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Preface

In the 30 years since the publication of the first edition of this book, much
has changed in the field of mathematics known as dynamical systems. In the
early 1970s, we had very little access to high-speed computers and computer
graphics. The word chaos had never been used in a mathematical setting, and
most of the interest in the theory of differential equations and dynamical
systems was confined to a relatively small group of mathematicians.

Things have changed dramatically in the ensuing 3 decades. Computers are
everywhere, and software packages that can be used to approximate solutions
of differential equations and view the results graphically are widely available.
As a consequence, the analysis of nonlinear systems of differential equations
is much more accessible than it once was. The discovery of such compli-
cated dynamical systems as the horseshoe map, homoclinic tangles, and the
Lorenz system, and their mathematical analyses, convinced scientists that sim-
ple stable motions such as equilibria or periodic solutions were not always the
most important behavior of solutions of differential equations. The beauty
and relative accessibility of these chaotic phenomena motivated scientists and
engineers in many disciplines to look more carefully at the important differen-
tial equations in their own fields. In many cases, they found chaotic behavior in
these systems as well. Now dynamical systems phenomena appear in virtually
every area of science, from the oscillating Belousov-Zhabotinsky reaction in
chemistry to the chaotic Chua circuit in electrical engineering, from compli-
cated motions in celestial mechanics to the bifurcations arising in ecological
systems.

As a consequence, the audience for a text on differential equations and
dynamical systems is considerably larger and more diverse than it was in

x



Preface xi

the 1970s. We have accordingly made several major structural changes to
this text, including the following:

1. The treatment of linear algebra has been scaled back. We have dispensed
with the generalities involved with abstract vector spaces and normed
linear spaces. We no longer include a complete proof of the reduction
of all n × n matrices to canonical form. Rather we deal primarily with
matrices no larger than 4 × 4.

2. We have included a detailed discussion of the chaotic behavior in the
Lorenz attractor, the Shil’nikov system, and the double scroll attractor.

3. Many new applications are included; previous applications have been
updated.

4. There are now several chapters dealing with discrete dynamical systems.
5. We deal primarily with systems that are C∞, thereby simplifying many of

the hypotheses of theorems.

The book consists of three main parts. The first part deals with linear systems
of differential equations together with some first-order nonlinear equations.
The second part of the book is the main part of the text: Here we concentrate on
nonlinear systems, primarily two dimensional, as well as applications of these
systems in a wide variety of fields. The third part deals with higher dimensional
systems. Here we emphasize the types of chaotic behavior that do not occur in
planar systems, as well as the principal means of studying such behavior, the
reduction to a discrete dynamical system.

Writing a book for a diverse audience whose backgrounds vary greatly poses
a significant challenge. We view this book as a text for a second course in
differential equations that is aimed not only at mathematicians, but also at
scientists and engineers who are seeking to develop sufficient mathematical
skills to analyze the types of differential equations that arise in their disciplines.
Many who come to this book will have strong backgrounds in linear algebra
and real analysis, but others will have less exposure to these fields. To make
this text accessible to both groups, we begin with a fairly gentle introduction
to low-dimensional systems of differential equations. Much of this will be a
review for readers with deeper backgrounds in differential equations, so we
intersperse some new topics throughout the early part of the book for these
readers.

For example, the first chapter deals with first-order equations. We begin
this chapter with a discussion of linear differential equations and the logistic
population model, topics that should be familiar to anyone who has a rudimen-
tary acquaintance with differential equations. Beyond this review, we discuss
the logistic model with harvesting, both constant and periodic. This allows
us to introduce bifurcations at an early stage as well as to describe Poincaré
maps and periodic solutions. These are topics that are not usually found in
elementary differential equations courses, yet they are accessible to anyone
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with a background in multivariable calculus. Of course, readers with a limited
background may wish to skip these specialized topics at first and concentrate
on the more elementary material.

Chapters 2 through 6 deal with linear systems of differential equations.
Again we begin slowly, with Chapters 2 and 3 dealing only with planar sys-
tems of differential equations and two-dimensional linear algebra. Chapters
5 and 6 introduce higher dimensional linear systems; however, our empha-
sis remains on three- and four-dimensional systems rather than completely
general n-dimensional systems, though many of the techniques we describe
extend easily to higher dimensions.

The core of the book lies in the second part. Here we turn our atten-
tion to nonlinear systems. Unlike linear systems, nonlinear systems present
some serious theoretical difficulties such as existence and uniqueness of solu-
tions, dependence of solutions on initial conditions and parameters, and the
like. Rather than plunge immediately into these difficult theoretical questions,
which require a solid background in real analysis, we simply state the impor-
tant results in Chapter 7 and present a collection of examples that illustrate
what these theorems say (and do not say). Proofs of all of these results are
included in the final chapter of the book.

In the first few chapters in the nonlinear part of the book, we introduce
such important techniques as linearization near equilibria, nullcline analysis,
stability properties, limit sets, and bifurcation theory. In the latter half of this
part, we apply these ideas to a variety of systems that arise in biology, electrical
engineering, mechanics, and other fields.

Many of the chapters conclude with a section called “Exploration.” These
sections consist of a series of questions and numerical investigations dealing
with a particular topic or application relevant to the preceding material. In
each Exploration we give a brief introduction to the topic at hand and provide
references for further reading about this subject. But we leave it to the reader to
tackle the behavior of the resulting system using the material presented earlier.
We often provide a series of introductory problems as well as hints as to how
to proceed, but in many cases, a full analysis of the system could become a
major research project. You will not find “answers in the back of the book” for
these questions; in many cases nobody knows the complete answer. (Except,
of course, you!)

The final part of the book is devoted to the complicated nonlinear behavior
of higher dimensional systems known as chaotic behavior. We introduce these
ideas via the famous Lorenz system of differential equations. As is often the
case in dimensions three and higher, we reduce the problem of comprehending
the complicated behavior of this differential equation to that of understanding
the dynamics of a discrete dynamical system or iterated function. So we then
take a detour into the world of discrete systems, discussing along the way how
symbolic dynamics may be used to describe completely certain chaotic systems.
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We then return to nonlinear differential equations to apply these techniques
to other chaotic systems, including those that arise when homoclinic orbits
are present.

We maintain a website at math.bu.edu/hsd devoted to issues regard-
ing this text. Look here for errata, suggestions, and other topics of interest to
teachers and students of differential equations. We welcome any contributions
from readers at this site.

It is a special pleasure to thank Bard Ermentrout, John Guckenheimer, Tasso
Kaper, Jerrold Marsden, and Gareth Roberts for their many fine comments
about an earlier version of this edition. Thanks are especially due to Daniel
Look and Richard Moeckel for a careful reading of the entire manuscript.
Many of the phase plane drawings in this book were made using the excellent
Mathematica package called DynPac: A Dynamical Systems Package for Math-
ematica written by Al Clark. See www.me.rochester.edu/˜clark/dynpac.html.
And, as always, Ki��er Devaney digested the entire manuscript; all errors that
remain are due to her.
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1
First-Order Equations

The purpose of this chapter is to develop some elementary yet important
examples of first-order differential equations. These examples illustrate some
of the basic ideas in the theory of ordinary differential equations in the simplest
possible setting.

We anticipate that the first few examples in this chapter will be familiar to
readers who have taken an introductory course in differential equations. Later
examples, such as the logistic model with harvesting, are included to give the
reader a taste of certain topics (bifurcations, periodic solutions, and Poincaré
maps) that we will return to often throughout this book. In later chapters, our
treatment of these topics will be much more systematic.

1.1 The Simplest Example

The differential equation familiar to all calculus students

dx

dt
= ax

is the simplest differential equation. It is also one of the most important.
First, what does it mean? Here x = x(t ) is an unknown real-valued function
of a real variable t and dx/dt is its derivative (we will also use x ′ or x ′(t )
for the derivative). Also, a is a parameter; for each value of a we have a

1



2 Chapter 1 First-Order Equations

different differential equation. The equation tells us that for every value of t
the relationship

x ′(t ) = ax(t )

is true.
The solutions of this equation are obtained from calculus: If k is any real

number, then the function x(t ) = keat is a solution since

x ′(t ) = akeat = ax(t ).

Moreover, there are no other solutions. To see this, let u(t ) be any solution and
compute the derivative of u(t )e−at :

d

dt

(
u(t )e−at ) = u′(t )e−at + u(t )(−ae−at )

= au(t )e−at − au(t )e−at = 0.

Therefore u(t )e−at is a constant k, so u(t ) = keat . This proves our assertion.
We have therefore found all possible solutions of this differential equation. We
call the collection of all solutions of a differential equation the general solution
of the equation.

The constant k appearing in this solution is completely determined if the
value u0 of a solution at a single point t0 is specified. Suppose that a function
x(t ) satisfying the differential equation is also required to satisfy x(t0) = u0.
Then we must have keat0 = u0, so that k = u0e−at0 . Thus we have determined
k, and this equation therefore has a unique solution satisfying the specified
initial condition x(t0) = u0. For simplicity, we often take t0 = 0; then k = u0.
There is no loss of generality in taking t0 = 0, for if u(t ) is a solution with
u(0) = u0, then the function v(t ) = u(t − t0) is a solution with v(t0) = u0.

It is common to restate this in the form of an initial value problem:

x ′ = ax , x(0) = u0.

A solution x(t ) of an initial value problem must not only solve the differential
equation, but it must also take on the prescribed initial value u0 at t = 0.

Note that there is a special solution of this differential equation when k = 0.
This is the constant solution x(t ) ≡ 0. A constant solution such as this is called
an equilibrium solution or equilibrium point for the equation. Equilibria are
often among the most important solutions of differential equations.

The constant a in the equation x ′ = ax can be considered a parameter.
If a changes, the equation changes and so do the solutions. Can we describe
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qualitatively the way the solutions change? The sign of a is crucial here:

1. If a > 0, limt→∞keat equals ∞ when k > 0, and equals −∞ when k < 0;
2. If a = 0, keat = constant;
3. If a < 0, limt→∞keat = 0.

The qualitative behavior of solutions is vividly illustrated by sketching the
graphs of solutions as in Figure 1.1. Note that the behavior of solutions is quite
different when a is positive and negative. When a > 0, all nonzero solutions
tend away from the equilibrium point at 0 as t increases, whereas when a < 0,
solutions tend toward the equilibrium point. We say that the equilibrium point
is a source when nearby solutions tend away from it. The equilibrium point is
a sink when nearby solutions tend toward it.

We also describe solutions by drawing them on the phase line. Because the
solution x(t ) is a function of time, we may view x(t ) as a particle moving along
the real line. At the equilibrium point, the particle remains at rest (indicated

x

t

Figure 1.1 The solution graphs and phase
line for x ′ = ax for a > 0. Each graph
represents a particular solution.

t

x

Figure 1.2 The solution graphs and
phase line for x ′ = ax for a < 0.



4 Chapter 1 First-Order Equations

by a solid dot), while any other solution moves up or down the x-axis, as
indicated by the arrows in Figure 1.1.

The equation x ′ = ax is stable in a certain sense if a �= 0. More precisely,
if a is replaced by another constant b whose sign is the same as a, then the
qualitative behavior of the solutions does not change. But if a = 0, the slightest
change in a leads to a radical change in the behavior of solutions. We therefore
say that we have a bifurcation at a = 0 in the one-parameter family of equations
x ′ = ax .

1.2 The Logistic Population Model

The differential equation x ′ = ax above can be considered a simplistic model
of population growth when a > 0. The quantity x(t ) measures the population
of some species at time t . The assumption that leads to the differential equa-
tion is that the rate of growth of the population (namely, dx/dt ) is directly
proportional to the size of the population. Of course, this naive assumption
omits many circumstances that govern actual population growth, including,
for example, the fact that actual populations cannot increase with bound.

To take this restriction into account, we can make the following further
assumptions about the population model:

1. If the population is small, the growth rate is nearly directly proportional
to the size of the population;

2. but if the population grows too large, the growth rate becomes negative.

One differential equation that satisfies these assumptions is the logistic
population growth model. This differential equation is

x ′ = ax
(
1 − x

N

)
.

Here a and N are positive parameters: a gives the rate of population growth
when x is small, while N represents a sort of “ideal” population or “carrying
capacity.” Note that if x is small, the differential equation is essentially x ′ = ax
[since the term 1 − (x/N ) ≈ 1], but if x > N , then x ′ < 0. Thus this simple
equation satisfies the above assumptions. We should add here that there are
many other differential equations that correspond to these assumptions; our
choice is perhaps the simplest.

Without loss of generality we will assume that N = 1. That is, we will
choose units so that the carrying capacity is exactly 1 unit of population, and
x(t ) therefore represents the fraction of the ideal population present at time t .



1.2 The Logistic Population Model 5

Therefore the logistic equation reduces to

x ′ = fa(x) = ax(1 − x).

This is an example of a first-order, autonomous, nonlinear differential equa-
tion. It is first order since only the first derivative of x appears in the equation.
It is autonomous since the right-hand side of the equation depends on x alone,
not on time t . And it is nonlinear since fa(x) is a nonlinear function of x . The
previous example, x ′ = ax , is a first-order, autonomous, linear differential
equation.

The solution of the logistic differential equation is easily found by the tried-
and-true calculus method of separation and integration:∫

dx

x(1 − x)
=

∫
a dt .

The method of partial fractions allows us to rewrite the left integral as∫ (
1

x
+ 1

1 − x

)
dx .

Integrating both sides and then solving for x yields

x(t ) = Keat

1 + Keat

where K is the arbitrary constant that arises from integration. Evaluating this
expression at t = 0 and solving for K gives

K = x(0)

1 − x(0)
.

Using this, we may rewrite this solution as

x(0)eat

1 − x(0) + x(0)eat
.

So this solution is valid for any initial population x(0). When x(0) = 1,
we have an equilibrium solution, since x(t ) reduces to x(t ) ≡ 1. Similarly,
x(t ) ≡ 0 is also an equilibrium solution.

Thus we have “existence” of solutions for the logistic differential equation.
We have no guarantee that these are all of the solutions to this equation at this
stage; we will return to this issue when we discuss the existence and uniqueness
problem for differential equations in Chapter 7.
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x

t

x�1

x�0

Figure 1.3 The slope field, solution graphs, and phase line for
x ′ = ax(1 – x).

To get a qualitative feeling for the behavior of solutions, we sketch the
slope field for this equation. The right-hand side of the differential equation
determines the slope of the graph of any solution at each time t . Hence we
may plot little slope lines in the tx–plane as in Figure 1.3, with the slope of the
line at (t , x) given by the quantity ax(1 − x). Our solutions must therefore
have graphs that are everywhere tangent to this slope field. From these graphs,
we see immediately that, in agreement with our assumptions, all solutions
for which x(0) > 0 tend to the ideal population x(t ) ≡ 1. For x(0) < 0,
solutions tend to −∞, although these solutions are irrelevant in the context
of a population model.

Note that we can also read this behavior from the graph of the function
fa(x) = ax(1 − x). This graph, displayed in Figure 1.4, crosses the x-axis at
the two points x = 0 and x = 1, so these represent our equilibrium points.
When 0 < x < 1, we have f (x) > 0. Hence slopes are positive at any (t , x)
with 0 < x < 1, and so solutions must increase in this region. When x < 0 or
x > 1, we have f (x) < 0 and so solutions must decrease, as we see in both the
solution graphs and the phase lines in Figure 1.3.

We may read off the fact that x = 0 is a source and x = 1 is a sink from
the graph of f in similar fashion. Near 0, we have f (x) > 0 if x > 0, so slopes
are positive and solutions increase, but if x < 0, then f (x) < 0, so slopes are
negative and solutions decrease. Thus nearby solutions move away from 0 and
so 0 is a source. Similarly, 1 is a sink.

We may also determine this information analytically. We have f ′
a (x) =

a − 2ax so that f ′
a (0) = a > 0 and f ′

a (1) = −a < 0. Since f ′
a (0) > 0, slopes

must increase through the value 0 as x passes through 0. That is, slopes are
negative below x = 0 and positive above x = 0. Hence solutions must tend
away from x = 0. In similar fashion, f ′

a (1) < 0 forces solutions to tend toward
x = 1, making this equilibrium point a sink. We will encounter many such
“derivative tests” like this that predict the qualitative behavior near equilibria
in subsequent chapters.
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0.8

0.5 1

Figure 1.4 The graph of the
function f (x) = ax(1 – x) with
a = 3.2.

x

x�1

x��1

x�0
t

Figure 1.5 The slope field, solution graphs, and phase line for x ′ = x – x 3 .

Example. As a further illustration of these qualitative ideas, consider the
differential equation

x ′ = g (x) = x − x3.

There are three equilibrium points, at x = 0, ±1. Since g ′(x) = 1 − 3x2, we
have g ′(0) = 1, so the equilibrium point 0 is a source. Also, g ′(±1) = −2, so
the equilibrium points at ±1 are both sinks. Between these equilibria, the sign
of the slope field of this equation is nonzero. From this information we can
immediately display the phase line, which is shown in Figure 1.5. �

1.3 Constant Harvesting and

Bifurcations

Now let’s modify the logistic model to take into account harvesting of the pop-
ulation. Suppose that the population obeys the logistic assumptions with the
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x

0.5
h�1/4

h�1/4

h�1/4

fh(x)

Figure 1.6 The graphs of the function
fh(x) = x(1 – x) – h.

parameter a = 1, but is also harvested at the constant rate h. The differential
equation becomes

x ′ = x(1 − x) − h

where h ≥ 0 is a new parameter.
Rather than solving this equation explicitly (which can be done — see

Exercise 6 at the end of this chapter), we use the graphs of the functions

fh(x) = x(1 − x) − h

to “read off ” the qualitative behavior of solutions. In Figure 1.6 we display
the graph of fh in three different cases: 0 < h < 1/4, h = 1/4, and h > 1/4.
It is straightforward to check that fh has two roots when 0 ≤ h < 1/4, one
root when h = 1/4, and no roots if h > 1/4, as illustrated in the graphs. As a
consequence, the differential equation has two equilibrium points x� and xr

with 0 ≤ x� < xr when 0 < h < 1/4. It is also easy to check that f ′
h(x�) > 0, so

that x� is a source, and f ′
h(xr ) < 0 so that xr is a sink.

As h passes through h = 1/4, we encounter another example of a bifurcation.
The two equilibria x� and xr coalesce as h increases through 1/4 and then
disappear when h > 1/4. Moreover, when h > 1/4, we have fh(x) < 0 for all
x . Mathematically, this means that all solutions of the differential equation
decrease to −∞ as time goes on.

We record this visually in the bifurcation diagram. In this diagram we plot
the parameter h horizontally. Over each h-value we plot the corresponding
phase line. The curve in this picture represents the equilibrium points for each
value of h. This gives another view of the sink and source merging into a
single equilibrium point and then disappearing as h passes through 1/4 (see
Figure 1.7).

Ecologically, this bifurcation corresponds to a disaster for the species under
study. For rates of harvesting 1/4 or lower, the population persists, provided
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x

1/4
h

Figure 1.7 The bifurcation diagram for
fh(x) = x(1 – x) – h.

the initial population is sufficiently large (x(0) ≥ x�). But a very small change
in the rate of harvesting when h = 1/4 leads to a major change in the fate of
the population: At any rate of harvesting h > 1/4, the species becomes extinct.

This phenomenon highlights the importance of detecting bifurcations in
families of differential equations, a procedure that we will encounter many
times in later chapters. We should also mention that, despite the simplicity of
this population model, the prediction that small changes in harvesting rates
can lead to disastrous changes in population has been observed many times in
real situations on earth.

Example. As another example of a bifurcation, consider the family of
differential equations

x ′ = ga(x) = x2 − ax = x(x − a)

which depends on a parameter a. The equilibrium points are given by x = 0
and x = a. We compute g ′

a(0) = −a, so 0 is a sink if a > 0 and a source if
a < 0. Similarly, g ′

a(a) = a, so x = a is a sink if a < 0 and a source if a > 0.
We have a bifurcation at a = 0 since there is only one equilibrium point when
a = 0. Moreover, the equilibrium point at 0 changes from a source to a sink
as a increases through 0. Similarly, the equilibrium at x = a changes from a
sink to a source as a passes through 0. The bifurcation diagram for this family
is depicted in Figure 1.8. �

1.4 Periodic Harvesting and

Periodic Solutions

Now let’s change our assumptions about the logistic model to reflect the
fact that harvesting does not always occur at a constant rate. For example,
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x x�a

a

Figure 1.8 The bifurcation
diagram for x ′ = x2 – ax.

populations of many species of fish are harvested at a higher rate in warmer
seasons than in colder months. So we assume that the population is harvested
at a periodic rate. One such model is then

x ′ = f (t , x) = ax(1 − x) − h(1 + sin(2π t ))

where again a and h are positive parameters. Thus the harvesting reaches a
maximum rate −2h at time t = 1

4 + n where n is an integer (representing the

year), and the harvesting reaches its minimum value 0 when t = 3
4 +n, exactly

one-half year later. Note that this differential equation now depends explicitly
on time; this is an example of a nonautonomous differential equation. As in
the autonomous case, a solution x(t ) of this equation must satisfy x ′(t ) =
f (t , x(t )) for all t . Also, this differential equation is no longer separable, so we
cannot generate an analytic formula for its solution using the usual methods
from calculus. Thus we are forced to take a more qualitative approach.

To describe the fate of the population in this case, we first note that the right-
hand side of the differential equation is periodic with period 1 in the time
variable. That is, f (t + 1, x) = f (t , x). This fact simplifies somewhat the
problem of finding solutions. Suppose that we know the solution of all initial
value problems, not for all times, but only for 0 ≤ t ≤ 1. Then in fact we
know the solutions for all time. For example, suppose x1(t ) is the solution that
is defined for 0 ≤ t ≤ 1 and satisfies x1(0) = x0. Suppose that x2(t ) is the
solution that satisfies x2(0) = x1(1). Then we may extend the solution x1 by
defining x1(t + 1) = x2(t ) for 0 ≤ t ≤ 1. The extended function is a solution
since we have

x ′
1(t + 1) = x ′

2(t ) = f (t , x2(t ))

= f (t + 1, x1(t + 1)).
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Figure 1.9 The slope field for f (x) =
x (1 – x) – h (1 + sin (2π t)).

Thus if we know the behavior of all solutions in the interval 0 ≤ t ≤ 1, then
we can extrapolate in similar fashion to all time intervals and thereby know
the behavior of solutions for all time.

Secondly, suppose that we know the value at time t = 1 of the solution
satisfying any initial condition x(0) = x0. Then, to each such initial condition
x0, we can associate the value x(1) of the solution x(t ) that satisfies x(0) = x0.
This gives us a function p(x0) = x(1). If we compose this function with itself,
we derive the value of the solution through x0 at time 2; that is, p(p(x0)) =
x(2). If we compose this function with itself n times, then we can compute
the value of the solution curve at time n and hence we know the fate of the
solution curve.

The function p is called a Poincaré map for this differential equation. Having
such a function allows us to move from the realm of continuous dynamical
systems (differential equations) to the often easier-to-understand realm of
discrete dynamical systems (iterated functions). For example, suppose that
we know that p(x0) = x0 for some initial condition x0. That is, x0 is a fixed
point for the function p. Then from our previous observations, we know that
x(n) = x0 for each integer n. Moreover, for each time t with 0 < t < 1, we
also have x(t ) = x(t + 1) and hence x(t + n) = x(t ) for each integer n.
That is, the solution satisfying the initial condition x(0) = x0 is a periodic
function of t with period 1. Such solutions are called periodic solutions of the
differential equation. In Figure 1.10, we have displayed several solutions of the
logistic equation with periodic harvesting. Note that the solution satisfying
the initial condition x(0) = x0 is a periodic solution, and we have x0 =
p(x0) = p(p(x0)) . . .. Similarly, the solution satisfying the initial condition
x(0) = x̂0 also appears to be a periodic solution, so we should have p(x̂0) = x̂0.

Unfortunately, it is usually the case that computing a Poincaré map for a
differential equation is impossible, but for the logistic equation with periodic
harvesting we get lucky.
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t�0

x0
x(1)�p(x0) x(2)�p(p(x0))

x0

t�1 t�2

∧

Figure 1.10 The Poincaré map for x ′ = 5x(1 – x) –
0.8(1 + sin (2π t)).

1.5 Computing the Poincaré Map

Before computing the Poincaré map for this equation, we introduce some
important terminology. To emphasize the dependence of a solution on the
initial value x0, we will denote the corresponding solution by φ(t , x0). This
function φ : R × R → R is called the flow associated to the differential
equation. If we hold the variable x0 fixed, then the function

t → φ(t , x0)

is just an alternative expression for the solution of the differential equation
satisfying the initial condition x0. Sometimes we write this function as φt (x0).

Example. For our first example, x ′ = ax , the flow is given by

φ(t , x0) = x0eat .

For the logistic equation (without harvesting), the flow is

φ(t , x0) = x(0)eat

1 − x(0) + x(0)eat
.

Now we return to the logistic differential equation with periodic harvesting

x ′ = f (t , x) = ax(1 − x) − h(1 + sin(2π t )).
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The solution satisfying the initial condition x(0) = x0 is given by t → φ(t , x0).
While we do not have a formula for this expression, we do know that, by the
fundamental theorem of calculus, this solution satisfies

φ(t , x0) = x0 +
∫ t

0
f (s, φ(s, x0)) ds

since

∂φ

∂t
(t , x0) = f (t , φ(t , x0))

and φ(0, x0) = x0.
If we differentiate this solution with respect to x0, we obtain, using the chain

rule:

∂φ

∂x0
(t , x0) = 1 +

∫ t

0

∂f

∂x0
(s, φ(s, x0)) · ∂φ

∂x0
(s, x0) ds.

Now let

z(t ) = ∂φ

∂x0
(t , x0).

Note that

z(0) = ∂φ

∂x0
(0, x0) = 1.

Differentiating z with respect to t , we find

z ′(t ) = ∂f

∂x0
(t , φ(t , x0)) · ∂φ

∂x0
(t , x0)

= ∂f

∂x0
(t , φ(t , x0)) · z(t ).

Again, we do not know φ(t , x0) explicitly, but this equation does tell us that
z(t ) solves the differential equation

z ′(t ) = ∂f

∂x0
(t , φ(t , x0)) z(t )

with z(0) = 1. Consequently, via separation of variables, we may compute
that the solution of this equation is

z(t ) = exp

∫ t

0

∂f

∂x0
(s, φ(s, x0)) ds
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and so we find

∂φ

∂x0
(1, x0) = exp

∫ 1

0

∂f

∂x0
(s, φ(s, x0)) ds.

Since p(x0) = φ(1, x0), we have determined the derivative p′(x0) of the
Poincaré map. Note that p′(x0) > 0. Therefore p is an increasing function.

Differentiating once more, we find

p′′(x0) = p′(x0)

(∫ 1

0

∂2f

∂x0∂x0
(s, φ(s, x0)) · exp

(∫ s

0

∂f

∂x0
(u, φ(u, x0)) du

)
ds

)
,

which looks pretty intimidating. However, since

f (t , x0) = ax0(1 − x0) − h(1 + sin(2π t )),

we have

∂2f

∂x0∂x0
≡ −2a.

Thus we know in addition that p′′(x0) < 0. Consequently, the graph of the
Poincaré map is concave down. This implies that the graph of p can cross the
diagonal line y = x at most two times. That is, there can be at most two values
of x for which p(x) = x . Therefore the Poincaré map has at most two fixed
points. These fixed points yield periodic solutions of the original differential
equation. These are solutions that satisfy x(t +1) = x(t ) for all t . Another way
to say this is that the flow φ(t , x0) is a periodic function in t with period 1 when
the initial condition x0 is one of the fixed points. We saw these two solutions
in the particular case when h = 0. 8 in Figure 1.10. In Figure 1.11, we again
see two solutions that appear to be periodic. Note that one of these solutions
appears to attract all nearby solutions, while the other appears to repel them.
We will return to these concepts often and make them more precise later in
the book.

Recall that the differential equation also depends on the harvesting param-
eter h. For small values of h there will be two fixed points such as shown in
Figure 1.11. Differentiating f with respect to h, we find

∂f

∂h
(t , x0) = −(1 + sin 2π t )

Hence ∂f /∂h < 0 (except when t = 3/4). This implies that the slopes of the
slope field lines at each point (t , x0) decrease as h increases. As a consequence,
the values of the Poincaré map also decrease as h increases. Hence there is a
unique value h∗ for which the Poincaré map has exactly one fixed point. For
h > h∗, there are no fixed points for p and so p(x0) < x0 for all initial values.
It then follows that the population again dies out. �
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1

1

2 3 4 5

Figure 1.11 Several solutions of x ′ =
5x (1 – x) – 0.8 (1 + sin (2π t )).

1.6 Exploration: A Two-Parameter

Family

Consider the family of differential equations

x ′ = fa,b(x) = ax − x3 − b

which depends on two parameters, a and b. The goal of this exploration is
to combine all of the ideas in this chapter to put together a complete picture
of the two-dimensional parameter plane (the ab–plane) for this differential
equation. Feel free to use a computer to experiment with this differential
equation at first, but then try to verify your observations rigorously.

1. First fix a = 1. Use the graph of f1,b to construct the bifurcation diagram
for this family of differential equations depending on b.

2. Repeat the previous step for a = 0 and then for a = −1.
3. What does the bifurcation diagram look like for other values of a?
4. Now fix b and use the graph to construct the bifurcation diagram for this

family, which this time depends on a.
5. In the ab–plane, sketch the regions where the corresponding differential

equation has different numbers of equilibrium points, including a sketch
of the boundary between these regions.

6. Describe, using phase lines and the graph of fa,b(x), the bifurcations that
occur as the parameters pass through this boundary.

7. Describe in detail the bifurcations that occur at a = b = 0 as a and/or b
vary.
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8. Consider the differential equation x ′ = x − x3 − b sin(2π t ) where |b| is
small. What can you say about solutions of this equation? Are there any
periodic solutions?

9. Experimentally, what happens as |b| increases? Do you observe any
bifurcations? Explain what you observe.

E X E R C I S E S

1. Find the general solution of the differential equation x ′ = ax + 3 where
a is a parameter. What are the equilibrium points for this equation? For
which values of a are the equilibria sinks? For which are they sources?

2. For each of the following differential equations, find all equilibrium
solutions and determine if they are sinks, sources, or neither. Also, sketch
the phase line.

(a) x ′ = x3 − 3x

(b) x ′ = x4 − x2

(c) x ′ = cos x

(d) x ′ = sin2 x

(e) x ′ = |1 − x2|
3. Each of the following families of differential equations depends on a

parameter a. Sketch the corresponding bifurcation diagrams.

(a) x ′ = x2 − ax

(b) x ′ = x3 − ax

(c) x ′ = x3 − x + a

4. Consider the function f (x) whose graph is displayed in Figure 1.12.

x

b

f (x)

Figure 1.12 The graph of the
function f.
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(a) Sketch the phase line corresponding to the differential equation x ′ =
f (x).

(b) Let ga(x) = f (x)+a. Sketch the bifurcation diagram corresponding
to the family of differential equations x ′ = ga(x).

(c) Describe the different bifurcations that occur in this family.

5. Consider the family of differential equations

x ′ = ax + sin x

where a is a parameter.

(a) Sketch the phase line when a = 0.

(b) Use the graphs of ax and sin x to determine the qualitative behavior
of all of the bifurcations that occur as a increases from −1 to 1.

(c) Sketch the bifurcation diagram for this family of differential
equations.

6. Find the general solution of the logistic differential equation with
constant harvesting

x ′ = x(1 − x) − h

for all values of the parameter h > 0.
7. Consider the nonautonomous differential equation

x ′ =
{

x − 4 if t < 5

2 − x if t ≥ 5
.

(a) Find a solution of this equation satisfying x(0) = 4. Describe the
qualitative behavior of this solution.

(b) Find a solution of this equation satisfying x(0) = 3. Describe the
qualitative behavior of this solution.

(c) Describe the qualitative behavior of any solution of this system as
t → ∞.

8. Consider a first-order linear equation of the form x ′ = ax + f (t ) where
a ∈ R. Let y(t ) be any solution of this equation. Prove that the general
solution is y(t ) + c exp(at ) where c ∈ R is arbitrary.

9. Consider a first-order, linear, nonautonomous equation of the form
x ′(t ) = a(t )x .

(a) Find a formula involving integrals for the solution of this system.

(b) Prove that your formula gives the general solution of this system.
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10. Consider the differential equation x ′ = x + cos t .

(a) Find the general solution of this equation.

(b) Prove that there is a unique periodic solution for this equation.

(c) Compute the Poincaré map p : {t = 0} → {t = 2π} for this equa-
tion and use this to verify again that there is a unique periodic
solution.

11. First-order differential equations need not have solutions that are defined
for all times.

(a) Find the general solution of the equation x ′ = x2.

(b) Discuss the domains over which each solution is defined.

(c) Give an example of a differential equation for which the solution
satisfying x(0) = 0 is defined only for −1 < t < 1.

12. First-order differential equations need not have unique solutions satis-
fying a given initial condition.

(a) Prove that there are infinitely many different solutions of the
differential equations x ′ = x1/3 satisfying x(0) = 0.

(b) Discuss the corresponding situation that occurs for x ′ = x/t ,
x(0) = x0.

(c) Discuss the situation that occurs for x ′ = x/t 2, x(0) = 0.

13. Let x ′ = f (x) be an autonomous first-order differential equation with
an equilibrium point at x0.

(a) Suppose f ′(x0) = 0. What can you say about the behavior of
solutions near x0? Give examples.

(b) Suppose f ′(x0) = 0 and f ′′(x0) �= 0. What can you now say?

(c) Suppose f ′(x0) = f ′′(x0) = 0 but f ′′′(x0) �= 0. What can you now
say?

14. Consider the first-order nonautonomous equation x ′ = p(t )x where
p(t ) is differentiable and periodic with period T . Prove that all solutions
of this equation are periodic with period T if and only if

∫ T

0
p(s) ds = 0.

15. Consider the differential equation x ′ = f (t , x) where f (t , x) is continu-
ously differentiable in t and x . Suppose that

f (t + T , x) = f (t , x)
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for all t . Suppose there are constants p, q such that

f (t , p) > 0, f (t , q) < 0

for all t . Prove that there is a periodic solution x(t ) for this equation with
p < x(0) < q.

16. Consider the differential equation x ′ = x2 − 1 − cos(t ). What can be
said about the existence of periodic solutions for this equation?
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2
Planar Linear Systems

In this chapter we begin the study of systems of differential equations. A system
of differential equations is a collection of n interrelated differential equations
of the form

x ′
1 = f1(t , x1, x2, . . . , xn)

x ′
2 = f2(t , x1, x2, . . . , xn)

...

x ′
n = fn(t , x1, x2, . . . , xn).

Here the functions fj are real-valued functions of the n +1 variables x1, x2, . . . ,
xn , and t . Unless otherwise specified, we will always assume that the fj are C∞
functions. This means that the partial derivatives of all orders of the fj exist
and are continuous.

To simplify notation, we will use vector notation:

X =
⎛
⎜⎝x1

...
xn

⎞
⎟⎠ .

We often write the vector X as (x1, . . . , xn) to save space.

21
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Our system may then be written more concisely as

X ′ = F(t , X)

where

F(t , X) =
⎛
⎜⎝f1(t , x1, . . . , xn)

...
fn(t , x1, . . . , xn)

⎞
⎟⎠ .

A solution of this system is then a function of the form X(t ) =
(x1(t ), . . . , xn(t )) that satisfies the equation, so that

X ′(t ) = F(t , X(t ))

where X ′(t ) = (x ′
1(t ), . . . , x ′

n(t )). Of course, at this stage, we have no guarantee
that there is such a solution, but we will begin to discuss this complicated
question in Section 2.7.

The system of equations is called autonomous if none of the fj depends on
t , so the system becomes X ′ = F(X). For most of the rest of this book we will
be concerned with autonomous systems.

In analogy with first-order differential equations, a vector X0 for which
F(X0) = 0 is called an equilibrium point for the system. An equilibrium point
corresponds to a constant solution X(t ) ≡ X0 of the system as before.

Just to set some notation once and for all, we will always denote real variables
by lowercase letters such as x , y , x1, x2, t , and so forth. Real-valued functions
will also be written in lowercase such as f (x , y) or f1(x1, . . . , xn , t ). We will
reserve capital letters for vectors such as X = (x1, . . . , xn), or for vector-valued
functions such as

F(x , y) = (f (x , y), g (x , y))

or

H (x1, . . . , xn) =
⎛
⎜⎝h1(x1, . . . , xn)

...
hn(x1, . . . , xn)

⎞
⎟⎠ .

We will denote n-dimensional Euclidean space by Rn , so that Rn consists of
all vectors of the form X = (x1, . . . , xn).
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2.1 Second-Order Differential Equations

Many of the most important differential equations encountered in science
and engineering are second-order differential equations. These are differential
equations of the form

x ′′ = f (t , x , x ′).

Important examples of second-order equations include Newton’s equation

mx ′′ = f (x),

the equation for an RLC circuit in electrical engineering

LCx ′′ + RCx ′ + x = v(t ),

and the mainstay of most elementary differential equations courses, the forced
harmonic oscillator

mx ′′ + bx ′ + kx = f (t ).

We will discuss these and more complicated relatives of these equations at
length as we go along. First, however, we note that these equations are a
special subclass of two-dimensional systems of differential equations that are
defined by simply introducing a second variable y = x ′.

For example, consider a second-order constant coefficient equation of the
form

x ′′ + ax ′ + bx = 0.

If we let y = x ′, then we may rewrite this equation as a system of first-order
equations

x ′ = y

y ′ = −bx − ay .

Any second-order equation can be handled in a similar manner. Thus, for the
remainder of this book, we will deal primarily with systems of equations.
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2.2 Planar Systems

For the remainder of this chapter we will deal with autonomous systems in
R2, which we will write in the form

x ′ = f (x , y)

y ′ = g (x , y)

thus eliminating the annoying subscripts on the functions and variables. As
above, we often use the abbreviated notation X ′ = F(X) where X = (x , y)
and F(X) = F(x , y) = (f (x , y), g (x , y)).

In analogy with the slope fields of Chapter 1, we regard the right-hand side
of this equation as defining a vector field on R2. That is, we think of F(x , y)
as representing a vector whose x- and y-components are f (x , y) and g (x , y),
respectively. We visualize this vector as being based at the point (x , y). For
example, the vector field associated to the system

x ′ = y

y ′ = −x

is displayed in Figure 2.1. Note that, in this case, many of the vectors overlap,
making the pattern difficult to visualize. For this reason, we always draw a
direction field instead, which consists of scaled versions of the vectors.

A solution of this system should now be thought of as a parameterized curve
in the plane of the form (x(t ), y(t )) such that, for each t , the tangent vector at
the point (x(t ), y(t )) is F(x(t ), y(t )). That is, the solution curve (x(t ), y(t ))
winds its way through the plane always tangent to the given vector F(x(t ), y(t ))
based at (x(t ), y(t )).

Figure 2.1 The vector field, direction field, and
several solutions for the system x ′ = y, y ′ = –x.
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Example. The curve (
x(t )
y(t )

)
=

(
a sin t
a cos t

)

for any a ∈ R is a solution of the system

x ′ = y

y ′ = −x

since

x ′(t ) = a cos t = y(t )

y ′(t ) = −a sin t = −x(t )

as required by the differential equation. These curves define circles of radius
|a| in the plane that are traversed in the clockwise direction as t increases.
When a = 0, the solutions are the constant functions x(t ) ≡ 0 ≡ y(t ). �

Note that this example is equivalent to the second-order differential equa-
tion x ′′ = −x by simply introducing the second variable y = x ′. This is an
example of a linear second-order differential equation, which, in more general
form, can be written

a(t )x ′′ + b(t )x ′ + c(t )x = f (t ).

An important special case of this is the linear, constant coefficient equation

ax ′′ + bx ′ + cx = f (t ),

which we write as a system as

x ′ = y

y ′ = − c

a
x − b

a
y + f (t )

a
.

An even more special case is the homogeneous equation in which f (t ) ≡ 0.

Example. One of the simplest yet most important second-order, linear, con-
stant coefficient differential equations is the equation for a harmonic oscillator.
This equation models the motion of a mass attached to a spring. The spring
is attached to a vertical wall and the mass is allowed to slide along a hori-
zontal track. We let x denote the displacement of the mass from its natural
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resting place (with x > 0 if the spring is stretched and x < 0 if the spring is
compressed). Therefore the velocity of the moving mass is x ′(t ) and the accel-
eration is x ′′(t ). The spring exerts a restorative force proportional to x(t ).
In addition there is a frictional force proportional to x ′(t ) in the direction
opposite to that of the motion. There are three parameters for this system: m
denotes the mass of the oscillator, b ≥ 0 is the damping constant, and k > 0 is
the spring constant. Newton’s law states that the force acting on the oscillator
is equal to mass times acceleration. Therefore the differential equation for the
damped harmonic oscillator is

mx ′′ + bx ′ + kx = 0.

If b = 0, the oscillator is said to be undamped; otherwise, we have a damped
harmonic oscillator. This is an example of a second-order, linear, constant
coefficient, homogeneous differential equation. As a system, the harmonic
oscillator equation becomes

x ′ = y

y ′ = − k

m
x − b

m
y .

More generally, the motion of the mass-spring system can be subjected to an
external force (such as moving the vertical wall back and forth periodically).
Such an external force usually depends only on time, not position, so we have
a more general forced harmonic oscillator system

mx ′′ + bx ′ + kx = f (t )

where f (t ) represents the external force. This is now a nonautonomous,
second-order, linear equation. �

2.3 Preliminaries from Algebra

Before proceeding further with systems of differential equations, we need to
recall some elementary facts regarding systems of algebraic equations. We will
often encounter simultaneous equations of the form

ax + by = α

cx + dy = β
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where the values of a, b, c , and d as well as α and β are given. In matrix form,
we may write this equation as(

a b
c d

)(
x

y

)
=

(
α

β

)
.

We denote by A the 2 × 2 coefficient matrix

A =
(

a b
c d

)
.

This system of equations is easy to solve, assuming that there is a solution.
There is a unique solution of these equations if and only if the determinant of
A is nonzero. Recall that this determinant is the quantity given by

det A = ad − bc .

If det A = 0, we may or may not have solutions, but if there is a solution, then
in fact there must be infinitely many solutions.

In the special case where α = β = 0, we always have infinitely many
solutions of

A

(
x

y

)
=

(
0

0

)

when det A = 0. Indeed, if the coefficient a of A is nonzero, we have x =
−(b/a)y and so

−c

(
b

a

)
y + dy = 0.

Thus (ad − bc)y = 0. Since det A = 0, the solutions of the equation assume
the form (−(b/a)y , y) where y is arbitrary. This says that every solution lies
on a straight line through the origin in the plane. A similar line of solutions
occurs as long as at least one of the entries of A is nonzero. We will not worry
too much about the case where all entries of A are 0; in fact, we will completely
ignore it.

Let V and W be vectors in the plane. We say that V and W are linearly
independent if V and W do not lie along the same straight line through the
origin. The vectors V and W are linearly dependent if either V or W is the
zero vector or if both lie on the same line through the origin.

A geometric criterion for two vectors in the plane to be linearly independent
is that they do not point in the same or opposite directions. That is, V and W
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are linearly independent if and only if V �= λW for any real number λ. An
equivalent algebraic criterion for linear independence is as follows:

Proposition. Suppose V = (v1, v2) and W = (w1, w2). Then V and W are
linearly independent if and only if

det

(
v1 w1

v2 w2

)
�= 0.

For a proof, see Exercise 11 at the end of this chapter. �

Whenever we have a pair of linearly independent vectors V and W , we may
always write any vector Z ∈ R2 in a unique way as a linear combination of V
and W . That is, we may always find a pair of real numbers α and β such that

Z = αV + βW .

Moreover, α and β are unique. To see this, suppose Z = (z1, z2). Then we
must solve the equations

z1 = αv1 + βw1

z2 = αv2 + βw2

where the vi , wi , and zi are known. But this system has a unique solution (α, β)
since

det

(
v1 w1

v2 w2

)
�= 0.

The linearly independent vectors V and W are said to define a basis for R2.
Any vector Z has unique “coordinates” relative to V and W . These coordinates
are the pair (α, β) for which Z = αV + βW .

Example. The unit vectors E1 = (1, 0) and E2 = (0, 1) obviously form a
basis called the standard basis of R2. The coordinates of Z in this basis are just
the “usual” Cartesian coordinates (x , y) of Z . �

Example. The vectors V1 = (1, 1) and V2 = (−1, 1) also form a basis of R2.
Relative to this basis, the coordinates of E1 are (1/2, −1/2) and those of E2 are
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(1/2, 1/2), because (
1

0

)
= 1

2

(
1

1

)
− 1

2

(−1

1

)
(

0

1

)
= 1

2

(
1

1

)
+ 1

2

(−1

1

)

These “changes of coordinates” will become important later. �

Example. The vectors V1 = (1, 1) and V2 = (−1, −1) do not form a basis
of R2 since these vectors are collinear. Any linear combination of these vectors
is of the form

αV1 + βV2 =
(

α − β

α − β

)
,

which yields only vectors on the straight line through the origin, V1,
and V2. �

2.4 Planar Linear Systems

We now further restrict our attention to the most important class of planar
systems of differential equations, namely, linear systems. In the autonomous
case, these systems assume the simple form

x ′ = ax + by

y ′ = cx + dy

where a, b, c , and d are constants. We may abbreviate this system by using the
coefficient matrix A where

A =
(

a b
c d

)
.

Then the linear system may be written as

X ′ = AX .

Note that the origin is always an equilibrium point for a linear system. To
find other equilibria, we must solve the linear system of algebraic equations

ax + by = 0

cx + dy = 0.
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This system has a nonzero solution if and only if det A = 0. As we saw
previously, if det A = 0, then there is a straight line through the origin on
which each point is an equilibrium. Thus we have:

Proposition. The planar linear system X ′ = AX has

1. A unique equilibrium point (0, 0) if det A �= 0.
2. A straight line of equilibrium points if det A = 0 (and A is not the 0

matrix). �

2.5 Eigenvalues and Eigenvectors

Now we turn to the question of finding nonequilibrium solutions of the linear
system X ′ = AX . The key observation here is this: Suppose V0 is a nonzero
vector for which we have AV0 = λV0 where λ ∈ R. Then the function

X(t ) = eλt V0

is a solution of the system. To see this, we compute

X ′(t ) = λeλt V0

= eλt (λV0)

= eλt (AV0)

= A(eλt V0)

= AX(t )

so X(t ) does indeed solve the system of equations. Such a vector V0 and its
associated scalar have names:

Definition

A nonzero vector V0 is called an eigenvector of A if AV0 = λV0

for some λ. The constant λ is called an eigenvalue of A.

As we observed, there is an important relationship between eigenvalues,
eigenvectors, and solutions of systems of differential equations:

Theorem. Suppose that V0 is an eigenvector for the matrix A with associ-
ated eigenvalue λ. Then the function X(t ) = eλt V0 is a solution of the system
X ′ = AX. �
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Note that if V0 is an eigenvector for A with eigenvalue λ, then any nonzero
scalar multiple of V0 is also an eigenvector for A with eigenvalue λ. Indeed, if
AV0 = λV0, then

A(αV0) = αAV0 = λ(αV0)

for any nonzero constant α.

Example. Consider

A =
(

1 3
1 −1

)
.

Then A has an eigenvector V0 = (3, 1) with associated eigenvalue λ = 2 since(
1 3
1 −1

)(
3

1

)
=

(
6

2

)
= 2

(
3

1

)
. �

Similarly, V1 = (1, −1) is an eigenvector with associated eigenvalue λ = −2.
Thus, for the system

X ′ =
(

1 3
1 −1

)
X

we now know three solutions: the equilibrium solution at the origin together
with

X1(t ) = e2t
(

3

1

)
and X2(t ) = e−2t

(
1

−1

)
.

We will see that we can use these solutions to generate all solutions of this sys-
tem in a moment, but first we address the question of how to find eigenvectors
and eigenvalues.

To produce an eigenvector V = (x , y), we must find a nonzero solution
(x , y) of the equation

A

(
x

y

)
= λ

(
x

y

)
.

Note that there are three unknowns in this system of equations: the two
components of V as well as λ. Let I denote the 2 × 2 identity matrix

I =
(

1 0
0 1

)
.
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Then we may rewrite the equation in the form

(A − λI )V = 0,

where 0 denotes the vector (0, 0).
Now A − λI is just a 2 × 2 matrix (having entries involving the variable

λ), so this linear system of equations has nonzero solutions if and only if
det (A − λI ) = 0, as we saw previously. But this equation is just a quadratic
equation in λ, whose roots are therefore easy to find. This equation will appear
over and over in the sequel; it is called the characteristic equation. As a function
of λ, we call det(A − λI ) the characteristic polynomial. Thus the strategy to
generate eigenvectors is first to find the roots of the characteristic equation.
This yields the eigenvalues. Then we use each of these eigenvalues to generate
in turn an associated eigenvector.

Example. We return to the matrix

A =
(

1 3
1 −1

)
.

We have

A − λI =
(

1 − λ 3
1 −1 − λ

)
.

So the characteristic equation is

det(A − λI ) = (1 − λ)(−1 − λ) − 3 = 0.

Simplifying, we find

λ2 − 4 = 0,

which yields the two eigenvalues λ = ±2. Then, for λ = 2, we next solve the
equation

(A − 2I )

(
x

y

)
=

(
0

0

)
.

In component form, this reduces to the system of equations

(1 − 2)x + 3y = 0

x + (−1 − 2)y = 0
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or −x + 3y = 0, because these equations are redundant. Thus any vector of
the form (3y , y) with y �= 0 is an eigenvector associated to λ = 2. In similar
fashion, any vector of the form (y , −y) with y �= 0 is an eigenvector associated
to λ = −2. �

Of course, the astute reader will notice that there is more to the story of
eigenvalues, eigenvectors, and solutions of differential equations than what we
have described previously. For example, the roots of the characteristic equation
may be complex, or they may be repeated real numbers. We will handle all of
these cases shortly, but first we return to the problem of solving linear systems.

2.6 Solving Linear Systems

As we saw in the example in the previous section, if we find two real rootsλ1 and
λ2 (with λ1 �= λ2) of the characteristic equation, then we may generate a pair
of solutions of the system of differential equations of the form Xi(t ) = eλi t Vi

where Vi is the eigenvector associated to λi . Note that each of these solutions is
a straight-line solution. Indeed, we have Xi(0) = Vi , which is a nonzero point
in the plane. For each t , eλi t Vi is a scalar multiple of Vi and so lies on the
straight ray emanating from the origin and passing through Vi . Note that, if
λi > 0, then

lim
t→∞ |Xi(t )| = ∞

and

lim
t→−∞ Xi(t ) = (0, 0).

The magnitude of the solution Xi(t ) increases monotonically to ∞ along the
ray through Vi as t increases, and Xi(t ) tends to the origin along this ray
in backward time. The exact opposite situation occurs if λi < 0, whereas, if
λi = 0, the solution Xi(t ) is the constant solution Xi(t ) = Vi for all t .

So how do we find all solutions of the system given this pair of special
solutions? The answer is now easy and important. Suppose we have two distinct
real eigenvalues λ1 and λ2 with eigenvectors V1 and V2. Then V1 and V2 are
linearly independent, as is easily checked (see Exercise 14). Thus V1 and V2

form a basis of R2, so, given any point Z0 ∈ R2, we may find a unique pair of
real numbers α and β for which

αV1 + βV2 = Z0.
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Now consider the function Z (t ) = αX1(t ) + βX2(t ) where the Xi(t ) are the
straight-line solutions previously. We claim that Z (t ) is a solution of X ′ = AX .
To see this we compute

Z ′(t ) = αX ′
1(t ) + βX ′

2(t )

= αAX1(t ) + βAX2(t )

= A(αX1(t ) + βX2(t )).

= AZ (t )

This last step follows from the linearity of matrix multiplication (see Exercise
13). Hence we have shown that Z ′(t ) = AZ (t ), so Z (t ) is a solution. Moreover,
Z (t ) is a solution that satisfies Z (0) = Z0. Finally, we claim that Z (t ) is the
unique solution of X ′ = AX that satisfies Z (0) = Z0. Just as in Chapter 1,
we suppose that Y (t ) is another such solution with Y (0) = Z0. Then we may
write

Y (t ) = ζ (t )V1 + μ(t )V2

with ζ (0) = α, μ(0) = β. Hence

AY (t ) = Y ′(t ) = ζ ′(t )V1 + μ′(t )V2.

But

AY (t ) = ζ (t )AV1 + μ(t )AV2

= λ1ζ (t )V1 + λ2μ(t )V2.

Therefore we have

ζ ′(t ) = λ1ζ (t )

μ′(t ) = λ2μ(t )

with ζ (0) = α, μ(0) = β. As we saw in Chapter 1, it follows that

ζ (t ) = αeλ1t , μ(t ) = βeλ2t

so that Y (t ) is indeed equal to Z (t ).
As a consequence, we have now found the unique solution to the system

X ′ = AX that satisfies X(0) = Z0 for any Z0 ∈ R2. The collection of all such
solutions is called the general solution of X ′ = AX . That is, the general solution
is the collection of solutions of X ′ = AX that features a unique solution of the
initial value problem X(0) = Z0 for each Z0 ∈ R2.



2.6 Solving Linear Systems 35

We therefore have shown the following:

Theorem. Suppose A has a pair of real eigenvalues λ1 �= λ2 and associated
eigenvectors V1 and V2. Then the general solution of the linear system X ′ = AX
is given by

X(t ) = αeλ1t V1 + βeλ2t V2. �

Example. Consider the second-order differential equation

x ′′ + 3x ′ + 2x = 0.

This is a specific case of the damped harmonic oscillator discussed earlier,
where the mass is 1, the spring constant is 2, and the damping constant is 3.
As a system, this equation may be rewritten:

X ′ =
(

0 1
−2 −3

)
X = AX .

The characteristic equation is

λ2 + 3λ + 2 = (λ + 2)(λ + 1) = 0,

so the system has eigenvalues −1 and −2. The eigenvector corresponding to
the eigenvalue −1 is given by solving the equation

(A + I )

(
x
y

)
=

(
0
0

)
.

In component form this equation becomes

x + y = 0

−2x − 2y = 0.

Hence, one eigenvector associated to the eigenvalue −1 is (1, −1). In similar
fashion we compute that an eigenvector associated to the eigenvalue −2 is
(1, −2). Note that these two eigenvectors are linearly independent. Therefore,
by the previous theorem, the general solution of this system is

X(t ) = αe−t
(

1
−1

)
+ βe−2t

(
1

−2

)
.

That is, the position of the mass is given by the first component of the solution

x(t ) = αe−t + βe−2t
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and the velocity is given by the second component

y(t ) = x ′(t ) = −αe−t − 2βe−2t . �

2.7 The Linearity Principle

The theorem discussed in the previous section is a very special case of the
fundamental theorem for n-dimensional linear systems, which we shall prove
in Section 6.1 of Chapter 6. For the two-dimensional version of this result,
note that if X ′ = AX is a planar linear system for which Y1(t ) and Y2(t )
are both solutions, then just as before, the function αY1(t ) + βY2(t ) is also
a solution of this system. We do not need real and distinct eigenvalues to
prove this. This fact is known as the linearity principle. More importantly, if
the initial conditions Y1(0) and Y2(0) are linearly independent vectors, then
these vectors form a basis of R2. Hence, given any vector X0 ∈ R2, we may
determine constants α and β such that X0 = αY1(0) + βY2(0). Then the
linearity principle tells us that the solution X(t ) satisfying the initial condition
X(0) = X0 is given by X(t ) = αY1(t ) + βY2(t ). Hence we have produced a
solution of the system that solves any given initial value problem. The existence
and uniqueness theorem for linear systems in Chapter 6 will show that this
solution is also unique. This important result may then be summarized:

Theorem. Let X ′ = AX be a planar system. Suppose that Y1(t ) and Y2(t )
are solutions of this system, and that the vectors Y1(0) and Y2(0) are linearly
independent. Then

X(t ) = αY1(t ) + βY2(t )

is the unique solution of this system that satisfies X(0) = αY1(0) +
βY2(0). �

E X E R C I S E S

1. Find the eigenvalues and eigenvectors of each of the following 2 × 2
matrices:

(a)

(
3 1
1 3

)
(b)

(
2 1
1 1

)

(c)

(
a b
0 c

)
(d)

(
1 3√
2 3

√
2

)
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1. 2.

3. 4.

Figure 2.2 Match these direction fields with
the systems in Exercise 2.

2. Find the general solution of each of the following linear systems:

(a) X ′ =
(

1 2
0 3

)
X (b) X ′ =

(
1 2
3 6

)
X

(c) X ′ =
(

1 2
1 0

)
X (d) X ′ =

(
1 2
3 −3

)
X

3. In Figure 2.2, you see four direction fields. Match each of these direction
fields with one of the systems in the previous question.

4. Find the general solution of the system

X ′ =
(

a b
c a

)
X

where bc > 0.
5. Find the general solution of the system

X ′ =
(

0 0
0 0

)
X .

6. For the harmonic oscillator system x ′′ + bx ′ + kx = 0, find all values
of b and k for which this system has real, distinct eigenvalues. Find the
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general solution of this system in these cases. Find the solution of the
system that satisfies the initial condition (0, 1). Describe the motion of
the mass in this particular case.

7. Consider the 2 × 2 matrix

A =
(

a 1
0 1

)
.

Find the value a0 of the parameter a for which A has repeated real
eigenvalues. What happens to the eigenvectors of this matrix as a
approaches a0?

8. Describe all possible 2 × 2 matrices whose eigenvalues are 0 and 1.
9. Give an example of a linear system for which (e−t , α) is a solution for

every constant α. Sketch the direction field for this system. What is the
general solution of this system.

10. Give an example of a system of differential equations for which (t , 1) is
a solution. Sketch the direction field for this system. What is the general
solution of this system?

11. Prove that two vectors V = (v1, v2) and W = (w1, w2) are linearly
independent if and only if

det

(
v1 w1

v2 w2

)
�= 0.

12. Prove that if λ, μ are real eigenvalues of a 2×2 matrix, then any nonzero
column of the matrix A − λI is an eigenvector for μ.

13. Let A be a 2×2 matrix and V1 and V2 vectors in R2. Prove that A(αV1 +
βV2) = αAV1 + βV2.

14. Prove that the eigenvectors of a 2 × 2 matrix corresponding to distinct
real eigenvalues are always linearly independent.



3
Phase Portraits for

Planar Systems

Given the linearity principle from the previous chapter, we may now compute
the general solution of any planar system. There is a seemingly endless number
of distinct cases, but we will see that these represent in the simplest possi-
ble form nearly all of the types of solutions we will encounter in the higher
dimensional case.

3.1 Real Distinct Eigenvalues

Consider X ′ = AX and suppose that A has two real eigenvalues λ1 < λ2.
Assuming for the moment that λi �= 0, there are three cases to consider:

1. λ1 < 0 < λ2;
2. λ1 < λ2 < 0;
3. 0 < λ1 < λ2.

We give a specific example of each case; any system that falls into any one of
these three categories may be handled in a similar manner, as we show later.

Example. (Saddle) First consider the simple system X ′ = AX where

A =
(

λ1 0
0 λ2

)

39
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with λ1 < 0 < λ2. This can be solved immediately since the system decouples
into two unrelated first-order equations:

x ′ = λ1x

y ′ = λ2y .

We already know how to solve these equations, but, having in mind what
comes later, let’s find the eigenvalues and eigenvectors. The characteristic
equation is

(λ − λ1)(λ − λ2) = 0

so λ1 and λ2 are the eigenvalues. An eigenvector corresponding to λ1 is (1, 0)
and to λ2 is (0, 1). Hence we find the general solution

X(t ) = αeλ1t
(

1

0

)
+ βeλ2t

(
0

1

)
.

Since λ1 < 0, the straight-line solutions of the form αeλ1t (1, 0) lie on the
x-axis and tend to (0, 0) as t → ∞. This axis is called the stable line. Since
λ2 > 0, the solutions βeλ2t (0, 1) lie on the y-axis and tend away from (0, 0) as
t → ∞; this axis is the unstable line. All other solutions (with α, β �= 0) tend
to ∞ in the direction of the unstable line, as t → ∞, since X(t ) comes closer
and closer to (0, βeλ2t ) as t increases. In backward time, these solutions tend
to ∞ in the direction of the stable line. �

In Figure 3.1 we have plotted the phase portrait of this system. The phase
portrait is a picture of a collection of representative solution curves of the

Figure 3.1 Saddle phase
portrait for x ′ = –x,
y ′ = y.
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system in R2, which we call the phase plane. The equilibrium point of a system
of this type (eigenvalues satisfying λ1 < 0 < λ2) is called a saddle.

For a slightly more complicated example of this type, consider X ′ = AX
where

A =
(

1 3
1 −1

)
.

As we saw in Chapter 2, the eigenvalues of A are ±2. The eigenvector associated
to λ = 2 is the vector (3, 1); the eigenvector associated to λ = −2 is (1, −1).
Hence we have an unstable line that contains straight-line solutions of the
form

X1(t ) = αe2t
(

3

1

)
,

each of which tends away from the origin as t → ∞. The stable line contains
the straight-line solutions

X2(t ) = βe−2t
(

1

−1

)
,

which tend toward the origin as t → ∞. By the linearity principle, any other
solution assumes the form

X(t ) = αe2t
(

3

1

)
+ βe−2t

(
1

−1

)

for some α, β. Note that, if α �= 0, as t → ∞, we have

X(t ) ∼ αe2t
(

3

1

)
= X1(t )

whereas, if β �= 0, as t → −∞,

X(t ) ∼ βe−2t
(

1

−1

)
= X2(t ).

Thus, as time increases, the typical solution approaches X1(t ) while, as time
decreases, this solution tends toward X2(t ), just as in the previous case.
Figure 3.2 displays this phase portrait.

In the general case where A has a positive and negative eigenvalue, we always
find a similar stable and unstable line on which solutions tend toward or away
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Figure 3.2 Saddle phase
portrait for x ′ = x + 3y,
y ′ = x – y.

from the origin. All other solutions approach the unstable line as t → ∞, and
tend toward the stable line as t → −∞.

Example. (Sink) Now consider the case X ′ = AX where

A =
(

λ1 0
0 λ2

)

but λ1 < λ2 < 0. As above we find two straight-line solutions and then the
general solution:

X(t ) = αeλ1t
(

1

0

)
+ βeλ2t

(
0

1

)
.

Unlike the saddle case, now all solutions tend to (0, 0) as t → ∞. The question
is: How do they approach the origin? To answer this, we compute the slope
dy/dx of a solution with β �= 0. We write

x(t ) = αeλ1t

y(t ) = βeλ2t

and compute

dy

dx
= dy/dt

dx/dt
= λ2βeλ2t

λ1αeλ1t
= λ2β

λ1α
e(λ2−λ1)t .

Since λ2 −λ1 > 0, it follows that these slopes approach ±∞ (provided β �= 0).
Thus these solutions tend to the origin tangentially to the y-axis. �
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(a) (b)

Figure 3.3 Phase portraits for (a) a sink and
(b) a source.

Since λ1 < λ2 < 0, we call λ1 the stronger eigenvalue and λ2 the weaker
eigenvalue. The reason for this in this particular case is that the x-coordinates of
solutions tend to 0 much more quickly than the y-coordinates. This accounts
for why solutions (except those on the line corresponding to the λ1 eigen-
vector) tend to “hug” the straight-line solution corresponding to the weaker
eigenvalue as they approach the origin.

The phase portrait for this system is displayed in Figure 3.3a. In this case the
equilibrium point is called a sink.

More generally, if the system has eigenvalues λ1 < λ2 < 0 with eigenvectors
(u1, u2) and (v1, v2), respectively, then the general solution is

αeλ1t
(

u1

u2

)
+ βeλ2t

(
v1

v2

)
.

The slope of this solution is given by

dy

dx
= λ1αeλ1t u2 + λ2βeλ2t v2

λ1αeλ1t u1 + λ2βeλ2t v1

=
(

λ1αeλ1t u2 + λ2βeλ2t v2

λ1αeλ1t u1 + λ2βeλ2t v1

)
e−λ2t

e−λ2t

= λ1αe(λ1−λ2)t u2 + λ2βv2

λ1αe(λ1−λ2)t u1 + λ2βv1
,

which tends to the slope v2/v1 of the λ2 eigenvector, unless we have β = 0. If
β = 0, our solution is the straight-line solution corresponding to the eigen-
value λ1. Hence all solutions (except those on the straight line corresponding
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to the stronger eigenvalue) tend to the origin tangentially to the straight-line
solution corresponding to the weaker eigenvalue in this case as well.

Example. (Source) When the matrix

A =
(

λ1 0
0 λ2

)

satisfies 0 < λ2 < λ1, our vector field may be regarded as the negative of the
previous example. The general solution and phase portrait remain the same,
except that all solutions now tend away from (0, 0) along the same paths. See
Figure 3.3b. �

Now one may argue that we are presenting examples here that are much
too simple. While this is true, we will soon see that any system of differential
equations whose matrix has real distinct eigenvalues can be manipulated into
the above special forms by changing coordinates.

Finally, a special case occurs if one of the eigenvalues is equal to 0. As we
have seen, there is a straight-line of equilibrium points in this case. If the
other eigenvalue λ is nonzero, then the sign of λ determines whether the other
solutions tend toward or away from these equilibria (see Exercises 10 and 11
at the end of this chapter).

3.2 Complex Eigenvalues

It may happen that the roots of the characteristic polynomial are complex
numbers. In analogy with the real case, we call these roots complex eigenvalues.
When the matrix A has complex eigenvalues, we no longer have straight line
solutions. However, we can still derive the general solution as before by using a
few tricks involving complex numbers and functions. The following examples
indicate the general procedure.

Example. (Center) Consider X ′ = AX with

A =
(

0 β

−β 0

)

and β �= 0. The characteristic polynomial is λ2 + β2 = 0, so the eigenvalues
are now the imaginary numbers ±iβ. Without worrying about the resulting
complex vectors, we react just as before to find the eigenvector corresponding
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to λ = iβ. We therefore solve

(−iβ β

−β −iβ

)(
x

y

)
=

(
0

0

)

or iβx = βy , since the second equation is redundant. Thus we find a complex
eigenvector (1, i), and so the function

X(t ) = eiβt
(

1

i

)

is a complex solution of X ′ = AX .
Now in general it is not polite to hand someone a complex solution to a

real system of differential equations, but we can remedy this with the help of
Euler’s formula

eiβt = cos βt + i sin βt .

Using this fact, we rewrite the solution as

X(t ) =
(

cos βt + i sin βt

i(cos βt + i sin βt )

)
=

(
cos βt + i sin βt

− sin βt + i cos βt

)
.

Better yet, by breaking X(t ) into its real and imaginary parts, we have

X(t ) = XRe(t ) + iXIm(t )

where

XRe(t ) =
(

cos βt

− sin βt

)
, XIm(t ) =

(
sin βt

cos βt

)
.

But now we see that both XRe(t ) and XIm(t ) are (real!) solutions of the original
system. To see this, we simply check

X ′
Re(t ) + iX ′

Im(t ) = X ′(t )
= AX(t )

= A(XRe(t ) + iXIm(t ))

= AXRe + iAXIm(t ).
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Equating the real and imaginary parts of this equation yields X ′
Re = AXRe and

X ′
Im = AXIm, which shows that both are indeed solutions. Moreover, since

XRe(0) =
(

1

0

)
, XIm(0) =

(
0

1

)
,

the linear combination of these solutions

X(t ) = c1XRe(t ) + c2XIm(t )

where c1 and c2 are arbitrary constants provides a solution to any initial value
problem.

We claim that this is the general solution of this equation. To prove this, we
need to show that these are the only solutions of this equation. Suppose that
this is not the case. Let

Y (t ) =
(

u(t )

v(t )

)

be another solution. Consider the complex function f (t ) = (u(t )+ iv(t ))eiβt .
Differentiating this expression and using the fact that Y (t ) is a solution of the
equation yields f ′(t ) = 0. Hence u(t ) + iv(t ) is a complex constant times
e−iβt . From this it follows directly that Y (t ) is a linear combination of XRe(t )
and XIm(t ).

Note that each of these solutions is a periodic function with period 2π /β.
Indeed, the phase portrait shows that all solutions lie on circles centered at
the origin. These circles are traversed in the clockwise direction if β > 0,
counterclockwise if β < 0. See Figure 3.4. This type of system is called a
center. �

Figure 3.4 Phase
portrait for a center.
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Example. (Spiral Sink, Spiral Source) More generally, consider X ′ =
AX where

A =
(

α β

−β α

)

and α, β �= 0. The characteristic equation is now λ2 − 2αλ + α2 + β2, so the
eigenvalues are λ = α ± iβ. An eigenvector associated to α + iβ is determined
by the equation

(α − (α + iβ))x + βy = 0.

Thus (1, i) is again an eigenvector. Hence we have complex solutions of the
form

X(t ) = e(α+iβ)t
(

1

i

)

= eαt
(

cos βt

− sin βt

)
+ ieαt

(
sin βt

cos βt

)
= XRe(t ) + iXIm(t ).

As above, both XRe(t ) and XIm(t ) yield real solutions of the system whose
initial conditions are linearly independent. Thus we find the general solution

X(t ) = c1eαt
(

cos βt

− sin βt

)
+ c2eαt

(
sin βt

cos βt

)
.

Without the term eαt , these solutions would wind periodically around circles
centered at the origin. The eαt term converts solutions into spirals that either
spiral into the origin (when α < 0) or away from the origin (α > 0). In these
cases the equilibrium point is called a spiral sink or spiral source, respectively.
See Figure 3.5. �

3.3 Repeated Eigenvalues

The only remaining cases occur when A has repeated real eigenvalues. One
simple case occurs when A is a diagonal matrix of the form

A =
(

λ 0
0 λ

)
.
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Figure 3.5 Phase portraits for a spiral sink and a
spiral source.

The eigenvalues of A are both equal to λ. In this case every nonzero vector is
an eigenvector since

AV = λV

for any V ∈ R2. Hence solutions are of the form

X(t ) = αeλt V .

Each such solution lies on a straight line through (0, 0) and either tends to
(0, 0) (if λ < 0) or away from (0, 0) (if λ > 0). So this is an easy case.

A more interesting case occurs when

A =
(

λ 1
0 λ

)
.

Again both eigenvalues are equal to λ, but now there is only one linearly
independent eigenvector given by (1, 0). Hence we have one straight-line
solution

X1(t ) = αeλt
(

1

0

)
.

To find other solutions, note that the system can be written

x ′ = λx + y

y ′ = λy .
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Thus, if y �= 0, we must have

y(t ) = βeλt .

Therefore the differential equation for x(t ) reads

x ′ = λx + βeλt .

This is a nonautonomous, first-order differential equation for x(t ). One might
first expect solutions of the form eλt , but the nonautonomous term is also in
this form. As you perhaps saw in calculus, the best option is to guess a solution
of the form

x(t ) = αeλt + μteλt

for some constants α and μ. This technique is often called “the method of
undetermined coefficients.” Inserting this guess into the differential equation
shows that μ = β while α is arbitrary. Hence the solution of the system may
be written

αeλt
(

1

0

)
+ βeλt

(
t

1

)
.

This is in fact the general solution (see Exercise 12).
Note that, if λ < 0, each term in this solution tends to 0 as t → ∞. This

is clear for the αeλt and βeλt terms. For the term βteλt this is an immediate
consequence of l’Hôpital’s rule. Hence all solutions tend to (0, 0) as t → ∞.
When λ > 0, all solutions tend away from (0, 0). See Figure 3.6. In fact,
solutions tend toward or away from the origin in a direction tangent to the
eigenvector (1, 0) (see Exercise 7).

3.4 Changing Coordinates

Despite differences in the associated phase portraits, we really have dealt with
only three types of matrices in these past three sections:(

λ 0
0 μ

)
,

(
α β

−β α

)
,

(
λ 1
0 λ

)
,

where λ may equal μ in the first case.
Any 2 × 2 matrix that is in one of these three forms is said to be in canonical

form. Systems in this form may seem rather special, but they are not. Given
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Figure 3.6 Phase
portrait for a system with
repeated negative
eigenvalues.

any linear system X ′ = AX , we can always “change coordinates” so that the
new system’s coefficient matrix is in canonical form and hence easily solved.
Here is how to do this.

A linear map (or linear transformation) on R2 is a function T : R2 → R2

of the form

T

(
x

y

)
=

(
ax + by

cx + dy

)
.

That is, T simply multiplies any vector by the 2 × 2 matrix(
a b
c d

)
.

We will thus think of the linear map and its matrix as being interchangeable,
so that we also write

T =
(

a b
c d

)
.

We hope no confusion will result from this slight imprecision.
Now suppose that T is invertible. This means that the matrix T has an inverse

matrix S that satisfies TS = ST = I where I is the 2 × 2 identity matrix. It
is traditional to denote the inverse of a matrix T by T−1. As is easily checked,
the matrix

S = 1

det T

(
d −b

−c a

)
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serves as T−1 if det T �= 0. If det T = 0, then we know from Chapter 2 that
there are infinitely many vectors (x , y) for which

T

(
x

y

)
=

(
0

0

)
.

Hence there is no inverse matrix in this case, for we would need

(
x

y

)
= T−1T

(
x

y

)
= T−1

(
0

0

)

for each such vector. We have shown:

Proposition. The 2 × 2 matrix T is invertible if and only if det T �= 0. �

Now, instead of considering a linear system X ′ = AX , suppose we consider
a different system

Y ′ = (T−1AT )Y

for some invertible linear map T . Note that if Y (t ) is a solution of this new
system, then X(t ) = TY (t ) solves X ′ = AX . Indeed, we have

(TY (t ))′ = TY ′(t )

= T (T−1AT )Y (t )

= A(TY (t ))

as required. That is, the linear map T converts solutions of Y ′ = (T−1AT )Y
to solutions of X ′ = AX . Alternatively, T−1 takes solutions of X ′ = AX to
solutions of Y ′ = (T−1AT )Y .

We therefore think of T as a change of coordinates that converts a given
linear system into one whose coefficient matrix is different. What we hope
to be able to do is find a linear map T that converts the given system into a
system of the form Y ′ = (T−1AT )Y that is easily solved. And, as you may
have guessed, we can always do this by finding a linear map that converts a
given linear system to one in canonical form.

Example. (Real Eigenvalues) Suppose the matrix A has two real, distinct
eigenvalues λ1 and λ2 with associated eigenvectors V1 and V2. Let T be the
matrix whose columns are V1 and V2. Thus TEj = Vj for j = 1, 2 where the
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Ej form the standard basis of R2. Also, T−1Vj = Ej . Therefore we have

(T−1AT )Ej = T−1AVj = T−1(λjVj)

= λjT
−1Vj

= λjEj .

Thus the matrix T−1AT assumes the canonical form

T−1AT =
(

λ1 0
0 λ2

)

and the corresponding system is easy to solve. �

Example. As a further specific example, suppose

A =
(−1 0

1 −2

)

The characteristic equation is λ2 + 3λ + 2, which yields eigenvalues λ = −1
and λ = −2. An eigenvector corresponding to λ = −1 is given by solving

(A + I )

(
x

y

)
=

(
0 0
1 −1

)(
x

y

)
=

(
0

0

)

which yields an eigenvector (1, 1). Similarly an eigenvector associated to λ =
−2 is given by (0, 1).

We therefore have a pair of straight-line solutions, each tending to the origin
as t → ∞. The straight-line solution corresponding to the weaker eigenvalue
lies along the line y = x ; the straight-line solution corresponding to the
stronger eigenvalue lies on the y-axis. All other solutions tend to the origin
tangentially to the line y = x .

To put this system in canonical form, we choose T to be the matrix whose
columns are these eigenvectors:

T =
(

1 0
1 1

)

so that

T−1 =
(

1 0
−1 1

)
.
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Finally, we compute

T−1AT =
(−1 0

0 −2

)
,

so T−1AT is in canonical form. The general solution of the system Y ′ =
(T−1AT )Y is

Y (t ) = αe−t
(

1

0

)
+ βe−2t

(
0

1

)

so the general solution of X ′ = AX is

TY (t ) =
(

1 0
1 1

)(
αe−t

(
1

0

)
+ βe−2t

(
0

1

))

= αe−t
(

1

1

)
+ βe−2t

(
0

1

)
.

Thus the linear map T converts the phase portrait for the system

Y ′ =
(−1 0

0 −2

)
Y

to that of X ′ = AX as shown in Figure 3.7. �

Note that we really do not have to go through the step of converting a
specific system to one in canonical form; once we have the eigenvalues and
eigenvectors, we can simply write down the general solution. We take this
extra step because, when we attempt to classify all possible linear systems, the
canonical form of the system will greatly simplify this process.

T

Figure 3.7 The change of variables T in the case of a (real)
sink.
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Example. (Complex Eigenvalues) Now suppose that the matrix A
has complex eigenvalues α ± iβ with β �= 0. Then we may find a com-
plex eigenvector V1 + iV2 corresponding to α + iβ, where both V1 and V2 are
real vectors. We claim that V1 and V2 are linearly independent vectors in R2.
If this were not the case, then we would have V1 = cV2 for some c ∈ R. But
then we have

A(V1 + iV2) = (α + iβ)(V1 + iV2) = (α + iβ)(c + i)V2.

But we also have

A(V1 + iV2) = (c + i)AV2.

So we conclude that AV2 = (α + iβ)V2. This is a contradiction since the
left-hand side is a real vector while the right is complex.

Since V1 + iV2 is an eigenvector associated to α + iβ, we have

A(V1 + iV2) = (α + iβ)(V1 + iV2).

Equating the real and imaginary components of this vector equation, we find

AV1 = αV1 − βV2

AV2 = βV1 + αV2.

Let T be the matrix whose columns are V1 and V2. Hence TEj = Vj for
j = 1, 2. Now consider T−1AT . We have

(T−1AT )E1 = T−1(αV1 − βV2)

= αE1 − βE2

and similarly

(T−1AT )E2 = βE1 + αE2.

Thus the matrix T−1AT is in the canonical form

T−1AT =
(

α β

−β α

)
.

We saw that the system Y ′ = (T−1AT )Y has phase portrait corresponding to
a spiral sink, center, or spiral source depending on whether α < 0, α = 0, or
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α > 0. Therefore the phase portrait of X ′ = AX is equivalent to one of these
after changing coordinates using T . �

Example. (Another Harmonic Oscillator) Consider the second-order
equation

x ′′ + 4x = 0.

This corresponds to an undamped harmonic oscillator with mass 1 and spring
constant 4. As a system, we have

X ′ =
(

0 1
−4 0

)
X = AX .

The characteristic equation is

λ2 + 4 = 0

so that the eigenvalues are ±2i. A complex eigenvector associated to λ = 2i is
a solution of the system

−2ix + y = 0

−4x − 2iy = 0.

One such solution is the vector (1, 2i). So we have a complex solution of the
form

e2it
(

1
2i

)
.

Breaking this solution into its real and imaginary parts, we find the general
solution

X(t ) = c1

(
cos 2t

−2 sin 2t

)
+ c2

(
sin 2t

2 cos 2t

)
.

Thus the position of this oscillator is given by

x(t ) = c1 cos 2t + c2 sin 2t ,

which is a periodic function of period π .
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T

Figure 3.8 The change of variables T in the case of a
center.

Now, let T be the matrix whose columns are the real and imaginary parts of
the eigenvector (1, 2i). That is

T =
(

1 0
0 2

)
.

Then, we compute easily that

T−1AT =
(

0 2
−2 0

)
,

which is in canonical form. The phase portraits of these systems are shown
in Figure 3.8. Note that T maps the circular solutions of the system Y ′ =
(T−1AT )Y to elliptic solutions of X ′ = AX . �

Example. (Repeated Eigenvalues) Suppose A has a single real eigen-
value λ. If there exist a pair of linearly independent eigenvectors, then in
fact A must be in the form

A =
(

λ 0
0 λ

)
,

so the system X ′ = AX is easily solved (see Exercise 15).
For the more complicated case, let’s assume that V is an eigenvector and

that every other eigenvector is a multiple of V . Let W be any vector for which
V and W are linearly independent. Then we have

AW = μV + νW
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for some constants μ, ν ∈ R. Note that μ �= 0, for otherwise we would have a
second linearly independent eigenvector W with eigenvalue ν. We claim that
ν = λ. If ν − λ �= 0, a computation shows that

A

(
W +

(
μ

ν − λ

)
V

)
= ν

(
W +

(
μ

ν − λ

)
V

)
.

This says that ν is a second eigenvalue different from λ. Hence we must have
ν = λ.

Finally, let U = (1/μ)W . Then

AU = V + λ

μ
W = V + λU .

Thus if we define TE1 = V , TE2 = U , we get

T−1AT =
(

λ 1
0 λ

)

as required. Thus X ′ = AX is again in canonical form after this change of
coordinates. �

E X E R C I S E S

1. In Figure 3.9 on page 58, you see six phase portraits. Match each of these
phase portraits with one of the following linear systems:

(a)

(
3 5

−2 −2

)
(b)

(−3 −2
5 2

)
(c)

(
3 −2
5 −2

)

(d)

(−3 5
−2 3

)
(e)

(
3 5

−2 −3

)
(f )

(−3 5
−2 2

)
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1.

4.

2.

5.

3.

7.

Figure 3.9 Match these phase portraits with the systems in Exercise 1.

2. For each of the following systems of the form X ′ = AX

(a) Find the eigenvalues and eigenvectors of A.

(b) Find the matrix T that puts A in canonical form.

(c) Find the general solution of both X ′ = AX and Y ′ = (T−1AT )Y .

(d) Sketch the phase portraits of both systems.

(i) A =
(

0 1
1 0

)
(ii) A =

(
1 1
1 0

)

(iii) A =
(

1 1
−1 0

)
(iv) A =

(
1 1

−1 3

)

(v) A =
(

1 1
−1 −3

)
(vi) A =

(
1 1
1 −1

)

3. Find the general solution of the following harmonic oscillator equations:

(a) x ′′ + x ′ + x = 0

(b) x ′′ + 2x ′ + x = 0

4. Consider the harmonic oscillator system

X ′ =
(

0 1
−k −b

)
X

where b ≥ 0, k > 0 and the mass m = 1.
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(a) For which values of k, b does this system have complex eigenvalues?
Repeated eigenvalues? Real and distinct eigenvalues?

(b) Find the general solution of this system in each case.

(c) Describe the motion of the mass when the mass is released from
the initial position x = 1 with zero velocity in each of the cases in
part (a).

5. Sketch the phase portrait of X ′ = AX where

A =
(

a 1
2a 2

)
.

For which values of a do you find a bifurcation? Describe the phase
portrait for a-values above and below the bifurcation point.

6. Consider the system

X ′ =
(

2a b
b 0

)
X .

Sketch the regions in the ab–plane where this system has different types
of canonical forms.

7. Consider the system

X ′ =
(

λ 1
0 λ

)
X

with λ �= 0. Show that all solutions tend to (respectively, away from)
the origin tangentially to the eigenvector (1, 0) when λ < 0 (respectively,
λ > 0).

8. Find all 2 × 2 matrices that have pure imaginary eigenvalues. That is,
determine conditions on the entries of a matrix that guarantee that the
matrix has pure imaginary eigenvalues.

9. Determine a computable condition that guarantees that, if a matrix A
has complex eigenvalues, then solutions of X ′ = AX travel around the
origin in the counterclockwise direction.

10. Consider the system

X ′ =
(

a b
c d

)
X

where a + d �= 0 but ad − bc = 0. Find the general solution of this
system and sketch the phase portrait.
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11. Find the general solution and describe completely the phase portrait for

X ′ =
(

0 1
0 0

)
X .

12. Prove that

αeλt
(

1
0

)
+ βeλt

(
t
1

)

is the general solution of

X ′ =
(

λ 1
0 λ

)
X .

13. Prove that a 2×2 matrix A always satisfies its own characteristic equation.
That is, if λ2 + αλ + β = 0 is the characteristic equation associated to A,
then the matrix A2 + αA + βI is the 0 matrix.

14. Suppose the 2 × 2 matrix A has repeated eigenvalues λ. Let V ∈ R2.
Using the previous problem, show that either V is an eigenvector for A
or else (A − λI )V is an eigenvector for A.

15. Suppose the matrix A has repeated real eigenvalues λ and there exists a
pair of linearly independent eigenvectors associated to A. Prove that

A =
(

λ 0
0 λ

)
.

16. Consider the (nonlinear) system

x ′ = |y|
y ′ = −x .

Use the methods of this chapter to describe the phase portrait.



4
Classification of

Planar Systems

In this chapter, we summarize what we have accomplished so far using a
dynamical systems point of view. Among other things, this means that we
would like to have a complete “dictionary” of all possible behaviors of 2 × 2
autonomous linear systems. One of the dictionaries we present here is geo-
metric: the trace-determinant plane. The other dictionary is more dynamic:
this involves the notion of conjugate systems.

4.1 The Trace-Determinant Plane

For a matrix

A =
(

a b
c d

)

we know that the eigenvalues are the roots of the characteristic equation, which
can be written

λ2 − (a + d)λ + (ad − bc) = 0.

The constant term in this equation is det A. The coefficient of λ also has a
name: The quantity a + d is called the trace of A and is denoted by tr A.

61
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Thus the eigenvalues satisfy

λ2 − (tr A)λ + det A = 0

and are given by

λ± = 1

2

(
tr A ±

√
(tr A)2 − 4 det A

)
.

Note that λ+ + λ− = tr A and λ+λ− = det A, so the trace is the sum of the
eigenvalues of A while the determinant is the product of the eigenvalues of
A. We will also write T = tr A and D = det A. Knowing T and D tells us
the eigenvalues of A and therefore virtually everything about the geometry of
solutions of X ′ = AX . For example, the values of T and D tell us whether
solutions spiral into or away from the origin, whether we have a center, and
so forth.

We may display this classification visually by painting a picture in the trace-
determinant plane. In this picture a matrix with trace T and determinant D
corresponds to the point with coordinates (T , D). The location of this point
in the TD–plane then determines the geometry of the phase portrait as above.
For example, the sign of T 2 − 4D tells us that the eigenvalues are:

1. Complex with nonzero imaginary part if T 2 − 4D < 0;
2. Real and distinct if T 2 − 4D > 0;
3. Real and repeated if T 2 − 4D = 0.

Thus the location of (T , D) relative to the parabola T 2 − 4D = 0 in the TD–
plane tells us all we need to know about the eigenvalues of A from an algebraic
point of view.

In terms of phase portraits, however, we can say more. If T 2 − 4D < 0, then
the real part of the eigenvalues is T /2, and so we have a

1. Spiral sink if T < 0;
2. Spiral source if T > 0;
3. Center if T = 0.

If T 2 − 4D > 0 we have a similar breakdown into cases. In this region, both
eigenvalues are real. If D < 0, then we have a saddle. This follows since D is the
product of the eigenvalues, one of which must be positive, the other negative.
Equivalently, if D < 0, we compute

T 2 < T 2 − 4D

so that

±T <
√

T 2 − 4D.
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Thus we have

T +
√

T 2 − 4D > 0

T −
√

T 2 − 4D < 0

so the eigenvalues are real and have different signs. If D > 0 and T < 0 then
both

T ±
√

T 2 − 4D < 0,

so we have a (real) sink. Similarly, T > 0 and D > 0 leads to a (real) source.
When D = 0 and T �= 0, we have one zero eigenvalue, while both

eigenvalues vanish if D = T = 0.
Plotting all of this verbal information in the TD–plane gives us a visual

summary of all of the different types of linear systems. The equations above
partition the TD–plane into various regions in which systems of a particular
type reside. See Figure 4.1. This yields a geometric classification of 2 × 2 linear
systems.

Det

Tr

T2�4D

Figure 4.1 The trace-determinant plane. Any resemblance to any of the
authors’ faces is purely coincidental.
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A couple of remarks are in order. First, the trace-determinant plane is a
two-dimensional representation of what is really a four-dimensional space,
since 2 × 2 matrices are determined by four parameters, the entries of the
matrix. Thus there are infinitely many different matrices corresponding to each
point in the TD–plane. While all of these matrices share the same eigenvalue
configuration, there may be subtle differences in the phase portraits, such as the
direction of rotation for centers and spiral sinks and sources, or the possibility
of one or two independent eigenvectors in the repeated eigenvalue case.

We also think of the trace-determinant plane as the analog of the bifurcation
diagram for planar linear systems. A one-parameter family of linear systems
corresponds to a curve in the TD–plane. When this curve crosses the T -axis,
the positive D-axis, or the parabola T 2 − 4D = 0, the phase portrait of the
linear system undergoes a bifurcation: A major change occurs in the geometry
of the phase portrait.

Finally, note that we may obtain quite a bit of information about the system
from D and T without ever computing the eigenvalues. For example, if D < 0,
we know that we have a saddle at the origin. Similarly, if both D and T are
positive, then we have a source at the origin.

4.2 Dynamical Classification

In this section we give a different, more dynamical classification of planar linear
systems. From a dynamical systems point of view, we are usually interested
primarily in the long-term behavior of solutions of differential equations.
Thus two systems are equivalent if their solutions share the same fate. To
make this precise we recall some terminology introduced in Section 1.5 of
Chapter 1.

To emphasize the dependence of solutions on both time and the initial con-
ditions X0, we let φt (X0) denote the solution that satisfies the initial condition
X0. That is, φ0(X0) = X0. The function φ(t , X0) = φt (X0) is called the flow of
the differential equation, whereas φt is called the time t map of the flow.

For example, let

X ′ =
(

2 0
0 3

)
X .

Then the time t map is given by

φt (x0, y0) = (
x0e2t , y0e3t ) .

Thus the flow is a function that depends on both time and the initial values.
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We will consider two systems to be dynamically equivalent if there is a
function h that takes one flow to the other. We require that this function be
a homeomorphism, that is, h is a one-to-one, onto, and continuous function
whose inverse is also continuous.

Definition

Suppose X ′ = AX and X ′ = BX have flows φA and φB. These two
systems are (topologically) conjugate if there exists a homeo-
morphism h : R2 → R2 that satisfies

φB(t , h(X0)) = h(φA(t , X0)).

The homeomorphism h is called a conjugacy. Thus a conjugacy
takes the solution curves of X ′ = AX to those of X ′ = BX .

Example. For the one-dimensional linear differential equations

x ′ = λ1x and x ′ = λ2x

we have the flows

φ j(t , x0) = x0eλj t

for j = 1, 2. Suppose that λ1 and λ2 are nonzero and have the same sign.
Then let

h(x) =

⎧⎪⎨
⎪⎩

xλ2/λ1 if x ≥ 0

−|x|λ2/λ1 if x < 0

where we recall that

xλ2/λ1 = exp

(
λ2

λ1
log(x)

)
.

Note that h is a homeomorphism of the real line. We claim that h is a conjugacy
between x ′ = λ1x and x ′ = λ2x . To see this, we check that when x0 > 0

h(φ1(t , x0)) = (
x0eλ1t )λ2/λ1
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= xλ2/λ1
0 eλ2t

= φ2(t , h(x0))

as required. A similar computation works when x0 < 0. �

There are several things to note here. First, λ1 and λ2 must have the same
sign, because otherwise we would have |h(0)| = ∞, in which case h is not a
homeomorphism. This agrees with our notion of dynamical equivalence: If
λ1 and λ2 have the same sign, then their solutions behave similarly as either
both tend to the origin or both tend away from the origin. Also, note that
if λ2 < λ1, then h is not differentiable at the origin, whereas if λ2 > λ1

then h−1(x) = xλ1/λ2 is not differentiable at the origin. This is the reason
why we require h to be only a homeomorphism and not a diffeomorphism
(a differentiable homeomorphism with differentiable inverse): If we assume
differentiability, then we must have λ1 = λ2, which does not yield a very
interesting notion of “equivalence.”

This gives a classification of (autonomous) linear first-order differential
equations, which agrees with our qualitative observations in Chapter 1.
There are three conjugacy “classes”: the sinks, the sources, and the special
“in-between” case, x ′ = 0, where all solutions are constants.

Now we move to the planar version of this scenario. We first note that
we only need to decide on conjugacies among systems whose matrices are in
canonical form. For, as we saw in Chapter 3, if the linear map T : R2 → R2

puts A in canonical form, then T takes the time t map of the flow of Y ′ =
(T−1AT )Y to the time t map for X ′ = AX .

Our classification of planar linear systems now proceeds just as in the
one-dimensional case. We will stay away from the case where the system
has eigenvalues with real part equal to 0, but you will tackle this case in the
exercises.

Definition

A matrix A is hyperbolic if none of its eigenvalues has real part
0. We also say that the system X ′ = AX is hyperbolic.

Theorem. Suppose that the 2 × 2 matrices A1 and A2 are hyperbolic. Then the
linear systems X ′ = AiX are conjugate if and only if each matrix has the same
number of eigenvalues with negative real part. �

Thus two hyperbolic matrices yield conjugate linear systems if both sets of
eigenvalues fall into the same category below:

1. One eigenvalue is positive and the other is negative;
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2. Both eigenvalues have negative real parts;
3. Both eigenvalues have positive real parts.

Before proving this, note that this theorem implies that a system with a spiral
sink is conjugate to a system with a (real) sink. Of course! Even though their
phase portraits look very different, it is nevertheless the case that all solutions
of both systems share the same fate: They tend to the origin as t → ∞.

Proof: Recall from the previous discussion that we may assume all systems
are in canonical form. Then the proof divides into three distinct cases.

Case 1

Suppose we have two linear systems X ′ = AiX for i = 1, 2 such that each Ai

has eigenvalues λi < 0 < μi . Thus each system has a saddle at the origin. This
is the easy case. As we saw previously, the real differential equations x ′ = λix
have conjugate flows via the homeomorphism

h1(x) =
{

xλ2/λ1 if x ≥ 0

−|x|λ2/λ1 if x < 0
.

Similarly, the equations y ′ = μiy also have conjugate flows via an analogous
function h2. Now define

H (x , y) = (h1(x), h2(y)).

Then one checks immediately that H provides a conjugacy between these two
systems.

Case 2

Consider the system X ′ = AX where A is in canonical form with eigenvalues
that have negative real parts. We further assume that the matrix A is not in the
form (

λ 1
0 λ

)

with λ < 0. Thus, in canonical form, A assumes one of the following two
forms:

(a)

(
α β

−β α

)
(b)

(
λ 0
0 μ

)
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with α, λ, μ < 0. We will show that, in either case, the system is conjugate to
X ′ = BX where

B =
(−1 0

0 −1

)
.

It then follows that any two systems of this form are conjugate.
Consider the unit circle in the plane parameterized by the curve X(θ) =

(cos θ , sin θ), 0 ≤ θ ≤ 2π . We denote this circle by S1. We first claim that the
vector field determined by a matrix in the above form must point inside S1. In
case (a), we have that the vector field on S1 is given by

AX(θ) =
(

α cos θ + β sin θ

−β cos θ + α sin θ

)
.

The outward pointing normal vector to S1 at X(θ) is

N (θ) =
(

cos θ

sin θ

)
.

The dot product of these two vectors satisfies

AX(θ) · N (θ) = α(cos2 θ + sin2 θ) < 0

since α < 0. This shows that AX(θ) does indeed point inside S1. Case (b) is
even easier.

As a consequence, each nonzero solution of X ′ = AX crosses S1 exactly
once. Let φA

t denote the time t map for this system, and let τ = τ (x , y) denote
the time at which φA

t (x , y) meets S1. Thus∣∣∣φA
τ (x ,y)(x , y)

∣∣∣ = 1.

Let φB
t denote the time t map for the system X ′ = BX . Clearly,

φB
t (x , y) = (e−t x , e−t y).

We now define a conjugacy H between these two systems. If (x , y) �= (0, 0),
let

H (x , y) = φB
−τ (x ,y)φ

A
τ (x ,y)(x , y)

and set H (0, 0) = (0, 0). Geometrically, the value of H (x , y) is given by
following the solution curve of X ′ = AX exactly τ (x , y) time units (forward
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tB
�r (tA

r (x, y))

tA
r (x, y)

�H(x, y)

(x, y)

S1

Figure 4.2 The definition
of τ (x, y).

or backward) until the solution reaches S1, and then following the solution
of X ′ = BX starting at that point on S1 and proceeding in the opposite time
direction exactly τ time units. See Figure 4.2.

To see that H gives a conjugacy, note first that

τ
(
φA

s (x , y)
) = τ (x , y) − s

since

φA
τ−sφ

A
s (x , y) = φA

τ (x , y) ∈ S1.

Therefore we have

H
(
φA

s (x , y)
) = φB−τ+sφ

A
τ−s

(
φA

s (x , y)
)

= φB
s φB−τ φ

A
τ (x , y)

= φB
s

(
H (x , y)

)
.

So H is a conjugacy.
Now we show that H is a homeomorphism. We can construct an inverse

for H by simply reversing the process defining H . That is, let

G(x , y) = φA
−τ1(x ,y)φ

B
τ1(x ,y)(x , y)

and set G(0, 0) = (0, 0). Here τ1(x , y) is the time for the solution of X ′ = BX
through (x , y) to reach S1. An easy computation shows that τ1(x , y) = log r
where r2 = x2 + y2. Clearly, G = H−1 so H is one to one and onto. Also, G
is continuous at (x , y) �= (0, 0) since G may be written

G(x , y) = φA
− log r

(x

r
,
y

r

)
,
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which is a composition of continuous functions. For continuity of G at the
origin, suppose that (x , y) is close to the origin, so that r is small. Observe that
as r → 0, − log r → ∞. Now (x/r , y/r) is a point on S1 and for r sufficiently
small, φA

− log r maps the unit circle very close to (0, 0). This shows that G is

continuous at (0, 0).
We thus need only show continuity of H . For this, we need to show that

τ (x , y) is continuous. But τ is determined by the equation

∣∣φA
t (x , y)

∣∣ = 1.

We write φA
t (x , y) = (x(t ), y(t )). Taking the partial derivative of |φA

t (x , y)|
with respect to t , we find

∂

∂t

∣∣φA
t (x , y)

∣∣ = ∂

∂t

√
(x(t ))2 + (y(t ))2

= 1√
(x(t ))2 + (y(t ))2

(
x(t )x ′(t ) + y(t )y ′(t )

)
= 1∣∣φA

t (x , y)
∣∣
((

x(t )

y(t )

)
·
(

x ′(t )
y ′(t )

))
.

But the latter dot product is nonzero when t = τ (x , y) since the vector field
given by (x ′(t ), y ′(t )) points inside S1. Hence

∂

∂t

∣∣φA
t (x , y)

∣∣ �= 0

at (τ (x , y), x , y). Thus we may apply the implicit function theorem to show
that τ is differentiable at (x , y) and hence continuous. Continuity of H at the
origin follows as in the case of G = H−1. Thus H is a homeomorphism and
we have a conjugacy between X ′ = AX and X ′ = BX .

Note that this proof works equally well if the eigenvalues have positive real
parts.

Case 3

Finally, suppose that

A =
(

λ 1
0 λ

)
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with λ < 0. The associated vector field need not point inside the unit circle in
this case. However, if we let

T =
(

1 0
0 ε

)
,

then the vector field given by

Y ′ = (T−1AT )Y

now does have this property, provided ε > 0 is sufficiently small. Indeed

T−1AT =
(

λ ε

0 λ

)

so that (
T−1AT

(
cos θ

sin θ

))
·
(

cos θ

sin θ

)
= λ + ε sin θ cos θ .

Thus if we choose ε < −λ, this dot product is negative. Therefore the change
of variables T puts us into the situation where the same proof as in Case 2
applies. This completes the proof. �

4.3 Exploration: A 3D Parameter Space

Consider the three-parameter family of linear systems given by

X ′ =
(

a b
c 0

)
X

where a, b, and c are parameters.

1. First, fix a > 0. Describe the analog of the trace-determinant plane in
the bc–plane. That is, identify the bc–values in this plane where the cor-
responding system has saddles, centers, spiral sinks, etc. Sketch these
regions in the bc–plane.

2. Repeat the previous question when a < 0 and when a = 0.
3. Describe the bifurcations that occur as a changes from positive to negative.
4. Now put all of the previous information together and give a description

of the full three-dimensional parameter space for this system. You could
build a 3D model of this space, create a flip-book animation of the changes
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as, say, a varies, or use a computer model to visualize this image. In any
event, your model should accurately capture all of the distinct regions in
this space.

E X E R C I S E S

1. Consider the one-parameter family of linear systems given by

X ′ =
(

a
√

2 + (a/2)√
2 − (a/2) 0

)
X .

(a) Sketch the path traced out by this family of linear systems in the
trace-determinant plane as a varies.

(b) Discuss any bifurcations that occur along this path and compute the
corresponding values of a.

2. Sketch the analog of the trace-determinant plane for the two-parameter
family of systems

X ′ =
(

a b
b a

)
X

in the ab–plane. That is, identify the regions in the ab–plane where this
system has similar phase portraits.

3. Consider the harmonic oscillator equation (with m = 1)

x ′′ + bx ′ + kx = 0

where b ≥ 0 and k > 0. Identify the regions in the relevant portion of the
bk–plane where the corresponding system has similar phase portraits.

4. Prove that H (x , y) = (x , −y) provides a conjugacy between

X ′ =
(

1 1
−1 1

)
X and Y ′ =

(
1 −1
1 1

)
Y .

5. For each of the following systems, find an explicit conjugacy between their
flows.

(a) X ′ =
(−1 1

0 2

)
X and Y ′ =

(
1 0
1 −2

)
Y

(b) X ′ =
(

0 1
−4 0

)
X and Y ′ =

(
0 2

−2 0

)
Y .
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6. Prove that any two linear systems with the same eigenvalues ±iβ, β �= 0
are conjugate. What happens if the systems have eigenvalues ±iβ and ±iγ
with β �= γ ? What if γ = −β?

7. Consider all linear systems with exactly one eigenvalue equal to 0. Which
of these systems are conjugate? Prove this.

8. Consider all linear systems with two zero eigenvalues. Which of these
systems are conjugate? Prove this.

9. Provide a complete description of the conjugacy classes for 2 × 2 systems
in the nonhyperbolic case.
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5
Higher Dimensional

Linear Algebra

As in Chapter 2, we need to make another detour into the world of linear alge-
bra before proceeding to the solution of higher dimensional linear systems of
differential equations. There are many different canonical forms for matrices in
higher dimensions, but most of the algebraic ideas involved in changing coor-
dinates to put matrices into these forms are already present in the 2×2 case. In
particular, the case of matrices with distinct (real or complex) eigenvalues can
be handled with minimal additional algebraic complications, so we deal with
this case first. This is the “generic case,” as we show in Section 5.6. Matrices
with repeated eigenvalues demand more sophisticated concepts from linear
algebra; we provide this background in Section 5.4. We assume throughout
this chapter that the reader is familiar with solving systems of linear algebraic
equations by putting the associated matrix in (reduced) row echelon form.

5.1 Preliminaries from Linear Algebra

In this section we generalize many of the algebraic notions of Section 2.3 to
higher dimensions. We denote a vector X ∈ Rn in coordinate form as

X =
⎛
⎜⎝x1

...
xn

⎞
⎟⎠ .

75



76 Chapter 5 Higher Dimensional Linear Algebra

In the plane, we called a pair of vectors V and W linearly independent if they
were not collinear. Equivalently, V and W were linearly independent if there
were no (nonzero) real numbers α and β such that αV + βW was the zero
vector.

More generally, in Rn , a collection of vectors V1, . . . , Vk in Rn is said to be
linearly independent if, whenever

α1V1 + · · · + αkVk = 0

with αj ∈ R, it follows that each αj = 0. If we can find such α1, . . . , αk , not all
of which are 0, then the vectors are linearly dependent. Note that if V1, . . . , Vk

are linearly independent and W is the linear combination

W = β1V1 + · · · + βkVk ,

then the βj are unique. This follows since, if we could also write

W = γ1V1 + · · · + γkVk ,

then we would have

0 = W − W = (β1 − γ1)V1 + · · · (βk − γk)Vk ,

which forces βj = γj for each j , by linear independence of the Vj .

Example. The vectors (1, 0, 0), (0, 1, 0), and (0, 0, 1) are clearly linearly inde-
pendent in R3. More generally, let Ej be the vector in Rn whose jth component
is 1 and all other components are 0. Then the vectors E1, . . . , En are linearly
independent in Rn . The collection of vectors E1, . . . , En is called the standard
basis of Rn . We will discuss the concept of a basis in Section 5.4. �

Example. The vectors (1, 0, 0), (1, 1, 0), and (1, 1, 1) in R3 are also linearly
independent, because if we have

α1

⎛
⎝1

0
0

⎞
⎠ + α2

⎛
⎝1

1
0

⎞
⎠ + α3

⎛
⎝1

1
1

⎞
⎠ =

⎛
⎝α1 + α2 + α3

α2 + α3

α3

⎞
⎠ =

⎛
⎝0

0
0

⎞
⎠ ,

then the third component says that α3 = 0. The fact that α3 = 0 in the second
component then says that α2 = 0, and finally the first component similarly
tells us that α1 = 0. On the other hand, the vectors (1, 1, 1), (1, 2, 3), and
(2, 3, 4) are linearly dependent, for we have

1

⎛
⎝1

1
1

⎞
⎠ + 1

⎛
⎝1

2
3

⎞
⎠ − 1

⎛
⎝2

3
4

⎞
⎠ =

⎛
⎝0

0
0

⎞
⎠ .

�
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When solving linear systems of differential equations, we will often
encounter special subsets of Rn called subspaces. A subspace of Rn is a col-
lection of all possible linear combinations of a given set of vectors. More
precisely, given V1, . . . , Vk ∈ Rn , the set

S = {α1V1 + · · · + αkVk | αj ∈ R}
is a subspace of Rn . In this case we say that S is spanned by V1, . . . , Vk .
Equivalently, it can be shown (see Exercise 12 at the end of this chapter) that a
subspace S is a nonempty subset of Rn having the following two properties:

1. If X , Y ∈ S , then X + Y ∈ S ;
2. If X ∈ S and α ∈ R, then αX ∈ S .

Note that the zero vector lies in every subspace of Rn and that any linear
combination of vectors in a subspace S also lies in S .

Example. Any straight line through the origin in Rn is a subspace of Rn ,
since this line may be written as {tV | t ∈ R} for some nonzero V ∈ Rn . The
single vector V spans this subspace. The plane P defined by x + y + z = 0 in
R3 is a subspace of R3. Indeed, any vector V in P may be written in the form
(x , y , −x − y) or

V = x

⎛
⎝ 1

0
−1

⎞
⎠ + y

⎛
⎝ 0

1
−1

⎞
⎠ ,

which shows that the vectors (1, 0, −1) and (0, 1, −1) span P . �

In linear algebra, one often encounters rectangular n × m matrices, but in
differential equations, most often these matrices are square (n × n). Conse-
quently we will assume that all matrices in this chapter are n × n. We write
such a matrix

A =

⎛
⎜⎜⎜⎝

a11 a12 . . . a1n

a21 a22 . . . a2n
...

an1 an2 . . . ann

⎞
⎟⎟⎟⎠

more compactly as A = [aij ].
For X = (x1, . . . , xn) ∈ Rn , we define the product AX to be the vector

AX =
⎛
⎜⎝
∑n

j=1 a1j xj

...∑n
j=1 anjxj

⎞
⎟⎠ ,
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so that the ith entry in this vector is the dot product of the ith row of A with
the vector X .

Matrix sums are defined in the obvious way. If A = [aij ] and B = [bij ] are
n × n matrices, then we define A + B = C where C = [aij + bij ]. Matrix
arithmetic has some obvious linearity properties:

1. A(k1X1 + k2X2) = k1AX1 + k2AX2 where kj ∈ R, Xj ∈ Rn ;
2. A + B = B + A;
3. (A + B) + C = A + (B + C).

The product of the n × n matrices A and B is defined to be the n × n matrix
AB = [cij ] where

cij =
n∑

k=1

aikbkj ,

so that cij is the dot product of the ith row of A with the jth column of B. We
can easily check that, if A, B, and C are n × n matrices, then

1. (AB)C = A(BC);
2. A(B + C) = AB + AC ;
3. (A + B)C = AC + BC ;
4. k(AB) = (kA)B = A(kB) for any k ∈ R.

All of the above properties of matrix arithmetic are easily checked by writing
out the ij entries of the corresponding matrices. It is important to remember
that matrix multiplication is not commutative, so that AB �= BA in general.
For example (

1 0
1 1

)(
1 1
0 1

)
=

(
1 1
1 2

)

whereas (
1 1
0 1

)(
1 0
1 1

)
=

(
2 1
1 1

)
.

Also, matrix cancellation is usually forbidden; if AB = AC , then we do not
necessarily have B = C as in(

1 1
1 1

)(
1 0
0 0

)
=

(
1 0
1 0

)
=

(
1 1
1 1

)(
1/2 1/2
1/2 −1/2

)
.

In particular, if AB is the zero matrix, it does not follow that one of A or B is
also the zero matrix.
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The n × n matrix A is invertible if there exists an n × n matrix C for which
AC = CA = I where I is the n × n identity matrix that has 1s along the
diagonal and 0s elsewhere. The matrix C is called the inverse of A. Note that
if A has an inverse, then this inverse is unique. For if AB = BA = I as well,
then

C = CI = C(AB) = (CA)B = IB = B.

The inverse of A is denoted by A−1.
If A is invertible, then the vector equation AX = V has a unique solution

for any V ∈ Rn . Indeed, A−1V is one solution. Moreover, it is the only one,
for if Y is another solution, then we have

Y = (A−1A)Y = A−1(AY ) = A−1V .

For the converse of this statement, recall that the equation AX = V has
unique solutions if and only if the reduced row echelon form of the matrix
A is the identity matrix. The reduced row echelon form of A is obtained by
applying to A a sequence of elementary row operations of the form

1. Add k times row i of A to row j ;
2. Interchange row i and j ;
3. Multiply row i by k �= 0.

Note that these elementary row operations correspond exactly to the
operations that are used to solve linear systems of algebraic equations:

1. Add k times equation i to equation j ;
2. Interchange equations i and j ;
3. Multiply equation i by k �= 0.

Each of these elementary row operations may be represented by multiplying
A by an elementary matrix. For example, if L = [�ij ] is the matrix that has
1’s along the diagonal, �ji = k for some choice of i and j , i �= j , and all
other entries 0, then LA is the matrix that is obtained by performing row
operation 1 on A. Similarly, if L has 1’s along the diagonal with the exception
that �ii = �jj = 0, but �ij = �ji = 1, and all other entries are 0, then LA is
the matrix that results after performing row operation 2 on A. Finally, if L
is the identity matrix with a k instead of 1 in the ii position, then LA is the
matrix obtained by performing row operation 3. A matrix L in one of these
three forms is called an elementary matrix.

Each elementary matrix is invertible, since its inverse is given by the matrix
that simply “undoes” the corresponding row operation. As a consequence,
any product of elementary matrices is invertible. Therefore, if L1, . . . , Ln

are the elementary matrices that correspond to the row operations that put



80 Chapter 5 Higher Dimensional Linear Algebra

A into the reduced row echelon form, which is the identity matrix, then
(Ln · · · · · L1) = A−1. That is, if the vector equation AX = V has unique solu-
tions for any V ∈ Rn , then A is invertible. Thus we have our first important
result.

Proposition. Let A be an n×n matrix. Then the system of algebraic equations
AX = V has a unique solution for any V ∈ Rn if and only if A is invertible. �

Thus the natural question now is: How do we tell if A is invertible? One
answer is provided by the following result.

Proposition. The matrix A is invertible if and only if the columns of A form
a linearly independent set of vectors.

Proof: Suppose first that A is invertible and has columns V1, . . . , Vn . We have
AEj = Vj where the Ej form the standard basis of Rn . If the Vj are not linearly
independent, we may find real numbers α1, . . . , αn , not all zero, such that∑

j αjVj = 0. But then

0 =
n∑

j=1

αjAEj = A

⎛
⎝ n∑

j=1

αjEj

⎞
⎠ .

Hence the equation AX = 0 has two solutions, the nonzero vector (α1, . . . , αn)
and the 0 vector. This contradicts the previous proposition.

Conversely, suppose that the Vj are linearly independent. If A is not invert-
ible, then we may find a pair of vectors X1 and X2 with X1 �= X2 and
AX1 = AX2. Therefore the nonzero vector Z = X1 − X2 satisfies AZ = 0. Let
Z = (α1, . . . , αn). Then we have

0 = AZ =
n∑

j=1

αjVj ,

so that the Vj are not linearly independent. This contradiction establishes the
result. �

A more computable criterion for determining whether or not a matrix is
invertible, as in the 2 × 2 case, is given by the determinant of A. Given the
n × n matrix A, we will denote by Aij the (n − 1) × (n − 1) matrix obtained
by deleting the ith row and jth column of A.
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Definition

The determinant of A = [aij ] is defined inductively by

det A =
n∑

k=1

(−1)1+ka1k det A1k .

Note that we know the determinant of a 2 × 2 matrix, so this induction
makes sense for k > 2.

Example. From the definition we compute

det

⎛
⎝1 2 3

4 5 6
7 8 9

⎞
⎠ = 1 det

(
5 6
8 9

)
− 2 det

(
4 6
7 9

)
+ 3 det

(
4 5
7 8

)

= −3 + 12 − 9 = 0.

We remark that the definition of det A given above involves “expanding
along the first row” of A. One can equally well expand along the jth row so
that

det A =
n∑

k=1

(−1)j+kajk det Ajk .

We will not prove this fact; the proof is an entirely straightforward though
tedious calculation. Similarly, det A can be calculated by expanding along a
given column (see Exercise 1). �

Example. Expanding the matrix in the previous example along the second
and third rows yields the same result:

det

⎛
⎝1 2 3

4 5 6
7 8 9

⎞
⎠ = −4 det

(
2 3
8 9

)
+ 5 det

(
1 3
7 9

)
− 6 det

(
1 2
7 8

)

= 24 − 60 + 36 = 0

= 7 det

(
2 3
5 6

)
− 8 det

(
1 3
4 6

)
+ 9 det

(
1 2
4 5

)
= −21 + 48 − 27 = 0.
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Incidentally, note that this matrix is not invertible, since⎛
⎝1 2 3

4 5 6
7 8 9

⎞
⎠

⎛
⎝ 1

−2
1

⎞
⎠ =

⎛
⎝0

0
0

⎞
⎠ .

�

The determinant of certain types of matrices is easy to compute. A matrix
[aij ] is called upper triangular if all entries below the main diagonal are 0. That
is, aij = 0 if i > j . Lower triangular matrices are defined similarly. We have

Proposition. If A is an upper or lower triangular n × n matrix, then det A is
the product of the entries along the diagonal. That is, det[aij ] = a11 . . . ann. �

The proof is a straightforward application of induction. The following
proposition describes the effects that elementary row operations have on the
determinant of a matrix.

Proposition. Let A and B be n × n matrices.

1. Suppose the matrix B is obtained by adding a multiple of one row of A to
another row of A. Then det B = det A.

2. Suppose B is obtained by interchanging two rows of A. Then det B =
− det A.

3. Suppose B is obtained by multiplying each element of a row of A by k. Then
det B = k det A.

Proof: The proof of the proposition is straightforward when A is a 2 × 2
matrix, so we use induction. Suppose A is k × k with k > 2. To compute
det B, we expand along a row that is left untouched by the row operation. By
induction on k, we see that det B is a sum of determinants of size (k − 1) ×
(k − 1). Each of these subdeterminants has precisely the same row operation
performed on it as in the case of the full matrix. By induction, it follows that
each of these subdeterminants is multiplied by 1, −1, or k in cases 1, 2, and 3,
respectively. Hence det B has the same property. �

In particular, we note that if L is an elementary matrix, then

det(LA) = (det L)(det A).

Indeed, det L = 1, −1, or k in cases 1–3 above (see Exercise 7). The preceding
proposition now yields a criterion for A to be invertible:

Corollary. (Invertibility Criterion) The matrix A is invertible if and only if
det A �= 0.
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Proof: By elementary row operations, we can manipulate any matrix A into
an upper triangular matrix. Then A is invertible if and only if all diagonal
entries of this row reduced matrix are nonzero. In particular, the determinant
of this matrix is nonzero. Now, by the previous observation, row operations
multiply det A by nonzero numbers, so we see that all of the diagonal entries
are nonzero if and only if det A is also nonzero. This concludes the proof. �

We conclude this section with a further important property of determinants.

Proposition. det(AB) = (det A)(det B).

Proof: If either A or B is noninvertible, then AB is also noninvertible (see
Exercise 11). Hence the proposition is true since both sides of the equation are
zero. If A is invertible, then we can write

A = L1 . . . Ln · I

where each Lj is an elementary matrix. Hence

det(AB) = det(L1 . . . LnB)

= det(L1) det(L2 . . . LnB)

= det(L1)(det L2) . . . (det Ln)(det B)

= det(L1 . . . Ln) det(B)

= det(A) det(B). �

5.2 Eigenvalues and Eigenvectors

As we saw in Chapter 3, eigenvalues and eigenvectors play a central role in the
process of solving linear systems of differential equations.

Definition

A vector V is an eigenvector of an n×n matrix A if V is a nonzero
solution to the system of linear equations (A − λI )V = 0. The
quantity λ is called an eigenvalue of A, and V is an eigenvector
associated to λ.

Just as in Chapter 2, the eigenvalues of a matrix A may be real or complex
and the associated eigenvectors may have complex entries.
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By the invertibility criterion of the previous section, it follows that λ is an
eigenvalue of A if and only if λ is a root of the characteristic equation

det(A − λI ) = 0.

Since A is n × n, this is a polynomial equation of degree n, which therefore
has exactly n roots (counted with multiplicity).

As we saw in R2, there are many different types of solutions of systems
of differential equations, and these types depend on the configuration of the
eigenvalues of A and the resulting canonical forms. There are many, many
more types of canonical forms in higher dimensions. We will describe these
types in this and the following sections, but we will relegate some of the more
specialized proofs of these facts to the exercises.

Suppose first that λ1, . . . , λ� are real and distinct eigenvalues of A with
associated eigenvectors V1, . . . , V�. Here “distinct” means that no two of the
eigenvalues are equal. Thus AVk = λkVk for each k. We claim that the Vk are
linearly independent. If not, we may choose a maximal subset of the Vi that
are linearly independent, say, V1, . . . , Vj . Then any other eigenvector may be
written in a unique way as a linear combination of V1, . . . , Vj . Say Vj+1 is one
such eigenvector. Then we may find αi , not all 0, such that

Vj+1 = α1V1 + · · · + αjVj .

Multiplying both sides of this equation by A, we find

λj+1Vj+1 = α1AV1 + · · · + αjAVj

= α1λ1V1 + · · · + αjλjVj .

Now λj+1 �= 0 for otherwise we would have

α1λ1V1 + · · · + αjλjVj = 0,

with each λi �= 0. This contradicts the fact that V1, . . . , Vj are linearly
independent. Hence we have

Vj+1 = α1
λ1

λj+1
V1 + · · · + αj

λj

λj+1
Vj .

Since the λi are distinct, we have now written Vj+1 in two different ways as
a linear combination of V1, . . . , Vj . This contradicts the fact that this set of
vectors is linearly independent. We have proved:

Proposition. Suppose λ1, . . . , λ� are real and distinct eigenvalues for A with
associated eigenvectors V1, . . . , V�. Then the Vj are linearly independent. �
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Of primary importance when we return to differential equations is the

Corollary. Suppose A is an n × n matrix with real, distinct eigenvalues. Then
there is a matrix T such that

T−1AT =
⎛
⎜⎝λ1

. . .
λn

⎞
⎟⎠

where all of the entries off the diagonal are 0.

Proof: Let Vj be an eigenvector associated to λj . Consider the linear map
T for which TEj = Vj , where the Ej form the standard basis of Rn . That
is, T is the matrix whose columns are V1, . . . , Vn . Since the Vj are linearly
independent, T is invertible and we have

(T−1AT )Ej = T−1AVj

= λjT
−1Vj

= λjEj .

That is, the jth column of T−1AT is just the vector λjEj , as required. �

Example. Let

A =
⎛
⎝1 2 −1

0 3 −2
0 2 −2

⎞
⎠ .

Expanding det (A − λI ) along the first column, we find that the characteristic
equation of A is

det (A − λI ) = (1 − λ) det

(
3 − λ −2

2 −2 − λ

)
= (1 − λ)((3 − λ)(−2 − λ) + 4)

= (1 − λ)(λ − 2)(λ + 1),

so the eigenvalues are 2, 1, and −1. The eigenvector corresponding to λ = 2 is
given by solving the equations (A − 2I )X = 0, which yields

−x + 2y − z = 0

y − 2z = 0

2y − 4z = 0.
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These equations reduce to

x − 3z = 0

y − 2z = 0.

Hence V1 = (3, 2, 1) is an eigenvector associated to λ = 2. In similar fashion
we find that (1, 0, 0) is an eigenvector associated to λ = 1, while (0, 1, 2) is an
eigenvector associated to λ = −1. Then we set

T =
⎛
⎝3 1 0

2 0 1
1 0 2

⎞
⎠ .

A simple calculation shows that

AT = T

⎛
⎝2 0 0

0 1 0
0 0 −1

⎞
⎠ .

Since det T = −3, T is invertible and we have

T−1AT =
⎛
⎝2 0 0

0 1 0
0 0 −1

⎞
⎠ .

�

5.3 Complex Eigenvalues

Now we treat the case where A has nonreal (complex) eigenvalues. Suppose
α + iβ is an eigenvalue of A with β �= 0. Since the characteristic equation for
A has real coefficients, it follows that if α + iβ is an eigenvalue, then so is its
complex conjugate α + iβ = α − iβ.

Another way to see this is the following. Let V be an eigenvector associated
to α + iβ. Then the equation

AV = (α + iβ)V

shows that V is a vector with complex entries. We write

V =
⎛
⎜⎝x1 + iyn

...
xn + iyn

⎞
⎟⎠ .
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Let V denote the complex conjugate of V :

V =
⎛
⎜⎝x1 − iy1

...
xn − iyn

⎞
⎟⎠ .

Then we have

AV = AV = (α + iβ)V = (α − iβ)V ,

which shows that V is an eigenvector associated to the eigenvalue α − iβ.
Notice that we have (temporarily) stepped out of the “real” world of Rn and

into the world Cn of complex vectors. This is not really a problem, since all of
the previous linear algebraic results hold equally well for complex vectors.

Now suppose that A is a 2n × 2n matrix with distinct nonreal eigenvalues
αj ± iβj for j = 1, . . . , n. Let Vj and Vj denote the associated eigenvectors.
Then, just as in the previous proposition, this collection of eigenvectors is
linearly independent. That is, if we have

n∑
j=1

(cjVj + djVj) = 0

where the cj and dj are now complex numbers, then we must have cj = dj = 0
for each j .

Now we change coordinates to put A into canonical form. Let

W2j−1 = 1

2

(
Vj + Vj

)
W2j = −i

2

(
Vj − Vj

)
.

Note that W2j−1 and W2j are both real vectors. Indeed, W2j−1 is just the real
part of Vj while W2j is its imaginary part. So working with the Wj brings us
back home to Rn .

Proposition. The vectors W1, . . . , W2n are linearly independent.

Proof: Suppose not. Then we can find real numbers cj , dj for j = 1, . . . , n
such that

n∑
j=1

(
cjW2j−1 + djW2j

) = 0
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but not all of the cj and dj are zero. But then we have

1

2

n∑
j=1

(
cj(Vj + Vj) − idj(Vj − Vj)

) = 0

from which we find

n∑
j=1

(
(cj − idj)Vj + (cj + idj)Vj

) = 0.

Since the Vj and Vj ’s are linearly independent, we must have cj ± idj = 0,
from which we conclude cj = dj = 0 for all j . This contradiction establishes
the result. �

Note that we have

AW2j−1 = 1

2
(AVj + AVj)

= 1

2

(
(α + iβ)Vj + (α − iβ)Vj

)
= α

2
(Vj + Vj) + iβ

2
(Vj − Vj)

= αW2j−1 − βW2j .

Similarly, we compute

AW2j = βW2j−1 + αW2j .

Now consider the linear map T for which TEj = Wj for j = 1, . . . , 2n.
That is, the matrix associated to T has columns W1, . . . , W2n . Note that this
matrix has real entries. Since the Wj are linearly independent, it follows from
Section 5.2 that T is invertible. Now consider the matrix T−1AT . We have

(T−1AT )E2j−1 = T−1AW2j−1

= T−1(αW2j−1 − βW2j)

= αE2j−1 − βE2j

and similarly

(T−1AT )E2j = βE2j−1 + αW2j .
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Therefore the matrix associated to T−1AT is

T−1AT =
⎛
⎜⎝D1

. . .
Dn

⎞
⎟⎠

where each Dj is a 2 × 2 matrix of the form

Dj =
(

αj βj

−βj αj

)
.

This is our canonical form for matrices with distinct nonreal eigenvalues.
Combining the results of this and the previous section, we have:

Theorem. Suppose that the n×n matrix A has distinct eigenvalues. Then there
exists a linear map T so that

T−1AT =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ1

. . .
λk

D1

. . .
D�

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

where the Dj are 2 × 2 matrices in the form

Dj =
(

αj βj

−βj αj

)
. �

5.4 Bases and Subspaces

To deal with the case of a matrix with repeated eigenvalues, we need some
further algebraic concepts. Recall that the collection of all linear combinations
of a given finite set of vectors is called a subspace of Rn . More precisely, given
V1, . . . , Vk ∈ Rn , the set

S = {α1V1 + · · · + αkVk | αj ∈ R}
is a subspace of Rn . In this case we say that S is spanned by V1, . . . , Vk .
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Definition

Let S be a subspace of Rn. A collection of vectors V1, . . . , Vk is a
basis of S if the Vj are linearly independent and span S.

Note that a subspace always has a basis, for if S is spanned by V1, . . . , Vk , we
can always throw away certain of the Vj in order to reach a linearly independent
subset of these vectors that spans S . More precisely, if the Vj are not linearly
independent, then we may find one of these vectors, say, Vk , for which

Vk = β1V1 + · · · + βk−1Vk−1.

Hence we can write any vector in S as a linear combination of the V1, . . . , Vk−1

alone; the vector Vk is extraneous. Continuing in this fashion, we eventually
reach a linearly independent subset of the Vj that spans S .

More important for our purposes is:

Proposition. Every basis of a subspace S ⊂ Rn has the same number of
elements.

Proof: We first observe that the system of k linear equations in k+�unknowns
given by

a11x1 + · · · + a1 k+�xk+� = 0

...

ak1x1 + · · · + ak k+�xk+� = 0

always has a nonzero solution if � > 0. Indeed, using row reduction, we may
first solve for one unknown in terms of the others, and then we may eliminate
this unknown to obtain a system of k − 1 equations in k + � − 1 unknowns.
Thus we are finished by induction (the first case, k = 1, being obvious).

Now suppose that V1, . . . , Vk is a basis for the subspace S . Suppose that
W1, . . . , Wk+� is also a basis of S , with � > 0. Then each Wj is a linear
combination of the Vi , so we have constants aij such that

Wj =
k∑

i=1

aijVi , for j = 1, . . . , k + �.
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By the previous observation, the system of k equations

k+�∑
j=1

aijxj = 0, for i = 1, . . . , k

has a nonzero solution (c1, . . . , ck+�). Then

k+�∑
j=1

cjWj =
k+�∑
j=1

cj

( k∑
i=1

aijVi

)
=

k∑
i=1

( k+�∑
j=1

aij cj

)
Vi = 0

so that the Wj are linearly dependent. This contradiction completes the
proof. �

As a consequence of this result, we may define the dimension of a subspace
S as the number of vectors that form any basis for S . In particular, Rn is
a subspace of itself, and its dimension is clearly n. Furthermore, any other
subspace of Rn must have dimension less than n, for otherwise we would have
a collection of more than n vectors in Rn that are linearly independent. This
cannot happen by the previous proposition. The set consisting of only the 0
vector is also a subspace, and we define its dimension to be zero. We write
dim S for the dimension of the subspace S .

Example. A straight line through the origin in Rn forms a one-dimensional
subspace of Rn , since any vector on this line may be written uniquely as tV
where V ∈ Rn is a fixed nonzero vector lying on the line and t ∈ R is arbitrary.
Clearly, the single vector V forms a basis for this subspace. �

Example. The plane P in R3 defined by

x + y + z = 0

is a two-dimensional subspace of R3. The vectors (1, 0, −1) and (0, 1, −1) both
lie in P and are linearly independent. If W ∈ P , we may write

W =
⎛
⎝ x

y
−y − x

⎞
⎠ = x

⎛
⎝ 1

0
−1

⎞
⎠ + y

⎛
⎝ 0

1
−1

⎞
⎠ ,

so these vectors also span P . �
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As in the planar case, we say that a function T : Rn → Rn is linear if
T (X) = AX for some n × n matrix A. T is called a linear map or linear
transformation. Using the properties of matrices discussed in Section 5.1, we
have

T (αX + βY ) = αT (X) + βT (Y )

for any α, β ∈ R and X , Y ∈ Rn . We say that the linear map T is invertible if
the matrix A associated to T has an inverse.

For the study of linear systems of differential equations, the most important
types of subspaces are the kernels and ranges of linear maps. We define the
kernel of T , denoted Ker T , to be the set of vectors mapped to 0 by T . The
range of T consists of all vectors W for which there exists a vector V for which
TV = W . This, of course, is a familiar concept from calculus. The difference
here is that the range of T is always a subspace of Rn .

Example. Consider the linear map

T (X) =
⎛
⎝0 1 0

0 0 1
0 0 0

⎞
⎠X .

If X = (x , y , z), then

T (X) =
⎛
⎝y

z
0

⎞
⎠ .

Hence Ker T consists of all vectors of the form (α, 0, 0) while Range T is the
set of vectors of the form (β, γ , 0), where α, β, γ ∈ R. Both sets are clearly
subspaces. �

Example. Let

T (X) = AX =
⎛
⎝1 2 3

4 5 6
7 8 9

⎞
⎠X .

For Ker T , we seek vectors X that satisfy AX = 0. Using row reduction, we
find that the reduced row echelon form of A is the matrix⎛

⎝1 0 −1
0 1 2
0 0 0

⎞
⎠ .
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Hence the solutions X = (x , y , z) of AX = 0 satisfy x = z , y = −2z .
Therefore any vector in Ker T is of the form (z , −2z , z), so Ker T has dimen-
sion one. For Range T , note that the columns of A are vectors in Range T ,
since they are the images of (1, 0, 0), (0, 1, 0), and (0, 0, 1), respectively. These
vectors are not linearly independent since

−1

⎛
⎝1

4
7

⎞
⎠ + 2

⎛
⎝2

5
8

⎞
⎠ =

⎛
⎝3

6
9

⎞
⎠ .

However, (1, 4, 7) and (2, 5, 8) are linearly independent, so these two vectors
give a basis of Range T . �

Proposition. Let T : Rn → Rn be a linear map. Then Ker T and Range T
are both subspaces of Rn. Moreover,

dim Ker T + dim Range T = n.

Proof: First suppose that Ker T = {0}. Let E1, . . . , En be the standard basis
of Rn . Then we claim that TE1, . . . , TEn are linearly independent. If this is not
the case, then we may find α1, . . . , αn , not all 0, such that

n∑
j=1

αjTEj = 0.

But then we have

T

⎛
⎝ n∑

j=1

αjEj

⎞
⎠ = 0,

which implies that
∑

αjEj ∈ Ker T , so that
∑

αjEj = 0. Hence each αj = 0,
which is a contradiction. Thus the vectors TEj are linearly independent. But
then, given V ∈ Rn , we may write

V =
n∑

j=1

βjTEj
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for some β1, . . . , βn . Hence

V = T

⎛
⎝ n∑

j=1

βjEj

⎞
⎠

which shows that Range T = Rn . Hence both Ker T and Range T are
subspaces of Rn and we have dim Ker T = 0 and dim Range T = n.

If Ker T �= {0}, we may find a nonzero vector V1 ∈ Ker T . Clearly,
T (αV1) = 0 for any α ∈ R, so all vectors of the form αV1 lie in Ker T .
If Ker T contains additional vectors, choose one and call it V2. Then Ker T
contains all linear combinations of V1 and V2, since

T (α1V1 + α2V2) = α1TV1 + α2TV2 = 0.

Continuing in this fashion we obtain a set of linearly independent vectors that
span Ker T , thus showing that Ker T is a subspace. Note that this process must
end, since every collection of more than n vectors in Rn is linearly dependent.
A similar argument works to show that Range T is a subspace.

Now suppose that V1, . . . , Vk form a basis of Ker T where 0 < k < n
(the case where k = n being obvious). Choose vectors Wk+1, . . . , Wn so that
V1, . . . , Vk , Wk+1, . . . , Wn form a basis of Rn . Let Zj = TWj for each j . Then
the vectors Zj are linearly independent, for if we had

αk+1Zk+1 + · · · + αnZn = 0,

then we would also have

T (αk+1Wk+1 + · · · + αnWn) = 0.

This implies that

αk+1Wk+1 + · · · + αnWn ∈ Ker T .

But this is impossible, since we cannot write any Wj (and hence any linear
combination of the Wj) as a linear combination of the Vi . This proves that the
sum of the dimensions of Ker T and Range T is n. �

We remark that it is easy to find a set of vectors that spans Range T ; simply
take the set of vectors that comprise the columns of the matrix associated
to T . This works since the ith column vector of this matrix is the image of the
standard basis vector Ei under T . In particular, if these column vectors are
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linearly independent, then Ker T = {0} and there is a unique solution to the
equation T (X) = V for every V ∈ Rn . Hence we have:

Corollary. If T : Rn → Rn is a linear map with dim Ker T = 0, then T is
invertible. �

5.5 Repeated Eigenvalues

In this section we describe the canonical forms that arise when a matrix has
repeated eigenvalues. Rather than spending an inordinate amount of time
developing the general theory in this case, we will give the details only for
3 × 3 and 4 × 4 matrices with repeated eigenvalues. More general cases are
relegated to the exercises. We justify this omission in the next section where
we show that the “typical” matrix has distinct eigenvalues and hence can be
handled as in the previous section. (If you happen to meet a random matrix
while walking down the street, the chances are very good that this matrix will
have distinct eigenvalues!) The most general result regarding matrices with
repeated eigenvalues is given by:

Proposition. Let A be an n × n matrix. Then there is a change of coordinates
T for which

T−1AT =
⎛
⎜⎝B1

. . .
Bk

⎞
⎟⎠

where each of the Bj ’s is a square matrix (and all other entries are zero) of one of
the following forms:

(i)

⎛
⎜⎜⎜⎜⎜⎜⎝

λ 1
λ 1

. . .
. . .
. . . 1

λ

⎞
⎟⎟⎟⎟⎟⎟⎠ (ii)

⎛
⎜⎜⎜⎜⎜⎜⎝

C2 I2
C2 I2

. . .
. . .
. . . I2

C2

⎞
⎟⎟⎟⎟⎟⎟⎠

where

C2 =
(

α β

−β α

)
, I2 =

(
1 0
0 1

)
,
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and where α, β, λ ∈ R with β �= 0. The special cases where Bj = (λ) or

Bj =
(

α β

−β α

)

are, of course, allowed. �

We first consider the case of R3. If A has repeated eigenvalues in R3, then
all eigenvalues must be real. There are then two cases. Either there are two
distinct eigenvalues, one of which is repeated, or else all eigenvalues are the
same. The former case can be handled by a process similar to that described
in Chapter 3, so we restrict our attention here to the case where A has a single
eigenvalue λ of multiplicity 3.

Proposition. Suppose A is a 3 × 3 matrix for which λ is the only eigenvalue.
Then we may find a change of coordinates T such that T−1AT assumes one of
the following three forms:

(i)

⎛
⎝λ 0 0

0 λ 0
0 0 λ

⎞
⎠ (ii)

⎛
⎝λ 1 0

0 λ 0
0 0 λ

⎞
⎠ (iii)

⎛
⎝λ 1 0

0 λ 1
0 0 λ

⎞
⎠ .

Proof: Let K be the kernel of A − λI . Any vector in K is an eigenvector of A.
There are then three subcases depending on whether the dimension of K is 1,
2, or 3.

If the dimension of K is 3, then (A − λI )V = 0 for any V ∈ R3. Hence
A = λI . This yields matrix (i).

Suppose the dimension of K is 2. Let R be the range of A − λI . Then R has
dimension 1 since dim K + dim R = 3, as we saw in the previous section. We
claim that R ⊂ K . If this is not the case, let V ∈ R be a nonzero vector. Since
(A −λI )V ∈ R and R is one dimensional, we must have (A −λI )V = μV for
some μ �= 0. But then AV = (λ + μ)V , so we have found a new eigenvalue
λ + μ. This contradicts our assumption, so we must have R ⊂ K .

Now let V1 ∈ R be nonzero. Since V1 ∈ K , V1 is an eigenvector and so
(A − λI )V1 = 0. Since V1 also lies in R, we may find V2 ∈ R3 − K with
(A − λI )V2 = V1. Since K is two dimensional we may choose a second
vector V3 ∈ K such that V1 and V3 are linearly independent. Note that V3

is also an eigenvector. If we now choose the change of coordinates TEj =
Vj for j = 1, 2, 3, then it follows easily that T−1AT assumes the form of
case (ii).

Finally, suppose that K has dimension 1. Thus R has dimension 2. We claim
that, in this case, K ⊂ R. If this is not the case, then (A − λI )R = R and so
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A − λI is invertible on R. Thus, if V ∈ R, there is a unique W ∈ R for which
(A − λI )W = V . In particular, we have

AV = A(A − λI )W

= (A2 − λA)W

= (A − λI )(AW ).

This shows that, if V ∈ R, then so too is AV . Hence A also preserves the
subspace R. It then follows immediately that A must have an eigenvector in R,
but this then says that K ⊂ R and we have a contradiction.

Next we claim that (A − λI )R = K . To see this, note that (A − λI )R is
one dimensional, since K ⊂ R. If (A − λI )R �= K , there is a nonzero vector
V �∈ K for which (A − λI )R = {tV } where t ∈ R. But then (A − λI )V = tV
for some t ∈ R, t �= 0, and so AV = (t + λ)V yields another new eigenvalue.
Thus we must in fact have (A − λI )R = K .

Now let V1 ∈ K be an eigenvector for A. As above there exists V2 ∈ R such
that (A−λI )V2 = V1. Since V2 ∈ R there exists V3 such that (A−λI )V3 = V2.
Note that (A−λI )2V3 = V1. The Vj are easily seen to be linearly independent.
Moreover, the linear map defined by TEj = Vj finally puts A into canonical
form (iii). This completes the proof. �

Example. Suppose

A =
⎛
⎝ 2 0 −1

0 2 1
−1 −1 2

⎞
⎠ .

Expanding along the first row, we find

det(A − λI ) = (2 − λ)[(2 − λ)2 + 1] − (2 − λ) = (2 − λ)3

so the only eigenvalue is 2. Solving (A−2I )V = 0 yields only one independent
eigenvector V1 = (1, −1, 0), so we are in case (iii) of the proposition. We
compute

(A − 2I )2 =
⎛
⎝ 1 1 0

−1 −1 0
0 0 0

⎞
⎠

so that the vector V3 = (1, 0, 0) solves (A − 2I )2V3 = V1. We also have

(A − 2I )V3 = V2 = (0, 0, −1).
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As before, we let TEj = Vj for j = 1, 2, 3, so that

T =
⎛
⎝ 1 0 1

−1 0 0
0 −1 0

⎞
⎠ .

Then T−1AT assumes the canonical form

T−1AT =
⎛
⎝2 1 0

0 2 1
0 0 2

⎞
⎠ .

�

Example. Now suppose

A =
⎛
⎝ 1 1 0

−1 3 0
−1 1 2

⎞
⎠ .

Again expanding along the first row, we find

det(A − λI ) = (1 − λ)[(3 − λ)(2 − λ)] + (2 − λ) = (2 − λ)3

so again the only eigenvalue is 2. This time, however, we have

A − 2I =
⎛
⎝−1 1 0

−1 1 0
−1 1 0

⎞
⎠

so that we have two linearly independent eigenvectors (x , y , z) for which we
must have x = y while z is arbitrary. Note that (A − 2I )2 is the zero matrix, so
we may choose any vector that is not an eigenvector as V2, say, V2 = (1, 0, 0).
Then (A − 2I )V2 = V1 = (−1, −1, −1) is an eigenvector. A second linearly
independent eigenvector is then V3 = (0, 0, 1), for example. Defining TEj =
Vj as usual then yields the canonical form

T−1AT =
⎛
⎝2 1 0

0 2 0
0 0 2

⎞
⎠ .

�

Now we turn to the 4 × 4 case. The case of all real eigenvalues is similar to
the 3 × 3 case (though a little more complicated algebraically) and is left as
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an exercise. Thus we assume that A has repeated complex eigenvalues α ± iβ
with β �= 0.

There are just two cases; either we can find a pair of linearly independent
eigenvectors corresponding toα+iβ, or we can find only one such eigenvector.
In the former case, let V1 and V2 be the independent eigenvectors. The V1 and
V2 are linearly independent eigenvectors for α − iβ. As before, choose the real
vectors

W1 = (V1 + V1)/2

W2 = −i(V1 − V1)/2

W3 = (V2 + V2)/2

W4 = −i(V2 − V2)/2.

If we set TEj = Wj then changing coordinates via T puts A in canonical form

T−1AT =

⎛
⎜⎜⎝

α β 0 0
−β α 0 0

0 0 α β

0 0 −β α

⎞
⎟⎟⎠ .

If we find only one eigenvector V1 for α + iβ, then we solve the system of
equations (A − (α + iβ)I )X = V1 as in the case of repeated real eigenvalues.
The proof of the previous proposition shows that we can always find a nonzero
solution V2 of these equations. Then choose the Wj as above and set TEj = Wj .
Then T puts A into the canonical form

T−1AT =

⎛
⎜⎜⎝

α β 1 0
−β α 0 1

0 0 α β

0 0 −β α

⎞
⎟⎟⎠ .

For example, we compute

(T−1AT )E3 = T−1AW3

= T−1A(V2 + V2)/2

= T−1((V1 + (α + iβ)V2)/2 + (V1 + (α − iβ)V2)/2
)

= T−1((V1 + V1)/2 + α
(
V2 + V2

)
/2 + iβ

(
V2 − V2

)
/2
)

= E1 + αE3 − βE4.
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Example. Let

A =

⎛
⎜⎜⎝

1 −1 0 1
2 −1 1 0
0 0 −1 2
0 0 −1 1

⎞
⎟⎟⎠ .

The characteristic equation, after a little computation, is

(λ2 + 1)2 = 0.

Hence A has eigenvalues ±i, each repeated twice.
Solving the system (A − iI )X = 0 yields one linearly independent complex

eigenvector V1 = (1, 1 − i, 0, 0) associated to i. Then V1 is an eigenvector
associated to the eigenvalue −i.

Next we solve the system (A − iI )X = V1 to find V2 = (0, 0, 1 − i, 1). Then
V2 solves the system (A − iI )X = V1. Finally, choose

W1 = (
V1 + V1

)
/2 = Re V1

W2 = −i
(
V1 − V1

)
/2 = Im V1

W3 = (
V2 + V2

)
/2 = Re V2

W4 = −i
(
V2 − V2

)
/2 = Im V2

and let TEj = Wj for j = 1, . . . , 4. We have

T =

⎛
⎜⎜⎝

1 0 0 0
1 −1 0 0
0 0 1 −1
0 0 1 0

⎞
⎟⎟⎠ , T−1 =

⎛
⎜⎜⎝

1 0 0 0
1 −1 0 0
0 0 0 1
0 0 −1 1

⎞
⎟⎟⎠

and we find the canonical form

T−1AT =

⎛
⎜⎜⎝

0 1 1 0
−1 0 0 1
0 0 0 1
0 0 −1 0

⎞
⎟⎟⎠ .

�

Example. Let

A =

⎛
⎜⎜⎝

2 0 1 0
0 2 0 1
0 0 2 0
0 −1 0 2

⎞
⎟⎟⎠ .
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The characteristic equation for A is

(2 − λ)2((2 − λ)2 + 1) = 0

so the eigenvalues are 2 ± i and 2 (with multiplicity 2).
Solving the equations (A − (2 + i)I )X = 0 yields an eigenvector V =

(0, −i, 0, 1) for 2 + i. Let W1 = (0, 0, 0, 1) and W2 = (0, −1, 0, 0) be the real
and imaginary parts of V .

Solving the equations (A − 2I )X = 0 yields only one eigenvector associated
to 2, namely, W3 = (1, 0, 0, 0). Then we solve (A − 2I )X = W3 to find
W4 = (0, 0, 1, 0). Setting TEj = Wj as usual puts A into the canonical form

T−1AT =

⎛
⎜⎜⎝

2 1 0 0
−1 2 0 0

0 0 2 1
0 0 0 2

⎞
⎟⎟⎠ ,

as is easily checked. �

5.6 Genericity

We have mentioned several times that “most” matrices have distinct eigenval-
ues. Our goal in this section is to make this precise.

Recall that a set U ⊂ Rn is open if whenever X ∈ U there is an open ball
about X contained in U ; that is, for some a > 0 (depending on X) the open
ball about X of radius a,

{Y ∈ R
n
∣∣ |Y − X | < a},

is contained in U . Using geometrical language we say that if X belongs to an
open set U , any point sufficiently near to X also belongs to U .

Another kind of subset of Rn is a dense set: U ⊂ Rn is dense if there are
points in U arbitrarily close to each point in Rn . More precisely, if X ∈ Rn ,
then for every ε > 0 there exists some Y ∈ U with |X −Y | < ε. Equivalently, U
is dense in Rn if V ∩U is nonempty for every nonempty open set V ⊂ Rn . For
example, the rational numbers form a dense subset of R, as do the irrational
numbers. Similarly

{(x , y) ∈ R
2 | both x and y are rational}

is a dense subset of the plane.
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An interesting kind of subset of Rn is a set that is both open and dense.
Such a set U is characterized by the following properties: Every point in
the complement of U can be approximated arbitrarily closely by points of
U (since U is dense); but no point in U can be approximated arbitrarily closely
by points in the complement (because U is open).

Here is a simple example of an open and dense subset of R2:

V = {(x , y) ∈ R
2 | xy �= 1}.

This, of course, is the complement in R2 of the hyperbola defined by xy = 1.
Suppose (x0, y0) ∈ V . Then x0y0 �= 1 and if |x −x0|, |y −y0| are small enough,
then xy �= 1; this proves that V is open. Given any (x0, y0) ∈ R2, we can find
(x , y) as close as we like to (x0, y0) with xy �= 1; this proves that V is dense.

An open and dense set is a very fat set, as the following proposition shows:

Proposition. Let V1, . . . , Vm be open and dense subsets of Rn. Then

V = V1 ∩ . . . ∩ Vm

is also open and dense.

Proof: It can be easily shown that the intersection of a finite number of open
sets is open, so V is open. To prove that V is dense let U ⊂ Rn be a nonempty
open set. Then U ∩ V1 is nonempty since V1 is dense. Because U and V1 are
open, U ∩V1 is also open. Since U ∩V1 is open and nonempty, (U ∩V1) ∩V2

is nonempty because V2 is dense. Since V1 is open, U ∩ V1 ∩ V2 is open. Thus
(U ∩ V1 ∩ V2) ∩ V3 is nonempty, and so on. So U ∩ V is nonempty, which
proves that V is dense in Rn . �

We therefore think of a subset of Rn as being large if this set contains an
open and dense subset. To make precise what we mean by “most” matrices, we
need to transfer the notion of an open and dense set to the set of all matrices.

Let L(Rn) denote the set of n × n matrices, or, equivalently, the set of linear
maps of Rn . To discuss open and dense sets in L(Rn), we need to have a notion
of how far apart two given matrices in L(Rn) are. But we can do this by simply
writing all of the entries of a matrix as one long vector (in a specified order)

and thereby thinking of L(Rn) as Rn2
.

Theorem. The set M of matrices in L(Rn) that have n distinct eigenvalues is
open and dense in L(Rn).

Proof: We first prove that M is dense. Let A ∈ L(Rn). Suppose that A has
some repeated eigenvalues. The proposition from the previous section states
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that we can find a matrix T such that T−1AT assumes one of two forms. Either
we have a canonical form with blocks along the diagonal of the form

(i)

⎛
⎜⎜⎜⎜⎜⎜⎝

λ 1
λ 1

. . .
. . .
. . . 1

λ

⎞
⎟⎟⎟⎟⎟⎟⎠ or (ii)

⎛
⎜⎜⎜⎜⎜⎜⎝

C2 I2
C2 I2

. . .
. . .
. . . I2

C2

⎞
⎟⎟⎟⎟⎟⎟⎠

where α, β, λ ∈ R with β �= 0 and

C2 =
(

α β

−β α

)
, I2 =

(
1 0
0 1

)
,

or else we have a pair of separate diagonal blocks (λ) or C2. Either case can be
handled as follows.

Choose distinct values λj such that |λ−λj | is as small as desired, and replace
block (i) above by ⎛

⎜⎜⎜⎜⎜⎜⎝

λ1 1
λ2 1

. . .
. . .
. . . 1

λj

⎞
⎟⎟⎟⎟⎟⎟⎠ .

This new block now has distinct eigenvalues. In block (ii) we may similarly
replace each 2 × 2 block (

α β

−β α

)

with distinct αi ’s. The new matrix thus has distinct eigenvalues αi ± β. In this
fashion, we find a new matrix B arbitrarily close to T−1AT with distinct eigen-
values. Then the matrix TBT−1 also has distinct eigenvalues and, moreover,
this matrix is arbitrarily close to A. Indeed, the function F : L(Rn) → L(Rn)
given by F(M ) = TMT−1 where T is a fixed invertible matrix is a continuous
function on L(Rn) and hence takes matrices close to T−1AT to new matrices
close to A. This shows that M is dense.

To prove that M is open, consider the characteristic polynomial of a matrix
A ∈ L(Rn). If we vary the entries of A slightly, then the characteristic polyno-
mial’s coefficients vary only slightly. Hence the roots of this polynomial in C
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move only slightly as well. Thus, if we begin with a matrix whose eigenvalues
are distinct, nearby matrices have this property as well. This proves that M is
open. �

A property P of matrices is a generic property if the set of matrices having
property P contains an open and dense set in L(Rn). Thus a property is
generic if it is shared by some open and dense set of matrices (and perhaps
other matrices as well). Intuitively speaking, a generic property is one that
“almost all” matrices have. Thus, having all distinct eigenvalues is a generic
property of n × n matrices.

E X E R C I S E S

1. Prove that the determinant of a 3 × 3 matrix can be computed by
expanding along any row or column.

2. Find the eigenvalues and eigenvectors of the following matrices:

(a)

⎛
⎝0 0 1

0 1 0
1 0 0

⎞
⎠ (b)

⎛
⎝0 0 1

0 2 0
3 0 0

⎞
⎠ (c)

⎛
⎝1 1 1

1 1 1
1 1 1

⎞
⎠

(d)

⎛
⎝ 0 0 2

0 2 0
−2 0 0

⎞
⎠ (e)

⎛
⎜⎜⎝

3 0 0 1
0 1 2 2
1 −2 −1 −4

−1 0 0 3

⎞
⎟⎟⎠

3. Describe the regions in a, b, c–space where the matrix

⎛
⎝0 0 a

0 b 0
c 0 0

⎞
⎠

has real, complex, and repeated eigenvalues.
4. Describe the regions in a, b, c–space where the matrix

⎛
⎜⎜⎝

a 0 0 a
0 a b 0
0 c a 0
a 0 0 a

⎞
⎟⎟⎠

has real, complex, and repeated eigenvalues.
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5. Put the following matrices in canonical form

(a)

⎛
⎝0 0 1

0 1 0
1 0 0

⎞
⎠ (b)

⎛
⎝1 0 1

0 1 0
0 0 1

⎞
⎠ (c)

⎛
⎝ 0 1 0

−1 0 0
1 1 1

⎞
⎠

(d)

⎛
⎝0 1 0

1 0 0
1 1 1

⎞
⎠ (e)

⎛
⎝1 0 1

0 1 0
1 0 1

⎞
⎠ (f )

⎛
⎝1 1 0

1 1 1
0 1 1

⎞
⎠

(g)

⎛
⎝ 1 0 −1

−1 1 −1
0 0 1

⎞
⎠ (h)

⎛
⎜⎜⎝

1 0 0 1
0 1 1 0
0 0 1 0
1 0 0 0

⎞
⎟⎟⎠

6. Suppose that a 5 × 5 matrix has eigenvalues 2 and 1 ± i. List all possible
canonical forms for a matrix of this type.

7. Let L be the elementary matrix that interchanges the ith and jth rows of
a given matrix. That is, L has 1’s along the diagonal, with the exception
that �ii = �jj = 0 but �ij = �ji = 1. Prove that det L = −1.

8. Find a basis for both Ker T and Range T when T is the matrix

(a)

(
1 2
2 4

)
(b)

⎛
⎝1 1 1

1 1 1
1 1 1

⎞
⎠ (c)

⎛
⎝1 9 6

1 4 1
2 7 1

⎞
⎠

9. Suppose A is a 4 × 4 matrix that has a single real eigenvalue λ and only
one independent eigenvector. Prove that A may be put in canonical form⎛

⎜⎜⎝
λ 1 0 0
0 λ 1 0
0 0 λ 1
0 0 0 λ

⎞
⎟⎟⎠ .

10. Suppose A is a 4 × 4 matrix with a single real eigenvalue and two linearly
independent eigenvectors. Describe the possible canonical forms for A
and show that A may indeed be transformed into one of these canonical
forms. Describe explicitly the conditions under which A is transformed
into a particular form.

11. Show that if A and/or B are noninvertible matrices, then AB is also
noninvertible.

12. Suppose that S is a subset of Rn having the following properties:

(a) If X , Y ∈ S , then X + Y ∈ S ;

(b) If X ∈ S and α ∈ R, then αX ∈ S .
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Prove that S may be written as the collection of all possible linear
combinations of a finite set of vectors.

13. Which of the following subsets of Rn are open and/or dense? Give a brief
reason in each case.

(a) U1 = {(x , y) | y > 0};
(b) U2 = {(x , y) | x2 + y2 �= 1};
(c) U3 = {(x , y) | x is irrational};
(d) U4 = {(x , y) | x and y are not integers};
(e) U5 is the complement of a set C1 where C1 is closed and not dense;

(f) U6 is the complement of a set C2 which contains exactly 6 billion and
two distinct points.

14. Each of the following properties defines a subset of real n × n matrices.
Which of these sets are open and/or dense in the L(Rn)? Give a brief
reason in each case.

(a) det A �= 0.

(b) Trace A is rational.

(c) Entries of A are not integers.

(d) 3 ≤ det A < 4.

(e) −1 < |λ| < 1 for every eigenvalue λ.

(f) A has no real eigenvalues.

(g) Each real eigenvalue of A has multiplicity one.

15. Which of the following properties of linear maps on Rn are generic?

(a) |λ| �= 1 for every eigenvalue λ.

(b) n = 2; some eigenvalue is not real.

(c) n = 3; some eigenvalue is not real.

(d) No solution of X ′ = AX is periodic (except the zero solution).

(e) There are n distinct eigenvalues, each with distinct imaginary parts.

(f) AX �= X and AX �= −X for all X �= 0.



6
Higher Dimensional

Linear Systems

After our little sojourn into the world of linear algebra, it’s time to return to dif-
ferential equations and, in particular, to the task of solving higher dimensional
linear systems with constant coefficients. As in the linear algebra chapter, we
have to deal with a number of different cases.

6.1 Distinct Eigenvalues

Consider first a linear system X ′ = AX where the n × n matrix A has n
distinct, real eigenvalues λ1, . . . , λn . By the results in Chapter 5, there is a
change of coordinates T so that the new system Y ′ = (T−1AT )Y assumes the
particularly simple form

y ′
1 = λ1y1

...

y ′
n = λnyn .

The linear map T is the map that takes the standard basis vector Ej to the
eigenvector Vj associated to λj . Clearly, a function of the form

Y (t ) =
⎛
⎜⎝c1eλ1t

...
cneλnt

⎞
⎟⎠

107
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is a solution of Y ′ = (T−1AT )Y that satisfies the initial condition Y (0) =
(c1, . . . , cn). As in Chapter 3, this is the only such solution, because if

W (t ) =
⎛
⎜⎝w1(t )

...
wn(t )

⎞
⎟⎠

is another solution, then differentiating each expression wj(t ) exp(−λj t ), we
find

d

dt
wj(t )e

−λj t = (w ′
j − λjwj)e

−λj t = 0.

Hence wj(t ) = cj exp(λj t ) for each j . Therefore the collection of solutions
Y (t ) yields the general solution of Y ′ = (T−1AT )Y .

It then follows that X(t ) = TY (t ) is the general solution of X ′ = AX , so
this general solution may be written in the form

X(t ) =
n∑

j=1

cj e
λj t Vj .

Now suppose that the eigenvalues λ1, . . . , λk of A are negative, while the
eigenvalues λk+1, . . . , λn are positive. Since there are no zero eigenvalues, the
system is hyperbolic. Then any solution that starts in the subspace spanned
by the vectors V1, . . . , Vk must first of all stay in that subspace for all time
since ck+1 = · · · = cn = 0. Secondly, each such solution tends to the origin
as t → ∞. In analogy with the terminology introduced for planar systems,
we call this subspace the stable subspace. Similarly, the subspace spanned by
Vk+1, . . . , Vn contains solutions that move away from the origin. This subspace
is the unstable subspace. All other solutions tend toward the stable subspace
as time goes backward and toward the unstable subspace as time increases.
Therefore this system is a higher dimensional analog of a saddle.

Example. Consider

X ′ =
⎛
⎝1 2 −1

0 3 −2
0 2 −2

⎞
⎠X .

In Section 5.2 in Chapter 5, we showed that this matrix has eigenvalues
2, 1, and −1 with associated eigenvectors (3, 2, 1), (1, 0, 0), and (0, 1, 2),
respectively. Therefore the matrix

T =
⎛
⎝3 1 0

2 0 1
1 0 2

⎞
⎠
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z

x

y

T
(0, 1, 2)

Figure 6.1 The stable and unstable subspaces of a saddle in dimension 3.
On the left, the system is in canonical form.

converts X ′ = AX to

Y ′ = (T−1AT )Y =
⎛
⎝2 0 0

0 1 0
0 0 −1

⎞
⎠Y ,

which we can solve immediately. Multiplying the solution by T then yields the
general solution

X(t ) = c1e2t

⎛
⎝3

2
1

⎞
⎠ + c2et

⎛
⎝1

0
0

⎞
⎠ + c3e−t

⎛
⎝0

1
2

⎞
⎠

of X ′ = AX . The straight line through the origin and (0, 1, 2) is the stable
line, while the plane spanned by (3, 2, 1) and (1, 0, 0) is the unstable plane. A
collection of solutions of this system as well as the system Y ′ = (T−1AT )Y is
displayed in Figure 6.1. �

Example. If the 3 × 3 matrix A has three real, distinct eigenvalues that are
negative, then we may find a change of coordinates so that the system assumes
the form

Y ′ = (T−1AT )Y =
⎛
⎝λ1 0 0

0 λ2 0
0 0 λ3

⎞
⎠Y

where λ3 < λ2 < λ1 < 0. All solutions therefore tend to the origin and so
we have a higher dimensional sink. See Figure 6.2. For an initial condition
(x0, y0, z0) with all three coordinates nonzero, the corresponding solution
tends to the origin tangentially to the x-axis (see Exercise 2 at the end of
the chapter). �
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z

x

y

Figure 6.2 A sink in three dimensions.

Now suppose that the n × n matrix A has n distinct eigenvalues, of which
k1 are real and 2k2 are nonreal, so that n = k1 + 2k2. Then, as in Chapter 5,
we may change coordinates so that the system assumes the form

x ′
j = λj xj

u′
� = α�u� + β�v�

v ′
� = −β�u� + α�v�

for j = 1, . . . , k1 and � = 1, . . . , k2. As in Chapter 3, we therefore have solutions
of the form

xj(t ) = cj e
λj t

u�(t ) = p�e
α�t cos β�t + q�e

α�t sin β�t

v�(t ) = −p�e
α�t sin β�t + q�e

α�t cos β�t .

As before, it is straightforward to check that this is the general solution. We
have therefore shown:

Theorem. Consider the system X ′ = AX where A has distinct eigenvalues
λ1, . . . , λk1 ∈ R and α1 + iβ1, . . . , αk2 + iβk2 ∈ C. Let T be the matrix that puts
A in the canonical form

T−1AT =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ1

. . .
λk1

B1

. . .
Bk2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
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where

Bj =
(

αj βj

−βj αj

)
.

Then the general solution of X ′ = AX is TY (t ) where

Y (t ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c1eλ1t

...
ckeλk1 t

a1eα1t cos β1t + b1eα1t sin β1t
−a1eα1t sin β1t + b1eα1t cos β1t

...
ak2e

αk2 t cos βk2 t + bk2e
αk2 t sin βk2 t−ak2e

αk2 t sin βk2 t + bk2e
αk2 t cos βk2 t

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

As usual, the columns of the matrix T in this theorem are the eigenvectors
(or the real and imaginary parts of the eigenvectors) corresponding to each
eigenvalue. Also, as before, the subspace spanned by the eigenvectors corre-
sponding to eigenvalues with negative (resp., positive) real parts is the stable
(resp., unstable) subspace.

Example. Consider the system

X ′ =
⎛
⎝ 0 1 0

−1 0 0
0 0 −1

⎞
⎠X

whose matrix is already in canonical form. The eigenvalues are ±i, −1. The
solution satisfying the initial condition (x0, y0, z0) is given by

Y (t ) = x0

⎛
⎝ cos t

− sin t
0

⎞
⎠ + y0

⎛
⎝sin t

cos t
0

⎞
⎠ + z0e−t

⎛
⎝0

0
1

⎞
⎠

so this is the general solution. The phase portrait for this system is displayed
in Figure 6.3. The stable line lies along the z-axis, whereas all solutions in the
xy–plane travel around circles centered at the origin. In fact, each solution
that does not lie on the stable line actually lies on a cylinder in R3 given by
x2 + y2 = constant. These solutions spiral toward the circular solution of
radius

√
x2

0 + y2
0 in the xy–plane if z0 �= 0. �
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x2�y2�a2

Figure 6.3 The phase portrait for a spiral
center.

Example. Now consider X ′ = AX where

A =
⎛
⎝−0. 1 0 1

−1 1 −1. 1
−1 0 −0. 1

⎞
⎠ .

The characteristic equation is

−λ3 + 0. 8λ2 − 0. 81λ + 1. 01 = 0,

which we have kindly factored for you into

(1 − λ)(λ2 + 0. 2λ + 1. 01) = 0.

Therefore the eigenvalues are the roots of this equation, which are 1 and−0. 1±
i. Solving (A − (−0. 1 + i)I )X = 0 yields the eigenvector (−i, 1, 1) associated
to −0. 1 + i. Let V1 = Re (−i, 1, 1) = (0, 1, 1) and V2 = Im (−i, 1, 1) =
(−1, 0, 0). Solving (A − I )X = 0 yields V3 = (0, 1, 0) as an eigenvector
corresponding to λ = 1. Then the matrix whose columns are the Vi ,

T =
⎛
⎝0 −1 0

1 0 1
1 0 0

⎞
⎠ ,
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Figure 6.4 A spiral saddle in canonical
form.

converts X ′ = AX into

Y ′ =
⎛
⎝−0. 1 1 0

−1 −0. 1 0
0 0 1

⎞
⎠Y .

This system has an unstable line along the z-axis, while the xy–plane is the
stable plane. Note that solutions spiral into 0 in the stable plane. We call
this system a spiral saddle (see Figure 6.4). Typical solutions of the stable
plane spiral toward the z-axis while the z-coordinate meanwhile increases or
decreases (see Figure 6.5). �

Figure 6.5 Typical solutions of the spiral
saddle tend to spiral toward the unstable
line.
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6.2 Harmonic Oscillators

Consider a pair of undamped harmonic oscillators whose equations are

x ′′
1 = −ω2

1x1

x ′′
2 = −ω2

2x2.

We can almost solve these equations by inspection as visions of sin ωt and
cos ωt pass through our minds. But let’s push on a bit, first to illustrate the
theorem in the previous section in the case of nonreal eigenvalues, but more
importantly to introduce some interesting geometry.

We first introduce the new variables yj = x ′
j for j = 1, 2 so that the equations

can be written as a system

x ′
j = yj

y ′
j = −ω2

j xj .

In matrix form, this system is X ′ = AX where X = (x1, y1, x2, y2) and

A =

⎛
⎜⎜⎝

0 1
−ω2

1 0
0 1

−ω2
2 0

⎞
⎟⎟⎠ .

This system has eigenvalues ±iω1 and ±iω2. An eigenvector corresponding to
iω1 is V1 = (1, iω1, 0, 0) while V2 = (0, 0, 1, iω2) is associated to iω2. Let W1

and W2 be the real and imaginary parts of V1, and let W3 and W4 be the same
for V2. Then, as usual, we let TEj = Wj and the linear map T puts this system
into canonical form with the matrix

T−1AT =

⎛
⎜⎜⎝

0 ω1

−ω1 0
0 ω2

−ω2 0

⎞
⎟⎟⎠ .

We then derive the general solution

Y (t ) =

⎛
⎜⎜⎝

x1(t )
y1(t )
x2(t )
y2(t )

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

a1 cos ω1t + b1 sin ω1t
−a1 sin ω1t + b1 cos ω1t
a2 cos ω2t + b2 sin ω2t

−a2 sin ω2t + b2 cos ω2t

⎞
⎟⎟⎠

just as we originally expected.
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We could say that this is the end of the story and stop here since we have the
formulas for the solution. However, let’s push on a bit more.

Each pair of solutions (xj(t ), yj(t )) for j = 1, 2 is clearly a periodic solution
of the equation with period 2π /ωj , but this does not mean that the full four-
dimensional solution is a periodic function. Indeed, the full solution is a peri-
odic function with period τ if and only if there exist integers m and n such that

ω1τ = m · 2π and ω2τ = n · 2π .

Thus, for periodicity, we must have

τ = 2πm

ω1
= 2πn

ω2

or, equivalently,
ω2

ω1
= n

m
.

That is, the ratio of the two frequencies of the oscillators must be a rational
number. In Figure 6.6 we have plotted (x1(t ), x2(t )) for particular solution of
this system when the ratio of the frequencies is 5/2.

When the ratio of the frequencies is irrational, something very different
happens. To understand this, we make another (and much more familiar)
change of coordinates. In canonical form, our system currently is

x ′
j = ωj yj

y ′
j = −ωj xj .

x2

x1

Figure 6.6 A solution with
frequency ratio 5/2 projected
into the x1x2–plane. Note that
x2(t) oscillates five times and
x1(t) only twice before returning
to the initial position.
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Let’s now introduce polar coordinates (rj , θj) in place of the xj and yj variables.
Differentiating

r2
j = x2

j + y2
j ,

we find

2rj r
′
j = 2xjx

′
j + 2yjy

′
j

= 2xjyjωj − 2xjyjωj

= 0.

Therefore r ′
j = 0 for each j . Also, differentiating the equation

tan θj = yj

xj

yields

(sec2θj)θ
′
j =

y ′
j xj − yjx ′

j

x2
j

=
−ωj r2

j

r2
j cos2 θj

from which we find

θ ′
j = −ωj .

So, in polar coordinates, these equations really are quite simple:

r ′
j = 0

θ ′
j = −ωj .

The first equation tells us that both r1 and r2 remain constant along any
solution. Then, no matter what we pick for our initial r1 and r2 values, the
θj equations remain the same. Hence we may as well restrict our attention to
r1 = r2 = 1. The resulting set of points in R4 is a torus—the surface of a
doughnut—although this is a little difficult to visualize in four-dimensional
space. However, we know that we have two independent variables on this set,
namely, θ1 and θ2, and both are periodic with period 2π . So this is akin to
the two independent circular directions that parameterize the familiar torus
in R3.



6.2 Harmonic Oscillators 117

Restricted to this torus, the equations now read

θ ′
1 = −ω1

θ ′
2 = −ω2.

It is convenient to think of θ1 and θ2 as variables in a square of sidelength 2π
where we glue together the opposite sides θj = 0 and θj = 2π to make the
torus. In this square our vector field now has constant slope

θ ′
2

θ ′
1

= ω2

ω1
.

Therefore solutions lie along straight lines with slope ω2/ω1 in this square.
When a solution reaches the edge θ1 = 2π (say, at θ2 = c), it instantly
reappears on the edge θ1 = 0 with the θ2 coordinate given by c , and then
continues onward with slope ω2/ω1. A similar identification occurs when the
solution meets θ2 = 2π .

So now we have a simplified geometric vision of what happens to these
solutions on these tori. But what really happens? The answer depends on the
ratio ω2/ω1. If this ratio is a rational number, say, n/m, then the solution
starting at (θ1(0), θ2(0)) will pass horizontally through the torus exactly m
times and vertically n times before returning to its starting point. This is the
periodic solution we observed above. Incidentally, the picture of the straight
line solutions in the θ1θ2–plane is not at all the same as our depiction of
solutions in the x1x2–plane as shown in Figure 6.6.

In the irrational case, something quite different occurs. See Figure 6.7. To
understand what is happening here, we return to the notion of a Poincaré map
discussed in Chapter 1. Consider the circle θ1 = 0, the left-hand edge of our
square representation of the torus. Given an initial point on this circle, say,
θ2 = x0, we follow the solution starting at this point until it next hits θ1 = 2π .

Figure 6.7 A solution with frequency ratio
√

2
projected into the x1x2–plane, the left curve
computed up to time 50π , the right to time 100π .
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x1�f (x0)

h1�0 h1�2π

x0
x2

Figure 6.8 The Poincaré map on the
circle θ1 = 0 in the θ1θ2 torus.

By our identification, this solution has now returned to the circle θ1 = 0. The
solution may cross the boundary θ2 = 2π several times in making this transit,
but it does eventually return to θ1 = 0. So we may define the Poincaré map
on θ1 = 0 by assigning to x0 on this circle the corresponding coordinate of the
point of first return. Suppose that this first return occurs at the point θ2(τ )
where τ is the time for which θ1(τ ) = 2π . Since θ1(t ) = θ1(0) + ω1t , we have
τ = 2π /ω1. Hence θ2(τ ) = x0 + ω2(2π /ω1). Therefore the Poincaré map on
the circle may be written as

f (x0) = x0 + 2π(ω2/ω1) mod 2π

where x0 = θ2(0) is our initial θ2 coordinate on the circle. See Figure 6.8. Thus
the Poincaré map on the circle is just the function that rotates points on the
circle by angle 2π(ω2/ω1). Since ω2/ω1 is irrational, this function is called an
irrational rotation of the circle.

Definition

The set of points x0, x1 = f (x0), x2 = f (f (x0)), . . . , xn = f (xn−1) is
called the orbit of x0 under iteration of f .

The orbit of x0 tracks how our solution successively crosses θ1 = 2π as time
increases.

Proposition. Suppose ω2/ω1 is irrational. Then the orbit of any initial point
x0 on the circle θ1 = 0 is dense in the circle.

Proof: Recall from Section 5.6 that a subset of the circle is dense if there
are points in this subset that are arbitrarily close to any point whatsoever



6.3 Repeated Eigenvalues 119

in the circle. Therefore we must show that, given any point z on the circle and
any ε > 0, there is a point xn on the orbit of x0 such that |z − xn| < ε where
z and xn are measured mod 2π . To see this, observe first that there must be
n, m for which m > n and |xn − xm| < ε. Indeed, we know that the orbit
of x0 is not a finite set of points since ω2/ω1 is irrational. Hence there must
be at least two of these points whose distance apart is less than ε since the
circle has finite circumference. These are the points xn and xm (actually, there
must be infinitely many such points). Now rotate these points in the reverse
direction exactly n times. The points xn and xm are rotated to x0 and xm−n ,
respectively. We find, after this rotation, that |x0 − xm−n| < ε. Now xm−n is
given by rotating the circle through angle (m −n)2π(ω2/ω1), which, mod 2π ,
is therefore a rotation of angle less than ε. Hence, performing this rotation
again, we find

|x2(m−n) − xm−n| < ε

as well, and, inductively,

|xk(m−n) − x(k−1)(m−n)| < ε

for each k. Thus we have found a sequence of points obtained by repeated
rotation through angle (m − n)2π(ω2/ω1), and each of these points is
within ε of its predecessor. Hence there must be a point of this form within
ε of z . �

Since the orbit of x0 is dense in the circle θ1 = 0, it follows that the straight-
line solutions connecting these points in the square are also dense, and so the
original solutions are dense in the torus on which they reside. This accounts for
the densely packed solution shown projected into the x1x2–plane in Figure 6.7
when ω2/ω1 = √

2.
Returning to the actual motion of the oscillators, we see that when ω2/ω1

is irrational, the masses do not move in periodic fashion. However, they do
come back very close to their initial positions over and over again as time goes
on due to the density of these solutions on the torus. These types of motions
are called quasi-periodic motions. In Exercise 7 we investigate a related set of
equations, namely, a pair of coupled oscillators.

6.3 Repeated Eigenvalues

As we saw in the previous chapter, the solution of systems with repeated
real eigenvalues reduces to solving systems whose matrices contain blocks
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of the form ⎛
⎜⎜⎜⎜⎜⎜⎝

λ 1
λ 1

. . .
. . .
. . . 1

λ

⎞
⎟⎟⎟⎟⎟⎟⎠ .

Example. Let

X ′ =
⎛
⎝λ 1 0

0 λ 1
0 0 λ

⎞
⎠X .

The only eigenvalue for this system is λ, and its only eigenvector is (1, 0, 0).
We may solve this system as we did in Chapter 3, by first noting that x ′

3 = λx3,
so we must have

x3(t ) = c3eλt .

Now we must have

x ′
2 = λx2 + c3eλt .

As in Chapter 3, we guess a solution of the form

x2(t ) = c2eλt + αteλt .

Substituting this guess into the differential equation for x ′
2, we determine that

α = c3 and find

x2(t ) = c2eλt + c3teλt .

Finally, the equation

x ′
1 = λx1 + c2eλt + c3teλt

suggests the guess

x1(t ) = c1eλt + αteλt + βt 2eλt .
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x

z

Figure 6.9 The phase portrait for
repeated real eigenvalues.

Solving as above, we find

x1(t ) = c1eλt + c2teλt + c3
t 2

2
eλt .

Altogether, we find

X(t ) = c1eλt

⎛
⎝1

0
0

⎞
⎠ + c2eλt

⎛
⎝t

1
0

⎞
⎠ + c3eλt

⎛
⎝t 2/2

t
1

⎞
⎠ ,

which is the general solution. Despite the presence of the polynomial terms in
this solution, when λ < 0, the exponential term dominates and all solutions
do tend to zero. Some representative solutions when λ < 0 are shown in
Figure 6.9. Note that there is only one straight-line solution for this system;
this solution lies on the x-axis. Also, the xy–plane is invariant and solutions
there behave exactly as in the planar repeated eigenvalue case. �

Example. Consider the following four-dimensional system:

x ′
1 = x1 + x2 − x3

x ′
2 = x2 + x4

x ′
3 = x3 + x4

x ′
4 = x4
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We may write this system in matrix form as

X ′ = AX =

⎛
⎜⎜⎝

1 1 −1 0
0 1 0 1
0 0 1 1
0 0 0 1

⎞
⎟⎟⎠X .

Because A is upper triangular, all of the eigenvalues are equal to 1. Solving
(A − I )X = 0, we find two independent eigenvectors V1 = (1, 0, 0, 0) and
W1 = (0, 1, 1, 0). This reduces the possible canonical forms for A to two
possibilities. Solving (A − I )X = V1 yields one solution V2 = (0, 1, 0, 0), and
solving (A − I )X = W1 yields another solution W2 = (0, 0, 0, 1). Thus we
know that the system X ′ = AX may be tranformed into

Y ′ = (T−1AT )Y =

⎛
⎜⎜⎝

1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

⎞
⎟⎟⎠Y

where the matrix T is given by

T =

⎛
⎜⎜⎝

1 0 0 0
0 1 1 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ .

Solutions of Y ′ = (T−1AT )Y therefore are given by

y1(t ) = c1et + c2tet

y2(t ) = c2et

y3(t ) = c3et + c4tet

y4(t ) = c4et .

Applying the change of coordinates T , we find the general solution of the
original system

x1(t ) = c1et + c2tet

x2(t ) = c2et + c3et + c4tet

x3(t ) = c3et + c4tet

x4(t ) = c4et . �
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6.4 The Exponential of a Matrix

We turn now to an alternative and elegant approach to solving linear systems
using the exponential of a matrix. In a certain sense, this is the more natural
way to attack these systems.

Recall from Section 1.1 in Chapter 1 how we solved the 1 × 1 “system” of
linear equations x ′ = ax where our matrix was now simply (a). We did not
go through the process of finding eigenvalues and eigenvectors here. (Well,
actually, we did, but the process was pretty simple.) Rather, we just exponen-
tiated the matrix (a) to find the general solution x(t ) = c exp(at ). In fact, this
process works in the general case where A is n ×n. All we need to know is how
to exponentiate a matrix.

Here’s how: Recall from calculus that the exponential function can be
expressed as the infinite series

ex =
∞∑

k=0

xk

k! .

We know that this series converges for every x ∈ R. Now we can add matrices,
we can raise them to the power k, and we can multiply each entry by 1/k!. So
this suggests that we can use this series to exponentiate them as well.

Definition

Let A be an n ×n matrix. We define the exponential of A to be the
matrix given by

exp(A) =
∞∑

k=0

Ak

k! .

Of course we have to worry about what it means for this sum of matrices to
converge, but let’s put that off and try to compute a few examples first.

Example. Let

A =
(

λ 0
0 μ

)
.

Then we have

Ak =
(

λk 0
0 μk

)
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so that

exp(A) =

⎛
⎜⎜⎜⎜⎝

∞∑
k=0

λk /k! 0

0
∞∑

k=0

μk /k!

⎞
⎟⎟⎟⎟⎠ =

(
eλ 0
0 eμ

)

as you may have guessed. �

Example. For a slightly more complicated example, let

A =
(

0 β

−β 0

)
.

We compute

A0 = I , A2 = −β2I , A3 = −β3
(

0 1
−1 0

)
,

A4 = β4I , A5 = β5
(

0 1
−1 0

)
, . . .

so we find

exp(A) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

∞∑
k=0

(−1)k β2k

(2k)!
∞∑

k=0

(−1)k β2k+1

(2k + 1)!

−
∞∑

k=0

(−1)k β2k+1

(2k + 1)!
∞∑

k=0

(−1)k β2k

(2k)!

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
(

cos β sin β

− sin β cos β

)
. �

Example. Now let

A =
(

λ 1
0 λ

)



6.4 The Exponential of a Matrix 125

with λ �= 0. With an eye toward what comes later, we compute, not exp A, but
rather exp(tA). We have

(tA)k =
(

(tλ)k kt kλk−1

0 (tλ)k

)
.

Hence we find

exp(tA) =

⎛
⎜⎜⎜⎜⎜⎜⎝

∞∑
k=0

(tλ)k

k! t
∞∑

k=0

(tλ)k

k!

0
∞∑

k=0

(tλ)k

k!

⎞
⎟⎟⎟⎟⎟⎟⎠ =

(
etλ tetλ

0 etλ

)
.

�

Note that, in each of these three examples, the matrix exp(A) is a matrix
whose entries are infinite series. We therefore say that the infinite series of
matrices exp(A) converges absolutely if each of its individual terms does so. In
each of the previous cases, this convergence was clear. Unfortunately, in the
case of a general matrix A, this is not so clear. To prove convergence here, we
need to work a little harder.

Let aij(k) denote the ij entry of Ak . Let a = max |aij |. We have

|aij(2)| =
∣∣∣∣ n∑

k=1

aikakj

∣∣∣∣ ≤ na2

|aij(3)| =
∣∣∣∣ n∑

k,�=1

aikak�a�j

∣∣∣∣ ≤ n2a3

...

|aij(k)| ≤ nk−1ak .

Hence we have a bound for the ij entry of the n × n matrix exp(A):

∣∣∣∣ ∞∑
k=0

aij(k)

k!
∣∣∣∣ ≤

∞∑
k=0

|aij(k)|
k! ≤

∞∑
k=0

nk−1ak

k! ≤
∞∑

k=0

(na)k

k! ≤ exp na

so that this series converges absolutely by the comparison test. Therefore the
matrix exp A makes sense for any A ∈ L(Rn).

The following result shows that matrix exponentiation shares many of the
familiar properties of the usual exponential function.
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Proposition. Let A, B, and T be n × n matrices. Then:

1. If B = T−1AT, then exp(B) = T−1 exp(A)T.
2. If AB = BA, then exp(A + B) = exp(A) exp(B).
3. exp(−A) = (exp(A))−1.

Proof: The proof of (1) follows from the identities T−1(A+B)T = T−1AT +
T−1BT and (T−1AT )k = T−1AkT . Therefore

T−1

(
n∑

k=0

Ak

k!

)
T =

n∑
k=0

(
T−1AT

)k

k!

and (1) follows by taking limits.
To prove (2), observe that because AB = BA we have, by the binomial

theorem,

(A + B)n = n!
∑

j+k=n

Aj

j!
Bk

k! .

Therefore we must show that

∞∑
n=0

⎛
⎝ ∑

j+k=n

Aj

j!
Bk

k!

⎞
⎠ =

⎛
⎝ ∞∑

j=0

Aj

j!

⎞
⎠( ∞∑

k=0

Bk

k!

)
.

This is not as obvious as it may seem, since we are dealing here with series
of matrices, not series of real numbers. So we will prove this in the following
lemma, which then proves (2). Putting B = −A in (2) gives (3). �

Lemma. For any n × n matrices A and B, we have:

∞∑
n=0

⎛
⎝ ∑

j+k=n

Aj

j!
Bk

k!

⎞
⎠ =

⎛
⎝ ∞∑

j=0

Aj

j!

⎞
⎠( ∞∑

k=0

Bk

k!

)
.

Proof: We know that each of these infinite series of matrices converges. We
just have to check that they converge to each other. To do this, consider the
partial sums

γ2m =
2m∑
n=0

⎛
⎝ ∑

j+k=n

Aj

j!
Bk

k!

⎞
⎠
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and

αm =
⎛
⎝ m∑

j=0

Aj

j!

⎞
⎠ and βm =

(
m∑

k=0

Bk

k!

)
.

We need to show that the matrices γ2m − αmβm tend to the zero matrix as
m → ∞. Toward that end, for a matrix M = [mij ], we let ||M || = max |mij |.
We will show that ||γ2m − αmβm|| → 0 as m → ∞.

A computation shows that

γ2m − αmβm =
∑′ Aj

j!
Bk

k! +
∑′′ Aj

j!
Bk

k!
where

∑′ denotes the sum over terms with indices satisfying

j + k ≤ 2m, 0 ≤ j ≤ m, m + 1 ≤ k ≤ 2m

while
∑′′ is the sum corresponding to

j + k ≤ 2m, m + 1 ≤ j ≤ 2m, 0 ≤ k ≤ m.

Therefore

||γ2m − αmβm|| ≤
∑′ ∣∣∣∣Aj

j!
∣∣∣∣ · ∣∣∣∣Bk

k!
∣∣∣∣ +

∑′′ ∣∣∣∣Aj

j!
∣∣∣∣ · ∣∣∣∣Bk

k!
∣∣∣∣.

Now

∑′ ∣∣∣∣Aj

j!
∣∣∣∣ · ∣∣∣∣Bk

k!
∣∣∣∣ ≤

( m∑
j=0

∣∣∣∣Aj

j!
∣∣∣∣)( 2m∑

k=m+1

∣∣∣∣Bk

k!
∣∣∣∣).

This tends to 0 as m → ∞ since, as we saw above,

∞∑
j=0

∣∣∣∣Aj

j!
∣∣∣∣ ≤ exp(n||A||) < ∞.

Similarly,

∑′′ ∣∣∣∣Aj

j!
∣∣∣∣ · ∣∣∣∣Bk

k!
∣∣∣∣ → 0

as m → ∞. Therefore limm→∞(γ2m − αmβm) = 0, proving the lemma. �
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Observe that statement (3) of the proposition implies that exp(A) is
invertible for every matrix A. This is analogous to the fact that ea �= 0 for
every real number a.

There is a very simple relationship between the eigenvectors of A and those
of exp(A).

Proposition. If V ∈ Rn is an eigenvector of A associated to the eigenvalue λ,
then V is also an eigenvector of exp(A) associated to eλ.

Proof: From AV = λV , we obtain

exp(A)V = lim
n→∞

(
n∑

k=0

AkV

k!

)

= lim
n→∞

(
n∑

k=0

λk

k! V

)

=
( ∞∑

k=0

λk

k!

)
V

= eλV . �

Now let’s return to the setting of systems of differential equations. Let A be
an n × n matrix and consider the system X ′ = AX . Recall that L(Rn) denotes
the set of all n × n matrices. We have a function R → L(Rn), which assigns

the matrix exp(tA) to t ∈ R. Since L(Rn) is identified with Rn2
, it makes sense

to speak of the derivative of this function.

Proposition.

d

dt
exp(tA) = A exp(tA) = exp(tA)A.

In other words, the derivative of the matrix-valued function t → exp(tA)
is another matrix-valued function A exp(tA).

Proof: We have

d

dt
exp(tA) = lim

h→0

exp((t + h)A) − exp(tA)

h

= lim
h→0

exp(tA) exp(hA) − exp(tA)

h
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= exp(tA) lim
h→0

(
exp(hA) − I

h

)
= exp(tA)A;

that the last limit equals A follows from the series definition of exp(hA). Note
that A commutes with each term of the series for exp(tA), hence with exp(tA).
This proves the proposition. �

Now we return to solving systems of differential equations. The following
may be considered as the fundamental theorem of linear differential equations
with constant coefficients.

Theorem. Let A be an n × n matrix. Then the solution of the initial value
problem X ′ = AX with X(0) = X0 is X(t ) = exp(tA)X0. Moreover, this is the
only such solution.

Proof: The preceding proposition shows that

d

dt
(exp(tA)X0) =

(
d

dt
exp(tA)

)
X0 = A exp(tA)X0.

Moreover, since exp(0A)X0 = X0, it follows that this is a solution of the initial
value problem. To see that there are no other solutions, let Y (t ) be another
solution satisfying Y (0) = X0 and set

Z (t ) = exp(−tA)Y (t ).

Then

Z ′(t ) =
(

d

dt
exp(−tA)

)
Y (t ) + exp(−tA)Y ′(t )

= −A exp(−tA)Y (t ) + exp(−tA)AY (t )

= exp(−tA)(−A + A)Y (t )

≡ 0.

Therefore Z (t ) is a constant. Setting t = 0 shows Z (t ) = X0, so that Y (t ) =
exp(tA)X0. This completes the proof of the theorem. �

Note that this proof is identical to that given way back in Section 1.1. Only the
meaning of the letter A has changed.
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Example. Consider the system

X ′ =
(

λ 1
0 λ

)
X .

By the theorem, the general solution is

X(t ) = exp(tA)X0 = exp

(
tλ t
0 tλ

)
X0.

But this is precisely the matrix whose exponential we computed earlier. We
find

X(t ) =
(

etλ tetλ

0 etλ

)
X0.

Note that this agrees with our computations in Chapter 3. �

6.5 Nonautonomous Linear Systems

Up to this point, virtually all of the linear systems of differential equations
that we have encountered have been autonomous. There are, however, certain
types of nonautonomous systems that often arise in applications. One such
system is of the form

X ′ = A(t )X

where A(t ) = [aij(t )] is an n × n matrix that depends continuously on time.
We will investigate these types of systems further when we encounter the
variational equation in subsequent chapters.

Here we restrict our attention to a different type of nonautonomous linear
system given by

X ′ = AX + G(t )

where A is a constant n × n matrix and G : R → Rn is a forcing term
that depends explicitly on t . This is an example of a first-order, linear,
nonhomogeneous system of equations.
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Example. (Forced Harmonic Oscillator) If we apply an external force
to the harmonic oscillator system, the differential equation governing the
motion becomes

x ′′ + bx ′ + kx = f (t )

where f (t ) measures the external force. An important special case occurs when
this force is a periodic function of time, which corresponds, for example, to
moving the table on which the mass-spring apparatus resides back and forth
periodically. As a system, the forced harmonic oscillator equation becomes

X ′ =
(

0 1
−k −b

)
X + G(t ) where G(t ) =

(
0

f (t )

)
. �

For a nonhomogeneous system, the equation that results from dropping the
time-dependent term, namely, X ′ = AX , is called the homogeneous equation.
We know how to find the general solution of this system. Borrowing the
notation from the previous section, the solution satisfying the initial condition
X(0) = X0 is

X(t ) = exp(tA)X0,

so this is the general solution of the homogeneous equation.
To find the general solution of the nonhomogeneous equation, suppose

that we have one particular solution Z (t ) of this equation. So Z ′(t ) =
AZ (t ) + G(t ). If X(t ) is any solution of the homogeneous equation, then
the function Y (t ) = X(t ) + Z (t ) is another solution of the nonhomogeneous
equation. This follows since we have

Y ′ = X ′ + Z ′ = AX + AZ + G(t )

= A(X + Z ) + G(t )

= AY + G(t ).

Therefore, since we know all solutions of the homogeneous equation, we can
now find the general solution to the nonhomogeneous equation, provided
that we can find just one particular solution of this equation. Often one gets
such a solution by simply guessing that solution (in calculus, this method is
usually called the method of undetermined coefficients). Unfortunately, guessing
a solution does not always work. The following method, called variation of
parameters, does work in all cases. However, there is no guarantee that we can
actually evaluate the required integrals.
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Theorem. (Variation of Parameters) Consider the nonhomogeneous
equation

X ′ = AX + G(t )

where A is an n × n matrix and G(t ) is a continuous function of t . Then

X(t ) = exp(tA)

(
X0 +

∫ t

0
exp(−sA) G(s) ds

)

is a solution of this equation satisfying X(0) = X0.

Proof: Differentiating X(t ), we obtain

X ′(t ) = A exp(tA)

(
X0 +

∫ t

0
exp(−sA) G(s) ds

)

+ exp(tA)
d

dt

∫ t

0
exp(−sA) G(s) ds

= A exp(tA)

(
X0 +

∫ t

0
exp(−sA) G(s) ds

)
+ G(t )

= AX(t ) + G(t ). �

We now give several applications of this result in the case of the periodically
forced harmonic oscillator. Assume first that we have a damped oscillator that
is forced by cos t , so the period of the forcing term is 2π . The system is

X ′ = AX + G(t )

where G(t ) = (0, cos t ) and A is the matrix

A =
(

0 1
−k −b

)

with b, k > 0. We claim that there is a unique periodic solution of this system
that has period 2π . To prove this, we must first find a solution X(t ) satisfying
X(0) = X0 = X(2π). By variation of parameters, we need to find X0 such that

X0 = exp(2πA)X0 + exp(2πA)

∫ 2π

0
exp(−sA) G(s) ds.

Now the term

exp(2πA)

∫ 2π

0
exp(−sA) G(s) ds
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is a constant vector, which we denote by W . Therefore we must solve the
equation

(
exp(2πA) − I

)
X0 = −W .

There is a unique solution to this equation, since the matrix exp(2πA) − I
is invertible. For if this matrix were not invertible, we would have a nonzero
vector V with

(
exp(2πA) − I

)
V = 0,

or, in other words, the matrix exp(2πA) would have an eigenvalue of 1. But,
from the previous section, the eigenvalues of exp(2πA) are given by exp(2πλj)
where the λj are the eigenvalues of A. But each λj has real part less than 0, so
the magnitude of exp(2πλj) is smaller than 1. Thus the matrix exp(2πA) − I
is indeed invertible, and the unique initial value leading to a 2π-periodic
solution is

X0 = (
exp(2πA) − I

)−1
(−W ).

So let X(t ) be this periodic solution with X(0) = X0. This solution is called
the steady-state solution. If Y0 is any other initial condition, then we may write
Y0 = (Y0 − X0) + X0, so the solution through Y0 is given by

Y (t ) = exp(tA)(Y0 − X0) + exp(tA)X0 + exp(tA)

∫ t

0
exp(−sA) G(s) ds

= exp(tA)(Y0 − X0) + X(t ).

The first term in this expression tends to 0 as t → ∞, since it is a solution
of the homogeneous equation. Hence every solution of this system tends to
the steady-state solution as t → ∞. Physically, this is clear: The motion of
the damped (and unforced) oscillator tends to equilibrium, leaving only the
motion due to the periodic forcing. We have proved:

Theorem. Consider the forced, damped harmonic oscillator equation

x ′′ + bx ′ + kx = cos t

with k, b > 0. Then all solutions of this equation tend to the steady-state solution,
which is periodic with period 2π . �
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Now consider a particular example of a forced, undamped harmonic
oscillator

X ′ =
(

0 1
−1 0

)
X +

(
0

cos ωt

)

where the period of the forcing is now 2π /ω with ω �= ±1. Let

A =
(

0 1
−1 0

)
.

The solution of the homogeneous equation is

X(t ) = exp(tA)X0 =
(

cos t sin t
− sin t cos t

)
X0.

Variation of parameters provides a solution of the nonhomogeneous equation
starting at the origin:

Y (t ) = exp(tA)

∫ t

0
exp(−sA)

(
0

cos ωs

)
ds

= exp(tA)

∫ t

0

(
cos s − sin s
sin s cos s

)(
0

cos ωs

)
ds

= exp(tA)

∫ t

0

(− sin s cos ωs
cos s cos ωs

)
ds

= 1

2
exp(tA)

∫ t

0

(
sin(ω − 1)s − sin(ω + 1)s
cos(ω − 1)s + cos(ω + 1)s

)
ds.

Recalling that

exp(tA) =
(

cos t sin t
− sin t cos t

)
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and using the fact that ω �= ±1, evaluation of this integral plus a long
computation yields

Y (t ) = 1

2
exp(tA)

⎛
⎜⎜⎝

− cos(ω − 1)t

ω − 1
+ cos(ω + 1)t

ω + 1
sin(ω − 1)t

ω − 1
+ sin(ω + 1)t

ω + 1

⎞
⎟⎟⎠

+ exp(tA)

(
(ω2 − 1)−1

0

)

= 1

ω2 − 1

(− cos ωt
ω sin ωt

)
+ exp(tA)

(
(ω2 − 1)−1

0

)
.

Thus the general solution of this equation is

Y (t ) = exp(tA)

(
X0 +

(
(ω2 − 1)−1

0

))
+ 1

ω2 − 1

(− cos ωt
ω sin ωt

)
.

The first term in this expression is periodic with period 2π while the second
has period 2π /ω. Unlike the damped case, this solution does not necessarily
yield a periodic motion. Indeed, this solution is periodic if and only if ω is a
rational number. If ω is irrational, the motion is quasiperiodic, just as we saw
in Section 6.2.

E X E R C I S E S

1. Find the general solution for X ′ = AX where A is given by:

(a)

⎛
⎝0 0 1

0 1 0
1 0 0

⎞
⎠ (b)

⎛
⎝1 0 1

0 1 0
1 0 1

⎞
⎠ (c)

⎛
⎝ 0 1 0

−1 0 0
1 1 1

⎞
⎠

(d)

⎛
⎝0 1 0

1 0 0
1 1 1

⎞
⎠ (e)

⎛
⎝1 0 1

0 1 0
0 0 1

⎞
⎠ (f )

⎛
⎝1 1 0

1 1 1
0 1 1

⎞
⎠

(g)

⎛
⎝ 1 0 −1

−1 1 −1
0 0 1

⎞
⎠ (h)

⎛
⎜⎜⎝

1 0 0 1
0 1 1 0
0 0 1 0
1 0 0 0

⎞
⎟⎟⎠
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2. Consider the linear system

X ′ =
⎛
⎝λ1 0 0

0 λ2 0
0 0 λ3

⎞
⎠X

where λ3 < λ2 < λ1 < 0. Describe how the solution through an arbitrary
initial value tends to the origin.

3. Give an example of a 3 × 3 matrix A for which all nonequilibrium
solutions of X ′ = AX are periodic with period 2π . Sketch the phase
portrait.

4. Find the general solution of

X ′ =

⎛
⎜⎜⎝

0 1 1 0
−1 0 0 1
0 0 0 1
0 0 −1 0

⎞
⎟⎟⎠X .

5. Consider the system

X ′ =
⎛
⎝0 0 a

0 b 0
a 0 0

⎞
⎠X

depending on the two parameters a and b.

(a) Find the general solution of this system.

(b) Sketch the region in the ab–plane where this system has different
types of phase portraits.

6. Consider the system

X ′ =
⎛
⎝ a 0 b

0 b 0
−b 0 a

⎞
⎠X

depending on the two parameters a and b.

(a) Find the general solution of this system.

(b) Sketch the region in the ab–plane where this system has different
types of phase portraits.

7. Coupled Harmonic Oscillators. In this series of exercises you are asked
to generalize the material on harmonic oscillators in Section 6.2 to the
case where the oscillators are coupled. Suppose there are two masses m1
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k1k2k1

m1 m2

Figure 6.10 A coupled oscillator.

and m2 attached to springs and walls as shown in Figure 6.10. The springs
connecting mj to the walls both have spring constants k1, while the spring
connecting m1 and m2 has spring constant k2. This coupling means that
the motion of either mass affects the behavior of the other.

Let xj denote the displacement of each mass from its rest position, and
assume that both masses are equal to 1. The differential equations for
these coupled oscillators are then given by

x ′′
1 = −(k1 + k2)x1 + k2x2

x ′′
2 = k2x1 − (k1 + k2)x2.

These equations are derived as follows. If m1 is moved to the right
(x1 > 0), the left spring is stretched and exerts a restorative force on
m1 given by −k1x1. Meanwhile, the central spring is compressed, so it
exerts a restorative force on m1 given by −k2x1. If the right spring is
stretched, then the central spring is compressed and exerts a restorative
force on m1 given by k2x2 (since x2 < 0). The forces on m2 are similar.

(a) Write these equations as a first-order linear system.

(b) Determine the eigenvalues and eigenvectors of the corresponding
matrix.

(c) Find the general solution.

(d) Let ω1 = √
k1 and ω2 = √

k1 + 2k2. What can be said about the
periodicity of solutions relative to the ωj ? Prove this.

8. Suppose X ′ = AX where A is a 4×4 matrix whose eigenvalues are ±i
√

2
and ±i

√
3. Describe this flow.

9. Suppose X ′ = AX where A is a 4 × 4 matrix whose eigenvalues are ±i
and −1 ± i. Describe this flow.

10. Suppose X ′ = AX where A is a 4 × 4 matrix whose eigenvalues are ±i
and ±1. Describe this flow.

11. Consider the system X ′ = AX where X = (x1, . . . , x6) and

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 ω1

−ω1 0
0 ω2

−ω2 0
−1

1

⎞
⎟⎟⎟⎟⎟⎟⎠
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and ω1/ω2 is irrational. Describe qualitatively how a solution behaves
when, at time 0, each xj is nonzero with the exception that

(a) x6 = 0;

(b) x5 = 0;

(c) x3 = x4 = x5 = 0;

(d) x3 = x4 = x5 = x6 = 0.

12. Compute the exponentials of the following matrices:

(a)

(
5 −6
3 −4

)
(b)

(
2 −1
1 2

)
(c)

(
2 −1
0 2

)
(d)

(
0 1
1 0

)

(e)

⎛
⎝0 1 2

0 0 3
0 0 0

⎞
⎠ (f )

⎛
⎝2 0 0

0 3 0
0 1 3

⎞
⎠ (g)

⎛
⎝λ 0 0

1 λ 0
0 1 λ

⎞
⎠

(h)

(
i 0
0 −i

)
(i)

(
1 + i 0

2 1 + i

)
(j)

⎛
⎜⎜⎝

1 0 0 0
1 0 0 0
1 0 0 0
1 0 0 0

⎞
⎟⎟⎠

13. Find an example of two matrices A, B such that

exp(A + B) �= exp(A) exp(B).

14. Show that if AB = BA, then

(a) exp(A) exp(B) = exp(B) exp(A)

(b) exp(A)B = B exp(A).

15. Consider the triplet of harmonic oscillators

x ′′
1 = −x1

x ′′
2 = −2x2

x ′′
3 = −ω2x3

where ω is irrational. What can you say about the qualitative behavior of
solutions of this six-dimensional system?



7
Nonlinear Systems

In this chapter we begin the study of nonlinear differential equations. Unlike
linear (constant coefficient) systems, where we can always find the explicit
solution of any initial value problem, this is rarely the case for nonlinear sys-
tems. In fact, basic properties such as the existence and uniqueness of solutions,
which was so obvious in the linear case, no longer hold for nonlinear systems.
As we shall see, some nonlinear systems have no solutions whatsoever to a
given initial value problem. On the other hand, some systems have infinitely
many different such solutions. Even if we do find a solution of such a sys-
tem, this solution need not be defined for all time; for example, the solution
may tend to ∞ in finite time. And other questions arise: For example, what
happens if we vary the initial condition of a system ever so slightly? Does the
corresponding solution vary continuously? All of this is clear for linear sys-
tems, but not at all clear in the nonlinear case. This means that the underlying
theory behind nonlinear systems of differential equations is quite a bit more
complicated than that for linear systems.

In practice, most nonlinear systems that arise are “nice” in the sense that we
do have existence and uniqueness of solutions as well as continuity of solutions
when initial conditions are varied, and other “natural” properties. Thus we
have a choice: Given a nonlinear system, we could simply plunge ahead and
either hope that or, if possible, verify that, in each specific case, the system’s
solutions behave nicely. Alternatively, we could take a long pause at this stage
to develop the necessary hypotheses that guarantee that solutions of a given
nonlinear system behave nicely.

139
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In this book we pursue a compromise route. In this chapter, we will spell
out in precise detail many of the theoretical results that govern the behavior
of solutions of differential equations. We will present examples of how and
when these results fail, but we will not prove these theorems here. Rather,
we will postpone all of the technicalities until Chapter 17, primarily because
understanding this material demands a firm and extensive background in the
principles of real analysis. In subsequent chapters, we will make use of the
results stated here, but readers who are primarily interested in applications of
differential equations or in understanding how specific nonlinear systems may
be analyzed need not get bogged down in these details here. Readers who want
the technical details may take a detour to Chapter 17 now.

7.1 Dynamical Systems

As mentioned previously, most nonlinear systems of differential equations are
impossible to solve analytically. One reason for this is the unfortunate fact
that we simply do not have enough functions with specific names that we
can use to write down explicit solutions of these systems. Equally problem-
atic is the fact that, as we shall see, higher dimensional systems may exhibit
chaotic behavior, a property that makes knowing a particular explicit solution
essentially worthless in the larger scheme of understanding the behavior of the
system. Hence we are forced to resort to different means in order to understand
these systems. These are the techniques that arise in the field of dynamical
systems. We will use a combination of analytic, geometric, and topological
techniques to derive rigorous results about the behavior of solutions of these
equations.

We begin by collecting some of the terminology regarding dynamical sys-
tems that we have introduced at various points in the preceding chapters. A
dynamical system is a way of describing the passage in time of all points of a
given space S . The space S could be thought of, for example, as the space of
states of some physical system. Mathematically, S might be a Euclidean space
or an open subset of Euclidean space or some other space such as a surface in
R3. When we consider dynamical systems that arise in mechanics, the space S
will be the set of possible positions and velocities of the system. For the sake of
simplicity, we will assume throughout that the space S is Euclidean space Rn ,
although in certain cases the important dynamical behavior will be confined
to a particular subset of Rn .

Given an initial position X ∈ Rn , a dynamical system on Rn tells us where
X is located 1 unit of time later, 2 units of time later, and so on. We denote
these new positions of X by X1, X2, and so forth. At time zero, X is located
at position X0. One unit before time zero, X was at X−1. In general, the
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“trajectory” of X is given by Xt . If we measure the positions Xt using only
integer time values, we have an example of a discrete dynamical system, which
we shall study in Chapter 15. If time is measured continuously with t ∈ R,
we have a continuous dynamical system. If the system depends on time in
a continuously differentiable manner, we have a smooth dynamical system.
These are the three principal types of dynamical systems that arise in the
study of systems of differential equations, and they will form the backbone of
Chapters 8 through 14.

The function that takes t to Xt yields either a sequence of points or a curve
in Rn that represents the life history of X as time runs from −∞ to ∞.
Different branches of dynamical systems make different assumptions about
how the function Xt depends on t . For example, ergodic theory deals with
such functions under the assumption that they preserve a measure on Rn .
Topological dynamics deals with such functions under the assumption that
Xt varies only continuously. In the case of differential equations, we will
usually assume that the function Xt is continuously differentiable. The map
φt : Rn → Rn that takes X into Xt is defined for each t and, from our
interpretation of Xt as a state moving in time, it is reasonable to expect φt to
have φ−t as its inverse. Also, φ0 should be the identity function φ0(X) = X
and φt (φs(X)) = φt+s(X) is also a natural condition. We formalize all of this
in the following definition:

Definition

A smooth dynamical system on Rn is a continuously differentiable
function φ : R × Rn → Rn where φ(t , X) = φt (X) satisfies

1. φ0: Rn → Rn is the identity function: φ0(X0) = X0;
2. The composition φt ◦ φs = φt+s for each t , s ∈ R.

Recall that a function is continuously differentiable if all of its partial deriva-
tives exist and are continuous throughout its domain. It is traditional to call a
continuously differentiable function a C1 function. If the function is k times
continuously differentiable, it is called a Ck function. Note that the definition
above implies that the map φt : Rn → Rn is C1 for each t and has a C1 inverse
φ−t (take s = −t in part 2).

Example. For the first-order differential equation x ′ = ax , the function
φt (x0) = x0 exp(at ) gives the solutions of this equation and also defines a
smooth dynamical system on R. �

Example. Let A be an n × n matrix. Then the function φt (X0) = exp(tA)X0

defines a smooth dynamical system on Rn . Clearly, φ0 = exp(0) = I and, as
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we saw in the previous chapter, we have

φt+s = exp((t + s)A) = (exp(tA))(exp(sA)) = φt ◦ φs . �

Note that these examples are intimately related to the system of differential
equations X ′ = AX . In general, a smooth dynamical system always yields a
vector field on Rn via the following rule: Given φt , let

F(X) = d

dt

∣∣∣∣
t=0

φt (X).

Then φt is just the time t map associated to the flow of X ′ = F(X).
Conversely, the differential equation X ′ = F(X) generates a smooth dynam-

ical system provided the time t map of the flow is well defined and continuously
differentiable for all time. Unfortunately, this is not always the case.

7.2 The Existence and Uniqueness

Theorem

We turn now to the fundamental theorem of differential equations, the
existence and uniqueness theorem. Consider the system of differential
equations

X ′ = F(X)

where F : Rn → Rn . Recall that a solution of this system is a function X : J →
Rn defined on some interval J ⊂ R such that, for all t ∈ J ,

X ′(t ) = F(X(t )).

Geometrically, X(t ) is a curve in Rn whose tangent vector X ′(t ) exists for all
t ∈ J and equals F(X(t )). As in previous chapters, we think of this vector
as being based at X(t ), so that the map F : Rn → Rn defines a vector field
on Rn . An initial condition or initial value for a solution X : J → Rn is
a specification of the form X(t0) = X0 where t0 ∈ J and X0 ∈ Rn . For
simplicity, we usually take t0 = 0. The main problem in differential equations
is to find the solution of any initial value problem; that is, to determine the
solution of the system that satisfies the initial condition X(0) = X0 for each
X0 ∈ Rn .

Unfortunately, nonlinear differential equations may have no solutions
satisfying certain initial conditions.
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Example. Consider the simple first-order differential equation

x ′ =
{

1 if x < 0
−1 if x ≥ 0.

This vector field on R points to the left when x ≥ 0 and to the right if x < 0.
Consequently, there is no solution that satisfies the initial condition x(0) = 0.
Indeed, such a solution must initially decrease since x ′(0) = −1, but for all
negative values of x , solutions must increase. This cannot happen. Note further
that solutions are never defined for all time. For example, if x0 > 0, then the
solution through x0 is given by x(t ) = x0 − t , but this solution is only valid
for −∞ < t < x0 for the same reason as above.

The problem in this example is that the vector field is not continuous at
0; whenever a vector field is discontinuous we face the possibility that nearby
vectors may point in “opposing” directions, thereby causing solutions to halt
at these bad points. �

Beyond the problem of existence of solutions of nonlinear differential equa-
tions, we also must confront the fact that certain equations may have many
different solutions to the same initial value problem.

Example. Consider the differential equation

x ′ = 3x2/3.

The identically zero function u : R → R given by u(t ) ≡ 0 is clearly a solution
with initial condition u(0) = 0. But u0(t ) = t 3 is also a solution satisfying this
initial condition. Moreover, for any τ > 0, the function given by

uτ (t ) =
{

0 if t ≤ τ

(t − τ )3 if t > τ

is also a solution satisfying the initial condition uτ (0) = 0. While the differ-
ential equation in this example is continuous at x0 = 0, the problems arise
because 3x2/3 is not differentiable at this point. �

From these two examples it is clear that, to ensure existence and uniqueness
of solutions, certain conditions must be imposed on the function F . In the first
example, F was not continuous at the problematic point 0, while in the second
example, F failed to be differentiable at 0. It turns out that the assumption that
F is continuously differentiable is sufficient to guarantee both existence and
uniqueness of solutions, as we shall see. Fortunately, differential equations
that are not continuously differentiable rarely arise in applications, so the
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phenomenon of nonexistence or nonuniqueness of solutions with given initial
conditions is quite exceptional.

The following is the fundamental local theorem of ordinary differential
equations.

The Existence and Uniqueness Theorem. Consider the initial value
problem

X ′ = F(X), X(t0) = X0

where X0 ∈ Rn. Suppose that F : Rn → Rn is C1. Then, first of all, there exists a
solution of this initial value problem and, secondly, this is the only such solution.
More precisely, there exists an a > 0 and a unique solution

X : (t0 − a, t0 + a) → R
n

of this differential equation satisfying the initial condition X(t0) = X0. �

The important proof of this theorem is contained in Chapter 17.
Without dwelling on the details here, the proof of this theorem depends

on an important technique known as Picard iteration. Before moving on, we
illustrate how the Picard iteration scheme used in the proof of the theorem
works in several special examples. The basic idea behind this iterative process
is to construct a sequence of functions that converges to the solution of the
differential equation. The sequence of functions ur (t ) is defined inductively
by u0(t ) = x0 where x0 is the given initial condition, and then

ur+1(t ) = x0 +
∫ t

0
uk(s) ds.

Example. Consider the simple differential equation x ′ = x . We will pro-
duce the solution of this equation satisfying x(0) = x0. We know, of course,
that this solution is given by x(t ) = x0et . We will construct a sequence of
functions uk(t ), one for each k, which converges to the actual solution x(t ) as
k → ∞.

We start with

u0(t ) = x0,

the given initial value. Then we set

u1(t ) = x0 +
∫ t

0
u0(s) ds = x0 +

∫ t

0
x0 ds,
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so that u1(t ) = x0 + tx0. Given u1 we define

u2(t ) = x0 +
∫ t

0
u1(s) ds = x0 +

∫ t

0
(x0 + sx0) ds,

so that u2(t ) = x0 + tx0 + t 2

2 x0. You can probably see where this is heading.
Inductively, we set

uk+1(t ) = x0 +
∫ t

0
uk(s) ds,

and so

uk+1(t ) = x0

k+1∑
i=0

t i

i! .

As k → ∞, uk(t ) converges to

x0

∞∑
i=0

t i

i! = x0et = x(t ),

which is the solution of our original equation. �

Example. For an example of Picard iteration applied to a system of
differential equations, consider the linear system

X ′ = F(X) =
(

0 1
−1 0

)
X

with initial condition X(0) = (1, 0). As we have seen, the solution of this initial
value problem is

X(t ) =
(

cos t
− sin t

)
.

Using Picard iteration, we have

U0(t ) =
(

1
0

)

U1(t ) =
(

1
0

)
+

∫ t

0
F

(
1
0

)
ds =

(
1
0

)
+

∫ t

0

(
0

−1

)
ds =

(
1

−t

)

U2(t ) =
(

1
0

)
+

∫ t

0

(−s
−1

)
ds =

(
1 − t 2/2

−t

)
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U3(t ) =
(

1
0

)
+

∫ t

0

( −s
−1 + s2/2

)
ds =

(
1 − t 2/2

−t + t 3/3!
)

U4(t ) =
(

1 − t 2/2 + t 4/4!
−t + t 3/3!

)

and we see the infinite series for the cosine and sine functions emerging from
this iteration. �

Now suppose that we have two solutions Y (t ) and Z (t ) of the differential
equation X ′ = F(X), and that Y (t ) and Z (t ) satisfy Y (t0) = Z (t0). Suppose
that both solutions are defined on an interval J . The existence and uniqueness
theorem guarantees that Y (t ) = Z (t ) for all t in an interval about t0, which
may a priori be smaller than J . However, this is not the case. To see this,
suppose that J ∗ is the largest interval on which Y (t ) = Z (t ). Let t1 be an
endpoint of J ∗. By continuity, we have Y (t1) = Z (t1). The theorem then
guarantees that, in fact, Y (t ) and Z (t ) agree on an open interval containing t1.
This contradicts the assertion that J ∗ is the largest interval on which the two
solutions agree.

Thus we can always assume that we have a unique solution defined on a
maximal time domain. There is, however, no guarantee that a solution X(t )
can be defined for all time, no matter how “nice” F(X) is.

Example. Consider the differential equation in R given by

x ′ = 1 + x2.

This equation has as solutions the functions x(t ) = tan(t + c) where c is a
constant. Such a function cannot be extended over an interval larger than

−c − π

2
< t < −c + π

2

since x(t ) → ±∞ as t → −c ± π /2. �

This example is typical, for we have

Theorem. Let U ⊂ Rn be an open set, and let F : U → Rn be C1. Let X(t )
be a solution of X ′ = F(X) defined on a maximal open interval J = (α, β) ⊂ R

with β < ∞. Then given any closed and bounded set K ⊂ U, there is some
t ∈ (α, β) with X(t ) �∈ K . �

This theorem says that if a solution X(t ) cannot be extended to a larger time
interval, then this solution leaves any closed and bounded set in U . This implies
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that X(t ) must come arbitrarily close to the boundary of U as t → β. Similar
results hold as t → α.

7.3 Continuous Dependence of Solutions

For the existence and uniqueness theorem to be at all interesting in any physical
(or even mathematical) sense, this result needs to be complemented by the
property that the solution X(t ) depends continuously on the initial condition
X(0). The next theorem gives a precise statement of this property.

Theorem. Consider the differential equation X ′ = F(X) where F : Rn → Rn

is C1. Suppose that X(t ) is a solution of this equation which is defined on the
closed interval [t0, t1] with X(t0) = X0. Then there is a neighborhood U ⊂ Rn

of X0 and a constant K such that if Y0 ∈ U, then there is a unique solution Y (t )
also defined on [t0, t1] with Y (t0) = Y0. Moreover Y (t ) satisfies

|Y (t ) − X(t )| ≤ K |Y0 − X0| exp(K (t − t0))

for all t ∈ [t0, t1]. �

This result says that, if the solutions X(t ) and Y (t ) start out close together,
then they remain close together for t close to t0. While these solutions may
separate from each other, they do so no faster than exponentially. In particular,
since the right-hand side of this inequality depends on |Y0 − X0|, which we
may assume is small, we have:

Corollary. (Continuous Dependence on Initial Conditions) Let
φ(t , X) be the flow of the system X ′ = F(X) where F is C1. Then φ is a
continuous function of X. �

Example. Let k > 0. For the system

X ′ =
(−1 0

0 k

)
X ,

we know that the solution X(t ) satisfying X(0) = (−1, 0) is given by

X(t ) = (−e−t , 0).

For any η �= 0, let Yη(t ) be the solution satisfying Yη(0) = (−1, η). Then

Yη(t ) = (−e−t , ηekt ).
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X(t)�1

(�1, g3)

Yg3(t)

Yg2

Yg1

g3ekr

g2ekr

g1ekr

�e�r

Figure 7.1 The solutions Yη(t) separate
exponentially from X (t) but nonetheless
are continuous in their initial conditions.

As in the theorem, we have

|Yη(t ) − X(t )| = |ηekt − 0| = |η − 0|ekt = |Yη(0) − X(0)|ekt .

The solutions Yη do indeed separate from X(t ), as we see in Figure 7.1, but
they do so at most exponentially. Moreover, for any fixed time t , we have
Yη(t ) → X(t ) as η → 0. �

Differential equations often depend on parameters. For example, the har-
monic oscillator equationsdependon theparameters b (thedamping constant)
and k (the spring constant). Then the natural question is how do solutions of
these equations depend on these parameters? As in the previous case, solutions
depend continuously on these parameters provided that the system depends
on the parameters in a continuously differentiable fashion. We can see this
easily by using a special little trick. Suppose the system

X ′ = Fa(X)

depends on the parameter a in a C1 fashion. Let’s consider an “artificially”
augmented system of differential equations given by

x ′
1 = f1(x1, . . . , xn , a)

...

x ′
n = fn(x1, . . . , xn , a)

a′ = 0.
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This is now an autonomous system of n + 1 differential equations. While this
expansion of the system may seem trivial, we may now invoke the previous
result about continuous dependence of solutions on initial conditions to verify
that solutions of the original system depend continuously on a as well.

Theorem. (Continuous Dependence on Parameters) Let X ′ = Fa(X)
be a system of differential equations for which Fa is continuously differentiable
in both X and a. Then the flow of this system depends continuously on a as
well. �

7.4 The Variational Equation

Consider an autonomous system X ′ = F(X) where, as usual, F is assumed to
be C1. The flow φ(t , X) of this system is a function of both t and X . From the
results of the previous section, we know that φ is continuous in the variable X .
We also know that φ is differentiable in the variable t , since t → φ(t , X) is just
the solution curve through X . In fact, φ is also differentiable in the variable X ,
for we shall prove in Chapter 17:

Theorem. (Smoothness of Flows). Consider the system X ′ = F(X) where
F is C1. Then the flow φ(t , X) of this system is a C1 function; that is, ∂φ/∂t and
∂φ/∂X exist and are continuous in t and X. �

Note that we can compute ∂φ/∂t for any value of t as long as we know the
solution passing through X0, for we have

∂φ

∂t
(t , X0) = F(φ(t , X0)).

We also have

∂φ

∂X
(t , X0) = Dφt (X0)

where Dφt is the Jacobian of the function X → φt (X). To compute ∂φ/∂X ,
however, it appears that we need to know the solution through X0 as well as
the solutions through all nearby initial positions, since we need to compute
the partial derivatives of the various components of φt . However, we can
get around this difficulty by introducing the variational equation along the
solution through X0.

To accomplish this, we need to take another brief detour into the world of
nonautonomous differential equations. Let A(t ) be a family of n × n matrices
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that depends continuously on t . The system

X ′ = A(t )X

is a linear, nonautonomous system. We have an existence and uniqueness
theorem for these types of equations:

Theorem. Let A(t ) be a continuous family of n × n matrices defined for t ∈
[α, β]. Then the initial value problem

X ′ = A(t )X , X(t0) = X0

has a unique solution that is defined on the entire interval [α, β]. �

Note that there is some additional content to this theorem: We do not
assume that the right-hand side is a C1 function in t . Continuity of A(t )
suffices to guarantee existence and uniqueness of solutions.

Example. Consider the first-order, linear, nonautonomous differential
equation

x ′ = a(t )x .

The unique solution of this equation satisfying x(0) = x0 is given by

x(t ) = x0 exp

(∫ t

0
a(s) ds

)
,

as is easily checked using the methods of Chapter 1. All we need is that a(t ) is
continuous in order that x ′(t ) = a(t )x(t ); we do not need differentiability of
a(t ) for this to be true. �

Note that solutions of linear, nonautonomous equations satisfy the linearity
principle. That is, if Y (t ) and Z (t ) are two solutions of such a system, then so
too is αY (t ) + βZ (t ) for any constants α and β.

Now we return to the autonomous, nonlinear system X ′ = F(X). Let X(t )
be a particular solution of this system defined for t in some interval J = [α, β].
Fix t0 ∈ J and set X(t0) = X0. For each t ∈ J let

A(t ) = DFX(t )

where DFX(t ) denotes the Jacobian matrix of F at the point X(t ) ∈ Rn . Since
F is C1, A(t ) = DFX(t ) is a continuous family of n × n matrices. Consider the



7.4 The Variational Equation 151

nonautonomous linear equation

U ′ = A(t )U .

This equation is known as the variational equation along the solution X(t ). By
the previous theorem, we know that this variational equation has a solution
defined on all of J for every initial condition U (t0) = U0.

The significance of this equation is that, if U (t ) is the solution of the
variational equation that satisfies U (t0) = U0, then the function

t → X(t ) + U (t )

is a good approximation to the solution Y (t ) of the autonomous equation
with initial value Y (t0) = X0 + U0, provided U0 is sufficiently small. This is
the content of the following result.

Proposition. Consider the system X ′ = F(X) where F is C1. Suppose

1. X (t ) is a solution of X ′ = F(X), which is defined for all t ∈ [α, β] and
satisfies X(t0) = X0;

2. U (t ) is the solution to the variational equation along X(t ) that satisfies
U (t0) = U0;

3. Y (t ) is the solution of X ′ = F(X) that satisfies Y (t0) = X0 + U0.

Then

lim
U0→0

|Y (t ) − (X(t ) + U (t ))|
|U0|

converges to 0 uniformly in t ∈ [α, β]. �

Technically, this means that for every ε > 0 there exists δ > 0 such that if
|U0| ≤ δ, then

|Y (t ) − (X(t ) + U (t ))| ≤ ε|U0|
for all t ∈ [α, β]. Thus, as U0 → 0, the curve t → X(t ) + U (t ) is a better
and better approximation to Y (t ). In many applications, the solution of the
variational equation X(t ) + U (t ) is used in place of Y (t ); this is convenient
because U (t ) depends linearly on U0 by the linearity principle.

Example. Consider the nonlinear system of equations

x ′ = x + y2

y ′ = −y .

We will discuss this system in more detail in the next chapter. For now, note
that we know one solution of this system explicitly, namely, the equilibrium
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solution at the origin X(t ) ≡ (0, 0). The variational equation along this
solution is given by

U ′ = DF0(U ) =
(

1 0
0 −1

)
U ,

which is an autonomous linear system. We obtain the solutions of this equation
immediately: They are given by

U (t ) =
(

x0et

y0e−t

)
.

The result above then guarantees that the solution of the nonlinear equation
through (x0, y0) and defined on the interval [−τ , τ ] is as close as we wish to
U (t ), provided (x0, y0) is sufficiently close to the origin. �

Note that the arguments in this example are perfectly general. Given any
nonlinear system of differential equations X ′ = F(X) with an equilibrium
point at X0, we may consider the variational equation along this solution. But
DFX0 is a constant matrix A. The variational equation is then U ′ = AU , which
is an autonomous linear system. This system is called the linearized system at
X0. We know that flow of the linearized system is exp(tA)U0, so the result
above says that near an equilibrium point of a nonlinear system, the phase
portrait resembles that of the corresponding linearized system. We will make
the term resembles more precise in the next chapter.

Using the previous proposition, we may now compute ∂φ/∂X , assuming we
know the solution X(t ):

Theorem. Let X ′ = F(X) be a system of differential equations where F is C1.
Let X(t ) be a solution of this system satisfying the initial condition X(0) = X0

and defined for t ∈ [α, β], and let U (t , U0) be the solution to the variational
equation along X(t ) that satisfies U (0, U0) = U0. Then

Dφt (X0) U0 = U (t , U0).

That is, ∂φ/∂X applied to U0 is given by solving the corresponding variational
equation starting at U0.

Proof: Using the proposition, we have for all t ∈ [α, β]:

Dφt (X0)U0 = lim
h→0

φt (X0 + hU0) − φt (X0)

h
= lim

h→0

U (t , hU0)

h
= U (t , U0).

�
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Example. As an illustration of these ideas, consider the differential equation
x ′ = x2. An easy integration shows that the solution x(t ) satisfying the initial
condition x(0) = x0 is

x(t ) = −x0

x0t − 1
.

Hence we have

∂φ

∂x
(t , x0) = 1

(x0t − 1)2
.

On the other hand, the variational equation for x(t ) is

u′ = 2x(t ) u = −2x0

x0t − 1
u.

The solution of this equation satisfying the initial condition u(0) = u0 is
given by

u(t ) = u0

(
1

x0t − 1

)2

as required. �

7.5 Exploration: Numerical Methods

In this exploration, we first describe three different methods for approximating
the solutions of first-order differential equations. Your task will be to evaluate
the effectiveness of each method.

Each of these methods involves an iterative process whereby we find a
sequence of points (tk , xk) that approximates selected points (tk , x(tk)) along
the graph of a solution of the first-order differential equation x ′ = f (t , x). In
each case we will begin with an initial value x(0) = x0. So t0 = 0 and x0 is our
given initial value. We need to produce tk and xk .

In each of the three methods we will generate the tk recursively by choosing
a step size �t and simply incrementing tk at each stage by �t . Hence

tk+1 = tk + �t

in each case. Choosing �t small will (hopefully) improve the accuracy of the
method.

Therefore, to describe each method, we only need to determine the values
of xk . In each case, xk+1 will be the x-coordinate of the point that sits directly
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over tk+1 on a certain straight line through (tk , xk) in the tx–plane. Thus all we
need to do is to provide you with the slope of this straight line and then xk+1

is determined. Each of the three methods involves a different straight line.

1. Euler’s method. Here xk+1 is generated by moving �t time units along
the straight line generated by the slope field at the point (tk , xk). Since the
slope at this point is f (tk , xk), taking this short step puts us at

xk+1 = xk + f (tk , xk) �t .

2. Improved Euler’s method. In this method, we use the average of two slopes
to move from (tk , xk) to (tk+1, xk+1). The first slope is just that of the
slope field at (tk , xk), namely,

mk = f (tk , xk).

The second is the slope of the slope field at the point (tk+1, yk), where
yk is the terminal point determined by Euler’s method applied at (tk , xk).
That is,

nk = f (tk+1, yk) where yk = xk + f (tk , xk) �t .

Then we have

xk+1 = xk +
(

mk + nk

2

)
�t .

3. (Fourth-order) Runge-Kutta method. This method is the one most often
used to solve differential equations. There are more sophisticated numer-
ical methods that are specifically designed for special situations, but this
method has served as a general-purpose solver for decades. In this method,
we will determine four slopes, mk , nk , pk , and qk . The step from (tk , xk)
to (tk+1, xk+1) will be given by moving along a straight line whose slope
is a weighted average of these four values:

xk+1 = xk +
(

mk + 2nk + 2pk + qk

6

)
�t .

These slopes are determined as follows:

(a) mk is given as in Euler’s method:

mk = f (tk , xk).
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(b) nk is the slope at the point obtained by moving halfway along the
slope field line at (tk , xk) to the intermediate point (tk + (�t )/2, yk),
so that

nk = f (tk + �t

2
, yk) where yk = xk + mk

�t

2
.

(c) pk is the slope at the point obtained by moving halfway along a
different straight line at (tk , xk), where the slope is now nk rather
than mk as before. Hence

pk = f (tk + �t

2
, zk) where zk = xk + nk

�t

2
.

(d) Finally, qk is the slope at the point (tk+1, wk) where we use a line with
slope pk at (tk , xk) to determine this point. Hence

qk = f (tk+1, wk) where wk = xk + pk �t .

Your goal in this exploration is to compare the effectiveness of these three
methods by evaluating the errors made in carrying out this procedure in sev-
eral examples. We suggest that you use a spreadsheet to make these lengthy
calculations.

1. First, just to make sure you comprehend the rather terse descriptions of
the three methods above, draw a picture in the tx–plane that illustrates
the process of moving from (tk , xk) to (tk+1, xk+1) in each of the three
cases.

2. Now let’s investigate how the various methods work when applied to an
especially simple differential equation, x ′ = x .

(a) First find the explicit solution x(t ) of this equation satisfying the
initial condition x(0) = 1 (now there’s a free gift from the math
department. . .).

(b) Now use Euler’s method to approximate the value of x(1) = e using
the step size �t = 0. 1. That is, recursively determine tk and xk for
k = 1, . . . , 10 using �t = 0. 1 and starting with t0 = 0 and x0 = 1.

(c) Repeat the previous step with �t half the size, namely, 0. 05.

(d) Again use Euler’s method, this time reducing the step size by a factor
of 5, so that �t = 0. 01, to approximate x(1).

(e) Now repeat the previous three steps using the improved Euler’s
method with the same step sizes.

(f) And now repeat using Runge-Kutta.

(g) You now have nine different approximations for the value of x(1) =
e, three for each method. Now calculate the error in each case. For the
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record, use the value e = 2. 71828182845235360287 . . . in calculat-
ing the error.

(h) Finally calculate how the error changes as you change the step size
from0. 1 to 0. 05 and then from0. 05 to 0. 01. That is, ifρ� denotes the
error made using step size �, compute both ρ0.1/ρ0.05 and ρ0.05/ρ0.01.

3. Now repeat the previous exploration, this time for the nonautonomous
equation x ′ = 2t (1 + x2). Use the value tan 1 = 1. 557407724654 . . ..

4. Discuss how the errors change as you shorten the step size by a factor of
2 or a factor of 5. Why, in particular, is the Runge-Kutta method called a
“fourth-order” method?

E X E R C I S E S

1. Write out the first few terms of the Picard iteration scheme for each of the
following initial value problems. Where possible, find explicit solutions
and describe the domain of this solution.

(a) x ′ = x + 2; x(0) = 2

(b) x ′ = x4/3; x(0) = 0

(c) x ′ = x4/3; x(0) = 1

(d) x ′ = cos x ; x(0) = 0

(e) x ′ = 1/(2x); x(1) = 1

2. Let A be an n × n matrix. Show that the Picard method for solving X ′ =
AX , X(0) = X0 gives the solution exp(tA)X0.

3. Derive the Taylor series for sin 2t by applying the Picard method to the
first-order system corresponding to the second-order initial value problem

x ′′ = −4x ; x(0) = 0, x ′(0) = 2.

4. Verify the linearity principle for linear, nonautonomous systems of
differential equations.

5. Consider the first-order equation x ′ = x/t . What can you say about
“solutions” that satisfy x(0) = 0? x(0) = a �= 0?

6. Discuss the existence and uniqueness of solutions of the equation x ′ = xa

where a > 0 and x(0) = 0.
7. Let A(t ) be a continuous family of n×n matrices and let P(t ) be the matrix

solution to the initial value problem P ′ = A(t )P , P(0) = P0. Show that

det P(t ) = (det P0) exp

(∫ t

0
Tr A(s) ds

)
.
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8. Construct an example of a first-order differential equation on R for which
there are no solutions to any initial value problem.

9. Construct an example of a differential equation depending on a parameter
a for which some solutions do not depend continuously on a.
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8
Equilibria in

Nonlinear Systems

To avoid some of the technicalities that we encountered in the previous chap-
ter, we henceforth assume that our differential equations are C∞, except when
specifically noted. This means that the right-hand side of the differential equa-
tion is k times continuously differentiable for all k. This will at the very least
allow us to keep the number of hypotheses in our theorems to a minimum.

As we have seen, it is often impossible to write down explicit solutions of
nonlinear systems of differential equations. The one exception to this occurs
when we have equilibrium solutions. Provided we can solve the algebraic
equations, we can write down the equilibria explicitly. Often, these are the
most important solutions of a particular nonlinear system. More importantly,
given our extended work on linear systems, we can usually use the technique of
linearization to determine the behavior of solutions near equilibrium points.
We describe this process in detail in this chapter.

8.1 Some Illustrative Examples

In this section we consider several planar nonlinear systems of differential
equations. Each will have an equilibrium point at the origin. Our goal is to see
that the solutions of the nonlinear system near the origin resemble those of
the linearized system, at least in certain cases.

159
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As a first example, consider the system:

x ′ = x + y2

y ′ = −y .

There is a single equilibrium point at the origin. To picture nearby solutions,
we note that, when y is small, y2 is much smaller. Hence, near the origin
at least, the differential equation x ′ = x + y2 is very close to x ′ = x . In
Section 7.4 in Chapter 7 we showed that the flow of this system near the origin
is also “close” to that of the linearized system X ′ = DF0X . This suggests that
we consider instead the linearized equation

x ′ = x

y ′ = −y ,

derived by simply dropping the higher order term. We can, of course, solve
this system immediately. We have a saddle at the origin with a stable line along
the y-axis and an unstable line along the x-axis.

Now let’s go back to the original nonlinear system. Luckily, we can also solve
this system explicitly. For the second equation y ′ = −y yields y(t ) = y0e−t .
Inserting this into the first equation, we must solve

x ′ = x + y2
0 e−2t .

This is a first-order, nonautonomous equation whose solutions may be deter-
mined as in calculus by “guessing” a particular solution of the form ce−2t .
Inserting this guess into the equation yields a particular solution:

x(t ) = −1

3
y2

0 e−2t .

Hence any function of the form

x(t ) = cet − 1

3
y2

0 e−2t

is a solution of this equation, as is easily checked. The general solution is then

x(t ) =
(

x0 + 1

3
y2

0

)
et − 1

3
y2

0 e−2t

y(t ) = y0e−t .

If y0 = 0, we find a straight-line solution x(t ) = x0et , y(t ) = 0, just as in
the linear case. However, unlike the linear case, the y-axis is no longer home
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Figure 8.1 The phase plane
for x ′ = x + y2 , y ′ = −y.
Note the stable curve tangent
to the y-axis.

to a solution that tends to the origin. Indeed, the vector field along the y-axis is
given by (y2, −y), which is not tangent to the axis; rather, all nonzero vectors
point to the right along this axis.

On the other hand, there is a curve through the origin on which solutions
tend to (0, 0). Consider the curve x + 1

3y2 = 0 in R2. Suppose (x0, y0) lies on
this curve, and let (x(t ), y(t )) be the solution satisfying this initial condition.
Since x0 + 1

3y2
0 = 0 this solution becomes

x(t ) = −1

3
y2

0 e−2t

y(t ) = y0e−t .

Note that we have x(t ) + 1
3 (y(t ))2 = 0 for all t , so this solution remains

for all time on this curve. Moreover, as t → ∞, this solution tends to the
equilibrium point. That is, we have found a stable curve through the origin on
which all solutions tend to (0, 0). Note that this curve is tangent to the y-axis
at the origin. See Figure 8.1.

Can we just “drop” the nonlinear terms in a system? The answer is, as we
shall see below, it depends! In this case, however, doing so is perfectly legal,
for we can find a change of variables that actually converts the original system
to the linear system.

To see this, we introduce new variables u and v via

u = x + 1

3
y2

v = y .
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Then, in these new coordinates, the system becomes

u′ = x ′ + 2

3
yy ′ = x + 1

3
y2 = u

v ′ = y ′ = −y = −v .

That is to say, the nonlinear change of variables F(x , y) = (x+ 1
3y2, y) converts

the original nonlinear system to a linear one, in fact, to the linearized system
above.

Example. In general, it is impossible to convert a nonlinear system to a linear
one as in the previous example, since the nonlinear terms almost always make
huge changes in the system far from the equilibrium point at the origin. For
example, consider the nonlinear system

x ′ = 1

2
x − y − 1

2

(
x3 + y2x

)
y ′ = x + 1

2
y − 1

2

(
y3 + x2y

)
.

Again we have an equilibrium point at the origin. The linearized system is now

X ′ =
( 1

2 −1
1 1

2

)
X ,

which has eigenvalues 1
2 ± i. All solutions of this system spiral away from the

origin and toward ∞ in the counterclockwise direction, as is easily checked.
Solving the nonlinear system looks formidable. However, if we change to

polar coordinates, the equations become much simpler. We compute

r ′ cos θ − r(sin θ)θ ′ = x ′ = 1

2

(
r − r3) cos θ − r sin θ

r ′ sin θ + r(cos θ)θ ′ = y ′ = 1

2

(
r − r3) sin θ + r cos θ

from which we conclude, after equating the coefficients of cos θ and sin θ ,

r ′ = r(1 − r2)/2

θ ′ = 1.

We can now solve this system explicitly, since the equations are decoupled.
Rather than do this, we will proceed in a more geometric fashion. From the
equation θ ′ = 1, we conclude that all nonzero solutions spiral around the
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Figure 8.2 The phase plane
for r ′ = 1

2 (r − r3 ), θ ′ = 1.

origin in the counterclockwise direction. From the first equation, we see that
solutions do not spiral toward ∞. Indeed, we have r ′ = 0 when r = 1, so all
solutions that start on the unit circle stay there forever and move periodically
around the circle. Since r ′ > 0 when 0 < r < 1, we conclude that nonzero
solutions inside the circle spiral away from the origin and toward the unit
circle. Since r ′ < 0 when r > 1, solutions outside the circle spiral toward it.
See Figure 8.2. �

In this example, there is no way to find a global change of coordinates that
puts the system into a linear form, since no linear system has this type of
spiraling toward a circle. However, near the origin this is still possible.

To see this, first note that if r0 satisfies 0 < r0 < 1, then the nonlinear vector
field points outside the circle of radius r0. This follows from the fact that, on
any such circle, r ′ = r0(1 − r2

0 )/2 > 0. Consequently, in backward time, all
solutions of the nonlinear system tend to the origin, and in fact spiral as they
do so.

We can use this fact to define a conjugacy between the linear and nonlinear
system in the disk r ≤ r0, much as we did in Chapter 4. Let φt denote the
flow of the nonlinear system. In polar coordinates, the linearized system above
becomes

r ′ = r/2

θ ′ = 1.

Let ψt denote the flow of this system. Again, all solutions of the linear
system tend toward the origin in backward time. We will now define a
conjugacy between these two flows in the disk D given by r < 1. Fix r0

with 0 < r0 < 1. For any point (r , θ) in D with r > 0, there is a unique
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t = t (r , θ) for which φt (r , θ) belongs to the circle r = r0. We then define the
function

h(r , θ) = ψ−t φt (r , θ)

where t = t (r , θ). We stipulate also that h takes the origin to the origin. Then
it is straightforward to check that

h ◦ φs(r , θ) = ψs ◦ h(r , θ)

for any point (r , θ) in D, so that h gives a conjugacy between the nonlinear
and linear systems. It is also easy to check that h takes D onto all of R2.

Thus we see that, while it may not always be possible to linearize a system
globally , we may sometimes accomplish this locally. Unfortunately, such a
local linearization may not provide any useful information about the behavior
of solutions.

Example. Now consider the system

x ′ = −y + εx(x2 + y2)

y ′ = x + εy(x2 + y2).

Here ε is a parameter that we may take to be either positive or negative.
The linearized system is

x ′ = −y

y ′ = x ,

so we see that the origin is a center and all solutions travel in the counter-
clockwise direction around circles centered at the origin with unit angular
speed.

This is hardly the case for the nonlinear system. In polar coordinates, this
system reduces to

r ′ = εr3

θ ′ = −1.

Thus when ε > 0, all solutions spiral away from the origin, whereas when
ε < 0, all solutions spiral toward the origin. The addition of the nonlinear
terms, no matter how small near the origin, changes the linearized phase
portrait dramatically; we cannot use linearization to determine the behavior
of this system near the equilibrium point. �
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Figure 8.3 The phase plane
for x ′ = x2 , y ′ = −y.

Example. Now consider one final example:

x ′ = x2

y ′ = −y .

The only equilibrium solution for this system is the origin. All other solutions
(except those on the y-axis) move to the right and toward the x-axis. On the
y-axis, solutions tend along this straight line to the origin. Hence the phase
portrait is as shown in Figure 8.3. �

Note that the picture in Figure 8.3 is quite different from the corresponding
picture for the linearized system

x ′ = 0

y ′ = −y ,

for which all points on the x-axis are equilibrium points, and all other solutions
lie on vertical lines x = constant.

The problem here, as in the previous example, is that the equilibrium point
for the linearized system at the origin is not hyperbolic. When a linear planar
system has a zero eigenvalue or a center, the addition of nonlinear terms often
completely changes the phase portrait.

8.2 Nonlinear Sinks and Sources

As we saw in the examples of the previous section, solutions of planar nonlinear
systems near equilibrium points resemble those of their linear parts only in
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the case where the linearized system is hyperbolic; that is, when neither of
the eigenvalues of the system has zero real part. In this section we begin to
describe the situation in the general case of a hyperbolic equilibrium point in
a nonlinear system by considering the special case of a sink. For simplicity, we
will prove the results below in the planar case, although all of the results hold
in Rn .

Let X ′ = F(X) and suppose that F(X0) = 0. Let DFX0 denote the Jacobian
matrix of F evaluated at X0. Then, as in Chapter 7, the linear system of
differential equations

Y ′ = DFX0Y

is called the linearized system near X0. Note that, if X0 = 0, the linearized
system is obtained by simply dropping all of the nonlinear terms in F , just as
we did in the previous section.

In analogy with our work with linear systems, we say that an equilibrium
point X0 of a nonlinear system is hyperbolic if all of the eigenvalues of DFX0

have nonzero real parts.
We now specialize the discussion to the case of an equilibrium of a planar

system for which the linearized system has a sink at 0. Suppose our system is

x ′ = f (x , y)

y ′ = g (x , y)

with f (x0, y0) = 0 = g (x0, y0). If we make the change of coordinates u =
x − x0, v = y − y0 then the new system has an equilibrium point at (0, 0).
Hence we may as well assume that x0 = y0 = 0 at the outset. We then
make a further linear change of coordinates that puts the linearized system
in canonical form. For simplicity, let us assume at first that the linearized
system has distinct eigenvalues −λ < −μ < 0. Thus after these changes of
coordinates, our system become

x ′ = −λx + h1(x , y)

y ′ = −μy + h2(x , y)

where hj = hj(x , y) contains all of the “higher order terms.” That is, in terms
of its Taylor expansion, each hj contains terms that are quadratic or higher
order in x and/or y . Equivalently, we have

lim
(x ,y)→(0,0)

hj(x , y)

r
= 0

where r2 = x2 + y2.
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The linearized system is now given by

x ′ = −λx

y ′ = −μy .

For this linearized system, recall that the vector field always points inside the
circle of radius r centered at the origin. Indeed, if we take the dot product of
the linear vector field with the outward normal vector (x , y), we find

(−λx , −μy) · (x , y) = −λx2 − μy2 < 0

for any nonzero vector (x , y). As we saw in Chapter 4, this forces all solutions
to tend to the origin with strictly decreasing radial components.

The same thing happens for the nonlinear system, at least close to (0, 0). Let
q(x , y) denote the dot product of the vector field with (x , y). We have

q(x , y) = (−λx + h1(x , y), −μy + h2(x , y)) · (x , y)

= −λx2 + xh1(x , y) − μy2 + yh2(x , y)

= −μ(x2 + y2) + (μ − λ)x2 + xh1(x , y) + yh2(x , y)

≤ −μr2 + xh1(x , y) + yh2(x , y)

since (μ − λ)x2 ≤ 0. Therefore we have

q(x , y)

r2
≤ −μ + xh1(x , y) + yh2(x , y)

r2
.

As r → 0, the right-hand side tends to −μ. Thus it follows that q(x , y) is
negative, at least close to the origin. As a consequence, the nonlinear vector
field points into the interior of circles of small radius about 0, and so all
solutions whose initial conditions lie inside these circles must tend to the
origin. Thus we are justified in calling this type of equilibrium point a sink,
just as in the linear case.

It is straightforward to check that the same result holds if the linearized sys-
tem has eigenvalues α+ iβ with α < 0, β �= 0. In the case of repeated negative
eigenvalues, we first need to change coordinates so that the linearized system is

x ′ = −λx + εy

y ′ = −λy

where ε is sufficiently small. We showed how to do this in Chapter 4. Then
again the vector field points inside circles of sufficiently small radius.
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We can now conjugate the flow of a nonlinear system near a hyperbolic
equilibrium point that is a sink to the flow of its linearized system. Indeed,
the argument used in the second example of the previous section goes over
essentially unchanged. In similar fashion, nonlinear systems near a hyperbolic
source are also conjugate to the corresponding linearized system.

This result is a special case of the following more general theorem.

The Linearization Theorem. Suppose the n-dimensional system X ′ =
F(X) has an equilibrium point at X0 that is hyperbolic. Then the nonlinear
flow is conjugate to the flow of the linearized system in a neighborhood of X0. �

We will not prove this theorem here, since the proof requires analytical
techniques beyond the scope of this book when there are eigenvalues present
with both positive and negative real parts.

8.3 Saddles

We turn now to the case of an equilibrium for which the linearized system has
a saddle at the origin in R2. As in the previous section, we may assume that
this system is in the form

x ′ = λx + f1(x , y)

y ′ = −μy + f2(x , y)

where −μ < 0 < λ and fj(x , y)/r tends to 0 as r → 0. As in the case of a linear
system, we call this type of equilibrium point a saddle.

For the linearized system, the y-axis serves as the stable line, with all solutions
on this line tending to 0 as t → ∞. Similarly, the x-axis is the unstable line.
As we saw in Section 8.1, we cannot expect these stable and unstable straight
lines to persist in the nonlinear case. However, there do exist a pair of curves
through the origin that have similar properties.

Let W s(0) denote the set of initial conditions whose solutions tend to the
origin as t → ∞. Let W u(0) denote the set of points whose solutions tend
to the origin as t → −∞. W s(0) and W u(0) are called the stable curve and
unstable curve, respectively.

The following theorem shows that solutions near nonlinear saddles behave
much the same as in the linear case.

The Stable Curve Theorem. Suppose the system

x ′ = λx + f1(x , y)

y ′ = −μy + f2(x , y)
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satisfies −μ < 0 < λ and fj(x , y)/r → 0 as r → 0. Then there is an ε > 0
and a curve x = hs(y) that is defined for |y| < ε and satisfies hs(0) = 0.
Furthermore:

1. All solutions whose initial conditions lie on this curve remain on this curve
for all t ≥ 0 and tend to the origin as t → ∞;

2. The curve x = hs(y) passes through the origin tangent to the y-axis;
3. All other solutions whose initial conditions lie in the disk of radius ε centered

at the origin leave this disk as time increases. �
Some remarks are in order. The curve x = hs(y) is called the local stable curve

at 0. We can find the complete stable curve W s(0) by following solutions that
lie on the local stable curve backward in time. The function hs(y) is actually
C∞ at all points, though we will not prove this result here.

A similar unstable curve theorem provides us with a local unstable curve
of the form y = hu(x). This curve is tangent to the x-axis at the origin. All
solutions on this curve tend to the origin as t → −∞.

We begin with a brief sketch of the proof of the stable curve theorem.
Consider the square bounded by the lines |x| = ε and |y| = ε for ε > 0
sufficiently small. The nonlinear vector field points into the square along the
interior of the top and the bottom boundaries y = ±ε since the system is
close to the linear system x ′ = λx , y ′ = −μy , which clearly has this property.
Similarly, the vector field points outside the square along the left and right
boundaries x = ±ε.

Now consider the initial conditions that lie along the top boundary y = ε.
Some of these solutions will exit the square to the left, while others will exit to
the right. Solutions cannot do both, so these sets are disjoint. Moreover, these
sets are open. So there must be some initial conditions whose solutions do not
exit at all. We will show first of all that each of these nonexiting solutions tends
to the origin. Secondly, we will show that there is only one initial condition
on the top and bottom boundary whose solution behaves in this way. Finally
we will show that this solution lies along some graph of the form x = hs(y),
which has the required properties.

Now we fill in the details of the proof. Let Bε denote the square bounded
by x = ±ε and y = ±ε. Let S±

ε denote the top and bottom boundaries of
Bε . Let CM denote the conical region given by |y| ≥ M |x| inside Bε . Here we
think of the slopes ±M of the boundary of CM as being large in absolute value.
See Figure 8.4.

Lemma. Given M > 0, there exists ε > 0 such that the vector field points outside
CM for points on the boundary of CM ∩ Bε (except, of course, at the origin).

Proof: Given M , choose ε > 0 so that

|f1(x , y)| ≤ λ

2
√

M 2 + 1
r
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x

y

y�Mx

Figure 8.4 The cone CM.

for all (x , y) ∈ Bε . Now suppose x > 0. Then along the right boundary of CM

we have

x ′ = λx + f1(x , Mx)

≥ λx − |f1(x , Mx)|
≥ λx − λ

2
√

M 2 + 1
r

= λx − λ

2
√

M 2 + 1
(x

√
M 2 + 1)

= λ

2
x > 0.

Hence x ′ > 0 on this side of the boundary of the cone.
Similarly, if y > 0, we may choose ε > 0 smaller if necessary so that we have

y ′ < 0 on the edges of CM where y > 0. Indeed, choosing ε so that

|f2(x , y)| ≤ μ

2
√

M 2 + 1
r

guarantees this exactly as above. Hence on the edge of CM that lies in the first
quadrant, we have shown that the vector field points down and to the right
and hence out of CM . Similar calculations show that the vector field points
outside CM on all other edges of CM . This proves the lemma. �

It follows from this lemma that there is a set of initial conditions in S±
ε ∩CM

whose solutions eventually exit from CM to the right, and another set in
S±
ε ∩ CM whose solutions exit left. These sets are open because of continuity

of solutions with respect to initial conditions (see Section 7.3). We next show
that each of these sets is actually a single open interval.
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Let C+
M denote the portion of CM lying above the x-axis, and let C−

M denote
the portion lying below this axis.

Lemma. Suppose M > 1. Then there is an ε > 0 such that y ′ < 0 in C+
M and

y ′ > 0 in C−
M .

Proof: In C+
M we have |Mx| ≤ y so that

r2 ≤ y2

M 2
+ y2

or

r ≤ y

M

√
1 + M 2.

As in the previous lemma, we choose ε so that

|f2(x , y)| ≤ μ

2
√

M 2 + 1
r

for all (x , y) ∈ Bε . We then have in C+
M

y ′ ≤ −μy + |f2(x , y)|
≤ −μy + μ

2
√

M 2 + 1
r

≤ −μy + μ

2M
y

≤ −μ

2
y

since M > 1. This proves the result for C+
M ; the proof for C−

M is similar. �

From this result we see that solutions that begin on S+
ε ∩CM decrease in the

y-direction while they remain in C+
M . In particular, no solution can remain in

C+
M for all time unless that solution tends to the origin. By the existence and

uniqueness theorem, the set of points in S+
ε that exit to the right (or left) must

then be a single open interval. The complement of these two intervals in S+
ε is

therefore a nonempty closed interval on which solutions do not leave CM and
therefore tend to 0 as t → ∞. We have similar behavior in C−

M .
We now claim that the interval of initial conditions in S±

ε whose solutions
tend to 0 is actually a single point. To see this, recall the variational equation
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for this system discussed in Section 7.4. This is the nonautonomous linear
system

U ′ = DFX(t )U

where X(t ) is a given solution of the nonlinear system and

F

(
x
y

)
=

(
λx + f1(x , y)

−μy + f2(x , y)

)
.

We showed in Chapter 7 that, given τ > 0, if |U0| is sufficiently small, then
the solution of the variational equation U (t ) that satisfies U (0) = U0 and the
solution Y (t ) of the nonlinear system satisfying Y (0) = X0 + U0 remain close
to each other for 0 ≤ t ≤ τ .

Now let X(t ) = (x(t ), y(t )) be one of the solutions of the system that never
leaves CM . Suppose x(0) = x0 and y(0) = ε.

Lemma. Let U (t ) = (u1(t ), u2(t )) be any solution of the variational equation

U ′ = DFX(t )U

that satisfies |u2(0)/u1(0)| ≤ 1. Then we may choose ε > 0 sufficiently small so
that |u2(t )| ≤ |u1(t )| for all t ≥ 0.

Proof: The variational equation may be written

u′
1 = λu1 + f11u1 + f12u2

u′
2 = −μu2 + f21u1 + f22u2

where the |fij(t )| may be made as small as we like by choosing ε smaller.
Given any solution (u1(t ), u2(t )) of this equation, let η = η(t ) be the slope
u2(t )/u1(t ) of this solution. Using the variational equation and the quotient
rule, we find that η satisfies

η′ = α(t ) − (μ + λ + β(t ))η + γ (t )η2

where α(t ) = f21(t ), β(t ) = f11(t )− f22(t ), and γ (t ) = −f12(t ). In particular,
α, β, and γ are all small. Recall that μ + λ > 0, so that

−(μ + λ + β(t )) < 0.

It follows that, if η(t ) > 0, there are constants a1 and a2 with 0 < a1 < a2 such
that

−a2η + α(t ) ≤ η′ ≤ −a1η + α(t ).

Now, if we choose ε small enough and set u1(0) = u2(0) so that η(0) = 1,
then we have η′(0) < 0 so that η(t ) initially decreases. Arguing similarly,
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if η(0) = −1, then η′(0) > 0 so η(t ) increases. In particular, any solution
that begins with |η(0)| < 1 can never satisfy η(t ) = ±1. Since our solution
satisfies |η(0)| ≤ 1, it follows that this solution is trapped in the region where
|η(t )| < 1, and so we have |u2(t )| ≤ |u1(t )| for all t > 0. This proves the
lemma. �

To complete the proof of the theorem, suppose that we have a second
solution Y (t ) that lies in CM for all time. So Y (t ) → 0 as t → ∞. Suppose
that Y (0) = (x ′

0, ε) where x ′
0 �= x0. Note that any solution with initial value

(x , ε) with x0 < x < x ′
0 must also tend to the origin, so we may assume that

x ′
0 is as close as we like to x0. We will approximate Y (t ) − X(t ) by a solution

of the variational equation. Let U (t ) denote the solution of the variational
equation

U ′ = DFX(t )U

satisfying u1(0) = x ′
0 − x0, u2(0) = 0. The above lemma applies to U (t ) so

that |u2(t )| ≤ |u1(t )| for all t .
We have

|u′
1| = |λu1 + f11(t )u1 + f12(t )u2|

≥ λ|u1| − (|f11(t )| + |f12(t )|)|u1|.

But |f11 + f12| tends to 0 as ε → 0, so we have

|u′
1| ≥ K |u1|

for some K > 0. Hence |u1(t )| ≥ CeKt for t ≥ 0. Now the solution Y (t ) tends
to 0 by assumption. But then the distance between Y (t ) and U (t ) must become
large if u1(0) �= 0. This yields a contradiction and shows that Y (t ) = X(t ).

We finally claim that X(t ) tends to the origin tangentially to the y-axis. This
follows immediately from the fact that we may choose ε small enough so that
X(t ) lies in CM no matter how large M is. Hence the slope of X(t ) tends to
±∞ as X(t ) approaches (0, 0). �

We conclude this section with a brief discussion of higher dimensional
saddles. Suppose X ′ = F(X) where X ∈ Rn . Suppose that X0 is an equilibrium
solution for which the linearized system has k eigenvalues with negative real
parts and n − k eigenvalues with positive real parts. Then the local stable
and unstable sets are not generally curves. Rather, they are “submanifolds” of
dimension k and n − k, respectively. Without entering the realm of manifold
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theory, we simply note that this means there is a linear change of coordinates
in which the local stable set is given near the origin by the graph of a C∞
function g : Br → Rn−k that satisfies g (0) = 0, and all partial derivatives of g
vanish at the origin. Here Br is the disk of radius r centered at the origin in Rk .
The local unstable set is a similar graph over an n − k-dimensional disk. Each
of these graphs is tangent at the equilibrium point to the stable and unstable
subspaces at X0. Hence they meet only at X0.

Example. Consider the system

x ′ = −x

y ′ = −y

z ′ = z + x2 + y2.

The linearized system at the origin has eigenvalues 1 and −1 (repeated). The
change of coordinates

u = x

v = y

w = z + 1

3
(x2 + y2).

converts the nonlinear system to the linear system

u′ = −u

v ′ = −v

w ′ = w .

The plane w = 0 for the linear system is the stable plane. Under the change of
coordinates this plane is transformed to the surface

z = −1

3
(x2 + y2),

which is a paraboloid passing through the origin in R3 and opening downward.
All solutions tend to the origin on this surface; we call this the stable surface
for the nonlinear system. See Figure 8.5. �

8.4 Stability

The study of equilibria plays a central role in ordinary differential equations
and their applications. An equilibrium point, however, must satisfy a certain
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z�Wu(0)

Ws(0)

Figure 8.5 The phase portrait
for x ′ = −x, y ′ = −y, z ′ =
z + x2 + y2 .

stability criterion in order to be significant physically. (Here, as in several other
places in this book, we use the word physical in a broad sense; in some contexts,
physical could be replaced by biological , chemical , or even economic .)

An equilibrium is said to be stable if nearby solutions stay nearby for all
future time. In applications of dynamical systems one cannot usually pinpoint
positions exactly, but only approximately, so an equilibrium must be stable to
be physically meaningful.

More precisely, suppose X∗ ∈ Rn is an equilibrium point for the differential
equation

X ′ = F(X).

Then X∗ is a stable equilibrium if for every neighborhood O of X∗ in Rn there
is a neighborhood O1 of X∗ in O such that every solution X(t ) with X(0) = X0

in O1 is defined and remains in O for all t > 0.
A different form of stability is asymptotic stability. If O1 can be chosen above

so that, in addition to the properties for stability, we have limt→∞ X(t ) = X∗,
then we say that X∗ is asymptotically stable.

An equilibrium X∗ that is not stable is called unstable. This means there is a
neighborhood O of X∗ such that for every neighborhood O1 of X∗ in O, there
is at least one solution X(t ) starting at X(0) ∈ O1 that does not lie entirely in
O for all t > 0.

A sink is asymptotically stable and therefore stable. Sources and saddles
are examples of unstable equilibria. An example of an equilibrium that is
stable but not asymptotically stable is the origin in R2 for a linear equation
X ′ = AX where A has pure imaginary eigenvalues. The importance of this
example in applications is limited (despite the famed harmonic oscillator)
because the slightest nonlinear perturbation will destroy its character, as we
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saw in Section 8.1. Even a small linear perturbation can make a center into a
sink or a source.

Thus when the linearization of the system at an equilibrium point is hyper-
bolic, we can immediately determine the stability of that point. Unfortunately,
many important equilibrium points that arise in applications are nonhyper-
bolic. It would be wonderful to have a technique that determined the stability
of an equilibrium point that works in all cases. Unfortunately, as yet, we have
no universal way of determining stability except by actually finding all solu-
tions of the system, which is usually difficult if not impossible. We will present
some techniques that allow us to determine stability in certain special cases in
the next chapter.

8.5 Bifurcations

In this section we will describe some simple examples of bifurcations that occur
for nonlinear systems. We consider a family of systems

X ′ = Fa(X)

where a is a real parameter. We assume that Fa depends on a in a C∞ fashion.
A bifurcation occurs when there is a “significant” change in the structure of
the solutions of the system as a varies. The simplest types of bifurcations occur
when the number of equilibrium solutions changes as a varies.

Recall the elementary bifurcations we encountered in Chapter 1 for first-
order equations x ′ = fa(x). If x0 is an equilibrium point, then we have fa(x0) =
0. If f ′

a (x0) �= 0, then small changes in a do not change the local structure near
x0: that is, the differential equation

x ′ = fa+ε(x)

has an equilibrium point x0(ε) that varies continuously with ε for ε small.
A glance at the (increasing or decreasing) graphs of fa+ε(x) near x0 shows
why this is true. More rigorously, this is an immediate consequence of the
implicit function theorem (see Exercise 3 at the end of this chapter). Thus
bifurcations for first-order equations only occur in the nonhyperbolic case
where f ′

a (x0) = 0.

Example. The first-order equation

x ′ = fa(x) = x2 + a



8.5 Bifurcations 177

has a single equilibrium point at x = 0 when a = 0. Note f ′
0 (0) = 0, but

f ′′
0 (0) �= 0. For a > 0 this equation has no equilibrium points since fa(x) > 0
for all x , but for a < 0 this equation has a pair of equilibria. Thus a bifurcation
occurs as the parameter passes through a = 0. �

This kind of bifurcation is called a saddle-node bifurcation (we will see the
“saddle” in this bifurcation a little later). In a saddle-node bifurcation, there is
an interval about the bifurcation value a0 and another interval I on the x-axis
in which the differential equation has

1. Two equilibrium points in I if a < a0;
2. One equilibrium point in I if a = a0;
3. No equilibrium points in I if a > a0.

Of course, the bifurcation could take place “the other way,” with no equilibria
when a > a0. The example above is actually the typical type of bifurcation for
first-order equations.

Theorem. (Saddle-Node Bifurcation) Suppose x ′ = fa(x) is a first-order
differential equation for which

1. fa0(x0) = 0;

2. f ′
a0

(x0) = 0;

3. f ′′
a0

(x0) �= 0;

4.
∂fa0

∂a
(x0) �= 0.

Then this differential equation undergoes a saddle-node bifurcation at a = a0.

Proof: Let G(x , a) = fa(x). We have G(x0, a0) = 0. Also,

∂G

∂a
(x0, a0) = ∂fa0

∂a
(x0) �= 0,

so we may apply the implicit function theorem to conclude that there is a
smooth function a = a(x) such that G(x , a(x)) = 0. In particular, if x∗
belongs to the domain of a(x), then x∗ is an equilibrium point for the equation
x ′ = fa(x∗)(x), since fa(x∗)(x

∗) = 0. Differentiating G(x , a(x)) = 0 with
respect to x , we find

a′(x) = −∂G/∂x

∂G/∂a
.
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Now (∂G/∂x)(x0, a0) = f ′
a0

(x0) = 0, while (∂G/∂a)(x0, a0) �= 0 by assump-
tion. Hence a′(x0) = 0. Differentiating once more, we find

a′′(x) =
−∂2G

∂x2

∂G

∂a
+ ∂G

∂x

∂2G

∂a2(
∂G

∂a

)2 .

Since (∂G/∂x)(x0, a0) = 0, we have

a′′(x0) =
−∂2G

∂x2
(x0, a0)

∂G

∂a
(x0, a0)

�= 0

since (∂2G/∂x2)(x0, a0) = f ′′
a0

(x0) �= 0. This implies that the graph of a = a(x)
is either concave up or concave down, so we have two equilibria near x0 for
a-values on one side of a0 and no equilibria for a-values on the other side. �

We said earlier that such saddle-node bifurcations were the “typical” bifur-
cations involving equilibrium points for first-order equations. The reason for
this is that we must have both

1. fa0(x0) = 0
2. f ′

a0
(x0) = 0

if x ′ = fa(x) is to undergo a bifurcation when a = a0. Generically (in the sense
of Section 5.6), the next higher order derivatives at (x0, a0) will be nonzero.
That is, we typically have

3. f ′′
a0

(x0) �= 0

4. ∂fa
∂a (x0, a0) �= 0

at such a bifurcation point. But these are precisely the conditions that guarantee
a saddle-node bifurcation.

Recall that the bifurcation diagram for x ′ = fa(x) is a plot of the various
phase lines of the equation versus the parameter a. The bifurcation diagram
for a typical saddle-node bifurcation is displayed in Figure 8.6. (The directions
of the arrows and the curve of equilibria may change.)

Example. (Pitchfork Bifurcation) Consider

x ′ = x3 − ax .
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x

a0

x0

a

Figure 8.6 The bifurcation diagram for a
saddle-node bifurcation.

x

a

Figure 8.7 The bifurcation diagram
for a pitchfork bifurcation.

There are three equilibria for this equation, at x = 0 and x = ±√
a when

a > 0. When a ≤ 0, x = 0 is the only equilibrium point. The bifurcation
diagram shown in Figure 8.7 explains why this bifurcation is so named. �

Now we turn to some bifurcations in higher dimensions. The saddle-node
bifurcation in the plane is similar to its one-dimensional cousin, only now we
see where the “saddle” comes from.

Example. Consider the system

x ′ = x2 + a

y ′ = −y .
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Figure 8.8 The saddle-node bifurcation when, from left to right,
a < 0, a = 0, and a > 0.

When a = 0, this is one of the systems considered in Section 8.1. There is a
unique equilibrium point at the origin, and the linearized system has a zero
eigenvalue.

When a passes through a = 0, a saddle-node bifurcation occurs. When
a > 0, we have x ′ > 0 so all solutions move to the right; the equilibrium point
disappears. When a < 0 we have a pair of equilibria, at the points (±√−a, 0).
The linearized equation is

X ′ =
(

2x 0
0 −1

)
X .

So we have a sink at (−√−a, 0) and a saddle at (
√−a, 0). Note that solutions

on the lines x = ±√−a remain for all time on these lines since x ′ = 0 on these
lines. Solutions tend directly to the equilibria on these lines since y ′ = −y .
This bifurcation is sketched in Figure 8.8. �

A saddle-node bifurcation may have serious global implications for the
behavior of solutions, as the following example shows.

Example. Consider the system given in polar coordinates by

r ′ = r − r3

θ ′ = sin2(θ) + a

where a is again a parameter. The origin is always an equilibrium point since
r ′ = 0 when r = 0. There are no other equilibria when a > 0 since, in that
case, θ ′ > 0. When a = 0 two additional equilibria appear at (r , θ) = (1, 0)
and (r , θ) = (1, π). When −1 < a < 0, there are four equilibria on the circle
r = 1. These occur at the roots of the equation

sin2(θ) = −a.
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We denote these roots by θ± and θ± + π , where we assume that 0 < θ+ < π /2
and −π /2 < θ− < 0.

Note that the flow of this system takes the straight rays through the origin
θ = constant to other straight rays. This occurs since θ ′ depends only on θ ,
not on r . Also, the unit circle is invariant in the sense that any solution that
starts on the circle remains there for all time. This follows since r ′ = 0 on this
circle. All other nonzero solutions tend to this circle, since r ′ > 0 if 0 < r < 1
whereas r ′ < 0 if r > 1.

Now consider the case a = 0. In this case the x-axis is invariant and all
nonzero solutions on this line tend to the equilibrium points at x = ±1. In
the upper half-plane we have θ ′ > 0, so all other solutions in this region wind
counterclockwise about 0 and tend to x = −1; the θ-coordinate increases
to θ = π while r tends monotonically to 1. No solution winds more than
angle π about the origin, since the x-axis acts as a barrier. The system behaves
symmetrically in the lower half-plane.

When a > 0 two things happen. First of all, the equilibrium points at x = ±1
disappear and now θ ′ > 0 everywhere. Thus the barrier on the x-axis has been
removed and all solutions suddenly are free to wind forever about the origin.
Secondly, we now have a periodic solution on the circle r = 1, and all nonzero
solutions are attracted to it.

This dramatic change is caused by a pair of saddle-node bifurcations at
a = 0. Indeed, when −1 < a < 0 we have two pair of equilibria on the unit
circle. The rays θ = θ± and θ = θ± + π are invariant, and all solutions
on these rays tend to the equilibria on the circle. Consider the half-plane
θ− < θ < θ− + π . For θ-values in the interval θ− < θ < θ+, we have θ ′ < 0,
while θ ′ > 0 in the interval θ+ < θ < θ− + π . Solutions behave symmetrically
in the complementary half-plane. Therefore all solutions that do not lie on the
rays θ = θ+ or θ = θ+ + π tend to the equilibrium points at r = 1, θ = θ−
or at r = 1, θ = θ− + π . These equilibria are therefore sinks. At the other
equilibria we have saddles. The stable curves of these saddles lie on the rays
θ = θ+ and θ = π + θ+ and the unstable curves of the saddles are given by
the unit circle minus the sinks. See Figure 8.9. �

The previous examples all featured bifurcations that occur when the lin-
earized system has a zero eigenvalue. Another case where the linearized system
fails to be hyperbolic occurs when the system has pure imaginary eigenvalues.

Example. (Hopf Bifurcation) Consider the system

x ′ = ax − y − x(x2 + y2)

y ′ = x + ay − y(x2 + y2).
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Figure 8.9 Global effects of saddle-node bifurcations when, from left
to right, a < 0, a = 0, and a > 0.

There is an equilibrium point at the origin and the linearized system is

X ′ =
(

a −1
1 a

)
X .

The eigenvalues are a ± i, so we expect a bifurcation when a = 0.
To see what happens as a passes through 0, we change to polar coordinates.

The system becomes

r ′ = ar − r3

θ ′ = 1.

Note that the origin is the only equilibrium point for this system, since θ ′ �= 0.
For a < 0 the origin is a sink since ar − r3 < 0 for all r > 0. Thus all solutions
tend to the origin in this case. When a > 0, the equilibrium becomes a source.
So what else happens? When a > 0 we have r ′ = 0 if r = √

a. So the circle
of radius

√
a is a periodic solution with period 2π . We also have r ′ > 0 if

0 < r <
√

a, while r ′ < 0 if r >
√

a. Thus, all nonzero solutions spiral toward
this circular solution as t → ∞.

This type of bifurcation is called a Hopf bifurcation. Thus at a Hopf
bifurcation, no new equilibria arise. Instead, a periodic solution is born
at the equilibrium point as a passes through the bifurcation value. See
Figure 8.10. �

8.6 Exploration: Complex Vector Fields

In this exploration, you will investigate the behavior of systems of differential
equations in the complex plane of the form z ′ = F(z). Throughout this
section z will denote the complex number z = x + iy and F(z) will be a
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Figure 8.10 The Hopf bifurcation for a < 0 and
a > 0.

polynomial with complex coefficients. Solutions of the differential equation
will be expressed as curves z(t ) = x(t ) + iy(t ) in the complex plane.

You should be familiar with complex functions such as the exponential, sine,
and cosine as well as with the process of taking complex square roots in order
to comprehend fully what you see below. Theoretically, you should also have
a grasp of complex analysis as well. However, all of the routine tricks from
integration of functions of real variables work just as well when integrating
with respect to z . You need not prove this, because you can always check the
validity of your solutions when you have completed the integrals.

1. Solve the equation z ′ = az where a is a complex number. What kind
of equilibrium points do you find at the origin for these differential
equations?

2. Solve each of the following complex differential equations and sketch the
phase portrait.

(a) z ′ = z2

(b) z ′ = z2 − 1

(c) z ′ = z2 + 1

3. For a complex polynomial F(z), the complex derivative is defined just as
the real derivative

F ′(z0) = lim
z→z0

F(z) − F(z0)

z − z0
,

only this limit is evaluated along any smooth curve in C that passes
through z0. This limit must exist and yield the same (complex) number
for each such curve. For polynomials, this is easily checked. Now write

F(x + iy) = u(x , y) + iv(x , y).
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Evaluate F ′(z0) in terms of the derivatives of u and v by first taking the
limit along the horizontal line z0 + t , and secondly along the vertical line
z0+it . Use this to conclude that, if the derivative exists, then we must have

∂u

∂x
= ∂v

∂y
and

∂u

∂y
= −∂v

∂x

at every point in the plane. The equations are called the Cauchy-Riemann
equations.

4. Use the above observation to determine all possible types of equilibrium
points for complex vector fields.

5. Solve the equation

z ′ = (z − z0)(z − z1)

where z0, z1 ∈ C, and z0 �= z1. What types of equilibrium points occur
for different values of z0 and z1?

6. Find a nonlinear change of variables that converts the previous system to
w ′ = αw with α ∈ C. Hint: Since the original system has two equilibrium
points and the linear system only one, the change of variables must send
one of the equilibrium points to ∞.

7. Classify all complex quadratic systems of the form

z ′ = z2 + az + b

where a, b ∈ C.
8. Consider the equation

z ′ = z3 + az

with a ∈ C. First use a computer to describe the phase portraits for these
systems. Then prove as much as you can about these systems and classify
them with respect to a.

9. Choose your own (nontrivial) family of complex functions depending on
a parameter a ∈ C and provide a complete analysis of the phase por-
traits for each a. Some neat families to consider include a exp z , a sin z ,
or (z2 + a)(z2 − a).

E X E R C I S E S

1. For each of the following nonlinear systems,

(a) Find all of the equilibrium points and describe the behavior of the
associated linearized system.
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(b) Describe the phase portrait for the nonlinear system.

(c) Does the linearized system accurately describe the local behavior
near the equilibrium points?

(i) x ′ = sin x , y ′ = cos y
(ii) x ′ = x(x2 + y2), y ′ = y(x2 + y2)
(iii) x ′ = x + y2, y ′ = 2y
(iv) x ′ = y2, y ′ = y
(v) x ′ = x2, y ′ = y2

2. Find a global change of coordinates that linearizes the system

x ′ = x + y2

y ′ = −y

z ′ = −z + y2.

3. Consider a first-order differential equation

x ′ = fa(x)

for which fa(x0) = 0 and f ′
a (x0) �= 0. Prove that the differential equation

x ′ = fa+ε(x)

has an equilibrium point x0(ε) where ε → x0(ε) is a smooth function
satisfying x0(0) = x0 for ε sufficiently small.

4. Find general conditions on the derivatives of fa(x) so that the equation

x ′ = fa(x)

undergoes a pitchfork bifurcation at a = a0. Prove that your conditions
lead to such a bifurcation.

5. Consider the system

x ′ = x2 + y

y ′ = x − y + a

where a is a parameter.

(a) Find all equilibrium points and compute the linearized equation at
each.

(b) Describe the behavior of the linearized system at each equilibrium
point.
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(c) Describe any bifurcations that occur.

6. Given an example of a family of differential equations x ′ = fa(x) for
which there are no equilibrium points if a < 0; a single equilibrium if
a = 0; and four equilibrium points if a > 0. Sketch the bifurcation
diagram for this family.

7. Discuss the local and global behavior of solutions of

r ′ = r − r3

θ ′ = sin2(θ) + a

at the bifurcation value a = −1.
8. Discuss the local and global behavior of solutions of

r ′ = r − r2

θ ′ = sin2(θ /2) + a

at all of the bifurcation values.
9. Consider the system

r ′ = r − r2

θ ′ = sin θ + a

(a) For which values of a does this system undergo a bifurcation?

(b) Describe the local behavior of solutions near the bifurcation values
(at, before, and after the bifurcation).

(c) Sketch the phase portrait of the system for all possible different cases.

(d) Discuss any global changes that occur at the bifurcations.

10. Let X ′ = F(X) be a nonlinear system in Rn . Suppose that F(0) = 0 and
that DF0 has n distinct eigenvalues with negative real parts. Describe the
construction of a conjugacy between this system and its linearization.

11. Consider the system X ′ = F(X) where X ∈ Rn . Suppose that F has an
equilibrium point at X0. Show that there is a change of coordinates that
moves X0 to the origin and converts the system to

X ′ = AX + G(X)

where A is an n × n matrix, which is the canonical form of DFX0 and
where G(X) satisfies

lim|X |→0

|G(X)|
|X | = 0.
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12. In the definition of an asymptotically stable equilibrium point, we
required that the equilibrium point also be stable. This requirement is
not vacuous. Give an example of a phase portrait (a sketch is sufficient)
that has an equilibrium point toward which all nearby solution curves
(eventually) tend, but that is not stable.
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9
Global Nonlinear Techniques

In this chapter we present a variety of qualitative techniques for analyzing
the behavior of nonlinear systems of differential equations. The reader should
be forewarned that none of these techniques works for all nonlinear systems;
most work only in specialized situations, which, as we shall see in the ensuing
chapters, nonetheless occur in many important applications of differential
equations.

9.1 Nullclines

One of the most useful tools for analyzing nonlinear systems of differential
equations (especially planar systems) are the nullclines. For a system in the
form

x ′
1 = f1(x1, . . . , xn)

...

x ′
n = fn(x1, . . . , xn),

the xj-nullcline is the set of points where x ′
j vanishes, so the xj-nullcline is the

set of points determined by setting fj(x1, . . . , xn) = 0.
The xj-nullclines usually separate Rn into a collection of regions in which

the xj-components of the vector field point in either the positive or negative
direction. If we determine all of the nullclines, then this allows us to decompose

189
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Rn into a collection of open sets, in each of which the vector field points in a
“certain direction.”

This is easiest to understand in the case of a planar system

x ′ = f (x , y)

y ′ = g (x , y).

On the x-nullclines, we have x ′ = 0, so the vector field points straight up
or down, and these are the only points at which this happens. Therefore the
x-nullclines divide R2 into regions where the vector field points either to the
left or to the right. Similarly, on the y-nullclines, the vector field is horizontal,
so the y-nullclines separate R2 into regions where the vector field points either
upward or downward. The intersections of the x- and y-nullclines yield the
equilibrium points. In any of the regions between the nullclines, the vector field
is neither vertical nor horizontal, so it must point in one of four directions:
northeast, northwest, southeast, or southwest. We call such regions basic
regions. Often, a simple sketch of the basic regions allows us to understand the
phase portrait completely, at least from a qualitative point of view.

Example. For the system

x ′ = y − x2

y ′ = x − 2,

the x-nullcline is the parabola y = x2 and the y-nullcline is the vertical line x =
2. These nullclines meet at (2, 4) so this is the only equilibrium point. The null-
clines divide R2 into four basic regions labeled A through D in Figure 9.1(a).
By first choosing one point in each of these regions, and then determining the
direction of the vector field at that point, we can decide the direction of the
vector field at all points in the basic region. For example, the point (0, 1) lies in
region A and the vector field is (1, −2) at this point, which points toward the
southeast. Hence the vector field points southeast at all points in this region.
Of course, the vector field may be nearly horizontal or nearly vertical in this
region; when we say southeast we mean that the angle θ of the vector field lies
in the sector −π /2 < θ < 0. Continuing in this fashion we get the direction
of the vector field in all four regions, as in Figure 9.1(b). This also determines
the horizontal and vertical directions of the vector field on the nullclines.

Just from the direction field alone, it appears that the equilibrium point is a
saddle. Indeed, this is the case because the linearized system at (2, 4) is

X ′ =
(−4 1

1 0

)
X ,
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A

D C

B

(a) (b)

Figure 9.1 The (a) nullclines and (b) direction field.

y�x2

x�2
B

Figure 9.2 Solutions
enter the basic region
B and then tend to ∞.

which has eigenvalues −2 ± √
5, one of which is positive, the other negative.

More importantly, we can fill in the approximate behavior of solutions
everywhere in the plane. For example, note that the vector field points into the
basic region marked B at all points along its boundary, and then it points north-
easterly at all points inside B. Thus any solution in region B must stay in region
B for all time and tend toward ∞ in the northeast direction. See Figure 9.2.
Similarly, solutions in the basic region D stay in that region and head toward
∞ in the southwest direction. Solutions starting in the basic regions A and
C have a choice: They must eventually cross one of the nullclines and enter
regions B and D (and therefore we know their ultimate behavior) or else they
tend to the equilibrium point. However, there is only one curve of such solu-
tions in each region, the stable curve at (2, 4). Thus we completely understand
the phase portrait for this system, at least from a qualitative point of view. See
Figure 9.3. �
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Figure 9.3 The nullclines and
phase portrait for x ′ = y−x2 ,
y ′ = x − 2.

Example. (Heteroclinic Bifurcation) Next consider the system that
depends on a parameter a:

x ′ = x2 − 1

y ′ = −xy + a(x2 − 1).

The x-nullclines are given by x = ±1 while the y-nullclines are xy = a(x2−1).
The equilibrium points are (±1, 0). Since x ′ = 0 on x ± 1, the vector field is
actually tangent to these nullclines. Moreover, we have y ′ = −y on x = 1 and
y ′ = y on x = −1. So solutions tend to (1, 0) along the vertical line x = 1 and
tend away from (−1, 0) along x = −1. This happens for all values of a.

Now, let’s look at the case a = 0. Here the system simplifies to

x ′ = x2 − 1

y ′ = −xy ,

so y ′ = 0 along the axes. In particular, the vector field is tangent to the x-axis
and is given by x ′ = x2 − 1 on this line. So we have x ′ > 0 if |x| > 1 and
x ′ < 0 if |x| < 1. Thus, at each equilibrium point, we have one straight-line
solution tending to the equilibrium and one tending away. So it appears that
each equilibrium is a saddle. This is indeed the case, as is easily checked by
linearization.

There is a second y-nullcline along x = 0, but the vector field is not tangent
to this nullcline. Computing the direction of the vector field in each of the
basic regions determined by the nullclines yields Figure 9.4, from which we
can deduce immediately the qualitative behavior of all solutions.

Note that, when a = 0, one branch of the unstable curve through (1, 0)
matches up exactly with a branch of the stable curve at (−1, 0). All solutions
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(a) (b)

Figure 9.4 The (a) nullclines and (b) phase portrait for x ′ =
x2 − 1, y ′ = −xy.

on this curve simply travel from one saddle to the other. Such solutions are
called heteroclinic solutions or saddle connections. Typically, for planar systems,
stable and unstable curves rarely meet to form such heteroclinic “connections.”
When they do, however, one can expect a bifurcation.

Now consider the case where a �= 0. The x-nullclines remain the same, at
x = ±1. But the y-nullclines change drastically as shown in Figure 9.5. They
are given by y = a(x2 − 1)/x .

When a > 0, consider the basic region denoted by A. Here the vector field
points southwesterly. In particular, the vector field points in this direction
along the x-axis between x = −1 and x = 1. This breaks the heteroclinic
connection: The right portion of the stable curve associated to (−1, 0) must

(a)

A

A

(b)

Figure 9.5 The (a) nullclines and (b) phase plane when a > 0 after
the heteroclinic bifurcation.
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now come from y = ∞ in the upper half plane, while the left portion of the
unstable curve associated to (1, 0) now descends to y = −∞ in the lower
half plane. This opens an “avenue” for certain solutions to travel from y =
+∞ to y = −∞ between the two lines x = ±1. Whereas when a = 0 all
solutions remain for all time confined to either the upper or lower half-plane,
the heteroclinic bifurcation at a = 0 opens the door for certain solutions to
make this transit.

A similar situation occurs when a < 0 (see Exercise 2 at the end of this
chapter). �

9.2 Stability of Equilibria

Determining the stability of an equilibrium point is straightforward if the
equilibrium is hyperbolic. When this is not the case, this determination
becomes more problematic. In this section we develop an alternative method
for showing that an equilibrium is asymptotically stable. Due to the Russian
mathematician Liapunov, this method generalizes the notion that, for a linear
system in canonical form, the radial component r decreases along solution
curves. Liapunov noted that other functions besides r could be used for this
purpose. Perhaps more importantly, Liapunov’s method gives us a grasp on
the size of the basin of attraction of an asymptotically stable equilibrium point.
By definition, the basin of attraction is the set of all initial conditions whose
solutions tend to the equilibrium point.

Let L : O → R be a differentiable function defined on an open set O in Rn

that contains an equilibrium point X∗ of the system X ′ = F(X). Consider the
function

L̇(X) = DLX (F(X)).

As we have seen, if φt (X) is the solution of the system passing through X when
t = 0, then we have

L̇(X) = d

dt

∣∣∣∣
t=0

L ◦ φt (X)

by the chain rule. Consequently, if L̇(X) is negative, then L decreases along
the solution curve through X .

We can now state Liapunov’s stability theorem:

Theorem. (Liapunov Stability) Let X∗ be an equilibrium point for X ′ =
F(X). Let L : O → R be a differentiable function defined on an open set O
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containing X∗. Suppose further that

(a) L(X∗) = 0 and L(X) > 0 if X �= X∗;
(b) L̇ ≤ 0 in O − X∗.

Then X∗ is stable. Furthermore, if L also satisfies

(c) L̇ < 0 in O − X∗,

then X∗ is asymptotically stable. �

A function L satisfying (a) and (b) is called a Liapunov function for X∗. If
(c) also holds, we call L a strict Liapunov function.

Note that Liapunov’s theorem can be applied without solving the differential
equation; all we need to compute is DLX (F(X)). This is a real plus! On the
other hand, there is no cut-and-dried method of finding Liapunov functions; it
is usually a matter of ingenuity or trial and error in each case. Sometimes there
are natural functions to try. For example, in the case of mechanical or electrical
systems, energy is often a Liapunov function, as we shall see in Chapter 13.

Example. Consider the system of differential equations in R3 given by

x ′ = (εx + 2y)(z + 1)

y ′ = (−x + εy)(z + 1)

z ′ = −z3

where ε is a parameter. The origin is the only equilibrium point for this system.
The linearization of the system at (0, 0, 0) is

Y ′ =
⎛
⎝ ε 2 0

−1 ε 0
0 0 0

⎞
⎠Y .

The eigenvalues are 0 and ε ±√
2i. Hence, from the linearization, we can only

conclude that the origin is unstable if ε > 0. When ε ≤ 0, all we can conclude
is that the origin is not hyperbolic.

When ε ≤ 0 we search for a Liapunov function for (0, 0, 0) of the form
L(x , y , z) = ax2 + by2 + cz2, with a, b, c > 0. For such an L, we have

L̇ = 2(axx ′ + byy ′ + czz ′),

so that

L̇/2 = ax(εx + 2y)(z + 1) + by(−x + εy)(z + 1) − cz4

= ε(ax2 + by2)(z + 1) + (2a − b)(xy)(z + 1) − cz4.
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For stability, we want L̇ ≤ 0; this can be arranged, for example, by setting
a = 1, b = 2, and c = 1. If ε = 0, we then have L̇ = −z4 ≤ 0, so the origin
is stable. It can be shown (see Exercise 4) that the origin is not asymptotically
stable in this case.

If ε < 0, then we find

L̇ = ε(x2 + 2y2)(z + 1) − z4

so that L̇ < 0 in the region O given by z > −1 (minus the origin). We conclude
that the origin is asymptotically stable in this case, and, indeed, from Exercise 4,
that all solutions that start in the region O tend to the origin. �

Example. (The Nonlinear Pendulum) Consider a pendulum consisting
of a light rod of length � to which is attached a ball of mass m. The other end
of the rod is attached to a wall at a point so that the ball of the pendulum
moves on a circle centered at this point. The position of the mass at time t
is completely described by the angle θ(t ) of the mass from the straight down
position and measured in the counterclockwise direction. Thus the position
of the mass at time t is given by (� sin θ(t ), −� cos θ(t )).

The speed of the mass is the length of the velocity vector, which is � dθ /dt ,
and the acceleration is � d2θ /dt 2. We assume that the only two forces acting
on the pendulum are the force of gravity and a force due to friction. The
gravitational force is a constant force equal to mg acting in the downward
direction; the component of this force tangent to the circle of motion is given
by −mg sin θ . We take the force due to friction to be proportional to velocity
and so this force is given by −b� dθ /dt for some constant b > 0. When there
is no force due to friction (b = 0), we have an ideal pendulum. Newton’s law
then gives the second-order differential equation for the pendulum

m�
d2θ

dt 2
= −b�

dθ

dt
− mg sin θ .

For simplicity, we assume that units have been chosen so that m = � = g = 1.
Rewriting this equation as a system, we introduce v = dθ /dt and get

θ ′ = v

v ′ = −bv − sin θ .

Clearly, we have two equilibrium points (mod 2π): the downward rest position
at θ = 0, v = 0, and the straight-up position θ = π , v = 0. This upward
postion is an unstable equilibrium, both from a mathematical (check the
linearization) and physical point of view.
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For the downward equilibrium point, the linearized system is

Y ′ =
(

0 1
−1 −b

)
Y .

The eigenvalues here are either pure imaginary (when b = 0) or else have neg-
ative real parts (when b > 0). So the downward equilibrium is asymptotically
stable if b > 0 as everyone on earth who has watched a real-life pendulum
knows.

To investigate this equilibrium point further, consider the function
E(θ , v) = 1

2v2 + 1 − cos θ . For readers with a background in elementary
mechanics, this is the well-known total energy function, which we will describe
further in Chapter 13. We compute

Ė = vv ′ + sin θ θ ′ = −bv2,

so that Ė ≤ 0. Hence E is a Liapunov function. Thus the origin is a stable
equilibrium. If b = 0 (that is, there is no friction), then Ė ≡ 0. That is, E is
constant along all solutions of the system. Hence we may simply plot the level
curves of E to see where the solution curves reside. We find the phase portrait
shown in Figure 9.6. Note that we do not have to solve the differential equation
to paint this picture; knowing the level curves of E (and the direction of the
vector field) tells us everything. We will encounter many such (very special)
functions that are constant along solution curves later in this chapter.

The solutions encircling the origin have the property that −π < θ(t ) < π

for all t . Therefore these solutions correspond to the pendulum oscillating
about the downward rest position without ever crossing the upward position
θ = π . The special solutions connecting the equilibrium points at (±π , 0)

2π�2π

Figure 9.6 The phase portrait for the
ideal pendulum.
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correspond to the pendulum tending to the upward-pointing equilibrium in
both the forward and backward time directions. (You don’t often see such
motions!) Beyond these special solutions we find solutions for which θ(t )
either increases or decreases for all time; in these cases the pendulum spins
forever in the counterclockwise or clockwise direction. �

We will return to the pendulum example for the case b > 0 later, but first
we prove Liapunov’s theorem.

Proof: Let δ > 0 be so small that the closed ball Bδ(X∗) around the equilib-
rium point X∗ of radius δ lies entirely in O. Let α be the minimum value of
L on the boundary of Bδ(X∗), that is, on the sphere Sδ(X∗) of radius δ and
center X∗. Then α > 0 by assumption. Let U = {X ∈ Bδ(X∗) | L(X) < α}
and note that X∗ lies in U . Then no solution starting in U can meet Sδ(X∗)
since L is nonincreasing on solution curves. Hence every solution starting
in U never leaves Bδ(X∗). This proves that X∗ is stable.

Now suppose that assumption (c) in the Liapunov stability theorem holds
as well, so that L is strictly decreasing on solutions in U − X∗. Let X(t ) be
a solution starting in U − X∗ and suppose that X(tn) → Z0 ∈ Bδ(X∗) for
some sequence tn → ∞. We claim that Z0 = X∗. To see this, observe that
L(X(t )) > L(Z0) for all t ≥ 0 since L(X(t )) decreases and L(X(tn)) → L(Z0)
by continuity of L. If Z0 �= X∗, let Z (t ) be the solution starting at Z0. For
any s > 0, we have L(Z (s)) < L(Z0). Hence for any solution Y (s) starting
sufficiently near Z0 we have

L(Y (s)) < L (Z0) .

Setting Y (0) = X(tn) for sufficiently large n yields the contradiction

L(X (tn + s)) < L (Z0) .

Therefore Z0 = X∗. This proves that X∗ is the only possible limit point of the
set {X(t ) | t ≥ 0} and completes the proof of Liapunov’s theorem. �

Figure 9.7 makes the theorem intuitively obvious. The condition L̇ < 0
means that when a solution crosses a “level surface” L−1(c), it moves inside
the set where L ≤ c and can never come out again. Unfortunately, it is
sometimes difficult to justify the diagram shown in this figure; why should the
sets L−1(c) shrink down to X∗? Of course, in many cases, Figure 9.7 is indeed
correct, as, for example, if L is a quadratic function such as ax2 + by2 with
a, b > 0. But what if the level surfaces look like those shown in Figure 9.8? It
is hard to imagine such an L that fulfills all the requirements of a Liapunov
function; but rather than trying to rule out that possibility, it is simpler to give
the analytic proof as above.
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L�1(c2)

L�1(c1)

L�1(c3)

Figure 9.7 Solutions decrease through the level sets L−1(cj)
of a strict Liapunov function.

Example. Now consider the system

x ′ = −x3

y ′ = −y(x2 + z2 + 1)

z ′ = − sin z .

The origin is again an equilibrium point. It is not the only one, however,
since (0, 0, nπ) is also an equilibrium point for each n ∈ Z. Hence the origin
cannot be globally asymptotically stable. Moreover, the planes z = nπ for
n ∈ Z are invariant in the sense that any solution that starts on one of these
planes remains there for all time. This occurs since z ′ = 0 when z = nπ . In
particular, any solution that begins in the region |z | < π must remain trapped
in this region for all time.

L�1(c2)
L�1(c1)

Figure 9.8 Level sets of a Liapunov
function may look like this.
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Linearization at the origin yields the system

Y ′ =
⎛
⎝0 0 0

0 −1 0
0 0 −1

⎞
⎠Y

which tells us nothing about the stability of this equilibrium point.
However, consider the function

L(x , y , z) = x2 + y2 + z2.

Clearly, L > 0 except at the origin. We compute

L̇ = −2x4 − 2y2(x2 + z2 + 1) − 2z sin z .

Then L̇ < 0 at all points in the set |z | < π (except the origin) since z sin z > 0
when z �= 0. Hence the origin is asymptotically stable.

Moreover, we can conclude that the basin of attraction of the origin is the
entire region |z | < π . From the proof of the Liapunov stability theorem, it
follows immediately that any solution that starts inside a sphere of radius r < π

must tend to the origin. Outside of the sphere of radius π and between the
planes z = ±π , the function L is still strictly decreasing. Since solutions are
trapped between these two planes, it follows that they too must tend to the
origin. �

Liapunov functions not only detect stable equilibria; they can also be used to
estimate the size of the basin of attraction of an asymptotically stable equilib-
rium, as the above example shows. The following theorem gives a criterion for
asymptotic stability and the size of the basin even when the Liapunov function
is not strict. To state it, we need several definitions.

Recall that a set P is called invariant if for each X ∈ P , φt (X) is defined
and in P for all t ∈ R. For example, the region |z | < π in the above example
is an invariant set. The set P is positively invariant if for each X ∈ P , φt (X)
is defined and in P for all t ≥ 0. The portion of the region |z | < π inside
a sphere centered at the origin in the previous example is positively invariant
but not invariant. Finally, an entire solution of a system is a set of the form
{φt (X) | t ∈ R}.

Theorem. (Lasalle’s Invariance Principle) Let X∗ be an equilibrium
point for X ′ = F(X) and let L : U → R be a Liapunov function for X∗, where
U is an open set containing X∗. Let P ⊂ U be a neighborhood of X∗ that is closed
and bounded. Suppose that P is positively invariant, and that there is no entire
solution in P − X∗ on which L is constant. Then X∗ is asymptotically stable, and
P is contained in the basin of attraction of X∗. �
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Before proving this theorem we apply it to the equilibrium X∗ = (0, 0) of
the damped pendulum discussed previously. Recall that a Liapunov function
is given by E(θ , v) = 1

2v2 + 1 − cos θ and that Ė = −bv2. Since Ė = 0 on
v = 0, this Liapunov function is not strict.

To estimate the basin of (0, 0), fix a number c with 0 < c < 2, and define

Pc = {(θ , v) | E(θ , v) ≤ c and |θ | < π}.
Clearly, (0, 0) ∈ Pc . We shall prove that Pc lies in the basin of attraction of
(0, 0).

Note first that Pc is positively invariant. To see this suppose that (θ(t ), v(t ))
is a solution with (θ(0), v(0)) ∈ Pc . We claim that (θ(t ), v(t )) ∈ Pc for all
t ≥ 0. We clearly have E(θ(t ), v(t )) ≤ c since Ė ≤ 0. If |θ(t )| ≥ π , then there
must exist a smallest t0 such that θ(t0) = ±π . But then

E(θ(t0), v(t0)) = E(±π , v(t0))

= 1

2
v(t0)2 + 2

≥ 2.

However,

E(θ(t0), v(t0)) ≤ c < 2.

This contradiction shows that θ(t0) < π , and so Pc is positively invariant.
We now show that there is no entire solution in Pc on which E is constant

(except the equilibrium solution). Suppose there is such a solution. Then,
along that solution, Ė ≡ 0 and so v ≡ 0. Hence, θ ′ = 0 so θ is constant on
the solution. We also have v ′ = − sin θ = 0 on the solution. Since |θ | < π , it
follows that θ ≡ 0. Thus the only entire solution in Pc on which E is constant
is the equilibrium point (0, 0).

Finally, Pc is a closed set. Because if (θ0, v0) is a limit point of Pc , then |θ0| ≤
π , and E(θ0, v0) ≤ c by continuity of E . But |θ0| = π implies E(θ0, v0) > c ,
as shown above. Hence |θ0| < π and so (θ0, v0) does belong to Pc , so Pc is
closed.

From the theorem we conclude that Pc belongs to the basin of attraction of
(0, 0) for each c < 2; hence the set

P = ∪ {Pc | 0 < c < 2}
is also contained in this basin. Note that we may write

P = {(θ , v) | E(θ , v) < 2 and |θ | < π}.
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o

cc

�o

Figure 9.9 The curve γc

bounds the region Pc .

Figure 9.9 displays the phase portrait for the damped pendulum. The curves
marked γc are the level sets E(θ , v) = c . Note that solutions cross each of these
curves exactly once and eventually tend to the origin.

This result is quite natural on physical grounds. For if θ �= ±π , then
E(θ , 0) < 2 and so the solution through (θ , 0) tends to (0, 0). That is, if
we start the pendulum from rest at any angle θ except the vertical position,
the pendulum will eventually wind down to rest at its stable equilibrium
postion.

There are other initial positions in the basin of (0, 0) that are not in the set
P . For example, consider the solution through (−π , u), where u is very small
but not zero. Then (−π , u) �∈ P , but the solution through this point moves
quickly into P , and therefore eventually approaches (0, 0). Hence (−π , u) also
lies in the basin of attraction of (0, 0). This can be seen in Figure 9.9, where the
solutions that begin just above the equilibrium point at (−π , 0) and just below
(π , 0) quickly cross γc and then enter Pc . See Exercise 5 for further examples
of this.

We now prove the theorem.

Proof: Imagine a solution X(t ) that lies in the positively invariant set P for
0 ≤ t ≤ ∞, but suppose that X(t ) does not tend to X∗ as t → ∞. Since P
is closed and bounded, there must be a point Z �= X∗ in P and a sequence
tn → ∞ such that

lim
n→∞ X(tn) = Z .

We may assume that the sequence {tn} is an increasing sequence.
We claim that the entire solution through Z lies in P . That is, φt (Z ) is

defined and in P for all t ∈ R, not just t ≥ 0. This can be seen as follows.
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First, φt (Z ) is certainly defined for all t ≥ 0 since P is positively invariant. On
the other hand, φt (X(tn)) is defined and in P for all t in the interval [−tn , 0].
Since {tn} is an increasing sequence, we have that φt (X(tn+k)) is also defined
and in P for all t ∈ [−tn , 0] and all k ≥ 0. Since the points X(tn+k) → Z
as k → ∞, it follows from continuous dependence of solutions on initial
conditions that φt (Z ) is defined and in P for all t ∈ [−tn , 0]. Since this
holds for any tn , we see that the solution through Z is an entire solution lying
in P .

Finally, we show that L is constant on the entire solution through Z . If
L(Z ) = α, then we have L(X(tn)) ≥ α and moreover

lim
n→∞ L(X(tn)) = α.

More generally, if {sn} is any sequence of times for which sn → ∞ as n → ∞,
then L(X(sn)) → α as well. This follows from the fact that L is nonincreas-
ing along solutions. Now the sequence X(tn + s) converges to φs(Z ), and
so L(φs(Z )) = α. This contradicts our assumption that there are no entire
solutions lying in P on which L is constant and proves the theorem. �

In this proof we encountered certain points that were limits of a sequence
of points on the solution through X . The set of all points that are limit points
of a given solution is called the set of ω-limit points, or the ω-limit set, of the
solution X(t ). Similarly, we define the set of α-limit points, or the α-limit set,
of a solution X(t ) to be the set of all points Z such that limn→∞ X(tn) = Z
for some sequence tn → −∞. (The reason, such as it is, for this terminol-
ogy is that α is the first letter and ω the last letter of the Greek alphabet.)
The following facts, essentially proved above, will be used in the following
chapter.

Proposition. The α-limit set and the ω-limit set of a solution that is defined
for all t ∈ R are closed, invariant sets. �

9.3 Gradient Systems

Now we turn to a particular type of system for which the previous material
on Liapunov functions is particularly germane. A gradient system on Rn is a
system of differential equations of the form

X ′ = −grad V (X)
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where V : Rn → R is a C∞ function, and

grad V =
(

∂V

∂x1
, . . . ,

∂V

∂xn

)
.

(The negative sign in this system is traditional.) The vector field grad V is
called the gradient of V . Note that −grad V (X) = grad (−V (X)).

Gradient systems have special properties that make their flows rather simple.
The following equality is fundamental:

DVX (Y ) = grad V (X) · Y .

This says that the derivative of V at X evaluated at Y = (y1, . . . , yn) ∈ Rn

is given by the dot product of the vectors grad V (X) and Y . This follows
immediately from the formula

DVX (Y ) =
n∑

j=1

∂V

∂xj
(X) yj .

Let X(t ) be a solution of the gradient system with X(0) = X0, and let
V̇ : Rn → R be the derivative of V along this solution. That is,

V̇ (X) = d

dt
V (X(t )).

Proposition. The function V is a Liapunov function for the system X ′ =
−grad V (X). Moreover, V̇ (X) = 0 if and only if X is an equilibrium point.

Proof: By the chain rule we have

V̇ (X) = DVX (X ′)
= grad V (X) · (−grad V (X))

= −|grad V (X)|2 ≤ 0.

In particular, V̇ (X) = 0 if and only if grad V (X) = 0. �

An immediate consequence of this is the fact that if X∗ is an isolated mini-
mum of V , then X∗ is an asymptotically stable equilibrium of the gradient
system. Indeed, the fact that X∗ is isolated guarantees that V̇ < 0 in a
neighborhood of X∗ (not including X∗).

To understand a gradient flow geometrically we look at the level surfaces
of the function V : Rn → R. These are the subsets V −1(c) with c ∈ R. If
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X ∈ V −1(c) is a regular point, that is, grad V (X) �= 0, then V −1(c) looks like
a “surface” of dimension n − 1 near X . To see this, assume (by renumbering
the coordinates) that ∂V /∂xn(X) �= 0. Using the implicit function theorem,
we find a C∞ function g : Rn−1 → R such that, near X , the level set V −1(c)
is given by

V
(
x1, . . . , xn−1, g (x1, . . . , xn−1)

) = c .

That is, near X , V −1(c) looks like the graph of the function g . In the special
case where n = 2, V −1(c) is a simple curve through X when X is a regular
point. If all points in V −1(c) are regular points, then we say that c is a regular
value for V . In the case n = 2, if c is a regular value, then the level set V −1(c)
is a union of simple (or nonintersecting) curves. If X is a nonregular point for
V , then grad V (X) = 0, so X is a critical point for the function V , since all
partial derivatives of V vanish at X .

Now suppose that Y is a vector that is tangent to the level surface V −1(c) at
X . Then we can find a curve γ (t ) in this level set for which γ ′(0) = Y . Since
V is constant along γ , it follows that

DVX (Y ) = d

dt

∣∣∣∣
t=0

V ◦ γ (t ) = 0.

We thus have, by our observations above, that grad V (X) · Y = 0, or, in
other words, grad V (X) is perpendicular to every tangent vector to the level
set V −1(c) at X . That is, the vector field grad V (X) is perpendicular to the
level surfaces V −1(c) at all regular points of V . We may summarize all of this
in the following theorem.

Theorem. (Properties of Gradient Systems) For the system X ′ =
−grad V (X):

1. If c is a regular value of V , then the vector field is perpendicular to the level
set V −1(c).

2. The critical points of V are the equilibrium points of the system.
3. If a critical point is an isolated minimum of V , then this point is an

asymptotically stable equilibrium point. �

Example. Let V : R2 → R be the function V (x , y) = x2(x −1)2 +y2. Then
the gradient system

X ′ = F(X) = −grad V (X)

is given by

x ′ = −2x(x − 1)(2x − 1)

y ′ = −2y .
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x

y

Figure 9.10 The level sets and phase portrait for the gradient
system determined by V (x, y) = x2 (x − 1)2 + y2 .

There are three equilibrium points: (0, 0), (1/2, 0), and (1, 0). The lineariza-
tions at these three points yield the following matrices:

DF(0, 0) =
(−2 0

0 −2

)
, DF(1/2, 0) =

(
1 0
0 −2

)
,

DF(1, 0) =
(−2 0

0 −2

)
.

Hence (0, 0) and (1, 0) are sinks, while (1/2, 0) is a saddle. Both the x- and
y-axes are invariant, as are the lines x = 1/2 and x = 1. Since y ′ = −2y on
these vertical lines, it follows that the stable curve at (1/2, 0) is the line x = 1/2,
while the unstable curve at (1/2, 0) is the interval (0, 1) on the x-axis. �

The level sets of V and the phase portrait are shown in Figure 9.10. Note
that it appears that all solutions tend to one of the three equilibria. This is no
accident, for we have:

Proposition. Let Z be an α-limit point or an ω-limit point of a solution of a
gradient flow. Then Z is an equilibrium point.

Proof: Suppose Z is an ω-limit point. As in the proof of Lasalle’s invari-
ance principle from Section 9.2, one shows that V is constant along the
solution through Z . Thus V̇ (Z ) = 0, and so Z must be an equilibrium
point. The case of an α-limit point is similar. In fact, an α-limit point
Z of X ′ = −grad V (X) is an ω-limit point of X ′ = grad V (X), so that
grad V (Z ) = 0. �

If a gradient system has only isolated equilibrium points, this result implies
that every solution of the system must tend either to infinity or to an
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equilibrium point. In the previous example we see that the sets V −1([0, c])
are closed, bounded, and positively invariant under the gradient flow. There-
fore each solution entering such a set is defined for all t ≥ 0, and tends to
one of the three equilibria (0, 0), (1, 0), or (1/2, 0). The solution through every
point does enter such a set, since the solution through (x , y) enters the set
V −1([0, c0]) where V (x , y) = c0.

There is one final property that gradient systems share. Note that, in the
previous example, all of the eigenvalues of the linearizations at the equilibria
have real eigenvalues. Again, this is no accident, for the linearization of a
gradient system at an equilibrium point X∗ is a matrix [aij ] where

aij = −
(

∂2V

∂xi∂xj

)
(X∗).

Since mixed partial derivatives are equal, we have(
∂2V

∂xi∂xj

)
(X∗) =

(
∂2V

∂xj∂xi

)
(X∗),

and so aij = aji . It follows that the matrix corresponding to the linearized
system is a symmetric matrix. It is known that such matrices have only real
eigenvalues. For example, in the 2 × 2 case, a symmetric matrix assumes the
form (

a b
b c

)
and the eigenvalues are easily seen to be

a + c

2
±

√
(a − c)2 + 4b2

2
,

both of which are real numbers. A more general case is relegated to Exercise 15.
We therefore have:

Proposition. For a gradient system X ′ = −grad V (X), the linearized system
at any equilibrium point has only real eigenvalues. �

9.4 Hamiltonian Systems

In this section we deal with another special type of system, a Hamiltonian
system. As we shall see in Chapter 13, these are the types of systems that arise
in classical mechanics.
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We shall restrict attention in this section to Hamiltonian systems in R2. A
Hamiltonian system on R2 is a system of the form

x ′ = ∂H

∂y
(x , y)

y ′ = −∂H

∂x
(x , y)

where H : R2 → R is a C∞ function called the Hamiltonian function.

Example. (Undamped Harmonic Oscillator) Recall that this system is
given by

x ′ = y

y ′ = −kx

where k > 0. A Hamiltonian function for this system is

H (x , y) = 1

2
y2 + k

2
x2. �

Example. (Ideal Pendulum) The equation for this system, as we saw in
Section 9.2, is

θ ′ = v

v ′ = − sin θ .

The total energy function

E(θ , v) = 1

2
v2 + 1 − cos θ

serves as a Hamiltonian function in this case. Note that we say a Hamiltonian
function, since we can always add a constant to any Hamiltonian function
without changing the equations.

What makes Hamiltonian systems so important is the fact that the Hamilto-
nian function is a first integral or constant of the motion. That is, H is constant
along every solution of the system, or, in the language of the previous sections,
Ḣ ≡ 0. This follows immediately from

Ḣ = ∂H

∂x
x ′ + ∂H

∂y
y ′

= ∂H

∂x

∂H

∂y
+ ∂H

∂y

(
− ∂H

∂x

)
= 0. �
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Thus we have:

Proposition. For a Hamiltonian system on R2, H is constant along every
solution curve. �

The importance of knowing that a given system is Hamiltonian is the fact
that we can essentially draw the phase portrait without solving the system.
Assuming that H is not constant on any open set, we simply plot the level
curves H (x , y) = constant. The solutions of the system lie on these level sets;
all we need to do is figure out the directions of the solution curves on these
level sets. But this is easy since we have the vector field. Note also that the
equilibrium points for a Hamiltonian system occur at the critical points of H ,
that is, at points where both partial derivatives of H vanish.

Example. Consider the system

x ′ = y

y ′ = −x3 + x .

A Hamiltonian function is

H (x , y) = x4

4
− x2

2
+ y2

2
+ 1

4
.

The constant value 1/4 is irrelevant here; we choose it so that H has mini-
mum value 0, which occurs at (±1, 0), as is easily checked. The only other
equilibrium point lies at the origin. The linearized system is

X ′ =
(

0 1
1 − 3x2 0

)
X .

At (0, 0), this system has eigenvalues ±1, so we have a saddle. At (±1, 0), the
eigenvalues are ±√

2i, so we have a center, at least for the linearized system.
Plotting the level curves of H and adding the directions at nonequilibrium

points yields the phase portrait depicted in Figure 9.11. Note that the equi-
librium points at (±1, 0) remain centers for the nonlinear system. Also note
that the stable and unstable curves at the origin match up exactly. That is, we
have solutions that tend to (0, 0) in both forward and backward time. Such
solutions are known as homoclinic solutions or homoclinic orbits. �

The fact that the eigenvalues of this system assume the special forms ±1 and
±√

2i is again no accident.
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Figure 9.11 The phase
portrait for x′ = y,
y′ = −x3 + x.

Proposition. Suppose (x0, y0) is an equilibrium point for a planar Hamilto-
nian system. Then the eigenvalues of the linearized system are either ±λ or ±iλ
where λ ∈ R. �

The proof of the proposition is straightforward (see Exercise 11).

9.5 Exploration: The Pendulum with

Constant Forcing

Recall from Section 9.2 that the equations for a nonlinear pendulum are

θ ′ = v

v ′ = −bv − sin θ .

Here θ gives the angular position of the pendulum (which we assume to be
measured in the counterclockwise direction) and v is its angular velocity. The
parameter b > 0 measures the damping.

Now we apply a constant torque to the pendulum in the counterclockwise
direction. This amounts to adding a constant to the equation for v ′, so the
system becomes

θ ′ = v

v ′ = −bv − sin θ + k
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where we assume that k ≥ 0. Since θ is measured mod 2π , we may think of
this system as being defined on the cylinder S1 × R, where S1 denotes the unit
circle.

1. Find all equilibrium points for this system and determine their stability.
2. Determine the regions in the bk–parameter plane for which there are

different numbers of equilibrium points. Describe the motion of the
pendulum in each different case.

3. Suppose k > 1. Prove that there exists a periodic solution for this system.
Hint: What can you say about the vector field in a strip of the form
0 < v1 < (k − sin θ)/b < v2?

4. Describe the qualitative features of a Poincaré map defined on the line
θ = 0 for this system.

5. Prove that when k > 1 there is a unique periodic solution for this system.
Hint: Recall the energy function

E(θ , y) = 1

2
y2 − cos θ + 1

and use the fact that the total change of E along any periodic solution
must be 0.

6. Prove that there are parameter values for which a stable equilibrium and
a periodic solution coexist.

7. Describe the bifurcation that must occur when the periodic solution ceases
to exist.

E X E R C I S E S

1. For each of the following systems, sketch the x- and y-nullclines and use
this information to determine the nature of the phase portrait. You may
assume that these systems are defined only for x , y ≥ 0.

(a) x ′ = x(y + 2x − 2), y ′ = y(y − 1)

(b) x ′ = x(y + 2x − 2), y ′ = y(y + x − 3)

(c) x ′ = x(2 − y − 2x), y ′ = y(3 − 3y − x)

(d) x ′ = x(2 − y − 2x), y ′ = y(3 − y − 4x)

(e) x ′ = x(2500 − x2 − y2), y ′ = y(70 − y − x)

2. Describe the phase portrait for

x ′ = x2 − 1

y ′ = −xy + a(x2 − 1)
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when a < 0. What qualitative features of this flow change as a passes
from negative to positive?

3. Consider the system of differential equations

x ′ = x(−x − y + 1)

y ′ = y(−ax − y + b)

where a and b are parameters with a, b > 0. Suppose that this system is
only defined for x , y ≥ 0.

(a) Use the nullclines to sketch the phase portrait for this system for
various a- and b-values.

(b) Determine the values of a and b at which a bifurcation occurs.

(c) Sketch the regions in the ab–plane where this system has qualitatively
similar phase portraits, and describe the bifurcations that occur as
the parameters cross the boundaries of these regions.

4. Consider the system

x ′ = (εx + 2y)(z + 1)

y ′ = (−x + εy)(z + 1)

z ′ = −z3.

(a) Show that the origin is not asymptotically stable when ε = 0.

(b) Show that when ε < 0, the basin of attraction of the origin contains
the region z > −1.

5. For the nonlinear damped pendulum, show that for every integer n
and every angle θ0 there is an initial condition (θ0, v0) whose solution
corresponds to the pendulum moving around the circle at least n times,
but not n + 1 times, before settling down to the rest position.

6. Find a strict Liapunov function for the equilibrium point (0, 0) of

x ′ = −2x − y2

y ′ = −y − x2.

Find δ > 0 as large as possible so that the open disk of radius δ and center
(0, 0) is contained in the basin of (0, 0).

7. For each of the following functions V (X), sketch the phase portrait of
the gradient flow X ′ = −grad V (X). Sketch the level surfaces of V on
the same diagram. Find all of the equilibrium points and determine their
type.

(a) x2 + 2y2

(b) x2 − y2 − 2x + 4y + 5
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(c) y sin x

(d) 2x2 − 2xy + 5y2 + 4x + 4y + 4

(e) x2 + y2 − z

(f) x2(x − 1) + y2(y − 2) + z2

8. Sketch the phase portraits for the following systems. Determine if the
system is Hamiltonian or gradient along the way. (That’s a little hint, by
the way.)

(a) x ′ = x + 2y , y ′ = −y

(b) x ′ = y2 + 2xy , y ′ = x2 + 2xy

(c) x ′ = x2 − 2xy , y ′ = y2 − 2xy

(d) x ′ = x2 − 2xy , y ′ = y2 − x2

(e) x ′ = − sin2 x sin y , y ′ = −2 sin x cos x cos y

9. Let X ′ = AX be a linear system where

A =
(

a b
c d

)
.

(a) Determine conditions on a, b, c , and d that guarantee that this
system is a gradient system. Give a gradient function explicitly.

(b) Repeat the previous question for a Hamiltonian system.

10. Consider the planar system

x ′ = f (x , y)

y ′ = g (x , y).

Determine explicit conditions on f and g that guarantee that this system
is a gradient system or a Hamiltonian system.

11. Prove that the linearization at an equilibrium point of a planar
Hamiltonian system has eigenvalues that are either ±λ or ±iλ where
λ ∈ R.

12. Let T be the torus defined as the square 0 ≤ θ1, θ2 ≤ 2π with opposite
sides identified. Let F(θ1, θ2) = cos θ1 + cos θ2. Sketch the phase portrait
for the system −grad F in T . Sketch a three-dimensional representation
of this phase portrait with T represented as the surface of a doughnut.

13. Repeat the previous exercise, but assume now that F is a Hamiltonian
function.

14. On the torus T above, let F(θ1, θ2) = cos θ1(2 − cos θ2). Sketch the
phase portrait for the system −grad F in T . Sketch a three-dimensional
representation of this phase portrait with T represented as the surface of
a doughnut.
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15. Prove that a 3 × 3 symmetric matrix has only real eigenvalues.
16. A solution X(t ) of a system is called recurrent if X(tn) → X(0) for

some sequence tn → ∞. Prove that a gradient dynamical system has no
nonconstant recurrent solutions.

17. Show that a closed bounded omega limit set is connected. Give an exam-
ple of a planar system having an unbounded omega limit set consisting
of two parallel lines.



10
Closed Orbits and

Limit Sets

In the past few chapters we have concentrated on equilibrium solutions of
systems of differential equations. These are undoubtedly among the most
important solutions, but there are other types of solutions that are important
as well. In this chapter we will investigate another important type of solution,
the periodic solution or closed orbit. Recall that a periodic solution occurs for
X ′ = F(X) if we have a nonequilibrium point X and a time τ > 0 for which
φτ (X) = X . It follows that φt+τ (X) = φt (X) for all t , so φt is a periodic
function. The least such τ > 0 is called the period of the solution. As an
example, all nonzero solutions of the undamped harmonic oscillator equation
are periodic solutions. Like equilibrium points that are asymptotically stable,
periodic solutions may also attract other solutions. That is, solutions may limit
on periodic solutions just as they can approach equilibria.

In the plane, the limiting behavior of solutions is essentially restricted to
equilibria and closed orbits, although there are a few exceptional cases. We
will investigate this phenomenon in this chapter in the guise of the impor-
tant Poincaré-Bendixson theorem. We will see later that, in dimensions
greater than two, the limiting behavior of solutions can be quite a bit more
complicated.

10.1 Limit Sets

We begin by describing the limiting behavior of solutions of systems of dif-
ferential equations. Recall that Y ∈ Rn is an ω-limit point for the solution

215
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through X if there is a sequence tn → ∞ such that limn→∞ φtn (X) = Y . That
is, the solution curve through X accumulates on the point Y as time moves
forward. The set of all ω-limit points of the solution through X is the ω-limit
set of X and is denoted by ω(X). The α-limit points and the α-limit set α(X)
are defined by replacing tn → ∞ with tn → −∞ in the above definition. By
a limit set we mean a set of the form ω(X) or α(X).

Here are some examples of limit sets. If X∗ is an asymptotically stable
equilibrium, it is the ω-limit set of every point in its basin of attraction. Any
equilibrium is its own α- and ω-limit set. A periodic solution is the α-limit
and ω-limit set of every point on it. Such a solution may also be the ω-limit
set of many other points.

Example. Consider the planar system given in polar coordinates by

r ′ = 1

2
(r − r3)

θ ′ = 1.

As we saw in Section 8.1, all nonzero solutions of this equation tend to the
periodic solution that resides on the unit circle in the plane. See Figure 10.1.
Consequently, the ω-limit set of any nonzero point is this closed orbit. �

Example. Consider the system

x ′ = sin x(−. 1 cos x − cos y)

y ′ = sin y(cos x−. 1 cos y).

There are equilibria which are saddles at the corners of the square (0, 0), (0, π),
(π , π), and (π , 0), as well as at many other points. There are heteroclinic

Figure 10.1 The phase plane
for r ′ = 1

2 (r−r 3), θ ′ = 1.
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(0, 0)

(o,o)

Figure 10.2 The ω-limit set of any
solution emanating from the source at
(π /2, π /2) is the square bounded by the
four equilibria and the heteroclinic
solutions.

solutions connecting these equilibria in the order listed. See Figure 10.2. There
is also a spiral source at (π /2, π /2). All solutions emanating from this source
accumulate on the four heteroclinic solutions connecting the equilibria (see
Exercise 4 at the end of this chapter). Hence the ω-limit set of any point on
these solutions is the square bounded by x = 0, π and y = 0, π . �

In three dimensions there are extremely complicated examples of limit
sets, which are not very easy to describe. In the plane, however, limit sets
are fairly simple. In fact, Figure 10.2 is typical in that one can show that
a closed and bounded limit set other than a closed orbit or equilibrium
point is made up of equilibria and solutions joining them. The Poincaré-
Bendixson theorem discussed in Section 10.5 states that if a closed and
bounded limit set in the plane contains no equilibria, then it must be a closed
orbit.

Recall from Section 9.2 that a limit set is closed in Rn and is invariant under
the flow. We shall also need the following result:

Proposition.

1. If X and Z lie on the same solution curve, then ω(X) = ω(Z ) and α(X) =
α(Z );

2. If D is a closed, positively invariant set and Z ∈ D, then ω(Z ) ⊂ D, and
similarly for negatively invariant sets and α-limits;

3. A closed invariant set, in particular, a limit set, contains the α-limit and
ω-limit sets of every point in it.
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Proof: For (1), suppose that Y ∈ ω(X), and φs(X) = Z . If φtn (X) → Y ,
then we have

φtn−s(Z ) = φtn (X) → Y .

Hence Y ∈ ω(Z ) as well. For (2), if φtn (Z ) → Y ∈ ω(Z ) as tn → ∞,
then we have tn ≥ 0 for sufficiently large n so that φtn (Z ) ∈ D. Hence
Y ∈ D since D is a closed set. Finally, part (3) follows immediately from
part (2). �

10.2 Local Sections and Flow Boxes

For the rest of this chapter, we restrict the discussion to planar systems. In this
section we describe the local behavior of the flow associated to X ′ = F(X) near
a given point X0, which is not an equilibrium point. Our goal is to construct
first a local section at X0, and then a flow box neighborhood of X0. In this flow
box, solutions of the system behave particularly simply.

Suppose F(X0) �= 0. The transverse line at X0, denoted by �(X0), is the
straight line through X0, which is perpendicular to the vector F(X0) based at
X0. We parametrize �(X0) as follows. Let V0 be a unit vector based at X0 and
perpendicular to F(X0). Then define h : R → �(X0) by h(u) = X0 + uV0.

Since F(X) is continuous, the vector field is not tangent to �(X0), at least in
some open interval in �(X0) surrounding X0. We call such an open subinterval
containing X0 a local section at X0. At each point of a local section S , the vector
field points “away from” S , so solutions must cut across a local section. In
particular F(X) �= 0 for X ∈ S . See Figure 10.3.

X0

(X0)

tt(X0)

Figure 10.3 A local
section S at X0 and
several representative
vectors from the vector
field along S.
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Ψ

Ψ(    )

Figure 10.4 The flow box associated to S.

Our first use of a local section at X0 will be to construct an associated flow
box in a neighborhood of X0. A flow box gives a complete description of the
behavior of the flow in a neighborhood of a nonequilibrium point by means
of a special set of coordinates. An intuitive description of the flow in a flow
box is simple: points move in parallel straight lines at constant speed.

Given a local section S at X0, we may construct a map � from a neigh-
borhood N of the origin in R2 to a neighborhood of X0 as follows. Given
(s, u) ∈ R2, we define

�(s, u) = φs(h(u))

where h is the parameterization of the transverse line described above. Note
that � maps the vertical line (0, u) in N to the local section S ; � also maps
horizontal lines in N to pieces of solution curves of the system. Provided that
we choose N sufficiently small, the map � is then one to one on N . Also
note that D� takes the constant vector field (1, 0) in N to vector field F(X).
Using the language of Chapter 4, � is a local conjugacy between the flow of
this constant vector field and the flow of the nonlinear system.

We usually take N in the form {(s, u) | |s| < σ } where σ > 0. In this case
we sometimes write Vσ = �(N ) and call Vσ the flow box at (or about) X0.
See Figure 10.4. An important property of a flow box is that if X ∈ Vσ , then
φt (X) ∈ S for a unique t ∈ (−σ , σ ).

If S is a local section, the solution through a point Z0 (perhaps far from
S) may reach X0 ∈ S at a certain time t0; see Figure 10.5. We show that in a
certain local sense, this “time of first arrival” at S is a continuous function of
Z0. More precisely:

Proposition. Let S be a local section at X0 and suppose φt0(Z0) = X0. Let W
be a neighborhood of Z0. Then there is an open set U ⊂ W containing Z0 and
a differentiable function τ : U → R such that τ (Z0) = t0 and

φτ (X)(X) ∈ S
for each X ∈ U .
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X

Z0
X0�tt0(Z0)

tr(X)(X)

Figure 10.5 Solutions crossing the local section S.

Proof: Suppose F(X0) is the vector (α, β) and recall that (α, β) �= (0, 0). For
Y = (y1, y2) ∈ R2, define η : R2 → R by

η(Y ) = Y · F(X0) = αy1 + βy2.

Recall that Y belongs to the transverse line �(X0) if and only if Y = X0 + V
where V · F(X0) = 0. Hence Y ∈ �(X0) if and only if η(Y ) = Y · F(X0) =
X0 · F(X0).

Now define G : R2 × R → R by

G(X , t ) = η(φt (X)) = φt (X) · F(X0).

We have G(Z0, t0) = X0 · F(X0) since φt0(Z0) = X0. Furthermore

∂G

∂t
(Z0, t0) = |F(X0)|2 �= 0.

We may thus apply the implicit function theorem to find a smooth function
τ : R2 → R defined on a neighborhood U1 of (Z0, t0) such that τ (Z0) = t0
and

G(X , τ (X)) ≡ G(Z0, t0) = X0 · F(X0).

Hence φτ (X)(X) belongs to the transverse line �(X0). If U ⊂ U1 is a suffici-
ently small neighborhood of Z0, then φτ (X)(X) ∈ S , as required. �

10.3 The Poincaré Map

As in the case of equilibrium points, closed orbits may also be stable, asymptot-
ically stable, or unstable. The definitions of these concepts for closed orbits are
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entirely analogous to those for equilibria as in Section 8.4. However, determin-
ing the stability of closed orbits is much more difficult than the corresponding
problem for equilibria. While we do have a tool that resembles the linearization
technique that is used to determine the stability of (most) equilibria, generally
this tool is much more difficult to use in practice. Here is the tool.

Given a closed orbit γ , there is an associated Poincaré map for γ , some
examples of which we previously encountered in Sections 1.4 and 6.2. Near
a closed orbit, this map is defined as follows. Choose X0 ∈ γ and let S be
a local section at X0. We consider the first return map on S . This is the
function P that associates to X ∈ S the point P(X) = φt (X) ∈ S where t is
the smallest positive time for which φt (X) ∈ S . Now P may not be defined
at all points on S as the solutions through certain points in S may never
return to S . But we certainly have P(X0) = X0, and the previous proposition
guarantees that P is defined and continuously differentiable in a neighborhood
of X0.

In the case of planar systems, a local section is a subset of a straight line
through X0, so we may regard this local section as a subset of R and take
X0 = 0 ∈ R. Hence the Poincaré map is a real function taking 0 to 0. If
|P ′(0)| < 1, it follows that P assumes the form P(x) = ax+ higher order
terms, where |a| < 1. Hence, for x near 0, P(x) is closer to 0 than x . This
means that the solution through the corresponding point in S moves closer
to γ after one passage through the local section. Continuing, we see that each
passage through S brings the solution closer to γ , and so we see that γ is
asymptotically stable. We have:

Proposition. Let X ′ = F(X) be a planar system and suppose that X0 lies on a
closed orbit γ . Let P be a Poincaré map defined on a neighborhood of X0 in some
local section. If |P ′(X0)| < 1, then γ is asymptotically stable. �

Example. Consider the planar system given in polar coordinates by

r ′ = r(1 − r)

θ ′ = 1.

Clearly, there is a closed orbit lying on the unit circle r = 1. This solution
in rectangular coordinates is given by (cos t , sin t ) when the initial condition
is (1, 0). Also, there is a local section lying along the positive real axis since
θ ′ = 1. Furthermore, given any x ∈ (0, ∞), we have φ2π (x , 0), which also lies
on the positive real axis R+. Thus we have a Poincaré map P : R+ → R+.
Moreover, P(1) = 1 since the point x = 1, y = 0 is the initial condition
giving the periodic solution. To check the stability of this solution, we need to
compute P ′(1).
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To do this, we compute the solution starting at (x , 0). We have θ(t ) = t , so
we need to find r(2π). To compute r(t ), we separate variables to find∫

dr

r(1 − r)
= t + constant.

Evaluating this integral yields

r(t ) = xet

1 − x + xet
.

Hence

P(x) = r(2π) = xe2π

1 − x + xe2π
.

Differentiating, we find P ′(1) = 1/e2π so that 0 < P ′(1) < 1. Thus the periodic
solution is asymptotically stable. �

The astute reader may have noticed a little scam here. To determine the
Poincaré map, we actually first found formulas for all of the solutions starting
at (x , 0). So why on earth would we need to compute a Poincaré map? Well,
good question. Actually, it is usually very difficult to compute the exact form
of a Poincaré map or even its derivative along a closed orbit, since in practice
we rarely have a closed-form expression for the closed orbit, never mind the
nearby solutions. As we shall see, the Poincaré map is usually more useful
when setting up a geometric model of a specific system (see the Lorenz system
in Chapter 14). There are some cases where we can circumvent this problem
and gain insight into the Poincaré map, as we shall see when we investigate the
Van der Pol equation in Section 12.3.

10.4 Monotone Sequences in Planar

Dynamical Systems

Let X0, X1, . . . ∈ R2 be a finite or infinite sequence of distinct points on the
solution curve through X0. We say that the sequence is monotone along the
solution if φtn (X0) = Xn with 0 ≤ t1 < t2 · · · .

Let Y0, Y1, . . . be a finite or infinite sequence of points on a line segment I
in R2. We say that this sequence is monotone along I if Yn is between Yn−1 and
Yn+1 in the natural order along I for all n ≥ 1.

A sequence of points may be on the intersection of a solution curve and
a segment I ; they may be monotone along the solution curve but not along
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X1

X1X2

X2

X0 X0

Figure 10.6 Two solutions crossing a straight line. On the left, X0 ,
X1 , X2 is monotone along the solution but not along the straight
line. On the right, X0 , X1 , X2 is monotone along both the solution
and the line.

the segment, or vice versa; see Figure 10.6. However, this is impossible if the
segment is a local section in the plane.

Proposition. Let S be a local section for a planar system of differential equa-
tions and let Y0, Y1, Y2, . . . be a sequence of distinct points in S that lie on the
same solution curve. If this sequence is monotone along the solution, then it is also
monotone along S .

Proof: It suffices to consider three points Y0, Y1, and Y2 in S . Let � be the
simple closed curve made up of the part of the solution between Y0 and Y1

and the segment T ⊂ S between Y0 and Y1. Let D be the region bounded by
�. We suppose that the solution through Y1 leaves D at Y1 (see Figure 10.7; if
the solution enters D, the argument is similar). Hence the solution leaves D at
every point in T since T is part of the local section.

It follows that the complement of D is positively invariant. For no solution
can enter D at a point of T ; nor can it cross the solution connecting Y0 and
Y1, by uniqueness of solutions.

Therefore φt (Y1) ∈ R2 − D for all t > 0. In particular, Y2 ∈ S − T .
The set S − T is the union of two half open intervals I0 and I1 with Yj

an endpoint of Ij for j = 0, 1. One can draw an arc from a point φε(Y1)
(with ε > 0 very small) to a point of I1, without crossing �. Therefore I1
is outside D. Similarly I0 is inside D. It follows that Y2 ∈ I1 since it must
be outside D. This shows that Y1 is between Y0 and Y2 in I , proving the
proposition. �

We now come to an important property of limit points.
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Y1

Y0
I0

I1

T

D

Figure 10.7 Solutions exit
the region D through T.

Proposition. For a planar system, suppose that Y ∈ ω(X). Then the solution
through Y crosses any local section at no more than one point. The same is true if
Y ∈ α(X).

Proof: Suppose for the sake of contradiction that Y1 and Y2 are distinct points
on the solution through Y and S is a local section containing Y1 and Y2.
Suppose Y ∈ ω(X) (the argument for α(X) is similar). Then Yk ∈ ω(X) for
k = 1, 2. Let Vk be flow boxes at Yk defined by some intervals Jk ⊂ S ; we
assume that J1 and J2 are disjoint as depicted in Figure 10.8. The solution
through X enters each Vk infinitely often; hence it crosses Jk infinitely often.

X
Y1

Y2

m2

m1

Figure 10.8 The solution
through X cannot cross V1 and
V2 infinitely often.
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Hence there is a sequence

a1, b1, a2, b2, a3, b3, . . . ,

which is monotone along the solution through X , with an ∈ J1, bn ∈ J2 for
n = 1, 2, . . .. But such a sequence cannot be monotone along S since J1 and J2
are disjoint, contradicting the previous proposition. �

10.5 The Poincaré-Bendixson Theorem

In this section we prove a celebrated result concerning planar systems:

Theorem. (Poincaré-Bendixson) Suppose that � is a nonempty, closed
and bounded limit set of a planar system of differential equations that contains
no equilibrium point. Then � is a closed orbit.

Proof: Suppose that ω(X) is closed and bounded and that Y ∈ ω(X). (The
case of α-limit sets is similar.) We show first that Y lies on a closed orbit and
later that this closed orbit actually is ω(X).

Since Y belongs toω(X) we know from Section 10.1 that ω(Y ) is a nonempty
subset of ω(X). Let Z ∈ ω(Y ) and let S be a local section at Z . Let V be a
flow box associated to S . By the results of the previous section, the solution
through Y meets S in exactly one point. On the other hand, there is a sequence
tn → ∞ such that φtn (Y ) → Z ; hence infinitely many φtn (Y ) belong to V .
Therefore we can find r , s ∈ R such that r > s and φr (Y ), φs(Y ) ∈ S . It follows
that φr (Y ) = φs(Y ); hence φr−s(Y ) = Y and r − s > 0. Since ω(X) contains
no equilibria, Y must lie on a closed orbit.

It remains to prove that if γ is a closed orbit in ω(X), then γ = ω(X). For
this, it is enough to show that

lim
t→∞ d(φt (X), γ ) = 0,

where d(φt (x), γ ) is the distance from φt (X) to the set γ (that is, the distance
from φt (X) to the nearest point of γ ).

Let S be a local section at Y ∈ γ . Let ε > 0 and consider a flow box Vε

associated to S . Then there is a sequence t0 < t1 < · · · such that

1. φtn (X) ∈ S ;
2. φtn (X) → Y ;
3. φt (X) �∈ S for tn−1 < t < tn , n = 1, 2, . . ..

Let Xn = φtn (X). By the first proposition in the previous section, Xn is a
monotone sequence in S that converges to Y .
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We claim that there exists an upper bound for the set of positive numbers
tn+1 − tn for n sufficiently large. To see this, suppose φτ (Y ) = Y where τ > 0.
Then for Xn sufficiently near Y , φτ (Xn) ∈ Vε and hence

φτ+t (Xn) ∈ S

for some t ∈ [−ε, ε]. Thus

tn+1 − tn ≤ τ + ε.

This provides the upper bound for tn+1 − tn . Also, tn+1 − tn is clearly at least
2ε, so tn → ∞ as n → ∞.

Let β > 0 be small. By continuity of solutions with respect to initial con-
ditions, there exists δ > 0 such that, if |Z − Y | < δ and |t | ≤ τ + ε then
|φt (Z ) − φt (Y )| < β. That is, the distance from the solution φt (Z ) to γ is less
than β for all t satisfying |t | ≤ τ + ε. Let n0 be so large that |Xn − Y | < δ for
all n ≥ n0. Then

|φt (Xn) − φt (Y )| < β

if |t | ≤ τ + ε and n ≥ n0. Now let t ≥ tn0 . Let n ≥ n0 be such that

tn ≤ t ≤ tn+1.

Then

d(φt (X), γ ) ≤ |φt (X) − φt−tn (Y )|
= |φt−tn (Xn) − φt−tn (Y )|
< β

since |t−tn| ≤ τ+ε. This shows that the distance fromφt (X) toγ is less thanβ

for all sufficiently large t . This completes the proof of the Poincaré-Bendixson
theorem. �

Example. Another example of an ω-limit set that is neither a closed orbit
nor an equilibrium is provided by a homoclinic solution. Consider the system

x ′ = −y −
(

x4

4
− x2

2
+ y2

2

)
(x3 − x)

y ′ = x3 − x −
(

x4

4
− x2

2
+ y2

2

)
y .
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Figure 10.9 A pair of
homoclinic solutions in the
ω-limit set.

A computation shows that there are three equilibria: at (0, 0), (−1, 0), and
(1, 0). The origin is a saddle, while the other two equilibria are sources. The
phase portrait of this system is shown in Figure 10.9. Note that solutions far
from the origin tend to accumulate on the origin and a pair of homoclinic
solutions, each of which leaves and then returns to the origin. Solutions ema-
nating from either source have ω-limit set that consists of just one homoclinic
solution and (0, 0). See Exercise 6 for proofs of these facts. �

10.6 Applications of Poincaré-Bendixson

The Poincaré-Bendixson theorem essentially determines all of the possible
limiting behaviors of a planar flow. We give a number of corollaries of this
important theorem in this section.

A limit cycle is a closed orbit γ such that γ ⊂ ω(X) or γ ⊂ α(X) for some
X �∈ γ . In the first case γ is called an ω-limit cycle; in the second case, an
α-limit cycle. We deal only with ω-limit sets in this section; the case of α-limit
sets is handled by simply reversing time.

In the proof of the Poincaré-Bendixson theorem it was shown that limit
cycles have the following property: If γ is an ω-limit cycle, there exists X �∈ γ

such that

lim
t→∞ d(φt (X), γ ) = 0.

Geometrically this means that some solution spirals toward γ as t → ∞. See
Figure 10.10. Not all closed orbits have this property. For example, in the
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c

Figure 10.10 A
solution spiraling
toward a limit cycle.

case of a linear system with a center at the origin in R2, the closed orbits that
surround the origin have no solutions approaching them, and so they are not
limit cycles.

Limit cycles possess a kind of (one-sided, at least) stability. Let γ be an
ω-limit cycle and suppose φt (X) spirals toward γ as t → ∞. Let S be a local
section at Z ∈ γ . Then there is an interval T ⊂ S disjoint from γ , bounded
by φt0(X) and φt1(X) with t0 < t1, and not meeting the solution through X
for t0 < t < t1. See Figure 10.11. The annular region A that is bounded on one
side by γ and on the other side by the union of T and the curve

{φt (X) | t0 ≤ t ≤ t1}
is positively invariant, as is the set B = A−γ . It is easy to see that φt (Y ) spirals
toward γ for all Y ∈ B. Hence we have:

Corollary 1. Let γ be an ω-limit cycle. If γ = ω(X) where X �∈ γ , then X
has a neighborhood O such that γ = ω(Y ) for all Y ∈ O. In other words, the set

{Y | ω(Y ) = γ } − γ

is open. �

Recall that a subset of Rn that is closed and bounded is said to be compact.
As another consequence of the Poincaré-Bendixson theorem, suppose that
K is a positively invariant set that is compact. If X ∈ K , then ω(X) must
also lie in K . Hence K must contain either an equilibrium point or a limit
cycle.
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A

T

Z

c

Figure 10.11 The region
A is positively invariant.

Corollary 2. A compact set K that is positively or negatively invariant contains
either a limit cycle or an equilibrium point. �

The next result exploits the spiraling property of limit cycles.

Corollary 3. Let γ be a closed orbit and let U be the open region in the inter-
ior of γ . Then U contains either an equilibrium point or a limit cycle.

Proof: Let D be the compact set U ∪ γ . Then D is invariant since no solution
in U can cross γ . If U contains no limit cycle and no equilibrium, then, for
any X ∈ U ,

ω(X) = α(X) = γ

by Poincaré-Bendixson. If S is a local section at a point Z ∈ γ , there are
sequences tn → ∞, sn → −∞ such that φtn (X), φsn (X) ∈ S and both φtn (X)
and φsn (X) tend to Z as n → ∞. But this leads to a contradiction of the
proposition in Section 10.4 on monotone sequences. �

Actually this last result can be considerably sharpened:

Corollary 4. Let γ be a closed orbit that forms the boundary of an open set U .
Then U contains an equilibrium point.

Proof: Suppose U contains no equilibrium point. Consider first the case
that there are only finitely many closed orbits in U . We may choose the
closed orbit that bounds the region with smallest area. There are then no
closed orbits or equilibrium points inside this region, and this contradicts
corollary 3.
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Now suppose that there are infinitely many closed orbits in U . If Xn → X
in U and each Xn lies on a closed orbit, then X must lie on a closed orbit.
Otherwise, the solution through X would spiral toward a limit cycle since
there are no equilibria in U . By corollary 1, so would the solution through
some nearby Xn , which is impossible.

Let ν ≥ 0 be the greatest lower bound of the areas of regions enclosed by
closed orbits in U . Let {γn} be a sequence of closed orbits enclosing regions
of areas νn such that limn→∞ νn = ν. Let Xn ∈ γn . Since γ ∪ U is compact,
we may assume that Xn → X ∈ U . Then if U contains no equilibrium, X lies
on a closed orbit β bounding a region of area ν. The usual section argument
shows that as n → ∞, γn gets arbitrarily close to β and hence the area νn − ν

of the region between γn and β goes to 0. Then the argument above shows that
there can be no closed orbits or equilibrium points inside γ , and this provides
a contradiction to corollary 3. �

The following result uses the spiraling properties of limit cycles in a subtle
way.

Corollary 5. Let H be a first integral of a planar system. If H is not constant
on any open set, then there are no limit cycles.

Proof: Suppose there is a limit cycle γ ; let c ∈ R be the constant value of
H on γ . If X(t ) is a solution that spirals toward γ , then H (X(t )) ≡ c by
continuity of H . In corollary 1 we found an open set whose solutions spiral
toward γ ; thus H is constant on an open set. �

Finally, the following result is implicit in our development of the theory of
Liapunov functions in Section 9.2.

Corollary 6. If L is a strict Liapunov function for a planar system, then there
are no limit cycles. �

10.7 Exploration: Chemical Reactions

That Oscillate

For much of the 20th century, chemists believed that all chemical reactions
tended monotonically to equilibrium. This belief was shattered in the 1950s
when the Russian biochemist Belousov discovered that a certain reaction
involving citric acid, bromate ions, and sulfuric acid, when combined with
a cerium catalyst, could oscillate for long periods of time before settling to
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equilibrium. The concoction would turn yellow for a while, then fade, then
turn yellow again, then fade, and on and on like this for over an hour. This
reaction, now called the Belousov-Zhabotinsky reaction (the BZ reaction, for
short), was a major turning point in the history of chemical reactions. Now,
many systems are known to oscillate. Some have even been shown to behave
chaotically.

One particularly simple chemical reaction is given by a chlorine dioxide–
iodine–malonic acid interaction. The exact differential equations modeling
this reaction are extremely complicated. However, there is a planar nonlinear
system that closely approximates the concentrations of two of the reactants.
The system is

x ′ = a − x − 4xy

1 + x2

y ′ = bx

(
1 − y

1 + x2

)

where x and y represent the concentrations of I− and ClO−
2 , respectively, and

a and b are positive parameters.

1. Begin the exploration by investigating these reaction equations numer-
ically. What qualitatively different types of phase portraits do you
find?

2. Find all equilibrium points for this system.
3. Linearize the system at your equilibria and determine the type of each

equilibrium.
4. In the ab–plane, sketch the regions where you find asymptotically stable

or unstable equilibria.
5. Identify the a, b-values where the system undergoes bifurcations.
6. Using the nullclines for the system together with the Poincaré-Bendixson

theorem, find the a, b-values for which a stable limit cycle exists. Why do
these values correspond to oscillating chemical reactions?

For more details on this reaction, see [27]. The very interesting history of the
BZ-reaction is described in [47]. The original paper by Belousov is reprinted
in [17].

E X E R C I S E S

1. For each of the following systems, identify all points that lie in either an
ω- or an α-limit set

(a) r ′ = r − r2, θ ′ = 1

(b) r ′ = r3 − 3r2 + 2r , θ ′ = 1
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(c) r ′ = sin r , θ ′ = −1
(d) x ′ = sin x sin y , y ′ = − cos x cos y

2. Consider the three-dimensional system

r ′ = r(1 − r)

θ ′ = 1

z ′ = −z .

Compute the Poincaré map along the closed orbit lying on the unit circle
given by r = 1 and show that this closed orbit is asymptotically stable.

3. Consider the three-dimensional system

r ′ = r(1 − r)

θ ′ = 1

z ′ = z .

Again compute the Poincaré map for this system. What can you now say
about the behavior of solutions near the closed orbit? Sketch the phase
portrait for this system.

4. Consider the system

x ′ = sin x(−0. 1 cos x − cos y)

y ′ = sin y(cos x − 0. 1 cos y).

Show that all solutions emanating from the source at (π /2, π /2) have
ω-limit sets equal to the square bounded by x = 0, π and y = 0, π .

5. The system

r ′ = ar + r3 − r5

θ ′ = 1

depends on a parameter a. Determine the phase plane for representative
a values and describe all bifurcations for the system.

6. Consider the system

x ′ = −y −
(

x4

4
− x2

2
+ y2

2

)
(x3 − x)

y ′ = x3 − x −
(

x4

4
− x2

2
+ y2

2

)
y .

(a) Find all equilibrium points.
(b) Determine the types of these equilibria.
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A

Figure 10.12 The
region A is positively
invariant.

(c) Prove that all nonequilibrium solutions have ω-limit sets consisting
of either one or two homoclinic solutions plus a saddle point.

7. Let A be an annular region in R2. Let F be a planar vector field that
points inward along the two boundary curves of A. Suppose also that
every radial segment of A is local section. See Figure 10.12. Prove there
is a periodic solution in A.

8. Let F be a planar vector field and again consider an annular region A
as in the previous problem. Suppose that F has no equilibria and that F
points inward along the boundary of the annulus, as before.

(a) Prove there is a closed orbit in A. (Notice that the hypothesis is
weaker than in the previous problem.)

(b) If there are exactly seven closed orbits in A, show that one of them
has orbits spiraling toward it from both sides.

9. Let F be a planar vector field on a neighborhood of the annular region A
above. Suppose that for every boundary point X of A, F(X) is a nonzero
vector tangent to the boundary.

(a) Sketch thepossible phaseportraits in A under the further assumption
that there are no equilibria and no closed orbits besides the boundary
circles. Include the case where the solutions on the boundary travel
in opposite directions.

(b) Suppose the boundary solutions are oppositely oriented and that the
flow preserves area. Show that A contains an equilibrium.

10. Show that a closed orbit of a planar system meets a local section in at
most one point.

11. Show that a closed and bounded limit set is connected (that is, not the
union of two disjoint nonempty closed sets).
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12. Let X ′ = F(X) be a planar system with no equilibrium points. Suppose
the flow φt generated by F preserves area (that is, if U is any open set,
the area of φt (U ) is independent of t ). Show that every solution curve is
a closed set.

13. Let γ be a closed orbit of a planar system. Let λ be the period of γ . Let
{γn} be a sequence of closed orbits. Suppose the period of γn is λn . If there
are points Xn ∈ γn such that Xn → X ∈ γ , prove that λn → λ. (This
result can be false for higher dimensional systems. It is true, however,
that if λn → μ, then μ is an integer multiple of λ.)

14. Consider a system in R2 having only a finite number of equilibria.

(a) Show that every limit set is either a closed orbit or the union of
equilibrium points and solutions φt (X) such that limt→∞ φt (X)
and limt→−∞ φt (X) are these equilibria.

(b) Show by example (draw a picture) that the number of distinct
solution curves in ω(X) may be infinite.

15. Let X be a recurrent point of a planar system, that is, there is a sequence
tn → ±∞ such that

φtn (X) → X .

(a) Prove that either X is an equilibrium or X lies on a closed orbit.

(b) Show by example that there can be a recurrent point for a nonplanar
system that is not an equilibrium and does not lie on a closed orbit.

16. Let X ′ = F(X) and X ′ = G(X) be planar systems. Suppose that

F(X) · G(X) = 0

for all X ∈ R2. If F has a closed orbit, prove that G has an equilibrium
point.

17. Let γ be a closed orbit for a planar system, and let U be the bounded,
open region inside γ . Show that γ is not simultaneously the omega and
alpha limit set of points of U . Use this fact and the Poincaré-Bendixson
theorem to prove that U contains an equilibrium that is not a saddle.
(Hint : Consider the limit sets of points on the stable and unstable curves
of saddles.)
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Applications in Biology

In this chapter we make use of the techniques developed in the previous few
chapters to examine some nonlinear systems that have been used as mathe-
matical models for a variety of biological systems. In Section 11.1 we utilize
the preceding results involving nullclines and linearization to describe sev-
eral biological models involving the spread of communicable diseases. In
Section 11.2 we investigate the simplest types of equations that model a preda-
tor/prey ecology. A more sophisticated approach is used in Section 11.3 to
study the populations of a pair of competing species. Instead of developing
explicit formulas for these differential equations, we instead make only quali-
tative assumptions about the form of the equations. We then derive geometric
information about the behavior of solutions of such systems based on these
assumptions.

11.1 Infectious Diseases

The spread of infectious diseases such as measles or malaria may be modeled
as a nonlinear system of differential equations. The simplest model of this
type is the SIR model. Here we divide a given population into three disjoint
groups. The population of susceptible individuals is denoted by S, the infected
population by I , and the recovered population by R. As usual, each of these
is a function of time. We assume for simplicity that the total population is
constant, so that (S + I + R)′ = 0.

235
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In the most basic case we make the assumption that, once an individual
has been infected and subsequently has recovered, that individual cannot
be reinfected. This is the situation that occurs for such diseases as measles,
mumps, and smallpox, among many others. We also assume that the rate
of transmission of the disease is proportional to the number of encounters
between susceptible and infected individuals. The easiest way to character-
ize this assumption mathematically is to put S′ = −βSI for some constant
β > 0. We finally assume that the rate at which infected individuals recover is
proportional to the number of infected. The SIR model is then

S′ = −βSI

I ′ = βSI − νI

R′ = νI

where β and ν are positive parameters.
As stipulated, we have (S + I + R)′ = 0, so that S + I + R is a constant.

This simplifies the system, for if we determine S(t ) and I (t ), we then derive
R(t ) for free. Hence it suffices to consider the two-dimensional system

S′ = −βSI

I ′ = βSI − νI .

The equilibria for this system are given by the S-axis (I = 0). Linearization
at (S, 0) yields the matrix (

0 −βS
0 βS − ν

)
,

so the eigenvalues are 0 and βS − ν. This second eigenvalue is negative if
0 < S < ν/β and positive if S > ν/β.

The S-nullclines are given by the S and I axes. On the I -axis, we have
I ′ = −νI , so solutions simply tend to the origin along this line. The I -
nullclines are I = 0 and the vertical line S = ν/β. Hence we have the
nullcline diagram depicted in Figure 11.1. From this it appears that, given
any initial population (S0, I0) with S0 > ν/β and I0 > 0, the susceptible popu-
lation decreases monotonically, while the infected population at first rises, but
eventually reaches a maximum and then declines to 0.

We can actually prove this analytically, because we can explicitly compute
a function that is constant along solution curves. Note that the slope of the
vector field is a function of S alone:

I ′

S′ = βSI − νI

−βSI
= −1 + ν

βS
.
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S

S�m/bI

Figure 11.1 The
nullclines and direction
field for the SIR model.

Hence we have

dI

dS
= dI /dt

dS/dt
= −1 + ν

βS
,

which we can immediately integrate to find

I = I (S) = −S + ν

β
log S + constant.

Hence the function I + S − (ν/β) log S is constant along solution curves. It
then follows that there is a unique solution curve connecting each equilibrium
point in the interval ν/β < S < ∞ to one in the interval 0 < S < ν/β as shown
in Figure 11.2.

I S�m/b

S

Figure 11.2 The phase portrait
for the SIR system.
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A slightly more complicated model for infectious diseases arises when we
assume that recovered individuals may lose their immunity and become rein-
fected with the disease. Examples of this type of disease include malaria and
tuberculosis. We assume that the return of recovered individuals to the class S
occurs at a rate proportional to the population of recovered individuals. This
leads to the SIRS model (where the extra S indicates that recovered individuals
may reenter the susceptible group). The system becomes

S′ = −βSI + μR

I ′ = βSI − νI

R′ = νI − μR.

Again we see that the total population S + I + R is a constant, which we
denote by τ . We may eliminate R from this system by setting R = τ − S − I :

S′ = −βSI + μ(τ − S − I )

I ′ = βSI − νI .

Here β, μ, ν, and τ are all positive parameters.
Unlike the SIR model, we now have at most two equilibria, one at (τ , 0) and

the other at

(S∗, I∗) =
(

ν

β
,
μ(τ − ν

β
)

ν + μ

)
.

The first equilibrium point corresponds to no disease whatsoever in the pop-
ulation. The second equilibrium point only exists when τ ≥ ν/β. When
τ = ν/β, we have a bifurcation as the two equilibria coalesce at (τ , 0). The
quantity ν/β is called the threshold level for the disease.

The linearized system is given by

Y ′ =
(−βI − μ −βS − μ

βI βS − ν

)
Y .

At the equilibrium point (τ , 0), the eigenvalues are −μ and βτ − ν, so this
equilibrium point is a saddle provided that the total population exceeds the
threshold level. At the second equilibrium point, a straightforward computa-
tion shows that the trace of the matrix is negative, while the determinant is
positive. It then follows from the results in Chapter 4 that both eigenvalues
have negative real parts, and so this equilibrium point is asymptotically stable.
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Biologically, this means that the disease may become established in the com-
munity only when the total population exceeds the threshold level. We will
only consider this case in what follows.

Note that the SIRS system is only of interest in the region given by I , S ≥ 0
and S + I ≤ τ . Denote this triangular region by � (of course!). Note that the
I -axis is no longer invariant, while on the S-axis, solutions increase up to the
equilibrium at (τ , 0).

Proposition. The region � is positively invariant.

Proof: We check the direction of the vector field along the boundary of �.
The field is tangent to the boundary along the lower edge I = 0 as well as at
(0, τ ). Along S = 0 we have S′ = μ(τ − I ) > 0, so the vector field points
inward for 0 < I < τ . Along the hypoteneuse, if 0 < S ≤ ν/β, we have
S′ = −βSI < 0 and I ′ = I (βS − ν) ≤ 0 so the vector field points inward.
When ν/β < S < τ we have

−1 <
I ′

S′ = −1 + ν

βS
≤ 0

so again the vector field points inward. This completes the proof. �

The I -nullclines are given as in the SIR model by I = 0 and S = ν/β. The
S-nullcline is given by the graph of the function

I = I (S) = μ(τ − S)

βS + μ
.

A calculus student will compute that I ′(S) < 0 and I ′′(S) > 0 when 0 ≤ S < τ .
So this nullcline is the graph of a decreasing and concave up function that passes
through both (τ , 0) and (0, τ ), as displayed in Figure 11.3. Note that in this
phase portrait, all solutions appear to tend to the equilibrium point (S∗, I∗);
the proportion of infected to susceptible individuals tends to a “steady state.”
To prove this, however, one would need to eliminate the possibility of closed
orbits encircling the equilibrium point for a given set of parameters β, μ, ν,
and τ .

11.2 Predator/Prey Systems

We next consider a pair of species, one of which consists of predators whose
population is denoted by y and the other its prey with population x . We assume
that the prey population is the total food supply for the predators. We also
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Figure 11.3 The nullclines and
phase portrait in � for the SIRS
system. Here β = ν = μ = 1 and
τ = 2.

assume that, in the absence of predators, the prey population grows at a rate
proportional to the current population. That is, as in Chapter 1, when y = 0
we have x ′ = ax where a > 0. So in this case x(t ) = x0 exp(at ). When
predators are present, we assume that the prey population decreases at a rate
proportional to the number of predator/prey encounters. As in the previous
section, one simple model for this is bxy where b > 0. So the differential
equation for the prey population is x ′ = ax − bxy .

For the predator population, we make more or less the opposite assump-
tions. In the absence of prey, the predator population declines at a rate
proportional to the current population. So when x = 0 we have y ′ = −cy with
c > 0, and thus y(t ) = y0 exp(−ct ). The predator species becomes extinct in
this case. When there are prey in the environment, we assume that the predator
population increases at a rate proportional to the predator/prey meetings, or
dxy . We do not at this stage assume anything about overcrowding. Thus our
simplified predator/prey system (also called the Volterra-Lotka system) is

x ′ = ax − bxy = x(a − by)

y ′ = −cy + dxy = y(−c + dx)

where the parameters a, b, c , and d are all assumed to be positive. Since we are
dealing with populations, we only consider x , y ≥ 0.

As usual, our first job is to locate the equilibrium points. These occur at the
origin and at (x , y) = (c/d , a/b). The linearized system is

X ′ =
(

a − by −bx
dy −c + dx

)
X ,
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Figure 11.4 The nullclines
and direction field for the
predator/prey system.

so when x = y = 0 we have a saddle with eigenvalues a and −c . We know the
stable and unstable curves: They are the y- and x-axes, respectively.

At the other equilibrium point (c/d , a/b), the eigenvalues are pure imaginary
±i

√
ac , and so we cannot conclude anything at this stage about stability of

this equilibrium point.
We next sketch the nullclines for this system. The x-nullclines are given by

the straight lines x = 0 and y = a/b, whereas the y-nullclines are y = 0 and
x = c/d . The nonzero nullcline lines separate the region x , y > 0 into four basic
regions in which the vector field points as indicated in Figure 11.4. Hence the
solutions wind in the counterclockwise direction about the equilibrium point.

From this, we cannot determine the precise behavior of solutions: They
could possibly spiral in toward the equilibrium point, spiral toward a limit
cycle, spiral out toward “infinity” and the coordinate axes, or else lie on closed
orbits. To make this determination, we search for a Liapunov function L.
Employing the trick of separation of variables, we look for a function of the
form

L(x , y) = F(x) + G(y).

Recall that L̇ denotes the time derivative of L along solutions. We compute

L̇(x , y) = d

dt
L(x(t ), y(t ))

= dF

dx
x ′ + dG

dy
y ′.

Hence

L̇(x , y) = x
dF

dx
(a − by) + y

dG

dy
(−c + dx).
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We obtain L̇ ≡ 0 provided

x dF /dx

dx − c
≡ y dG/dy

by − a
.

Since x and y are independent variables, this is possible if and only if

x dF /dx

dx − c
= y dG/dy

by − a
= constant.

Setting the constant equal to 1, we obtain

dF

dx
= d − c

x
,

dG

dy
= b − a

y
.

Integrating, we find

F(x) = dx − c log x ,

G(y) = by − a log y .

Thus the function

L(x , y) = dx − c log x + by − a log y

is constant on solution curves of the system when x , y > 0.
By considering the signs of ∂L/∂x and ∂L/∂y it is easy to see that the equilib-

rium point Z = (c/d , a/b) is an absolute minimum for L. It follows that L [or,
more precisely, L − L(Z )] is a Liapunov function for the system. Therefore Z
is a stable equilibrium.

We note next that there are no limit cycles; this follows from Corollary 6
in Section 10.6 because L is not constant on any open set. We now prove the
following theorem.

Theorem. Every solution of the predator/prey system is a closed orbit (except
the equilibrium point Z and the coordinate axes).

Proof: Consider the solution through W �= Z , where W does not lie on the
x- or y-axis. This solution spirals around Z , crossing each nullcline infinitely
often. Thus there is a doubly infinite sequence · · · < t−1 < t0 < t1 < · · ·
such that φtn (W ) is on the line x = c/d , and tn → ±∞ as n → ±∞. If
W is not on a closed orbit, the points φtn (W ) are monotone along the line
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x�c/d

Figure 11.5 The nullclines and
phase portrait for the
predator/prey system.

x = c/d , as discussed in the previous chapter. Since there are no limit cycles,
either φtn (W ) → Z as n → ∞ or φtn (W ) → Z as n → −∞. Since L is
constant along the solution through W , this implies that L(W ) = L(Z ). But
this contradicts minimality of L(Z ). This completes the proof. �

The phase portrait for this predator/prey system is displayed in Figure 11.5.
We conclude that, for any given initial populations (x(0), y(0)) with x(0) �= 0
and y(0) �= 0, other than Z , the populations of predator and prey oscillate
cyclically. No matter what the populations of prey and predator are, neither
species will die out, nor will its population grow indefinitely.

Now let us introduce overcrowding into the prey equation. As in the logistic
model in Chapter 1, the equations for prey, in the absence of predators, may
be written in the form

x ′ = ax − λx2.

We also assume that the predator population obeys a similar equation

y ′ = −cy − μy2

when x = 0. Incorporating the assumptions above yields the predator/prey
equations for species with limited growth:

x ′ = x(a − by − λx)

y ′ = y(−c + dx − μy).
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As before, the parameters a, b, c , d as well as λ and μ are all positive. When
y = 0, we have the logistic equation x ′ = x(a − λx), which yields equilibria
at the origin and at (a/λ, 0). As we saw in Chapter 1, all nonzero solutions on
the x-axis tend to a/λ.

When x = 0, the equation for y is y ′ = −cy −μy2. Since y ′ < 0 when y > 0,
it follows that all solutions on this axis tend to the origin. Thus we confine
attention to the upper-right quadrant Q where x , y > 0.

The nullclines are given by the x- and y-axes, together with the lines

L : a − by − λx = 0

M : −c + dx − μy = 0.

Along the lines L and M , we have x ′ = 0 and y ′ = 0, respectively. There are
two possibilities, according to whether these lines intersect in Q or not.

We first consider the case where the two lines do not meet in Q. In this case
we have the nullcline configuration depicted in Figure 11.6. All solutions to the
right of M head upward and to the left until they meet M ; between the lines L
and M solutions now head downward and to the left. Thus they either meet L
or tend directly to the equilibrium point at (a/λ, 0). If solutions cross L, they
then head right and downward, but they cannot cross L again. Thus they too
tend to (a/λ, 0). Thus all solutions in Q tend to this equilibrium point. We
conclude that, in this case, the predator population becomes extinct and the
prey population approaches its limiting value of a/λ.

We may interpret the behavior of solutions near the nullclines as follows.
Since both x ′ and y ′ are never both positive, it is impossible for both prey

M
L

Figure 11.6 The nullclines
and phase portrait for a
predator/prey system with
limited growth when the
nullclines do not meet in Q.
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and predators to increase at the same time. If the prey population is above
its limiting value, it must decrease. After a while the lack of prey causes the
predator population to begin to decrease (when the solution crosses M ). After
that point the prey population can never increase past a/λ, and so the predator
population continues to decrease. If the solution crosses L, the prey population
increases again (but not past a/λ), while the predators continue to die off. In
the limit the predators disappear and the prey population stabilizes at a/λ.

Suppose now that L and M cross at a point Z = (x0, y0) in the quadrant Q;
of course, Z is an equilibrium. The linearization of the vector field at Z is

X ′ =
(−λx0 −bx0

dy0 −μy0

)
X .

The characteristic polynomial has trace given by −λx0 − μy0 < 0 and deter-
minant (bd + λμ)x0y0 > 0. From the trace-determinant plane of Chapter 4,
we see that Z has eigenvalues that are either both negative or both complex
with negative real parts. Hence Z is asymptotically stable.

Note that, in addition to the equilibria at Z and (0, 0), there is still an
equilibrium at (a/λ, 0). Linearization shows that this equilibrium is a saddle;
its stable curve lies on the x-axis. See Figure 11.7.

It is not easy to determine the basin of Z , nor do we know whether there
are any limit cycles. Nevertheless we can obtain some information. The line
L meets the x-axis at (a/λ, 0) and the y-axis at (0, a/b). Let � be a rectangle
whose corners are (0, 0), (p, 0), (0, q), and (p, q) with p > a/λ, q > a/b, and
the point (p, q) lying in M . Every solution at a boundary point of � either

q

L

Γ
M

p

Figure 11.7 The nullclines and
phase portrait for a predator/prey
system with limited growth when
the nullclines do meet in Q.
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enters � or is part of the boundary. Therefore � is positively invariant. Every
point in Q is contained in such a rectangle.

By the Poincaré-Bendixson theorem, the ω-limit set of any point (x , y) in �,
with x , y > 0, must be a limit cycle or contain one of the three equilibria (0, 0),
Z , or (a/λ, 0). We rule out (0, 0) and (a/λ, 0) by noting that these equilibria are
saddles whose stable curves lie on the x- or y-axes. Therefore ω(x , y) is either
Z or a limit cycle in �. By Corollary 4 of the Poincaré-Bendixson theorem any
limit cycle must surround Z .

We observe further that any such rectangle � contains all limit cycles,
because a limit cycle (like any solution) must enter�, and � is positively invari-
ant. Fixing (p, q) as above, it follows that for any initial values (x(0), y(0)),
there exists t0 > 0 such that x(t ) < p, y(t ) < q if t ≥ t0. We conclude that
in the long run, a solution either approaches Z or else spirals down to a limit
cycle.

From a practical standpoint a solution that tends toward Z is indistinguish-
able from Z after a certain time. Likewise, a solution that approaches a limit
cycle γ can be identified with γ after it is sufficiently close. We conclude that
any population of predators and prey that obeys these equations eventually
settles down to either a constant or periodic population. Furthermore, there
are absolute upper bounds that no population can exceed in the long run, no
matter what the initial populations are.

11.3 Competitive Species

We consider now two species that compete for a common food supply. Instead
of analyzing specific equations, we follow a different procedure: We consider a
large class of equations about which we assume only a few qualitative features.
In this way considerable generality is gained, and little is lost because specific
equations can be very difficult to analyze.

Let x and y denote the populations of the two species. The equations of
growth of the two populations may be written in the form

x ′ = M (x , y)x

y ′ = N (x , y)y

where the growth rates M and N are functions of both variables. As usual, we
assume that x and y are nonnegative. So the x-nullclines are given by x = 0
and M (x , y) = 0 and the y-nullclines are y = 0 and N (x , y) = 0. We make
the following assumptions on M and N :

1. Because the species compete for the same resources, if the population
of either species increases, then the growth rate of the other goes down.
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Hence

∂M

∂y
< 0 and

∂N

∂x
< 0.

2. If either population is very large, both populations decrease. Hence there
exists K > 0 such that

M (x , y) < 0 and N (x , y) < 0 if x ≥ K or y ≥ K .

3. In the absence of either species, the other has a positive growth rate up
to a certain population and a negative growth rate beyond it. Therefore
there are constants a, b > 0 such that

M (x , 0) > 0 for x < a and M (x , 0) < 0 for x > a,

N (0, y) > 0 for y < b and N (0, y) < 0 for y > b.

By conditions (1) and (3) each vertical line {x} × R meets the set μ =
M−1(0) exactly once if 0 ≤ x ≤ a and not at all if x > a. By condition (1)
and the implicit function theorem, μ is the graph of a nonnegative function
f : [0, a] → R such that f −1(0) = a. Below the curve μ, M is positive and
above it, M is negative. In the same way the set ν = N −1(0) is a smooth curve
of the form

{
(x , y) | x = g (y)

}
,

where g : [0, b] → R is a nonnegative function with g−1(0) = b. The function
N is positive to the left of ν and negative to the right.

Suppose first that μ and ν do not intersect and that μ is below ν. Then
the phase portrait can be determined immediately from the nullclines. The
equilibria are (0, 0), (a, 0), and (0, b). The origin is a source, while (a, 0) is a
saddle (assuming that (∂M /∂x)(a, 0) < 0). The equilibrium at (0, b) is a sink
[again assuming that (∂N /∂y)(0, b) < 0]. All solutions with y0 > 0 tend to
the asymptotically stable equilibrium (0, b) with the exception of solutions on
the x-axis. See Figure 11.8. In the case where μ lies above ν, the situation is
reversed, and all solutions with x0 > 0 tend to the sink that now appears at
(a, 0).

Suppose now that μ and ν intersect. We make the assumption that μ ∩ ν

is a finite set, and at each intersection point, μ and ν cross transversely, that
is, they have distinct tangent lines at the intersection points. This assumption
may be eliminated; we make it only to simplify the process of determining the
flow.
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Figure 11.8 The phase portrait
when μ and ν do not meet.

The nullclines μ and ν and the coordinate axes bound a finite number of
connected open sets in the upper-right quadrant: These are the basic regions
where x ′ �= 0 and y ′ �= 0. They are of four types:

A : x ′ > 0, y ′ > 0, B : x ′ < 0, y ′ > 0;

C : x ′ < 0, y ′ < 0, D : x ′ > 0, y ′ < 0.

Equivalently, these are the regions where the vector field points northeast,
northwest, southwest, or southeast, respectively. Some of these regions are
indicated in Figure 11.9. The boundary ∂R of a basic region R is made up of
points of the following types: points of μ ∩ ν, called vertices; points on μ or ν

but not on both nor on the coordinate axes, called ordinary boundary points;
and points on the axes.

A vertex is an equilibrium; the other equilibria lie on the axes at (0, 0), (a, 0),
and (0, b). At an ordinary boundary point Z ∈ ∂R, the vector field is either
vertical (if Z ∈ μ) or horizontal (if Z ∈ ν). This vector points either into or out
of R since μ has no vertical tangents and ν has no horizontal tangents. We call
Z an inward or outward point of ∂R, accordingly. Note that, in Figure 11.9,
the vector field either points inward at all ordinary points on the boundary of
a basic region, or else it points outward at all such points. This is no accident,
for we have:

Proposition. Let R be a basic region for the competitive species model. Then
the ordinary boundary points of R are either all inward or all outward.

Proof: There are only two ways in which the curves μ and ν can intersect at
a vertex P . As y increases along ν, the curve ν may either pass from below μ
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Figure 11.9 The basic regions
when the nullclines μ and ν

intersect.

to above μ, or from above to below μ. These two scenarios are illustrated in
Figures 11.10a and b. There are no other possibilities since we have assumed
that these curves cross transversely.

Since x ′ > 0 below μ and x ′ < 0 above μ, and since y ′ > 0 to the left of ν

and y ′ < 0 to the right, we therefore have the following configurations for the
vector field in these two cases. See Figure 11.11.

In each case we see that the vector field points inward in two opposite basic
regions abutting P , and outward in the other two basic regions.

If we now move along μ or ν to the next vertex along this curve, we see that
adjacent basic regions must maintain their inward or outward configuration.
Therefore, at all ordinary boundary points on each basic region, the vector
field either points outward or points inward, as required. �

l l

m

m

(a) (b)

Figure 11.10 In (a), ν passes from below μ to above μ as y

increases. The situation is reversed in (b).
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Figure 11.11 Configurations of the vector field near
vertices.

As a consequence of the proposition, it follows that each basic region and
its closure is either positively or negatively invariant. What are the possible
ω-limit points of this system? There are no closed orbits. A closed orbit must
be contained in a basic region, but this is impossible since x(t ) and y(t ) are
monotone along any solution curve in a basic region. Therefore all ω-limit
points are equilibria.

We note also that each solution is defined for all t ≥ 0, because any point
lies in a large rectangle � with corners at (0, 0), (x0, 0), (0, y0), and (x0, y0) with
x0 > a and y0 > b; such a rectangle is positively invariant. See Figure 11.12.
Thus we have shown:

Theorem. The flow φt of the competitive species system has the following
property: For all points (x , y), with x ≥ 0, y ≥ 0, the limit

lim
t→∞ φt (x , y)

exists and is one of a finite number of equilibria. �

l
Γ

m

Figure 11.12 All solutions must enter
and then remain in �.
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Figure 11.13 This configuration of μ and ν

leads to an asymptotically stable equilibrium
point.

We conclude that the populations of two competing species always tend to
one of a finite number of limiting populations.

Examining the equilibria for stability, one finds the following results. A ver-
tex where μ and ν each have negative slope, but μ is steeper, is asymptotically
stable. See Figure 11.13. One sees this by drawing a small rectangle with sides
parallel to the axes around the equilibrium, putting one corner in each of the
four adjacent basic regions. Such a rectangle is positively invariant; since it can
be arbitrarily small, the equilibrium is asymptotically stable.

This may also be seen as follows. We have

slope of μ = −Mx

My
< slope of ν = −Nx

Ny
< 0,

where Mx = ∂M /∂x , My = ∂M /∂y , and so on, at the equilibrium. Now recall
that My < 0 and Nx < 0. Therefore, at the equilibrium point, we also have
Mx < 0 and Ny < 0. Linearization at the equilibrium point yields the matrix(

xMx xMy

yNx yNy

)
.

The trace of this matrix is xMx +yMy < 0 while the determinant is xy(MxNy −
MyNx) > 0. Thus the eigenvalues have negative real parts, and so we have a
sink.

A case-by-case study of the different ways μ and ν can cross shows that the
only other asymptotically stable equilibrium in this model is (0, b) when (0, b)
is above μ, or (a, 0) when (a, 0) is to the right of ν. All other equilibria are
unstable. There must be at least one asymptotically stable equilibrium. If (0, b)
is not one, then it lies under μ; and if (a, 0) is not one, it lies over μ. In that
case μ and ν cross, and the first crossing to the left of (a, 0) is asymptotically
stable.
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Figure 11.14 Note that solutions on either side of
the point Z in the stable curve of Q have very
different fates.

For example, this analysis tells us that, in Figure 11.14, only P and (0, b) are
asymptotically stable; all other equilibria are unstable. In particular, assuming
that the equilibrium Q in Figure 11.14 is hyperbolic, then it must be a saddle
because certain nearby solutions tend toward it, while others tend away. The
point Z lies on one branch of the stable curve through Q. All points in the
region denoted B∞ to the left of Z tend to the equilibrium at (0, b), while
points to the right go to P . Thus as we move across the branch of the stable
curve containing Z , the limiting behavior of solutions changes radically. Since
solutions just to the right of Z tend to the equilibrium point P , it follows that
the populations in this case tend to stabilize. On the other hand, just to the
left of Z , solutions tend to an equilibrium point where x = 0. Thus in this
case, one of the species becomes extinct. A small change in initial conditions
has led to a dramatic change in the fate of populations. Ecologically, this small
change could have been caused by the introduction of a new pesticide, the
importation of additional members of one of the species, a forest fire, or the
like. Mathematically, this event is a jump from the basin of P to that of (0, b).

11.4 Exploration: Competition and

Harvesting

In this exploration we will investigate the competitive species model where we
allow either harvesting (emigration) or immigration of one of the species. We
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consider the system

x ′ = x(1 − ax − y)

y ′ = y(b − x − y) + h.

Here a, b, and h are parameters. We assume that a, b > 0. If h < 0, then we are
harvesting species y at a constant rate, whereas if h > 0, we add to the popula-
tion y at a constant rate. The goal is to understand this system completely for
all possible values of these parameters. As usual, we only consider the regime
where x , y ≥ 0. If y(t ) < 0 for any t > 0, then we consider this species to have
become extinct.

1. First assume that h = 0. Give a complete synopsis of the behavior of this
system by plotting the different behaviors you find in the a, b parameter
plane.

2. Identify the points or curves in the ab–plane where bifurcations occur
when h = 0 and describe them.

3. Now let h < 0. Describe the ab–parameter plane for various (fixed)
h-values.

4. Repeat the previous exploration for h > 0.
5. Describe the full three-dimensional parameter space using pictures, flip

books, 3D models, movies, or whatever you find most appropriate.

E X E R C I S E S

1. For the SIRS model, prove that all solutions in the triangular region �

tend to the equilibrium point (τ , 0) when the total population does not
exceed the threshold level for the disease.

2. Sketch the phase plane for the following variant of the predator/prey
system:

x ′ = x(1 − x) − xy

y ′ = y
(
1 − y

x

)
.

3. A modification of the predator/prey equations is given by

x ′ = x(1 − x) − axy

x + 1

y ′ = y(1 − y)

where a > 0 is a parameter.



254 Chapter 11 Applications in Biology

(a) Find all equilibrium points and classify them.

(b) Sketch the nullclines and the phase portraits for different values of a.

(c) Describe any bifurcations that occur as a varies.

4. Another modification of the predator/prey equations is given by

x ′ = x(1 − x) − xy

x + b

y ′ = y(1 − y)

where b > 0 is a parameter.

(a) Find all equilibrium points and classify them.

(b) Sketch the nullclines and the phase portraits for different values
of b.

(c) Describe any bifurcations that occur as b varies.

5. The equations

x ′ = x(2 − x − y),

y ′ = y(3 − 2x − y)

satisfy conditions (1) through (3) in Section 11.3 for competing species.
Determine the phase portrait for this system. Explain why these equations
make it mathematically possible, but extremely unlikely, for both species
to survive.

6. Consider the competing species model

x ′ = x(a − x − ay)

y ′ = y(b − bx − y)

where the parameters a and b are positive.

(a) Find all equilibrium points for this system and determine their
stability type. These types will, of course, depend on a and b.

(b) Use the nullclines to determine the various phase portraits that arise
for different choices of a and b.

(c) Determine the values of a and b for which there is a bifurcation in
this system and describe the bifurcation that occurs.

(d) Record your findings by drawing a picture of the ab–plane and
indicating in each open region of this plane the qualitative structure
of the corresponding phase portraits.
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7. Two species x , y are in symbiosis if an increase of either population leads
to an increase in the growth rate of the other. Thus we assume

x ′ = M (x , y)x

y ′ = N (x , y)y

with

∂M

∂y
> 0 and

∂N

∂x
> 0

and x , y ≥ 0. We also suppose that the total food supply is limited; hence
for some A > 0, B > 0 we have

M (x , y) < 0 if x > A,

N (x , y) < 0 if y > B.

If both populations are very small, they both increase; hence

M (0, 0) > 0 and N (0, 0) > 0.

Assuming that the intersections of the curves M−1(0), N −1(0) are finite,
and that all are transverse, show the following:

(a) Every solution tends to an equilibrium in the region 0 < x < A,
0 < y < B.

(b) There are no sources.
(c) There is at least one sink.
(d) If ∂M /∂x < 0 and ∂N /∂y < 0, there is a unique sink Z , and Z is the

ω-limit set for all (x , y) with x > 0, y > 0.

8. Give a system of differential equations for a pair of mutually destruc-
tive species. Then prove that, under plausible hypotheses, two mutually
destructive species cannot coexist in the long run.

9. Let y and x denote predator and prey populations. Let

x ′ = M (x , y)x

y ′ = N (x , y)y

where M and N satisfy the following conditions.

(a) If there are not enough prey, the predators decrease. Hence for some
b > 0

N (x , y) < 0 if x < b.
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(b) An increase in the prey improves the predator growth rate; hence
∂N /∂x > 0.

(c) In the absence of predators a small prey population will increase;
hence M (0, 0) > 0.

(d) Beyond a certain size, the prey population must decrease; hence
there exists A > 0 with M (x , y) < 0 if x > A.

(e) Any increase in predators decreases the rate of growth of prey; hence
∂M /∂y < 0.

(f) The two curves M−1(0), N −1(0) intersect transversely and at only a
finite number of points.

Show that if there is some (u, v) with M (u, v) > 0 and N (u, v) > 0 then
there is either an asymptotically stable equilibrium or an ω-limit cycle.
Moreover, show that, if the number of limit cycles is finite and positive,
one of them must have orbits spiraling toward it from both sides.

10. Consider the following modification of the predator/prey equations:

x ′ = x(1 − x) − axy

x + c

y ′ = by
(
1 − y

x

)
where a, b, and c are positive constants. Determine the region in the
parameter space for which this system has a stable equilibrium with both
x , y �= 0. Prove that, if the equilibrium point is unstable, this system has
a stable limit cycle.



12
Applications in

Circuit Theory

In this chapter we first present a simple but very basic example of an electrical
circuit and then derive the differential equations governing this circuit. Certain
special cases of these equations are analyzed using the techniques developed
in Chapters 8 through 10 in the next two sections; these are the classical
equations of Lienard and van der Pol. In particular, the van der Pol equation
could perhaps be regarded as one of the fundamental examples of a nonlinear
ordinary differential equation. It possesses an oscillation or periodic solution
that is a periodic attractor. Every nontrivial solution tends to this periodic
solution; no linear system has this property. Whereas asymptotically stable
equilibria sometimes imply death in a system, attracting oscillators imply life.
We give an example in Section 12.4 of a continuous transition from one such
situation to the other.

12.1 An RLC Circuit

In this section, we present our first example of an electrical circuit. This circuit
is the simple but fundamental series RLC circuit displayed in Figure 12.1. We
begin by explaining what this diagram means in mathematical terms. The
circuit has three branches, one resistor marked by R, one inductor marked by
L, and one capacitor marked by C . We think of a branch of this circuit as a

257
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R

L

C

� c

b

Figure 12.1 An RLC circuit.

certain electrical device with two terminals. For example, in this circuit, the
branch R has terminals α and β and all of the terminals are wired together to
form the points or nodes α, β, and γ .

In the circuit there is a current flowing through each branch that is measured
by a real number. More precisely, the currents in the circuit are given by the
three real numbers iR , iL , and iC where iR measures the current through the
resistor, and so on. Current in a branch is analogous to water flowing in a
pipe; the corresponding measure for water would be the amount flowing in
unit time, or better, the rate at which water passes by a fixed point in the pipe.
The arrows in the diagram that orient the branches tell us how to read which
way the current (read water!) is flowing; for example, if iR is positive, then
according to the arrow, current flows through the resistor from β to α (the
choice of the arrows is made once and for all at the start).

The state of the currents at a given time in the circuit is thus represented by
a point i = (iR , iL , iC ) ∈ R3. But Kirchhoff ’s current law (KCL) says that in
reality there is a strong restriction on which i can occur. KCL asserts that the
total current flowing into a node is equal to the total current flowing out of
that node. (Think of the water analogy to make this plausible.) For our circuit
this is equivalent to

KCL : iR = iL = −iC .

This defines the one-dimensional subspace K1 of R3 of physical current states.
Our choice of orientation of the capacitor branch may seem unnatural. In

fact, these orientations are arbitrary; in this example they were chosen so that
the equations eventually obtained relate most directly to the history of the
subject.

The state of the circuit is characterized by the current i = (iR , iL , iC ) together
with the voltage (or, more precisely, the voltage drop) across each branch.
These voltages are denoted by vR , vL , and vC for the resistor branch, inductor
branch, and capacitor branch, respectively. In the water analogy one thinks of
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the voltage drop as the difference in pressures at the two ends of a pipe. To
measure voltage, one places a voltmeter (imagine a water pressure meter) at
each of the nodes α, β, and γ that reads V (α) at α, and so on. Then vR is the
difference in the reading at α and β

V (β) − V (α) = vR .

The direction of the arrow tells us that vR = V (β)−V (α) rather than V (α)−
V (β).

An unrestricted voltage state of the circuit is then a point v = (vR , vL , vC ) ∈
R3. This time the Kirchhoff voltage law puts a physical restriction on v :

KVL : vR + vL − vC = 0.

This defines a two-dimensional subspace K2 of R3. KVL follows immediately
from our definition of the vR , vL , and vC in terms of voltmeters; that is,

vR + vL − vC = (V (β) − V (α)) + (V (α) − V (γ )) − (V (β) − V (γ )) = 0.

The product space R3 × R3 is called the state space for the circuit. Those
states (i, v) ∈ R3 × R3 satisfying Kirchhoff’s laws form a three-dimensional
subspace of the state space.

Now we give a mathematical definition of the three kinds of electrical devices
in the circuit. First consider the resistor element. A resistor in the R branch
imposes a “functional relationship” on iR and vR . We take in our example
this relationship to be defined by a function f : R → R, so that vR = f (iR).
If R is a conventional linear resistor, then f is linear and so f (iR) = kiR .
This relation is known as Ohm’s law. Nonlinear functions yield a generalized
Ohm’s law. The graph of f is called the characteristic of the resistor. A couple
of examples of characteristics are given in Figure 12.2. (A characteristic like
that in Figure 12.2b occurs in a “tunnel diode.”)

A physical state (i, v) ∈ R3 × R3 is a point that satisfies KCL, KVL, and also
f (iR) = vR . These conditions define the set of physical states � ⊂ R3 × R3.
Thus � is the set of points (iR , iL , iC , vR , vL , vC ) in R3 × R3 that satisfy:

1. iR = iL = −iC (KCL);
2. vR + vL − vC = 0 (KVL);
3. f (iR) = vR (generalized Ohm’s law).

Now we turn to the differential equations governing the circuit. The induc-
tor (which we think of as a coil; it is hard to find a water analogy) specifies
that

L
diL(t )

dt
= vL(t ) (Faraday’s law),
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VR
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VR

iR

Figure 12.2 Several possible characteristics for a
resistor.

where L is a positive constant called the inductance. On the other hand, the
capacitor (which may be thought of as two metal plates separated by some
insulator; in the water model it is a tank) imposes the condition

C
dvC (t )

dt
= iC (t )

where C is a positive constant called the capacitance.
Let’s summarize the development so far: a state of the circuit is given by the

six numbers (iR , iL , iC , vR , vL , vC ), that is, a point in the state space R3 × R3.
These numbers are subject to three restrictions: Kirchhoff’s current law,
Kirchhoff’s voltage law, and the resistor characteristic or generalized Ohm’s
law. Therefore the set of physical states is a certain subset � ⊂ R3 × R3.
The way a state changes in time is determined by the two previous differential
equations.

Next, we simplify the set of physical states � by observing that iL and vC

determine the other four coordinates. This follows since iR = iL and iC = −iL
by KCL, vR = f (iR) = f (iL) by the generalized Ohm’s law, and vL = vC −vR =
vC −f (iL) by KVL. Therefore we can use R2 as the state space, with coordinates
given by (iL , vC ). Formally, we define a map π : R3 × R3 → R2, which sends
(i, v) ∈ R3 × R3 to (iL , vC ). Then we set π0 = π | �, the restriction of π to
�. The map π0 : � → R2 is one to one and onto; its inverse is given by the
map ψ : R2 → �, where

ψ(iL , vC ) = (iL , iL , −iL , f (iL), vC − f (iL), vC ).

It is easy to check that ψ(iL , vC ) satisfies KCL, KVL, and the generalized Ohm’s
law, so ψ does map R2 into �. It is also easy to see that π0 and ψ are inverse
to each other.

We therefore adopt R2 as our state space. The differential equations
governing the change of state must be rewritten in terms of our new
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coordinates (iL , vC ):

L
diL
dt

= vL = vC − f (iL)

C
dvC

dt
= iC = −iL .

For simplicity, and since this is only an example, we set L = C = 1. If we
write x = iL and y = vC , we then have a system of differential equations in
the plane of the form

dx

dt
= y − f (x)

dy

dt
= −x .

This is one form of the equation known as the Lienard equation. We analyze
this system in the following section.

12.2 The Lienard Equation

In this section we begin the study of the phase portrait of the Lienard system
from the circuit of the previous section, namely:

dx

dt
= y − f (x)

dy

dt
= −x .

In the special case where f (x) = x3 − x , this system is called the van der Pol
equation.

First consider the simplest case where f is linear. Suppose f (x) = kx , where
k > 0. Then the Lienard system takes the form Y ′ = AY where

A =
(−k 1

−1 0

)
.

The eigenvalues of A are given by λ± = (−k ±(k2 −4)1/2)/2. Since λ± is either
negative or else has a negative real part, the equilibrium point at the origin is
a sink. It is a spiral sink if k < 2. For any k > 0, all solutions of the system tend
to the origin; physically, this is the dissipative effect of the resistor.
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Note that we have

y ′′ = −x ′ = −y + kx = −y − ky ′,

so that the system is equivalent to the second-order equation y ′′ +ky ′ +y = 0,
which is often encountered in elementary differential equations courses.

Next we consider the case of a general characteristic f . There is a unique equi-
librium point for the Lienard system that is given by (0, f (0)). Linearization
yields the matrix (−f ′(0) 1

−1 0

)

whose eigenvalues are given by

λ± = 1

2

(
−f ′(0) ±

√
(f ′(0))2 − 4

)
.

We conclude that this equilibrium point is a sink if f ′(0) > 0 and a source if
f ′(0) < 0. In particular, for the van der Pol equation where f (x) = x3 − x , the
unique equilibrium point is a source.

To analyze the system further, we define the function W : R2 → R2 by
W (x , y) = 1

2 (x2 + y2). Then we have

Ẇ = x(y − f (x)) + y(−x) = −xf (x).

In particular, if f satisfies f (x) > 0 if x > 0, f (x) < 0 if x < 0, and f (0) = 0,
then W is a strict Liapunov function on all of R2. It follows that, in this case,
all solutions tend to the unique equilibrium point lying at the origin.

In circuit theory, a resistor is called passive if its characteristic is contained
in the set consisting of (0, 0) and the interior of the first and third quadrant.
Therefore in the case of a passive resistor, −xf (x) is negative except when
x = 0, and so all solutions tend to the origin. Thus the word passive correctly
describes the dynamics of such a circuit.

12.3 The van der Pol Equation

In this section we continue the study of the Lienard equation in the special
case where f (x) = x3 − x . This is the van der Pol equation:

dx

dt
= y − x3 + x
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dy

dt
= −x .

Let φt denote the flow of this system. In this case we can give a fairly complete
phase portrait analysis.

Theorem. There is one nontrivial periodic solution of the van der Pol equation
and every other solution (except the equilibrium point at the origin) tends to this
periodic solution. “The system oscillates.” �

We know from the previous section that this system has a unique equilib-
rium point at the origin, and that this equilibrium is a source, since f ′(0) < 0.
The next step is to show that every nonequilibrium solution “rotates” in a
certain sense around the equilibrium in a clockwise direction. To see this, note
that the x-nullcline is given by y = x3 − x and the y-nullcline is the y-axis.
We subdivide each of these nullclines into two pieces given by

v+ = { (x , y) | y > 0, x = 0}
v− = { (x , y) | y < 0, x = 0}
g+ = { (x , y) | x > 0, y = x3 − x}
g− = { (x , y) | x < 0, y = x3 − x}.

These curves are disjoint; together with the origin they form the boundaries
of the four basic regions A, B, C , and D depicted in Figure 12.3.

From the configuration of the vector field in the basic regions, it appears
that all nonequilibrium solutions wind around the origin in the clockwise
direction. This is indeed the case.

Proposition. Solution curves starting on v+ cross successively through g+,
v−, and g− before returning to v+.

D

C

B

A

g�

m�

m�

g�

Figure 12.3 The basic regions and nullclines for the
van der Pol system.
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Proof: Any solution starting on v+ immediately enters the region A since
x ′(0) > 0. In A we have y ′ < 0, so this solution must decrease in the y direction.
Since the solution cannot tend to the source, it follows that this solution must
eventually meet g+. On g+ we have x ′ = 0 and y ′ < 0. Consequently, the
solution crosses g+, then enters the region B. Once inside B, the solution
heads southwest. Note that the solution cannot reenter A since the vector field
points straight downward on g+. There are thus two possibilities: Either the
solution crosses v−, or else the solution tends to −∞ in the y direction and
never crosses v−.

We claim that the latter cannot happen. Suppose that it does. Let (x0, y0)
be a point on this solution in region B and consider φt (x0, y0) = (x(t ), y(t )).
Since x(t ) is never 0, it follows that this solution curve lies for all time in the
strip S given by 0 < x ≤ x0, y ≤ y0, and we have y(t ) → −∞ as t → t0 for
some t0. We first observe that, in fact, t0 = ∞. To see this, note that

y(t ) − y0 =
∫ t

0
y ′(s) ds =

∫ t

0
−x(s) ds.

But 0 < x(s) ≤ x0, so we may only have y(t ) → −∞ if t → ∞.
Now consider x(t ) for 0 ≤ t < ∞. We have x ′ = y − x3 + x . Since the

quantity −x3 + x is bounded in the strip S and y(t ) → −∞ as t → ∞, it
follows that

x(t ) − x0 =
∫ t

0
x ′(s) ds → −∞

as t → ∞ as well. But this contradicts our assumption that x(t ) > 0.
Hence this solution must cross v−. Now the vector field is skew-symmetric

about the origin. That is, if G(x , y) is the van der Pol vector field, then
G(−x , −y) = −G(x , y). Exploiting this symmetry, it follows that solutions
must then pass through regions C and D in similar fashion. �

As a consequence of this result, we may define a Poincaré map P on the
half-line v+. Given (0, y0) ∈ v+, we define P(y0) to be the y coordinate of the
first return of φt (0, y0) to v+ with t > 0. See Figure 12.4. As in Section 10.3,
P is a one to one C∞ function. The Poincaré map is also onto. To see this,
simply follow solutions starting on v+ backward in time until they reintersect
v+, as they must by the proposition. Let Pn = P ◦ Pn−1 denote the n-fold
composition of P with itself.

Our goal now is to prove the following theorem:

Theorem. The Poincaré map has a unique fixed point in v+. Furthermore,
the sequence Pn(y0) tends to this fixed point as n → ∞ for any nonzero
y0 ∈ v+. �



12.3 The van der Pol Equation 265
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Figure 12.4 The Poincaré map
on v+.

Clearly, any fixed point of P lies on a periodic solution. On the other
hand, if P(y0) �= y0, then the solution through (0, y0) can never be periodic.
Indeed, if P(y0) > y0, then the successive intersection of φt (0, y0) with v+ is
a monotone sequence as in Section 10.4. Hence the solution crosses v+ in an
increasing sequence of points and so the solution can never meet itself. The
case P(y0) < y0 is analogous.

We may define a “semi-Poincaré map” α : v+ → v− by letting α(y) be the
y coordinate of the first point of intersection of φt (0, y) with v− where t > 0.
Also define

δ(y) = 1

2

(
α(y)2 − y2) .

Note for later use that there is a unique point (0, y∗) ∈ v+ and time t∗ such
that

1. φt (0, y∗) ∈ A for 0 < t < t∗;
2. φt∗(0, y∗) = (1, 0) ∈ g+.

See Figure 12.5.
The theorem will now follow directly from the following rather delicate

result.

Proposition. The function δ(y) satisfies:

1. δ(y) > 0 if 0 < y < y∗;
2. δ(y) decreases monotonically to −∞ as y → ∞ for y > y∗. �

We will prove the proposition shortly; first we use it to complete the proof
of the theorem. We exploit the fact that the vector field is skew-symmetric
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Figure 12.5 The
semi-Poincaré map.

about the origin. This implies that if (x(t ), y(t )) is a solution curve, then so is
(−x(t ), −y(t )).

Part of the graph of δ(y) is shown schematically in Figure 12.6. The interme-
diate value theorem and the proposition imply that there is a unique y0 ∈ v+
with δ(y0) = 0. Consequently, α(y0) = −y0 and it follows from the skew-
symmetry that the solution through (0, y0) is periodic. Since δ(y) �= 0 except
at y0, we have α(y) �= y for all other y-values, and so it follows that φt (0, y0)
is the unique periodic solution.

We next show that all other solutions (except the equilibrium point) tend
to this periodic solution. Toward that end, we define a map β : v− → v+,
sending each point of v− to the first intersection of the solution (for t > 0)
with v+. By symmetry we have

β(y) = −α(−y).

Note also that P(y) = β ◦ α(y).

y* y0
y

d(y)

Figure 12.6 The
graph of δ(y).
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We identify the y-axis with the real numbers in the y coordinate. Thus if
y1, y2 ∈ v+ ∪ v− we write y1 > y2 if y1 is above y2. Note that α and β reverse
this ordering while P preserves it.

Now choose y ∈ v+ with y > y0. Since α(y0) = −y0 we have α(y) < −y0

and P(y) > y0. On the other hand, δ(y) < 0, which implies that α(y) > −y .
Therefore P(y) = β(α(y)) < y . We have shown that y > y0 implies y > P(y) >
y0. Similarly P(y) > P(P(y)) > y0 and by induction Pn(y) > Pn+1(y) > y0

for all n > 0.
The decreasing sequence Pn(y) has a limit y1 ≥ y0 in v+. Note that y1 is a

fixed point of P , because, by continuity of P , we have

P(y1) − y1 = lim
n→∞ P(Pn(y)) − y1

= y1 − y1 = 0.

Since P has only one fixed point, we have y1 = y0. This shows that the solution
through y spirals toward the periodic solution as t → ∞. See Figure 12.7. The
same is true if y < y0; the details are left to the reader. Since every solution
except the equilibrium meets v+, the proof of the theorem is complete. �

Finally, we turn to the proof of the proposition. We adopt the following
notation. Let γ : [a, b] → R2 be a smooth curve in the plane and let F : R2 →
R. We write γ (t ) = (x(t ), y(t )) and define

∫
γ

F(x , y) =
∫ b

a
F(x(t ), y(t )) dt .

Figure 12.7 The phase
portrait of the van der Pol
equation.
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If it happens that x ′(t ) �= 0 for a ≤ t ≤ b, then along γ , y is a function of x ,
so we may write y = y(x). In this case we can change variables:

∫ b

a
F(x(t ), y(t )) dt =

∫ x(b)

x(a)
F(x , y(x))

dt

dx
dx .

Therefore ∫
γ

F(x , y) =
∫ x(b)

x(a)

F(x , y(x))

dx/dt
dx .

We have a similar expression if y ′(t ) �= 0.
Now recall the function

W (x , y) = 1

2

(
x2 + y2)

introduced in the previous section. Let p ∈ v+. Suppose α(p) = φτ (p). Let
γ (t ) = (x(t ), y(t )) for 0 ≤ t ≤ τ = τ (p) be the solution curve joining p ∈ v+
to α(p) ∈ v−. By definition

δ(p) = 1

2

(
y(τ )2 − y(0)2)

= W (x(τ ), y(τ )) − W (x(0), y(0)).

Thus

δ(p) =
∫ τ

0

d

dt
W (x(t ), y(t )) dt .

Recall from Section 12.2 that we have

Ẇ = −xf (x) = −x(x3 − x).

Thus we have

δ(p) =
∫ τ

0
−x(t )(x(t )3 − x(t )) dt

=
∫ τ

0
x(t )2(1 − x(t )2) dt .

This immediately proves part (1) of the proposition because the integrand is
positive for 0 < x(t ) < 1.
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Figure 12.8 The curves γ1 , γ2 ,
and γ3 depicted on the closed
orbit through y0 .

We may rewrite the last equality as

δ(p) =
∫

γ

x2 (1 − x2) .

We restrict attention to points p ∈ v+ with p > y∗. We divide the correspond-
ing solution curve γ into three curves γ1, γ2, γ3 as displayed in Figure 12.8.
The curves γ1 and γ3 are defined for 0 ≤ x ≤ 1, while the curve γ2 is defined
for y1 ≤ y ≤ y2. Then

δ(p) = δ1(p) + δ2(p) + δ3(p)

where

δi(p) =
∫

γi

x2 (1 − x2) , i = 1, 2, 3.

Notice that, along γ1, y(t ) may be regarded as a function of x . Hence we have

δ1(p) =
∫ 1

0

x2
(
1 − x2

)
dx/dt

dx

=
∫ 1

0

x2
(
1 − x2

)
y − f (x)

dx

where f (x) = x3 − x . As p moves up the y-axis, y − f (x) increases [for (x , y)
on γ1]. Hence δ1(p) decreases as p increases. Similarly δ3(p) decreases as p
increases.
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On γ2, x(t ) may be regarded as a function of y , which is defined for y ∈
[y1, y2] and x ≥ 1. Therefore since dy/dt = −x , we have

δ2(p) =
∫ y1

y2

−x(y)
(
1 − x(y)2) dy

=
∫ y2

y1

x(y)
(
1 − x(y)2) dy

so that δ2(p) is negative.
As p increases, the domain [y1, y2] of integration becomes steadily larger.

The function y → x(y) depends on p, so we write it as xp(y). As p
increases, the curves γ2 move to the right; hence xp(y) increases and so
xp(y)(1 − xp(y)2) decreases. It follows that δ2(p) decreases as p increases;
and evidently limp→∞ δ2(p) = −∞. Consequently, δ(p) also decreases and
tends to −∞ as p → ∞. This completes the proof of the proposition.

12.4 A Hopf Bifurcation

We now describe a more general class of circuit equations where the resistor
characteristic depends on a parameter μ and is denoted by fμ. (Perhaps μ is
the temperature of the resistor.) The physical behavior of the circuit is then
described by the system of differential equations on R2:

dx

dt
= y − fμ(x)

dy

dt
= −x .

Consider as an example the special case where fμ is described by

fμ(x) = x3 − μx

and the parameter μ lies in the interval [−1, 1]. When μ = 1 we have the
van der Pol system from the previous section. As before, the only equilibrium
point lies at the origin. The linearized system is

Y ′ =
(

μ 1
−1 0

)
Y ,
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and the eigenvalues are

λ± = 1

2

(
μ ±

√
μ2 − 4

)
.

Thus the origin is a spiral sink for −1 ≤ μ < 0 and a spiral source for
0 < μ ≤ 1. Indeed, when −1 ≤ μ ≤ 0, the resistor is passive as the graph of fμ
lies in the first and third quadrants. Therefore all solutions tend to the origin in
this case. This holds even in the case where μ = 0 and the linearization yields
a center. Physically the circuit is dead in that, after a period of transition, all
currents and voltages stay at 0 (or as close to 0 as we want).

However, as μ becomes positive, the circuit becomes alive. It begins to
oscillate. This follows from the fact that the analysis of Section 12.3 applies
to this system for all μ in the interval (0, 1]. We therefore see the birth of
a (unique) periodic solution γμ as μ increases through 0 (see Exercise 4 at
the end of this chapter). Just as above, this solution attracts all other nonzero
solutions. As in Section 8.5, this is an example of a Hopf bifurcation. Further
elaboration of the ideas in Section 12.3 can be used to show that γμ → 0 as
μ → 0 with μ > 0. Figure 12.9 shows some phase portraits associated to this
bifurcation.

l��0.5 l��0.1

l�0.05 l�0.2

Figure 12.9 The Hopf bifurcation in the system x ′ = y −
x3 + μ x, y ′ = −x.
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12.5 Exploration: Neurodynamics

One of the most important developments in the study of the firing of nerve
cells or neurons was the development of a model for this phenomenon in
giant squid in the 1950s by Hodgkin and Huxley [23]. They developed a four-
dimensional system of differential equations that described the electrochemical
transmission of neuronal signals along the cell membrane, a work for which
they later received the Nobel prize. Roughly speaking, this system is similar
to systems that arise in electrical circuits. The neuron consists of a cell body,
or soma, which receives electrical stimuli. This stimulus is then conducted
along the axon, which can be thought of as an electrical cable that connects to
other neurons via a collection of synapses. Of course, the motion is not really
electrical, because the current is not really made up of electrons, but rather
ions (predominantly sodium and potassium). See [15] or [34] for a primer on
the neurobiology behind these systems.

The four-dimensional Hodgkin-Huxley system is difficult to deal with,
primarily because of the highly nonlinear nature of the equations. An impor-
tant breakthrough from a mathematical point of view was achieved by
Fitzhugh [18] and Nagumo et al. [35], who produced a simpler model of
the Hodgkin-Huxley model. Although this system is not as biologically accu-
rate as the original system, it nevertheless does capture the essential behavior
of nerve impulses, including the phenomenon of excitability alluded to below.

The Fitzhugh-Nagumo system of equations is given by

x ′ = y + x − x3

3
+ I

y ′ = −x + a − by

where a and b are constants satisfying

0 <
3

2
(1 − a) < b < 1

and I is a parameter. In these equations x is similar to the voltage and rep-
resents the excitability of the system; the variable y represents a combination
of other forces that tend to return the system to rest. The parameter I is a
stimulus parameter that leads to excitation of the system; I is like an applied
current. Note the similarity of these equations with the van der Pol equation
of Section 12.3.

1. First assume that I = 0. Prove that this system has a unique equilibrium
point (x0, y0). Hint: Use the geometry of the nullclines for this rather than
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explicitly solving the equations. Also remember the restrictions placed on
a and b.

2. Prove that this equilibrium point is always a sink.
3. Now suppose that I �= 0. Prove that there is still a unique equilibrium

point (xI , yI ) and that xI varies monotonically with I .
4. Determine values of xI for which the equilibrium point is a source and

show that there must be a stable limit cycle in this case.
5. When I �= 0, the point (x0, y0) is no longer an equilibrium point.

Nonetheless we can still consider the solution through this point. Describe
the qualitative nature of this solution as I moves away from 0. Explain
in mathematical terms why biologists consider this phenomenon the
“excitement” of the neuron.

6. Consider the special case where a = I = 0. Describe the phase plane for
each b > 0 (no longer restrict to b < 1) as completely as possible. Describe
any bifurcations that occur.

7. Now let I vary as well and again describe any bifurcations that occur.
Describe in as much detail as possible the phase portraits that occur in the
I , b–plane, with b > 0.

8. Extend the analysis of the previous problem to the case b ≤ 0.
9. Now fix b = 0 and let a and I vary. Sketch the bifurcation plane (the

I , a–plane) in this case.

E X E R C I S E S

1. Find the phase portrait for the differential equation

x ′ = y − f (x), f (x) = x2,

y ′ = −x .

Hint: Exploit the symmetry about the y-axis.
2. Let

f (x) =
⎧⎨
⎩

2x − 3 if x > 1
−x if −1 ≤ x ≤ 1
2x + 3 if x < −1.

Consider the system

x ′ = y − f (x)

y ′ = −x .

(a) Sketch the phase plane for this system.
(b) Prove that this system has a unique closed orbit.
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3. Let

fa(x) =
⎧⎨
⎩

2x + a − 2 if x > 1
ax if −1 ≤ x ≤ 1
2x − a + 2 if x < −1.

Consider the system

x ′ = y − fa(x)

y ′ = −x .

(a) Sketch the phase plane for this system for various values of a.

(b) Describe the bifurcation that occurs when a = 0.

4. Consider the system described in Section 12.4

x ′ = y − (x3 − μx)

y ′ = −x

where the parameter μ satisfies 0 ≤ μ < 1. Fill in the details of the proof
that a Hopf bifurcation occurs at μ = 0.

5. Consider the system

x ′ = μ(y − (x3 − x)), μ > 0

y ′ = −x .

Prove that this system has a unique nontrivial periodic solution γμ. Show
that as μ → ∞, γμ tends to the closed curve consisting of two horizontal
line segments and two arcs on y = x3 − x as in Figure 12.10. This type
of solution is called a relaxation oscillation. When μ is large, there are
two quite different timescales along the periodic solution. When moving
horizontally, we have x ′ very large, and so the solution makes this transit

Figure 12.10
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R

C

L

Figure 12.11

very quickly. On the other hand, near the cubic nullcline, x ′ = 0 while y ′
is bounded. Hence this transit is comparatively much slower.

6. Find the differential equations for the network in Figure 12.11, where the
resistor is voltage controlled; that is, the resistor characteristic is the graph
of a function g : R → R, iR = g (vR).

7. Show that the LC circuit consisting of one inductor and one capacitor
wired in a closed loop oscillates.

8. Determine the phase portrait of the following differential equation and in
particular show there is a unique nontrivial periodic solution:

x ′ = y − f (x)

y ′ = −g (x)

where all of the following are assumed:

(a) g (−x) = −g (x) and xg (x) > 0 for all x �= 0;

(b) f (−x) = −f (x) and f (x) < 0 for 0 < x < a;

(c) for x > a, f (x) is positive and increasing;

(d) f (x) → ∞ as x → ∞.

9. Consider the system

x ′ = y

y ′ = a(1 − x4)y − x

(a) Find all equilibrium points and classify them.

(b) Sketch the phase plane.

(c) Describe the bifurcation that occurs when a becomes positive.

(d) Prove that there exists a unique closed orbit for this system when
a > 0.

(e) Show that all nonzero solutions of the system tend to this closed orbit
when a > 0.
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13
Applications in Mechanics

We turn our attention in this chapter to the earliest important examples of
differential equations that, in fact, are connected with the origins of calculus.
These equations were used by Newton to derive and unify the three laws of
Kepler. In this chapter we give a brief derivation of two of Kepler’s laws and
then discuss more general problems in mechanics.

The equations of Newton, our starting point, have retained importance
throughout the history of modern physics and lie at the root of that part of
physics called classical mechanics. The examples here provide us with concrete
examples of historical and scientific importance. Furthermore, the case we
consider most thoroughly here, that of a particle moving in a central force
gravitational field, is simple enough so that the differential equations can be
solved explicitly using exact, classical methods (just calculus!). However, with
an eye toward the more complicated mechanical systems that cannot be solved
in this way, we also describe a more geometric approach to this problem.

13.1 Newton’s Second Law

We will be working with a particle moving in a force field F . Mathematically, F
is just a vector field on the (configuration) space of the particle, which in our
case will be Rn . From the physical point of view, F(X) is the force exerted on
a particle located at position X ∈ Rn .

The example of a force field we will be most concerned with is the gravita-
tional field of the sun: F(X) is the force on a particle located at X that attracts
the particle to the sun. We go into details of this system in Section 13.3.

277
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The connection between the physical concept of a force field and the math-
ematical concept of a differential equation is Newton’s second law : F = ma.
This law asserts that a particle in a force field moves in such a way that the
force vector at the location X of the particle, at any instant, equals the acceler-
ation vector of the particle times the mass m. That is, Newton’s law gives the
second-order differential equation

mX ′′ = F(X).

As a system, this equation becomes

X ′ = V

V ′ = 1

m
F(X)

where V = V (t ) is the velocity of the particle. This is a system of equations on
Rn × Rn . This type of system is often called a mechanical system with n degrees
of freedom.

A solution X(t ) ⊂ Rn of the second-order equation is said to lie in config-
uration space. The solution of the system (X(t ), V (t )) ⊂ Rn × Rn lies in the
phase space or state space of the system.

Example. Recall the simple undamped harmonic oscillator from Chapter 2.
In this case the mass moves in one dimension and its position at time t is given
by a function x(t ), where x : R → R. As we saw, the differential equation
governing this motion is

mx ′′ = −kx

for some constant k > 0. That is, the force field at the point x ∈ R is given
by −kx . �

Example. The two-dimensional version of the harmonic oscillator allows
the mass to move in the plane, so the position is now given by the vector
X(t ) = (x1(t ), x2(t )) ∈ R2. As in the one-dimensional case, the force field is
F(X) = −kX so the equations of motion are the same

mX ′′ = −kX

with solutions in configuration space given by

x1(t ) = c1 cos(
√

k/m t ) + c2 sin(
√

k/m t )

x2(t ) = c3 cos(
√

k/m t ) + c4 sin(
√

k/m t )
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for some choices of the cj as is easily checked using the methods of
Chapter 6. �

Before dealing with more complicated cases of Newton’s law, we need to
recall a few concepts from multivariable calculus. Recall that the dot product
(or inner product ) of two vectors X , Y ∈ Rn is denoted by X ·Y and defined by

X · Y =
n∑

i=1

xiyi

where X = (x1, . . . , xn) and Y = (y1, . . . , yn). Thus X ·X = |X |2. If X , Y : I →
Rn are smooth functions, then a version of the product rule yields

(X · Y )′ = X ′ · Y + X · Y ′,

as can be easily checked using the coordinate functions xi and yi .
Recall also that if g : Rn → R, the gradient of g , denoted grad g , is

defined by

grad g (X) =
(

∂g

∂x1
(X), . . . ,

∂g

∂xn
(X)

)
.

As we saw in Chapter 9, grad g is a vector field on Rn .
Next, consider the composition of two smooth functions g ◦ F where

F : R → Rn and g : Rn → R. The chain rule applied to g ◦ F yields

d

dt
g (F(t )) = grad g (F(t )) · F ′(t )

=
n∑

i=1

∂g

∂xi
(F(t ))

dFi

dt
(t ).

We will also use the cross product (or vector product) U × V of vectors
U , V ∈ R3. By definition,

U × V = (u2v3 − u3v2, u3v1 − u1v3, u1v2 − u2v1) ∈ R
3.

Recall from multivariable calculus that we have

U × V = −V × U = |U ||V |N sin θ

where N is a unit vector perpendicular to U and V with the orientations of
the vectors U , V , and N given by the “right-hand rule.” Here θ is the angle
between U and V .



280 Chapter 13 Applications in Mechanics

Note that U ×V = 0 if and only if one vector is a scalar multiple of the other.
Also, if U × V �= 0, then U × V is perpendicular to the plane containing U
and V . If U and V are functions of t in R, then another version of the product
rule asserts that

d

dt
(U × V ) = U ′ × V + U × V ′

as one can again check by using coordinates.

13.2 Conservative Systems

Many force fields appearing in physics arise in the following way. There is a
smooth function U : Rn → R such that

F(X) = −
(

∂U

∂x1
(X),

∂U

∂x2
(X), . . . ,

∂U

∂xn
(X)

)
= −grad U (X).

(The negative sign is traditional.) Such a force field is called conservative. The
associated system of differential equations

X ′ = V

V ′ = − 1

m
grad U (X)

is called a conservative system. The function U is called the potential energy
of the system. [More properly, U should be called a potential energy since
adding a constant to it does not change the force field −grad U (X).]

Example. The planar harmonic oscillator above corresponds to the force
field F(X) = −kX . This field is conservative, with potential energy

U (X) = 1

2
k |X |2.

For any moving particle X(t ) of mass m, the kinetic energy is defined to be

K = 1

2
m|V (t )|2.

Note that the kinetic energy depends on velocity, while the potential energy
is a function of position. The total energy (or sometimes simply energy) is
defined on phase space by E = K + U . The total energy function is important
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in mechanics because it is constant along any solution curve of the system.
That is, in the language of Section 9.4, E is a constant of the motion or a first
integral for the flow. �

Theorem. (Conservation of Energy) Let (X(t ), V (t )) be a solution curve
of a conservative system. Then the total energy E is constant along this solution
curve.

Proof: To show that E(X(t )) is constant in t , we compute

Ė = d

dt

(
1

2
m|V (t )|2 + U (X(t ))

)
= mV · V ′ + (grad U ) · X ′

= V · (−grad U ) + (grad U ) · V

= 0. �

We remark that we may also write this type of system in Hamiltonian form.
Recall from Chapter 9 that a Hamiltonian system on Rn × Rn is a system of
the form

x ′
i = ∂H

∂yi

y ′
i = −∂H

∂xi

where H : Rn × Rn → R is the Hamiltonian function. As we have seen, the
function H is constant along solutions of such a system. To write the conser-
vative system in Hamiltonian form, we make a simple change of variables. We
introduce the momentum vector Y = mV and then set

H = K + U = 1

2m

∑
y2

i + U (x1, . . . , xn).

This puts the conservative system in Hamiltonian form, as is easily checked.

13.3 Central Force Fields

A force field F is called central if F(X) points directly toward or away from the
origin for every X . In other words, the vector F(X) is always a scalar multiple
of X :

F(X) = λ(X)X
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where the coefficient λ(X) depends on X . We often tacitly exclude from con-
sideration a particle at the origin; many central force fields are not defined
(or are “infinite”) at the origin. We deal with these types of singularities in
Section 13.7. Theoretically, the function λ(X) could vary for different values
of X on a sphere given by |X | = constant. However, if the force field is
conservative, this is not the case.

Proposition. Let F be a conservative force field. Then the following statements
are equivalent:

1. F is central;
2. F(X) = f (|X |)X;
3. F(X) = −grad U (X) and U (X) = g (|X |).

Proof: Suppose (3) is true. To prove (2) we find, from the chain rule:

∂U

∂xj
= g ′(|X |) ∂

∂xj

(
x1

2 + x2
2 + x3

2)1/2

= g ′(|X |)
|X | xj .

This proves (2) with f (|X |) = −g ′(|X |)/|X |. It is clear that (2) implies (1). To
show that (1) implies (3) we must prove that U is constant on each sphere

Sα = {X ∈ R
n | |X | = α > 0}.

Because any two points in Sα can be connected by a curve in Sα , it suffices
to show that U is constant on any curve in Sα . Hence if J ⊂ R is an interval
and γ : J → Sα is a smooth curve, we must show that the derivative of the
composition U ◦ γ is identically 0. This derivative is

d

dt
U (γ (t )) = grad U (γ (t )) · γ ′(t )

as in Section 13.1. Now grad U (X) = −F(X) = −λ(X)X since F is central.
Thus we have

d

dt
U (γ (t )) = −λ(γ (t ))γ (t ) · γ ′(t )

= −λ(γ (t ))

2

d

dt
|γ (t )|2

= 0

because |γ (t )| ≡ α. �
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Consider now a central force field, not necessarily conservative, defined on
R3. Suppose that, at some time t0, P ⊂ R3 denotes the plane containing the
position vector X(t0), the velocity vector V (t0), and the origin (assuming, for
the moment, that the position and velocity vectors are not collinear). Note
that the force vector F(X(t0)) also lies in P . This makes it plausible that the
particle stays in the plane P for all time. In fact, this is true:

Proposition. A particle moving in a central force field in R3 always moves in
a fixed plane containing the origin.

Proof: Suppose X(t ) is the path of a particle moving under the influence of
a central force field. We have

d

dt
(X × V ) = V × V + X × V ′

= X × X ′′

= 0

because X ′′ is a scalar multiple of X . Therefore Y = X(t ) × V (t ) is a constant
vector. If Y �= 0, this means that X and V always lie in the plane orthogonal
to Y , as asserted. If Y = 0, then X ′(t ) = g (t )X(t ) for some real function g (t ).
This means that the velocity vector of the moving particle is always directed
along the line through the origin and the particle, as is the force on the particle.
This implies that the particle always moves along the same line through the
origin. To prove this, let (x1(t ), x2(t ), x3(t )) be the coordinates of X(t ). Then
we have three separable differential equations:

dxk

dt
= g (t )xk(t ), for k = 1, 2, 3.

Integrating, we find

xk(t ) = eh(t )xk(0), where h(t ) =
∫ t

0
g (s) ds.

Therefore X(t ) is always a scalar multiple of X(0) and so X(t ) moves in a fixed
line and hence in a fixed plane. �

The vector m(X × V ) is called the angular momentum of the system, where
m is the mass of the particle. By the proof of the preceding proposition, this
vector is also conserved by the system.

Corollary. (Conservation of Angular Momentum) Angularmomentum
is constant along any solution curve in a central force field. �



284 Chapter 13 Applications in Mechanics

We now restrict attention to a conservative central force field. Because of
the previous proposition, the particle remains for all time in a plane, which we
may take to be x3 = 0. In this case angular momentum is given by the vector
(0, 0, m(x1v2 − x2v1)). Let

� = m(x1v2 − x2v1).

So the function � is also constant along solutions. In the planar case we also
call � the angular momentum. Introducing polar coordinates x1 = r cos θ and
x2 = r sin θ , we find

v1 = x ′
1 = r ′ cos θ − r sin θ θ ′

v2 = x ′
2 = r ′ sin θ + r cos θ θ ′.

Then

x1v2 − x2v1 = r cos θ(r ′ sin θ + r cos θ θ ′) − r sin θ(r ′ cos θ − r sin θ θ ′)

= r2(cos2 θ + sin2 θ)θ ′

= r2θ ′.

Hence in polar coordinates, � = mr2θ ′.
We can now prove one of Kepler’s laws. Let A(t ) denote the area swept

out by the vector X(t ) in the time from t0 to t . In polar coordinates we have
dA = 1

2 r2dθ . We define the areal velocity to be

A′(t ) = 1

2
r2(t )θ ′(t ),

the rate at which the position vector sweeps out area. Kepler observed that the
line segment joining a planet to the sun sweeps out equal areas in equal times,
which we interpret to mean A′ = constant. We have therefore proved more
generally that this is true for any particle moving in a conservative central force
field.

We now have found two constants of the motion or first integrals for a
conservative system generated by a central force field: total energy and angular
momentum. In the 19th century, the idea of solving a differential equation
was tied to the construction of a sufficient number of such constants of the
motion. In the 20th century, it became apparent that first integrals do not exist
for differential equations very generally; the culprit here is chaos, which we
will discuss in the next two chapters. Basically, chaotic behavior of solutions of
a differential equation in an open set precludes the existence of first integrals
in that set.
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13.4 The Newtonian Central Force

System

We now specialize the discussion to the Newtonian central force system. This
system deals with the motion of a single planet orbiting around the sun. We
assume that the sun is fixed at the origin in R3 and that the relatively small
planet exerts no force on the sun. The sun exerts a force on a planet given by
Newton’s law of gravitation, which is also called the inverse square law. This
law states that the sun exerts a force on a planet located at X ∈ R3 whose
magnitude is gmsmp/r2, where ms is the mass of the sun, mp is the mass of the
planet, and g is the gravitational constant. The direction of the force is toward
the sun. Therefore Newton’s law yields the differential equation

mpX ′′ = −gmsmp
X

|X |3 .

For clarity, we change units so that the constants are normalized to one and
so the equation becomes more simply

X ′′ = F(X) = − X

|X |3 .

where F is now the force field. As a system of differential equations, we have

X ′ = V

V ′ = − X

|X |3 .

This system is called the Newtonian central force system. Our goal in this section
is to describe the geometry of this system; in the next section we derive a
complete analytic solution of this system.

Clearly, this is a central force field. Moreover, it is conservative, since

X

|X |3 = grad U (X)

where the potential energy U is given by

U (X) = − 1

|X | .

Observe that F(X) is not defined at 0; indeed, the force field becomes infinite
as the moving mass approaches collision with the stationary mass at the origin.

As in the previous section we may restrict attention to particles moving in the
plane R2. Thus we look at solutions in the configuration space C = R2 − {0}.
We denote the phase space by P = (R2 − {0}) × R2.
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We visualize phase space as the collection of all tangent vectors at each point
X ∈ C. For a given X ∈ R2 − {0}, let TX = {(X , V ) | V ∈ R2}. TX is the
tangent plane to the configuration space at X . Then

P =
⋃
X∈C

TX

is the tangent space to the configuration space, which we may naturally identify
with a subset of R4.

The dimension of phase space is four. However, we can cut this dimension
in half by making use of the two known first integrals, total energy and angu-
lar momentum. Recall that energy is constant along solutions and is given by

E(X , V ) = K (V ) + U (X) = 1

2
|V |2 − 1

|X | .

Let �h denote the subset ofP consisting of all points (X , V ) with E(X , V ) = h.
The set �h is called an energy surface with total energy h. If h ≥ 0, then �h

meets each TX in a circle of tangent vectors satisfying

|V |2 = 2

(
h + 1

|X |
)

.

The radius of these circles in the tangent planes at X tends to ∞ as X → 0 and
decreases to 2h as |X | tends to ∞.

When h < 0, the structure of the energy surface �h is different. If |X | >
−1/h, then there are no vectors in TX ∩ �h . When |X | = −1/h, only the zero
vector in TX lies in �h . The circle r = −1/h in configuration space is therefore
known as the zero velocity curve. If X lies inside the zero velocity curve, then
TX meets the energy surface in a circle of tangent vectors as before. Figure 13.1
gives a caricature of �h for the case where h < 0.

We now introduce polar coordinates in configuration space and new
variables (vr , vθ ) in the tangent planes via

V = vr

(
cos θ

sin θ

)
+ vθ

(− sin θ

cos θ

)
.

We have

V = X ′ = r ′
(

cos θ

sin θ

)
+ rθ ′

(− sin θ

cos θ

)

so that r ′ = vr and θ ′ = vθ /r . Differentiating once more, we find

−1

r2

(
cosθ
sinθ

)
=− X

|X |3 =V ′ =
(

v ′
r −

v2
θ

r

)(
cosθ
sinθ

)
+
(vr vθ

r
+v ′

θ

)(−sinθ

cosθ

)
.
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zero velocity
curve

Figure 13.1 Over each nonzero point
inside the zero velocity curve, TX
meets the energy surface �h in a circle
of tangent vectors.

Therefore in the new coordinates (r ,θ ,vr ,vθ ), the system becomes

r ′ =vr

θ ′ =vθ /r

v ′
r =− 1

r2
+ v2

θ

r

v ′
θ =−vr vθ

r
.

In these coordinates, total energy is given by

1

2

(
v2

r +v2
θ

)− 1

r
=h

and angular momentum is given by �= rvθ . Let �h,� consist of all points in
phase space with total energy h and angular momentum �. For simplicity, we
will restrict attention to the case where h<0.

If �=0, we must have vθ =0. So if X lies inside the zero velocity curve, the
tangent space at X meets �h,0 in precisely two vectors of the form

±vr

(
cosθ
sinθ

)
,

both of which lie on the line connecting 0 and X , one pointing toward 0, the
other pointing away. On the zero velocity curve, only the zero vector lies in
�h,0. Hence we see immediately that each solution in �h,0 lies on a straight line
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through the origin. The solution leaves the origin and travels along a straight
line until reaching the zero velocity curve, after which time it recedes back to
the origin. In fact, since the vectors in �h,0 have magnitude tending to ∞ as
X →0, these solutions reach the singularity in finite time in both directions.
Solutions of this type are called collision-ejection orbits.

When � �=0, a different picture emerges. Given X inside the zero velocity
curve, we have vθ =�/r , so that, from the total energy formula,

r2v2
r =2hr2+2r −�2. (A)

The quadratic polynomial in r on the right in Eq. (A) must therefore be
nonnegative, so this puts restrictions on which r-values can occur for X ∈�h,�.
The graph of this quadratic polynomial is concave down since h<0. It has no
real roots if �2 >−1/2h. Therefore the space �h,� is empty in this case. If
�2 =−1/2h, we have a single root that occurs at r =−1/2h. Hence this is the
only allowable r-value in �h,� in this case. In the tangent plane at (r , θ), we
have vr =0, vθ =−2h�, so this represents a circular closed orbit (traversed
clockwise if �<0, counterclockwise if �>0).

If �2 <−1/2h, then this polynomial has a pair of distinct roots at α,β with
α <−1/2h<β. Note that α >0. Let Aα,β be the annular region α≤ r ≤β in
configuration space. We therefore have that motion in configuration space is
confined to Aα,β .

Proposition. Suppose h<0 and �2 <−1/2h. Then �h,� ⊂P is a two-
dimensional torus.

Proof: We compute the set of tangent vectors lying in TX ∩�h,� for each
X ∈Aα,β . If X lies on the boundary of the annulus, the quadratic term on the
right of Eq. (A) vanishes, and so vr =0 while vθ =�/r . Hence there is a unique
tangent vector in TX ∩�h,� when X lies on the boundary of the annulus. When
X is in the interior of Aα,β , we have

v±
r =±1

r

√
2hr2+2r −�2, vθ =�/r

so that we have a pair of vectors in TX ∩�h,� in this case. Note that these
vectors all point either clockwise or counterclockwise in Aα,β , since vθ has the
same sign for all X . See Figure 13.2. Thus we can think of �h,� as being given
by a pair of graphs over Aα,β : a positive graph given by v+

r and a negative
graph given by v−

r which are joined together along the boundary circles r =α

and r =β. (Of course, the “real” picture is a subset of R4.) This yields the
torus. �

It is tempting to think that the two curves in the torus given by r =α and
r =β are closed orbits for the system, but this is not the case. This follows



13.5 Kepler’s First Law 289

Aa,b

Figure 13.2 A selection of
vectors in �h,�.

since, when r =α, we have

v ′
r =− 1

α2
+ v2

θ

α
= 1

α3
(−α+�2).

However, since the right-hand side of Eq. (A) vanishes at α, we have

2hα2+2α−�2 =0,

so that

−α+�2 = (2hα+1)α.

Since α <−1/2h, it follows that r ′′ =v ′
r >0 when r =α, so the r coordinate of

solutions in �h,� reaches a minimum when the curve meets r =α. Similarly,
along r =β, the r coordinate reaches a maximum.

Hence solutions in Aα,β must behave as shown in Figure 13.3. As a remark,
one can easily show that these curves are preserved by rotations about the
origin, so all of these solutions behave symmetrically.

More, however, can be said. Each of these solutions actually lies on a closed
orbit that traces out an ellipse in configuration space. To see this, we need to
turn to analysis.

13.5 Kepler’s First Law

For most nonlinear mechanical systems, the geometric analysis of the previous
section is just about all we can hope for. In the Newtonian central force system,
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Aa,b

Figure 13.3 Solutions in �h,�
that meet r = α or r = β.

however, we get lucky: As has been known for centuries, we can write down
explicit solutions for this system.

Consider a particular solution curve of the differential equation. We have
two constants of the motion for this system, namely, the angular momentum
� and total energy E . The case �=0 yields collision-ejection solutions as we
saw above. Hence we assume � �=0. We will show that in polar coordinates
in configuration space, a solution with nonzero angular momentum lies on a
curve given by r(1+ε cosθ)=κ where ε and κ are constants. This equation
defines a conic section, as can be seen by rewriting this equation in Cartesian
coordinates. This fact is known as Kepler’s first law.

To prove this, recall that r2θ ′ is constant and nonzero. Hence the sign of
θ ′ remains constant along each solution curve. Thus θ is always increasing or
always decreasing in time. Therefore we may also regard r as a function of θ

along the curve.
Let W (t )=1/r(t ); then W is also a function of θ . Note that W =−U . The

following proposition gives a convenient formula for kinetic energy.

Proposition. The kinetic energy is given by

K = �2

2

((
dW

dθ

)2

+W 2

)
.

Proof: In polar coordinates, we have

K = 1

2

(
(r ′)2+(rθ ′)2) .

Since r =1/W , we also have

r ′ = −1

W 2

dW

dθ
θ ′ =−�

dW

dθ
.
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Finally,

rθ ′ = �

r
=�W .

Substitution into the formula for K then completes the proof. �

Now we find a differential equation relating W and θ along the solution
curve. Observe that K =E−U =E+W . From the proposition we get

(
dW

dθ

)2

+W 2 = 2

�2
(E+W ). (B)

Differentiating both sides with respect to θ , dividing by 2 dW /dθ , and using
dE/dθ =0 (conservation of energy), we obtain

d2W

dθ2
+W = 1

�2

where 1/�2 is a constant.
Note that this equation is just the equation for a harmonic oscillator with

constant forcing 1/�2. From elementary calculus, solutions of this second-
order equation can be written in the form

W (θ)= 1

�2
+A cosθ +B sinθ

or, equivalently,

W (θ)= 1

�2
+C cos(θ +θ0)

where the constants C and θ0 are related to A and B.
If we substitute this expression into Eq. (B) and solve for C (at, say, θ +θ0 =

π /2), we find

C =± 1

�2

√
1+2�2E .

Inserting this into the solution above, we find

W (θ)= 1

�2

(
1±

√
1+2E�2 cos(θ +θ0)

)
.

There is no need to consider both signs in front of the radical since

cos(θ +θ0+π)=−cos(θ +θ0).
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Moreover, by changing the variable θ to θ −θ0 we can put any particular
solution into the form

1

�2

(
1+

√
1+2E�2 cosθ

)
.

This looks pretty complicated. However, recall from analytic geometry (or
from Exercise 2 at the end of this chapter) that the equation of a conic in polar
coordinates is

1

r
= 1

κ
(1+ε cosθ).

Here κ is the latus rectum and ε ≥0 is the eccentricity of the conic. The origin
is a focus and the three cases ε >1, ε =1, ε <1 correspond, respectively, to
a hyperbola, parabola, and ellipse. The case ε =0 is a circle. In our case we
have

ε =
√

1+2E�2,

so the three different cases occur when E>0, E =0, or E<0. We have proved:

Theorem. (Kepler’s First Law) The path of a particle moving under the
influence of Newton’s law of gravitation is a conic of eccentricity√

1+2E�2.

This path lies along a hyperbola, parabola, or ellipse according to whether E>0,
E =0, or E<0. �

13.6 The Two-Body Problem

We now turn our attention briefly to what at first appears to be a more difficult
problem, the two-body problem. In this system we assume that we have two
masses that move in space according to their mutual gravitational attraction.

Let X1,X2 denote the positions of particles of mass m1,m2 in R3. So X1 =
(x1

1 ,x1
2 ,x1

3 ) and X2 = (x2
1 ,x2

2 ,x2
3 ). From Newton’s law of gravitation, we find

the equations of motion

m1X ′′
1 = gm1m2

X2−X1

|X2−X1|3

m2X ′′
2 = gm1m2

X1−X2

|X1−X2|3 .
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Let’s examine these equations from the perspective of a viewer living on the
first mass. Let X =X2−X1. We then have

X ′′ =X ′′
2 −X ′′

1

= gm1
X1−X2

|X1−X2|3 −gm2
X2−X1

|X1−X2|3

=−g (m1+m2)
X

|X |3 .

But this is just the Newtonian central force problem, with a different choice of
constants.

So, to solve the two-body problem, we first determine the solution of X(t )
of this central force problem. This then determines the right-hand side of the
differential equations for both X1 and X2 as functions of t , and so we can
simply integrate twice to find X1(t ) and X2(t ).

Another way to reduce the two-body problem to the Newtonian central
force is as follows. The center of mass of the two-body system is the vector

Xc = m1X1+m2X2

m1+m2
.

A computation shows that X ′′
c =0. Therefore we must have Xc =At +B where

A and B are fixed vectors in R3. This says that the center of mass of the system
moves along a straight line with constant velocity.

We now change coordinates so that the origin of the system is located at Xc .
That is, we set Yj =Xj −Xc for j =1,2. Therefore m1Y1(t )+m2Y2(t )=0 for all
t . Rewriting the differential equations in terms of the Yj , we find

Y ′′
1 =− gm3

2

(m1+m2)3

Y1

|Y1|3

Y ′′
2 =− gm3

1

(m1+m2)3

Y2

|Y2|3 ,

which yields a pair of central force problems. However, since we know that
m1Y1(t )+m2Y2(t )=0, we need only solve one of them.

13.7 Blowing Up the Singularity

The singularity at the origin in the Newtonian central force problem is the first
time we have encountered such a situation. Usually our vector fields have been
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well defined on all of Rn . In mechanics, such singularities can sometimes be
removed by a combination of judicious changes of variables and time scalings.
In the Newtonian central force system, this may be achieved using a change of
variables introduced by McGehee [32].

We first introduce scaled variables

ur = r1/2vr

uθ = r1/2vθ .

In these variables the system becomes

r ′ = r−1/2ur

θ ′ = r−3/2uθ

u′
r = r−3/2

(
1

2
u2

r +u2
θ −1

)

u′
θ = r−3/2

(
−1

2
uruθ

)
.

We still have a singularity at the origin, but note that the last three equations
are all multiplied by r−3/2. We can remove these terms by simply multiplying
the vector field by r3/2. In doing so, solution curves of the system remain the
same but are parameterized differently.

More precisely, we introduce a new time variable τ via the rule

dt

dτ
= r3/2.

By the chain rule we have

dr

dτ
= dr

dt

dt

dτ

and similarly for the other variables. In this new timescale the system
becomes

ṙ = rur

θ̇ =uθ

u̇r = 1

2
u2

r +u2
θ −1

u̇θ =−1

2
uruθ
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where the dot now indicates differentiation with respect to τ . Note that, when
r is small, dt /dτ is close to zero, so “time” τ moves much more slowly than
time t near the origin.

This system no longer has a singularity at the origin. We have “blown up”
the singularity and replaced it with a new set given by r =0 with θ ,ur , and uθ

being arbitrary. On this set the system is now perfectly well defined. Indeed,
the set r =0 is an invariant set for the flow since ṙ =0 when r =0. We have thus
introduced a fictitious flow on r =0. While solutions on r =0 mean nothing
in terms of the real system, by continuity of solutions, they can tell us a lot
about how solutions behave near the singularity.

We need not concern ourselves with all of r =0 since the total energy relation
in the new variables becomes

hr = 1

2

(
u2

r +u2
θ

)−1.

On the set r =0, only the subset � defined by

u2
r +u2

θ =2, θ arbitrary

matters. The set � is called the collision surface for the system; how solu-
tions behave on � dictates how solutions move near the singularity since any
solution that approaches r =0 necessarily comes close to � in our new coor-
dinates. Note that � is a two-dimensional torus: It is formed by a circle in the
θ direction and a circle in the uruθ–plane.

On � the system reduces to

θ̇ =uθ

u̇r = 1

2
u2

θ

u̇θ =−1

2
uruθ

where we have used the energy relation to simplify u̇r . This system is easy
to analyze. We have u̇r >0 provided uθ �=0. Hence the ur coordinate must
increase along any solution in � with uθ �=0.

On the other hand, when uθ =0, the system has equilibrium points. There
are two circles of equilibria, one given by uθ =0,ur =√

2, and θ arbitrary, the
other by uθ =0,ur =−√

2, and θ arbitrary. Let C± denote these two circles
with ur =±√

2 on C±. All other solutions must travel from C− to C+ since
vθ increases along solutions.
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To fully understand the flow on �, we introduce the angular variable ψ in
each uruθ–plane via

ur =√
2sinψ

uθ =√
2cosψ .

The torus is now parameterized by θ and ψ . In θψ coordinates, the system
becomes

θ̇ =√
2cosψ

ψ̇ = 1√
2

cosψ .

The circles C± are now given by ψ =±π /2. Eliminating time from this
equation, we find

dψ

dθ
= 1

2
.

Thus all nonequilibrium solutions have constant slope 1/2 when viewed in θψ

coordinates. See Figure 13.4.
Now recall the collision-ejection solutions described in Section 13.4. Each

of these solutions leaves the origin and then returns along a ray θ =θ∗ in con-
figuration space. The solution departs with vr >0 (and so ur >0) and returns
with vr <0 (ur <0). In our new four-dimensional coordinate system, it follows
that this solution forms an unstable curve associated to the equilibrium point
(0,θ∗,

√
2,0) and a stable curve associated to (0,θ∗,−√

2,0). See Figure 13.5.

C�

C�

v

h

Figure 13.4 Solutions on �

in θψ coordinates. Recall that
θ and ψ are both defined
mod 2π , so opposite sides of
this square are identified to
form a torus.
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D

h

uh

ur

h∗

Figure 13.5 A collision-ejection solution in the region
r > 0 leaving and returning to � and a connecting orbit
on the collision surface.

What happens to nearby noncollision solutions? Well, they come close to
the “lower” equilibrium point with θ =θ∗,ur =−√

2, then follow one of two
branches of the unstable curve through this point up to the “upper” equilib-
rium point θ =θ∗,ur =+√

2, and then depart near the unstable curve leaving
this equilibrium point. Interpreting this motion in configuration space, we see
that each near-collision solution approaches the origin and then retreats after
θ either increases or decreases by 2π units. Of course, we know this already,
since these solutions whip around the origin in tight ellipses.

13.8 Exploration: Other Central Force

Problems

In this exploration, we consider the (non-Newtonian) central force problem
for which the potential energy is given by

U (X)= 1

|X |ν

where ν >1. The primary goal is to understand near-collision solutions.

1. Write this system in polar coordinates (r ,θ ,vr ,vθ ) and state explicitly the
formulas for total energy and angular momentum.

2. Using a computer, investigate the behavior of solutions of this system
when h<0 and � �=0.
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3. Blow up the singularity at the origin via the change of variables

ur = rν/2vr , uθ = rν/2vθ

and an appropriate change of timescale and write down the new system.
4. Compute the vector field on the collision surface � determined in r =0

by the total energy relation.
5. Describe the bifurcation that occurs on � when ν =2.
6. Describe the structure of �h,� for all ν >1.
7. Describe the change of structure of �h,� that occurs when ν passes

through the value 2.
8. Describe the behavior of solutions in �h,� when ν >2.
9. Suppose 1<ν <2. Describe the behavior of solutions as they pass close

to the singularity at the origin.
10. Using the fact that solutions of this system are preserved by rotations

about the origin, describe the behavior of solutions in �h,� when h<0
and � �=0.

13.9 Exploration: Classical Limits of

Quantum Mechanical Systems

In this exploration we investigate the anisotropic Kepler problem. This is a
classical mechanical system with two degrees of freedom that depends on a
parameter μ. When μ=1 the system reduces to the Newtonian central force
system discussed in Section 13.4. When μ>1 some anisotropy is introduced
into the system, so that we no longer have a central force field. We still have
some collision-ejection orbits, as in the central force system, but the behavior
of nearby orbits is quite different from those when μ=1.

The anisotropic Kepler problem was first introduced by Gutzwiller as a
classical mechanical approximation to certain quantum mechanical systems.
In particular, this system arises naturally when one looks for bound states of an
electron near a donor impurity of a semiconductor. Here the potential is due
to an ordinary Coulomb field, while the kinetic energy becomes anisotropic
because of the electronic band structure in the solid. Equivalently, we can view
this system as having an anisotropic potential energy function. Gutzwiller
suggests that this situation is akin to an electron whose mass in one direction
is larger than in other directions. For more background on the quantum
mechanical applications of this work, refer to [22].

The anisotropic Kepler system is given by

x ′′ = −μx

(μx2+y2)3/2
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y ′′ = −y

(μx2+y2)3/2

where μ is a parameter that we assume is greater than 1.

1. Show that this system is conservative with potential energy given by

U (x ,y)= −1√
μx2+y2

and write down an explicit formula for total energy.
2. Describe the geometry of the energy surface �h for energy h<0.
3. Restricting to the case of negative energy, show that the only solutions

that meet the zero velocity curve and are straight-line collision-ejection
orbits for the system lie on the x- and y-axes in configuration space.

4. Show that angular momentum is no longer an integral for this system.
5. Rewrite this system in polar coordinates.
6. Using a change of variables and time rescaling as for the Newtonian

central force problem (Section 13.7), blow up the singularity and write
down a new system without any singularities at r =0.

7. Describe the structure of the collision surface � (the intersection of �h

with r =0 in the scaled coordinates). In particular, why would someone
call this surface a “bumpy torus?”

8. Find all equilibrium points on � and determine the eigenvalues of the
linearized system at these points. Determine which equilibria on � are
sinks, sources, and saddles.

9. Explain the bifurcation that occurs on � when μ=9/8.
10. Find a function that is nondecreasing along all nonequilibrium solutions

in �.
11. Determine the fate of the stable and unstable curves of the saddle points

in the collision surface. Hint: Rewrite the equation on this surface to
eliminate time and estimate the slope of solutions as they climb up �.

12. When μ>9/8, describe in qualitative terms what happens to solutions
that approach collision close to the collision-ejection orbits on the x-axis.
In particular, how do they retreat from the origin in the configuration
space? How do solutions approach collision when traveling near the
y-axis?

E X E R C I S E S

1. Which of the following force fields on R2 are conservative?

(a) F(x , y)= (−x2, −2y2)
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(b) F(x , y)= (x2−y2, 2xy)

(c) F(x , y)= (x , 0)

2. Prove that the equation

1

r
= 1

h
(1+ε cosθ)

determines a hyperbola, parabola, and ellipse when ε >1, ε =1, and
ε <1, respectively.

3. Consider the case of a particle moving directly away from the origin at
time t =0 in the Newtonian central force system. Find a specific formula
for this solution and discuss the corresponding motion of the particle. For
which initial conditions does the particle eventually reverse direction?

4. In the Newtonian central force system, describe the geometry of �h,�

when h>0 and h =0.
5. Let F(X) be a force field on R3. Let X0, X1 be points in R3 and let Y (s)

be a path in R3 with s0 ≤ s ≤ s1, parametrized by arc length s, from X0 to
X1. The work done in moving a particle along this path is defined to be
the integral ∫ s1

s0

F(y(s))·y ′(s)ds

where Y ′(s) is the (unit) tangent vector to the path. Prove that the force
field is conservative if and only if the work is independent of the path. In
fact, if F =−grad V , then the work done is V (X1)−V (X0).

6. Describe solutions to the non-Newtonian central force system given by

X ′′ =− X

|X |4 .

7. Discuss solutions of the equation

X ′′ = X

|X |3 .

This equation corresponds to a repulsive rather than attractive force at
the origin.

8. This and the next two problems deal with the two-body problem. Let the
potential energy be

U = gm1m2

|X2−X1|
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and

gradj(U )=
(

∂U

∂x
j
1

,
∂U

∂x
j
2

,
∂U

∂x
j
3

)
.

Show that the equations for the two-body problem can be written

mjX
′′
j =−gradj(U ).

9. Show that the total energy K +U of the system is a constant of the motion,
where

K = 1

2

(
m1|V1|2+m2|V2|2

)
.

10. Define the angular momentum of the system by

�=m1(X1×V1)+m2(X2×V2)

and show that � is also a first integral.
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14
The Lorenz System

So far, in all of the differential equations we have studied, we have not encoun-
tered any “chaos.” The reason is simple: The linear systems of the first few
chapters always exhibit straightforward, predictable behavior. (OK, we may
see solutions wrap densely around a torus as in the oscillators of Chapter 6, but
this is not chaos.) Also, for the nonlinear planar systems of the last few chap-
ters, the Poincaré-Bendixson theorem completely eliminates any possibility of
chaotic behavior. So, to find chaotic behavior, we need to look at nonlinear,
higher dimensional systems.

In this chapter we investigate the system that is, without doubt, the most
famous of all chaotic differential equations, the Lorenz system from meteo-
rology. First formulated in 1963 by E. N. Lorenz as a vastly oversimplified
model of atmospheric convection, this system possesses what has come to
be known as a “strange attractor.” Before the Lorenz model started making
headlines, the only types of stable attractors known in differential equations
were equilibria and closed orbits. The Lorenz system truly opened up new
horizons in all areas of science and engineering, because many of the phe-
nomena present in the Lorenz system have later been found in all of the
areas we have previously investigated (biology, circuit theory, mechanics, and
elsewhere).

In the ensuing 40 years, much progress has been made in the study of
chaotic systems. Be forewarned, however, that the analysis of the chaotic
behavior of particular systems like the Lorenz system is usually extremely
difficult. Most of the chaotic behavior that is readily understandable arises
from geometric models for particular differential equations, rather than from

303
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the actual equations themselves. Indeed, this is the avenue we pursue here. We
will present a geometric model for the Lorenz system that can be completely
analyzed using tools from discrete dynamics. Although this model has been
known for some 30 years, it is interesting to note the fact that this model was
only shown to be equivalent to the Lorenz system in the year 1999.

14.1 Introduction to the Lorenz System

In 1963, E. N. Lorenz [29] attempted to set up a system of differential equations
that would explain some of the unpredictable behavior of the weather. Most
viable models for weather involve partial differential equations; Lorenz sought
a much simpler and easier-to-analyze system.

The Lorenz model may be somewhat inaccurately thought of as follows.
Imagine a planet whose “atmosphere” consists of a single fluid particle. As on
earth, this particle is heated from below (and hence rises) and cooled from
above (so then falls back down). Can a weather expert predict the “weather”
on this planet? Sadly, the answer is no, which raises a lot of questions about
the possibility of accurate weather prediction down here on earth, where we
have quite a few more particles in our atmosphere.

A little more precisely, Lorenz looked at a two-dimensional fluid cell that
was heated from below and cooled from above. The fluid motion can be
described by a system of differential equations involving infinitely many vari-
ables. Lorenz made the tremendous simplifying assumption that all but three
of these variables remained constant. The remaining independent variables
then measured, roughly speaking, the rate of convective “overturning” (x),
and the horizontal and vertical temperature variation (y and z , respectively).
The resulting motion led to a three-dimensional system of differential equa-
tions that involved three parameters: the Prandtl number σ , the Rayleigh
number r , and another parameter b that is related to the physical size of the
system. When all of these simplifications were made, the system of differential
equations involved only two nonlinear terms and was given by

x ′ = σ (y − x)

y ′ = rx − y − xz

z ′ = xy − bz .

In this system all three parameters are assumed to be positive and, moreover,
σ > b + 1. We denote this system by X ′ = L(X). In Figure 14.1, we have
displayed the solution curves through two different initial conditions P1 =
(0, 2, 0) and P2 = (0, −2, 0) when the parameters are σ = 10, b = 8/3, and
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x

y

z

P1
P2

Figure 14.1 The Lorenz attractor. Two solutions with initial conditions P1 =
(0, 2, 0) and P2 = (0, −2, 0).

r = 28. These are the original parameters that led to Lorenz’s discovery. Note
how both solutions start out very differently, but eventually have more or less
the same fate: They both seem to wind around a pair of points, alternating at
times which point they encircle. This is the first important fact about the Lorenz
system: All nonequilibrium solutions tend eventually to the same complicated
set, the so-called Lorenz attractor.

There is another important ingredient lurking in the background here. In
Figure 14.1, we started with two relatively far apart initial conditions. Had we
started with two very close initial conditions, we would not have observed the
“transient behavior” apparent in Figure 14.1. Rather, more or less the same
picture would have resulted for each solution. This, however, is misleading.
When we plot the actual coordinates of the solutions, we see that these two
solutions actually move quite far apart during their journey around the Lorenz
attractor. This is illustrated in Figure 14.2, where we have graphed the x
coordinates of two solutions that start out nearby, one at (0, 2, 0), the other (in
gray) at (0, 2. 01, 0). These graphs are nearly identical for a certain time period,
but then they differ considerably as one solution travels around one of the lobes
of the attractor while the other solution travels around the other. No matter
how close two solutions start, they always move apart in this manner when
they are close to the attractor. This is sensitive dependence on initial conditions,
one of the main features of a chaotic system.

We will describe in detail the concept of an attractor and chaos in this
chapter. But first, we need to investigate some of the more familiar features of
the system.
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x

t

Figure 14.2 The x(t) graphs for two nearby initial conditions P1 =
(0, 2, 0) and P2 = (0, 2.01, 0).

14.2 Elementary Properties of the Lorenz

System

As usual, to analyze this system, we begin by finding the equilibria. Some easy
algebra yields three equilibrium points, the origin, and

Q± = (±
√

b(r − 1), ±
√

b(r − 1), r − 1).

The latter two equilibria only exist when r > 1, so already we see that we have
a bifurcation when r = 1.

Linearizing, we find the system

Y ′ =
⎛
⎝ −σ σ 0

r − z −1 −x
y x −b

⎞
⎠Y .

At the origin, the eigenvalues of this matrix are −b and

λ± = 1

2

(
−(σ + 1) ±

√
(σ + 1)2 − 4σ (1 − r)

)
.

Note that both λ± are negative when 0 ≤ r < 1. Hence the origin is a sink in
this case.

The Lorenz vector field L(X) possesses a symmetry. If we let S(x , y , z) =
(−x , −y , z), then we have S(L(X)) = L(S(X)). That is, reflection through the
z-axis preserves the vector field. In particular, if (x(t ), y(t ), z(t )) is a solution
of the Lorenz equations, then so is (−x(t ), −y(t ), z(t )).
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When x = y = 0, we have x ′ = y ′ = 0, so the z-axis is invariant. On this
axis, we have simply z ′ = −bz , so all solutions tend to the origin on this axis.
In fact, the solution through any point in R3 tends to the origin when r < 1,
for we have:

Proposition. Suppose r < 1. Then all solutions of the Lorenz system tend to
the equilibrium point at the origin.

Proof: We construct a strict Liapunov function on all of R3. Let

L(x , y , z) = x2 + σ y2 + σ z2.

Then we have

L̇ = −2σ
(
x2 + y2 − (1 + r)xy

) − 2σbz2.

We therefore have L̇ < 0 away from the origin provided that

g (x , y) = x2 + y2 − (1 + r)xy > 0

for (x , y) �= (0, 0). This is clearly true along the y-axis. Along any other straight
line y = mx in the xy-plane we have

g (x , mx) = x2(m2 − (1 + r)m + 1).

But the quadratic term m2 − (1 + r)m + 1 is positive for all m if r < 1, as is
easily checked. Hence g (x , y) > 0 for (x , y) �= (0, 0). �

When r increases through 1, two things happen. First, the eigenvalue λ+
at the origin becomes positive, so the origin is now a saddle with a two-
dimensional stable surface and an unstable curve. Second, the two equilibria
Q± are born at the origin when r = 1 and move away as r increases.

Proposition. The equilibrium points Q± are sinks provided

1 < r < r∗ = σ

(
σ + b + 3

σ − b − 1

)
.

Proof: From the linearization, we calculate that the eigenvalues at Q± satisfy
the cubic polynomial

fr (λ) = λ3 + (1 + b + σ )λ2 + b(σ + r)λ + 2bσ (r − 1) = 0.
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When r = 1 the polynomial f1 has distinct roots at 0, −b, and −σ − 1. These
roots are distinct since σ > b + 1 so that

−σ − 1 < −σ + 1 < −b < 0.

Hence for r close to but greater than 1, fr has three real roots close to these
values. Note that fr (λ) > 0 for λ ≥ 0 and r > 1. Looking at the graph of fr ,
it follows that, at least for r close to 1, the three roots of fr must be real and
negative.

We now let r increase and ask what is the lowest value of r for which fr has
an eigenvalue with zero real part. Note that this eigenvalue must in fact be of
the form ±iω with ω �= 0, since fr is a real polynomial that has no roots equal
to 0 when r > 1. Solving fr (iω) = 0 by equating both real and imaginary parts
to zero then yields the result (recall that we have assumed σ > b + 1). �

We remark that a Hopf bifurcation is known to occur at r∗, but proving this
is beyond the scope of this book.

When r > 1 it is no longer true that all solutions tend to the origin. However,
we can say that solutions that start far from the origin do at least move closer
in. To be precise, let

V (x , y , z) = rx2 + σ y2 + σ (z − 2r)2.

Note that V (x , y , z) = ν > 0 defines an ellipsoid in R3 centered at (0, 0, 2r).
We will show:

Proposition. There exists ν∗ such that any solution that starts outside the
ellipsoid V = ν∗ eventually enters this ellipsoid and then remains trapped therein
for all future time.

Proof: We compute

V̇ = −2σ
(
rx2 + y2 + b(z2 − 2rz)

)
= −2σ

(
rx2 + y2 + b(z − r)2 − br2).

The equation

rx2 + y2 + b(z − r)2 = μ

also defines an ellipsoid when μ > 0. When μ > br2 we have V̇ < 0. Thus
we may choose ν∗ large enough so that the ellipsoid V = ν∗ strictly contains
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the ellipsoid

rx2 + y2 + b(z − r)2 = br2

in its interior. Then V̇ < 0 for all ν ≥ ν∗. �

As a consequence, all solutions starting far from the origin are attracted to a
set that sits inside the ellipsoid V = ν∗. Let � denote the set of all points whose
solutions remain for all time (forward and backward) in this ellipsoid. Then
theω-limit set of any solution of the Lorenz system must lie in�. Theoretically,
� could be a large set, perhaps bounding an open region in R3. However, for
the Lorenz system, this is not the case.

To see this, recall from calculus that the divergence of a vector field F(X) on
R3 is given by

div F =
3∑

i=1

∂Fi

∂xi
(X).

The divergence of F measures how fast volumes change under the flow φt of F .
Suppose D is a region in R3 with a smooth boundary, and let D(t ) = φt (D),
the image of D under the time t map of the flow. Let V (t ) be the volume of
D(t ). Then Liouville’s theorem asserts that

dV

dt
=

∫
D(t )

div F dx dy dz .

For the Lorenz system, we compute immediately that the divergence is the
constant −(σ + 1 + b) so that volume decreases at a constant rate

dV

dt
= −(σ + 1 + b)V .

Solving this simple differential equation yields

V (t ) = e−(σ+1+b)t V (0)

so that any volume must shrink exponentially fast to 0. In particular, we have:

Proposition. The volume of � is zero. �

The natural question is what more can we say about the structure of the
“attractor” �? In dimension two, such a set would consist of a collection of
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limit cycles, equilibrium points, and solutions connecting them. In higher
dimensions, these attractors may be much “stranger,” as we show in the next
section.

14.3 The Lorenz Attractor

The behavior of the Lorenz system as the parameter r increases is the subject
of much contemporary research; we are decades (if not centuries) away from
rigorously understanding all of the fascinating dynamical phenomena that
occur as the parameters change. Sparrow has written an entire book devoted
to this subject [44].

In this section we will deal with one specific set of parameters where the
Lorenz system has an attractor. Roughly speaking, an attractor for the flow is
an invariant set that “attracts” all nearby solutions. To be more precise:

Definition

Let X ′ = F(X) be a system of differential equations in Rn with
flow φt . A set � is called an attractor if

1. � is compact and invariant;
2. There is an open set U containing � such that for each X ∈ U ,

φt (X) ∈ U for all t ≥ 0 and ∩t≥0φt (U ) = �;
3. (Transitivity) Given any points Y1, Y2 ∈ � and any open neigh-

borhoods Uj about Yj in U , there is a solution curve that
begins in U1 and later passes through U2.

The transitivity condition in this definition may seem a little strange.
Basically, we include it to guarantee that we are looking at a single attrac-
tor rather than a collection of dynamically different attractors. For example,
the transitivity condition rules out situations such as that given by the planar
system

x ′ = x − x3

y ′ = −y .

The phase portrait of this system is shown in Figure 14.3. Note that any
solution of this system enters the set marked U and then tends to one of the
three equilibrium points: either to one of the sinks at (±1, 0) or to the saddle
(0, 0). The forward intersection of the flow φt applied to U is the interval
−1 ≤ x ≤ 1. This interval meets conditions 1 and 2 in the definition, but
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U

Figure 14.3 The interval on
the x-axis between the two
sinks is not an attractor for
this system, despite the fact
that all solutions enter U.

condition 3 is violated, because none of the solution curves passes close to
points in both the left and right half of this interval. We choose not to consider
this set an attractor since most solutions tend to one of the two sinks. We really
have two distinct attractors in this case.

As a remark, there is no universally accepted definition of an attractor in
mathematics; some people choose to say that a set� that meets only conditions
1 and 2 is an attractor, while if � also meets condition 3, it would be called a
transitive attractor. For planar systems, condition 3 is usually easily verified;
in higher dimensions, however, this can be much more difficult, as we shall
see.

For the rest of this chapter, we restrict attention to the very special case of the
Lorenz system where the parameters are given by σ = 10, b = 8/3, and r = 28.
Historically, these are the values Lorenz used when he first encountered chaotic
phenomena in this system. Thus, the specific Lorenz system we consider is

X ′ = L(X) =
⎛
⎝ 10(y − x)

28x − y − xz
xy − (8/3)z

⎞
⎠ .

As in the previous section, we have three equilibria: the origin and Q± =
(±6

√
2, ±6

√
2, 27). At the origin we find eigenvalues λ1 = −8/3 and

λ± = −11

2
±

√
1201

2
.
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x

z

y

Figure 14.4 Linearization at the
origin for the Lorenz system.

For later use, note that these eigenvalues satisfy

λ− < −λ+ < λ1 < 0 < λ+.

The linearized system at the origin is then

Y ′ =
⎛
⎝λ− 0 0

0 λ+ 0
0 0 λ1

⎞
⎠Y .

The phase portrait of the linearized system is shown in Figure 14.4. Note that
all solutions in the stable plane of this system tend to the origin tangentially to
the z-axis.

At Q± a computation shows that there is a single negative real eigenvalue
and a pair of complex conjugate eigenvalues with positive real parts. Note that
the symmetry in the system forces the rotations about Q+ and Q− to have
opposite orientations.

In Figure 14.5, we have displayed a numerical computation of a portion
of the left- and right-hand branches of the unstable curve at the origin. Note
that the right-hand portion of this curve comes close to Q− and then spirals
away. The left portion behaves symmetrically under reflection through the
z-axis. In Figure 14.6, we have displayed a significantly larger portion of these
unstable curves. Note that they appear to circulate around the two equilibria,
sometimes spiraling around Q+, sometimes about Q−. In particular, these
curves continually reintersect the portion of the plane z = 27 containing Q±
in which the vector field points downward. This suggests that we may construct
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Q �

Q�

(0, 0, 0)

Figure 14.5 The unstable curve at the origin.

a Poincaré map on a portion of this plane. As we have seen before, computing
a Poincaré map is often impossible, and this case is no different. So we will
content ourselves with building a simplified model that exhibits much of the
behavior we find in the Lorenz system. As we shall see in the following section,
this model provides a computable means to assess the chaotic behavior of the
system.

(0, 0, 0)

Figure 14.6 More of the unstable curve at the origin.
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14.4 A Model for the Lorenz Attractor

In this section we describe a geometric model for the Lorenz attractor origi-
nally proposed by Guckenheimer and Williams [20]. Tucker [46] showed that
this model does indeed correspond to the Lorenz system for certain parame-
ters. Rather than specify the vector field exactly, we give instead a qualitative
description of its flow, much as we did in Chapter 11. The specific numbers
we use are not that important; only their relative sizes matter.

We will assume that our model is symmetric under the reflection (x , y , z) →
(−x , −y , z), as is the Lorenz system. We first place an equilibrium point at the
origin in R3 and assume that, in the cube S given by |x|, |y|, |z | ≤ 5, the system
is linear. Rather than use the eigenvalues λ1 and λ± from the actual Lorenz
system, we simplify the computations a bit by assuming that the eigenvalues
are −1, 2, and −3, and that the system is given in the cube by

x ′ = −3x

y ′ = 2y

z ′ = −z .

Note that the phase portrait of this system agrees with that in Figure 14.4 and
that the relative magnitudes of the eigenvalues are the same as in the Lorenz
case.

We need to know how solutions make the transit near (0, 0, 0). Consider a
rectangle R1 in the plane z = 1 given by |x| ≤ 1, 0 < y ≤ ε < 1. As time
moves forward, all solutions that start in R1 eventually reach the rectangle R2

in the plane y = 1 defined by |x| ≤ 1, 0 < z ≤ 1. Hence we have a function
h : R1 → R2 defined by following solution curves as they pass from R1 to
R2. We leave it as an exercise to check that this function assumes the form

h

(
x
y

)
=

(
x1

z1

)
=

(
xy3/2

y1/2

)
.

It follows that h takes lines y = c in R1 to lines z = c1/2 in R2. Also, since
x1 = xz3

1 , we have that h maps lines x = c to curves of the form x1 = cz3
1 .

Each of these image curves meet the xy–plane perpendicularly, as depicted in
Figure 14.7.

Mimicking the Lorenz system, we place two additional equilibria in the
plane z = 27, one at Q− = (−10, −20, 27) and the other at Q+ = (10, 20, 27).
We assume that the lines given by y = ±20, z = 27 form portions of the stable
lines at Q±, and that the other two eigenvalues at these points are complex
with positive real part.

Let � denote the square |x|, |y| ≤ 20, z = 27. We assume that the vector
field points downward in the interior of this square. Hence solutions spiral
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h(x, y)

(x, y)

x

z

y

1

2

Figure 14.7 Solutions making the transit
near (0, 0, 0).

away from Q± in the same manner as in the Lorenz system. We also assume
that the stable surface of (0, 0, 0) first meets � in the line of intersection of the
xz–plane and �.

Let ζ± denote the two branches of the unstable curve at the origin. We
assume that these curves make a passage around � and then enter this square
as shown in Figure 14.8. We denote the first point of intersection of ζ± with
� by ρ± = (±x∗, ∓y∗).

Q�

Q�
Φ(∑�)

Φ(∑�)
∑�

∑�
p�

f�f�

p�

z

y

x

Figure 14.8 The solutions ζ± and their intersection with � in the model
for the Lorenz attractor.



316 Chapter 14 The Lorenz System

Now consider a straight line y = ν in �. If ν = 0, all solutions beginning
at points on this line tend to the origin as time moves forward. Hence these
solutions never return to �. We assume that all other solutions originating in
� do return to � as time moves forward. How these solutions return leads to
our major assumptions about this model:

1. Return condition: Let �+ = � ∩ {y > 0} and �− = � ∩ {y < 0}. We
assume that the solutions through any point in �± return to � in forward
time. Hence we have a Poincaré map � : �+ ∪ �− → �. We assume
that the images �(�±) are as depicted in Figure 14.8. By symmetry, we
have �(x , y) = −�(−x , −y).

2. Contracting direction: For each ν �= 0 we assume that � maps the line
y = ν in � into the line y = g (ν) for some function g . Moreover we
assume that � contracts this line in the x direction.

3. Expanding direction: We assume that � stretches �+ and �− in the y
direction by a factor strictly greater than

√
2, so that g ′(y) >

√
2.

4. Hyperbolicity condition: Besides the expansion and contraction, we assume
that D� maps vectors tangent to �± whose slopes are ±1 to vectors whose
slopes have magnitude larger than μ > 1.

Analytically, these assumptions imply that the map � assumes the form

�(x , y) = (f (x , y), g (y))

where g ′(y) >
√

2 and 0 < ∂f /∂x < c < 1. The hyperbolicity condition implies
that

g ′(y) > μ

∣∣∣∣∂f

∂x
± ∂f

∂y

∣∣∣∣.
Geometrically, this condition implies that the sectors in the tangent planes
given by |y| ≥ |x| are mapped by D� strictly inside a sector with steeper
slopes. Note that this condition holds if |∂f /∂y| and c are sufficiently small
throughout �±.

Technically, �(x , 0) is not defined, but we do have

lim
y→0± �(x , y) = ρ±

where we recall that ρ± is the first point of intersection of ζ± with �. We call
ρ± the tip of �(�±). In fact, our assumptions on the eigenvalues guarantee
that g ′(y) → ∞ as y → 0 (see Exercise 3 at the end of this chapter).

To find the attractor, we may restrict attention to the rectangle R ⊂ � given
by |y| ≤ y∗, where we recall that ∓y∗ is the y coordinate of the tips ρ±. Let
R± = R∩�±. It is easy to check that any solution starting in the interior of �±
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Figure 14.9 The Poincaré map � on R.

but outside R must eventually meet R, so it suffices to consider the behavior
of � on R. A planar picture of the action of � on R is displayed in Figure 14.9.
Note that �(R) ⊂ R.

Let �n denote the nth iterate of �, and let

A =
∞⋂

n=0

�n(R).

Here U denotes the closure of the set U . The set A will be the intersection of
the attractor for the flow with R. That is, let

A =
(⋃

t∈R

φt (A)

)
∪ {(0, 0, 0)}.

We add the origin here so that A will be a closed set. We will prove:

Theorem. A is an attractor for the model Lorenz system.

Proof: The proof that A is an attractor for the flow follows immediately from
the fact that A is an attractor for the mapping � (where an attractor for a
mapping is defined completely analogously to that for a flow). Clearly A is
closed. Technically, A itself is not invariant under � since � is not defined
along y = 0. However, for the flow, the solutions through all such points do
lie in A and so A is invariant. If we let O be the open set given by the interior
of �, then for any (x , y) ∈ O, there is an n such that �n(x , y) ∈ R. Hence

∞⋂
n=0

�n(O) ⊂ A
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By definition, A = ∩n≥0�
n(R), and so A = ∩n≥0�

n(O) as well. Therefore
conditions 1 and 2 in the definition of an attractor hold for �.

It remains to show the transitivity property. We need to show that if P1 and
P2 are points in A, and Wj are open neighborhoods of Pj in O, then there
exists an n ≥ 0 such that �n(W1) ∩ W2 �= ∅.

Given a set U ⊂ R, let �y(U ) denote the projection of U onto the y-axis.
Also let �y(U ) denote the length of �y(U ), which we call the y length of U . In
the following, U will be a finite collection of connected sets, so �y(U ) is well
defined.

We need a lemma. �

Lemma. For any open set W ⊂ R, there exists n > 0 such that �y(�n(W )) is
the interval [−y∗, y∗]. Equivalently, �n(W ) meets each line y = c in R.

Proof: First suppose that W contains a connected subset W ′ that extends
from one of the tips to y = 0. Hence �y(W ′) = y∗. Then �(W ′) is connected
and we have �y(�(W ′)) >

√
2y∗. Moreover, �(W ′) also extends from one of

the tips, but now crosses y = 0 since its y length exceeds y∗.
Now apply � again. Note that �2(W ′) contains two pieces, one of which

extends to ρ+, the other to ρ−. Moreover, �y(�2(W ′)) > 2y∗. Thus it follows
that �y(�2(W ′)) = [−y∗, y∗] and so we are done in this special case.

For the general case, suppose first that W is connected and does not cross
y = 0. Then we have �y(�(W )) >

√
2�y(W ) as above, so the y length of

�(W ) grows by a factor of more than
√

2.
If W does cross y = 0, then we may find a pair of connected sets W ±

with W ± ⊂ {R± ∩ W } and �y(W + ∪ W −) = �y(W ). The images �(W ±)
extend to the tips ρ±. If either of these sets also meets y = 0, then we
are done by the above. If neither �(W +) nor �(W −) crosses y = 0,
then we may apply � again. Both �(W +) and �(W −) are connected sets,
and we have �y(�2(W ±)) > 2�y(W ±). Hence for one of W + or W −
we have �y(�2(W ±)) > �y(W ) and again the y length of W grows under
iteration.

Thus if we continue to iterate � or �2 and choose the appropriate largest
subset of �j(W ) at each stage as above, then we see that the y lengths
of these images grow without bound. This completes the proof of the
lemma. �

We now complete the proof of the theorem. We must find a point in
W1 whose image under an iterate of � lies in W2. Toward that end, note
that ∣∣∣�k(x1, y) − �k(x2, y)

∣∣∣ ≤ ck |x1 − x2|
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since �j(x1, y) and �j(x2, y) lie on the same straight line parallel to the x-axis
for each j and � contracts distances in the x direction by a factor of c < 1.

We may assume that W2 is a disk of diameter ε. Recalling that the width of R
in the x direction is 40, we choose m such that 40cm < ε. Consider �−m(P2).
Note that �−m(P2) is defined since P2 ∈ ∩n≥0�

n(R). Say �−m(P2) = (ξ , η).
From the lemma, we know that there exists n such that

�y(�n(W1)) = [−y∗, y∗].

Hence we may choose a point (ξ1, η) ∈ �n(W1). Say (ξ1, η) = �n(x̃ , ỹ) where
(x̃ , ỹ) ∈ W1, so that �n(x̃ , ỹ) and �−m(P2) have the same y coordinate. Then
we have

|�m+n(x̃ , ỹ) − P2| = |�m(ξ1, η) − P2|
= |�m(ξ1, η) − �m(ξ , η)|
≤ 40cm < ε.

We have found a point (x̃ , ỹ) ∈ W1 whose solution passes through W2. This
concludes the proof. �

Note that, in the above proof, the solution curve that starts near P1 and
comes close to P2 need not lie in the attractor. However, it is possible to find
such a solution that does lie in A (see Exercise 4).

14.5 The Chaotic Attractor

In the previous section we reduced the study of the behavior of solutions of
the Lorenz system to the analysis of the dynamics of the Poincaré map �.
In the process, we dropped from a three-dimensional system of differential
equations to a two-dimensional mapping. But we can do better. According
to our assumptions, two points that share the same y coordinate in � are
mapped to two new points whose y coordinates are given by g (y) and hence
are again the same. Moreover, the distance between these points is contracted.
It follows that, under iteration of �, we need not worry about all points on a
line y = constant; we need only keep track of how the y coordinate changes
under iteration of g . Then, as we shall see, the Poincaré map � is completely
determined by the dynamics of the one-dimensional function g defined on the
interval [−y∗, y∗]. Indeed, iteration of this function completely determines the
behavior of all solutions in the attractor. In this section, we begin to analyze
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�y* y*

g(�y*)

g(y*)

Figure 14.10 The graph of the
one-dimensional function g on I =
[−y∗, y∗].

the dynamics of this one-dimensional discrete dynamical system. In Chapter 15,
we plunge more deeply into this topic.

Let I be the interval [−y∗, y∗]. Recall that g is defined on I except at y = 0
and satisfies g (−y) = −g (y). From the results of the previous section, we
have g ′(y) >

√
2, and 0 < g (y∗) < y∗ and −y∗ < g (−y∗) < 0. Also,

lim
y→0± g (y) = ∓y∗.

Hence the graph of g resembles that shown in Figure 14.10. Note that all
points in the interval [g (−y∗), g (y∗)] have two preimages, while points in the
intervals (−y∗, g (−y∗)) and (g (y∗), y∗) have only one. The endpoints of I ,
namely, ±y∗, have no preimages in I since g (0) is undefined.

Let y0 ∈ I . We will investigate the structure of the set A ∩ {y = y0}.
We define the (forward) orbit of y0 to be the set (y0, y1, y2, . . .) where yn =
g (yn−1) = g n(y0). For each y0, the forward orbit of y0 is uniquely determined,
though it terminates if g n(y0) = 0.

A backward orbit of y0 is a sequence of the form (y0, y−1, y−2, . . .) where
g (y−k) = y−k+1. Unlike forward orbits of g , there are infinitely many distinct
backward orbits for a given y0 except in the case where y0 = ±y∗ (since these
two points have no preimages in I ). To see this, suppose first that y0 does not
lie on the forward orbit of ±y∗. Then each point y−k must have either one or
two distinct preimages, since y−k �= ±y∗. If y−k has only one preimage y−k−1,
then y−k lies in either (−y∗, g (−y∗) or (g (y∗), y∗). But then the graph of g
shows that y−k−1 must have two preimages. So no two consecutive points in a
given backward orbit can have only one preimage, and this shows that y0 has
infinitely many distinct backward orbits.

If we happen to have y−k = ±y∗ for some k > 0, then this backward
orbit stops since ±y∗ has no preimage in I . However, y−k+1 must have two
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preimages, one of which is the endpoint and the other is a point in I that does
not equal the other endpoint. Hence we can continue taking preimages of this
second backward orbit as before, thereby generating infinitely many distinct
backward orbits as before.

We claim that each of these infinite backward orbits of y0 corresponds to
a unique point in A ∩ {y = y0}. To see this, consider the line J−k given by
y = y−k in R. Then �k(J−k) is a closed subinterval of J0 for each k. Note
that �(J−k−1) ⊂ J−k , since �(y = y−k−1) is a proper subinterval of y =
y−k . Hence the nested intersection of the sets �k(J−k) is nonempty, and any
point in this intersection has backward orbit (y0, y−1, y−2, . . .) by construction.
Furthermore, the intersection point is unique, since each application of �

contracts the intervals y = y−k by a factor of c < 1.
In terms of our model, we therefore see that the attractor A is a complicated

set. We have proved the following:

Proposition. The attractor A for the model Lorenz system meets each of the
lines y = y0 �= y∗ in R infinitely many distinct points. In forward time all of the
solution curves through each point on this line either:

1. Meet the line y = 0, in which case the solution curves all tend to the
equilibrium point at (0, 0, 0), or

2. Continually reintersect R, and the distances between these intersection points
on the line y = yk tend to 0 as time increases. �

Now we turn to the dynamics of � in R. We first discuss the behavior of
the one-dimensional function g , and then use this information to understand
what happens for �. Given any point y0 ∈ I , note that nearby forward orbits
of g move away from the orbit of y0 since g ′ >

√
2. More precisely, we have:

Proposition. Let 0 < ν < y∗. Let y0 ∈ I = [−y∗, y∗]. Given any ε > 0, we
may find u0, v0 ∈ I with |u0 − y0| < ε and |v0 − y0| < ε and n > 0 such that
|g n(u0) − g n(v0)| ≥ 2ν.

Proof: Let J be the interval of length 2ε centered at y0. Each iteration of g
expands the length of J by a factor of at least

√
2, so there is an iteration for

which gn(J ) contains 0 in its interior. Then g n+1(J ) contains points arbitrarily
close to both ±y∗, and hence there are points in g n+1(J ) whose distance from
each other is at least 2ν. This completes the proof. �

Let’s interpret the meaning of this proposition in terms of the attractor A.
Given any point in the attractor, we may always find points arbitrarily nearby
whose forward orbits move apart just about as far as they possibly can. This is
the hallmark of a chaotic system: We call this behavior sensitive dependence on
initial conditions. A tiny change in the initial position of the orbit may result in
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drastic changes in the eventual behavior of the orbit. Note that we must have a
similar sensitivity for the flow in A; certain nearby solution curves in A must
also move far apart. This is the behavior we witnessed in Figure 14.2.

This should be contrasted with the behavior of points in A that lie on the
same line y = constant with −y∗ < y < y∗. As we saw previously, there are
infinitely many such points in A. Under iteration of �, the successive images
of all of these points move closer together rather than separating.

Recall now that a subset of I is dense if its closure is all of I . Equivalently, a
subset of I is dense if there are points in the subset arbitrarily close to any point
whatsoever in I . Also, a periodic point for g is a point y0 for which g n(y0) = y0

for some n > 0. Periodic points for g correspond to periodic solutions of the
flow.

Proposition. The periodic points of g are dense in I .

Proof: As in the proof that A is an attractor in the last section, given any
subinterval J of I − {0}, we may find n so that gn maps some subinterval
J ′ ⊂ J in one-to-one fashion over either (−y∗, 0] or [0, y∗). Thus either g n(J ′)
contains J ′, or the next iteration, g n+1(J ′), contains J ′. In either case, the
graphs of g n or g n+1 cross the diagonal line y = x over J ′. This yields a
periodic point for g in J . �

Now let us interpret this result in terms of the attractor A. We claim that
periodic points for � are also dense in A. To see this, let P ∈ A and U be an
open neighborhood of P . We assume that U does not cross the line y = 0
(otherwise just choose a smaller neighborhood nearby that is disjoint from
y = 0). For small enough ε > 0, we construct a rectangle W ⊂ U centered at
P and having width 2ε (in the x direction) and height ε (in the y direction).

Let W1 ⊂ W be a smaller square centered at P with sidelength ε/2. By
the transitivity result of the previous section, we may find a point Q1 ∈ W1

such that �n(Q1) = Q2 ∈ W1. By choosing a subset of W1 if necessary, we
may assume that n > 4 and furthermore that n is so large that cn < ε/8. It
follows that the image of �n(W ) (not �n(W1)) crosses through the interior
of W nearly vertically and extends beyond its top and bottom boundaries, as
depicted in Figure 14.11. This fact uses the hyperbolicity condition.

Now consider the lines y = c in W . These lines are mapped to other such
lines in R by �n . Since the vertical direction is expanded, some of the lines
must be mapped above W and some below. It follows that one such line y = c0

must be mapped inside itself by �n , and therefore there must be a fixed point
for �n on this line. Since this line is contained in W , we have produced a
periodic point for � in W . This proves density of periodic points in A.

In terms of the flow, a solution beginning at a periodic point of � is a closed
orbit. Hence the set of points lying on closed orbits is a dense subset of A. The
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W

W1

Q1 Q2

P

y�c0
	(y�c0)

	n(W )

Figure 14.11 � maps W across
itself.

structure of these closed orbits is quite interesting from a topological point of
view, because many of these closed curves are actually “knotted.” See [9] and
Exercise 10.

Finally, we say that a function g is transitive on I if, for any pair of points y1

and y2 in I and neighborhoods Ui of yi , we can find ỹ ∈ U1 and n such that
g n(ỹ) ∈ U2. Just as in the proof of density of periodic points, we may use the
fact that g is expanding in the y direction to prove:

Proposition. The function g is transitive on I .

We leave the details to the reader. In terms of �, we almost proved the
corresponding result when we showed that A was an attractor. The only detail
we did not provide was the fact that we could find a point in A whose orbit
made the transit arbitrarily close to any given pair of points in A. For this
detail, we refer to Exercise 4.

Thus we can summarize the dynamics of � on the attractor A of the Lorenz
model as follows.

Theorem. (Dynamics of the Lorenz Model) The Poincaré map �

restricted to the attractor A for the Lorenz model has the following properties:

1. � has sensitive dependence on initial conditions;
2. Periodic points of � are dense in A;
3. � is transitive on A. �

We say that a mapping with the above properties is chaotic. We caution the
reader that, just as in the definition of an attractor, there are many definitions of
chaos around. Some involve exponential separation of orbits, others involve
positive Liapunov exponents, and others do not require density of periodic
points. It is an interesting fact that, for continuous functions of the real line,
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density of periodic points and transitivity are enough to guarantee sensitive
dependence. See [8]. We will delve more deeply into chaotic behavior of
discrete systems in the next chapter.

14.6 Exploration: The Rössler Attractor

In this exploration, we investigate a three-dimensional system similar in many
respects to the Lorenz system. The Rössler system [37] is given by

x ′ = −y − z

y ′ = x + ay

z ′ = b + z(x − c)

where a, b, and c are real parameters. For simplicity, we will restrict attention
to the case where a = 1/4, b = 1, and c ranges from 0 to 7.

As with the Lorenz system, it is difficult to prove specific results about this
system, so much of this exploration will center on numerical experimentation
and the construction of a model.

1. First find all equilibrium points for this system.
2. Describe the bifurcation that occurs at c = 1.
3. Investigate numerically the behavior of this system as c increases. What

bifurcations do you observe?
4. In Figure 14.12 we have plotted a single solution for c = 5. 5. Compute

other solutions for this parameter value, and display the results from other

x

y

z

Figure 14.12 The Rössler attractor.
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viewpoints in R3. What conjectures do you make about the behavior of
this system?

5. Using techniques described in this chapter, devise a geometric model that
mimics the behavior of the Rössler system for this parameter value.

6. Construct a model mapping on a two-dimensional region whose dynam-
ics might explain the behavior observed in this system.

7. As in the Lorenz system, describe a possible way to reduce this function
to a mapping on an interval.

8. Give an explicit formula for this one-dimensional model mapping. What
can you say about the chaotic behavior of your model?

9. What other bifurcations do you observe in the Rössler system as c rises
above 5.5?

E X E R C I S E S

1. Consider the system

x ′ = −3x

y ′ = 2y

z ′ = −z .

Recall from Section 14.4 that there is a function h : R1 → R2 where
R1 is given by |x| ≤ 1, 0 < y ≤ ε < 1 and z = 1, and R2 is given by
|x| ≤ 1, 0 < z ≤ 1, and y = 1. Show that h is given by

h

(
x
y

)
=

(
x1

z1

)
=

(
xy3/2

y1/2

)
.

2. Suppose that the roles of x and z are reversed in the previous exercise.
That is, suppose x ′ = −x and z ′ = −3z . Describe the image of h(x , y)
in R2 in this case.

3. For the Poincaré map �(x , y) = (f (x , y), g (y)) for the model attractor,
use the results of Exercise 1 to show that g ′(y) → ∞ as y → 0.

4. Show that it is possible to verify the transitivity condition for the Lorenz
model with a solution that actually lies in the attractor.

5. Prove that arbitrarily close to any point in the model Lorenz attrac-
tor, there is a solution that eventually tends to the equilibrium point at
(0, 0, 0).

6. Prove that there is a periodic solution γ of the model Lorenz system that
meets the rectangle R in precisely two distinct points.

7. Prove that arbitrarily close to any point in the model Lorenz attractor,
there is a solution that eventually tends to the periodic solution γ from
the previous exercise.
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R

Figure 14.13 � maps
R completely across
itself.

8. Consider a map � on a rectangle R as shown in Figure 14.13. where �

has properties similar to the model Lorenz �. How many periodic points
of period n does � have?

9. Consider the system

x ′ = 10(y − x)

y ′ = 28x − y + xz

z ′ = xy − (8/3)z .

Show that this system is not chaotic. (Note the +xz term in the equation
for y ′.) Hint: Show that most solutions tend to ∞.

10. A simple closed curve in R3 is knotted if it cannot be continuously
deformed into the “unknot,” the unit circle in the xy–plane, without
having self-intersections along the way. Using the model Lorenz attrac-
tor, sketch a curve that follows the dynamics of � (so should approximate
a real solution) and is knotted. (You might want to use some string for
this!)

11. Use a computer to investigate the behavior of the Lorenz system as r
increases from 1 to 28 (with σ = 10 and b = 8/3). Describe in qualitative
terms any bifurcations you observe.



15
Discrete Dynamical Systems

Our goal in this chapter is to begin the study of discrete dynamical systems.
As we have seen at several stages in this book, it is sometimes possible to
reduce the study of the flow of a differential equation to that of an iterated
function, namely, a Poincaré map. This reduction has several advantages. First
and foremost, the Poincaré map lives on a lower dimensional space, which
therefore makes visualization easier. Secondly, we do not have to integrate
to find “solutions” of discrete systems. Rather, given the function, we simply
iterate the function over and over to determine the behavior of the orbit, which
then dictates the behavior of the corresponding solution.

Given these two simplifications, it then becomes much easier to comprehend
the complicated chaotic behavior that often arises for systems of differential
equations. While the study of discrete dynamical systems is a topic that could
easily fill this entire book, we will restrict attention here primarily to the portion
of this theory that helps us understand chaotic behavior in one dimension. In
the following chapter we will extend these ideas to higher dimensions.

15.1 Introduction to Discrete Dynamical

Systems

Throughout this chapter we will work with real functions f : R → R. As
usual, we assume throughout that f is C∞, although there will be several
special examples where this is not the case.

327



328 Chapter 15 Discrete Dynamical Systems

Let f n denote the nth iterate of f . That is, f n is the n-fold composition of f
with itself. Given x0 ∈ R, the orbit of x0 is the sequence

x0, x1 = f (x0), x2 = f 2(x0), . . . , xn = f n(x0), . . . .

The point x0 is called the seed of the orbit.

Example. Let f (x) = x2 + 1. Then the orbit of the seed 0 is the sequence

x0 = 0

x1 = 1

x2 = 2

x3 = 5

x4 = 26

...

xn = big

xn+1 = bigger

...

and so forth, so we see that this orbit tends to ∞ as n → ∞. �

In analogy with equilibrium solutions of systems of differential equations,
fixed points play a central role in discrete dynamical systems. A point x0 is
called a fixed point if f (x0) = x0. Obviously, the orbit of a fixed point is the
constant sequence x0, x0, x0, . . ..

The analog of closed orbits for differential equations is given by periodic
points of period n. These are seeds x0 for which f n(x0) = x0 for some n > 0.
As a consequence, like a closed orbit, a periodic orbit repeats itself:

x0, x1, . . . , xn−1, x0, x1, . . . , xn−1, x0 . . . .

Periodic orbits of period n are also called n-cycles. We say that the periodic
point x0 has minimal period n if n is the least positive integer for which
f n(x0) = x0.

Example. The function f (x) = x3 has fixed points at x = 0, ±1. The func-
tion g (x) = −x3 has a fixed point at 0 and a periodic point of period 2
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at x = ±1, since g (1) = −1 and g (−1) = 1, so g 2(±1) = ±1. The
function

h(x) = (2 − x)(3x + 1)/2

has a 3-cycle given by x0 = 0, x1 = 1, x2 = 2, x3 = x0 = 0 . . .. �

A useful way to visualize orbits of one-dimensional discrete dynamical
systems is via graphical iteration. In this picture, we superimpose the curve
y = f (x) and the diagonal line y = x on the same graph. We display the orbit
of x0 as follows: Begin at the point (x0, x0) on the diagonal and draw a vertical
line to the graph of f , reaching the graph at (x0, f (x0)) = (x0, x1). Then draw a
horizontal line back to the diagonal, ending at (x1, x1). This procedure moves
us from a point on the diagonal directly over the seed x0 to a point directly
over the next point on the orbit, x1. Then we continue from (x1, x1): First
go vertically to the graph to the point (x1, x2), then horizontally back to the
diagonal at (x2, x2). On the x-axis this moves us from x1 to the next point
on the orbit, x2. Continuing, we produce a sequence of pairs of lines, each of
which terminates on the diagonal at a point of the form (xn , xn).

In Figure 15.1a, graphical iteration shows that the orbit of x0 tends to the
fixed point z0 under iteration of f . In Figure 15.1b, the orbit of x0 under g lies
on a 3-cycle: x0, x1, x2, x0, x1, . . ..

As in the case of equilibrium points of differential equations, there are
different types of fixed points for a discrete dynamical system. Suppose that x0

is a fixed point for f . We say that x0 is a sink or an attracting fixed point for f if
there is a neighborhood U of x0 in R having the property that, if y0 ∈ U , then

y�x y�x

x0 x0 x1 x2x1 x2 z0

y�f (x)

y�g (x)

(a) (b)

Figure 15.1 (a) The orbit of x0 tends to the fixed point at z0
under iteration of f, while (b) the orbit of x0 lies on a 3-cycle
under iteration of g.
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f n(y0) ∈ U for all n and, moreover, f n(y0) → x0 as n → ∞. Similarly, x0 is a
source or a repelling fixed point if all orbits (except x0) leave U under iteration
of f . A fixed point is called neutral or indifferent if it is neither attracting nor
repelling.

For differential equations, we saw that it was the derivative of the vector field
at an equilibrium point that determined the type of the equilibrium point. This
is also true for fixed points, although the numbers change a bit.

Proposition. Suppose f has a fixed point at x0. Then

1. x0 is a sink if |f ′(x0)| < 1;
2. x0 is a source if |f ′(x0)| > 1;
3. we get no information about the type of x0 if f ′(x0) = ±1.

Proof: We first prove case (1). Suppose |f ′(x0)| = ν < 1. Choose K with
ν < K < 1. Since f ′ is continuous, we may find δ > 0 so that |f ′(x)| < K for all
x in the interval I = [x0 − δ, x0 + δ]. We now invoke the mean value theorem.
Given any x ∈ I , we have

f (x) − x0

x − x0
= f (x) − f (x0)

x − x0
= f ′(c)

for some c between x and x0. Hence we have

|f (x) − x0| < K |x − x0|.
It follows that f (x) is closer to x0 than x and so f (x) ∈ I . Applying this result
again, we have

|f 2(x) − x0| < K |f (x) − x0| < K 2|x − x0|,
and, continuing, we find

|f n(x) − x0| < K n|x − x0|,
so that f n(x) → x0 in I as required, since 0 < K < 1.

The proof of case (2) follows similarly. In case (3), we note that each of the
functions

1. f (x) = x + x3;
2. g (x) = x − x3;
3. h(x) = x + x2

has a fixed point at 0 with f ′(0) = 1. But graphical iteration (Figure 15.2)
shows that f has a source at 0; g has a sink at 0; and 0 is attracting from one
side and repelling from the other for the function h. �
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f (x)�x�x3 g(x)�x�x3 h (x)�x�x2

Figure 15.2 In each case, the derivative at 0 is 1, but f has a source at 0; g
has a sink; and h has neither.

Note that, at a fixed point x0 for which f ′(x0) < 0, the orbits of nearby
points jump from one side of the fixed point to the other at each iteration. See
Figure 15.3. This is the reason why the output of graphical iteration is often
called a web diagram.

Since a periodic point x0 of period n for f is a fixed point of f n , we may
classify these points as sinks or sources depending on whether |(f n)′(x0)| < 1
or |(f n)′(x0)| > 1. One may check that (f n)′(x0) = (f n)′(xj) for any other
point xj on the periodic orbit, so this definition makes sense (see Exercise 6 at
the end of this chapter).

Example. The function f (x) = x2 − 1 has a 2-cycle given by 0 and −1.
One checks easily that (f 2)′(0) = 0 = (f 2)′(−1), so this cycle is a sink.
In Figure 15.4, we show a graphical iteration of f with the graph of f 2

superimposed. Note that 0 and −1 are attracting fixed points for f 2. �

X0 Z0

Figure 15.3 Since −1 <
f ′(z0) < 0, the orbit of x0
“spirals” toward the
attracting fixed point at z0 .



332 Chapter 15 Discrete Dynamical Systems

y�x

y�xf(x)

y�xf 2(x)

�1

Figure 15.4 The graphs of f (x) = x2 −1 and
f 2 showing that 0 and −1 lie on an attracting
2-cycle for f.

15.2 Bifurcations

Discrete dynamical systems undergo bifurcations when parameters are varied
just as differential equations do. We deal in this section with several types of
bifurcations that occur for one-dimensional systems.

Example. Let fc (x) = x2 + c where c is a parameter. The fixed points for
this family are given by solving the equation x2 + c = x , which yields

p± = 1

2
±

√
1 − 4c

2
.

Hence there are no fixed points if c > 1/4; a single fixed point at x = 1/2 when
c = 1/4; and a pair of fixed points at p± when c < 1/4. Graphical iteration
shows that all orbits of fc tend to ∞ if c > 1/4. When c = 1/4, the fixed point
at x = 1/2 is neutral, as is easily seen by graphical iteration. See Figure 15.5.
When c < 1/4, we have f ′

c (p+) = 1 + √
1 − 4c > 1, so p+ is always repelling.

A straightforward computation also shows that −1 < f ′
c (p−) < 1 provided

−3/4 < c < 1/4. For these c-values, p− is attracting. When −3/4 < c < 1/4, all
orbits in the interval (−p+, p+) tend to p− (though, technically, the orbit of
−p− is eventually fixed, since it maps directly onto p−, as do the orbits of certain
other points in this interval when c < 0). Thus as c decreases through the
bifurcation value c = 1/4, we see the birth of a single neutral fixed point, which
then immediately splits into two fixed points, one attracting and one repelling.
This is an example of a saddle-node or tangent bifurcation. Graphically, this
bifurcation is essentially the same as its namesake for first-order differential
equations as described in Chapter 8. See Figure 15.5. �
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c�0.35 c�0.25 c�0.15

Figure 15.5 The saddle-node bifurcation for fc(x) = x2 + c at c = 1/4.

Note that, in this example, at the bifurcation point, the derivative at the
fixed point equals 1. This is no accident, for we have:

Theorem. (The Bifurcation Criterion) Let fλ be a family of functions
depending smoothly on the parameter λ. Suppose that fλ0(x0) = x0 and
f ′
λ0

(x0) �= 1. Then there are intervals I about x0 and J about λ0 and a smooth
function p : J → I such that p(λ0) = x0 and fλ(p(λ)) = p(λ). Moreover, fλ has
no other fixed points in I .

Proof: Consider the function defined by G(x , λ) = fλ(x) − x . By hypothesis,
G(x0, λ0) = 0 and

∂G

∂x
(x0, λ0) = f ′

λ0
x0) − 1 �= 0.

By the implicit function theorem, there are intervals I about x0 and J about
λ0, and a smooth function p : J → I such that p(λ0) = x0 and G(p(λ), λ) ≡ 0
for all λ ∈ J . Moreover, G(x , λ) �= 0 unless x = p(λ). This concludes the
proof. �

As a consequence of this result, fλ may undergo a bifurcation involving a
change in the number of fixed points only if fλ has a fixed point with derivative
equal to 1. The typical bifurcation that occurs at such parameter values is the
saddle-node bifurcation (see Exercises 18 and 19). However, many other types
of bifurcations of fixed points may occur.

Example. Let fλ(x) = λx(1 − x). Note that fλ(0) = 0 for all λ. We have
f ′
λ(0) = λ, so we have a possible bifurcation at λ = 1. There is a second fixed
point for fλ at xλ = (λ − 1)/λ. When λ < 1, xλ is negative, and when λ > 1,
xλ is positive. When λ = 1, xλ coalesces with the fixed point at 0 so there is
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a single fixed point for f1. A computation shows that 0 is repelling and xλ is
attracting if λ > 1 (and λ < 3), while the reverse is true if λ < 1. For this
reason, this type of bifurcation is known as an exchange bifurcation. �

Example. Consider the family of functions fμ(x) = μx + x3. When μ = 1
we have f1(0) = 0 and f ′

1 (0) = 1 so we have the possibility for a bifurcation.
The fixed points are 0 and ±√

1 − μ, so we have three fixed points when μ < 1
but only one fixed point when μ ≥ 1, so a bifurcation does indeed occur as μ

passes through 1. �

The only other possible bifurcation value for a one-dimensional discrete
system occurs when the derivative at the fixed (or periodic) point is equal to
−1, since at these values the fixed point may change from a sink to a source
or from a source to a sink. At all other values of the derivative, the fixed point
simply remains a sink or source and there are no other periodic orbits nearby.
Certain portions of a periodic orbit may come close to a source, but the entire
orbit cannot lie close by (see Exercise 7). In the case of derivative −1 at the
fixed point, the typical bifurcation is a period doubling bifurcation.

Example. As a simple example of this type of bifurcation, consider the family
fλ(x) = λx near λ0 = −1. There is a fixed point at 0 for all λ. When −1 <
λ < 1, 0 is an attracting fixed point and all orbits tend to 0. When |λ| > 1, 0
is repelling and all nonzero orbits tend to ±∞. When λ = −1, 0 is a neutral
fixed point and all nonzero points lie on 2-cycles. As λ passes through −1,
the type of the fixed point changes from attracting to repelling; meanwhile, a
family of 2-cycles appears. �

Generally, when a period doubling bifurcation occurs, the 2-cycles do not
all exist for a single parameter value. A more typical example of this bifurcation
is provided next.

Example. Again consider fc (x) = x2 + c , this time with c near c = −3/4.
There is a fixed point at

p− = 1

2
−

√
1 − 4c

2
.

We have seen that f ′−3/4(p−) = −1 and that p− is attracting when c is slightly
larger than −3/4 and repelling when c is less than −3/4. Graphical iteration
shows that more happens as c descends through −3/4: We see the birth of
an (attracting) 2-cycle as well. This is the period doubling bifurcation. See
Figure 15.6. Indeed, one can easily solve for the period two points and check
that they are attracting (for −5/4 < c < −3/4; see Exercise 8). �
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c = −0.65 c = −0.75 c = −0.85

Figure 15.6 The period doubling bifurcation for fc(x) = x2 + c at c = −3/4.
The fixed point is attracting for c ≥ −0.75 and repelling for c < −0.75.

15.3 The Discrete Logistic Model

In Chapter 1 we introduced one of the simplest nonlinear first-order
differential equations, the logistic model for population growth

x ′ = ax(1 − x).

In this model we took into account the fact that there is a carrying capacity
for a typical population, and we saw that the resulting solutions behaved quite
simply: All nonzero solutions tended to the “ideal” population. Now some-
thing about this model may have bothered you way back then: Populations
generally are not continuous functions of time! A more natural type of model
would measure populations at specific times, say, every year or every gen-
eration. Here we introduce just such a model, the discrete logistic model for
population growth.

Suppose we consider a population whose members are counted each year
(or at other specified times). Let xn denote the population at the end of year
n. If we assume that no overcrowding can occur, then one such population
model is the exponential growth model where we assume that

xn+1 = kxn

for some constant k > 0. That is, the next year’s population is directly
proportional to this year’s. Thus we have

x1 = kx0

x2 = kx1 = k2x0

x3 = kx2 = k3x0

...
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Clearly, xn = knx0 so we conclude that the population explodes if k > 1,
becomes extinct if 0 ≤ k < 1, or remains constant if k = 1.

This is an example of a first-order difference equation. This is an equation
that determines xn based on the value of xn−1. A second-order difference
equation would give xn based on xn−1 and xn−2. From our point of view, the
successive populations are given by simply iterating the function fk(x) = kx
with the seed x0.

A more realistic assumption about population growth is that there is a
maximal population M such that, if the population exceeds this amount, then
all resources are used up and the entire population dies out in the next year.

One such model that reflects these assumptions is the discrete logistic
population model . Here we assume that the populations obey the rule

xn+1 = kxn

(
1 − xn

M

)
where k and M are positive parameters. Note that, if xn ≥ M , then xn+1 ≤ 0,
so the population does indeed die out in the ensuing year.

Rather than deal with actual population numbers, we will instead let xn

denote the fraction of the maximal population, so that 0 ≤ xn ≤ 1. The
logistic difference equation then becomes

xn+1 = λxn (1 − xn)

where λ > 0 is a parameter. We may therefore predict the fate of the initial
population x0 by simply iterating the quadratic function fλ(x) = λx(1 − x)
(also called the logistic map). Sounds easy, right? Well, suffice it to say that
this simple quadratic iteration was only completely understood in the late
1990s, thanks to the work of hundreds of mathematicians. We will see why
the discrete logistic model is so much more complicated than its cousin, the
logistic differential equation, in a moment, but first let’s do some simple cases.

We consider only the logistic map on the unit interval I . We have fλ(0) = 0,
so 0 is a fixed point. The fixed point is attracting in I for 0 < λ ≤ 1, and
repelling thereafter. The point 1 is eventually fixed, since fλ(1) = 0. There
is a second fixed point xλ = (λ − 1)/λ in I for λ > 1. The fixed point xλ is
attracting for 1 < λ ≤ 3 and repelling for λ > 3. At λ = 3 a period doubling
bifurcation occurs (see Exercise 4). For λ-values between 3 and approximately
3. 4, the only periodic points present are the two fixed points and the 2-cycle.

When λ = 4, the situation is much more complicated. Note that f ′
λ(1/2) = 0

and that 1/2 is the only critical point for fλ for each λ. When λ = 4, we have
f4(1/2) = 1, so f 2

4 (1/2) = 0. Therefore f4 maps each of the half-intervals
[0, 1/2] and [1/2, 1] onto the entire interval I . Consequently, there exist points
y0 ∈ [0, 1/2] and y1 ∈ [1/2, 1] such that f4(yj) = 1/2 and hence f 2

4 (yj) = 1.
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1/2 1/2 1/2y0 y1 y0 y1

Figure 15.7 The graphs of the logistic function fλ(x) − λ x(1 − x) as well as
f 2
λ and f 3

λ over the interval I.

Therefore we have

f 2
4 [0, y0] = f 2

4 [y0, 1/2] = I

and

f 2
4 [1/2, y1] = f 2

4 [y1, 1] = I .

Since the function f 2
4 is a quartic, it follows that the graph of f 2

4 is as depicted
in Figure 15.7. Continuing in this fashion, we find 23 subintervals of I that are
mapped onto I by f 3

4 , 24 subintervals mapped onto I by f 4
4 , and so forth. We

therefore see that f4 has two fixed points in I ; f 2
4 has four fixed points in I ; f 3

4
has 23 fixed points in I ; and, inductively, f n

4 has 2n fixed points in I . The fixed
points for f4 occur at 0 and 3/4. The four fixed points for f 2

4 include these two
fixed points plus a pair of periodic points of period 2. Of the eight fixed points
for f 3

4 , two must be the fixed points and the other six must lie on a pair of
3-cycles. Among the 16 fixed points for f 4

4 are two fixed points, two periodic
points of period 2, and twelve periodic points of period 4. Clearly, a lot has
changed as λ varies from 3. 4 to 4.

On the other hand, if we choose a random seed in the interval I and plot
the orbit of this seed under iteration of f4 using graphical iteration, we rarely
see any of these cycles. In Figure 15.8 we have plotted the orbit of 0. 123 under
iteration of f4 using 200 and 500 iterations. Presumably, there is something
“chaotic” going on.

15.4 Chaos

In this section we introduce several quintessential examples of chaotic one-
dimensional discrete dynamical systems. Recall that a subset U ⊂ W is said
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(a) (b)

Figure 15.8 The orbit of the seed 0.123 under f4 using (a) 200
iterations and (b) 500 iterations.

to be dense in W if there are points in U arbitrarily close to any point in the
larger set W . As in the Lorenz model, we say that a map f , which takes an
interval I = [α, β] to itself, is chaotic if

1. Periodic points of f are dense in I ;
2. f is transitive on I ; that is, given any two subintervals U1 and U2 in I ,

there is a point x0 ∈ U1 and an n > 0 such that f n(x0) ∈ U2;
3. f has sensitive dependence in I ; that is, there is a sensitivity constant β

such that, for any x0 ∈ I and any open interval U about x0, there is some
seed y0 ∈ U and n > 0 such that

|f n(x0) − f n(y0)| > β.

It is known that the transitivity condition is equivalent to the existence of
an orbit that is dense in I . Clearly, a dense orbit implies transitivity, for such
an orbit repeatedly visits any open subinterval in I . The other direction relies
on the Baire category theorem from analysis, so we will not prove this here.

Curiously, for maps of an interval, condition 3 in the definition of chaos is
redundant [8]. This is somewhat surprising, since the first two conditions in
the definition are topological in nature, while the third is a metric property (it
depends on the notion of distance).

We now discuss several classical examples of chaotic one-dimensional maps.

Example. (The Doubling Map) Define the discontinuous function
D : [0, 1) → [0, 1) by D(x) = 2x mod 1. That is,

D(x) =
{

2x if 0 ≤ x < 1/2
2x − 1 if 1/2 ≤ x < 1
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Figure 15.9 The graph of the doubling map D and its higher iterates D2

and D3 on [0, 1).

An easy computation shows that Dn(x) = 2nx mod 1, so that the graph of
Dn consists of 2n straight lines with slope 2n , each extending over the entire
interval [0, 1). See Figure 15.9.

To see that the doubling function is chaotic on [0, 1), note that Dn maps any
interval of the form [k/2n , (k + 1)/2n) for k = 0, 1, . . . 2n − 2 onto the interval
[0, 1). Hence the graph of Dn crosses the diagonal y = x at some point in this
interval, and so there is a periodic point in any such interval. Since the lengths
of these intervals are 1/2n , it follows that periodic points are dense in [0, 1).
Transitivity also follows, since, given any open interval J , we may always find
an interval of the form [k/2n , (k +1)/2n) inside J for sufficiently large n. Hence
Dn maps J onto all of [0, 1). This also proves sensitivity, where we choose the
sensitivity constant 1/2.

We remark that it is possible to write down all of the periodic points for
D explicitly (see Exercise 5a). It is also interesting to note that, if you use
a computer to iterate the doubling function, then it appears that all orbits
are eventually fixed at 0, which, of course, is false! See Exercise 5c for an
explanation of this phenomenon. �

Example. (The Tent Map) Now consider a continuous cousin of the
doubling map given by

T (x) =
{

2x if 0 ≤ x < 1/2
−2x + 2 if 1/2 ≤ x ≤ 1.

T is called the tent map. See Figure 15.10. The fact that T is chaotic on [0, 1]
follows exactly as in the case of the doubling function, using the graphs of Tn

(see Exercise 15).
Looking at the graphs of the tent function T and the logistic function f4(x) =

4x(1 − x) that we discussed in Section 15.3, it appears that they should share
many of the same properties under iteration. Indeed, this is the case. To
understand this, we need to reintroduce the notion of conjugacy, this time for
discrete systems.
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Figure 15.10 The graph of the tent map T and its higher iterates T 2 and
T 3 on [0, 1].

Suppose I and J are intervals and f : I → I and g : J → J . We say that f
and g are conjugate if there is a homeomorphism h : I → J such that h satisfies
the conjugacy equation h ◦ f = g ◦ h. Just as in the case of flows, a conjugacy
takes orbits of f to orbits of g . This follows since we have h(f n(x)) = g n(h(x))
for all x ∈ I , so h takes the nth point on the orbit of x under f to the
nth point on the orbit of h(x) under g . Similarly, h−1 takes orbits of g to
orbits of f . �

Example. Consider the logistic function f4 : [0, 1] → [0, 1] and the quadratic
function g : [−2, 2] → [−2, 2] given by g (x) = x2 − 2. Let h(x) = −4x + 2
and note that h takes [0, 1] to [−2, 2]. Moreover, we have h(4x(1 −
x)) = (h(x))2 − 2, so h satisfies the conjugacy equation and f4 and g are
conjugate. �

From the point of view of chaotic systems, conjugacies are important since
they map one chaotic system to another.

Proposition. Suppose f : I → I and g : J → J are conjugate via h, where
both I and J are closed intervals in R of finite length. If f is chaotic on I , then g
is chaotic on J .

Proof: Let U be an open subinterval of J and consider h−1(U ) ⊂ I . Since
periodic points of f are dense in I , there is a periodic point x ∈ h−1(U ) for f .
Say x has period n. Then

g n(h(x)) = h(f n(x)) = h(x)

by the conjugacy equation. This gives a periodic point h(x) for g in U and
shows that periodic points of g are dense in J .

If U and V are open subintervals of J , then h−1(U ) and h−1(V ) are open
intervals in I . By transitivity of f , there exists x1 ∈ h−1(U ) such that
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f m(x1) ∈ h−1(V ) for some m. But then h(x1) ∈ U and we have gm(h(x1)) =
h(f m(x1)) ∈ V , so g is transitive also.

For sensitivity, suppose that f has sensitivity constant β. Let I = [α0, α1].
We may assume that β < α1 − α0. For any x ∈ [α0, α1 − β], consider the
function |h(x + β) − h(x)|. This is a continuous function on [α0, α1 − β]
that is positive. Hence it has a minimum value β ′. It follows that h takes
intervals of length β in I to intervals of length at least β ′ in J . Then it
is easy to check that β ′ is a sensitivity constant for g . This completes the
proof. �

It is not always possible to find conjugacies between functions with equiva-
lent dynamics. However, we can relax the requirement that the conjugacy be
one to one and still salvage the preceding proposition. A continuous function h
that is at most n to one and that satisfies the conjugacy equation f ◦h = h◦g is
called a semiconjugacy between g and f . It is easy to check that a semiconjugacy
also preserves chaotic behavior on intervals of finite length (see Exercise 12).
A semiconjugacy need not preserve the minimal periods of cycles, but it does
map cycles to cycles.

Example. The tent function T and the logistic function f4 are semiconjugate
on the unit interval. To see this, let

h(x) = 1

2
(1 − cos 2πx) .

Then h maps the interval [0, 1] in two-to-one fashion over itself, except at 1/2,
which is the only point mapped to 1. Then we compute

h(T (x)) = 1

2
(1 − cos 4πx)

= 1

2
− 1

2

(
2 cos2 2πx − 1

)
= 1 − cos2 2πx

= 4

(
1

2
− 1

2
cos 2πx

)(
1

2
+ 1

2
cos 2πx

)
= f4(h(x)).

Thus h is a semiconjugacy between T and f4. As a remark, recall that we may
find arbitrarily small subintervals mapped onto all of [0, 1]by T . Hence f4 maps
the images of these intervals under h onto all of [0, 1]. Since h is continuous,
the images of these intervals may be chosen arbitrarily small. Hence we may
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choose 1/2 as a sensitivity constant for f4 as well. We have proven the following
proposition: �

Proposition. The logistic function f4(x) = 4x(1 − x) is chaotic on the unit
interval. �

15.5 Symbolic Dynamics

We turn now to one of the most useful tools for analyzing chaotic systems,
symbolic dynamics. We give just one example of how to use symbolic dynamics
here; several more are included in the next chapter.

Consider the logistic map fλ(x) = λx(1 − x) where λ > 4. Graphical iter-
ation seems to imply that almost all orbits tend to −∞. See Figure 15.11.
Of course, this is not true, because we have fixed points and other peri-
odic points for this function. In fact, there is an unexpectedly “large” set
called a Cantor set that is filled with chaotic behavior for this function, as we
shall see.

Unlike the case λ ≤ 4, the interval I = [0, 1] is no longer invariant when
λ > 4: Certain orbits escape from I and then tend to −∞. Our goal is to
understand the behavior of the nonescaping orbits. Let � denote the set of
points in I whose orbits never leave I . As shown in Figure 15.12a, there is
an open interval A0 on which fλ > 1. Hence f 2

λ (x) < 0 for any x ∈ A0 and,
as a consequence, the orbits of all points in A0 tend to −∞. Note that any
orbit that leaves I must first enter A0 before departing toward −∞. Also, the

1

Figure 15.11 Typical
orbits for the logistic
function fλ with λ > 4
seem to tend to −∞ after
wandering around the unit
interval for a while.
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A1 A1A0
(a)

I0 I1A0
(b)

Figure 15.12 (a) The exit set in I consists of a collection
of disjoint open intervals. (b) The intervals I0 and I1 lie to
the left and right of A0 .

orbits of the endpoints of A0 are eventually fixed at 0, so these endpoints are
contained in �. Now let A1 denote the preimage of A0 in I : A1 consists of
two open intervals in I , one on each side of A0. All points in A1 are mapped
into A0 by fλ, and hence their orbits also tend to −∞. Again, the endpoints
of A1 are eventual fixed points. Continuing, we see that each of the two open
intervals in A1 has as a preimage a pair of disjoint intervals, so there are four
open intervals that consist of points whose first iteration lies in A1, the second
in A0, and so, again, all of these points have orbits that tend to −∞. Call these
four intervals A2. In general, let An denote the set of points in I whose nth
iterate lies in A0. An consists of set 2n disjoint open intervals in I . Any point
whose orbit leaves I must lie in one of the An . Hence we see that

� = I −
∞⋃

n=0

An .

To understand the dynamics of fλ on I , we introduce symbolic dynamics.
Toward that end, let I0 and I1 denote the left and right closed interval respec-
tively in I − A0. See Figure 15.12b. Given x0 ∈ �, the entire orbit of x0 lies
in I0 ∪ I1. Hence we may associate an infinite sequence S(x0) = (s0s1s2 . . .)
consisting of 0’s and 1’s to the point x0 via the rule

sj = k if and only if f
j
λ (x0) ∈ Ik .

That is, we simply watch how f
j
λ (x0) bounces around I0 and I1, assigning a 0

or 1 at the jth stage depending on which interval f
j
λ (x0) lies in. The sequence

S(x0) is called the itinerary of x0.
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Example. The fixed point 0 has itinerary S(0) = (000 . . .). The fixed point xλ

in I1 has itinerary S(xλ) = (111 . . .). The point x0 = 1 is eventually fixed and
has itinerary S(1) = (1000 . . .). A 2-cycle that hops back and forth between I0
and I1 has itinerary (01 . . .) or (10 . . .) where 01 denotes the infinitely repeating
sequence consisting of repeated blocks 01.

Let � denote the set of all possible sequences of 0’s and 1’s. A “point” in
the space � is therefore an infinite sequence of the form s = (s0s1s2 . . .). To
visualize �, we need to tell how far apart different points in � are. To do this,
let s = (s0s1s2 . . .) and t = (t0t1t2 . . .) be points in �. A distance function or
metric on � is a function d = d(s, t ) that satisfies

1. d(s, t ) ≥ 0 and d(s, t ) = 0 if and only if s = t ;
2. d(s, t ) = d(t , s);
3. the triangle inequality: d(s, u) ≤ d(s, t ) + d(t , u).

Since � is not naturally a subset of a Euclidean space, we do not have a
Euclidean distance to use on �. Hence we must concoct one of our own. Here
is the distance function we choose:

d(s, t ) =
∞∑

i=0

|si − ti |
2i

.

Note that this infinite series converges: The numerators in this series are always
either 0 or 1, so this series converges by comparison to the geometric series:

d(s, t ) ≤
∞∑

i=0

1

2i
= 1

1 − 1/2
= 2.

It is straightforward to check that this choice of d satisfies the three require-
ments to be a distance function (see Exercise 13). While this distance function
may look a little complicated at first, it is often easy to compute. �

Example.

(1) d
(
(0), (1)

) =
∞∑

i=0

|0 − 1|
2i

=
∞∑

i=0

1

2i
= 2

(2) d
(
(01), (10)

) =
∞∑

i=0

1

2i
= 2

(3) d
(
(01), (1)

) =
∞∑

i=0

1

4i
= 1

1 − 1/4
= 4

3
.

�
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The importance of having a distance function on � is that we now know
when points are close together or far apart. In particular, we have

Proposition. Suppose s = (s0s1s2 . . .) and t = (t0t1t2 . . .) ∈ �.

1. If sj = tj for j = 0, . . . , n, then d(s, t ) ≤ 1/2n;
2. Conversely, if d(s, t ) < 1/2n, then sj = tj for j = 0, . . . , n.

Proof: In case (1), we have

d(s, t ) =
n∑

i=0

|si − si |
2i

+
∞∑

i=n+1

|si − ti |
2i

≤ 0 + 1

2n+1

∞∑
i=0

1

2i

= 1

2n
.

If, on the other hand, d(s, t ) < 1/2n , then we must have sj = tj for any j ≤ n,
because otherwise d(s, t ) ≥ |sj − tj |/2j = 1/2j ≥ 1/2n . �

Now that we have a notion of closeness in �, we are ready to prove the main
theorem of this chapter:

Theorem. The itinerary function S : � → � is a homeomorphism provided
λ > 4.

Proof: Actually, we will only prove this for the case in which λ is sufficiently
large that |f ′

λ(x)| > K > 1 for some K and for all x ∈ I0 ∪ I1. The reader may

check that λ > 2 + √
5 suffices for this. For the more complicated proof in the

case where 4 < λ ≤ 2 + √
5, see [25].

We first show that S is one to one. Let x , y ∈ � and suppose S(x) = S(y).
Then, for each n, f n

λ (x) and f n
λ (y) lie on the same side of 1/2. This implies that

fλ is monotone on the interval between f n
λ (x) and f n

λ (y). Consequently, all
points in this interval remain in I0 ∪ I1 when we apply fλ. Now |f ′

λ| > K > 1 at
all points in this interval, so, as in Section 15.1, each iteration of fλ expands this
interval by a factor of K . Hence the distance between f n

λ (x) and f n
λ (y) grows

without bound, so these two points must eventually lie on opposite sides of
A0. This contradicts the fact that they have the same itinerary.

To see that S is onto, we first introduce the following notation. Let J ⊂ I be
a closed interval. Let

f −n
λ (J ) = {x ∈ I | f n

λ (x) ∈ J },
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so that f −n
λ (J ) is the preimage of J under f n

λ . A glance at the graph of fλ when
λ > 4 shows that, if J ⊂ I is a closed interval, then f −1

λ (J ) consists of two
closed subintervals, one in I0 and one in I1.

Now let s = (s0s1s2 . . .). We must produce x ∈ � with S(x) = s. To that
end we define

Is0s1...sn = {x ∈ I | x ∈ Is0 , fλ(x) ∈ Is1 , . . . , f
n
λ (x) ∈ Isn }

= Is0 ∩ f −1
λ (Is1) ∩ . . . ∩ f −n

λ (Isn ).

We claim that the Is0...sn form a nested sequence of nonempty closed
intervals. Note that

Is0s1...sn = Is0 ∩ f −1
λ (Is1...sn ).

By induction, we may assume that Is1...sn is a nonempty subinterval, so that, by
the observation above, f −1

λ (Is1...sn ) consists of two closed intervals, one in I0
and one in I1. Hence Is0 ∩ f −1

λ (Is1...sn ) is a single closed interval. These intervals
are nested because

Is0...sn = Is0...sn−1 ∩ f −n
λ (Isn ) ⊂ Is0...sn−1 .

Therefore we conclude that

∞⋂
n≥0

Is0s1...sn

is nonempty. Note that if x ∈ ∩n≥0Is0s1...sn , then x ∈ Is0 , fλ(x) ∈ Is1 , etc. Hence
S(x) = (s0s1 . . .). This proves that S is onto.

Observe that ∩n≥0Is0s1...sn consists of a unique point. This follows immedi-
ately from the fact that S is one to one. In particular, we have that the diameter
of Is0s1...sn tends to 0 as n → ∞.

To prove continuity of S, we choose x ∈ � and suppose that S(x) =
(s0s1s2 . . .). Let ε > 0. Pick n so that 1/2n < ε. Consider the closed subin-
tervals It0t1...tn defined above for all possible combinations t0t1 . . . tn . These
subintervals are all disjoint, and � is contained in their union. There are
2n+1 such subintervals, and Is0s1...sn is one of them. Hence we may choose δ

such that |x − y| < δ and y ∈ � implies that y ∈ Is0s1...sn . Therefore, S(y)
agrees with S(x) in the first n + 1 terms. So, by the previous proposition,
we have

d(S(x), S(y)) ≤ 1

2n
< ε.
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This proves the continuity of S. It is easy to check that S−1 is also continuous.
Thus, S is a homeomorphism. �

15.6 The Shift Map

We now construct a map on σ : � → � with the following properties:

1. σ is chaotic;
2. σ is conjugate to fλ on �;
3. σ is completely understandable from a dynamical systems point of view.

The meaning of this last item will become clear as we proceed.
We define the shift map σ : � → � by

σ (s0s1s2 . . .) = (s1s2s3 . . .).

That is, the shift map simply drops the first digit in each sequence in �. Note
that σ is a two-to-one map onto �. This follows since, if (s0s1s2 . . .) ∈ �, then
we have

σ (0s0s1s2 . . .) = σ (1s0s1s2 . . .) = (s0s1s2 . . .).

Proposition. The shift map σ : � → � is continuous.

Proof: Let s = (s0s1s2 . . .) ∈ �, and let ε > 0. Choose n so that 1/2n < ε. Let
δ = 1/2n+1. Suppose that d(s, t ) < δ, where t = (t0t1t2 . . .). Then we have
si = ti for i = 0, . . . , n + 1.

Now σ (t ) = (s1s2 . . . sntn+1tn+2 . . .) so that d(σ (s), σ (t )) ≤ 1/2n < ε. This
proves that σ is continuous. �

Note that we can easily write down all of the periodic points of any period
for the shift map. Indeed, the fixed points are (0) and (1). The 2 cycles are (01)
and (10). In general, the periodic points of period n are given by repeating
sequences that consist of repeated blocks of length n: (s0 . . . sn−1). Note how
much nicer σ is compared to fλ: Just try to write down explicitly all of the
periodic points of period n for fλ someday! They are there and we know
roughly where they are, because we have:

Theorem. The itinerary function S : � → � provides a conjugacy between fλ
and the shift map σ .

Proof: In the previous section we showed that S is a homeomorphism. So it
suffices to show that S ◦ fλ = σ ◦ S. To that end, let x0 ∈ � and suppose
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that S(x0) = (s0s1s2 . . .). Then we have x0 ∈ Is0 , fλ(x0) ∈ Is1 , f 2
λ (x0) ∈ Is2 ,

and so forth. But then the fact that fλ(x0) ∈ Is1 , f 2
λ (x0) ∈ Is2 , etc., says that

S(fλ(x0)) = (s1s2s3 . . .), so S(fλ(x0)) = σ (S(x0)), which is what we wanted to
prove. �

Now, not only can we write down all periodic points for σ , but we can in
fact write down explicitly a point in � whose orbit is dense. Here is such a
point:

s∗ = ( 0 1︸︷︷︸
1 blocks

| 00 01 10 11︸ ︷︷ ︸
2 blocks

| 000 001 · · ·︸ ︷︷ ︸
3 blocks

| · · ·︸︷︷︸
4 blocks

).

The sequence s∗ is constructed by successively listing all possible blocks of 0’s
and 1’s of length 1, length 2, length 3, and so forth. Clearly, some iterate of
σ applied to s∗ yields a sequence that agrees with any given sequence in an
arbitrarily large number of initial places. That is, given t = (t0t1t2 . . .) ∈ �,
we may find k so that the sequence σ k(s∗) begins

(t0 . . . tn sn+1 sn+2 . . .)

so that

d(σ k(s∗), t ) ≤ 1/2n .

Hence the orbit of s∗ comes arbitrarily close to every point in �. This proves
that the orbit of s∗ under σ is dense in � and so σ is transitive. Note that
we may construct a multitude of other points with dense orbits in � by just
rearranging the blocks in the sequence s∗. Again, think about how difficult it
would be to identify a seed whose orbit under a quadratic function like f4 is
dense in [0, 1]. This is what we meant when we said earlier that the dynamics
of σ are “completely understandable.”

The shift map also has sensitive dependence. Indeed, we may choose the
sensitivity constant to be 2, which is the largest possible distance between two
points in �. The reason for this is, if s = (s0s1s2 . . .) ∈ � and ŝj denotes “not
sj” (that is, if sj = 0, then ŝj = 1, or if sj = 1 then ŝj = 0), then the point
s ′ = (s0s1 . . . sn ŝn+1ŝn+2 . . .) satisfies:

1. d(s, s ′) = 1/2n , but
2. d(σ n(s), σ n(s ′)) = 2.

As a consequence, we have proved the following:

Theorem. The shift map σ is chaotic on �, and so by the conjugacy in the
previous theorem, the logistic map fλ is chaotic on � when λ > 4. �
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Thus symbolic dynamics provides us with a computable model for the
dynamics of fλ on the set �, despite the fact that fλ is chaotic on �.

15.7 The Cantor Middle-Thirds Set

We mentioned earlier that � was an example of a Cantor set. Here we describe
the simplest example of such a set, the Cantor middle-thirds set C. As we shall
see, this set has some unexpectedly interesting properties.

To define C , we begin with the closed unit interval I = [0, 1]. The rule
is, each time we see a closed interval, we remove its open middle third.
Hence, at the first stage, we remove (1/3, 2/3), leaving us with two closed
intervals, [0, 1/3] and [2/3, 1]. We now repeat this step by removing the
middle thirds of these two intervals. We are left with four closed intervals
[0, 1/9], [2/9, 1/3], [2/3, 7/9], and [8/9, 1]. Removing the open middle thirds of
these intervals leaves us with 23 closed intervals, each of length 1/33. Continu-
ing in this fashion, at the nth stage we are left with 2n closed intervals each of
length 1/3n . The Cantor middle-thirds set C is what is left when we take this
process to the limit as n → ∞. Note how similar this construction is to that
of � in Section 15.5. In fact, it can be proved that � is homeomorphic to C
(see Exercises 16 and 17).

What points in I are left in C after removing all of these open intervals?
Certainly 0 and 1 remain in C , as do the endpoints 1/3 and 2/3 of the first
removed interval. Indeed, each endpoint of a removed open interval lies
in C because such a point never lies in an open middle-third subinterval.
At first glance, it appears that these are the only points in the Cantor set,
but in fact, that is far from the truth. Indeed, most points in C are not
endpoints!

To see this, we attach an address to each point in C . The address will be
an infinite string of L’s or R’s determined as follows. At each stage of the
construction, our point lies in one of two small closed intervals, one to the
left of the removed open interval or one to its right. So at the nth stage we
may assign an L or R to the point depending on its location left or right of
the interval removed at that stage. For example, we associate LLL . . . to 0
and RRR . . . to 1. The endpoints 1/3 and 2/3 have addresses LRRR . . . and
RLLL . . . , respectively. At the next stage, 1/9 has address LLRRR . . . since 1/9
lies in [0, 1/3] and [0, 1/9] at the first two stages, but then always lies in the
right-hand interval. Similarly, 2/9 has address LRLLL . . . , while 7/9 and 8/9
have addresses RLRRR . . . and RRLLL . . . .

Notice what happens at each endpoint of C . As the above examples indicate,
the address of an endpoint always ends in an infinite string of all L’s or all R’s.
But there are plenty of other possible addresses for points in C . For example,
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there is a point with address LRLRLR . . . . This point lies in

[0, 1/3] ∩ [2/9, 1/3] ∩ [2/9, 7/27] ∩ [20/81, 7/27] . . . .

Note that this point lies in the nested intersection of closed intervals of length
1/3n for each n, and it is the unique such point that does so. This shows that
most points in C are not endpoints, for the typical address will not end in all
L’s or all R’s.

We can actually say quite a bit more: The Cantor middle-thirds set contains
uncountably many points. Recall that an infinite set is countable if it can be
put in one-to-one correspondence with the natural numbers; otherwise, the
set is uncountable.

Proposition. The Cantor middle-thirds set is uncountable.

Proof: Suppose that C is countable. This means that we can pair each point
in C with a natural number in some fashion, say as

1 : LLLLL . . .

2 : RRRR . . .

3 : LRLR . . .

4 : RLRL . . .

5 : LRRLRR . . .

and so forth. But now consider the address whose first entry is the opposite
of the first entry of sequence 1, whose second entry is the opposite of the
second entry of sequence 2; and so forth. This is a new sequence of L’s and R’s
(which, in the example above, begins with RLRRL . . .). Thus we have created
a sequence of L’s and R’s that disagrees in the nth spot with the nth sequence
on our list. Hence this sequence is not on our list and so we have failed in our
construction of a one-to-one correspondence with the natural numbers. This
contradiction establishes the result. �

We can actually determine the points in the Cantor middle-thirds set in a
more familiar way. To do this we change the address of a point in C from a
sequence of L’s and R’s to a sequence of 0’s and 2’s; that is, we replace each
L with a 0 and each R with a 2. To determine the numerical value of a point
x ∈ C we approach x from below by starting at 0 and moving sn/3n units to the
right for each n, where sn = 0 or 2 depending on the nth digit in the address
for n = 1, 2, 3 . . . .
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For example, 1 has address RRR . . . or 222 . . . , so 1 is given by

2

3
+ 2

32
+ 2

33
+ · · · = 2

3

∞∑
n=0

1

3n
= 2

3

(
1

1 − 1/3

)
= 1.

Similarly, 1/3 has address LRRR . . . or 0222 . . . , which yields

0

3
+ 2

32
+ 2

33
+ · · · = 2

9

∞∑
n=0

1

3n
= 2

9
· 3

2
= 1

3
.

Finally, the point with address LRLRLR . . . or 020202 . . . is

0

3
+ 2

32
+ 0

33
+ 2

34
+ · · · = 2

9

∞∑
n=0

1

9n
= 2

9

(
1

1 − 1/9

)
= 1

4
.

Note that this is one of the non-endpoints in C referred to earlier.
The astute reader will recognize that the address of a point x in C with 0’s

and 2’s gives the ternary expansion of x . A point x ∈ I has ternary expansion
a1a2a3 . . . if

x =
∞∑

i=1

ai

3i

where each ai is either 0, 1, or 2. Thus we see that points in the Cantor middle-
thirds set have ternary expansions that may be written with no 1’s among the
digits.

We should be a little careful here. The ternary expansion of 1/3 is 1000 . . . .
But 1/3 also has ternary expansion 0222 . . . as we saw above. So 1/3 may be
written in ternary form in a way that contains no 1’s. In fact, every endpoint in
C has a similar pair of ternary representations, one of which contains no 1’s.

We have shown that C contains uncountably many points, but we can say
even more:

Proposition. The Cantor middle-thirds set contains as many points as the
interval [0, 1].
Proof: C consists of all points whose ternary expansion a0a1a2 . . . contains
only 0’s or 2’s. Take this expansion and change each 2 to a 1 and then think
of this string as a binary expansion. We get every possible binary expansion in
this manner. We have therefore made a correspondence (at most two to one)
between the points in C and the points in [0, 1], since every such point has a
binary expansion. �
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Finally, we note that

Proposition. The Cantor middle-thirds set has length 0.

Proof: We compute the “length” of C by adding up the lengths of the intervals
removed at each stage to determine the length of the complement of C . These
removed intervals have successive lengths 1/3, 2/9, 4/27… and so the length of
I − C is

1

3
+ 2

9
+ 4

27
+ · · · = 1

3

∞∑
n=0

(
2

3

)n

= 1.
�

This fact may come as no surprise since C consists of a “scatter” of points.
But now consider the Cantor middle-fifths set, obtained by removing the open
middle-fifth of each closed interval in similar fashion to the construction of
C . The length of this set is nonzero, yet it is homeomorphic to C . These
Cantor sets have, as we said earlier, unexpectedly interesting properties! And
remember, the set � on which f4 is chaotic is just this kind of object.

15.8 Exploration: Cubic Chaos

In this exploration, you will investigate the behavior of the discrete dynamical
system given by the family of cubic functions fλ(x) = λx − x3. You should
attempt to prove rigorously everything outlined below.

1. Describe the dynamics of this family of functions for all λ < −1.
2. Describe the bifurcation that occurs at λ = −1. Hint: Note that fλ is an

odd function. In particular, what happens when the graph of fλ crosses
the line y = −x?

3. Describe the dynamics of fλ when −1 < λ < 1.
4. Describe the bifurcation that occurs at λ = 1.
5. Find a λ-value, λ∗, for which fλ∗ has a pair of invariant intervals [0, ±x∗]

on each of which the behavior of fλ mimics that of the logistic function
4x(1 − x).

6. Describe the change in dynamics that occurs when λ increases
through λ∗.

7. Describe the dynamics of fλ when λ is very large. Describe the set of
points �λ whose orbits do not escape to ±∞ in this case.

8. Use symbolic dynamics to set up a sequence space and a corresponding
shift map for λ large. Prove that fλ is chaotic on �λ.

9. Find the parameter value λ′ > λ∗ above, which the results of the previous
two investigations hold true.

10. Describe the bifurcation that occurs as λ increases through λ′.
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15.9 Exploration: The Orbit Diagram

Unlike the previous exploration, this exploration is primarily experimental.
It is designed to acquaint you with the rich dynamics of the logistic family as
the parameter increases from 0 to 4. Using a computer and whatever software
seems appropriate, construct the orbit diagram for the logistic family fλ(x) =
λx(1 − x) as follows: Choose N equally spaced λ-values λ1, λ2, . . . , λN in the
interval 0 ≤ λj ≤ 4. For example, let N = 800 and set λj = 0. 005j . For each
λj , compute the orbit of 0. 5 under fλj and plot this orbit as follows.

Let the horizontal axis be the λ-axis and let the vertical axis be the x-axis.
Over each λj , plot the points (λj , f k

λj
(0. 5)) for, say, 50 ≤ k ≤ 250. That is,

compute the first 250 points on the orbit of 0. 5 under fλj , but display only the
last 200 points on the vertical line over λ = λj . Effectively, you are displaying
the “fate” of the orbit of 0. 5 in this way.

You will need to magnify certain portions of this diagram; one such magni-
fication is displayed in Figure 15.13, where we have displayed only that portion
of the orbit diagram for λ in the interval 3 ≤ λ ≤ 4.

1. The region bounded by 0 ≤ λ < 3. 57 . . . is called the period 1 win-
dow. Describe what you see as λ increases in this window. What type of
bifurcations occur?

2. Near the bifurcations in the previous question, you sometimes see a smear
of points. What causes this?

3. Observe the period 3 window bounded approximately by 3. 828 . . . < λ <
3. 857 . . . . Investigate the bifurcation that gives rise to this window as λ

increases.

3

x

4
λ

3.57 3.83

Figure 15.13 The orbit diagram for the logistic family with
3 ≤ λ ≤ 4.
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4. There are many other period n windows (named for the least period of
the cycle in that window). Discuss any pattern you can find in how these
windows are arranged asλ increases. In particular, if you magnify portions
between the period 1 and period 3 windows, how are the larger windows
in each successive enlargement arranged?

5. You observe “darker” curves in this orbit diagram. What are these? Why
does this happen?

E X E R C I S E S

1. Find all periodic points for each of the following maps and classify them
as attracting, repelling, or neither.

(a) Q(x) = x − x2 (b) Q(x) = 2(x − x2)
(c) C(x) = x3 − 1

9x (d) C(x) = x3 − x
(e) S(x) = 1

2 sin(x) (f) S(x) = sin(x)
(g) E(x) = ex−1 (h) E(x) = ex

(i) A(x) = arctan x (j) A(x) = −π
4 arctan x

2. Discuss the bifurcations that occur in the following families of maps at
the indicated parameter value

(a) Sλ(x) = λ sin x , λ = 1

(b) Cμ(x) = x3 + μx , μ = −1 (Hint: Exploit the fact that Cμ is an
odd function.)

(c) Gν(x) = x + sin x + ν, ν = 1

(d) Eλ(x) = λex , λ = 1/e

(e) Eλ(x) = λex , λ = −e

(f) Aλ(x) = λ arctan x , λ = 1

(g) Aλ(x) = λ arctan x , λ = −1

3. Consider the linear maps fk(x) = kx . Show that there are four open sets
of parameters for which the behavior of orbits of fk is similar. Describe
what happens in the exceptional cases.

4. For the function fλ(x) = λx(1 − x) defined on R:

(a) Describe the bifurcations that occur at λ = −1 and λ = 3.

(b) Find all period 2 points.

(c) Describe the bifurcation that occurs at λ = −1. 75.

5. For the doubling map D on [0, 1):

(a) List all periodic points explicitly.
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(b) List all points whose orbits end up landing on 0 and are thereby
eventually fixed.

(c) Let x ∈ [0, 1) and suppose that x is given in binary form as a0a1a2 . . .
where each aj is either 0 or 1. First give a formula for the binary
representation of D(x). Then explain why this causes orbits of D
generated by a computer to end up eventually fixed at 0.

6. Show that, if x0 lies on a cycle of period n, then

(f n)′(x0) =
n−1∏
i=0

f ′(xi).

Conclude that

(f n)′(x0) = (f n)′(xj)

for j = 1, . . . , n − 1.
7. Prove that if fλ0 has a fixed point at x0 with |f ′

λ0
(x0)| > 1, then there is an

interval I about x0 and an interval J about λ0 such that, if λ ∈ J , then fλ
has a unique fixed source in I and no other orbits that lie entirely in I .

8. Verify that the family fc (x) = x2 + c undergoes a period doubling
bifurcation at c = −3/4 by

(a) Computing explicitly the period two orbit.
(b) Showing that this orbit is attracting for −5/4 < c < −3/4.

9. Show that the family fc (x) = x2 + c undergoes a second period doubling
bifurcation at c = −5/4 by using the graphs of f 2

c and f 4
c .

10. Find an example of a bifurcation in which more than three fixed points
are born.

11. Prove that f3(x) = 3x(1 − x) on I is conjugate to f (x) = x2 − 3/4 on a
certain interval in R. Determine this interval.

12. Suppose f , g : [0, 1] → [0, 1] and that there is a semiconjugacy from f to
g . Suppose that f is chaotic. Prove that g is also chaotic on [0, 1].

13. Prove that the function d(s, t ) on � satisfies the three properties required
for d to be a distance function or metric.

14. Identify the points in the Cantor middle-thirds set C whose
addresses are

(a) LLRLLRLLR . . .
(b) LRRLLRRLLRRL . . .

15. Consider the tent map

T (x) =
{

2x if 0 ≤ x < 1/2
−2x + 2 if 1/2 ≤ x ≤ 1.
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Prove that T is chaotic on [0, 1].
16. Consider a different “tent function” defined on all of R by

T (x) =
{

3x if x ≤ 1/2
−3x + 3 if 1/2 ≤ x .

Identify the set of points � whose orbits do not go to −∞. What can
you say about the dynamics of this set?

17. Use the results of the previous exercise to show that the set � in
Section 15.5 is homeomorphic to the Cantor middle-thirds set.

18. Prove the following saddle-node bifurcation theorem: Suppose that fλ
depends smoothly on the parameter λ and satisfies:

(a) fλ0(x0) = x0

(b) f ′
λ0

(x0) = 1

(c) f ′′
λ0

(x0) �= 0

(d)
∂fλ
∂λ

∣∣∣∣
λ=λ0

(x0) �= 0

Then there is an interval I about x0 and a smooth function μ : I → R

satisfying μ(x0) = λ0 and such that

fμ(x)(x) = x .

Moreover, μ′(x0) = 0 and μ′′(x0) �= 0. Hint: Apply the implicit function
theorem to G(x , λ) = fλ(x) − x at (x0, λ0).

19. Discuss why the saddle-node bifurcation is the “typical” bifurcation
involving only fixed points.

�y* y*

g(�y*)

g(y*)

Figure 15.14 The graph of the
one-dimensional function g on
[−y∗, y∗].
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20. Recall that comprehending the behavior of the Lorenz system in
Chapter 14 could be reduced to understanding the dynamics of a certain
one-dimensional function g on an interval [−y∗, y∗] whose graph is
shown in Figure 15.14. Recall also |g ′(y)| > 1 for all y �= 0 and that
g is undefined at 0. Suppose now that g 3(y∗) = 0 as displayed in this
graph. By symmetry, we also have g 3(−y∗) = 0. Let I0 = [−y∗, 0) and
I1 = (0, y∗] and define the usual itinerary map on [−y∗, y∗].
(a) Describe the set of possible itineraries under g .

(b) What are the possible periodic points for g ?

(c) Prove that g is chaotic on [−y∗, y∗].
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16
Homoclinic Phenomena

In this chapter we investigate several other three-dimensional systems of dif-
ferential equations that display chaotic behavior. These systems include the
Shil’nikov system and the double scroll attractor. As with the Lorenz system,
our principal means of studying these systems involves reducing them to lower
dimensional discrete dynamical systems, and then invoking symbolic dynam-
ics. In these cases the discrete system is a planar map called the horseshoe map.
This was one of the first chaotic systems to be analyzed completely.

16.1 The Shil’nikov System

In this section we investigate the behavior of a nonlinear system of differential
equations that possesses a homoclinic solution to an equilibrium point that is
a spiral saddle. While we deal primarily with a model system here, the work of
Shil’nikov and others [4, 40, 41], shows that the phenomena described in this
chapter hold in many actual systems of differential equations. Indeed, in the
exploration at the end of this chapter, we investigate the system of differential
equations governing the Chua circuit, which, for certain parameter values, has
a pair of such homoclinic solutions.

For this example, we do not specify the full system of differential equations.
Rather, we first set up a linear system of differential equations in a certain cylin-
drical neighborhood of the origin. This system has a two-dimensional stable
surface in which solutions spiral toward the origin and a one-dimensional
unstable curve. We then make the simple but crucial dynamical assumption
that one of the two branches of the unstable curve is a homoclinic solution

359
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and thus eventually enters the stable surface. We do not write down a specific
differential equation having this behavior. Although it is possible to do so,
having the equations is not particularly useful for understanding the global
dynamics of the system. In fact, the phenomena we study here depend only
on the qualitative properties of the linear system described previously a key
inequality involving the eigenvalues of this linear system, and the homoclinic
assumption.

The first portion of the system is defined in the cylindrical region S of R3

given by x2 + y2 ≤ 1 and |z | ≤ 1. In this region consider the linear system

X ′ =
⎛
⎝−1 1 0

−1 −1 0
0 0 2

⎞
⎠X .

The associated eigenvalues are −1 ± i and 2. Using the results of Chapter 6,
the flow φt of this system is easily derived:

x(t ) = x0e−t cos t + y0e−t sin t

y(t ) = −x0e−t sin t + y0e−t cos t

z(t ) = z0e2t .

Using polar coordinates in the xy–plane, solutions in S are given more
succinctly by

r(t ) = r0e−t

θ(t ) = θ0 − t

z(t ) = z0e2t .

This system has a two-dimensional stable plane (the xy–plane) and a pair of
unstable curves ζ± lying on the positive and negative z-axis, respectively.

We remark that there is nothing special about our choice of eigenvalues for
this system. Everything below works fine for eigenvalues α ± iβ and λ where
α < 0, β �= 0, and λ > 0 subject only to the important condition that λ > −α.

The boundary of S consists of three pieces: the upper and lower disks
D± given by z = ±1, r ≤ 1, and the cylindrical boundary C given by
r = 1, |z | ≤ 1. The stable plane meets C along the circle z = 0 and divides
C into two pieces, the upper and lower halves given by C+ and C−, on which
z > 0 and z < 0, respectively. We may parametrize D± by r and θ and C by θ

and z . We will concentrate in this section on C+.
Any solution of this system that starts in C+ must eventually exit from S

through D+. Hence we can define a map ψ1 : C+ → D+ given by following
solution curves that start in C+ until they first meet D+. Given (θ0, z0) ∈ C+,
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let τ = τ (θ0, z0) denote the time it takes for the solution through (θ0, z0) to
make the transit to D+. We compute immediately using z(t ) = z0e2t that
τ = − log(

√
z0). Therefore

ψ1

⎛
⎝ 1

θ0

z0

⎞
⎠ =

⎛
⎝r1

θ1

1

⎞
⎠ =

⎛
⎝

√
z0

θ0 + log
(√

z0
)

1

⎞
⎠ .

For simplicity, we will regard ψ1 as a map from the (θ0, z0) cylinder to the
(r1, θ1) plane. Note that a vertical line given by θ0 = θ∗ in C+ is mapped by
ψ1 to the spiral

z0 → (√
z0, θ∗ + log

(√
z0
))

,

which spirals down to the point r = 0 in D±, since log
√

z0 → −∞ as z0 → 0.
To define the second piece of the system, we assume that the branch ζ+

of the unstable curve leaving the origin through D+ is a homoclinic solution.
That is, ζ+ eventually returns to the stable plane. See Figure 16.1. We assume
that ζ+ first meets the cylinder C at the point r = 1, θ = 0, z = 0. More
precisely, we assume that there is a time t1 such that φt1(0, θ , 1) = (1, 0, 0) in
r , θ , z coordinates.

Therefore we may define a second map ψ2 by following solutions beginning
near r = 0 in D+ until they reach C . We will assume that ψ2 is, in fact,
defined on all of D+. In Cartesian coordinates on D+, we assume that ψ2

takes (x , y) ∈ D+ to (θ1, z1) ∈ C via the rule

ψ2

(
x
y

)
=

(
θ1

z1

)
=

(
y/2
x/2

)
.

f�

Figure 16.1 The homoclinic orbit ζ+.
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In polar coordinates, ψ2 is given by

θ1 = (r sin θ)/2

z1 = (r cos θ)/2.

Of course, this is a major assumption, since writing down such a map for a
particular nonlinear system would be virtually impossible.

Now the composition � = ψ2 ◦ ψ1 defines a Poincaré map on C+. The
map ψ1 is defined on C+ and takes values in D+, and then ψ2 takes values in
C . We have � : C+ → C where

�

(
θ0

z0

)
=

(
θ1

z1

)
=

(
1
2
√

z0 sin
(
θ0 + log(

√
z0)

)
1
2
√

z0 cos
(
θ0 + log(

√
z0)

)
)

.

See Figure 16.2.
As in the Lorenz system, we have now reduced the study of the flow of this

three-dimensional system to the study of a planar discrete dynamical system.
As we shall see in the next section, this type of mapping has incredibly rich
dynamics that may be (partially) analyzed using symbolic dynamics. For a little
taste of what is to come, we content ourselves here with just finding the fixed
points of �. To do this we need to solve

θ0 = 1

2

√
z0 sin

(
θ0 + log(

√
z0)

)
z0 = 1

2

√
z0 cos

(
θ0 + log(

√
z0)

)
.

v2(D�)

f�

D�

C�

C�

Figure 16.2 The map ψ2 :
D+ → C.



16.1 The Shil’nikov System 363

These equations look pretty formidable. However, if we square both equations
and add them, we find

θ2
0 + z2

0 = z0

4

so that

θ0 = ±1

2

√
z0 − 4z2

0 ,

which is well defined provided that 0 ≤ z0 ≤ 1/4. Substituting this expression
into the second equation above, we find that we need to solve

cos

(
±1

2

√
z0 − 4z2

0 + log
(√

z0
)) = 2

√
z0.

Now the term
√

z0 − 4z2
0 tends to zero as z0 → 0, but log(

√
z0) → −∞.

Therefore the graph of the left-hand side of this equation oscillates infinitely
many times between ±1 as z0 → 0. Hence there must be infinitely many
places where this graph meets that of 2

√
z0, and so there are infinitely many

solutions of this equation. This, in turn, yields infinitely many fixed points for
�. Each of these fixed points then corresponds to a periodic solution of the
system that starts in C+, winds a number of times around the z-axis near the
origin, and then travels around close to the homoclinic orbit until closing up
when it returns to C+. See Figure 16.3.

f�c

Figure 16.3 A periodic solution γ

near the homoclinic solution ζ+.
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We now describe the geometry of this map; in the next section we use these
ideas to investigate the dynamics of a simplified version of this map. First note
that the circles z0 = α in C+ are mapped by ψ1 to circles r = √

α centered at
r = 0 in D+ since

ψ1

(
θ0

α

)
=

(
r1

θ1

)
=

( √
α

θ0 + log(
√

α)

)
.

Then ψ2 maps these circles to circles of radius
√

α/2 centered at θ1 = z1 = 0
in C . (To be precise, these are circles in the θz–plane; in the cylinder, these
circles are “bent.”) In particular, we see that “one-half” of the domain C+ is
mapped into the lower part of the cylinder C− and therefore no longer comes
into play.

Let H denote the half-disk �(C+) ∩ {z ≥ 0}. Half-disk H has center at
θ1 = z1 = 0 and radius 1/2. The preimage of H in C+ consists of all points
(θ0, z0) whose images satisfy z1 ≥ 0, so that we must have

z1 = 1

2

√
z0 cos

(
θ0 + log(

√
z0)

) ≥ 0.

It follows that the preimage of H is given by

�−1(H ) = {(θ0, z0) | − π /2 ≤ θ0 + log(
√

z0) ≤ π /2}
where 0 < z0 ≤ 1. This is a region bounded by the two curves θ0 + log(

√
z0) =

±π /2, each of which spirals downward in C+ toward the circle z = 0.
See Figure 16.4. This follows since, as z0 → 0, we must have θ0 → ∞.
More generally, consider the curves �α given by

θ0 + log(
√

z0) = α

D�

C�

C�

H

Φ�1(H )

Figure 16.4 The half-disk H and
its preimage in C+.



16.1 The Shil’nikov System 365

for −π /2 ≤ α ≤ π /2. These curves fill the preimage �−1(H ) and each spirals
around C just as the boundary curves do. Now we have

�(�α) =
√

z0

2

(
sin α

cos α

)
,

so � maps each �α to a ray that emanates from θ = z = 0 in C+ and is
parameterized by

√
z0. In particular, � maps each of the boundary curves

�±π /2 to z = 0 in C .
Since the curves �±π /2 spiral down toward the circle z = 0 in C , it follows

that �−1(H ) meets H in infinitely many strips, which are nearly horizontal
close to z = 0. See Figure 16.4. We denote these strips by Hk for k sufficiently
large. More precisely, let Hk denote the component of �−1(H ) ∩ H for which
we have

2kπ − 1

2
≤ θ0 ≤ 2kπ + 1

2
.

The top boundary of Hk is given by a portion of the spiral �π /2 and the bottom
boundary by a piece of �−π /2. Using the fact that

−π

2
≤ θ0 + log

(√
z0
) ≤ π

2
,

we find that, if (θ0, z0) ∈ Hk , then

−(4k + 1)π − 1 ≤ −π − 2θ0 ≤ 2 log
√

z0 ≤ π − 2θ0 ≤ −(4k − 1)π + 1

from which we conclude that

exp(−(4k + 1)π − 1) ≤ z0 ≤ exp(−(4k − 1)π + 1).

Now consider the image of Hk under �. The upper and lower boundaries
of Hk are mapped to z = 0. The curves �α ∩ Hk are mapped to arcs in rays
emanating from θ = z = 0. These rays are given as above by

√
z0

2

(
sin α

cos α

)
.

In particular, the curve �0 is mapped to the vertical line θ1 = 0, z1 = √
z0/2.

Using the above estimate of the size of z0 in Hk , one checks easily that the image
of �0 lies completely above Hk when k ≥ 2. Therefore the image of �(Hk) is a
“horseshoe-shaped” region that crosses Hk twice as shown in Figure 16.5. In
particular, if k is large, the curves �α ∩ Hk meet the horsehoe �(Hk) in nearly
horizontal subarcs.
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H Φ(Hk)

Hk

Figure 16.5 The image of Hk is a
horseshoe that crosses Hk twice
in C +.

Such a map is called a horseshoe map; in the next section we discuss the
prototype of such a function.

16.2 The Horseshoe Map

Symbolic dynamics, which played such a crucial role in our understanding of
the one-dimensional logistic map, can also be used to study higher dimensional
phenomena. In this section, we describe an important example in R2, the
horseshoe map [43]. We shall see that this map has much in common with the
Poincaré map described in the previous section.

To define the horseshoe map, we consider a region D consisting of three
components: a central square S with sides of length 1, together with two
semicircles D1 and D2 at the top and bottom. D is shaped like a “stadium.”

The horseshoe map F takes D inside itself according to the following pre-
scription. First, F linearly contracts S in the horizontal direction by a factor
δ < 1/2 and expands it in the vertical direction by a factor of 1/δ so that S is
long and thin, and then F curls S back inside D in a horseshoe-shaped figure
as displayed in Figure 16.6. We stipulate that F maps S linearly onto the two
vertical “legs”of the horseshoe.

We assume that the semicircular regions D1 and D2 are mapped inside D1

as depicted. We also assume that there is a fixed point in D1 that attracts all
other orbits in D1. Note that F(D) ⊂ D and that F is one-to-one. However,
since F is not onto, the inverse of F is not globally defined. The remainder of
this section is devoted to the study of the dynamics of F in D.

Note first that the preimage of S consists of two horizontal rectangles, H0

and H1, which are mapped linearly onto the two vertical components V0 and
V1 of F(S) ∩ S. The width of V0 and V1 is therefore δ, as is the height of H0

and H1. See Figure 16.7. By linearity of F : H0 → V0 and F : H1 → V1, we
know that F takes horizontal and vertical lines in Hj to horizontal and vertical
lines in Vj for j = 1, 2. As a consequence, if both h and F(h) are horizontal
line segments in S, then the length of F(h) is δ times the length of h. Similarly,
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D1

D2

S F

F (D1) F (D2)

F(S)

Figure 16.6 The first iterate of the horseshoe map.

if v is a vertical line segment in S whose image also lies in S, then the length of
F(v) is 1/δ times the length of v .

We now describe the forward orbit of each point X ∈ D. Recall that the
forward orbit of X is given by {Fn(X) | n ≥ 0}. By assumption, F has a unique
fixed point X0 in D1 and limn→∞Fn(X) = X0 for all X ∈ D1. Also, since
F(D2) ⊂ D1, all forward orbits in D2 behave likewise. Similarly, if X ∈ S but
Fk(X) �∈ S for some k > 0, then we must have that Fk(X) ∈ D1 ∪ D2 so that
Fn(X) → X0 as n → ∞ as well. Consequently, we understand the forward
orbits of any X ∈ D whose orbit enters D1, so it suffices to consider the set of

V0 V1

H1

H0

Figure 16.7 The
rectangles H0 and H1 and
their images V0 and V1 .
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points whose forward orbits never enter D1 and so lie completely in S. Let

�+ = {X ∈ S | Fn(X) ∈ S for n = 0, 1, 2, . . .}.

We claim that �+ has properties similar to the corresponding set for the
one-dimensional logistic map described in Chapter 15.

If X ∈ �+, then F(X) ∈ S, so we must have that either X ∈ H0 or X ∈ H1,
for all other points in S are mapped into D1 or D2. Since F2(X) ∈ S as well,
we must also have F(X) ∈ H0 ∪H1, so that X ∈ F−1(H0 ∪H1). Here F−1(W )
denotes the preimage of a set W lying in D. In general, since Fn(X) ∈ S, we
have X ∈ F−n(H0 ∪ H1). Thus we may write

�+ =
∞⋂

n=0

F−n(H0 ∪ H1).

Now if H is any horizontal strip connecting the left and right boundaries of
S with height h, then F−1(H ) consists of a pair of narrower horizontal strips
of height δh, one in each of H0 and H1. The images under F of these narrower
strips are given by H ∩ V0 and H ∩ V1. In particular, if H = Hi , F−1(Hi) is a
pair of horizontal strips, each of height δ2, with one in H0 and the other in H1.
Similarly, F−1(F−1(Hi)) = F−2(Hi) consists of four horizontal strips, each of
height δ3, and F−n(Hi) consists of 2n horizontal strips of width δn+1. Hence
the same procedure we used in Section 15.5 shows that �+ is a Cantor set of
line segments, each extending horizontally across S.

The main difference between the horseshoe and the logistic map is that, in
the horseshoe case, there is a single backward orbit rather than infinitely many
such orbits. The backward orbit of X ∈ S is {F−n(X) | n = 1, 2, . . .}, provided
F−n(X) is defined and in D. If F−n(X) is not defined, then the backward
orbit of X terminates. Let �− denote the set of points whose backward orbit
is defined for all n and lies entirely in S. If X ∈ �−, then we have F−n(X) ∈ S
for all n ≥ 1, which implies that X ∈ Fn(S) for all n ≥ 1. As above, this forces
X ∈ Fn(H0 ∪ H1) for all n ≥ 1. Therefore we may also write

�− =
∞⋂

n=1

Fn(H0 ∪ H1).

On the other hand, if X ∈ S and F−1(X) ∈ S, then we must have X ∈
F(S) ∩ S, so that X ∈ V0 or X ∈ V1. Similarly, if F−2(X) ∈ S as well, then
X ∈ F2(S) ∩ S, which consists of four narrower vertical strips, two in V0 and
two in V1. In Figure 16.8 we show the image of D under F2. Arguing entirely
analogously as above, it is easy to check that �− consists of a Cantor set of
vertical lines.
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Figure 16.8 The
second iterate of the
horseshoe map.

Let

� = �+ ∩ �−

be the intersection of these two sets. Any point in � has its entire orbit (both
the backward and forward orbit) in S.

To introduce symbolic dynamics into this picture, we will assign a doubly
infinite sequence of 0’s and 1’s to each point in �. If X ∈ �, then, from the
above, we have

X ∈
∞⋂

n=−∞
Fn(H0 ∪ H1).

Thus we associate to X the itinerary

S(X) = (. . . s−2s−1 · s0s1s2 . . .)

where sj = 0 or 1 and sj = k if and only if Fj(X) ∈ Hk . This then provides us
with the symbolic dynamics on �. Let �2 denote the set of all doubly infinite
sequences of 0’s and 1’s:

�2 = {(s) = (. . . s−2s−1 · s0s1s2 . . .) | sj = 0 or 1}.
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We impose a distance function on �2 by defining

d((s), (t)) =
∞∑

i=−∞

|si − ti |
2|i|

as in Section 15.5. Thus two sequences in �2 are “close” if they agree in all k
spots where |k| ≤ n for some (large) n. Define the (two-sided) shift map σ by

σ (. . . s−2s−1 · s0s1s2 . . .) = (. . . s−2s−1s0 · s1s2 . . .).

That is, σ simply shifts each sequence in �2 one unit to the left (equivalently,
σ shifts the decimal point one unit to the right). Unlike our previous (one-
sided) shift map, this map has an inverse. Clearly, shifting one unit to the right
gives this inverse. It is easy to check that σ is a homeomorphism on �2 (see
Exercise 2 at the end of this chapter).

The shift map is now the model for the restriction of F to �. Indeed, the
itinerary map S gives a conjugacy between F on � and σ on �2. For if X ∈ �

and S(X) = (. . . s−2s−1 · s0s1s2 . . .), then we have X ∈ Hs0 , F(X) ∈ Hs1 ,
F−1(X) ∈ Hs−1 , and so forth. But then we have F(X) ∈ Hs1 , F(F(X)) ∈ Hs2 ,
X = F−1(F(X)) ∈ Hs0 , and so forth. This tells us that the itinerary of F(X) is
(. . . s−1s0 · s1s2 . . .), so that

S(F(x)) = (. . . s−1s0 · s1s2 . . .) = σ (S(X)),

which is the conjugacy equation. We leave the proof of the fact that S is a
homeomorphism to the reader (see Exercise 3).

All of the properties that held for the old one-sided shift from the previous
chapter hold for the two-sided shift σ as well. For example, there are precisely
2n periodic points of period n forσ and there is a dense orbit forσ . Moreover, F
is chaotic on � (see Exercises 4 and 5). But new phenomena are present as well.
We say that two points X1 and X2 are forward asymptotic if Fn(X1), Fn(X2) ∈ D
for all n ≥ 0 and

lim
n→∞

∣∣Fn(X1) − Fn(X2)
∣∣ = 0.

Points X1 and X2 are backward asymptotic if their backward orbits are defined
for all n and the above limit is zero as n → −∞. Intuitively, two points in D
are forward asymptotic if their orbits approach each other as n → ∞. Note
that any point that leaves S under forward iteration of F is forward asymptotic
to the fixed point X0 ∈ D1. Also, if X1 and X2 lie on the same horizontal line
in �+, then X1 and X2 are forward asymptotic. If X1 and X2 lie on the same
vertical line in �−, then they are backward asymptotic.
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We define the stable set of X to be

W s(X) = {
Z ||Fn(Z ) − Fn(X)| → 0 as n → ∞}

.

The unstable set of X is given by

W u(X) = {
Z ||F−n(X) − F−n(Z )| → 0 as n → ∞}

.

Equivalently, a point Z lies in W s(X) if X and Z are forward asymptotic.
As above, any point in S whose orbit leaves S under forward iteration of the
horseshoe map lies in the stable set of the fixed point in D1.

The stable and unstable sets of points in � are more complicated. For
example, consider the fixed point X∗, which lies in H0 and therefore has the
itinerary (. . . 00 · 000 . . .). Any point that lies on the horizontal segment �s

through X∗ lies in W s(X∗). But there are many other points in this stable set.
Suppose the point Y eventually maps into �s . Then there is an integer n such
that |Fn(Y ) − X∗| < 1. Hence

|Fn+k(Y ) − X∗| < δk

and it follows that Y ∈ W s(X∗). Thus the union of horizontal intervals given
by F−k(�s) for k = 1, 2, 3, . . . all lie in W s(X∗). The reader may easily check
that there are 2k such intervals.

Since F(D) ⊂ D, the unstable set of the fixed point X∗ assumes a somewhat
different form. The vertical line segment �u through X∗ in D clearly lies in
W u(X∗). As above, all of the forward images of �u also lie in D. One may
easily check that Fk(�u) is a “snake-like” curve in D that cuts vertically across
S exactly 2k times. See Figure 16.9. The union of these forward images is then
a very complicated curve that passes through S infinitely often. The closure of
this curve in fact contains all points in � as well as all of their unstable curves
(see Exercise 12).

The stable and unstable sets in � are easy to describe on the shift level. Let

s∗ = (. . . s∗−2s∗−1 · s∗0 s∗1 s∗2 . . .) ∈ �2.

Clearly, if t is a sequence whose entries agree with those of s∗ to the right of
some entry, then t ∈ W s(s∗). The converse of this is also true, as is shown in
Exercise 6.

A natural question that arises is the relationship between the set � for the
one-dimensional logistic map and the corresponding � for the horseshoe map.
Intuitively, it may appear that the � for the horseshoe has many more points.
However, both �’s are actually homeomorphic! This is best seen on the shift
level.
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X *

X0

Figure 16.9 The unstable
set for X∗ in D.

Let �1
2 denote the set of one-sided sequences of 0’s and 1’s and �2 the set

of two-sided such sequences. Define a map

� : �1
2 → �2

by

�(s0s1s2 . . .) = (. . . s5s3s1 · s0s2s4 . . .).

It is easy to check that � is a homeomorphism between �1
2 and �2

(see Exercise 11).
Finally, to return to the subject of Section 16.1, note that the return map

investigated in that section consists of infinitely many pieces that resemble
the horseshoe map of this section. Of course, the horseshoe map here was
effectively linear in the region where the map was chaotic, so the results in
this section do not go over immediately to prove that the return maps near
the homoclinic orbit have similar properties. This can be done; however, the
techniques for doing so (involving a generalized notion of hyperbolicity) are
beyond the scope of this book. See [13] or [36] for details.

16.3 The Double Scroll Attractor

In this section we continue the study of behavior near homoclinic solutions in
a three-dimensional system. We return to the system described in Section 16.1,
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f�

f�

Figure 16.10 The homoclinic orbits ζ±.

only now we assume that the vector field is skew-symmetric about the origin. In
particular, this means that both branches of the unstable curve at the orgin, ζ±,
now yield homoclinic solutions as depicted in Figure 16.10. We assume that
ζ+ meets the cylinder C given by r = 1, |z | ≤ 1 at the point θ = 0, z = 0,
so that ζ− meets the cylinder at the diametrically opposite point, θ = π ,
z = 0.

As in the Section 16.1, we have a Poincaré map � defined on the cylinder C .
This time, however, we cannot disregard solutions that reach C in the region
z < 0; now these solutions follow the second homoclinic solution ζ− around
until they reintersect C . Thus � is defined on all of C − {z = 0}.

As before, the Poincaré map �+ defined in the top half of the cylinder, C+,
is given by

�+
(

θ0

z0

)
=

(
θ1

z1

)
=

(
1
2
√

z0 sin
(
θ0 + log(

√
z0)

)
1
2
√

z0 cos
(
θ0 + log(

√
z0)

)
)

.

Invoking the symmetry, a computation shows that �− on C− is given by

�−
(

θ0

z0

)
=

(
θ1

z1

)
=

(
π − 1

2

√−z0 sin
(
θ0 + log(

√−z0)
)

1
2

√−z0 cos
(
θ0 + log(

√−z0)
)

)
.

where z0 < 0 and θ0 is arbitrary. Hence �(C+) is the disk of radius 1/2 centered
at θ = 0, z = 0, while �(C−) is a similar disk centered at θ = π , z = 0.



374 Chapter 16 Homoclinic Phenomena

C�

C�
	(C�)	(C�)

0 o
h

1

�1

z

Figure 16.11 �(C ±) ∩ C, where we
have displayed the cylinder C as a
strip.

The centers of these disks do not lie in the image, because these are the points
where ζ± enters C . See Figure 16.11.

Now let X ∈ C . Either the solution through X lies on the stable surface of
the origin, or else �(X) is defined, so that the solution through X returns to C
at some later time. As a consequence, each point X ∈ C has the property that

1. Either the solution through X crosses C infinitely many times as t → ∞,
so that �n(X) is defined for all n ≥ 0, or

2. The solution through X eventually meets z = 0 and hence lies on the
stable surface through the origin.

In backward time, the situation is different: only those points that lie in �(C±)
have solutions that return to C ; strictly speaking, we have not defined the
backward solution of points in C − �(C±), but we think of these solutions as
being defined in R3 and eventually meeting C , after which time these solutions
continually revisit C .

As in the case of the Lorenz attractor, we let

A =
∞⋂

n=0

�n(C)

where �n(C) denotes the closure of the set �n(C). Then we set

A =
(⋃

t∈R

φt (A)

)⋃
{(0, 0, 0)}.

Note that �n(C)−�n(C) is just the two intersection points of the homoclinic
solutions ζ± with C . Therefore we only need to add the origin to A to ensure
that A is a closed set.
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The proof of the following result is similar in spirit to the corresponding
result for the Lorenz attractor in Section 14.4.

Proposition. The set A has the following properties:

1. A is compact and invariant;
2. There is an open set U containing A such that for each X ∈ U, φt (X) ∈ U

for all t ≥ 0 and ∩t≥0φt (U ) = A. �

Thus A has all of the properties of an attractor except the transitivity property.
Nonetheless, A is traditionally called a double scroll attractor.

We cannot compute the divergence of the double scroll vector field as we
did in the Lorenz case for the simple reason that we have not written down the
formula for this system. However, we do have an expression for the Poincaré
map �. A straightforward computation shows that det D� = 1/8. That is,
the Poincaré map � shrinks areas by a factor of 1/8 at each iteration. Hence
A = ∩n≥0�n(C) has area 0 in C and we have:

Proposition. The volume of the double scroll attractor A is zero. �

16.4 Homoclinic Bifurcations

In higher dimensions, bifurcations associated with homoclinic orbits may lead
to horribly (or wonderfully, depending on your point of view) complicated
behavior. In this section we give a brief indication of some of the ramifications
of this type of bifurcation. We deal here with a specific perturbation of the
double scroll vector field that breaks both of the homoclinic connections.

The full picture of this bifurcation involves understanding the “unfolding”
of infinitely many horseshoe maps. By this we mean the following. Consider
a family of maps Fλ defined on a rectangle R with parameter λ ∈ [0, 1]. The
image of Fλ(R) is a horseshoe as displayed in Figure 16.12. When λ = 0,
Fλ(R) lies below R. As λ increases, Fλ(R) rises monotonically. When λ = 1,
Fλ(R) crosses R twice and we assume that F1 is the horseshoe map described
in Section 16.2.

Clearly, F0 has no periodic points whatsoever in R, but by the time λ has
reached 1, infinitely many periodic points have been born, and other chaotic
behavior has appeared. The family Fλ has undergone infinitely many bifur-
cations en route to the horseshoe map. How these bifurcations occur is the
subject of much contemporary research in mathematics.

The situation here is significantly more complex than the bifurcations that
occur for the one-dimensional logistic family fλ(x) = λx(1− x) with 0 ≤ λ ≤
4. The bifurcation structure of the logistic family has recently been completely
determined; the planar case is far from being resolved.
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F0(R)

F1(R)

(a) (b)

b

a
R

F0(b)

F1(b)F1(a)

F0(a)

Figure 16.12 The images Fλ(R) for (a) λ = 0 and
(b) λ = 1.

We now introduce a parameter ε into the double scroll system. When ε = 0
the system will be the double scroll system considered in the previous section.
When ε �= 0 we change the system by simply translating ζ+ ∩ C (and the
corresponding transit map) in the z direction by ε. More precisely, we assume
that the system remains unchanged in the cylindrical region r ≤ 1, |z | ≤ 1,
but we change the transit map defined on the upper disk D+ by adding (0, ε)
to the image. That is, the new Poincaré map is given on C+ by

�+
ε (θ , z) =

( 1
2

√
z sin

(
θ + log(

√
z)
)

1
2

√
z cos

(
θ + log(

√
z)
) + ε

)

and �−
ε is defined similarly using the skew-symmetry of the system. We further

assume that ε is chosen small enough (|ε| < 1/2) so that �±
ε (C) ⊂ C .

When ε > 0, ζ+ intersects C in the upper cylindrical region C+ and then,
after passing close to the origin, winds around itself before reintersecting C
a second time. When ε < 0, ζ+ now meets C in C− and then takes a very
different route back to C , this time winding around ζ−.

Recall that �+
0 has infinitely many fixed points in C±. This changes

dramatically when ε �= 0.

Proposition. The maps �±
ε each have only finitely many fixed points in C±

when ε �= 0.

Proof: To find fixed points of �+
ε , we must solve

θ =
√

z0

2
sin

(
θ + log(

√
z)
)

z =
√

z0

2
cos

(
θ + log(

√
z)
) + ε
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where ε > 0. As in Section 16.1, we must therefore have

z

4
= θ2 + (z − ε)2

so that

θ = ±1

2

√
z − 4(z − ε)2.

In particular, we must have

z − 4(z − ε)2 ≥ 0

or, equivalently,

4(z − ε)2

z
≤ 1.

This inequality holds provided z lies in the interval Iε defined by

1

8
+ ε − 1

8

√
1 + 16ε ≤ z ≤ 1

8
+ ε + 1

8

√
1 + 16ε.

This puts a further restriction on ε for �+
ε to have fixed points, namely,

ε > −1/16. Note that, when ε > −1/16, we have

1

8
+ ε − 1

8

√
1 + 16ε > 0

so that Iε has length
√

1 + 16ε/4 and this interval lies to the right of 0.
To determine the z-values of the fixed points, we must now solve

cos

(
±1

2

√
z − 4(z − ε)2 + log(

√
z)

)
= 2(z − ε)√

z

or

cos2
(

±1

2

√
z − 4(z − ε)2 + log(

√
z)

)
= 4(z − ε)2

z
.

With a little calculus, one may check that the function

g (z) = 4(z − ε)2

z
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has a single minimum 0 at z = ε and two maxima equal to 1 at the endpoints
of Iε . Meanwhile the graph of

h(z) = cos2
(

±1

2

√
z − 4(z − ε)2 + log(

√
z)

)

oscillates between ±1 only finitely many times in Iε . Hence h(z) = g (z)
at only finitely many z-values in Iε . These points are the fixed points
for �±

ε . �

Note that, as ε → 0, the interval Iε tends to [0, 1/4] and so the number of
oscillations of h in Iε increases without bound. Therefore we have

Corollary. Given N ∈ Z, there exists εN such that if 0 < ε < εN , then �+
ε

has at least N fixed points in C+. �

When ε > 0, the unstable curve misses the stable surface in its first pass
through C . Indeed, ζ+ crosses C+ at θ = 0, z = ε. This does not mean that
there are no homoclinic orbits when ε �= 0. In fact, we have the following
proposition:

Proposition. There are infinitely many values of ε for which ζ± are
homoclinic solutions that pass twice through C.

Proof: To show this, we need to find values of ε for which �+
ε (0, ε) lies on

the stable surface of the origin. Thus we must solve

0 =
√

ε

2
cos

(
0 − log(

√
ε)
) + ε

or

−2
√

ε = cos
(− log(

√
ε)
)

.

But, as in Section 16.1, the graph of cos(− log
√

ε) meets that of −2
√

ε

infinitely often. This completes the proof. �

For each of the ε-values for which ζ± is a homoclinic solution, we again have
infinitely many fixed points (for �±

ε ◦ �±
ε ) as well as a very different structure

for the attractor. Clearly, a lot is happening as ε changes. We invite the reader
who has lasted this long with this book to go and figure out everything that is
happening here. Good luck! And have fun!
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16.5 Exploration: The Chua Circuit

In this exploration, we investigate a nonlinear three-dimensional system of
differential equations related to an electrical circuit known as Chua’s circuit.
These were the first examples of circuit equations to exhibit chaotic behavior.
Indeed, for certain values of the parameters these equations exhibit behavior
similar to the double scroll attractor in Section 16.3. The original Chua circuit
equations possess a piecewise linear nonlinearity. Here we investigate a varia-
tion of these equations in which the nonlinearity is given by a cubic function.
For more details on the Chua circuit, refer to [11] and [25].

The nonlinear Chua circuit system is given by

x ′ = a(y − φ(x))

y ′ = x − y + z

z ′ = −bz

where a and b are parameters and the function φ is given by

φ(x) = 1

16
x3 − 1

6
x .

Actually, the coefficients of this polynomial are usually regarded as parameters,
but we will fix them for the sake of definiteness in this exploration. When
a = 10. 91865 . . . and b = 14, this system appears to have a pair of symmetric
homoclinic orbits as illustrated in Figure 16.13. The goal of this exploration

x

y

z

Figure 16.13 A pair of homoclinic
orbits in the nonlinear Chua system
at parameter values a =
10.91865. . . and b = 14.
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is to investigate how this system evolves as the parameter a changes. As a
consequence, we will also fix the parameter b at 14 and then let a vary. We
caution the explorer that proving any of the chaotic or bifurcation behavior
observed below is nearly impossible; virtually anything that you can do in this
regard would qualify as an interesting research result.

1. As always, begin by finding the equilibrium points.
2. Determine the types of these equilibria, perhaps by using a computer

algebra system.
3. This system possesses a symmetry; describe this symmetry and tell what

it implies for solutions.
4. Let a vary from 6 to 14. Describe any bifurcations you observe as a varies.

Be sure to choose pairs of symmetrically located initial conditions in this
and other experiments in order to see the full effect of the bifurcations.
Pay particular attention to solutions that begin near the origin.

5. Are there values of a for which there appears to be an attractor for this
system? What appears to be happening in this case? Can you construct a
model?

6. Describe the bifurcation that occurs near the following a-values:

(a) a = 6. 58

(b) a = 7. 3

(c) a = 8. 78

(d) a = 10. 77

E X E R C I S E S

1. Prove that

d[(s), (t)] =
∞∑

i=−∞

|si − ti |
2|i|

is a distance function on �2, where �2 is the set of doubly infinite
sequences of 0’s and 1’s as described in Section 16.2.

2. Prove that the shift σ is a homeomorphism of �2.
3. Prove that S : � → �2 gives a conjugacy between σ and F .
4. Construct a dense orbit for σ .
5. Prove that periodic points are dense for σ .
6. Let s∗ ∈ �2. Prove that W s(s∗) consists of precisely those sequences

whose entries agree with those of s∗ to the right of some entry of s∗.
7. Let (0) = (. . . 00. 000 . . .) ∈ �2. A sequence s ∈ �2 is called homoclinic

to (0) if s ∈ W s(0) ∩ W u(0). Describe the entries of a sequence that is
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homoclinic to (0). Prove that sequences that are homoclinic to (0) are
dense in �2.

8. Let (1) = (. . . 11. 111 . . .) ∈ �2. A sequence s is a heteroclinic sequence if
s ∈ W s(0)∩W u(1). Describe the entries of such a heteroclinic sequence.
Prove that such sequences are dense in �2.

9. Generalize the definitions of homoclinic and heteroclinic points to
arbitrary periodic points for σ and reprove Exercises 7 and 8 in this
case.

10. Prove that the set of homoclinic points to a given periodic point is
countable.

11. Let �1
2 denote the set of one-sided sequences of 0’s and 1’s. Define

� : �1
2 → �2 by

�(s0s1s2 . . .) = (. . . s5s3s1 · s0s2s4 . . .).

Prove that � is a homeomorphism.
12. Let X∗ denote the fixed point of F in H0 for the horseshoe map. Prove

that the closure of W u(X∗) contains all points in � as well as points on
their unstable curves.

13. Let R : �2 → �2 be defined by

R(. . . s−2s−1. s0s1s2 . . .) = (. . . s2s1s0. s−1s−2 . . .).

Prove that R ◦ R = id and that σ ◦ R = R ◦ σ−1. Conclude that
σ = U ◦ R where U is a map that satisfies U ◦ U = id . Maps that
are their own inverses are called involutions. They represent very simple
types of dynamical systems. Hence the shift may be decomposed into a
composition of two such maps.

14. Let s be a sequence that is fixed by R, where R is as defined in the previous
exercise. Suppose that σ n(s) is also fixed by R. Prove that s is a periodic
point of σ of period 2n.

15. Rework the previous exercise, assuming that σ n(s) is fixed by U , where
U is given as in Exercise 13. What is the period of s?

16. For the Lorenz system in Chapter 14, investigate numerically the bifur-
cation that takes place for r between 13. 92 and 13. 96, with σ = 10 and
b = 8/3.
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17
Existence and

Uniqueness Revisited

In this chapter we return to the material presented in Chapter 7, this time filling
in all of the technical details and proofs that were omitted earlier. As a result,
this chapter is more difficult than the preceding ones; it is, however, central
to the rigorous study of ordinary differential equations. To comprehend thor-
oughly many of the proofs in this section, the reader should be familiar with
such topics from real analysis as uniform continuity, uniform convergence of
functions, and compact sets.

17.1 The Existence and Uniqueness

Theorem

Consider the autonomous system of differential equations

X ′ = F(X)

where F : Rn → Rn . In previous chapters, we have usually assumed that F
was C∞; here we will relax this condition and assume that F is only C1. Recall
that this means that F is continuously differentiable. That is, F and its first
partial derivatives exist and are continuous functions on Rn . For the first few

383
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sections of this chapter, we will deal only with autonomous equations; later
we will assume that F depends on t as well as X .

As we know, a solution of this system is a differentiable function X : J → Rn

defined on some interval J ⊂ R such that for all t ∈ J

X ′(t ) = F(X(t )).

Geometrically, X(t ) is a curve in Rn whose tangent vector X ′(t ) equals
F(X(t )); as in previous chapters, we think of this vector as being based at
X(t ), so that the map F : Rn → Rn defines a vector field on Rn . An initial
condition or initial value for a solution X : J → Rn is a specification of the
form X(t0) = X0 where t0 ∈ J and X0 ∈ Rn . For simplicity, we usually take
t0 = 0.

A nonlinear differential equation may have several solutions that satisfy
a given initial condition. For example, consider the first-order nonlinear
differential equation

x ′ = 3x2/3.

In Chapter 7 we saw that the identically zero function u0: R → R given by
u0(t ) ≡ 0 is a solution satisfying the initial condition u(0) = 0. But u1(t ) = t 3

is also a solution satisfying this initial condition, and, in addition, for any τ > 0,
the function given by

uτ (t ) =
{

0 if t ≤ τ

(t − τ )3 if t > τ

is also a solution satisfying the initial condition uτ (0) = 0.
Besides uniqueness, there is also the question of existence of solutions. When

we dealt with linear systems, we were able to compute solutions explicitly. For
nonlinear systems, this is often not possible, as we have seen. Moreover, certain
initial conditions may not give rise to any solutions. For example, as we saw
in Chapter 7, the differential equation

x ′ =
{

1 if x < 0
−1 if x ≥ 0

has no solution that satisfies x(0) = 0.
Thus it is clear that, to ensure existence and uniqueness of solutions, extra

conditions must be imposed on the function F . The assumption that F is
continuously differentiable turns out to be sufficient, as we shall see. In the
first example above, F is not differentiable at the problematic point x = 0,
while in the second example, F is not continuous at x = 0.
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The following is the fundamental local theorem of ordinary differential
equations.

The Existence and Uniqueness Theorem. Consider the initial value
problem

X ′ = F(X), X(0) = X0

where X0 ∈ Rn. Suppose that F : Rn → Rn is C1. Then there exists a unique
solution of this initial value problem. More precisely, there exists a > 0 and a
unique solution

X : (−a, a) → R
n

of this differential equation satisfying the initial condition

X(0) = X0. �

We will prove this theorem in the next section.

17.2 Proof of Existence and Uniqueness

We need to recall some multivariable calculus. Let F : Rn → Rn . In
coordinates (x1, . . . , xn) on Rn , we write

F(X) = (f1(x1, . . . , xn), . . . , fn(x1, . . . , xn)).

Let DFX be the derivative of F at the point X ∈ Rn . We may view this derivative
in two slightly different ways. From one point of view, DFX is a linear map
defined for each point X ∈ Rn ; this linear map assigns to each vector U ∈ Rn

the vector

DFX (U ) = lim
h→0

F(X + hU ) − F(X)

h
,

where h ∈ R. Equivalently, from the matrix point of view, DFX is the n × n
Jacobian matrix

DFX =
(

∂fi
∂xj

)

where each derivative is evaluated at (x1, . . . , xn). Thus the derivative may be
viewed as a function that associates different linear maps or matrices to each
point in Rn . That is, DF : Rn → L(Rn).
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As earlier, the function F is said to be continuously differentiable, or C1, if
all of the partial derivatives of the fj exist and are continuous. We will assume
for the remainder of this chapter that F is C1. For each X ∈ Rn , we define the
norm |DFX | of the Jacobian matrix DFX by

|DFX | = sup
|U |=1

|DFX (U )|

where U ∈ Rn . Note that |DFX | is not necessarily the magnitude of the largest
eigenvalue of the Jacobian matrix at X .

Example. Suppose

DFX =
(

2 0
0 1

)
.

Then, indeed, |DFX | = 2, and 2 is the largest eigenvalue of DFX . However, if

DFX =
(

1 1
0 1

)
,

then

|DFX | = sup
0≤θ≤2π

∣∣∣∣
(

1 1
0 1

)(
cos θ

sin θ

) ∣∣∣∣
= sup

0≤θ≤2π

√
(cos θ + sin θ)2 + sin2 θ

= sup
0≤θ≤2π

√
1 + 2 cos θ sin θ + sin2 θ

> 1

whereas 1 is the largest eigenvalue. �

We do, however, have

|DFX (V )| ≤ |DFX ||V |
for any vector V ∈ Rn . Indeed, if we write V = (V /|V |) |V |, then we have

|DFX (V )| = ∣∣DFX
(
V /|V |)∣∣ |V | ≤ |DFX ||V |

since V /|V | has magnitude 1. Moreover, the fact that F : Rn → Rn is C1

implies that the function Rn → L(Rn), which sends X → DFX , is a
continuous function.
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Let O ⊂ Rn be an open set. A function F : O → Rn is said to be Lipschitz
on O if there exists a constant K such that

|F(Y ) − F(X)| ≤ K |Y − X |
for all X , Y ∈ O. We call K a Lipschitz constant for F . More generally, we say
that F is locally Lipschitz if each point in O has a neighborhood O′ in O such
that the restriction F to O′ is Lipschitz. The Lipschitz constant of F |O′ may
vary with the neighborhoods O′.

Another important notion is that of compactness. We say that a set C ⊂ Rn

is compact if C is closed and bounded. An important fact is that, if f : C → R

is continuous and C is compact, then first of all f is bounded on C and,
secondly, f actually attains its maximum on C. See Exercise 13 at the end of this
chapter.

Lemma. Suppose that the function F : O → Rn is C1. Then F is locally
Lipschitz.

Proof: Suppose that F : O → Rn is C1 and let X0 ∈ O. Let ε > 0 be so small
that the closed ballOε of radius ε about X0 is contained inO. Let K be an upper
bound for |DFX | on Oε ; this bound exists because DFX is continuous and Oε

is compact. The set Oε is convex ; that is, if Y , Z ∈ Oε , then the straight-line
segment connecting Y to Z is contained in Oε . This straight line is given by
Y + sU ∈ Oε , where U = Z − Y and 0 ≤ s ≤ 1. Let ψ(s) = F(Y + sU ).
Using the chain rule we find

ψ ′(s) = DFY +sU (U ).

Therefore

F(Z ) − F(Y ) = ψ(1) − ψ(0)

=
∫ 1

0
ψ ′(s) ds

=
∫ 1

0
DFY +sU (U ) ds.

Thus we have

|F(Z ) − F(Y )| ≤
∫ 1

0
K |U | ds = K |Z − Y |. �

The following remark is implicit in the proof of the lemma: If O is convex,
and if |DFX | ≤ K for all X ∈ O, then K is a Lipschitz constant for F |O.
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Suppose that J is an open interval containing zero and X : J → O satisfies

X ′(t ) = F(X(t ))

with X(0) = X0. Integrating, we have

X(t ) = X0 +
∫ t

0
F(X(s)) ds.

This is the integral form of the differential equation X ′ = F(X). Conversely,
if X : J → O satisfies this integral equation, then X(0) = X0 and X satisfies
X ′ = F(X), as is seen by differentiation. Thus the integral and differential
forms of this equation are equivalent as equations for X : J → O. To prove
the existence of solutions, we will use the integral form of the differential
equation.

We now proceed with the proof of existence. Here are our assumptions:

1. Oρ is the closed ball of radius ρ > 0 centered at X0.
2. There is a Lipschitz constant K for F on Oρ .
3. |F(X)| ≤ M on Oρ .
4. Choose a < min{ρ/M , 1/K } and let J = [−a, a].

We will first define a sequence of functions U0, U1, . . . from J to Oρ . Then we
will prove that these functions converge uniformly to a function satisfying the
differential equation. Later we will show that there are no other such solutions.
The lemma that is used to obtain the convergence of the Uk is the following:

Lemma from Analysis. Suppose Uk : J → Rn , k = 0, 1, 2, . . . is a sequence
of continuous functions defined on a closed interval J that satisfy: Given ε > 0,
there is some N > 0 such that for every p, q > N

max
t∈J

|Up(t ) − Uq(t )| < ε.

Then there is a continuous function U : J → Rn such that

max
t∈J

|Uk(t ) − U (t )| → 0 as k → ∞.

Moreover, for any t with |t | ≤ a,

lim
k→∞

∫ t

0
Uk(s) ds =

∫ t

0
U (s) ds. �



17.2 Proof of Existence and Uniqueness 389

This type of convergence is called uniform convergence of the functions Uk .
This lemma is proved in elementary analysis books and will not be proved
here. See [38].

The sequence of functions Uk is defined recursively using an iteration
scheme known as Picard iteration. We gave several illustrative examples of
this iterative scheme back in Chapter 7. Let

U0(t ) ≡ X0.

For t ∈ J define

U1(t ) = X0 +
∫ t

0
F(U0(s)) ds = X0 + tF(X0).

Since |t | ≤ a and |F(X0)| ≤ M , it follows that

|U1(t ) − X0| = |t ||F(X0)| ≤ aM ≤ ρ

so that U1(t ) ∈ Oρ for all t ∈ J . By induction, assume that Uk(t ) has been
defined and that |Uk(t ) − X0| ≤ ρ for all t ∈ J . Then let

Uk+1(t ) = X0 +
∫ t

0
F(Uk(s)) ds.

This makes sense since Uk(s) ∈ Oρ so the integrand is defined. We show that
|Uk+1(t ) − X0| ≤ ρ so that Uk+1(t ) ∈ Oρ for t ∈ J ; this will imply that the
sequence can be continued to Uk+2, Uk+3, and so on. This is shown as follows:

|Uk+1(t ) − X0| ≤
∫ t

0
|F(Uk(s))| ds

≤
∫ t

0
M ds

≤ Ma < ρ.

Next, we prove that there is a constant L ≥ 0 such that, for all k ≥ 0,∣∣Uk+1(t ) − Uk(t )
∣∣ ≤ (aK )kL.

Let L be the maximum of |U1(t ) − U0(t )| over −a ≤ t ≤ a. By the above,
L ≤ aM . We have

|U2(t ) − U1(t )| =
∣∣∣∣
∫ t

0
F(U1(s)) − F(U0(s)) ds

∣∣∣∣
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≤
∫ t

0
K |U1(s) − U0(s)| ds

≤ aKL.

Assuming by induction that, for some k ≥ 2, we have already proved

|Uk(t ) − Uk−1(t )| ≤ (aK )k−1L

for |t | ≤ a, we then have

|Uk+1(t ) − Uk(t )| ≤
∫ t

0
|F(Uk(s)) − F(Uk−1(s))| ds

≤ K

∫ t

0
|Uk(s) − Uk−1(s)| ds

≤ (aK )(aK )k−1L

= (aK )kL.

Let α = aK , so that α < 1 by assumption. Given any ε > 0, we may choose N
large enough so that, for any r > s > N we have

|Ur (t ) − Us(t )| ≤
∞∑

k=N

∣∣Uk+1(t ) − Uk(t )
∣∣

≤
∞∑

k=N

αkL

≤ ε

since the tail of the geometric series may be made as small as we please.
By the lemma from analysis, this shows that the sequence of functions

U0, U1, . . . converges uniformly to a continuous function X : J → Rn . From
the identity

Uk+1(t ) = X0 +
∫ t

0
F(Uk(s)) ds,

we find by taking limits of both sides that

X(t ) = X0 + lim
k→∞

∫ t

0
F(Uk(s)) ds
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= X0 +
∫ t

0

(
lim

k→∞
F(Uk(s))

)
ds

= X0 +
∫ t

0
F(X(s)) ds.

The second equality also follows from the Lemma from analysis. Therefore
X : J → Oρ satisfies the integral form of the differential equation and hence
is a solution of the equation itself. In particular, it follows that X : J → Oρ

is C1.
This takes care of the existence part of the theorem. Now we turn to the

uniqueness part.
Suppose that X , Y : J → O are two solutions of the differential equation

satisfying X(0) = Y (0) = X0, where, as above, J is the closed interval [−a, a].
We will show that X(t ) = Y (t ) for all t ∈ J . Let

Q = max
t∈J

|X(t ) − Y (t )|.

This maximum is attained at some point t1 ∈ J . Then

Q = |X(t1) − Y (t1)| =
∣∣∣∣
∫ t1

0
(X ′(s) − Y ′(s)) ds

∣∣∣∣
≤

∫ t1

0
|F(X(s)) − F(Y (s))| ds

≤
∫ t1

0
K |X(s) − Y (s)| ds

≤ aKQ.

Since aK < 1, this is impossible unless Q = 0. Therefore

X(t ) ≡ Y (t ).

This completes the proof of the theorem. �

To summarize this result, we have shown: Given any ball Oρ ⊂ O of radius
ρ about X0 on which

1. |F(X)| ≤ M ;
2. F has Lipschitz constant K ; and
3. 0 < a < min{ρ/M , 1/K };

there is a unique solution X : [−a, a] → O of the differential equation such
that X(0) = X0. In particular, this result holds if F is C1 on O.
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Some remarks are in order. First note that two solution curves of X ′ = F(X)
cannot cross if F satisfies the hypotheses of the theorem. This is an imme-
diate consequence of uniqueness but is worth emphasizing geometrically.
Suppose X : J → O and Y : J1 → O are two solutions of X ′ = F(X) for
which X(t1) = Y (t2). If t1 = t2 we are done immediately by the theorem.
If t1 �= t2, then let Y1(t ) = Y (t2 − t1 + t ). Then Y1 is also a solution of
the system. Since Y1(t1) = Y (t2) = X(t1), it follows that Y1 and X agree
near t1 by the uniqueness statement of the theorem, and hence so do X(t )
and Y (t ).

We emphasize the point that if Y (t ) is a solution, then so too is Y1(t ) =
Y (t + t1) for any constant t1. In particular, if a solution curve X : J → O
of X ′ = F(X) satisfies X(t1) = X(t1 + w) for some t1 and w > 0, then that
solution curve must in fact be a periodic solution in the sense that X(t +w) =
X(t ) for all t .

17.3 Continuous Dependence on Initial

Conditions

For the existence and uniqueness theorem to be at all interesting in any physical
or even mathematical sense, the result needs to be complemented by the
property that the solution X(t ) depends continuously on the initial condition
X(0). The next theorem gives a precise statement of this property.

Theorem. Let O ⊂ Rn be open and suppose F : O → Rn has Lipschitz
constant K . Let Y (t ) and Z (t ) be solutions of X ′ = F(X) which remain in O
and are defined on the interval [t0, t1]. Then, for all t ∈ [t0, t1], we have

|Y (t ) − Z (t )| ≤ |Y (t0) − Z (t0)| exp(K (t − t0)). �

Note that this result says that, if the solutions Y (t ) and Z (t ) start out close
together, then they remain close together for t near t0. While these solutions
may separate from each other, they do so no faster than exponentially. In
particular, we have this corollary:

Corollary. (Continuous Dependence on Initial Conditions) Let
φ(t , X) be the flow of the system X ′ = F(X) where F is C1. Then φ is a
continuous function of X. �

The proof depends on a famous inequality that we prove first.
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Gronwall’s Inequality. Let u : [0, α] → R be continuous and nonnegative.
Suppose C ≥ 0 and K ≥ 0 are such that

u(t ) ≤ C +
∫ t

0
Ku(s) ds

for all t ∈ [0, α]. Then, for all t in this interval,

u(t ) ≤ CeKt .

Proof: Suppose first that C > 0. Let

U (t ) = C +
∫ t

0
Ku(s) ds > 0.

Then u(t ) ≤ U (t ). Differentiating U , we find

U ′(t ) = Ku(t ).

Therefore,

U ′(t )
U (t )

= Ku(t )

U (t )
≤ K .

Hence

d

dt
(log U (t )) ≤ K

so that

log U (t ) ≤ log U (0) + Kt

by integration. Since U (0) = C , we have by exponentiation

U (t ) ≤ CeKt ,

and so

u(t ) ≤ CeKt .

If C = 0, we may apply the above argument to a sequence of positive ci that
tends to 0 as i → ∞. This proves Gronwall’s inequality. �
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Proof: We turn now to the proof of the theorem. Define

v(t ) = |Y (t ) − Z (t )|.
Since

Y (t ) − Z (t ) = Y (t0) − Z (t0) +
∫ t

t0

(
F(Y (s)) − F(Z (s))

)
ds,

we have

v(t ) ≤ v(t0) +
∫ t

t0

Kv(s) ds.

Now apply Gronwall’s inequality to the function u(t ) = v(t + t0) to get

u(t ) = v(t + t0) ≤ v(t0) +
∫ t+t0

t0

Kv(s) ds

= v(t0) +
∫ t

0
Ku(τ ) dτ

so v(t + t0) ≤ v(t0) exp(Kt ) or v(t ) ≤ v(t0) exp(K (t − t0)), which is just the
conclusion of the theorem. �

As we have seen, differential equations that arise in applications often
depend on parameters. For example, the harmonic oscillator equations depend
on the parameters b (the damping constant) and k (the spring constant); cir-
cuit equations depend on the resistance, capacitance, and inductance; and so
forth. The natural question is how do solutions of these equations depend on
these parameters? As in the previous case, solutions depend continuously on
these parameters provided that the system depends on the parameters in a
continuously differentiable fashion. We can see this easily by using a special
little trick. Suppose the system

X ′ = Fa(X)

depends on the parameter a in a C1 fashion. Let’s consider an “artificially”
augmented system of differential equations given by

x ′
1 = f1(x1, . . . , xn , a)

...
x ′

n = fn(x1, . . . , xn , a)

a′ = 0.
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This is now an autonomous system of n + 1 differential equations. While this
expansion of the system may seem trivial, we may now invoke the previous
result about continuous dependence of solutions on initial conditions to verify
that solutions of the original system depend continuously on a as well.

Theorem. (Continuous Dependence on Parameters) Let X ′ = Fa(X)
be a system of differential equations for which Fa is continuously differentiable
in both X and a. Then the flow of this system depends continuously on a as
well as X . �

17.4 Extending Solutions

Suppose we have two solutions Y (t ), Z (t ) of the differential equation X ′ =
F(X) where F is C1. Suppose also that Y (t ) and Z (t ) satisfy Y (t0) = Z (t0) and
that both solutions are defined on an interval J about t0. Now the existence
and uniqueness theorem guarantees that Y (t ) = Z (t ) for all t in an interval
about t0 which may a priori be smaller than J . However, this is not the case. To
see this, suppose that J ∗ is the largest interval on which Y (t ) = Z (t ). If J ∗ �= J ,
there is an endpoint t1 of J ∗ and t1 ∈ J . By continuity, we have Y (t1) = Z (t1).
Now the uniqueness part of the theorem guarantees that, in fact, Y (t ) and
Z (t ) agree on an interval containing t1. This contradicts the assertion that J ∗
is the largest interval on which the two solutions agree.

Thus we can always assume that we have a unique solution defined on a
maximal time domain. There is, however, no guarantee that a solution X(t )
can be defined for all time. For example, the differential equation

x ′ = 1 + x2,

has as solutions the functions x(t ) = tan(t − c) for any constant c . Such a
function cannot be extended over an interval larger than

c − π

2
< t < c + π

2

since x(t ) → ±∞ as t → c ± π /2.
Next, we investigate what happens to a solution as the limits of its domain

are approached. We state the result only for the right-hand limit; the other
case is similar.

Theorem. Let O ⊂ Rn be open, and let F : O → Rn be C1. Let Y (t ) be a
solution of X ′ = F(X) defined on a maximal open interval J = (α, β) ⊂ R with
β < ∞. Then, given any compact set C ⊂ O, there is some t0 ∈ (α, β) with
Y (t0) �∈ C.
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This theorem says that if a solution Y (t ) cannot be extended to a larger time
interval, then this solution leaves any compact set in O. This implies that, as
t → β, either Y (t ) accumulates on the boundary of O or else a subsequence
|Y (ti)| tends to ∞ (or both).

Proof: Suppose Y (t ) ⊂ C for all t ∈ (α, β). Since F is continuous and C is
compact, there exists M > 0 such that |F(X)| ≤ M for all X ∈ C.

Let γ ∈ (α, β). We claim that Y extends to a continuous function
Y : [γ , β] → C. To see this, it suffices to prove that Y is uniformly continuous
on J . For t0 < t1 ∈ J we have

|Y (t0) − Y (t1)| =
∣∣∣∣
∫ t1

t0

Y ′(s) ds

∣∣∣∣
≤

∫ t1

t0

|F(Y (s))| ds

≤ (t1 − t0)M .

This proves uniform continuity on J . Hence we may define

Y (β) = lim
t→β

Y (t ).

We next claim that the extended curve Y : [γ , β] → Rn is differentiable at
β and is a solution of the differential equation. We have

Y (β) = Y (γ ) + lim
t→β

∫ t

γ

Y ′(s) ds

= Y (γ ) + lim
t→β

∫ t

γ

F(Y (s)) ds

= Y (γ ) +
∫ β

γ

F(Y (s)) ds.

where we have used uniform continuity of F(Y (s)). Therefore

Y (t ) = Y (γ ) +
∫ t

γ

F(Y (s)) ds

for all t between γ and β. Hence Y is differentiable at β, and, in fact, Y ′(β) =
F(Y (β)). Therefore Y is a solution on [γ , β]. Since there must then be a
solution on an interval [β, δ) for some δ > β, we can extend Y to the interval
(α, δ). Hence (α, β) could not have been a maximal domain of a solution. This
completes the proof of the theorem. �
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The following important fact follows immediately from this theorem.

Corollary. Let C be a compact subset of the open set O ⊂ Rn and let
F : O → Rn be C1. Let Y0 ∈ C and suppose that every solution curve of the
form Y : [0, β] → O with Y (0) = Y0 lies entirely in C. Then there is a solution
Y : [0, ∞) → O satisfying Y (0) = Y0, and Y (t ) ∈ C for all t ≥ 0, so this
solution is defined for all (forward) time. �

Given these results, we can now give a slightly stronger theorem on the
continuity of solutions in terms of initial conditions than the result discussed
in Section 17.3. In that section we assumed that both solutions were defined on
the same interval. In the next theorem we drop this requirement. The theorem
shows that solutions starting at nearby points are defined on the same closed
interval and also remain close to each other on this interval.

Theorem. Let F : O → Rn be C1. Let Y (t ) be a solution of X ′ = F(X) that is
defined on the closed interval [t0, t1], with Y (t0) = Y0. There is a neighborhood
U ⊂ Rn of Y0 and a constant K such that, if Z0 ∈ U, then there is a unique
solution Z (t ) also defined on [t0, t1] with Z (t0) = Z0. Moreover Z satisfies

|Y (t ) − Z (t )| ≤ K |Y0 − Z0| exp(K (t − t0))

for all t ∈ [t0, t1]. �

For the proof we will need the following lemma.

Lemma. If F : O → Rn is locally Lipschitz and C ⊂ O is a compact set, then
F |C is Lipschitz.

Proof: Suppose not. Then for every k > 0, no matter how large, we can find
X and Y in C with

|F(X) − F(Y )| > k|X − Y |.

In particular, we can find Xn , Yn such that

|F(Xn) − F(Yn)| ≥ n|Xn − Yn| for n = 1, 2, . . . .

Since C is compact, we can choose convergent subsequences of the Xn and
Yn . Relabeling, we may assume Xn → X∗ and Yn → Y ∗ with X∗ and Y ∗ in C.
Note that we must have X∗ = Y ∗, since, for all n,

|X∗ − Y ∗| = lim
n→∞ |Xn − Yn| ≤ n−1|F(Xn) − F(Yn)| ≤ n−12M ,
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where M is the maximum value of |F(X)| on C. There is a neighborhood O0

of X∗ on which F |O0 has Lipschitz constant K . Also there is an n0 such that
Xn ∈ O0 if n ≥ n0. Therefore, for n ≥ n0,

|F(Xn) − F(Yn)| ≤ K |Xn − Yn|,
which contradicts the assertion above for n > n0. This proves the
lemma. �

Proof: The proof of the theorem now goes as follows: By compactness of
[t0, t1], there exists ε > 0 such that X ∈ O if |X − Y (t )| ≤ ε for some
t ∈ [t0, t1]. The set of all such points is a compact subset C of O. The C1 map
F is locally Lipschitz, as we saw in Section 17.2. By the lemma, it follows that
F |C has a Lipschitz constant K .

Let δ > 0 be so small that δ ≤ ε and δ exp(K |t1 − t0|) ≤ ε. We claim that
if |Z0 − Y0| < δ, then there is a unique solution through Z0 defined on all of
[t0, t1]. First of all, Z0 ∈ O since |Z0 − Y (t0)| < ε, so there is a solution Z (t )
through Z0 on a maximal interval [t0, β). We claim that β > t1. For suppose
β ≤ t1. Then, by Gronwall’s inequality, for all t ∈ [t0, β), we have

|Z (t ) − Y (t )| ≤ |Z0 − Y0| exp(K |t − t0|)
≤ δ exp(K |t − t0|)
≤ ε.

Thus Z (t ) lies in the compact set C. By the results above, [t0, β) could
not be a maximal solution domain. Therefore Z (t ) is defined on [t0, t1].
The uniqueness of Z (t ) then follows immediately. This completes the
proof. �

17.5 Nonautonomous Systems

We turn our attention briefly in this section to nonautonomous differ-
ential equations. Even though our main emphasis in this book has been
on autonomous equations, the theory of nonautonomous (linear) equa-
tions is needed as a technical device for establishing the differentiability of
autonomous flows.

Let O ⊂ R × Rn be an open set, and let F : O → Rn be a function that
is C1 in X but perhaps only continuous in t . Let (t0, X0) ∈ O. Consider the
nonautonomous differential equation

X ′(t ) = F(t , X), X(t0) = X0.
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As usual, a solution of this system is a differentiable curve X(t ) in Rn defined
for t in some interval J having the following properties:

1. t0 ∈ J and X(t0) = X0,
2. (t , X(t )) ∈ O and X ′(t ) = F(t , X(t )) for all t ∈ J .

The fundamental local theorem for nonautonomous equations is as follows:

Theorem. Let O ⊂ R × Rn be open and F : O → Rn a function that
is C1 in X and continuous in t . If (t0, X0) ∈ O, there is an open interval J
containing t and a unique solution of X ′ = F(t , X) defined on J and satisfying
X(t0) = X0. �

The proof is the same as that of the fundamental theorem for autonomous
equations (Section 17.2), the extra variable t being inserted where appropriate.
An important corollary of this result follows:

Corollary. Let A(t ) be a continuous family of n × n matrices. Let (t0, X0) ∈
J × Rn. Then the initial value problem

X ′ = A(t )X , X(t0) = X0

has a unique solution on all of J . �

For the proof, see Exercise 14 at the end of the chapter.
We call the function F(t , X) Lipschitz in X if there is a constant K ≥ 0 such

that

|F (t , X1) − F (t , X2) | ≤ K |X1 − X2|
for all (t , X1) and (t , X2) in O. Locally Lipschitz in X is defined analogously.

As in the autonomous case, solutions of nonautonomous equations are
continuous with respect to initial conditions if F(t , X) is locally Lipschitz in
X . We leave the precise formulation and proof of this fact to the reader.

A different kind of continuity is continuity of solutions as functions of the
data F(t , X). That is, if F : O → Rn and G : O → Rn are both C1 in X ,
and |F − G| is uniformly small, we expect solutions to X ′ = F(t , X) and
Y ′ = G(t , Y ), having the same initial values, to be close. This is true; in fact,
we have the following more precise result:

Theorem. Let O ⊂ R × Rn be an open set containing (0, X0) and suppose
that F , G : O → Rn are C1 in X and continuous in t . Suppose also that for all
(t , X) ∈ O,

|F(t , X) − G(t , X)| < ε.
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Let K be a Lipschitz constant in X for F(t , X). If X (t ) and Y (t ) are solutions of
the equations X ′ = F(t , X) and Y ′ = G(t , Y ), respectively, on some interval J,
and X(0) = X0 = Y (0), then

|X(t ) − Y (t )| ≤ ε

K

(
exp(K |t |) − 1

)
for all t ∈ J .

Proof: For t ∈ J we have

X(t ) − Y (t ) =
∫ t

0
(X ′(s) − Y ′(s)) ds

=
∫ t

0
(F(s, X(s)) − G(s, Y (s))) ds.

Hence

|X(t ) − Y (t )| ≤
∫ t

0
|F(s, X(s)) − F(s, Y (s))| ds

+
∫ t

0
|F(s, Y (s)) − G(s, Y (s))| ds

≤
∫ t

0
K |X(s) − Y (s)| ds +

∫ t

0
ε ds.

Let u(t ) = |X(t ) − Y (t )|. Then

u(t ) ≤ K

∫ t

0

(
u(s) + ε

K

)
ds,

so that

u(t ) + ε

K
≤ ε

K
+ K

∫ t

0

(
u(s) + ε

K

)
ds.

It follows from Gronwall’s inequality that

u(t ) + ε

K
≤ ε

K
exp (K |t |) ,

which yields the theorem. �

17.6 Differentiability of the Flow

Now we return to the case of an autonomous differential equation X ′ = F(X)
where F is assumed to be C1. Our aim is to show that the flow φ(t , X) = φt (X)
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determined by this equation is a C1 function of the two variables, and to
identify ∂φ/∂X . We know, of course, that φ is continuously differentiable in
the variable t , so it suffices to prove differentiability in X .

Toward that end let X(t ) be a particular solution of the system defined for
t in a closed interval J about 0. Suppose X(0) = X0. For each t ∈ J let

A(t ) = DFX(t ).

That is, A(t ) denotes the Jacobian matrix of F at the point X(t ). Since F is C1,
A(t ) is continuous. We define the nonautonomous linear equation

U ′ = A(t )U .

This equation is known as the variational equation along the solution X(t ).
From the previous section we know that the variational equation has a solution
on all of J for every initial condition U (0) = U0. Also, as in the autonomous
case, solutions of this system satisfy the linearity principle.

The significance of this equation is that, if U0 is small, then the function

t → X(t ) + U (t )

is a good approximation to the solution X(t ) of the original autonomous
equation with initial value X(0) = X0 + U0.

To make this precise, suppose that U (t , ξ) is the solution of the variational
equation that satisfies U (0, ξ) = ξ where ξ ∈ Rn . If ξ and X0 + ξ belong to
O, let Y (t , ξ) be the solution of the autonomous equation X ′ = F(X) that
satisfies Y (0) = X0 + ξ .

Proposition. Let J be the closed interval containing 0 on which X(t ) is
defined. Then

lim
ξ→0

|Y (t , ξ) − X(t ) − U (t , ξ)|
|ξ |

converges to 0 uniformly for t ∈ J . �

This means that for every ε > 0, there exists δ > 0 such that if |ξ | ≤ δ, then

|Y (t , ξ) − (X(t ) + U (t , ξ))| ≤ ε|ξ |

for all t ∈ J . Thus as ξ → 0, the curve t → X(t ) + U (t , ξ) is a better and
better approximation to Y (t , ξ). In many applications X(t ) + U (t , ξ) is used
in place of Y (t , ξ); this is convenient because U (t , ξ) is linear in ξ .
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We will prove the proposition momentarily, but first we use this result to
prove the following theorem:

Theorem. (Smoothness of Flows) The flow φ(t , X) of the autonomous
system X ′ = F(X) is a C1 function; that is, ∂φ/∂t and ∂φ/∂X exist and are
continuous in t and X.

Proof: Of course, ∂φ(t , X)/∂t is just F(φt (X)), which is continuous. To
compute ∂φ/∂X we have, for small ξ ,

φ(t , X0 + ξ) − φ(t , X0) = Y (t , ξ) − X(t ).

The proposition now implies that ∂φ(t , X0)/∂X is the linear map ξ → U (t , ξ).
The continuity of ∂φ/∂X is then a consequence of the continuity in initial
conditions and data of solutions for the variational equation. �

Denoting the flow again by φt (X), we note that for each t the derivative
Dφt (X) of the map φt at X ∈ O is the same as ∂φ(t , X)/∂X . We call this the
space derivative of the flow, as opposed to the time derivative ∂φ(t , X)/∂t .

The proof of the preceding theorem actually shows that Dφt (X) is the solu-
tion of an initial value problem in the space of linear maps on Rn : for each
X0 ∈ O the space derivative of the flow satisfies the differential equation

d

dt
(Dφt (X0)) = DFφt (X0)Dφt (X0),

with the initial condition Dφ0(X0) = I . Here we may regard X0 as a parameter.
An important special case is that of an equilibrium solution X̄ so that

φt (X̄) ≡ X̄ . Putting DFX̄ = A, we get the differential equation

d

dt
(Dφt (X̄)) = ADφt (X̄),

with Dφ0(X̄) = I . The solution of this equation is

Dφt (X̄) = exp tA.

This means that, in a neighborhood of an equilibrium point, the flow is
approximately linear.

We now prove the proposition. The integral equations satisfied by X(t ),
Y (t , ξ), and U (t , ξ) are

X(t ) = X0 +
∫ t

0
F(X(s)) ds,
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Y (t , ξ) = X0 + ξ +
∫ t

0
F(Y (s, ξ)) ds,

U (t , ξ) = ξ +
∫ t

0
DFX(s)(U (s, ξ)) ds.

From these we get, for t ≥ 0,

|Y (t ,ξ)−X(t )−U (t ,ξ)|≤
∫ t

0
|F(Y (s,ξ))−F(X(s))−DFX(s)(U (s,ξ))|ds.

The Taylor approximation of F at a point Z says

F(Y )=F(Z )+DFZ (Y −Z )+R(Z ,Y −Z ),

where

lim
Y →Z

R(Z ,Y −Z )

|Y −Z | =0

uniformly in Z for Z in a given compact set. We apply this to Y =Y (s,ξ), Z =
X(s). From the linearity of DFX(s) we get

|Y (t ,ξ)−X(t )−U (t ,ξ)|≤
∫ t

0
|DFX(s)(Y (s,ξ)−X(s)−U (s,ξ))|ds

+
∫ t

0
|R(X(s),Y (s,ξ)−X(s))|ds.

Denote the left side of this expression by g (t ) and set

N =max{|DFX(s)|| s ∈ J }.
Then we have

g (t )≤N

∫ t

0
g (s)ds+

∫ t

0
|R(X(s),Y (s,ξ)−X(s))|ds.

Fix ε >0 and pick δ0 >0 so small that

|R(X(s),Y (s,ξ)−X(s))|≤ε|Y (s,ξ)−X(s)|
if |Y (s,ξ)−X(s)|≤δ0 and s ∈ J .

From Section 17.3 there are constants K ≥0 and δ1 >0 such that

|Y (s,ξ)−X(s)|≤ |ξ |eKs ≤δ0

if |ξ |≤δ1 and s ∈ J .
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Assume now that |ξ |≤δ1. From the previous equation, we find, for t ∈ J ,

g (t )≤N

∫ t

0
g (s)ds+

∫ t

0
ε|ξ |eKs ds,

so that

g (t )≤N

∫ t

0
g (s)ds+Cε|ξ |

for some constant C depending only on K and the length of J . Applying
Gronwall’s inequality we obtain

g (t )≤CεeNt |ξ |

if t ∈ J and |ξ |≤δ1. (Recall that δ1 depends on ε.) Since ε is any positive
number, this shows that g (t )/|ξ |→0 uniformly in t ∈ J , which proves the
proposition.

E X E R C I S E S

1. Write out the first few terms of the Picard iteration scheme for each of
the following initial value problems. Where possible, use any method to
find explicit solutions. Discuss the domain of the solution.

(a) x ′ =x−2;x(0)=1

(b) x ′ =x4/3;x(0)=0

(c) x ′ =x4/3;x(0)=1

(d) x ′ =cosx ;x(0)=0

(e) x ′ =1/2x ;x(1)=1

2. Let A be an n×n matrix. Show that the Picard method for solving X ′ =
AX ,X(0)=X0 gives the solution exp(tA)X0.

3. Derive the Taylor series for cos t by applying the Picard method to
the first-order system corresponding to the second-order initial value
problem

x ′′ =−x ; x(0)=1, x ′(0)=0.

4. For each of the following functions, find a Lipschitz constant on the
region indicated, or prove there is none:

(a) f (x)=|x|,−∞<x<∞
(b) f (x)=x1/3,−1≤x ≤1
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(c) f (x)=1/x ,1≤x ≤∞
(d) f (x ,y)= (x+2y ,−y),(x ,y)∈R2

(e) f (x ,y)= xy

1+x2+y2
,x2+y2 ≤4

5. Consider the differential equation

x ′ =x1/3.

How many different solutions satisfy x(0)=0?
6. What can be said about solutions of the differential equation x ′ =x/t ?
7. Define f : R→R by f (x)=1 if x ≤1; f (x)=2 if x>1. What can be said

about solutions of x ′ = f (x) satisfying x(0)=1, where the right-hand side
of the differential equation is discontinuous? What happens if you have
instead f (x)=0 if x>1?

8. Let A(t ) be a continuous family of n×n matrices and let P(t ) be the
matrix solution to the initial value problem P ′ =A(t )P ,P(0)=P0. Show
that

detP(t )= (detP0)exp

(∫ t

0
TrA(s)ds

)
.

9. Suppose F is a gradient vector field. Show that |DFX | is the magnitude of
the largest eigenvalue of DFX . (Hint : DFX is a symmetric matrix.)

10. Show that there is no solution to the second-order two-point boundary
value problem

x ′′ =−x , x(0)=0, x(π)=1.

11. What happens if you replace the differential equation in the previous
exercise by x ′′ =−kx with k>0?

12. Prove the following general fact (see also Section 17.3): If C ≥0 and
u,v : [0,β]→R are continuous and nonnegative, and

u(t )≤C +
∫ t

0
u(s)v(s)ds

for all t ∈[0,β], then u(t )≤CeV (t ), where

V (t )=
∫ t

0
v(s)ds.

13. Suppose C ⊂Rn is compact and f :C →R is continuous. Prove that
f is bounded on C and that f attains its maximum value at some
point in C.
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14. Let A(t ) be a continuous family of n×n matrices. Let (t0,X0)∈ J ×Rn .
Then the initial value problem

X ′ =A(t )X , X(t0)=X0

has a unique solution on all of J .
15. In a lengthy essay not to exceed 50 pages, describe the behavior of all

solutions of the system X ′ =0 where X ∈Rn . Ah, yes. Another free and
final gift from the Math Department.
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areal velocity, 284
asymptotic stability, 175
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chaotic, 319–324
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criterion, 333
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exchange, 334
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biological applications

competition and harvesting, 252–253
competitive species, 246–252
infectious diseases, 235–239
predator/prey systems, 239–246

blowing up the singularity, 293–297
Bob. See Moe

C

canonical form, 49, 67, 84, 98, 111, 115
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RLC circuit, 23, 257–261

classical mechanics, 277
closed orbit

concepts for, 220–221
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392–395
on parameters, 149, 395

continuous dynamical system, 141
contracting condition, 316
coordinates, changing of, 49–57
critical point, 205
cross product, 279
cubic chaos, 352
curve

definition of, 25
local unstable, 169
zero velocity, 286, 287f

D

damping constant, 26
dense set, 101
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determinant, 27, 81
diffeomorphism, 66
difference equation, 336
differentiability of the flow, 400–404
dimension, 91
direction field, 24, 191f
discrete dynamical systems

bifurcations, 332–335
Cantor middle-thirds set, 349–352
chaos, 337–342
description of, 141, 327
discrete logistic model, 335–337
introduction to, 327–332
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shift map, 347–349
symbolic dynamics, 342–347
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divergence of vector field, 309
dot product, 279
double scroll attractor, 372–375
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repeated, 47–49, 56–57, 95–101, 119–122
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elementary matrix, 79–80
elementary row operations, 79
energy, 280
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algebra, 26–29
Cauchy-Riemann, 184
characteristic, 84
conjugacy, 340, 370
constant coefficient, 25
difference, 336
first-order. see first-order equations
harmonic oscillator, 25–26
homogeneous, 25, 131
Lienard, 261–262
Newton’s, 23
nonautonomous, 10, 149–150, 160, 398–400
second-order, 23
van der Pol, 261–270
variational, 149–153, 172, 401

equilibrium point
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isolated, 206
stability of, 194

equilibrium solution, 2
errata. See Ki��er Devaney, viii
Euler’s method, 154
exchange bifurcation, 334
existence and uniqueness theorem

description of, 142–147, 383–385
proof of, 385–392

expanding direction, 316
exponential growth model, 335
exponential of a matrix, 123–130
extending solutions, 395–398
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authors’, 64
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Faraday’s law, 259
first integral, 208
first-order equations
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example of, 1–4
logistic population model, 4–7
Poincaré map. see Poincaré map

fixed point
attracting, 329
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repelling, 330
source, 330
z-values, 377

flow
definition of, 12, 64–65
differentiability of, 400–404

gradient, 204
smoothness of, 149–150, 402

flow box, 218–220
force field

central, 281–284
definition of, 277

forced harmonic oscillator, 23, 131
forcing term, 130
forward asymptotic, 370
forward orbit, 320, 367
free gift, 155, 406
function

distance, 344–345
Hamiltonian, 281
Liapunov, 195, 200, 307
total energy, 197
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general solution, 34
generic property, 104
genericity, 101–104
gradient, 204
gradient systems, 203–207
graphical iteration, 329
Gronwall’s inequality, 393–394, 398

H

Hamiltonian function, 281
Hamiltonian systems, 207–210, 281
harmonic oscillator

description of, 114–119
equation for, 25–26
forced, 23, 131
two-dimensional, 278
undamped, 55, 114, 208
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constant, 7–8
periodic, 9–11

heteroclinic bifurcation, 192–194
heteroclinic solutions, 193
higher dimensional saddles, 173–174
Hodgkin-Huxley system, 272
homeomorphism, 65, 69, 345
homoclinic bifurcations, 375–378
homoclinic orbits, 209, 361
homoclinic solutions, 209, 226, 363f
homogeneous equation, 25, 131
Hopf bifurcation, 181–182, 270–271, 308
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initial conditions

continuous dependence on, 147–149,
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first law, 289–292
proving of, 284
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Ki��er Devaney, viii, 407
kinetic energy, 280, 290
Kirchhoff’s current law, 258, 260
Kirchhoff’s voltage law, 259

L

Lasalle’s invariance principle,
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latus rectum, 292
law of gravitation, 285, 292
lemma, 126–127, 318, 388–392
Liapunov exponents, 323
Liapunov function, 195, 200, 307
Liapunov stability, 194
Lienard equation, 261–262
limit cycle, 227–228
limit sets, 215–218
linear algebra

description of, 75
higher dimensional, 75–105
preliminaries from, 75–83

linear combination, 28
linear map, 50, 88, 92–93, 107
linear pendulum, 196
linear systems

description of, 29–30
higher dimensional, 107–138
nonautonomous, 130–135
solving of, 33–36
three-parameter family of, 71

linear transformation, 92
linearity principle, 36
linearization theorem, 168
linearized system near X0, 166
linearly dependent, 27, 76
linearly independent, 27, 76
Lipschitz constant, 387, 398
Lipschitz in X , 399
local section, 218
local unstable curve, 169
locally Lipschitz, 387
logistic map, 336
logistic population model, 4–7, 335
Lorenz attractor

definition of, 305, 305f
model for, 314–319
properties of, 310–313, 374

Lorenz model
description of, 304
dynamics of, 323–324

Lorenz system
behavior of, 310
history of, 303–304
introduction to, 304–305
linearization, 312
properties of, 306–310

Lorenz vector field, 306

M

matrix
arithmetic, 78
elementary, 79–80
exponential of, 123–130
Jacobian, 149–150, 166, 401
reduced row echelon form of, 79
square, 95
sums, 78
symmetric, 207

matrix form
canonical, 49, 67, 84, 98, 111, 115
description of, 27

mechanical system with n degrees of freedom,
278



Index 415

mechanics
classical, 277
conservative systems, 280–281
Newton’s second law, 277–280

method of undetermined coefficients, 130
metric, 344
minimal period n, 328
Moe. See Steve
momentum vector, 281
monotone sequences, 222–225

N

n-cycles, 328
near-collision solutions, 297
neat picture, 305
neurodynamics, 272–273
Newtonian central force system

description of, 285–289
problems, 297–298
singularity, 293

Newton’s equation, 23
Newton’s law of gravitation, 196, 285, 292
Newton’s second law, 277–280
nonautonomous differential equations, 10,

149–150, 160, 398–400
nonautonomous linear systems, 130–135
nonlinear pendulum, 196–199
nonlinear saddle, 168–174
nonlinear sink, 165–168
nonlinear source, 165–168
nonlinear systems

bifurcations, 176–182
continuous dependence of solutions,

147–149
description of, 139–140
dynamical, 140–142
equilibria in, 159–187
existence and uniqueness theorem,

142–147
global techniques, 189–214
numerical methods, 153–156
saddle, 168–174
stability, 174–176
variational equation, 149–153

nullclines, 189–194

O

Ohm’s law, 259–260
one-dimensional discrete dynamical system,

320
orbit

backward, 320–321, 368

closed. see Closed orbit
definition of, 118
forward, 320, 367
homoclinic, 209, 361
seed of the, 328, 338f

orbit diagram, 353–354
origin

definition of, 164
linearization at, 312
unstable curve at, 313f

P

parameters
continuous dependence on,

149, 395
variation of, 130–131, 134

pendulum
constant forcing, 210–211
ideal, 208–209
linear, 196
nonlinear, 196–199

period doubling bifurcation,
334, 335f

periodic harvesting, 9–11
periodic points

definition of, 322
of period n, 328

periodic solution, 215, 363f
phase line, 3
phase plane, 41
phase portraits

center, 46f
definition of, 40
repeated eigenvalues, 50f
repeated real eigenvalues, 121f
saddle, 39–42
sink, 42–43
source, 43–44
spiral center, 112f
spiral sink, 48f

phase space, 278
physical state, 259
Picard iteration, 144–145, 389
pitchfork bifurcation, 178–179, 179f
planar systems

description of, 24–26
dynamical, 63–71, 222–225
linear, 29–30
local section, 221
phase portraits for, 39–60
Poincaré-Bendixson theorem. see

Poincaré-Bendixson theorem
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Poincaré map �, 319, 323, 373
closed orbit, 221
computing of, 12–15
description of, 11, 221, 319
graph of, 14
semi-, 265

Poincaré-Bendixson theorem
applications of, 227–230, 246
description of, 225–227

polar coordinates, 164
population

discrete logistic population model, 336
logistic population model, 4–7, 335

positive Liapunov exponents, 323
positively invariant, 200
potential energy, 280
Prandtl number, 304
predator/prey systems, 239–246

Q

quantum mechanical systems, 298–299
quasi-periodic motions, 119
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range, 92, 94
Rayleigh number, 304
real distinct eigenvalues, 39–44, 51–53
reduced row echelon form, 79
regular point, 205
repeated eigenvalues, 47–49, 56–57, 95–101,

119–122
repelling fixed point, 330
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characteristic, 259
passive, 262

return condition, 316
RLC circuit, 23, 257–261
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Runge-Kuta method, 154–155
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definition of, 39–42, 108
higher dimensional, 173–174
nonlinear, 168–174
spiral, 113

saddle connections, 193
saddle-node bifurcation, 177–178, 179f–180f,

181, 332
scaled variables, 294

second-order equations, 23
seed of the orbit, 38f, 328
semiconjugacy, 341
semi-Poincaré map, 265
sensitive dependence on initial conditions,

305, 321
sensitivity constant, 338
separation of variables, 241
set

compact, 228–229
dense, 101
limit, 215–218

set of physical states, 259
shift map, 347–349, 370
Shil’nikov system, 359–366
singularity, 293–297
sink

definition of, 42–44, 329
higher-dimensional, 109
nonlinear, 165–168
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three-dimensional, 110f

slope, 117
slope field, 6
smooth dynamical system, 141
smoothness of flows, 149–150, 402
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solutions

collision-ejection, 296–297
continuous dependence of, 147–149
equilibrium, 2
extending, 395–398
general, 34
heteroclinic, 193
homoclinic, 209, 226, 363f
near-collision, 297
periodic, 215, 363f
straight-line, 33, 52

source
definition of, 43–44
nonlinear, 165–168
spiral, 47, 48f

source fixed point, 330
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configuration, 278
phase, 278
state, 259, 278
tangent, 286
three-parameter, 71–72

space derivative, 402
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spiral center, 112f
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Index 417

spiral sink, 47, 48f
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square matrix, 95
stability

asymptotic, 175
equilibrium point, 194
Liapunov, 194–196
nonlinear systems, 174–176

stable curve, 161
stable curve theorem, 168–169
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stable line, 40
stable subspace, 108, 109f
standard basis, 28, 76
state space, 259, 278
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straight-line solution, 33, 52
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unstable, 108, 109f

symbolic dynamics, 342–347
symmetric matrix, 207

T

tangent bifurcation, 332
tangent space, 286
Taylor expansion, 166
tent map, 339–340
tertiary expansion, 351
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threshold level, 238
time derivative, 402
time t map, 64
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total energy, 280
total energy function, 197
trace-determinant plane, 61–63, 64f

transitive, 323
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two-body problem, 292–293

U

undamped harmonic oscillator, 55,
114, 208

uniform convergence, 389
unrestricted voltage state, 259
unstable curve, 169
unstable line, 40
unstable subspace, 108, 109f

V

van der Pol equation, 261–270
variation of parameters, 130–131,

134
variational equation, 149–153, 172,

401
vector

definition of, 83
momentum, 281

vector field
complex, 182–184
definition of, 24
divergence of, 309
Lorenz, 306
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Z

zero velocity curve, 286, 287f
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