturbation 

du/dt = f(t, u )  + F ( t ,  u)  and u ( t o )  = uo (5.3.2) 

where F: R ,  x X +  X .  As we shall see later, this result is a convenient tool 
in discussing the properties of solutions of the perturbed system (5.3.2) 
including the preservation of stability properties under constantly acting 
perturbations. First, it is necessary to study the uniqueness of solutions, 
their continuity and differentiability with respect to initial conditions 
(to, uo), and to show that the FrCchet derivatives of the solutions u(t ,  to, uo) 
of (5.3.1) with respect to initial values exist and satisfy the equation of 
variation of (5.3.1) along the solution u( t , to ,uo) .  Our treatment rests on 
the existence of an admissible functional in X ,  a mild one-sided estimate 
of,f, and the theory of scalar differential inequalities. By S(xo, r )  we shall 
denote the sphere {x E X :  IIx-xoII < r } .  For a functionf: R ,  x X +  X the 
Frechet derivative with respect to x, if it exists, is denoted byf,(t, .) and as 
we have seen in Section 1.6 it belongs to B ( X ) .  The notation w(h)  = O(llhll) 
for h E X stands for a vector in X satisfying the condition 

lim w(h)/l(hl( = 0. 
Ilhll-.O 

DEFINITION 5.3.1. 
to be admissible in X if the following conditions are satisfied: 

A (nonlinear) continuous functional (D: X +  R ,  is said 

(i) @(x) > 0, X E X ,  x # 0 and cD(0) = 0; 

(ii) if x, = 0 for x, E X ,  then x, = 0; 
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(iii) there exists a mapping M :  X x  X +  R suGh that M[x,h] is con- 
tinuous in h, uniformly with respect to x in any sphere S(x,,,r), and 
satisfying the properties 

(a) @(x+h) - @(4 < MCx,hl + O(llhll), x,he X ;  

(b) M C x ,  %h] = AM[x, h], 1 2 0, x , h  E X ;  

( 4  MCx,hi+hJ < MCx,hil + M[x,hJ, ~,hl,hZ E X. 

EXAMPLE 5.3.1. (i) The functional @(x) = llxll is admissible in any 
Banach space Xwith M[x,h] = llhll. 

(ii) The function @(x) = lxil is admissible in R" where for 
x = ( x ~ ,  ..., x,,), h = ( h l ,  hz ,  ..., h,) E R". 

n hi sgn xi, xi # 0 

Ihil, xi = 0. 
M [ x ,  h ]  = c M [ X i ,  hi], M [ X i ,  hi] = 

i =  I 

(iii) The functional @(x) = (x,x) is admissible in any Hilbert space H 

The following lemma shows that the functional M [ x ,  .] is bounded. 

with M [x, h] = 2 Re(x, h).  

LEMMA 5.3.1. 
S = S(x,, r )  there is a constant K ( r )  such that 

Let 0 be an admissible functional in X .  Then for any sphere 

IMCx,hll < K(r)Ilhll, X E S ,  h E X .  

Proofi In view of the continuity of M [ x ,  h] in h, uniformly with respect 
to x E S, and the fact that M[x,O] = 0, it follows that, given E > 0 there 
exists a 6 = B ( E ,  r )  such that llhll < 6 implies IM[x ,  h]1 < E for all x E S. For 
an arbitrary h set h = (d/llhll)h. Then llhll = 6 and 

lMCx,(~/1lhll)hlI < E ,  X E S ,  x. (5.3.3) 

(5.3.4) 

Since 

M CX, (S/llhll) hl = (S/llhll) MC-Y, h l ,  
it follows from (5.3.3) and (5.3.4) that 

IMC&hll < (&/6)llhll, X E S ,  h E X .  

The proof is complete with K ( r )  = ~ / 8 .  
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Consider the abstract Cauchy problem 

and the scalar initial value problem 

(5.3.5) 

(5.3.6) 

(5.3.7) 

(5.3.8) 

where8 R, x X +  X and g :  R, x R ,  + R. 
In this section, we shall assume that f and g are smooth enough to 

guarantee the existence (not uniqueness) of solutions of (5.3.5) and (5.3.7) 
for all t E R,. Actually, local existence would suffice and our results can be 
easily restated to hold locally. Of course the mere continuity offwill not 
suffice even for local existence of solutions of (5.3.5). For existence theorems 
the reader is to refer to Section 5.2. 

A solution of (5.3.5) and (5.3.6) will be denoted by u(t , to,uo) .  The 
maximal solution of (5.3.7) and (5.3.8) will be denoted by r ( t ,  to, ro). 

We shall also assume, in this section, the existence of an admissible 
functional @ in X satisfying the properties (i)-(iii) of Definition 5.3.1. 

For easy reference we state the following hypotheses. 

Hypothesis 1: 

(5.3.9) 

for t E R, and all x, y E X .  

Hypothesis 2: The function f(r, x) has a continuous FrCchet derivative 
f , ( t , x )  with respect to x and 

MCh,f,(t,z)hl G g[t ,@(h)l ,  t 2 0, h E X (5.3.10) 

and all z in any sphere S(xo,r) .  

As we shall prove in Lemma 5.3.6, Hypothesis 2 implies Hypothesis 1. 
First we shall prove that under Hypothesis 1 the system (5.3.5) and (5.3.6) 
has a unique solution u(t,  to, uo) which depends continuously on the initial 
conditions (to, uo) provided that the scalar initial value problem (5.3.7) and 
(5.3.8) has these properties. 

We need the following lemma. The symbol D, r ( t )  denotes the lower 
right-Dini derivative of the function r( t ) .  
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LEMMA 5.3.2. 
inequality holds : 

For any differentiable function x: R ,  -+ X the following 

D+ @ [ x ( t ) ]  < M [ x ( t ) , x ‘ ( t ) ] ,  t E R+ (5.3.1 1)  

From the definition of D, @ ( t ) ,  the admissibility of 0 and lemma Proof: 
5.3.1 we obtain 

D+ @ [ x ( t ) ]  = lim inf h - ’ [ @ ( x ( t + h ) )  - @(x(t))]  
h-O+ 

= lim inf h- ’ (@[~x( t )+hx’ ( t )+O(h’ ) ]  - @ [ x ( t ) l )  

< Iim in f [h - ’ (M[x( t ) ,hx ’ ( t ) ]  + 0 ( h 2 ) )  +~(~ lh .u ’ ( t )+~(h’ ) I I ) ]  

h+O+ 

h+O+ 

< M[x( t ) , x ‘ ( t ) ]  + lim infM[x(t),O(h)] 
h - 0 ,  

= M [ x ( t ) , x ’ ( t ) ] .  

The proof is complete. 

The following lemma is used to prove uniqueness. 

LEMMA 5.3.3. 
Then 

Let Hypothesis 1 be satisfied. Assume that @(uo - uo) < ro. 

t 2 t o  * (5.3.12) 

Proofi Let u( t )  = u( t ,  to, uo) and v ( t )  = u ( t ,  to, uo) be solutions of (5.3.5) 
through (to, uo) and (to, uo) respectively and r ( t ,  to, ro) be the maximal 
solution of (5.3.7) and (5.3.8). Define z ( t )  = u ( t ) - u ( t ) .  From Lemma 5.3.2 
and Hypothesis 1 we obtain 

@Cu(t, to ,  uo) - u ( t ,  to,  u0)l < r ( t ,  to ,  ro), 

D+ @(z( t ) )  < MCz(t),z’(t)I 

= M [ u ( t )  - u(t),fCt, 401 - f C 4  4 t ) l l  

< g(t,@(zW)), t 2 t o .  

Also 

@ [z( to) l  = Wo - uo) < ro . 
’ From these inequalities and [42] the estimate (5.3.12) follows. 

THEOREM 5.3.1. 
Then the system (5.3.5) and (5.3.6) has a unique solution. 

Let Hypothesis 1 be satisfied. Assume that r ( t ,  to, 0) = 0. 
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Pro08 
(5.3.5) and (5.3.6). It follows from (5.3.12) that 

Let u,  ( t )  = u1 (t ,  to, uo) and u2 (f) = 11, (I, r,, uo) be two solutions of 

@ Cul ( 2 ) -  u2 (t)] < r ( t ,  to, ro) = 0. 

Hence u l  ( t )  = u,(t), for t 2 to and the proof is complete. 

REMARK 5.3.1. As we mentioned in Example 5.3.l(iii) the functional 
@(x) = (x, x) is admissible in any Hilbert space H with M [ s ,  h] = 2 Re(x, h). 
I n  this case Hypothesis 1 with g(t,  r) = 2Mr reduces to the monotonicity 
condition onfthat was used to prove existence and uniqueness of solutions 
of (5.3.5) and (5.3.6) in Corollary 5.2.1. 

Next, we prove the continuous dependence of solutions of (5.3.5) and 
(5.3.6) with respect to the initial conditions. 

THEOREM 5.3.2. Let Hypothesis 1 be satisfied. Assume that the maximal 
solution of (5.3.7) and (5.3.8) depends continuously on ( fo , ro )  for each 
( to,  ro)  E R, x R+ and r ( t ,  to,  0) = 0, for t 2 to. Then u(t ,  to, uo) depends 
continuously on (to, uo). 

Proofi Let u l  ( t )  = u(t ,  t , ,  ul )  and u 2 ( ? )  = u(t ,  t 2 ,  u 2 )  be solutions of (5.3.5) 
through ( t , ,  u l )  and ( t z ,  u2),  respectively. Let t ,  2 t , .  Define 

z(t) = u,( t )  - u,(t). 

From Lemma 5.3.2 and Hypothesis 1 we obtain 

D+ @(z(t)) < MCz(r),z’(t)l 

= MCz(t),fCt, u1(0l  - f” t ,  u,(t)lI 
G g(r, @ Cz (N), 2 1,. (5.3.13) 

(5.3.14) 
Also 

@,Cz(t,)l = @Cu1 - ~ ( t l , f Z , U Z ) I .  

From (5.3.13) and (5.3.14), it follows that 

@Cz(t)l f r(t,t , ,@Cu, - ~ ( t l , t , , % ) l ) .  (5.3.15) 

Since @(x) is continuous in s, u ( t ,  t , ,  u,) is continuous in t and r ( t ,  I , ,  r l )  is 
by hypothesis continuous in ( t , ,  r l ) ,  it follows from (5.3.15) that \ 

lim [z(t)l < r [ t ,  t , ,  @(u, - u,)] 
I l - r t Z  

UI-+UZ 

= r ( t , t , , O )  E 0. 
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Hence, from the definition of CP 

and the proof is complete. 

Now we shall prove that under Hypothesis 2 and r ( t , r o , O ) = O  the 
solutions u(t ,  to ,  uo) of (5.3.5) and (5.3.6) are continuously differentiable 
with respect to initial conditions (to, uo) and the Frechet derivatives 
(d /duo)  u( r ,  to, uo) and (d /d to )u( t ,  to, uo) exist and satisfy the equation of 
variation of (5.3.5) along the solution u ( f ,  to, uo). From the existence and 
continuity of f x ( t , x )  and from the mean value theorem for FrCchet 
differentiable functions, it follows that f ( t ,  x) is locally Lipschitzian in x ,  
and consequently the local existence of solutions of (5.3.5) and (5.3.6) is 
secured. The following lemmas are needed. 

LEMMA 5.3.4. 
continuous for x E S ( x o ,  r ) .  Then for x l ,  x2 E S(xo ,  r )  and r 2 0 

Let f E C [ R +  x S ( x o , r ) ,  X ]  and let f x ( t , x )  exist and be 

f ( t , X l )  - f ( t , ~ J  = fx ( t ,sx l  + (I - s ) x ~ ) ( x ~ - x ~ )  ds. (5.3.16) 1‘ 
Proof: Define 

F(s)  = f [ t , s x ,  + (1  - s ) x 2 ] ,  0 < s < 1. 

The convexity of S ( x o ,  r )  implies that F ( s )  is well defined. Using the chain 
rule for Frtchet derivatives, we obtain 

F’(s) = f x [ t , s x ,  + (1 -s )x2 ] (x1  -x2 ) .  (5.3.17) 

Since F(1) = f ( t ,  x l )  and F(0)  = f ( t ,  x2) the result follows by integrating 
(5.3.17) with respect to s from 0 to 1. 

LEMMA 5.3.5. Let Hypothesis 2 be satisfied. Then 

1 M [ h , L 1 f X [ t , s x ,  + ( 1 - s ) x 2 ] h d s  

< g [ t , @ ( h ) ] ,  t 2 0, h , x 1 , x 2  E s(xo,r) .  (5.3.18) 

Proofi Let T: 0 = so < s1 < ... < s, = 1 be any partition of [O, 13. From 
the definition of Riemann integral for continuous abstract functions it 
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follows that 

(5.3.19) 

From the continuity of M [ x , h ]  in h (uniformly with respect to 
where Asi = si+ -si and si < ri < si+ 

x E S(xo , r ) ) ,  (5.3.19), and Hypothesis 2 it follows that 

for i = 0,1, . . ., n - 1 .  

1 M h, fxCt,sx, + (1 -s)x,]h ds [ s '  
n- I 

The proof is complete. 

LEMMA 5.3.6. 

Proof: In view of Lemmas (5.3.4) and (5.3.5) we have 

Hypothesis 2 implies Hypothesis 1. 

1 MCx-~ , f ( t , x )  - f ( t , ~ ) l  = M x-Y, fxCt,sx + (1 - s ) ~ l ( x - - ~ )  ds [ I I  

< sCt,@(x-y)l .  

The proof is complete. 

COROLLARY 5.3.1. Let Hypothesis 2 be satisfied. Assume that the maximal 
solution of (5.3.7) and (5.3.8) depends continuously on (to,ro) for each 
( to,  ro) E R+ x R ,  and r ( t ,  to, 0) = 0 for t to. Then the solutions of (5.3.5) 
and (5.3.6) exist locally, are unique, and depend continuously on initial 
conditions. 

THEOREM 5.3.3. Let Hypothesis 2 be satisfied. Assume that the maximal 
solution of (5.3.7) through any point ( to ,  0) is identically zero for t 2 to. 
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Then 

(a) The Frtchet derivative (d/duo) u(r, to, uo) E U(t ,  to, uo) exists and 
satisfies the operator equation 

U’  =furt ,u( t ,~o ,uo) l  u, t 2 t o ,  (5.3.20) 

U(t0) = I ;  (5.3.21) 

(b) the FrCchet derivative (d /dto)  u(t, to, uo) E V(r, to, uo) exists and 
satisfies 

v’ =f,(t,u(t,to,uo))v, t 2 to,  (5.3.22) 

W O )  = - f ( to ,uo)* (5.3.23) 

Furthermore 

w, t o ,  uo) = - U(t ,  to,  uo)f(to, uo). (5.3.24) 

Proof: (a) Sincefu(t, .) E C [ J  x S(uo, r ) ,  B ( X ) ] ,  (5.3.20) and (5.3.21) has 
a unique solution which we denote by U(t ) .  

Define the function 
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Define 

m(f) = Ilu(t, to,uo+h) - u( t ,  to9uo)ll. (5.3.29) 

It follows that 

D ,  m(t)  < b r ( t ,  to, uo +A) - ur(t, to, U ~ ) I I  

= IlfCt, u( t ,  to, uo +h)l -fk u( t ,  to, uO)l II. 
In view of Lemma 5.3.4 and the continuity offwe obtain from (5.3.29) 

D + m ( t )  < K , m ( t )  (5.3.30) 

where K ,  is a constant such that 

llf,(4z)ll G Kl 

for t in a compact interval Zaround to and z being in the line segment joining 
the solutions x(t ,  f o ,  xo) and x ( t ,  to, xo +A).  Also from (5.3.29) 

m(to) = llhll. (5.3.31) 

By (5.3.30) and (5.3.31) we obtain 

m (0 < II h II exp K ,  ( t  - t o )  

< K ,  llhll, t E Z (5.3.32) 

where K2 is a constant. 
Let K ,  be a constant such that 

II W I I  < K ,  9 t E 1. (5.3.33) 
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From the definition of z(t), (5.3.32), and (5.3.33) we get 

Ilz(t)ll/llhll 6 K ,  + K ,  z K 4 ,  t E I ,  llhll sufficiently small. (5.3.34) 

In  view of Lemma 5.3.1 [which applies because of (5.3.34)] we have 

MCz(t)/llhll, o(h)/llhlll 6 ~ l l ~ ~ ~ ~ l l / l l ~ l l .  
Finally, from the definition of w(h) and (5.3.32) we obtain 

l l ~ ~ ~ ~ ~ l l / l l ~ l l  < K, Ilw(h)ll/m(t) 

= K , I I~ (~ ) l l / l l ~ (~ ,~o ,~o+~>  - u(t,to,~o)ll .+ 0 

and (5.3.28) has been established. 
From (5.3.27) and (5.3.28) we obtain 

D+ @(z(t)/Ilhll) < s[t ,  @(z(t)/llhll)l + O W .  

@(z(to)/llhll) = 0. 

Also 

In view of (5.3.36) and (5.3.37) it follows that 

(5.3.3 5) 

as h + O  

(5.3.36) 

(5.3.37) 



5.3. Nonlinear Variation of Constants Formula 151 

Also 

@(z(to>/h> = @(Cu(to, ~ o + ~ , u o ) - u o l / ~  +f(to,uo)) 

= @(Cu(to, to+h, uo) - u(to+h, t O + k  uo)l/h +SO,, uo)) 

= O(1) as h + 0. (5.3.39) 

From (5.3.38), (5.3.39), and Lakshmikantham and Leela [42] it follows as 
in (a) that 

lim Q(z(t) /h)  = r ( t ,  to, 0) 3 0. 
h-.O 

Hence 
lim z(t)/h = 0. 

h+O+ 

which proves (b). In addition 

( m o )  4 4  to ,  uo) = - W ) f ( t o ,  uo) 

= - (am, )  u(4 t o ,  u,)f(to, uo). 

The proof is complete. 

THEOREM 5.3.4. 
formula holds: 

Under the hypotheses of Theorem 5.3.3 the following 

u(t ,  to, u0)  - 4, to, uo> = W t ,  to, uo + s(v0 - uO)l (o0 - uo) ds. 
(5.3.40) 

Proof: 
we have 

From Theorem 5.3.3 and the chain rule for abstract functions, 

(dlds) u [f, to,  UO + S ( U 0  - u0)l = uct, to ,  uo + S ( U 0  - u0)l ( D o  - uo). 

(5.3.41) 

Integrating (5.3.41) from 0 to 1 with respect to s the desired result follows. 
Now we shall establish the variation of constants formula with respect to 

(5.3.5) slid (5.3.6) and its nonlinear perturbation 

U’ = f ( t ,  U) + F(t ,  u), (5.3.42) 

4 t O )  = 00 (5.3.43) 

where A F :  R ,  x X + X are smooth enough to guarantee the existence of 
solutions of (5.3.42) and (5.3.43) for t 2 to. A solution of (5.3.42) and 
(5.3.43) is denoted by v(t, to, u0).  
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THEOREM 5.3.5. Let f, F E C [R, x X ;  X ]  and let f’ satisfy Hypothesis 2. 
Let u(t,  to, u,) and u ( t ,  to, u,) be solutions of (5.3.5) and (5.3.42) through 
(to, u,), respectively. Then, for t 2 to 

(5.3.44) 
J t o  

where 
W, I, ,  uo) = ( W u , )  u 0, to, uo). 

(d/ds) u Ct, s, 4s)I = ( W s )  u [ r ,  s, 491 + ( W u )  u Ct, 3, u (s>lu’(s) 

= - uCt, s, u(s)lf(s, 4s)) 

= u Ct, s, (41 FCs, (41. (5.3.45) 

Pro08 Write u ( t )  = u ( t ,  to, u,). Then, in view of Theorem 5.3.3 

+ u Ct, s, u (s>l ( f C 4  u ($1 + FCs, (41) 

Since the right-hand side of (5.3.45) is continuous, we can integrate from 
to to t ,  obtaining the variation of constants formula (5.3.44). 

5.4. Stability and Asymptotic Behavior 

Let us consider the abstract differential equation 

u’ = j ( t , u )  and u(to) = u, (5.4.1) 

and its perturbation 

u’ = f ( t ,  u) + F(t ,  u)  and u( to )  = u, (5.4.2) 

where f, F E  C [ R ,  x S ( p ) ,  X I ,  S ( p )  being the sphere {u E X :  llull c p }  in 
the Banach space X .  We assume that the functions j and F are smooth 
enough to ensure the existence of solutions u( t ,  to, u,) and u ( t ,  to, u,) of 
(5.4.1) and (5.4.2), respectively, on [ to,  co). When f ( t ,  0) = 0, (5.4.1) has 
the trivial solution. In this case we have the following. 

DEFINITION 5.4.1. The trivial solution of (5.4.1) is said to be 

(i) stable if for every E > 0 and to E R,, there exists a 6 > 0 such that 

(ii) asymptotically stable if it is stable and there exists a 6, > 0 such 
lluo)I < 6 implies Ilu(t, to,uo)ll < E for all t 2 to ;  

that IIuoll < 6, implies limt-,m u(t ,  to, uo) = 0; 
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(iii) unijbrmly stable in variation if for every E > 0 and to E R+, there 
exists an M ( E )  > 0 such that IIuoll < E implies / I  U ( t ,  to,  uo)ll < M ( E )  for all 
t 2 to ,  where U ( t ,  to, uo) is the solution of the variational equation (5.3.20) 
and (5.3.21). 

DEFINITION 5.4.2. 
is defined by 

Let A E B ( X ) .  The logarithmic norm of the operator A 

p ( A )  E lim (IIZ+hA)I - l)/h. (5.4.3) 
h - 0 ,  

PROBLEM 5.4.1. 
properties 

Prove that the limit in (5.4.3) exists and satisfies the 

6)  IP(4I  IlAll; 

(ii) P(crA) = .P(A), . 2 0; 
(iii) 

(iv) IP(A)-P(B)I G IIA-BII. 

P(A+B)  G P(A) + P ( B ) ;  

[Hint: 

considerations. 

The right Gateaux derivative of llxll exists in any Banach space.] 

The following lemma which is interesting in itself is needed for further 

LEMMA 5.4.1. 
the solution of 

Let A ( t )  E B ( X )  for each t E R, and suppose that u ( t )  is 

u’ = A ( t ) u  and #(to) = uo. 

Then 

Ilu(t>ll G IIuoll exp 1(CA(s)l ds , t 2 t o .  (5.4.4) (l ) 
Proofi Define m(t )  = Ilu(t)lj. Then, for small h > 0, 

W + h )  - m(r> G Ilu(t)+hA(Ou(t)II - Ilu(t)ll +&(A)  

G (IIZ+hA(r)ll - l)m(t) + E(h) 

where ~ ( h ) / h  + 0 as h + 0,. Hence 

D+ 4) G P CA (01 m ( 0  and W o )  = II uo II 
from which the estimate (5.4.4) follows. 



154 5. Nonlinear Diflerential Equations 

LEMMA 5.4.2. 
that there exists a function N E C [ R , ,  R] such that 

Let the hypotheses of Theorem 5.3.3 hold. Suppose further 

P C f " k  41 < a(t>,  ( t ,  u)  E R +  x W). (5.4.5) 

Then for uo, uo E S ( p )  we have the estimates 

llu(t,to,uo) - u(t,to,uo)ll < I I ~ O - U ~ I I  exp[l:a(s) ds], t 2 to 

(5.4.6) 

and 

Proof: From Theorem 5.3.4 we have 

u ( t ,  to, uo) - u(r, to, uo) = uCt, to, uo + s(uo - uO)l (uo - uo> ds. 
(5.4.8) 

61 
By virtue of (5.4.5) and Lemma 5.4.1 it follows that 

This and (5.4.8) yield (5.4.6). 
Next, from Theorem 5.3.5 we have 

u ( t ,  to,  00) - u 0, to,  uo) 

= u ( t ,  to,  00) - to ,  uo) 

+ l:uCt, s, u(s,  to,uo)l FCs, u(s, to, uo)l ds. (5.4.9) 

Again, from Lemma 5.4.1 

max II Ct, 3, u (s, to, uO)l II < exp l ' a  (t) dt .  

This, together with (5.4.6) and (5.4.9) yields the estimate (5.4.7). The proof 
is complete. 

roGsst  
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THEOREM 5.4.1. Assume that 

(i) the hypotheses of Theorem 5.3.3 hold; 
(ii) f ( t , O )  = 0, t E R,; 

(iii) the condition (5.4.5) holds with 

c = lim sup(t-t,)-' a(s) ds .c 0. 
I -  m l; 

Then the trivial solution of (5.4.1) is asymptotically stable. 

Pro08 The assumption (5.4.10) implies that 

i:ct(s) ds < (a/2)(t-to), t sufficiently large. 

Therefore 

(5.4.1 0) 

(5.4.1 1) 

If we take uo = 0 in (5.4.6) we obtain 

This and (5.4.11) yield the desired conclusion. 

THEOREM 5.4.2. Assume that 

(i) the hypotheses of Theorem 5.3.3 hold; 
(ii) f ( t , O )  = F(t,O) = 0, c E R,; 

(iii) 0 c 0; 

(iv) IIF(t,u)ll = O(llull) as u + 0 uniformly in t .  

Then, the trivial solution of (5.4.2) is asymptotically stable. 

Proof: Let E > 0 and sufficiently small. Then Hypothesis (iii) implies that 

Hence, there exists a positive constant K such that 

(5.4.12) 
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With the foregoing E and because of Hypothesis (iv) there exists a 6 > 0 such 
that llull < 6 implies IIF(t, u)ll < E IIuII. Now for IIuoll < 6 / K  and from (5.4.7) 
with uo = 0 we obtain 

as long as ~ ~ u ( f , t o , u o ) ~ ~  <6 .  Multiplying both sides of (5.4.14) by 
exp [ - j:, a(s) ds] and applying Gronwall’s inequality we get 

as long as Ilu(t, to,uo)ll < 6. Now (5.4.15) shows that I lu(t,  to,uo)(l < 6 for 
all t >  to. Otherwise there exists a T such that \ ~ u ( 7 ‘ , t o , u o ) ~ ~  = 6 and 
Ilu(t,to,uo)ll < 6 for to < t < T. Then from (5.4.15) and (5.4.13), we get the 
contradiction 

6 < ( 6 / K ) K  = 6 
which proves our claim. Thus (5.4.15) holds for all t 2 to and this together 
with (5.4.12) yields the desired conclusion. 

THEOREM 5.4.3. Assume that 

(i) 
(ii) f ( t , O )  = 0, R , ;  

(iii) the trivial solution of (5.4.1) is uniformly stable in variation; 
(iv) given a >  0 there exists a function I,E L,[O, co) such that 

the hypotheses of Theorem 5.3.3 are satisfied; 

IIW, u)ll < for llull < a. 

Then for every E > 0 there exists positive numbers 6 = 6 ( ~ )  and T = T(E)  
such that lluoII < 6 implies Ilu(t, to, uo)ll < E for t 2 to 2 T. 

Proof: Let E > 0 be given. Choose 6 and Tsuch that 6 < E ,  2 M ( ~ ) 6  < E and 
SF &(s) ds < E/~M(E).  Assume that lluoll < 6 and to 2 T. Using (5.3.40) with 
uo = 0 and Hypothesis (iii) we get 

l l ~ ~ ~ , ~ o , ~ o ~ l l  < IIuoll M(4 < E / 2 ,  

Ilu(4 to ,  u0)II < E ,  

t 2 t o .  

We claim that 

t 2 t o  * 
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If this is not true, let t ,  > to be such that ~ ~ u ( t l , t o , u o ) ~ ~  = E  and 
Ilu(t, to, uo)II < E for to < t < t , .  Then from (5.3.44) 

E < ,512 + M ( E )  &(s) ds < E. L 
This contradiction proves the theorem. 

5.5. Chaplygin's Method 

In this section we shall employ Chaplygin's method to approximate the 
solution of the differential system 

u' = f(t, u) 

u(0) = uo 

(5.5.1) 

(5.5.2) 

by a sequence of functions u,(r) which satisfy the linear systems 

uA+ 1 ( t )  = fC t ,  un(t)l + f u C t ,  un(t>l  Gun+ 1 (t)-un(t)l (5.5.3) 

un+l (0) = uo ,  n = 0,1,2, ... . (5.5.4) 

and 

The right-hand side of (5.5.3) is a linear approximation off(t, u). This is the 
analog of Newton's method applied to numerical equations and it was used 
by Chaplygin for ordinary differential equations in R". Herefrz C [[0, a] x 
X ,  X I  where a > 0 and Xis  a Banach space. We shall assume that for each t 
the function f ( t ,  u) is FrCchet differentiable in u with F-derivative at the 
point u E X denoted byf,(t, u).  Furthermore, we shall assume thatf,(r, v )  
is strongly continuous in ( t ,  u )  and 

Ilf,(t, 0) -f,(t, w)ll < g(r, IIu- 4l), u, w E X t E CO,al (5.5.5) 

where g E C[[O, a] x R + ,  R + ]  and g(r, r )  is nondecreasing in r. 
If u o ( t )  is a continuous function on [O, a) with uo(0) = uo, then in view of 

our hypotheses onf the  system (5.5.3) and (5.5.4) with n = 0 has a unique 
solution u ,  ( t )  which exists on [0, a] .  In  this way, one can construct a 
sequence of functions {u,(r)}, n = 0, 1,2, ... which satisfy (5.5.3) and (5.5.4) 
on [0, a]. Now we can prove the following. 

THEOREM 5.5.1. Letf(t, u)  satisfy (5 .5 .5 )  and suppose that IIu,(t)ll < M c 00 

for 0 < t < a and all n. Then {u , ( t ) }  is uniformly convergent on [0, a] to the 
solution u(t )  of the system (5.5.1) and (5.5.2). 
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Hence 

< g ( t , M )  + N 
< maxg(t,M) + N = K, 

to, a1 
which proves (5.5.9). 

From (5.5.6)-(5.5.9) it follows that 

On the other hand, IIzn(t>ll G 2M. Hence 

Ilzn(t)ll < 2M exp[K(t-s)]g(s,2M) ds. l 
From (5.5.1 1)  one establishes by induction that 

IIzn(t)I( < 2M(Ft)"-'/(n-l)!, n = 1,2, ... 

(5.5.1 1) 

where F = Rexp Ra and R = max [K; max[o,a,g(t, 2M)]. 
From this estimate and the completeness of X we conclude that the 

sequence {u,(t)} converges uniformly on [O,a] to a limit u(t) .  In view of 
(5.5.3) and (5.5.4) we obtain 

and passing to the limit 

u ( t )  = ~0 + f[s,u(s>] ds. l 
Hence u(t )  is a solution of the system (5.5.1) and (5.5.2). Sincefu(t,u) is 
continuous the function f(t, u) is locally Lipschitzian and therefore the 
system (5.5.1) and (5.5.2) has a unique solution. The proof is therefore 
complete. 
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The following theorem gives a satisfactory way to approximate the 
solution u(t )  of (5.5.1) and (5.5.2). 

THEOREM 5.5.2. 
addition 

Assume all the hypotheses of Theorem 5.5.1 and in 

Ilul(t)-u(t)ll G wl(t), 0 G t G U. 

Define 

wn+l(t) = S‘expCK(t-s)lg[s,wn(s)l 0 ds, n = 1,2, ... 

m,(t) = llun(t)-u(t)ll, n = 1,2, ... 

Observe that 

Replacing u,(t) by u(t )  in (5.5.8) and (5.5.9) we obtain 

The desired result now follows by induction and the nondecreasing 
character of g(t, u) in u. 
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PROBLEM 5.5.1. Develop Chaplygin's method for the system 

u' = Au + f ( t , u ) ,  0 < t < a, 

where A is the infinitesimal generator of a contraction semigroup and f is 
as before. 

[Hint: 

u(0) = uo E D ( A )  

Consider the sequence {un(r)}  satisfying 

u:+ , ( t )  = Aun+I(t) +f ( r ,un( t ) )  + f ( t ,un( l ) )Cun+, ( t ) - -n( t ) I ,  

O < t < a ,  

u:+,(O) = uo,  uo(t) = u0, 0 G t G a.] 

5.6. Global Existence and Asymptotic Equilibrium 

The last counterexample presented in Section 5.1 shows how badly the 
solutions of an abstract Cauchy problem may behave in the case of an 
infinite dimensional Banach space. Although the function f ( t ,  u)  is locally 
Lipschitzian in u and continuous for all points ( r ,  u)  we exhibited a solution 
u(t )  of (5.1.12) and (5.1.13) which exists on (0,1] and is bounded, but u(t) ,  
contrary to the case in R", does not tend to a limit as t + co. In this section 
we shall impose a condition onf(r, u)  which rules out such a behavior and 
which guarantees the global existence of solutions of the abstract Cauchy 
problem 

duldt = f ( t ,  u), t 2 to ,  (5.6.1) 

and 

u(t0) = uo (5.6.2) 

where8 J x X +  X with J = [to, co) and X is a Banach space. 
We shall assume, without further mention, thatf(t, u)  is smooth enough 

to assure local existence of solutions of (5.6.1) through any point in J x X .  
For example, f ( t . x )  may be locally Lipschitzian in x as in the counter- 
example or satisfy some monotonicity condition. 

THEOREM 5.6.1. Assume that 

(i) f e C [ J x X , X ]  and for all ( t , u ) E J x X  

Ilf(4 411 < sv, Ilull); (5.6.3) 
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(ii) g E C [ J x  R + ,  R + ]  and g ( f , r )  is nondecreasing in r 2 0 for each 
t E J ,  and the maximal solution r ( t ,  to,  y o )  of the scalar initial value problem 

r' = g ( t , r )  (5.6.4) 

(5.6.5) 

exists throughout J.  

Then the largest interval of existence of any solution u ( t ,  to ,  uo) of (5.6.1) 
and (5.6.2) with lluoII < ro is J .  In addition if r ( t ,  to,ro) is bounded on J 
then the (strong) limt+w u ( t ,  to,  uo) exists and is a (finite) vector in A'. 

Proof: Let u ( t )  = u ( t ,  to ,uo)  be a solution of (5.6.1) and (5.6.2) with 
IIuoll < ro which exists on [r,, P )  for to < fl < co and such that the value of 
P cannot be increased (as in the counterexample). Define m(f) = Ilu(f)ll for 
to < t < f l .  Then using (5.6.3) we obtain 

D+ m(f> G IIu'(t)ll 

= Ilf(t, W)ll 
< g ( t , m ( t ) ) ,  to < t < P ,  (5.6.6) 

(5.6.7) 

The inequalities (5.6.6) and (5.6.7) imply that 

Ilu(N < r ( t> ,  fo < t < P ,  (5.6.8) 

where r ( t )  = r ( t ,  to,  yo) is the maximal solution of (5.6.4) and (5.6.5). Next 
we shall establish that lim,,p- u ( t )  exists and is a vector in A'. For any 
t , ,  t ,  such that to < t ,  < t ,  < P we have 

JII  

= r(f,) - r ( t l ) .  (5.6.9) 
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Since lim,,8- r( t )  exists and is finite, taking limits as t , ,  t ,  48- and using 
Cauchy’s criterion for convergence, it follows from (5.6.9) that, lim,,8- u ( t )  
exists. We now define u(P)  = lim,,8- u ( t )  and we consider (5.6.1) with u(/?) 
as the initial condition at t = 8. In view of the assumed local existence of 
solution of (5.6.1) through any point in J x  X ,  it follows that u ( t )  can be 
extended beyond 8, contradicting our assumption. Hence, any solution of 
(5.6.1) and (5.6.2) exists on [to, co) and so (5.6.8) and (5.6.9) hold with 
fi = 00. Since r ( t )  is bounded and nondecreasing on J,  it follows that 
lim,,,r(t) exists and is finite. This and the inequality (5.6.8) and (5.6.9) 
with = co yield the last part of the theorem. The proof is complete. 

REMARK 5.6.1. 
lished for the system 

Replacing t by - t a dual of Theorem 5.6.1 can be estab- 

du/dt = f ( t ,  u), t < t o , ,  (5.6.10) 

u(t0) = uo (5.6.11) 

where f: I x  X +  X and I = (- 00, to].  Then under Hypotheses (i) and (ii) 
of Theorem 5.6.1, with J replaced by I and g of (5.6.4) by -9, the con- 
clusion of Theorem 5.6.1 is also true for the solutions of (5.6.10) and (5.6.11) 
with the lim u ( t ,  to, uo) now taken as t + - co. The intervals J and I above 
can be replaced by any intervals [to, to + a) and (to -a,  to] respectively. 
Clearly the hypotheses of this remark are not satisfied by the counter- 
example of Section 5.1. 

DEFINITION 5.6.1. We say that (5.6.1) has asymptotic equilibrium if every 
solution of (5.6.1) through any point (to,  uo) E J x X tends to a (finite) limit 

E X as t + co and conversely to every vector ( E X there exists a solution 
of (5.6.1) which tends to ( as t+ co. 

When (5.6.1) has asymptotic equilibrium then it is asymptotically 
equivalent to 

dvldt = 0 (5.6.12) 

in the sense that given a solution of (5.6.1) [of (5.6.12)J there exists a 
solution of (5.6.12) [of (5.6.1)] such that their difference goes to zero as 
t - ,  00. 

The next theorem gives a set of sufficient conditions for (5.6.1) to have 
asymptotic equilibrium. 
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THEOREM 5.6.2. Assume that 
(i) f~ C[R+ x X ,  X ]  and maps bounded sets into relatively compact 

sets; 

(ii) Ilf(t, 411 < g o ,  Ilull), (t, u) E R ,  x X ;  

(iii) g E C[R, x R,, R , ] ,  g ( t , r )  is nondecreasing in r 2 0 for each 
t E R , ,  and for any (to,ro) E R, x R+ the maximal solution r ( t ,  r,, y o )  of 
(5.6.4) and (5.6.5) is bounded on [ to,  co). 

Then (5.6.1) has asymptotic equilibrium. 

Proof: Let u ( t )  be a solution of (5.6.1) through (to, uo). By Theorem 5.6.1 
u ( t )  exists on [to, co) and limr+m u ( t )  exists and is a vector t E X .  Notice 
that in proving this part we do not use Hypothesis (i). Conversely, let r E X .  
We must construct a solution u(t )  of (5.6.1) which tends to ( as t +  co. The 
proof of this is involved and we shall give it in several steps. 

First, as a consequence of Hypothesis (iii) for every (to, A) E R, x R+ 

(5.6.13) 

In fact, let i ( t )  = r ( t ,  to, A)  be the maximal solution of (5.6.4) through 
(to, A). Since i ( t )  is bounded and nondecreasing the limr-+m i ( t )  exists and 
is a finite number i, 2 A. From 

i, 2 i ( t )  = A + g [ s ,  i ( s ) ]  ds J1,’ 
2 A + J + A )  ds 

the condition (5.6.13) follows. 

(to, lltll). Set rm = limr-+m r ( t ,  to, llrll). Choose T sufficiently large so that 
Next, consider the maximal solution r ( r )  = r ( t ,  to, lltll) of (5.6.4) through 

r m  
(5.6.14) 

This choice is possible because of (5.6.13). 
Now, for each n = 0, 1,2,  . .. construct the maximal solution r , ( t )  = 

r(t ,  T+n,  lltll) of (5.6.4) through (T+n,  lltll) and a solution u,(z) = 
u(t ,  T+n,t)of (5.6.1) through ( T + n , t ) .  From Theorem 5.6.1 u;(t) exists 
on [T+n,  a), it tends to a finite limit as t +  co, and 

IIu,(t) < r,,(t), T +  n < t -= co. (5.6.15) 
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We shall prove that u,(t) can be continued backward up to Tand that 

IIu.(t)II < 2rm,  T < t < T +  n. (5.6.1 6) 

Before we do this let R,(t)  = R,(t ,  T+n,  ll<ll) be the maximal solution 

r‘ = -g ( t , r )  (5.6.17) 

through (T+n,  ll<ll). We claim that R, ( t )  exists on [T, T+n] .  To prove this 
it suffices to show that R,(t)  remains bounded on [T, T + n ] .  If not, there 
exist points t ,  and t ,  for T <  t ,  < t ,  < T+n such that R, ( t , )  = 2rm and 
Rn( t2 )  = rm with roo < R,(t)  < 2rm on [ t , ,  t , ] .  Then from (5.6.17), we have 

of the scalar equation 

Rn(t,) = Rn(t,) - SCS, Rn(s)l ds* I:‘ 
Thus 

rm = I:‘, CS, R,(~)I  ds 

contradicting (5.6.14). Now an argument similar to that in the proof 
of Theorem 5.6.1 (see also Remark 5.6.1) shows that u,(t) exists on 

Next, we shall establish (5.6.16). If it were false, there should exist points 
t ,  and t4 for T <  t ,  c t ,  < T + n  such that Ilu,(t3)11 = 2rm, Ilu,(t4)11 = rm,  
and rm < IIu,(t)II < 2rm on [ f , ,  f,]. Then from (5.6.1) we get 

[T, T+n] .  

un(t4) = u n ( t 3 )  + J”~,un(s)I ds. I: 
Thus 

r m  

and this contradiction establishes (5.6.16). 
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The solutions u,(t) for n = 0, 1,2, . . . are therefore defined on [ T, 00) and 
they are uniformly bounded by 2rm. Since 

Ilun'(t)ll = ll.f[~,un(~)lll 

< g(t,2rm), 

the sequence {u,(t)} is equicontinuous on every bounded t interval. We 
shall now utilize Hypothesis (i) to apply the Ascoli-Arzela Theorem I .  1.1 
to this sequence of abstract functions. From (5.6. I )  and any fixed t* E [T, 00) 

u,(t*) = u n ( T )  + J"s, u,(s)]  ds. s:' 
In view of Hypothesis (i) and Carroll [12, pp. 138, 141-1421, it follows 
that the set of points {u,(t*)} for n > 0 is relatively compact in X .  Thus 
there is a subsequence, which we still denote by {u,(t)},  that converges 
uniformly on every bounded f interval as n --f co to a continuous function 
u ( 0 .  

The function u ( t )  is the desired solution of (5.6.1) which converges to 
< as t +  00. In fact 

un(t)  = un(T) + SCs,un(~)l ds 
ITt 

and passing to the limit we see that u ( t )  is a solution of (5.6.1). By the first 
part of the proof of Theorem 5.6.2, limf+m u ( t )  = u(co) exists. Since 

u,(t) = u ( t )  and u,(T+n) =( we conclude that u(co) =(. The proof 
is complete. 

REMARK 5.6.2. The second part of the proof of Theorem 5.6.2 shows 
under Hypotheses (i), (ii), and (iii) of Theorem 5.6.2 the terminal value 
Cauchy problem 

du/dt = f ( t ,  u), and u(co) = t 
has a solution for every ( E X .  

PROBLEM 5.6.1. Establish an asymptotic equilibrium result for (5.6.1) in 
the case that the function g ( t , u )  is nonincreasing in u and possibly not 
defined for u = 0. 

[Hint: For the case X = R" see Ladas and Lakshmikantham [38].] 
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5.7. Lyapunov Functions and Stability Criteria 

Here we shall study the stability properties of the solutions of the non- 
linear Cauchy problem 

u' = A ( t ) u  + f ( t , u )  and u(to)  = uo E D[A( t , ) ]  (5.7.1) 

where f E C[R+ x X,X] and for each r E R , ,  A ( t )  is a linear operator in 
X with time-varying domain D [ A ( r ) ] .  A solution of (5.7.1) is a strongly 
differentiable function u ( t )  such that u( t )  E D[A(t)] for each t 3 to and 
satisfies (5.7.1) for all t 2 to. We shall assume, without further mention, the 
existence of solutions u ( t ,  to,uo) of (5.7.1), in the future. We shall also 
assume that for each t E R ,  and all h > 0 but sufficiently small, the operator 
R [h,  A (t)] = [Z- hA (t)] - exists as a bounded operator defined on X ,  
and for each x E X 

lim R [h,  A ( t ) ]  x = x. (5.7.2) 

The following comparison theorem is basic in our discussion of stability 
criteria. 

h-0 

THEOREM 5.7.1. Assume that 

(i) V E C [ R +  x X, R , ]  and for ( t ,  x l ) ,  (t, x2) E R +  x X 

IWx1)-~(t,x,>l < W l l x 1  -x2II (5.7.3) 

where L(r) 2 0 and continuous on R ,  ; 

( t , x ) E R + x X  
(ii) there exists a function g E C [ R ,  x R + , R ]  such that for each 

D, V ( r , x )  = lim suph-'[V(r+h,R[h,A(t)]x + hf( t ,x ) )  - V ( t , x ) ]  
h - 0 ,  

< 9 Ct, w, 4 1  ; (5.7.4) 

(iii) for each (to,ro) E R ,  x R ,  the maximal solution r ( t ,  to, ro) of the 
scalar initial value problem 

r' = g ( t , r )  and r ( to)  = ro (5.7.5) 

exists in the future. 

Then V(to, uo) < ro implies that 

(5.7.6) 
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Proof: Let u(t)=u(t , to ,uo)  be any solution of (5.7.1) such that 
V(to,  uo) < ro and r( t )  = r( t ,  to, ro) is the maximal solution of (5.7.5). Define 
the function m(t )  = V [ t ,  u(t,  to, uo)] .  Then 

m(to)  < ro . (5.7.7) 

Further, for h > 0 but sufficiently small we obtain, using (5.7.3) 

m(t+h) - m(t )  < L(t+h)Ilu(t+h) - R[h ,A( t ) ]u ( t )  - hf[t,u(t)]ll 

+ V [ t  +h, R(h, A(t )]  u ( t )  + h f [ t ,  u(t)] - V [ t ,  u(t)].  

(5.7.8) 

Since for every x E D ( A  ( t ) )  we have R [ h ,  A ( t )]  [Z-hA ( f ) ]  x = x, it follows 
that 

R [h, A ( t )]  x + hf(t, X) = x + h [ A  ( t )  x +f(t, x)]  

+ h [ R ( h , A ( t ) ) A ( t ) x - A ( t ) x ] .  

This together with (5.7.8), implies that 

m(t+h) - m(t)  < L(t+h)I lu( t+h)  - u( t )  - h(A( t )u( t )  +f[t,u(t)])II 

+ r.(t+h)hIIRCh,A(t)lA(t)u(t) - A(t)u(t)ll 

+ V ( t  + h, R [A, A @ ) I )  u ( t )  + h f [ t ,  u(0l  - VCr, u( t ) l .  

We now use the relations (5.7.1), (5.7.2), and (5.7.4) to obtain 

D ,  m(t> < g[t.m(t)l .  

This and (5.7.7) yields the desired estimate (5.7.6). The proof is complete. 

We list a few definitions concerning the stability of the trivial solution of 
(5.7.1) which we assume to exist for this purpose. 

DEFINITION 5.7.1. The trivial solution of (5.7.1) is said to be 

S-I: equistable if, for each E > 0 and to E R,, there exists a positive 
function 6 = 8(tO,E) that is continuous in to for each E such that lluoll < 6 
implies Ilu(t, to, uo)II c E for t b t o ;  

S-2: uniformly stable if S-1 holds with 6 being independent of to ;  

S-3: quasi-equi asymptotically stable if, for each E > 0 and to E R , ,  there 
exist positive numbers 6 ,  = 6,(t0) and T = T(rO,E) such that IIuoII < 6, 
implies Ilu(t, to, uo)II < E for t 2 to + T;  
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S-4: quasi uniformly asymptotically stable if S-3 is satisfied with the 
numbers 6, and T independent of t o ;  

S-5: equi-asymptotically stable if, S-1 and S-3 hold simultaneously; 

S-6: uniformly asymptotically stable if S-2 and S-4 hold simultaneously. 

Let us assume that the scalar equation (5.7.5) possesses the trivial solution 
also. Then we can define the corresponding stability concepts for the trivial 
solution of (5.7.5). For example, the trivial solution of (5.7.5) is said to be 

S-7': equistable if, for each E > 0 and to E R+, there exists a positive 
function 6 = 8(tO,&) that is continuous in to for each E such that ro < 6 
implies r( t ,  to, ro) < E for t to where r( t ,  to, ro) is the maximal solution of 
(5.7.5). The concepts S-2'-S-6' are defined in a similar way. 

We now present a result concerning the equiasymptotic stability of the 
trivial solution of (5.7.1). 

THEOREM 5.7.2. 
that 

In  addition to the hypotheses of Theorem 5.7.1 assume 

(i) f ( t ,  0 )  = 0, g(t,  0) = 0, and V ( t ,  0) = 0, for t E R ,  ; 

(ii) there exists a function b:  R ,  + R +  such that b(r)  is increasing in r 
and 

bllxll) G V ( t , X ) ,  ( t , x ) E R + x X .  (5.7.9) 

Then, S-5' implies S-5. More precisely, S-1' implies S-1 and S-3' implies S-3. 

Proof: Suppose that S-I' holds. Let E > 0 and to E R be given. Then there 
exists a 6, = 6 ,  ( to,  E )  < E ,  positive and continuous in to for each E such that 
ro < a1 implies 

r( t ,  to, ro) < b(c), t 2 to.  (5.7.10) 

Since V ( t ,  x )  is continuous and V(t,O) = 0, there exists a 6 = 6(6,, to)  < 6, 
such that IIuoll < 6 implies V(to,  uo) < 6, .  This 6 depends on to and E and is 
continuous in to for each E .  We claim that this 6 is good for S-I, that is, 
IIuoll < 6 implies Ilu(t, to, uo)II < E for t 2 to. In fact from the relations 
(5.7.9), (5.7.6), and (5.7.10) we get 

b(llu(t, t o ,  U0)II) G VCt, u(t9 to9 U 0 ) l  

G r( t ,  to, 61) 

< b ( E ) ,  t 2 t o .  
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Since b ( r )  is nondecreasing in r 

Therefore, S-1 holds. 
Next we shall prove that S-3' implies S-3. Let E > 0 and to E R ,  be given. 

On the strength of S-3' there exist positive numbers 6, = 6,(t0) and 
T = TCt,, b ( ~ ) ]  = T(r,, E )  such that ro < 6, implies 

r ( t ,  to,  r , )  < b ( ~ ) ,  t 2 to + T. (5.7.1 1) 

Since V ( t , , x )  is continuous and V(t,,O) = 0, there exists a 6, = 

6,(t,, 6,) < 6, such that IIuoll < 6, implies V( to ,  u,) < 6,. We claim that 
6, and T are good for S-3. In fact let IIuoll < 6, and t 2 to + T. Then from 
(5.7.9), (5.7.6), and (5.7.11) we obtain 

b(llu(t, t o ,  .,,II> < U t ,  u ( t ,  t o ,  u0)l 

< r ( t ,  t o ,  6,) 
< b(E). 

Therefore 

Ilu(t, to,  U0)ll < 8, t 2 f o  + T. 

The proof is complete. 

PROBLEM 5.7.1. In addition to the hypotheses of Theorem 5.7.1 assume 
that there exists a function a:  R ,  + R ,  such that a ( r )  is increasing in r and 

w , x >  < a(llxll), (6 .4  E R ,  x x. (5.7.12) 

Then S-6' implies S-6. More precisely, S-2' implies S-2 and S-4' implies S-4. 

[Hint: Using (5.7.11) the 6's can be chosen independent of to.] 

It is easy to state and prove various stability and boundedness criteria 
analogous to the corresponding results in differential equations in 
Euclidean spaces (see [42]). The main hypotheses in all these results are the 
existence of a Lyupunou function V(t ,  x) satisfying the hypotheses of 
Theorem 5.7.1 and, according to the goal, other conditions like (5.7.9), 
(5.7.1 I), etc. Since most of the considerations are straightforward, we do 
not attempt to go into details here. 
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5.8. Notes 

The counterexamples in Section 5.1 are taken from Dieudonnt [l5] 
while the counterexample contained in Problem 5.1.1 is due to Yorke [77]. 
All the results of Section 5.2 are based on the work of Murakami [53] ; 
see also Browder [lo]. The nonlinear variations of constants formula and 
the related material of Section 5.3 are due to Ladas, Ladde, and Lakshmi- 
kantham [39]. Some of the ideas here stem from Mamedov [47] and 
Sultanov [68]. Most of the material presented in Section 5.4 is new and is 
analogous to the classical work in Lakshmikantham and Leela [42]. See 
also Brauer [8] and Lumer and Phillips [46]. Section 5.5 consists of the 
work of Mlak [52]. See Ladas and Lakshmikantham [37] for the material 
covered in Section 5.6. The proof of the asymptotic equilibrium is fixed 
rigorously here. Refer to analogous results in Lakshmikantham and Leela 
[42] for clarification; see also Brauer [7]. For global existence for autono- 
mous differential equations, see Martin [48]. For the stability criteria, 
using Lyapunov functions, given in Section 5.7 see Lakshmikantham [40] 
and Lakshmikantham and Leela [42], see also Pao [SS], Pao and Vogt [59], 
Rao and Tsokos [61], and Taam [69]. For further results on the subject 
the reader is referred to Browder [l 13. 



Chapter 6 

Special Topics 

6.0. Introduction 

As the title of this chapter suggests, here we shall introduce the reader to 
some topics that are of current interest. In Section 6.1 we present in a 
simplified way some of the features of nonlinear semigroups and the study 
of the abstract Cauchy problem 

du/dr + Au = 0, r 2 0, and u(0) = uo 

where A is a maximal monotone (nonlinear) operator. Section 6.2 introduces 
the study of delay differential equations in Banach spaces. Since the classical 
counterpart, namely functional differential equations in finite dimensional 
spaces, is being investigated at a rapid rate and much has been accom- 
plished in this area we hope that the material of Section 6.2 will induce 
further study. Here we have presented existence, uniqueness, bounds, 
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continuous dependence, and continuation of solutions of general delay 
differential equations, in a Banach space, of the form u’ = f ( t ,  ut). Finally 
in Section 6.3 we discuss second order evolution equations and initiate the 
study of oscillation theory for such equations in Hilbert spaces. 

6.1. Nonlinear Semigroups and Differential Equations 

Let X be a real or complex Banach space and S be a subset of X .  The 
notation “lim” (or “w-lim”) means the strong limit (or the weak limit) in X .  

DEFINITION 6.1.1. A nonlinear semigroup in S is a one-parameter family 
of (possibly nonlinear) operators { T( t )} ,  t 2 0 from S into itself such that 

(0 T(0) = I,  I is the identity on S ;  

(ii) T( t )  T ( s ) x  = T( t+s )x ,  x E S, t ,s  2 0. 

The semigroup is called strongly continuous if for each x E S, T ( t ) x  is 
strongly continuous in t 2 0. The semigroup is a contraction semigroup if 
for each t 2 0, T ( t )  is a contraction mapping in S, that is 

IITWx - T(t)Yll G llx-Yll> x9.Y E s. 

The strict infinitesimal generator A ,  of a nonlinear semigroup {T( t )}  is 
defined by 

A , x  = lim [T(h)x-x] /h  
h-0,  

and its domain is the set of all x E S for which the foregoing limit exists in X .  
The weak infinitesimal generator A’ of { T ( t ) }  is defined by 

A‘x = M’ - lim [T(h )x -x ] /h  
h-0,  

and its domain is the set of all x E S for which this w-limit exists in X .  
In  this section we shall study the nonlinear abstract Cauchy problem 

u’ + Au = 0 and u(0) = u,, (6.1.1) 

where A is a nonlinear operator with domain D(A)  c X and u,, E D ( A ) .  
The operator A will be assumed to be m-monotonic in the sense of 
Definition 6.1.4. 
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DEFINITION 6.1.2. A function u:  [0, 03) -+ X is said to be a 

(i) strong solution of (6.1.1) if it is strongly differentiable on [0, co) 
and satisfies (6.1.1) on [0, co); 

(ii) weak solution of (6.1.1) if it is weakly differentiable on [0, 00) and 
satisfies (6.1.1) weakly on [0, co); 

(iii) mild solution of (6.1.1) if 

u(r)  = uo - Au(s) ds, t 2 0, l 
the integral being understood in the Bochner sense. 

DEFINITION 6.1.3. 
is said to be monotonic if 

An operator A with domain D ( A )  and range R ( A )  in X 

I l x - r + ~ ( A x - A Y ) l l  2 llx-yll, X , . Y € D ( A ) ,  > 0. 

If A is monotonic, then (Z+crA)-' exists for every cr > 0 and is a con- 
traction operator. Clearly (Z+UA) is one to one. Setting x = ( Z + c r ~ ) - ' u  
and y = (Z+aA)-'u,  it follows that 

IIu-uII = ll(Z+crA)x - (Z+aA)yll 

= IIx - y  + a(Ax-Ay)(l  

> Ilx-Yll 
= ll(I+aA)-'u - (I+crA)-'oll (6.1.2) 

and our assertion is established. 

DEFINITION 6.1.4. 
then A is called m-monotonic. 

If A is monotonic and D(Z+crA)-' = Xfor every cr > 0 

In the remaining of this section we shall assume that Xis a Hilbert space. 
The following is the main result to be proved: 

THEOREM 6. I .  1. Let A on D.(A) be m-monotonic in X .  Then there exists a 
unique, strongly continuous semigroup {T(t)} ,  t 2 0 on D ( A )  such that for 
each uo E D ( A )  we have u( t )  = T(t)u,  a locally Lipschitz weak solution of 
(6.1.1). Furthermore, T(t )  is a contraction semigroup having A as weak 
infinitesimal generator, and for each uo E D ( A )  
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(a) T(t )  uo is Lipschitz continuous on [0, co); 
(b) T(t )  uo is weakly continuous weakly differentiable on [0, co); 
(c) T(t)uo is a mild solution of (6.1.1); 
(d) T(r) uo is a strong solution of (6.1. I )  except perhaps at a countable 

(e) T(t )  u,, is jointly continuous in (t, uo). 
number of points; 

The proof of this theorem will be clear to the reader after a series of sixteen 
interesting lemmas. The last part (e) is left as an exercise. The key idea 
behind this proof is to approximate the operator A by a sequence {A,} of 
everywhere defined monotonic operators defined by A, = A(Z+n-’A)- ’ ,  
and then approximate the solution of (6.1.1) by the sequence {u,(t)} of 
solutions of the approximating problem 

u’ + A,u = 0 and u(0) = uo E D(A) .  

LEMMA 6.1.1. Let x,y E X .  Then llxll < Ilx+ayll for every a > 0 if and 
only if Re(x,y) 2 0. In particular A is monotonic if and only if 
Re(Ax-Ay,x-y)>O. 

Proof: Let Re(x,y) 2 0. Then 

I I x + ~ Y I I ’  = IIxII’ + 2aRe(x,y) + a’ IIyI12 

> llX1l2. 
Conversely, let Ilx+ay11’ > llx11’. Then 

2a Re(x, y )  + a’ llyll’ 2 0, a > 0, 

which implies that Re(x,y) 2 0. 
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Letting t -, s and using the fact that left and right derivatives are equal, the 
desired result follows. 

For an m-monotonic operator A ,  we introduce the following sequences 
of operators : 

J, = (Z+n-'A)-' and A,  = AJ,,  n = 1,2, ... . (6.1.4) 

Since the range of J, is D ( A ) ,  the operator A ,  is well defined. Notice that 
A ,  = n(Z-J,). In fact 

A,  = AJ, 

= n[(z+n-'A) - Z](z+n-1A)-' 

= n(Z-J,). 

The operators A ,  and J,  are clearly defined everywhere on X .  

LEMMA 6.1.3. 
Lipschitz continuous, namely they satisfy 

Let A be m-monotonic. Then the operators J. and A,  are 

IIJnx-Jnyll < Ilx-yll and IIA,x-A,yll < 2nIlx-yll. (6.1.5) 

The first inequality is a special case of (6.1.2). To prove the second Proof: 
inequality, observe that 

LEMMA 6.1.4. 
and 

Let A be m-monotonic. Then for each n, A ,  is monotonic 

IlAnUll G IIAull, U E  D(A) .  (6.1.6) 

Proof: To prove that A ,  is monotonic, in view of Lemma 6.1.1, it suffices 
to show that Re(A,x-A,y,x-y)20. In fact 
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Next, from (6.1.5) and for every u E D(A) ,  we have 

IIAnull = n lW-Jn )~ I l  

= nIIJ,(Z+n-'A)u - J,ull 

< nII(z+n-'A)u - uII 

= IlAull 

and (6.1.6) is proved. 

LEMMA 6.1.6. Let A be m-monotonic in X .  

(a) If ~ , E D ( A )  for n = 1 , 2 ,  ..., lim,,,u,=u, and the IIAu,ll are 

(b) if s , E X ,  n = 1 , 2  ,..., limn+, . Y , = ~ E X ,  and the ~ ~ A , , x , ~ ~  are 

(c) 

bounded for all n,  then u E D ( A )  and w-lim,,+m Au, = Au;  

bounded for all n, then u E D ( A )  and w-lirn,+, A,x,  = A u ;  

w-lim A ,  u = Au, u E D(A) .  
n-1 m 

Proof: (a) Since llAu,ll is a bounded sequence and X ,  being a Hilbert 
space, is reflexive, there exists a subsequence Au,. which converges weakly 
to a vector X E X  as d-00. Let U E  D ( A ) .  Then if llAunll < C  with 
n =  1,2, ..., we have 

Re(Av-Au,., u-u) = Re(Au-Au,,,u-u,.) + Re(Au-Au,.,u,.-u) 

2 Re (Au - A u,., u,. - u) 

2 - llAu-Au,4 IIu,,-uII 

2 - (IIAull +C)llu,.-ull. 

Taking limits as n' + 00 we obtain Re(Au - .Y, u -  u)  2 0. Using Lemma 
6.1.1 with c1= 1 we get 

I lv-u+Au-xll 2 IIu-uII, u E D(A) .  (6.1.7) 

T a k e u = J , ( u + x ) = ( Z + A ) - ' ( u + x ) s o  tha tvED(A)and 

v + A o  = u + x .  (6.1.8) 
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The relations (6.1.7) and (6.1.8) imply that u = u E D ( A ) .  From (6.1.8) we 
then see that x = w-lim,,+m Au,. = Au. Since we could have started with 
any subsequence of {u,,} instead of {u,} itself, the foregoing result shows 
that Au, converges weakly to Au. 

(b) Set u, = J,x ,  E D ( A ) .  Let / ~ A , , . x , , ~ ~  < C for all n. Then 

IIAunII = IIAJnxnll 

= IlAnxnIl 

< C for all n. 

Also 

Therefore, 
u E D ( A )  and 

u, = u. The result of (a) is then applicable, proving that 

Au = w-limAu, 
n - W  

= w-lim Aj, x, 

= w-lim A ,  x, . 
n- tw 

n- co 

(c) Set x, = u. Observe that 

IlAnxnIl = IlAnull < IlAull 
and therefore (b) is applicable. 

The proof is complete. 

Since the operator A ,  is everywhere defined on Xand uniformly Lipschitz 
continuous, the following result is clear from Theorem 5.1.1. 

LEMMA 6.1.7. For each n = 1,2, . . . , the approximating problem 

u’ + A,u = 0 and u(0) = uo E D ( A )  (6.1.9) 

has a unique strongly continuously differentiable solution u,(r) on an 
interval [0,6,) for some 6,  > 0. 
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LEMMA 6.1.8. 
estimates hold : 

If u,(t) is the solution of (6.1.9) on [0, a,,), then the following 

(a) l l~n’(f) l l  G llA%ll3 0 < t < 6,; 

(b) IIun(t+h)-un(t)ll < IlAuoll llhll, 0 < t , t  + h < 6,. 

Proof: Since u,(t) is continuously differentiable on [0, a,,), the function 
.u,(t) = u,(t+h)-u,(t)isalsocontinuouslydifferentiableforO < t ,  t + h  < 6, 
and hence 

(d/dt) IIxn(t)IIZ = 2Re(xnt(t)7xn(t)) 
= - 2Re(Anun(r+h) - A,u,(t), u,Ct+h) - u,(t)]) G 0 

because A,  is monotonic. Thus Ilx,,(t)ll is nonincreasing on [0,6,). In 
particular 

IIxn(t)I12 IIxn(0)IIz. 
Thus 

Ilun(t+h) - un(t)II G Ilun(h) - un(O)ll* 

Dividing by h > 0 and taking limits ash -, 0, we obtain 

Ilun’(t>ll G llun’(0)Il = IlAnuoII G IlAuoll 

which proves (a). The estimate (b) now follows from (a) and the mean value 
Theorem 1.2.1. 

A consequence of Lemmas 6.1.7 and 6.1.8 (b) is the following: 

COROLLARY 6.1.1. 
strongly continuously differentiable solution on [0, a). 

Proof: 
[0, a,,), then the limn+am- u,( t )  exists. In fact from Lemma 6.1.8 

The approximating problem (6.1.9) has a unique 

Clearly it suffices to show that if u,( t )  is a solution of (6.1.9) on 

~ ~ u n ( f l ) - u n ( f Z ) ~ ~  < llAuOIt ~ f l - f Z ~ ?  < t 1 7  G 6 n *  

Taking limits as t , ,  I ,  + 6,- and using Cauchy’s criterion for convergence 
our assertion follows. 

LEMMA 6.1.9. The sequence {u,,(r)}:= of solutions of (6.1.9) converges 
strongly to a function u ( t )  and the convergence is uniform on any finite 
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interval [O, TI.  Furthermore 

Ilu(t+h) - u(t)II G llAuoll lhl, t , t  + h 2 0 (6.1.10) 

that is, u(t )  is Lipschitz continuous on [O,oo). 

Proofi 
and Lemma 6.1.8(a) we obtain 

Define x,,(t) = u,(t)-u,(t). Then from the monotonicity of A 

(d/dt) IIxnrn ( t )  II ' 
= 2 Re(x;rn ( t ) ,  Xnm ( t ) )  

= -2Re(Anu,(t)-Amum(t),un(t)-um(t)) 

= - 2 Re(AJ, u,(t) - AJ,  u,(t), u,,(t) - u,(t)) 

= - 2 Re(AJ, u,(t) - AJ,  u, ( t ) ,  J, u, ( t )  - J,  u, ( t ) )  

- 2 Re (An un ( t )  - A m  urn ( t ) ,  un ( t )  - Jn un ( t )  - urn ( t )  + Jm urn ( t ) )  

< - 2 Re ( A ,  u, ( t )  - A ,  u, ( t ) ,  n - ' A ,  u, ( t )  - m - ' A ,  u, ( t ) )  

6 2 CII An un(t) II + II A m  urn(t) II 1 CIIAn un(t> II In + ll A m  um(t) lllml 

G 4 I(Au,ll'(n-' +m-'). (6.1.1 1) 

Integrating (6.1.1 1) from 0 to t we derive 

Ilx,,(t)ll < 4 1 1 ~ ~ , 1 1 ~ ( n - ' + m - ~ ) t  -, o as n,m -, co 

uniformly for t E [0, TI.  The first part of Lemma 6.1.9 is thus established. 
Now, set u(t )  = u,(t). By Lemma 6.1.8(b) 

Ilun(t+h) - un(t)II < IlAuoII Ihl. 

Taking limits as n -, co the relation (6.1.10) follows. The proof is complete. 

LEMMA 6.1.10. u(t )  E D ( A )  for each t 2 0 and w-limn+m A,u,(t) = Au(t ) .  
Furthermore, Au(t )  is weakly continuous and IIAu(t)ll < ~ ~ A u o ~ ~ .  

Proofi By Lemma 6.1.9 we have limn-.mun(t)=u(t) and by Lemma 
6.1.8(a) we have ~ ~ A , , u , , ( f ) ~ ~  < IIAuoll. Now we apply Lemma 6.1.6(b) and 
conclude that u ( t )  E D ( A )  and ~ - l i m , , + ~  A ,  u,(t) = Au(r). This means that 
lim,,~,m(Anu,,(r),y) = (Au( t ) , y )  for each y E X ,  and 

I (An un (11, Au (t))I G II An un ( t )  II II Au ( t )  II 
G IIAuoIl IIAu(t)ll7 Y = M t ) .  
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To prove the weak continuity of Au(t ) ,  it suffices to show that if t k  + t as 
k + co, then w-limk+o; Au(tk)  = Au(t ) .  In  fact limk-m u(rk) = u ( t )  and 
IIAu(t,)ll < IIAuoII. From Lemma 6.1.1 it then follows that w-limk+m 
h ( t k )  = A u ( t )  and the proof is complete. 

LEMMA 6.1.1 1. 
and is a weak solution of (6.1.1). 

Proofi 
continuously differentiable solution of (6.1.9), we have 

u ( t )  is weakly continous weakly differentiable on [0, co) 

By Lemma 6.1.9 u(0)  = limn+m u,(O) = uo. Since u,(t) is a strongly 

By Lemma 6.1.10 
lim ( A ,  u,(s), u )  = ( A u ( t ) ,  u )  

R’ m 

and by Lemma 6.1.8 

I(A,u,(s),u)l < IlAuoII IIuII. 

Thus, the dominated convergence theorem applied to (6.1.12) yields 

(6.1.13) 

In view of Lemma 6.1.10 the integrand in (6.1.13) is continuous. Hence 
(u(r),  0) is continuously differentiable and 

(d/dt)(u(r), u )  = - (Au(s),  0). 

The proof is complete. 

LEMMA 6.1.12. 
solutions of u’ + Au = 0 on [0, T ) .  Then 

Let u(r )  and u ( r )  be two Lipschitz continuous weak 

Ilu(r)-u(t)ll < llu(O)-u(O)ll, 0 G t -= T .  (6.1.14) 

In particular, (6.1.1) has exactly one locally Lipschitz weak solution. 
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Proof: Set x(t)  = u ( t ) - u ( t ) .  The Lipschitz chatacter of u(r )  and u ( t )  
implies that the function ll.u(t)112 is absolutely continuous. This fact and 
Lemma 6.1.2 imply that 

P t  

P t  

= IIX(O)II~ + J -2 IIX(S)II ( ~ s )  IIXO)II ds 

= Ilx(0)l12 + bRe(x’(s),x(s)) ds 

0 

= Ilx(0)II2 - 2 (Au(s)-Au(s) ,u(s)-u(s))ds  

G Ilx(0)1l2; 

l 
(6.1.4) follows. In  particular, if u(0) = v(O) ,  then u ( t )  = u ( t ) .  The proof is 
complete. 

As a consequence of the parallelogram law in X, or by a direct argument, 
one can prove the following. 

LEMMA 6.1.13. Let {x,} and { y,} be two sequences of vectors in Xsuch that 

LEMMA 6.1.14. Au(r) is strongly continuous except possibly at a countable 
number of points. 

Proof: By Lemma 6.1.10 IIAu(t)ll < IIAu(O)/l. In  view of uniqueness one 
can replace 0 by any r ,  < t proving that the function IIAu(t)ll is non- 
increasing in r .  Thus IIAu(r)ll is continuous except possibly at a countable 
number of points. Let i be a point of continuity of IIAu(t)ll and let t ,  be a 
sequence of points converging to f as k --f m. Set x, = A u ( f )  and y,  = 
Au(r,)for n =  1,2, .... Then 

lim IIxnII = lim IlynII 
n- w 

= IIAu(f)ll. 
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Since Au(t )  is weakly continuous, it also follows that 

2 IIAu(i)ll < lim infIIAu(f)+Au(t,)ll 

< lim sup IIAu(f)+Au(t,)ll 

n- m 

n- m 

Thus 

lim IIAu(f) + Au(tn)ll = 2 IIAu(t)ll. 
n+ m 

From Lemma 6.€.13 we then obtain 

lim IIAu(f)-Au(t,)ll = 0. 
n- w 

Hence, A u ( t )  is continuous wherever IIAu(t)ll is continuous. 

LEMMA 6.1.15. The function u ( t )  is strongly differentiable except possibly 
at a countable number of points. Moreover, at the points of strong 
differentiability u ( t )  satisfies (6.1.1). 

Proofi Let t be a point at which A u ( t )  is strongly differentiable. Using the 
weak continuity of Au(t )  we notice that 

Ilu(t+h) - u(t )  + hAu(t)112 

= (u ( t+h)  - u ( t )  + hAu(t), u ( t + h )  - u(t )  + hAu(t)) 
t + h  

= J1 ( - A u ( s )  + Au(t ) ,  u ( t + h )  - u( t )  -hAu( t ) )  ds 

t + h  

= lt+hl ( - A # ( $ )  + Au(t ) ,  - A u ( r )  + Au(t))drds 

< i ' + h ~ f + h l l A u ( ~ )  - Au(t)ll IIAu(r) - Au(t)II drds 

< ~ ( h ) ~ h ' ,  ~ ( h )  -+ 0 as h -, 0. 

Thus 

Ilu(t+h) - u( t ) /h  + Au(t)JI < ~ ( h )  -, 0 as h -, 0 

and the result follows. 
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LEMMA 6.1.16. The Lipschitz weak solution of (6.1.1) is also a mild 
solution of (6.1.1). 

Proof: Since A,u, ( t )  is strongly continuous, the values A,u,( t )  lie in a 
separable closed linear subspace X ,  of X .  Take, for example, X ,  to be the 
strong closure of the subspace generated by { A n u n ( r ) }  where r is a rational 
number and n positive integer. Since w-limn+m A,u,(t) = Au(t )  and X ,  is 
weakly closed, it follows from Royden [63] that A u ( t )  E X,. Thus the values 
{ A u ( t ) }  are contained in the closed separable subspace X ,  of X .  As Au(t )  is 
w-continuous, it is also w-measurable, and from the results of Section 1.4 
A u ( t )  is strongly measurable. In the proof of Lemma 6.1.14 we have seen 
that IIAu(t)ll is monotonic and, hence, Lebesgue integrable on every finite 
interval [0, TI. By Theorem 1.4.1 the function A u ( t )  is Bochner integrable. 
Since u( t )  is a weak solution of (6.1.1), we have using Theorem 1.3.5 

Hence 
= (., - J+s) d s t y ) ,  y E X .  

The proof is complete. 

PROBLEM 6.1.1. 

[Hint: 
of (6.1.1).] 

Complete the proof of Theorem 6.1.1. 
For uo E D ( A )  define T(t)u,  = u( t )  where u(t )  is the weak solution 

PROBLEM 6.1.2. 
has domain X either for every a > 0 or for no a > 0. 

[Hint: 
equivalent to R(a-'Z+A) = X . ]  

Let A on D ( A )  be monotonic in X .  Show that (Z+aA)-' 

Observe that D[(Z+aA)-'] = R(Z+aA) and R(Z+aA) = X is 

PROBLEM 6.1.3. Let T(t)x = max(0,x-t) for x > 0 and T(t)x = x for 
x < 0. Prove that { T(t)}  is a nonlinear contraction semigroup on R with 
strict infinitesimal generator A ,  defined by A,x = - 1  for x > O  and 
A,x = 0 for x < 0. 
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6.2. Functional Differential Equations in Banach Spaces 

Suppose 7 2 0 is a given real number and X a Banach space with norm 
1 1 . 1 1 .  Let $9 = C[[-.s,O], X ]  denote the Banach space of continuous 
functions mapping the interval [ - T , O ]  into X with the norm of 4 E W 
given by 

I l4 l lo  = max II4(s)II. 
- r < s < O  

If to E R, and x E C[[t,-T, a), X I ,  then for any t E [ to,  a), we let x, E W 
be defined by 

xt (s )  = x ( t + s ) ,  - T  G s G 0. 

Let p > 0 be a given constant and let 

c, = {4 E %?: I l4 l lo  G PI. 
If ’ = d/dt andf: R ,  x C, + X is a given function, we say that the relation 

x‘(t> = f ( 4  x,) (6.2.1) 

is  a functional diflerential equation of retarded type or simply a functional 
diflerential equation. 

DEFINITION 6.2.1. A function x( to ,40)  is said to be a solution of (6.2.1) 
with the given initial function 4o E C, at t = to 2 0 if there exists a number 
A > 0 such that 

(i) x(t,, b0) is defined and (strongly) continuous on [ t o  - T, to + A )  
and xt(ro, 40) E C, for to G t < t o + A ;  

(ii) xt, ( l o ,  4 0 )  = 4 0 ;  

(iii) the (strong) derivative x’(ro,40) of at t exists for 
r E [ to,  r o + A )  and satisfies (6.2.1) for t E [ to,  to+A).  

When T = 0, (6.2.1) reduces to an ordinary differential equation. As we 
have seen in Section 5.1, mere continuity off’is not enough to guarantee the 
existence of solutions. We shall present two existence theorems for solutions 
of (6.2.1). In the first, the function f satisfies a compactness condition, and 
in the second, f satisfies a Lipschitz condition. 

THEOREM 6.2.1. Let f E C [ [ to,  to +a] x C,, X I .  Assume that f maps 
bounded subsets of [ to, to +a] x C,, into relatively compact subsets of X .  
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Then given an initial function 4, at r = to, such that ll4,ll0 < p, there 
exists a solution x(t,, 4,) of (6.2.1) on [ to-  T ,  t,+u] where u > 0 is 
sufficiently small. 

Proof: Since f maps the bounded set [ to,  to + a ]  x C, into a relatively 
compact set in X ,  there exists a positive constant M such that 11 f ( r ,  4)II < M 
for ( t , 4 )  E [r,, to + a ]  x C,. Choose 

= min{a,M-'(P- l l 4 0 l l 0 ~ ~ :  (6.2.2) 

For n = 1,2, . . . we define the sequence of functions {x"(t )}  by the relation 

40 ( - T)?  r o - ~ - l ~ t ~ r o - r  

4o(t-r0)9 to - T < t < r, (6.2.3) 
x"(t) = 

Clearly x"(r) is well defined and 

Ilx"(t)II < p, r,  - T < t < to + ~ 1 ,  (n = 1,2, ...) 

which implies 

x,"EC,,, r,  < t < t ,+a,  n = 1,2 ,.... (6.2.4) 

In fact x"(r) is well defined on [ t , - ~ - n - l , f , + n - ' ]  and in this interval 

II x"(t> II < II 40 II 0 + M ( t  - to )  

< Il4ol lo + Ma < P. 

Using again (6.2.3) we can define x"(t) in [ t , + n - ' ,  t O + 2 n - ' ]  and with the 
same argument as above Ilx"(t)ll < p for t E [r,+n-',tO+2n-']. After a 
finite number of steps our assertion follows. 

From (6.2.3) and (6.2.4) we have, for t , ,  t ,  E [to-', to+a] 

Ilx"(tl)-~n(tz)ll G Mlt, -rzl. (6.2.5) 

Finally from the compactness offand Carroll [12] it follows that for each 
t* E [r,, to + a] the sequence {x"(t* )}  is relatively compact. The last property 
of the sequence {x"(r)}, together with (6.2.4) and (6.2.5) and Ascoli-Arzela 
Theorem 1.1.1, implies that the sequence {x"(t )}  contains a uniformly 
convergent subsequence which we still denote by {x" ( t ) } .  If x ( t )  is the limit 
of {x"(r)} as n+ co, then because of the uniform convergence, {x,"} also 
converges to x, for -T < s G 0. Now taking limits as n+ co in (6.2.3), we 
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conclude that x ( t )  is the desired solution of (6.2.1) on [to--, to+a] with 
initial function 4o at t = to. The proof is complete. 

THEOREM 6.2.2. Let f E C[[ to ,  to +u]  x C,, X I .  Assume that 

Ilf(44,) - f ( l 9 4 2 ) l l  G ~ l l 4 1 - 4 2 l I o ~  t E  [ I to , to+al ,  4 1 , 4 2  E c,. 
Then given an initial function 4o at t = to with I140110 < p there exists a 
solution x(ro,qbo) of (6.2.1) on [ f o - T ,  to+cr] where a > 0 is sufficiently 
small. 

Proof: We shall employ the contraction mapping principle. In view of the 
Lipschitz condition there exists a positive constant M such that 
IIf(t, 4111 < M for ( t ,  4) E [to,  to +a1 x C,. Choose 

a = min (4 M -  (P - II4oIIo>, (2K)- '1. 
Let B = C [[ to  - T, to +a],  X ]  be the space of continuous functions x from 
[to--,  to+a] into X such that in addition x ( t )  = q50(t- to )  for t o - T  < 
t G to and Ilx(t)ll < p for to G t G to+cr. For x,y  E B we define the distance 
d(X,Y) by 

d(X9.Y) = max Ilx(t)-Y(t)ll. 
to  S f  < 10+a 

Clearly B is a complete metric space. For x E B, define 

to--r < t < to 

to < r < to + a. 

(6.2.6) 
40(0) + / ' f ( s , x S )  ds, 

Tx( t )  = 

We have, in view of the choice of a, 

IITx(t)II G I l4o l lo  + Ma < P.  

Therefore T :  B +  B. 
Next we shall prove that T is a contraction on B. In fact 

4 T x ,  0) G max IIf(s,xs) -f(s,yJIl ds 
f o < f < f o + a  I f  to 

< IIxs-.Ysll ds 

< Kad(x,y),  Ka < 
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Hence, the mapping T defined by (6.2.6) has a fixed point x which clearly is 
a solution of (6.2.1) on [ to - 7, to + m] with initial function 4o at t = to. The 
proof is complete. 

We shall next consider a uniqueness theorem of Perron type and also 
discuss the continuous dependence of solutions with respect to initial values. 

THEOREM 6.2.3. Let f~ C [ [ r , ,  to +a) x Cp, X I  and for E [ to,  to +a) with 

Ilf(44) -f(4*)ll G A t ,  II4-*110) (6.2.7) 

where g E C [ [ to ,  to +a) x [0,2p), R,]. Assume that r ( t )  = 0 is the unique 
solution of the scalar differential equation 

r’ = g( t , r )  and r(to) = ro 2 0 (6.2.8) 

with ro = 0. Then there exists at  most one solution of (6.2.1) on [to, to+a). 

Proof: Suppose that there exist two solutions x( to ,  $o) and y(to, $o) of 
(6.2.1) with the same initial function do at t = to. Define 

A* E c p  

= Ilx(t0, 4 O ) ( O  - Y(t0,4O)(t)ll 
so that 

m, = Ilxr(to9 4 0 )  - Y&o, 4o)II. 
Then, for t E (to, to +a) and using (6.2.7), we obtain 

D-  m(t)  G IIX’(t0,4O)(t) - Y’(t0, $O)(t)II 

= I l f [ t 9 x t ( r 0 ,  $011 - f [ t7Y1( t09  40)111 
G dt, Imrlo). 

Notice that 
m,, = 0. 

(6.2.9) 

(6.2.10) 

The inequalities (6.2.9) and (6.2.10) and an application of a known result 
(Lemma 6.1.1 in Lakshmikantham and Leela [42]) yield 

Ilx(t0,4o)(t) - Y@o, 4 O ) ( t ) l l  < r( t ,  to,  0) = 0, 

X(t0,4O)(f) = Y( t0 ,  40), 

E [ t o ,  to+a) 

which implies that 

t E [ t o ,  t,+a). 

The proof is complete. 
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THEOREM 6.2.4. Suppose that the assumptions of Theorem 6.2.3 hold. 
Assume further the local existence of solutions of (6.2.1). If the solutions 
r ( t ,  to, ro) of (6.2.8) depend continuously on the initial values (to,  ro), then 
the solutions x( ro ,b0 )  of (6.2.1) are unique and depend continuously on 
the initial values (to,  40). 
Proof: Since uniqueness follows from Theorem 6.2.3, we prove the 
continuous dependence. Let x ( t , , 4 , )  and ~ ( t ~ , 4 ~ )  be the solutions of 
(6.2.1) with initial functions 4,  at t = t ,  and 42 at t = f 2 ,  existing in 
[ t , ,  to + a) and [ t 2 ,  to + a), respectively. Let to < t ,  < t2 < to + a  and define 

m(t)  = l l ~ ~ ~ 1 ~ 4 , ~ ~ ~ ~  - x(t27 4 2 ) ( f ) l l r  

D- m(t> G d t ,  Imtlo), 

t E Ct2, t o + 4 .  

Then as in Theorem 6.2.3, we arrive at the differential inequality 

t E c t 2 ,  t 0 + 4  

and 

lmt210 = ll~t2(fl,41) - 42110. 

As before, we then get 

m(t> < r ( t , t 2 ,  l l ~ t 2 ~ ~ 1 , 4 1 ~ - 4 2 l l ,  t E  Ct,,to+a) (6.2.11) 
where r ( t ,  to, ro) denotes the maximal solution of (6.2.8). Let ( t 2 ,  &) + 

( t , ,  4 , )  in the respective topologies. Then since x,(t,, C#J~)  is continuous 
in t ,  we have x t 2 ( t l ,  4 , )  - 42 -, 0. Using the continuity of r ( t ,  to, ro) in 
(to, ro), we finally conclude from (6.2.1 1) that 

lim m(t)  = r ( t , t , , O )  = 0. 
;:2$: 

The proof is complete. 

PROBLEM 6.2.1. 
uniqueness theorem. 

[Hint: 

State and prove a uniqueness result parallel to Kamke’s 

Refer to Theorem 6.2.4 in [42].] 

DEFINITION 6.2.2. 
solution of (6.2.1) for t 2 to with an initial function 4o E C,, at t = to if 

xt(to, &, E )  E C, for t 2 to;  

A function x ( t O , 4 , , & )  is said to be an &-approximate 

(i) x( to ,  40,~) is defined and strongly continuous on [to-‘, 03) and 
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(iii) x(to,  40, E )  is (strongly) differentiable on [to, a), except for an 
atmost countable set S and satisfies 

IIx’(to,40&t) -f[t,-l-,(t,, 6 ~ ~ ~ 1 1  I1 G E ,  t E [ to,  03) - S .  (6.2.12) 

In the case where E = 0 and S is empty, Definition 6.2.2 coincides with 
Definition 6.2.1. 

PROBLEM 6.2.2. 
have 

Let f E C [ R +  x C,, X] and for ( t ,  4), ( t ,  $) E R+ x C, we 

IlS(f, 4)  -f(t,$>II G g(t9 lldJ--$lIo) 
where g E C [ R +  x [0,2p), R+] .  Assume that r(r,  ro,ro) is the maximal 
solution of 

r‘ = g ( t , r )  + + E,  and r ( to )  = ro 2 0. 

Let x(to, +o, E ~ )  and y ( to ,  $o, E , )  be c l -  and &,-approximate solutions of 
(6.2.1) such that I140 - t j 0 l l  G yo. Then 

lIx(t0,40? E l ) ( t )  - $ 0 9  E,)(t)Il G r(r9 to9 ro), t 2 10. 

In the special case, g ( t , r )  = Lr with L > 0, we obtain the well-known 
estimate 

Ilx(t0,40, E l ) ( t )  - Y(t07 $0, E,)(t)ll 

G I l 4 o - $ o l l o ~ ~ P ~ ~ ~ ~ - ~ o ~ l ~ ~ ~ ~  +&,)PI CexP[L(t-to)l - 11, 

t 2 t o .  

Following the proof of Theorem 5.6.1 and the foregoing discussion it is 
not difficult to prove a global existence result for solutions of (6.2.1) and to 
show that the (strong) limit of solutions, namely lim,+m x(to, q50)(t), exists 
and is a vector in X .  This we leave as an exercise. 

PROBLEM 6.2.3. Assume that 

(i) S E CCR+ x q9 X I  and IlSO, 4)II G g ( t ,  114110) for all 0 ,4 )  E R+ x v; 
(ii) g E C [ R +  x R,, R,], g ( t , r )  is nondecreasing in r 2 0 for each 

(iii) suppose the local existence of solutions of (6.2.1) through any 
t E R+,  and the maximal solution r ( t ,  ro,ro) of (6.2.8) exists for t 2 t o ;  

point (to, dJo) E R ,  x W. 
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Then the largest interval of existence of any solution x( to ,  4,) of (6.2.1) 
with I14011~ < ro is [to, a). 

If in addition r ( t ,  to ,ro)  is assumed to be bounded on [ to,  oo), then 
lim,+m x( to ,  $, ) ( t )  exists and is a (finite) vector in X. 

Let us conclude this section with the observation that a number of 
results concerning bounds, stability, and asymptotic behavior of solutions 
of functional differential equations in finite dimensional spaces (see 
Lakshmikantham and Leela [42]) may easily be extended to (6.2.1) in the 
light of the foregoing discussion. 

6.3. Second-Order Evolution Equations 

Consider the second-order abstract Cauchy problem 

u"(t) = B2u(t) ,  t E R, (6.3.1) 

u(0) = u1 and u'(0) = u2 ,  (6.3.2) 

where B is a linear closed operator with domain D ( B )  dense in the Banach 
space X and u I  and u, are given vectors in X. 

DEFINITION 6.3.1. A function u: R+ X is said to be a solution of (6.3.1) 
and (6.3.2) if u E C, [ R ,  A'], u( t )  E D(B2)  for t E R, and satisfies (6.3.1) 
and (6.3.2). 

Define the vector 

U ( t )  = (;;;J E x x A'. 

Then the problem (6.3.1) and (6.3.2) formally becomes 

U'(t)  = MU(t) ,  t~ R,  

U(0) = u, 
where 

(6.3.3) 

(6.3.4) 

M =  (O B2 I )  0 
and U o = ( l : ) .  
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If M generates a strongly continuous semigroup (in a sense to be explained 
later) then the problem (6.3.3) and (6.3.4) has the solutions 

u(t) = exp(t( O B2 0 ' ) ) u 0 .  

Let us first look at the special case that X coincides with the complex 
numbers C and B' is equal to a constant b' E C with b # 0. Then 

0 1  1 0  

(b' O r = b 2 ( 0  1 )  

and therefore 

= c + c  
n=cven n=odd 

= cosh(tb) (i y )  + b-'sinh(tb) 

The above considerations make plausible the expectation that B generates 
a strongly continuous group { S ( t ) }  on X and if 0 E p(B), then M also 
generates a strongly continuous group { T(t)} given by 

T(t)  = cosh(tB) (i :) + B-'  sinh(tB) 

where cosh(tB) = + [ S ( t ) + S ( - t ) ]  and sinh(tB) = + [ S ( t ) - S ( - t ) ] .  
Before we state and prove, with mathematical rigor, the above conjecture, 

we need some notation. We denote by [ D ( B ) ] -  the domain of B equipped 
with the graph norm 1 .  I where I f 1  = I I @ f ' l l +  llfll (or in the case of a Hilbert 

With the norm 1 . 1 ,  [D(B)]" becomes a Banach (or a Hilbert) space. 
Notice also that if 2 and X are Banach (or Hilbert) spaces, then the space 
Y = Z x X is also a Banach (or Hilbert) space provided that it is equipped 
with the energy norm 

space X lfl' = 11BfII2+ llfl12). 
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We now prove the following. 

THEOREM 6.3.1. 
continuous group {S(t)}  on X and that 0 E p ( B ) .  Then the operator 

Assume that B with domain D ( B )  generates a strongly 

with domain D ( M )  = D ( B 2 )  x D ( B )  generates a strongly continuous 
group { T(t ) }  on Y = [ D ( B ) ] -  x X given by (6.3.5) and 0 E p ( M ) .  Further- 
more, the Cauchy problem (6.3.1) and (6.3.2) with u1 E D ( B 2 )  and 
u2 E D ( B )  has a unique solution u ( t )  with the additional property that 
u'(t) E D ( B )  for t E R.  

Proof: For 

set 

cosh(tB)g, + B-'  sinh(tB)g, 

cosh(tB)g, + Bsinh(tB)g, 
T (0g  = 

By the definition of Y,  it follows that 

T( t ) :  Y -+ Y 

By Theorem 2.1.1 (Chapter 2) there exist constants L and w such that 
IlS(t)ll < Lexp(olt1) for t E R. Then for all g E Y and t E R 

II Wgll,  = Ilcosh(rB) & I  + sinh(tB)g,II 
+ Ilcosh(tB)g, + sinh(tB)B-'g,II 

+ Ilcosh(tB)g2 + sinh(tB)Bg, II 

< ~exP(~l~l)(ll~~1II+119211+119111+II~-'9211+l19211+Il~s,II) 

G L(2 + II B - II) exp (4 4 )  llsll Y . 
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This proves that T :  R-+ B ( Y )  and (1 T( . ) \ ( ,  is locally bounded. The group 
property of { T }  follows easily from the group property of { S } .  Clearly, 
T(O)=I.  Next, let D o = D ( B 2 ) x D ( B )  r>Y. Do is dense in Y because 
D ( B )  is dense in Xand D ( B 2 )  is dense in [D(B)] ' .  To see the last assertion, 
let f E D ( B ) .  Since 0 E p ( B ) ,  it follows that B [ D ( B 2 ) ]  = D ( B )  is dense 
in X .  Choose f, E D ( B 2 )  such that 11Bf,- Bf /I -+ 0 as n + co. Then 

If,-fl = Ilff"-Bf II + llf,-fll 
< (1+IIB-'II)IIBf,-BfII + 0 as n -+ 00. 

Define 

N = (: 'i2). 
Then 

I l M l l Y  = IIB-'9zII + IIB-'9211 + 119111 
9 E y, G (1 + IIB-'11)2 11911Y, 

and hence N E B(Y).  Notice that NMf = f for all f E D ( M )  and MNf = f 
for all f E Y. Hence 0 E p(M) and M - '  = N .  

Next we show that the infinitesimal generator G of {T( t ) }  coincides 
with M .  Clearly G x  M .  Assume that D ( M )  $ D(G). Then (since 0 E p ( M ) ) ,  
there exists an h E D(G)  such that h # O  and Gh=O. It follows that 
T ( t ) h  E h for t E R, that is 

cosh(tB)h, + B-' sinh(tB)h, = h , ,  

sinh(tB) Bh, + cosh(tB)h, = h, .  

(6.3.6) 

(6.3.7) 

Differentiating (6.3.6) we obtain 

sinh(tB)Bh, + cosh(tB)h, = 0. (6.3.8) 

By (6.3.7) and (6.3.8) we get h, = 0. Then by (6.3.8) Bsinh(tB)h, = 0 which 
implies that sinh(tB)h, = 0. Taking its derivative at  t = 0 yields Bh, = 0, 
which in turn implies h ,  = 0. Hence h = 0. This contradiction shows that 
G = M .  The remaining part of the theorem follows from the results of 
Section 2.2. The proof is complete. 

Next we shall discuss informally some other simple ways to attack the 
Cauchy problem (6.3.1) and (6.3.2) as well as some perturbed forms of the 
same problem. 
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Assume that B is a closed operator with domain D ( B )  dense in the 
Banach space X .  Let u ( f )  be a solution of (6.3.1) and (6.3.2) with the 
additional property that u’(t) E D ( B )  for t E R and Bu’(f) is continuous in t 
for t E R.  Then 

(d/dt) Bu(t) = B(d /d f )  u( t ) ,  t E R. (6.3.9) 

In fact 

u(t )  = u(0) + u’(s) ds. so’ 

so’ 
By Theorem 1.3.5, it follows that 

Bu(t) = Bu(0) + Bu’(s) ds. (6.3.10) 

The identity (6.3.9) follows from (6.3.10) and Theorem 1.3.3 (Chapter 1). 
From (6.3.1) we obtain (by using Theorem 1.3.5) 

u’(t) = u’(0) + so’ u”(s) ds 

= u2 + B L B ~ ( S )  ds. (6.3.1 1) 

Let u ,  be a vector in X satisfying u2 = Bv, (this is possible if, for example, 
0 E p ( B )  as in Theorem 6.3.1). Then (6.3.1 1) becomes 

u‘(t) = B[ul  + ~ B u ( s )  ds]. (6.3.12) 

Set 

(6.3.13) 

From (6.3.12) and (6.3.13) we get 

u’ = Bv and u’ = Bu. (6.3.14) 

Set 

x = u + v  and y = u - v .  (6.3.15) 

Then (6.3.14) yields 

x’ = Bx and y’ = -By .  (6.3.16) 
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Each of the equations in (6.3.16) can be easily solved if, for example, B is 
the infinitesimal generator of a strongly continuous group { S ( t ) }  (as in 
Theorem 6.3.1). All the foregoing steps are reversible and therefore we can 
obtain the solution u(t )  = + [ x ( t ) + y ( t ) ]  of (6.3.1) and (6.3.2) by first 
solving the simpler equations in (6.3.16). The above arguments give also 
another proof to the last assertion of Theorem 6.3.1. 

Next we consider the more general equation 

u” = B(B+Q)u .  (6.3.17) 

Here the equations (6.3.14) will be replaced by 

u’ = Bu and u’ = (B+Q)u .  

Using the transformations in (6.3.15) we obtain 

X’ = BX + +Qx + 3Qy 

and 

y’ = -BY - ~ Q x  - 3Qr. 
Introducing the operators 

and g = + (  ’ ’) 
- P  - P  

in the space X x  X and setting 2 = (:) we deduce the equation 

2’ = ( B + S ) 2  

which can be treated by the previous methods. 
Finally let us examine the nonhomogeneous equation 

U” = B’u +f(t) (6.3.18) 

wheref(t) is a continuous function. Clearly this equation can be trans- 
formed into 

X’ = BX + B - ’ f ( t ) ,  (6.3.19) 

y’ = -By  - B - ’  m. (6.3.20) 

Assume, for example, that B generates a continuous group, 0 E p ( B )  and 
that B -  ‘f(t) is (strongly) continuously differentiable on R.  Then Theorem 
2.2.3 (Chapter 2) applies to each of the equations (6.3.19) and (6.3.20). In 
this way, the equation (6.3.18) is also solved. 
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We shall conclude this chapter by initiating the study of oscillation 
theory for second-order differential equations of the form 

[P(t)u’(t)]‘  + Q ( t ) u ( t )  = 0, t 2 0 (6.3.21) 

where P ( t )  and Q ( t )  are (generally) unbounded symmetric operators in a 
Hilbert space H with time-varying domains D [ P ( r ) ]  and D [ Q ( t ) ] ,  respec- 
tively. A solution u ( t )  of (6.3.21) is a continuous function u:  [0, 00)+ H 
such that for t 2 0 we have u ( t )  E D [ Q ( t ) ] ,  u’(t) E D [ P ( t ) ] ,  Q ( t ) u ( t )  
continuous, P(r)  u’(t) continuously differentiable, and (6.3.21) satisfied. 
Here we shall assume, without further mention, the existence and unique- 
ness of solutions of (6.3.21) for any pair of initial conditions u(to) = 

uo E D[Q(t,)] and u’(to) = u1 E D[P(r , ) ]  with to 2 0. A function u :  [0, 00) 

+ H i s  called nonoscillatory if u ( t )  vanishes at most once in [0, 00). We say 
that the operator A with domain D ( A )  in H i s  strictly positive and we write 
A > 0 if and only if ( A x , x )  > 0 for any x E X with x # 0. We write A < 0 
when - A  > 0 and A -= B when B - A  > 0. 

In the sequel we shall present several nonoscillation results for (6.3.2 1) 

u”(t) + Q ( t ) u ( t )  = 0, t 2 0. (6.3.22) 

and the simpler equation 

THEOREM 6.3.2. 
trivial solution u( t )  of (6.3.21) is nonoscillatory. 

Proofi We have 

0 = (Cp(t)u’(t)l’ + Q ( t ) u ( t ) ,  4 0 )  = (CP(r> u’(t)I’, 4 0 )  + ( Q ( t ) u ( t ) ,  u(t)) .  

Since Q ( t )  > 0 it follows that 

Let P ( t )  > 0 and Q ( t )  < 0 for each t 2 0. Then every non- 

(Cp(t)u’(t)l’ ,  W) 3 0 (6.3.23) 

with strict inequality when u ( t )  # 0. Define the function 

W) = (W) u’(t), W).  
Then 

F‘(t)  = ( [ P ( r )  ~ ’ ( t ) ] ‘ ,  u ( t ) )  + ( P ( t )  u‘(t), u’(t)) 2 0 (6.3.24) 

with strict inequality if Ilu(t)ll + IIu’(r)ll # 0. Since u ( t )  f 0, we do have 
strict inequality in (6.3.23). Hence F(t)  is strictly increasing in t .  It follows 
that F(r)  has at most one zero in [0, co) and therefore u ( t )  cannot vanish 
more than once in [0, 00). This proves that u(r)  is nonoscillatory. 
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PROBLEM 6.3.1. 
u(t )  of (6.3.22) is nonoscillatory. 

[Hint: 

Let t2Q(t)  < 4Z for t > 0. Then every nontrivial solution 

Use the transformation u = t% and Theorem 6.3.2!] 

PROBLEM 6 .32 .  Let S( t )  be a symmetric operator on H such that 

S’(r) + S2(t )  + Q ( t )  < 0, t 2 0. 

Then every nontrivial solution of (6.3.22) is nonoscillatory. 

[Hint: 
strictly increasing.] 

Set F ( t )  = (u(t ) ,  u’( t ) ) - (S( t )  u(t) ,  u ( t ) )  and show that F’(t)  is 

PROBLEM 6.3.3. Prove the converse of Problem 6.3.2 under the additional 
condition that a solution U ( t )  of U “ +  Q ( t )  U = 0 is invertible for each 
t 2 0. 

[Hint: Take S(t)  = U’(t)  U-’(t).] 

PROBLEM 6.3.4. Let Q ( t )  be a self-adjoint operator on Hand { E A ( t ) } ~ ~ ? m  
be the resolution of the identity for Q ( t ) .  Define the projections 

E, ( r )  = ] -mdEA(t )  and E,( t )  = I -  E , ( t ) .  

Set Qi( t )  = Ei( t )  Q(r)  with i = 1,2. Then every nontrivial solution of (6.3.22) 
is nonoscillatory if one of the following holds: 

0 

(i) t2A2( t )  < -*z; 
(ii) there exists a symmetric operator S ( t )  such that 

S’(r) + S 2 ( t )  + A , ( t )  < 0. 

[Hint: Use Problem 6.3.1 if (i) holds and Problem 6.3.2 when (ii) holds.] 

PROBLEM 6.3.5. Let the symmetric operator Q in (6.3.22) be independent 
o f t  and have a nonpositive eigenvalue R. Then every nontrivial solution of 
(6.3.22) is nonoscillatory. 

[Hint: Let u be the eigenvector of Q corresponding to E.. Set F ( t )  = (u( t ) ,  u )  
and show that F“+AF= 0.1 

PROBLEM 6.3.6. 
real for some to 2 0. Then (u(t),  u’(r)) is real for each t 2 to. 

Let u(t )  be a solution of (6.3.22) such that (u(tO) ,  u’(to)) is 
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[Hint: 
tives are equal.] 

Show that ( ~ ( t ) ,  u’(t)) = (u’(t), u ( t ) )  by showing that their deriva- 

PROBLEM 6.3.7. Let u ( t )  be a solution of (6.3.22) such that u(t )  # 0 for 
t 2 to and (u(to),  ~ ’ ( t , ) )  is real. Assume that Q ( t )  < q ( t ) I  for t 2 to .  Then 

I I W I  ” + q( t )  Ilu(t>ll a 0. 

[Hint: Set 

F ( t )  = (u’(t>, W ) / ( u ( t > ,  W), t 2 l o  

and show that F’+ F 2  + q ( t )  2 0. Notice that 

F(s)  ds = Ilu(t)ll/llu(to)ll 

and 0’’ + q(t)  u 2 0.1 

6.4. Notes 

Section 6.1 presents a simplified version of the results of Kato [32]. For 
further work in this area the reader is referred to the interesting papers of 
Dorroh [17], Komura [34], Oharu [57], Mermin [SO], Crandall and 
Liggett [14], Webb [76], Crandall [13], and Brezis and Pazy [9]. 

The results of Section 6.2 are new in this form. Special cases were 
previously considered by Mamedov [47] and Zamanov [81]. It remains an 
open problem to prove an existence theorem for u’=f( t ,u,)  similar to 
Theorem 5.2.1 (Chapter 5) in the text. 

Theorem 6.3.1 is due to.Goldstein [25]. See Krein [35] and Hille and 
Phillips [28] with respect to the discussion following the proof of Theorem 
6.3.1. For further results and examples see Fattorini [20], Goldstein [26], 
and Krein [55]. For nonlinear second-order evolution equations refer to 
Lions and Strauss [45], Strauss [67], and Raskin and Sobolevskii [62]. 
Higher-order evolution equations are treated in Fattorini [21,22] and 
Hille and Phillips [28]. Second-order evolution inequalities are studied in 
Levine [43] and Agmon [ I ]  where many examples are also given. The 
nonoscillation results and problems given at the end of Section 6.3 are new. 



Appendixes 

The purpose of the following appendixes is to give a brief survey of those 
concepts and results from the theory of functional analysis which are used 
in the text or frequently used in the related literature. Although these 
results, for the most part, are standard facts which can be found in any 
book on the subject, we believe that their inclusion here will help the reader 
who is not familiar with the subject. We also give references where the 
proofs of the main results can be found. 

Appendix I 

Let E be a set. A distance on E is a mapping d of E x  E into the set R of 
real numbers, having the following properties: 

0 )  d(X,Y) > 0, X , Y  E E ;  

if and only if x = y ;  (ii) d(x ,y )  = 0 
200 
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(iii) d ( x , y )  = d ( y ,  4, x , y  E E ;  

(iv) d ( x , z )  < d(x ,y )  + d ( y , z ) ,  x , y , z  E E (triangle inequality). 

A metric space is a set E together with a given distance d o n  E. 
In a metric space E, a Cauchy sequence is a sequence {I,} such that for 

every E > 0 there exists a positive integer N = N ( E )  such that p 2 N and 
q 2 N imply d(x,, xq)  < E .  

A metric space E is called complete if any Cauchy sequence in E is 
convergent to a point of E. The importance of complete spaces lies in  the 
fact that to prove that a sequence is convergent in such a space we need only 
show it is a Cauchy sequence and we do not need to know in advance the 
value of the limit of the sequence. 

A subset D of E is called dense in E if D = X where D denotes the closure 
of D. 

A metric space E is said to be 

(i) separable if there exists in E an at most denumerable dense set 
that is, there exists a subset {xl ,  s2, ...} of E which is dense in E ;  

(ii) compact if every open covering of E contains a finite number of 
sets which is also a covering of E ;  

(iii) precompact (or torally bounded) if for every E > 0 there exists a 
finite open covering of E by sets of diameter less than or equal to E (that is, 
for each E > 0, E has an w e t ) .  

Clearly if E is precompact, then it is also bounded. Also a compact 
metric space is separable. 

THEOREM (Simmons [69]). 
are equivalent: 

For a metric space E the following conditions 

(a) E is compact; 
(b) any infinite sequence ofelements of Ehas a convergent subsequence; 
(c) E is precompact and complete. 

A subset A of E is said to be relatively compacr if the closure A of A is 
compact. 

THEOREM (Simmons [64]). 
metric space E into a metric space E' is uniformly continuous. 

A continuous mapping f from a compact 
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Appendix I1 

Let E be a linear space over the field of real or complex numbers. A norm 
in E is a mapping x + llxll of E into the set R, of nonnegative real numbers 
satisfying the following properties : 

(i) llxll 2 0 and llxll = 0, if and only if x = 0; 

(ii) IIIxll = 14 IIXII, x E E, I any scalar; 

(iii) IlX+YII G llxll + Ilvll9 (triangle inequality). 

The vector space E together with a norm on E is called a normed linear space. 
Let us remark here that in a finite dimensional linear space E all norms 

are equivalent in the sense that if )I.II, and 1 1 .  1 1 2  are two norms in E, then 
there exist nonnegative numbers a and b such that for every x E E 

x, y E E 

allxll, G IIxlI2 G bllxll1 
If E is a normed linear space, then d(x,y) = Ilx-yll is a distance on E. 

Under this distance, E is a metric space and all the terminology and theorems 
of metric spaces can also be stated for normed linear spaces. 

THEOREM (Goldberg [24]). If E is a normed space whose unit sphere 
S = {x E E :  IIx(J < l} is totally bounded, then E is finite dimensional. 

A Banach space is a normed linear space which is complete (under the 
distance d(x ,y)  = Ilx-yII). 

E is an algebra over the scalar field F if E is a linear space over F where 
multiplication is also defined between the elements of E satisfying the 
following properties : 

(i) to every ordered pair x, y E E corresponds a unique element xy E E ;  

(ii) (x+y)z = xz +yz and x(y+z) = xy + xz 
(distributivity) ; 

(iii) (xy)z = x (yz) (associativity); 

(iv) U X ~ Y  = CC~XY,  X,Y E E, a, fi E F. 

A unit element in E is a vector e E E such that ae = ea for every cc E F. 
A Banach algebra over F is a set E which is an algebra as well as a Banach 

space over Fsatisfying the additional property llxyII G llxll Ilyll. If a Banach 
algebra E has a unit element e, then (necessarily llell B 1) we shall assume 
that llell = 1. 
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Let E be a linear space over the real or complex numbers. An inner 
product on E is a scalar-valued function (-, a )  on E x  E with the following 
properties: 

(i) ( k Y )  = 1(X,Y), x ,  y E E, 1 any scalar; 

(ii) (X+Y,Z) = ( x , z )  + ( v , z ) ,  X , Y , Z  E E ;  

(iii) (x ,  Y )  = (Y ,  4 ,  X , Y  E E ;  
- 

(iv) ( x , 4  > 0, x # 0, X E E .  

A linear space E together with an inner product is called an inner-product 

An inner-product space is also a normed space with norm llxll = (x ,  x)”. 
If E is an inner product space the following inequality called Schwurz’s 

space (or a pre-Hilbert space). 

inequality holds : 

I(X9Y)l  G llxll Ilrll, X , Y  E E 

with equality if and only if x and y are linearly dependent. 
Let X and Y be normed linear spaces. An operator T :  X +  Y is called 

linear if T(Ax+py) = ATx+pTy for every x , y  E X and any scalars A, p. 
The norm of the operator T is denoted by 11 T 1 )  and is defined by 

One can show that the above definition of the norm of Tis also equivalent 
to 

= sup 11 Txll. 
ll;lLy 

If IITII < co the T is called a bounded operator. Otherwise T is called 
unbounded. Of course every linear transformation Ton a finite dimensional 
space X is bounded. 

The set of all bounded operators from X into Y is denoted by B ( X ,  Y ) .  
If X = Y, we write B ( X )  instead of B ( X ,  X ) .  

If X is a normed linear space and Y is a Banach space, then B(X,  Y )  is a 
Banach space with the norm of T E B ( X ,  Y )  being 11 T(I.  It is easily seen that 
B ( X )  is a Banach algebra with identity Z(the identity operator) since by the 
definition of the norm /ITS)I G )I TI1 IlSll. 
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THEOREM. If T :  X +  Y is a linear operator, then the following statements 
are equivalent : 

(a) 
(b) 
(c) 
A linear functional 4 on X is a linear map from X into the field of scalars 

(real or complex numbers). 
The conjugate space X *  of the normed linear space Xis the Banach space 

of all bounded linear functionals on X .  The norm of 4 E X *  is defined by 

T is continuous at the point x,, E X ;  
T is uniformly continuous on X ;  
T is a bounded operator. 

11411 = SUP 14(x)1/11x11. 
X € X  
X Z O  

A subset K of a linear space X over the real or complex numbers is called 
conuex if for every x and y in K ,  the set { A x + ( l - I ) y :  0 G A < I }  is con- 
tained in K .  

A normed linear space X is called strictly conuex if llxll = llyll = r for 
any r implies Ilx+yll < 2r unless x = y and uniformly conuex if Ilx,,ll < 1, 
Ily,,ll < 1, and ~~x,,+y,,Il + 2  as n+ 00 imply IIx,,-y,,ll + O  as n+ 00. 

A subset M of a linear space X over the complex numbers C is called a 
linear manifold if for every x ,  y E X and every I ,  p E C we have Ax + py E M .  

A closed linear manifold of X is called a subspace. 
The adjoint T* of a linear operator T E B(X,  Y )  is the mapping from 

Y* to X *  defined by T*y* = y*T. 
Let T be a linear (not necessarily a bounded) operator with domain 

D ( T )  D H  and range in the Hilbert space H .  Assume that D(T)  is dense 
in H.  Define D(T*) = { u  E H :  there exists an f E H such that (u, Tu) = 
cf, u )  for each u E D ( T ) } .  Since D(T) = H the f associated with u is uniquely 
determined. Define 

T*u = f, u E D(T*). 

The operator T* on D ( T * )  is called the adjoint of T on D ( T ) .  

each u, u E D (T) .  
The operator T on D ( T )  c H is called symmetric if (u, Tu) = (Tu, u)  for 

The operator Ton  D( T )  c H i s  called self-adjoint if 

(i) T is symmetric; 
(ii) D(T)  = H ;  

(iii) T* = T. 

- 
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Let X and Y be normed linear spaces. Suppose that A is a linear operator 
from X into Y. We say that A is compact or completely continuous if every 
bounded set of X is mapped by A into a relatively compact set in Y. 

Clearly a compact operator is bounded. 

Appendix III 

THEOREM (Simmons [64]) (Hahn-Banach). Let M be a subspace of 
a normed linear space X and 4o a bounded linear functional on M. Then 
4o can be extended to a linear functional 4 defined on the whole space X 

Some elementary but very useful consequences of the Hahn-Banach 
such that 11411 = Il40ll. 

theorem follow. 

LEMMA 1. 
4 E X *  such that 

Let xo  # 0 be a vector in X .  Then there exists a functional 

This lemma implies the existence of many nontrivial bounded functionals 
on X. 

LEMMA 2. If 4(xo) = 0 for every 4 E X*, then xo = 0. 

Appendix IV 

RIESZ REPRESENTATION THEOREM. Let X = C [ [ a ,  b],  R"] be the Banach 
space of continuous functions from [a, 61 into R" with sup-norm. Let L be 
a bounded linear functional mapping X into R". Then there.exists an n x n 
matrix q(0)  whose elements are of bounded variation such that for each 
4 E X  

where the integral is a Stieltjes integral. 



206 Appendixes 

Appendix V 

Let X be a normed linear space. A linear operator A with domain 
D ( A )  c X is said to be closed if whenever x, -+ x as n -+ co, x, E D ( A ) ,  and 
Ax,  +y  as n -+ 00, then x E D ( A )  and A x  = y. 

CLOSED-GRAPH THEOREM (Goldberg [24]). A closed linear operator map- 
ping a Banach space into a Banach space is bounded (and thus continuous). 

Appendix VI 

Let {Tn}r= l ,  T, E B ( X )  for n = 1,2, ... and T E  B(X) .  We say that 

(i) T, -+ T as n -+ 00 in the strong topology if 11 T, x - Txll-+ 0 for each 
X E  X a s  n+00; 

(ii) T, -+ T as n -+ co in the uniform operator topology if 11 T,- TI1 -+ 0 
asn-+co;  

(iii) T,-+Tasn-+cc in the weak topologyif I+(T,x)-+(Tx)l+Ofor 
e v e r y + E X * a n d e a c h x E X a s n + c o .  

Clearly, uniform convergence implies strong convergence which in turn 
implies weak convergence. 

UNIFORM BOUNDEDNESS PRINCIPLE (Dunford and Schwartz [ 181) (Banach- 
Steinhaus). Let X and Y be Banach spaces and let {Ta}aEA be an indexed 
set of bounded linear operators from X into Y .  Then the following state- 
ments are equivalent: 

SUP I ITa I I  < 
a t A  

(a) 

(b) 

(c) 

sup IITaxll < co, x E X ;  
a c A  

sup I+(Tax)l < co, X E X ,  + E Y * .  
a c A  

The following results are also very useful : 

THEOREM (Dunford and Schwartz [18]). Let X and Y be Banach spaces 
and let {Ta}aEa be an indexed set of bounded linear operators from X 
into Y. If for each X E  X the set { T a x :  c1 E A }  is bounded, then 
limx-,o Tax = 0 uniformly for c1 E A .  
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THEOREM (Dunford and Schwartz [18]). Let T,,: X - ,  Y be a sequence 
of bounded linear operators from the Banach space X into the Banach 
space Y. If limn+ T,, x exists for each x in a dense subset D of X and if for 
each x E X the set {T , ,x }  is bounded, then the limit Tx E T,,x 
exists for each x E X and T is a bounded linear operator. 

Appendix VII 

Let X be a normed linear space and X** the conjugate of the Banach 
space X*. The mapping J x :  X -+ X** defined by 

is called the natural embedding of X into X * * .  If the range of Jx is all of 
X * * ,  then X is called rejlexive. 

We mention the following facts (see Goldberg [24]): 

(i) the natural embedding J :  X +  X** is a linear isometry; 
(ii) the conjugate space of a separable reflexive space is separable; 
(iii) a Banach space is reflexive if and only if its conjugate is reflexive; 
(iv) a closed subspace of a reflexive space is reflexive; 
(v) every bounded sequence in a reflexive space contains a weakly 

(vi) every Hilbert space is reflexive. 
convergent subsequence ; 

Appendix VIII 

Let A be a linear operator (not necessarily bounded) with domain 
D ( A )  c X and range in the Banach space X. The resolvent set of A is the set 
of all complex numbers A for which (AZ-A)- exists as a bounded operator 
with its domain being the whole Banach space X .  The resolvent set of A is 
denoted by p ( A )  and is an open set in the complex plane C. If I E p ( A ) ,  the 
function R(A; A) = (21- A)- is called the resolvent function of A or simply 
the resolvent of A and is an analytic function of I E p ( A ) .  The spectrum 
a ( A )  of A is the complement of p ( A )  in C and therefore is a closed set. If A 
is a bounded operator, then a (A)  is a closed, bounded, and nonempty 
subset of C. Moreover 
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For 1A1 > supla(A)l the series 
00 

R ( A ; A )  = A"/A"+' 

converges in the uniform operator topology. The number r ( A )  = supla(A)( 
is called the spectral radius of A.  Let a(A)  be the spectrum of the linear 
operator A :  D ( A )  -+ X. We define the following: 

n = O  

(i) The point spectrum of A ,  a,(A) = {A E o ( A ) :  A I - A  is not 1 :  l } .  
Any point in the point spectrum of A is called an eigenvalue of A .  If A is 
an eigenvalue of A then there exists a vector x E D ( A )  for x # 0 such that 
Ax = Ax. The vector x is called an eigenvector of A corresponding to the 
eigenvalue A. 

The continuous spectrum of A ,  a,(A) = {A E o(A) :  AI- A is 1 : 1 
and (AI- A )  D(A) is dense in X but not equal to X } .  

The residual spectrum of A ,  a,(A) = {A E a(A): AI- A is 1 : 1 and 
(AI- A )  D ( A )  is not dense in A } .  

Clearly a,(A), o,(A), and a,(A) are disjoint and 

(ii) 

(iii) 

a(A)  = a#) u a,(A) u a,(A). 

If A is a closed operator and A, is a pole of R(A; A )  of order m, then A,, 
is an eigenvalue of A .  Moreover 

X = R [(A0 I -  A)"] @ "(A0 I -  A)"] 

where R[(A,I - -A)"]  and N[(A,I -A)"]  are the range and null space 
respectively, of the operator (& I - A)". 

Let A,p E p ( A ) ;  then we have the identity 

( p I - A ) [ R ( A ; A ) - R ( p ;  A ) ] ( A I - A )  = (p-A)Z. 

Multiplying both sides of this identity by R ( A ; A )  from the right and by 
R ( p ;  A )  from the left we get the so called resolvent formula 

R ( A ; A )  - R ( p ; A )  = ( p - A ) R ( p ; A ) R ( l . ; A ) .  

Dividing both sides by p - A and letting p -+ A we obtain 

(d /dA)R(A;A)  = - [ R ( A ; A ) I 2 .  

We also remark that for A, p E p ( A )  we have R, R, = R, R,. 
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Appendix IX 

Let A :  X-+ X be a bounded operator on the Banach space X. By F ( A )  
we denote the family of all functionsfwhich are analytic on some neighbor- 
hood of a(A). The neighborhood need not be connected and can depend on 
f ' ~  F ( A ) .  LetfE F ( A )  and let U be an open set whose boundary B consists 
of a finite number of rectifiable closed Jordan curves, oriented in the 
positive sense customary in the theory of complex variables. Suppose that 
U 3 a ( A )  and that U u B is contained in the domain of analyticity of f .  
Then the operator f ( A )  is defined by the equation 

f ( A )  = (274- f(1) R(A; A )  dl.. s. 
Since R(?. ;A)  is analytic outside a ( A )  and f(1.) is analytic on U u B, it 
follows (from Cauchy's integral theorem) thatf(A) does not depend on U 
(but does depend on f). 

SPECTRAL MAPPING THEOREM (Dunford and Schwartz [ 181). If YE F ( A ) ,  
thenfCo(41  = aCf(A>I. 

Appendix X 

Let A be a closed operator (in general unbounded) with domain 
D ( A )  c X and range in the Banach space X .  F ( A )  will denote the family of 
all functions f which are analytic in some neighborhood of the spectrum 
o(A)  of A and also at infinity. Here we assume that p ( A )  #@. For a E p ( A )  
define the operator T =  ( A - c t I ) - '  E B ( X ) .  Then 

T(A - ~ Z ) X  = X, x E D ( A )  

and 

( A  - c t l )  T.Y = X, x E x 
We shall define the operational calculus for A in terms of the operational 
calculus of the bounded operator T. Define the mapping 0: C - ,  C by 

4(A) = (A-a)-' and @(a) = co, @(a) = 0. 

THEOREM (Dunford and Schwartz [18]). If a E p ( A ) ,  then 

0CW) u {co>l = 47,) 
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and the relation 4 (p) =f[@- '(p)] determines a one-to-one correspondence 
between f~ F ( A )  and 4 E F(T).  

For JE F ( A )  we define f ( A )  = $ ( T )  where 4 E F(T)  is given by 
d4.4 =fC@-'Wl. 
THEOREM (Dunford and Schwartz [18 ] ) .  If f E F(A),  then f ( A )  is in- 
dependent of the choice of c1 E p ( A ) .  Let U be an open set containing 
a(A) whose boundary B consists of a finite number of Jordan arcs such 
thatfis analytic on U u B. Let B have positive orientation with respect to 
the (possibly unbounded) set U .  Then 

f ( A )  = f(w)Z + ( 2 7 ~ 9 - l  f ( A )  R(A;A)  dA. L 
Let H be a complex Hilbert space and M be a closed subspace of H. Let 

M ,  be the orthogonal complement of M in H ,  that is, M ,  = { y  E H :  (x, y )  
= O  for every X E  M}. It follows that any vector Z E  H can be written 
uniquely as z = x+y where x E M and y E M,. The mapping P: H +  H, 
defined by taking Pz = x is called the orthogonal projection on M .  Clearly 
P is linear, P is idempotent (that is, P2 = P), the range of P is M ,  and the 
null space of P is M,. It is not difficult to show that a linear operator P is 
an orthogonal projection if and only if P2 = P and P = P*. 

THEOREM (Resolution of the identity) (see Dunford and Schwartz [19] ) .  
Let A with domain D ( A )  be a self-adjoint operator in the Hilbert space H. 
Then there exists a family of orthogonal projections {IF(]&)}, A E R such that 

(a) A l  < i., implies that E(Al)E(A2) = E ( i . 2 ) E ( i . , )  = E(Al) ;  

(b) E(A + E )  + E(A) (strongly) as E + 0 + ; 
(c) E(A) + 0 (strongly) as I + -03, 

and 

E ( I )  + I (strongly) as I + + w ;  

m 

( 4  A = ( A dE(1.) (Stieltjes integral) 
J -  m 

and 
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