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Preface

The theory of strongly continuous semigroups of linear operators on Banach
spaces, operator semigroups for short, has become an indispensable tool in
a great number of areas of modern mathematical analysis. In our Springer
Graduate Text [EN00] we presented this beautiful theory, together with
many applications, and tried to show the progress made since the publi-
cation in 1957 of the now classical monograph [HP57] by E. Hille and R.
Phillips. However, the wealth of results exhibited in our Graduate Text
seems to have discouraged some of the potentially interested readers. With
the present text we offer a streamlined version that strictly sticks to the
essentials. We have skipped certain parts, avoided the use of sophisticated
arguments, and, occasionally, weakened the formulation of results and mod-
ified the proofs. However, to a large extent this book consists of excerpts
taken from our Graduate Text, with some new material on positive semi-
groups added in Chapter VI.

We hope that the present text will help students take their first step
into this interesting and lively research field. On the other side, it should
provide useful tools for the working mathematician.

Acknowledgments
This book is dedicated to our students. Without them we would not be
able to do and to enjoy mathematics. Many of them read previous versions
when it served as the text of our Seventh Internet Seminar 2003/04. Here

Genni Fragnelli, Marc Preunkert and Mark C. Veraar
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Tanja Eisner, Vera Keicher, Agnes Radl
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How much we owe to our colleague and friend Ulf Schlotterbeck cannot
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Chapter I

Introduction

Generally speaking, a dynamical system is a family
(
T (t)
)
t≥0 of mappings

on a set X satisfying{
T (t + s) = T (t)T (s) for all t, s ≥ 0,

T (0) = id.

Here X is viewed as the set of all states of a system, t ∈ R+ := [0,∞) as
time and T (t) as the map describing the change of a state x ∈ X at time
0 into the state T (t)x at time t. In the linear context, the state space X is
a vector space, each T (t) is a linear operator on X, and

(
T (t)
)
t≥0 is called

a (one-parameter) operator semigroup.
The standard situation in which such operator semigroups naturally ap-

pear are so-called Abstract Cauchy Problems

(ACP)

{
u̇(t) = Au(t) for t ≥ 0,

u(0) = x,

where A is a linear operator on a Banach space X. Here, the problem
consists in finding a differentiable function u on R+ such that (ACP) holds.
If for each initial value x ∈ X a unique solution u(·, x) exists, then

T (t)x := u(t, x), t ≥ 0, x ∈ X,

defines an operator semigroup. For the “working mathematician,” (ACP)
is the problem, and

(
T (t)
)
t≥0 the solution to be found. The opposite point

of view also makes sense: given an operator semigroup (i.e., a dynamical
system)

(
T (t)
)
t≥0, under what conditions can it be “described” by a dif-

ferential equation (ACP), and how can the operator A be found?

1



2 Chapter I. Introduction

In some simple and concrete situations (see Section 2 below) the relation
between

(
T (t)
)
t≥0 and A is given by the formulas

T (t) = etA and A = d
dtT (t)|t=0.

In general, a comparably simple relation seems to be out of reach. How-
ever, miraculously as it may seem, a simple continuity assumption on the
semigroup (see Definition 1.1) produces, in the usual Banach space set-
ting, a rich and beautiful theory with a broad and almost universal field of
applications. It is the aim of this course to develop this theory.

1. Strongly Continuous Semigroups

The following is our basic definition.

1.1 Definition. A family
(
T (t)
)
t≥0 of bounded linear operators on a Ba-

nach space X is called a strongly continuous (one-parameter) semigroup
(or C0-semigroup1) if it satisfies the functional equation

(FE)

{
T (t + s) = T (t)T (s) for all t, s ≥ 0,

T (0) = I

and is strongly continuous in the following sense. For every x ∈ X the orbit
maps

(SC) ξx : t �→ ξx(t) := T (t)x

are continuous from R+ into X for every x ∈ X.

The property (SC) can also be expressed by saying that the map

t �→ T (t)

is continuous from R+ into the space Ls(X) of all bounded operators on
X endowed with the strong operator topology (see Appendix A, (A.2)).

Finally, if these properties hold for R instead of R+, we call
(
T (t)
)
t∈R a

strongly continuous (one-parameter) group (or C0-group) on X.

a. Basic Properties

Our first goal is to facilitate the verification of the strong continuity (SC)
required in Definition 1.1. This is possible thanks to the uniform bounded-
ness principle, which implies the following frequently used equivalence. (See
also Exercise 1.8.(1) and the more abstract version in Proposition A.3.)

1 Although we prefer the terminology “strongly continuous,” we point out that the
symbol C0 abbreviates “Cesàro summable of order 0.”
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1.2 Lemma. Let X be a Banach space and let F be a function from a
compact set K ⊂ R into L(X). Then the following assertions are equivalent.

(a) F is continuous for the strong operator topology; i.e., the mappings
K � t �→ F (t)x ∈ X are continuous for every x ∈ X.

(b) F is uniformly bounded on K, and the mappings K � t �→ F (t)x ∈ X
are continuous for all x in some dense subset D of X.

(c) F is continuous for the topology of uniform convergence on compact
subsets of X; i.e., the map

K × C � (t, x) �→ F (t)x ∈ X

is uniformly continuous for every compact set C in X.

Proof. The implication (c) ⇒ (a) is trivial, whereas (a) ⇒ (b) follows
from the uniform boundedness principle, because the mappings t �→ F (t)x
are continuous, hence bounded, on the compact set K.

To show (b) ⇒ (c), we assume ‖F (t)‖ ≤ M for all t ∈ K and fix some ε >
0 and a compact set C in X. Then there exist finitely many x1, . . . , xm ∈ D
such that C ⊂ ⋃m

i=1 (xi + ε/M U), where U denotes the unit ball of X. Now
choose δ > 0 such that ‖F (t)xi − F (s)xi‖ ≤ ε for all i = 1, . . . , m, and for
all t, s ∈ K, such that |t− s| ≤ δ. For arbitrary x, y ∈ C and t, s ∈ K with
‖x− y‖ ≤ ε/M |t − s| ≤ δ, this yields

‖F (t)x− F (s)y‖ ≤ ‖F (t)(x− xj)‖ +
∥∥(F (t) − F (s)

)
xj

∥∥
+ ‖F (s)(xj − x)‖ + ‖F (s)(x− y)‖ ≤ 4 ε,

where we choose j ∈ {1, . . . , m} such that ‖x − xj‖ ≤ ε/M. This estimate
proves that (t, x) �→ F (t)x is uniformly continuous with respect to t ∈ K
and x ∈ C. �

As an easy consequence of this lemma, in combination with the functional
equation (FE), we obtain that the continuity of the orbit maps

ξx : t �→ T (t)x

at each t ≥ 0 and for each x ∈ X is already implied by much weaker
properties.

1.3 Proposition. For a semigroup
(
T (t)
)
t≥0 on a Banach space X, the

following assertions are equivalent.
(a)
(
T (t)
)
t≥0 is strongly continuous.

(b) limt↓0 T (t)x = x for all x ∈ X.
(c) There exist δ > 0, M ≥ 1, and a dense subset D ⊂ X such that

(i) ‖T (t)‖ ≤ M for all t ∈ [0, δ],
(ii) limt↓0 T (t)x = x for all x ∈ D.
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Proof. The implication (a) ⇒ (c.ii) is trivial. In order to prove that
(a) ⇒ (c.i), we assume, by contradiction, that there exists a sequence
(δn)n∈N ⊂ R+ converging to zero such that ‖T (δn)‖ → ∞ as n → ∞.
Then, by the uniform boundedness principle, there exists x ∈ X such that(‖T (δn)x‖)n∈N is unbounded, contradicting the fact that T (·)x is continu-
ous at t = 0.

In order to verify that (c) ⇒ (b), we put K := {tn : n ∈ N} ∪ {0} for an
arbitrary sequence (tn)n∈N ⊂ [0,∞) converging to t = 0. Then K ⊂ [0,∞)
is compact, T (·)|K is bounded, and T (·)|K x is continuous for all x ∈ D.
Hence, we can apply Lemma 1.2.(b) to obtain

lim
n→∞ T (tn)x = x

for all x ∈ X. Because (tn)n∈N was chosen arbitrarily, this proves (b).
To show that (b) ⇒ (a), let t0 > 0 and let x ∈ X. Then

lim
h↓0

‖T (t0 + h)x− T (t0)x‖ ≤ ‖T (t0)‖ · lim
h↓0

‖T (h)x− x‖ = 0,

which proves right continuity. If h < 0, the estimate

‖T (t0 + h)x− T (t0)x‖ ≤ ‖T (t0 + h)‖ · ‖x− T (−h)x‖
implies left continuity whenever ‖T (t)‖ remains uniformly bounded for t ∈
[0, t0]. This, however, follows as above first for some small interval [0, δ]
by the uniform boundedness principle and then on each compact interval
using (FE). �

Because in many cases the uniform boundedness of the operators T (t)
for t ∈ [0, t0] is obvious, one obtains strong continuity by checking (right)
continuity of the orbit maps ξx at t = 0 for a dense set of “nice” elements
x ∈ X only.

We demonstrate the advantage of this procedure in the examples dis-
cussed below (e.g., in Paragraph 3.15).

We repeat that for a strongly continuous semigroup
(
T (t)
)
t≥0 the finite

orbits {
T (t)x : t ∈ [0, t0]

}
are continuous images of a compact interval, hence compact and there-
fore bounded for each x ∈ X. So by the uniform boundedness principle,
each strongly continuous semigroup is uniformly bounded on each compact
interval, a fact that implies exponential boundedness on R+.

1.4 Proposition. For every strongly continuous semigroup
(
T (t)
)
t≥0, there

exist constants w ∈ R and M ≥ 1 such that

(1.1) ‖T (t)‖ ≤ Mewt

for all t ≥ 0.
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Proof. Choose M ≥ 1 such that ‖T (s)‖ ≤ M for all 0 ≤ s ≤ 1 and write
t ≥ 0 as t = s + n for n ∈ N and 0 ≤ s < 1. Then

‖T (t)‖ ≤ ‖T (s)‖ · ‖T (1)‖n ≤ Mn+1

= Men log M ≤ Mewt

holds for w := log M and each t ≥ 0. �

The infimum of all exponents w for which an estimate of the form (1.1)
holds for a given strongly continuous semigroup plays an important role in
the sequel. We therefore reserve a name for it.

1.5 Definition. For a strongly continuous semigroup T =
(
T (t)
)
t≥0, we

call

ω0 := ω0(T) := inf

{
w ∈ R :

there exists Mw ≥ 1 such that
‖T (t)‖ ≤ Mwewt for all t ≥ 0

}

its growth bound (or type). Moreover, a semigroup is called bounded if we
can take w = 0 in (1.1), and contractive if w = 0 and M = 1 is possible.
Finally, the semigroup

(
T (t)
)
t≥0 is called isometric if ‖T (t)x‖ = ‖x‖ for

all t ≥ 0 and x ∈ X.

It becomes clear in the discussion below, but is presently left as a chal-
lenge to the reader that
• ω0 = −∞ may occur,
• The infimum in (1.1) may not be attained; i.e, it might happen that

no constant M exists such that ‖T (t)‖ ≤ Meω0 t for all t ≥ 0, and
• Constants M > 1 may be necessary; i.e., no matter how large w ≥ ω0

is chosen, ‖T (t)‖ will not be dominated by ewt for all t ≥ 0.

We close this subsection by showing that using the weak operator topol-
ogy instead of the strong operator topology in Definition 1.1 will not change
our class of semigroups.

This is a surprising result, and its proof needs more sophisticated tools
from functional analysis than we have used up to this point. So the beginner
may just skip the proof.

1.6 Theorem. A semigroup
(
T (t)
)
t≥0 on a Banach space X is strongly

continuous if and only if it is weakly continuous, i.e., if the mappings

R+ � t �→ 〈T (t)x, x′〉 ∈ C

are continuous for each x ∈ X, x′ ∈ X ′.
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Proof. We have only to show that weak implies strong continuity. As a first
step, we use the principle of uniform boundedness twice to conclude that
on compact intervals,

(
T (t)
)
t≥0 is pointwise and then uniformly bounded.

Therefore (use Proposition 1.3.(c)), it suffices to show that

E :=
{

x ∈ X : lim
t↓0

‖T (t)x− x‖ = 0
}

is a (strongly) dense subspace of X.
To this end, we define for x ∈ X and r > 0 a linear form xr on X ′ by

〈xr, x
′〉 :=

1
r

∫ r

0
〈T (s)x, x′〉 ds for x′ ∈ X ′.

Then xr is bounded and hence xr ∈ X ′′. On the other hand, the set{
T (s)x : s ∈ [0, r]

}
is the continuous image of [0, r] in the space X endowed with the weak
topology, hence is weakly compact in X. Krěın’s theorem (see Proposi-
tion A.1.(ii)) implies that its closed convex hull

co
{
T (s)x : s ∈ [0, r]

}
is still weakly compact in X. Because xr is a σ(X ′′, X ′)-limit of Riemann
sums, it follows that

xr ∈ co
{
T (s)x : s ∈ [0, r]

}
,

whence xr ∈ X. (See also [Rud73, Thm. 3.27].)
It is clear from the definition that the set

D :=
{
xr : r > 0, x ∈ X

}
is weakly dense in X. On the other hand, for xr ∈ D we obtain

‖T (t)xr − xr‖ = sup
‖x′‖≤1

∣∣∣∣1r
∫ t+r

t

〈T (s)x, x′〉 ds − 1
r

∫ r

0
〈T (s)x, x′〉 ds

∣∣∣∣
≤ sup

‖x′‖≤1

(∣∣∣∣1r
∫ r+t

r

〈T (s)x, x′〉 ds

∣∣∣∣+ ∣∣∣∣1r
∫ t

0
〈T (s)x, x′〉 ds

∣∣∣∣)
≤ 2t

r
‖x‖ sup

0≤s≤r+t
‖T (s)‖ → 0

as t ↓ 0; i.e., D ⊂ E. We conclude that E is weakly, hence by Proposi-
tion A.1.(i) strongly, dense in X. �
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1.7 Final Comment. In the next subsection we start a relatively long
discussion of elementary constructions and concrete examples. The reader
impatient to see the general theory can immediately proceed to Chapter II.

1.8 Exercises. (1) Let X be a Banach space and let (Tn)n∈N be a sequence
in L(X). Then the following assertions are equivalent.

(a) (Tnx)n∈N converges for all x ∈ X.
(b) (Tn)n∈N ⊂ L(X) is bounded and (Tnx)n∈N converges for all x in

some dense subset D of X.
(c) (Tnx)n∈N converges uniformly for all x ∈ C and every compact set

C in X.
(2) Show that the left translation semigroup

(
Tl(t)
)
t≥0 defined by(

Tl(t)f
)
(s) := f(s + t), s, t ≥ 0,

is strongly continuous on each of the Banach spaces
(a) C0(R+) :=

{
f ∈ C(R+) : lims→∞ f(s) = 0

}
endowed with the sup-

norm,
(b) Cub(R+) :=

{
f ∈ C(R+) : f is bounded and uniformly continuous

}
endowed with the sup-norm,

(c) C1
0(R+) :=

{
f ∈ C1(R+) : lims→∞ f(s) = lims→∞ f ′(s) = 0

}
en-

dowed with the norm ‖f‖ := sups≥0 |f(s)|+ sups≥0 |f ′(s)|.
(3) Define (

T (t)f
)
(s) := f(set), s, t ≥ 0,

and show that
(
T (t)
)
t≥0 yields strongly continuous semigroups on

X∞ := C0[1,∞) :=
{
f ∈ C[1,∞) : lim

s→∞ f(s) = 0
}

and Xp := Lp[1,∞) for 1 ≤ p < ∞.
(4) Show that for a group

(
T (t)
)
t∈R on a Banach space X the following

conditions are equivalent.
(a) The group

(
T (t)
)
t≥0 is strongly continuous; i.e., the map R � t �→

T (t)x ∈ X is continuous for all x ∈ X.
(b) limt→t0 T (t)x = T (t0)x for some t0 ∈ R and all x ∈ X.
(c) There exist constants t0 ∈ R, δ > 0, M ≥ 0 and a dense subset

D ⊂ X such that
(i) ‖T (t)‖ ≤ M for all t ∈ [t0, t0 + δ],
(ii) limt↓t0 T (t)x = T (t0)x for all x ∈ D.

(5) Show that a strongly continuous semigroup
(
T (t)
)
t≥0 containing an

invertible operator T (t0) for some t0 > 0 can be extended to a strongly
continuous group

(
T (t)
)
t∈R.
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(6) On X := C[0, 1], define bounded operators T (t), t > 0, by

(
T (t)f

)
(s) :=

{
et log s[f(s)− f(0) log s] if s ∈ (0, 1],
0 if s = 0

for f ∈ X and put T (0) := I. Prove the following assertions.
(i)
(
T (t)
)
t≥0 is a semigroup that is strongly continuous only on (0,∞).

(ii) limt↓0 ‖T (t)‖ = ∞.
(7) Construct a strongly continuous semigroup that is not nilpotent (hence
satisfies T (t) �= 0 for all t ≥ 0), but has growth bound ω0 = −∞. (Hint:
Consider

(
T (t)f

)
(s) := e−t2+2stf(s− t) on the Banach space C0(−∞, 0] ={

f ∈ C[−∞, 0) : lims→−∞ f(s) = 0
}
.)

b. Standard Constructions

We now explain how one can construct in various ways new strongly contin-
uous semigroups from a given one. This might seem trivial and/or boring,
but there will be many occasions to appreciate the toolbox provided by
these constructions. In any case, it is a series of instructive exercises.

In the following, we always assume T =
(
T (t)
)
t≥0 to be a strongly con-

tinuous semigroup on a Banach space X.

1.9 Similar Semigroups. Given another Banach space Y and an isomor-
phism V from Y onto X, we obtain (as in Lemma 2.4) a new strongly
continuous semigroup S =

(
S(t)
)
t≥0 on Y by defining

S(t) := V −1T (t)V for t ≥ 0.

Without explicit reference to the isomorphism V , we call the two semi-
groups T and S similar or isomorphic. Two such semigroups have the same
topological properties; e.g., ω0(T) = ω0(S).

1.10 Rescaled Semigroups. For any numbers μ ∈ C and α > 0, we
define the rescaled semigroup

(
S(t)
)
t≥0 by

S(t) := eμtT (αt)

for t ≥ 0.

For example, taking μ = −ω0 (or μ < −ω0) and α = 1 the rescaled
semigroup will have growth bound equal to (or less than) zero. This is an
assumption we make without loss of generality in many situations.
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1.11 Subspace Semigroups. If Y is a closed subspace of X such that
T (t)Y ⊆ Y for all t ≥ 0, i.e., if Y is

(
T (t)
)
t≥0-invariant , then the restric-

tions
T (t)| := T (t)|Y

form a strongly continuous semigroup
(
T (t)|
)
t≥0, called the subspace semi-

group, on the Banach space Y .

1.12 Quotient Semigroups. For a closed
(
T (t)
)
t≥0-invariant subspace

Y of X, we consider the quotient Banach space X/ := X/Y with canonical
quotient map q : X → X/. The quotient operators T (t)/ given by

T (t)/q(x) := q
(
T (t)x

)
for x ∈ X and t ≥ 0

are well-defined and form a strongly continuous semigroup, called the quo-
tient semigroup

(
T (t)/

)
t≥0 on X/.

1.13 Adjoint Semigroups. The adjoint semigroup
(
T (t)′)

t≥0 consisting
of all adjoint operators T (t)′ on the dual space X ′ is, in general, not strongly
continuous.

An example is provided by the (left) translation group on L1(R) (see
Section 3.c). Its adjoint is the (right) translation group on L∞(R), which is
not strongly continuous (see the proposition in Paragraph 3.15). However,
it is easy to see that

(
T (t)′)

t≥0 is always weak∗-continuous in the sense
that the maps

t �→ ξx,x′(t) := 〈x, T (t)′x′〉 = 〈T (t)x, x′〉

are continuous for all x ∈ X and x′ ∈ X ′.
Because on the dual of a reflexive Banach space weak and weak∗ topology

coincide, the adjoint semigroup on such spaces is weakly, and hence by
Theorem 1.6 strongly, continuous.

Proposition. The adjoint semigroup of a strongly continuous semigroup
on a reflexive Banach space is again strongly continuous.

1.14 Product Semigroups. Let
(
S(t)
)
t≥0 be another strongly continuous

semigroup commuting with
(
T (t)
)
t≥0; i.e., S(t)T (t) = T (t)S(t) for all t ≥

0. Then the operators
U(t) := S(t)T (t)

form a strongly continuous semigroup
(
U(t)
)
t≥0, called the product semi-

group of
(
T (t)
)
t≥0 and

(
S(t)
)
t≥0.
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Proof. Clearly, U(0) = I. In order to show the semigroup property for(
U(t)
)
t≥0, we first show that T (s) and S(r) commute for all s, r ≥ 0. To

this end, we first take r = p1/q and s = p2/q ∈ Q+. Then

S(r)T (s) = S (1/q)
p1 · T (1/q)

p2

= T (1/q)
p2 · S (1/q)

p1 = T (s)S(r);

i.e., F (r, s) = G(r, s) for all r, s ∈ Q+, where

and
F : [0,∞) × [0,∞) → L(X), F (r, s) := S(r)T (s),

G : [0,∞) × [0,∞) → L(X), G(r, s) := T (s)S(r).

Now, for fixed x ∈ X, the functions F (·, ·)x and G(·, ·)x are continuous in
each coordinate and coincide on Q+ ×Q+; hence we conclude that F = G.
This shows that

S(r)T (s) = T (s)S(r)

for all s, r ≥ 0, and the semigroup property U(r + s) = U(r)U(s) for
s, r ≥ 0 follows immediately. Finally, the strong continuity of

(
U(t)
)
t≥0

follows from Lemma A.18. �

1.15 Exercises. (1) Let
(
Tl(t)
)
t≥0 be the left translation semigroup (cf.

Exercise 1.8.(2)) on X := C0(R+) or Cub(R+) and take a nonvanishing,
continuous function q on R+ such that q and 1/q are bounded. Then the
multiplication operator Mq defined by (Mqf)(s) := q(s) · f(s) yields a
similarity transformation. Determine the semigroup

(
S(t)
)
t≥0 defined by

S(t) := MqTl(t)M1/q
, t ≥ 0.

(2) On X := C0(R2) =
{
f ∈ C(R2) : lim‖(x,y)‖→∞ f(x, y) = 0

}
or

Cub(R2) :=
{
f ∈ C(R2) : f is bounded and uniformly continuous

}
endowed with the sup-norm, consider the two semigroups

(
T (t)
)
t≥0 and(

S(t)
)
t≥0 defined by(

S(t)f
)
(x, y) := f(x + t, y) and

(
T (t)f

)
(x, y) := f(x, y + t)

for f ∈ X, t ≥ 0. Show that both are strongly continuous and determine
their product semigroup.
(3) Consider the function space

Y :=
{
f : [0, 1] → C : |f(s)| ≤ ns for all s ∈ [0, 1] and some n ∈ N

}
,

which becomes a Banach space for the norm

‖f‖ := inf
{
c ≥ 0 : |f(s)| ≤ cs for all s ∈ [0, 1]

}
.
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On X := C⊕Y , we define a “translation” semigroup
(
T (t)
)
t≥0 by T (0) := I

and
T (t)
(
α
f

)
:=
(0
g

)
for t > 0,

where

g(s) :=

⎧⎨⎩
0 for s < t,
α for s = t,
f(s− t) for s > t.

(i) Show that ‖T (t)‖ = t−1 for t ∈ (0, 1), and hence
(
T (t)
)
t≥0 is not

exponentially bounded.
(ii) Find the largest

(
T (t)
)
t≥0-invariant closed subspace of X on which

the restriction of
(
T (t)
)
t≥0 becomes strongly continuous for t > 0

(t ≥ 0, respectively).

2. Examples

In order to create a feeling for the concepts introduced so far, we discuss
first the case in which the semigroup

(
T (t)
)
t≥0 can be represented as an

operator-valued exponential function
(
etA
)
t≥0. Due to this representation,

we later consider this case as rather trivial.

a. Finite-Dimensional Systems: Matrix Semigroups

We start with a reasonably detailed discussion of the finite-dimensional
situation; i.e., X = Cn. Here, L(X) is identified with the space Mn(C) of
all complex n × n matrices.

Because on Mn(C) all Hausdorff vector space topologies coincide, we
simply speak of continuity of a semigroup

(
T (t)
)
t≥0 on X. We want to

determine all continuous semigroups on X = Cn and start by looking at
the natural examples in the form of matrix exponentials.

2.1 Proposition. For any A ∈ Mn(C) and t ≥ 0, the series

(2.1) etA :=
∞∑

k=0

tkAk

k!

converges absolutely. Moreover, the mapping

R+ � t �→ etA ∈ Mn(C)

is continuous and satisfies

(FE)

{
e(t+s)A = etAesA for t, s ≥ 0,

e0A = I.
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Proof. Because the series
∑∞

k=0
tk‖A‖k

/k! converges, one can show, as for
the Cauchy product of scalar series, that

∞∑
k=0

tkAk

k!
·

∞∑
k=0

skAk

k!
=

∞∑
n=0

n∑
k=0

tn−kAn−k

(n − k)!
· skAk

k!

=
∞∑

n=0

(t + s)nAn

n!
.

This proves (FE). In order to show that t �→ etA is continuous, we first
observe that by (FE) one has

e(t+h)A − etA = etA
(
ehA − I

)
for all t, h ∈ R. Therefore, it suffices to show that limh→0 ehA = I. This
follows from the estimate

∥∥ehA − I
∥∥ =
∥∥∥∥ ∞∑

k=1

hkAk

k!

∥∥∥∥
≤

∞∑
k=1

|h|k · ‖A‖k

k!
= e|h|·‖A‖ − 1.

�

2.2 Definition. We call
(
etA
)
t≥0 the (one-parameter) semigroup generated

by the matrix A ∈ Mn(C).

As the reader may have already realized, there is no need in Proposi-
tion 2.1 (and in Definition 2.2) to restrict the (time) parameter t to R+.
The definition, the continuity, and the functional equation (FE) hold for
any real and even complex t. Then the map

T (·) : t �→ etA

extends to a continuous (even analytic) homomorphism from the additive
group (R, +) (or, (C, +)) into the multiplicative group GL(n, C) of all in-
vertible, complex n × n matrices. We call

(
etA
)
t∈R the (one-parameter)

group generated by A.
Before proceeding with the abstract theory, the reader might appreciate

some examples of matrix semigroups.

2.3 Examples. (i) The (semi) group generated by a diagonal matrix A =
diag(a1, . . . , an) is given by

etA = diag
(
eta1 , . . . , etan

)
.
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(ii) Less trivial is the case of a k × k Jordan block

A =

⎛⎜⎜⎜⎜⎜⎝
λ 1 0 · · · 0

0 λ 1
. . .

...
...

. . . . . . . . . 0
...

. . . . . . 1
0 · · · · · · 0 λ

⎞⎟⎟⎟⎟⎟⎠
k×k

with eigenvalue λ ∈ C. Decompose A into a sum A = D+N where D = λI.
Then the kth power of N is zero, and the power series (2.1) (with A replaced
by N) becomes

(2.2) etN =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 t t2

2 · · · tk−1

(k−1)!

0 1 t · · · tk−2

(k−2)!
...

. . . . . . . . .
...

...
. . . . . . t

0 · · · · · · 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
k×k

.

Because D and N commute, we obtain

(2.3) etA = etλetN

(see Exercise 2.9.(1)).

For arbitrary matrices A, the direct computation of etA (using the above
definition) is very difficult if not impossible. Fortunately, thanks to the
existence of the Jordan normal form, the following lemma shows that in a
certain sense the Examples 2.3.(i) and (ii) suffice.

2.4 Lemma. Let B ∈ Mn(C) and take an invertible matrix S ∈ Mn(C).
Then the (semi) group generated by the matrix A := S−1BS is given by

etA = S−1etBS.

Proof. Because Ak = S−1BkS for all k ∈ N and because S, S−1 are
continuous operators, we obtain

etA =
∞∑

k=0

tkAk

k!
=

∞∑
k=0

tkS−1BkS

k!

= S−1
( ∞∑

k=0

tkBk

k!

)
S = S−1etBS.

�
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The content of this lemma is that similar matrices (for the definition
of similarity see Paragraph 1.9) generate similar (semi) groups. Because
we know that any complex n × n matrix is similar to a direct sum of
Jordan blocks, we conclude that any matrix (semi) group is similar to a
direct sum of (semi) groups as in Example 2.3.(ii). Already in the case of
2×2 matrices, the necessary computations are lengthy; however, they yield
explicit formulas for the matrix exponential function.

2.5 More Examples. (iii) Take an arbitrary 2 × 2 matrix A =
(

a b
c d

)
,

define δ := ad− bc, τ := a+ d, and take γ ∈ C such that γ2 = 1/4(τ2 − 4δ).
Then the (semi) group generated by A is given by the matrices

(2.4)

etA =

⎧⎨⎩ e tτ/2
(

1/γ sinh(tγ)A +
(
cosh(tγ) − τ/2γ sinh(tγ)

)
I
)

if γ �= 0,

e tτ/2 (tA + (1− tτ/2)I) if γ = 0.

We list some special cases yielding simpler formulas:

A =
(

0 1
−1 0

)
, etA =

(
cos(t) sin(t)
− sin(t) cos(t)

)
,

A =
(

0 1
1 0

)
, etA =

(
cosh(t) sinh(t)
sinh(t) cosh(t)

)
,

A =
(

1 1
−1 −1

)
, etA =

(
1 + t t
−t 1 − t

)
.

In the case where the spectral projections of a general n × n matrix are
known, the corresponding (semi)group can be calculated explicitly by the
following formula. We recall that the minimal polynomial mA of a matrix
A is the polynomial of lowest degree with leading coefficient 1 satisfying
mA(A) = 0. Moreover, the set of zeros of mA coincides with the spectrum
σ(A) of A.

2.6 Proposition. Let A ∈ Mn(C) with eigenvalues λ1, . . . , λm and respec-
tive multiplicities k1, . . . , km as zeros of the minimal polynomial mA of A.
If Pi denotes the spectral projection associated with {λi}, 1 ≤ i ≤ m, (cf.
(1.7) in Chapter V), then

etA =
m∑

i=1

ki−1∑
j=0

etλi
tj

j!
(A − λi)j Pi for t ∈ R.

Proof. Because the spectral projections Pi, 1 ≤ i ≤ m, sum up to the
identity, we have

etA =
m∑

i=1

etAPi =
m∑

i=1

etλiet(A−λi)Pi.
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Recall that
(
(A − λi)|rg Pi

)
ki = 0 by Exercise V.1.20.(1). Therefore, we

obtain

etA =
m∑

i=1

ki−1∑
j=0

etλi
tj

j!
(A − λi)jPi

as claimed. �

Returning to one of the questions posed at the very beginning of this text,
namely if a given semigroup can be described by a differential equation, we
now proceed in two more steps. First, we show that in the case T (t) = etA

we even have differentiability of the map t �→ T (t) (from R to Mn(C)), and
that U(t) := etA solves the differential equation

(DE)

{
d
dtU(t) = AU(t) for t ≥ 0,

U(0) = I.

In a second step, we show that a general continuous operator semigroup
on X = Cn is even differentiable in t = 0 and is the exponential of its
derivative at t = 0.

2.7 Proposition. Let T (t) := etA for some A ∈ Mn(C). Then the function
T (·) : R+ → Mn(C) is differentiable and satisfies the differential equa-
tion (DE). Conversely, every differentiable function T (·) : R+ → Mn(C)
satisfying (DE) is already of the form T (t) = etA for2 A := Ṫ (0) ∈ Mn(C).

Proof. We only show that T (·) satisfies (DE). Because the functional
equation (FE) in Proposition 2.1 implies

T (t + h) − T (t)
h

=
T (h) − I

h
· T (t)

for all t, h ∈ R, (DE) is proved if limh→0
T (h)−I

h = A. This, however, follows,
because ∥∥∥∥T (h) − I

h
−A

∥∥∥∥ ≤ ∞∑
k=2

|h|k−1 · ‖A‖k

k!

=
e|h|·‖A‖ − 1

|h| − ‖A‖ → 0 as h → 0.

The proof of remaining assertions is left to the reader; cf. Exercise 2.9.(5).
�

2 Here Ṫ (0) := d
dt

T (t)|t=0.
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2.8 Theorem. Let T (·) : R+ → Mn(C) be a continuous function satisfying
(FE). Then there exists A ∈ Mn(C) such that

T (t) = etA for all t ≥ 0.

Proof. Because T (·) is continuous and T (0) = I is invertible, the matrices

V (t0) :=
∫ t0

0
T (s) ds

are invertible for sufficiently small t0 > 0 (use that limt↓0 1/tV (t) = T (0) =
I). The functional equation (FE) now yields

T (t) = V (t0)−1V (t0)T (t) = V (t0)−1
∫ t0

0
T (t + s) ds

= V (t0)−1
∫ t+t0

t

T (s) ds = V (t0)−1(V (t + t0) − V (t)
)

for all t ≥ 0. Hence, T (·) is differentiable with derivative

d
dtT (t) = lim

h↓0

T (t + h) − T (t)
h

= lim
h↓0

T (h) − T (0)
h

T (t) = Ṫ (0)T (t) for all t ≥ 0.

This shows that T (·) satisfies (DE) with A = Ṫ (0). �

With this theorem we have characterized all continuous one-parameter
(semi) groups on Cn as matrix-valued exponential functions

(
etA
)
t≥0.

2.9 Exercises. (1) If A, B ∈ Mn(C) commute, then eA+B = eAeB .
(2) Let A ∈ Mn(C) be an n × n matrix and denote by mA its minimal
polynomial. If p is a polynomial such that p ≡ exp (modmA); i.e., if the
function (p−exp)/mA can be analytically extended to C, then p(A) = exp(A).
Use this fact in order to verify Formula (2.4).
(3) Show that A ∈ Mn(C) generates a bounded group, i.e., ‖etA‖ ≤ M for
all t ∈ R and some M ≥ 1, if and only if A is similar to a diagonal matrix
with purely imaginary entries.
(4) Characterize semigroups

(
etA
)
t≥0 satisfying eA = I in terms of the

eigenvalues of the matrix A ∈ Mn(C).
(5) Show that every differentiable function T (·) : R+ → Mn(C) satisfying
(DE) is already of the form T (t) = etA for A := Ṫ (0) ∈ Mn(C).
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(6) For A ∈ Mn(C), we call λ ∈ σ(A) ∩ R a dominant eigenvalue if

Re μ < λ for all μ ∈ σ(A) \ {λ}
and if the Jordan blocks corresponding to λ are all 1 × 1. Show that the
following properties are equivalent.

(a) The eigenvalue 0 ∈ σ(A) is dominant.
(b) There exist P = P 2 ∈ Mn(C) and M ≥ 1, ε > 0 such that∥∥etA − P

∥∥ ≤ Me−εt for all t ≥ 0.

b. Uniformly Continuous Operator Semigroups

We now desire to extend the above results to semigroups
(
T (t)
)
t≥0 on an

infinite-dimensional Banach space X. To this purpose, it suffices to assume
continuity of the map t �→ T (t) ∈ L(X) in the operator norm. Then we
can replace the matrix A ∈ Mn(C) by a bounded operator A ∈ L(X) and
argue as in Section 2.a.

2.10 Definition. For A ∈ L(X) we define

(2.5) etA :=
∞∑

n=0

tnAn

n!

for each t ≥ 0.

It follows from the completeness of X that etA is a well-defined bounded
operator on X.

2.11 Proposition. For A ∈ L(X) define
(
etA
)
t≥0 by (2.5). Then the

following properties hold.
(i)
(
etA
)
t≥0 is a semigroup on X such that

R+ � t �→ etA ∈ (L(X), ‖ · ‖)
is continuous.

(ii) The map R+ � t �→ T (t) := etA ∈ (L(X), ‖ · ‖) is differentiable and
satisfies the differential equation

(DE)
d
dtT (t) = AT (t) for t ≥ 0,

T (0) = I.

Conversely, every differentiable function T (·) : R+ → (L(X), ‖ · ‖)
satisfying (DE) is already of the form T (t) = etA for A = Ṫ (0) ∈
L(X).

The proof of this result can be adapted from Section 2.a and is left to
the reader.
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Semigroups having the continuity property stated in Proposition 2.11.(i)
are called uniformly continuous (or norm-continuous) .

2.12 Theorem. Every uniformly continuous semigroup
(
T (t)
)
t≥0 on a

Banach space X is of the form

T (t) = etA, t ≥ 0,

for some bounded operator A ∈ L(X).

Proof. Because the following arguments were already used in the matrix-
valued cases (see Section 2.a), a brief outline of the proof should be suffi-
cient.

For a uniformly continuous semigroup
(
T (t)
)
t≥0 the operators

V (t) :=
∫ t

0
T (s) ds, t ≥ 0

are well-defined, and 1/tV (t) converges (in norm!) to T (0) = I as t ↓ 0.
Hence, for t > 0 sufficiently small, the operator V (t) becomes invertible.
Repeat now the computations from the proof of Theorem 2.8 in order to
obtain that t �→ T (t) is differentiable and satisfies (DE). Then Proposi-
tion 2.11 yields the assertion. �

Before adding some comments on and further properties of uniformly
continuous semigroups we state the following question leading directly to
the main objects of this text.

2.13 Problem. Do there exist “natural” one-parameter semigroups of lin-
ear operators on Banach spaces that are not uniformly continuous, hence
not of the form

(
etA
)
t≥0 for some bounded operator A?

2.14 Comments. (i) The operator A in Theorem 2.12 is determined
uniquely as the derivative of T (·) at zero; i.e., A = Ṫ (0). We call it the
generator of

(
T (t)
)
t≥0.

(ii) Because Definition 2.10 for etA works also for t ∈ R and even for t ∈ C,
it follows that each uniformly continuous semigroup can be extended to a
uniformly continuous group

(
etA
)
t∈R, or to

(
etA
)
t∈C, respectively.

(iii) From the differentiability of t �→ T (t) it follows that for each x ∈ X
the orbit map R+ � t �→ T (t)x ∈ X is differentiable as well. Therefore,
the map x(t) := T (t)x is the unique solution of the X-valued initial value
problem (or abstract Cauchy problem)

(ACP)

{
ẋ(t) = Ax(t) for t ≥ 0,

x(0) = x.
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2.15 Exercises. (1) On X := C0(R) := {f ∈ C(R) : lim|s|→∞ f(s) = 0}
and for a fixed constant α > 0, we define an operator Aα by the difference
quotients

Aαf(s) := 1/α

(
f(s + α) − f(s)

)
, f ∈ X, s ∈ R.

Show that Aα ∈ L(X) with ‖Aα‖ = 2/α, and hence one has the estimate∥∥etAα
∥∥ ≤ e

2t/α for all t ≥ 0.

However, etAα can be computed explicitly as

hence it satisfies
etAαf(s) = e

−t/α

∞∑
k=0

( t/α)k

k!
f(s + kα), f ∈ X, s ∈ R,∥∥etAα

∥∥ = 1 for all t ≥ 0.

(2) Let X be a Banach space. For which operators T ∈ L(X) can we find
A ∈ L(X) such that T = eA; i.e, which bounded T can be embedded into a
uniformly continuous semigroup? (Hint: Find (sufficient) conditions on T
such that A := log T can be defined in analogy to Definition 2.10.) Show
that such operators T are infinitely divisible; i.e., for each n ∈ N there
exists S ∈ L(X) such that Sn = T .
(3) Show that for A, B ∈ L(X), X a Banach space, the following assertions
are equivalent.

(a) AB = BA.
(b) et(A+B) = etA · etB for all t ∈ R.

(Hint: To show that (a) implies (b) proceed as in the proof of Lemma 2.4.
For the converse implication, compute the second derivative of the functions
appearing in (b).)
(4) The reader familiar with Banach algebras should reformulate the notion
of “uniformly continuous semigroup” and Theorem 2.12 by replacing the
operator algebra L(X) by an arbitrary Banach algebra.

3. More Semigroups

In order to convince the reader that new and interesting phenomena ap-
pear for semigroups on infinite-dimensional Banach spaces, we first discuss
several classes of one-parameter semigroups on concrete spaces. These semi-
groups are not uniformly continuous anymore and hence, unlike those in
Section 2.b, not of the form

(
etA
)
t≥0 for some bounded operator A. On

the other hand, they are not “pathological” in the sense of being com-
pletely unrelated to any analytic structure as the semigroup constructed in
Exercise II.2.13.(4). In addition, these semigroups accompany us through
the further development of the theory and provide a source of illuminating
examples and counterexamples.
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a. Multiplication Semigroups on C0(Ω)

Multiplication operators can be considered as an infinite-dimensional gen-
eralization of diagonal matrices. They are extremely simple to construct,
and most of their properties are evident. Nevertheless, their value should
not be underestimated. They appear, for example, naturally in the context
of Fourier analysis or when one applies the spectral theorem for self-adjoint
operators on Hilbert spaces (see Theorem 3.9). We therefore strongly rec-
ommend that any first attempt to illustrate a result or disprove a conjecture
on semigroups should be made using multiplication semigroups.

We start from a locally compact space Ω and define the Banach space
(endowed with the sup-norm ‖f‖∞ := sups∈Ω |f(s)|)

C0(Ω) :=
{

f ∈ C(Ω) : for all ε > 0 there exists a compact Kε ⊂ Ω
such that |f(s)| < ε for all s ∈ Ω \ Kε

}
of all continuous, complex-valued functions on Ω that vanish at infinity.
As a typical example the reader might always take Ω to be a bounded or
unbounded interval in R.

With any continuous function q : Ω → C we associate a linear operator
Mq on C0(Ω) defined on its “maximal domain” D(Mq) in C0(Ω).

3.1 Definition. The multiplication operator Mq induced on C0(Ω) by some
continuous function q : Ω → C is defined by

Mqf := q · f for all f in the domain

D(Mq) :=
{
f ∈ C0(Ω) : q · f ∈ C0(Ω)

}
.

The main feature of these multiplication operators is that most operator-
theoretic properties of Mq can be characterized by analogous properties of
the function q. In the following proposition we give some examples for this
correspondence.

3.2 Proposition. Let Mq with domain D(Mq) be the multiplication oper-
ator induced on C0(Ω) by some continuous function q. Then the following
assertions hold.

(i) The operator (Mq, D(Mq)) is closed and densely defined.
(ii) The operator Mq is bounded (with D(Mq) = C0(Ω)) if and only if

the function q is bounded. In that case, one has

‖Mq‖ = ‖q‖ := sup
s∈Ω

|q(s)|.

(iii) The operator Mq has a bounded inverse if and only if the function q

has a bounded inverse 1/q; i.e., 0 /∈ q(Ω). In that case, one has

M−1
q = M1/q

.

(iv) The spectrum of Mq is the closed range of q; i.e.,

σ(Mq) = q(Ω).
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Proof. (i) The domain D(Mq) always contains the space

Cc(Ω) :=
{
f ∈ C(Ω) : supp f is compact

}
of all continuous functions having compact support

supp f := {s ∈ Ω : f(s) �= 0}.

In order to show that these functions form a dense subspace, we first observe
that the one-point compactification of Ω is a normal topological space (cf.
[Dug66, Chap. XI, Thm. 8.4 and Thm. 1.2] or [Kel75, Chap. 5, Thm. 21 and
Thm. 10]). Hence, by Urysohn’s lemma (cf. [Dug66, Chap. VII, Thm. 4.1]
or [Kel75, Chap. 4, Lem. 4]), for every compact subset K ⊆ Ω we can find
a function hK ∈ C(Ω) still having compact support satisfying3

0 ≤ hK ≤ 1 and hK(s) = 1 for all s ∈ K.

Then, for each f ∈ C0(Ω), the function f · hK has compact support, and

‖f − f · hK‖ = sup
s∈Ω\K

∣∣f(s)
(
1 − hK(s)

)∣∣
≤ 2 sup

s∈Ω\K

|f(s)|.

This implies that the continuous functions with compact support are dense
in C0(Ω); hence Mq is densely defined.

To show the closedness of Mq, we take a sequence (fn)n∈N ⊂ D(Mq) con-
verging to f ∈ C0(Ω) such that limn→∞ qfn =: g ∈ C0(Ω) exists. Clearly,
this implies g = qf and hence f ∈ D(Mq) and Mqf = g.

(ii) If q is bounded, we have

‖Mqf‖ = sup
s∈Ω

|q(s)f(s)| ≤ ‖q‖ · ‖f‖

for any f ∈ C0(Ω); hence Mq is bounded with ‖Mq‖ ≤ ‖q‖. On the other
hand, if Mq is bounded, for every s ∈ Ω we choose, again using Urysohn’s
lemma, a continuous function fs with compact support satisfying ‖fs‖ =
1 = fs(s). This implies

‖Mq‖ ≥ ‖Mqfs‖ ≥ |q(s)fs(s)| = |q(s)| for all s ∈ Ω;

hence q is bounded with ‖Mq‖ ≥ ‖q‖.

3 Here 1 denotes the constant function with 1(s) = 1 for all s ∈ Ω.
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(iii) If 0 /∈ q(Ω), then 1/q is a bounded continuous function and M1/q

is the bounded inverse of Mq. Conversely, assume Mq to have a bounded
inverse M−1

q . Then we obtain

‖f‖ ≤ ‖M−1
q ‖ · ‖Mqf‖ for all f ∈ D(Mq),

whence

(3.1) δ :=
1

‖M−1
q ‖ ≤ sup

s∈Ω
|q(s)f(s)| for all f ∈ D(Mq), ‖f‖ = 1.

Now assume infs∈Ω |q(s)| < δ/2. Then there exists an open set O ⊂ Ω such
that |q(s)| < δ/2 for all s ∈ O. On the other hand, by Urysohn’s lemma
we find a function f0 ∈ C0(Ω) such that ‖f0‖ = 1 and f0(s) = 0 for all
s ∈ Ω \O. This implies sups∈Ω |q(s)f0(s)| ≤ δ/2, contradicting (3.1). Hence
0 < δ/2 ≤ |q(s)| for all s ∈ Ω; i.e., M1/q

is bounded, and one easily verifies
that it yields the inverse of the operator Mq.

(iv) By definition, one has λ ∈ σ(Mq) if and only if λ−Mq = Mλ−q is not
invertible. Thus (iii) applied to the function λ − q yields the assertion. �

With any continuous function q : Ω → C we now associate the exponen-
tial function

etq : s �→ etq(s) for s ∈ Ω, t ≥ 0.

It is then immediate that the corresponding multiplication operators

Tq(t)f := etqf, f ∈ C0(Ω),

formally satisfy the semigroup law (FE) from Definition 1.1. So, in order
to obtain a one-parameter semigroup on C0(Ω), we have only to make sure
that these multiplication operators Tq(t) are bounded operators on C0(Ω).
Using Proposition 3.2.(ii), we see that this is the case if and only if

sup
s∈Ω

|etq(s)| = sup
s∈Ω

et Re q(s)

= et sups∈Ω Re q(s) < ∞.

This observation leads to the following definition.

3.3 Definition. Let q : Ω → C be a continuous function such that

sup
s∈Ω

Re q(s) < ∞.

Then the semigroup
(
Tq(t)
)
t≥0 defined by

Tq(t)f := etqf

for t ≥ 0 and f ∈ C0(Ω) is called the multiplication semigroup generated
by the multiplication operator Mq (or, the function q) on C0(Ω).
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By Proposition 2.11.(i) and Theorem 2.12 the semigroup
(
Tq(t)
)
t≥0 is

uniformly continuous if and only if it is of the form
(
etA
)
t≥0 for some

bounded operator A. As predicted, this can already be read off from the
function q.

3.4 Proposition. The multiplication semigroup
(
Tq(t)
)
t≥0 generated by

q : Ω → C is uniformly continuous if and only if q is bounded.

Proof. If q and hence Mq are bounded, it is easy to see that Tq(t) coin-
cides with the exponential etMq , hence is uniformly continuous by Propo-
sition 2.11.(i).

Now let q be unbounded and choose (sn)n∈N ⊂ Ω such that |q(sn)| → ∞
for n → ∞. Then we take tn := 1/|q(sn)| → 0. Because ez �= 1 for all |z| = 1,
there exists δ > 0 such that ∣∣∣1 − etnq(sn)

∣∣∣ ≥ δ

for all n ∈ N. With functions fn ∈ C0(Ω) satisfying ‖fn‖ = 1 = fn(sn), we
finally obtain

‖Tq(0)− Tq(tn)‖ ≥ ∥∥fn − etnqfn

∥∥
≥
∣∣∣1 − etnq(sn)

∣∣∣ ≥ δ > 0

for all n ∈ N; i.e.,
(
Tq(t)
)
t≥0 is not uniformly continuous. �

This means that for every unbounded continuous function q : Ω → C

satisfying
sup
s∈Ω

Re q(s) < ∞,

we obtain a one-parameter semigroup that is not uniformly continuous,
hence to which Theorem 2.12 does not apply. In order to prepare for
later developments, we now show that these multiplication semigroups are
strongly continuous.

3.5 Proposition. Let
(
Tq(t)
)
t≥0 be the multiplication semigroup gener-

ated by a continuous function q : Ω → C satisfying

w := sup
s∈Ω

Re q(s) < ∞.

Then the mappings

R+ � t �→ Tq(t)f = etqf ∈ C0(Ω)

are continuous for every f ∈ C0(Ω).
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Proof. Let f ∈ C0(Ω) with ‖f‖ ≤ 1. For ε > 0 take a compact subset K
of Ω such that |f(s)| ≤ ε/(e|w|+1) for all s ∈ Ω \K. Because the exponential
function is uniformly continuous on compact sets, there exists t0 ∈ (0, 1]
such that ∣∣∣etq(s) − 1

∣∣∣ ≤ ε

for all s ∈ K and 0 ≤ t ≤ t0. Hence, we obtain∥∥etqf − f
∥∥ ≤ sup

s∈K

(∣∣etq(s) − 1
∣∣ · |f(s)|)+ (e|w| + 1

) · sup
s∈Ω\K

|f(s)|

≤ 2ε

for all 0 ≤ t ≤ t0. �

Finally, we show that each strongly continuous semigroup consisting of
multiplication operators on C0(Ω) is a multiplication semigroup in the sense
of Definition 3.3.

3.6 Proposition. For t ≥ 0, let mt : Ω → C be bounded continuous
functions and assume that the corresponding multiplication operators

T (t)f := mt · f

form a strongly continuous semigroup
(
T (t)
)
t≥0 of bounded operators on

C0(Ω). Then there exists a continuous function q : Ω → C satisfying

sup
s∈Ω

Re q(s) < ∞

such that mt(s) = etq(s) for every s ∈ Ω, t ≥ 0.

Proof. For fixed s ∈ Ω choose f ∈ C0(Ω) such that f ≡ 1 in some
neighborhood of s. Then, by assumption,

R+ � t �→ (T (t)f
)
(s) = mt(s) ∈ C

is a continuous function satisfying the functional equation (FE) from Def-
inition 1.1. Therefore, by Proposition 2.11 (for X := C), there exists a
unique q(s) ∈ C such that mt(s) = etq(s) for all t ≥ 0. Because the map
s �→ mt(s) in a neighborhood of s coincides with s �→ (T (t)f

)
(s) ∈ C0(Ω),

the functions Ω � s �→ etq(s) ∈ C are continuous for all t ≥ 0. In order
to show that q is continuous, we first observe that q is bounded on com-
pact subsets of Ω. In fact, if K ⊂ Ω is compact, then

(
T (t)
)
t≥0 induces a

uniformly continuous semigroup
(
TK(t)

)
t≥0 on C(K) given by(

TK(t)f
)
(s) = etq(s)f(s), f ∈ C(K), s ∈ K,
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and the same arguments as in the second part of the proof of Proposition 3.4
show that q is bounded on K. This implies that the convergence in

lim
t↓0

etq(s) − 1
t

= q(s)

is uniform on compact sets in Ω. Because every point in Ω possesses a
compact neighborhood, we conclude that q, being the uniform limit (on
compact subsets) of the continuous functions s �→ (etq(s)−1)/t, is continuous
as well.

Finally, the multiplication operators T (t)f = etq · f are supposed to be
bounded; hence the real part of q must be bounded from above. �

We conclude this subsection with some simple observations and concrete
examples.

3.7 Examples. (i) On a compact space, every multiplication operator
given by a continuous function is already bounded, and hence every multi-
plication semigroup is uniformly continuous.
(ii) We can choose Ω and q in such a way that the closed range of q is
a given closed subset of C. When q generates a multiplication semigroup(
Tq(t)
)
t≥0, this has obvious consequences for the operators Tq(t). Choose

any closed subset Ω of C and define

q(s) := s

for s ∈ Ω. Then σ(Mq) = Ω and σ (Tq(t)) = etΩ := {ets : s ∈ Ω} for all t ≥
0. In particular, if Ω ⊆ {λ ∈ C : Re λ ≤ 0} (or Ω ⊆ iR), we conclude that(
Tq(t)
)
t≥0 consists of contractions (or isometries, respectively) on C0(Ω).

(iii) For Ω := N each complex sequence (qn)n∈N ⊂ C defines a multiplica-
tion operator

(xn)n∈N �→ (qn · xn)n∈N

on the space C0(Ω) = c0. For qn := in we obtain a group of isometries

T (t)(xn)n∈N = (eintxn)n∈N, t ∈ R,

and for qn := −n2 we obtain a semigroup of contractions

T (t)(xn)n∈N = (e−n2txn)n∈N, t ≥ 0.

(iv) This simple example serves just to explain the first sentence in this
subsection. Take Ω = {1, 2, . . . , m} to be a finite set. Then C0(Ω) is simply
Cm, and the multiplication operator (xn) �→ (qn · xn) corresponds to the
diagonal matrix A = diag(q1, . . . , qm). The corresponding multiplication
semigroup is given by etA = diag(etq1 , . . . , etqm) as in Example 2.3.(i).



26 Chapter I. Introduction

3.8 Exercises. (1) For a sequence q = (qn)n∈N ⊂ C define the correspond-
ing multiplication operator Mq on X := c0 or X := �p, 1 ≤ p ≤ ∞. Show
that its point spectrum is given by Pσ(Mq) = {qn : n ∈ N} and that
σ(Mq) = Pσ(Mq).

(2) Many properties of the multiplication semigroup
(
Tq(t)
)
t≥0 generated

by a multiplication operator Mq on X := C0(Ω) can be characterized by
properties of the function q : Ω → C.

(i)
(
Tq(t)
)
t≥0 is bounded (contractive) if and only if

Re q(s) ≤ 0 for all s ∈ Ω.

(ii)
(
Tq(t)
)
t≥0 satisfies Tq(2π) = I if and only if

q(Ω) ⊆ iZ.

(3) Take X := C0(R) and q(s) := −1
1+|s| + is, s ∈ R. Show that the growth

bound of the corresponding multiplication semigroup T =
(
Tq(t)
)
t≥0 does

not satisfy ω0(T) < 0, whereas

lim
t→∞ ‖Tq(t)f‖ = 0

for each f ∈ X.

b. Multiplication Semigroups on Lp(Ω, μ)

As claimed at the beginning of the previous subsection, multiplication op-
erators arise in a natural way in various instances. For example, if one ap-
plies the Fourier transform to a linear differential operator on L2(Rn), this
operator becomes a multiplication operator on L2(Rn). Moreover, the clas-
sical “spectral theorem” asserts that each self-adjoint or, more generally,
normal operator4 on a Hilbert space is (isomorphic to) a multiplication op-
erator on some L2-space. This viewpoint is emphasized in Halmos’s article
[Hal63] and motivates our systematic analysis of multiplication operators.
We therefore formulate this version of the spectral theorem explicitly (see
also [Con85, Chap. 10, Thm. 4.19] or [Wei80, Chap. 7, Thm. 7.33]).

4 We recall that an operator A on a Hilbert space H is called normal if D(A∗A) =
D(AA∗) =: D and A∗Ax = AA∗x for all x ∈ D; i.e., A∗A = AA∗.
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3.9 Spectral Theorem. If A is a normal operator on a separable Hilbert
space H, then there is a σ-finite measure space (Σ, Ω, μ) and a measur-
able function q : Ω → C such that A is unitarily equivalent to the mul-
tiplication operator Mq on L2(Ω, μ); i.e., there exists a unitary operator
U ∈ L

(
H, L2(Ω, μ)

)
such that the diagram

H ⊇ D(A) A � H

U

�

U

�

�
U∗=U−1

L2(Ω, μ) ⊇D(Mq)
Mq � L2(Ω, μ)

commutes.

In order to define what we mean by a multiplication operator, we take
some σ-finite measure space (Ω, Σ, μ); see, e.g., [Hal74, Chap. II] or [Rao87,
Chap. 2]. Then, for fixed 1 ≤ p < ∞, we consider the Banach space

X := Lp(Ω, μ)

of all (equivalence classes of) p-integrable complex functions on Ω endowed
with the p-norm

‖f‖p :=
(∫

Ω
|f(s)|p dμ(s)

)1/p

.

Next, for a measurable function

q : Ω → C,

we call the set

qess(Ω) :=
{

λ ∈ C : μ
({s ∈ Ω : |q(s)− λ| < ε}) �= 0 for all ε > 0

}
,

its essential range and define the associated multiplication operator Mq by

(3.2)
Mqf := q · f for all f in the domain

D(Mq) :=
{
f ∈ Lp(Ω, μ) : q · f ∈ Lp(Ω, μ)

}
.

In analogy to Proposition 3.2, we now have the following result.
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3.10 Proposition. Let Mq with domain D(Mq) be the multiplication oper-
ator induced on Lp(Ω, μ) by some measurable function q. Then the following
assertions hold.

(i) The operator (Mq, D(Mq)) is closed and densely defined.
(ii) The operator Mq is bounded (with D(Mq) = Lp(Ω, μ)) if and only if

the function q is essentially bounded; i.e., the set qess(Ω) is bounded
in C. In this case, one has

‖Mq‖ = ‖q‖∞ := sup
{|λ| : λ ∈ qess(Ω)

}
.

(iii) The operator Mq has a bounded inverse if and only if 0 /∈ qess(Ω). In
that case, one has

M−1
q = Mr

for r : Ω → C defined by

r(s) :=
{

1/q(s) if q(s) �= 0,
0 if q(s) = 0.

(iv) The spectrum of Mq is the essential range of q; i.e.,

σ(Mq) = qess(Ω).

The proof uses measure theory and is left as Exercise 3.13.(2).
Also, the other results of Section 3.a, after the appropriate changes, re-

main valid in the Lp-case. For the convenience of the reader and due to
their importance for the applications, we state them explicitly. The proofs,
however, are left as Exercises 3.13.(3) and (4).

3.11 Proposition. Let
(
Tq(t)
)
t≥0 be the multiplication semigroup gener-

ated by a measurable function q : Ω → C satisfying

ess sup
s∈Ω

Re q(s) := sup
λ∈qess(Ω)

Re λ < ∞;

i.e.,
Tq(t)f := etqf for every f ∈ Lp(Ω, μ), t ≥ 0.

Then the mappings

R+ � t �→ Tq(t)f = etqf ∈ Lp(Ω, μ)

are continuous for every f ∈ Lp(Ω, μ). Moreover, the semigroup
(
Tq(t)
)
t≥0

is uniformly continuous if and only if q is essentially bounded.
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3.12 Proposition. For t ≥ 0, let mt : Ω → C be bounded measurable
functions and assume that

(i) The corresponding multiplication operators

T (t)f := mt · f

form a semigroup
(
T (t)
)
t≥0 of bounded operators on Lp(Ω, μ), and

(ii) The mappings

R+ � t �→ T (t)f ∈ Lp(Ω, μ)

are continuous for every f ∈ Lp(Ω, μ); i.e.
(
T (t)
)
t≥0 is strongly con-

tinuous.
Then there exists a measurable function q : Ω → C satisfying

ess sup
s∈Ω

Re q(s) := sup
λ∈qess(Ω)

Re λ < ∞

such that mt = etq almost everywhere for every t ≥ 0.

3.13 Exercises. (1) On the spaces X := c0 and X := �p, 1 ≤ p < ∞, there
exist multiplication semigroups

(
Tq(t)
)
t≥0 such that each Tq(t), t > 0, is a

compact operator. Construct concrete examples. Observe that this is not
possible if

(i) The function spaces are X := C0(R) or X := Lp(R), or if
(ii) The function q is bounded.

(2) Prove Proposition 3.10. (Hints: To prove that Mq is closed, use the
fact that every convergent sequence in Lp(Ω, μ) has a μ-almost everywhere
convergent subsequence; see, e.g., [Rud86, Chap. 3, Thm. 3.12]. In order to
show that Mq is densely defined, combine the fact that Ω is σ-finite with
Lebesgue’s convergence theorem (cf. [Rud86, Chap. 1, 1.34]). For the “only
if” part of (ii), assume q not to be essentially bounded and choose suitable
characteristic functions to conclude that Mq is unbounded. In the “only if”
part of (iii), show first that M−1

q is given by a multiplication operator and
then apply (ii).)
(3) Prove Proposition 3.11. (Hint: Use Lebesgue’s convergence theorem.)
(4) Prove Proposition 3.12.
(5) For every measurable function q : Ω → C we can define the multipli-
cation operator Mq on L∞(Ω, μ) as we did for Lp(Ω, μ), 1 ≤ p < ∞. Show
that Mq is densely defined if and only if q is essentially bounded.
(6) Let A := Mq be a multiplication operator on Lp(Ω, μ), 1 ≤ p < ∞.
Show that λ ∈ C is an eigenvalue of A if and only if μ

({s ∈ Ω : q(s) =
λ}) > 0.
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(7) A bounded linear operator T : Lp(Ω, μ) → Lp(Ω, μ), 1 ≤ p ≤ ∞,
is called local if for every measurable subset S ⊂ Ω one has Tf = Tg
almost everywhere on S if f = g almost everywhere on S. Show that every
local operator is a multiplication operator Mq for some q ∈ L∞(Ω, μ).
Extend this characterization to unbounded multiplication operators. (Hint:
See [Nag86, C-II, Thm. 5.13].)

c. Translation Semigroups

Another important class of examples is obtained by “translating,” to the
left or to the right, complex-valued functions defined on (subsets of) R.
We first define these “translation operators” and only then specify the
appropriate spaces.

3.14 Definition. For a function f : R → C and t ≥ 0, we call(
Tl(t)f

)
(s) := f(s + t), s ∈ R,

the left translation (of f by t), and(
Tr(t)f

)
(s) := f(s− t), s ∈ R,

is the right translation (of f by t).

It is immediately clear that the operators Tl(t) (and Tr(t)) satisfy the
semigroup law (FE). We have only to choose appropriate function spaces
to produce one-parameter operator semigroups. For that purpose, we start
with spaces of continuous or integrable functions and the translation on all
of R.

3.15 Translations on R. As Banach space X we take one of the spaces
• X∞ := L∞(R) of all bounded measurable functions on R,
• Xb := Cb(R) of all bounded continuous functions on R,
• Xub := Cub(R) of all bounded, uniformly continuous functions on R,
• X0 := C0(R) of all continuous functions on R vanishing at infinity,
• X2π := C2π(R) of all 2π-periodic continuous functions on R,

all endowed with the sup-norm ‖ · ‖∞, or we take the spaces
• Xp := Lp(R), 1 ≤ p < ∞, of all p-integrable functions on R

endowed with the corresponding p-norm ‖ · ‖p.
Then each left translation operator Tl(t) is an isometry on each of these

spaces, having as inverse the right translation operator Tr(t). This means
that
(
Tl(t)
)
t∈R and

(
Tr(t)
)
t∈R form one-parameter groups on X, called the

(left or right) translation group.

For our purposes, the following continuity properties of these translation
groups on the various function spaces are fundamental.
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Proposition. The (left) translation group
(
Tl(t)
)
t∈R

(a) Is not uniformly continuous on any of the above spaces;
(b) Is strongly continuous on Xub, X0 and on Xp for all 1 ≤ p < ∞.

Proof. The proof of (a) is left as Exercise 3.19.(4).
(b) The strong continuity of

(
Tl(t)
)
t∈R on Xub and X0 is a direct con-

sequence of the uniform continuity of any f in Xub and X0. So it remains
to show strong continuity on Xp = Lp(R).

It is evident that each T (t) is a contraction, so
(
T (t)
)
t≥0 is uniformly

bounded on R. Now take a continuous function f on R with compact sup-
port and observe that it is uniformly continuous. Therefore,

lim
t↓0

‖T (t)f − f‖∞ = lim
t↓0

sup
s∈R

∣∣f(t + s) − f(s)
∣∣ = 0,

and because the p-norm (for functions on bounded intervals) is weaker,

lim
t↓0

‖T (t)f − f‖p = 0.

Because the continuous functions with compact support are dense in Lp(R)
for all 1 ≤ p < ∞, the assertion now follows from the adaptation of Propo-
sition 1.3 to groups (see Exercise 1.8.(4)). �

We now modify the spaces on which translation takes place. As a first
case, we consider functions defined on R+ only.

3.16 Translations on R+. In analogy to Paragraph 3.15, let X denote
one of the spaces
• X∞ := L∞(R+) of all bounded measurable functions on R+,
• Xb := Cb(R+) of all bounded continuous functions on R+,
• Xub := Cub(R+) of all bounded, uniformly continuous functions on

R+,
• X0 := C0(R+) of all continuous functions on R+ vanishing at infinity,
• Xp := Lp(R+), 1 ≤ p < ∞, of all p-integrable functions on R+,

and observe that the left translations Tl(t) are well-defined contractions on
these spaces, but now yield a semigroup only, called the left translation
semigroup

(
Tl(t)
)
t≥0 on R+.

For the right translations Tr(t), however, the value
(
Tr(t)f

)
(s) = f(s−t)

is not defined if s − t < 0. To overcome this obstacle, we put(
Tr(t)f

)
(s) :=

{
f(s− t) for s− t ≥ 0,
f(0) for s− t < 0

for f ∈ X = Xb, Xub, X0, and(
Tr(t)f

)
(s) :=

{
f(s− t) for s− t ≥ 0,
0 for s− t < 0



32 Chapter I. Introduction

for f ∈ Xp. In this way, we again obtain semigroups of contractions on
X called the right translation semigroups

(
Tr(t)
)
t≥0 on R+. Clearly, the

continuity properties stated in the proposition in Paragraph 3.15 prevail.
Moreover, it is not difficult to see that on Xp, for 1 < p < ∞, the semigroups(
Tl(t)
)
t≥0 and

(
Tr(t)
)
t≥0 are adjoint; i.e., Tl(t)′ on X ′

p coincides with Tr(t)
on Xp′ where 1/p + 1/p′ = 1.

Even on function spaces on finite intervals, we can define translation
semigroups.

3.17 Translations on finite intervals. If we take the Banach space
C[a, b] and look at the left translations, we have to specify the values(
Tl(t)f

)
(s) for s + t > b. Imitating the idea above, we put(

Tl(t)f
)
(s) :=

{
f(s + t) for s + t ≤ b,
f(b) for s + t > b.

We note that this choice is not the only one to extend the translations to a
semigroup on C[a, b] (see, e.g., Paragraph II.3.29). In any case, we still call(
Tl(t)
)
t≥0 a left translation semigroup on C[a, b]. By a similar definition,

fixing the value at the left endpoint, we obtain a right translation semigroup(
Tr(t)
)
t≥0 on the space C[a, b].

On the Banach spaces Lp[a, b], 1 ≤ p ≤ ∞, we can modify this definition
by taking (

Tl(t)f
)
(s) :=

{
f(s + t) for s + t ≤ b,
0 for s + t > b,

and again this yields a semigroup. However, now a completely new phe-
nomenon appears: this semigroup, i.e., this “exponential function,” van-
ishes for t > b− a.

Proposition. The left translation semigroup
(
Tl(t)
)
t≥0 is nilpotent on

Lp[a, b]; that is,
Tl(t) = 0

for all t ≥ b − a.

3.18 Rotations on the torus. Take Γ := {z ∈ C : |z| = 1} and X :=
C(Γ). Then the operators T (t), t ∈ R, defined by(

T (t)f
)
(s) := f

(
eit · s) for f ∈ C(Γ) and s ∈ Γ

form the so-called rotation group. It enjoys the same continuity properties
as the translation group on Xub in Paragraph 3.16. This can be seen by
identifying C(Γ) with the Banach space C2π(R) ⊂ Xub of all 2π-periodic
continuous functions on R. After this identification, the above rotation
group becomes the translation group

(
Tl(t)
)
t∈R on C2π(R) satisfying

T (2π) = I.

We call such a group periodic (of period 2π).
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Because the operators T (t) are isometries for the p-norm and because
C(Γ) is dense in Lp(Γ, μ), 1 ≤ p < ∞, and μ the Lebesgue measure on
Γ, the above definition can be extended to f ∈ Lp(Γ, μ), and we obtain a
periodic rotation group on each Lp-space for 1 ≤ p < ∞.

3.19 Exercises. (1) Show that the space Cub(R) of all bounded, uniformly
continuous functions on R is the maximal subspace X of Cb(R) such that
the orbits of the left translation group

(
Tl(t)
)
t∈R; i.e., the mappings

R � t �→ Tl(t)f ∈ Cb(R),

become continuous for each f ∈ X.
(2) Show that in the context of Paragraphs 3.15 and 3.16 and on the cor-
responding Lp-spaces, the right translation semigroups are the adjoints of
the left translation semigroups; i.e.,

Tl(t)′ = Tr(t) for t ≥ 0.

(3) Construct more (left) translation semigroups on Lp[a, b] by defining(
Tl(t)f

)
(s) for s + t > b in an appropriate way. For example, take α ∈ C

and put (
Tl(t)f

)
(s) := αkf

(
s + t − k(b − a)

)
for s + t − a ∈ [k(b − a), (k + 1)(b − a)], k = 0, 1, 2, . . .. This semigroup
becomes nilpotent for α = 0, whereas it is periodic for α = 1. For which α
is this semigroup contractive?
(4) Prove part (a) of the proposition in Paragraph 3.15.
(5) Take X := C0(Rn) or Cub(Rn) and choose some B ∈ Mn(R). Show
that (T (t)f)(s) := f(etBs) for t ∈ R, f ∈ X, defines a group

(
T (t)
)
t∈R on

X which is strongly continuous on C0(Rn) but not on Cub(Rn).



Chapter II

Semigroups, Generators,
and Resolvents

In this chapter it is our aim to achieve what we obtained, without too
much effort, for uniformly continuous semigroups in Section I.2.b. There,
we characterized every uniformly continuous semigroup

(
T (t)
)
t≥0 on a Ba-

nach space X as an operator-valued exponential function; i.e., we found an
operator A ∈ L(X) such that

T (t) = etA

for all t ≥ 0 (see Theorem I.2.12). For strongly continuous semigroups, we
succeed in defining an analogue of A, called the generator of the semigroup.
It is a linear, but generally unbounded, operator defined only on a dense
subspace D(A) of the Banach space X. In order to retrieve the semigroup(
T (t)
)
t≥0 from its generator

(
A, D(A)

)
, we need a third object, namely the

resolvent

λ �→ R(λ, A) := (λ −A)−1 ∈ L(X)

of A, which is defined for all complex numbers in the resolvent set ρ(A).
For the basic concepts from spectral theory we refer to Section V.1.a.

To find and discuss the various relations between these objects is the
theme of this chapter, which can be illustrated by the following triangle.

34
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(
T (t)
)
t≥0

semigroup

�
�

�� �
�

��
generator resolvent(
A, D(A)

) (
R(λ, A)

)
λ∈ρ(A)

1. Generators of Semigroups and Their Resolvents

We recall that for a one-parameter semigroup
(
T (t)
)
t≥0 on a Banach space

X uniform continuity implies differentiability of the map t �→ T (t) ∈ L(X).
The right derivative of T (·) at t = 0 then yields a bounded operator A for
which T (t) = etA for all t ≥ 0.

We now hope that strong continuity of a semigroup
(
T (t)
)
t≥0 still implies

some differentiability of the orbit maps
ξx : t �→ T (t)x ∈ X.

In order to pursue this idea we first show, in analogy to Proposition I.1.3,
that differentiability of ξx is already implied by right differentiability at
t = 0.

1.1 Lemma. Take a strongly continuous semigroup
(
T (t)
)
t≥0 and an el-

ement x ∈ X. For the orbit map ξx : t �→ T (t)x, the following properties
are equivalent.

(a) ξx(·) is differentiable on R+.
(b) ξx(·) is right differentiable at t = 0.

Proof. We have only to show that (b) implies (a). For h > 0, one has
lim
h↓0

1
h

(
T (t + h)x− T (t)x

)
= T (t) lim

h↓0
1
h

(
T (h)x− x

)
= T (t) ξ̇x(0),

and hence ξx(·) is right differentiable on R+.
On the other hand, for −t ≤ h < 0, we write

1
h

(
T (t + h)x− T (t)x

)− T (t)ξ̇x(0) = T (t + h)
(

1
h

(
x− T (−h)x

)− ξ̇x(0)
)

+ T (t + h)ξ̇x(0) − T (t)ξ̇x(0).
As h ↑ 0, the first term on the right-hand side converges to zero, because
‖T (t + h)‖ remains bounded. The remaining part converges to zero by the
strong continuity of

(
T (t)
)
t≥0. Hence, ξx is also left differentiable, and its

derivative is
(1.1) ξ̇x(t) = T (t) ξ̇x(0)
for each t ≥ 0. �
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On the subspace of X consisting of all those x for which the orbit maps
ξx are differentiable, the right derivative at t = 0 then yields an operator A
from which we obtain, in a sense to be specified later, the operators T (t) as
the “exponentials etA.” This is already expressed in the choice of the term
“generator” in the following definition.

1.2 Definition. The generator A : D(A) ⊆ X → X of a strongly continu-
ous semigroup

(
T (t)
)
t≥0 on a Banach space X is the operator

(1.2) Ax := ξ̇x(0) = lim
h↓0

1
h

(
T (h)x− x

)
defined for every x in its domain

(1.3) D(A) := {x ∈ X : ξx is differentiable in R+}.

We observe from Lemma 1.1 that the domain D(A) is also given as the
set of all elements x ∈ X for which ξx(·) is right differentiable in t = 0; i.e.,

(1.4) D(A) =
{

x ∈ X : lim
h↓0

1
h

(
T (h)x− x

)
exists

}
.

The domain D(A), which is a linear subspace, is an essential part of the
definition of the generator A. Accordingly, we should always denote it by
the pair

(
A, D(A)

)
, but for convenience, we often only write A and assume

implicitly that its domain is given by (1.4).
To ensure that the operator

(
A, D(A)

)
has reasonable properties, we

proceed as in Chapter I. There we used the “smoothing operators” V (t) :=∫ t

0 T (s) ds to prove differentiability of the semigroup
(
T (t)
)
t≥0 (see the

proof of Theorem I.2.12). Because we now assume that the orbit maps ξx

are only continuous, we need to look at “smoothed” elements of the form

yt :=
1
t

∫ t

0
ξx(s) ds =

1
t

∫ t

0
T (s)x ds for x ∈ X, t > 0.

It is a simple consequence of the definition of the integral as a limit of
Riemann sums that the vectors yt converge to x as t ↓ 0. In addition, they
always belong to the domain D(A). This and other elementary facts are
collected in the following result.

1.3 Lemma. For the generator
(
A, D(A)

)
of a strongly continuous semi-

group
(
T (t)
)
t≥0, the following properties hold.

(i) A : D(A) ⊆ X → X is a linear operator.
(ii) If x ∈ D(A), then T (t)x ∈ D(A) and

(1.5) d
dtT (t)x = T (t)Ax = AT (t)x for all t ≥ 0.
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(iii) For every t ≥ 0 and x ∈ X, one has∫ t

0
T (s)x ds ∈ D(A).

(iv) For every t ≥ 0, one has

T (t)x− x = A

∫ t

0
T (s)x ds if x ∈ X,(1.6)

=
∫ t

0
T (s)Ax ds if x ∈ D(A).(1.7)

Proof. Assertion (i) is trivial. To prove (ii) take x ∈ D(A). Then it follows
from (1.1) that 1/h

(
T (t + h)x − T (t)x

)
converges to T (t)Ax as h ↓ 0.

Therefore,

lim
h↓0

1
h

(
T (h)T (t)x− T (t)x

)
exists, and hence T (t)x ∈ D(A) by (1.4) with AT (t)x = T (t)Ax.

The proof of assertion (iii) is included in the following proof of (iv). For
x ∈ X and t ≥ 0, one has

1
h

(
T (h)

∫ t

0
T (s)x ds−

∫ t

0
T (s)x ds

)
=

1
h

∫ t

0
T (s + h)x ds − 1

h

∫ t

0
T (s)x ds

=
1
h

∫ t+h

h

T (s)x ds− 1
h

∫ t

0
T (s)x ds

=
1
h

∫ t+h

t

T (s)x ds− 1
h

∫ h

0
T (s)x ds,

which converges to T (t)x− x as h ↓ 0. Hence (1.6) holds.
If x ∈ D(A), then the functions s �→ T (s) (T (h)x−x)/h converge uniformly

on [0, t] to the function s �→ T (s)Ax as h ↓ 0. Therefore,

lim
h↓0

1
h

(
T (h) − I

) ∫ t

0
T (s)x ds = lim

h↓0

∫ t

0
T (s)

1
h

(
T (h) − I

)
x ds

=
∫ t

0
T (s)Ax ds.

�

With the help of this lemma we now show that the generator introduced
in Definition 1.2, although unbounded in general, has nice properties.

1.4 Theorem. The generator of a strongly continuous semigroup is a closed
and densely defined linear operator that determines the semigroup uniquely.
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Proof. Let
(
T (t)
)
t≥0 be a strongly continuous semigroup on a Banach

space X. As already noted, its generator
(
A, D(A)

)
is a linear operator.

To show that A is closed, consider a sequence (xn)n∈N ⊂ D(A) for which
limn→∞ xn = x and limn→∞ Axn = y exist. By (1.7) in the previous lemma,
we have

T (t)xn − xn =
∫ t

0
T (s)Axn ds

for t > 0. The uniform convergence of T (·)Axn on [0, t] for n → ∞ implies
that

T (t)x− x =
∫ t

0
T (s)y ds.

Multiplying both sides by 1/t and taking the limit as t ↓ 0, we see that
x ∈ D(A) and Ax = y; i.e., A is closed.

By Lemma 1.3.(iii) the elements 1/t

∫ t

0 T (s)x ds always belong to D(A).
Because the strong continuity of

(
T (t)
)
t≥0 implies

lim
t↓0

1
t

∫ t

0
T (s)x ds = x

for every x ∈ X, we conclude that D(A) is dense in X.
Finally, let

(
S(t)
)
t≥0 be another strongly continuous semigroup having

the same generator
(
A, D(A)

)
. For x ∈ D(A) and t > 0, we consider the

map
s �→ ηx(s) := T (t − s)S(s)x

for 0 ≤ s ≤ t. Because for fixed s the set{
S(s + h)x− S(s)x

h
: h ∈ (0, 1]

}
∪ {AS(s)x}

is compact, the difference quotients

1
h

(
ηx(s + h) − ηx(s)

)
= T (t − s − h)

1
h

(
S(s + h)x− S(s)x

)
+

1
h

(
T (t − s− h) − T (t − s)

)
S(s)x

converge by Lemma I.1.2 and Lemma 1.3.(ii) to
d
dsηx(s) = T (t − s)AS(s)x−AT (t − s)S(s)x = 0.

From ηx(0) = T (t)x and ηx(t) = S(t)x we obtain

T (t)x = S(t)x

for all x in the dense domain D(A). Hence, T (t) = S(t) for each t ≥ 0. �

Combining these properties of the generator with the closed graph theo-
rem gives a new characterization of uniformly continuous semigroups, thus
complementing Theorem I.2.12.
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1.5 Corollary. For a strongly continuous semigroup
(
T (t)
)
t≥0 on a Banach

space X with generator
(
A, D(A)

)
, the following assertions are equivalent.

(a) The generator A is bounded; i.e., there exists M > 0 such that
‖Ax‖ ≤ M ‖x‖ for all x ∈ D(A).

(b) The domain D(A) is all of X.

(c) The domain D(A) is closed in X.

(d) The semigroup
(
T (t)
)
t≥0 is uniformly continuous.

In each case, the semigroup is given by

T (t) = etA :=
∞∑

n=0

tnAn

n!
, t ≥ 0.

The proof of this corollary and of some more equivalences is left as Ex-
ercise 1.15.(1).

Property (b) indicates that the domain of the generator contains impor-
tant information about the semigroup and therefore has to be taken into
account carefully. However, in many examples (see, e.g., Paragraph 2.6 and
Example 4.11 below) it is often routine to compute the expression Ax for
some or even many elements in the domain D(A), although it is difficult
to identify D(A) precisely. In these situations, the following concept helps
to distinguish between “small” and “large” subspaces of D(A).

1.6 Definition. A subspace D of the domain D(A) of a linear operator
A : D(A) ⊆ X → X is called a core for A if D is dense in D(A) for the
graph norm

‖x‖A := ‖x‖ + ‖Ax‖.

We now state a useful criterion for subspaces to be a core for the gener-
ator.

1.7 Proposition. Let
(
A, D(A)

)
be the generator of a strongly continuous

semigroup
(
T (t)
)
t≥0 on a Banach space X. A subspace D of D(A) that is

‖ · ‖-dense in X and invariant under the semigroup
(
T (t)
)
t≥0 is always a

core for A.

Proof. For every x ∈ D(A) we can find a sequence (xn)n∈N ⊂ D such that
limn→∞ xn = x. Because for each n the map s �→ T (s)xn ∈ D is continuous
for the graph norm ‖ · ‖A (use (1.5)), it follows that

∫ t

0
T (s)xn ds,
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being a Riemann integral, belongs to the ‖·‖A-closure of D. Similarly, the
‖·‖A-continuity of s �→ T (s)x for x ∈ D(A) implies that∥∥∥∥1t

∫ t

0
T (s)x ds− x

∥∥∥∥
A

→ 0 as t ↓ 0 and∥∥∥∥1t
∫ t

0
T (s)xn ds − 1

t

∫ t

0
T (s)x ds

∥∥∥∥
A

→ 0 as n → ∞ and for each t > 0.

This proves that for every ε > 0 we can find t > 0 and n ∈ N such that∥∥∥∥1t
∫ t

0
T (s)xn ds − x

∥∥∥∥
A

< ε.

Hence, x ∈ D ‖·‖A . �

Important examples of cores are given by the domains D(An) of the
powers An of a generator A.

1.8 Proposition. For the generator
(
A, D(A)

)
of a strongly continuous

semigroup
(
T (t)
)
t≥0 the space

D(A∞) :=
⋂
n∈N

D(An),

hence each D(An) :=
{
x ∈ D(An−1) : An−1x ∈ D(A)

}
, is a core for A.

Proof. Because the space D(A∞) is a
(
T (t)
)
t≥0-invariant subspace of

D(A), it remains to show that it is dense in X. To that purpose, we prove
that for each function ϕ ∈ C∞(−∞,∞) with compact support in (0,∞)
and each x ∈ X the element

xϕ :=
∫ ∞

0
ϕ(s)T (s)x ds

belongs to D(A∞). In fact, if we set

D :=
{
ϕ ∈ C∞(−∞,∞) : suppϕ is compact in (0,∞)

}
,

then for x ∈ X, ϕ ∈ D, and h > 0 sufficiently small we have

T (h) − I

h
xϕ =

1
h

∫ ∞

0
ϕ(s)
(
T (s + h) − T (s)

)
x ds

=
1
h

∫ ∞

h

(
ϕ(s − h) − ϕ(s)

)
T (s)x ds− 1

h

∫ h

0
ϕ(s)T (s)x ds

=
∫ ∞

0

1
h

(
ϕ(s − h) − ϕ(s)

)
T (s)x ds.(1.8)
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The integrand in (1.8) converges uniformly on [0,∞) to −ϕ′(s)T (s)x as
h ↓ 0. This shows that xϕ ∈ D(A) and

Axϕ = −
∫ ∞

0
ϕ′(s)T (s)x ds.

Because ϕ(n) ∈ D for all n ∈ N, we conclude by induction that xϕ ∈ D(An)
for all n ∈ N; i.e., xϕ ∈ D(A∞). Assume that the linear span

D := lin
{
xϕ : x ∈ X, ϕ ∈ D

}
is not dense in X. By the Hahn–Banach theorem there is a linear functional
0 �= x′ ∈ X ′ such that 〈y, x′〉 = 0 for all y ∈ D; i.e.,

(1.9)
∫ ∞

0
ϕ(s)
〈
T (s)x, x′〉 ds =

〈∫ ∞

0
ϕ(s) T (s)x ds, x′

〉
= 0

for all x ∈ X and ϕ ∈ D. This implies that the continuous functions
s �→ 〈T (s)x, x′〉 vanish on [0,∞) for all x ∈ X. Otherwise there would
exist ϕ ∈ D such that the left-hand side of (1.9) does not vanish. Choosing
s = 0, we obtain 〈x, x′〉 = 0 for all x ∈ X; hence x′ = 0. This contradicts
the choice of x′ �= 0, and therefore D ⊂ X is dense.

Because we have seen in the first step that D ⊂ D(A∞), and because
D(A∞) is invariant under

(
T (t)
)
t≥0, the assertion follows from Proposi-

tion 1.7. �
In the remaining part of this section we introduce some basic spectral

properties for generators of strongly continuous semigroups. Such proper-
ties are studied in more detail in Section V.1.a. We start by introducing
the relevant notions (see also Definition V.1.1)

spectrum σ(A) := {λ ∈ C : λ −A is not bijective},
resolvent set ρ(A) := C \ σ(A), and
resolvent R(λ, A) := (λ −A)−1 at λ ∈ ρ(A)

for a closed operator
(
A, D(A)

)
on a Banach space X.

Our starting points are the following two identities, which are easily
derived from their predecessors in Lemma 1.3.(iv). We stress that these
identities will be used very frequently throughout these notes.

1.9 Lemma. Let
(
A, D(A)

)
be the generator of a strongly continuous

semigroup
(
T (t)
)
t≥0. Then, for every λ ∈ C and t > 0, the following

identities hold.

e−λtT (t)x− x = (A − λ)
∫ t

0
e−λsT (s)x ds if x ∈ X,(1.10)

=
∫ t

0
e−λsT (s)(A− λ)x ds if x ∈ D(A).(1.11)

Proof. It suffices to apply Lemma 1.3.(iv) to the rescaled semigroup

S(t) := e−λtT (t), t ≥ 0,

whose generator is B := A − λ with domain D(B) = D(A). �
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Next, we give an important formula relating the semigroup to the resol-
vent of its generator.

1.10 Theorem. Let
(
T (t)
)
t≥0 be a strongly continuous semigroup on the

Banach space X and take constants w ∈ R, M ≥ 1 (see Proposition I.1.4)
such that

(1.12) ‖T (t)‖ ≤ Mewt

for t ≥ 0. For the generator
(
A, D(A)

)
of
(
T (t)
)
t≥0 the following properties

hold.
(i) If λ ∈ C such that R(λ)x :=

∫∞
0 e−λsT (s)x ds exists for all x ∈ X,

then λ ∈ ρ(A) and R(λ, A) = R(λ).
(ii) If Re λ > w, then λ ∈ ρ(A), and the resolvent is given by the integral

expression in (i).
(iii) ‖R(λ, A)‖ ≤ M

Re λ−w for all Re λ > w.

The formula for R(λ, A) in (i) is called the integral representation of
the resolvent . Of course, the integral has to be understood as an improper
Riemann integral; i.e.,

(1.13) R(λ, A)x = lim
t→∞

∫ t

0
e−λsT (s)x ds

for all x ∈ X.
Having in mind this interpretation, we frequently write

(1.14) R(λ, A) =
∫ ∞

0
e−λsT (s) ds.

Proof of Theorem 1.10. (i) By a simple rescaling argument (cf. Para-
graph I.1.10) we may assume that λ = 0. Then, for arbitrary x ∈ X and
h > 0, we have

T (h) − I

h
R(0)x =

T (h) − I

h

∫ ∞

0
T (s)x ds

=
1
h

∫ ∞

0
T (s + h)x ds − 1

h

∫ ∞

0
T (s)x ds

=
1
h

∫ ∞

h

T (s)x ds− 1
h

∫ ∞

0
T (s)x ds

= − 1
h

∫ h

0
T (s)x ds.
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By taking the limit as h ↓ 0, we conclude that1 rg R(0) ⊆ D(A) and
AR(0) = −I. On the other hand, for x ∈ D(A) we have

and
lim

t→∞

∫ t

0
T (s)x ds = R(0)x,

lim
t→∞ A

∫ t

0
T (s)x ds = lim

t→∞

∫ t

0
T (s)Ax ds = R(0)Ax,

where we have used Lemma 1.3.(iv) for the second equality. Because by
Theorem 1.4 the operator A is closed, this implies R(0)Ax = AR(0)x = −x
and therefore R(0) = (−A)−1 as claimed.

Parts (ii) and (iii) then follow easily from (i) and the estimate

∥∥∥∥∫ t

0
e−λsT (s) ds

∥∥∥∥ ≤ M

∫ t

0
e(w−Re λ)s ds,

because for Re λ > w the right-hand side converges to M/(Re λ−w) as t → ∞.
�

The above integral representation can now be used to represent and
estimate the powers of R(λ, A).

1.11 Corollary. For the generator
(
A, D(A)

)
of a strongly continuous

semigroup
(
T (t)
)
t≥0 satisfying

‖T (t)‖ ≤ Mewt for all t ≥ 0,

one has, for Re λ > w and n ∈ N, that

R(λ, A)nx =
(−1)n−1

(n − 1)!
· dn−1

dλn−1 R(λ, A)x(1.15)

=
1

(n − 1)!

∫ ∞

0
sn−1e−λsT (s)x ds(1.16)

for all x ∈ X. In particular, the estimates

(1.17) ‖R(λ, A)n‖ ≤ M

(Re λ − w)n

hold for all n ∈ N and Re λ > w.

1 Here rg T := TX indicates the range of an operator T : X → Y .
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Proof. Equation (1.15) is actually valid for every operator with nonempty
resolvent set; see Proposition V.1.3.(ii). On the other hand, Theorem 1.10.(i)
implies

d

dλ
R(λ, A)x =

d

dλ

∫ ∞

0
e−λsT (s)x ds

= −
∫ ∞

0
se−λsT (s)x ds

for Reλ > w and all x ∈ X. Proceeding by induction, we deduce (1.16).
Finally, the estimate (1.17) follows from

‖R(λ, A)nx‖ =
1

(n − 1)!
·
∥∥∥∥∫ ∞

0
sn−1e−λsT (s)x ds

∥∥∥∥
≤ M

(n − 1)!
·
∫ ∞

0
sn−1e(w−Re λ)s ds · ‖x‖

=
M

(Re λ − w)n
· ‖x‖

for all x ∈ X. �
Property (ii) in Theorem 1.10 says that the spectrum of a semigroup

generator is always contained in a left half-plane. The number determining
the smallest such half-plane is an important characteristic of any linear
operator and is now defined explicitly.

1.12 Definition. With any linear operator A we associate its spectral bound
defined by

s(A) := sup{Re λ : λ ∈ σ(A)}.

As an immediate consequence of Theorem 1.10.(ii) the following relation
holds between the growth bound of a strongly continuous semigroup (see
Definition I.1.5) and the spectral bound of its generator.

1.13 Corollary. For a strongly continuous semigroup
(
T (t)
)
t≥0 with gen-

erator A, one has
−∞ ≤ s(A) ≤ ω0 < +∞.

1.14 Diagram. To conclude this section, we collect in a diagram the infor-
mation obtained so far on the relations between a semigroup, its generator,
and its resolvent. (

T (t)
)
t≥0

�
�

�
�

�
�

�

�

Ax=lim
t↓0

T (t)x−x
t

�
�

�
�

�
�

��

R(λ,A)=
∞∫
0

e−λtT (t) dt, Re λ>ω0

(
A, D(A)

) R(λ,A)=(λ−A)−1
�	

A=λ−R(λ,A)−1

(
R(λ, A)

)
λ∈ρ(A)
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By developing our theory further, we are able to add one of the missing
links in this diagram (see Diagram IV.2.6 below).

1.15 Exercises. (1) Prove that the statements (a)–(d) in Corollary 1.5
are equivalent to each of the following conditions.

(e) ‖T (t) − I‖ ≤ ct for 0 ≤ t ≤ 1 and some c > 0.
(f) limλ→∞ ‖λAR(λ, A)‖ < ∞.

(2) Show that for a closed linear operator
(
A, D(A)

)
on a Banach space X

and a linear subspace Y ⊂ D(A) the following assertions are equivalent.
(a) Y is a core for

(
A, D(A)

)
.

(b) A|Y = A.
If, in addition, ρ(A) �= ∅, then these assertions are equivalent to

(c) (λ −A)Y is dense in X for one/all λ ∈ ρ(A).
(3) Show that the space of all continuous functions with compact support
forms a core for each multiplication operator Mq on C0(Ω).
(4) Decide whether D :=

{
f ∈ C∞(R+) : f ′(0) = 0 and supp f is compact

}
is a core for

(i) The generator of the left translation semigroup on C0(R+), and
(ii) The generator of the right translation semigroup on C0(R+),

as defined in Paragraph I.3.16. (Hint: Compare the hint in (Exercise 6.iii).)
(5) Consider the Banach space X := C0(Ω) for some locally compact space
Ω. Show that for a strongly continuous semigroup

(
T (t)
)
t≥0 with generator(

A, D(A)
)

on X the following statements are equivalent.

(a)
(
T (t)
)
t≥0 is a semigroup of algebra homomorphisms on X; i.e., T (t)(f ·

g) = T (t)f · T (t)g for f, g ∈ X and t ≥ 0.
(b)
(
A, D(A)

)
is a derivation; i.e., D(A) is a subalgebra of X and

A(f · g) = (Af) · g + f ·Ag

for f, g ∈ D(A).
(Hint: For the implication (b) ⇒ (a) consider the maps s �→ T (t−s)[T (s)f ·
T (s)g] for each 0 ≤ s ≤ t and f, g ∈ D(A). For more information see [Nag86,
B-II, Sect. 3])
(6) Let

(
A, D(A)

)
be the generator of a contraction semigroup

(
T (t)
)
t≥0

on some Banach space X. Establish the following assertions.
(i) The Landau–Kolmogorov inequality , which states that

‖Ax‖2 ≤ 4
∥∥A2x

∥∥ · ‖x‖
for each x ∈ D(A2). (Hint: As a first step, verify Taylor’s formula

T (t)x = x + tAx +
∫ t

0
(t − s)T (s)A2x ds

for x ∈ D(A2).)
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(ii) If
(
T (t)
)
t≥0 is a group of isometries, then (i) can be improved to

‖Ax‖2 ≤ 2
∥∥A2x

∥∥ · ‖x‖
for x ∈ D(A2).

(iii) Apply (i) and (ii) to the various translation semigroups of Section I.3.c,
in particular to the left translation semigroup on Lp(R+). (Hint: The
generator of the (left) translation semigroup is the differentiation op-
erator with appropriate domain; see Paragraph 2.9. For details see
[Gol85, p.65])

2. Examples Revisited

Before proceeding with the abstract theory, we pause for a moment and
examine the concrete semigroups from Section I.3 and the semigroup con-
structions established in Section I.1.b. In each case, we try to identify the
corresponding

generator , its spectrum and resolvent ,
so that our abstract definitions gain a more concrete meaning. However, the
impatient reader might skip these examples and proceed with Section 3.

a. Standard Constructions

Let
(
T (t)
)
t≥0 be a strongly continuous semigroup with generator

(
A, D(A)

)
on a Banach space X. For each of the semigroups constructed in Sec-
tion I.1.b, we now characterize its generator and its resolvent.

2.1 Similar Semigroups. If V is an isomorphism from a Banach space
Y onto X and

(
S(t)
)
t≥0 is the strongly continuous semigroup on Y given

by S(t) := V −1T (t)V , then its generator is

B = V −1AV with domain D(B) =
{
y ∈ Y : V y ∈ D(A)

}
.

Equality of the spectra
σ(A) = σ(B)

is clear, and the resolvent of B is R(λ, B) = V −1R(λ, A)V for λ ∈ ρ(A).
A particularly important example of this situation is given by the Spec-

tral Theorem I.3.9, which states that every normal or self-adjoint operator
on a Hilbert space is similar to a multiplication operator on an L2-space.
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2.2 Rescaled Semigroups. The rescaled semigroup
(
eμtT (αt)

)
t≥0 for

some fixed μ ∈ C and α > 0 has generator

B = αA + μI with domain D(A) = D(B).

Moreover, σ(B) = ασ(A) + μ and R(λ, B) = 1/αR (λ−μ/α, A) for λ ∈ ρ(B).
This shows that we can switch quite easily between the original and the

rescaled objects.

2.3 Subspace Semigroups. Although in Paragraph I.1.11 we considered
the subspace semigroup

(
T (t)|Y

)
t≥0 only for closed subspaces Y in X, we

begin here with a more general situation.
Let Y be a Banach space that is continuously embedded in X (in symbols:

Y ↪→ X). Assume also that the restrictions T (t)| leave Y invariant and form
a strongly continuous semigroup

(
T (t)|
)
t≥0 on Y . In order to be able to

identify the generator of
(
T (t)|Y

)
t≥0, we introduce the following concept.

Definition. The part of A in Y is the operator A| defined by

with domain
A|y := Ay

D(A|) :=
{
y ∈ D(A) ∩ Y : Ay ∈ Y

}
.

In other words, A| is the “maximal” operator induced by A on Y and,
as shown next, coincides with the generator of the semigroup

(
T (t)|
)
t≥0 on

the subspace Y .

Proposition. Let
(
A, D(A)

)
be the generator of a strongly continuous

semigroup
(
T (t)
)
t≥0 on X. If the restricted semigroup

(
T (t)|
)
t≥0 is strongly

continuous on some
(
T (t)
)
t≥0-invariant Banach space Y ↪→ X, then the

generator of
(
T (t)|
)
t≥0 is the part

(
A|, D(A|)

)
of A in Y .

Proof. Let
(
C, D(C)

)
denote the generator of

(
T (t)|
)
t≥0. Because Y is

continuously embedded in X, we immediately have that C is a restriction
of A|. For the converse inclusion, choose λ ∈ R large enough such that
both R(λ, C) and R(λ, A) are given by the integral representation from
Theorem 1.10.(i). Then

R(λ, C)y =
∫ ∞

0
e−λsT (s)y ds = R(λ, A)y for all y ∈ Y.

For x ∈ D(A|), we obtain that

x = R(λ, A)(λ−A)x = R(λ, C)(λ −A)x ∈ D(C),

and hence D(A|) = D(C). �
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If Y is a
(
T (t)
)
t≥0-invariant closed subspace of X, then the strong con-

tinuity of
(
T (t)|
)
t≥0 is automatic. Moreover, the existence of

z := lim
t↓0

1
t

(
T (t)y − y

) ∈ X

for some y ∈ Y implies that z ∈ Y . Therefore, the part A| simply becomes
the “restriction” of A.

Corollary. If Y is a
(
T (t)
)
t≥0-invariant closed subspace of X, then the

generator of
(
T (t)|
)
t≥0 is

with domain
A|y = Ay,

D(A|) = D(A) ∩ Y.

Example. A typical example for the situation considered here occurs when
we take X := L1(Γ, m) and Y := C(Γ). The rotation group from I.3.18 is
strongly continuous on both spaces; hence its generator on C(Γ) is the
part of its generator on L1(Γ, m). The generator on L1(Γ, m) can now
be obtained as the first derivative by modifying the arguments from the
proposition in Paragraph 2.9.(ii) below.

2.4 Quotient Semigroup. Let Y be a
(
T (t)
)
t≥0-invariant closed sub-

space of X. Then the generator
(
A/, D(A/)

)
of the quotient semigroup(

T (t)/Y

)
t≥0 on the quotient space X/ := X/Y is given (with the notation

from Paragraph I.1.12) by

A/q(x) = q(Ax) with domain D(A/) = q
(
D(A)

)
.

This follows from the fact that each element x̂ := q(x) ∈ D(A/) can be
written as

x̂ =
∫ ∞

0
e−λsT (s)/ŷ ds

for some ŷ = q(y) ∈ X/Y and some λ > ω0 (use 1.10.(i)). Therefore,

x̂ =
∫ ∞

0
e−λsq

(
T (s)y

)
ds = q

(∫ ∞

0
e−λsT (s)y ds

)
= q(z)

with z ∈ D(A). This means that for every x̂ ∈ D(A/) there exists a repre-
sentative z ∈ X belonging to D(A).

For a concrete example, we refer to Paragraph 2.10.
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2.5 Adjoint Semigroups. Even though the adjoint semigroup
(
T (t)′)

t≥0
is not necessarily strongly continuous on X ′, it is still possible to associate
a “generator” with it. In fact, defining

Aσx′ := σ(X ′, X)- lim
h↓0

1
h

(
T (h)′x′ − x′),

D(Aσ) :=
{

x′ ∈ X ′ : σ(X ′, X)- lim
h↓0

1
h

(
T (h)′x′ − x′) exists

}
,

one obtains a linear operator called the weak∗ generator of
(
T (t)′)

t≥0. It
is a σ(X ′, X)-closed and σ(X ′, X)-densely defined operator and coincides
with the adjoint A′ of A (see Definition A.12); i.e.,

D(Aσ) =
{

x′ ∈ X ′ : there exists y′ ∈ X ′ such that
〈x, y′〉 = 〈Ax, x′〉 for all x ∈ D(A)

}
and

Aσx′ = A′x′.

(See Exercise 2.7.) By Corollary A.16 it then follows that σ(Aσ) = σ(A) =
σ(A′) and R(λ, Aσ) = R(λ, A′) = R(λ, A)′ for λ ∈ ρ(A).

2.6 Product Semigroups. Let
(
B, D(B)

)
be the generator of a second

strongly continuous semigroup
(
S(t)
)
t≥0 commuting with

(
T (t)
)
t≥0. It is

easy to deduce some information on the generator
(
C, D(C)

)
of the prod-

uct semigroup
(
U(t)
)
t≥0, defined by U(t) := S(t)T (t) for t ≥ 0; see Para-

graph I.1.14.
We first show that D(A)∩D(B) satisfies the conditions of Proposition 1.7

and so is a core for C.
Because

(
T (t)
)
t≥0 and

(
S(t)
)
t≥0 commute, each domain D(A) and D(B)

is invariant under both semigroups. Hence D(A) ∩ D(B) is
(
U(t)
)
t≥0-

invariant. Take λ large enough such that R(λ, A) =
∫∞
0 e−λsT (s) ds and

R(λ, B) =
∫∞
0 e−λsS(s) ds. From these representations we deduce that

the resolvent operators commute; i.e., R(λ, A)R(λ, B) = R(λ, B)R(λ, A).
Therefore, R(λ, B) maps D(A) into D(A), and so R(λ, B)R(λ, A)X is con-
tained in D(A)∩D(B). Because both R(λ, A) and R(λ, B) are continuous
and have dense range, we conclude that D(A) ∩ D(B) is dense in X, i.e.,
is a core for C.

Now, by Lemma A.19, the map R+ � t �→ U(t)x is differentiable for all
elements x ∈ D(A) ∩D(B). Moreover, its derivative at t = 0 is[

d
dtU(t)x

]
(0) = Cx = Ax + Bx,

which determines the generator C of
(
U(t)
)
t≥0 on the core D(A) ∩D(B).

2.7 Exercise. Show that the operator Aσ defined in Paragraph 2.5 is
σ(X ′, X)-closed, σ(X ′, X)-densely defined, and that it coincides with the
adjoint A′ of A.
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b. Standard Examples

In this subsection we return to the examples of strongly continuous semi-
groups introduced in Chapter I, Section 3, and identify the correspond-
ing generators and resolvent operators. We start with multiplication semi-
groups for which all operators involved can be computed explicitly.

2.8 Multiplication Semigroups. We saw in Proposition I.3.6 (or Propo-
sition I.3.12) that strongly continuous multiplication semigroups on spaces
C0(Ω) (or Lp(Ω, μ)) are multiplications by etq, t ≥ 0, for some continuous
(or measurable) function q : Ω → C with real part (essentially) bounded
above. It should be no surprise that this function also yields the generator
of the semigroup.

Lemma. The generator
(
A, D(A)

)
of a strongly continuous multiplication

semigroup
(
T (t)
)
t≥0 on X := C0(Ω) or X := Lp(Ω, μ) defined by

Tq(t)f := etq · f, f ∈ X and t ≥ 0,

is given by the multiplication operator

Af = Mqf := q · f
with domain D(A) = D(Mq) := {f ∈ X : qf ∈ X}.
Proof. Let X := C0(Ω) and take f ∈ D(A). Then

lim
t↓0

etqf − f

t
(s) = lim

t↓0

etq(s)f(s)− f(s)
t

= q(s)f(s)

exists for all s ∈ Ω, and we obtain qf ∈ C0(Ω). This shows that D(A) ⊆
D(Mq) and that Af = Mqf . Because by Theorem 1.10.(ii) and Proposi-
tion I.3.2.(iv), respectively, A − λ and Mq − λ are both invertible for λ
sufficiently large, this implies A = Mq. The proof for X := Lp(Ω, μ) is left
as Exercise 2.13.(2). �

This lemma, in combination with Propositions I.3.5 and I.3.6 (or Proposi-
tions I.3.11 and I.3.12), completely characterizes the generators of strongly
continuous multiplication semigroups. We restate this in the following re-
sult by identifying the closed (or the essential) range of q with the spectrum
of Mq; see Proposition I.3.2.(iv) (or Proposition I.3.10.(iv)).

Proposition. For an operator
(
A, D(A)

)
on the Banach space C0(Ω) or

Lp(Ω, μ), 1 ≤ p < ∞, the following assertions are equivalent.
(a)
(
A, D(A)

)
is the generator of a strongly continuous multiplication

semigroup.
(b)
(
A, D(A)

)
is a multiplication operator such that

{λ ∈ C : Re λ > w} ⊆ ρ(A) for some w ∈ R.
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The remarkable feature of this proposition is the fact that condition (b),
which corresponds to the spectral condition (ii) from Theorem 1.10, already
guarantees the existence of a corresponding semigroup. This is in sharp con-
trast to the situation for general semigroups (see Generation Theorems 3.5
and 3.8 below).

2.9 Translation Semigroups. As seen in Paragraph I.3.15, the (left)
translation operators

Tl(t)f(s) := f(s + t), s, t ∈ R,

define a strongly continuous (semi) group on the spaces Cub(R) and Lp(R),
1 ≤ p < ∞. In each case, the generator

(
A, D(A)

)
is given by differentia-

tion, but we have to adapt its domain to the underlying space.

Proposition 1. The generator of the (left) translation semigroup
(
Tl(t)
)
t≥0

on the space X is given by
Af := f ′

with domain:
(i)

D(A) =
{
f ∈ Cub(R) : f differentiable and f ′ ∈ Cub(R)

}
,

if X := Cub(R), and
(ii)

D(A) =
{
f ∈ Lp(R) : f absolutely continuous and f ′ ∈ Lp(R)

}
,

if X := Lp(R), 1 ≤ p < ∞.

Proof. It suffices to show that the generator
(
B, D(B)

)
of
(
Tl(t)
)
t≥0

is a restriction of the operator
(
A, D(A)

)
defined above. In fact, because(

Tl(t)
)
t≥0 is a contraction semigroup on X, Theorem 1.10.(ii) implies 1 ∈

ρ(B). On the other hand, by Proposition 2 below, we know that 1 ∈ ρ(A),
and therefore the inclusion B ⊆ A will imply A = B.

(i) Fix f ∈ D(B). Because δ0 is a continuous linear form on Cub(R), the
function

R+ � t �→ δ0
(
Tl(t)f

)
= f(t)

is differentiable by Lemma 1.1 and Definition 1.2, and

Bf =
[

d
dtTl(t)f

]
t=0 =

[
d
dtf(t + ·)]

t=0 = f ′.

This proves D(B) ⊆ D(A) and A|D(B) = B. Hence, A = B as mentioned
above.
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(ii) Take f ∈ D(B) and set g := Bf ∈ Lp(R). Because integration over
compact intervals is continuous in Lp(R), we obtain for every a, b ∈ R that

1
h

∫ b+h

b

f(s) ds − 1
h

∫ a+h

a

f(s) ds =
∫ b

a

f(s + h) − f(s)
h

ds

converges to
∫ b

a
g(s) ds as h ↓ 0. However, the left-hand side converges to

f(b) − f(a) for almost all a, b; see [Tay85, Thm. 9-8 VI]. By redefining f
on a null set we obtain

f(b) =
∫ b

a

g(s) ds + f(a), b ∈ R,

which is an absolutely continuous function with derivative (almost every-
where) equal to g. Again this shows that D(B) ⊆ D(A) and A|D(B) = B.
It follows that A = B as above. �

In order to finish this proof, we give an explicit formula for the resolvent
of the differentiation operator A with “maximal” domain D(A) as specified
in the previous result. The simple proof is left as Exercise 2.13.(1).

Proposition 2. The resolvent R(λ, A) for Re λ > 0 of the differentiation
operator A with maximal domain D(A) (i.e., of the generator of the left
translation semigroup) on any of the above spaces X is given by

(2.1)
(
R(λ, A)f

)
(s) =

∫ ∞

s

e−λ(τ−s)f(τ) dτ for f ∈ X, s ∈ R.

Clearly, there are many other function spaces on which the translations
define a strongly continuous semigroup. As soon as they are contained
in Lp(R) or Cub(R), for example, Proposition 2.3 allows us to identify the
generator as the part of the differentiation operator. This, and the quotient
construction from Paragraph 2.4, yield the generators of the translation
semigroups on R+ and on finite intervals (see Paragraphs I.3.16 and I.3.17).

We present an example for this argument.

2.10 Translation Semigroups (Continued). Consider the (left) trans-
lation (semi) group from Paragraph 2.9 on the space X := L1(R). Then
the closed subspace

Y :=
{
f ∈ L1(R) : f(s) = 0 for s ≥ 1

}
,

which is isomorphic to L1(−∞, 1), is
(
T (t)
)
t≥0-invariant. The generator of

the subspace semigroup
(
T (t)|
)
t≥0 is

A|f = f ′

with domain

D(A|) =
{

f ∈ L1(R) :
f is absolutely continuous,
f ′ ∈ L1(R) and f(s) = 0 for s ≥ 1

}
.
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In Y and for the subspace semigroup
(
T (t)|
)
t≥0, the space

Z :=
{
f ∈ Y : f(s) = 0 for 0 ≤ s ≤ 1

}
is again closed and invariant. The quotient space Y/Z is isomorphic to
L1[0, 1], and the quotient semigroup is isomorphic to the nilpotent (left)
translation semigroup from Paragraph I.3.17. By Paragraph 2.4, we obtain
for its generator A|/ that

A|/f = f ′

with domain

D(A|/) =
{

f ∈ L1[0, 1] :
f is absolutely continuous,
f ′ ∈ L1[0, 1] and f(1) = 0

}
.

As above, its resolvent can be determined explicitly using (1.13). We obtain
for every λ ∈ C that

(2.2)
(
R(λ, A|/)f

)
(s) =

∫ 1

s

e−λ(τ−s)f(τ) dτ for f ∈ L1[0, 1], s ∈ [0, 1].

In the previous examples we always started with an explicit semigroup
and then identified its generator. In the final two examples we look at
(second-order) differential operators and show by direct computation that
they generate strongly continuous semigroups.

2.11 Diffusion Semigroups (One-Dimensional). Consider the Banach
space X := C[0, 1] and the differential operator

with domain
Af := f ′′

D(A) :=
{
f ∈ C2[0, 1] : f ′(0) = f ′(1) = 0

}
.

This domain is a dense subspace of X that is complete for the graph norm;
hence

(
A, D(A)

)
is a closed, densely defined operator. Each function

s �→ en(s) :=
{

1 if n = 0,√
2 cos(πns) if n ≥ 1,

belongs to D(A) and satisfies

(2.3) Aen = −π2n2en.

By the Stone–Weierstrass theorem and elementary trigonometric identities
we conclude that

(2.4) Y := lin{en : n ≥ 0}
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is a dense subalgebra of X. Consider the rank-one operators

en ⊗ en : f �→ 〈f, en〉 en :=
(∫ 1

0
f(s)en(s) ds

)
en,

that satisfy
‖en ⊗ en‖ ≤ 2

and

(2.5) (en ⊗ en) em = δnmem

for all n, m ≥ 0. They can be used to define, for t > 0, the operators

(2.6) T (t) :=
∞∑

n=0

e−π2n2t · en ⊗ en.

For f ∈ C[0, 1] and s ∈ [0, 1], this means that(
T (t)f

)
(s) =

∫ 1

0
kt(s, r)f(r) dr,(2.7)

where
kt(s, r) : = 1 + 2

∑
n∈N

e−π2n2t cos(πns) · cos(πnr).

The Jacobi identity

wt(s) :=
1√
4πt

∑
n∈Z

e
−(s+2n)2/4t =

1
2

+
∑
n∈N

e−π2n2t cos(πns)

(see [SD80, Kap. I, Satz 10.4]) and various trigonometric relations imply
that for each t > 0, the kernel kt(·, ·) satisfies

kt(s, r) = wt(s + r) + wt(s− r).

Hence, kt(·, ·) is a positive continuous function on [0, 1]2, and we obtain

‖T (t)‖ = ‖T (t)1‖ = sup
s∈[0,1]

∫ 1

0
kt(s, r) dr = 1.

Using the identity (2.5), one easily verifies that on the one-dimensional
subspaces generated by en, n ≥ 0, the operators T (t) satisfy the semigroup
law (FE), which by continuity then holds on all of X. Similarly, the strong
continuity holds on Y and hence, by Proposition I.1.3, on X.

These considerations already prove most of the following result.

Proposition. The above operators T (t), t ≥ 0, with T (0) = I form a
strongly continuous semigroup on X := C[0, 1] whose generator is given by

with domain
Af = f ′′,

D(A) =
{
f ∈ C2[0, 1] : f ′(0) = f ′(1) = 0

}
.
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Proof. It remains only to show that the generator B of
(
T (t)
)
t≥0 coin-

cides with A. To this end, we first observe that the subspace Y defined by
(2.4) is dense in X, contained in D(B), and

(
T (t)
)
t≥0-invariant. Hence,

by Proposition 1.7, it is a core for B. Next, using the definition of T (t)
and Formula (2.5), it follows that A and B coincide on Y . Therefore, we
obtain that B = A|Y and, in particular, that B is a restriction of A. From
the theory of linear ordinary differential equations it follows that 1 ∈ ρ(A).
Moreover, by Theorem 1.10.(ii), we know that 1 ∈ ρ(B), and therefore
A = B. �

2.12 Diffusion Semigroups (n-Dimensional). The following classical
example was one of the main sources for the development of semigroup
theory. It describes heat flow, diffusion processes, or Brownian motion
and bears names such as heat semigroup, Gaussian semigroup, or diffu-
sion semigroup. We consider it on X := Lp(Rn), 1 ≤ p < ∞, where it is
defined explicitly by

(2.8) T (t)f(s) := (4πt)
−n/2

∫
Rn

e
−|s−r|2/4tf(r) dr

for t > 0, s ∈ Rn, and f ∈ X. By putting

μt(s) := (4πt)
−n/2e

−|s|2/4t,

this can be written as
T (t)f(s) = μt ∗ f(s).

Proposition. The above operators T (t), for t > 0 and with T (0) = I, form
a strongly continuous semigroup on Lp(Rn), 1 ≤ p < ∞, and its generator
A coincides with the closure of the Laplace operator

Δf(s) :=
n∑

i=1

∂2

∂s2
i

f(s1, . . . , sn)

defined for every f in the Schwartz space

S (Rn) :=
{

f ∈ C∞(Rn) : lim
|x|→∞

|x|kDαf(x) = 0 for all k ∈ N and α ∈ Nn
}

(see [EN00, Def. VI.5.1]).

Proof. The integral defining T (t)f(s) exists for every f ∈ Lp(Rn), because
μt ∈ S (Rn). Moreover,

‖T (t)f‖p ≤ ‖μt‖1 · ‖f‖p ≤ ‖f‖p
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by Young’s inequality (see [RS75, p. 28]). Hence, each T (t) is a contrac-
tion on Lp. Because S (Rn) is dense in Lp and invariant under T (t), it
suffices to study T (t)|S (Rn). This is done using the Fourier transformation
F, which leaves S (Rn) invariant. By the usual properties of F (see [Rud73,
Thm. 7.2]) one obtains

F(μt ∗ f) = F(μt) · F(f)

for each f ∈ S (Rn). Because

F(μt)(ξ) = e−|ξ|2t

for ξ ∈ Rn, where |ξ| := (
∑n

i=1 ξ2
i )1/2, we see that F transforms the semi-

group
(
T (t)|S (Rn)

)
t≥0 into a multiplication semigroup on S (Rn), which is

pointwise continuous for the usual topology on S (Rn). Moreover, direct
computations as in Lemma 2.8 show that the right derivative at t = 0 is
the multiplication operator

Bg(ξ) := −|ξ|2g(ξ)

for ξ ∈ Rn, g ∈ S (Rn). Pulling this information back via the inverse
Fourier transformation shows that

(
T (t)
)
t≥0 satisfies the semigroup law.

Because the topology of S (Rn) is finer than the one induced from Lp(Rn),
we also obtain strong continuity on S (Rn), hence on Lp(Rn). Finally, we
observe that the inverse Fourier transformation of the multiplication op-
erator B is the Laplace operator. Because S (Rn) is dense and

(
T (t)
)
t≥0-

invariant, by Proposition 1.7 we have therefore determined the generator
A of

(
T (t)
)
t≥0 on a core of its domain. �

For generalizations of this example we refer to [ABHN01, Expl. 3.7.6 and
Chap. 8], [EN00, Sect. VI.5], and [Lun95, Chap. 3]. In particular, we men-
tion that (2.8) also defines a strongly continuous semigroup on Cub(Rn). Its
generator is given by the closure of the Laplacian Δ with domain C∞

b (Rn).

2.13 Exercises. (1) Compute the resolvent operators of the generators
of the various translation semigroups on R, R+, or on finite intervals. In
particular, deduce the resolvent representation (2.1). (Hint: Use the integral
representation (1.14).) Determine from this the generator and its domain
as already found in Paragraphs 2.9 and 2.10.
(2) Prove the lemma in Paragraph 2.8 for X := Lp(Ω, μ).
(3) Let X := L∞(R). Show that

(i) A multiplication semigroup on X is strongly continuous if and only
if it is uniformly continuous, and

(ii) The translation (semi) group is not strongly continuous.
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Remark that Lotz in [Lot85] showed that a strongly continuous semigroup
on a class of Banach spaces containing all L∞-spaces is necessarily uni-
formly continuous. See also [Nag86, A-II.3].

(4∗) Consider the translation (semi) group
(
T (t)
)
t∈R on X := L∞(R) and

the closed,
(
T (t)
)
t∈R-invariant subspace Y := Cub(R). The quotient opera-

tors T (t)/ define a contraction (semi) group on X/Y whose orbits t �→ T (t)/

are continuous (differentiable) only if f̂ = 0. Note that in this way we ob-
tained a noncontinuous, but not pathological, solution of Problem I.2.13.
(Hint: See [NP94].)

c. Sobolev Towers

In the spirit of Section 2.a, we continue to associate new semigroups on
new spaces with a given strongly continuous semigroup. The constructions
here are inspired by the classical Sobolev and distribution spaces and yield
an important tool for abstract theory as well as for concrete applications
(see [Haa06, Chap. 6], [HHK06], [Sin05]).

We start by considering a strongly continuous semigroup
(
T (t)
)
t≥0 with

generator
(
A, D(A)

)
on a Banach space X. After applying the rescaling

procedure, and hence without loss of generality (see Paragraph 2.2 and
Exercise 2.22.(1)), we can assume that its growth bound ω0 is negative.
Therefore, its generator A is invertible with A−1 ∈ L(X). On the domains
D(An) of its powers An, we now introduce new norms ‖ · ‖n.

2.14 Definition. For each n ∈ N and x ∈ D(An), we define the n-norm

‖x‖n := ‖Anx‖

and call

Xn := (D(An), ‖ · ‖n)

the Sobolev space of order n associated with
(
T (t)
)
t≥0. The operators T (t)

restricted to Xn are denoted by

Tn(t) := T (t)|Xn
.

It turns out that the restrictions Tn(t) behave surprisingly well on Xn.
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2.15 Proposition. With the above definitions, the following hold.
(i) Each Xn is a Banach space.
(ii) The operators Tn(t) form a strongly continuous semigroup

(
Tn(t)

)
t≥0

on Xn.
(iii) The generator An of

(
Tn(t)

)
t≥0 is given by the part of A in Xn; i.e.,

Anx = Ax for x ∈ D(An) with

D(An) : = {x ∈ Xn : Ax ∈ Xn} = D(An+1) = Xn+1.

Proof. The assertion follows by induction if we prove the case n = 1.
Assertion (i) follows, because A is a closed operator and ‖ · ‖1 is equivalent
to the graph norm, as can be seen from the estimate

‖x‖A =
∥∥A−1Ax

∥∥+ ‖Ax‖ ≤ (∥∥A−1
∥∥+ 1

) · ‖x‖1 ≤
(∥∥A−1

∥∥+ 1
) · ‖x‖A

for x ∈ X1. From Lemma 1.3.(ii), we know that T (t) maps X1 into X1.
Each T1(t) is bounded, because

‖T1(t)x‖1 = ‖T (t)Ax‖ ≤ ‖T (t)‖ · ‖x‖1 for x ∈ X1,

so
(
T1(t)
)
t≥0 is a semigroup on X1. The strong continuity follows from

‖T1(t)x− x‖1 = ‖T (t)Ax−Ax‖ → 0 for t ↓ 0 and x ∈ X1.

Finally, (iii) follows from the proposition in Paragraph 2.3 on subspace
semigroups. �

We visualize the above spaces and semigroups by a diagram. Before doing
so, we point out that by definition, An is an isometry (with inverse A−1

n )
from Xn+1 onto Xn. Moreover, we write X0 := X, T0(t) := T (t) and
A0 := A.

X0
T0(t) � X0

A0

�

�

A−1
0

X1
T1(t) � X1 =

(
D(A0), ‖ · ‖1

)
A1

�

�

A−1
1

X2
T2(t) � X2 =

(
D(A1), ‖ · ‖2

)
=
(
D(A2

0), ‖ · ‖2
)

A2
�

�
A−1

2

...
...
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Observe that each Xn+1 is densely embedded in Xn but also, via An,
isometrically isomorphic to Xn. In addition, the semigroup

(
Tn+1(t)

)
is

the restriction of
(
Tn(t)

)
t≥0, but also similar to

(
Tn(t)

)
t≥0. We state this

important property explicitly.

2.16 Corollary. All the strongly continuous semigroups
(
Tn(t)

)
t≥0 on the

spaces Xn are similar. More precisely, one has

Tn+1(t) = A−1
n Tn(t)An = Tn(t)|Xn+1

for all n ≥ 0.

This similarity implies that spectrum, spectral bound, growth bound,
etc. coincide for all the semigroups

(
Tn(t)

)
t≥0.

In our construction, we obtained the (n + 1)st Sobolev space from the
nth Sobolev space. However, because Xn+1 is a dense subspace of Xn (by
Theorem 1.4), it is possible to invert this procedure and obtain Xn from
Xn+1 as the completion of Xn+1 for the norm

‖x‖n :=
∥∥A−1

n+1x
∥∥

n+1 .

This observation permits us to extend the above diagram to the negative
integers and to define extrapolation spaces or Sobolev spaces of negative
order .

2.17 Definition. For each n ∈ N and x ∈ X−n+1, we define (recursively)
the norm

‖x‖−n :=
∥∥A−1

−n+1x
∥∥

−n+1

and call the completion

X−n :=
(
X−n+1, ‖ · ‖−n

)∼
the Sobolev space of order −n associated with

(
T0(t)
)
t≥0. Moreover, we de-

note the continuous extensions of the operators T−n+1(t) to the extrapolated
space X−n by T−n(t).

Note that these extended operators T−n(t) have properties analogous to
the ones stated in Proposition 2.15; hence our previous results hold for all
n ∈ Z.

2.18 Theorem. With the above definitions, the following hold for all m ≥
n ∈ Z.

(i) Each Xn is a Banach space containing Xm as a dense subspace.
(ii) The operators Tn(t) form a strongly continuous semigroup

(
Tn(t)

)
t≥0

on Xn.

(iii) The generator An of
(
Tn(t)

)
t≥0 has domain D(An) = Xn+1 and is

the unique continuous extension of Am : Xm+1 → Xm to an isometry
from Xn+1 onto Xn.
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Proof. It suffices to prove the assertions for m = 0 and n = −1 only. In
this case, (i) holds true by definition. From

‖T0(t)x‖−1 =
∥∥T0(t)A−1

0 x
∥∥

0 ≤ ‖T0(t)‖ · ‖x‖−1 ,

we see that T0(t) extends continuously to X−1. The semigroup property
holds for

(
T0(t)
)
t≥0 on X0, hence for

(
T−1(t)

)
t≥0 on X−1. Similarly, the

strong continuity follows, because it holds on the dense subset X0 (even for
the stronger norm ‖ · ‖0).

To prove (iii), we observe first that A−1 extends A0, because T−1(t)
extends T0(t). The closedness of A−1 then implies X0 ⊆ D(A−1). Because
X0 is dense in X−1 and

(
T−1(t)

)
t≥0-invariant, it is a core for A−1 by

Proposition 1.7. Now, on X0 the graph norm ‖ · ‖A−1 is equivalent to ‖ · ‖;
hence X0 is a Banach space for ‖ · ‖A−1 , and therefore X0 = D(A−1).

The remaining assertions follow from the fact that A0 : D(A0) ⊂ X0 →
X−1, by definition of the norms, is an isometry. �

So, we have constructed a two-sided infinite sequence of Banach spaces
and strongly continuous semigroups thereon. Again we visualize this Sobolev
tower associated with the semigroup

(
T0(t)
)
t≥0 by a diagram. Note that

Corollary 2.16 now holds for all n ∈ Z. In addition, if we start this con-
struction from any level, i.e., from the semigroup

(
Tk(t)
)
t≥0 on the space

Xk for some k ∈ Z, we will obtain the same scale of spaces and semigroups.

2.19 Diagram.

...
...

A−2
�

�
A−1

−2

X−1
T−1(t) � X−1 =

(
X0, ‖ · ‖−1

)∼
A−1

�

�

A−1
−1

X0
T0(t) � X0

A0

�

�

A−1
0

X1
T1(t) � X1 =

(
D(A0), ‖ · ‖1

)
A1

�
�
A−1

1

...
...

We point out again that each space Xn is the completion (unique up to
isomorphism) of any of its subspaces Xm whenever m ≥ n ∈ Z.
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For multiplication semigroups it is easy to identify all Sobolev spaces
with concrete function spaces.

2.20 Example. We take X0 := C0(Ω) and q : Ω → C continuous assum-
ing, for simplicity, that sups∈Ω Re q(s) < 0. As in Section I.3.a, we define
Mqf := q · f and the corresponding multiplication semigroup by

Tq(t)f := etq · f
for t ≥ 0, f ∈ X. The Sobolev spaces Xn are then given by

(2.9) Xn =
{
q−n · f : f ∈ X

}
=
{
g ∈ C(Ω) : qn · g ∈ X0

}
for all n ∈ Z.

Note that the analogous statement holds if we start from

X0 := Lp(Ω, μ) for 1 ≤ p < ∞,

a measurable function q : Ω → C satisfying ess sups∈Ω Re q(s) < 0, and
the corresponding multiplication semigroup

(
Tq(t)
)
t≥0 (cf. Section I.3.b).

In particular, (2.9) becomes

(2.10) Xn = Lp
(
Ω, |q|np · μ)

for all n ∈ Z.

These abstract Sobolev spaces look quite familiar if we consider the trans-
lation semigroups and their generators from Paragraph 2.9.

2.21 Examples. (i) First, we look at the (left) translation group
(
Tl(t)
)
t∈R

on X := L2(R) as discussed in Paragraph 2.9. If by F we denote the Fourier
transform, then by Plancherel’s equation (2π)−1/2 F maps L2(R) isometri-
cally onto L2(R) and transforms

(
Tl(t)
)
t∈R into the multiplication group(

T̂ (t)
)
t∈R given by

T̂ (t)f(ξ) = eitξ · f(ξ) for f ∈ L2(R), ξ ∈ R.

(Note that this is a concrete version of the Spectral Theorem I.3.9.) The
generator of

(
T̂ (t)
)
t∈R is the multiplication operator given by the function

q̂ : ξ �→ iξ; hence the associated Sobolev spaces have been determined in
Example 2.20 as

X̂n =
{
ξ �→ (1 − iξ)−n · f(ξ) : f ∈ L2(R)

}
for all n ∈ Z. If we now apply the inverse Fourier transform (and its exten-
sion to the space of distributions), we obtain the Sobolev spaces associated
with the translation group as

Xn =
{
(1 −D)−nf : f ∈ L2(R)

}
,

where D denotes the distributional derivative. Hence, Xn coincides with
the usual Sobolev space W2,n(R) for all n ∈ Z.
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(ii) In the case of the translation group
(
Tl(t)
)
t∈R on X := C0(R), we

can avoid the use of the Fourier transform and work in the space of test
functions D(R) and its dual D(R)′ (see [Rud73, Chap. 6]) to obtain an
analogous characterization of Xn. For n ≥ 1, the spaces Xn are easy to
identify as

Xn =
{

f ∈ C0(R) :
f is n-times differentiable and
f (k) ∈ C0(R) for k = 1, . . . , n

}
.

To find the Sobolev spaces of negative order, we only consider the case
n = −1 and recall that X−1 is the set of (equivalence classes of) Cauchy
sequences in X for the norm ‖f‖−1 := ‖R(1, A)f‖ for f ∈ X and A the
generator of

(
Tl(t)
)
t∈R. Then each such ‖·‖−1-Cauchy sequence (fn)n∈N

defines a distribution F ∈ D(R)′ by

〈F, ϕ〉 :=
〈

lim
n→∞ R(1, A)fn, ϕ + ϕ′

〉
for ϕ ∈ D(R). This shows that X−1 is continuously embedded in the space(
D ′(R), σ(D ′,D)

)
. Because A−1 is the continuous extension of the classical

derivative defined on X1, it coincides with the distributional derivative D,
and hence

X−1 =
{
F ∈ D ′ : F = f −Df for some f ∈ C0(R)

}
.

2.22 Exercises. (1) Let
(
A, D(A)

)
be a closed densely defined operator

on X such that ρ(A) �= ∅. Prove the following.
(i) For each fixed n ∈ N, all the norms

‖x‖n,λ :=
∥∥(λ −A)nx

∥∥, x ∈ D(An),

are equivalent for λ ∈ ρ(A).
(ii) For each fixed n ∈ N, all the norms

‖x‖−n,λ :=
∥∥R(λ, A)nx

∥∥, x ∈ X,

are equivalent for λ ∈ ρ(A).
(iii) Now take λ = 0 ∈ ρ(A) and define the Sobolev spaces Xn, n ∈ Z,

as in Definition 2.14 and Definition 2.17. Then the operator A can
be restricted/extended to an isometry from Xn+1 onto Xn for each
n ∈ Z.

(2) Identify the abstract Sobolev spaces Xn in Example 2.20 assuming only
that sups∈R Re q(s) < ∞.
(3) Show that an operator

(
A, D(A)

)
on X with ρ(A) �= ∅ is bounded if

and only if Xn = X for all n ∈ Z.
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(4) Take an operator
(
A, D(A)

)
with ρ(A) �= ∅ on the Banach space X.

Show that the dual of the extrapolated Sobolev space X−1 is canonically
isomorphic to the domain D(A′) of the adjoint A′ in X ′ endowed with the
graph norm.
(5) Show that for two densely defined operators

(
A, D(A)

)
with ρ(A) �= ∅

and
(
B, D(B)

)
on the Banach space X the following assertions are equiv-

alent.
(i) D(A′) ⊆ D(B′).
(ii) R(λ, A)B ∈ L(X) for one (hence, all) λ ∈ ρ(A).
(iii) B : D(B) ⊆ X → XA

−1 is bounded; i.e., B can be extended to a
bounded operator from X to XA

−1.

3. Generation Theorems

We now turn to the fundamental problem of semigroup theory, which is to
find arrows in Diagram 1.14 leading from the generator (or its resolvent)
to the semigroup. This means that we discuss the following problem.

3.1 Problem. Characterize those linear operators that are generators of
some strongly continuous semigroup, and describe how the semigroup is
generated.

a. Hille–Yosida Theorems

In Theorems 1.4 and 1.10, we already saw that generators
• Are necessarily closed operators,
• Have dense domain, and
• Have their spectrum contained in some proper left half-plane.
These conditions, however, are not sufficient.

3.2 Example. On the space

X :=
{
f ∈ C0(R+) : f continuously differentiable on [0, 1]

}
endowed with the norm

‖f‖ := sup
s∈R+

|f(s)|+ sup
s∈[0,1]

|f ′(s)|,

we consider the operator
(
A, D(A)

)
defined by

Af := f ′ for f ∈ D(A) :=
{
f ∈ C1

0(R+) : f ′ ∈ X
}
.
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Then A is closed and densely defined, its resolvent exists for Reλ > 0, and
can be expressed by(

R(λ, A)f
)
(s) =

∫ ∞

s

e−λ(τ−s)f(τ) dτ for f ∈ X, s ≥ 0

(compare (2.1)). Assume now that A generates a strongly continuous semi-
group

(
T (t)
)
t≥0 on X. For f ∈ D(A) and 0 ≤ s, t we define

ξ(τ) :=
(
T (t − τ)f

)
(s + τ), 0 ≤ τ ≤ t,

which is a differentiable function. Its derivative satisfies

ξ̇(τ) := −(T (t − τ)Af
)
(s + τ) +

(
T (t − τ)f ′)(s + τ) = 0,

and hence (
T (t)f

)
(s) = ξ(0) = ξ(t) = f(s + t).

This proves that
(
T (t)
)
t≥0 must be the (left) translation semigroup. The

translation operators, however, do not map X into itself.

This indicates that we need more assumptions on A, and the norm esti-
mate

• ‖R(λ, A)‖ ≤ M
Re λ−w , Re λ > w,

proved in Theorem 1.10.(iii) may serve for this purpose.
To tackle the above problem, it is helpful to recall the results from the

introduction and to think of the semigroup generated by an operator A as
an “exponential function”

t �→ etA.

3.3 Exponential Formulas. We pursue this idea by recalling the vari-
ous ways by which we can define “exponential functions.” Each of these
formulas and each method is then checked for a possible generalization to
infinite-dimensional Banach spaces and, in particular, to unbounded oper-
ators. Here are some more or less promising formulas for “etA.”
Formula (i) As in the matrix case (see Section I.2.a) we might use the
power series and define

(3.1) etA :=
∞∑

n=0

tn

n!
An.

Comment. For unbounded A, it is unrealistic to expect convergence of
this series. In fact, there exist strongly continuous semigroups such that for
its generator A the series

∞∑
n=0

tn

n!
Anx

converges only for t = 0 or x = 0. See Exercise 3.12.(2).
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Formula (ii) We might use the Cauchy integral formula and define

(3.2) etA :=
1

2πi

∫
+∂U

eλtR(λ, A) dλ.

Comment. As already noted, the generator A, hence also its spectrum
σ(A), may be unbounded. Therefore, the path +∂U surrounding σ(A) will
be unbounded, and so we need extra conditions to make the integral con-
verge. See Section 4 for a class of semigroups for which this approach does
work.
Formula (iii) At least in the one-dimensional case, the formulas

etA = lim
n→∞

(
1 +

t

n
A

)n

= lim
n→∞

(
1 − t

n
A

)−n

are well known (indeed Euler already used them; see [EN00, Sect. VII.3]).
Comment. Whereas the first formula again involves powers of the un-
bounded operator A and therefore will rarely converge, we can rewrite the
second (using the resolvent operators R(λ, A) := (λ −A)−1) as

(3.3) etA = lim
n→∞
[

n/tR (n/t, A)
]
n.

This yields a formula involving only powers of bounded operators. It was
Hille’s idea (in 1948) to use this formula and to prove that under appropri-
ate conditions, the limit exists and defines a strongly continuous semigroup.
We return to this idea later (see Corollary IV.2.5 below).
Formula (iv) Because it is well understood how to define the exponential
function for bounded operators (see Section I.2.b), one can try to approxi-
mate A by a sequence (An)n∈N of bounded operators and hope that

(3.4) etA := lim
n→∞ etAn

exists and is a strongly continuous semigroup.
Comment. This was Yosida’s idea (also in 1948) and is now examined in
detail in order to obtain strongly continuous semigroups.

We start with an important convergence property for the resolvent under
the assumption that ‖λR(λ, A)‖ remains bounded as λ → ∞.

3.4 Lemma. Let
(
A, D(A)

)
be a closed, densely defined operator. Suppose

there exist w ∈ R and M > 0 such that [w,∞) ⊂ ρ(A) and ‖λR(λ, A)‖ ≤ M
for all λ ≥ w. Then the following convergence statements hold for λ → ∞.

(i) λR(λ, A)x → x for all x ∈ X.
(ii) λAR(λ, A)x = λR(λ, A)Ax → Ax for all x ∈ D(A).
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Proof. If y ∈ D(A), then λR(λ, A)y = R(λ, A)Ay + y by (1.1) in Chap-
ter V. This expression converges to y as λ → ∞, because ‖R(λ, A)Ay‖ ≤
M/λ ‖Ay‖. Because ‖λR(λ, A)‖ is uniformly bounded for all λ ≥ w, state-
ment (i) follows by Proposition A.3. The second statement is then an im-
mediate consequence of the first one. �

This lemma suggests immediately which bounded operators An should
be chosen to approximate the unbounded operator A. Because for contrac-
tion semigroups the technical details of the subsequent proof become much
easier (and because the general case can then be deduced from this one), we
first give the characterization theorem for generators in this special case.

3.5 Generation Theorem. (Contraction Case, Hille, Yosida, 1948).
For a linear operator

(
A, D(A)

)
on a Banach space X, the following prop-

erties are all equivalent.
(a)
(
A, D(A)

)
generates a strongly continuous contraction semigroup.

(b)
(
A, D(A)

)
is closed, densely defined, and for every λ > 0 one has

λ ∈ ρ(A) and

(3.5) ‖λR(λ, A)‖ ≤ 1.

(c)
(
A, D(A)

)
is closed, densely defined, and for every λ ∈ C with Re λ >

0 one has λ ∈ ρ(A) and

(3.6) ‖R(λ, A)‖ ≤ 1
Re λ

.

Proof. In view of Theorem 1.4 and Theorem 1.10, it suffices to show
(b) ⇒ (a). To that purpose, we define the so-called Yosida approximants

(3.7) An := nAR(n, A) = n2R(n, A)− nI, n ∈ N,

which are bounded, mutually commuting operators for each n ∈ N. Con-
sider then the uniformly continuous semigroups given by

(3.8) Tn(t) := etAn , t ≥ 0.

Because An converges to A pointwise on D(A) (by Lemma 3.4.(ii)), we
anticipate that the following properties hold.

(i) T (t)x := limn→∞ Tn(t)x exists for each x ∈ X.
(ii)
(
T (t)
)
t≥0 is a strongly continuous contraction semigroup on X.

(iii) This semigroup has generator
(
A, D(A)

)
.

By establishing these statements we complete the proof.
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(i) Each
(
Tn(t)

)
t≥0 is a contraction semigroup, because

‖Tn(t)‖ ≤ e−nte‖n2R(n,A)‖t ≤ e−ntent = 1 for t ≥ 0.

So, again by Proposition A.3, it suffices to prove convergence just on D(A).
By (the vector-valued version of) the fundamental theorem of calculus,
applied to the functions

s �→ Tm(t − s)Tn(s)x

for 0 ≤ s ≤ t, x ∈ D(A), and m, n ∈ N, and using the mutual commutativ-
ity of the semigroups

(
Tn(t)

)
t≥0 for all n ∈ N, one has

Tn(t)x− Tm(t)x =
∫ t

0

d
ds

(
Tm(t − s)Tn(s)x

)
ds

=
∫ t

0
Tm(t − s)Tn(s)(Anx−Amx) ds.

Accordingly,

(3.9) ‖Tn(t)x− Tm(t)x‖ ≤ t ‖Anx−Amx‖.

By Lemma 3.4.(ii), (Anx)n∈N is a Cauchy sequence for each x ∈ D(A).
Therefore,

(
Tn(t)x

)
n∈N converges for each x ∈ D(A), hence for each x ∈ X

and even uniformly on each interval [0, t0].
(ii) The pointwise convergence of

(
Tn(t)x

)
n∈N implies that the limit fam-

ily
(
T (t)
)
t≥0 satisfies the functional equation (FE), hence is a semigroup,

and consists of contractions. Moreover, for each x ∈ D(A), the correspond-
ing orbit map

ξ : t �→ T (t)x, 0 ≤ t ≤ t0,

is the uniform limit of continuous functions (use (3.9)) and so is continuous
itself. This suffices to obtain strong continuity via Proposition I.1.3.

(iii) Denote by
(
B, D(B)

)
the generator of

(
T (t)
)
t≥0 and fix x ∈ D(A).

On each compact interval [0, t0], the functions

ξn : t �→ Tn(t)x

converge uniformly to ξ(·) by (3.9), and the differentiated functions

ξ̇n : t �→ Tn(t)Anx

converge uniformly to
η : t �→ T (t)Ax.

This implies differentiability of ξ with ξ̇(0) = η(0); i.e., D(A) ⊂ D(B) and
Ax = Bx for x ∈ D(A).
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Now choose λ > 0. Then λ−A is a bijection from D(A) onto X, because
λ ∈ ρ(A) by assumption. On the other hand, B generates a contraction
semigroup, and so λ ∈ ρ(B) by Theorem 1.10. Hence, λ − B is also a
bijection from D(B) onto X. But we have seen that λ − B coincides with
λ −A on D(A). This is possible only if D(A) = D(B) and A = B. �

If a strongly continuous semigroup
(
T (t)
)
t≥0 with generator A satisfies,

for some w ∈ R, an estimate

‖T (t)‖ ≤ ewt for t ≥ 0,

then we can apply the above characterization to the rescaled contraction
semigroup given by

S(t) := e−wtT (t) for t ≥ 0.

Because the generator of
(
S(t)
)
t≥0 is B = A − w (see Paragraph 2.2),

Generation Theorem 3.5 takes the following form.

3.6 Corollary. Let w ∈ R. For a linear operator
(
A, D(A)

)
on a Banach

space X the following conditions are equivalent.
(a)
(
A, D(A)

)
generates a strongly continuous semigroup

(
T (t)
)
t≥0 sat-

isfying

(3.10) ‖T (t)‖ ≤ ewt for t ≥ 0.

(b)
(
A, D(A)

)
is closed, densely defined, and for each λ > w one has

λ ∈ ρ(A) and

(3.11) ‖(λ − w)R(λ, A)‖ ≤ 1.

(c)
(
A, D(A)

)
is closed, densely defined, and for each λ ∈ C with Re λ >

w one has λ ∈ ρ(A) and

(3.12) ‖R(λ, A)‖ ≤ 1
Re λ − w

.

Semigroups satisfying (3.10) are also called quasi-contractive.
Note, by Paragraph 3.11 below, that an operator A generates a strongly

continuous group if and only if both A and −A are generators. Therefore,
we can combine the conditions of the Generation Theorem 3.5 for A and −A
simultaneously and obtain a characterization of generators of contraction
groups, i.e., of groups of isometries.
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3.7 Corollary. For a linear operator
(
A, D(A)

)
on a Banach space X the

following properties are equivalent.

(a)
(
A, D(A)

)
generates a strongly continuous group of isometries.

(b)
(
A, D(A)

)
is closed, densely defined, and for every λ ∈ R \ {0} one

has λ ∈ ρ(A) and

(3.13) ‖λR(λ, A)‖ ≤ 1.

(c)
(
A, D(A)

)
is closed, densely defined, and for every λ ∈ C \ iR one

has λ ∈ ρ(A) and

(3.14) ‖R(λ, A)‖ ≤ 1
|Re λ| .

It is now a pleasant surprise that the characterization of generators of
arbitrary strongly continuous semigroups can be deduced from the above
result for contraction semigroups. However, norm estimates for all powers
of the resolvent are needed.

3.8 Generation Theorem. (General Case, Feller, Miyadera, Phil-
lips, 1952). Let

(
A, D(A)

)
be a linear operator on a Banach space X

and let w ∈ R, M ≥ 1 be constants. Then the following properties are
equivalent.

(a)
(
A, D(A)

)
generates a strongly continuous semigroup

(
T (t)
)
t≥0 sat-

isfying

(3.15) ‖T (t)‖ ≤ Mewt for t ≥ 0.

(b)
(
A, D(A)

)
is closed, densely defined, and for every λ > w one has

λ ∈ ρ(A) and

(3.16)
∥∥[(λ − w)R(λ, A)

]n∥∥ ≤ M for all n ∈ N.

(c)
(
A, D(A)

)
is closed, densely defined, and for every λ ∈ C with Re λ >

w one has λ ∈ ρ(A) and

(3.17) ‖R(λ, A)n‖ ≤ M

(Re λ − w)n
for all n ∈ N.
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Proof. The implication (a) ⇒ (c) has been proved in Corollary 1.11, and
(c) ⇒ (b) is trivial. To prove (b) ⇒ (a) we use, as for Corollary 3.6, the
rescaling technique from Paragraph 2.2. So, without loss of generality, we
assume that w = 0; i.e.,

‖λnR(λ, A)n‖ ≤ M for all λ > 0, n ∈ N.

For every μ > 0, define a new norm on X by

‖x‖μ := sup
n≥0

‖μnR(μ, A)nx‖.

These norms have the following properties.

(i) ‖x‖ ≤ ‖x‖μ ≤ M ‖x‖; i.e., they are all equivalent to ‖·‖.
(ii) ‖μR(μ, A)‖μ ≤ 1.

(iii) ‖λR(λ, A)‖μ ≤ 1 for all 0 < λ ≤ μ.

(iv) ‖λnR(λ, A)nx‖ ≤ ‖λnR(λ, A)nx‖μ ≤ ‖x‖μ for all 0 < λ ≤ μ and
n ∈ N.

(v) ‖x‖λ ≤ ‖x‖μ for 0 < λ ≤ μ.

We only give the proof of (iii). Due to the Resolvent Equation in Para-
graph V.1.2, we have that

y := R(λ, A)x = R(μ, A)x+(μ−λ)R(μ, A)R(λ, A)x = R(μ, A)(x+(μ−λ)y).

This implies, by using (ii), that

‖y‖μ ≤ 1
μ
‖x‖μ +

μ− λ

μ
‖y‖μ , whence λ ‖y‖μ ≤ ‖x‖μ .

On the basis of these properties one can define still another norm by

(3.18) []x[] := sup
μ>0

‖x‖μ ,

which evidently satisfies

(vi) ‖x‖ ≤ []x[] ≤ M ‖x‖ and

(vii) []λR(λ, A)[] ≤ 1 for all λ > 0.

Thus, the operator
(
A, D(A)

)
satisfies Condition (3.5) for the equivalent

norm []·[] and so, by the Generation Theorem 3.5, generates a []·[]-contraction
semigroup

(
T (t)
)
t≥0. Using (vi) again, we obtain ‖T (t)‖ ≤ M. �
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3.9 Comment. As a general rule, we point out that for an operator(
A, D(A)

)
to be a generator one needs

• Conditions on the location of the spectrum σ(A) in some left half-plane
and

• Growth estimates of the form

‖R(λ, A)n‖ ≤ M

(Re λ − w)n

for all powers of the resolvent R(λ, A) in some right half-plane (or on
some semiaxis (w,∞)). See Exercise 3.12.(3) for an example that the
estimate with n = 1 does not suffice.

This last condition is rather complicated and can be checked for non-
trivial examples only in the (quasi) contraction case, i.e., only if n = 1 is
sufficient as in Generation Theorem 3.5 and Corollary 3.6.

On the other hand, every strongly continuous semigroup can be rescaled
(see Paragraph I.1.10) to become bounded. For a bounded semigroup, we
can find an equivalent norm making it a contraction semigroup. This does
not help much in concrete examples, because only in rare cases will it be
possible to compute this new norm. However, this fact is extremely helpful
in abstract considerations and is stated explicitly.

3.10 Lemma. Let
(
T (t)
)
t≥0 be a bounded, strongly continuous semigroup

on a Banach space X. Then the norm

|||x||| := sup
t≥0

‖T (t)x‖, x ∈ X,

is equivalent to the original norm on X, and
(
T (t)
)
t≥0 becomes a contrac-

tion semigroup on
(
X, |||·|||).

The proof is left as Exercise 3.12.(1).

3.11 Generators of Groups. This paragraph is devoted to the question
of which operators are generators of strongly continuous groups (see the
explanation following Definition I.1.1). In order to make this more precise
we first adapt Definition 1.2 to this situation.

Definition. The generator A : D(A) ⊆ X → X of a strongly continuous
group

(
T (t)
)
t∈R on a Banach space X is the operator

Ax := lim
h→0

1
h

(
T (h)x− x

)
defined for every x in its domain

D(A) :=
{

x ∈ X : lim
h→0

1
h

(
T (h)x− x

)
exists

}
.
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Given a strongly continuous group
(
T (t)
)
t∈R with generator

(
A, D(A)

)
,

we can define T+(t) := T (t) and T−(t) := T (−t) for t ≥ 0. Then, from the
previous definition, it is clear that

(
T+(t)

)
t≥0 and

(
T−(t)

)
t≥0 are strongly

continuous semigroups with generators A and −A, respectively. Therefore,
if A is the generator of a group, then both A and −A generate strongly
continuous semigroups. The next result shows that the converse of this
statement is also true.

Generation Theorem for Groups. Let w ∈ R and M ≥ 1 be con-
stants. For a linear operator

(
A, D(A)

)
on a Banach space X the following

properties are equivalent.
(a)
(
A, D(A)

)
generates a strongly continuous group

(
T (t)
)
t∈R satisfying

the growth estimate

‖T (t)‖ ≤ Mew|t| for t ∈ R.

(b)
(
A, D(A)

)
and
(−A, D(A)

)
are the generators of strongly continuous

semigroups
(
T+(t)

)
t≥0 and

(
T−(t)

)
t≥0, respectively, which satisfy

‖T+(t)‖, ‖T−(t)‖ ≤ Mewt for all t ≥ 0.

(c)
(
A, D(A)

)
is closed, densely defined, and for every λ ∈ R with |λ| > w

one has λ ∈ ρ(A) and∥∥[(|λ| − w)R(λ, A)
]n∥∥ ≤ M for all n ∈ N.

(d)
(
A, D(A)

)
is closed, densely defined, and for every λ ∈ C with

|Re λ| > w one has λ ∈ ρ(A) and

(3.19) ‖R(λ, A)n‖ ≤ M(|Re λ| − w
)
n

for all n ∈ N.

Proof. (a) implies (b) as already mentioned above.
(b) ⇒ (d). We first recall, by Theorem 1.4, that the generator

(
A, D(A)

)
is closed and densely defined. Moreover, using the assumptions on A, we
obtain from Generation Theorem 3.8 the estimate (3.19) for the case Reλ >
w. In order to verify (3.19) for Reλ < −w, observe that R(−λ, A) =
−R(λ,−A) for all λ ∈ −ρ(A) = ρ(−A). Then, using the conditions on −A,
the required estimate follows as above.

Because the implication (d) ⇒ (c) is trivial, it suffices to prove that
(c) ⇒ (a). To this end we first note, by Generation Theorem 3.8, that both
A and −A are generators of strongly continuous semigroups

(
T+(t)

)
t≥0

and
(
T−(t)

)
t≥0, respectively, which satisfy ‖T±(t)‖ ≤ Mewt for t ≥ 0.

Moreover, the Yosida approximants (cf. (3.7)) A+,n and A−,n of A and
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−A, respectively, commute. Because as in the contractive case (cf. (i)–(iii)
in the proof of Generation Theorem 3.5, p. 66), we have

T+(t)x = lim
n→∞ exp(tA+,n)x and T−(t)x = lim

n→∞ exp(tA−,n)x

for all x ∈ X, we see that
(
T+(t)

)
t≥0 and

(
T−(t)

)
t≥0 commute. Hence, by

what was shown in Paragraph 2.6, the products

U(t) := T+(t)T−(t), t ≥ 0,

define a strongly continuous semigroup with generator C that satisfies

Cx = Ax−Ax = 0

for all x ∈ D(A) ∩ D(−A) = D(A) ⊂ D(C). From (1.6) in Lemma 1.3 we
then obtain U(t)x = x for all x ∈ X; i.e., T−(t) = T+(t)−1. Finally, the
operators

T (t) :=
{

T+(t) if t ≥ 0,
T−(−t) if t < 0,

form a one-parameter group
(
T (t)
)
t∈R and satisfy the estimate ‖T (t)‖ ≤

Mew|t|. Because the map R � t �→ T (t) is strongly continuous if and only if
it is strongly continuous at some arbitrary point t0 ∈ R, the group

(
T (t)
)
t∈R

is strongly continuous. This completes the proof. �

The following result is quite useful in order to check whether a given
semigroup can be embedded in a group.

Proposition. Let
(
T (t)
)
t≥0 be a strongly continuous semigroup on a Ba-

nach space X. If there exists some t0 > 0 such that T (t0) is invertible, then(
T (t)
)
t≥0 can be embedded in a group

(
T (t)
)
t∈R on X.

Proof. First, we show that T (t) is invertible for all t ≥ 0. This follows for
t ∈ [0, t0] from

T (t0) = T (t0 − t)T (t) = T (t)T (t0 − t),

because by assumption, T (t0) is bijective. If t ≥ t0, we write t = nt0 + s
for n ∈ N, s ∈ [0, t0) and conclude from

T (t) = T (t0)nT (s)

that T (t) is invertible. Hence, we can extend
(
T (t)
)
t≥0 to all of R by

T (t) := T (−t)−1 for t ≤ 0,

thereby obtaining a group
(
T (t)
)
t∈R. Because the map R � t �→ T (t) is

strongly continuous if and only if it is strongly continuous at some arbitrary
point, the proof is complete. �
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3.12 Exercises. (1) Prove Lemma 3.10 dealing with the renorming of
bounded semigroups.
(2) For a strongly continuous semigroup

(
T (t)
)
t≥0 with generator A on a

Banach space X, we call a vector x ∈ D(A∞) entire if the power series

(3.20)
∞∑

n=0

tn

n!
Anx

converges for every t ∈ R. Show the following properties.
(i) If x is an entire vector of

(
T (t)
)
t≥0, then T (t)x is given by (3.20) for

every t ≥ 0.
(ii) If

(
T (t)
)
t≥0 is nilpotent, then the set of entire vectors consists of

x = 0 only.
(iii) If

(
T (t)
)
t∈R is a strongly continuous group, then the set of entire

vectors is dense in X. Moreover, if x is an entire vector of
(
T (t)
)
t∈R,

then T (t)x is given by (i) for every t ∈ R. (Hint: For given x ∈ X

consider the sequence xn := (n/2π)1/2
∫∞

−∞ e−ns2/2T (s)x ds. See also
[Gel39].)

(3) Let Mq be a multiplication operator on X := C0(R+) and define the
operator A :=

(
Mq Mq

0 Mq

)
with domain D(A) := D(Mq) × D(Mq) on X :=

X ×X.
(i) If q(s) := is, s ≥ 0, then A satisfies ‖R(λ, A)‖ ≤ 2/λ for λ > 0, but

is not the generator of a strongly continuous semigroup on X.
(ii) Find an unbounded function q on R+ such that A becomes a gener-

ator.
(iii) Find necessary and sufficient conditions on q such that A becomes a

generator on X. (Hint: Compare Exercise 4.14.(7).)

(4) Let
(
T (t)
)
t≥0 be a strongly continuous semigroup on a Banach space

X. Show that
(
T (t)
)
t≥0 can be embedded in a group

(
T (t)
)
t∈R if there

exists t0 > 0 such that I − T (t0) is compact. (Hint: By the proposition in
Paragraph 3.11 and the compactness assumption, it suffices to show that
0 is not an eigenvalue of T (t0).)

b. The Lumer–Phillips Theorem

Due to their importance, we now return to the study of contraction semi-
groups and look for a characterization of their generator that does not
require explicit knowledge of the resolvent. The following is a key notion
towards this goal.
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3.13 Definition. A linear operator
(
A, D(A)

)
on a Banach space X is

called dissipative if

(3.21) ‖(λ −A)x‖ ≥ λ ‖x‖

for all λ > 0 and x ∈ D(A).

To familiarize ourselves with these operators we state some of their basic
properties.

3.14 Proposition. For a dissipative operator
(
A, D(A)

)
the following

properties hold.
(i) λ −A is injective for all λ > 0 and

∥∥(λ −A)−1z
∥∥ ≤ 1

λ
‖z‖

for all z in the range rg(λ −A) := (λ −A)D(A).
(ii) λ − A is surjective for some λ > 0 if and only if it is surjective for

each λ > 0. In that case, one has (0,∞) ⊂ ρ(A).
(iii) A is closed if and only if the range rg(λ−A) is closed for some (hence

all) λ > 0.
(iv) If rg(A) ⊆ D(A), e.g., if A is densely defined, then A is closable. Its

closure A is again dissipative and satisfies rg(λ−A) = rg(λ −A) for
all λ > 0.

Proof. (i) is just a reformulation of estimate (3.21).
To show (ii) we assume that (λ0 − A) is surjective for some λ0 > 0.

In combination with (i), this yields λ0 ∈ ρ(A) and ‖R(λ0, A)‖ ≤ 1/λ0.
The series expansion for the resolvent (see Proposition V.1.3.(i)) yields
(0, 2λ0) ⊂ ρ(A), and the dissipativity of A implies that

‖R(λ, A)‖ ≤ 1
λ

for 0 < λ < 2λ0. Proceeding in this way, we see that λ−A is surjective for
all λ > 0, and therefore (0,∞) ⊂ ρ(A).

(iii) The operator A is closed if and only if λ−A is closed for some (hence
all) λ > 0. This is again equivalent to

(λ −A)−1 : rg(λ −A) → D(A)

being closed. By (i), this operator is bounded. Hence, by Theorem A.10, it
is closed if and only if its domain, i.e., rg(λ −A), is closed.
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(iv) Take a sequence (xn)n∈N ⊂ D(A) satisfying xn → 0 and Axn → y.
By Proposition A.8, we have to show that y = 0. The inequality (3.21)
implies that

‖λ(λ −A)xn + (λ −A)w‖ ≥ λ ‖λxn + w‖

for every w ∈ D(A) and all λ > 0. Passing to the limit as n → ∞ yields

‖−λy + (λ −A)w‖ ≥ λ ‖w‖, and hence
∥∥∥−y + w − 1

λ
Aw
∥∥∥ ≥ ‖w‖.

For λ → ∞ we obtain that

‖−y + w‖ ≥ ‖w‖,

and by choosing w from the domain D(A) arbitrarily close to y ∈ rg(A),
we see that

0 ≥ ‖y‖.
Hence y = 0.

In order to verify that A is dissipative, take x ∈ D
(
A
)
. By definition of

the closure of a linear operator, there exists a sequence (xn)n∈N ⊂ D(A)
satisfying xn → x and Axn → Ax when n → ∞. Because A is dissipative
and the norm is continuous, this implies that ‖(λ − A)x‖ ≥ λ‖x‖ for all
λ > 0. Hence A is dissipative. Finally, observe that the range rg(λ − A) is
dense in rg

(
λ − A

)
. Because by assertion (iii) rg

(
λ − A

)
is closed in X,

we obtain the final assertion in (iv). �

From the resolvent estimate (3.5) in Generation Theorem 3.5, it is evident
that the generator of a contraction semigroup satisfies the estimate (3.21),
and hence is dissipative. On the other hand, many operators can be shown
directly to be dissipative and densely defined. We therefore reformulate
Generation Theorem 3.5 in such a way as to single out the property that
ensures that a densely defined, dissipative operator is a generator.

3.15 Theorem. (Lumer, Phillips, 1961). For a densely defined, dissi-
pative operator

(
A, D(A)

)
on a Banach space X the following statements

are equivalent.
(a) The closure A of A generates a contraction semigroup.
(b) rg(λ −A) is dense in X for some (hence all) λ > 0.

Proof. (a) ⇒ (b). Generation Theorem 3.5 implies that rg(λ − A) = X
for all λ > 0. Because rg(λ − A) = rg(λ −A), by Proposition 3.14.(iv), we
obtain (b).
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(b) ⇒ (a). By the same argument, the density of the range rg(λ − A)
implies that (λ−A) is surjective. Proposition 3.14.(ii) shows that (0,∞) ⊂
ρ(A), and dissipativity of A implies the estimate∥∥R(λ, A)

∥∥ ≤ 1
λ

for λ > 0.

This was required in Generation Theorem 3.5 to assure that A generated
a contraction semigroup. �

The above theorem gains its significance when viewed in the context of
the abstract Cauchy problem associated with an operator A (see Section 6).

3.16 Remark. Assume that the operator A is known to be closed, densely
defined, and dissipative. Then Theorem 3.15 in combination with Proposi-
tion 6.2 below yields the following fact.

In order to solve the (time-dependent) initial value problem

(ACP) ẋ(t) = Ax(t), x(0) = x

for all x ∈ D(A), it is sufficient to solve the (stationary) resolvent equa-
tion

(RE) x−Ax = y

for all y in some dense subset in the Banach space X.
In many examples (RE) can be solved explicitly whereas (ACP) cannot,

cf. Paragraph 3.29 or [EN00, Sect. VI.6].

The following result, in combination with the characterization of dissi-
pativity in Proposition 3.23 below, gives an even simpler condition for an
operator to generate a contraction semigroup.

3.17 Corollary. Let
(
A, D(A)

)
be a densely defined operator on a Banach

space X. If both A and its adjoint A′ are dissipative, then the closure A of
A generates a contraction semigroup on X.

Proof. By the Lumer–Phillips Theorem 3.15, it suffices to show that
the range rg(I − A) is dense in X. By way of contradiction, assume that
rg(I −A) �= X. By the Hahn–Banach theorem there exists 0 �= x′ ∈ X ′

such that 〈
(I −A)x, x′〉 = 0 for all x ∈ D(A).

It follows that x′ ∈ D(A′) and〈
x, (I −A′)x′〉 = 0 for all x ∈ D(A).

Because D(A) is dense in X, we conclude that (I − A′)x′ = 0, thereby
contradicting Proposition 3.14.(i). �
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At this point we insert various considerations concerning the density of
the domain, which up to now was a more or less standard assumption in
our results. In the next two corollaries we show how dissipativity can be
used to get around this hypothesis. However, based on the properties stated
in Proposition 3.14, we assume that the dissipative operator A is such that
λ −A is surjective for some λ > 0. Hence (0,∞) ⊂ ρ(A).

3.18 Corollary. Let
(
A, D(A)

)
be a dissipative operator on the Banach

space X such that λ−A is surjective for some λ > 0. Then the part A| of A

in the subspace X0 := D(A) is densely defined and generates a contraction
semigroup in X0.

Proof. We recall from Definition 2.3 that

A|x := Ax

for x ∈ D(A|) := {x ∈ D(A) : Ax ∈ X0} = R(λ, A)X0. Because R(λ, A)
exists for λ > 0, this implies that R(λ, A)| = R(λ, A|). Hence (0,∞) ⊂
ρ(A|). Due to the Generation Theorem 3.5, it remains to show that D(A|) is
dense in X0. Take x ∈ D(A) and set xn := nR(n, A)x. Then xn ∈ D(A) and
limn→∞ xn = limn→∞ R(n, A)Ax + x = x, because ‖R(n, A)‖ ≤ 1/n (see
Proposition 3.14.(i) and Lemma 3.4). Therefore, the operators nR(n, A)
converge pointwise on D(A) to the identity. Because ‖nR(n, A)‖ ≤ 1 for
all n ∈ N, we obtain convergence of

yn := nR(n, A)y → y

for all y ∈ X0. Because each yn is in D(A|), the density of D(A|) in X0 is
proved. �

We now give two rather typical examples for dissipative operators with
nondense domains, one concrete and one abstract.

3.19 Examples. (i) Let X := C[0, 1] and consider the operator

with domain
Af := −f ′

D(A) :=
{
f ∈ C1[0, 1] : f(0) = 0

}
.

It is a closed operator whose domain is not dense. However, it is dissipative,
because its resolvent can be computed explicitly as

R(λ, A)f(t) :=
∫ t

0
e−λ(t−s)f(s) ds

for t ∈ [0, 1], f ∈ C[0, 1]. Moreover,

‖R(λ, A)‖ ≤ 1
λ

for all λ > 0. Therefore,
(
A, D(A)

)
is dissipative.
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Let X0 := D(A) = {f ∈ C[0, 1] : f(0) = 0}, and consider the part A| of
A in X0; i.e.,

A|f = −f ′,

D(A|) =
{
f ∈ C1[0, 1] : f(0) = f ′(0) = 0

}
.

By the above corollary, this operator generates a semigroup on X0. In fact,
this semigroup

(
T0(t)
)
t≥0 can be identified as the nilpotent right translation

semigroup (cf. Paragraph I.3.17) given by

T0(t)f(s) :=
{

f(s− t) for t ≤ s,
0 for t > s.

Observe that the same definition applied to an arbitrary function f ∈
C[0, 1] does not necessarily yield a continuous function again. Therefore,
the semigroup

(
T0(t)
)
t≥0 does not extend to the space C[0, 1].

(ii) Consider a strongly continuous contraction semigroup
(
T (t)
)
t≥0 on a

Banach space X. Its generator A is dissipative with (0,∞) ⊂ ρ(A). The
same holds for its adjoint A′, because R(λ, A′) = R(λ, A)′ and ‖R(λ, A′)‖ =
‖R(λ, A)‖ for all λ > 0. The domain D(A′) of the adjoint is not dense in
X ′ in general (see the example in [EN00, Sect. II.2.6]). However, taking the
part of A′ in X� := D(A′) ⊂ X ′, we obtain the generator of a contraction
semigroup (given by the restrictions of T (t)′ to X�; see [EN00, Sect. II.2.6]
on so-called sun dual semigroups).

In the next corollary we show that the phenomenon discussed in Corol-
lary 3.18 and Example 3.19 cannot occur in reflexive Banach spaces.

3.20 Corollary. Let
(
A, D(A)

)
be a dissipative operator on a reflexive

Banach space such that λ − A is surjective for some λ > 0. Then A is
densely defined and generates a contraction semigroup.

Proof. We only have to show the density of D(A). Take x ∈ X and define
xn := nR(n, A)x ∈ D(A). The element y := R(1, A)x also belongs to D(A).
Moreover, by the proof of Corollary 3.18 the operators nR(n, A) converge
towards the identity pointwise on X0 := D(A). It follows that

yn := R(1, A)xn = nR(n, A)R(1, A)x → y for n → ∞.

Because X is reflexive and {xn : n ∈ N} is bounded, there exists a sub-
sequence, still denoted by (xn)n∈N, that converges weakly to some z ∈ X.
Because xn ∈ D(A), Proposition A.1.(i) implies that z ∈ D(A). On the
other hand, the elements xn = (1 − A)yn converge weakly to z, so the
weak closedness of A (see Definition A.5) implies that y ∈ D(A) and
x = (1−A)y = z ∈ D(A). �
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In Corollary 3.18 and Corollary 3.20, we considered not necessarily densely
defined operators and showed that dissipativity and the range condition
rg(λ − A) = X for some λ > 0 imply certain generation properties. It
is now a direct consequence of the renorming trick used in the proof of
Generation Theorem 3.8 that these results also hold for all operators sat-
isfying the Hille–Yosida resolvent estimates (3.16). We state this extension
of Generation Theorem 3.8.

3.21 Corollary. Let w ∈ R and
(
A, D(A)

)
be an operator on a Banach

space X. Suppose that (w,∞) ⊂ ρ(A) and

(3.22) ‖R(λ, A)n‖ ≤ M

(λ − w)n

for all n ∈ N, λ > w and some M ≥ 1. Then the part A| of A in X0 := D(A)
generates a strongly continuous semigroup

(
T0(t)
)
t≥0 satisfying ‖T0(t)‖ ≤

Mewt for all t ≥ 0. If in addition the Banach space X is reflexive, then
X0 = X.

Proof. As in many previous cases we may assume that w = 0. Then the
renorming procedure (3.18) from the proof of the implication (b) ⇒ (a) in
Generation Theorem 3.8 yields an equivalent norm for which A is a dissipa-
tive operator. The assertions then follow from Corollary 3.18 (after return-
ing to the original norm) and, in the reflexive case, from Corollary 3.20. �

It is sometimes convenient to use the following terminology.

3.22 Definition. Operators satisfying the assumptions of Corollary 3.21
and, in particular, the resolvent estimate (3.22) are called Hille–Yosida
operators.

Observe that Corollary 3.21 states that Hille–Yosida operators satisfy all
assumptions of the Hille–Yosida Generation Theorem 3.8 on the closure of
their domains.

We now return to dissipative operators, which represent, up to renorm-
ing, the most general case. When introducing them we had aimed for an
easy (or at least more direct) way to characterizing generators. However,
up to now, the only way to arrive at the norm inequality (3.21) was explicit
computation of the resolvent and then deducing the norm estimate

‖R(λ, A)‖ ≤ 1
λ

for λ > 0.

This was done in Example 3.19.(i). Fortunately, there is a simpler method
that works particularly well in concrete function spaces such as C0(Ω) or
Lp(μ).
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To introduce this method we start with a Banach space X and its dual
space X ′. By the Hahn–Banach theorem, for every x ∈ X there exists
x′ ∈ X ′ such that

〈x, x′〉 = ‖x‖2 = ‖x′‖2.

Hence, for every x ∈ X the following set, called its duality set ,

(3.23) J(x) :=
{

x′ ∈ X ′ : 〈x, x′〉 = ‖x‖2 = ‖x′‖2
}

,

is nonempty. Such sets allow a new characterization of dissipativity.

3.23 Proposition. An operator
(
A, D(A)

)
is dissipative if and only if for

every x ∈ D(A) there exists j(x) ∈ J(x) such that

(3.24) Re 〈Ax, j(x)〉 ≤ 0.

If A is the generator of a strongly continuous contraction semigroup, then
(3.24) holds for all x ∈ D(A) and arbitrary x′ ∈ J(x).

Proof. Assume (3.24) is satisfied for x ∈ D(A), ‖x‖ = 1, and some j(x) ∈
J(x). Then 〈x, j(x)〉 = ‖j(x)‖2 = 1 and

‖λx −Ax‖ ≥ | 〈λx −Ax, j(x)〉 |
≥ Re 〈λx −Ax, j(x)〉 ≥ λ

for all λ > 0. This proves one implication.
To show the converse, we take x ∈ D(A), ‖x‖ = 1, and assume that

‖λx −Ax‖ ≥ λ for all λ > 0. Choose y′
λ ∈ J(λx − Ax) and consider the

normalized elements

z′
λ :=

y′
λ

‖y′
λ‖

.

Then the inequalities

λ ≤ ‖λx −Ax‖ = 〈λx −Ax, z′
λ〉

= λ Re 〈x, z′
λ〉 − Re 〈Ax, z′

λ〉
≤ min

{
λ − Re 〈Ax, z′

λ〉 , λ Re 〈x, z′
λ〉 + ‖Ax‖}

are valid for each λ > 0. This yields

Re 〈Ax, z′
λ〉 ≤ 0 and 1− 1

λ
‖Ax‖ ≤ Re 〈x, z′

λ〉 .

Let z′ be a weak∗ accumulation point of z′
λ as λ → ∞. Then

‖z′‖ ≤ 1, Re 〈Ax, z′〉 ≤ 0, and Re 〈x, z′〉 ≥ 1.

Combining these facts, it follows that z′ belongs to J(x) and satisfies (3.24).
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Finally, assume that A generates a contraction semigroup
(
T (t)
)
t≥0 on

X. Then, for every x ∈ D(A) and arbitrary x′ ∈ J(x), we have

Re 〈Ax, x′〉 = lim
h↓0

(Re 〈T (h)x, x′〉
h

− Re 〈x, x′〉
h

)
≤ lim

h↓0

(‖T (h)x‖ · ‖x′‖
h

− ‖x‖2

h

)
≤ 0.

This completes the proof. �

Using the previous results we easily arrive at the following characteriza-
tion of unitary groups on Hilbert spaces. Its discovery by Stone was one of
the major steps towards the construction of the exponential function in in-
finite dimensions, hence towards the solution of Problem I.2.13; cf. [EN00,
Chap. VII].

3.24 Theorem. (Stone, 1932). Let
(
A, D(A)

)
be a densely defined op-

erator on a Hilbert space H. Then A generates a unitary group
(
T (t)
)
t∈R

on H if and only if A is skew-adjoint ; i.e., A∗ = −A.

Proof. First, assume that A generates a unitary group
(
T (t)
)
t∈R. By

Paragraph 3.11, we have

T (t)∗ = T (t)−1 = T (−t) for all t ∈ R.

Moreover, by Paragraphs I.1.13 and 2.5 on adjoint semigroups, the gener-
ator of

(
T (t)∗)

t∈R is given by A∗. This implies that A∗ = −A.
On the other hand, if A∗ = −A, then we conclude from

(Ax |x) = (x |A∗x) = −(x |Ax) = −(Ax |x) for all x ∈ D(A) = D(A∗)

that (Ax |x) ∈ iR. Combining Proposition 3.23 with the identification of
the duality set as J(x) = {x} (see Exercise 3.25.(i) below), this shows
that both ±A are dissipative and closed. From Corollary 3.17 and the
characterization of group generators in Paragraph 3.11, it follows that the
operator A generates a contraction group

(
T (t)
)
t∈R. Because T (t)−1 =

T (−t), we conclude that each T (t) is a surjective isometry and therefore
unitary (see [Ped89, Sect. 3.2.15]). �

3.25 Exercise. Prove the following statements for a Hilbert space H.
(i) For every x ∈ H, one has J(x) = {x}.
(ii) If A is a normal operator on H, then A is a generator of a strongly

continuous semigroup if and only if

s(A) < ∞.

(iii) Prove Stone’s theorem by arguing via multiplication semigroups.
(Hint: For (ii) and (iii) use the Spectral Theorem I.3.9 and the results of
Paragraph 3.11.)
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c. More Examples

We close this section with a discussion of all of these notions and results for
concrete examples. We begin by identifying the sets J(x) for some standard
function spaces.

3.26 Examples. (i) Consider X := C0(Ω), Ω locally compact. For 0 �= f ∈
X, the set J(f) ⊂ X ′ contains (multiples of) all point measures supported
by those points s0 ∈ Ω where |f | reaches its maximum. More precisely,

(3.25)
{

f(s0) · δs0 : s0 ∈ Ω and |f(s0)| = ‖f‖
}
⊂ J(f).

(ii) Let X := Lp(Ω, μ) for 1 ≤ p < ∞, and 0 �= f ∈ Lp(Ω, μ). Then

ϕ ∈ J(f) ⊂ Lq(Ω, μ), 1/p + 1/q = 1,

where ϕ is defined by

(3.26) ϕ(s) :=
{

f(s) · |f(s)|p−2 · ‖f‖2−p if f(s) �= 0,
0 otherwise.

Note that for the reflexive Lp-spaces, as for every Banach space with a
strictly convex dual, the sets J(f) are singletons (see [Bea82]). Hence, for
1 < p < ∞, one has J(f) = {ϕ}, whereas for p = 1 every function ϕ ∈
L∞(Ω, μ) satisfying

(3.27) ‖ϕ‖∞ ≤ ‖f‖1 and ϕ(s) |f(s)| = f(s) ‖f‖1 if f(s) �= 0

belongs to J(f).
(iii) It is easy, but important, to state the result for Hilbert spaces H. After
the canonical identification of H with its dual H ′, the duality set of x ∈ H
is

(3.28) J(x) = {x};
cf. Exercise 3.25.(i). Hence, a linear operator on H is dissipative if and only
if

(3.29) Re(Ax |x) ≤ 0

for all x ∈ D(A).

These examples suggest that dissipativity for concrete operators on such
function spaces can be verified via the inequality (3.24). In the following
examples we do this and establish the dissipativity and generation property
for various operators. We start with a concrete version of Theorem 3.24.

3.27 Example. (Self-Adjoint Operators). Consider on the Hilbert space
H := L2(Ω, μ) the multiplication operator A := Mq for some (measurable)
function q : Ω → C. Because its adjoint is A∗ = Mq, this operator is self-
adjoint if and only if q is real-valued. In this case, it follows by Theorem 3.24
that the group

(
Tiq(t)

)
t∈R generated by Miq is unitary.
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However, this can be seen more directly by inspection of the correspond-
ing multiplication group

(
Tiq(t)

)
t∈R, for which we have

Tiq(t)∗ = Tiq(t) = T−iq(t) = Tiq(−t) for all t ∈ R.

It is this argument for multiplication operators and semigroups that can be
used to give a simple proof of Stone’s Theorem 3.24. In fact, an application
of the Spectral Theorem I.3.9 transforms the unitary group

(
T (t)
)
t∈R and

its (skew-adjoint) generator A on an arbitrary Hilbert space into multipli-
cation operators on some L2-space. See Exercise 3.25.(iii).

The same argument, i.e., passing from a self-adjoint operator to a (real-
valued) multiplication operator, yields the following characterization of self-
adjoint semigroups.

Proposition. A self-adjoint operator
(
A, D(A)

)
on a Hilbert space H gen-

erates a strongly continuous semigroup (of self-adjoint operators) if and
only if it is bounded above; i.e., there exists w ∈ R such that

(Ax |x) ≤ w ‖x‖2 for all x ∈ D(A).

Proof. It suffices to consider the multiplication operator Mq that is iso-
morphic, via the Spectral Theorem I.3.9, to A. Then the boundedness con-
dition (Ax |x) ≤ w ‖x‖2 for all x ∈ D(A) means that the real-valued func-
tion q satisfies

ess sup
s∈Ω

Re q(s) ≤ w.

This, however, is exactly what is needed for Mq to generate a semigroup
(see Propositions I.3.11 and I.3.12). �

3.28 First-Order Differential Operators and Flows. We begin by
considering a continuously differentiable vector field F : Rn → Rn satisfy-
ing the estimate sups∈Rn ‖DF (s)‖ < ∞ for the derivative DF (s) of F at
s ∈ R. With this vector field we associate the following operator on the
space X := C0(Rn).

Definition 1. The first-order differential operator on C0(Rn) correspond-
ing to the vector field F : Rn → Rn is

Af(s) : = 〈grad f(s), F (s)〉

=
n∑

i=1

Fi(s)
∂f

∂si
(s)

for f ∈ C1
c(R

n) := {f ∈ C1(Rn) : f has compact support} and s ∈ Rn.

Using Example 3.26.(i) and the fact that ∂f(s0)/∂si = 0 if |f(s0)| = ‖f‖,
it is immediate that A is dissipative. However, in order to show that the
closure of A is a generator, there is a natural and explicit choice for what
the semigroup generated by A should be. By writing it down, one simply
checks that its generator is the closure of A.
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Because F is globally Lipschitz, it follows from standard results on ordi-
nary differential equations that there exists a continuous flow Φ : R×Rn →
Rn; i.e., Φ is continuous with Φ(t + r, s) = Φ

(
t, Φ(r, s)

)
and Φ(0, s) = s for

every r, t ∈ R and s ∈ Rn, which solves the differential equation

∂

∂t
Φ(t, s) = F

(
Φ(t, s)

)
for all t ∈ R, s ∈ Rn (see [Ama90, Thm. 10.3]). With such a flow we
associate a one-parameter group of linear operators on C0(Rn) as follows.

Definition 2. The group defined by the operators

T (t)f(s) := f
(
Φ(t, s)

)
for f ∈ C0(Rn), s ∈ Rn, and t ∈ R, is called the group induced by the flow
Φ on the Banach space C0(Rn).

The group property and the strong continuity follow immediately from
the corresponding properties of the flow; we refer to Exercise 3.31.(2) for
a closer look at the relations between (nonlinear) semiflows and (linear)
semigroups. We now determine the generator of

(
T (t)
)
t∈R.

Proposition. The generator of the group
(
T (t)
)
t∈R on C0(Rn) is the clo-

sure of the first-order differential operator

with domain
Af(s) := 〈grad f(s), F (s)〉
D(A) := C1

c(R
n).

Proof. Let
(
B, D(B)

)
denote the generator of

(
T (t)
)
t∈R. For f ∈ C1

c(R
n)

consider g := f−Af ∈ Cc(Rn) and compute the resolvent using the integral
representation (1.13) in Chapter II. This yields[

R(1, B)g
]
(s) =

∫ ∞

0
e−tf
(
Φ(t, s)

)
dt

−
∫ ∞

0
e−t
〈
grad f

(
Φ(t, s)

)
, F
(
Φ(t, s)

)〉
dt

= f(s)

after an integration by parts. Accordingly, C1
c(R

n) ⊂ D(B) and A ⊂ B. On
the other hand, C1

c(R
n) is dense in C0(Rn) and invariant under the group(

T (t)
)
t∈R induced by the flow. So, C1

c(R
n) is a core by Proposition 1.7, and

the assertion is proved. �

Analogous results on first-order differential operators on bounded do-
mains Ω ⊂ Rn need so-called boundary conditions and have been obtained,
e.g., in [Ulm92]. In the next paragraph we discuss an example of such a
boundary condition in a very simple situation.
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3.29 Delay Differential Operators. On the space X := C[−1, 0], con-
sider the operator

with domain
Af := f ′

D(A) :=
{
f ∈ C1[−1, 0] : f ′(0) = Lf

}
,

where L is a continuous linear form on C[−1, 0]. This can be rewritten as

D(A) = ker ϕ,

where ϕ is the linear form on C1[−1, 0] defined by

C1[−1, 0] � f �→ f ′(0) − Lf ∈ C.

Because this functional is bounded on the Banach space C1[−1, 0] but un-
bounded for the sup-norm, we deduce that D(A) is dense in C[−1, 0] and
closed in C1[−1, 0]; cf. Proposition A.9.

Next, we show that the rescaled operator A−‖L‖·I is dissipative. To this
end, take f ∈ D(A). As seen in Example 3.26.(i), the linear form f(s0) δs0

belongs to J(f) if |f(s0)| = ‖f‖ for some s0 ∈ [−1, 0]. This means that
A − ‖L‖ I is dissipative, provided that

(3.30) Re
〈
f ′ − ‖L‖ f, f(s0) δs0

〉
≤ 0 or Re f(s0)f ′(s0) ≤ ‖L‖ · ‖f‖2

.

In the case −1 < s0 < 0 we have f ′(s0) = 0, so that (3.30) certainly
holds. The same is true if s0 = −1, because then 2 Re f(−1)f ′(−1) =
(f ·f)′(−1) ≤ 0. It remains to consider the case where s0 = 0. Here, we use
f ′(0) = Lf for f ∈ D(A) to obtain

Re f(0)f ′(0) = Re f(0)Lf ≤ ‖f‖ · ‖L‖ · ‖f‖.

So, we are now well prepared to apply Theorem 3.15 to conclude that A
is a generator.

Proposition. Let L ∈ C[−1, 0]′. The delay differential operator

Af := f ′ with D(A) :=
{
f ∈ C1[−1, 0] : f ′(0) = Lf

}
on the Banach space C[−1, 0] generates a strongly continuous semigroup(
T (t)
)
t≥0 satisfying

‖T (t)‖ ≤ e‖L‖t for t ≥ 0.
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Proof. By the rescaling technique, the assertion follows from Theorem 3.15
and the above consideration, provided that λ − A is surjective for some
λ > ‖L‖. This means we have to show that for every g ∈ C[−1, 0] there
exists f ∈ C1[−1, 0] satisfying both

λf − f ′ = g

and
f ′(0) = Lf ; i.e., f ∈ D(A).

The first equation has

f(s) := c eλs −
∫ s

0
eλ(s−τ)g(τ) dτ

=: c ελ(s)− h(s), s ∈ [−1, 0],

as a solution for every constant c ∈ C. If λ > ‖L‖, then we can choose this
constant as

c :=
g(0) − Lh

λ − Lελ

in order to obtain f ∈ D(A). �

The importance (and name) of this operator stems from the fact that
the semigroup it generates solves a delay differential equation of the form{

u̇(t) = Lut for t ≥ 0,
u(s) = f(s) for −1 ≤ s ≤ 0,

where f is an initial function from C[−1, 0]. Here, ut ∈ C[−1, 0] is defined
by ut(s) := u(t+ s) for s ∈ [−1, 0]. In [EN00, Sect. VI.6] and more system-
atically in [BP05] it is shown how these and more general equations can be
solved via semigroups.

3.30 Second-Order Differential Operators. (i) We first reconsider the
operator from Paragraph 2.11; i.e., we take on X := C[0, 1] the operator

Af := f ′′, D(A) :=
{
f ∈ C2[0, 1] : f ′(0) = f ′(1) = 0

}
.

This time, instead of constructing the generated semigroup, we verify the
conditions of Theorem 3.15. It is simple to show that

(
A, D(A)

)
is densely

defined and closed. To show dissipativity, we take f ∈ D(A) and s0 ∈ [0, 1]
such that |f(s0)| = ‖f‖. By Example 3.26.(i) we have

f(s0) δs0 ∈ J(f).

Because t �→ Re f(s0) · f(t) takes its maximum at s0, it follows that

Re
〈
f ′′, f(s0) δs0

〉
=
(
Re f(s0)f

)′′
(s0) ≤ 0,



88 Chapter II. Semigroups, Generators, and Resolvents

where we need to use the boundary condition

f ′(0) = f ′(1) = 0

if s0 = 0 or s0 = 1. We finally show that λ2 − A is surjective for λ > 0.
Take g ∈ C[0, 1] and define

k(s) :=
1
2λ

[
eλs

∫ 1

s

e−λτg(τ) dτ − e−λs

∫ 1

s

eλτg(τ) dτ

]
for s ∈ [0, 1].

Then k is in C2[0, 1] and satisfies

λ2k − k′′ = g.

On the other hand, for each a, b ∈ C, the function

ha,b(s) := a eλs + b e−λs, s ∈ [0, 1],

satisfies
λ2ha,b − h′′

a,b = 0.

It is now an exercise in linear algebra to determine ã, b̃ ∈ C such that the
function

f := k + hã,b̃

satisfies f ′(0) = f ′(1) = 0. Then f ∈ D(A) and λ2f − f ′′ = g; i.e., λ2 −
A is surjective. It follows from Theorem 3.15 that

(
A, D(A)

)
generates a

contraction semigroup on C[0, 1].
(ii) The above method is now applied to the same differential operator on
a different space and with different boundary conditions. Let X := L2[0, 1]
and

Af := f ′′, D(A) := {f ∈ C2[0, 1] : f(0) = f(1) = 0}.
Then D(A) is dense in X, and for f ∈ D(A) one has

(3.31) (Af | f) =
∫ 1

0
f ′′f ds = f ′f

∣∣∣1
0
−
∫ 1

0
f ′f ′ ds ≤ 0.

By Example 3.26.(iii), this means that A is dissipative on the Hilbert space
L2[0, 1]. As in the previous case, for every g ∈ C2[0, 1] and λ > 0 there
exists a function f ∈ C2[0, 1] satisfying f(0) = f(1) = 0 and

λ2f − f ′′ = g;

i.e., rg(λ2−A) is dense. Again by Theorem 3.15 we conclude that
(
A, D(A)

)
generates a contraction semigroup on L2[0, 1]. Here the domain of the clo-
sure A is given by D(A) = H2

0[0, 1]; see Exercise 3.31.(1).
(iii) As a somewhat less canonical second-order differential operator on
X := C[0, 1], consider

(
A, D(A)

)
defined by

Af(s) := s(1− s)f ′′(s), s ∈ [0, 1],

for f ∈ D(A) :=
{
f ∈ C[0, 1] ∩ C2(0, 1) : lims→0,1 s(1 − s)f ′′(s) = 0

}
.

We show that it generates a strongly continuous contraction semigroup by
verifying the conditions of Theorem 3.15.
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As above, it is easy to show that
(
A, D(A)

)
is closed, densely defined,

and dissipative. Therefore, it suffices to prove that λ − A is surjective for
some λ > 0. Observe first that the functions h0 : s �→ 1 and h1 : s �→ s
belong to D(A) and satisfy

(3.32) (λ−A)hi = λhi, i = 0, 1 and λ > 0.

Hence, it suffices to consider the part A0 of A in the closed subspace X0 :=
{f ∈ X : f(0) = f(1) = 0} with domain D(A0) :=

{
f ∈ X0 ∩ C2(0, 1) :

lims→0,1 s(1 − s)f ′′(s) = 0
}
. Then

(
A0, D(A0)

)
is still dissipative, but is

now surjective. Its inverse R can be computed as

Rf(s) =
∫ 1

0
σ(s, t)

f(t)
t(1 − t)

dt,

where

σ(s, t) :=
{

s(t− 1) for 0 ≤ s ≤ t ≤ 1,
t(s− 1) for 0 ≤ t ≤ s ≤ 1,

and f ∈ X0. This shows that 0 ∈ ρ(A0) and hence [0,∞) ⊂ ρ(A0). From
(3.32) we conclude that (0,∞) ⊂ ρ(A). Accordingly, A is a generator.

3.31 Exercises. (1) Show that the domain of A in Paragraph 3.30.(ii) is
given by D(A) = H2

0[0, 1] := {f ∈ W2,2[0, 1] : f(0) = f(1) = 0}. (Hint:
Show first that the second derivative D2 on L2[0, 1] with domain H2

0[0, 1]
is invertible. The assertion then follows from the fact that A ⊂ D2.)
(2) Let Ω be a compact space and take X := C(Ω). A semiflow Φ : R+ ×
Ω → Ω is defined by the properties

(3.33)
Φ(t + r, s) = Φ

(
t, Φ(r, s)

)
,

Φ(0, s) = s

for every s ∈ Ω and r, t ∈ R+. Establish the following facts.
(i) The semiflow Φ is continuous if and only if it induces a strongly

continuous semigroup
(
T (t)
)
t≥0 on X by the formula

(3.34)
(
T (t)f

)
(s) := f

(
Φ(t, s)

)
for s ∈ Ω, t ≥ 0, f ∈ X.

(ii) The generator A of
(
T (t)
)
t≥0 is a derivation (cf. Exercise 1.15.(5)).

(iii∗) Every strongly continuous semigroup
(
T (t)
)
t≥0 on X that consists

of algebra homomorphisms originates, via (3.34), from a continuous
semiflow on Ω. (Hint: See [Nag86, B-II, Thm. 3.4].)

(3) Show that the semigroup
(
T (t)
)
t≥0 on X := C[−1, 0] generated by

the delay differential operator from Paragraph 3.29 satisfies the translation
property ; i.e.,

(TP)
(
T (t)f

)
(s) =

{
f(t + s) if t + s ≤ 0,
[T (t + s)f ](0) if t + s > 0,

for all f ∈ X (cf. also [EN00, Thm. VI.6.2]).
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4. Analytic Semigroups

Up to now, we have classified semigroups only as being strongly continuous
in the general case or being uniformly continuous as a somewhat unin-
teresting case. Between these two extreme cases there is room for a wide
range of continuity properties; see [EN00, Sect. II.4]. Here we introduce
just one more class of semigroups enjoying a rather strong regularity prop-
erty. Other natural regularity properties for semigroups are discussed in
Section 5 below.

We start our discussion by reconsidering the exponential Formula (3.2),
but now impose conditions on the operator A (and its resolvent R(λ, A))
that make the contour integrals converge even if A and σ(A) are un-
bounded.

4.1 Definition. A closed linear operator
(
A, D(A)

)
in a Banach space X

is called sectorial (of angle δ) if there exists 0 < δ ≤ π/2 such that the
sector

Σπ/2+δ :=
{

λ ∈ C : | arg λ| <
π

2
+ δ
} ∖ {0}

is contained in the resolvent set ρ(A), and if for each ε ∈ (0, δ) there exists
Mε ≥ 1 such that

(4.1) ‖R(λ, A)‖ ≤ Mε

|λ| for all 0 �= λ ∈ Σπ/2+δ−ε.

For densely defined sectorial operators and appropriate paths γ, the ex-
ponential function “etA” can now be defined via the Cauchy integral for-
mula as used in the Dunford functional calculus for bounded operators (see,
e.g., [DS58, Sect. VII.3], [TL80, Sect. V.8]).

4.2 Definition. Let
(
A, D(A)

)
be a densely defined sectorial operator of

angle δ. Define T (0) := I and operators T (z), for z ∈ Σδ, by

(4.2) T (z) :=
1

2πi

∫
γ

eμzR(μ, A) dμ,

where γ is any piecewise smooth curve in Σπ/2+δ going from ∞ e−i(π/2+δ′)

to ∞ ei(π/2+δ′) for some δ′ ∈ (| arg z|, δ).2

As a first step, we need to justify this definition. In particular, we show
that the essential properties of the analytic functional calculus for bounded
operators (cf. Definition I.2.10) prevail in this situation.

2 See Figure 1.
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4.3 Proposition. Let
(
A, D(A)

)
be a densely defined sectorial operator of

angle δ. Then, for all z ∈ Σδ, the maps T (z) are bounded linear operators
on X satisfying the following properties.

(i) ‖T (z)‖ is uniformly bounded for z ∈ Σδ′ if 0 < δ′ < δ.

(ii) The map z �→ T (z) is analytic in Σδ.
(iii) T (z1 + z2) = T (z1)T (z2) for all z1, z2 ∈ Σδ.

(iv) The map z �→ T (z) is strongly continuous in Σδ′ ∪ {0} if 0 < δ′ < δ.

Proof. We first verify that for z ∈ Σδ′ , with δ′ ∈ (0, δ) fixed, the integral
in (4.2) defining T (z) converges uniformly in L(X) with respect to the op-
erator norm. Because the integrand is analytic in μ ∈ Σπ/2+δ, this integral,
if it exists, is by Cauchy’s integral theorem independent of the particular
choice of γ. Hence, we may choose γ = γr as in Figure 1; i.e., γ consists of
the three parts

(4.3)

γr,1 :
{
−ρe−i(π/2+δ−ε) : −∞ ≤ ρ ≤ −r

}
,

γr,2 :
{
reiα : −(π/2 + δ − ε) ≤ α ≤ (π/2 + δ − ε)

}
,

γr,3 :
{

ρei(π/2+δ−ε) : r ≤ ρ ≤ ∞
}

,

where ε := (δ−δ′)/2 > 0 and r := 1/|z|.
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Im z

Re z

γ1,2

γ1,3

δ − ε

Figure 1

Then, for μ ∈ γr,3, z ∈ Σδ′ , we can write

μz = |μz| ei(arg μ+arg z),
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where π/2 + ε ≤ arg μ + arg z ≤ 3π
2 − ε. Hence, we have

1
|μz| Re(μz) = cos(arg μ + arg z) ≤ cos

(
π/2 + ε

)
= − sin ε,

and therefore

(4.4) |eμz| ≤ e−|μz| sin ε

for all z ∈ Σδ′ and μ ∈ γr,3. Similarly, one shows that (4.4) is true for
z ∈ Σδ′ and μ ∈ γr,1, from which we conclude

(4.5) ‖eμzR(μ, A)‖ ≤ e−|μz| sin ε Mε

|μ|
for all z ∈ Σδ′ and μ ∈ γr,1 ∪ γr,3. On the other hand, the estimate

(4.6) ‖eμzR(μ, A)‖ ≤ e
Mε

|μ| = eMε|z|

holds for all z ∈ Σδ′ and μ ∈ γr,2. Using the estimates (4.5) and (4.6), we
then conclude∥∥∥∫

γr

eμzR(μ, A) dμ
∥∥∥ ≤ 3∑

k=1

∥∥∥∫
γr,k

eμzR(μ, A) dμ
∥∥∥

≤ 2Mε

∫ ∞

1/|z|

1
ρ

e−ρ|z| sin εdρ + eMε|z| · 2π

|z|

= 2Mε

∫ ∞

1

1
ρ

e−ρ sin εdρ + 2πeMε

for all z ∈ Σδ′ . This shows that the integral defining T (z) converges in
L(X) absolutely and uniformly for z ∈ Σδ′ ; i.e., the operators T (z) are
well-defined and satisfy (i).

Moreover, from the above considerations, it follows that the map z �→
T (z) is analytic for z ∈ Σδ = ∪0<δ′<δΣδ′ , which proves (ii).

Next, we verify the semigroup property (iii). To this end, we choose some
constant c > 0 such that γ ∩ γ′ := γ1 ∩ (γ1 + c) = ∅, where γ1 is as in (4.3)
with r = 1. Then, for z1, z2 ∈ Σδ′ , we obtain using the resolvent equation
in Paragraph V.1.2 and Fubini’s theorem that

T (z1)T (z2) =
1

(2πi)2

∫
γ

∫
γ′

eμz1eλz2R(μ, A)R(λ, A) dλ dμ

=
1

(2πi)2

∫
γ

∫
γ′

eμz1eλz2

λ − μ

(
R(μ, A) −R(λ, A)

)
dλ dμ

=
1

2πi

∫
γ

eμz1R(μ, A)
(

1
2πi

∫
γ′

eλz2

λ − μ
dλ

)
dμ

− 1
2πi

∫
γ′

eλz2R(λ, A)
(

1
2πi

∫
γ

eμz1

λ − μ
dμ

)
dλ.
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By closing the curves γ and γ′ by circles with increasing diameter on the
left and using the fact that γ lies to the left of γ′, Cauchy’s integral theorem
implies

1
2πi

∫
γ

eμz1

λ − μ
dμ = 0 and

1
2πi

∫
γ′

eλz2

λ − μ
dλ = eμz2 .

Thus, we conclude

T (z1)T (z2) =
1

2πi

∫
γ

eμz1eμz2R(μ, A) dμ

= T (z1 + z2)

for all z1, z2 ∈ Σδ′ , which proves (iii).
It remains only to show (iv), i.e., that the map z �→ T (z) is strongly

continuous in Σδ′ ∪ {0} for every 0 < δ′ < δ. By (i) and (ii), it suffices, as
usual, to verify that

(4.7) lim
Σδ′ z→0

T (z)x− x = 0 for all x ∈ D(A).

We start from estimate (4.4) and Cauchy’s integral formula and obtain for
γ = γ1 that

1
2πi

∫
γ

eμz

μ
dμ = 1

for all z ∈ Σδ′ . Hence, the identity R(μ, A)Ax = μR(μ, A)x−x for x ∈ D(A)
yields

T (z)x− x =
1

2πi

∫
γ

eμz

(
R(μ, A) − 1

μ

)
x dμ

=
1

2πi

∫
γ

eμz

μ
R(μ, A)Ax dμ

for all z ∈ Σδ′ . Now, by (4.1) and (4.5), we have∥∥∥∥eμz

μ
R(μ, A)Ax

∥∥∥∥ ≤ Mε

|μ|2
(
1 + e|z|

)
‖Ax‖

for all μ ∈ γ and z ∈ Σδ′ . Using this estimate and because limz→0 eμz = 1,
Lebesgue’s dominated convergence theorem implies

lim
Σδ′ z→0

T (z)x− x =
1

2πi

∫
γ

1
μ

R(μ, A)Ax dμ = 0,

where the second equality follows from Cauchy’s integral theorem by closing
the path γ by circles with increasing diameter on the right. This proves
(4.7), and the proof is complete. �

If in Definition 4.2 we only consider values z ∈ R+, we obtain, by the
previous proposition, a strongly continuous semigroup

(
T (t)
)
t≥0 on X. It

turns out that its generator is the operator from which we started.
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4.4 Proposition. The generator of the strongly continuous semigroup de-
fined by (4.2) is the sectorial operator

(
A, D(A)

)
.

Proof. Denoting by
(
B, D(B)

)
the generator of

(
T (t)
)
t≥0, it suffices to

show that

(4.8) R(λ, A) = R(λ, B)

for λ = |ω0 | + 2, where ω0 denotes the growth bound of
(
T (t)
)
t≥0, cf.

Definition I.1.5. However, from Theorem 1.10 we know that the resolvent
of B in λ is given as the integral

R(λ, B)x =
∫ ∞

0
e−λtT (t)x dt for all x ∈ X.

Take now t0 > 0 and choose γ = γ1 as in (4.3). Then, by Fubini’s theorem,
we obtain∫ t0

0
e−λtT (t)x dt =

1
2πi

∫
γ

et0(μ−λ) − 1
μ− λ

R(μ, A)x dμ

= R(λ, A)x +
1

2πi

∫
γ

et0(μ−λ)

μ− λ
R(μ, A)x dμ.

Here, we used the formula
∫

γ
R(μ,A)

μ−λ x dμ = −2πiR(λ, A)x, which can be
verified using Cauchy’s integral formula and by closing γ on the right by
circles of diameter converging to ∞. Because Re(μ − λ) ≤ −1, for ε =
(δ−δ′)/2 we can estimate

∥∥∥∥∫
γ

et0(μ−λ)

μ− λ
R(μ, A)x dμ

∥∥∥∥ ≤ e−t0 · ‖x‖
∫

γ

Mε

|μ− λ| · |μ| |dμ|

and obtain (4.8) by taking the limit as t0 → ∞. �

Combining the two previous results, we see that a densely defined sec-
torial operator is always the generator of a strongly continuous semigroup
that can be extended analytically to some sector Σδ containing R+. At this
point, we remark that sectorial operators are characterized by the single
resolvent estimate (4.1), whereas the Hille–Yosida Generation Theorem 3.8
requires estimates on all powers of the resolvent.

Semigroups that can be extended analytically enjoy many nice proper-
ties; see, e.g., Theorem III.2.10, [EN00, Cors. IV.3.12, VI.3.6 and VI.7.17]
and [Lun95]. Therefore, we give various characterizations of these analytic
semigroups. First, we introduce the appropriate terminology.
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4.5 Definition. A family of operators
(
T (z)
)
z∈Σδ∪{0} ⊂ L(X) is called an

analytic semigroup (of angle δ ∈ (0, π/2]) if
(i) T (0) = I and T (z1 + z2) = T (z1)T (z2) for all z1, z2 ∈ Σδ.
(ii) The map z �→ T (z) is analytic in Σδ.
(iii) limΣδ′ z→0 T (z)x = x for all x ∈ X and 0 < δ′ < δ.

If, in addition,
(iv) ‖T (z)‖ is bounded in Σδ′ for every 0 < δ′ < δ,

we call
(
T (z)
)
z∈Σδ∪{0} a bounded analytic semigroup.

In our next result, we give various equivalences characterizing generators
of bounded analytic semigroups.

4.6 Theorem. For an operator
(
A, D(A)

)
on a Banach space X, the fol-

lowing statements are equivalent.
(a) A generates a bounded analytic semigroup

(
T (z)
)
z∈Σδ∪{0} on X.

(b) There exists ϑ ∈ (0, π/2) such that the operators e±iϑA generate
bounded strongly continuous semigroups on X.

(c) A generates a bounded strongly continuous semigroup
(
T (t)
)
t≥0 on

X such that rg
(
T (t)
) ⊂ D(A) for all t > 0, and

(4.9) M := sup
t>0

‖tAT (t)‖ < ∞.

(d) A generates a bounded strongly continuous semigroup
(
T (t)
)
t≥0 on

X, and there exists a constant C > 0 such that

(4.10) ‖R(r + is, A)‖ ≤ C

|s|
for all r > 0 and 0 �= s ∈ R.

(e) A is densely defined and sectorial.

Proof. We show that (a) ⇒ (b) ⇒ (d) ⇒ (e) ⇒ (c) ⇒ (a).
(a) ⇒ (b). For ϑ ∈ (0, δ), we define Tϑ(t) := T (eiϑt). Then, by Defi-

nition 4.5, the operator family
(
Tϑ(t)

)
t≥0 ⊂ L(X) is a bounded strongly

continuous semigroup on X. In order to determine its generator, we define
γ : [0,∞) → C by γ(r) := eiϑr. Then, by analyticity and Cauchy’s integral
theorem, we obtain

R(1, A)x =
∫ ∞

0
e−tT (t)x dt =

∫
γ

e−rT (r)x dr

= eiϑ
∫ ∞

0
e−eiϑrTϑ(r)x dr = eiϑR

(
eiϑ, Aϑ

)
x

for all x ∈ X, hence Aϑ = eiϑA. Similarly, it follows that
(
T (e−iϑt)

)
t≥0 is

a bounded strongly continuous semigroup with generator e−iϑA; i.e., (b) is
proved.
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(b) ⇒ (d). Let e−iϑ = a− ib for a, b > 0. Then, applying the Hille–Yosida
Generation Theorem 3.8 to the generator e−iϑA, we obtain a constant C̃ ≥
1 such that

‖R(r + is, A)‖ =
∥∥e−iϑR

(
e−iϑ(r + is), e−iϑA

)∥∥
≤ C̃

ar + bs
≤ C

s

for all r, s > 0 and C := C̃/b. For s < 0, we obtain a similar estimate using
the fact that eiϑA is a generator on X.

(d) ⇒ (e). By assumption, A generates a bounded strongly continuous
semigroup, and hence is densely defined by Proposition 1.7. Moreover, by
Theorem 1.10 we have Σπ/2 ⊂ ρ(A). From Corollary V.1.14, we know that

‖R(λ, A)‖ ≥ 1
dist(λ, σ(A))

for all λ ∈ ρ(A).

Therefore, the estimate (4.10) implies iR \ {0} ⊂ ρ(A) and, by continuity
of the resolvent map,

(4.11) ‖R(μ, A)‖ ≤ C

|μ| for all 0 �= μ ∈ iR.

We now develop the resolvent of A in 0 �= μ ∈ iR in its Taylor series (see
Proposition V.1.3),

(4.12) R(λ, A) =
∞∑

n=0

(μ− λ)nR(μ, A)n+1.

This series converges uniformly in L(X), provided that |μ−λ|·‖R(μ, A)‖ ≤
q < 1 for some fixed q ∈ (0, 1). In particular, for μ = i Im λ, we see from
(4.11) that this is the case if |Re λ| ≤ q/C | Im λ|. Because this is true for
arbitrary 0 < q < 1, we conclude that{

λ ∈ C : Re λ ≤ 0 and
∣∣∣∣Re λ

Im λ

∣∣∣∣ < 1
C

}
⊂ ρ(A),

and hence Σπ/2+δ ⊆ ρ(A) for δ := arctan 1/C.
It remains to estimate ‖R(λ, A)‖ for λ ∈ Σπ/2+δ−ε and ε ∈ (0, δ). We

assume first that Re λ > 0. Then, by the Hille–Yosida Generation The-
orem 3.8 for the bounded semigroup

(
T (t)
)
t≥0, there exists a constant

M̃ ≥ 1 such that ‖R(λ, A)‖ ≤ M̃/Re λ. Moreover, by (4.10), we have
‖R(λ, A)‖ ≤ C/| Im λ|; hence there exists M ≥ 1 such that

‖R(λ, A)‖ ≤ M

|λ| if Reλ > 0.
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In the case Re λ ≤ 0, we choose q ∈ (0, 1) such that δ − ε = arctan(q/C).
Then |Re λ/Im λ| ≤ q/C, and from estimate (4.11) combined with the Taylor
expansion (4.12) for μ = i Imλ we obtain

‖R(λ, A)‖ ≤
∞∑

n=0

|Re λ|n Cn+1

| Im λ|n+1

≤ 1
1 − q

· C

| Im λ| ≤
√

C2 + 1
1 − q

· 1
|λ| .

(e) ⇒ (c). By Propositions 4.3 and 4.4, A generates a bounded strongly
continuous semigroup

(
T (t)
)
t≥0, and the map

(0,∞) � t �→ T (t)x ∈ X

is differentiable for all x ∈ X. In particular, the limit

lim
h↓0

T (t + h) − T (t)
h

x = lim
h↓0

T (h) − I

h
T (t)x

exists for all x ∈ X and t > 0; hence rg
(
T (t)
) ⊂ D(A) for t > 0.

Because for t > 0 the operator AT (t) is closed with domain D
(
AT (t)

)
=

X, it is bounded by the closed graph theorem.
To estimate its norm, we use the integral representation (4.2) of T (t)

and obtain, using the closedness of A, the resolvent equation, and Cauchy’s
integral theorem that

AT (t) = A
1

2πi

∫
γ

eμtR(μ, A) dμ

=
1

2πi

∫
γ

eμt
(
μR(μ, A) − I

)
dμ

=
1

2πi

∫
γ

μeμtR(μ, A) dμ.

Because by analyticity we may choose γ = γr for r := 1/t as in the proof
of Proposition 4.3, we conclude, using (4.5) and (4.6), that∥∥∥∥∫

γ

μeμtR(μ, A) dμ

∥∥∥∥ ≤ 2Mε

∫ ∞

1/t

e−ρt sin εdρ +
2πeMε

t

≤ 2Mε

(
1

sin ε
+ πe
)
· 1

t
,

where ε := (δ−δ′)/2 for some δ′ ∈ (0, δ). This proves (c).
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(c) ⇒ (a). We claim first that the map t �→ T (t)x ∈ X is infinitely many
times differentiable for all t > 0 and x ∈ X. In fact, using the formula
AT (s)y = T (s)Ay, valid for s ≥ 0 and y ∈ D(A) (see Lemma 1.3), one
easily verifies by induction that rg

(
T (t)
) ⊂ D(A∞) = ∩n∈ND(An) and

AnT (t) =
(
AT ( t/n)

)
n

for all t > 0 and n ∈ N. We now fix some ε ∈ (0, t). Then, by Lemma 1.3,

AnT (t)x = AT (t − ε)An−1T (ε)x

= d
dtT (t − ε)An−1T (ε)x

...

= dn

dtn T (t)x

for all x ∈ X. This establishes our claim. Combining this with (4.9) and
the inequality3 n! en ≥ nn, we obtain, while writing T (n)(t) := dn

dtn T (t),

(4.13)
1
n!

∥∥T (n)(t)
∥∥ ≤ (eM

t

)n

for all n ∈ N and t > 0.

Next, we develop T (t) in its Taylor series. To this end, we choose t > 0 and
x ∈ X arbitrary. Then, by Taylor’s theorem, we have for |h| < t and all
n ∈ N

(4.14) T (t + h)x =
n∑

k=0

hk

k!
T (k)(t)x +

1
n!

∫ t+h

t

(t + h − s)nT (n+1)(s)x ds.

Denoting the integral term on the right-hand side of (4.14) by Rn+1(t+h)x,
we see from (4.13) that

lim
n→∞ ‖Rn+1(t + h)‖ = 0

uniformly for |h| ≤ q · t/eM for every fixed q ∈ (0, 1). On the other hand,
the series

(4.15) T (z) :=
∞∑

k=0

(z − t)k

k!
T (k)(t)

converges uniformly for all z ∈ C satisfying |z − t| ≤ q · t/eM; hence it
extends the given semigroup

(
T (t)
)
t≥0 analytically to the sector Σδ for

δ := arctan
(

1/eM
)
. This proves (ii) of Definition 4.5.

3 Taking logarithms, this inequality can be restated as 1/n

∑n

k=1 log k/n ≥ −1, which

follows from
∫ 1

0
log x dx = −1.
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In order to verify the semigroup property for
(
T (z)
)
z∈Σδ∪{0}, we first

take some t > 0. Then the map Σδ � z �→ T (t)T (z) ∈ L(X) is analytic and
satisfies T (t)T (z) = T (t + z) for z ≥ 0. Hence, by the identity theorem for
analytic functions, we conclude that T (t)T (z) = T (t + z) for all z ∈ Σδ.
Now fix some z1 ∈ Σδ and consider the map Σδ � z �→ T (z1)T (z) ∈
L(X). This map is analytic as well and satisfies T (z1)T (z) = T (z1 + z)
for z ≥ 0. Using the analyticity again, we obtain the functional equation
T (z1)T (z2) = T (z1 + z2) for all z1, z2 ∈ Σδ.

To verify that z �→ T (z) is uniformly bounded on the sector Σδ′ for every
0 < δ′ < δ, we choose q ∈ (0, 1) such that δ′ := arctan (q/eM). Then, by
equations (4.13) and (4.15),

‖T (z)‖ =
∥∥∥∥ ∞∑

k=0

(i Im z)k

k!
T (k)(Re z)

∥∥∥∥
≤

∞∑
k=0

| Im z|k
( eM

Re z

)k

≤ 1
1 − q

.(4.16)

It remains only to prove that the map

Σδ′ ∪ {0} � z �→ T (z) ∈ L(X)

is strongly continuous in z = 0. To this end, we choose x ∈ X and ε > 0.
Because

(
T (t)
)
t≥0 is strongly continuous, there exists h0 > 0 such that

‖T (h)x− x‖ < ε(1 − q) for all 0 < h < h0. Then, using (4.16), we obtain

‖T (z)x− x‖ ≤ ∥∥T (z)
(
x− T (h)x

)∥∥+ ‖T (z + h)x− T (h)x‖ + ‖T (h)x− x‖
< 2ε + ‖T (z + h) − T (h)‖ · ‖x‖

for all h ∈ (0, h0). Because the map z �→ T (z + h) ∈ L(X) is analytic in
some neighborhood of z = 0, we have limz→0 ‖T (z +h)−T (h)‖ = 0, which
completes the proof of the implication (c) ⇒ (a). �

4.7 Remarks. (i) We point out that from the previous proof it follows
that for an analytic semigroup

(
T (t)
)
t≥0 and its generator A we always

have
rg
(
T (t)
) ⊂ D(A∞)

and (by (4.13)) for every n ∈ N

lim
t↓0

tn‖AnT (t)‖ < ∞.

(ii) We note that in concrete applications one usually verifies condition (d)
in Theorem 4.6 in order to show that an operator generates an analytic
semigroup. In the case where the semigroup

(
T (t)
)
t≥0 is already known

one can also try to verify condition (c).

Next we give some abstract and concrete examples of analytic semi-
groups.
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4.8 Corollary. If A is a normal operator on a Hilbert space H satisfying

(4.17) σ(A) ⊆ {z ∈ C : | arg(−z)| < δ}
for some δ ∈ [0, π/2), then A generates a bounded analytic semigroup.

Proof. Because A is normal, the same is true for R(λ, A) for all λ ∈ ρ(A).
Hence, by [TL80, Thm. VI.3.5] or [Wei80, Thm. 5.44], we have

‖R(λ, A)‖ = r
(
R(λ, A)

)
,

and the assertion follows from Theorem 4.6.(d) combined with the Spectral
Mapping Theorem for the Resolvent in Paragraph V.1.13. �

A different proof of the previous result is indicated in Exercise 4.14.(8).
In particular, Corollary 4.8 shows that the semigroup generated by a self-

adjoint operator A that is bounded above, which means that there exists
w ∈ R such that

(Ax |x) ≤ w ‖x‖2 for all x ∈ D(A),

is analytic of angle π/2. Moreover, this semigroup is bounded if and only if
w ≤ 0.

4.9 Example. In Paragraph II.3.30.(ii) we showed that the closure A of
the operator

Af := f ′′, D(A) := {f ∈ C2[0, 1] : f(0) = f(1) = 0}
generates a strongly continuous contraction semigroup

(
T (t)
)
t≥0 on the

Hilbert space H = L2[0, 1]. Because it is not difficult to show that

Af := f ′′, D(A) := {f ∈ H2[0, 1] : f(0) = f(1) = 0}
is self-adjoint, the semigroup

(
T (t)
)
t≥0 is analytic. See Exercise 4.14.(9)

and, for more general operators, [EN00, Sect. VI.4].
It is, however, even simpler to verify the inequality in (3.29) with A

replaced by e±iϑA for some ϑ ∈ (0, π/2) in order to conclude that e±iϑA are
dissipative. Because ρ(e±iϑA) = e±iϑρ(A), we then conclude by the Lumer–
Phillips Theorem 3.15 that e±iϑA are generators of contraction semigroups.
Hence, Theorem 4.6.(b) implies that the operator A generates a bounded
analytic semigroup on H.

Another important class of generators of analytic semigroups is provided
by squares of group generators.

4.10 Corollary. Let A be the generator of a strongly continuous group(
T (t)
)
t∈R. Then A2 generates an analytic semigroup

(
S(t)
)
t≥0 of angle π/2.

Moreover, if
(
T (t)
)
t∈R is bounded this semigroup is given by

S(t) =
1√
4πt

∫
R

e
−s2/4t T (s) ds, t > 0.

Proof. We first show that A2 generates an analytic semigroup where we
assume that

(
T (t)
)
t∈R is bounded. For the general case we refer to [Nag86,

A-II, Thm. 1.15].
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Take some 0 < δ′ < π/2 and λ ∈ Σπ/2+δ′ . Then there exists a square root
reiα of λ with 0 < r and |α| < (π/2+δ′)/2 < π/2, and we obtain

(λ −A2) = (reiα −A)(reiα + A).

This implies λ ∈ ρ(A2) and R(λ, A2) = R(reiα, A)R(reiα,−A). Because A

generates a bounded group, there exists a constant M̃ ≥ 1 such that

‖R(μ,±A)‖ ≤ M̃

Re μ
for all μ ∈ Σπ/2.

Consequently, one has∥∥R(λ, A2)
∥∥ ≤ M̃2

(r cos α)2
≤ 1

r2

(
M̃

cos
( π/2+δ′

2

))2

=
M

|λ| for all λ ∈ Σπ/2+δ′ ,

and the assertion follows from Propositions 4.3 and 4.4.
The explicit representation of

(
S(t)
)
t≥0 can be proved by verifying that

the Laplace transform of S(·) is given by R(·, A2). For the details see
[ABHN01, Cor. 3.7.15]. �
4.11 Example. It is immediately clear from the discussion of the transla-
tion groups in Paragraph 2.9 that starting from Af := f ′ (and appropriate
domain) on C0(R) or Lp(R), 1 ≤ p < ∞, the operator

A2f = f ′′

generates a bounded analytic semigroup.
We now consider the slightly more involved case of several space dimen-

sions; i.e., we consider the spaces C0(Rn) or Lp(Rn), 1 ≤ p < ∞. Denote
by
(
Ui(t)
)
t∈R the strongly continuous group given by(

Ui(t)f
)
(x) := f(x1, . . . , xi−1, xi + t, . . . , xn),

where x ∈ Rn, t ∈ R, and 1 ≤ i ≤ n, and let Ai be its generator. Obviously,
these semigroups commute as do the resolvents of Ai and hence of A2

i . De-
note by

(
Ti(t)
)
t≥0 the semigroup generated by A2

i , which by Corollary 4.10
has an analytic extension

(
Ti(z)
)
z∈Σπ/2

. These extensions also commute,
and therefore

T (z) := T1(z) · · ·Tn(z), z ∈ Σπ/2,

defines a bounded analytic semigroup of angle π
2 . The domain D(A) of its

generator A contains D(A2
1)∩ · · · ∩D(A2

n) by Paragraph 2.6. In particular,
it contains

D0 :=
{
f ∈ X ∩C2(Rn) : Dαf ∈ X for every multi-index α with |α| ≤ 2

}
,

and for every f ∈ D0 the generator is given by

Af =
(
A2

1 + · · ·+ A2
n

)
f =

n∑
i=1

∂2

∂x2
i

f = Δf.

Finally, we note that
(
T (t)
)
t≥0 is given by (2.8) in Paragraph II.2.12.
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We close this section by studying the analyticity of multiplication semi-
groups and characterize it in terms of the function defining its generator.

4.12 Multiplication Semigroups. As in Definition I.3.3, we consider a
multiplication operator

Mq : f �→ q · f
on X := C0(Ω) (or, if one prefers, on Lp(Ω, μ)) for some continuous function
q : Ω → C. If sups∈Ω Re q(s) < ∞, then

Tq(t)f := etq · f
defines a strongly continuous semigroup (see Proposition I.3.5) for which
the following holds.

Theorem. Let
(
Tq(t)
)
t≥0 be the strongly continuous multiplication semi-

group on X generated by the multiplication operator Mq. Then
(
Tq(t)
)
t≥0

is bounded and analytic if and only if the spectrum σ(Mq) = q(Ω) satisfies
the conditions stated in Theorem 4.6. More precisely,

(
Tq(t)
)
t≥0 is bounded

analytic of angle δ if and only if

Σδ+π/2 ⊂ C \ q(Ω) = ρ(Mq).

Proof. The condition is necessary by Theorem 4.6. Conversely, if Σδ+π/2

is contained in C\q(Ω), it follows that the functions q± := e±iδ ·q still have
nonpositive real part. By Proposition I.3.5, this implies that

e±iδ ·Mq

are both generators of bounded strongly continuous semigroups. By Theo-
rem 4.6.(b), this proves that Mq generates a bounded analytic semigroup.

�
4.13 Comment. We point out that in most of the above results the den-
sity of the domain of A is not needed. In fact, the integral (4.2) exists
even for nondensely defined sectorial operators and yields an analytic semi-
group without, however, the strong continuity in Proposition 4.3.(iv). This
is treated in detail in [Lun95].

We close this subsection by adding an arrow to Diagram 1.14 in the case
of analytic semigroups. (

T (t)
)
t≥0

�
�

�
�

�
�

�
�

��

�

Ax=lim
t↓0

T (t)x−x
t

�
�

�
�

�
�

�
�

��


�
�

�
�

�
�

�
�

���

R(λ,A)=
∞∫
0

e−λtT (t) dt

T (t)= 1
2πi

∫
γ

eμtR(μ,A) dμ

(
A, D(A)

) R(λ,A)=(λ−A)−1
�	

A=λ−R(λ,A)−1

(
R(λ, A)

)
λ∈ρ(A)
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4.14 Exercises. (1) Let X be a Banach space and consider a function
F : Ω → L(X) defined on an open set Ω ⊆ C. Show that the following
assertions are equivalent.

(a) F : Ω → L(X) is analytic.
(b) F (·)x : Ω → X is analytic for all x ∈ X.
(c) 〈F (·)x, x′〉 : Ω → C is analytic for all x ∈ X and x′ ∈ X ′.

(Hint: Use Cauchy’s integral formula and the uniform boundedness princi-
ple.)
(2) Show that an analytic semigroup

(
T (z)
)
z∈Σδ∪{0} for every 0 < δ′ < δ

is exponentially bounded on Σδ′ .
(3) Show that the generator A of an analytic semigroup

(
T (z)
)
z∈Σδ∪{0}

coincides with the “complex” generator; i.e.,

Ax = lim
Σδ′ z→0

T (z)x− x

z
, D(A) =

{
x ∈ X : lim

Σδ′ z→0

T (z)x− x

z
exists

}
for every 0 < δ′ < δ

(4) Show that for an analytic semigroup
(
T (z)
)
z∈Σδ∪{0} on a Banach space

X one always has T (t)X ⊂ D(A∞) for all t > 0.
(5∗) Give a proof of Corollary 4.10 in the case where the group

(
T (t)
)
t∈R

is not necessarily bounded. (Hint: See [Nag86, A-II, Thm. 1.15].)
(6) Let

(
A, D(A)

)
be a closed, densely defined linear operator on a Banach

space X. If there exist constants δ > 0, r > 0, and M ≥ 1 such that Σ :=
{λ ∈ C : |λ| > r and | arg(λ)| < π/2 + δ} ⊆ ρ(A) and ‖R(λ, A)‖ ≤ M/|λ| for
all λ ∈ Σ, then A − w is sectorial for w sufficiently large. In particular, A
generates an analytic semigroup.
(7) For an operator

(
A, D(A)

)
on a Banach space X define on X := X×X

the operator matrix

A :=
(

A A
0 A

)
with domain D(A) := D(A) ×D(A).

Show that the following assertions are equivalent.
(i) A generates an analytic semigroup on X.
(ii) A generates a strongly continuous semigroup on X.
(iii) A generates an analytic semigroup on X.

(Hint: If A generates the semigroup
(
T (t)
)
t≥0, then the candidate for the

semigroup
(
T(t)
)
t≥0 generated by A is given by T(t) =

(
T (t) tAT (t)

0 T (t)

)
. Now

use Theorem 4.6.(c).)
(8) Give an alternative proof of Corollary 4.8 based on the Spectral Theo-
rem I.3.9 and the results on multiplication semigroups from Section I.3.b.
(Hint: Observe the theorem in Paragraph 4.12.)
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(9) Show that the closure of the operator A in Example 4.9 is self-adjoint.
(10∗) Show that for every closed and densely defined operator T on a
Hilbert space H the operator T ∗T is self-adjoint and positive semidefinite.
(Hint: See [Ped89, Thm. 5.1.9].)
(11) Consider the first derivative D := d/dx on L2[a, b] with the domains
D
(
D0) := H1

0[a, b] := {f ∈ H1[a, b] : f(a) = 0 = f(b)
}

and D
(
Dm) :=

H1[a, b].
(i) Show that (D0)∗ = −Dm and (Dm)∗ = −D0.
(ii) Show that ΔD := DmD0 and ΔN := D0Dm generate bounded an-

alytic semigroups. Write down these operators explicitly. Compare
this with Example 4.9. (Hint: Use Exercise (10).)

(12) Show that the operator A := d2
/dx2 with domain D(A) :=

{
f ∈

C2[0, 1] : f ′(0) = 0 = f ′(1)
}

generates an analytic contraction semigroup(
T (t)
)
t≥0 on X := C[0, 1]. In addition, show that T (t)f ≥ 0 for every

f ≥ 0; i.e.,
(
T (t)
)
t≥0 is positive. (Hint: Observe Paragraphs II.2.11 and

II.3.30.)

5. Further Regularity Properties of Semigroups

We have seen in the previous section that requiring the orbit maps t �→
T (t)x to be analytic and not just continuous yields a new and important
class of semigroups. In this section we discuss some regularity (or smooth-
ness) properties lying between strong continuity and analyticity.

For the first of these concepts we weaken analyticity (on a sector) to
differentiability (on an interval).

5.1 Definition. A strongly continuous semigroup
(
T (t)
)
t≥0 on a Banach

space X is called eventually differentiable if there exists t0 ≥ 0 such that
the orbit maps ξx : t �→ T (t)x are differentiable on (t0,∞) for every x ∈ X.
The semigroup is called immediately differentiable if t0 can be chosen as
t0 = 0.

In analogy to the Hille–Yosida Theorem it is possible to characterize
eventual/immediate differentiability by certain estimates on the resolvent
of the generator (see [EN00, Sect. II.4.b] for precise statements). More
important for both theoretical and practical purposes is the following class
of semigroups where strong continuity becomes uniform after some time.

5.2 Definition. A strongly continuous semigroup
(
T (t)
)
t≥0 is called even-

tually norm-continuous if there exists t0 ≥ 0 such that the function

t �→ T (t)

is norm-continuous from (t0,∞) into L(X). The semigroup is called imme-
diately norm-continuous if t0 can be chosen to be t0 = 0.
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A Hille–Yosida type characterization of these semigroups is still open.
However, immediately norm-continuous semigroups on Hilbert spaces can
be characterized via a growth condition on the resolvent of the generator;
see [EN00, Thm. II.4.20]. As a necessary condition in Banach spaces we
show that the spectrum of their generators is bounded along imaginary
lines in the complex plane.

5.3 Theorem. Let
(
A, D(A)

)
be the generator of an eventually norm-

continuous semigroup
(
T (t)
)
t≥0. Then, for every b ∈ R, the set{

λ ∈ σ(A) : Re λ ≥ b
}

is bounded.

Proof. Fix a ∈ R larger than the growth bound ω0 of
(
T (t)
)
t≥0. If we

show that for every ε > 0, there exist n ∈ N and r0 ≥ 0 such that

‖R(a + ir, A)n‖1/n < ε for all r ∈ R with |r| ≥ r0,

then the assertion follows from the inequality

dist
(
a + ir, σ(A)

)
=

1
r
(
R(a + ir, A)

)
≥ ‖R(a + ir, A)n‖−1/n >

1
ε

(see Corollary V.1.14).
First, we obtain from the integral representation of the resolvent (see

Corollary 1.11) that

R(λ, A)n+1x =
1
n!

∫ ∞

0
e−λttnT (t)x dt

for all x ∈ X, n ∈ N, and Reλ > ω0 . Now choose t1 > 0 such that t �→ T (t)
is norm-continuous on [t1,∞) and choose w ∈ (ω0, a), M ≥ 1 such that
‖T (t)‖ ≤ Mewt for t ≥ 0. Finally, set N := M · ∫ t1

0 e−atewt dt and take
ε > 0. Then there exist n ∈ N and t2 > t1 such that

N · tn1
n!

<
εn+1

3
and

1
n!

∫ ∞

t2

tne−at ‖T (t)‖ dt <
εn+1

3
.

Now apply the Riemann–Lebesgue lemma (see Theorem A.20) to the norm-
continuous function t �→ tne−atT (t) on [t1, t2] to obtain r0 ≥ 0 such that∥∥∥∥ 1

n!

∫ t2

t1

tne−irte−atT (t) dt

∥∥∥∥ <
εn+1

3
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whenever |r| ≥ r0. The combination of these three estimates yields

∥∥R(a + ir, A)n+1x
∥∥ =

1
n!

∥∥∥∥∫ ∞

0
e−(a+ir)ttnT (t)x dt

∥∥∥∥
<

1
n!

∫ t1

0
e−attn ‖T (t)x‖ dt +

1
n!

∥∥∥∥∫ t2

t1

tne−irte−atT (t)x dt

∥∥∥∥
+

1
n!

∫ ∞

t2

e−attn ‖T (t)x‖ dt

<

(
1
n!

tn1

∫ t1

0
e−atMewt dt +

2
3

εn+1
)
· ‖x‖

=
(

1
n!

tn1N +
2
3

εn+1
)
· ‖x‖ < εn+1 · ‖x‖

for all x ∈ X. �

By analyzing the previous proof, one sees that in the case where
(
T (t)
)
t≥0

is immediately norm-continuous, one can choose t1 = 0 and n = 0. This
observation yields the following result.

5.4 Corollary. If
(
A, D(A)

)
is the generator of an immediately norm-

continuous semigroup
(
T (t)
)
t≥0, then

(5.1) lim
r→±∞ ‖R(a + ir, A)‖ = 0

for all a > ω0.

Up to now we have classified the semigroups according to smoothness (or
regularity) properties of the map t �→ T (t). Next, we introduce a property
of the semigroup based on the “regularity” of a single operator. We prepare
for the definition with the following lemma.

5.5 Lemma. Let
(
T (t)
)
t≥0 be a strongly continuous semigroup on a Ba-

nach space X. If T (t0) is compact for some t0 > 0, then T (t) is compact
for all t ≥ t0, and the map t �→ T (t) is norm-continuous on [t0,∞).

Proof. The first assertion follows immediately from the semigroup law
(FE). By Lemma I.1.2, we know that limh→0 T (s + h)x = T (s)x for all
s ≥ 0 uniformly for x in any compact subset K of X. Let U be the unit
ball in X. Because T (t0) is compact, we have that K := T (t0)U is compact,
and hence

lim
s→t

(
T (t)x− T (s)x

)
= lim

s→t

(
T (t − t0) − T (s− t0)

)
T (t0)x = 0

for arbitrary t ≥ t0 and uniformly for x ∈ U . �
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5.6 Definition. A strongly continuous semigroup
(
T (t)
)
t≥0 is called im-

mediately compact if T (t) is compact for all t > 0 and eventually compact
if there exists t0 > 0 such that T (t0) is compact.

From Lemma 5.5 we obtain that an immediately (eventually) compact
semigroup is immediately (eventually) norm-continuous. In addition, one
might expect some relation between the compactness of the semigroup and
the compactness of the resolvent of its generator. Before introducing the
appropriate terminology, we observe that due to the resolvent equation, a
resolvent operator is compact for one λ ∈ ρ(A) if and only if it is compact
for all λ ∈ ρ(A).

5.7 Definition. A linear operator A with ρ(A) �= ∅ has compact resolvent
if its resolvent R(λ, A) is compact for one (and hence all) λ ∈ ρ(A).

Operators with compact resolvent on infinite-dimensional Banach spaces
are necessarily unbounded (see Exercise 5.13.(1)). For concrete operators,
the following characterization is quite useful.

5.8 Proposition. Let
(
A, D(A)

)
be an operator on X with ρ(A) �= ∅ and

take X1 :=
(
D(A), ‖ · ‖A

)
(see Section 2.c and Exercise 2.22.(1)). Then the

following assertions are equivalent.
(a) The operator A has compact resolvent.
(b) The canonical injection i : X1 ↪→ X is compact.

Proof. Observe that for every λ ∈ ρ(A), the graph norm ‖·‖A is equivalent
to the norm

|||x|||λ := ‖(λ −A)x‖
(see the proof of Proposition 2.15.(i)). Therefore, the operator

R(λ, A) : X → X1

is an isomorphism with continuous inverse λ−A. The assertion then follows
from the following factorization.

X
R(λ,A) � X

R(λ,A)

�

�
λ−A

�������

i

X1 �

This proposition allows us to prove that differential operators on certain
function spaces have compact resolvent. It suffices to apply appropriate
Sobolev embedding theorems; see, e.g., [RR93, Sect. 6.4]. Here is a very
simple example.
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5.9 Example. Let Ω be a bounded domain in Rn and take X = C0(Ω). As-
sume that

(
A, D(A)

)
is an operator on X such that D(A) is a continuously

embedded subspace of the Banach space

C1
0(Ω) :=

{
f ∈ C0(Ω) : f is differentiable and f ′ ∈ C0(Ω)

}
.

By the Arzelà–Ascoli theorem, the injection i : C1
0(Ω) ↪→ C0(Ω) is compact,

whence A has compact resolvent whenever ρ(A) �= ∅. See Exercise 5.13.(4)
for the analogous Lp-result.

The relation between compactness of the semigroup and the resolvent is
not simple. We show first what is not true.

5.10 Examples. (i) Consider the translation semigroup on the Banach
space L1([0, 1] × [0, 1]) defined by

T (t)f(r, s) :=
{

f(r + t, s) for r + t ≤ 1;
0 for r + t > 1.

This semigroup is nilpotent, hence eventually compact. However, its gen-
erator does not have compact resolvent. (See Exercise 5.13.(3).)
(ii) The generator of the periodic translation group (or rotation group, see
Paragraph I.3.18) has compact resolvent. The group, however, does not
have any of the smoothness properties defined above.

5.11 Lemma. Let
(
T (t)
)
t≥0 be a strongly continuous semigroup with gen-

erator A. Moreover, assume that the map t �→ T (t) is norm-continuous at
some point t0 ≥ 0 and that R(λ, A)T (t0) is compact for some (and hence
all) λ ∈ ρ(A). Then the operators T (t) are compact for all t ≥ t0.

Proof. As usual, we may assume that 0 ∈ ρ(A). For the operators V (t)
defined by V (t)x :=

∫ t

0 T (s)x ds for x ∈ X and t ≥ 0 one has

hence
AV (t)x = T (t)x− x for all x ∈ X;

V (t) = R(0, A)
(
I − T (t)

)
.

The norm continuity for t ≥ t0 implies

T (t0) = lim
h↓0

1
h

(
V (t0 + h) − V (t0)

)
in operator norm. Because it follows from the assumptions that V (t0 +h)−
V (t0) is compact for all h > 0, this implies that T (t0) as the norm limit of
compact operators is compact as well. �
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5.12 Theorem. For a strongly continuous semigroup
(
T (t)
)
t≥0 the follow-

ing properties are equivalent.

(a)
(
T (t)
)
t≥0 is immediately compact.

(b)
(
T (t)
)
t≥0 is immediately norm-continuous, and its generator has

compact resolvent.

Proof. If
(
T (t)
)
t≥0 is immediately compact, it is immediately norm-

continuous by Lemma 5.5. Therefore, the integral representation for the
resolvent in Theorem 1.10.(i) exists in the norm topology; hence R(λ, A) is
compact. The converse implication follows from Lemma 5.11. �

We close these considerations by visualizing the implications between the
various classes of semigroups in the following diagram.

(5.2)

analytic =⇒ immediately differentiable =⇒ eventually differentiable

⇓ ⇓
immediately norm-continuous =⇒ eventually norm-continuous

⇑ ⇑
immediately compact =⇒ eventually compact

It can be shown (using multiplication semigroups and nilpotent semigroups)
that all these classes are different; see [EN00, Sect. II.4.e].

5.13 Exercises. (1) Show that a bounded operator A ∈ L(X) has compact
resolvent if and only if X is finite-dimensional.

(2) Let
(
A, D(A)

)
be an operator on a Banach space X having compact

resolvent and let B ∈ L(X) be such that ρ(A + B) �= ∅. Then A + B has
compact resolvent. (Hint: Use the formula U−1 − V −1 = U−1(V − U)V −1

valid for each pair of invertible operators having the same domain.)

(3) Show that the generator of the semigroup in Example 5.10.(i) does not
have compact resolvent. (Hint: Compute the resolvent, using the integral
representation (1.14), for functions of the form f(r, s) := h(r)g(s) for 0 ≤
r, s ≤ 1 and h, g ∈ L1[0, 1].)

(4) Let X := Lp(Ω) for 1 ≤ p < ∞ and a bounded domain Ω ⊂ Rn

with smooth boundary ∂Ω. If
(
A, D(A)

)
is an operator on X satisfying

ρ(A) �= ∅ and D(A) ⊂ W1,p(Ω), then A has compact resolvent. (Hint: Use
Corollary A.11 and Sobolev’s embedding theorem.)
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6. Well-Posedness for Evolution Equations

Only now we turn our attention to what could have been, in a certain
perspective, our starting point: We want to solve a differential equation.
More precisely, we look at abstract (i.e., Banach-space-valued) linear initial
value problems of the form

(ACP)

{
u̇(t) = Au(t) for t ≥ 0,

u(0) = x,

where the independent variable t represents time, u(·) is a function with
values in a Banach space X, A : D(A) ⊂ X → X a linear operator, and
x ∈ X the initial value.

We start by introducing the necessary terminology.

6.1 Definition. (i) The initial value problem (ACP) is called the abstract
Cauchy problem associated with

(
A, D(A)

)
and the initial value x.

(ii) A function u : R+ → X is called a (classical) solution of (ACP) if u is
continuously differentiable, u(t) ∈ D(A) for all t ≥ 0, and (ACP) holds.

If the operator A is the generator of a strongly continuous semigroup,
it follows from Lemma 1.3.(ii) that the semigroup yields solutions of the
associated abstract Cauchy problem.

6.2 Proposition. Let
(
A, D(A)

)
be the generator of the strongly contin-

uous semigroup
(
T (t)
)
t≥0. Then, for every x ∈ D(A), the function

u : t �→ u(t) := T (t)x

is the unique classical solution of (ACP).

The important point is that (classical) solutions exist if (and, by the def-
inition of D(A), only if) the initial value x belongs to D(A). However, one
might substitute the differential equation by an integral equation, thereby
obtaining a more general concept of “solution.”

6.3 Definition. A continuous function u : R+ → X is called a mild solution
of (ACP) if

∫ t

0 u(s) ds ∈ D(A) for all t ≥ 0 and

u(t) = A

∫ t

0
u(s) ds + x.

It follows from our previous (and elementary) results (use Lemma 1.3.(iv))
that for A being the generator of a strongly continuous semigroup, mild
solutions exist for every initial value x ∈ X and are again given by the
semigroup.
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6.4 Proposition. Let
(
A, D(A)

)
be the generator of the strongly contin-

uous semigroup
(
T (t)
)
t≥0. Then, for every x ∈ X, the orbit map

u : t �→ u(t) := T (t)x

is the unique mild solution of the associated abstract Cauchy problem
(ACP).

Proof. We only have to show the uniqueness of the zero solution for the
initial value x = 0. To this end, assume u to be a mild solution of (ACP)
for x = 0 and take t > 0. Then, for each s ∈ (0, t), we obtain

d
ds

(
T (t − s)

∫ s

0
u(r) dr

)
= T (t − s)u(s)− T (t − s)A

∫ s

0
u(r) dr = 0.

Integration of this equality from 0 to t gives∫ t

0
u(r) dr = 0, hence u(t) = u(0) = 0

as claimed. �

The above two propositions are just reformulations of results on strongly
continuous semigroups. They might suggest that the converse holds. The
following example shows that this is not true.

6.5 Example. Let
(
B, D(B)

)
be a closed and unbounded operator on X.

On the product space X := X×X, consider the operator
(
A, D(A)

)
written

in matrix form as

A :=
(

0 B
0 0

)
with domain D(A) := X ×D(B).

Then t �→ u(t) :=
(

x+tBy
y

)
is the unique solution of (ACP) associated with

A for every
(

x
y

) ∈ D(A). However, the operator A does not generate a
strongly continuous semigroup, because for every λ ∈ C, one has

(λ −A)D(A) =
{(

λx−By
λy

)
: x ∈ X, y ∈ D(B)

}
⊂ X ×D(B) �= X,

and hence σ(A) = C.

We now show which properties of the solutions u(·, x) or of the operator(
A, D(A)

)
have to be added in order to characterize semigroup genera-

tors. To this end we first consider the following existence and uniqueness
condition.

(EU)
For every x ∈ D(A), there exists a unique solution u(·, x) of (ACP).

To this condition we add the nonemptiness of the resolvent set ρ(A) in (b)
or some continuous dependence of the solutions upon the initial values in
(c) below.
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6.6 Theorem. Let A : D(A) ⊂ X → X be a closed operator. Then for the
associated abstract Cauchy problem

(ACP)

{
u̇(t) = Au(t) for t ≥ 0,

u(0) = x

the following properties are equivalent.
(a) A generates a strongly continuous semigroup.
(b) A satisfies (EU) and ρ(A) �= ∅.
(c) A satisfies (EU), has dense domain, and for every sequence (xn)n∈N ⊂

D(A) satisfying limn→∞ xn = 0, one has limn→∞ u(t, xn) = 0 uni-
formly in compact intervals [0, t0].

Proof. From the basic properties of semigroup generators and, in partic-
ular, Proposition 6.2, it follows that (a) implies (b) and (c).

For (b) ⇒ (c) we first show that for all x ∈ X there exists a unique mild
solution of (ACP). By assumption (EU), for each y := R(λ, A)x ∈ D(A),
λ ∈ ρ(A), there is a classical solution u(·, y) with initial value y. Then it is
easy to see that v(t) := (λ−A)u(t, y) defines a mild solution for the initial
value x = (λ−A)y. In order to prove uniqueness let u(·) be a mild solution
to the initial value 0. Then v(t) :=

∫ t

0 u(s) ds is the classical solution for
the initial value 0, hence v = 0 and consequently u = 0 as well. Because for
every x ∈ X we have, by definition of mild solutions,

∫ t

0 u(s, x) ds ∈ D(A),
we obtain from

1
t

∫ t

0
u(s, x) ds → u(0, x) = x as t ↓ 0

that D(A) is dense. The uniqueness of the mild solutions implies linearity
of u(t, x) in x. In order to show the continuous dependence upon the initial
data, we consider for fixed t0 > 0 the linear map

Φ : X → C([0, t0], X), x �→ u(·, x)
and show that Φ is closed. In fact, if xn → x and Φ(xn) → y ∈ C([0, t0], X)
we obtain for t ∈ [0, t0],

D(A) �
∫ t

0
u(s, xn) ds →

∫ t

0
y(s) ds

and

A

∫ t

0
u(s, xn) ds = u(t, xn) − xn → y(t) − x.

Hence, by the closedness of A we conclude that
∫ t

0 y(s) ds ∈ D(A) and
A
∫ t

0 y(s) ds = y(t) − x. Consequently y(·) is the unique mild solution of
(ACP) with initial value x if for t > t0 we define y(t) := u(t − t0, y(t0)).
This shows y(t) = u(t, x) for t ∈ [0, t0] and Φ(x) = y. By the closed graph
theorem Φ is continuous; hence for xn → 0 we obtain u(t, xn) → 0 in
C([0, t0], X), i.e., uniformly for t in the compact interval [0, t0]. This proves
(c).



Section 6. Well-Posedness for Evolution Equations 113

(c) ⇒ (a). The assumption implies the existence of bounded operators
T (t) ∈ L(X) defined by

T (t)x := u(t, x)

for each x ∈ D(A). Moreover, we claim that sup0≤t≤1 ‖T (t)‖ < ∞. By
contradiction, assume that there exists a sequence (tn)n∈N ⊂ [0, 1] such
that ‖T (tn)‖ → ∞ as n → ∞. Then we can choose xn ∈ D(A) such
that limn→∞ xn = 0 and ‖T (tn)xn‖ ≥ 1. Because u(tn, xn) = T (tn)xn,
this contradicts the assumption in (c), and therefore ‖T (t)‖ is uniformly
bounded for t ∈ [0, 1]. Now, t �→ T (t)x is continuous for each x in the dense
domain D(A), and we obtain continuity for each x ∈ X by Lemma I.1.2.

Finally, the uniqueness of the solutions implies T (t + s)x = T (t)T (s)x
for each x ∈ D(A) and all t, s ≥ 0. Thus

(
T (t)
)
t≥0 is a strongly contin-

uous semigroup on X. Its generator
(
B, D(B)

)
certainly satisfies A ⊂ B.

Moreover, the semigroup
(
T (t)
)
t≥0 leaves D(A) invariant, which, by Propo-

sition 1.7, is a core of B. Because A is closed, we obtain A = B. �

Observe that (a) and (b) in the previous theorem imply that D(A) is
dense, whereas this property cannot be omitted in (c). Take the restriction
Ã of a closed operator A to the domain D(Ã) := {0}.

Intuitively, property (c) expresses what we expect for a “well-posed”
problem and its solutions:

existence + uniqueness + continuous dependence on the data.

Therefore we introduce a name for this property.

6.7 Definition. The abstract Cauchy problem

(ACP)

{
u̇(t) = Au(t) for t ≥ 0,

u(0) = x

associated with a closed operator A : D(A) ⊂ X → X is called well-posed
if condition (c) in Theorem 6.6 holds.

With this terminology, we can rephrase Theorem 6.6.

6.8 Corollary. For a closed operator A : D(A) ⊂ X → X, the associated
abstract Cauchy problem (ACP) is well-posed if and only if A generates a
strongly continuous semigroup on X.

Once we agree on the well-posedness concept from Definition 6.7, strongly
continuous semigroups emerge as the perfect tool for the study of abstract
Cauchy problems (ACP). In addition, this explains why in this manuscript
we
• Study semigroups systematically and only then
• Solve Cauchy problems.
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However, we have to point out that our definition of “well-posedness”
is not the only possible one. In particular, in many situations arising from
physically perfectly “well-posed” problems one does not obtain a semigroup
on a given Banach space. We refer to [ABHN01], [Are87], [deL94], and
[Neu88] for weaker concepts of “well-posedness” and show here how to
produce, for the same operator by simply varying the underlying Banach
space, a series of different “well-posedness” properties.

6.9 Example. Consider the left translation group
(
T (t)
)
t∈R on L1(R) with

generator Af := f ′ and D(A) := W1,1(R). Decompose this space as

L1(R) = L1(R−) ⊕ L1(R+),

and take any translation-invariant Banach space Y continuously embedded
in L1(R−). Then the part A| of A in X := Y ⊕L1(R+) has domain D(A|) :=
{f ∈ W1,1(R) : f ′

|R− ∈ Y }. The abstract Cauchy problem

u̇(t) = A|u(t) for t ≥ 0,

u(0) = f ∈ D(A|) ⊂ X

formally has the solution t �→ u(t) := T (t)f with
(
T (t)f

)
(s) = f(s + t),

s ∈ R. This is a classical solution if and only if u(t) ∈ D(A|) for all t ≥ 0. As
concrete examples, we suggest taking Y := Wn,1(R−), or even Y := {0},
and leave the details as Exercise 6.10.

6.10 Exercise. On X := W1,1(R−)⊕L1(R+), consider the operator Af :=
f ′ with D(A) := {(f, g) ∈ W2,1(R−) ⊕ W1,1(R+) : f(0) = g(0)}.

(i) Which conditions of Generation Theorem 3.8 are fulfilled by the oper-
ator
(
A, D(A)

)
? (Hint: Use (2.1) in Section 2.b to represent R(λ, A).)

(ii) Show that the abstract Cauchy problem associated with
(
A, D(A)

)
has a classical solution only for initial values (f, g) ∈ D(A) such that
g ∈ W2,1(R+).

(iii) Replace W2,1(R−) by other translation-invariant Banach function
spaces on R− and find the initial values for which classical solutions
exist.



Chapter III

Perturbation of Semigroups

The verification of the conditions in the various generation theorems from
Sections II.3–4 is not an easy task and for many important operators can-
not be performed in a direct way. Therefore, one tries to build up the given
operator (and its semigroup) from simpler ones. Perturbation and approx-
imation are the standard methods for this approach and are discussed in
this and the next chapter.

1. Bounded Perturbations

In many concrete situations, the evolution equation (or the associated lin-
ear operator) is given as a (formal) sum of several terms having differ-
ent physical meaning and different mathematical properties. Although the
mathematical analysis may be easy for each single term, it is not at all clear
what happens after the formation of sums. In the context of generators of
semigroups we take this as our point of departure.

1.1 Problem. Let A : D(A) ⊆ X → X be the generator of a strongly con-
tinuous semigroup

(
T (t)
)
t≥0 and consider a second operator B : D(B) ⊆

X → X. Find conditions such that the sum A + B generates a strongly
continuous semigroup

(
S(t)
)
t≥0.

We say that the generator A is perturbed by the operator B or that B
is a perturbation of A. However, before answering the above problem, we

115
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have to realize that—at this stage—the sum A + B is defined as

only for
(A + B)x := Ax + Bx

x ∈ D(A + B) := D(A) ∩D(B),

a subspace that might be trivial in general. To emphasize this and other
difficulties caused by the addition of unbounded operators, we first discuss
some examples.

1.2 Examples. (i) Let
(
A, D(A)

)
be an unbounded generator of a strongly

continuous semigroup. If we take B := −A, then the sum A+B is the zero
operator, defined on the dense subspace D(A), hence not closed.

If we take B := −2A, then the sum is

A + B = −A with domain D(A + B) = D(A),

which is a generator only if A generates a strongly continuous group (see
Paragraph II.3.11).
(ii) Let A : D(A) ⊆ X → X be an unbounded generator of a strongly con-
tinuous semigroup and take an isomorphism S ∈ L(X) such that D(A) ∩
S
(
D(A)

)
= {0}. Then B := SAS−1 is a generator as well (see Para-

graph II.2.1), but A + B is defined only on D(A + B) = D(A) ∩ D(B) =
D(A) ∩ S

(
D(A)

)
= {0}.

A concrete example for this situation is given on X := C0(R+) by

and
Af := f ′ with its canonical domain D(A) := C1

0(R+)

Sf := q · f

for some continuous, positive function q such that q and q−1 are bounded
and nowhere differentiable. Defining the operator B as

Bf := q · (q−1 · f)′ on D(B) :=
{
f ∈ X : q−1 · f ∈ D(A)

}
,

we obtain that the sum A + B is defined only on {0}.
The above examples show that the addition of unbounded operators is a

delicate operation and should be studied carefully. We start with a situation
in which we avoid the pitfall due to the differing domains of the operators
involved. More precisely, we assume one of the two operators to be bounded.

1.3 Bounded Perturbation Theorem. Let
(
A, D(A)

)
be the genera-

tor of a strongly continuous semigroup
(
T (t)
)
t≥0 on a Banach space X

satisfying
‖T (t)‖ ≤ Mewt for all t ≥ 0
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and some w ∈ R, M ≥ 1. If B ∈ L(X), then

C := A + B with D(C) := D(A)

generates a strongly continuous semigroup
(
S(t)
)
t≥0 satisfying

‖S(t)‖ ≤ Me(w+M‖B‖)t for all t ≥ 0.

Proof. In the first and essential step, we assume w = 0 and M = 1. Then
λ ∈ ρ(A) for all λ > 0, and λ − C can be decomposed as

(1.1) λ − C = λ −A −B =
(
I −BR(λ, A)

)
(λ −A).

Because λ−A is bijective, we conclude that λ−C is bijective; i.e., λ ∈ ρ(C),
if and only if

I −BR(λ, A)

is invertible in L(X). If this is the case, we obtain

(1.2) R(λ, C) = R(λ, A)[I −BR(λ, A)]−1.

Now choose Re λ > ‖B‖. Then ‖BR(λ, A)‖ ≤ ‖B‖/Re λ < 1 by Generation
Theorem II.3.5.(c), and hence λ ∈ ρ(C) with

(1.3) R(λ, C) = R(λ, A)
∞∑

n=0

(BR(λ, A))n.

We now estimate

‖R(λ, C)‖ ≤ 1
Re λ

· 1
1 − ‖B‖/Re λ

=
1

Re λ − ‖B‖
for all Reλ > ‖B‖ and obtain from Corollary II.3.6 that C generates a
strongly continuous semigroup

(
S(t)
)
t≥0 satisfying

‖S(t)‖ ≤ e‖B‖t for t ≥ 0.

For general w ∈ R and M ≥ 1, we first do a rescaling (see Paragraph II.2.2)
to obtain w = 0. As in Lemma II.3.10, we then introduce a new norm

|||x||| := sup
t≥0

‖T (t)x‖

on X. This norm satisfies

‖x‖ ≤ |||x||| ≤ M ‖x‖,
makes

(
T (t)
)
t≥0 a contraction semigroup, and yields

|||Bx||| ≤ M ‖B‖ · ‖x‖ ≤ M ‖B‖ · |||x|||
for all x ∈ X. By part one of this proof, the sum C = A + B generates a
strongly continuous semigroup

(
S(t)
)
t≥0 satisfying the estimate

|||S(t)||| ≤ e|||B|||t ≤ eM‖B‖t.

Hence
‖S(t)x‖ ≤ |||S(t)x||| ≤ eM‖B‖t |||x||| ≤ MeM‖B‖t ‖x‖

for all t ≥ 0, which is the assertion for w = 0. �
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The identities (1.1) and (1.3) are not only the basis of this proof, but
are also the key to many more perturbation results. Here, we apply them
to extend the above theorem to certain unbounded perturbations. For this
purpose we use the terminology of Sobolev towers from Section II.2.c.

For sufficiently large λ, the generator A of a strongly continuous semi-
group, and an operator B ∈ L(X), the operators

(
I −BR(λ, A)

)
and

(
I −BR(λ, A)

)−1 =
∞∑

n=0

(
BR(λ, A)

)
n

are isomorphisms of the Banach space X. Therefore, for large λ, the 1-
norms with respect to λ −A and λ −A −B, i.e.,

and
‖x‖A

1 := ‖(λ −A)x‖
‖x‖A+B

1 := ‖(λ −A −B)x‖ =
∥∥(I −BR(λ, A)

)
(λ −A)x

∥∥ ,

are equivalent on X1 := D(A) = D(A + B).
Similarly, the corresponding (−1)-norms

and
‖x‖A

−1 := ‖R(λ, A)x‖
‖x‖A+B

−1 := ‖R(λ, A + B)x‖

are equivalent on X (use the identity

(1.4) R(λ, A) = [I + R(λ, A + B)B]−1R(λ, A + B)

and (1.2)), and hence the Sobolev spaces XA
−1 for A and XA+B

−1 for A + B
from Definition II.2.17 coincide.

Because we know from Theorem 1.3 that A+B is a generator, we obtain
the following conclusion.

1.4 Corollary. Let
(
A, D(A)

)
be the generator of a strongly continuous

semigroup on a Banach space X0 and take B ∈ L(X0). Then the operator

A + B with domain D(A + B) := D(A)

is a generator, and the Sobolev spaces

XA
i and XA+B

i

corresponding to A and A + B, respectively, coincide for i = −1, 0, 1.

We show in Exercise 1.13.(5) that this result is optimal in the sense that
in general, only these three “floors” of the corresponding Sobolev towers
coincide. Here, the above corollary immediately yields a first perturbation
result for operators that are not bounded on the given Banach space.
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1.5 Corollary. Let
(
A, D(A)

)
be the generator of a strongly continuous

semigroup on the Banach space X0. If B is a bounded operator on XA
1 :=(

D(A), ‖ · ‖1
)
, then A + B with domain D(A + B) = D(A) generates a

strongly continuous semigroup on X0.

Proof. Consider the restriction A1 of A as a generator on XA
1 . Then A1+B

generates a strongly continuous semigroup on XA
1 by Theorem 1.3. This

perturbed semigroup can be extended to its extrapolation space (XA
1 )A1+B

−1 ,
which by Corollary 1.4 coincides with the extrapolation space (XA

1 )A1
−1.

However, this is the original Banach space X0. The generator of the ex-
tended semigroup on X0 is the continuous extension of A1 + B, hence is
A + B. �
1.6 Example. Take Af := f ′ on X := C0(R) with domain C1

0(R). For
some h ∈ C1

0(R) define the operator B by

Bf := f ′(0) · h, f ∈ C1
0(R).

Then B is unbounded on X but bounded on D(A) = C1
0(R), and hence

A + B is a generator on X.

Returning to Theorem 1.3, we recall that we have the series representa-
tion (1.3) for the resolvent R(λ, A + B) of the perturbed operator A + B,
whereas for the new semigroup

(
S(t)
)
t≥0 we could prove only its existence.

In order to prepare for a representation formula for this new semigroup, we
show first that it has to satisfy an integral equation.

1.7 Corollary. Consider two strongly continuous semigroups
(
T (t)
)
t≥0

with generator A and
(
S(t)
)
t≥0 with generator C on the Banach space X

and assume that
C = A + B

for some bounded operator B ∈ L(X). Then

(IE) S(t)x = T (t)x +
∫ t

0
T (t − s)BS(s)x ds

holds for every t ≥ 0 and x ∈ X.

Proof. Take x ∈ D(A) and consider the functions

[0, t] � s �→ ξx(s) := T (t − s)S(s)x ∈ X.

Because D(A) = D(C) is invariant under both semigroups, it follows that
ξx(·) is continuously differentiable (use Lemma A.19) with derivative

d
dsξx(s) = T (t − s)CS(s)x− T (t − s)AS(s)x = T (t − s)BS(s)x.

This implies

S(t)x− T (t)x = ξx(t) − ξx(0) =
∫ t

0
ξ′
x(s) ds =

∫ t

0
T (t − s)BS(s)x ds.

Finally, the density of D(A) and the boundedness of the operators involved
yield that this integral equation holds for all x ∈ X. �
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If we replace the above functions ξx by

ηx(s) := S(s)T (t − s)x

and use the same arguments, we obtain the analogous integral equation

(IE∗) S(t)x = T (t)x +
∫ t

0
S(s)BT (t − s)x ds

for x ∈ X and t ≥ 0.
Both equations (IE) and (IE∗) are frequently called the variation of pa-

rameter formula for the perturbed semigroup.
Instead of solving the integral equation (IE) by the usual fixed point

method, we use an abstract and seemingly more complicated approach.
However, it has the advantage of working equally well for important un-
bounded perturbations. For these more general perturbations we refer to
[EN00, Sect. III.3].

In order to explain our method we rewrite (IE) in operator form and
introduce the operator-valued function space

Xt0 := C
(
[0, t0],Ls(X)

)
of all continuous functions from [0, t0] into Ls(X); i.e., F ∈ Xt0 if and only
if F (t) ∈ L(X) and t �→ F (t)x is continuous for each x ∈ X. This space
becomes a Banach space for the norm

‖F‖∞ := sup
s∈[0,t0]

‖F (s)‖, F ∈ Xt0

(see Proposition A.4). We now define a “Volterra-type” operator on it.

1.8 Definition. Let
(
T (t)
)
t≥0 be a strongly continuous semigroup on X

and take B ∈ L(X). For any t0 > 0, we call the operator defined by

V F (t)x :=
∫ t

0
T (t − s)BF (s)x ds

for x ∈ X, F ∈ C
(
[0, t0],Ls(X)

)
and 0 ≤ t ≤ t0 the associated abstract

Volterra operator .

The following properties of V should be no surprise to anyone famil-
iar with Volterra operators in the scalar-valued situation. In fact, the
proof is just a repetition of the estimates there and is omitted (see Ex-
ercise 1.13.(1)).
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1.9 Lemma. The abstract Volterra operator V associated with the strongly
continuous semigroup

(
T (t)
)
t≥0 and the bounded operator B ∈ L(X) is a

bounded operator in C
(
[0, t0],Ls(X)

)
and satisfies

(1.5) ‖V n‖ ≤
(
M ‖B‖ t0

)
n

n!

for all n ∈ N and with M := sups∈[0,t0] ‖T (s)‖. In particular, for its spectral
radius we have

(1.6) r(V ) = 0.

From this last assertion it follows that the resolvent of V at λ = 1 exists
and is given by the Neumann series; i.e.,

R(1, V ) = (I − V )−1 =
∞∑

n=0

V n.

We now turn back to our integral equation (IE), which becomes, in terms
of our Volterra operator, the equation

T (·) = (I − V )S(·)
for the functions T (·), S(·) ∈ C

(
[0, t0],Ls(X)

)
. Therefore,

(1.7) S(·) = R(1, V )T (·) =
∞∑

n=0

V nT (·),

where the series converges in the Banach space C
(
[0, t0],Ls(X)

)
. Rewriting

(1.7) for each t ≥ 0, we obtain the following representation for the semi-
group

(
S(t)
)
t≥0. This Dyson–Phillips series was found by F.J. Dyson in his

work [Dys49] on quantum electrodynamics and then by R.S. Phillips in his
first systematic treatment [Phi53] of perturbation theory for semigroups.

1.10 Theorem. The strongly continuous semigroup
(
S(t)
)
t≥0 generated

by C := A + B, where A is the generator of
(
T (t)
)
t≥0 and B ∈ L(X), can

be obtained as

(1.8) S(t) =
∞∑

n=0

Sn(t),

where S0(t) := T (t) and

(1.9) Sn+1(t) := V Sn(t) =
∫ t

0
T (t − s)BSn(s) ds.

Here, the series (1.8) converges in the operator norm on L(X) and, be-
cause we may choose t0 in Lemma 1.9 arbitrarily large, uniformly on com-
pact intervals of R+. In contrast, the operators Sn+1(t) in (1.9) are defined
by an integral defined in the strong operator topology.



122 Chapter III. Perturbation of Semigroups

The Dyson–Phillips series and the integral equation (IE) from Corol-
lary 1.7 are very useful when we want to compare qualitative properties of
the two semigroups. Here is a simple example of such a comparison.

1.11 Corollary. Let
(
T (t)
)
t≥0 and

(
S(t)
)
t≥0 be two strongly continuous

semigroups, where the generator of
(
S(t)
)
t≥0 is a bounded perturbation of

the generator of
(
T (t)
)
t≥0. Then

(1.10) ‖T (t) − S(t)‖ ≤ tM

for t ∈ [0, 1] and some constant M .

Proof. From the integral equation (IE), we obtain

‖T (t)x− S(t)x‖ ≤
∫ t

0
‖T (t − s)BS(s)x‖ ds

≤ t sup
r∈[0,1]

‖T (r)‖ sup
s∈[0,1]

‖S(s)‖ · ‖B‖ · ‖x‖

for all x ∈ X and t ∈ [0, 1]. �

Conversely, one can show that an estimate such as (1.10) for the difference
of two semigroups implies a close relation between their generators; see
[EN00, Sect. III.3.b] for more details.

In the final result of this section we show that analyticity of a semigroup
is preserved under bounded perturbation.

1.12 Proposition. Let
(
T (t)
)
t≥0 be an analytic semigroup with generator

A on the Banach space X and take B ∈ L(X). Then also the semigroup(
S(t)
)
t≥0 generated by A + B is analytic.

Proof. The assertion is a consequence of Theorem II.4.6.(b) and the
Bounded Perturbation Theorem 1.3. �

1.13 Exercises.
(1) Prove Lemma 1.9. (Hint: Show that V is a linear operator on the
space C

(
[0, t0],Ls(X)

)
. Then use induction on n ∈ N to verify (1.5). Equa-

tion (1.6) then follows from the Hadamard formula r(V ) = limn→∞ ‖V n‖1/n

for the spectral radius.)
(2) Let

(
T (t)
)
t≥0 be a strongly continuous semigroup with generator A on

the Banach space X and
(
S(t)
)
t≥0 the semigroup with generator A + B

for B ∈ L(X).
(i) Show that instead of the integral equations (IE) and (IE∗) we can

write

and
S(t)x = T (t)x +

∫ t

0
T (s)BS(t − s)x ds

S(t)x = T (t)x +
∫ t

0
S(t − s)BT (s)x ds

for x ∈ X, t ≥ 0.
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(ii) Define a Volterra operator V ∗ based on the integral equation (IE∗)
and show that

S(t) =
∞∑

n=0

S∗
n(t),

where S∗
0 (t) := T (t) and

S∗
n+1(t)x := V ∗S∗

n(t)x =
∫ t

0
S∗

n(s)BT (t − s)x ds

for x ∈ X, t ≥ 0.
(3) Show that the variation of parameter formulas (IE) and (IE∗) also holds
for perturbations B ∈ L(X1) and x ∈ D(A).
(4) Take the Banach space X := C0(R) and a function q ∈ Cb(R), and
define

T (t)f(s) := e
∫ s

s−t
q(τ) dτ · f(s− t)

for s ∈ R, t ≥ 0, and f ∈ X.
(i) Show that

(
T (t)
)
t≥0 is a strongly continuous semigroup on X.

(ii) Compute its generator.
(iii) What happens if the function q is taken in L∞(R)?
(iv) Can one allow the function q to be unbounded such that

(
T (t)
)
t≥0

still becomes a strongly continuous semigroup on X?
(v) Assume that

u(t, s) := e
∫ t

s
q(τ) dτ

is uniformly bounded for s, t ∈ R. Show that the semigroup
(
T (t)
)
t≥0

is similar to the left translation semigroup on X. (Hint: Use the
multiplication operator Mu(·,0) as a similarity transformation.)

(5) Let
(
A, D(A)

)
be an unbounded generator on the Banach space X. On

the product space X := X ×X define

A :=
(

A 0
0 I

)
with domain D(A) := D(A) ×X

and the bounded operator B :=
( 0 I

0 0

)
.

(i) Show that

XA+B
2 = D

(
(A + B)2

)
=
{(

x
y

) ∈ D(A) ×X : Ax + y ∈ D(A)
}

,

hence is different from XA
2 = D(A2) ×X.

(ii) Prove a similar statement for the extrapolation spaces of order 2.
(Hint: Consider A :=

(
A 0
0 I

)
with domain D(A) := D(A) × X and

B :=
( 0 0

I 0

)
.)

This confirms the statement following Corollary 1.4.
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2. Perturbations of Contractive and Analytic Semigroups

As already shown in Example 1.2, addition of two unbounded operators is
a very delicate operation and can destroy many of the good properties the
single operators may have. This is, in part, due to the fact that the “naive”
domain

D(A + B) := D(A) ∩D(B)

for the sum A + B of the operators
(
A, D(A)

)
and
(
B, D(B)

)
can be too

small (see Example 1.2.(ii)). In order to avoid this pitfall, we assume in this
section that the perturbing operator B behaves well with respect to the
unperturbed operator A. More precisely, we assume the following property.

2.1 Definition. Let A : D(A) ⊂ X → X be a linear operator on the
Banach space X. An operator B : D(B) ⊂ X → X is called (relatively)
A-bounded if D(A) ⊆ D(B) and if there exist constants a, b ∈ R+ such that

(2.1) ‖Bx‖ ≤ a ‖Ax‖ + b ‖x‖
for all x ∈ D(A). The A-bound of B is

a0 := inf{a ≥ 0 : there exists b ∈ R+ such that (2.1) holds}.
Before applying this notion to the perturbation problem for generators

we discuss a concrete example.

2.2 Example. For an interval I ⊆ R we consider on X := Lp(I), 1 ≤ p ≤
∞, the operators

A := d2

dx2 , D(A) := W 2,p(I),

B := d
dx , D(B) := W 1,p(I).

Proposition. The operator B is A-bounded with A-bound a0 = 0.

Proof. We choose an arbitrary bounded interval J := (α, β) ⊂ I, and set
ε := β − α,

J1 := (α, α + ε/3), J2 := (α + ε/3, β − ε/3), J3 := (β − ε/3, β).

Then, for all f ∈ D(A) and s ∈ J1, t ∈ J3 there exists, by the mean value
theorem, a point x0 = x0(s, t) ∈ J such that

f ′(x0) =
f(t) − f(s)

t − s
.

Using this and t − s ≥ ε/3, we obtain

(2.2) |f ′(x)| =
∣∣∣∣f ′(x0) +

∫ x

x0

f ′′(y) dy

∣∣∣∣ ≤ 3
ε

(|f(s)|+ |f(t)|)+ ∫
J

|f ′′(y)| dy



Section 2. Perturbations of Contractive and Analytic Semigroups 125

for all x ∈ J , s ∈ J1, and t ∈ J3. If we denote by ‖ · ‖p,J the p-norm in
Lp(J) and integrate inequality (2.2) on both sides with respect to s ∈ J1
and t ∈ J3, we obtain

ε2

9
|f ′(x)| ≤

∫
J1

|f(s)| ds +
∫

J3

|f(t)| dt +
ε2

9

∫
J

|f ′′(y)| dy

≤ ‖f‖1,J +
ε2

9
‖f ′′‖1,J

≤ ε
1/q‖f‖p,J +

ε2+1/q

9
‖f ′′‖p,J ,

where we used Hölder’s inequality for 1/p + 1/q = 1. From this estimate, it
then follows that

ε2

9
‖f ′‖p,J ≤ ε

1/pε
1/q‖f‖p,J + ε

1/p
ε2+1/q

9
‖f ′′‖p,J

= ε ‖f‖p,J +
ε3

9
‖f ′′‖p,J ;

i.e.,

‖f ′‖p,J ≤ 9
ε
‖f‖p,J + ε‖f ′′‖p,J .

By splitting the interval I in finitely or countable many (depending on
whether I is bounded) disjoint subintervals In, n ∈ N ⊆ N, of length ε, we
obtain by Minkowski’s inequality

‖Bf‖p =
(∑

n∈N

‖f ′‖p
p,In

)1/p ≤ 9
ε

(∑
n∈N

‖f‖p
p,In

)1/p

+ ε
(∑

n∈N

‖f ′′‖p
p,In

)1/p

=
9
ε
‖f‖p + ε‖Af‖p.

Because we can choose ε > 0 arbitrarily small, the proof of our claim is
complete. �

Note that from (2.2) we immediately obtain an analogous result for the
second and first derivative on X := C0(I). More precisely, if I ⊆ R is an
arbitrary interval and

A := d2

dx2 , D(A) :=
{
f ∈ C2

0(I) : f ′, f ′′ ∈ C0(I)
}
,

B := d
dx , D(B) :=

{
f ∈ C1

0(I) : f ′ ∈ C0(I)
}
,

then B is A-bounded with A-bound a0 = 0.
We now return to the abstract situation and observe that for an A-

bounded operator B the sum A + B is defined on D(A + B) := D(A).
However, many desirable properties may get lost.

2.3 Examples. Take A : D(A) ⊂ X → X to be the generator of a
strongly continuous semigroup such that σ(A) = C− := {z ∈ C : Re z ≤ 0}
(e.g., take the generator of the translation semigroup on C0(R+); cf. Ex-
ample V.1.25.(i)).
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(i) If we take B := αA for α ∈ C, then A + B is not a generator for
α ∈ C \ (−1,∞), and is not even closed for α = −1.

(ii) Consider the new operator A :=
(

A 0
0 A

)
with D(A) := D(A) × D(A)

on the product space X := X ×X. If we take

B1 :=
(

0 εA
0 0

)
with D(B1) := X ×D(A),

then A+B1 is not a generator for every 0 �= ε ∈ C (use Exercise II.4.14.(7)).
For

B2 :=
(

0 −A
A −2A

)
with D(B2) := D(A) ×D(A),

the sum A + B2 is not closed, and its closure is not a generator.

We now proceed with a series of lemmas showing which assumptions on
the unperturbed operator A and the A-bounded perturbation B are needed
such that the sum A + B

• Is closed,
• Has nonempty resolvent set, and, finally,
• Becomes the generator of a strongly continuous semigroup.

2.4 Lemma. If
(
A, D(A)

)
is closed and

(
B, D(B)

)
is A-bounded with

A-bound a0 < 1, then (
A + B, D(A)

)
is a closed operator.

Proof. Because an operator is closed if and only if its domain is a Banach
space for the graph norm, it suffices to show that the graph norm ‖·‖A+B

of A + B is equivalent to the graph norm ‖·‖A of A. By assumption, there
exist constants 0 ≤ a < 1 and 0 < b such that

‖Bx‖ ≤ a ‖Ax‖ + b ‖x‖

for all x ∈ D(A). Therefore, one has

‖Ax‖ = ‖(A + B)x−Bx‖ ≤ ‖(A + B)x‖ + a ‖Ax‖ + b ‖x‖

and, consequently,

−b ‖x‖+(1−a) ‖Ax‖ ≤ ‖(A + B)x‖ ≤ ‖Ax‖+‖Bx‖ ≤ (1+a) ‖Ax‖+b ‖x‖.

This yields the estimate

b ‖x‖ + (1− a) ‖Ax‖ ≤ ‖(A + B)x‖ + 2b ‖x‖ ≤ (1 + a) ‖Ax‖ + 3b ‖x‖,

proving the equivalence of the two graph norms. �
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2.5 Lemma. Let
(
A, D(A)

)
be closed with ρ(A) �= ∅ and assume

(
B, D(B)

)
to be A-bounded with constants 0 ≤ a, b in estimate (2.1). If λ0 ∈ ρ(A)
and

(2.3) c := a ‖AR(λ0, A)‖ + b ‖R(λ0, A)‖ < 1,

then A + B is closed, and one has λ0 ∈ ρ(A + B) with

(2.4). ‖R(λ0, A + B)‖ ≤ (1− c)−1 ‖R(λ0, A)‖.
Proof. As in the proof of Theorem 1.3, we decompose λ0 −A−B as the
product

λ0 −A −B = [I −BR(λ0, A)](λ0 −A)

and observe that λ0−A is a bijection from D(A) onto X, whereas BR(λ0, A)
is bounded on X (use Exercise 2.15.(1.i)). If we show that ‖BR(λ0, A)‖ < 1,
we obtain that [I−BR(λ0, A)], hence λ0−A−B, is invertible with inverse

(2.5) R(λ0, A + B) = R(λ0, A)
∞∑

n=0

(
BR(λ0, A)

)
n

satisfying

‖R(λ0, A + B)‖ ≤ ‖R(λ0, A)‖ (1 − ‖BR(λ0, A)‖)−1.

To that purpose, take x ∈ X and use (2.1) to obtain

‖BR(λ0, A)x‖ ≤ a ‖AR(λ0, A)x‖ + b ‖R(λ0, A)x‖
≤ (a ‖AR(λ0, A)‖ + b ‖R(λ0, A)‖) · ‖x‖,

whence ‖BR(λ0, A)‖ ≤ c < 1 by assumption (2.3). �

In the last preparatory lemma, we consider operators satisfying a Hille–
Yosida type estimate for the resolvent (but not for all its powers as required
in Generation Theorem II.3.8). It is shown that this class of operators
remains invariant under A-bounded perturbations with small A-bound.

2.6 Lemma. Let
(
A, D(A)

)
be an operator whose resolvent exists for all

0 �= λ ∈ Σδ := {z ∈ C : | arg z| ≤ δ}
and satisfies

‖R(λ, A)‖ ≤ M

|λ|
for some constants δ ≥ 0 and M ≥ 1. Moreover, assume

(
B, D(B)

)
to be

A-bounded with A-bound
a0 <

1
M + 1

.

Then there exist constants r ≥ 0 and M̃ ≥ 1 such that

Σδ ∩ {z ∈ C : |z| > r} ⊂ ρ(A + B) and ‖R(λ, A + B)‖ ≤ M̃

|λ|
for all λ ∈ Σδ ∩ {z ∈ C : |z| > r}.
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Proof. Choose constants 0 ≤ a < 1/M+1 and 0 ≤ b satisfying the estimate
(2.1). From this we obtain

c : = a ‖AR(λ, A)‖ + b ‖R(λ, A)‖
= a ‖λR(λ, A) − I‖ + b ‖R(λ, A)‖
≤ a(M + 1) +

bM

|λ| < 1,

whenever |λ| > r := bM/(1−a(M+1)). Choosing M̃ := M/1−c the assertion
now follows from Lemma 2.5. �

If we now assume the constants to be M = M̃ = 1, we obtain a pertur-
bation theorem for generators of contraction semigroups. The surprising
fact is that the relative bound a0, which in Lemma 2.6 and for M = 1
should be smaller than 1/2, must only satisfy a0 < 1. The dissipativity (see
Definition II.3.13) of the operators involved makes this possible.

2.7 Theorem. Let
(
A, D(A)

)
be the generator of a contraction semigroup

and assume
(
B, D(B)

)
to be dissipative and A-bounded with A-bound

a0 < 1. Then
(
A + B, D(A)

)
generates a contraction semigroup.

Proof. We first assume that a0 < 1/2. From the criterion in Proposi-
tion II.3.23, it follows that the sum of a generator of a contraction semi-
group and a dissipative operator is again dissipative. Therefore, A+B is a
densely defined, dissipative operator, and by Theorem II.3.15 it suffices to
find λ0 > 0 such that λ0 ∈ ρ(A+B). This, however, follows from Lemma 2.6
by choosing δ = 0; i.e., Σδ = [0,∞).

In order to extend this to the case 0 ≤ a0 < 1, we define for 0 ≤ α ≤ 1
the operators

Cα := A + αB, D(Cα) := D(A).

Then, for x ∈ D(A), one has

‖Bx‖ ≤ a ‖Ax‖ + b ‖x‖ ≤ a(‖Cαx‖ + α ‖Bx‖) + b ‖x‖
≤ a ‖Cαx‖ + a ‖Bx‖ + b ‖x‖;

and hence

‖Bx‖ ≤ a

1 − a
‖Cαx‖ +

b

1 − a
‖x‖ for all 0 ≤ α ≤ 1.

Next, we choose k ∈ N such that

c :=
a

k(1 − a)
<

1
2
.
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Then the estimate ∥∥ 1
kBx
∥∥ ≤ c ‖Cαx‖ +

b

k(1 − a)
‖x‖

shows that for each 0 ≤ α ≤ 1 the operator 1/kB is Cα-bounded with
Cα-bound less than 1/2. As observed above, this implies that

Cα + 1
kB = A + (α + 1

k )B

generates a contraction semigroup whenever Cα = A + αB does. However,
A generates a contraction semigroup, hence A + 1/kB does. Repeating this
argument k times shows that (A + (k−1)/kB) + 1/kB = A + B generates a
contraction semigroup as claimed. �

In the limit case, i.e., if one has a = 1 in the estimate (2.1), the result
remains essentially true, provided that the adjoint of B is densely defined.

2.8 Corollary. Let
(
A, D(A)

)
be the generator of a contraction semigroup

on X and assume that
(
B, D(B)

)
is dissipative, A-bounded, and satisfies

(2.6) ‖Bx‖ ≤ ‖Ax‖ + b‖x‖
for all x ∈ D(A) and some constant b ≥ 0. If the adjoint B′ is densely
defined on X ′, then the closure of

(
A + B, D(A)

)
generates a contraction

semigroup on X.

Proof. The sum A+B remains dissipative and densely defined. Hence, by
the Lumer–Phillips Theorem II.3.15, it suffices to show that rg(I −A−B)
is dense in X.

Choose y′ ∈ X ′ satisfying 〈z, y′〉 = 0 for all z ∈ rg(I − A − B) and
then y ∈ X such that 〈y, y′〉 = ‖y′‖. The perturbed operators A + εB with
domain D(A) are generators of contraction semigroups for each 0 ≤ ε < 1
by Theorem 2.7. From Generation Theorem II.3.5 we obtain 1 ∈ ρ(A+εB),
and hence there exists a unique xε ∈ D(A) such that ‖xε‖ ≤ ‖y‖ and

xε − (A + εB)xε = y.

From the estimate

‖Bxε‖ ≤ ‖Axε‖ + b‖xε‖
≤ ‖(A + εB)xε‖ + ε‖Bxε‖ + b‖xε‖
≤ ‖xε − y‖ + ε‖Bxε‖ + b‖xε‖

we deduce

(2.7) (1− ε)‖Bxε‖ ≤ ‖xε − y‖ + b‖xε‖ ≤ (2 + b)‖y‖
for all 0 ≤ ε < 1.
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We now use the density of D(B′). In fact, for z′ ∈ D(B′) it follows that

| 〈(1 − ε)Bxε, z
′〉 | ≤ (1 − ε)‖xε‖ · ‖B′z′‖

≤ (1 − ε)‖y‖ · ‖B′z′‖,

and hence
lim
ε↑1

〈(1 − ε)Bxε, z
′〉 = 0.

Our assumption and the norm boundedness of the elements (1−ε)Bxε (see
(2.7)) then implies

lim
ε↑1

〈(1 − ε)Bxε, y
′〉 = 0,

and therefore

‖y′‖ = 〈y, y′〉 = 〈xε − (A + εB)xε, y
′〉

= 〈(1 − ε)Bxε, y
′〉 + 〈(I −A −B)xε, y

′〉
→ 0 as ε ↑ 1.

From the Hahn–Banach theorem we then conclude that rg(I − A − B) is
dense in X. �

If X is reflexive, the adjoint of every closable, densely defined opera-
tor is again densely defined on the dual space (see Proposition A.14). Be-
cause densely defined, dissipative operators are always closable (see Propo-
sition II.3.14.(iv)), we arrive at the following result.

2.9 Corollary. Let
(
A, D(A)

)
be the generator of a contraction semigroup

on a reflexive Banach space X. If
(
B, D(B)

)
is dissipative, A-bounded, and

satisfies the estimate (2.6), then the closure of
(
A + B, D(A)

)
generates a

contraction semigroup on X.

In order to obtain the previous perturbation results, we used Lemma 2.6
and could estimate only the resolvent of the perturbed operator A + B
and not all its powers. Due to the Lumer–Phillips Theorem II.3.15, this
was sufficient if A was the generator of a contraction semigroup and B
was dissipative. There is, however, another case where an estimate on the
resolvent alone forces an operator to generate a semigroup. Such a result
has been proved in Theorem II.4.6 for analytic semigroups and now easily
leads to another perturbation theorem.

2.10 Theorem. Let the operator
(
A, D(A)

)
generate an analytic semi-

group
(
T (z)
)
z∈Σδ∪{0} on a Banach space X. Then there exists a constant

α > 0 such that
(
A + B, D(A)

)
generates an analytic semigroup for every

A-bounded operator B having A-bound a0 < α.
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Proof. We first assume that
(
T (z)
)
z∈Σδ∪{0} is bounded, which means, by

Theorem II.4.6, that A is sectorial. Hence, there exist constants δ′ ∈ (0, π/2]
and C ≥ 1 such that for every

0 �= λ ∈ Σπ/2+δ′ :=
{

z ∈ C : | arg z| ≤ π

2
+ δ′
}

we have
λ ∈ ρ(A) and ‖R(λ, A)‖ ≤ C

|λ| .
If we define α := 1/C+1, we can apply Lemma 2.6 and obtain constants
r ≥ 0 and M ≥ 1 such that

Σ := Σπ/2+δ′ ∩ {z ∈ C : |z| > r} ⊆ ρ(A + B)

and
‖R(λ, A + B)‖ ≤ M

|λ| for all λ ∈ Σ.

By Exercise II.4.14.(6), this implies that A+B generates an analytic semi-
group, proving the assertion in the bounded case.

In order to treat the general case, we take w ∈ R and conclude from

‖Bx‖ ≤ a ‖Ax‖ + b ‖x‖ ≤ a ‖(A − w)x‖ + (aw + b) ‖x‖
for all x ∈ D(A) that B is also A − w bounded with the same bound a0.
Because the semigroup generated by A−w is analytic and bounded in Σδ

for w sufficiently large, the first part of the proof implies that A + B − w;
hence A + B generates an analytic semigroup. �

2.11 Examples. (i) In Example II.4.9 we showed that the second deriva-
tive

A := d2

dx2 , D(A) :=
{
f ∈ H2[0, 1] : f(0) = f(1) = 0

}
generates an analytic semigroup on H := L2[0, 1]. Because by Example 2.2
the first derivative d/dx with maximal domain H1[0, 1] is A-bounded with
A-bound a0 = 0, we conclude by Theorem 2.10 and Exercise 2.15.(1) that
for all B ∈ L

(
H1[0, 1],L2[0, 1]

)
the operator

C := A + B, D(C) := D(A)

generates an analytic semigroup on H.
(ii) As in Paragraph II.2.12, we consider the diffusion semigroup on L1(Rn)
given by(

T (t)f
)
(s) := (4πt)

−n/2

∫
Rn

e
−|s−r|2/4tf(r) dr =:

∫
Rn

Kt(s− r)f(r) dr.

It is generated by the closure of the Laplacian Δ defined on the Schwartz
space S (Rn). In Example II.4.11 we have seen that

(
T (t)
)
t≥0 is a bounded

analytic semigroup. As a perturbation we take the multiplication operator

(Mqf)(s) := q(s)f(s) for f ∈ D(Mq) :=
{
g ∈ L1(Rn) : qg ∈ L1(Rn)

}
induced by a function q ∈ Lp(Rn) for p > max{1, n/2}.
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We now show that B := Mq is Δ-bounded with Δ-bound zero. To this
end, we estimate for f ∈ L1(Rn) and λ > 0

‖BR(λ, Δ)f‖L1(Rn) =
∥∥∥∥B ∫ ∞

0
e−λtT (t)f dt

∥∥∥∥
L1(Rn)

≤
∫

Rn

|q(s)|
∫ ∞

0
e−λt

∫
Rn

Kt(s− r)|f(r)| dr dt ds

=
∫

Rn

|f(r)|
∫ ∞

0
e−λt

∫
Rn

Kt(s− r)|q(s)| ds dt dr

≤ ‖f‖L1(Rn) sup
r∈Rn

∫ ∞

0
e−λt

∫
Rn

Kt(s− r)|q(s)| ds dt

≤ ‖f‖L1(Rn) · ‖q‖Lp(Rn)

∫ ∞

0
e−λt

(∫
Rn

Kt(s)p′
ds

)1/p′

dt

with 1/p + 1/p′ = 1, where we used Fubini’s theorem and Hölder’s inequality.
It is now easy to verify that ‖Kt‖Lp′ (Rn) = ct

−n/2p for a constant c > 0.
Hence, we conclude that D(Δ) ⊂ D(B) and

‖Bf‖L1(Rn) ≤ c‖q‖Lp(Rn)

∫ ∞

0
e−λtt

−n/2p dt ‖(λ − Δ)f‖L1(Rn)

=: aλ‖(λ − Δ)f‖L1(Rn) ≤ λaλ‖f‖L1(Rn) + aλ‖Δf‖L1(Rn)

for all f ∈ D(Δ). Because aλ := c‖q‖Lp(Rn)
∫∞
0 e−λtt

−n/2p dt converges to
zero as λ → ∞, this proves our claim. Thus, by Theorem 2.10, the operator(
Δ+Mq, D(Δ)

)
generates an analytic semigroup for every q ∈ Lp(Rn) with

p > max{1, n/2}.
We now introduce a class of operators always having A-bound zero with

respect to a given operator A.

2.12 Definition. Let
(
A, D(A)

)
be a closed operator on a Banach space

X. An operator
(
B, D(B)

)
is called (relatively) A-compact if D(A) ⊆ D(B)

and B : X1 → X is compact, where X1 denotes the domain D(A) equipped
with the graph norm ‖ · ‖A.

If ρ(A) is nonempty, one can show that an A-bounded operator B is A-
compact if and only if BR(λ, A) ∈ L(X) is compact for some/all λ ∈ ρ(A),
see Exercise 2.15.(1). Because compact operators are “small” in some sense,
one might hope that an A-compact operator is A-bounded with bound
0. This is, however, not true in general (see [Hes70]), and we need some
additional conditions to ensure it.

2.13 Lemma. Let
(
A, D(A)

)
be a closed operator on a Banach space X

and assume
(
B, D(B)

)
to be A-compact. If

(i) A is a generator and X is reflexive, or if
(ii)
(
B, D(B)

)
is closable in X,

then B is A-bounded with A-bound a0 = 0.
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Proof. (i) For 0 < μ sufficiently large and x ∈ D(A), we write

Bx = BR(μ, A)(μ−A)x
= μBR(μ, A)x−BR(μ, A)AR(λ, A)(λ−A)x
= μBR(μ, A)x−BR(μ, A)AλR(λ, A)x + BR(μ, A)AR(λ, A)Ax

for all λ > μ. Because the operators appearing in the first two terms are
bounded, it suffices to show that for each ε > 0 there exist λ > μ such that

ε > ‖BR(μ, A)AR(λ, A)‖ =
∥∥BR(μ, A)

(
λR(λ, A) − I

)∥∥
=
∥∥(λR(λ, A′) − I

)(
BR(μ, A)

)′∥∥.
If X is reflexive, then the adjoint operator A′ is again a generator (see Para-
graph I.1.13). Therefore, by Lemma II.3.4, λR(λ, A′) converges strongly to
I as λ → ∞. Moreover, BR(μ, A) and therefore its adjoint

(
BR(μ, A)

)′ are
compact operators. Combining these two properties and applying Proposi-
tion A.3 yields

lim
λ→∞

∥∥(λR(λ, A′) − I
)(

BR(μ, A)
)′∥∥ = 0.

(ii) Assume the assertion to be false. Then there exists ε > 0 and a
sequence (xn)n∈N ⊂ D(A) such that

(2.8) ‖Bxn‖ > ε‖Axn‖ + n‖xn‖ for all n ∈ N.

For yn := xn/‖xn‖A this means

(2.9) ‖Byn‖ > ε‖Ayn‖ + n‖yn‖.
Because ‖yn‖A = 1 for all n ∈ N and because B is A-compact, there
exists a subsequence (zn)n∈N of (yn)n∈N such that (Bzn)n∈N converges
in X. Moreover, ‖zn‖ < ‖Bzn‖/n and (Bzn)n∈N is bounded in X; hence
limn→∞ ‖zn‖ = 0. Using the assumption that B is closable, this implies
limn→∞ ‖Bzn‖ = 0 and therefore limn→∞ ‖Azn‖ = 0 by (2.9). This, how-
ever, yields a contradiction, in as much as

1 = ‖zn‖A = ‖zn‖ + ‖Azn‖ for all n ∈ N.
�

We again combine this lemma with our previous perturbation results.

2.14 Corollary. Let
(
A, D(A)

)
be the generator of a strongly continuous

semigroup on a Banach space X and assume the operator
(
B, D(B)

)
to be

A-compact. If X is reflexive or if B is closable, then the following assertions
are true.

(i) If A and B are dissipative, then
(
A+cB, D(A)

)
generates a contrac-

tion semigroup on X for all c ∈ R+.
(ii) If the semigroup generated by A is analytic, then

(
A + cB, D(A)

)
generates an analytic semigroup on X for all c ∈ C.
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One can show that Corollary 2.14.(ii) holds without the extra assump-
tions that B is closable or that X is reflexive (see [DS88]).

2.15 Exercises. (1) Let A be an operator on a Banach space X having
nonempty resolvent set ρ(A). Show that for a linear operator B : D(A) →
X the following assertions are true.

(i) B is A-bounded if and only if B ∈ L(X1, X) if and only if BR(λ, A) ∈
L(X) for some/all λ ∈ ρ(A).

(ii) B is A-compact if and only if BR(λ, A) is compact for some/all
λ ∈ ρ(A).

(2) Let
(
A, D(A)

)
be the generator of a strongly continuous semigroup(

T (t)
)
t≥0 on a Banach space X and let

(
B, D(B)

)
be a closed operator on

X. If there exists
(i) A

(
T (t)
)
t≥0-invariant dense subspace D ⊂ D(A) ∩ D(B) such that

the map t �→ BT (t)x is continuous for all x ∈ D and
(ii) Constants t0 > 0 and q ≥ 0 such that

∫ t0

0
‖BT (t)x‖ dt ≤ q‖x‖ for all x ∈ D,

then B is A-bounded with A-bound less than or equal to q. (Hint: Use the
formula

(2.10) BR(λ, A)x =
∞∑

n=0

e−λnt0

∫ t0

0
e−λrBT (r)T (nt0)x dr, x ∈ D,

in order to show that BR(λ, A) is bounded on D. Then it follows from
Proposition A.6.(i) and Theorem A.10 that D(A) ⊆ D(B). Finally, take in
(2.10) the limit as λ → ∞ to estimate the A-bound of B.)
(3) Assume

(
A, D(A)

)
to generate an analytic semigroup of angle δ ∈

(0, π]. Show that in the situation of Theorem 2.10 the semigroup generated
by A + B is analytic of angle at least δ.
(4) Take the operators Af := f ′′ and Bf := f ′ with maximal domains in
X := C0(R). Show that A + αB − β generates a contraction semigroup for
α ∈ R, β ≥ 0. Can one replace the constants α and β by certain functions?
(5) Let

(
A, D(A)

)
be the generator of a contraction semigroup on the Ba-

nach space X.
(i) If

(
B, D(B)

)
is dissipative, then

(
A + B, D(A) ∩ D(B)

)
is again

dissipative.
(ii) If B is dissipative and bounded, then

(
A + B, D(A)

)
generates a

contraction semigroup.
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(6) Take X := c0 and define A(xn) := (inxn) with domain D(A) consisting
of all finite sequences.

(i) Show that the closure A of A generates a group of isometries on X.
(ii) Construct a different semigroup generator

(
B, D(B)

)
on X such that

A and B coincide on D(A).
(7) Let B be an operator on a Banach space X such that there exists a
sequence (λn)n∈N ⊂ ρ(B) satisfying limn→∞ ‖R(λn, B)‖ = 0. Show that
B is A := B2-bounded with A-bound a0 = 0. (Hint: Compute B2R(λ, B)
using the formula BR(λ, B) = λR(λ, B) − I.)



Chapter IV

Approximation of Semigroups

1. Trotter–Kato Approximation Theorems

Approximation, besides perturbation, is the other main method used to
study a complicated operator and the semigroup it generates. We already
encountered an example for such an approximation procedure in our proof
of the Generation Theorem II.3.5. For an operator

(
A, D(A)

)
on X satisfy-

ing the Hille–Yosida conditions, we defined the (bounded) Yosida approxi-
mants1

An := nAR(n, A), n ∈ N

(see Chapter II, (3.7)) generating the (uniformly continuous) semigroups(
etAn
)
t≥0. Using the fact that An → A pointwise on D(A) as n → ∞ (see

Lemma II.3.4.(ii)), we could show that the semigroups converge as well;
that is,

etAn → T (t) as n → ∞.

In this section we study this situation systematically and consider the
three objects semigroup, generator , and resolvent , visualized by the triangle

1 In this context, this notation should not cause any confusion with the operators An

induced on the abstract Sobolev spaces from Section II.2.c.

136
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(
T (t)
)
t≥0

�
�

�� �
�

��(
A, D(A)

) (
R(λ, A)

)
λ∈ρ(A)

from Chapter II. We then try to show that the convergence at one “vertex”
implies convergence in the two other “vertices.” That the truth is not as
simple is shown by the following example.

1.1 Example. On the Banach space X := c0, we take the multiplication
operator

A(xk) := (ikxk)

with domain
D(A) :=

{
(xk) ∈ c0 : (ikxk) ∈ c0

}
.

As we know from Example I.3.7.(iii), it generates the strongly continuous
semigroup

(
T (t)
)
t≥0 given by

T (t)(xk) = (eiktxk), t ≥ 0.

Perturbing A by the bounded operators

Pn(xk) := (0, . . . , nxn, 0, . . .),

we obtain new operators
An := A + Pn.

Each An is the generator of a strongly continuous semigroup
(
Tn(t)

)
t≥0

(use Theorem III.1.3), and for each x = (xk) ∈ D(A), we have

‖Anx−Ax‖ = ‖Pnx‖ = n|xn| → 0.

However, the semigroups
(
Tn(t)

)
t≥0 do not converge. In fact, one has

Tn(t)x = (eitx1, e2itx2, . . . , e(in+n)txn, e(n+1)itxn+1, . . .)

and therefore
‖Tn(t)‖ ≥ ent for n ∈ N and t ≥ 0.

By the uniform boundedness principle, this implies that there exists x ∈ X
such that

(
Tn(t)x

)
n∈N does not converge.

The example shows that the convergence of the generators (pointwise
on the domain of the limit operator) does not imply convergence of the
corresponding semigroups. Another unpleasant phenomenon may happen
for a converging sequence of resolvent operators.
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1.2 Example. Take An := −n · I on any Banach space X �= {0}. Then the
resolvent operators

R(λ, An) =
1

λ + n
· I

and their limit
R(λ) := lim

n→∞ R(λ, An)

exist for all Reλ > 0. However, the limit R(λ) is equal to zero, hence cannot
be the resolvent of an operator on X.

For our purposes we must exclude such a phenomenon. In order to do
so, we need a new concept.

a. A Technical Tool: Pseudoresolvents

In this subsection we consider bounded operators on a Banach space X
that depend on a complex parameter and satisfy the resolvent equation
(see Paragraph V.1.2, (1.2)). Here is the formal definition.

1.3 Definition. Let Λ ⊂ C and consider operators J(λ) ∈ L(X) for each
λ ∈ Λ. The family {J(λ) : λ ∈ Λ} is called a pseudoresolvent if

(1.1) J(λ) − J(μ) = (μ− λ)J(λ)J(μ)

holds for all λ, μ ∈ Λ.

The limit operators R(λ) from Example 1.2 form a (trivial) pseudore-
solvent for Reλ > 0. However, they are not injective, and therefore they
cannot be the resolvent operators R(λ, A) of an operator A. It is our goal,
and crucial for the proofs in Section 1.b, to find conditions implying that
a pseudoresolvent is indeed a resolvent. Before doing so, we discuss the
typical situation in which we encounter pseudoresolvents.

1.4 Proposition. For each n ∈ N, let An be the generator of a semigroup
(Tn(t))t≥0 on X satisfying ‖Tn(t)‖ ≤ M for all n ∈ N, t ≥ 0 and some fixed
M ≥ 1. Moreover, assume that for some λ0 > 0

lim
n→∞ R(λ0, An)x

exists for all x ∈ X. Then, the limit

R(λ)x := lim
n→∞ R(λ, An)x, x ∈ X,

exists for all Re λ > 0 and defines a pseudoresolvent
{
R(λ) : Re λ > 0

}
.



Section 1. Trotter–Kato Approximation Theorems 139

Proof. Consider the set

Ω :=
{
λ ∈ C : Re λ > 0, lim

n→∞ R(λ, An)x exists for all x ∈ X
}
,

which is nonempty by assumption. As in Proposition V.1.3, one shows that
for given μ ∈ Ω one has

R(λ, An) =
∞∑

k=0

(μ− λ)kR(μ, An)k+1

as long as |μ − λ| < Re μ (use (3.17) from Chapter II). The convergence
is with respect to the operator norm and uniform in {λ ∈ C : |μ − λ| ≤
α Re μ} for each 0 < α < 1. Because the series M/Re μ

∑∞
k=0 αk majorizes

all the series
∑∞

k=0 |μ−λ|k ∥∥R(μ, An)k+1
∥∥, we can conclude that R(λ, An)x

converges as n → ∞ for all λ satisfying |μ−λ| ≤ α Re μ. Therefore, the set
Ω is open.

On the other hand, take an accumulation point λ of Ω with Reλ > 0.
For 0 < α < 1, we can find μ ∈ Ω such that |μ − λ| ≤ α Re μ. Hence, by
the above considerations, λ must belong to Ω; i.e., Ω is relatively closed in
S := {λ ∈ C : Re λ > 0}. The only set satisfying both properties is S itself;
hence we obtain the existence of the operators R(λ) for Reλ > 0.

Evidently, the resolvent equation (1.1) remains valid for the limit oper-
ators. �

In the subsequent lemma, we state the basic properties of pseudoresol-
vents.

1.5 Lemma. Let {J(λ) : λ ∈ Λ} be a pseudoresolvent on X. Then the
following properties hold for all λ, μ ∈ Λ.

(i) J(λ)J(μ) = J(μ)J(λ).
(ii) ker J(λ) = ker J(μ).
(iii) rg J(λ) = rg J(μ).

Proof. The commutativity (i) follows from the resolvent equation (1.1).
If we rewrite it in the form

J(λ) = J(μ)
[
I + (μ− λ)J(λ)

]
=
[
I + (μ− λ)J(λ)

]
J(μ),

we see that rg J(λ) ⊆ rg J(μ) and ker J(μ) ⊆ ker J(λ). By symmetry, the
assertions (ii) and (iii) follow. �

If we now require that ker J(λ) = {0} and rg J(λ) is dense, then the
pseudoresolvent {J(λ) : λ ∈ Λ} becomes the resolvent of a closed, densely
defined operator.
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1.6 Proposition. For a pseudoresolvent {J(λ) : λ ∈ Λ} on X, the following
assertions are equivalent.

(a) There exists a densely defined, closed operator
(
A, D(A)

)
such that

Λ ⊂ ρ(A) and J(λ) = R(λ, A) for all λ ∈ Λ.
(b) ker J(λ) = {0}, and rg J(λ) is dense in X for some/all λ ∈ Λ.

Proof. We have only to show that (b) implies (a). Because J(λ) is injective,
we can define

A := λ0 − J(λ0)−1

for some λ0 ∈ Λ. This yields a closed operator with dense domain D(A) :=
rg J(λ0). From the definition of A, it follows that

(λ0 −A)J(λ0) = J(λ0)(λ0 −A) = I;

hence J(λ0) = R(λ0, A). For arbitrary λ ∈ Λ, we have

(λ −A)J(λ) =
[
(λ − λ0) + (λ0 −A)

]
J(λ)

=
[
(λ − λ0) + (λ0 −A)

]
J(λ0)

[
I − (λ − λ0)J(λ)

]
= I + (λ − λ0)

[
J(λ0) − J(λ) − (λ − λ0)J(λ)J(λ0)

]
= I,

and similarly, J(λ)(λ − A) = I. This shows that J(λ) = R(λ, A) for all
λ ∈ Λ and, in particular, that A does not depend on the choice of λ0. �

We conclude these considerations with some useful sufficient conditions
that make a pseudoresolvent a resolvent.

1.7 Corollary. Let {J(λ) : λ ∈ Λ} be a pseudoresolvent on X and assume
that Λ contains an unbounded sequence (λn)n∈N. If

(1.2) lim
n→∞ λnJ(λn)x = x for all x ∈ X,

then {J(λ) : λ ∈ Λ} is the resolvent of a densely defined operator. In
particular, (1.2) holds if rg J(λ) is dense and

(1.3) ‖λnJ(λn)‖ ≤ M

for some constant M and all n ∈ N.

Proof. If (1.2) holds, we have X =
⋃

n∈N
rg J(λn) = rg J(λ), and hence

J(λ) has dense range for each λ ∈ Λ. If x ∈ ker J(λ), we obtain x =
limλnJ(λn)x = 0; hence ker J(λ) = {0}. The first assertion now follows
from Proposition 1.6.(b).
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From the estimate ‖J(λn)‖ ≤ M
|λn| , n ∈ N, and the resolvent equation,

we obtain
lim

n→∞ ‖(λnJ(λn) − I)J(μ)‖ = 0

for fixed μ ∈ Λ. Therefore, it follows that

lim
n→∞ λnJ(λn)x = x

for x ∈ rg J(μ). Because this is a dense subspace of X, the norm bounded-
ness in (1.3) allows us to conclude that (1.2) holds. �

b. The Approximation Theorems

We now turn our attention to the approximation problem stated above;
i.e., we study the relation among convergence of semigroups, generators,
and resolvents. The adequate type of convergence for strongly continuous
semigroups (and unbounded operators) is pointwise convergence.

If we assume that the limit operator is known to be a generator, we
obtain our first main result. However, we need a uniform bound on the
semigroups involved.

1.8 First Trotter–Kato Approximation Theorem. (Trotter 1958,
Kato 1959). Let

(
T (t)
)
t≥0 and

(
Tn(t)

)
t≥0, n ∈ N, be strongly continuous

semigroups on X with generators A and An, respectively, and assume that
they satisfy the estimate

‖T (t)‖, ‖Tn(t)‖ ≤ Mewt for all t ≥ 0, n ∈ N,

and some constants M ≥ 1, w ∈ R. Take D to be a core for A and consider
the following assertions.

(a) D ⊂ D(An) for all n ∈ N and Anx → Ax as n → ∞ for all x ∈ D.
(b) For each x ∈ D, there exists xn ∈ D(An) such that

xn → x and Anxn → Ax as n → ∞.

(c) R(λ, An)x → R(λ, A)x as n → ∞ for all x ∈ X and some/all λ > w.
(d) Tn(t)x → T (t)x as n → ∞ for all x ∈ X, uniformly for t in compact

intervals.
Then the implications

(a) =⇒ (b) ⇐⇒ (c) ⇐⇒ (d)

hold, and (b) does not imply (a).

Proof. Before starting, we perform a rescaling and assume without loss
of generality that w = 0; i.e.,

‖T (t)‖, ‖Tn(t)‖ ≤ M for all t ≥ 0, n ∈ N.

Because the implication (a) ⇒ (b) is trivial, we start by showing (b) ⇒ (c).
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Let λ > 0. Because ‖R(λ, An)‖ ≤ M/λ for all n ∈ N, it suffices to show
that

lim
n→∞ R(λ, An)y = R(λ, A)y

for y in the dense subspace (λ−A)D. Take x ∈ D and define y := (λ−A)x.
By assumption, there exists xn ∈ D(An) such that

xn → x and Anxn → Ax;

hence
yn := (λ −An)xn → y.

Therefore, the estimate

‖R(λ, An)y −R(λ, A)y‖ ≤ ‖R(λ, An)y −R(λ, An)yn‖
+ ‖R(λ, An)yn −R(λ, A)y‖

≤ ‖R(λ, An)‖ · ‖y − yn‖ + ‖xn − x‖
implies the assertion.

The implication (c) ⇒ (b) follows if we take x := R(λ, A)y, and xn :=
R(λ, An)y for fixed λ > 0 and then observe that

Anxn = AnR(λ, An)y = λR(λ, An)y − y

converges to
λR(λ, A)y − y = Ax.

(d) ⇒ (c). The integral representation of the resolvent yields, for each λ > 0
and x ∈ X, that

‖R(λ, A)x−R(λ, An)x‖ ≤
∫ ∞

0
e−λt ‖T (t)x− Tn(t)x‖ dt.

The desired convergence is now a consequence of Lebesgue’s dominated
convergence theorem.

To prove the final implication (c) ⇒ (d), we fix some t0 > 0 and assume
that R(λ, An)x → R(λ, A)x as n → ∞ for some λ > 0 and all x ∈ X. Then
for all t ∈ [0, t0] we obtain

(1.4)

∥∥[Tn(t) − T (t)
]
R(λ, A)x

∥∥ ≤ ∥∥Tn(t)
[
R(λ, A) −R(λ, An)

]
x
∥∥

+
∥∥R(λ, An)

[
Tn(t) − T (t)

]
x
∥∥

+
∥∥[R(λ, An) −R(λ, A)

]
T (t)x

∥∥
=: D1(n, x) + D2(n, x) + D3(n, x),

where we used the fact that a semigroup commutes with the resolvent of its
generator. Because ‖Tn(t)‖ ≤ M for all n ∈ N and t ∈ [0, t0], the first term
D1(n, x) → 0 as n → ∞ uniformly on [0, t0]. Moreover, because

(
T (t)
)
t≥0

is strongly continuous, the set {T (t)x : t ∈ [0, t0]} ⊂ X is compact and
hence, by Exercise I.1.8.(1), also D3(n, x) → 0 as n → ∞ uniformly for
t ∈ [0, t0].
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In order to estimate D2(n, x) we first show that

(1.5)

R(λ, An)
[
T (t)−Tn(t)

]
R(λ, A)z =

∫ t

0
Tn(t−s)

[
R(λ, A)−R(λ, An)

]
T (s)z ds

for every z ∈ X and t > 0. To this end we first observe that, by Lemma A.19,
the function [0, t] � s �→ Tn(t − s)R(λ, An)T (s)R(λ, A)z ∈ X is differen-
tiable. Using also Lemma II.1.3.(ii) and (1.1) in Chapter V we obtain

d
ds

[
Tn(t − s)R(λ, An)T (s)R(λ, A)z

]
= Tn(t − s)

[−AnR(λ, An)T (s) + R(λ, An)T (s)A
]
R(λ, A)z

= Tn(t − s)
[
R(λ, A) −R(λ, An)

]
T (s)z.

Integrating the last equation with respect to s from 0 to t then gives (1.5).
This implies that∥∥R(λ, An)

[
T (t) − Tn(t)

]
R(λ, A)z

∥∥
≤
∫ t

0
‖Tn(t − s)‖ · ∥∥[R(λ, A) −R(λ, An)

]
T (s)z

∥∥ ds

≤ t0M · sup
s∈[0,t0]

∥∥[R(λ, A) −R(λ, An)
]
T (s)z

∥∥ .

Using the same reasoning as above to prove that D3(n, x) → 0, we conclude
that∥∥R(λ, An)

[
T (t) − Tn(t)

]
R(λ, A)z

∥∥ =
∥∥D2
(
n, R(λ, A)z

)∥∥→ 0 as n → ∞
uniformly for t ∈ [0, t0]. Because every x ∈ D(A) can be written as x =
R(λ, A)z for z = (λ − A)x ∈ X, this shows that for x ∈ D(A) the term
D2(n, x) → 0 as n → ∞ uniformly for t ∈ [0, t0].

Summing up, we conclude that by inequality (1.4),

‖Tn(t)x− T (t)x‖ → 0 as n → ∞
for all x ∈ D(A2), uniformly on [0, t0]. Because ‖Tn(t) − T (t)‖ ≤ 2M and
D(A2) is dense in X by Proposition II.1.8, from Proposition A.3 we finally
obtain (d).

That (b) does not imply (a) in general can be seen from Counterexam-
ple 2.8 below. �

For the above result we had to assume that the limit operator A is
already known to be a generator. This is a major defect, because in the
applications one wants to approximate the operator A by (simple) operators
An and then conclude that A becomes a generator. Moreover, the semigroup
generated by A should be obtained as the limit of the known semigroups
generated by the operators An. In fact, we encountered this problem already
in the proof (of the nontrivial implication) of Generation Theorem II.3.5.
Therefore, the following result can be viewed as a generalization of the
Hille–Yosida theorem.
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1.9 Second Trotter–Kato Approximation Theorem. (Trotter 1958,
Kato 1959). Let

(
Tn(t)

)
t≥0, n ∈ N, be strongly continuous semigroups on

X with generators
(
An, D(An)

)
satisfying the stability condition

(1.6) ‖Tn(t)‖ ≤ Mewt

for constants M ≥ 1, w ∈ R and all t ≥ 0, n ∈ N. For some λ0 > w consider
the following assertions.

(a) There exists a densely defined operator
(
A, D(A)

)
such that Anx →

Ax as n → ∞ for all x in a core D of A and such that the range
rg(λ0 −A) is dense in X.

(b) The operators R(λ0, An), n ∈ N, converge strongly as n → ∞ to an
operator R ∈ L(X) with dense range rg R.

(c) The semigroups
(
Tn(t)

)
t≥0, n ∈ N, converge strongly (and uni-

formly for t ∈ [0, t0]) as n → ∞ to a strongly continuous semigroup(
T (t)
)
t≥0 with generator B such that R = R(λ0, B).

Then the implications (a) ⇒ (b) ⇐⇒ (c) hold. In particular, if (a) holds,
then B = A.

Proof. Without loss of generality, and after the usual rescaling, it suffices
to consider uniformly bounded semigroups only, i.e., the case w = 0.

(a) ⇒ (b). As in the above proof, it suffices to show convergence of the
sequence

(
R(λ0, An)y

)
n∈N for y := (λ0 − A)x, x ∈ D, only. This follows,

because

R(λ0, An)y = R(λ0, An)[(λ0 −An)x− (λ0 −An)x + (λ0 −A)x]
= x + R(λ0, An)(Anx−Ax) → x = Ry

as n → ∞. Moreover, rg R contains D, hence is dense in X.
Because the implication (c) ⇒ (b) holds by the above theorem, it remains

to prove that (b) ⇒ (c). By Proposition 1.4, we obtain a pseudoresolvent{
R(λ) : λ > 0

}
by defining

R(λ)x := lim
n→∞ R(λ, An)x, x ∈ X.

This pseudoresolvent satisfies, for all λ > 0,

‖λR(λ)‖ ≤ M,

and, because R(λ)k = limn→∞ R(λ, An)k,∥∥λkR(λ)k
∥∥ ≤ M for all k ∈ N.

Moreover, it has dense range rg R(λ) = rg R. Therefore, Corollary 1.7
yields the existence of a densely defined operator

(
B, D(B)

)
such that
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R(λ) = R(λ, B) for λ > 0. Moreover, this operator satisfies the Hille–
Yosida estimate ∥∥λkR(λ, B)k

∥∥ ≤ M for all k ∈ N,

hence generates a bounded strongly continuous semigroup
(
T (t)
)
t≥0. We

can now apply the implication (c) ⇒ (d) from the First Trotter–Kato
Approximation Theorem 1.8 in order to conclude that the semigroups(
Tn(t)

)
n≥0 converge—in the desired way—to the semigroup

(
T (t)
)
t≥0.

In the final step, we show that (a) implies A = B. Because R(λ0, B) = R,
we have

R(λ0, B)(λ0 −A)x = x

for all x ∈ D. However, D is a core for A, and therefore

R(λ0, B)(λ0 −A)x = x

for all x ∈ D(A). From this it follows that λ0 is not an approximate eigen-
value of A. Moreover, rg(λ0 − A) is dense in X by assumption; hence λ0
does not belong to the residual spectrum of A. Therefore, λ0 ∈ ρ(A), and
we obtain R(λ0, A) = R(λ0, B); i.e., A = B as claimed. �

The importance of the above theorems cannot be overestimated. In fact,
they yield the theoretical background for many approximation schemes
in abstract operator theory and applied numerical analysis. However, we
restrict ourselves to rather abstract examples and applications.

c. Examples

The Hille–Yosida Generation Theorem II.3.8 was the main tool in our proof
of the Trotter–Kato approximation theorems. Conversely, this theorem was
proved using an approximation argument. It is enlightening to start our
series of examples by reformulating this part of the proof.

1.10 Yosida Approximants. Let
(
A, D(A)

)
be an operator on X satisfy-

ing the conditions (in the contractive case, for simplicity) from Generation
Theorem II.3.5.(b). For each n ∈ N, define the Yosida approximant

An := nAR(n, A) ∈ L(X).

By Lemma II.3.4, the sequence (An)n∈N converges pointwise on D(A) to A.
Because λ−A is already supposed to be surjective, we can apply the Second
Trotter–Kato Approximation Theorem 1.9 to conclude the existence of the
limit semigroup

(
T (t)
)
t≥0 with

T (t)x := lim
n→∞ etAnx, x ∈ X,

and generator
(
A, D(A)

)
.
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Clearly, in a logical sense, these arguments do not re-prove the Hille–
Yosida generation theorem, which we already used for the proof of the
Trotter–Kato approximation theorem. However, it might be helpful for the
beginner to observe that the above approximating sequence enjoys a spe-
cial feature: The operators An, n ∈ N, mutually commute. This property
allows a simple and direct proof of the essential step in Approximation
Theorem 1.8.

Lemma. Let
(
T (t)
)
t≥0 and

(
Tn(t)

)
t≥0, n ∈ N, be strongly continuous

semigroups on X with generator
(
A, D(A)

)
and bounded generators An,

respectively. In addition, suppose that
(
T (t)
)
t≥0 and

(
Tn(t)

)
t≥0 satisfy the

stability condition (1.6) and that

AnT (t) = T (t)An

for all n ∈ N and t > 0. If
Anx → Ax

for all x in a core D of A, then

Tn(t)x → T (t)x

for all x ∈ X uniformly for t ∈ [0, t0].

Proof. For x ∈ D and n ∈ N, we have

Tn(t)x− T (t)x = −
∫ t

0

d
ds [Tn(t − s)T (s)x] ds

=
∫ t

0
Tn(t − s)(An −A)T (s)x ds

=
∫ t

0
Tn(t − s)T (s)(Anx−Ax) ds;

hence
‖Tn(t)x− T (t)x‖ ≤ tM2ewt ‖Anx−Ax‖.

�

We encounter this situation in our next example, by which we re-prove
a classical theorem.

1.11 Weierstrass Approximation Theorem. Take the function space
X := C0(R) (or Cub(R)) and the (left) translation group

(
T (t)
)
t∈R with

T (t)f(s) := f(s + t) for s, t ∈ R

and generator

Af := f ′, D(A) := {f ∈ X : f ′ ∈ X}
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(see Paragraph II.2.9). The bounded operators

An :=
T (1/n) − I

1/n
, n ∈ N,

• Commute with all operators T (t),
• Generate contraction semigroups, because

(1.7)
∥∥etAn

∥∥ =
∥∥∥ent(T (1/n)−I)

∥∥∥ ≤ e−ntent‖T (1/n)‖ = 1,

and
• Satisfy, by definition of the derivative,

Anf → Af

for each f ∈ D(A).
Therefore, the (First) Trotter–Kato Approximation Theorem 1.8 (or the

lemma in 1.10) can be applied and yields

(1.8) f(s + t) = lim
n→∞

∞∑
k=0

tk

k!
(Ak

nf)(s)

for all f ∈ X and uniformly for s ∈ R, t ∈ [0, 1]. If we now take s = 0,
choose an appropriate sequence (mn)n∈N of natural numbers, and observe
that

∑mn

k=0
tk
/k!(Ak

nf)(0) is a polynomial, we obtain the Weierstrass ap-
proximation theorem as a consequence.

Proposition. For every f ∈ X there exists a sequence (mn)n∈N ⊂ N such
that

(1.9) f(t) = lim
n→∞

mn∑
k=0

tk

k!
(Ak

nf)(0)

uniformly for t ∈ [0, 1].

It is very instructive to observe how convergence breaks down if we re-
verse the order of the limit and of the series summation in (1.9). See the
illuminating remarks in [Gol85, Sect. I.8.3].

1.12 A First Approximation Formula. The idea employed in Para-
graph 1.11 is very simple and can be formulated in a general context. Let(
T (t)
)
t≥0 be a strongly continuous contraction semigroup on X with gen-

erator
(
A, D(A)

)
. Then the bounded operators

An :=
T (1/n) − I

1/n
, n ∈ N,

approximate A on D(A) and generate contraction semigroups
(
etAn
)
t≥0

(see (1.7)). Therefore, we obtain the following approximation formula.
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Proposition. With the above definitions, one has

(1.10) T (t)x = lim
n→∞ e−ntentT (1/n)x

for all x ∈ X and uniformly in t ∈ [0, t0].

This formula might seem useless, because it assumes that the operators
T (t) are already known, at least for small t > 0. However, it is the first
step towards more interesting approximation formulas to be developed in
the next section.

1.13 Exercises. (1) Consider the operator Af := f ′′ with maximal do-
main on X := C0(R). For each n ∈ N, we define bounded difference opera-
tors

Anf(s) := n2[f(s + 1/n) − 2f(s) + f(s− 1/n)
]
, s ∈ R, f ∈ X.

Prove the following statements.
(i)
(
A, D(A)

)
is a closed, densely defined operator.

(ii)
∥∥etAn

∥∥ ≤ 1 for each n ∈ N, and Anf → Af for f ∈ D(A).
(iii) For each g ∈ X, there exists a unique f ∈ D(A) such that f−f ′′ = g.

(Hint: Use the formal identity (I − (d/ds)2)−1 = (I − d/ds)−1(I +
d/ds)−1 and the resolvent formula for d/ds from Proposition 2 in Para-
graph II.2.9. Check that this yields the correct solution.)

(iv)
(
A, D(A)

)
generates the strongly continuous semigroup

(
T (t)
)
t≥0

given by

T (t)f(s) = lim
n→∞ e−2n2t

∞∑
k=0

(n2t)k

k!

k∑
l=0

(
k
l

)
f
(
s + (k−2l)/n

)
for s ∈ R, f ∈ X.

(2) What happens in Exercise I.2.15.(1) as α ↓ 0?

2. The Chernoff Product Formula

As announced in the previous section, it is now our aim to obtain more
or less explicit formulas for the semigroup operators T (t). These formulas
are based on some knowledge of the generator (and its resolvent) and the
Trotter–Kato approximation theorem.

Our first approach is via the Chernoff product formula, from which many
approximation formulas can be derived. For its proof the following estimate
is essential.
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2.1 Lemma. Let S ∈ L(X) satisfy ‖Sm‖ ≤ M for some M ≥ 1 and all
m ∈ N. Then we have

(2.1)
∥∥∥en(S−I)x− Snx

∥∥∥ ≤ √
nM ‖Sx − x‖

for every n ∈ N and x ∈ X.

Proof. Let n ∈ N be fixed and observe that

en(S−I) − Sn = e−n
(
enS − enSn

)
= e−n

∞∑
k=0

nk

k!
(
Sk − Sn

)
.

For k > n, we write

Sk − Sn =
k−1∑
j=n

(
Sj+1 − Sj

)
=

k−1∑
j=n

Sj(S − I),

and similarly for k < n. Therefore, and because ‖Sm‖ ≤ M , we obtain∥∥Skx− Snx
∥∥ ≤ |n − k| ·M ‖Sx − x‖

for all k ∈ N, x ∈ X. This allows the estimate

∥∥∥en(S−I)x− Snx
∥∥∥ ≤ e−nM ‖Sx − x‖ ·

∞∑
k=0

(
nk

k!

)1/2(nk

k!

)1/2

|n − k|

≤ e−nM ‖Sx − x‖ ·
( ∞∑

k=0

nk

k!

)1/2( ∞∑
k=0

nk

k!
(n − k)2

)1/2

= e−nM ‖Sx − x‖ · (en)
1/2 (nen)

1/2

=
√

nM ‖Sx − x‖,

where we used the Cauchy–Schwarz inequality and the identity

∞∑
k=0

nk

k!
(n − k)2 = nen.

�

This lemma, combined with Approximation Theorem 1.9, yields the main
result of this section.
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2.2 Theorem. (Chernoff Product Formula). Consider a function

V : R+ → L(X)

satisfying V (0) = I and
∥∥[V (t)

]
m
∥∥ ≤ M for all t ≥ 0, m ∈ N, and some

M ≥ 1. Assume that

Ax := lim
h↓0

V (h)x− x

h

exists for all x ∈ D ⊂ X, where D and (λ0 − A)D are dense subspaces in
X for some λ0 > 0. Then the closure A of A generates a bounded strongly
continuous semigroup

(
T (t)
)
t≥0, which is given by

(2.2) T (t)x = lim
n→∞ [V ( t/n)]n x

for all x ∈ X and uniformly for t ∈ [0, t0].

Proof. For s > 0, define

As :=
V (s) − I

s
∈ L(X),

and observe that Asx → Ax for all x ∈ D as s ↓ 0. The semigroups
(etAs)t≥0 all satisfy

∥∥etAs
∥∥ ≤ e

−t/s

∥∥∥e tV (s)/s

∥∥∥ ≤ e
−t/s

∞∑
m=0

tm
∥∥[V (s)

]
m
∥∥

smm!
≤ M for every t ≥ 0.

This shows that the assumptions of the Second Trotter–Kato Approxima-
tion Theorem 1.9 are fulfilled (with the discrete parameter n ∈ N replaced
by the continuous parameter s > 0). Hence, the closure A of A generates a
strongly continuous semigroup

(
T (t)
)
t≥0 satisfying∥∥T (t)x− etAsx

∥∥→ 0 for all x ∈ X as s ↓ 0

uniformly for t ∈ [0, t0], and therefore

(2.3)
∥∥∥T (t)x− etA t/nx

∥∥∥→ 0 for all x ∈ X as n → ∞

uniformly for t ∈ [0, t0].
On the other hand, we have by Lemma 2.1 that

(2.4)

∥∥∥etA t/nx− [V ( t/n)]n x
∥∥∥ =
∥∥∥en(V ( t/n)−I)x− [V ( t/n)]n x

∥∥∥
≤ √

nM ‖V ( t/n)x− x‖
=

tM√
n

∥∥A t/n
x
∥∥→ 0

for all x ∈ D as n → ∞, uniformly on (0, t0]. Because
∥∥etA t/n−[V ( t/n)]n

∥∥ ≤
2M , the combination of (2.3), (2.4), and Proposition A.3 yields (2.2). �
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As before, we pass to the unbounded case by a rescaling procedure.

2.3 Corollary. Consider a function

V : R+ → L(X)

satisfying V (0) = I and∥∥[V (t)]k
∥∥ ≤ Mekwt for all t ≥ 0, k ∈ N

and some constants M ≥ 1, w ∈ R. Assume that

Ax := lim
t↓0

V (t)x− x

t

exists for all x ∈ D ⊂ X, where D and (λ0−A)D are dense subspaces in X
for some λ0 > w. Then the closure A of A generates a strongly continuous
semigroup

(
T (t)
)
t≥0 given by

(2.5) T (t)x = lim
n→∞[V ( t/n)]nx

for all x ∈ X and uniformly for t ∈ [0, t0]. Moreover,
(
T (t)
)
t≥0 satisfies the

estimate
‖T (t)‖ ≤ Mewt for all t ≥ 0.

Proof. From the function V (·) we pass to

Ṽ (t) := e−wtV (t),

which then satisfies∥∥∥Ṽ (t)k
∥∥∥ ≤ M for all k ∈ N and t ≥ 0

and whose derivative in zero is the operator A − w. The assertions then
follow from Theorem 2.2. �

Next, we substitute the “time steps” of size “ t/n” in the definition of the
approximating operators V ( t/n) by an arbitrary null sequence (tn)n∈N.

2.4 Corollary. Let V : R+ → L(X) satisfy the assumptions in Corol-
lary 2.3. If for fixed t > 0 we take a positive null sequence (tn)n∈N ∈ c0 and
a strictly increasing sequence of integers kn such that

kntn → t,

then

(2.6) T (t)x = lim
n→∞[V (tn)]knx

for all x ∈ X.
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Proof. Using the function

ξ(s) :=
{

s · (tnkn)/t for s ∈ ( t/kn+1, t/kn],
0 for s = 0 or s > t/k1,

we introduce a new operator-valued function W : R+ → L(X) by

W (t) := V
(
ξ(t)
)
, t ≥ 0.

This function still satisfies W (0) = I and
∥∥W (t)k

∥∥ ≤ Mekwt for all t ≥ 0,
k ∈ N. For x ∈ D, we show that

lim
t↓0

W (t)x− x

t
= Ax.

Let (tn)n∈N ∈ c0 be an arbitrary null sequence and for each tm choose
nm ∈ N such that tm ∈ ( t/knm+1, t/knm

]. Then

W (tm)x− x

tm
=

V
(
ξ(tm)

)
x− x

ξ(tm)
· ξ(tm)

tm

=
V
(
ξ(tm)

)
x− x

ξ(tm)
· tnm

knm
· tm

t · tm ;

hence

lim
m→∞

W (tm)x− x

tm
= Ax · lim

m→∞
tnm

knm

t
= Ax.

By Corollary 2.3, we conclude that A generates the semigroup
(
T (t)
)
t≥0

given by
T (t)x = lim

n→∞[W ( t/n)]nx

uniformly for t ∈ [0, t0]. In particular, we obtain for the subsequence
( t/kn)n∈N that

T (t)x = lim
n→∞ [W ( t/kn)]kn x

= lim
n→∞

[
V
(
ξ( t/kn)

)]kn
x

= lim
n→∞
[
V (tn)

]kn
x for all x ∈ X.

�

The following application of the Chernoff Product Formula Theorem 2.2
(or of Corollary 2.3) finally gives us an explicit formula, called the Post–
Widder Inversion Formula, for the semigroup in terms of the resolvent
of its generator. This adds a missing arrow to the “triangle” from Dia-
gram II.1.14, and, at the same time, corresponds to Hille’s original proof
of Generation Theorem II.3.5.
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2.5 Corollary. For every strongly continuous semigroup
(
T (t)
)
t≥0 on X

with generator
(
A, D(A)

)
, one has

(2.7) T (t)x = lim
n→∞ [n/tR(n/t, A)]n x = lim

n→∞ [I − t/nA]−n
x, x ∈ X,

uniformly for t in compact intervals.

Proof. Assume that ‖T (t)‖ ≤ Mewt for constants M ≥ 1, w > 0 and
define

V (t) :=

{
I for t = 0,
1/t R(1/t, A) for t ∈ (0, δ),
0 for t ≥ δ,

for some δ ∈ (0, 1/w). In this way we obtain a function V : R+ → L(X)
satisfying∥∥V (t)k

∥∥ ≤ 1/tk

∥∥R(1/t, A)k
∥∥ ≤ M

tk(1/t − w)k
=

M

(1 − wt)k
≤ Mek(w+1)t

for all t ∈ (0, δ), provided that we choose δ > 0 sufficiently small. Moreover,
by Lemma II.3.4, we have

lim
t↓0

V (t)x− x

t
= lim

t↓0
1/tR(1/t, A)Ax = Ax if x ∈ D(A).

Therefore, the Chernoff product formula as stated in Corollary 2.3 applies,
and (2.5) becomes the above formula. �

For the sake of completeness, we add this new relation to the diagram
relating the semigroup, its generator, and its resolvent operators.

2.6 Diagram. (
T (t)
)
t≥0

�
�

�
�

�
�

�
�

��

�

Ax=lim
t↓0

T (t)x−x
t

�
�

�
�

�
�

�
�

��


�
�

�
�

�
�

�
�

���

R(λ,A)=
∞∫
0

e−λtT (t) dt

T (t)= lim
n→∞

[n/tR(n/t,A)]n

(
A, D(A)

) R(λ,A)=(λ−A)−1
�	

A=λ−R(λ,A)−1

(
R(λ, A)

)
λ∈ρ(A)

We now apply the Chernoff product formula from Theorem 2.2 to per-
turbation theory yielding another important formula, called the Trotter
product formula, for the perturbed semigroup. In contrast to the situation
studied in Sections III.1 and 2, we obtain a result that is symmetric in the
operators A and B.
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2.7 Corollary. Let
(
T (t)
)
t≥0 and

(
S(t)
)
t≥0 be strongly continuous semi-

groups on X satisfying the stability condition

(2.8) ‖[T ( t/n)S( t/n)]n‖ ≤ Mewt for all t ≥ 0, n ∈ N,

and for constants M ≥ 1, w ∈ R. Consider the “sum” A + B on D :=
D(A) ∩ D(B) of the generators

(
A, D(A)

)
of
(
T (t)
)
t≥0 and

(
B, D(B)

)
of(

S(t)
)
t≥0, and assume that D and (λ0 −A−B)D are dense in X for some

λ0 > w. Then C := A + B generates a strongly continuous semigroup(
U(t)
)
t≥0 given by the Trotter product formula

(2.9) U(t)x = lim
n→∞ [T ( t/n)S( t/n)]n x, x ∈ X,

with uniform convergence for t in compact intervals.

Proof. In order to apply the Chernoff product formula from Corollary 2.3,
it suffices to define

V (t) := T (t)S(t), t ≥ 0,

and observe that

lim
t↓0

T (t)S(t)y − y

t
= lim

t↓0
T (t)

S(t)y − y

t
+ lim

t↓0

T (t)y − y

t

= By + Ay

for all y ∈ D. �

We now show first that the density of D(A) ∩ D(B) is not necessary
for the convergence (to a strongly continuous semigroup) of the Trotter
Product Formula (2.9) and second that the converse of the implication
(a) ⇒ (b) in the First Trotter–Kato Approximation Theorem 1.8 does not
hold.

2.8 Counterexample. On X := L2(R) we take the right translation semi-
group

(
T (t)
)
t≥0 with generator A (see Section I.3.c and Paragraph II.2.9)

and the multiplication semigroup
(
S(t)
)
t≥0 generated by B = Miq for

q : R → R a measurable and locally integrable function. For f ∈ X we can
compute (cf. [EN00, (5.16) in Expl. III.5.9]) the products

[T ( t/n)S( t/n)]n f(s) = exp
(

i
n∑

k=1

q (s− kt/n) t/n

)
·f(s−t) for t ≥ 0, s ∈ R.

They converge in L2-norm to U(t)f with

U(t)f(s) := e
i
∫ s

s−t
q(τ) dτ · f(s− t).

These operators U(t) form a strongly continuous semigroup (of isometries)
on X. Observe that no assumption on D(A) ∩D(B) was made.
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In fact, this intersection can be {0}. Take Q = {αk : k ∈ N} and define

q(s) :=
∞∑

k=1

1
k!
|s− αk|−1/2 for s ∈ R.

Then q ∈ L1
loc(R). However, q /∈ L2[a, b] for any a < b. Therefore, no

continuous function f �= 0 belongs to D(B); hence D(A) ∩ D(B) = 0.
However, at least formally, the generator C of

(
U(t)
)
t≥0 is the “sum” A+B.

In fact, one can show that the domain of C is

D(C) =
{
f ∈ L2(R) : f is absolutely continuous and − f ′ + qf ∈ L2(R)

}
and

Cf = −f ′ + qf for f ∈ D(C).

Using the same q, we now define semigroups on X by

Un(t)f(s) := e
i/n

∫ s

s− t(n+1)/n
q(τ) dτ · f (s− t(n+1)/n)

for every n ∈ N. Then limn→∞ Un(t)f = T (t)f for every f ∈ X, and
the semigroups

(
Un(t)

)
t≥0 and the right translation semigroup

(
T (t)
)
t≥0

satisfy the equivalent conditions (b), (c), and (d) in the First Trotter–Kato
Approximation Theorem 1.8. However, the intersections of the respective
domains are trivial; hence condition (a) does not hold.

2.9 Exercise. Let
(
T (t)
)
t≥0 be a strongly continuous semigroup with gen-

erator A on a Banach space X. If B ∈ L(X), then the semigroup
(
U(t)
)
t≥0

generated by A + B is given by the Trotter product formula

U(t)x = lim
n→∞
[
T ( t/n)e

tB/n
]
nx

for all t ≥ 0 and x ∈ X. (Hint: By renorming X as in Chapter II, (3.18)
(or by Lemma II.3.10) one may assume that

(
T (t)
)
t≥0 is a contraction

semigroup. To verify the stability condition (2.8) observe that ‖etB‖ ≤
et‖B‖.)



Chapter V

Spectral Theory and Asymptotics
for Semigroups

Up to now, our main concern was to show that strongly continuous semi-
groups have a generator (with nice properties) and, conversely, that certain
operators generate strongly continuous semigroups (with nice properties).
In the perspective of Section II.6 this means that certain evolution equa-
tions have unique solutions, hence are well-posed.

Having established this kind of well-posedness, that is, the existence of a
strongly continuous semigroup, we now turn our attention to the qualitative
behavior of these solutions, i.e., of these semigroups. Our main tool for this
investigation is provided by spectral theory .

This is already evident from the Hille–Yosida theorem (and its variants),
where generators were characterized by the location of their spectrum and
by norm estimates of the resolvent. Moreover, the classical Liapunov Stabil-
ity Theorem for matrix semigroups

(
etA
)
t≥0 characterizes the stability, i.e.,

limt→∞ ‖etA‖ = 0, by the location of the eigenvalues of A (see Theorem 3.6
below).

In order to continue in this direction, we first develop a spectral theory
for semigroups and their generators. The importance of these techniques
becomes evident in Section 3, where we apply it to the study of the asymp-
totic behavior of strongly continuous semigroups.

We start with an introductory section, in which we explain the basic
spectral theoretic notions and results for general closed operators. Because
many of these notions have already been used in the preceding chapters,
the reader may skip (most of) this section.

156
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1. Spectrum of Semigroups and Generators

a. Spectral Theory for Closed Operators

The guiding idea of spectral theory is to associate numbers with linear
operators in the hope of recovering properties of the operator from these
numbers. So let

A : D(A) ⊂ X → X

be a closed linear operator on some Banach space X. Note that we do not
assume a dense domain, whereas the closedness is essential for a reasonable
spectral theory.

1.1 Definition. We call

ρ(A) :=
{
λ ∈ C : λ −A : D(A) → X is bijective

}
the resolvent set and its complement σ(A) := C \ ρ(A) the spectrum of A.
For λ ∈ ρ(A), the inverse

R(λ, A) := (λ −A)−1

is, by the closed graph theorem, a bounded operator on X and is called the
resolvent (of A at the point λ).

It follows immediately from the definition that the identity

(1.1) AR(λ, A) = λR(λ, A) − I

holds for every λ ∈ ρ(A). The next identity is the reason for many of the
nice properties of the resolvent set ρ(A) and the resolvent map

ρ(A) � λ �→ R(λ, A) ∈ L(X).

1.2 Resolvent Equation. For λ, μ ∈ ρ(A), one has

(1.2) R(λ, A) −R(μ, A) = (μ− λ)R(λ, A)R(μ, A).

Proof. The definition of the resolvent implies

and
[λR(λ, A) −AR(λ, A)]R(μ, A) = R(μ, A)

R(λ, A)[μR(μ, A) −AR(μ, A)] = R(λ, A).

If we subtract these equations and use the fact that R(λ, A) and R(μ, A)
commute, we obtain (1.2). �

The basic properties of the resolvent set and the resolvent map are now
collected in the following proposition.
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1.3 Proposition. For a closed operator A : D(A) ⊂ X → X, the following
properties hold.

(i) The resolvent set ρ(A) is open in C, and for μ ∈ ρ(A) one has

(1.3) R(λ, A) =
∞∑

n=0

(μ− λ)nR(μ, A)n+1

for all λ ∈ C satisfying |μ− λ| < 1/‖R(μ,A)‖.
(ii) The resolvent map λ �→ R(λ, A) is locally analytic with

(1.4) dn

dλn R(λ, A) = (−1)nn! R(λ, A)n+1 for all n ∈ N.

(iii) Let λn ∈ ρ(A) with lim
n→∞ λn = λ0. Then λ0 ∈ σ(A) if and only if

lim
n→∞ ‖R(λn, A)‖ = ∞.

Proof. (i) For λ ∈ C write

λ −A = μ−A + λ − μ = [I − (μ− λ)R(μ, A)](μ−A).

This operator is bijective if [I − (μ − λ)R(μ, A)] is invertible, which is the
case for |μ− λ| < 1/‖R(μ,A)‖. The inverse is then obtained as

R(λ, A) = R(μ, A)[I − (μ− λ)R(μ, A)]−1 =
∞∑

n=0

(μ− λ)nR(μ, A)n+1.

Assertion (ii) follows immediately from the series representation (1.3) for
the resolvent.

To show (iii) we use (i), which implies ‖R(μ, A)‖ ≥ 1/dist(μ,σ(A)) for
all μ ∈ ρ(A). This already proves one implication. For the converse, as-
sume that λ0 ∈ ρ(A). Then the continuous resolvent map remains bounded
on the compact set {λn : n ≥ 0}. This contradicts the assumption that
limn→∞ ‖R(λn, A)‖ = ∞; hence λ0 ∈ σ(A). �

As an immediate consequence, we have that the spectrum σ(A) is a closed
subset of C. Nothing more can be said in general (see the examples below).
However, if A is bounded, it follows that

σ(A) ⊂ {λ ∈ C : |λ| ≤ ‖A‖},
because

R(λ, A) =
1
λ

(
1 − A

λ

)−1

=
∞∑

n=0

An

λn+1

exists for all |λ| > ‖A‖. In addition, an application of Liouville’s theorem
to the resolvent map implies σ(A) �= ∅ (see [TL80, Chap. V, Thm. 3.2]).

1.4 Corollary. For a bounded operator A on a Banach space X, the spec-
trum σ(A) is always compact and nonempty; hence its spectral radius

r(A) := sup
{|λ| : λ ∈ σ(A)

}
= lim

n→∞ ‖An‖1/n

is finite and satisfies r(A) ≤ ‖A‖.
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The above formula for the spectral radius is called the Hadamard formula
because it resembles the well-known Hadamard formula for the radius of
convergence of a power series. For its proof we refer to [TL80, Chap. V,
Thm. 3.5] or [Yos65, XIII.2, Thm. 3].

Before proceeding with a more detailed analysis of σ(A), we show by
some simple examples that for unbounded operators σ(A) can be any closed
subset of C.

1.5 Examples. (i) On X := C[0, 1] take the differential operators

Aif := f ′ for i = 1, 2

with domain
D(A1) := C1[0, 1] and

D(A2) :=
{
f ∈ C1[0, 1] : f(1) = 0

}
.

Then
σ(A1) = C,

because for each λ ∈ C one has (λ − A1)ελ = 0 for ελ := eλs, 0 ≤ s ≤ 1.
On the other hand,

σ(A2) = ∅,
because

Rλf(s) :=
∫ 1

s

eλ(s−t)f(t) dt, 0 ≤ s ≤ 1, f ∈ X,

yields the inverse of (λ −A2) for every λ ∈ C.
(ii) Take any nonempty, closed subset Ω ⊂ C. On the space X := C0(Ω)
consider the multiplication operator

Mf(λ) := λ · f(λ)

for λ ∈ Ω, f ∈ X. From Proposition I.3.2 we obtain that

σ(M) = Ω.

As a next step, we look at the fine structure of the spectrum. We start
with a particularly important subset of σ(A).

1.6 Definition. For a closed operator A : D(A) ⊆ X → X, we call

Pσ(A) := {λ ∈ C : λ −A is not injective}

the point spectrum of A. Moreover, each λ ∈ Pσ(A) is called an eigenvalue,
and each 0 �= x ∈ D(A) satisfying (λ − A)x = 0 is an eigenvector of A
(corresponding to λ).
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In most cases, the eigenvalues of an operator are simpler to determine
than arbitrary spectral values. However, they do not, in general, exhaust
the entire spectrum.

1.7 Examples. (i) For the operator A1 in Example 1.5.(i), one has

σ(A1) = Pσ(A1) = C.

(ii) In contrast, for the multiplication operator M in Example 1.5.(ii) one
has

σ(M) = Ω, but Pσ(M) = {λ ∈ C : λ is isolated in Ω}.
As a variant of the point spectrum, we introduce the following larger subset
of σ(A).

1.8 Definition. For a closed operator A : D(A) ⊆ X → X, we call

Aσ(A) :=
{

λ ∈ C :
λ −A is not injective or
rg(λ −A) is not closed in X

}
the approximate point spectrum of A.

The inclusion Pσ(A) ⊂ Aσ(A) is evident from the definition, but the
reason for calling it “approximate point spectrum” is not. This is explained
by the next lemma.

1.9 Lemma. For a closed operator A : D(A) ⊂ X → X and a number
λ ∈ C one has λ ∈ Aσ(A); i.e., λ is an approximate eigenvalue, if and
only if there exists a sequence (xn)n∈N ⊂ D(A), called an approximate
eigenvector , such that ‖xn‖ = 1 and limn→∞ ‖Axn − λxn‖ = 0.

Proof. We only have to consider the case in which λ − A is injective. As
usual, we denote by X1 :=

(
D(A), ‖ · ‖A) the first Sobolev space for A; cf.

Section II.2.c. Then the inverse (λ−A)−1 : rg(λ−A) → X1 exists and, by
the closed graph theorem, is unbounded if and only if rg(λ−A) is not closed.
On the other hand, if (λ−A)−1 : rg(λ−A) → X is bounded, the closedness
of A implies the closedness of rg(λ − A). Hence (λ − A)−1 : X → X1 is
unbounded if and only if (λ − A)−1 : X → X is unbounded, and this
property can be expressed by the condition above. �

The approximate point spectrum generalizes the point spectrum. How-
ever, as we show in the following corollary, it has the advantage that it can
be empty only if σ(A) = ∅ or σ(A) = C.

1.10 Proposition. For a closed operator A : D(A) ⊂ X → X, the topolog-
ical boundary ∂σ(A) of the spectrum σ(A) is contained in the approximate
point spectrum Aσ(A).
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Proof. For each λ0 ∈ ∂σ(A) ⊆ σ(A) we can find a sequence (λn)n∈N ⊂
ρ(A) such that λn → λ0. By Proposition 1.3.(iii), using the uniform bound-
edness principle and passing to a subsequence, we find x ∈ X such that
limn→∞ ‖R(λn, A)x‖ = ∞. Define yn ∈ D(A) by

yn :=
R(λn, A)x
‖R(λn, A)x‖ .

The identity
(λ0 −A)yn = (λ0 − λn)yn + (λn −A)yn

shows that (yn) is an approximate eigenvector corresponding to λ0. �

The remaining part of the spectrum is now taken care of by the following
definition.

1.11 Definition. For a closed operator A : D(A) ⊆ X → X, we call

Rσ(A) := {λ ∈ C : rg(λ −A) is not dense in X}
the residual spectrum of A.

All possibilities for λ−A not being bijective are now covered by Defini-
tions 1.8 and 1.11, and hence

σ(A) = Aσ(A) ∪Rσ(A).

However, there is no reason for the union to be disjoint. It is easy to find
examples by applying the following very useful dual characterization of
Rσ(A). Note that we now need a dense domain in order to define the
adjoint operator (see Definition A.12).

1.12 Proposition. For a closed, densely defined operator A, the residual
spectrum Rσ(A) coincides with the point spectrum Pσ(A′) of A′.

Proof. The closure of rg(λ − A) is different from X if and only if there
exists a linear form 0 �= x′ ∈ X ′ vanishing on rg(λ − A). By the definition
of A′, this means x′ ∈ D(A′) and (λ −A′)x′ = 0. �

In the next theorem we show that for each λ0 ∈ ρ(A) there is a canon-
ical relation, called the spectral mapping theorem, between the spectrum
of the unbounded operator A and the spectrum of the bounded operator
R(λ0, A). This allows us to transfer results from the spectral theory of
bounded operators to the unbounded case.

1.13 Spectral Mapping Theorem for the Resolvent. Let A : D(A) ⊆
X → X be a closed operator with nonempty resolvent set ρ(A).

(i) σ
(
R(λ0, A)

) \ {0} =
(
λ0 − σ(A)

)−1 :=
{ 1

λ0−μ : μ ∈ σ(A)
}

for each
λ0 ∈ ρ(A).

(ii) Analogous statements hold for the point, approximate point, and
residual spectra of A and R(λ0, A).
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Proof. For 0 �= μ ∈ C and λ0 ∈ ρ(A) we have(
μ−R(λ0, A)

)
x = μ

[
(λ0 − 1

μ ) −A
]
R(λ0, A)x for x ∈ X,

= μR(λ0, A)
[
(λ0 − 1

μ ) −A
]
x for x ∈ D(A).

This identity shows that

and
ker
(
μ−R(λ0, A)

)
= ker

[
(λ0 − 1

μ ) −A
]

rg
(
μ−R(λ0, A)

)
= rg
[
(λ0 − 1

μ ) −A
]
.

Recalling Definitions 1.6, 1.8, and 1.11 for the various parts of the spectrum,
we see that μ ∈ Pσ

(
R(λ0, A)

)
if and only if (λ0−1/μ) ∈ Pσ(A) and similarly

for the approximate point spectrum and the residual spectrum. This proves
assertion (ii), and hence (i). �

This relation between σ(A) and σ
(
R(λ0, A)

)
determines the spectral

radius of R(λ0, A).

1.14 Corollary. For each λ0 ∈ ρ(A) one has

(1.5) dist
(
λ0, σ(A)

)
=

1
r
(
R(λ0, A)

) ≥ 1
‖R(λ0, A)‖ .

The Spectral Mapping Theorem for the Resolvent combined with the
Riesz–Schauder theory for compact operators, cf. [TL80, Sect. V.7], [Yos65,
X.5], or [Lan93, Chap. XVII], gives the following result. It states that, as
in finite dimensions, for resolvent compact operators (cf. Definition II.5.7)
the spectrum and the point spectrum coincide.

1.15 Corollary. If the operator A has compact resolvent, then

σ(A) = Pσ(A).

We now study so-called spectral decompositions, which are one of the
most important features of spectral theory. First, we recall briefly their
construction in the bounded case (see, e.g., [DS58, Sect. VII.3], [GGK90,
I.2], or [TL80, Sect. V.9]).

Let T ∈ L(X) be a bounded operator and assume that the spectrum
σ(T ) can be decomposed as

(1.6) σ(T ) = σc ∪ σu,

where σc, σu are closed and disjoint sets. From the functional calculus
(already used in Section I.2.b) one obtains the associated spectral projection

(1.7) P := Pc :=
1

2πi

∫
γ

R(λ, T ) dλ,
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where γ is a Jordan path in the complement of σu and enclosing σc. This
projection commutes with T and yields the spectral decomposition

X = Xc ⊕Xu

with the T -invariant spaces Xc := rg P , Xu := kerP . The restrictions
Tc ∈ L(Xc) and Tu ∈ L(Xu) of T satisfy

(1.8) σ(Tc) = σc and σ(Tu) = σu,

a property that characterizes the above decomposition of X and T in a
unique way.

For unbounded operators A and an arbitrary decomposition of the spec-
trum σ(A) into closed sets it is not always possible to find an associated
spectral decomposition (for counterexamples see [EN00, Exer. IV.2.30] or
[Nag86, A-III, Expl. 3.2]). However, if one of these sets is compact, the
spectral mapping theorem for the resolvent allows us to deduce the result
from the bounded case. To prove this, we first need the following lemma.

1.16 Lemma. Let Y be a Banach space continuously embedded in X. If
λ ∈ ρ(A) such that R(λ, A)Y ⊂ Y , then λ ∈ ρ(A|) and R(λ, A|) = R(λ, A)|.

Proof. By the definition of D(A|) and because R(λ, A)Y ⊆ Y , we already
know that R(λ, A)| maps Y onto D(A|) and therefore is the algebraic in-
verse of λ−A|. To show that it is bounded in Y , it suffices to observe that
it is a closed, everywhere defined operator. �

1.17 Proposition. Let A : D(A) ⊂ X → X be a closed operator such
that its spectrum σ(A) can be decomposed into the disjoint union of two
closed subsets σc and σu; i.e.,

σ(A) = σc ∪ σu.

If σc is compact, then there exists a unique spectral decomposition X =
Xc ⊕Xu for A in the following sense.

(i) Xc and Xu are A-invariant.
(ii) The restriction Ac := A|Xc

is bounded on the Banach space Xc.

(iii) XA
1 = Xc ⊕ (Xu)Au

1 , where Au := A|Xu
(and XA

1 denotes the first
Sobolev space with respect to A as introduced in Exercise II.2.22.(1)).

(iv) A = Ac ⊕Au.
(v) σ(Ac) = σc and σ(Au) = σu.
(vi) If X = X1 ⊕ X2 for two A-invariant closed subspaces X1 and X2 of

X such that A|X1 is bounded, σ(A|X1) = σc and σ(A|X2) = σu, then
X1 = Xc and X2 = Xu.
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Proof. When A is bounded, we have already indicated a proof based on
Formula (1.7). Therefore, we may assume A to be unbounded and fix some
λ ∈ ρ(A). Then 0 ∈ σ(R(λ, A)). Hence, by Theorem 1.13, we obtain

(1.9)
σ
(
R(λ, A)

)
= (λ − σc)−1

⋃ (
(λ − σu)−1 ∪ {0})

=: τc ∪ τu,

where τc, τu are compact and disjoint subsets of C. Now let P be the
spectral projection for R(λ, A) associated with the decomposition (1.9)
and put Xc := rg P , Xu := kerP . Because R(λ, A) and P commute, we
have R(λ, A)Xc ⊆ Xc, and Lemma 1.16 implies

(1.10) λ ∈ ρ(Ac) and R(λ, Ac) = R(λ, A)|Xc
.

Moreover, we know that σ
(
R(λ, Ac)

)
= τc �� 0. Therefore, the operator

Ac = λ −R(λ, Ac)−1 is bounded on Xc and we obtain (ii).
To show (i) we observe that Xc ⊆ D(A) and AXc = AcXc ⊆ Xc; i.e.,

Xc is A-invariant. Because A(I − P )x = (I − P )Ax for x ∈ D(A), also
Xu = rg(I − P ) is A-invariant.

To verify (iii), observe that by similar arguments as above we obtain

(1.11) λ ∈ ρ(Au) and R(λ, Au) = R(λ, A)|Xu
.

Combining this with (1.10) yields

Xc + D(Au) = R(λ, Ac)Xc + R(λ, Au)Xu

⊆ D(A) = R(λ, A)(Xc + Xu)
⊆ R(λ, Ac)Xc + R(λ, Au)Xu

= Xc + D(Au);

i.e., XA
1 = Xc + D(Au). Because P ∈ L(X), the restriction P|XA

1
: XA

1 →
XA

1 is closed and therefore bounded by the closed graph theorem. This
proves (iii), and assertion (iv) then follows from (ii) and (iii).

Finally, (v) is a consequence of the Spectral Mapping Theorem 1.13 and
(1.9), (1.10), (1.11), and (vi) follows from Theorem 1.13 and the unique-
ness of the spectral decomposition for bounded operators; see [GGK90,
Prop. I.2.4]. �

1.18 Isolated Singularities. We now sketch a particularly important
case of the above decomposition that occurs when σc = {μ} consists of a
single point only. This means that μ is isolated in σ(A) and therefore the
holomorphic function λ �→ R(λ, A) can be expanded as a Laurent series

R(λ, A) =
∞∑

n=−∞
(λ − μ)nUn
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for 0 < |λ − μ| < δ and some sufficiently small δ > 0. The coefficients Un

of this series are bounded operators given by the formulas

(1.12) Un =
1

2πi

∫
γ

R(λ, A)
(λ − μ)n+1 dλ, n ∈ Z,

where γ is, for example, the positively oriented boundary of the disc with
radius δ/2 centered at μ. The coefficient U−1 is exactly the spectral projec-
tion P corresponding to the decomposition σ(A) = {μ} ∪ (σ(A) \ {μ}) of
the spectrum of A (cf. (1.7)). It is called the residue of R(·, A) at μ. From
(1.12) (or using the multiplicativity of the functional calculus in [TL80,
Thm. V.8.1]), one deduces the identities

(1.13)
U−(n+1) = (A − μ)nP and

U−(n+1) · U−(m+1) = U−(n+m+1)

for n, m ≥ 0. If there exists k > 0 such that U−k �= 0 and U−n = 0 for
all n > k, then the spectral value μ is called a pole of R(·, A) of order k.
In view of (1.13), this is true if and only if U−k �= 0 and U−(k+1) = 0.
Moreover, we can obtain U−k as

U−k = lim
λ→μ

(λ − μ)kR(λ, A).

The dimension of the spectral subspace rg P is called the algebraic multi-
plicity ma of μ, and mg := dim ker(μ−A) is the geometric multiplicity. In
the case ma = 1, we call μ an algebraically simple (or first-order) pole.

If k is the order of the pole, where we set k = ∞ if R(·, A) has an essential
singularity at μ, one can show the inequalities

(1.14) mg + k − 1 ≤ ma ≤ mg · k

if we put ∞ · 0 := ∞. This implies that
(i) ma < ∞ if and only if μ is a pole with mg < ∞, and
(ii) if μ is a pole of order k, then μ ∈ Pσ(A) and rg P = ker(μ−A)k.
For proofs of these facts we refer to [GGK90, Chap. II], [Kat80, III.5],

[TL80, V.10], or [Yos65, VIII.8].

1.19 The Essential Spectrum. As we already mentioned above, spectral
decomposition is a powerful method to split an operator on a Banach space
into two, it is hoped simpler, parts acting on invariant subspaces. In this
paragraph we present the tools for a decomposition in which one of these
subspaces is finite-dimensional. The results are used in Sections 4, VI.3,
and VI.4. We start with the following notion.
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An operator S ∈ L(X) on a Banach space X is called a Fredholm operator
if

dim ker S < ∞ and dim X/rg S < ∞.

For T ∈ L(X), we then define its Fredholm domain ρF(T ) by

ρF(T ) :=
{
λ ∈ C : λ − T is a Fredholm operator

}
,

and call its complement

σess(T ) := C \ ρF(T )

the essential spectrum of the operator T . One can show (see for instance
[GGK90, Chap. XI, Thm. 5.1]) that
(1.15)

S is a Fredholm operator ⇐⇒
{

there exists T ∈ L(X) such that
I − TS and I − ST are compact.

Using this fact, an equivalent characterization of σess(T ) is obtained through
the Calkin algebra C(X) := L(X)/K(X), where K(X) stands for the two-
sided closed ideal in L(X) of all compact operators. In fact, C(X) equipped
with the quotient norm∥∥T̂∥∥ := dist

(
T, K(X)

)
= inf

{‖T −K‖ : K ∈ K(X)
}

for T̂ := T + K(X) ∈ C(X) is a Banach algebra with unit. Then, by the
equivalence in (1.15), we have

and
ρF(T ) = ρ(T̂ )

σess(T ) = σ(T̂ )

for all T ∈ L(X), where the spectrum of T̂ is defined in the Banach algebra
C(X) (see [CPY74, Chap. 1]). In particular, this implies that σess(T ) is
closed and, if X is infinite-dimensional, nonempty.

In the sequel, we also use the notation

and
‖T‖ess : = ‖T̂‖
ress(T ) : = r(T̂ ) = sup

{|λ| : λ ∈ σess(T )
}

for the essential norm and the essential spectral radius, respectively, of the
operator T . Because ‖T‖ess = ‖T + K‖ess for every compact operator K
on X, we have

ress(T + K) = ress(T )
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for all K ∈ K(X). Moreover, using the Hadamard formula for the spectral
radius of T̂ , cf. Corollary 1.4, we obtain the equality

ress(T ) = lim
n→∞ ‖Tn‖1/n

ess .

For a detailed analysis of the essential spectrum of an operator, we refer to
[Kat80, Sect. IV.5.6], [GGK90, Chap. XVII], or [Gol66, Sect. IV.2]. Here, we
only recall that the poles of R(·, T ) with finite algebraic multiplicity belong
to ρF(T ). Conversely, an element of the unbounded connected component
of ρF(T ) either belongs to ρ(T ) or is a pole of finite algebraic multiplicity.
Thus ress(T ) can be characterized by

(1.16) ress(T ) = inf
{

r > 0 :
each λ ∈ σ(T ) satisfying |λ| > r is a pole
of R(·, T ) of finite algebraic multiplicity

}
.

1.20 Exercises. (1) Let A be a complex n × n matrix. Show that for
λ ∈ σ(A)

(i) The pole order of R(·, A) in λ,
(ii) The size of the largest Jordan block of A corresponding to λ,
(iii) The multiplicity of λ as zero of the minimal polynomial mA of A

coincide.
(2) Compute the spectrum σ(A) for the following operators on the Banach
space X := C[0, 1].

(i) Af := 1
s(1−s) · f(s), D(A) := {f ∈ X : Af ∈ X}.

(ii) Bf(s) := is2 · f(s), D(B) := X.
(iii) Cf(s) := f ′(s), D(C) := {C1[0, 1] : f(0) = 0}.
(iv) Df(s) := f ′(s), D(D) := {f ∈ C1[0, 1] : f ′(1) = 0}.
(v) Ef(s) := f ′(s), D(E) := {f ∈ C1[0, 1] : f(0) = f(1)}.
(vi) Ff(s) := f ′′(s), D(G) := C2[0, 1].
(vii) Gf(s) := f ′′(s), D(H) := {f ∈ C2[0, 1] : f(0) = f(1) = 0}.
(viii) Hf(s) := f ′′(s), D(J) := {f ∈ C2[0, 1] : f ′′(0) = 0}.
Which of these operators are generators on X?
(3) Consider X := C0(R, C2) and

Af(s) := f ′(s) + Mf(s), s ∈ R,

where M :=
( 0 1

1 0

)
and D(A) := C1

0(R, C2). Show that σ(A) decomposes
into −1 + iR and 1 + iR and that there exists a corresponding spectral
decomposition. (Hint: Transform M into a diagonal matrix.)
(4) Let A be an operator on a Banach space X and let B be a restriction
of A. If B is surjective and A is injective, then A = B. In particular, A = B
if B ⊂ A and ρ(A) ∩ ρ(B) �= ∅.
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b. Spectral Theory for Generators

The Hille–Yosida theorem already ensures that the spectrum of the genera-
tor of a strongly continuous semigroup always lies in a proper left half-plane
and thus satisfies a property not shared by arbitrary closed operators. In
this section we study the spectrum of generators and its relation to the
spectrum of the semigroup operators more closely.

For (unbounded) semigroup generators, the role played by the spectral
radius in the case of bounded operators is taken over by the following
quantity.

1.21 Definition. Let A : D(A) ⊂ X → X be a closed operator. Then

s(A) := sup
{
Re λ : λ ∈ σ(A)

}
is called the spectral bound of A.

Note that s(A) can be any real number including −∞ (if σ(A) = ∅) and
+∞. For the generator A of a strongly continuous semigroup T =

(
T (t)
)
t≥0,

however, the spectral bound s(A) is always dominated by the growth bound

ω0 := ω0(T) := inf
{

w ∈ R :
there exists Mw ≥ 1 such that
‖T (t)‖ ≤ Mwewt for all t ≥ 0

}
of the semigroup1 (see Definition I.1.5 and Corollary II.1.13).

We now show that ω0 is related to the spectrum (more precisely, to the
spectral radius) of the operators T (t).

1.22 Proposition. For the spectral bound s(A) of a generator A and for
the growth bound ω0 of the generated semigroup

(
T (t)
)
t≥0, one has

(1.17)
−∞ ≤ s(A) ≤ ω0 = inf

t>0

1
t

log ‖T (t)‖ = lim
t→∞

1
t

log ‖T (t)‖

=
1
t0

log r
(
T (t0)

)
< ∞

for each t0 > 0. In particular, the spectral radius of the semigroup operator
T (t) is given by

(1.18) r
(
T (t)
)

= eω0 t for all t ≥ 0.

For the proof we need the following elementary fact.

1 Occasionally, we write “ω0(A)” instead of “ω0(T),” because by Theorem II.1.4 the
semigroup T is uniquely determined by its generator A.
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1.23 Lemma. Let ξ : R+ → R be bounded on compact intervals and
subadditive; i.e., ξ(s + t) ≤ ξ(s) + ξ(t) for all s, t ≥ 0. Then

inf
t>0

ξ(t)
t

= lim
t→∞

ξ(t)
t

exists.

Proof. Fix t0 > 0 and write t = kt0 + s with k ∈ N, s ∈ [0, t0). The
subadditivity implies

ξ(t)
t

≤ 1
kt0

(
ξ(kt0) + ξ(s)

) ≤ ξ(t0)
t0

+
ξ(s)
kt0

.

Because k → ∞ if t → ∞, we obtain

lim
t→∞

ξ(t)
t

≤ ξ(t0)
t0

for each t0 > 0 and therefore

lim
t→∞

ξ(t)
t

≤ inf
t>0

ξ(t)
t

≤ lim
t→∞

ξ(t)
t

,

which proves the assertion. �

Proof of Proposition 1.22. Because the function

t �→ ξ(t) := log ‖T (t)‖
satisfies the assumptions of Lemma 1.23, we can define

v := inf
t>0

1
t

log ‖T (t)‖ = lim
t→∞

1
t

log ‖T (t)‖.

From this identity, it follows that

evt ≤ ‖T (t)‖
for all t ≥ 0; hence v ≤ ω0 by the definition of ω0. Now choose w > v. Then
there exists t0 > 0 such that

1
t

log ‖T (t)‖ ≤ w

for all t ≥ t0; hence ‖T (t)‖ ≤ ewt for t ≥ t0. On [0, t0], the norm of T (t)
remains bounded, so we find M ≥ 1 such that

‖T (t)‖ ≤ Mewt

for all t ≥ 0; i.e., ω0 ≤ w. In as much as we have already proved that
v ≤ ω0, this implies ω0 = v.
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To prove the identity ω0 = 1/t0 log r
(
T (t0)

)
, we use the Hadamard for-

mula for the spectral radius in Corollary 1.4; i.e.,

r
(
T (t)
)

= lim
n→∞ ‖T (nt)‖1/n = lim

n→∞ et·1/nt log ‖T (nt)‖

= e
t· lim

n→∞
(1/nt log ‖T (nt)‖)

= et ω0 .

The remaining inequalities have already been proved in Corollary II.1.13.
�

We now state a simple consequence of this proposition.

1.24 Corollary. For the generator A of a strongly continuous semigroup(
T (t)
)
t≥0 with growth bound ω0 = −∞ (e.g., for a nilpotent semigroup)

one has
r
(
T (t)
)

= 0 for all t > 0 and σ(A) = ∅.
The inequalities in (1.17) establish an interesting relation between spec-

tral properties of the generator A, expressed by the spectral bound s(A),
and the qualitative behavior of the semigroup

(
T (t)
)
t≥0, expressed by the

growth bound ω0. In particular, if spectral and growth bound coincide, we
obtain infinite-dimensional versions of the Liapunov Stability Theorem 3.6
below. For general strongly continuous semigroups, however, the situation
is more complex, as shown by the following examples and counterexamples.

1.25 Examples. We first discuss (left) translation semigroups on various
function spaces (see Section I.3.c and Paragraph II.2.9) and show that the
spectra heavily depend on the choice of the Banach space. Before starting
the discussion, it is useful to observe that the exponential functions

ελ(s) := eλs, s ∈ R,

satisfy
d
dsελ = λελ for each λ ∈ C.

Because the generator A of a translation semigroup is the first derivative
with appropriate domain (see Paragraph II.2.9), it follows that λ is an
eigenvalue of A if and only if ελ belongs to the domain D(A).
(i) Consider the (left) translation semigroup

(
T (t)
)
t≥0 on the space X :=

C0(R+). Its generator is

with domain
Af = f ′

D(A) =
{
f ∈ C0(R+) ∩ C1(R+) : f ′ ∈ C0(R+)

}
.

Therefore, we have ελ ∈ D(A) if and only if λ ∈ C satisfies Re λ < 0. This
shows that

Pσ(A) = {λ ∈ C : Re λ < 0}.
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We have that s(A) ≤ ω0 ≤ 0, because
(
T (t)
)
t≥0 is a contraction semigroup.

This implies, because the spectrum is closed, that

σ(A) = {λ ∈ C : Re λ ≤ 0}.
The same eigenfunctions ελ yield eigenvalues eλt for the operators T (t).
Again by the contractivity of T (t) we obtain that

and
Pσ
(
T (t)
)

= {z ∈ C : |z| < 1}
σ
(
T (t)
)

= {z ∈ C : |z| ≤ 1} for t > 0.

(ii) Next, we consider the (left) translation group
(
T (t)
)
t∈R on X :=

C0(R). Then Pσ(A) = ∅, because no ελ belongs to D(A). However, for
each α ∈ R, the functions

fn(s) := eiαs · e−s2/n, n ∈ N,

form an approximate eigenvector of A for the approximate eigenvalue iα.
This shows that

Aσ(A) = σ(A) = iR,

and analogously
σ
(
T (t)
)

= {z ∈ C : |z| = 1}.
(iii) The nilpotent right translation semigroup

(
T (t)
)
t≥0 on X := C0(0, 1]

satisfies ω0 = −∞ (see Example II.3.19), hence it follows from Corol-
lary 1.24 that

σ
(
T (t)
)

= {0} and σ(A) = ∅.
In addition, for each λ ∈ C, the resolvent is given by

(1.19)
(
R(λ, A)f

)
(s) =

∫ s

0
e−λ(s−τ)f(τ) dτ, s ∈ (0, 1], f ∈ X.

(iv) For the periodic translation group on, e.g., X = C2π(R) (see Para-
graph I.3.15), the functions ελ belong to D(A) if and only if λ ∈ iZ.
Because A has compact resolvent (use Example II.5.9), we obtain from
Corollary 1.15,

σ(A) = Pσ(A) = iZ.

The spectra of the operators T (t) are always contained in Γ := {z ∈ C :
|z| = 1} and contain the eigenvalues eikt for k ∈ Z. Because σ

(
T (t)
)

is
closed, it follows that

σ
(
T (t)
)

=
{

Γ if t/2π /∈ Q,
Γq if t/2π = p/q ∈ Q with p and q coprime,

where Γq := {z ∈ C : zq = 1}.
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In each of these examples there is a close relationship between the spec-
trum σ(A) and the spectra σ

(
T (t)
)

implying ω0 = s(A). As we show next
this is not always the case.

1.26 Counterexample. Consider the Banach space

X := C0(R+) ∩ L1(R+, esds)

of all continuous functions on R+ that vanish at infinity and are integrable
for es ds endowed with the norm

‖f‖ := ‖f‖∞ + ‖f‖1 = sup
s≥0

|f(s)|+
∫ ∞

0
|f(s)|es ds.

The (left) translations define a strongly continuous semigroup
(
T (t)
)
t≥0 on

X whose generator is

Af = f ′,

D(A) =
{
f ∈ X : f ∈ C1(R+), f ′ ∈ X

}
(use Proposition II.2.3). As a first observation, we note that ‖T (t)‖ = 1 for
all t ≥ 0. Thus, we have ω0 = 0, and hence s(A) ≤ 0. On the other hand,
ελ ∈ D(A) only if Reλ < −1. Hence, we obtain for the point spectrum

Pσ(A) = {λ ∈ C : Re λ < −1}
and for the spectral bound s(A) ≥ −1.

We now show that λ ∈ ρ(A) if Reλ > −1. In fact, for every f ∈ X we
have that

‖·‖1 - lim
t→∞

∫ t

0
e−λsT (s)f ds

exists, because ‖T (s)f‖1 ≤ e−s ‖f‖1 for all s ≥ 0. Moreover, the limit

‖·‖∞ - lim
t→∞

∫ t

0
e−λsT (s)f ds

exists, because
∫∞
0 es|f(s)| ds < ∞. Consequently, the improper integral

(1.20)
∫ ∞

0
e−λsT (s)f ds

exists in X for every f ∈ X and yields the inverse of λ − A (see Theo-
rem II.1.10.(i)). We conclude that

σ(A) = {λ ∈ C : Re λ ≤ −1}, whence s(A) = −1,

whereas ω0 = 0 and r
(
T (t)
)

= 1 by (1.18). In particular, for t > 0, T (t)
has spectral values that are not the exponential of a spectral value of A.

The above phenomenon makes the spectral theory of semigroups inter-
esting and nontrivial. Before analyzing carefully what we call the “spectral
mapping theorem” for semigroups in Section 2, we first discuss an example
showing spectral theory at work.
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1.27 Delay Differential Operators. We return to the delay differential
operator from Paragraph II.3.29 defined as

Af := f ′ on D(A) :=
{
f ∈ C1[−1, 0] : f ′(0) = Lf

}
on the Banach space X := C[−1, 0] for some linear form L ∈ X ′ and
try to compute its point spectrum Pσ(A). As for the above translation
semigroups, we see that a function f ∈ C[−1, 0] is an eigenfunction of A
only if it is (up to a scalar factor) of the form f = ελ, where

ελ(s) := eλs, s ∈ [−1, 0],

for some λ ∈ C. However, such a function ελ belongs to D(A) if and only
if it satisfies the boundary condition

which becomes
ε′

λ(0) = Lελ,

λ = Lελ.

Therefore, if we define ξ(λ) := λ − Lελ, we obtain the point spectrum
Pσ(A) as

Pσ(A) =
{
λ ∈ C : ξ(λ) = 0

}
.

Because ξ(·) is an analytic function on C, its zeros are isolated, and there-
fore Pσ(A) is a discrete subset of C.

In order to identify the entire spectrum σ(A), we observe that X1 :=(
D(A), ‖·‖A

)
is a closed subspace of C1[−1, 0] and that the canonical in-

jection
i : C1[−1, 0] → C[−1, 0]

is compact by the Arzelà–Ascoli theorem. Therefore, it follows from Propo-
sition II.5.8 that R(λ, A) is a compact operator, and by Corollary 1.15, we
obtain

σ(A) = Pσ(A).

Proposition. The spectrum of the above delay differential operator con-
sists of isolated eigenvalues only. More precisely, we call

λ �→ ξ(λ) := λ − Lελ

the corresponding characteristic function and obtain

σ(A) =
{
λ ∈ C : ξ(λ) = 0

}
.

In other words, the spectrum of A consists of the zeros of the character-
istic equation

ξ(λ) = 0.
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For arbitrary L ∈ C[−1, 0]′, it is still difficult to determine all complex
zeros of the analytic function ξ(·). However, for many applications as in
Section 3, it suffices to know the spectral bound s(A). To determine it, we
now assume that the linear form L is decomposed as

L = L0 + aδ0,

where L0 is a positive linear form on C[−1, 0] having no atomic part in
0. This means that limn→∞ L0(fn) = 0 whenever (fn)n∈N is a bounded
sequence in X satisfying limn→∞ fn(s) = 0 for all −1 ≤ s < 0. As usual, δ0
denotes the point evaluation at 0, and we take a ∈ R. In this case, we can
determine s(A) by discussing the characteristic equation as an equation on
R only.

Corollary. Consider the above delay differential operator
(
A, D(A)

)
on

X := C[−1, 0] and assume that L ∈ X ′ is of the form

L = L0 + aδ0

for some a ∈ R and some positive L0 ∈ X ′ having no atomic part in 0.
Then the spectral bound s(A) is given by

s(A) = sup{λ ∈ R : λ = L0ελ + a},
and one has the equivalence

s(A) < 0 ⇐⇒ ‖L0‖ + a < 0.

Proof. The characteristic function λ �→ ξ(λ) := λ − L0ελ − a, considered
as a function on R, is continuous and strictly increasing from −∞ to +∞.
This holds, because we assumed L0 to be positive having no atomic part
in 0, hence satisfying

L0ελ ↓ 0 as λ → ∞.

Therefore, ξ has a unique real zero λ0 satisfying

λ0 < 0 ⇐⇒ 0 < ξ(0).

It remains to show that λ0 = s(A). Take λ = μ + iν ∈ σ(A). Using the
above characteristic equation, this can be restated as

μ + iν = L0(εμεiν) + a.

By taking the real parts in this identity and using the positivity of L0, we
obtain

μ = Re(L0(εμεiν) + a) ≤ |L0(εμεiν)| + a ≤ L0(εμ) + a,

which, by the above properties of the characteristic function ξ on R, implies
μ ≤ λ0. Therefore, we conclude that

μ = Re λ ≤ λ0 = s(A)

for all λ ∈ σ(A). �
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We recommend restating the above results for

or

L1f := af(0) + bf(−1)

L2f := af(0) +
∫ 0

−1
k(s)f(s) ds

with a ∈ R, 0 ≤ b, and 0 ≤ k ∈ L∞[−1, 0].

1.28 Exercises. (1) Use the rescaling procedure and Counterexample 1.26
to show that for arbitrary real numbers α < β, there exists a strongly
continuous semigroup

(
T (t)
)
t≥0 with generator A such that

s(A) = α and ω0 = β.

(2) Let
(
T (t)
)
t∈R be a strongly continuous group on X with generator A.

Then there exist constants m, M ≥ 1, v, w ∈ R such that

1
m

e−vt‖x‖ ≤ ‖T (t)x‖ ≤ Mewt‖x‖ for all t ≥ 0, x ∈ X.

Show that
−v ≤ − s(−A) ≤ s(A) ≤ w.

(3) Let
(
T (t)
)
t≥0 be the semigroup from Counterexample 1.26. Find an ap-

proximate eigenvector (fn)n∈N corresponding to the approximative eigen-
value λ = 1 of T (t) for t > 0.
(4) Modify Counterexample 1.26 to obtain s(A) = −∞, ω0 = 0. (Hint:
Consider X := C0(R+) ∩ L1(R+, ex2

dx).)
(5∗) Consider the translations on

X :=
{

f ∈ C(R) : lim
s→∞ f(s) = lim

s→−∞ e3sf(s) = 0 and
∫ ∞

−∞
e2s|f(s)| ds < ∞

}
endowed with the norm

‖f‖ := sup
s≥0

|f(s)|+ sup
s≤0

e3s|f(s)|+
∫ ∞

−∞
e2s|f(s)| ds.

Show that this yields a strongly continuous group on X with growth bound
ω0 = 0, but spectral bound s(A) < −1. (Hint: See [Wol81].)
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2. Spectral Mapping Theorems

It is our ultimate goal to describe the semigroup
(
T (t)
)
t≥0 by the spectrum

σ(A) of its generator A. However, as we have already seen in Counterexam-
ple 1.26, the general case is much more complex. As a first, but essential,
step, we now study in detail the relation between the spectrum σ(A) of the
generator A and the spectrum σ

(
T (t)
)

of the semigroup operators T (t).
The intuitive interpretation of T (t) as the exponential “etA” of A leads us
to the following principle.

2.1 Leitmotif. The spectra σ
(
T (t)
)

of the semigroup operators T (t) should
be obtained from the spectrum σ(A) of the generator A by a relation of
the form

(2.1) “σ
(
T (t)
)

= etσ(A) :=
{
etλ : λ ∈ σ(A)

}
.”

a. Examples and Counterexamples

If (2.1), or a similar relation, holds, we say that the semigroup
(
T (t)
)
t≥0

and its generator A satisfy a spectral mapping theorem. However, before
proving results in this direction, we explain in a series of examples and
counterexamples what might go wrong.

2.2 Examples. (i) Take a strongly continuous semigroup
(
T (t)
)
t≥0 that

cannot be extended to a group (e.g., the left translation semigroup on
C0(R+); see Paragraph I.3.16). Then 0 ∈ σ

(
T (t)
)

for all t > 0, although
evidently 0 is never contained in etσ(A).

Therefore, we are led to modify (2.1) and call a spectral mapping theorem
the relation

(SMT) σ
(
T (t)
) \ {0} = etσ(A) for t ≥ 0.

(ii) For the periodic translation group in Example 1.25.(iv) we have σ(A) =
iZ and σ

(
T (t)
)

= Γ if t/2π is irrational, hence (SMT) does not hold.

The phenomenon appearing in this example is referred to as a weak
spectral mapping theorem, meaning that only

(WSMT) σ
(
T (t)
) \ {0} = etσ(A) \ {0} for t ≥ 0

holds.
The above modifications of the spectral mapping theorem are simply

caused by properties of the complex exponential map z �→ ez and have no
serious consequences for our applications in Section 3. Much more prob-
lematic is the failure of (SMT) or (WSMT) due to the particular form of
the operator A and the semigroup

(
T (t)
)
t≥0.
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Such a breakdown always occurs for generators A for which the so-called
spectral bound equal growth bound condition

(SBeGB) s(A) = ω0

does not hold. In fact, if s(A) < ω0, then

etσ(A) ⊆
{

λ ∈ C : |λ| ≤ et s(A)
}

,

and r
(
T (t)
)

= et ω0 > et s(A) (use Proposition 1.22).
For later reference, it is useful to state this fact explicitly.

2.3 Proposition. For a strongly continuous semigroup
(
T (t)
)
t≥0 with

generator A one always has the implications

(SMT) =⇒ (WSMT) =⇒ (SBeGB).

Therefore, the generator and the semigroup in Counterexample 1.26 do
not satisfy (WSMT). Whereas the semigroup in this example was the well-
known translation semigroup, the chosen Banach space seems to be artifi-
cial. Therefore, we present more examples for a drastic failure of (WSMT)
on more natural spaces.

Even for semigroups on Hilbert spaces the spectral mapping theorem
may fail.

2.4 Counterexample (on Hilbert Spaces). We start by considering
the n-dimensional Hilbert space Xn := Cn (with the ‖ · ‖2-norm) and the
n × n matrix

An :=

⎛⎜⎜⎜⎝
0 1 0 0
...

. . . . . . 0
...

. . . 1
0 · · · · · · 0

⎞⎟⎟⎟⎠ .

Because An is nilpotent, we obtain σ(An) = {0}. Moreover, the semigroups(
etAn
)
t≥0 generated by An satisfy∥∥etAn

∥∥ ≤ et

for t ≥ 0. We now collect some elementary facts about these matrices.

Lemma. For the elements xn := n
−1/2(1, . . . , 1) ∈ Xn we have ‖xn‖ = 1

and
(i) ‖Anxn − xn‖ ≤ n

−1/2,
(ii)
∥∥etAnxn − etxn

∥∥ ≤ tetn
−1/2 for t ≥ 0 and n ∈ N.
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Proof. Assertion (i) follows directly from the definition, whereas (ii) is
obtained from

etAnxn − etxn =
∫ t

0
et−sesAn(Anxn − xn) ds

(see (1.10) in Lemma II.1.9) and the estimate ‖etAn‖ ≤ et. �

Consider now the Hilbert space

X :=
⊕
n∈N

2
Xn :=

{
(xn)n∈N : xn ∈ Xn and

∑
n∈N

‖xn‖2 < ∞
}

,

with inner product (
(xn) | (yn)

)
:=
∑
n∈N

(xn | yn)

on which we define A := ⊕n∈N(An + in) with maximal domain D(A) in X.
This operator generates the strongly continuous semigroup

(
T (t)
)
t≥0 given

by
T (t) :=

⊕
n∈N

(
eintetAn

)
and satisfying

‖T (t)‖ ≤ sup
n∈N

∥∥eintetAn
∥∥ ≤ et

for t ≥ 0. This implies that its growth bound satisfies

ω0 ≤ 1.

We now show that s(A) = 0. For λ ∈ C with Re λ > 0, we have

R(λ, An + in) = R(λ − in, An) =
n−1∑
k=0

Ak
n

(λ − in)k+1 .

Because ‖An‖ = 1, we conclude that

‖R(λ, An + in)‖ ≤
n−1∑
k=0

1
|λ − in|k+1 ≤ 1

|λ − in| − 1

for n ∈ N sufficiently large. This implies supn∈N ‖R(λ, An + in)‖ < ∞, and
therefore ⊕

n∈N

(
R(λ, An + in)

)
is a bounded operator on X, which evidently gives the inverse of (λ − A).
Hence, s(A) ≤ 0, whereas s(A) ≥ 0 follows from the fact that each in is an
eigenvalue of A.
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To prove ω0 ≥ 1, we show that r
(
T (t0)

) ≥ et0 for t0 = 2π. Take xn as in
the lemma, identify it with the element (0, . . . , xn, 0, . . .) ∈ X, and consider
the sequence (xn)n∈N in X. Then (xn)n∈N is an approximate eigenvector
of T (2π) with eigenvalue e2π. So we have proved the following.

Proposition. For the strongly continuous semigroup
(
T (t)
)
t≥0 with

T (t) :=
⊕
n∈N

(eintetAn)

and its generator
A :=

⊕
n∈N

(An + in)

on the Hilbert space X := ⊕2
n∈N

Xn, one has

s(A) = 0 < ω0 = 1.

For still more examples we refer to Exercises 2.13.

b. Spectral Mapping Theorems for Semigroups

After having seen so many failures of our Leitmotif 2.1, it is now time to
present some positive results. Surprisingly, “most” of (SMT) still holds.

2.5 Spectral Inclusion Theorem. For the generator
(
A, D(A)

)
of a

strongly continuous semigroup
(
T (t)
)
t≥0 on a Banach space X, we have

the inclusions

(2.2) σ
(
T (t)
) ⊃ etσ(A) for t ≥ 0.

More precisely, for the point, approximate point, and residual spectra the
inclusions

Pσ
(
T (t)
) ⊃ etPσ(A),(2.3)

Aσ
(
T (t)
) ⊃ etAσ(A),(2.4)

Rσ
(
T (t)
) ⊃ etRσ(A)(2.5)

hold for all t ≥ 0.

Proof. Recalling the identities

(2.6)
eλtx− T (t)x = (λ −A)

∫ t

0
eλ(t−s)T (s)x ds for x ∈ X,

=
∫ t

0
eλ(t−s)T (s)(λ−A)x ds for x ∈ D(A)

from Lemma II.1.9, we see that
(
eλt − T (t)

)
is not bijective if (λ−A) fails

to be bijective. This proves (2.2).
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We now prove (2.4) and, by the same arguments, (2.3). Take λ ∈ Aσ(A)
and a corresponding approximate eigenvector (xn)n∈N ⊂ D(A). Define a
new sequence (yn)n∈N by

yn := eλtxn − T (t)xn =
∫ t

0
eλ(t−s)T (s)(λ−A)xn ds.

These vectors satisfy for some constant c > 0 the estimate

‖yn‖ ≤
∫ t

0

∥∥∥eλ(t−s)T (s)(λ−A)xn

∥∥∥ ds ≤ c ‖(λ −A)xn‖ → 0 as n → ∞.

Hence, eλt is an approximate eigenvalue of T (t), and (xn)n∈N serves as the
same approximate eigenvector for all t ≥ 0.

Next, take λ ∈ Rσ(A) and use (2.6) to obtain that

rg
(
eλt − T (t)

) ⊂ rg(λ −A)

is not dense in X. Hence (2.5) holds. �

It follows from the above examples and counterexamples that not all
converse inclusions can hold in general. In fact, we show that it is only the
approximate point spectrum that is responsible for the failure of (SMT).
For the point spectrum and the residual spectrum, however, we are able to
prove a spectral mapping formula.

2.6 Spectral Mapping Theorem for Point and Residual Spec-
trum. For the generator

(
A, D(A)

)
of a strongly continuous semigroup(

T (t)
)
t≥0 on a Banach space X, we have the identities

Pσ
(
T (t)
) \ {0} = etPσ(A),(2.7)

Rσ
(
T (t)
) \ {0} = etRσ(A)(2.8)

for all t ≥ 0.

Proof. Take t0 > 0 and 0 �= λ ∈ Pσ
(
T (t0)

)
. According to Paragraphs I.1.10

and II.2.2, we can pass from the semigroup
(
T (t)
)
t≥0 to the rescaled semi-

group
(
S(t)
)
t≥0 :=

(
e−t log λT (t0t)

)
t≥0 having the generator B = t0A −

log λ. Because for this rescaled semigroup 1 is an eigenvalue of S(1), we
can assume that t0 = 1 and λ = 1 from the beginning.

Take 0 �= x ∈ X satisfying T (1)x = x. Then the function t �→ T (t)x �= 0
is periodic, hence there exists at least one k ∈ Z such that the Fourier
coefficient

yk :=
∫ 1

0
e2πik(1−s)T (s)x ds

is nonzero. However, by Lemma II.1.9, yk ∈ D(A) and

(A − 2πik)yk = T (1)x− e2πikx = 0.

Therefore, 2πik ∈ Pσ(A) satisfying e2πik = 1 ∈ Pσ
(
T (1)
)
. This and (2.3)

prove (2.7).
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The identity for the residual spectrum follows from (2.7) if we consider
the sun dual semigroup

(
T (t)�)

t≥0 and use that Rσ(A) = Pσ(A�) and
Rσ
(
T (t)
)

= Pσ
(
T (t)�); cf. [EN00, IV.2.18]. �

Because we have proved spectral mapping theorems for the point as well
as for the residual spectrum, it follows that in Counterexample 2.4 there
must be approximate eigenvalues μ of T (t) that do not stem from some
λ ∈ σ(A) via the exponential map. In order to overcome this failure and
to obtain a spectral mapping theorem for the entire spectrum, we could
exclude the existence of such approximate eigenvalues and assume

σ
(
T (t)
)

= Pσ
(
T (t)
) ∪Rσ

(
T (t)
)

(e.g., if
(
T (t)
)
t≥0 is eventually compact). A more interesting and useful way

to save the validity of (SMT), however, is to look for additional properties
of the semigroup that guarantee even

(2.9) Aσ
(
T (t)
) \ {0} = etAσ(A).

Eventual norm continuity seems to be the most general hypothesis doing
this job.

However, we first characterize those approximate eigenvalues that satisfy
the spectral mapping property.

2.7 Lemma. For an approximate eigenvalue λ �= 0 of the operator T (t0)
the following statements are equivalent.

(a) There exists a sequence (xn)n∈N ⊂ X satisfying ‖xn‖ = 1 and
‖T (t0)xn − λxn‖ → 0 such that limt↓0 supn∈N ‖T (t)xn − xn‖ = 0.

(b) There exists μ ∈ Aσ(A) such that λ = eμt0 .

Proof. The implication (b) ⇒ (a) follows from identity (2.6).
To show the converse implication it suffices, as in the proof of Theo-

rem 2.6, to consider the case λ = 1 and t0 = 1 only. To this end we take
an approximate eigenvector (xn)n∈N as in (a). The uniform continuity of(
T (t)
)
t≥0 on the vectors xn implies that the maps [0, 1] � t �→ T (t)xn,

n ∈ N, are equicontinuous. Choose now x′
n ∈ X ′, ‖x′

n‖ ≤ 1, satisfying
〈xn, x′

n〉 ≥ 1/2 for all n ∈ N. Then the functions

[0, 1] � s �→ ξn(s) := 〈T (s)xn, x′
n〉

are uniformly bounded and equicontinuous. Hence, there exists, by the
Arzelà–Ascoli theorem, a convergent subsequence, still denoted by (ξn)n∈N,
such that limn→∞ ξn =: ξ ∈ C[0, 1]. From ξ(0) = limn→∞ ξn(0) ≥ 1/2 we
obtain that ξ �= 0. Therefore, this function has a nonzero Fourier coefficient;
i.e., there exists μm := 2πim, m ∈ Z, such that∫ 1

0
e−μmsξ(s) ds �= 0.
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If we set

zn :=
∫ 1

0
e−μmsT (s)xn ds,

we have zn ∈ D(A) by Lemma II.1.3. In addition, the elements zn satisfy

(μm −A)zn =
(
1 − e−μmT (1)

)
xn =

(
1 − T (1)

)
xn → 0

and
lim

n→∞
‖zn‖ ≥ lim

n→∞
| 〈zn, x′

n〉 |

≥ lim
n→∞

∣∣∣∣∫ 1

0
e−μms 〈T (s)xn, x′

n〉 ds

∣∣∣∣
≥
∣∣∣∣∫ 1

0
e−μmsξ(s) ds

∣∣∣∣ > 0.

This shows that
(

zn/‖zn‖
)
n∈N is an approximate eigenvector of A corre-

sponding to the approximate eigenvalue μm = 2πim. �

For eventually norm-continuous semigroups we can always construct ap-
proximate eigenvectors satisfying condition (a) of the previous lemma.
Therefore, we obtain (SMT).

2.8 Spectral Mapping Theorem for Eventually Norm-Continuous
Semigroups. Let

(
T (t)
)
t≥0 be an eventually norm-continuous semigroup

with generator
(
A, D(A)

)
on the Banach space X. Then the spectral map-

ping theorem

(SMT) σ
(
T (t)
) \ {0} = etσ(A), t ≥ 0,

holds.

Proof. Taking into account all our previous theorems such as 2.5 and 2.6
and using the rescaling technique, we have to show the following.

If 1 ∈ Aσ
(
T (1)
)
, then there exists m ∈ Z such that μm := 2πim ∈

Aσ(A).
To prove this claim, we take an approximate eigenvector (xn)n∈N of T (1);
i.e., we assume ‖xn‖ = 1 and ‖T (1)xn − xn‖ → 0. Moreover, we assume
that t �→ T (t) is norm-continuous for t ≥ t0. Now choose t0 < k ∈ N and
observe that

‖T (k)xn − xn‖ =
∥∥T (k)xn − T (k − 1)xn + T (k − 1)xn − · · · − xn

∥∥→ 0

as n → ∞. The semigroup
(
T (t)
)
t≥0 is then uniformly continuous on(

T (k)xn

)
n∈N by assumption and on

(
T (k)xn − xn

)
n∈N, because this is

a null sequence (use Proposition A.3). Therefore,
(
T (t)
)
t≥0 is uniformly

continuous on (xn)n∈N =
(
T (k)xn

)
n∈N −

(
T (k)xn −xn

)
n∈N, and the asser-

tion follows from Lemma 2.7. �
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Combining the previous result with Proposition 2.3 yields the following.

2.9 Corollary. For an eventually norm-continuous semigroup
(
T (t)
)
t≥0

with generator
(
A, D(A)

)
on a Banach space X, we have

(SBeGB) s(A) = ω0 .

Finally, we know from Section II.5 that many important regularity prop-
erties of semigroups imply eventual norm continuity. We state the spectral
mapping theorem for these semigroups.

2.10 Corollary. The spectral mapping theorem

(SMT) etσ(A) = σ
(
T (t)
) \ {0}, t ≥ 0,

and the spectral bound equal growth bound condition

(SBeGB) s(A) = ω0

hold for the following classes of strongly continuous semigroups:
(i) Eventually compact semigroups,
(ii) Eventually differentiable semigroups,
(iii) Analytic semigroups, and
(iv) Uniformly continuous semigroups.

It is the above condition (SBeGB) that is used in Section 3 (e.g., in Theo-
rem 3.7) to characterize stability of semigroups. However, not all of (SMT)
is needed to derive (SBeGB). The weaker property (WSMT), already en-
countered in Example 2.2.(ii), is sufficient. Therefore, the following simple
result on multiplication operators (see Section I.3.a and Paragraph II.2.8)
is a useful addition to the above corollaries.

2.11 Proposition. Let Mq be the generator of a multiplication semigroup(
Tq(t)
)
t≥0 on X := C0(Ω) (or X := Lp(Ω, μ)) defined by an appropriate

function q : Ω → C. Then

(WSMT) σ
(
Tq(t)
)

= etσ(Mq) for t ≥ 0,

hence (SBeGB) hold.

Proof. In Proposition I.3.2.(iv), we stated that the spectrum of a multipli-
cation operator is the closed (essential) range of the corresponding function.
Therefore, we obtain

σ
(
Tq(t)
)

= etq(ess)(Ω) = etq(ess)(Ω) = etσ(Mq)

for all t ≥ 0. �
A simple, but typical, example is given by the multiplication operator

Mq(xn)n∈Z := (inxn)n∈Z

for (xn)n∈Z ∈ �p(Z). Then σ(Mq) = iZ and σ
(
Tq(t)
)

= Γ whenever
t/2π /∈ Q. Therefore, only (WSMT) but not (SMT) holds. See also Ex-
ample 2.2.(ii).
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Most important, the above proposition can be applied to semigroups
of normal operators on Hilbert spaces. In fact, due to the Spectral Theo-
rem I.3.9, these semigroups are always isomorphic to multiplication semi-
groups on L2-spaces; hence (WSMT) holds.

2.12 Corollary. Let
(
T (t)
)
t≥0 be a strongly continuous semigroup of nor-

mal operators on a Hilbert space and denote its generator by
(
A, D(A)

)
.

Then

(WSMT) σ
(
T (t)
)

= etσ(A) for t ≥ 0,

hence (SBeGB) hold.

2.13 Exercises. (1) Show that the semigroup in Counterexample 2.4 is in
fact a group whose generator has compact resolvent.
(2) (Counterexample on reflexive Banach spaces). Take 1 < p < q < ∞
and the (reflexive) Banach space X := Lp[1,∞) ∩ Lq[1,∞) with norm
‖f‖ := ‖f‖p + ‖f‖q. Then the following hold.

(i) The operator family
(
T (t)
)
t≥0 given by T (t)f(s) := f(set) for s ≥ 1,

t ≥ 0, and f ∈ X, defines a strongly continuous semigroup on X.
(ii) The generator A of

(
T (t)
)
t≥0 is given by Af(s) = sf ′(s), s ≥ 1, with

domain

D(A) =
{

f ∈ X : f is absolutely continuous
and s �→ sf ′(s) belongs to X

}
.

(iii) Spectral and growth bound of A are given by s(A) = − 1
p < − 1

q = ω0.
(Hint: See Exercise I.1.8.(3) and [EN00, IV.3.3].)
(3) On the space L2

2π of all 2π-periodic functions on R2 that are square
integrable on [0, 2π]2 consider the second-order partial differential equation

(2.10)

⎧⎪⎪⎨⎪⎪⎩
∂2u(t, x, y)

∂t2
=

∂2u(t, x, y)
∂x2 +

∂2u(t, x, y)
∂y2 + eiy ∂u(t, x, y)

∂x
,

u(0, x, y) = u0(x, y),
∂u(0, x, y)

∂t
= u1(x, y)

for (x, y) ∈ [0, 2π]2 and t ≥ 0.
(i) Show that (2.10) is equivalent to the abstract Cauchy problem (ACP)

for the operator
(
A, D(A)

)
defined by

A(u, v) :=
(
v, d2

dx2 u + d2

dy2 u + ei· d
dxu
)
, D(A) := H2

2π × H1
2π

on X := H1
2π × L2

2π and for the initial value (u0, u1).
(ii) Show that A generates a strongly continuous semigroup on X.

(iii∗) Show that s(A) = 0, whereas ω0 ≥ 1/2. (Hint: See [HW03], [BLX05],
[Ren94].)
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(4) Assume that for some t0 > 0 the spectral radius r
(
T (t0)

)
is an eigen-

value of T (t0) (or of its adjoint T (t0)′). Show that in this case one has
(SBeGB); i.e., s(A) = ω0.
(5) Let

(
T (t)
)
t≥0 be a strongly continuous semigroup on some L1(Ω, μ)

and assume that 0 ≤ T (t)f for all 0 ≤ f ∈ L1(Ω, μ) and all t ≥ 0. Show
that (SBeGB) holds; that is, s(A) = ω0. (Hint: Use Lemma VI.2.1.)
(6∗) A strongly continuous semigroup

(
T (t)
)
t≥0 with growth bound ω0 is

called asymptotically norm-continuous if

lim
t→∞

(
lim
h↓0

e− ω0 t‖T (t + h) − T (t)‖
)

= 0.

(i) Show that a semigroup
(
T (t)
)
t≥0 is asymptotically norm-continuous

if it can be written as T (t) = U0(t) + U1(t) for operator fami-
lies
(
U0(t)

)
t≥0 and

(
U1(t)

)
t≥0 where

(
U0(t)

)
t≥0 is eventually norm-

continuous and limt→∞ e− ω0 t‖U1(t)‖ = 0.
(ii) Construct an example of such a decomposition using Theorem III.1.10.
(iii) For a semigroup

(
T (t)
)
t≥0 that is norm-continuous at infinity, the

spectral mapping theorem holds for the boundary spectrum; i.e.,

σ
(
T (t)
) ∩ {λ ∈ C : |λ| = r

(
T (t)
)}

= et(σ(A)∩(s(A)+iR))

for t ≥ 0 and r
(
T (t)
)

> 0. See [MM96], [Bla01], and [NP00].

3. Stability and Hyperbolicity of Semigroups

We now come to one of the most interesting aspects of semigroup theory.
After having established generation, perturbation, and approximation the-
orems in the previous chapters, we investigate the qualitative behavior of
a given semigroup. We already dealt with this problem when we classified
strongly continuous semigroups according to their regularity properties in
Section II.5, but we now concentrate on their “asymptotic” behavior. By
this we mean the behavior of the semigroup

(
T (t)
)
t≥0 for large t > 0 or,

more precisely, the existence (or nonexistence) of

lim
t→∞ T (t),

where the limit is understood in various ways and for different topologies.
If we recall that the function t �→ T (t)x yields the (mild) solutions of the
corresponding abstract Cauchy problem

(ACP)

{
ẋ(t) = Ax(t), t ≥ 0,

x(0) = x

(see Section II.6), it is evident that such results will be of utmost impor-
tance.
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Among the many interesting types of asymptotic behavior, we first study
stability of strongly continuous semigroups

(
T (t)
)
t≥0. By this we mean that

the operators T (t) should converge to zero as t → ∞. However, as is to
be expected in infinite-dimensional spaces, we have to distinguish different
concepts of convergence.

a. Stability Concepts

For a strongly continuous semigroup
(
T (t)
)
t≥0 with generator A : D(A) ⊆

X → X we now make precise what we mean by

“ lim
t→∞ T (t) = 0”

and vary the topology and the “speed” of the convergence by proposing
the following concepts.

3.1 Definition. A strongly continuous semigroup
(
T (t)
)
t≥0 is called

(a) Uniformly exponentially stable if there exists ε > 0 such that

(3.1) lim
t→∞ eεt ‖T (t)‖ = 0;

(b) Uniformly stable if

(3.2) lim
t→∞ ‖T (t)‖ = 0;

(c) Strongly stable if

(3.3) lim
t→∞ ‖T (t)x‖ = 0 for all x ∈ X;

(d) Weakly stable if

(3.4) lim
t→∞ 〈T (t)x, x′〉 = 0 for all x ∈ X and x′ ∈ X ′.

We start our discussion of these concepts by noting that the two “uni-
form” properties coincide and are even equivalent to a “pointwise” condi-
tion.

3.2 Proposition. For a strongly continuous semigroup
(
T (t)
)
t≥0, the fol-

lowing assertions are equivalent.
(a)
(
T (t)
)
t≥0 is uniformly exponentially stable.

(b)
(
T (t)
)
t≥0 is uniformly stable.

(c) There exists ε > 0 such that limt→∞ eεt ‖T (t)x‖ = 0 for all x ∈ X.
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Proof. Clearly, (a) implies (b) and (c). Because eω0 t = r
(
T (t)
) ≤ ‖T (t)‖

for all t ≥ 0 (see Proposition 1.22), (b) implies ω0 < 0, hence (a). If
(c) holds, then

(
eεtT (t)

)
t≥0 is strongly, hence uniformly, bounded, which

implies limt→∞ eε/2t‖T (t)‖ = 0. �

It is obvious from the definition that uniform (exponential) stability im-
plies strong stability, which again implies weak stability. The following ex-
amples show that none of the converse implications holds.

3.3 Examples. (i) The (left) translation semigroup
(
T (t)
)
t≥0 on X :=

Lp(R+), 1 ≤ p < ∞, is strongly stable, but one has

‖T (t)‖ = 1

for all t ≥ 0; hence it is not uniformly stable.
(ii) The (left) translation group

(
T (t)
)
t∈R on X := Lp(R), 1 < p < ∞, is

a group of isometries, hence is not strongly stable. However, for functions
f ∈ X, g ∈ X ′ = Lq(R), 1/p + 1/q = 1, with compact support and large t,
one has that T (t)f and g have disjoint supports, whence

〈T (t)f, g〉 =
∫ ∞

−∞
f(s + t)g(s) ds = 0.

For arbitrary f ∈ X, g ∈ X ′ and for each n ∈ N, we choose fn ∈ X and
gn ∈ X ′ with compact support such that ‖f − fn‖p ≤ 1/n and ‖g − gn‖q ≤
1/n. Then∣∣〈T (t)f, g

〉∣∣ ≤ ∣∣〈T (t)(f − fn), gn

〉∣∣+ ∣∣〈T (t)f, g − gn

〉∣∣+ ∣∣〈T (t)fn, gn

〉∣∣
≤ 1

n

(‖g‖q + 1 + ‖f‖p

)
+
∣∣〈T (t)fn, gn

〉∣∣ .
Because the last term is 0 for large t, we conclude that

lim
t→∞ 〈T (t)f, g〉 = 0

for all f ∈ X, g ∈ X ′; i.e.,
(
T (t)
)
t≥0 is weakly stable.

It is now our goal to characterize the above stability concepts, it is hoped
by properties of the generator. In the following subsection we try this for
uniform exponential stability.

3.4 Exercises. (1) Discuss the above stability properties for multiplication
semigroups on Lp(R) and C0(R). (Hint: See [EN00, Expl. V.2.19.(ii) and
(iii)].)
(2) Let μ be a probability measure on R that is absolutely continuous with
respect to the Lebesgue measure. Use the Riemann–Lebesgue lemma (see
Theorem A.20) to show that the multiplication semigroup

(
T (t)
)
t≥0 with(

T (t)f
)
(s) := eitsf(s), s ∈ R,

is weakly stable on Lp(R, μ) for 1 ≤ p < ∞.
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(3) Show that the adjoint semigroup of a strongly stable semigroup is
weak∗-stable; that is, limt→∞ 〈T (t)x, x′〉 = 0 for all x ∈ X, x′ ∈ X ′, but
not strongly stable in general.
(4) Show that a strongly continuous semigroup with compact resolvent
which is weakly stable is necessarily uniformly exponentially stable. In par-
ticular, an immediately compact semigroup that is weakly stable is already
uniformly exponentially stable.

b. Characterization of Uniform Exponential Stability

We start by recalling the definition of the growth bound

(3.5)

ω0 : = ω0(T) := ω0(A)

: = inf
{
w ∈ R : ∃Mw ≥ 1 such that ‖T (t)‖ ≤ Mwewt ∀ t ≥ 0

}
= inf

{
w ∈ R : lim

t→∞ e−wt ‖T (t)‖ = 0
}

of a semigroup T =
(
T (t)
)
t≥0 with generator A (compare Definition I.1.5).

From this definition it is immediately clear that
(
T (t)
)
t≥0 is uniformly

exponentially stable if and only if

(3.6) ω0 < 0.

Moreover, the identity

(3.7) ω0 = inf
t>0

1
t

log ‖T (t)‖ = lim
t→∞

1
t

log ‖T (t)‖ =
1
t0

log r
(
T (t0)

)
for each t0 > 0, proved in Proposition 1.22, yields the following character-
izations of uniform exponential stability.

3.5 Proposition. For a strongly continuous semigroup
(
T (t)
)
t≥0, the fol-

lowing assertions are equivalent.
(a) ω0 < 0; i.e.,

(
T (t)
)
t≥0 is uniformly exponentially stable.

(b) limt→∞ ‖T (t)‖ = 0.

(c) ‖T (t0)‖ < 1 for some t0 > 0.

(d) r
(
T (t1)

)
< 1 for some t1 > 0.

All these stability criteria, as nice as they are, have the major disadvan-
tage that they rely on the explicit knowledge of the semigroup

(
T (t)
)
t≥0

and its orbits t �→ T (t)x. In most cases, however, only the generator (and
its resolvent) is given. Therefore, direct characterizations of uniform ex-
ponential stability of the semigroup in terms of its generator are more
desirable. Spectral theory provides the appropriate tool for this purpose,
and the following classical Liapunov theorem for matrix semigroups serves
as a prototype for the results for which we are looking.
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3.6 Theorem. (Liapunov 1892). Let
(
etA
)
t≥0 be the one-parameter

semigroup generated by A ∈ Mn(C). Then the following assertions are
equivalent.

(a) The semigroup is stable; i.e., limt→∞
∥∥etA
∥∥ = 0.

(b) All eigenvalues of A have negative real part; i.e., Re λ < 0 for all
λ ∈ σ(A).

In particular, one hopes that the inequality

(3.8) s(A) < 0

for the spectral bound s(A) = sup{Re λ : λ ∈ σ(A)} of the generator A (see
Definition II.1.12) characterizes uniform exponential stability. Counterex-
ample 1.26 (see also Exercises 2.13.(2) and (3)) shows that this fails drasti-
cally. The reason is the failure of the spectral mapping theorem (SMT) as
discussed in Section 2. On the other hand, if some (weak) spectral mapping
theorem holds for the semigroup

(
T (t)
)
t≥0 and its generator A, then by

Proposition 2.3 the growth bound ω0 and the spectral bound s(A) coincide,
and hence the inequality (3.8) implies (3.6).

The coincidence of growth and spectral bounds clearly implies that uni-
form exponential stability is equivalent to the negativity of the spectral
bound. So in this case the inequality s(A) < 0 characterizes uniform expo-
nential stability of the semigroup

(
T (t)
)
t≥0 in terms of its generator A and

its spectrum σ(A). This is one reason for our thorough study of spectral
mapping theorems in Section 2. The results obtained there, in particu-
lar Theorem 2.8 and its corollaries, pay off and yield the spectral bound
equal growth bound condition (SBeGB) already stated in Corollary 2.9.
We restate this as an infinite-dimensional version of Liapunov’s stability
theorem.

3.7 Theorem. An eventually norm-continuous semigroup
(
T (t)
)
t≥0 is uni-

formly exponentially stable if and only if the spectral bound s(A) of its
generator A satisfies

s(A) < 0.

Looking back at the stability results obtained so far, i.e., Proposition 3.5
and Theorem 3.7, we observe that in each case we needed information on
the semigroup itself in order to conclude its stability. This can be avoided
by restricting our attention to semigroups on Hilbert spaces only.

3.8 Theorem. (Gearhart 1978, Prüss 1984, Greiner 1985). A strong-
ly continuous semigroup

(
T (t)
)
t≥0 on a Hilbert space H is uniformly expo-

nentially stable if and only if the half-plane {λ ∈ C : Re λ > 0} is contained
in the resolvent set ρ(A) of the generator A with the resolvent satisfying

(3.9) M := sup
Re λ>0

‖R(λ, A)‖ < ∞.
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This stability criterion is extremely useful for the stability analysis of
concrete equations; see [BP05, Sects. 5.1 and 10.4], [CL03], [LZ99]. For
a proof we refer to [EN00, Thm. V.1.11]. Its theoretical significance is
emphasized by the following comments.

3.9 Comments. (i) The theorem does not hold without the boundedness
assumption on the resolvent in the right half-plane. Take the semigroup(
T (t)
)
t≥0 from Counterexample 2.4. Then

(
e−t/2T (t)

)
t≥0 is a semigroup

on a Hilbert space having spectral bound s(A) = −1/2, and hence we have
{λ ∈ C : Re λ ≥ 0} ⊂ ρ(A), but its growth bound is ω0 = 1/2.
(ii) The theorem does not hold on arbitrary Banach spaces. In fact, for the
semigroup in Counterexample 1.26 one has

‖R(λ + is, A)‖ ≤ ‖R(λ, A)‖
for all λ > s(A) = −1 and s ∈ R (use the integral representation (1.20)
of the resolvent in Section 1.b). Because ‖T (t)‖ = 1 for all t ≥ 0, this
semigroup is not uniformly exponentially stable, but the resolvent of its
generator exists and is uniformly bounded in {λ ∈ C : Re λ ≥ 0}.

3.10 Exercises. (1) Show that for a strongly continuous semigroup T =(
T (t)
)
t≥0 on a Hilbert space X with generator A its growth bound is given

by
ω0 = inf

{
λ > s(A) : sup

s∈R

‖R(λ + is, A)‖ < ∞
}

.

(2∗) Let
(
T (t)
)
t≥0 be a strongly continuous semigroup with generator A

on a Hilbert space H.
(i) Define U(t)T := T (t) · T · T (t)∗ for t ≥ 0 and T ∈ L(H) and show

that
(
U(t)
)
t≥0 is a semigroup on L(H) that is continuous for the

weak operator topology on L(H).
(ii) Define R(λ)T :=

∫∞
0 e−λtU(t)T dt, T ∈ L(H) and λ large, in the

weak operator topology and show that R(λ) is the resolvent of a
Hille–Yosida operator

(
G, D(G)

)
on L(H).

(iii) Formally, G is of the form G(T ) = AT −TA for T ∈ D(G). Can you
give a precise meaning to this statement? (Hint: See [Alb01].)

(iv) Show that the following assertions are equivalent.
(a)
(
T (t)
)
t≥0 is uniformly exponentially stable.

(b)
(
U(t)
)
t≥0 is uniformly exponentially stable.

(c) s(G) < 0.
(d)
∫∞
0 U(t)T dt exists for every T ∈ L(H).

(e) There exists a positive definite R ∈ L(H) such that GR = −I.
(Hint: See [Nag86, D-IV, Sect. 2].)
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c. Hyperbolic Decompositions

We now use the previous stability theorems in order to decompose a semi-
group into a stable and an unstable part. More precisely, we try to de-
compose the Banach space into the direct sum of two closed subspaces
such that the semigroup becomes “forward” exponentially stable on one
subspace and “backward” exponentially stable on the other subspace.

3.11 Definition. A semigroup
(
T (t)
)
t≥0 on a Banach space X is called hy-

perbolic if X can be written as a direct sum X = Xs⊕Xu of two
(
T (t)
)
t≥0-

invariant, closed subspaces Xs, Xu such that the restricted semigroups
(Ts(t))t≥0 on Xs and (Tu(t))t≥0 on Xu satisfy the following conditions.

(i) The semigroup (Ts(t))t≥0 is uniformly exponentially stable on Xs.

(ii) The operators Tu(t) are invertible on Xu, and
(
Tu(t)−1

)
t≥0 is uni-

formly exponentially stable on Xu.

It is easy to see that a strongly continuous semigroup
(
T (t)
)
t≥0 is hy-

perbolic if and only if there exists a projection P and constants M, ε > 0
such that each T (t) commutes with P , satisfies T (t) ker P = ker P , and

‖T (t)x‖ ≤ Me−εt‖x‖ for t ≥ 0 and x ∈ rg P,(3.10)

‖T (t)x‖ ≥ 1
M

e+εt‖x‖ for t ≥ 0 and x ∈ ker P.(3.11)

As in the case of uniform exponential stability, we look for a spectral
characterization of hyperbolicity. Using the spectra σ

(
T (t)
)

of the semi-
group operators T (t), this is easy.

3.12 Proposition. For a strongly continuous semigroup
(
T (t)
)
t≥0, the

following assertions are equivalent.
(a)
(
T (t)
)
t≥0 is hyperbolic.

(b) σ
(
T (t)
) ∩ Γ = ∅ for one/all t > 0.

Proof. The proof of the implication (a) ⇒ (b) starts from the observation
that σ

(
T (t)
)

= σ
(
Ts(t)
) ∪ σ

(
Tu(t)

)
because of the direct sum decompo-

sition. By assumption,
(
Ts(t)
)
t≥0 is uniformly exponentially stable; hence

r
(
Ts(t)
)

< 1 for t > 0, and therefore σ
(
Ts(t)
) ∩ Γ = ∅.

By the same argument, we obtain that r
(
Tu(t)−1

)
< 1. Because

σ
(
Tu(t)

)
=
{
λ−1 : λ ∈ σ

(
Tu(t)−1)},

we conclude that |λ| > 1 for each λ ∈ σ
(
Tu(t)

)
; hence σ

(
Tu(t)

) ∩ Γ = ∅.
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To prove (b) ⇒ (a), we fix s > 0 such that σ
(
T (s)
) ∩ Γ = ∅ and use

the existence of a spectral projection P corresponding to the spectral set{
λ ∈ σ

(
T (s)
)

: |λ| < 1
}
. Then the space X is the direct sum X = Xs ⊕Xu

of the
(
T (t)
)
t≥0-invariant subspaces Xs := rg P and Xu := kerP . The

restriction Ts(s) ∈ L(Xs) of T (s) in Xs has spectrum

σ
(
Ts(s)

)
=
{
λ ∈ σ

(
T (s)
)

: |λ| < 1
}
,

hence spectral radius r
(
Ts(s)

)
< 1. From Proposition 3.5.(d), it follows

that the semigroup
(
Ts(t)
)
t≥0 :=

(
PT (t)

)
t≥0 is uniformly exponentially

stable on Xs. Similarly, the restriction Tu(s) ∈ L(Xu) of T (s) in Xu has
spectrum

σ
(
Tu(s)

)
=
{
λ ∈ σ

(
T (s)
)

: |λ| > 1
}
,

hence is invertible on Xu. Clearly, this implies that Tu(t) is invertible for
0 ≤ t ≤ s, whereas for t > s we choose n ∈ N such that ns > t. Then

Tu(s)n = Tu(ns) = T (ns − t)Tu(t) = Tu(t)Tu(ns − t);

hence Tu(t) is invertible, because Tu(s) is bijective. Moreover, for the spec-
tral radius we have r

(
T−1

u (s)
)

< 1, and again by Proposition 3.5.(d) this
implies uniform exponential stability for the semigroup

(
Tu(t)−1

)
t≥0. �

The reader might be surprised by the extra condition in Definition 3.11.(ii)
requiring the operators Tu(t) to be invertible on Xu. However, this is nec-
essary in order to obtain the spectral characterization in Proposition 3.12.

3.13 Example. Take the rescaled (left) shift semigroup
(
T (t)
)
t≥0 on

L1(R−) defined by

T (t)f(s) :=
{

eεtf(s + t) for s + t ≤ 0,
0 otherwise,

for f ∈ L1(R−), s ≤ 0, and some fixed ε > 0. Then

‖T (t)f‖ = eεt‖f‖

for all f ∈ L1(R−); i.e., estimate (3.11) holds for all f ∈ L1(R−). However,
the operators T (t) are not invertible and have spectrum

σ
(
T (t)
)

=
{
λ ∈ C : |λ| ≤ eεt

}
for all t > 0.

This phenomenon is due to the fact that an injective operator on an
infinite-dimensional Banach space need not be surjective. We can exclude
this by assuming dimXu < ∞. See also Exercise 3.16.(2).
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Up to now, our definition and characterization of hyperbolic semigroups
use explicit knowledge of the semigroup itself. As in Section 3.b, we want to
find a characterization in terms of the generator A and its spectrum σ(A).
As we should expect from Proposition 2.3, we need some extra relation
between σ(A) and σ

(
T (t)
)
. Clearly, the spectral mapping theorem (SMT)

or even the weak spectral mapping theorem (WSMT) from Section 2 is
sufficient for this purpose. However, we show that an even weaker property
does this job.

3.14 Definition. We say that the strongly continuous semigroup
(
T (t)
)
t≥0

with generator A satisfies the circular spectral mapping theorem if

(CSMT) Γ · σ(T (t)
) \ {0} = Γ · etσ(A) for one/all t > 0.

That “for one” implies “for all” in (CSMT) follows from Proposition 3.12
(and rescaling). Indeed, (CSMT) allows us to characterize hyperbolicity by
a condition on the spectrum of the generator.

3.15 Theorem. If (CSMT) holds for a strongly continuous semigroup(
T (t)
)
t≥0 with generator A, then the following assertions are equivalent.

(a)
(
T (t)
)
t≥0 is hyperbolic.

(b) σ
(
T (t)
) ∩ Γ = ∅ for one/all t > 0.

(c) σ(A) ∩ iR = ∅.

Proof. The equivalence of (a) and (b) has been shown in Proposition 3.12.
Property (b) always implies (c) (use Theorem 2.5), whereas (c) implies (b)
if (CSMT) holds. �

We finally remark that

(SMT) ⇒ (WSMT) ⇒ (CSMT)

and refer to [GS91] and [KS05] where (CSMT) has been shown for inter-
esting classes of generators and semigroups.

3.16 Exercises. (1) Show, by rescaling the semigroup and the estimates in
(3.10) and (3.11), that a decomposition analogous to Definition 3.11 holds
whenever

σ
(
T (t)
) ∩ αΓ = ∅

for some α > 0.
(2) Let

(
T (t)
)
t≥0 satisfy (3.10) and (3.11) for a projection P commuting

with T (t) for all t ≥ 0. Assume that for some t0 > 0 the restriction Tu(t0)
to ker P is compact. Show that dim kerP < ∞ and that

(
T (t)
)
t≥0 is hy-

perbolic.
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(3) Show that the generator A of a hyperbolic strongly continuous semi-
group

(
T (t)
)
t≥0 is invertible and its inverse is given by

A−1x =
∫ ∞

0
Tu(t)−1(I − P )x dt −

∫ ∞

0
Ts(t)Px dt.

Derive an analogous representation of R(λ, A) for Reλ < ε, where ε is the
constant in (3.10) and (3.11).
(4∗) Given a hyperbolic semigroup

(
T (t)
)
t≥0 and a corresponding decom-

position X = Xs ⊕Xu, prove that

Xs =
{
x ∈ X : lim

t→∞ T (t)x = 0
}
.

Conclude from this that Xs and Xu are uniquely determined.

4. Convergence to Equilibrium

In contrast to the previous section, we now suppose that 0 is an eigenvalue
of the generator A of a strongly continuous semigroup

(
T (t)
)
t≥0 on the

Banach space X. This means that fixed space

fix
(
T (t)
)
t≥0 :=

{
x ∈ X : T (t)x = x for all t ≥ 0

}
,

which coincides with ker A by Exercise 4.12.(1), is nontrivial. It is our goal
to understand under which assumptions (and in which sense) each orbit

t �→ T (t)x

converges to such a fixed point (or, equilibrium point).
We first state some consequences if the semigroup converges for the weak

operator topology.

4.1 Lemma. Let
(
T (t)
)
t≥0 be a strongly continuous semigroup with gen-

erator A on X and assume that there exists an operator P ∈ L(X) such
that

lim
t→∞
〈
T (t)x, x′〉 = 〈Px, x′〉 for all x ∈ X, x′ ∈ X ′.

Then P = P 2 is a projection onto the fixed space fix
(
T (t)
)
t≥0 with ker P =

rg A and commutes with every T (t), t ≥ 0.

Proof. Because for convergence with respect to the weak operator topol-
ogy we have

T (s) · lim
t→∞ T (t) =

(
lim

t→∞ T (t)
)
· T (s) = lim

t→∞ T (t + s) = P

for all s ≥ 0, it follows that rg P = fix
(
T (t)
)
t≥0. By the same argument we

conclude that

P 2 =
(

lim
t→∞ T (t)

)
P = lim

t→∞
(
T (t)P

)
= P

is a projection which evidently commutes with each T (t).
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It only remains to show that ker P = rg A. To that purpose we observe
first that

rg A = lin
{
x− T (t)x : x ∈ X, t ≥ 0

}
by the definition of the generator A and formula (1.6) in Lemma II.1.3. This
immediately shows that each x− T (t)x belongs to ker P . For the converse
inclusion we show that each x′ ∈ X ′ vanishing on lin{x−T (t)x : x ∈ X, t ≥
0} also vanishes on ker P . Indeed, for such x′ we obtain T (t)′x′ = x′, hence

〈x, x′〉 =
〈
x, T (t)′x′〉 =

〈
T (t)x, x′〉→ 〈Px, x′〉 as t → ∞.

For x ∈ ker P this yields 〈x, x′〉 = 0 as claimed. �

We observe that weak convergence implies, by the uniform boundedness
principle, that the semigroup is uniformly bounded. Moreover, the space
X splits into the direct sum

X = fix
(
T (t)
)
t≥0 ⊕Xs

with Xs := rg A such that the restricted semigroup on Xs is weakly stable
(see Definition 3.1.(d)).

Up to now there are few sufficient conditions, and no satisfactory charac-
terizations, for weakly converging (or weakly stable) semigroups. We refer
to [EFNS05] for recent results in this direction. The case of strong con-
vergence is much better understood and useful spectral criteria have been
found by Arendt–Batty [AB88] and Lyubich–Vũ [LV88] (see also [EN00,
Thm. V.2.21] and [CT06]). A systematic study of the asymptotic behavior
of semigroups can be found in [Nee96]. We restrict our considerations to
the case of uniform convergence and again start with a necessary condition.

4.2 Lemma. Let
(
T (t)
)
t≥0 be a strongly continuous semigroup with gen-

erator A on X and assume that

P := ‖ · ‖- lim
t→∞ T (t) �= 0

exists. Then 0 is a dominant eigenvalue, i.e., Re λ ≤ ε < 0 for all 0 �= λ ∈
σ(A). In addition, this eigenvalue is a simple pole of the resolvent R(·, A).

Proof. By Lemma 4.1, P = P 2 is a projection onto fix
(
T (t)
)
t≥0 commut-

ing with
(
T (t)
)
t≥0. Hence we can decompose the space X into the direct

sum of the two
(
T (t)
)
t≥0-invariant subspaces

X = rg P ⊕ rg(I − P ) = fix
(
T (t)
)
t≥0 ⊕ rg(I − P ) = ker A ⊕ rg(I − P ).

Now T (t)|rg P = Irg P and from limt→∞ T (t)(I − P ) = P − P 2 = 0 and
Proposition 3.2 we conclude that

(
Ts(t)
)
t≥0 :=

(
T (t)|rg(I−P )

)
t≥0 is uni-

formly exponentially stable. Hence,
(
T (t)
)
t≥0 can be decomposed as

T (t) = Irg P ⊕ Ts(t), t ≥ 0.
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The proposition in Paragraph II.2.3 yields the corresponding decomposition

A = 0rg P ⊕As

for the generator A, where As := A|rg(I−P ). Because the growth bound of(
Ts(t)
)
t≥0, and hence also the spectral bound of As is negative, all claims

follow easily. �

If the spectral mapping theorem (SMT) from Section 2 holds on every
closed subspace Y ⊆ X (e.g., if

(
T (t)
)
t≥0 is eventually norm-continuous),

then these spectral conditions are even sufficient for uniform convergence.

4.3 Proposition. Let
(
T (t)
)
t≥0 be a strongly continuous semigroup with

generator A on X such that (SMT) holds for every subspace semigroup(
T (t)|Y

)
t≥0 and any

(
T (t)
)
t≥0-invariant, closed subspace Y ⊆ X. Then

the following are equivalent.
(a) P := limt→∞ T (t) exists in the operator norm with P �= 0.
(b) 0 is a dominant eigenvalue of A and a first-order pole of R(·, A).

Proof. By the previous lemma it suffices to show that (b) implies (a).
Let P0 be the residue of the resolvent R(·, A) in λ = 0. Then by Para-

graph 1.18 the operator P0 is the spectral projection of A with respect to
the decomposition σ(A) = {0}∪(σ(A)\{0}) =: σc∪σu of σ(A); cf. Propo-
sition 1.17. Let Xc := rg P0 = ker(I − P0) and Xu := kerP0 = rg(I − P0).
Then Xc and Xu are

(
T (t)
)
t≥0-invariant and X = Xc⊕Xu. Because by as-

sumption λ = 0 is a first-order pole of R(·, A), by (1.13) in Paragraph 1.18
we conclude AP = 0 and hence Ac := A|Xc = 0Xc . This implies that
Tc(t) := T (t)|Xc

= IXc
. Next we define Tu(t) := T (t)|Xu

which by Para-
graph II.2.3 defines a strongly continuous semigroup

(
Tu(t)

)
t≥0 on Xu with

generator Au := A|Xu
. Because 0 is dominant in σ(A) = {0} ∪ σ(Au) and

σ(Au) = σu, we obtain s(Au) < 0. Hence (SMT) applied to
(
Tu(t)

)
t≥0 and

Proposition 2.3 imply ω0(Au) = s(Au) < 0 and therefore limt→∞ Tu(t) = 0.
Summarizing these facts we conclude that

lim
t→∞ T (t) = lim

t→∞ Tc(t) ⊕ lim
t→∞ Tu(t) = IXc

⊕ 0Xu
= P0 = P.

�

From Theorem 2.8 we know that eventually norm-continuous semigroups
are covered by this result. However, many semigroups arising naturally do
not satisfy (SMT), hence Proposition 4.3 does not apply. In addition, it is
clear from the proof above that we do not need a spectral mapping theorem
for the entire spectrum.

In order to handle these aspects we introduce a new class of semigroups.

4.4 Definition. A strongly continuous semigroup
(
T (t)
)
t≥0 on a Banach

space X is called quasi-compact if there exists t0 > 0 such that the essential
spectral radius ress

(
T (t0)

)
< 1.
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The operators in a quasi-compact semigroup
(
T (t)
)
t≥0 need not be com-

pact, but only have to approach the subspace K(X) of all compact operators
on X. More precisely, the following holds.

4.5 Proposition. For a strongly continuous semigroup
(
T (t)
)
t≥0 on a

Banach space X the following assertions are equivalent.
(a)
(
T (t)
)
t≥0 is quasi-compact.

(b) ress
(
T (t)
)

< 1 for all t > 0.

(c) lim
t→∞ dist

(
T (t),K(X)

)
:= lim

t→∞ inf
{ ‖T (t) −K‖ : K ∈ K(X)

}
= 0.

(d) ‖T (t0) −K‖ < 1 for some t0 > 0 and K ∈ K(X).

Proof. To show that (a) implies (b) we observe that for the essential
spectral radius ress(·) from Paragraph 1.19 we have

ress
(
T (t)
)

= eωess t,

where
ωess := inf

t>0

1
t

log ‖T (t)‖ess

denotes the essential growth bound of
(
T (t)
)
t≥0. This can be proved ex-

actly as the corresponding formula for the spectral radius r(·) given in
(1.18) from Proposition 1.22. By assumption (a) there exists t0 > 0 such
that ress

(
T (t0)

)
= et0 ωess < 1 which implies ωess < 0. Hence ress

(
T (t)
)

=
et ωess < 1 for all t > 0 as claimed.

To prove that (b) implies (c) we note that

ress
(
T (1)
)

= lim
n→∞ ‖T (1)n‖1/n

ess = lim
n→∞ ‖T (n)‖1/n

ess < 1

for ‖S‖ess := dist
(
S, K(X)

)
. Thus, we find n0 ∈ N and a < 1 such that

‖T (n)‖ess < an for all n ≥ n0.

Now choose compact operators Kn ∈ K(X) such that ‖T (n) −Kn‖ < an

for n ≥ n0 and define M := sup0≤s≤1 ‖T (s)‖. We then obtain

‖T (t) − T (t − n)Kn‖ ≤ ‖T (t − n)‖ · ‖T (n) −Kn‖ ≤ Man

for t ∈ [n, n+1] and n ≥ n0. Because T (t−n)Kn is compact for all n ≥ n0
this implies limt→∞ dist

(
T (t),K(X)

)
= 0 as claimed.

Clearly, (c) implies (d), and (d) ⇒ (a) follows from

ress
(
T (t0)

) ≤ ‖T (t0)‖ess = ‖T (t0) −K‖ess ≤ ‖T (t0) −K‖ < 1.

This completes the proof. �
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The simplest examples of quasi-compact semigroups are eventually com-
pact semigroups on one side and uniformly exponentially stable semigroups
on the other side.

In the next theorem we show that any quasi-compact semigroup can be
decomposed into the direct sum of a semigroup on a finite-dimensional
space and a uniformly exponentially stable semigroup.

4.6 Theorem. Let
(
T (t)
)
t≥0 be a quasi-compact strongly continuous semi-

group with generator A on a Banach space X. Then the following holds.
(i) The set {λ ∈ σ(A) : Re λ ≥ 0} is finite (or empty) and consists of

poles of R(·, A) of finite algebraic multiplicity.
If we denote these poles by λ1, . . . , λm with corresponding orders k1, . . . , km

and spectral projections P1, . . . , Pm, we have
(ii) T (t) = T1(t) + T2(t) + · · ·+ Tm(t) + R(t), where

(4.1) Ti(t) = eλit
ki−1∑
j=0

tj

j!
(A − λi)jPi, t ≥ 0 and 1 ≤ i ≤ m,

and

(4.2) ‖R(t)‖ ≤ Me−εt for some ε > 0, M ≥ 1 and all t ≥ 0.

Proof. Let T := T (t0) where t0 > 0 such that ress(T (t0)) < 1. Be-
cause every μ ∈ σ(T ) satisfying |μ| > ress(T ) is isolated, the set σ(T ) ∩
{z ∈ C : |z| ≥ 1} is finite. Hence we can write

σc := σ(T ) ∩ {z ∈ C : |z| ≥ 1} = {μ1, . . . , μl}.
Now let σu := σ(T ) \ σc. Then σ(T ) is the disjoint union of the closed sets
σc and σu and hence we can define the associated spectral projection Pc as
in (1.7). This projection yields the spectral decomposition

X = rg(Pc) ⊕ ker(Pc) =: Xc ⊕Xu.

Observing that σc is finite and any of its elements is a pole of R(·, T )
of finite algebraic multiplicity we conclude that Xc is finite-dimensional.
Moreover, because for all λ ∈ ρ(T ) the resolvent R(λ, T ) = R

(
λ, T (t0)

)
commutes with every T (t), t ≥ 0, the spaces Xc and Xu = rg(I − Pc)
are
(
T (t)
)
t≥0-invariant. Hence we can consider the subspace semigroups

Tc :=
(
Tc(t)
)
t≥0 and Tu :=

(
Tu(t)

)
t≥0 on Xc and Xu, respectively, de-

fined by Tc(t) := T (t)|Xc and Tu(t) := T (t)|Xu . By Paragraph II.2.3 the
corresponding generators are given by the parts Ac := A|Xc

∈ L(Xc) and
Au := A|Xu

. Because Xc is finite-dimensional, σ(Ac) is finite. Moreover,
for Tc the Spectral Mapping Theorem 2.8 holds and hence for all t ≥ 0 we
can write

σ(Ac) = {λ1, . . . , λm} and σ
(
Tc(t)
)

=
{
eλt : λ ∈ σ(Ac)

}
.

In particular, for t = t0 we obtain

σc = σ
(
Tc(t0)

)
=
{
eλt0 : λ ∈ σ(Ac)

} ⊂ {z ∈ C : |z| ≥ 1}
and hence Re λ ≥ 0 for all λ ∈ σ(Ac).



Section 4. Convergence to Equilibrium 199

Next we show that Tu is uniformly exponentially stable. By contradiction
assume that ω0(Tu) ≥ 0. Then (1.18) in Proposition 1.22 implies that
r
(
Tu(t0)

) ≥ 1; i.e., there exists μ̃ ∈ σ
(
Tu(t0)

)
satisfying |μ̃| ≥ 1. Because

by (1.8), σu = σ
(
Tu(t0)

)
we obtain μ̃ ∈ σu. However, by construction,

σu ⊂ {z ∈ C : |z| < 1}. Hence |μ̃| < 1 which is a contradiction. Therefore
ω0(Tu) < 0 which also implies that s(Au) < 0. Hence we conclude from the
disjoint decomposition σ(A) = σ(Ac)∪σ(Au) that {λ ∈ σ(A) : Re λ ≥ 0} =
σc is finite. Moreover, because Xc is finite-dimensional and A = Ac ⊕ Au,
every element of σc is a pole of finite algebraic multiplicity of R(·, A) =
R(·, Ac) ⊕R(·, Au). This proves (i).

In order to verify (ii) we define the spectral projection P :=
∑m

i=1 Pi of A
corresponding to the spectral set {λ1, . . . , λm}; cf. Proposition 1.17. Then
P = Pc by Proposition 1.17.(vi). Next we decompose T (t) = T (t)P1 + · · ·+
T (t)Pm +T (t)(I −P ) where, by Paragraph II.2.3, the restricted semigroup(
T (t)| rg Pi

)
t≥0 has generator A| rg Pi

. Because rg Pi is finite-dimensional and(
(A − λi)| rg Pi

)
ki = 0 we obtain as in the proof of Proposition I.2.6,

Ti(t) = T (t)Pi = eλit
ki−1∑
j=0

tj

j!
(A − λi)jPi for all t ≥ 0.

This proves (4.1). In order to verify (4.2) it suffices to note that R(t) =
T (t)(I − P ) = Tu(t)(I − Pc) and ω0(Tu) < 0. �

Because the spectral mapping theorem (SMT) holds for the above finite-
dimensional semigroups

(
Ti(t)
)
t≥0, 1 ≤ i ≤ m, we obtain the following

stability criterion.

4.7 Corollary. A quasi-compact strongly continuous semigroup with gen-
erator A is uniformly exponentially stable if and only if

s(A) < 0.

From (4.1) and (4.2) it is now clear which additional hypotheses imply
norm convergence of T (t) to an equilibrium as t → ∞. First, we assume
the existence of a dominant eigenvalue λ0; i.e.,

(4.3) Re λ0 > sup
{
Re λ : λ0 �= λ ∈ σ(A)

}
.

Moreover, λ0 has to be a pole of order 1; hence T0(t) simply becomes eλ0tP0.
Considering the rescaled semigroup

(
e−λ0tT (t)

)
t≥0 we obtain by estimate

(4.2),∥∥e−λ0tT (t) − P0
∥∥ ≤ e− Re λ0t ‖T (t) − T0(t)‖ = e− Re λ0t ‖R(t)‖ ≤ Me−εt

for some ε > 0 and M ≥ 1.
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4.8 Corollary. Let
(
T (t)
)
t≥0 be a quasi-compact strongly continuous semi-

group. If λ0 is a dominant eigenvalue of the generator and a first-order pole
of the resolvent with residue P0, then there exist constants ε > 0 and M ≥ 1
such that ∥∥e−λ0tT (t) − P0

∥∥ ≤ Me−εt

for all t ≥ 0.

It should be evident that the most interesting case occurs if λ0 = 0 in
the above corollary, and we refer to [Nag86, B-IV, Thm. 2.5 and Expl. 2.6]
for an important class of examples.

Generators of quasi-compact semigroups can now be perturbed by an
arbitrary compact operator destroying the uniform exponential stability
but not the quasi-compactness.

4.9 Proposition. Let
(
T (t)
)
t≥0 be a quasi-compact strongly continuous

semigroup with generator A on the Banach space X and take a compact
operator K ∈ L(X). Then A + K generates a quasi-compact semigroup.

Proof. By (IE) in Corollary III.1.7 we know that the semigroup
(
S(t)
)
t≥0

generated by A + K can be represented as

S(t) = T (t) +
∫ t

0
T (t − s)KS(s) ds

where the integral is understood in the strong sense. In view of Proposi-
tion 4.5 it is now enough to show that the operator

∫ t

0 T (t− s)KS(s) ds is
compact.

Because the mapping (t, x) �→ T (t)x is jointly continuous on R+ × X
and because K is compact, the set M := {T (s)Kx : 0 ≤ s ≤ t, ‖x‖ ≤ 1} is
relatively compact in X. Having in mind that

∫ t

0 T (t−s)KS(s)x ds, x ∈ X,
is the norm limit of Riemann sums, we observe that

1
ct

∫ t

0
T (t − s)KS(s)x ds

is an element of the closed convex hull co M , provided that c := sup{‖S(s)‖ :
0 ≤ s ≤ t} and ‖x‖ ≤ 1. Because co M is compact by Proposition A.1, the
assertion follows. �

We have noted above that every exponentially stable semigroup is quasi-
compact. Therefore we obtain from Proposition 4.9 the following important
class of quasi-compact semigroups.

4.10 Example. If
(
T (t)
)
t≥0 generates an exponentially stable semigroup

with generator A and K ∈ L(X) is compact, then A + K generates a
quasi-compact semigroup.

We now discuss quasi-compactness and its consequences in a concrete
example.
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4.11 Example. On the Banach space X := C(R− ∪ {−∞}) we consider
the first-order differential operator

(4.4) Af := f ′ + mf

with domain

(4.5) D(A) :=
{
f ∈ X : f is differentiable, f ′ ∈ X and f ′(0) = Lf

}
,

where m ∈ X is real-valued and L is a continuous linear form on X. As
in Paragraph II.3.29 we can show that the operator

(
A, D(A)

)
generates a

strongly continuous semigroup
(
T (t)
)
t≥0.

Lemma 1. The semigroup
(
T (t)
)
t≥0 satisfies

T (t)f(s) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
e
∫ 0

s
m(σ) dσ

[
e(s+t)m(0)f(0)

+
∫ s+t

0
eτ m(0)L T (s + t − τ)f dτ

]
for s + t > 0,

e
∫ s+t

s
m(σ) dσ

f(s + t) for s + t ≤ 0.

Proof. For f ∈ D(A) and 0 ≤ r ≤ t we have

d

dr

(
erm(0)(T (t − r)f

)
(0) +

∫ r

0
eτm(0)L T (t − τ)f dτ

)
= 0.

This implies

(
T (t)f

)
(0) = etm(0)f(0) +

∫ t

0
eτm(0)L T (t − τ)f dτ.

On the other hand, we have

d

dr

(
e
∫ s+r

s
m(σ) dσ(

T (t − r)f
)
(s + r)

)
= 0.

Therefore, we obtain

(
T (t)f

)
(s) =

⎧⎨⎩ e
∫ 0

s
m(σ) dσ(

T (s + t)f
)
(0) for s + t > 0,

e
∫ s+t

s
m(σ) dσ

f(s + t) for s + t ≤ 0.

�

This lemma allows us to give a condition that forces the semigroup(
T (t)
)
t≥0 to be quasi-compact.
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Lemma 2. If m(−∞) < 0, then the semigroup
(
T (t)
)
t≥0 is quasi-compact.

Proof. We define operators K(t) ∈ L(X) by

K(t)f(s) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

e
∫ 0

s
m(σ) dσ

[
e(s+t) m(0)f(0)

+
∫ s+t

0
e(s+t−τ) m(0)L T (τ)f dτ

]
for 0 < s + t,

(t + s + 1) · e
∫ 0

s
m(σ) dσ

f(0) for − 1 < s + t ≤ 0,

0 for s + t ≤ −1.

These operators are compact by the Arzelà–Ascoli theorem. On the other
hand, because m(−∞) < 0, we have

lim
t→∞ ‖T (t) −K(t)‖ = 0.

Therefore, the semigroup
(
T (t)
)
t≥0 is quasi-compact. �

Assume in the following that m(−∞) < 0. In order to apply Theorem 4.6
and Corollary 4.8, we have to find the eigenvalues λ of A with Reλ ≥ 0.
An eigenfunction f ∈ D(A) with eigenvalue λ satisfies

f ′ = λf −mf,

hence is of the form f = cgλ, where

gλ(s) := e
∫ 0

s
m(σ) dσeλs

for all s ∈ R−. Because Re λ ≥ 0, the functions gλ and g′
λ vanish at −∞,

hence belong to X. Consequently, gλ ∈ D(A) if and only if

λ − Lgλ −m(0) = 0.

This shows that λ is an eigenvalue of A if and only if the characteristic
equation

(4.6) ξ(λ) := λ − Lgλ −m(0) = 0

holds.
Now, suppose that λ with Reλ ≥ 0 is not an eigenvalue of A. For each

g ∈ X we want to find a function f ∈ D(A) such that

f ′ = λf −mf − g.
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This equation is solved by

f = cgλ + hλ,

where

hλ(s) :=
∫ 0

s

e
∫ τ

s
m(σ) dσeλ(s−τ)g(τ) dτ

for all s ∈ R−. If the constant c is chosen as

(4.7) c :=
g(0) + Lhλ

λ − Lgλ −m(0)
,

we then obtain the unique f ∈ D(A) satisfying (λ − A)f = g. This even
yields an explicit representation of the resolvent of A in λ.

In the remaining part of this section we look for conditions implying the
existence of a dominant eigenvalue and convergence to an equilibrium. In
Chapter VI we show that positivity of the semigroup is the key to such
results. Here it suffices to assume that L is of the form

(4.8) L = L0 + aδ0,

where a is a real number and L0 is a positive linear form on X. We then
have the following lemma proving the existence of a dominant eigenvalue.

Lemma 3. Suppose that m(−∞) < 0. If ξ(0) ≤ 0, i.e., Lg0 ≥ −m(0), then
the characteristic function ξ has a unique zero λ0 ≥ 0 that is a dominant
eigenvalue of the operator A.

Proof. The function ξ : R+ � λ �→ λ−L0gλ−a−m(0) is strictly increasing
from ξ(0) to ∞. Consequently, if ξ(0) ≤ 0, it has a unique zero λ0 that is an
eigenvalue of A. Now take an arbitrary eigenvalue λ of A with Re λ ≥ λ0.
Then, we have

|λ − a−m(0)| = |L0gλ| ≤ L0gλ0 = λ0 − a−m(0).

This implies λ = λ0, and therefore λ0 is a dominant eigenvalue of A. �

The eigenspace corresponding to the dominant eigenvalue λ0 is spanned
by the function gλ0 , hence is one-dimensional. Moreover, it is a first-order
pole, as can be seen from (4.7).

After these preparations, we can give a precise description of the asymp-
totic behavior of the semigroup

(
T (t)
)
t≥0. In particular, it follows that the

rescaled semigroup
(
e−λ0tT (t)

)
t≥0 converges in norm to a one-dimensional

projection.
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Proposition 4. Assume that m(−∞) < 0, L = L0 + aδ0 as in (4.8), and
L0g0 + a ≥ −m(0). Then there is a dominant eigenvalue λ0 ≥ 0 of A, a
continuous linear form ϕ on X, and constants ε, M > 0 such that∥∥e−λ0tT (t)f − (gλ0 ⊗ ϕ)f

∥∥ ≤ Me−εt‖f‖ for all f ∈ X, t ≥ 0,

where (gλ0 ⊗ ϕ)f := ϕ(f) · gλ0 .

4.12 Exercises. (1) Show that for a strongly continuous semigroup T =(
T (t)
)
t≥0 with generator A on a Banach space X the fixed space fix

(
T (t)
)
t≥0

and the kernel kerA coincide. (Hint: Use Lemma II.1.3.(iv).)
(2) Let

(
T (t)
)
t≥0 be an eventually compact semigroup such that the spec-

trum σ(A) of its generator A is infinite. Show that there exists a se-
quence (μn)n∈N in C such that σ(A) = Pσ(A) = {μn : n ∈ N} and
limn→∞ Re μn = −∞. (Hint: Use Theorem 4.6 and Theorem II.5.3.)



Chapter VI

Positive Semigroups

In many concrete problems solvable by semigroups, there is a natural no-
tion of “positivity,” and only “positive” solutions make sense. In terms of
the corresponding semigroup

(
T (t)
)
t≥0 this means that the operators T (t)

should be “positive” on some ordered Banach space.
The complete theory of such “one-parameter semigroups of positive op-

erators” on Banach lattices and other ordered vector spaces can be found
in [Nag86]. In the following we present the basic ideas and some typical
results from this theory.

1. Basic Properties

For our purposes it suffices to restrict our attention to Banach spaces of
type X := Lp(Ω, μ) or C0(Ω). On these spaces we call a function f ∈ X
positive (in symbols: 0 ≤ f) if

0 ≤ f(s) for (almost) all s ∈ Ω.

For real-valued functions f, g ∈ X we then write f ≤ g if 0 ≤ g − f and
obtain an ordering making (the real part of) X into a vector lattice; cf.
[Sch74, Sect. II.1]. To indicate that 0 ≤ f and 0 �= f we use the notation
0 < f .Moreover, for an arbitrary (complex-valued) function f ∈ X we
define its absolute value |f | as

|f |(s) := |f(s)| for s ∈ Ω.

205
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Recalling the definition of the norm on X, we see that

(1.1) |f | ≤ |g| implies ‖f‖ ≤ ‖g‖ for all f, g ∈ X.

These properties make the space X a Banach lattice, and we refer to
[Sch74], [MN91], or [AB85] for the abstract definitions. It is convenient
to use this general terminology and to state the results for general Banach
lattices. However, the reader not accustomed to this terminology may al-
ways think of the space X as one of the concrete function spaces Lp(Ω, μ)
or C0(Ω) with the canonical ordering.

This is why in this chapter we use the symbol f to denote an element in
a Banach lattice X.

1.1 Definition. A strongly continuous semigroup
(
T (t)
)
t≥0 on a Banach

lattice X is called positive if each operator T (t) is positive, i.e., if

0 ≤ f ∈ X implies 0 ≤ T (t)f for each t ≥ 0,

or equivalently, if

|T (t)f | ≤ T (t)|f | holds for each f ∈ X, t ≥ 0.

As in the preceding chapters, it is important to characterize positivity
of the semigroup through a property of its generator. At least in the finite-
dimensional case this is simple.

1.2 Proposition. A matrix A = (aij)n×n ∈ Mn(C) generates a positive
semigroup

(
T (t)
)
t≥0 if and only if it is real and positive off-diagonal; i.e.,

aii ∈ R and aij ≥ 0 for all 1 ≤ i, j ≤ n, i �= j.

Proof. By Proposition I.2.7 we know that T (t) = etA and

A = lim
t↓0

etA − I

t
,

which means

(1.2) aij = lim
t↓0

〈
etAej − ej

t
, ei

〉
for i, j = 1, . . . , n and ei the i th unit vector in Cn. If we denote the (i, j) th
entry of etA by τij(t), then (1.2) implies

(1.3) aij =

{
limt↓0

τij(t)
t for i �= j,

limt↓0
τij(t)−1

t for i = j.

For
(
etA
)
t≥0 positive, i.e., τij(t) ≥ 0 for all t, i, and j, this implies

and
aij ≥ 0 for i �= j

aij ∈ R for i = j.
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To prove the converse implication we suppose that A is real and positive
off-diagonal. Thus we can find ρ ∈ R such that

(1.4) Bρ := A + ρI ≥ 0

(e.g., take ρ := max1≤i≤n |aii|). Hence we obtain

etA = e[t(A+ρI)−tρI]

= e−tρ · etBρ ≥ 0

for all t ≥ 0. �
Various characterizations of generators of positive semigroups on infinite-

dimensional Banach spaces can be found in [Nag86, C-II]. We give only an
elementary characterization in terms of the resolvent.

1.3 Characterization Theorem. A strongly continuous semigroup T :=(
T (t)
)
t≥0 on a Banach lattice X is positive if and only if the resolvent

R(λ, A) of its generator A is positive for all sufficiently large λ.

Proof. The positivity of T implies the positivity of R(λ, A) by the integral
representation (1.13) in Section II.1. Conversely, the positivity of T (t) =
limn→∞

[
n/tR(n/t, A)

]
n (see Corollary IV.2.5) follows from that of R(λ, A)

for λ large. �
In the next two sections we show the special features of a positive semi-

group with respect to its spectrum and its asymptotic behavior.

2. Spectral Theory for Positive Semigroups

In the years 1907–1912, O. Perron and G. Frobenius discovered very beau-
tiful symmetry properties of the spectrum of positive matrices. Many of
these properties still hold for the spectra of positive operators on arbi-
trary Banach lattices (cf. [Sch74, Sects. V.4 and 5]), and even carry over
to generators of positive semigroups (cf. [Nag86]).

In order to prove the basic results of this theory, we need the following
lemma. It shows that for positive semigroups the integral representation of
the resolvent holds even for Reλ > s(A) and not only for Reλ > ω0(A) as
shown in Theorem II.1.10.

2.1 Lemma. For a positive strongly continuous semigroup
(
T (t)
)
t≥0 with

generator A on a Banach lattice X we have

(2.1) R(λ, A)f =
∫ ∞

0
e−λsT (s)f ds, f ∈ X,

for all Re λ > s(A). Moreover, the following properties are equivalent for
λ0 ∈ ρ(A).

(a) 0 ≤ R(λ0, A).
(b) s(A) < λ0.
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Proof. Using the rescaling techniques from Paragraph I.1.10 it suffices to
prove the representation (2.1) for Reλ > 0 whenever s(A) < 0.

Because the integral representation (2.1) certainly holds for Reλ >
ω0(A), we obtain from the positivity of

(
T (t)
)
t≥0 the positivity of R(λ, A)

for λ > ω0(A). The power series expansion (1.3) in Proposition V.1.3 of
the resolvent yields 0 ≤ R(λ, A) for all λ > s(A).

The assumption s(A) < 0 and Lemma II.1.3.(iv) then imply

0 ≤ V (t) :=
∫ t

0
T (s) ds = R(0, A) −R(0, A)T (t) ≤ R(0, A),

hence ‖V (t)‖ ≤ M for all t ≥ 0 and some constant M . From this estimate
we deduce that ∫ ∞

0
e−λsV (s) ds, Re λ > 0,

exists in operator norm. An integration by parts yields∫ t

0
e−λsT (s) ds = e−λtV (t) + λ

∫ t

0
e−λsV (s) ds,

which converges to λ
∫∞
0 e−λsV (s) ds as t → ∞. This first proves (2.1) by

Theorem II.1.10.(i) and then the implication (b) ⇒ (a).
Moreover, as shown in Theorem 2.2 below, the integral representation

(2.1) implies that s(A) ∈ σ(A). Therefore, by Corollary V.1.14, we obtain
for the spectral radius of the resolvent

(2.2) r
(
R(λ, A)

)
=

1
λ − s(A)

for all λ > s(A).
In order to prove (a) ⇒ (b) we now assume that R(λ0, A) ≥ 0 and

observe that this can be true only for λ0 real. As we have shown above,
R(λ, A) is positive for λ > max{λ0, s(A)}. Hence, an application of the
resolvent equation yields

R(λ0, A) = R(λ, A) + (λ − λ0)R(λ, A)R(λ0, A) ≥ R(λ, A) ≥ 0

for λ > max{λ0, s(A)}. It follows from (2.2) and (1.1) that

1
λ − s(A)

= r
(
R(λ, A)

) ≤ ‖R(λ, A)‖ ≤ ‖R(λ0, A)‖

for all λ > max{λ0, s(A)}. This implies that λ0 is greater than s(A). �

O. Perron proved in 1907 that the spectral radius of a positive matrix is
always an eigenvalue. The semigroup version of this result assures that the
spectral bound of the generator of a positive semigroup is always a spectral
value.
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2.2 Theorem. Let
(
T (t)
)
t≥0 be a positive strongly continuous semigroup

with generator A on a Banach lattice X. If s(A) > −∞, then

s(A) ∈ σ(A).

Proof. The positivity of the operators T (t) means that

|T (t)f | ≤ T (t)|f | for all f ∈ X, t ≥ 0.

We therefore obtain from the integral representation (2.1) that

|R(λ, A)f | ≤
∫ ∞

0
e− Re λ·sT (s)|f | ds

for all Reλ > s(A) and f ∈ X. Using the inequality in (1.1) we deduce that

(2.3) ‖R(λ, A)‖ ≤ ‖R(Re λ, A)‖ for all Reλ > s(A).

By Corollary V.1.14, there exist λn ∈ ρ(A) such that Reλn ↓ s(A) and
‖R(λn, A)‖ ↑ ∞. The estimate (2.3) then implies ‖R(Re λn, A)‖ ↑ ∞ and
therefore s(A) ∈ σ(A) by Proposition V.1.3.(iii). �

For positive matrix semigroups much more can be said on the spectral
value s(A).

2.3 Proposition. If the matrix A = (aij)n×n is real and positive off-
diagonal, then s(A) is a dominant eigenvalue of A.

Proof. Take the matrix Bρ = A + ρI from (1.4) above which is positive
by assumption for ρ ∈ R sufficiently large. Therefore, Perron’s Theorem
(see [Sch74, Chap. I, Prop. 2.3]) implies that the spectral radius r(Bρ) is
an eigenvalue of Bρ. Evidently, r(Bρ) is dominant in σ(Bρ). Because

σ(Bρ) = σ(A) + ρ and s(Bρ) = s(A) + ρ,

we obtain that s(A) is dominant in σ(A). �

Another useful property of positive semigroups is the monotonicity of
the spectral bound under positive perturbations.

2.4 Corollary. Let A be the generator of a positive strongly continuous
semigroup

(
T (t)
)
t≥0 and let B ∈ L(X) be a positive operator on the Ba-

nach lattice X. Then the following hold.
(i) A+B generates a positive semigroup

(
S(t)
)
t≥0 satisfying 0 ≤ T (t) ≤

S(t) for all t ≥ 0.
(ii) s(A) ≤ s(A + B) and R(λ, A) ≤ R(λ, A + B) for all λ > s(A + B).
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Proof. Because B is bounded, we obtain the generation property of A+B
from Theorem III.1.3. Moreover, the perturbed resolvent is

R(λ, A + B) = R(λ, A) + R(λ, A)
∞∑

n=1

(BR(λ, A))n for λ large

(see Section III.1, (1.3)). Because B and R(λ, A) are positive for λ > s(A),
this implies

(2.4) 0 ≤ R(λ, A) ≤ R(λ, A + B)

for λ large. The inequality in (i) then follows from the Post–Widder inver-
sion formula in Corollary IV.2.5. Next, we use the representation (2.1) for
the resolvents of A and A + B, respectively, and infer that (2.4) and hence

‖R(λ, A)‖ ≤ ‖R(λ, A + B)‖
hold for all λ > max{s(A), s(A+B)}. The inequality in (ii) for the spectral
bounds then follows, because s(A) ∈ σ(A) by Theorem 2.2 and therefore
limλ↓s(A) ‖R(λ, A)‖ = ∞. �

Due to these results, the spectral bound becomes the supremum of all real
spectral values only, hence is much easier to compute. Moreover, Lemma 2.1
says that

s(A) < 0

if and only if 0 ∈ ρ(A) with 0 ≤ R(0, A) = −A−1. So in order to have
s(A) < 0 for a positive semigroup it suffices to show that A is invertible
with negative inverse. This is behind many maximum principles for partial
differential operators.

On the other hand, we know from the example in Section V.2.a that
the spectral bound and the growth bound do not coincide in general,
hence s(A) < 0 does not imply uniform exponential stability. Counterexam-
ple V.1.26 and Exercise V.2.13.(2) show that this even happens for positive
semigroups on Banach lattices. However, on special Banach lattices posi-
tivity, as eventual norm continuity in Corollary V.2.9, makes the spectral
bound and the growth bound coincide.

2.5 Theorem. Let
(
T (t)
)
t≥0 be a positive strongly continuous semigroup

with generator A on a Banach lattice Lp(Ω, μ), 1 ≤ p < ∞. Then

s(A) = ω0

holds.

Proof. We only prove the case p = 2. By the usual rescaling technique
and because s(A) ≤ ω0(A) it suffices to show that

(
T (t)
)
t≥0 is uniformly

exponentially stable if s(A) < 0.
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Because L2(Ω, μ) is a Hilbert space, we can use Theorem V.3.8 and there-
fore have to show that

sup
Re λ>0

‖R(λ, A)‖ < ∞.

However this follows from the estimate ‖R(λ, A)‖ ≤ ‖R(Re λ, A)‖, Re λ >
0, proved in (2.3) above.

For the proof for p = 1 we refer to [ABHN01, Thm. 5.3.7] whereas the
general case, due to Weis [Wei95], [Wei98], can be found in [ABHN01,
Thm. 5.3.6]. �

3. Convergence to Equilibrium, Revisited

In this section we return to the question of when the semigroup
(
T (t)
)
t≥0

converges to a nontrivial projection

P = lim
t→∞ T (t).

For a strongly continuous semigroup
(
T (t)
)
t≥0 with generator A satisfying

(SMT) we showed in Proposition V.4.3 that this is true if and only if 0 is a
dominant eigenvalue of A and a first-order pole of the resolvent R(·, A). We
see now that positivity and quasi-compactness of the semigroup combined
with irreducibility imply these conditions, hence convergence.

Although all the following results hold in any Banach lattice, we again
restrict our considerations to concrete function spaces. Hence we assume
that

(
T (t)
)
t≥0 is a positive strongly continuous semigroup on a Banach

lattice
X = Lp(Ω, μ)

for some σ-finite measure space (Ω, μ) and 1 ≤ p < ∞. We call a function
f ∈ X strictly positive (in symbols, 0 ! f), if

0 < f(s) for almost all s ∈ Ω.

Similarly, a positive linear form ϕ ∈ X ′ is called strictly positive (in sym-
bols, 0 ! ϕ), if

0 ≤ f ∈ X and 〈f, ϕ〉 = 0 imply f = 0.

Observe that if we identify X ′ with Lq(Ω, μ), then a strictly positive linear
form corresponds to a strictly positive function. With this terminology we
can now introduce the concept of an irreducible semigroup in the following
way.



212 Chapter VI. Positive Semigroups

3.1 Definition. A positive semigroup with generator A on the Banach
lattice X = Lp(Ω, μ) is irreducible, if for some λ > s(A) and all 0 < f ∈
Lp(Ω, μ) the resolvent satisfies

0 ! R(λ, A)f.

This notion is fundamental for the theory of positive semigroups and we
refer to [Nag86, C-III] for a list of different characterizations and many
nice properties. In particular, it is shown there that a strongly continuous
semigroup is irreducible if and only if 0 ! R(λ, A)f for all λ > s(A) and
all 0 < f ∈ X.

For our purposes we need that for an irreducible positive semigroup every
positive fixed element is strictly positive.

3.2 Lemma. Let
(
T (t)
)
t≥0 be an irreducible positive semigroup. Then

and
0 < f ∈ fix

(
T (t)
)
t≥0 implies 0 ! f

0 < ϕ ∈ fix
(
T (t)′)

t≥0 implies 0 ! ϕ.

Proof. Assume that 0 < f ∈ fix
(
T (t)
)
t≥0 = ker A is not strictly positive.

Then R(λ, A)f = 1/λf is also not strictly positive for λ > s(A), hence(
T (t)
)
t≥0 is not irreducible.

For the second statement we take 0 < ϕ ∈ fix
(
T (t)′)

t≥0 = ker A′. Again
we obtain R(λ, A′)ϕ = 1/λ ϕ > 0 for λ > s(A). If ϕ is not strictly positive
there exists 0 < f ∈ X such that 〈f, ϕ〉 = 0. This implies

0 =
〈
f, 1/λ ϕ

〉
=
〈
f, R(λ, A′)ϕ

〉
=
〈
R(λ, A)f, ϕ

〉
,

hence R(λ, A)f is not strictly positive and
(
T (t)
)
t≥0 not irreducible. �

We now give some typical examples of irreducible semigroups.

3.3 Examples. (i) On X = Cn, the semigroup
(
etA
)
t≥0 generated by a

real, positive off-diagonal matrix A is irreducible if and only if there is no
permutation matrix Q such that

QAQ−1 =

( ∗ ∗
0 ∗

)
.

For more details, see [Sch74, Chap. I] and [BP79].
(ii) If

(
T (t)
)
t≥0 is the semigroup induced by a measure-preserving flow

(ϕt)t≥0 on Ω, i.e.,

T (t)f = f ◦ ϕt for f ∈ Lp(Ω, μ), t ≥ 0,

then
(
T (t)
)
t≥0 is irreducible if and only if (ϕt)t≥0 is ergodic. See [Kre85].

(iii) The diffusion semigroup on Lp(Rn) defined in Paragraph II.2.12 is
irreducible. This follows because each operator T (t), hence each resolvent
operator R(λ, A), λ large, is an integral operator with strictly positive
kernel (see (2.8) in Paragraph II.2.12).
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From these and many other examples one sees that irreducibility occurs
naturally. In the next result we show that it has strong consequences on
the spectrum of the generator.

3.4 Proposition. Let
(
T (t)
)
t≥0 be an irreducible, positive, strongly con-

tinuous semigroup with generator A on the Banach lattice X and assume
that s(A) = 0. If 0 is a pole of the resolvent R(·, A), then the following
properties hold.

(i) fix
(
T (t)
)
t≥0 = ker A = lin{h} for some strictly positive function

h ∈ X.
(ii) fix

(
T (t)′)

t≥0 = ker A′ = lin{ϕ} for some strictly positive linear form
ϕ ∈ X ′.

(iii) 0 is a first-order pole with residua P = ϕ⊗h, where h ∈ fix
(
T (t)
)
t≥0,

ϕ ∈ fix
(
T (t)′)

t≥0, and 〈h, ϕ〉 = 1.

Proof. (i) We first show that fix
(
T (t)
)
t≥0 contains a strictly positive

element. If s(A) = 0 is a pole of order k, it follows from the positivity of(
T (t)
)
t≥0, hence of R(λ, A) for λ > 0, and from Paragraph V.1.18 that

and
U−k = lim

λ↓0
λkR(λ, A) > 0

AU−k = U−(k+1) = 0.

Hence there exists 0 �= f ∈ X such that U−kf �= 0. Again by positivity we
obtain

h := U−k|f | ≥ |U−kf | > 0.

Because Ah = 0, the positive function h belongs to fix
(
T (t)
)
t≥0. The irre-

ducibility of
(
T (t)
)
t≥0 implies 0 ! h by Lemma 3.2.

(ii) By analogous arguments and by taking adjoints we obtain that
fix
(
T (t)′)

t≥0 contains strictly positive elements.
We now continue the proof of (i) and show that fix

(
T (t)
)
t≥0 is one-

dimensional. Because f ∈ fix
(
T (t)
)
t≥0 if and only if f̄ ∈ fix

(
T (t)
)
t≥0 it

suffices to prove that the real vector space{
f ∈ fix

(
T (t)
)
t≥0 : f = f̄

}
is one-dimensional. Take 0 �= f ∈ fix

(
T (t)
)
t≥0. The positivity of the oper-

ators T (t) yields
|f | = |T (t)f | ≤ T (t)|f |.

Moreover, 〈
T (t)|f | − |f |, ϕ〉 =

〈|f |, T (t)′ϕ
〉− 〈|f |, ϕ〉 = 0
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for every 0 < ϕ ∈ fix
(
T (t)′)

t≥0. Because we have shown that such ϕ exists
and is strictly positive, we conclude that

T (t)|f | = |f |, i.e., |f | ∈ fix
(
T (t)
)
t≥0.

Then also

f+ := 1
2 (f + |f |) and f− := 1

2 (−f + |f |)
belong to fix

(
T (t)
)
t≥0. Again the strict positivity of the elements in the

fixed space fix
(
T (t)
)
t≥0 implies

f+ = 0 or f− = 0;

i.e., for each f ∈ fix
(
T (t)
)
t≥0 we have

f ≥ 0 or f ≤ 0.

This means that fix
(
T (t)
)
t≥0 is a totally ordered Banach lattice, hence

one-dimensional by [Sch74, Prop. II.3.4].
(iii) It remains to show that 0 is a first-order pole of R(·, A). Assume that

the pole order is k > 1 and take some 0 ! g ∈ ker A. With the notation
from Paragraph V.1.18 and P the residua of R(·, A) in 0 we have

PAk−1 = Ak−1P = U−k,

which is a positive operator as already seen above. This operator vanishes
on g, hence on all functions f ∈ X such that

|f | ≤ n · g for some n ∈ N.

These functions form a dense subspace in X because g is strictly positive.
Therefore U−k = 0, a contradiction. �

If we now add quasi-compactness to the above properties, we obtain not
only convergence but convergence to a (up to scalars) unique equilibrium.

3.5 Theorem. Let
(
T (t)
)
t≥0 be a quasi-compact, irreducible, positive

strongly continuous semigroup with generator A and assume that s(A) = 0.
Then 0 is a dominant eigenvalue of A and a first-order pole of R(·, A). More-
over, there exist strictly positive elements 0 ! h ∈ X, 0 ! ϕ ∈ X ′, and
constants M ≥ 1, ε > 0 such that∥∥T (t)f − 〈f, ϕ〉 · h∥∥ ≤ Me−εt‖f‖ for all t ≥ 0, f ∈ X.

Proof. The quasi-compactness of
(
T (t)
)
t≥0 implies that σ(A)∩iR consists

of finitely many poles only (see Theorem V.4.6). Assume that there exists
0 �= iα ∈ σ(A) ∩ iR. Then iα is an eigenvalue and we have

Af = iαf and T (t)f = eiαtf for all t ≥ 0
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and some 0 �= f ∈ X. This means that

f ∈ ker(I − T ) =: Y,

where we set T := T
(

2π/|α|
)
. The characterization of quasi-compactness in

Proposition V.4.5 implies that

ress(T ) < 1.

Therefore (use the characterization of the essential spectral radius in (1.16)
in Paragraph V.1.19) 1 is a pole of finite algebraic multiplicity such that

dimY < ∞.

Clearly this subspace is
(
T (t)
)
t≥0-invariant and the generator of the re-

stricted semigroup has 0 as spectral bound and iα in its spectrum. In
addition, Y is a (closed) sublattice of X as can be seen as follows.

For y ∈ Y we have |y| = |Ty| ≤ T |y| by the positivity of T . Applying a
strictly positive linear form ϕ ∈ fix

(
T (t)′)

t≥0 yields

〈
T |y| − |y|, ϕ〉 =

〈|y|, T ′ϕ
〉− 〈|y|, ϕ〉 = 0,

hence T |y| = |y| and |y| ∈ Y .
We showed that Y is a finite-dimensional (complex) Banach lattice, hence

isomorphic to Cn. The restricted semigroup is still positive, hence has dom-
inant spectral bound by Proposition 2.3. This contradicts our assumption
that 0 �= iα ∈ σ(A).

The remaining assertions now follow from Theorem V.4.6 and Proposi-
tion 3.4. �

3.6 Remark. If the semigroup
(
T (t)
)
t≥0 satisfies all the assumptions above

but has spectral bound s(A) > 0, one obtains, via rescaling, that

lim
t→∞

∥∥∥e− s(A)tT (t) − P
∥∥∥ = 0

for a projection P := ϕ ⊗ h as above. Such a behavior is called balanced
exponential growth and occurs frequently in models on population growth
(see [Web85] and [Web87]).

3.7 Outlook. The above theorem is a typical but not the most general
example for what positivity can do for the spectral theory and asymptotic
behavior of semigroups. We mention two generalizations.
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(i) If the semigroup is only quasi-compact and positive, then the spectral
bound is still a dominant eigenvalue of the generator, but, in general, no
longer a pole of first order. The asymptotic behavior is again described by
a positive matrix semigroup; see [Nag86, C-IV, Thm. 2.1 and Rems. 2.2]
for more details.
(ii) If the semigroup is only positive and s(A) a pole of the resolvent, then
the boundary spectrum

σ(A) ∩ {s(A) + iR
}

is cyclic; i.e., if s(A) + iα ∈ σ(A) then also s(A) + ikα ∈ σ(A) for all k ∈ Z.
Recall that if, in addition, the semigroup is eventually norm-continuous,
then this boundary spectrum must be bounded by Theorem II.5.3. There-
fore, s(A) again becomes a dominant eigenvalue of A. See [Nag86, C-III.
Cors. 2.12 and 2.13].

4. Semigroups for Age-Dependent Population Equations

In this section we show how the previous results on the asymptotic behavior
of positive quasi-compact semigroups can be used to study a model for an
age-dependent population described by the Cauchy problem

(APE)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂f

∂t
(a, t) +

∂f

∂a
(a, t) + μ(a)f(a, t) = 0 for a, t ≥ 0,

f(0, t) =
∫ ∞

0
β(a)f(a, t) da for t ≥ 0,

f(a, 0) = f0(a) for a ≥ 0.

Here t and a are nonnegative real variables representing time and age,
respectively, f(·, t) describes the age structure of a population at time t
and f0 is the initial age structure at time t = 0. Moreover, μ and β are
supposed to be bounded, measurable, and positive functions describing the
mortality rate and birth rate, respectively. For further details as well as
for nonlinear and vector-valued generalizations of this model we refer to
[Gre84] and [Web85].

In order to rewrite (APE) as an abstract Cauchy problem we take the
Banach space X := L1(R+) and define on it the closed and densely defined
operator Am by

Amf := −f ′ − μf, f ∈ D(Am) := W1,1(R+).

In the sequel we will always assume that

(4.1) μ∞ := lim
a→∞ μ(a) > 0 exists.
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Then for Reλ > −μ∞ it’s an exercise in calculus to show that

(4.2) rg(λ−Am) = X and ker(λ −Am) = lin{ελ},

where

(4.3) ελ(a) := e−
∫ a

0
(λ+μ(s)) ds

.

Next we define the restriction

(4.4) Af := Amf, D(A) :=
{

f ∈ D(Am) : f(0) =
∫ ∞

0
β(a)f(a) da

}
of Am which incorporates the birth process given by the second equation
of (APE) into the domain D(A). Then (APE) is equivalent to the abstract
Cauchy problem

(ACP)

{
u̇(t) = Au(t) for t ≥ 0,

u(0) = f0

for u(t) := f(·, t).
So instead of studying (APE) we solve (ACP) by semigroup methods. To

this end, by Theorem II.6.6, we have to prove that A generates a strongly
continuous semigroup

(
T (t)
)
t≥0 on X. In this case the unique solution of

(APE) is given by f(a, t) := (T (t)f0)(a).
As a preparatory step we discuss the case β = 0; i.e., we consider the

operator

A0f := Amf, D(A0) :=
{
f ∈ D(Am) : f(0) = 0

}
.

Then it is not difficult to verify that A0 generates a positive strongly con-
tinuous semigroup

(
T0(t)
)
t≥0 given by

(4.5)
[
T0(t)f

]
(a) =

{ 0 for 0 ≤ a < t,

e
−
∫ a

a−t
μ(s) ds · f(a− t) for t ≤ a.

Moreover, the following holds.

4.1 Proposition. The spectra of A0 and T0(t), t > 0, are given by

σ(A0) =
{
λ ∈ C : Re λ ≤ −μ∞

}
, σ

(
T0(t)
)

=
{
λ ∈ C : |λ| ≤ e−μ∞t

}
Proof. For λ ∈ C we define

hλ(a) := e
∫ a

0
(λ+μ(s)) ds

.
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Then hλ ∈ X ′ = L∞(R+) for Reλ < −μ∞ and
〈
(λ − A0)f, hλ

〉
= 0 for

all f ∈ D(A0). This shows that λ−A0 is not surjective for Reλ < −μ∞ and
hence {λ ∈ C : Re λ ≤ −μ∞} ⊆ σ(A0). On the other hand (4.1) implies
that

μ(a) = lim
t→0

∫ a+t

a

μ(s) ds

converges uniformly in a ∈ R+. Using this fact together with the explicit
representation of T0(t) in (4.5) we conclude from Proposition V.1.22 that
ω0(A0) ≤ −μ∞. Now the assertion follows because etσ(A0) ⊆ σ

(
T0(t)
)

by
the Spectral Inclusion Theorem V.2.5 and r

(
T (t0)

)
= et ω0(A0) by Proposi-

tion V.1.22. �

We now consider the case β �= 0, i.e., the operator A given by (4.4). The
functions ελ defined by (4.3) are positive and satisfy ‖ελ‖ ≤ 1/λ for all
λ > 0. Thus for λ > ‖β‖∞ the operator

Φλ :=
1

1 − 〈ελ, β〉 · ελ ⊗ β ∈ L(X)

is well-defined and positive.

4.2 Lemma. For λ > ‖β‖∞ the operator I + Φλ is invertible with inverse

(4.6) (I + Φλ)−1 = I − ελ ⊗ β.

Moreover, (I + Φλ)D(A0) = D(A) and

(4.7) (λ−A)(I + Φλ) = λ −A0.

Proof. Formula (4.6) can be verified by inspection. Moreover, from ελ ∈
D(Am) and D(A) =

{
f ∈ D(Am) : f(0) = 〈f, β〉} it follows easily that

(I + Φλ)D(A0) ⊆ D(A) and (I + Φλ)−1D(A) ⊆ D(A0);

i.e., (I + Φλ)D(A0) = D(A). Finally, for f ∈ D(A0) we have

(λ −A)(I + Φλ)f = (λ −Am)f + (λ −Am)Φλf = (λ −A0)f

because rg Φλ = lin{ελ} = ker(λ −Am). �

The following proposition opens the door for the application of the results
from the previous section. Here and in the sequel we always assume that

(4.8) β ∈ D(A0)′ = W1,∞(R+).

4.3 Proposition. The operator A is the generator of a positive strongly
continuous semigroup

(
T (t)
)
t≥0 on X. Moreover, T (t) − T0(t) is compact

and positive for every t ≥ 0.
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Proof. By (4.7) the operators A − λ and (I + Φλ)−1(A0 − λ) = A0 −
λ + λελ ⊗ β − (ελ ⊗ β)A0 are similar for λ > ‖β‖∞. From the assumption
(4.8) it follows that (ελ ⊗ β)A0 has the bounded extension ελ ⊗ A′

0β to
X. Thus by the Bounded Perturbation Theorem III.1.3 and by similarity
(see Paragraph I.1.9) we conclude that A generates a strongly continuous
semigroup

(
T (t)
)
t≥0 on X. Next we observe that (4.7) implies

R(λ, A) = (I + Φλ)R(λ, A0) ≥ R(λ, A0) ≥ 0 for λ > ‖β‖∞.

From the Post–Widder inversion formula in Corollary IV.2.5 we then obtain

T (t) ≥ T0(t) ≥ 0; i.e., T (t) − T0(t) ≥ 0 for all t ≥ 0.

It only remains to show that T (t)−T0(t) is compact. To this end we recall
that by the above considerations

A − λ = (I + Φλ) · (A0 − λ + λελ ⊗ β − ελ ⊗A′
0β) · (I + Φλ)−1

for λ > ‖β‖∞. If
(
S(t)
)
t≥0 denotes the semigroup generated by the operator

A0 + λελ ⊗ β − ελ ⊗A′
0β, this implies

T (t) = (I + Φλ) · S(t) · (I + Φλ)−1.

Because the operator λελ ⊗ β − ελ ⊗ A′
0β is compact, by (the proof of)

Proposition V.4.9 the perturbed semigroup
(
S(t)
)
t≥0 has the form

S(t) = T0(t) + K(t),

where K(t) is compact for all t ≥ 0. Combining these facts and using (4.6)
we finally obtain

T (t) = (I + Φλ) · (T0(t) + K(t)
) · (I − ελ ⊗ β).

Because Φλ and ελ ⊗ β are both compact, this implies the compactness of
T (t) − T0(t) for all t ≥ 0. �

Summarizing the above results we obtain the following where, in partic-
ular, we make the assumptions (4.1) and (4.8).

4.4 Theorem. The operator A generates a positive quasi-compact semi-
group

(
T (t)
)
t≥0 on L1(R+). This semigroup is irreducible if and only if

(4.9) there exists no a0 ≥ 0 such that β|[a0,∞) = 0 almost everywhere.

Proof. We already showed above that
(
T (t)
)
t≥0 is positive. The essen-

tial spectral radius is invariant under compact perturbations (see Para-
graph V.1.19), hence its quasi-compactness follows from Propositions 4.1
and 4.3 because

ress
(
T (1)
)

= ress
(
T0(1) + [T (1) − T0(1)]

)
= ress

(
T0(1)

)
≤ r
(
T0(1)

)
= e−μ∞ < 1.
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In order to prove the claim concerning irreducibility we first observe that it
is a simple exercise in linear ODEs to show that for λ > ‖β‖∞ the resolvent
of A0 is given by

(4.10)
[
R(λ, A0)f

]
(a) =

∫ a

0
e−
∫ a

s
(λ+μ(r)) dr

f(s) ds, f ∈ X, a ≥ 0.

Now assume that (4.9) does not hold, i.e., that there exists a0 such that
β|[a0,∞) = 0. Then for each f > 0 such that f |[0,a0] = 0 we obtain from
(4.10) that [R(λ, A0)f ](a) = 0 for all a ∈ [0, a0]. This implies

R(λ, A)f = (I + Φλ)R(λ, A0)f

= R(λ, A0)f +
1

1 − 〈ελ, β〉 · 〈R(λ, A0)f, β
〉 · ελ

= R(λ, A0)f.

Hence, R(λ, A)f is not strictly positive in general for 0 < f and λ > ‖β‖∞
and hence

(
T (t)
)
t≥0 not irreducible.

Conversely, assume that (4.9) holds and take some λ > ‖β‖∞ and 0 < f .
Then by (4.10) we conclude that

[
R(λ, A0)f

]
(a) > 0 for a ≥ 0 sufficiently

large and therefore
〈
R(λ, A0)f, β

〉
> 0. Now we obtain as above

R(λ, A)f = R(λ, A0)f +
1

1 − 〈ελ, β〉 · 〈R(λ, A0)f, β
〉 · ελ

≥ 1
1 − 〈ελ, β〉 · 〈R(λ, A0)f, β

〉 · ελ.

Because 〈ελ, β〉 < 1 and ελ is strictly positive this implies that R(λ, A)f is
strictly positive; i.e.,

(
T (t)
)
t≥0 is irreducible. �

After these preparations we are in the position to analyze the stabil-
ity and convergence of the semigroup

(
T (t)
)
t≥0 solving the age-dependent

population equation (APE).

4.5 Corollary. The following assertions are equivalent.
(a)
(
T (t)
)
t≥0 is uniformly exponentially stable.

(b) s(A) < 0.
(c) 〈ε0, β〉 =

∫∞
0 β(a) · e−

∫ a

0
μ(s) ds

da < 1.

Proof. Because by Theorem 4.4 we know that
(
T (t)
)
t≥0 is positive and

quasi-compact, the equivalence of (a) and (b) follows from Corollary V.4.7
or Theorem 2.5.
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To prove the remaining implications we observe that by the same argu-
ments as in the proof of Lemma 4.2 it follows that

(4.11) λ −A = (λ −A0)(I − ελ ⊗ β) for all λ ∈ R.

Next we define the function

r(λ) := 〈ελ, β〉 =
∫ ∞

0
β(a) · e−

∫ a

0
(λ+μ(s)) ds

da, λ ∈ R,

which is continuous and strictly decreasing. Moreover,

(4.12) lim
λ→−∞

r(λ) = ∞, lim
λ→∞

r(λ) = 0

and σ(ελ ⊗ β) = {r(λ)}.
Now assume (b). Because s(A0) = −μ∞ < 0, the assumption s(A) < 0

together with (4.11) implies that I − ελ ⊗ β is invertible for all λ ≥ 0; i.e.,
r(λ) �= 1 for all λ ≥ 0. By the continuity and monotonicity of r(·) and
(4.12) this is possible only if r(0) = 〈ε0, β〉 < 1. This proves (b) ⇒ (c).

Conversely, if 〈ε0, β〉 < 1, then (I − ε0 ⊗ β)−1 = Φ0 exists and (4.11)
implies that

−A−1 = −(I + Φ0)A−1
0 .

Here, because s(A0) = −μ∞ < 0, the inverse A−1
0 exists and is negative

by Lemma 2.1. Now Φ0 ≥ 0 shows R(0, A) = −A−1 ≥ 0 and again by
Lemma 2.1 we conclude that s(A) < 0. This proves (c) ⇒ (b) and completes
the proof. �

Our final result deals with convergence to a one-dimensional projection
in case s(A) = 0.

4.6 Corollary. Assume that (4.9) holds and

〈ε0, β〉 =
∫ ∞

0
β(a) · e−

∫ a

0
μ(s) ds

da = 1.

Then there exists a strictly positive linear form ϕ ∈ fix
(
T (t)′)

t≥0 and
constants M ≥ 1, ε > 0 such that∥∥T (t)f − 〈f, ϕ〉 · ε0

∥∥ ≤ Me−εt‖f‖ for all t ≥ 0 f ∈ X.

Proof. First we observe that by Theorem 4.4 the condition (4.9) implies
that
(
T (t)
)
t≥0 is irreducible. Moreover, the assumption 〈ε0, β〉 = r(0) = 1

implies by the same reasoning as in the proof of Corollary 4.5 that s(A) = 0.
The assertion then follows immediately from Theorem 3.5. �

4.7 Remark. The conditions imposed above can be relaxed without chang-
ing the conclusions. In particular, one can eliminate the assumptions (4.1),
(4.8), and (4.9), still getting stability and convergence of the semigroup(
T (t)
)
t≥0 as in Corollaries 4.5 and 4.6, respectively. Moreover, these results

can be generalized to higher dimensions. For further details see [Gre84] and
[Web85].



Appendix

A Reminder of Some Functional
Analysis and Operator Theory

This book is written in a functional-analytic spirit. Its main objects are
operators on Banach spaces, and we use many, sometimes quite sophisti-
cated, results and techniques from functional analysis and operator theory.
As a rule, we refer to textbooks such as [Con85], [DS58], [Lan93], [RS72],
[Rud73], [TL80], or [Yos65]. However, for the convenience of the reader we
add this appendix, where we

• Introduce our notation,

• List some basic results, and

• Prove a few of them.

To start with, we introduce the following classical sequence and function
spaces. Here, J is a real interval and Ω, depending on the context, is a
domain in Rn, a locally compact metric space, or a measure space.

�∞ :=
{

(xn)n∈N ⊂ C : sup
n∈N

‖xn‖ < ∞
}

, ‖(xn)n∈N‖ := sup
n∈N

‖xn‖,

c :=
{

(xn)n∈N ⊂ C : lim
n→∞ xn exists

}
⊂ �∞,

c0 :=
{

(xn)n∈N ⊂ C : lim
n→∞ xn = 0

}
⊂ c,

�p :=
{

(xn)n∈N ⊂ C :
∑
n∈N

|xn|p < ∞
}

, p ≥ 1, ‖(xn)n∈N‖ :=
(∑

n∈N

|xn|p
)1/p

,

222
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C(Ω) := {f : Ω → K | f is continuous},
‖f‖∞ := sup

s∈Ω
|f(s)| (if Ω is compact),

C0(Ω) := {f ∈ C(Ω) : f vanishes at infinity}; cf. p. 20,
Cb(Ω) := {f ∈ C(Ω) : f is bounded},
Cc(Ω) := {f ∈ C(Ω) : f has compact support}; cf. p. 21,
Cub(Ω) := {f ∈ C(Ω) : f is bounded and uniformly continuous},
AC(J) := {f : J → K | f is absolutely continuous},
Ck(J) := {f ∈ C(J) : f is k-times continuously differentiable},
C∞(J) := {f ∈ C(J) : f is infinitely many times differentiable},
Lp(Ω, μ) :=

{
f : Ω → K | f is p-integrable on Ω

}
,

‖f‖p :=
(∫

Ω
|f |p(s) dμ(s)

)1/p

,

L∞(Ω, μ) :=
{
f : Ω → K | f is measurable and μ-essentially bounded

}
,

‖f‖∞ := ess sup |f |; cf. p. 28,

Wk,p(Ω) :=
{

f ∈ Lp(Ω) : f is k-times distributionally differentiable
with Dαf ∈ Lp(Ω) for all |α| ≤ k

}
,

Hk(Ω) := Wk,2(Ω),

Hk
0(J) := {f ∈ Hk(J) : f(s) = 0 for s ∈ ∂J},

S (Rn) := Schwartz space of rapidly decreasing functions; cf. p. 55.

Clearly, we may combine the various sub- and superscripts for the spaces
of continuous functions and obtain, e.g., C1

c(J) = C1(J) ∩ Cc(J).
For an abstract complex Banach space X we denote its dual by X ′ and

the canonical bilinear form by

〈x, x′〉 for x ∈ X, x′ ∈ X ′.

As usual, we also write x′(x) for 〈x, x′〉 and denote by σ(X, X ′) the weak
topology on X and by σ(X ′, X) the weak∗ topology on X ′. Then the fol-
lowing properties hold.

A.1 Proposition.
(i) For convex sets in X (in particular, for subspaces) the weak and

norm closure coincide.
(ii) The closed, convex hull co K of a weakly compact set K in X is

weakly compact (Krěın’s theorem).
(iii) The dual unit ball U0 := {x′ ∈ X ′ : ‖x′‖ ≤ 1} is weak∗ compact

(Banach–Alaoglu’s theorem).
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The space of all bounded, linear operators on X is denoted1 by L(X)
and becomes a Banach space for the norm

‖T‖ := sup{‖Tx‖ : ‖x‖ ≤ 1}, T ∈ L(X).

The operators T ∈ L(X) satisfying

‖Tx‖ ≤ ‖x‖ for all x ∈ X

are called contractions, whereas isometries are defined by

‖Tx‖ = ‖x‖ for all x ∈ X.

Besides the uniform operator topology on L(X), which is the one induced
by the above operator norm, we frequently consider two more topologies
on L(X).

We write Ls(X) if we endow L(X) with the strong operator topology ,
which is the topology of pointwise convergence on (X, ‖·‖).

Finally, Lσ(X) denotes L(X) with the weak operator topology , which is
the topology of pointwise convergence on

(
X, σ(X, X ′)

)
.

A net (Tα)α∈A ⊂ L(X) converges to T ∈ L(X) if and only if

‖Tα − T‖ → 0 (uniform operator topology),(A.1)
‖Tαx− Tx‖ → 0 ∀ x ∈ X (strong operator topology),(A.2)
| 〈Tαx− Tx, x′〉 | → 0 ∀ x ∈ X, x′ ∈ X ′ (weak operator topology).(A.3)

With these notions, the principle of uniform boundedness can be stated as
follows.

A.2 Proposition. For a subset K ⊂ L(X) the following properties are
equivalent.

(a) K is bounded for the weak operator topology.
(b) K is bounded for the strong operator topology.
(c) K is uniformly bounded; i.e., ‖T‖ ≤ c for all T ∈ K.

Continuity with respect to the strong operator topology is shown fre-
quently by using the following property (b) (see [Sch80, Sect. III.4.5]).

A.3 Proposition. On bounded subsets of L(X), the following topologies
coincide.

(a) The strong operator topology.
(b) The topology of pointwise convergence on a dense subset of X.
(c) The topology of uniform convergence on relatively compact subsets

of X.

1 For the space of all bounded, linear operators between two normed spaces X and Y
we use the notation L(X, Y ).
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The advantage of using the strong or weak operator topology instead of
the norm topology on L(X) is that the former yield more continuity and
more compactness. This becomes evident already from the definition of a
strongly continuous semigroup in Section I.1.

As an example for the functional-analytic constructions made throughout
the text, we consider the following setting.

Let Xt0 := C
(
[0, t0],Ls(X)

)
be the space of all functions on [0, t0] into

L(X) that are continuous for the strong operator topology. For each F ∈
Xt0 and x ∈ X, the functions t �→ F (t)x are continuous, hence bounded,
on [0, t0]. The uniform boundedness principle then implies

‖F‖∞ := sup
s∈[0,t0]

‖F (s)‖ < ∞.

Clearly, this defines a norm making Xt0 a complete space.

A.4 Proposition. The space

Xt0 :=
(
C
(
[0, t0],Ls(X)

)
, ‖ · ‖∞

)
is a Banach space.

Proof. Let (Fn)n∈N be a Cauchy sequence in Xt0 . Then, by the definition
of the norm in Xt0 ,

(
Fn(·)x)n∈N is a Cauchy sequence in C([0, t0], X) for

all x ∈ X. Because C([0, t0], X) is complete, the limit limn→∞ Fn(·)x =:
F (·)x ∈ C([0, t0], X) exists, and we obtain limn→∞ Fn = F in Xt0 . �

Familiarity with linear operators, in particular unbounded operators,
is essential for an understanding of our semigroups and their generators.
The best introduction is still Kato’s monograph [Kat80] (see also [DS58],
[GGK90], [Gol66], [TL80], [Wei80]), but we briefly restate some of the basic
definitions and properties.2

A.5 Definition. A linear operator A with domain D(A) in a Banach
space X, i.e., D(A) ⊂ X → X, is closed if it satisfies one of the following
equivalent properties.

(a) If for the sequence (xn)n∈N ⊂ D(A) the limits limn→∞ xn = x ∈ X
and limn→∞ Axn = y ∈ X exist, then x ∈ D(A) and Ax = y.

(b) The graph G(A) := {(x, Ax) : x ∈ D(A)} is closed in X ×X.
(c) X1 :=

(
D(A), ‖ · ‖A

)
is a Banach space3 for the graph norm

‖x‖A := ‖x‖ + ‖Ax‖, x ∈ D(A).

2 Most of the following concepts also make sense for operators acting between different
Banach spaces. However, for simplicity we state them for a single Banach space only
and leave the straightforward generalization to the reader.
3 This definition of X1 also makes sense if A has an empty resolvent set. Because

if ρ(A) �= ∅, the graph norm and the norms ‖ · ‖1,λ from Exercise II.2.22.(1) are all
equivalent, this definition of X1 will not conflict with Definition II.2.14 for n = 1.
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(d) A is weakly closed ; i.e., property (a) (or property (b)) holds for the
σ(X, X ′)-topology on X.

If λ − A is injective for some λ ∈ C, then the above properties are also
equivalent to

(e) (λ −A)−1 is closed.

Next we consider perturbations of closed operators. Whereas the additive
perturbation of a closed operator A by a bounded operator B ∈ L(X)
yields again a closed operator, the situation is slightly more complicated
for multiplicative perturbations.

A.6 Proposition. Let
(
A, D(A)

)
be a closed operator and take B ∈ L(X).

Then the following hold.
(i) AB with domain D(AB) := {x ∈ X : Bx ∈ D(A)} is closed.
(ii) BA with domain D(BA) := D(A) is closed if B−1 ∈ L(X).

Proof. (i) is easy to check and implies (ii) after the similarity transfor-
mation BA = B(AB)B−1. �

It will be important to find closed extensions of not necessarily closed
operators. Here are the relevant notions.

A.7 Definition. An operator
(
B, D(B)

)
is an extension of

(
A, D(A)

)
, in

symbols A ⊂ B, if D(A) ⊂ D(B) and Bx = Ax for x ∈ D(A). The smallest
closed extension of A, if it exists, is called the closure of A and is denoted
by A. Operators having a closure are called closable.

A.8 Proposition. An operator
(
A, D(A)

)
is closable if and only if for

every sequence (xn)n∈N ⊂ D(A) with xn → 0 and Axn → z one has z = 0.
In that case, the graph of the closure is given by

G(A) = G(A).

A simple operator that is not closable is

Af := f ′(0) · 1 with domain D(A) := C1[0, 1]

in the Banach space X := C[0, 1]. This follows, e.g., from the following
characterization of bounded linear forms and the fact that the kernel of a
closed operator is always closed.4

A.9 Proposition. Let X be a normed vector space and take a linear
functional x′ : X → C. Then x′ is bounded if and only if its kernel ker x′

is closed in X. Hence, x′ is unbounded if and only if ker x′ is dense in X.

4 Here, for a linear map Φ : X → Y between two vector spaces X and Y its kernel is
defined by ker Φ := {x ∈ X : Φx = 0}.
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Proof. If x′ is bounded, then clearly ker(x′) is closed. On the other hand,
if kerx′ is closed, then the quotient X/ker x′ is a normed vector space of
dimension 1. Moreover, we can decompose x′ = i x̂′ by the canonical maps
i : X/ker x′ → C and x̂′ : X → X/ker x′ . Because ‖x̂′‖ ≤ 1, this proves that
x′ is bounded. The remaining assertions follow from the fact that for each
linear form x′ �= 0 the codimension of kerx′ in X is 1. �

A subspace D of D(A) that is dense in D(A) for the graph norm is
called a core for A. If

(
A, D(A)

)
is closed, one can recover A from its

restriction to a core D; i.e., the closure of (A, D) becomes
(
A, D(A)

)
. See

Exercise II.1.15.(2).
The closed graph theorem states that everywhere defined closed opera-

tors are already bounded. It can be phrased as follows.

A.10 Theorem. For a closed operator A : D(A) ⊂ X → X the following
properties are equivalent.

(a)
(
A, D(A)

)
is a bounded operator; i.e., there exists c ≥ 0 such that

‖Ax‖ ≤ c ‖x‖ for all x ∈ D(A).

(b) D(A) is a closed subspace of X.

By the closed graph theorem, one obtains the following surprising result.

A.11 Corollary. Let A : D(A) ⊂ X → X be closed and assume that
a Banach space Y is continuously embedded in X such that the range
rg A := A

(
D(A)

)
is contained in Y . Then A is bounded from (D(A), ‖·‖A)

into Y .

If an operator A has dense domain D(A) in X, we can define its adjoint
operator on the dual space X ′.5

A.12 Definition. For a densely defined operator
(
A, D(A)

)
on X, we

define the adjoint operator
(
A′, D(A′)

)
on X ′ by

D(A′) : =
{
x′ ∈ X ′ : ∃ y′ ∈ X ′ such that 〈Ax, x′〉 = 〈x, y′〉 ∀ x ∈ D(A)

}
,

A′x′ : = y′ for x′ ∈ D(A′).

A.13 Example. Take Ap := d/ds on Xp := Lp(R), 1 ≤ p < ∞, with
domain D(Ap) := W1,p(R) := {f ∈ Xp : f absolutely continuous, f ′ ∈
Xp}. Then Ap

′ = −Aq on Xq, where 1/p + 1/q = 1. For a proof and many
more examples we refer to [Gol66, Sect. II.2 and Chap. VI] and [Kat80,
Sect. III.5]. Compare also Exercise II.4.14.(11).

Although the adjoint operator is always closed, it may happen that
D(A′) = {0} (e.g., take the nonclosable operator following Proposition A.8).

5 Similarly, one can define the Hilbert space adjoint A∗ by replacing the canonical
bilinear form 〈 · , · 〉 by the inner product ( · | · ).
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On reflexive Banach spaces there is a nice duality between densely defined
and closable operators.

A.14 Proposition. Let
(
A, D(A)

)
be a densely defined operator on a

reflexive Banach space X. Then the adjoint A′ is densely defined if and
only if A is closable. In that case, one has

(A′)′ = A.

We now prove a close relationship between inverses and adjoints.

A.15 Proposition. Let
(
A, D(A)

)
be a densely defined closed operator on

X. Then the inverse A−1 ∈ L(X) exists if and only if the inverse (A′)−1 ∈
L(X ′) exists. In that case, one has

(A′)−1 = (A−1)′.

Proof. Assume A−1 ∈ L(X). Because (A−1)′ ∈ L(X ′), one has〈
x, (A−1)′A′x′〉 =

〈
A−1x, A′x′〉 =

〈
AA−1x, x′〉 = 〈x, x′〉

for all x ∈ X, x′ ∈ D(A′); i.e., A′ has a left inverse. Similarly,〈
Ax, (A−1)′x′〉 =

〈
A−1Ax, x′〉 = 〈x, x′〉

holds for all x ∈ D(A), x′ ∈ X ′; i.e., (A−1)′x′ ∈ D(A′) and A′(A−1)′x′ = x′.
On the other hand, assume (A′)−1 ∈ L(X ′). Then〈

Ax, (A′)−1x′〉 =
〈
x, A′(A′)−1x′〉 = 〈x, x′〉

for all x ∈ D(A) and x′ ∈ X ′. For every x ∈ D(A), choose x′ ∈ X ′ such
that ‖x′‖ = 1 and | 〈x, x′〉 | = ‖x‖ and obtain

‖x‖ =
∣∣〈Ax, (A′)−1x′〉∣∣ ≤ ‖Ax‖ · ∥∥(A′)−1

∥∥.
This shows that A is injective and its inverse satisfies∥∥A−1

∥∥ ≤ ∥∥(A′)−1
∥∥,

hence is bounded. By Theorem A.10, D(A−1) = rg A must be closed. A
simple Hahn–Banach argument shows that rg A = X, hence A−1 ∈ L(X).

�

A.16 Corollary. For a densely defined closed operator
(
A, D(A)

)
the spec-

tra of A and of A′ coincide; i.e.,

σ(A) = σ(A′)

and R(λ, A)′ = R(λ, A′) for all λ ∈ ρ(A).
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Now we turn again to the unbounded situation and define iterates of
unbounded operators.

A.17 Definition. The nth power An of an operator A : D(A) ⊂ X → X
is defined successively as

Anx : = A(An−1x),

D(An) : =
{
x ∈ D(A) : An−1x ∈ D(A)

}
.

In general, it may happen that D(A2) = {0} even if A is densely defined
and closed. However, if A−1 ∈ L(X) exists (or if ρ(A) �= ∅), the infinite
intersection

D(A∞) :=
∞⋂

n=1

D(An)

is still dense. This is proved in Proposition II.1.8 for semigroup generators
and in [Len94] or [AEMK94, Prop. 6.2] for the general case.

Next, we give some results concerning the continuity and differentiability
of products of operator-valued functions.

A.18 Lemma. Let J be some real interval and P , Q : I → L(X) be
two strongly continuous operator-valued functions defined on J . Then the
product (PQ)(·) : J → L(X), defined by (PQ)(t) := P (t)Q(t), is strongly
continuous as well.

Proof. We fix x ∈ X and t ∈ J and take a sequence (tn)n∈N ⊂ J
with limn→∞ tn = t. Then, by the uniform boundedness principle, the
set {P (tn) : n ∈ N} ⊂ L(X) is bounded, and therefore

‖P (tn)Q(tn)x− P (t)Q(t)x‖ ≤ ‖P (tn)‖ · ‖Q(tn)x−Q(t)x‖
+ ‖(P (tn) − P (t)

)
Q(t)x‖,

where the right-hand side converges to zero as n → ∞. �
A.19 Lemma. Let J be some real interval and P , Q : J → L(X) be
two strongly continuous operator-valued functions defined on J . Moreover,
assume that P (·)x : J → X and Q(·)x : J → X are differentiable for
all x ∈ D for some subspace D of X, which is invariant under Q. Then
(PQ)(·)x : J → X, defined by (PQ)(t)x := P (t)Q(t)x, is differentiable for
every x ∈ D and

d
dt

(
P (·)Q(·)x

)
(t0) = d

dt

(
P (·)Q(t0)x

)
(t0) + P (t0)

(
d
dtQ(·)x

)
(t0).

Proof. Let t0 ∈ J and (hn)n∈N ⊂ R be a sequence such that limn→∞ hn =
0 and t0 + hn ∈ J for all n ∈ N. Then, for x ∈ D, we have

P (t0 + hn)Q(t0 + hn)x− P (t0)Q(t0)x
hn

= P (t0 + hn)
Q(t0 + hn)x−Q(t0)x

hn
+

P (t0 + hn) − P (t0)
hn

Q(t0)x

=: L1(n, x) + L2(n, x).
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Clearly, the sequence
(
L2(n, x)

)
n∈N converges for all x ∈ D and its limit

is limn→∞ L2(n, x) = P ′(t0)Q(t0)x. In order to show that
(
L1(n, x)

)
n∈N

converges for x ∈ D, note that{
Q(t0 + hn)x−Q(t0)x

hn
: n ∈ N

}
is relatively compact in X and that {P (t0 + hn) : n ∈ N} is bounded.
Because by Proposition A.3 the topologies of pointwise convergence and of
uniform convergence on relatively compact sets coincide, we conclude that(
L1(n, x)

)
n∈N converges for x ∈ D and

lim
n→∞ L1(n, x) = P (t0)Q′(t0)x.

This completes the proof. �

In the context of operators on spaces of vector-valued functions it is
convenient to use the following tensor product notation.

Assume that X, Y are Banach spaces, F(J, Y ) is a Banach space of Y -
valued functions defined on an interval J ⊆ R, T ∈ L(X, Y ) is a bounded
linear operator, and f : J → C is a complex-valued function. If the map
f ⊗ y : J � s �→ f(s) · y ∈ Y belongs to F(J, Y ) for all y ∈ Y , then we
define the linear operator f ⊗ T : X → F(J, Y ) by(

(f ⊗ T )x
)
(s) := (f ⊗ Tx)(s) = f(s) · Tx

for all x ∈ X, s ∈ J .
Independently, for a Banach space X and elements x ∈ X, x′ ∈ X ′, we

frequently use the tensor product notation x⊗x′ for the rank-one operator
on X defined by

(x⊗ x′) v := x′(v) · x, v ∈ X.

We conclude this appendix with the following vector-valued version of
the Riemann–Lebesgue lemma.

A.20 Theorem. If f ∈ L1(R, X), then f̂ ∈ C0(R, X); i.e., we have
lims→±∞ f̂(s) = 0.

For the proof it suffices to consider step functions, for which, as in the
scalar case, the assertion follows by integration by parts.



References

[AB85] C.D. Aliprantis and O. Burkinshaw, Positive Operators, Aca-
demic Press, 1985.

[AB88] W. Arendt and C.J.K. Batty, Tauberian theorems for one-
parameter semigroups, Trans. Amer. Math. Soc. 306 (1988),
837–852.

[ABHN01] W. Arendt, C.J.K. Batty, M. Hieber, and F. Neubran-
der, Vector-valued Laplace Transforms and Cauchy Problems,
Monographs Math., vol. 96, Birkhäuser Verlag, 2001.
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Birkhäuser Verlag, 1996.

[Neu88] F. Neubrander, Integrated semigroups and their application to
the abstract Cauchy problem, Pacific J. Math. 135 (1988), 111–
157.

[NP94] J.M.A.A. van Neerven and Ben de Pagter, The adjoint of a
positive semigroup, Compositio Math. 90 (1994), 99–118.

[NP00] R. Nagel and J. Poland, The critical spectrum of a strongly
continuous semigroup, Adv. Math. 152 (2000), 120–133.

[Ped89] G.K. Pedersen, Analysis Now, Graduate Texts in Math., vol.
118, Springer-Verlag, 1989.

[Phi53] R.S. Phillips, Perturbation theory for semi-groups of linear op-
erators, Trans. Amer. Math. Soc. 74 (1953), 199–221.



References 235
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